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Abstract

Systems of Systems (SoS) have received a lot of attention recently. In this the-
sis we will focus on SoS that are built atop the techniques of Service-Oriented
Architectures and thus combine the benefits and challenges of both paradigms.
For this thesis we will understand SoS as ensembles of single autonomous sys-
tems that are integrated to a larger system, the SoS. The interesting fact about
these systems is that the previously isolated systems are still maintained, im-
proved and developed on their own. Structural dynamics is an issue in SoS,
as at every point in time systems can join and leave the ensemble. This and
the fact that the cooperation among the constituent systems is not necessar-
ily observable means that we will consider these systems as open systems. Of
course, the system has a clear boundary at each point in time, but this can only
be identified by halting the complete SoS. However, halting a system of that
size is practically impossible. Often SoS are combinations of software systems
and physical systems. Hence a failure in the software system can have a serious
physical impact what makes an SoS of this kind easily a safety-critical system.

The contribution of this thesis is a modelling approach that extends OMG’s
SoaML and basically relies on collaborations and roles as an abstraction layer
above the components. This will allow us to describe SoS at an architectural
level. We will also give a formal semantics for our modelling approach which
employs hybrid graph-transformation systems. The modelling approach is ac-
companied by a modular verification scheme that will be able to cope with the
complexity constraints implied by the SoS’ structural dynamics and size. Build-
ing such autonomous systems as SoS without evolution at the architectural level
— i.e. adding and removing of components and services — is inadequate. There-
fore our approach directly supports the modelling and verification of evolution.
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Zusammenfassung

Systems of Systems (SoS) sind ein seit längerem bekanntes Konzept, das jedoch
in letzter Zeit vermehrt Aufmerksamkeit erhielt. Das Hauptaugenmerk dieser
Arbeit wird auf SoS liegen, die mit Hilfe von Techniken aus Service-Orientierten
Architekturen erstellt werden. Somit vereinen die hier betrachteten SoS die
Vorteile und Herausforderungen beider Paradigmen. SoS können definiert wer-
den als Zusammenschlüsse einzelner, autonomer Systeme, die zu einem größeren
System integriert werden. In diesem Zusammenhang interessant ist, dass die
ehemals isolierten Systeme nach wie vor isoliert voneinander weiterentwickelt
und gewartet werden. Desweiteren kommt der Strukturdynamik innerhalb des
SoS eine beachtliche Bedeutung zu, da jederzeit Systeme dem SoS beitreten und
es verlassen können. Zusammen mit der Tatsache, dass die Kooperationen zwis-
chen den konstituierenden Systemen nicht immer beobachtbar sind, führt dies
dazu, dass wir diese Systeme als offene Systeme bezeichnen. Wobei das System
natürlich jederzeit eine klar definierte Grenze besitzt, diese aber nur durch ein
Anhalten des Systems zu bestimmen ist. Dies jedoch ist, von einer praktischen
Perspektive aus betrachtet, unmöglich. Häufig stellen SoS eine Kombination
aus Softwaresystemen und pyhsikalischen Systemen dar mit der Folge, dass ein
Fehler in der Software eine SoS schnell eine immense physikalische Wirkung en-
twickeln kann. Von daher fallen SoS leicht in die Klasse der sicherheitskritischen
Systeme.

In dieser Arbeit werden wir einen Modellierungsansatz vorstellen, der die Spra-
che SoaML der OMG erweitert. Die grundlegenden Konzepte dieses Ansatzes
sind die Modellierung mit Kollaborationen und Rollen als Abstraktionsebene
über Komponenten. Der vorgestellte Ansatz erlaubt es uns SoS auf einer ar-
chitekturellen Ebene zu betrachten. Die formale Semantik unseres Modellie-
rungsansatzes ist durch hybride Graphtransformationssysteme gegeben. Abge-
stimmt auf die Modellierung werden wir ebenfalls ein Verfahren zu Verifikation
von SoS vorstellen, welches trotz der inhärenten Komplexität von SoS, diese zu
verifizieren. Die Modellierung und Verifikation von Evolution wird von unserem
Ansatz direkt unterstützt.
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Chapter 1

Introduction

The idea of Systems of Systems (SoS) has been around for a while [103] but
has received a lot of attention recently. The available definitions for SoS range
from “network-enabled synergistic collaborations between systems that are oper-
ationally and managerially independent, distributed, evolve dynamically and ex-
hibit emergence” [68] through simply “collaborative systems” and “systems that
are built from components which are large-scale systems in their own right” [103]
to a synonym for ultra-large-scale systems (ULSS) [107], which are defined as “a
dynamic community of interdependent and competing organisms (in this case,
people, computing devices, and organizations) in a complex and changing en-
vironment”. For this thesis, we will use Valerdi et al.’s [127] understanding of
SoS, which defines SoS as ensembles of single autonomous systems that are in-
tegrated into a larger system, the SoS. The interesting fact about these systems
is that the systems isolated beforehand are still maintained, improved and de-
veloped on their own. Further, structural dynamics is an issue in SoS as at
every point in time systems can join and leave the ensemble. The relevance of
SoS is emphasized through several EU-funded projects, which investigate differ-
ent aspects of SoS. The Compass project (http://www.compass-research.eu)
addresses the development and maintenance of SoS. The evolution and adap-
tation of lifecycle-models for SoS is the research area of the DANSE project
(http://www.danse-ip.eu). Certification issues of SoS are the main interest
of the OPENCOSS project (http://opencoss-project.eu).

SoS are not necessarily pure software systems. Often they are combinations of
software systems and physical systems. A different term, that is often used for
this class of systems, is Cyber-Physical-Systems [98, 80] (CPS) or Networked-
Cyber-Physical-Systems [124] (NCPS). NCPS are dynamic, distributed systems
that are tightly integrated with their environment. Generally, CPS require
capabilities to sense and change the environment through sensors and actors,
respectively. Typical application domains for NCPS are traffic control, train,
vehicular and avionic systems. E.g. for a vehicular system (cf. [30]), the
system’s state is determined not only by its software parts but also by the
values of the vehicle’s physical properties. For a motor car, the decisions that
have to be made might depend, among other properties, on the car’s velocity
and acceleration.



An important point, which is discussed by Ghezzi et al. [34] for SOA, but which
holds also for SoS, is that they are so-called open-systems. For an open system,
it is impossible to determine the system’s boundaries without halting the system.
This argument is easy to follow if one recalls that the only information available
is that stating which service one currently uses. The services that are invoked
by the providing component in order to fulfill one’s service request are hidden
from the user.

Evolution is a classic challenge in software engineering. Lehman [99] and Par-
nas [111] made a clear point that evolution is an inevitable phenomenon as
software otherwise is decreasing in its utility. The task of establishing a pro-
found evolution strategy is already hard for a monolithic system. In the context
of SoS with different managerial authorities and the uncoordinated evolution
of constituent systems [103], the problem becomes even harder. Consequently,
support for evolution has to be a requirement during the SoS’s design phase.

So far, we have introduced the system types, SoS, ULSS and NCPS, which all
share the commonality that they contain an inherent need for adaptation, are of
unknown size, are hard to halt and, lastly, are often used in safety-critical envi-
ronments. The safety-critical environment makes it directly necessary that the
system’s behaviour is well known or at least that it is guaranteed that the sys-
tem stays within the boundaries of predefined safety properties. Thus, a sound
automatic verification mechanism for these systems is required.1 Verification
can always be used to verify different properties of a system. So, beside the dif-
ferentiation between liveness- and safety-properties, probabilistic methods also
allow us to check the system’s expected availability and other non-functional
properties. Structural safety properties, however, are to some extent charac-
teristic for SoS. The systems’ high flexibility directly raises the questions of
which structural combinations — i.e. connections of constituent systems — are
possible within the SoS and which aren’t. Thus, for an automatic verification
technique to be applicable, several challenges have to be solved. The system’s
size is not certain. Each single constituent system has a different managing
authority, and thus the constituent system’s exact behaviour specification is
probably the authority’s intellectual property and not publicly available. New
systems with previously unknown behaviour can be introduced to the SoS at any
point in time. Established and well-known analysis techniques, such as model-
checking — independent of the underlying mechanism to build the state space
— are, due to the extremely large and probably infinite state space, not appli-
cable out of the box. Testing, although very useful at the implementation level,
can only be used if the constituent systems are known. Further, the large state
space makes it complicated to reach a good test-coverage. However, for self-
adaptive systems [14], which to some extent have similar characteristics, such
as architectural reconfiguration and incomplete knowledge, currently no suitable
verification technique exists (cf. [19]). That reconfiguration or self-adaptation
can, in principle, be facilitated to design a dependable system is pointed out by
several authors [50].

An implementation technique that is often used for the realisation of SoS and

1Verification can be understood in several different ways. In this thesis, we will use the term
verification in the sense of formal verification and we will only consider automatic verification
techniques.
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1.1. RUNNING EXAMPLE

ULSS (cf. [107]) is Service-oriented Architectures [64] (SOA). SOA are widely
used to build distributed and loosely coupled systems and are proposed as a so-
lution to build open and organisationally separated systems (cf. [128]). Further,
they offer great capabilities to integrate legacy systems into a new environment.
Within an SOA, the question of how the overall system is controlled arises di-
rectly. Two main techniques have emerged and are used in practice: orchestra-
tion and choreography. In an orchestrated SOA, one or more central controllers
coordinate the behaviour of the components involved. A choreography, however,
is the decentralised counterpart to an orchestration. If we want to use SOA as
an implementation paradigm for a SoS, both coordination mechanisms could be
employed; however, as it is inevitable that within an SoS organisational borders
are crossed, a choreography is more likely to be applied. An orchestrated SOA
is likely to be found within organisational bounds. Orchestration and choreog-
raphy are not exclusive choices, but can also be used in combination.

Beside this flexibility, service-oriented systems also introduce a further layer
of abstraction atop of components. Service-oriented systems describe the be-
haviour that occurs between the components involved, at a more abstract level,
than components do. The behaviour is assigned to roles that can be imple-
mented by components. This allows us to specify and analyse the behaviour of
the services, independent of the components.

Verification requires a rigorous modelling approach that has a clear formal se-
mantics. For the modelling of SoS, often a role-based modelling approach using
contracts between roles is proposed [49]. This directly matches the implemen-
tation paradigm of service-oriented architectures, which are also specified at a
similar level of abstraction. SoaML [28] is a modelling language, i.e. a pro-
file and meta-model for UML 2, that puts strong emphasis on the definition
of roles and contracts, but SoaML does not have the formal underpinning that
is required to run a full formal verification. Therefore, we will extend SoaML

in a suitable way and augment it with the necessary formal background. Our
extension of SoaML will be called rigSoaML.

1.1 Running Example

The application example we will use throughout this thesis is a supply chain
system. We will use this example to illustrate the modelling and verification
aspects. Basically, the system consists of two different roles: customers and sup-
pliers. A customer has the capability to buy goods at the market and the sup-
plier can sell goods. Selling and buying goods is achieved through a coordination
of supplier and customer in a service contract called “Contract Collaboration”.
Components can implement both of the two roles, and the abstract super type
of such a component is called a “Factory”. The “contract collaboration” service
contract has an attribute “recall date” that states when the service contract
can be recalled. We want each supply chain system to follow this restriction: A
company can only deliver its goods to a customer if all of its own customer roles
are equipped with an active service contract. Hence, the supply chain system’s
rules have to ensure that only such contracts are signed – i.e. instantiated – that
satisfy this restriction. Figure 1.1 shows an exemplary sketch of a supply chain

3



1.2. GOALS OF THE THESIS

system. The components are depicted by a factory pictogram and the service
contracts are indicated through the arrows. The supplier role is at the start of
the arrow and the customer role at the end.

Figure 1.1: Sketch of the Supply-Chain running example

Depending on the business domain, different flavours of negotiation processes
can be used. In the application example, this is modelled through different
service contracts. The abstract service contract only specifies that a contract
element can be created between consumer and producer, without considering
any negotiation. An extension of this basic service contract is the introduction of
a negotiation stage that comprises a customer request, followed by a producer’s
offer and concludes with the creation of a contract. An alternative extension
would be, e.g. , an auction like a negotiation stage, where the consumer role is
extended to also make bids. After a given period of time, the consumer with
the highest bid would be selected and the contract created.

The supply chain system makes it very obvious that the systems we are inves-
tigating are open and that it is a very hard, yet unsolvable task to determine
the system’s current structure, firstly, due to the system’s size and secondly,
because companies do not have any interest in making their deliverer public, as
this could undermine their market position.

1.2 Goals of the Thesis

In this thesis, we want to address two goals that are relevant in the context of
SoS. These are verification and modelling of the architectural properties of SoS.

Goal Verification The main goal we want to achieve in this thesis is to
develop a verification scheme for compositional reasoning about SoS. The veri-
fication approach should be suitable to verify discrete as well as hybrid systems.
Further, the approach should scale to the size of SoS and be generally applicable.

Goal Modelling In order to achieve our main goal, we also have to provide a
modelling language that is able to describe SoS in a sufficient degree of abstrac-

4



1.2. GOALS OF THE THESIS

tion. We will therefore extend OMG’s SoaML. The modelling approach should
be able to express the structural dynamics within the SoS as well as having a
precise understanding of inheritance and the preconditions and consequences.
Further, the approach has to have a formal underpinning. We will therefore
present a mapping to graph-transformation systems.

This thesis is organised as follows. In Section 1.1 we have introduced our run-
ning example. In Chapter 2 we discuss the requirements that a modelling and
verification approach for SoS has to fulfil. Chapter 3 introduces the current
state of the art of modelling with SoaML and in Chapter 4 we describe how
we overcome the weaknesses of SoaML with our modelling extension rigSoaML.
The verification scheme we have developed to allow the verification of SoS is
explained in Chapter 5 and the detailed techniques will be presented in Chap-
ter 6. In Chapter 7 we present our verification tool the Invariant Checker. We
evaluate the tool and the modelling approach in Chapter 8. A comprehensive
discussion of related work is contained in Chapter 9. Chapter 10 concludes the
thesis with a summary and an outlook to future work.

5





Chapter 2

Requirements

In this chapter we will discuss the different origins of service-oriented systems of
systems and deduce a set of requirements that have to be fulfilled by a suitable
modelling and verification approach for these systems.

2.1 System of Systems

For systems as complex as SoS, a magnitude of requirements can be defined.
Beside the classical expectations of a software system, for an SoS several other
requirements have to be met that are implied by the systems’ size and different
organisations developing constituent systems of the SoS. However, for this thesis
we want to focus on requirements that arise in the context of SoS and that are
relevant for our aim of verifying these systems. Therefore, the requirements can
be separated into two parts: self-adaptation as one characteristic of SoS and
service-oriented architectures as the implementation paradigm we follow.

One important aspect of SoS is that the constituent systems remain independent
of each other and each of these systems has it’s own managing authority [100].
Although these different managing authorities have to cooperate with each other
to make the overall SoS run, they probably have no interest in publishing the
complete implementation of their systems. They want to keep their intellectual
property (IP) and publish only those details that are necessary to cooperate
within the SoS. Additionally, as a result of the openness (cf. [34]) the boundaries
of the SoS and hence all its constituents are unknown.

2.1.1 Self-Adaptation

Self-adaptation and self-adaptive systems are used whenever the system has
to deal with contradictory objectives [132]. These lead to the observation that
more than one optimal configuration of the system exist and the best one cannot
be determined at the design time. The optimal configuration of a self-adaptive
system depends on the system’s current configuration, the goals it is to achieve



2.1. SYSTEM OF SYSTEMS

and the environment the system is operating in. However, self-adaptive systems
are also well suited to capturing the problem of system evolution, as they are
built to deal with contradictory but also with changing objectives and require-
ments [29].

Independent of the technique that is used for adaptation, a self-adaptive system
requires several parts that allow us to recognise its own and the environment’s
state, to analyse these, and to make decisions based on the previous analysis
and finally implement the decision. A very prominent way to represent these
four parts is the MAPE-K loop [93], which first appeared in the context of
Autonomic Computing. However, the three layers architecture [96] introduced
to the SEAMS community by Kramer and Magee contains the artifacts of the
MAPE-K loop as well. In self-adaptive systems, which have a single or few
nodes that are responsible for analysing and deciding which adaptation / re-
configuration should be applied, we say that these are top-down self-adaptive
systems. Bottom-up self-adaptive systems, in contrast, consist of lots of inde-
pendent units that decide on their own which local adaptation / reconfiguration
is to be applied (cf. [14]).

The techniques that are typically applied to enable self-adaptation range from
dynamic architectures, which allow for high-level reconfigurations, to aspect-
oriented programming, which allows for changing systems at a very fine-grained
level. In this thesis, we will focus on self-adaptation at an architectural level,
which is widely accepted (cf. [109]). At this coarse-grained level, most of the
changes that occur are addition and removal of components, together with
changing associations between components.

2.1.2 Service-Oriented Architecture

Service-oriented architectures are an approach to coping with current software
systems’ increasing complexity. Service-oriented architectures raise the level
of abstraction by making services first-class citizens. In a complete service-
oriented world, the developer’s task is to combine the services in a meaningful
way. Typically, process languages such as e.g. BPEL (Business Process Execu-
tion Language) are employed for this. Hence, in service-oriented architecture
the interplay of different components is of great importance. Further, service-
oriented architectures are used whenever a fixed binding of components is not
desirable. Scenarios in which a flexible architecture is required range from mo-
bile systems that have to deal with alternating availability of components to
business applications that often have to change their business partners to re-
duce costs. For a service-oriented system, this flexibility is often described as
“loosely coupled” and requires that components can be looked up and bound at
run-time.

For service-oriented architectures, two different kinds of coordination are mainly
used, called orchestration and choreography. In the orchestration-based service-
oriented architecture one or a few central components orchestrate the architec-
ture’s behaviour. They trigger exactly which component performs which action
at which point in time. Orchestration is mainly used within organisational
units, as it requires control to be given to a central component. If this is not

8
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applicable, a different approach is used: choreography. In a choreography, the
responsibility for the fulfilment of the service is spread among the participat-
ing components. A choreography is often used for the communication between
different organisational units, i.e. different companies. In one service-oriented
architecture, both orchestration and choreography can exist in parallel.

Each participant in a service-oriented architecture only knows and recognises
the interfaces that are specified by the choreography, but fails to identify what
happens behind the interface. Obviously, this is necessary if two or more com-
panies are involved in a common SOA. Each company only wants to provide the
information that is already known, but wants to protect its internal structure.
Therefore, it is impossible to decide whether a component provides a task on
its own or if the component relies on other services or internal components.

Service-oriented systems in the flavour we are investigating in this thesis are so-
called open systems. The term open-systems describes systems which have no
pre-defined or easily detectable boundaries.1 Consequently, the size, i.e. num-
ber of participating components, of open-systems can range from only a few to
an ultra-large-scale system (ULSS). Even if it were possible to determine the
actual system configuration for a given point in time, it cannot be said that this
configuration will not change again. One of the service-oriented architecture’s
key characteristics is flexible bindings, meaning that for each instantiation of a
service contract the participating component might differ and for each of the
service contract’s roles different component types might be available. Conse-
quently, a verification approach for these systems is required to scale to the
system sizes and to be robust enough against the uncertainty that is involved
with the system’s current configuration.

2.2 Modelling

Our goal of “verification” can only be reached if we provide a sufficiently exact
modelling approach. Therefore, we have to provide a modelling technique that
is suitable to model open service-oriented systems of systems, having all the
capabilities and requirements that we have introduced in the previous sections.
Obviously, a modelling language for open service-oriented systems of systems
needs first-class concepts to express service contracts and components. Service-
oriented architectures became popular as a means to keep track of software’s
increasing complexity. In service-oriented architectures, complexity is managed
by abstraction and separation. That is, definitions of service contracts are
independent of the implementing components. Hence, a modelling approach for
service-oriented architecture should support the separation at the interfaces.

The modelling approach should directly support the expression of structural
changes to the system. By structural change, we mean the instantiation and
destruction of service contracts and components as well as the bindings between
them.

1For service-oriented systems that are mainly used to ease the problem of system-
integration, this does not necessarily hold true.

9
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Complexity typically implies that software engineers reuse existing solutions
with well-known – and, in our context, verified – properties to develop a system.
Therefore, for a modelling approach it is required that existing parts can be
reused in a new system. Reuse, however, can occur at two different levels.
First is at the modelling level, if existing parts — i.e. service contracts and
components — are incorporated into a new system. The second use-case is
verification, where it will be beneficial if parts only have to be verified once.2

Further, reuse is an appropriate technique to adapt an existing solution to one’s
special needs.

2.3 Verification

Concerning the verification of self-adaptive service-oriented systems that show
all of the aspects we have sketched in the above paragraphs, verification be-
comes an issue. Generally, verification is a hard task and it almost always
requires good software engineering and modelling skills to be feasible. However,
in self-adaptive service-oriented systems things get worse, as the system size is
unknown [34], systems, in general, cannot be stopped [107], and evolutionary
changes cannot be foreseen or planned [34]. Therefore scalability is a key issue
for this class of systems. The second issue is to find a technique or a set of
techniques that can be applied in such a demanding environment. Even if we
do not consider the problem of state space explosion, it is hardly thinkable that
a monolithic verification approach could be successfully applied to SoS. Testing
has the drawback that we do not know in advance what should be tested. Thus,
we can test the correct interplay of some components, but we do not know the
actual combination of components that interact at run-time.

2.4 Evolution

The necessity of evolution for any kind of system has already been discussed
by Parnas [111] and Lehman [99]. An important characteristic property of
Systems of Systems is that the single constituent parts evolve separately and in
an uncoordinated way. Evolution, as we discuss it in this thesis, ranges from
the introduction of completely new service contracts and components to the
incremental improvement of existing ones. We discussed in Section 2.1.2 that
systems of systems are so-called open systems; thus, a comprehensive view of the
system does not exist and following the modelling approach should not require
us to have such a comprehensive view.

2.5 Scenarios

In the previous sections we have characterised open service-oriented systems of
systems as systems that are very flexible with regard to their structure. This

2Of course, this can only be achieved if the specification that the reused models have to
fulfil, does not change
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flexibility can be expressed in several scenarios that are common to open service-
oriented systems of systems. Our modelling and verification approach will have
to support them.

Introduction of new services In an open service-oriented system of systems
it has to be assumed that, after the initial system deployment, new ser-
vices are added to the system to adapt the system’s capabilities to changed
requirements. If we add a new service, the new service can (i) be a spe-
cialisation of an already existing service, or (ii) implement a completely
new concept. In (i) we can derive the new service from the existing one
through inheritance. For case (ii), the new service is placed at the sys-
tem’s topmost specification level. From the verification point of view, we
have to ensure in both (i) and (ii) that the newly added service specifica-
tion invalidates neither the system’s nor the service specification’s safety
properties.

In case (ii) the modelling is very straight forward. We cannot reuse any
of the existing service specifications, so the modelling can be done inde-
pendently of the already deployed service specifications. In (i), this is
fundamentally different. We have to know at least the exact specifica-
tion of the service we want to extend and of all its predecessors in the
inheritance hierarchy.

Removal of a service The counterpart to the addition of a new service spec-
ification is its removal. Again we can decide between two layers, the
specification layer and the instance layer. Whereas the removal of a ser-
vice instance is easy and the decision to remove a service instance can be
made locally by the involved roles, the removal of a service specification
is a global task. It is necessary to avoid having instances without specifi-
cation remaining in the system. The complexity here clearly arises from
the open and distributed system setting we consider.

Addition of new component Components are those parts of the system that
can actually be executed – i.e. components have a behaviour. There-
fore it is crucial that not only new services but also new components can
be added. Moreover, each newly added service specification most often
requires new components that implement the service specification’s be-
haviour. As for service specifications, we have two possibilities for compo-
nents. Either they were added at the top level of the system specification
or they were added as specialisations of existing components. The impli-
cations concerning verification and modelling are the same as for newly
added service specifications.

Removal of Components For the removal of components the same argu-
ments and reasons as for the removal of a service holds.

Update of Components Instead of removing and adding a component, it can
also be the case that the components become updated dynamically during
run-time. In this scenario, the update can be either immediately applied
to all running instances of the component or applied to newly created
instances only.

11
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2.6 Summary

The previous sections can be summarised to a list of requirements or challenges
that a modelling language and a verification approach for systems of systems has
to fulfil. The list does not contain requirements that are specific to the run-time
situation of such systems, as we will not develop a run-time environment.

Modelling SOA (M1) The model has to cover the concepts of service-ori-
ented systems such as service contracts, roles, components, architecture
and service landscapes.

Modelling Dynamics (M2) The model has to support also the dynamics of
service-oriented systems such as joining/leaving service contracts dynam-
ically and adding components dynamically.

Modelling Evolution (M3) The modelling has to cope with the uncoordi-
nated introduction of new types of service contracts and components at
run-time.

Scalable Analysis (A1) Verification has to scale with system size.

Applicable Analysis (A2) The verification methodology has to be applica-
ble.

Analysis of Reconfiguration (A3) The systems, in general, change their
configuration at run-time. Therefore we cannot check each configuration in
isolation but have to consider the interplay between the regular behaviour
and reconfiguration behaviour

Analysis under restricted knowledge (A4) The analysis of open service-
oriented systems of systems has also to work in the face of 1) no global view
and separated responsibilities, 2) IP constraints for component details and
maybe even 3) IP constraints for contract details.

Analysing Evolution (A5) Also, the analysis has to cope with the uncoor-
dinated introduction of new types of service contracts and components at
run-time.

12



Chapter 3

Modelling with SoaML

The modelling language for service-oriented architecture proposed by the Ob-
ject Management Group (OMG) is called SoaML.1 SoaML fulfils most of the
above requirements (cf. Section 2) and is an implementation of the OMG UML
Metamodel and Profile for Services [28]. SoaML builds atop of the UML 2.x
specification. Although SoaML is not yet an official OMG standard major tool
vendors such as International Business Machines provide direct tool support for
SoaML within their modelling tools.

3.1 Modelling Concepts

SoaML is a meta-model and profile for the modelling of service-oriented systems
using the UML. SoaML mainly uses collaborations and components to describe
the system’s structure, UML-behaviours are used for the modelling of the be-
haviour of the different parts. Further, SoaML defines different views on the
system, such as the services and the participant architecture. SoaML relies on
UML collaborations as the basic building blocks for modelling a services archi-
tecture as well as a single service. Services are defined as collaboration among
roles, and components can participate in a service if they fulfil the requirements
of at least one of the roles.

3.1.1 Services Architecture

The most abstract service-related view available in a SoaML model is the Ser-

vicesArchitecture. The intent of the ServicesArchitecture collaboration is to point
out which services exist and how the different entities work together within those
services. A service is modelled as a service contract collaboration. Typically, a
service contract comprises roles and a behaviour – the service’s choreography.
The choreography can be modelled using any UML behaviour specification, such

1http://www.soaml.org
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as e.g. interaction and activity diagrams. The roles that are defined in a service
contract can be bound to components, which provide a matching interface.

Figure 3.1 depicts an exemplary ServicesArchitecture for our supply chain sys-
tem application example. In Figure 3.2 and Figure 3.3 we show the two ser-
vice contracts ContractCollaboration and RequestOfferCollaboration in a single
≪ServiceArchitecture≫ collaboration, as SoaML uses the≪ServiceArchitecture≫
stereotype for both the specification of single service contracts and the specifi-
cation of the complete system.

Figure 3.1: The ≪ServicesArchitecture≫ for the SupplyChain application ex-
ample

Figure 3.2: Contract Collaboration Structure

3.1.2 Participant Architecture

Components participating in a service contract instance are called Participants
and their internal structure is described in a ParticipantArchitecture diagram.
Especially in a situation where a participant participates in multiple service
contract instances at a time, it is required that the participant provides a be-
havior that coordinates the participant’s action within the different service con-
tract. This behavior is called orchestration behaviour. Figure 3.4 depicts the
ParticipantArchitecture for a factory from our application example. The Factory
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Figure 3.3: Services Architecture for the RequestOfferCollaboration collaboration
type

component shown provides the two interfaces Customer and Supplier via its two
ports. Internally, the component relies on an entry and an exit store and a pro-
duction unit to fulfil the request it receives via the supplier port. The internal
component controller orchestrates the interplay between the three other internal
components. The service contracts used in the Factory participant do not differ
completely from the ones used between participants. The main difference from
the contract service contract is the fact that now a Controller component initi-
ates behaviour and tells the others which action they actually have to execute.

Figure 3.4: ParticipantArchitecture for the Factory participant.

The complete supply chain network can be modelled as a collaboration consist-
ing of the roles Supplier,Customer (cf. Figure 3.1). The services that exist in this
architecture are ContractCollaboration and RequestOfferCollaboration. The Con-

tractCollaboration service contract requires all roles, i.e. Customer and Supplier

to be bound in order to be established. The same holds for the RequestOffer-
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Collaboration. In our application example, components can play different roles,
and also more than one. The supply chain application example we describe as
the Factory component. The Factory component specifies any type of factory
that exists within the supply chain network. For a fully functional supply chain
system we would also need additional start- and end-points. These could, for
example, be special factory components that only use either their Supplier or
Customer roles.

Figure 3.5: A UML interaction diagram showing the RequestOfferCollaboration

service contract

Each service is also connected to a specific behaviour, the service choreography.
For the RequestOfferCollaboration service contract the choreography is depicted
in Figure 3.5. The behaviour describes a simple request-response protocol that
runs between Supplier and Customer. The Customer sends the Supplier a Contrac-

tRequest and the Supplier eventually replies to this request with a ContractOffer.
The Customer can accept the proposed offer and a Contract will be instanti-
ated between the two roles. Each Contract is equipped with a recall date. A
Contract becomes invalid once the recall date has passed and it has not been
updated by one of the participants involved. The sequence diagram depicted in
Figure 3.5 only depicts the scenario for a successful negotiation between Sup-

plier and Customer. The Auction service contract also aims to establish a valid
Contract between a Supplier and a Customer, but also owns a negotiation phase
– in the form of a classical auction – where the highest price for the offered good
is determined among a possibly varying set of bidders. Bidders are allowed to
join the Auction service contract as long as the service is in the auction stage. A
bidder may also leave the service contract at any time unless he is the current
leader in the auction.

3.2 Discussion of SoaML

In Chapter 2 we articulated several requirements a modeling approach has to
fulfill. For SoaML obviously only the requirements related to modeling are of
interest, as verification is not in SoaML’s scope. In the following we will shortly
discuss, whether or not SoaML fulfills our requirements.

SoaML supports reuse due to its relation to the UML. Collaborations and com-
ponents are allowed to inherit from each other, but unfortunately only a syn-
tactic conformance is required by UML and SoaML. By syntactic conformance,
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we want to describe how at least the same roles and interfaces have to be avail-
able. The exact meaning of inheritance with respect to the collaborations’ and
components’ behaviours is undefined. Of course, the intention is that the inher-
ited collaboration or component should behave similarly to the super-type, but
SoaML does not provides any technique that enforces this. For the verification,
this leads to a situation where no previous verification results can be reused and
the complexity of the verification tasks increases with the system size.

Although SoaML supports modelling of composite service contracts, it is unable
to express the creation and deletion of service contracts and the connection of
components, implementing roles, according to the service contract specifications.
Basically, SoaML supports the modelling of the desired structure (requirement:
Modelling SOA (M1)) only, but provides no way to intuitively specify the mod-
ifications that are necessary to achieve this structure (requirement: Modelling
Dynamics (M2)). Of course, it is possible to facilitate some OCL pre- and post-
conditions for this task, but this solution is not very intuitive, is consequently
error-prone, and opens up the possibility of using the full expressive power of
OCL, which in turn prevents verification.

Also, evolution is not directly supported and thus neither the modelling nor the
analysis of the evolution of systems as raised by challenge Modelling Evolution
(M3) is covered.

Requirements Coverage
Modelling SOA (M1) X

Modelling Dynamics (M2) ◦

Modelling Evolution (M3) ◦

Table 3.1: Coverage of the challenges for modelling with SoaML. Legend: X

means the challenge is fulfilled, ∼ means the challenge is partly fulfilled and ◦
means the challenge is not fulfilled.
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Chapter 4

Modelling with rigSoaML

The previous chapter yields that SoaML has the capabilities to model the ba-
sic constituents of a service-oriented system, but falls short of modelling the
structural dynamism (cf. Table 3.1). In this chapter we will introduce our
modification of SoaML, called rigSoaML, which explicitly addresses these issues.

4.1 Prerequisites

We need some formal concepts and clarifications to describe our approach rig-

SoaML. We will first introduce the formal model and then connect the formal
model with our modelling notations.

4.1.1 Semantic Model

The formal model we are going to use for rigSoaML can be roughly described
as graphs that model states and graph-transformation rules that model the
behaviour. Further, we will introduce some methodologies to separate system
parts at the type- and the instance-level, in order to be able to transfer the
findings of our formal reasoning to the running system. As we have to capture
continuous behaviour, too, we will use attributed graphs. For reasons of brevity,
we will here only roughly introduce the two main concepts, typed and attributed
graphs and hybrid graph-transformation rules. The complete definition of the
employed formal model can be found in the appendix in Chapter B.

Definition 4.1 (Attributed Graph). An attributed graph is a graph that is
additionally equipped with a valuation β. The attributed and typed graph G =
(V,E, lV , lE , s, t, T, β) is defined as a graph introduced in Definition B.2 and has
a valuation β : A× V 7→ R such that

∀a, v, r : ((a, v), r) ∈ β ∧ a ∈ Attr ∧ v ∈ V ∧ r ∈ R =⇒ AttrT (a) = lV (v)

and

∀a, v : a ∈ A ∧ v ∈ V ∧Attrt(a) = lV (v) =⇒ ∃r : r ∈ R ∧ β((a, v)) = r
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We say an attributed graph is well-formed if each node v ∈ V with lV (v) being
adjacent to a set of nodes C with C ⊂ CMT is adjacent to exactly one node v′

with lV (v′) ∈ C.

From an attributed graph G, we can derive the attributed graph G′ = G⊕ t with
t ∈ R, which differs from G only in the valuation β′. In β′, for each node v ∈ V
being adjacent to a control mode c, the valuation for the variable subset Av is
replaced by the valuation fc(t).We use (G, β) as a shorthand notation for an
attributed graph if its single constituents are not important for understanding.

Basically, an attributed graph is a typed graph that is enriched with a valuation
function. The attributes that are available for each node are determined by the
node’s type and defined in the graph’s type-graph (type-graphs are formally
defined in Definition B.9). The derivation of the attributes’ values over time
is captured in so-called control modes (CMT in the above definition). We will
refer to the empty graph as G∅ and to the set of all type-graphs as G. If a graph
S is a sub-graph of graph G, we denote this as S < G. Isomorphic graphs are
denoted as S ≈ G.

Definition 4.2 (Hybrid Graph Transformation Rule). A hybrid graph trans-
formation rule P = (L,R,K, l, r, A−, φ) where the first constituents of the tuple
are defined as in Definition B.5 and φ : (A× (VL ∪ VR) 7→ R) 7→ B assigns the
valuation pairs for the left- and right-hand side of the rule a boolean value.

The application of a hybrid graph transformation rule is defined as follows:

Definition 4.3 (Hybrid Graph Transformation Rule Application). A hybrid
graph transformation rule P = (L,R,K, l, r, A−, φ) is applicable to the attributed
graphs G,H iff the (discrete) graph transformation rule P ′ = (L,R,K, l, r, A−)

is applicable to G
P ′,m
⇒ H and the graphs valuations in the image of m and m∗

satisfy φ

φ(βmG ∪ β
m∗

H ) ≡ true

Where βm denotes the valuations of the attributed graphs G and H, respectively
that are translated over the morphism m.

Hence, a hybrid graph transformation rule can be applied to an attributed graph,
if we find a structural match and the graph’s valuation satisfies the hybrid graph
transformation rule’s jump condition φ. For our application example we will use
a simplified notation that does not use the control modes every time they should
occur. In our application example, we only use clocks, i.e. attributes that have
a constant derivation of 1, and constants. Therefore we will omit the control-
modes and increase the figure’s readability.

The semantic domain we will use throughout this thesis are traces of hybrid
graph-transformation systems. Formally a trace is given as follows:

Definition 4.4 (Trace). A trace t ∈ G∗ is a possibly infinite sequence of
graphs. The ith graph of t is accessed as t(i) or Gi if it is not ambiguous.
For a given set of rules R we denote the set of all traces starting with initial
graph G0 as T (G0, R). The set of all traces that can be constructed using the
set R from any graph is denoted as T (R). A trace can always contain states,

20



4.1. PREREQUISITES

that are reached via continuous steps. A sub-trace of trace t starting at the i-th
position is denoted as ti for i ∈ N

+. A sub-trace up to position k is denoted as
t≤k if the state Gk is contained in the sub-trace and t<k otherwise.

A trace t is a possible path through a graph transformation system’s (GTS)
reachability graph starting at the GTS’ initial graph. Following, T (G0, R) is an
equivalent notation for the GTS’ reachability graph given through G0 and R1.

Example 1: Figure 4.1 shows an exemplary trace. The trace consists of
six states G0, . . . , G5. The initial state G0 contains only the two nodes
Customer and Supplier. The first step in the trace creates the ContractCol-

lab node. In the next steps the nodes Request, Offer and Contract between
the two roles become instantiated and deleted, again. The trace contains
no continuous steps.

Figure 4.1: An exemplary trace for the Contract Collaboration collaboration type

Traces are used in a multitude of formalisms and in general a trace character-
izes the behavior that is externally observable, without knowing any internal
details. In this way traces are defined, but differently named, for Petri Nets [60]
(transition occurrence sequence) or runs [79], finite automata (accepted words)
and process calculi. The trace definition we used in this thesis is different as
our traces contain the state, too (cf. Definition 4.4). Therefore, they are more
related to a path through a Kripke structure, where the locations’ atomic prop-
erties encode the internal state (cf. [40]). We decided us to use this special
notion of traces, as we want to be able to reason about the structural changes
that occur within a SoS.

4.1.2 Safety Properties

In order to be able to specify what correct behavior means, we have to be
able to express properties and have to define what it means, if a trace satisfies a

1Under the assumption that all rules have the same priority. If different priorities are
present the set of valid traces in the HGTS’s reachability graph is smaller.
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properties. The properties are given as a word of the language L. The properties
language L is based on the LTL temporal logic without the next operator. Thus,
it is possible to use globally, future and holds until operators. AP defines a set
of atomic properties, that could be satisfied by system states. The language L
of LTL formula can be formally defined as follows.

Definition 4.5 (Property Language L). Let AP be a set of graph constraints,
the atomic properties of L, then we can define L recursively as:

a ∈ L ∀a ∈ AP

φ ∧ ψ ∈ L ∀φ, ψ ∈ L

¬φ ∈ L ∀φ ∈ L

♦φ ∈ L ∀φ ∈ L

�φ ∈ L ∀φ ∈ L

φU ψ ∈ L ∀φ, ψ ∈ L

The symbols � and ♦ stand for globally and finally, respectively. A property
φ that is prefixed with � has to be hold in each state of the trace, whereas a
for a property being prefixed with ♦has is satisfied if one of the trace’s states
fulfills it. Given two atomic properties φ, ψ ∈ AP we assume that they both
can be evaluated independent of each other and we do not have any interference
between them (i.e. no binding of elements to variables is allowed). The above
definition differs from the standard definition of linear temporal logic [114] by the
absence of the next-operator. We omitted the next-operator, as we will require
the capability that the specified properties are stutter invariant (cf. [112]).

The properties specified in L are evaluated over traces of HGTS.

Definition 4.6 (Satisfaction of L). Given a trace t and a property φ ∈ L, t
satisfies φ if the following recursive definition applies:

t |= φ with φ ∈ AP iff G0 . φ

t |= φ ∧ ψ with φ, ψ ∈ L iff t |= φ ∧ t |= ψ

t |= ¬φ with φ ∈ L iff t 6|= φ

t |= ♦φ with φ ∈ L iff ∃i ∈ N : i ≥ 0 ∧ ti |= φ

t |= �φ with φ ∈ L iff ∀i ∈ N : ti |= φ

t |= φUψ with φ, ψ ∈ L iff ∃i ∈ N ∧ ∀j ∈ N : 0 ≤ j < i =⇒ tj |= φ ∧ ti |= ψ

For S being a set of traces, we define that S |= φ iff s |= φ holds for all s ∈ S.

Although we use traces to evaluate the properties of L the origin of the traces
are HGTS (see Definition B.13). Therefore it is reasonable to require that, if a
property φ is to be evaluated for a set of traces, the property φ has to hold for
each trace.

Example 2: Let us consider the trace t, we have introduced in Exam-
ple 1. For the property �φ with φ being the notTwoContracts property
(see Figure 4.3) it can easily seen that, t |= �φ. This is due to the fact
that we cannot find any i with 0 ≤ i ≤ 3 such that the state Gi vio-
lates the notTwoContracts property, i.e. contains two Contract instances
between the Supplier and Customer roles.
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4.1.3 Abstract Operators

The introduction of a semantics for collaborations, components and systems
further allows us to introduce abstract operators, which we will need to define
the verification scheme for rigSoaML. In the following we will define two opera-
tors. One to describe, that a set of rules satisfies a safety property and one to
describe that a rule-set refine another one. We call these two operators abstract
as we will not give any arguments why the desired properties actually hold.

Models Operator The models operator |= is defined of the satisfaction of a
property φ ∈ L as we have introduced it in Section 4.1.2.

Refinement Operator For two rule-sets R,S and a property φ ∈ L the re-
finement operator ⊑Ais specified as:

R |= φ ∧ S ⊑A R =⇒ S |= φ

4.1.4 Results for Composing Pseudo-Type Separated GTS

We will further required some results concerning the combination of different
GTS with respect to the guaranteed properties and their interference with each
other. We will use the follwoing terms, throughout the paper to characterize
possible interference:

type separated means that due to types two rules sets cannot interfere as
they have no nodes with the same type in common

pseudo-type describes a special node t at instance-level that serves to identify
a set of other nodes. Therefore each node, that is supposed to be pseudo-
typed by t has to be also connected to t by a link. A node must not be
pseudo-typed by two nodes. Pseudo-typing can be applied to rules and
properties.

pseudo-type separated means that due to pseudo-types two rules sets cannot
interfere as they have no nodes with the same type or pseudo-type in
common; it also requires that all rules including the two rule sets preserve
the pseudo-typing.

The use of pseudo-typing is expressed in the following corollary, which is a more
informal variant of Corollary 6.21

Corollary 4.7. The union of rule sets separated by pseudo-typing that both
preserve their pseudo-typing also preserve the pseudo-typed properties of each of
the rule sets.

The complete proof and additional background information is contained in
Chapter 6. The idea behind pseudo-typing is that all elements that belong to a
component or a collaboration instance only are connected to elements that be-
long to the same component or collaboration, respectively. This ensures that all
concrete collaborations/components are separated and only be linked through
collaborations used by ports of components.
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Figure 4.2: The graph-transformation-rule for the createContract rule

4.1.5 Employed Notations for GTS

We will employ Class diagrams to specify the structure of components, col-
laborations and systems. Thus the set of lables that are available for typing
nodes and edges in graphs can be directly derived from the modelled UML-class
diagrams.

We use StoryPatterns [95] as a modeling notation for the behavior specification.
StoryPatterns are an extension of the UML instance diagrams, that allow the
developer to also model side-effects, such as creation and deletion of objects
and links, within one diagram. Therefore two special stereotypes ≪create≫
and ≪destroy≫ (in diagrams often abbreviated to “++” and “–”) are used.
Elements augmented with the create (delete respectively) stereotype will be
created (deleted) by the application of the StoryPattern. The applicability of
StoryPatterns could be restricted by the use of negative application conditions
(NAC), which describe elements that must not exist in the current instance sit-
uation, and constraints above the attributes. The translation of a StoryPattern
into a graph transformation rule is an easy to accomplish task. All elements
that are to be deleted or remain unchanged specify the rule’s left hand side
and all elements that are to be created or remain unchanged specify the rule’s
right hand side. The NACs are directly translated, as they do not contain any
side-effects. The labeling for nodes and edges is given by the links’ and objects’
types. StoryPatterns can be directly mapped to graph transformation rules.

Example 3: To illustrate the StoryPattern notation have a look at Fig-
ure 4.4. The figure shows a StoryPattern that specifies the Contract

creation between a Supplier and a Customer role. The Contract node is
marked with a ≪create≫ stereotype and thus created by the rule. The
StoryPattern is only applicable is both Customer and Supplier belong to
the same ContractCollaboration instance and no Contract has been created,
yet.

The corresponding graph-transformation rule is shown in Figure 4.2. In
the top-left part of the rule the rule’s left-hand-side is shown. Below
the LHS the rule’s negative application condition is depicted and the
result of the rule application is right of the big arrow. The morphism
between the LHS and the RHS is indicated by nodes having the same
name. The same holds for the LHS and the NAC. The procedure to
translate a Stroy Pattern to a graph transformation rule is as follows:
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Nodes and edges having no ++ or −− marker attached to them are part
of the graph transformation rule’s LHS and RHS. Nodes and edge having
a ++ marker are part of the rule’s RHS only and those having a −−
marker belong to the rule’s LHS. For each dashed box and crossed out
box we add a NAC to the rule’s LHS containing the elements of the LHS
and additionally the elements of the dashed box.

StoryPatterns are also employed to specify graph pattern. However, in a Sto-
ryPattern that specifies a graph pattern side-effects must not occur. I.e. only a
situation is described, but no change to the situation.

Throughout the thesis we will refer to the global set of all rules as R.

4.2 Modelling Concepts

In chapter 3 we have seen that SoaML only supports the requirement Modelling
SOA (M1). The service contract RequestOfferCollaboration could be seen as a
specialised type of an abstract ContractCollaboration service contract. Service
contracts in SoaML subtype the UML concept of collaborations and thus they
also support inheritance. Unfortunately, the UML only defines the specialisation
of collaborations at the role level. SoaML reuses this definition but fails to
clearly define what inheritance means to the behaviour of the specialised service
contract. Further, SoaML does not contain any concepts to model the fact that
participants join or leave a running service contract. If the modelled system
needs to be verified, the developer needs some guidance that makes clear what
kind of specification is required in which modelling stage. SoaML lacks this
guidance, which is obvious as SoaML is a multi-purpose modelling language.
Lastly, the notion of structural changes, which occur naturally occur in a service-
oriented system, cannot easily be expressed with the concepts offered by SoaML.

4.2.1 Service Roles

As SoaML does, we also make use of roles to decouple collaborations and compo-
nents. However, we distinguish between abstract and concrete roles. Formally,
we can define a service role as follows:

Definition 4.8. A role type Roi = (roi) consists of a role type node roi. The
role type is concrete if it has an assigned concrete behaviour R(Roi) 6= ∅ and
otherwise abstract, where R(Roi) is a function returning the role’s rules. It is
further refined if role types exist that are subtypes.

An instance of a role type Roi is represented by a node of type roi. The rules
that are assigned to the role type Roi have to have an instance of that type
in their precondition. Thus, the rules are only applicable if an instance of that
type exists. Further, the rules have to preserve a pseudo-typing over role type
roi (cf. Section 4.1.4) by linking all nodes occurring in the rule to roi.

Example 4:[Concrete Role] In the supply chain application example,
two concrete role types exist. For the role types Customer and Supplier,
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a rudimentary behaviour is specified. These two role types get refined
through further role types that will be introduced within the supply chain
example.

Refining Role Types

The refinement or subtyping of a role requires that the resulting behaviour is a
refinement.

Definition 4.9. For concrete role types Roi and Roj, it holds that Roi refines
Roj (written Roi ⊑Ro Roj) iff

R(Roi) ⊑A R(Roj)

holds,

4.2.2 Collaboration Types

rigSoaML uses collaborations to specify the different service contracts that are
available in a service-oriented system. However, the basic notation as UML
collaborations, which is used in SoaML, is not sufficient for our purposes, as we
will need more information for a collaboration to be specified. For example, we
will have to specify safety properties for each collaboration type. SoaML does
not directly support this.

Definition 4.10. A collaboration type Coli = (coli, {ro1
i , . . . , ro

ni

i }, CDi, Ri,

Φi)consists of a collaboration type node coli, a number of roles roji , a UML class
diagram CDi, a function Ri : {coli, ro1

i , . . . , ro
ni

i } 7→ 2R assigning rules to roles,
and safety properties Φi ∈ L. Either all roles are concrete (having an assigned
concrete behaviour) or all roles are abstract. The collaboration type is concrete
if all roles are concrete (having an assigned concrete behaviour) and otherwise
abstract. It is further refined if collaboration types exist that are subtypes.

A collaboration instance of collaboration type Coli is represented by a node of
type coli. All rules of Coli also preserve a pseudo-type linking of all nodes to
coli. The creation of collaboration instances of collaboration type Coli is only
possible through the collaboration type’s roles roki and their assigned behaviour
Ri(roki ). The collaboration type Coli’s property has to be pseudo-type separated
by the collaboration type node coli.

The relation amongst the collaboration Coli’s roles ro1
i , . . . , ro

ni

i and any ad-
ditional data types that are used within the collaboration are specified within
the class diagram CDi. The class diagrams of different collaborations have to
be separated by different name-spaces. However, a collaboration Coli that is
a subtype of collaboration Colj is allowed to enhance the class diagram CDj

with its own types. Obviously, this is required because otherwise collaboration
subtypes have no possibility of using the super- collaboration’s roles and data-
types. Nevertheless, the new elements have to be defined in a separated and
unique name-space.
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The rules for creation of new role-instances and the connection of role-instances
with collaboration-instances are part of the roles’ behaviour. For the creation of
new role-instances, we can distinguish two different cases. First, a role owns a
rule that specifies the creation of a new instance of another role instance (which
is not necessarily of the same type as the creating role). Second, for a role-
type a rule exists that allows instances of that type to connect with an existing
collaboration-instance. Finally, the combination of the two cases is also allowed.
However, then the first case has to be restricted to the creation of roles of the
same type as the creating role.

Within a collaboration, both synchronous and asynchronous communication
styles can be specified. For asynchronous communication, message passing
schemes could be employed. I.e. an instance of role A creates a new message
and links/sends it to a role B. Later, role B can process the new message. For
a synchronous communication, role A has to directly modify role B, e.g. by
setting a mode-flag of role B.

The collaboration’s choreography will be modelled through StoryPatterns. In
Figure 4.4 an example of a StoryPattern is depicted. The StoryPattern is ap-
plicable if both roles Supplier and Customer could be matched and they were
connected by a ContractCollaboration instance. The result of the StoryPattern
is that a new Contract instance is created, whose attribute recallDate has to be
greater than the ContractCollaboration’s now attribute.

For the modelling of the collaboration’s properties Φi, we facilitate StoryPat-
terns, too, but we restrict them to be side-effect free. I.e. it is forbidden for
StoryPatterns for properties to create or delete elements. This restriction is
possible as they are only used to identify sets of states that satisfy a certain
condition, the condition that is expressed through the StoryPattern. We say
that a state — i.e. a UML object diagram — satisfies a StoryPattern if we can
find a match for the StoryPattern in the instance diagram. For the frequent case
that we want to explicitly forbid certain situations, we can prefix the pattern
P with the temporal logic expression �¬P , meaning that the pattern P must
never occur in the instance graph. If P is always used in this way, we call P a
forbidden pattern. An example of a forbidden pattern is shown in Figure 4.3.
This StoryPattern matches all states where two Contracts are established be-
tween the same Customer and Supplier roles. This StoryPattern is only used in
combination with the temporal logic prefix “�¬” and is hence called a forbidden
pattern.

Example 5:[Concrete Collaboration] An example of a concrete collabo-
ration is the ContractCollaboration, whose structural diagram is depicted
in Figure 3.2. The ContractCollaboration is specified as

ColCC = (ContractCollaboration, (CustomerCC , SupplierCC),

CDCC , RCC ,ΦCC)

The Customer role can create a Contract between the Customer and the
Supplier role (see Figure 4.4). The collaboration network does not have
any assigned behaviour. The collaboration’s properties specify that no
two Contracts exist between the Customer and the Supplier role. This
is formally expressed as ΦCC = �¬∃twoContracts, with twoContracts
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Figure 4.3: Property: Not two Contracts between Customer and Supplier role.

Figure 4.4: The ContractCollaboration’s createContract rule

being the graph constraint depicted in Figure 4.3.

RCC(CustomerCC) = {createContract, deleteContract, destroyCollab}

RCC(SupplierCC) = {deleteContract, destroyCollab}

The rules for the collaboration’s Customer role can be used to exemplify
pseudo-typing, as introduced in Section 4.1.4. The role’s CreateContract

rule (cf. Figure 4.4) contains the collaboration node of type ContractCol-

laboration, which is connected to all other nodes — also the created one
— contained in the rule. The rule is pseudo-typed over the node of type
ContractCollaboration.

In Section A.2.1 we depict all the rules and graph constraints for the
ContractCollaboration.

Refining Collaboration Types

The refinement or subtyping of collaboration requires that with respect to all
roles of the refined collaboration the resulting behaviour is still a refinement.

Definition 4.11. For an abstract or concrete collaboration type Coli = (coli,
{ro1

i , . . . , ro
ni

i }, CDi, Ri,Φi)and an abstract collaboration type Colj = (colj ,

28



4.2. MODELLING CONCEPTS

Figure 4.5: RequestOfferCollaboration Structure

{ro1
j , . . . , ro

nj

j }, CDj, Rj ,Φj), it holds that Coli refines Colj (written Coli ⊑Col
Colj) iff nj ≤ ni holds and the refinement results in stronger properties

Φi =⇒ Φj

For all Coli and its super-type Colj , it holds that the subtype relation is correct
if Coli ⊑ Colj.

The refinement of collaboration types has some implications concerning the
compatibility of the refined roles. The intuitive understanding is that wherever
a role R is required, it is possible to use the refined role R′. The refinement
is assumed to be covariant. The refinement of collaboration types, however,
is not covariant. To explain this, let us consider the two collaboration types
ContractCollaboration and RequestOfferCollaboration. The RequestOfferCollabo-

ration introduces new refined variants of the roles Supplier and Customer, named
SupplierROC and CustomerROC. Of course, it is impossible to bind the Supplier

role to a RequestOfferCollaboration. The role does not know the RequestOffer-

Collaboration’s protocol and thus could arbitrarily create a Contract without
awaiting the Offer being sent. This is still the expected behaviour, as the Re-

questOfferCollaboration requires a role of type SupplierROC. The role Supplier is of
the wrong type. In the reverse situation — i.e. using the SupplierROC role in the
ContractCollaboration — it cannot be assumed that the refined role behaves as
desired. In the concrete example given, the role expects that, before a Contract

can be created, a Offer has to be made.

Nevertheless, a role can be used in more than one collaboration type without
changing it. The collaboration type’s other roles then have to be compatible.
Summarising, with regard to the roles collaboration type, refinement is neither
covariant nor contravariant, but is invariant. A substitution of roles by their
super- or sub-types is not supported.

Example 6:[Collaboration Refinement] The concrete ContractCollabora-

tion introduced in the previous example is refined by the concrete collab-
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oration RequestOfferCollaboration (ROC)

ColROC = (RequestOfferCollaboration, (CustomerROC ,

SupplierROC), CDROC , RROC ,ΦROC)

The ROC’s structure is depicted in Figure 4.5. The concrete role types
CustomerROC and SupplierROC refine the role types CustomerCC and Sup-

plierCC, respectively. The roles’ behaviour is specified through two sets
of StoryPatterns, which allow the CustomerROC to send a Request to the
SupplierROC, who in turn can answer by sending an Offer and finally, if
the Offer is acceptable to both, a Contract can be created. These rules
are depicted in Figure 4.10. For the collaboration’s two roles Customer

and Supplier we get the following assignment of rules:

RROC(CustomerROC) = {sendRequest, createContract

, deleteContract, destroyCollab}

RROC(SupplierROC) = {sendOffer, deleteContract, destroyCollab}

Some of the rules describing the Customer role’s behaviour are shown
in Figures 4.8 and 4.10. The Supplier role’s behaviour is depicted in
Figure 4.9.

In comparison with the ContractCollaboration introduced in Example 5,
the collaboration’s properties have been extended by three more graph
constraints, depicted in Figure 4.7. We could thus write the RequestOf-

ferCollaboration’s properties ΦROC as ΦROC ≡ ΦCC ∧Φ′
ROC , with Φ′

ROC

being the additional forbidden patterns. Hence, the required implication
ΦROC =⇒ thatΦCC holds.

The collaboration type’s class diagram is depicted in Figure 4.6.

A complete set of rules and graph constraints for the RequestOfferCollab-

oration is shown in Section A.2.3.

Figure 4.6: Class Diagram CDROC for the RequestOfferCollaboration
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(a) noTwoRequests

(b) noTwoOffers

(c) noOfandReq

Figure 4.7: Properties ΦROC for the RequestOfferCollaboration

Semantics of Collaborations

We will give the semantics of a collaboration C through the set of all possible
traces that conform with the collaboration’s properties and rules. We differenti-
ate the definition of the semantics between concrete and abstract collaboration
types. Remember that a concrete collaboration type has a fully specified opera-
tional behaviour – i.e. all roles have at least a rudimentary set of rules – whereas
abstract collaboration types are still lacking their final behaviour specification.
The semantic domain that we have chosen for collaborations, components and
systems are sets of traces. In the following, we will define the semantics of col-
laborations, components and systems and relate the dependencies in the model
to refinement relations among the corresponding sets of traces.
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Figure 4.8: createRequest Rule

Figure 4.9: makeOffer Rule

Definition 4.12 (Semantics of Collaborations). Given a concrete collabo-
ration Coli = (coli, (ro1

i , . . . , ro
ni

i ), CDi, Ri,Φi) the collaboration’s semantics
JColiK is given as

JColiK = T (G∅, R)

where R is given as R = RColi(ro
1
i ) ∪ . . . ∪RColi(ro

ni

i ).

For an abstract collaboration Cola = (cola, (ro1
a, . . . , ro

na
a ), CDa, Ra,Φa), the

collaboration’s semantics JColaK is given as

JColaK = {t|t ∈ T (CDa) ∧ t |= Φa}

where T (CDa) is the set of all traces that can be built from graphs that are typed
over CDa.

Figure 4.10: createContract Rule
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Mapping to SoaML

A collaboration type that has been modelled in rigSoaML as defined above, can
also be partially expressed in terms of SoaML. The corresponding concept in
SoaML is the ≪ServicesArchitecture≫ collaboration diagram. For our example
collaboration type, RequestOfferCollaboration (cf. Example 6) can be mapped
to a ≪ServicesArchitecture≫ as depicted in Figure 3.3.

The mapping to SoaML does not preserve all information that is available in
our rigSoaML collaboration types. The collaboration type’s safety properties
have to be added to the ≪ServicesArchitecture≫ collaboration diagram using
OCL constraints.2 For the behaviour, we can use any UML behaviour. For our
example collaboration type ROC, we could use a sequence diagram to specify a
possible application of the rules. The resulting diagram is depicted in Figure 3.5.
However, a sequence diagram is only a partial specification of the behaviour.
The problem in general is that the available UML behaviour specifications,
i.e. activity diagrams, state machines and sequence diagrams, cannot directly
express the structural preconditions and changes that can be specified using
StoryPatterns.

4.2.3 Component Types

In conformance with SoaML, rigSoaML employs components to implement the
collaborations’ roles. SoaML, however, only supports a syntactical refinement
between roles and components, i.e. the interfaces should look the same, whereas
we further require a semantical refinement. Therefore, it is necessary to specify
additional relations between roles and components. Our specification of compo-
nents will comprise safety properties that have to be fulfilled by the component’s
implementation too.

Definition 4.13. A component type

Comi = (comi, (ro1
i , . . . , ro

mi

i ), CDi, Ri, Ii,Ψi)

consists of a component type node comi, a number of roles roji , a class-diagram
CDi, a function Ri : {comi, ro

1
i , . . . , ro

mi

i } 7→ 2R assigning rules to roles, a
set of initial rules Ii ⊆ Ri(comi), and properties Ψi ∈ L. The component
assigns a concrete behaviour Ri(ro

j
i ) 6= ∅ for 1 ≤ j ≤ mi either to each of

its roles or to none of them Ri(ro
j
i ) = ∅. In the first case, the component is

considered concrete, in the second abstract. A concrete component type must
only implement roles of concrete collaboration types. It is further refined if
component types exist that are subtypes. An initial rule i ∈ Ii has to have
an empty pre-condition and must only create elements that are pseudo-typed to
comi.

A component instance of component type Comi is represented by a node of
type comi, which also fulfils the pseudo-typing requirements and thus separates
elements that belong to different component instances from each other. All

2As we also allow specification of temporal properties, the expressiveness of OCL might
not be strong enough (cf. [136])
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rules of Comi preserve a pseudo-typing linking all nodes to comi. The function
Ri is defined as for collaboration types (see Definition 4.10). The only way a
component instance of type Comi can be created is through the execution of
any of the creation rules in Ii. The creation rules Ii may be refined through a
component type Comj that has a create relation Comj

create
−−−−→ Comi to Comi.

As for collaboration types, the component types’ properties have to be pseudo-
typed over the component type node.

The component type’s class diagram CDi contains all class diagrams of the
collaboration types that are used by the component type.3 Additionally, the
component itself, represented by a class comi (node type), and all data-types
required by the component are contained in CDi. If the component type Comi

refines the component type Comj , parts of CDj might be contained in CDi too.
Again the types defined by different components must be located in different
(and disjoint) name-spaces.

We write Ri(roki ) ⊆ Ri(comi) to refer to the set of all rules that belong to the
component Comi’s implementation of role roki .

Figure 4.11: Structural overview of the Factory component

Example 7:[Factory component] The two role types CustomerROC and
SupplierROC are both implemented by a single component Factory (cf.
Figure 4.11). The Factory component is formally given as: ComFac =
(

comFac, (CustomerROCFac , Supplier
ROC
Fac ), CDFac, IFac,ΨFac

)

. The com-
ponent’s behaviour is again specified through a set of rules, which are
depicted in Figure 4.13. We have the following assignment of the compo-
nent’s rules to its roles:

RFac(CustomerROCFac , ComFac) = {createRequest, createContract}

RFac(SupplierROCFac , ComFac) = {makeOffer}

The Factory’s class diagram CDFac is depicted in Figure 4.12.

In contrast to the collaboration’s rules (see Figure 4.10), the component’s
rules clearly allow us to distinguish which rule is assigned to which role.
At the level of collaboration, this assignment is not necessarily directly
visible, without having a look at the collaboration’s specification.

3A component type uses a collaboration type, if the component type implements a role
that has been defined for this collaboration type
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Figure 4.12: Class Diagram CDFac for the Factory component type

Figure 4.11 shows that the Factory component extends the AbstrFactory

component, which is specified as abstract. However, for the AbstrFac-

tory component a property is specified: ΨAFac = �¬earlyRecall ∧
�¬custNoCon. The corresponding graph constraints are depicted in Fig-
ure 4.14(a) and 4.14(b), respectively. The abstract component’s complete
specification can be given as:

ComAFac = (comAFac, (CustomerAFac, SupplierAFac) , CDAFac,

RAFac,ΨAFac)

with R(SupplierAFac) = R(CustomerAFac) = R(comAFac) = ∅.

Refining Component Types

The refinement or subtyping of components also requires that the resulting
behaviour is a refinement.

Definition 4.14. For a component type

Comi = (comi, (ro1
i , . . . , ro

mi

i ), CDi, Ri, Ii,Ψi)

and an abstract component type Comj = (comj , (ro1
j , . . . , ro

mj

j ), CDj , Ij ,Ψj)
it holds that Comi refines Comj (written Comi ⊑Com Comj) if it holds that
mj ≤ mi and the refinement results in stronger properties

Ψi ⇒ Ψj

For all Comi and its super-type Comj it holds that the subtype relation is correct
if Comi ⊑Com Comj .

Semantics of Components

While collaboration types are more important during design time, component
types are the system constituents that are actually present in the final sys-
tem and executed. Thus, it is important to also give a semantic definition for
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(a) CreateRequest Rule (b) CreateOffer Rule

(c) CreateContract Rule

Figure 4.13: Behavioural rules for the Factory’s roles

component types. The semantics of a component type cannot be given with-
out taking into account the collaborations that a component can participate
in. If we were only to consider the component’s rules for the definition of the
component’s semantics, we would miss important aspects of the component’s
behaviour. Therefore, we also add the rules of the collaborations belonging to
the component to the definition of the component’s semantics. This allows us
to achieve a closed set of rules.

In Definition 4.13 we have defined a component type as being abstract if it does
not specify its own behaviour for the implemented roles. However, this does
not necessarily imply that no behaviour for the component has been specified
yet, as the collaboration types can be concrete and hence have a complete
specified behaviour. A concrete component type, however, only implements
roles of concrete collaboration types. For the definition of the semantics, we
thus have to consider these situations.
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(a) The earlyRecall graph constraint

(b) The custNoCon graph constraint

Figure 4.14: Properties for AbstrFactory component

Definition 4.15 (Semantics of Components). The semantics of a concrete
component Comi = (comi,

(

ro1
i , . . . , ro

mi

i

)

, CDi, Ri, Ii, ψi) is defined as

JCK =
{

t|t ∈ T
(

G∅, P̂
)}

, where P̂ is given as:

P̂ = R(comi)
⋃

col∈Cols

R(col) \R(cr(col))

where Cols is a set of collaboration types Cols = {col1, . . . , colk} with k ≤

mi and cr : Cols 7→ 2{ro
1
i ,...,ro

mi
i } is a mapping of roles to the collaboration

types that defined the roles, such that for all s, t ≤ k and s 6= t it holds that
cr(cols) ∩ cr(colt) = ∅ and

⋃

col∈Cols cr(col) =
{

ro1
i , . . . , ro

mi

i

}

.

The semantics of an abstract component type Coma = (coma,
(

ro1
a, . . . , ro

ma
a

)

,

CDa, Ra, Ia, ψa) is defined as

JComaK = {t|t |= ψa∧

∀Cola ∈ ColsA t |= φCola∧

∀Colc ∈ Cols \ ColsA t|CDColc
∈ T (RColc)}

In the above definition, we use a few auxiliary constructs such as the set Cols
and the mapping function cr. Cols is the set of collaboration types that the
component type comi can participate in, as it has at least one of the collabora-
tion type’s roles, with ColsA ⊆ Cols being the subset of abstract collaboration
types. Of course, a component type can implement more than one role from a
specific collaboration type and thus the size of Cols is potentially smaller than
the size of the collaboration type’s roles. The mapping function cr is used to
express the connection between the roles and the defining collaboration types.

For an abstract component type, the semantics is given as all the traces that
satisfy the component type’s properties ψa and that additionally satisfy the ab-
stract collaboration types’ properties, and for all concrete collaboration types
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the trace has to be of such a form that the parts relevant to the concrete col-
laboration type could be created using the concrete collaboration type’s rules4.

Mapping to SoaML

The ≪ParticipantArchitecture≫ describes in SoaML the internal design of the
participants in the service-oriented systems. In our terms, a participant is a
component and consequently a ≪ParticipantArchitecture≫ becomes translated
into a component-type declaration. However, as for the≪ServicesArchitecture≫,
the ≪ParticipantArchitecture≫ only specifies the structural constituents of a
component type. The rules that declare the component type’s behaviour have
to be translated into a UML behaviour specification. As for collaboration types,
we do not have a direct representation of the safety properties.

4.2.4 System Types

The rigSoaML counterpart to SoaML’s service landscapes are system types and
systems. Systems combine collaboration- and component-types into a concep-
tual unit. However, the

Definition 4.16. A system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm))
consists of a number of collaboration types Coli and a number of component
types Comj.

Example 8: Using the previous examples 7 and 6, we can define a first
system type Sys1 = ((ColROC), (ComFac)).

The instances of a system type are called systems and consist of collaboration
and component instances.

Definition 4.17. A system is a pair S = (Sys,GS) with system type Sys =
((Col1, . . . , Coln), (Com1, . . . , Comm)) and an initial configuration GS that is
type conform Sys. A system is concrete if all collaborations Col1, . . . , Coln
and components Com1, . . . , Comm are concrete.

Semantics of Systems

Systems consist of components that are connected over roles and collaborations.
However, at the system level collaborations are not visible, as they are solely a
theoretical concept to abstract and encapsulate a desired behaviour. Further, a
system can only consist of concrete components, as abstract components cannot
be instantiated — they are not yet fully specified. However, we will use the
power of abstraction that a collaboration gives us to show the correctness of
systems. But before being able to do this, we have to define the semantics of
systems.

If we think of systems as conglomerates of components, immediately the question
of concurrency and how concurrency is handled in the formal model arises. To

4For details on the trace restriction t|CDColc
, refer to Definition 6.2.
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be honest, this problem is not specific to systems but also has to be considered
for collaborations. For collaborations we assumed, and defined it accordingly,
that no two rules can be applied in parallel. However, as it is further specified
that the application of rules does not consume time, the continuous behaviour of
our systems should not be influenced, and especially not if the two components
executing the two rules are completely separated from each other. If two rule
applications are not independent of each other — i.e. the order of the rule
application influences the outcome — the developer has to make sure either that
only one order could occur or that both orders are safe. Thus, we can define
the semantics of systems as the union of the components’ rule-sets included in
the system.

Definition 4.18 (Semantics of systems). The semantics of a system Sys =
((Col1, . . . , Coln) , (Com1, . . . , Comm)) is defined as follows:

JSysK = {t|t ∈ T (G∅, RSys)}

where RSys =
⋃

1≤i≤m R(Comi) is the combined rule-set of the system’s com-
ponents.

Type Conformance

An important property of a system type and the corresponding systems is type
conformance. A system type is then type conform if the collaboration and
component types are consistently referring to each other.

Definition 4.19. A system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm))
is type conform if, for all roles references in any component, a collaboration
defining that role also exists and all subtype relations of collaborations and com-
ponents are type conform, i.e. all components are only used in collaborations
that offer exactly the concrete role that is implemented by the component.

The overall class diagram CD (and thus the related node type set T ) is the union
of the class diagrams of the collaborations and components and it must hold
for any type for a node or edge that it has only defined exclusively once, only
used in subtype collaborations or components such that they are pseudo-type
separated there.

An obvious property of type conform systems is that the application of type
conform rules does not invalidate the systems’ type conformance. This prop-
erty is inherited directly from typed graph- transformation systems, which have
exactly this property. Thus, in our modelling approach it is impossible for a
collaboration type instance to connect with a role which it doesn’t know. Hence,
type conformance is guaranteed for any system configuration if the system type
is type conform.

Mapping to SoaML

A system type as defined above can be expressed in terms of SoaML by a
≪ServicesArchitecture≫ collaboration diagram that comprises all collaboration
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types that occur in the system. In order also to give an overview of the available
component types, a comprehensive set of≪ParticipantArchitecture≫ component
diagrams has to be given too.

4.2.5 System Evolution

One aspect of our motivation for this work is that system types are subject to
change and thus the software engineering and verification methodologies have
to be aware of these changes. We will use the term system evolution to describe
the way that a system type changes. The reasons for which such changes happen
are manifold, but the way the change looks can be roughly categorised into the
following cases.

Top-level changes Changes to the type system can be made at the topmost
level. Mostly the types that are added at this level are abstract types that
do not necessarily provide any new behaviour, but are used to describe
new concepts that are required to further develop the current system. It
is possible to add component types as well as collaboration types. The
removal of types is not supported yet. E.g. , for our application example
it could be the case that at some point in time it is necessary to add
transport agents to the system that take care of delivering the goods being
dealt between some of the factories.

Implementation-level changes The more frequent case, however, will be
changes at the implementation level. Thus, whenever a new party par-
ticipates in the running system it is likely that they provide their own
component or collaboration type, depending on their requirements.

SoaML does not contain any suitable equivalent to express system evolution.
Nevertheless, it could be added to SoaML, as this is what we have done in this
work. In Figure 4.15 we show an exemplary evolution diagram. The diagram
can be horizontally split into two main parts, the abstract specification at the
top and the implementation part below. The implementation part, however,
can further be vertically divided into “swim-lanes”, one for each organisation
that provides an implementation for any of the abstract concepts. The verti-
cal order of the entities in the implementation part indicates a partial order
of when they have been introduced. Note that again a total order cannot be
given, due to the SoS’ open and distributed nature. To support better dis-
cernibility, the evolution diagram separates different versions with alternating
background colours (light grey and white). In the given example diagram, the
abstract specification level consists of the known collaboration type Contract-

Collaboration, its two roles Customer and Supplier, and the abstract AbstrFactory

component type. “Organisation A” publishes a specialisation of the Contract-

Collaboration the RequestOfferCollaboration collaboration type (in the figure we
used the abbreviation ROC) as well as the two refined roles (abbreviated to
Cust and Sup). The concrete component type Factory has been introduced by
“Organisation B”. “Organisation C” introduces some differently refined roles for
Customer and Supplier, that are not further considered here. The diagram does
not allow us to infer the time order in which a concept has been introduced. The
diagram only states that “Organisation A” introduced the RequestOfferCollabo-
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Figure 4.15: Evolution Diagram for an abstract specification and three inde-
pendent organisations developing implementations

ration before “Organisation B” introduced the Factory component. Whether or
not “Organisation C” introduced the two roles before “Organisation A”, before
“Organisation B” or last of all cannot be decided based on the diagram.

Formally, we define system evolution as follows:

Definition 4.20. An extended evolution sequence is a sequence of systems
(Sys1, G

1
S), . . . , (Sysn, GnS) such that (1) Sysi+1 only extends Sysi by additional

collaboration and component types, (2) Gi+1
S is also type conform to Sysi, and

(2) Gi+1
S can be reached from GiS in the system Sysi.

An evolution sequence is a sequence of system types Sys1, . . . , Sysn such that at
least one related extended evolution sequence (Sys1, G

1
S), . . . , (Sysn, GnS) exists.

4.3 Discussion

In this section we want to review how well rigSoaML covers the requirements
that result for the modelling as introduced in Chapter 2.

Requirement Modelling SOA (M1) is, as outlined in Section 3.2, already mostly
covered by SoaML and thus rigSoaML inherits this coverage. However, rigSoaML,
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in contrast to SoaML (see Section 3.2), also covers challenge Modelling Dynam-
ics (M2). rigSoaML supports the dynamics of service-oriented systems such
as joining/leaving collaboration instances dynamically and adding components
dynamically by means of the rules for roles and components.

The evolution of SoS can be modelled by step-wise addition of types to the
system type. Thus, also the challenge Modelling Evolution (M3) concerning the
modelling of the uncoordinated introduction of new types for service contracts
and components at run-time is covered. Further, the newly introduced evolution
diagram illustrates the different changes that have occurred to the system during
its lifetime.

Requirements SoaML rigSoaML

Modelling SOA (M1) X X

Modelling Dynamics (M2) ◦ X

Modelling Evolution (M3) ◦ X

Table 4.1: Comparison of the coverage of the challenges for modelling with
SoaML and rigSoaML

Further, our approach rigSoaML provides the capabilities to specify the system
at an abstract level. This is useful to guide the development without the need
to provide behaviour specifications. We have used this, e.g. , in the supply chain
system application example, when we introduced the AbstrFactory specification
(cf. Example 7). The AbstrFactory abstract component type does not have any
rules for its two specified roles but a safety property that relates the recall dates
of the Contract instances that are available at the component’s roles.

In Section 2.5 we presented a list of scenarios that are typical of SoS. The sce-
narios that describe the introduction of new collaboration and component types
are already supported by SoaML and hence, also by rigSoaML. The creation of
new collaboration and component instances, however, is not directly addressed
in SoaML, but rigSoaML does support this through StoryPatterns. The newly
introduced evolution diagram allows us to model the evolution steps occurring
in an SoS.
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Chapter 5

Verification Schemes for

rigSoaML Models

The problem of verifying the correctness of systems is that existing formal ap-
proaches do not scale, are not applicable to the specific settings of SOA with
dynamic binding, and do not support evolution. Formal verification usually
operates at the level of instances and only works for rather small configurations
with a fixed upper bound of elements and a fixed number of initially defined
element types, while systems may contain many unbounded elements and even
the defined element types may evolve. Therefore, instance-based formal veri-
fication approaches that look at a particular configuration are in principle not
applicable. For the same reasons also, testing a particular configuration that
provides an even lower coverage than formal verification is not sufficient either.
Furthermore, due to the dynamic nature of systems, it cannot be assumed that
any of the involved organisations has all relevant details of the concrete ser-
vice implementations at hand to apply formal verification techniques or testing
techniques looking at the complete configuration in detail.

Therefore, we propose instead to establish the required properties for the cor-
rectness of the collaboration and component types as introduced for the sug-
gested modelling approach. We will at first simplify the problem by only con-
sidering system types with concrete type definitions (Section 5.1). Then, in an
additional step, we will also consider abstract service contracts as a means to
bind independently developed components to each other and refine collabora-
tions (Section 5.2). Finally, the very demanding case of system evolution where
new collaboration and component types enter the scene is also considered (Sec-
tion 5.3).

We will describe the complete approach to verify rigSoaML models with the
abstract operators that we have introduced in Section 4.1.3. This allows us
to decouple the general verification scheme from the concretely used formal
techniques.



5.1. CONCRETE SYSTEMS

5.1 Concrete Systems

The simplification used to approach the problem of system verification followed
in this section is that any concrete system only instantiates concrete types and
thus we will in a first step omit the abstract types and evolution.

As a formal verification at the instance level seems impossible, we will instead
approach the problem at the type level. For the verification at the type level, we
will then show that the correctness proven for the collaboration and component
types and only type conformance for the system type will by construction imply
that the related correctness also holds at the instance level for any possible
configurations of related systems. The general idea of our verification approach
is sketched in Figure 5.1. The figure is virtually separated into two layers. The
bottom layer shows the actual instance situation, for which we want to come up
with a correctness proof. The top layer shows the types that are instantiated
at the instance level — illustrated by the dashed vertical arrows. At the top
level, grey boxes indicate verification obligations, i.e. we have to verify that the
RequestOfferCollaboration behaves correctly, and the “Check Role Refinement”
label indicates that we have to ensure that the component correctly refines the
collaboration’s roles. The scalability of our approach comes from the fact that
the type view is to some degree independent of the instance view.1 What we
have to show as a general property of our approach is that the results we yield
for the type level are valid for the instance level, too.

5.1.1 Correct Collaboration Types

We start our considerations by defining what we mean by correct types for
collaborations and components. A correct collaboration type requires that the
resulting behaviour ensures the collaboration type’s properties.

Definition 5.1. A concrete collaboration type Coli = (coli, (ro1
i , . . . , ro

ni

i ),
CDi, Ri,Φi) is correct if for the empty configuration G∅ it holds that the reach-
able collaboration configurations are correct

G∅, Ri(Coli) |= Φi.

for Ri(Coli) = Ri(ro1
i ) ∪ · · · ∪ Ri(ro

n
i ) ∪ Ri(coli)) the overall behaviour of the

collaboration.

Please note that looking only at the behaviour of all roles and considering only
the initial empty G∅ is sufficient to cover all possible behaviours, as only the
behaviour of the roles can create or delete roles or other exclusive elements.

Example 9: To exemplify a correct collaboration type, we will use the
concrete collaboration type RequestOfferCollaboration (ROC), which has
been introduced in Example 6. The ROC has two concrete role types
CustomerROC and SupplierROC. The properties the ROC has to fulfil are

1As long as the types that are instantiated at the instance level do not change, the type
level does not change.
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Figure 5.1: Sketch of the general proof scheme
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those that are specified for the ROC. Consequently, the property that has
to be satisfied by the ROC is

φROC ≡ �¬∃noSupplier∧�¬∃earlyRecall∧

�¬∃earlyRequest∧�¬∃earlyOffer

. This property has to be satisfied by every graph-transformation system
that can be built using empty configuration G∅ as the initial graph and
the collaboration’s rules.

The following table summarises the checks that are necessary to show
that the ROC is a correct collaboration.

Task Required
Verify ΦCC yes
- Check G∅, RROC(Colroc) |= ΦCC yes
Verify ΦROC yes
- Check G∅, RROC(Colroc) |= ΦROC yes

The set of rules RROC(ColROC) is given as the combination of all rules
of the RequestOfferCollaboration’s roles:

RROC(ColROC) = RROC(SupplierROC) ∪RROC(CustomerROC)

5.1.2 Correct Component Types

A correct component type requires that the resulting behaviour ensures that
the component type’s properties are satisfied and that the component’s imple-
mentation refines the combined role behaviour.

Definition 5.2. A concrete component type Comi = (comi, (ro1
i , . . . , ro

mi

i ),
CDi, Ii,Ψi) is correct iff for the empty configuration G∅ it holds that the reach-
able component configurations are correct

G∅, Ri(comi) ∪ COMP (Comi) ∪ Ii |= Ψi (1)

and the component behaviour Ri(comi) refines the orthogonally combined role
behaviour and creation behaviour

Ri(comi) ⊑A Ri(ro1
i ) ∪ · · · ∪Ri(ro

mi

i ) ∪ Ii ∪
⋃

Comi

create
−−−−→Comj

Ij . (2)

We employ here COMP (Comi) =
⋃

1≤l≤mi
COMP (Comi, ro

l
i) with COMP (

Comi, ro
l
i) = Rj(Colj) to add the collaboration behaviour for each role without

the role itself, which is covered by Ri(comi) to the component to derive a related
closed behaviour. To further differentiate the two elements of correctness, we
refer to the first condition as correct concerning guarantees and to the second
condition as correct concerning refinement.

Example 10: The concrete component Factory can be proved correct.
The Factory component owns an implementation and thus can be verified.
The Factory has to satisfy the properties ΨFac
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Task Required
Verify G∅, RFac(ComFac) |= ΨFac Yes
Check role refinement yes

The rule set RFac(ComFac) is given as defined in Definition 5.2.
RFac(ComFac) = RFac(SupplierFac) ∪ RFac(CustomerFac). The correct
role refinement is syntactically guaranteed as the rules for the Factory
component only enhance the rules for the RequestOffer Collaboration
with new types, defined in CDFac.

5.1.3 Correct Collaboration Instances

After defining our notion of correctness for the types, we have to define what
the related notion of correctness at the instance level means.

Definition 5.3. All collaboration instances of a concrete system S = (Sys,GS)
with system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm)) are correct if it
holds that

GS , R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Φ1 ∧ · · · ∧Φn.

We can then show in the following lemma that the correctness of the collab-
oration types ensures also the notion of correctness at the instance level. For
the proof of the lemma, we will use the fact that the union of two pseudo-type
separated rule-sets preserves the properties of both rule-sets. For details, see
Corollary 6.21.

Lemma 5.4. All collaborations of a concrete system S = (Sys,G∅) with sys-
tem type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm)) and rule function R

are correct if (1) the system type Sys is type conform, (2) all collaboration
types Col1, . . . , Coln of Sys are correct, and (3) all component types Com1, . . . ,

Comm of Sys are correct concerning refinement.

Proof. First we can conclude that, due to the fact that the concrete collaboration
types and their rules and properties are by definition separated by pseudo-types
for coli and (2), we further know that for all i it holds that (R(ro1

i ) ∪ · · · ∪
R(roni

i )∪R(coli)) |= Φi. Due to Corollary 6.19, we know that R∪R′ preserves
the properties of R and R′ when R and R′ and the properties are pseudo-type
separated and thus, as the collaborations are pseudo-type separated, we obtain
that

G∅, (R(ro1
1) ∪ · · · ∪R(ron1

1 ) ∪R(col1))∪

· · · ∪R(ro1
n) ∪ · · · ∪R(ronn

n ) ∪R(coln)) |= Φ1 ∧ · · · ∧ Φn.

Also, for the creation rules I1 ∪ · · · ∪ Im it holds that they are pseudo-type
separated and thus we get

G∅, (R(ro1
1) ∪ · · · ∪R(ron1

1 ) ∪R(col1))∪

· · · ∪R(ro1
n) ∪ · · · ∪R(ronn

n ) ∪R(coln)) ∪ I1 ∪ · · · ∪ Im |= Φ1 ∧ · · · ∧ Φn.
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Due to (1), we have type conformance which guarantees that the role types are
only properly connected to collaboration types. Thus, by replicating them as
well as the creation rules for each occurrence and reordering them according to
the concrete components types involved, we get

G∅, (R(ro1
1) ∪ · · · ∪R(rom1

1 ) ∪ I1 ∪ · · · ∪ Im) ∪ · · · ∪ (R(ro1
m)∪

· · · ∪R(romm
m ) ∪ I1 ∪ · · · ∪ Im) ∪R(col1) ∪ · · · ∪R(coln) |= Φ1 ∧ · · · ∧ Φn,

as replication of rules preserves the properties. We further know due to (3)
that the implementation of a component refines the combined role behaviour
(R(comi) ⊑A (R(ro1

i ) ∪ · · · ∪ R(romi

i ) ∪ I1 ∪ · · · ∪ Im) and thus we can derive
the required condition for correctness of the system for all collaborations of
Definition 5.3 by substituting R(comi) for (R(ro1

i )∪· · ·∪R(romi

i )∪I1 ∪· · ·∪Im
as, due to Corollary 6.21, it is ensured that refinement preserves the property
Φ1 ∧ · · · ∧Φn:

G∅, R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Φ1 ∧ · · · ∧ Φn.

Example 11: To exemplify Lemma 5.4 let us consider the system type
Sys, which has been introduced in Example 8. The first condition we
have to check is (1) (see Lemma 5.4). This condition is satisfied, as the
component types that occur in Sys only use roles that are introduced by
collaborations that are part of Sys too. Condition (2) — the correctness
of all collaboration types — has already been shown in Example 9. The
remaining condition of the lemma we have to show is condition (3), which
enforces a correct refinement between the component’s roles and the col-
laboration’s roles. In detail, we have to show that the roles SupplierCom

and CustomerCom refine the roles SupplierROC and CustomerROC, respec-
tively.

In summary, we have shown that any concrete system S = (G∅, Sys)
where G∅ is the initial empty configuration contains only correct collab-
oration instances.

5.1.4 Correct Component Instances

As was done for collaborations, we now define what the related notion of cor-
rectness at the instance level for components means.

Definition 5.5. All components of a system S = (Sys,GS) with system type
Sys = (T , R, (Col1, . . . , Coln), (Com1, . . . , Comm)) are correct if it holds that:

GS , R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Ψ1 ∧ · · · ∧Ψm.

We can show in the following lemma that the correctness of the component
types ensures also the notion of correctness at the instance level.

Lemma 5.6. All components of a system S = (Sys,G∅) with system type
Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm)) are correct if (1) the system type
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Sys is type conform, (2) all collaboration types Col1, . . . , Coln are correct, and
(3) all component types Com1, . . . , Comm are correct.

Proof. As for all i with 1 ≤ i ≤ m, it holds due to (2) that

R(comi) ∪ COMP (Comi) ∪ Ii |= Ψi

and all R(comi) ∪ COMP (Comi) ∪ Ii are included in a refined manner in
R(com1) ∪ · · · ∪ R(comm) ∪ R(col1) ∪ · · · ∪ R(coln), we finally obtain, due to
Corollary 6.19, the required result

G∅, R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Ψ1 ∧ · · · ∧Ψm.

The disjoint type-graphs, required by Corollary 6.19 are achieved through pseu-
do-typing and pseudo-types preserving rules. Pseudo-typing guarantees that no
two component instances can influence each other directly.

Example 12: For the system type Sys (cf. Example 8), we have only
shown so far that the collaboration instances in any system configuration
are correct (cf. Example 11). The remaining proof that the component
instances are correct too, is a combination of our previous results. Ac-
cording to Lemma 5.6. We have to show that the system type is correct
(cf. Example 11, the collaboration types are correct (cf. Example 9
and that the component types are correct (cf. Example 10). It follows
that the above lemma yields that the system type contains only correct
component instances, if the system started from a correct configuration.

5.1.5 Correct Systems

As done for collaborations and components, we now define what the related
notion of correctness at the instance level for systems means.

Definition 5.7. A concrete system S = (Sys,GS) with system type Sys =
((Col1, . . . , Coln), (Com1, . . . , Comm)) is correct if it holds that:

GS , R(com1)∪· · ·∪R(comm)∪R(col1)∪· · ·∪R(coln) |= Φ1∧· · ·∧Φn∧Ψ1∧· · ·∧Ψm.

We can then show in the following Theorem 5.8 that the type conformance of
the system type and the correctness of collaboration types and component types
ensures correctness at the instance level for the system.

Theorem 5.8. Given a system type Sys = ((Col1, . . . , Coln), (Com1, . . . ,

Comm)) and a corresponding system S = (Sys,G∅), the system S is cor-
rect if (1) the system type Sys is type conform, (2) all collaboration types
Col1, . . . , Coln are correct, and (3) all component types Com1, . . . , Comm are
correct.

Proof. The two Lemmas 5.4 and 5.6 directly yield the required result, as both
require the same or a weaker condition and their composed results are equal to
the required conclusion.
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The presented Theorem 5.8 provides sufficient but not necessary conditions to
ensure the correctness. It permits us to straightforwardly establish the required
correctness of the types by checking the refinement and the guarantees for the
properties using the rule-sets employed in conditions (2) and (3).

Figure 5.1 (see Page 45) visualizes that, according to Theorem 5.8, the required
guarantees for the instance level can be established by only doing checks at
the type level. Therefore, we can conclude that the complexity of checking the
guarantees depends only on the number of types and the complexity of the
checking problems of the collaboration and component types.

Example 13: Let us assume that the System S = (Sys,G∅) is a con-
crete system of system type Sys (cf. Example 8) and an empty starting
configuration G∅. In the previous examples 13, 12, and 11 we have shown
that the conditions for the Theorem 5.8 hold. We can thus conclude that
the System S is correct.

Task Required
Verify ΦROC yes
- Check G∅, RROC(Colroc) |= ΦROC yes
Verify G∅, RFac(ComFac) |= ΨFac Yes
Check role refinement yes

5.2 Systems and Abstraction

In the preceding section we have shown that the correctness of concrete com-
ponent and collaboration types by construction implies the correctness of all
instances in a concrete system if it is type conform. However, in system types
the cooperation is usually defined not only using concrete collaborations but
also using abstract ones which allow the concrete service contract participants
to refine the roles as suits their specific needs while still protecting their own
IP.

To extend the results also to the abstract collaborations and components, we
can exploit the fact that no instances of abstract collaborations or components
can exist, as the abstract concepts themselves are never manifested in a system.

Furthermore, the required refinement relation between abstract collaborations
and abstract components and more concrete counterparts will ensure that the
required guarantees implied by the abstract collaborations or components are
also implied by all concrete collaborations and components refining them.

5.2.1 Correct refining Collaboration Types

For subtyping of collaborations, we can show in the following lemma that the
properties of the correctly refined collaboration are preserved by refinement or
subtyping.
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Lemma 5.9. For a correct, concrete collaboration type Coli = (coli, (ro1
i , . . . ,

roni

i ), CDi, Ri,Φi) and any of its abstract collaboration super-types Colj = (colj ,
(ro1

j , . . . , ro
nj

j ), CDj , Rj ,Φj) (Coli ⊑Col Colj) holds

Ri(Coli) |= Φj .

Proof. For any collaboration type, it holds via induction that its local properties
imply the properties of any super-type Colj (Φi =⇒ Φj). As for a correct,
concrete collaboration it holds by definition that Ri(Coli) |= Φi. Consequently,
we can conclude Ri(Coli) |= Φj .

Example 14: The RequestOfferCollaboration (ROC, for specification see
Example 6) refines the collaboration ContractCollaboration (Con, cf. Ex-
ample 5). For the ContractCollaboration we had to run the following
checks:

Task Required
Verify R(Con) |= ΦCon yes

Obviously, verification of the ContractCollaboration is comparatively easy,
as this collaboration only specifies a few properties and does not in-
herit properties from super-collaborations. The RequestOfferCollabora-

tion, however, inherits from the ContractCollaboration (see Figure 3.2)
and thus has to satisfy ΦgCon ∧ΦgROC .

Task Required
Verify R(Con) |= ΦCon No
Verify R(ROC) |= ΦROC Yes
check refinement Yes

For the RequestOfferCollaboration it is not required to verify the property
ΦCom again, as the collaboration’s rules refine the ContractCollaboration’s
rules.

5.2.2 Correct Refining of Component Types

For subtyping of components, we can show in the following lemma that the
guarantees of the refined components are preserved by refinement or subtyping.

Lemma 5.10. For a correct, concrete component type Comi = (comi, (ro1
i ,

. . . , romi

i ), CDi, Ri, Ii,Ψi) and any of its correct component super-types Comj =
(comj , (ro1

j , . . . , ro
mj

j ), CDj , Rj , Ij ,Ψj) (Comi ⊑Com Comj) it holds that

Ri(Comi) |= Ψj .

Proof. For any component type it holds via induction that its local properties
imply the properties of any super-type Comj (Ψi =⇒ Ψj). As for a correct,
concrete component, it holds by definition that Ri(Comi) |= Ψi. Consequently,
we can conclude that Ri(Comi) |= Ψj .

Example 15: Let us take a look at the Factory component (cf. Exam-
ple 7) to exemplify Lemma 5.10. The Factory component’s super-type is
the abstract component AbstrFactory (cf. Example 7). In order to safely
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omit checking that the Factory also satisfies the AbstrFactory’s safety prop-
erties, we have, according to the above lemma, to show that the rule sets
assigned to the components’ role are in a valid refinement relation (see
Definition 4.14). More concretely, we have to show the following:

RCom(CustomerCC) ⊑A RACom(Customer)

RCom(SupplierCC) ⊑A RACom(Supplier)

5.2.3 Correct Systems with Abstraction

It now remains to show that the refinement ensures correctness for a System,
including the guarantees for the abstract concepts. The following Theorem 5.11
then demonstrates that this correctness criterion is met by construction if all
types are correct and the refinement conditions for subtypes are fulfilled.

Theorem 5.11. A system S = (Sys,GS) with system type Sys = ((Col1, . . . ,
Coln), (Com1, . . . , Comm)) is correct if (1) the system type Sys is type conform,
(2) all collaboration types Col1, . . . , Coln are correct, and (3) all component
types Com1, . . . , Comm are correct.

Proof. Due to Theorem 5.8, we can conclude that all properties of the concrete
collaborations and components are preserved. Based on the type conformance
of the system type Sys, Lemma 5.9 and Lemma 5.10 further guarantee that also
all properties of the abstract collaborations and components are preserved.

The general proof scheme including abstraction is depicted in Figure 5.2. The
sketch differs from the one in Figure 5.1 in that the type-level now contains
abstract collaborations and components too. Beside the already known verifi-
cation obligation, we now also have to ensure that the inheritance between the
abstract and concrete entities is correct.

Example 16: Combining the system definition we gave in Example 8
and the examples of correct collaboration and component types, 9 and
10, respectively, we can conclude that the system is correct too. The
necessary arguments for Theorem 5.11 are all given in the respective
examples.

The necessary steps to verify the complete system can be seen in the
following table. Note that Con and ROC are shorthand for the Contract-

Collaboration and the RequestOfferCollaboration, respectively.

Task Required
Verify ΦCC yes
- Check G∅, RROC(colroc) |= ΦCC yes
Verify ΦROC yes
- Check G∅, RROC(colroc) |= ΦROC yes
Task Required
Verify G∅, RFac(ComFac) |= ΨFac yes
Check role refinement yes
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Figure 5.2: Verification scheme for the verification of system types with abstrac-
tion
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Hence, the compositional capabilities of our approach allow us to reduce
the necessary steps for the verification of any system that conforms to
the system type to three comparatively simple verification tasks. The
verification tasks are independent of the actual system’s size, as they work
on the component and collaboration types and not the actual component
and collaboration instances.

5.3 Evolution

So far, the presented results do not cover evolution. Therefore, in this section
we will extend the earlier results to also cover typical evolution scenarios, such
as adding new collaboration or component types.

If we look at our former results in more detail, we can see that the assumptions
have been made that all types are known at verification time. Furthermore, the
transitive nature of the refinement required for subtyping has been employed to
also support abstraction along the static subtyping relation, spanning essentially
a fixed finite tree of types.

These assumptions are not true for a steadily evolving system where type defi-
nitions are added over time and where the subtyping tree is thus not necessarily
fixed. Furthermore, the different organisations involved will only have a partial
view of the subtyping tree and the types they want to add, and thus all types
cannot be not known.

For a given extended evolution sequence as defined in Definition 4.20 we can
define correctness as follows:

Definition 5.12. An extended evolution sequence (Sys1, G
1
S), . . . , (Sysn, GnS)

with Sysn = ((Col1, . . . , Colp), (Com1, . . . , Comq)) is correct if for any com-
bined trace t1 ◦ · · · ◦ tn such that ti is a trace in Sysi leading from GiS to Gi+1

S

for i < n and that tn is a trace in Sysn starting from GnS it holds that

t1 ◦ · · · ◦ tn |= Φ1 ∧ · · · ∧ Φp ∧Ψ1 ∧ · · · ∧Ψq.

An evolution sequence Sys1, . . . , Sysn is correct if all possible related extended
evolution sequences (Sys1, G

1
S), . . . , (Sysn, GnS) are correct.

A first observation is that Sysn contains all types defined in any Sysi. However,
for a combined trace t1 ◦ · · · ◦ tn such that ti is a trace in Sysi leading from
GiS to Gi+1

S for i < n, it does not in general hold that an equal trace t in Sysn
exists that goes through all GiS , as the rules added by later added types may
influence the outcome. E.g. , they may be urgent and thus have to be executed
or may block other rules due to a higher priority.

However, we can exploit the above observation and construct a related system
type that includes all possible combined paths of any possible extended evolution
sequences for a given evolution sequence. We further abstract from the concrete
ordering and only distinguish types that are defined already in Sys1 or added
later.
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Definition 5.13. A dynamically evolving collaboration type E(Coli) = (coli,
Ro1

i , . . . , Ro
ni

i ),Φi) for a collaboration type Coli = (coli, (Ro1
i , . . . , Ro

ni

i ),Φi) re-
sults by adding a special collaboration node type tColi , extending all rules of Ro1

i ,
. . . , Roni

i , and coli such that one node of type tColi is an additional condition
to be enabled, and adding a special rule rColi to R(coli) that creates at most one
node of type tColi using a NAC, and has only the additional pre-condition that
all types it depends on have been activated already (their respective node exists).

Example 17: Let us take the collaboration type for the ContractCol-

laboration we have defined in Example 5, and change it into an evolving
collaboration type. In accordance with Definition 5.13 we have to change
the collaboration’s rule set by adding the special rule rCC , which is shown
in Figure 5.3.

Figure 5.3: Special rule rCC for the ContractCollaboration

The ContractCollaboration does not depend on any other component or
collaboration type. Therefore the precondition of rule rCC only contains
the NAC that prevents the rule from being applied more than once. How-
ever, if the ContractCollaboration were to depend on other collaboration
types, they would occur in the rule’s precondition.

Definition 5.14. A dynamically evolving component type E(Comi) = (comi,

(ro1
i , . . . , ro

mi

i ), CDi, Ri, Ii, Ψi) for a component type Comi = (comi, (ro1
i , . . . ,

romi

i ), CDi, Ri, Ii,Ψj) results by adding a special component node type tComi ,
extending all rules of comi such that one node of type tComi is an additional
condition to be enabled, and adding a special rule rcomi

to R(com′
i) that creates

at most one node of type tComi using an NAC and having only the additional pre-
condition that all types it depends on have been activated already (their respective
node exists).

Example 18: As we have done for the collaboration type ContractCol-

laboration in the previous example, let us change the Factory component
type, introduced in example 7, into a dynamically evolving component
type as defined in Definition 5.14. The required additional rule is depicted
in Figure 5.4. The Factory component type depends on the RequestOffer-

Collaboration collaboration type. The dependency is due to the fact that
the Factory component type implements roles that are defined in the Re-

questOfferCollaboration collaboration type. Thus, it is important that the
RequestOfferCollaboration type is present in the system before the Factory

type gets introduced. This is specified in the above rule by adding the
RequestOfferCollaboration type to the rule’s precondition. The same holds
true for the AbstrFactory abstract component type, which is the Factory’s
super-type.
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Figure 5.4: Special rule rComp for the Factory component

Definition 5.15. Given a system type Sys1 = ((Col1, . . . , Colp), (Com1, . . . ,

Comq)) and given another system type Sysn = ((Col1, . . . , Colp, . . . , Colp+r),
(Com1, . . . , Comq, . . . , Comq+s)) extending the first one, the related dynami-
cally evolving system type is given as

E(Sys1, Sysn) = ((Col1, . . . , Colp, E(Colp+1), . . . , E(Colp+r)),

(Com1, . . . , Comq, E(Comq+1), . . . , E(Comq+s)))

.

Example 19: To exemplify Definition 5.15, we can construct two small
systems S1 = ((ColROC), ∅) and S2 = ((ColROC), (ComComp)). The
corresponding evolving system type E(S1, S2) can then be specified as:

E(S1, S2) = ((ColROC), (E(ComComp)))

. Hence, as the collaboration types do not change within the evolutionary
step from S1 to S2, we do not have to alter the set of collaboration types
in the dynamically evolving system type E(S1, S2). However, the set of
component types changes, i.e. the Factory component is added, and thus
we have to add this component’s dynamically evolving component type
(see Example 18) to E(S1, S2).

We can now exploit the fact that the related dynamically evolving system type
includes all possible extended evolution sequences to check also the correctness
of an evolution sequence.

Theorem 5.16. An evolution sequence of systems Sys1, . . . , Sysn is correct
if the related dynamic evolving system type E(Sys1, Sysn) is correct.

Proof. For any extended evolution sequence (Sys1, G
1
S), . . . , (Sysn, GnS) for

Sys1, . . . , Sysn and any combined trace t1 ◦ · · · ◦ tn such that ti is a trace in
Sysi leading from GiS to Gi+1

S , it holds that a related trace t′1 ◦ · · · ◦ t
′
n such

that t′i is a trace in E(Sys1, Sysn) leading from GiS to Gi+1
S exists, such that

t′i = E(t, Sys1, Sysn) ◦ tr. The rule tr is an arbitrary sequential combination of
all rcoli and rcomj

for collaborations and components that are in Sysi+1 but not
Sysi. Consequently, if E(Sys1, Sysn) has been proven correct, we can conclude
that also all extended evolution sequence (Sys1, G

1
S), . . . , (Sysn, GnS) have to be

correct and thus Sys1, . . . , Sysn must be correct.
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In the following Corollary 5.17, we can characterise what is required when an
evolution sequence is extended by adding new types for collaborations and com-
ponents.

Corollary 5.17. An evolution sequence of systems Sys1, . . . , Sysn with
Sysn−1 = ((Col1, . . . , Colp), (Com1, . . . , Comq)) and Sysn = ((Col1, . . . , Colp,
. . . , Colp+r), (Com1, . . . , Comq, . . . , Comq+s)) is correct if (1) Sys1, . . . , Sysn−1

are correct (using the conditions of Theorem 5.16) and (2) if all p < i ≤ p+ r

E(Coli) are correct and all q < j ≤ q+s E(Comj) are correct, and (3) if all sub-
type relations for any Coli with p < i ≤ p+ r and any Comj with q < j ≤ q+ s

are correct.

Proof. From (1), (2) and (3) we can directly construct the conditions to prove
E(Sys1, Sysn) when all conditions for E(Sys1, Sysn−1) have been proven al-
ready.

Corollary 5.17 provides a direct guideline for what has to be done when you
want to add a new type for a collaboration or component. Note that an or-
ganisation which wants to extend the system type accordingly does not need to
know all other types besides those which are refined. Furthermore, if two inde-
pendent extensions are done which do not refer to each other, in the presented
construction the concrete order does not matter as the checks remain the same.
Therefore, each organisation can simply check its own extension, and the order
in which they are enacted does not matter.

Lemma 5.18. For a correct collaboration type Col, it holds also that its dy-
namic extension E(Col) is correct. For a correct component type Com, it holds
also that its dynamic extension E(Com) is correct.

Proof. Due to its construction, the additional rule does not affect the correctness
,as for any trace of E(X) it holds that it must start with an initial delay and
then the additional rule while the rest equals a trace for X . As the additional
rule has an arbitrary timing, when eliminating the additional rule we simply get
traces that equal those of X and we can conclude that if a property is violated
in E(X) it would also be violated in X and vice versa.

Consequently, it is thus sufficient due to Lemma 5.18 to simply check the collab-
oration and component types, and this already guarantees that any extended
evolution sequence will also show correct behaviour.

Figure 5.5 depicts the incremental verification scheme for our verification ap-
proach. In the figure, we assume that the evolutionary step consists of adding
the component type AuctioneerImpl and the collaboration type Auction. The
necessary verification steps are mentioned within the figure.

Example 20: We exemplify the incremental verification of evolving com-
plex landscapes with the introduction of a new implementation of the
Contract collaboration. The Auction collaboration requires a new role
Auctioneer and changes the negotiation pattern between Supplier and Cus-

tomer. Suppliers create an auction together with an Auctioneer and, as
long as the auction is running, Suppliers can send bids to the Auctioneer.
The Auctioneer checks whether or not the bid is higher than the currently
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Figure 5.5: Incremental verification scheme for the verification of system types
with evolution
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leading bid and marks the bid as leading or discards it. The Auction col-
laboration requires us to introduce a new role Auctioneer, a collaboration
Auction that refines the Contract collaboration, and the two specialised
roles Supplier and Customer.

The Auction collaboration type is newly introduced and thus we have to
verify that it satisfies its own safety properties. Further, the Auction col-
laboration type refines the Contract collaboration type and thus has to
satisfy the properties φCC . The correct refinement between Auction and
Contract collaboration types has to be checked too, as well as the refine-
ment between roles and new component types. However, if we can show
that the new component types and the Auction collaboration type are cor-
rect, we can use Corollary 5.17 to conclude that the evolution sequence
of systems Sys1, Sys2, Sys3, where Sys1 is our application example, as
explained prior to this example, Sys2 is Sys1 and the Auction collabora-
tion type and Sys3 is Sys2, extended by the AuctioneerImpl component
type, is correct. The following table gives an overview of the necessary
checks:

Task Required?
Verify ΦAuc yes
- Check G∅, RAuc(colAuc) |= ΦAuc yes
Verify ΦCC yes
- Check G∅, RAuc(colAuc) |= ΦCC no
- Check correct refinement yes
Task Required?
Verify G∅, RAuctioneer(ComAuctioneer) |= ΨAuctioneer yes
Check role refinement yes

5.4 Discussion

While for SoaML no proper analysis support exists, for rigSoaML we have out-
lined how even complex system types can be analysed. In detail, we have pro-
vided lemmata that explicitly state which pre-conditions have to be met in order
to verify service-oriented systems. The basic idea we follow is to start with the
verification of small entities — i.e. collaboration and component types — and
compose these results into an argument for the overall system’s correctness. The
compositionality of our approach is expressed in Theorem 5.8, which uses the
results of correct collaboration and component instances within a system, that
have been introduced in Lemma 5.4 and Lemma 5.6, respectively. Further, we
presented a more generalised variant of Theorem 5.8 that also covers abstrac-
tion. These findings accumulate in Theorem 5.11. In a last step, we showed that
our approach can be facilitated to verify evolution of service-oriented systems;
see Theorem 5.16 and Corollary 5.17.

As visualised in Figures 5.1, 5.2, and 5.5 the verification scheme only considers
the types, supports subtyping, and permits us to address evolution by means
of an incremental scheme where only new types and their relations to existing
types have to be checked.
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Furthermore, as exemplified in the examples for checking a concrete system in
Example 13, a system with subtypes in Example 16, and an evolution step in
Example 20 only needs to check the types. In addition, the building blocks of
checking that the collaboration types are correct in Example 9 and that the
component types are correct in Example 10 all require only moderate efforts.
Therefore, rigSoaML can be checked for arbitrary large service landscapes and
thus scale, as demanded by requirement Scalable Analysis (A1).

The rules in rigSoaML permit us to also model the way that systems change their
configuration at run-time and thus the model captures the regular behaviour
and reconfiguration behaviour at the same time. Consequently, the outlined
analysis approach fulfils requirement Analysis of Reconfiguration (A3).

For our overall example of the supply chain case study, this means that within
the specifications of components and collaborations — e.g. Factory and Request-

OfferCollaboration — the rules for terminating a relation are already included.
Thus, we not only consider the pure business rules of sending and receiving
Request, Offer and Contract messages, but also describe exactly the conditions
which allow participants, Factory-components in this case, to leave the collabo-
ration again.

The type-based compositional approach for analysis works even if no global view
exists and there are fully separated responsibilities. The abstraction concepts
further permit that IP related to component details and to some extent even
the IP of service contract details can be protected. Therefore, rigSoaML also
fulfils requirement Analysis under restricted knowledge (A4) .

In terms of our supply chain example, this means that we do not have to know
the exact business logic of a particular component X-Factory as long as the com-
ponent developer can prove that the component conforms to the AbstrFactory

and its implemented roles. Even other participants that are involved in a service
contract with an instance of X-Factory do not see more of the component than
the role allows, and they do not need more information.

Due to the fact that the compositional analysis approach also works for evolution
on the basis of the types only, the analysis can be done incrementally as required
for each added type in isolation, covering its local properties as well as the
linkage to concepts it inherits properties from. Thus also requirement Analysing
Evolution (A5), concerning the analysis of the uncoordinated introduction of
new types for service contracts and components at run-time, is covered. Here,
it is particularly important that even for the evolution an incremental checking
is possible such that even evolution sequences with very large sets of defined
types can be handled, as long as in each evolution step only a small number of
additional types are introduced.

Let us recapitulate this again by means of our application example. One pos-
sible evolutionary step that we have sketched is the introduction of an Auction

service contract, which differs from the RequestOfferCollaboration in the way the
negotiation between Producer and Consumer is done. Further, this new service
contract type required that we also introduce a new role Auctioneer and a com-
ponent, implementing this role. The introduction of these two new constituents
made it necessary to check for the Auction that it is safe, with respect to its own
safety properties, and that is a valid subtype of the ContractCollaboration. The

60



5.4. DISCUSSION

same holds for the new components that implement the new roles. They have
to satisfy their own safety properties, i.e. they have to be correct, and they have
to be correct role refinements.

5.4.1 Summary

As outlined, our approach does scale due to the compositional approach and
fulfils the related analysis requirements A1–A4 by using abstraction to decouple
the different concrete elements via abstract ones. Furthermore, requirement
Analysing Evolution (A5) is supported by an incremental and decentralised
verification scheme.

Requirements Coverage by rigSoaML

Scalable Analysis (A1) X

Applicable Analysis (A2) X

Analysis of Reconfiguration (A3) X

Analysis under restricted knowledge (A4) X

Analysing Evolution (A5) X

Table 5.1: Coverage of the challenges for analysis with rigSoaML

At the beginning of this thesis we introduced typical scenarios for changes that
can occur in SoS (see Section 2.5). We will now briefly recall these scenarios
and explain the necessary proof obligations we get from the findings of this
chapter. Our approach does not yet support the removal of component and
collaboration types. The removal of instances is supported through the rules
that can delete instances. The removal of types is difficult. Before a type
(whether a collaboration or a component type) can be removed from the system
type, first all its instances have to be removed from the system and all of its
subtypes have to be removed from the system type. However, we don’t have a
comprehensive and consistent view of the system and thus cannot guarantee that
these conditions are satisfied. The update of existing component or collaboration
types cannot be achieved for similar reasons. For the update, either it has to be
assured that the type could be updated independent of its instances’ state or all
instances have to be in a certain defined state that allows the update of the type.
Again, the restricted knowledge of the system prohibits the update of types.
However, the update of types could be partially avoided by the introduction of
new types that have the updated behaviour. This solution, of course, does not
update existing instances of the previous type.

For a newly added collaboration type, we have to check different obligations
depending on whether or not the collaboration type refines an existing collab-
oration type. In the case of a new collaboration type that does not refine any
existing collaboration type, we have, according to Definition 5.1, to ensure that
the collaboration type’s rules satisfy the collaboration type’s safety property for
all reachable states, starting in G∅. In Figure 5.1, this is depicted as the grey
rectangle around the collaboration type. Should the collaboration type, how-
ever, refine an existing abstract collaboration type, we have to ensure that the
refinement is correct and that the refining collaboration type’s rules guarantee
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its own and the refined collaboration type’s safety properties (see Definition 4.11
and Figure 5.2). The verification of new concrete component types requires two
things. First, we have to verify that the component type’s rules guarantee the
component type’s safety properties (see Definition 5.2) and we have to check that
the component type correctly refines the behaviour of the roles it implements.
Should the component type refine an abstract component type, we additionally
have to check that the component type satisfies the abstract component type’s
safety guarantees too, and that it correctly refines the abstract component type’s
behaviour.
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Chapter 6

Verification Techniques

The previous chapter introduced the verification scheme we apply in order to
verify architectural models of service-oriented systems of systems. The verifica-
tion scheme gives some obligations we have to fulfil that were introduced by the
use of the abstract operators (see Section 4.1.3). We will have to give a defini-
tion for refinement of rules and rule-sets that satisfies the abstract refinement
operator’s properties and we will have to present a verification technique that
can verify properties over our rigSoaML models. We will start with a technique
for the verification of inductive invariants, the Invariant Checker, in Section 6.1.
Then we will explain the definition of refinement in Section 6.2 and finally show
how the refinement relation can be automatically checked, which is done in
Section 6.3.

6.1 Verifying Inductive Invariants

In the previous chapter we have explained what is necessary for a system type to
be correct. What we have omitted so far is to present a concrete technique which
allows for the verification that a rule-set satisfies a property. In this section, we
will describe a way to statically verify a rule-set with respect to a given set of
properties. The approach we use is called Invariant Checking and has already
been presented in [2] and [5]. An extension for the incremental verification
discrete GTS (i.e. such as using structural dynamics only) is described in [3].

6.1.1 Restricted rigSoaML

Our Invariant Checker approach currently does not support the property lan-
guage’s full range. The Invariant Checker is restricted to the verification of
safety properties [110]. Liveness properties including progress and fairness prop-
erties are not supported by the Invariant Checker approach, but to the best of
our knowledge currently a static verification of liveness properties has not yet
been described in the literature. We therefore restrict the property language L
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(see Definition 4.1.2) to only allow conjunctions of negated atomic properties
(graph constraints) that have to be globally (symbol �) satisfied.

Definition 6.1 (Property Language L−). Let AP be a set of atomic graph
constraints. L− can then be recursively defined as:

φ ∧ ψ ∈ L− ∀φ, ψ ∈ L−

�¬φ ∈ L− ∀φ ∈ AP

Each property φ ∈ L− is obviously a property of L too. Thus, the evaluation of
the property language L− does not change in comparison with L.

In our approach, a set of forbidden graph patterns F = {F1, . . . , Fn} (see Def-
inition B.4) are employed to represent possible safety violations of our system.
We can derive a related property ΦF = �¬F1 ∧�¬F2 ∧ . . .∧�¬Fn. A graph G
satisfies the property ΦF iff G satisfies each of the sub-properties (i.e. �¬Fi).

The property ΦF is an operational invariant of the GTS S iff for a given initial
graph G0 for all G ∈ REACH(S,G0) it holds that G |= ΦF (cf. [51]). However,
due to the Turing-completeness of graph-transformation systems with types,
checking them is restricted to finite models and thus does not fit the considered
class of problems. We therefore instead tackle the problem of whether the
property ΦF is an inductive invariant. This is the case if for all graphs G and
for all rules r ∈ R it holds that G |= ΦF ∧ G →r G

′ implies G′ |= ΦF . If we
have an inductive invariant and the initial graph G0 fulfils the property, then
ΦF is also an operational invariant, as inductive invariants are stronger than
their operational counterparts.

We can reformulate the definition of an inductive invariant as follows, to have
a falsifiable form: a property ΦF is an inductive invariant of a GTS S =
(G0, R, p, T ) (cf. Definition B.7) if and only if there exists no pair (G, r) of
a graph G and a rule r ∈ R such that G |= ΦF , G →r G

′ and G′ 6|= ΦF . Such
a pair (G, r), which witnesses the violation of property ΦF by rule r, is then a
counterexample for the initial hypothesis.

6.1.2 Checking of discrete GTS

As explained in detail in [2], we can exploit the fact that the application of a
rule can only have a local effect to verify whether a counterexample exists. A
counterexample (G, r) can only exist when the local modification of G by rule r
is necessarily responsible for transforming the correct graph G into a graph that
violates the property. In addition, to have a possible counterexample we require
that the rule r is not preempted by a rule r′.

As we can represent the infinitely many possible counterexamples by only a
finite set of representative patterns Θ(Rl, Fi) of graph patterns P ′ that are
combinations of a RHS Rl of a rule rl and a forbidden graph pattern Fi ∈ F
(cf. [2]), we can check that no counterexample exists (and ΦF is thus an inductive
invariant) only considering this finite set.
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Figure 6.1: Schema to check a potential counterexample (P, rl) with resulting
graph pattern P ′ that is a combination of a RHS Rl of a rule rl and a forbidden
graph pattern Fi ∈ F

Figure 6.2: Pair of source-(left) and target-graph-pattern (right) as constructed
by the Invariant Checker

As depicted in Figure 6.1, we have to check for any graph pattern P ′ ∈ Θ(Fi, Rl)
for some Fi ∈ F and rl ∈ R whether the pair (P, rl) with P defined by P →r P

′

is a counterexample for ΦF or not, as follows:

1. Check that the rule rl can be applied to graph pattern P and that the
resulting graph pattern is P ′ (this implies that no rk ∈ R\{rl} exists
with prio(rk) > prio(rl) that matches P , due to the definition of rule
application).

2. Check that there exists no Fj ∈ F with Fj ⊑ P (otherwise P is already
invalid).

We use the above conditions in our algorithm to check if a counterexample exists.
The algorithm performs this check for any given rule (L,R)r ∈ R and forbidden
graph pattern F ∈ F . The algorithm therefore computes the set of all possible
target graph patterns for R and the forbidden graph pattern F (Θ(R,F )) and
then derives the related source graph patterns. The above sketched conditions
are then checked for all source graph patterns to decide whether the source
graph pattern P represents potentially safe graphs that can be transformed into
unsafe graphs by applying r. If so, the pair (P, r) is a valid counterexample.

Example 21: To exemplify the verification algorithm let us consider
the supply chain system. The rule Lk is the RequestOfferCollaboration’s
makeOffer rule (cf. Figure 4.9), and the forbidden pattern Fi is noTwoOf-

fers (cf. Figure 4.7(b)). In Figure 6.2 a possible pair of source and
target graph patterns is shown. It can easily be seen that the depicted
target graph pattern (the figure’s right-hand side) is a combination of
makeOffer and noTwoOffers. The source graph pattern contains the
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noOfandReq forbidden pattern (cf. Figure 4.7(c)) as a subgraph and thus
the constructed pair is no witness against the GTS’ correctness.

6.1.3 Extension for Hybrid Systems

In our previous work [5], we have shown how to extend the Invariant Checker
to also capture time-dependent behaviour. In the following, we will build atop
of these findings and extend the Invariant Checker to verify hybrid behaviour
too. The main difference in the verification is the fact that in [5] we have
introduced a system of linear inequalities that modelled the timed behaviour and
for arbitrary hybrid behaviour we are going to use hybrid automata [25, 85], as
linear inequalities are not sufficient to express arbitrary continuous behaviour.

The verification of hybrid systems differs significantly from the verification
of discrete graph-transformation systems as presented in the foregoing Sec-
tion 6.1.2. In the employed hybrid model, the behaviour is described by rule
applications and continuous steps. Therefore, reaching a forbidden graph pat-
tern in principle could involve a rule application as well as a continuous step.
The basic idea to approach the checking is to extend the discrete case by map-
ping the continuous behaviour-related aspects on a hybrid automaton, which
can then be checked by a hybrid model-checker. Thereby, the hybrid model
checker used limits the usable class of differential equations for the encoding of
continuous behaviour.

Analogously to the discrete case, we can formulate the definition of an induc-
tive invariant for the hybrid case in a falsifiable form: a property ΦF with
forbidden attributed graph pattern (Fi, ψi) ∈ F is an inductive invariant of a
HGTS S = (G0, R, p, T,Ru) (cf. Definition B.13) if and only if there exists no
pair ((G, β), r) of an attributed graph (G, β) (see Definition 4.1) and a hybrid
graph-transformation rule r ∈ R such that (G, β) |= ΦF , (G, β) →r→δ (G′, β),
and (G′, β) 6|= ΦF . Such a pair ((G, β), r) which witnesses the violation of
property ΦF by rule r is then a counterexample for the hybrid case.1 Us-
ing the same idea as for the discrete case, we can lift this problem to an
attributed graph pattern. Again, only a finite set of representative patterns
Θ((Fi, ψi), Rl, µl of graph patterns P ′ that are combinations of a RHS Rl of a
rule rl = (Ll, Rl,Kl, ll, rl, A

−
l , φl) and a forbidden graph pattern (Fi, ψi) ∈ F

have to be considered.

As depicted in Figure 6.3, we have to check for any graph pattern (P ′, φP ′) ∈
Θ((Fi, ψi), Rl, µl) for some (Fi, ψi) ∈ F and rl ∈ R whether the pair ((P, φP ), rl)
with (P, φP ) defined by (P, φP )→r→δ (P ′, φP ′) is a counterexample for ΦF or
not, as follows:

1. Check that the rule rl can be applied to attributed graph pattern (P, φP )
and that the (P ′, φP ′) results from this application plus a time step of
length δ ≥ 0 (this implies that no rk ∈ Ru \ {rl} exists with prio(rk) >
prio(rl) that matches (P, φP ) and that for all x ≤ δ it holds that (P ′, φP ′⊖
x) is matched by no rm ∈ Ru, due to the definition of rule application).

1This condition in fact requires that for an initial state (G, β) we check not only that
(G, β) |= ΦF but also that (G, β ⊕ x) |= ΦF for all x with (G, β)→x (G, β ⊕ x).
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Figure 6.3: Schema to check a potential counterexample ((P, φP ), rl) with re-
sulting graph pattern (P ′, φP ′) that is a combination of a RHS Rl of a rule rl
and a forbidden graph pattern (Fi, ψi) ∈ F in the hybrid case

2. Check that there exists no (Fj , φj) ∈ F with (Fj , φj) ⊑ (P, φP ) (otherwise
(P, φP ) is already invalid).

Therefore, the extended checking algorithm employs in its first step a slightly
adjusted version of the discrete algorithm to derive potential counterexamples
(see Figure 6.3). In a second step, the algorithm constructs an instance of a hy-
brid automaton to also verify the continuous behaviour. The generic automaton
we use for the hybrid checking is depicted in Figure 6.4. We follow the notation
and semantics of the hybrid automaton as described by Henzinger [86].

For preempting rules ((Lk, φk)) as well as forbidden attributed graph patterns
((Fj , ψj)), it holds in the case that they also contain attribute constraints that
a match found in the source graph pattern does not directly invalidate the
counterexample but rather restricts the possible attribute values. We derive a
system of constraints φInit to encode which values for the source graph pattern’s
attributes are not excluded either by preempting rules or forbidden graph pat-
terns combining the conditions iso(ψj)2 for all matches iso of Fj in (P, φP ) and
iso′(φk) for all matches iso′ of Lk in (P, φP ). The initial condition additionally
resets a special timer variable timer to zero.

Concerning the application of the rule r, we have to take into account that
the rule may either not affect variables (which are therefore in their possible
values determined by φInit) or update them to a given constant. While in
the discrete case the match of the forbidden graph pattern in the target graph
pattern is sufficient to ensure that ΦF is not valid any more, in the HGTS case
the related forbidden attributed graph pattern (Fi, ψi) may also require that
the variables’ valuations fulfil the additionally specified conditions (see the ψi
area in the constraint space on the right-hand side of Figure 6.3). We therefore
encode the continuous evolution after the discrete step in an additional system
of differential equations DEt that stem from the target graph patterns’ control
modes. The differential equations DEt form the state invariant for the state
“target pattern” in the generic automaton.

In the discrete case, it was sufficient to check whether the target graph pattern

2with iso(ψj) we denote the projection of the condition ψj over the isomorphism iso
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can be reached to judge whether the forbidden graph can be reached. In the
hybrid case, urgent rules may in fact prevent us from reaching an attribute
evaluation which fulfils the constraints of the structurally embedded forbidden
graph patterns. This effect is encoded in another system of constraints φu (see
the φm area in the constraint space on the right-hand side of Figure 6.3).

After having identified the different constraint systems and systems of differen-
tial equations that determine the automaton’s behaviour, we will now explain
the automaton’s detailed construction. The state “source pattern” has the state
invariant timer ≤ 0 and the flow condition

.

timer = 1. The only outgoing tran-
sition from this state is equipped with the jump condition timer ≥ 0 ∧ φr, and
ensures that the state “source pattern” is left immediately and the effect of the
application of rule r is covered by the automaton. The “target pattern” state’s
flow condition is given through the combination of control modes present in
the target pattern. It is encoded through the set of differential equations DEt,
as it has been computed by the algorithm (for details on control modes see
Section B.3). The “target pattern” state’s invariants ensure that neither the
currently checked forbidden pattern’s attribute condition is fulfilled ¬φFi

nor
that any urgent rule is activated ¬φU . The constraint φU is a disjunction of
the urgent rule’s jump conditions that are structurally embedded in the target
graph pattern. The “target pattern” state has two outgoing transitions, one
to the “failure” state that is equipped with a guard φFi

∧ ¬φu and one to the
“urgent state”, that is guarded by φU .

source

Pattern

target

Pattern
failure

State

urgent

State

φU

φFi

φR∧

timer ≥ 0

φinit

timer ≤ 0
¬φFi

∧

¬φU

Figure 6.4: The generic automaton, which is used for the hybrid model checking

For the automaton, only two different paths are possible, or the automaton
runs into a deadlock. The initial condition φinit ensures that the attribute
conditions of all forbidden patterns found in the source graph pattern are not
satisfied and that no graph- transformation rule that preempts the current rule
r can be applied. Hence, we start from a correct state. The state invariant,
however, requires that the “source pattern” location has to be left immediately.
This is only possible if the jump condition φr can be satisfied. Otherwise, the
automaton runs into a deadlock and cannot advance and the current pair is
not a counterexample. If the location “target pattern” can be reached, we have
successfully simulated the application of rule r from a safe source graph pattern
to a target graph pattern. The “target pattern” location only has to be left if its
invariant is violated. This is the case if either the attribute condition φFi

of the
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current forbidden pattern is satisfied or any of the urgent rules that match in
the target graph pattern is enabled. The location “failure” can only be reached
if φFi

is satisfied and φu is not. The location “urgent” can only be reached if
the guard φU is satisfied.

We can conclude that, if the location “failure” can be reached, we have found
a transition from a safe source graph pattern to an unsafe target graph pattern
without any urgent rule being fired. In this case, we have found a valid coun-
terexample against the HGTS correctness. Otherwise, the automaton either
reached the “urgent” location and then any of the urgent rules prevented an
unsafe situation occurring, or the automaton ran into a deadlock due to un-
satisfiable guards when transitioning from the “source pattern” to the “target
pattern” location. In both cases, we found no counterexample.

Summarising, we map the verification problem for HGTS to a discrete part that
is very similar to the verification of GTS, and a hybrid-model-checking prob-
lem. For the latter, we make use of a generic hybrid automaton (cf. Figure 6.4)
that describes the steps of the HGTS according to the possible attribute valu-
ations. The hybrid automaton’s initial condition ensures that the source graph
patterns contain no forbidden pattern (Fj , ψj), and the attribute update when
transitioning from the “source pattern” state to the “target pattern” state mod-
els the graph-transformation rule’s jump condition. In the “target pattern” state
the state-invariant ensures that the continuous evolution of the attribute values
conforms to the target graph pattern’s control modes and that neither an urgent
graph-transformation rule is applicable nor is the attribute constraint ψi of the
forbidden pattern (Fi, ψi) fulfilled. If one of these two cases occurs, the “target
pattern” state has to be left. Depending on the reason for which the automaton
leaves the “target pattern” state, either the “failure” state or the “urgent” state
is reached. The system is unsafe if the “failure” state is reachable. Concerning
the differential equations that are to be built from the different control modes
available in the graph patterns, it has to be ensured by the modeller that the
differential equations are always closed. We consider a differential equation as
closed if no dependencies on the values of adjacent nodes exist. If this restric-
tion is violated, it could happen that, due to the minimal context the Invariant
Checker algorithm produces, the differential equations are not well-formed.

6.2 Refinement

Before we can start to formally define our variant of the abstract refinement op-
erator, we will have to discuss some additional properties of traces. Afterwards,
we will give a semantical definition of refinement and show that the syntactical
constraints, together with some additional checks, can guarantee the semantical
refinement.

6.2.1 Traces

Traces have been introduced in Definition 4.4 in Section 4.1.1. They are used
to describe a possible execution path of HGTS and are sequences of graphs.

69



6.2. REFINEMENT

What we will need when we want to reason about refinement is the possibility
to express a trace in a restricted type-graph and by only using a smaller set of
rules. This step is called restriction and can be formally defined as:

Definition 6.2 (Restricted Trace). Given a trace t, where all states t(i) are
typed over type-graph TG, we can restrict t to a type-graph TG′ ≤ TG, denoted
as t|T ′ by restricting each graph Gi ∈ t to Gi|T ′ .

Valuations are dependent on the available control modes, and each control mode
has the exclusive control over a set of attributes. It follows that, in a restricted
graph, the valuations become restricted too, but for the attributes and control
modes that are not removed, the valuation after a continuous step is the same
in the restricted graph as in the unrestricted graph.

Example 22: To exemplify the notion of a restricted trace, we will
restrict trace t introduced in Example 1 to the type-graph TCon of the
ContractCollaboration collaboration type. To make the differences more
explicit, we did not remove the deleted elements but displayed them in
light grey. Hence, the trace t|TCon

consists only of the black elements.
The restricted trace t|TCon

is depicted in Figure 6.5.

Figure 6.5: The trace shown in Figure 4.1 restricted to the ContractCollabora-

tion’s type-graph

In a restricted trace, it is not unlikely that isomorphic graphs are repeated
several times. The stutter-operator ♮ can be used to remove the repetition of
finite sequences of identical states from a trace t.

Definition 6.3 (Stutter Operator). Given a trace t, the condensed trace ♮t is
given as the trace where each sequence

Gi → Gi+1 → . . .→ Gj → Gj+1

with Gi+1 ≈ Gk for i+ 1 < k ≤ j is replaced by the sequence

Gi → Gi+1 → Gj+1
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Note that the stutter operator does not combine sequences of continuous steps
into one longer continuous step. If the stutter operator were defined this way,
the traces would lose information and in consequence it could happen that the
trace t satisfies a property φ but ♮t does not. Let us assume we have a trace
t = . . .Gi−1, Gi, Gi+1, . . . with Gi and Gi+1 being the resulting graphs of two
continuous steps Gi−1

r1−→ Gi and Gi
r2−→ Gi+1 and r1, r2 ∈ R

>0 and where the
graph Gi is essentially required for t |= φ, then the trace t′ = . . . Gi−1, Gi+1

does not satisfy φ as the graph Gi is missing in t′.

Example 23: We can use the trace t|TCon
shown in Example 22 to show

the result of the ♮ Operator. The trace t|TCon
contains the consecutive

states G1, G2 and G3 which are all isomorphic to each other. We can
thus condense trace t|TCon

to ♮ (t|TCon
) by removing the states G2, G3.

The resulting trace is depicted in Figure 6.6; note that the states’ ordinal
numbers changed too.

Figure 6.6: The trace from Figure 6.5 restricted by the ♮ operator

6.2.2 Properties

The restriction of traces (see Definition 6.2) and the removal of replicated states
using the ♮ operator (see Definition 6.3) directly raises the question of the impact
of these operations on the properties that still hold for the traces. The properties
we allow for rigSoaML do not contain any operator that directly addresses the
next state3 and therefore it is acceptable to remove states from the trace. The
following lemma makes the arguments more explicit.

Lemma 6.4 (Stutter-invariant properties). Given two traces t, t′ with t′ = ♮t

and a property φ ∈ L then t |= φ =⇒ t′ |= φ

Proof. The properties that could be specified with our property language L
only consider the existence of states and do not consider the properties of the

3In CTL and LTL typically a next-operator exists
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next state. The stutter operator ♮ removes repeating states from the trace.
Obviously, if the trace t contains a state s, the trace ♮t also contains this state.
Only the ordinal number of the state within the trace has changed. This said,
it can be easily followed that the lemma holds.

Example 24: Using the same arguments as in Example 2, we can show
that the property �¬φ, with φ being similar to Example 2, also holds for
the restricted trace, depicted in Figure 6.5. It can be easily seen that the
removal of the states G2 and G3 does not invalidate the argument for the
satisfaction of �¬φ through t. Hence, the trace ♮t |= �¬φ holds too.

6.2.3 Semantical Refinement

In this section we will introduce our exact notion of refinement, which is used
to fill in the abstract refinement operator. As our semantical domain are traces,
we will first define refinement of traces. However, in order to be able to do so,
we have to formally define what refinement of rules is.

Definition 6.5 (Trace Refinement). Given a trace t ∈ T (G0, R) where G0 and
the rules in R are all typed over the type-graph T and a trace t′ ∈ T (H0, R

′)
where H0 and R′ are all typed over T ′ with T < T ′, we say that t′ = H0, H1, . . .

refines t = G0, G1, . . . if we can find a mapping ord : N 7→ N such that the
restricted trace

t′r = t′|T = H0|T , H1|T , . . .Hi|T , . . .

satisfies the following conditions:

ord(0) = 0

∀i, j ∈ N : i > j =⇒ ord(i) > ord(j)

Hord(i)|T ≈ Gi

∀i, j ∈ N : ord(i) < j ≤ ord(i+ 1) =⇒ Hj|T ≈ Gi+1

We denote the refinement relation between traces t and t′ as t′ ≺ord t or simply
t′ ≺ t if the mapping ord is not necessary.

In the above definition, we use the function ord to map relative states to each
other. We consider two states to be relative to each other if the restricted graph
of the refining state is isomorphic to the graph of the refined state.

Example 25: To exemplify the semantical refinement of traces as it has
been defined in Definition 6.5, let us investigate the traces we used in the
Examples 23 and 1. We want to show that the trace t from Example 23
is refined by trace s, used in Example 1. Definition 6.5 requires that we
construct a trace s′ that is restricted to the type-graph used for trace t.
We have already constructed such a restricted trace in Example 22. The
next step is to create the mapping function ord. For our example, this
function could be given as:

ord = {(0, 0); (1, 1); (2, 4); (3, 5)}

The mapping function ord is visualised in Figure 6.7. It remains to show
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Figure 6.7: Visualisation of the mapping function ord

that the states being matched by the function ord are isomorphic and
that the states G1, G2 and G3 of trace s′ are isomorphic to each other.
This can be easily seen in the respective figures.

Lemma 6.6 (Refinement invariant trace properties). Given two traces t and
p with type-graphs T and P with T < P and p ≺ t and a property φ ∈ L, where
the atomic properties of φ are typed over T , then t |= φ =⇒ thatp |= φ holds.

Proof. The property φ can only be defined atop of types given in T , as otherwise
t |= φ could not hold. Thus, it is sufficient to have a look at the restricted trace
p|T . Definition 6.5 gives us that p|T is equivalent to t modulo the stuttering4.
Together with Lemma 6.4 we obtain that the lemma holds.

After having defined the refinement of single traces and having shown which
properties could be preserved through the refinement relation, we will now ex-
tend our definition to the refinement of a whole set of traces.

Definition 6.7 (Trace-set Refinement). Given two sets of traces S and Q, the
set S refines set Q, iff

∀s ∈ S : ∃q ∈ Q : s ≺ q

We denote this refinement relationship as S
∗
≺ Q.

The definition of trace-set refinement does not require that each trace in the re-
fined trace-set has a counterpart in the refining set. Thus, a trace-set refinement
is valid also if not the complete behaviour is preserved by the refining trace-set.
Using the above definition of trace-set refinement, we can finally formulate the
missing argument, as to why our notion of refinement satisfies the properties
that the abstract refinement operator requires.

Corollary 6.8 (Trace-Set Refinement preserves Properties). Given two sets

of traces S and Q with S
∗
≺ Q and a property φ ∈ L with Q |= φ, it then also

holds that S |= φ.

Proof. We can safely assume that the trace-sets S and Q were defined atop the
two type-graphs TGS and TGQ respectively. Further, the atomic properties
contained in φ are expressed in terms of TGQ. From the assumption that
Q |= φ, we can conclude that any trace tQ ∈ Q satisfies φ. Definition 6.7 gives
us that for each trace tS ∈ S a trace tQ ∈ Q exists such that tS ≺ tQ. Together
with Lemma 6.6, we can then conclude that also tS |= φ holds. Hence, we have
the required result: S |= φ.

4In p|T occur only those states that also occur in t. But some states that contain only
changes in the elements that are exclusively defined in type graph P are repeated.
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6.2.4 Syntactical Refinement

After the definition of the semantical refinement, we will now derive a notion
of a syntactical refinement. The focus in this section is more on sets of rules
rather than on traces and sets of traces. In contrast to Section 6.2.3, we will
now develop the necessary arguments under which two sets of rules refine each
other.

Definition 6.9 (Rule Refinement). Given two graph-transformation rules R1

and R2 that are typed over the type-graphs TG1 and TG2 with TG1 < TG2,
we can say that R2 refines R1, if there exist two graph morphisms ml and mr

with LR1
7→ml

LR2
, RR1

7→mr
RR2

and if the elements in LR2
\ ran(ml) and

RR2
\ ran(mr) are typed over TG2 \ TG1.

For hybrid graph-transformation rules having jump-conditions φ1 and φ2, re-
spectively, we require that φ2 ≡ φ1 ∧ φ′

2. We denote the refinement relation
between R1 and R2 as R2 . R1.

Informally speaking, two rules are in a refinement relation if the more con-
crete one enhances the more abstract one’s precondition without removing any
elements. Hence, the applicability of the rule decreases through refinement.
The above definition also takes care that the original rule’s negative application
conditions do not become violated through the refinement. This is due to the
required existence of an isomorphism between the original and the refined rule.

Example 26:[Rule Refinement] Let us revisit the two createContract

rules of the ContractCollaboration and the RequestOfferCollaboration (cf.
Figure 4.4 and Figure 4.10, respectively). The difference between the two
rules is that the refining createContract rule of the RequestOfferCollab-

oration additionally deletes a previously made Offer object. Thus, we can
create the required isomorphism between the two rules and, as the Offer

node is defined in the RequestOfferCollaboration’s class diagram only, we
have a valid refinement.

Definition 6.10 (Rule-set Refinement). Given two sets of graph-transforma-
tion rules R = {R1, R2, . . . , Rn} and R′ = {R′

1, R
′
2, . . . , R

′
m} with n ≤ m. We

say that set R′ refines set R if for each trace t′ ∈ T (R′) there exists a trace
t ∈ T (R) such that t′ ≺ t. We write this as R′ ⊑C R.

In order to further elaborate refinement of the rule-set, we need additional
constructs, which we will introduce in the following.

Definition 6.11 (Path). A path π for a start graph G0 and a set of rules R
is given as π = (G0, S), where S is a sequence of pairs of graph-morphisms and

rules or a continuous step of duration δ ∈ R
>0, such that either Gi

ri−→mi
Gi+1

for (mi, ri) ∈ S and ri ∈ R or Gi
δi−→ Gi+1 holds. The ith state of a path π is

accessed by π(i). For each path π we can construct a corresponding trace tπ by
iterating the path’s states. It trivially holds that tπ(i) = π(i).

The above definition suggests that a path is a construct that is closely related to
a trace. In fact the only difference is that a path holds the additional information
on how the state has been reached. Therefore, we can analogously define what
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a restricted path is. However, the restriction now has to consider the different
rule-sets too.

Definition 6.12 (Restricted Path). A path π = (G0, S) for a set of rules R
with G0 and the rules of R being defined over a type-graph T can be restricted to
a path π′ defined over a rule-set R′ and type-graph T ′ with T ′ < T by replacing
each graph Gi occurring in π by its restricted pendant Gi|T ′ and changing each

step Gi
ri−→ Gi+1 to Gi|T ′

r′
i−→ Gi+1|t′ iff r′

i . ri and Gi|T ′
τ
−→ Gi+1|T ′ otherwise.

Continuous steps are not changed. The set of all paths for fixed start graph G0

and rule-set R is given as Π(G0, R). The set of all paths for any start graph
and rule-set R is given as Π(R).

After having defined restricted paths, we can now continue with the definition
of path refinement.

Definition 6.13 (Path Refinement). Given two paths π = (G0, R) and π′ =
(G′

0, R
′) being defined over the type graphs T and T ′ with T < T ′, respectively,

the path π′ refines the path π iff the two corresponding traces tπ and tπ
′

refine
each other with tπ

′

≺ord t
π.

The introduced definitions of paths, restricted paths and path refinement al-
low us to give a constructive lemma that guarantees rule-set refinement purely
relying on syntactical properties of the rule-sets.

Lemma 6.14 (Rule-set Refinement). Given two sets of graph-transformation
rules R = {r1, . . . , rn} and R′ = {r1, . . . , rm} with m ≥ n , the rules of R can
be defined over type-graph T and those of R′ over T ′ with T < T ′. RS′ ⊑C RS
if

∀ri ∈ R : ∃rj ∈ R′ : rj . ri

and, all rules rj ∈ R′ for which no rule ri ∈ R exists, such that rj . ri must not
write (i.e. create or delete) any nodes or edges that are defined in type-graph T .

Proof. According to Definition 6.10, the rule-set R′ refines the rule-set R iff for
all traces t′ ∈ T (R′) we can find a trace t ∈ T (R) such that t′ ≺ t. Obviously, for
each trace t there must exist a corresponding path π such that t = tπ. We will
prove the lemma by contradiction and thus we assume that a path π′ ∈ Π(R′)
exists such that no corresponding path π in Π(R) can be found. Without loss of
generality, we further assume that we have two paths π′ ∈ Π(R′) and π ∈ Π(R)
that are in a valid refinement relation for the first i steps in the refined path
and then diverge. Hence, if we construct the traces tπ and tπ

′

we can find a
mapping function ord such that tπ≤i ≺ord t

π≤j for j ≥ i and ord(i) = j holds.
In the following, we will refer to the states π(i) as Gi and to π′(j) as G′

j .

By construction, the divergent behaviour can only originate from rules that are
present in both rule-sets. Rules that only occur in R′ and do not refine a rule
in R are only allowed to read elements of R’s type-graph but not to write them.

Thus, the steps Gi
ri−→ Gi+1 and G′

j

r′
j

−→ G′
j+1 must be performed through rules

r′
j 6. ri. Thus, there must be a third rule rk with r′

j . rk that is applicable in
Gi. It follows that a path of the rule-set R has to exist, that applies rule rk
instead of ri in this case, and we do not have a divergent behaviour in position
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i. The applicability of rk to Gi is given through the applicability of r′
j to G′

j .
Hence, a path π∗ ∈ Π(R) must exist that does not show the divergent behaviour.
This gives us, according to Definition 6.10, the required condition for a correct
rule-set.

Complex Rule-Set Refinement

For some situations the above used rule-sets do not provide sufficient strength
of expression. It might sometimes be useful to have the ability to express that
one rule is prioritised over another or that a rule has to be applied once it is
applicable (the so-called urgent rule). For these situations we need a different
notion of rule-sets and in consequence a different notion of rule-set refinement.

Definition 6.15 (Complex Rule sets). A complex rule-set S = (R, p,Ru) is
given through a set of rules R, a transitive preemption relation p : R×R and a
set of urgent rules Ru ⊆ R. The rules in Ru have to be applied once they are
enabled, while the other rules can optionally be applied. A rule r ∈ R can be
applied to a graph G if G

r
−→ G′ is a valid graph-rule application and if no rule

r′ ∈ R exists with G
r′

−→ G′′ and (r′, r) ∈ p, i.e. if no applicable rule r′ exists
that preempts the rule r.5

In the definition of roles, component types and collaboration types, for brevity
reasons, we have only used rule-sets without preemption and urgent behaviour.
However, complex rule-sets can be simply used as a replacement if the extra ex-
pression strength is required. For a complex rule-set S, we can also give a set of
paths Π(S) in the same way that we did in Definition 6.11, but we have to con-
sider the restrictions concerning the rule applicability given in Definition 6.15.

Refining complex rule-sets raises several difficulties. In refining a complex rule-
set, it has to be assured that rules that are being preempted in the refined
complex rule-set are also preempted in the refined variant. In Figure 6.8 a
sketch of this situation is depicted. Above the dashed line, a snippet of a path
for the refined complex rule-set is shown, with one for the refining complex rule-
set below. In the refined path, rule r2 is applicable but preempted by the also
applicable rule r1 due to (r1, r2) ∈ p. The refinement r′

1 . r1 and r′
2 . r2 may

end in a situation where r′
1 is not applicable (remember: rule refinement means

strengthening the rule’s precondition), but r′
2 still is. The transition labelled

with τ should indicate that the missing precondition for rule r′
1 can be created

by a different rule that only exists in the refining complex rule-set, which does
not preempt rule r′

2. Hence, in the refining system there exists a path, which is
impossible to exist in the refined one and it follows that the refining system no
longer simulates the abstract one.

In consequence we have to ensure that whenever a graph-rule preempts the
application of a lower priority rule, this preemption also occurs in the refined
set of graph-rules. The easy way to do this is to prohibit the refinement of any
rule that preempts at least one other rule. Obviously, this restriction would
severely limit the applicability of our approach. A more versatile solution is

5Note that the preemption relation p can sometimes be expressed through a total mapping
R 7→ N
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Figure 6.8: Rule Refinement Sketch

to allow refinement for such rules, but require that for each possible situation
an applicable refined rule exists in the refined rule-set. Being more precise,
the rules r1 and r2 will generally be refined by two sets of rules r′

1,1 . . . r
′
1,n

and r′
2,1 . . . r

′
2,m. For the refined rules, it has to hold that whenever the rule

r1 is applicable and additionally any of the lower-priority rules r′
2,1 . . . r

′
2,m is

applicable, then we require also that at least one of the rules r′
1,1 . . . r

′
1,n is

applicable, which then preempts the lower priority rule refining r2. In the
following, we will denote this characteristic by a predicate Preempt(R,Q) where
R and Q are two complex rule-sets. Preempt(R,Q) is true whenever the refining
rules in Q preserve the preempting behaviour of the rules in R.

Definition 6.16 (Preempt predicate). Given two rule-sets RS1 = (R1, p1,Ru)
and RS2 = (R2, p2,Ru), these satisfy the predicate Preempt(RS1, RS2) iff no
two paths t ∈ Π(RS1) and s ∈ Π(RS2) exist such that

∃r1
i , r

1
j ∈ R1 ∧ (r1

i , r
1
j ) ∈ p1∧

∃r2
i , r

2
j ∈ R2 ∧ (r2

i , r
2
j ) ∈ p2 ∧ r

2
i . r1

i ∧ r
2
j . r1

j∧

∃G1
k ∈ t, G

2
m ∈ s ∧G

1
k ≈ G

2
m ∧ ord(k) = m ∧ s≤m ≺ord t

≤k∧

Gk
r1

i−→ Gk+1 ∈ t ∧Gm
r2

j

−→ Gm+1 ∈ s

For timed and hybrid graph-rules, we also have to consider the urgent rules.
These rules are comparable to preempting rules and thus the arguments made
above also hold for them. If urgent rules are refined, the set of refined rules
has to capture all possible application situations. This means that whenever
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an urgent rule ru is applicable, we have to have at least one rule in the set of
refining rules r′

u,1 . . . r
′
u,n that is applicable too. The difference here, compared

to the preemption of rules, is that urgent rules have to be applied and behaviour
that is captured by urgent rules has to happen. Otherwise, safety criteria could
often not be met by the system. By analogy to the Preempt-predicate, we
define a predicate Urgent(R,Q).

Definition 6.17 (Urgent predicate). Given two rule-sets RS1 = (R1, p1,R1
u)

and RS2 = (R2, p2,R2
u), these satisfy the predicate Urgent(RS1, RS2) iff no two

paths t ∈ Π(RS1) and s ∈ Π(RS2) exist such that

∃r1
i ∈ R

1
u ∧ ∃k ∈ N ∧Gk

r1
i−→ Gk+1 ∈ t∧

∃m ∈ N ∧ s≤m ≺ t≤k ∧ ord(k) = m∧

6 ∃r2
j ∈ R

2
u ∧ r

2
j . r1

i ∧ Sm
r2

j

−→ Sm+1 ∈ s

The above definition states that the Urgent predicate holds if, whenever two
paths t and s are in a perfect refinement relation for a certain number of steps
(s≤m ≺ t≤k) and then in the refined path an urgent rule has to be applied

(Gk
r1

i−→ Gk+1), then there must be an applicable urgent rule in the refining
rule-set that is applicable in the refining path.

Lemma 6.18 (Complex Rule-set Refinement). Given two sets of graph-trans-
formation rules RS = (R, p,Ru) with R = {r1, . . . , rn} and RS′ = (R′, p′,R′

u)
with R′ = {r1, . . . , rm} with m ≥ n and the rule-sets being defined over type-
graphs T and T ′, respectively, with T ≤ T ′, then RS′ ⊑C RS iff

∀r ∈ R : ∃r′ ∈ R′ : r′ . r

∀ri, rj , r
′
i, r

′
j : ri, rj ∈ R ∧ r′

i, r
′
j ∈ R

′ ∧ r′
i . ri ∧ r

′
j . rj ∧ (rj , ri) ∈ p

=⇒ (r′
j , r

′
i) ∈ p

′

Preempt(RS,RS′) ∧ Urgent(RS,RS′)

and, all rules rj ∈ R′ for which no rule ri ∈ R exists, such that rj . ri must not
write (i.e. create or delete) any nodes or edges that are defined in type-graph T .

Proof. The above lemma is clearly an extension of Lemma 6.14. Hence we
also prove the lemma by contradiction and following the same rationale we
can safely assume that we have two paths π ∈ Π(RS) and π′ ∈ Π(RS′) and
two states Gi and G′

j with j ≥ i where the paths diverge for the first time.

Again, the steps Gi
ri−→ Gi+1 and G′

j

r′
j

−→ G′
j+1 must be performed through rules

r′
j 6. ri. We have three different possibilities for this situation to occur: (i)
r′
j . rk with (rk, ri) ∈ p, (ii) r′

j . rk with (ri, rk) ∈ p, and (iii) r′
j . rk with

(rk, ri) 6∈ p ∧ (ri, rk) 6∈ p6.

For (i) we have r′
j → G′

j and ri → Gi←rk with (rk, ri) ∈ p. If rk is applicable
to Gi, the application ri → Gi will be preempted due to (rk, ri) ∈ p. However,

6This depicts a situation where both rules cannot preempt each other and is already dis-
cussed in the proof of Lemma 6.14
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if r′
j → G′

j and Gi ≈ G′
j and rk . r′

j then by construction rk → Gi, which
contradicts our assumption of divergent behaviour.

Case (ii) describes a situation where a preempting rule is not applicable in the
concrete trace and thus a preempted rule is applied. Hence, we have r′

j → G′
j ,

ri → Gi, rk → Gi and (ri, rk) ∈ p. Further, there must exist at least one rule
r′
i ∈ R′ that refines ri. For this rule r′

i, we know that (r′
i, r

′
j) ∈ p′, but as

r′
j → G′

j is applied r′
i→G

′
j must hold. However, the rule r′

i cannot exist in our
refined rule-set R′ as Preempt(R,R′) and Urgent(R,R′) holds.

Finally, the third case remains, but this case has already been discussed in the
proof for Lemma 6.14.

We have shown that either the divergent behaviour does not exist or the as-
sumptions we made earlier were wrong. It follows that we can conclude that
the assumed existence of a trace showing divergent behaviour was wrong and
thus the lemma holds.

6.2.5 Application to rigSoaML

We will now apply the theoretical findings in the previous sections to the con-
stituents of our modelling approach rigSoaML— i.e. to collaboration types, com-
ponent types and system types. We will provide results for the combination of
two rule-sets into one and show that the trace-sets that define the semantics
of collaboration and component types are in a valid refinement relation if the
collaboration or component types, respectively, are.

Combining rule-sets

In the previous subsection, we explained the semantical definition of refinement
and gave sufficient syntactical criteria to guarantee the refinement. However,
in some situations it is possible to further simplify the necessary checks. This
is the case for the combination of two rule-sets, which are defined on disjoint
type-graphs.

Corollary 6.19 (Combination of rule-sets). Given two complex rule-sets RS1

and RS2 with RS1 = (R1, p1,R1
u) and RS2 = (R2, p2,R2

u), which rules in R1

and R2 are defined above two disjoint type-graphs TG1 and TG2, we can con-
struct a combined rule-set RS = (R, p,Ru) with R = R1 ∪R2, p = p1 ∪ p2 and
Ru = R1

u∪R
2
u. For the new rule-set, it holds that RS1 ⊑C RS and RS2 ⊑C RS.

Proof. The disjoint type-graphs TG1 and TG2 imply that all graphs that are
reachable for RS can be partitioned into two unconnected parts, one being
typed over each type-graph. We know further that applications of graph-
transformation rules do not consume time. Hence, the predicates Urgent(RS,
RS1), Urgent(RS,RS2), Preempt(RS,RS1) and Preempt(RS,RS2) hold. Fur-
ther, each rule r refines itself and hence we have the necessary conditions for
Lemma 6.18.
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As a consequence of Corollary 6.19 we get that, if RS1 |= φ1 and RS2 |= φ2,
with φ1 being typed over TG1 and φ2 being typed over TG2, then RS |= φ1∧φ2.
This follows directly from the fact that the two type-graphs are strictly disjoint
and the Urgent and Preempt predicates are satisfied.

In the case that the rule-sets we want to combine are not defined over strictly
disjoint type-graphs, but are “pseudo-type separated”, Corollary 6.19 cannot be
applied.

Definition 6.20 (Pseudo-typed graphs). Let P be a set of nodes called pseudo-
types. A graph G is pseudo-typed iff each node in VG \ P is adjacent to exactly
one node nP ∈ P . A graph-transformation rule R is pseudo-typed if the graphs
specifying R’s left- and right-hand side, respectively, are pseudo-typed.

Pseudo-type separated rule-sets are rule-sets whose rules are pseudo-typed as
in Definition 6.20. The pseudo-types have the same effect on the rule-sets as
ordinary types have, and thus the combination of pseudo-type separated rule-
sets has the same properties as those of the combination of rule-sets defined
above disjoint type-graphs.

Corollary 6.21 (Combination of pseudo-typed rule-sets). Given two complex
rule-sets RS1 = (R1, p1,R1

u) and RS2 = (R2, p2,R2
u), which rules in R1 and R2

are pseudo-typed over disjoint pseudo-types P1 and P2 with P1 ∩P2 = ∅, we can
construct a combined rule-set RS = (R, p,Ru) with R = R1 ∪ R2, p = p1 ∪ p2

and Ru = R1
u ∪R

2
u. For the new complex rule-set RS, it holds that R ⊑C RS1

and R ⊑C RS2

Proof. The two rule-sets RS1 and RS2 are pseudo-typed. A pseudo-typed
graph-transformation rule can only be applied to a graph that is pseudo-typed
over the same pseudo-type node, but we know that P1 ∩ P2 = ∅. Therefore, in
the combined rule-set RS the rules stemming from RS1 do not interfere with
the rules stemming from RS2. Thus, we can recall the arguments from the proof
of Corollary 6.19 and get the desired results.

Refinement of Collaboration and Component types

For two collaboration types C and C′ where C′ refines C, we have to trans-
late this refinement relationship into our semantic domain. The informal un-
derstanding of the refinement relation between collaboration types is that the
refining collaboration type C′ is allowed to do anything the refined collabora-
tion type C does, but nothing more in terms of the refined collaboration type’s
type-graph. The corresponding informal translation into our semantic domain
would be: for each trace t ∈ JC′K we can find a trace t′ ∈ JCK such that t′ refines
t.

Corollary 6.22 (Collaboration type refinement). Given two collaboration types

C and C′, if C′ refines C then JC′K
∗
≺ JCK holds.

Proof. The collaboration types C and C′ can be either concrete or abstract. If
both are abstract, we do not have any rules for either of the two collaboration
types, but we know from Definition 4.11 that the property φC′ of collaboration
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type C′ implies property φC of collaboration type C. For abstract collaboration
types, the semantics JCK and JC′K are given as all traces that satisfy the property
φC or φC′ , respectively. For the type-graphs of the collaboration types, it holds
that Tc ≤ TC′ . Thus, for each trace t′ ∈ JC′K, it holds that t′|T ∈ JCK. This
gives us the condition as required by Definition 6.7.

For C being an abstract and C′ being a correct concrete collaboration type,
again φC′ =⇒ thatφC has to hold, and we have verified that R′(C′) |= φC′

holds. The trace set JC′K is given as T (R′) and thus for each trace t′ ∈ T (R′)
it holds that t′ |= φC′ . The restricted trace t′|T is again a trace of the abstract
collaboration type C and thus we have a valid refinement.

If the correct concrete collaboration type C′ refines the correct concrete col-
laboration type C, then for the two rule-sets RC and RC′ RC′ ⊑C RC holds.
Then Lemma 6.14 directly gives us the necessary conditions of Definition 6.7

such that JC′K
∗
≺ JCK holds.

Due to the nature of abstract component types, which can implement abstract
as well as concrete roles, even if the component itself does not yet specify any
concrete behaviour, some partial aspects of the behaviour can already be defined.

Corollary 6.23 (Component type refinement). Given two component types C

and C′ such that C′ refines C, then JC′K
∗
≺ JCK holds.

Proof. Only abstract component types can be refined. Therefore C has to be
an abstract component type. C′ can be either abstract or concrete. In general,
each component type implements roles of multiple collaboration types. Let
Cols = (Col1, Col2, hdots, Coln) and Cols′ = (Col′1, Col

′
2, . . . , Col

′
k) be two sets

of collaboration types with k ≥ n, that define roles which are implemented by C
and C′, respectively. Without loss of generality, we further assume that each of
the first n collaboration types is either the same Col = Col′ or that Col′ ⊑ Col
holds.

For each trace t′ ∈ JC′K, we can find a mapping function I ′
Col′

j
: N 7→ N with

1 ≤ j ≤ n and ∀l,m ∈ N : l < m =⇒ I ′
Col′

j
(l) < I ′

Col′
j
(m), such that the

trace t′Col′
j

with t′Col′
j
(i) = t′(I ′

Col′
j
(i)) refines a trace c′

Col′
j
∈ JCol′jK. In the

case that Col′j ⊑ Colj , we know from Corollary 6.22 that a trace cColj ∈ JColjK
has to exist such that t′

Col′
j

≺ c′
Col′

j

≺ordColj
cColj . If Col′j = Colj ,this trace

trivially exists. As the component type C is abstract and thus only describes in
a declarative way which traces are in JCK (cf. Definition 4.15), and although the
traces have to conform with the behaviour specified by the collaboration types
in Cols, there must exist a trace t ∈ JCK such that t ≺ t′Col′

j
for all Col′j ∈ Cols

′.

The same technique as for the collaboration types can be applied to the compo-
nents’ internal behaviour and we can thus construct a trace t′C′ using a mapping
function I ′

C′ for refining component type C′ and a trace tC for the refined ab-
stract component type C. Recalling the arguments from Corollary 6.22 yields
that t′C′ ≺ tC . The trace tC can also be found in a trace t ∈ JCK.

In a last step, we combine the mapping functions I ′
C′ and I ′

Col′
j

or I ′
Col′

j
◦ordColj

,

respectively, to a mapping function ord that relates each state t(i) to a state
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t′(ord(i)). By construction, t′(ord(i))|TC
is isomorphic to t(i). According to

Definition 6.5, this yields t′ ≺ord t. We can construct the mapping function ord
for each trace t′ ∈ JC′K and thus find a refined trace t ∈ JCK. Hence we have

shown that JC′K
∗
≺ JCK holds.

6.3 Automatic Refinement Checking

So far we have given a clear syntactical definition of rule-set refinement and the
conditions that have to additionally hold for refinement of complex rule-sets.
The necessary algorithms are still missing. In this section we will introduce
the required steps to algorithmically decide whether or not two rule-sets refine
each other. With Lemma 6.14 and Lemma 6.18 we have three clear criteria
that are sufficient to show rule-set refinement. These are (i) syntactical rule
refinement (ii) preservation of preemption and (iii) satisfaction of the preempt
and the urgent predicate.

Rule refinement (i) between two rules r and p with p . r can be shown by
computing two matches ml : Lr → Lp and mr : Rr → Rp. Further, we have to
show that the elements of p which are not in the co-domain of ml and mr and are
written by p are typed over a type-graph TG′ that extends the type-graph TG,
which defines the types used in rule r. For a refined rule-set without preemption
and urgent predicates, we are done after this check (see Lemma 6.14). However,
for complex rule-sets that are to be refined, this is not sufficient.

To check the preservation of the rules’ preemption relation (ii) in two complex
rule-sets (cf. Definition 6.15) P = (RP , pP ,RPu ) and Q = (RQ, pQ,RQu ), we
iterate through the entries of pP and check that for each entry (ri, rj) ∈ pP
there exists an entry (r′

i, r
′
j) ∈ pQ for all r′

i . ri and r′
j . rj .

The remaining check is to check that the preempt and the urgent predicates hold.
In the following, we will present a technique that works on graph-transformation
rules directly and reuses capabilities of the Invariant Checker.

Checking the preempt predicate

The two predicates Preempt (see Definition 6.16) and Urgent (see Definition 6.17)
state that two refining rule-sets (cf. Definition 6.10) ensure that whenever a
preempting / urgent rule r in the refined rule-set is applicable there must be a
refining rule r′ in the refining rule-set that is applicable too, if a preempted rule
r′
p is also applicable. The last restriction can be safely added for the preempt

case, as there the rules don’t have to be applied. In the following, let us assume
that S = (R, p,Ru) and S′ = (R′, p′,R′

u) are two rule-sets, such that S′ ⊑C S

and r1, r2 ∈ R are graph-transformation rules with (r1, r2) ∈ p. Each of the
rules r1

1 . . . r
n
1 ∈ R

′ refines r1 and each of the rules r1
2 . . . r

m
2 refines r2 and all

rules r1
1 . . . r

n
1 preempt the rules r1

2 . . . r
m
2 .

For the predicate preempt to be satisfied, we have to check that, in all situations
where the rule r1 is applicable and any of the preempted rules ri2 with 1 ≤ i ≤ m
is applicable too, there has to exist a rule r

j
1 with 1 ≤ j ≤ n that can be
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Figure 6.9: Sketch for the verification of predicates

applied. For the Invariant Checker we have already described in Section 6.1.2
how patterns can be constructed that represent specific situations. We use
this technique again to construct patterns that stand for graphs in which the
graph- transformation rule r1 and any of the graph-transformation rules ri2
with 1 ≤ i ≤ m are enabled. Obviously, we therefore have to build the overlap
between two left-hand sides and not, as we did for the Invariant Checker, a
right-hand side and a forbidden pattern. The next step is to check whether any
of the rules rj1 with 1 ≤ j ≤ n is applicable in the constructed pattern. This
would effectively prevent the graph-transformation rule ri2 from being applied,
as (rj1, r

i
2) ∈ p′ holds. The check for applicable rules is also implemented for the

Invariant Checker but only for the source graph pattern, which is constructed
through reverse application of the graph-transformation rule. Therefore, we do
the following: i) we remove all side-effects from the graph-transformation rule
r1, and this rule is referred to as rid1 ; ii) for each graph-transformation rule
ri2 with 1 ≤ i ≤ m we introduce a forbidden pattern f i2 ≡ Appl(ri2)7 that is
equivalent to the graph constraint, encoding ri2’s applicability. Now we can use
the Invariant Checker to verify that the graph-transformation rule rid1 satisfies
the inductive invariant ΦF , with F being given as the set F = {f i2|1 ≤ i ≤ m}.
The rules rj1 with 1 ≤ j ≤ n are used to check the applicability of the rule rid1 in
the source graph pattern. Figure 6.9 shows a sketch of the modified Invariant
Checker.

If the Invariant Checker can construct a transition from the source to the target
graph pattern, the Preempt predicate is not fulfilled. The reason for this is
that in the source graph pattern none of the rules that refine r1 is applicable
but in the target graph pattern the rule ri2 is applicable. It follows that, in
the refining rule-set R′ the rule ri2 is not always preempted if it is required.
However, the Invariant Checker might construct the counterexample due to the
source graph pattern’s incompleteness. In some cases, a graph-transformation
rule rj1 might only partially match the source graph pattern. In this situation,
the Invariant Checker is obviously unable to find a satisfactory match and thus
reports a counterexample. But, given the cardinality constraints in the type
graph and corresponding meta-model, we are able to extend the source graph
pattern. This extension of the source graph pattern is always possible if the
minimal cardinality constraints are not satisfied. I.e. when a RequestOfferCol-

7Please recall that Appl() maps a graph-transformation rule to a graph constraint that
exactly matches all graphs where the graph-transformation rule is applicable
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laboration is required to be connected to a Supplier, if this constraint is not
fulfilled, we can enhance the source graph pattern accordingly. Further, we can
use knowledge we have gained from the verification of inductive invariants on the
rule-set R′. Let us assume we have previously verified that the graph constraint
C = (∃P,

∧

i∈I Ni) (cf. Definition B.4) is an inductive invariant of the rule-set
R′. Then we can conclude that it is impossible that a correct graph – i.e. the
source graph pattern has to be a valid graph – contains a match for P without
at least one match for the negative application conditions Ni. It follows that
it is safe to enhance the source graph pattern with any of the Ni. To do this
systematically, we can introduce some enhancement rules that create any of the
Ni whenever the graph constraint matches in the source graph pattern.8 For
each constraint C we can construct a |I| enhancement rule, where rule RCi

is
given as RCi

= (P,Ni, P, idP , ni, A−
i ) (cf. Definition B.5) with P being defined

as in C, Ni is a negative application condition of C with P
ni−→ Ni, and A−

i

is the set of C’s negative application conditions. Note that this set of rules is
too small. The rules currently create the constraint’s NACs completely from
scratch, without reusing parts from the SGP. For a comprehensive and fully au-
tomated approach, these completions have to be considered too. However, for
the understanding of the approach, it is sufficient to know that we can create a
set of rules RC for any graph constraint C. Each of the rules RCi

is applicable
simultaneously. This can be easily seen, as they all share — by construction —
the same left-hand side. And all of the rules in RC are in conflict with each
other, as for one match of rules’ left-hand side, only one of the rules is applicable.
To enhance the given source graph pattern algorithmically, we

• Build the rule-set RC for each constraint C, as described above

• Let the source graph pattern be the initial graph G0. We select an ap-
plicable rule-set RC and apply each of its rules to G0 yielding |RC | new
graphs.

• For each of the new graphs we repeat the second step

Figure 6.10 shows a sketch of the labelled transition system that is created by the
enhancement algorithm. All transitions starting in the same graph belong to the
same rule-set RC . The predicate is satisfied if we can find on each path, starting
in G0, a graph where a graph-transformation rule rj1 is applicable. Therefore, it
is important to note that whenever one rule belonging to a rule-set is applied,
the remaining rules contained in that rule-set have to be applied too.

If the Invariant Checker, however, cannot construct a transition from the source
to the target graph pattern, we know for sure that the Preempt predicate is
satisfied. The Invariant Checker in the modified variant does not check whether
or not the source graph pattern contains any other forbidden pattern (cf. Fig-
ure 6.9), and the transition does not exist due to the applicability of any of the
rules ri1. This is exactly the behaviour we require for the rule-sets R and R′ to
satisfy Preempt(R,R′).

8Note that there is a difference between whether we can find a match in the source graph
pattern if we interpret the source graph pattern as a graph or if we can a find a match for a
graph constraint if we interpret the source graph pattern as a graph constraint.
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Figure 6.10: Sketch for the enhancement algorithm

Urgent predicate

The Urgent predicate differs slightly from the Preempt predicate. The Preempt
predicate, as discussed above, requires the rules ri1 to be applicable only if any
of the rules rj2 is applicable too. For rules that are defined as urgent rules, this is
not satisfactory, as urgent rules are used to specify mandatory behaviour, hence
any of the rules ri1 has to be applicable whenever the rule r1 is applicable. The
applicability of r1 implies the applicability of any of the rules ri1. We achieve
this by simply omitting the overlap operation and applying the enhancement
algorithm to generate possibly missing context for the source graph pattern.

Discussion

In this section we presented a way to use a slightly modified variant of the
Invariant Checker to verify the predicates Preempt and Urgent. The necessary
modifications are minimal and can be implemented without difficulty in the
Invariant Checker algorithm, as only checks were omitted and no additional
checks were required. However, the presented approach does not finally decide
whether or not the predicates are satisfied. This happens due to the generated
minimal context. Therefore we presented a way to enhance the generated source
graph pattern and hence increase the likelihood of finding a match.

Alternatively, we could have used a mapping of graph constraints and graph-
transformation rules to boolean logic and then used a SAT solver to find a
satsifactory valuation. However, even SAT solvers suffer from a similar problem
to that of our Invariant Checker. If the universe’s size is too small, the SAT
solver cannot find a suitable match for a graph-transformation rule.
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6.4 Summary

In this section we showed a way in which the abstract operators ⊑A and |=
could be filled out with a concrete meaning. For the refinement, we first pre-
sented a semantical notion of refinement, which is built on the characteristics of
our semantic domain, traces of HGTS. The definitions we gave in Section 6.2.3
were sufficient to show that our notion of refinement fulfils the properties of the
abstract refinement operator ⊑A. In the following section, we gave some ad-
ditional arguments, mainly based on the syntactical properties of StoryPattern
and hence graph-transformation rules that could be used to simplify the check
on whether a refinement relation holds. However, due to the expressiveness
of our modelling approach, the pure syntactical check is not sufficient and we
had to accompany it with two predicates Preempt and Urgent that have to
be satisfied by the refined and the refining rule-set. These predicates, however,
could be checked using our Invariant Checker verification approach for HGTS,
that we presented in Section 6.1. Having syntactical properties that guarantee
refinement is beneficial for the software engineer, who has clear guidelines as to
which modification is supported and which possibly violates refinement.9

The second big part of this chapter addressed the verification of safety prop-
erties. We presented our verification technique Invariant Checker,which is able
to statically verify HGTS. The whole expressiveness of L is too strong to verify
with the Invariant Checker approach and therefore we presented a restricted,
but therefore verifiable, subset L−. For this subset, we showed how we could
verify the inductive state invariants of a HGTS.

9We only showed that the syntactical refinement implies the semantical refinement. Nev-
ertheless, it is possible that despite having a rule-set that violates our syntactical refinement
rules, a refinement may be correct.
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Chapter 7

Tool Support

Throughout the chapters 5 and 6 we have explained in detail how the verifi-
cation scheme we are using looks and what the formal backgrounds are. The
thesis’ practical part comprises the implementation of a tool that allows us to
perform the described verification steps. In this chapter we will describe the
tool’s implementation and the necessary extensions to verify the different types
of supported graph-transformation systems.

The Invariant Checker is implemented as a plug-in for the Eclipse1 IDE. In its
current state, the Invariant Checker can automatically verify inductive invari-
ants for discrete GTS and linear hybrid GTS and semi-automatically for hybrid
GTS. For hybrid GTS, the Invariant Checker returns all possible counterexam-
ples, which then have to be transformed into an appropriate input language for
the hybrid model checker that is used.

7.1 General Architecture

The Invariant Checker is implemented as a Pipe and Filter architecture [121].
This architectural style uses filters, which are the parts that actually perform the
computation, and pipes, which are used as buffers and communication channels
between the filters. For the Invariant Checker we decided that each filter is a
thread of computation and the pipes are used to synchronise the filters. The
pipes ensure that a filter that wants to read from an empty pipe or write into a
full pipe is blocked until the operation can be safely executed. This architecture
thus effectively constrains the amount of memory that can be consumed by
the Invariant Checker2. For the special case of filters that either read or write
elements from pipes, we use the special terms Consumer and Producer. Each
filter only knows the pipes it reads from and writes to. Which filter is responsible
for the computation of another filter’s input is irrelevant for the filter. Hence,
it is easily possible to change the pipe and filter architecture’s structure, e.g. by

1http://www.eclipse.org
2Obviously, it is still possible that a single filter consumes a lot of memory space and thus

we cannot give an upper bound on the memory demands of the algorithm.
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Figure 7.1: Screenshot of the Invariant Checker’s launch dialogue

adding an additional filter, without the need to change existing filters, as long
as the data elements that were written to the pipes did not change. Hence the
only coupling that exist between two consecutive filters is of the data type of
the exchanged data-elements.

In Figure 7.1 a screenshot of the Invariant Checker’s launch dialogue is depicted.
The dialogue mainly requires the user to specify the GTS to be verified and the
pipe and filter configuration that should be used for the verification. Therefore
the user has three possibilities, either to build a configuration just for this
launch directly in the dialogue, or to use a predefined configuration, or - for
more complex situations – to specify the configuration via a DSL. For details
on the DSL, please refer to [61].

7.2 Verifying discrete GTS

In this section we will shed some light on the algorithm for the verification of
discrete GTS. The algorithm is introduced in Section 6.1.2. In our publication
[2], we presented a first implementation, which was not built using the pipe
and filter architectural style. The algorithm behind Invariant Checker has been
split up into different filters that are all executed in parallel. Put simply, the
implemented filters solve the following tasks:

Generation of pairs The first filter in the pipe and filter architecture creates
all required pairs of graph-transformation rules and forbidden sub-graphs.
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Generate sub-graphs For the reverse application of the graph-transformation
rule r, we have to know all matching sub-graphs between r and the sub-
graph. Therefore it is essential that we get all sub-graphs.

Match sub-graph This filter performs the matching computations between
the rule r’s sub-graph, which has been previously generated, and the cur-
rent forbidden sub-graph. The result of this filter is a set of matchings.

Merge graphs The result of this filter is the target graph pattern that is the
outcome of the merge-operation with the graph-transformation rule, the
forbidden sub-graph and the found match.

Rule application This filter applies the rule and checks whether or not the
rule application is correct, i.e. whether all NACs are satisfied. If the rule
application was not correct

Check Properties this filter investigates whether the source graph pattern
contains any forbidden pattern or not. If no match is found, the current
element is passed on.

Check Rules This filter checks for preempting rules that are applicable to the
source graph pattern. If no match exists, the current element is passed
on.

Figure 7.2: The configuration for the Invariant Checker for the verification of
discrete GTS

The configuration of the Invariant Checker for the verification of discrete GTS
is depicted in Figure 7.2. The input is a GTS including the safety properties as
forbidden patterns. Each box stands for one filter, and the arrows stand for the
pipes between the filters.

The implementation of the Invariant Checker algorithm for discrete GTS was
part of my Bachelor’s Thesis at the University of Paderborn.

7.3 Verifying hybrid GTS

For the case of a hybrid GTS, the above filters have to be modified, as we
now have to check that a match of a forbidden pattern or a hybrid graph-
transformation rule exists and that the attribute conditions are satisfied. There-
fore, in the hybrid case we use slightly modified filters that compute all possible
matches and pass the result on to the next filter. We will further distinguish
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between linear hybrid systems, which are hybrid systems as described in Sec-
tion B.3, but the continuous attributes only have fixed linear derivations and
non-linear hybrid systems.

7.3.1 Linear hybrid GTS

Linear hybrid GTS are a subclass of hybrid GTS for which we have shown in
[5] how they can be checked with the use of a solver for linear inequalities. The
verification of linear hybrid GTS can obviously be used to verify timed GTS
too. Timed GTS are a subclass of linear hybrid GTS, where the derivation
of each continuous attribute is 1. Consequently, the continuous attributes are
then called clocks. The necessary changes in comparison with the verification
of discrete GTS have already been discussed in Section 6.1.3. In summary,
we cannot omit a possible counterexample because we have found a matching
forbidden pattern or a matching rule that preempts the counterexample’s rule.
We have to collect this information and use it to build a suitable system of
linear inequalities and try to solve it. Therefore the ordered list of filters for the
checking of linear hybrid GTS looks as follows:

Hybrid Check Properties This filter investigates whether or not the source
graph pattern contains any forbidden pattern. The current element, to-
gether with all found matches, is passed on.

Hybrid Check Rules This filter checks for preempting rules that are appli-
cable to the source graph pattern. The current element, together with all
found matches, is passed on.

Check Urgent Rules This filter checks whether urgent rules are applicable in
the target graph pattern. The current element with all found matches is
passed on.

Check Constraints This filter builds a system of linear inequalities based on
the results of the previous filters and the current element. If the inequali-
ties can be solved, the current element is passed on as a counterexample.
To solve the linear inequalities, we use the solver CPLEX.3

Figure 7.3 shows the change we made to the Invariant Checker’s configuration
in order to be able to verify hybrid linear GTS. The filters that are depicted in
a doubly framed box have been newly added to the filter configuration.

7.3.2 Non-linear hybrid GTS

The verification of non-linear hybrid GTS differs only slightly from the verifi-
cation of linear hybrid GTS, as described in the previous section. The main
difference is that the solver we used for linear hybrid GTS is not able to verify
constraint systems other than linear inequalities. However, in Section 6.1.3 we
have already shown that the verification task can be mapped to a hybrid au-
tomaton. For this automaton, we can ask a suitable model checker whether the
state “failure” (cf. Figure 6.4) is reachable. Thus, we only have to replace the

3www.ibm.com/software/products/us/en/ibmilogcpleoptistud/
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Figure 7.3: Configuration of the Invariant Checker for the verification of linear
hybrid GTS. Doubly rounded filters are new.

last filter from the chain of filters we used for the verification of linear hybrid
GTS.

Check non-linear Constraints This filter builds a hybrid automaton based
on the results of the previous filters and the current element and invokes
a hybrid model checker to check whether the state “failure” is reachable.
If the state can be reached, the current element is passed on as a coun-
terexample.

In Figure 7.4 we depict the Invariant Checker’s configuration for the verification
of hybrid GTS. The invocation of the hybrid model-checker is part of the “Check
non-linear Constraints” filter.

Figure 7.4: Configuration of the Invariant Checker for the verification of non-
linear hybrid GTS

For the verification of the hybrid automata, we use the hybrid model-checker
PHAVer [74]. The automatic invocation of PHAVer from the Invariant Check-
er, including the generation of the required automata using the guards, state-
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Figure 7.5: Configuration for the syntactical refinement check

invariants and flow-conditions that have been computed by the Invariant Check-
er has not yet been implemented. Therefore, we marked the “Check non-linear
constraints” filter in Figure 7.4 with an “M” to indicate that this step currently
has to be done manually.

7.4 Refinement Checks

Depending on the rule-sets used, it is either sufficient to check the syntactical
refinement only or the predicates Preempt and Urgent have to be satisfied too.
In the following, we will show how these checks could be implemented.

7.4.1 Syntactical Refinement Check

The rule r2 syntactically refines rule r1 if we can find a match for r1’s left- and
right-hand side in r2’s left- and right-hand side, respectively (cf. Definition 6.9).
The “Refinement Producer” looks for pairs of refining rules and passes them on.
The algorithm for computing a match is already part of the Invariant Checker
and had thus been reused in the “Refinement Check Filter” (see Figure 7.5).
The “Refinement Consumer” returns pairs of rules that violate the syntactical
refinement definition.

Refinement Producer Searches for pairs of refining rules and passes them
on.

Refinement Check Tries to compute a match between the rules’ left-hand
sides and right- hand sides. If no matches can be found, the current pair
is passed on.

Refinement Consumer Returns those rule pairs that violate the syntactical
refinement definition.

7.4.2 Checking Urgent and Preempt Predicates

In Section 6.3 we showed that the checking of the predicates Urgent and Pre

empt could be done using the Invariant Checker. However, the two involved
GTS, i.e. the refined and the refining one, need some pre-processing. Let S =
(RS , pS ,RSu) and P = (RP , pP ,RPu ) be two rule-sets for which we want to
show that Preempt(S,R) holds. For every rule pair (r1, r2) ∈ pS — i.e. rule
r1 preempts rule r2 — we will have to build a dedicated GTS Gr1,r2

. The
GTS’s rule-set Rr1,r2

contains the rule rid1 , which is rule r1 without deleting
and creating any nodes or edges, and all rules r1

1 , . . . , r
n
1 ∈ R

P that all refine
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Figure 7.6: Configuration for the check of the Preempt and Urgent predicates

rule r1. The set of forbidden patterns F is given through the set of graph
constraints Appl(r1

2), . . . , Appl(rm2 ) with r1
2 , . . . , r

m
2 ∈ RP . All rules ri2 refine

rule r2, and (rj1, r
i
2) ∈ pP holds for all 1 ≤ j ≤ n and 1 ≤ i ≤ m. Appl(ri2)

is the translation of the rule ri2 into a graph constraint that encodes the rule’s
applicability. To check the Urgent predicate, the construction of the set F is
not necessary and thus can be omitted.

After the pre-processing, we yield a number of GTS, which we have to verify
separately. However, we can use a more or less standard Invariant Checker
configuration for either GTS or HGTS without the “Check Properties” or “Hy-
brid Check Properties” filter. Further, the only rule that has to be applied by
the Invariant Checker is the rule rid1 , and thus the “Combination Producer”
that builds the pairs of graph-transformation rules and forbidden patterns is
only allowed to combine this rule with the forbidden pattern. The other rules
must only be used in the “Check Rules” filter or its hybrid counterpart. The
“Check Properties” filter has to be removed as the rule rid1 does not change
the constructed graph pattern. Hence, the currently investigated forbidden pat-
tern is also present in the source graph pattern and in consequence the “Check
Properties” filter will remove the potential counterexample.

Summarising, with some pre-processing and minor modifications to the existing
Invariant Checker configurations, we are able to reduce the checking of the
Preempt and the Urgent predicate to the verification of inductive invariants
using the Invariant Checker. In Figure 7.6, the modified configuration of the
Invariant Checker is shown. As the “Combination Producer” had to be slightly
modified, it is named “Combination Producer*”. The pre-processing, however,
is currently not implemented, although we have shown that it is conceptually
feasible.
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Chapter 8

Evaluation

In this chapter we will evaluate our modelling and verification approach with
our running application examples, the Supply Chain System, and an additional
example, the RailCab system.

8.1 Supply Chain System

The supply chain application example has been used throughout the course
of this thesis. Therefore we will refrain from an explanation of the system,
and start directly with some of the more complicated aspects concerning the
modelling and analysis of the supply chain system.

8.1.1 Modelling

The supply chain system we use as application examples consists — as already
mentioned — of an abstract component AbstrFactory, the abstract service con-
tract Contract, the concrete service contracts Auction and Request Offer Collab-

oration, and the concrete component Factory.

The abstract service contract Contract specifies a meta-model that consists of the
elements Customer, Supplier, Contract and its own representative ContractCol-

laboration. Although the service contract is abstract, the Customer role already
owns a behaviour specification, the createContract StoryPattern. At the same
level of detail, we have specified the abstract component Factory, which mainly
declares the properties we assume that a Factory should fulfil.

We have modelled two more service contracts that refine the abstract service
contract Contract. These are the Auction and the RequestOfferCollaboration ser-
vice contracts. The RequestOfferCollaboration service contract implements a
basic challenge response protocol between the two service roles Customer and
Supplier. The whole rule-set for the RequestOfferCollaboration is shown in Ap-
pendix A.2.3. For a correct and safe RequestOfferCollaboration, we require some
safety properties to be fulfilled. Besides the safety properties that have already
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been specified for the abstract Contract collaboration, the RequestOfferCollabo-

ration additionally requires several safety properties that had to be added due to
our applied verification technique Invariant Checker. As we have explained in
Section 6.1.2, the Invariant Checker approach mainly checks one step of GTS.
However, dependencies between different rules, e.g. the makeOffer rule, can
only be applied after the sendRequest rule, making it impossible for several
situations to happen. If it is forbidden to create more than one Requests (cf.
Figure 8.1(c)) between the same Customer and Supplier roles, it is impossible
that a Request and an Offer (cf. Figure 8.1(b)) exist in parallel too. But this
information is not available to the Invariant Checker and thus we had to add
several forbidden patterns to express these dependencies between the rules. Fig-
ure 8.1 shows an excerpt from the additional forbidden properties that had to be
added to the RequestOfferCollaboration specification. Note that the need to add
these additional forbidden properties was not introduced by our verification ap-
proach in general, but by the specific technique, i.e. the Invariant Checker that
we used to verify the collaboration and component types.

(a) noOfAndContract

(b) noReqAndOffer

(c) noTwoRequest

Figure 8.1: Additional forbidden properties for the RequestOfferCollaboration
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Factory For the concrete component Factory, we want to specify that the
component can only sign a Contract with her Supplier service role, if for all its
Customer service roles valid Contracts have been signed. We can express this
requirement through a graph constraint that forbids the Supplier role to sign
a Contract if there still exists a Customer service role, which has not signed a
Contract (see Figure 8.2). Obviously, we have to capture such situations in the
component’s implementation in order to avoid them. Thus, before allowing the
component’s Supplier service role to sign a Contract, we have to ensure that all
Customer service roles have signed a valid Contract. The difficulty with this check
is that we don’t know in advance how many Customer service roles have been
created for a Factory component. Consequently, we cannot add all Customer

service roles to the rule’s precondition.

Figure 8.2: supConwithoutCustCon safety property

Figure 8.3: The makeOffer rule

A possible way to specify the necessary precondition is to use an NAC. We have
to specify that no Customer exists that does not have a Contract signed. Unfor-
tunately, this requires the capabilities of nested application conditions, which
we currently do not support.1 The solution we came up with for modelling the
required behaviour, despite the mentioned limited expressiveness, is to use an

1Our modelling language for graph-transformation rules and graph constraints SaMiGra ac-
tually does support arbitrarily nested application conditions, but neither our Invariant Checker
verification tool nor our Story Diagram Interpreter execution environment supports them at
the moment.

97



8.1. SUPPLY CHAIN SYSTEM

auxiliary flag — internal to the Factory component — to mark states where all
Customer service roles have a valid Contract and two rules for createContract

together with preemption. The Supplier service role’s makeOffer rule (see Fig-
ure 8.3) only creates the Offer if the marker flag is set. The marker flag is set
by the rule shown in Figure 8.5. This rule is preempted by the rule shown in
Figure 8.4. In consequence, as long as two Customer service roles exist that are
still missing a Contract, the rule shown in Figure 8.4 is applicable. Otherwise,
the rule in Figure 8.5 is applied, which then creates the marker flag that enables
the makeOffer rule. The removal of the marker flag is done in the reverse way
and again using two rules. One rule requires the existence of the marker flag
and deletes it, while the second one forbids the existence of the marker flag. An
alternative solution would have been to specify an urgent rule that is part of
the Factory’s implementation, and which immediately deletes the marker flag if
one Customer service role exists without a Contract.

In Figure 8.6 we show an evolution diagram for the supply chain example that
recapitulates all the concepts introduced and the dependencies between them.

Figure 8.4: The Factory’s preempting createContract rule

Figure 8.5: The Factory’s preempted createContract rule
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Figure 8.6: Evolution Diagram for the Supply Chain System

Refinement Duration[ms] successful?
RROC ⊑C RCC 49 X

RFac ⊑C RROC 75 X

Table 8.1: Overview of the refinement checks’ durations

8.1.2 Analysis

In the supply chain application example, refinement occurs at several positions.
We have the abstract Contract service contract specification, which is refined
multiple times. First, the abstract component AbstrFactory refines the roles
Customer and Supplier, second the concrete collaboration type RequestOffer-

Collaboration refines the ContractCollaboration collaboration type, third Factory

refines both of the RequestOfferCollaboration’s roles. We have introduced two
different notions of refinement, one for complex rule-sets (see Lemma 6.18) and
one for the rule-set (see Lemma 6.14). The refined rule-sets of the supply chain
system are rule-sets without the use of urgent rules or preemption. Thus the
pure syntactical conditions given in Lemma 6.14 are sufficient to guarantee a
valid refinement. A complex rule-set is used in the Factory’s implementation,
where we need to be able to express preemption between the createContract

rules (see Figure 8.4 and Figure 8.5). But this rule-set is not refined within our
application example. For a valid refinement, it remains for us to show that the
refining rules themselves refine the refined rules. This check has to be done two
times.

In Table 8.1 we show the results of the two necessary refinement checks. We
had to check that RROC(ColRoc) ⊑C RCon(ColCon) and RFac ⊑C RROC hold.
A check between the rule-sets of the abstract component AbstrFactory and the
concrete component Factory is not necessary, as for an abstract component no
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rules have to be specified.

The supply chain system required several applications of the Invariant Checker.
In Chapter 5 we have already pointed out which verification steps are necessary
to show the system’s safety. We first showed that we have to verify that the
instances of the collaboration types are correct (cf. Example 11), then we had to
check that the component types are correct (cf. Example 12), and finally we had
to verify that the complete system consisting of collaboration and component
type instances is correct (cf. Example 13). The mentioned examples only listed
the necessary checks, but showed no data on the actual verification. In the
following table 8.2, we present the run-time data such as the number of rules
(#R) and forbidden patterns (#P) that had to be checked, the duration of the
verification run (d. [ms]), generated sub-graphs (#Sub), the number of pairs
(#Pairs) and the number of hybrid checks (#LIE), together with the duration.
For all checks, the memory consumption of the Invariant Checker was less than
512MB.

Task #R #P d. [ms] #Sub #Pairs #LIE
RCC(ColCC) |= ΦCC 4 1 1113 30 34 0
RROC(ColROC) |= ΦROC 6 5 5703 758 905 0
RFac(ComFac) |= ΨFac 8 15 12995 2053 1689 95

Table 8.2: Detailed evaluation results for the concrete component and collabo-
ration types

During the verification run of the Factory component type, the Invariant Check-
er constructed an interesting counterexample, which it wasn’t able to discard.
The counterexample was constructed by overlapping the deleteOtherContract

rule (cf. Figure A.57) and the offerButNoCustCon forbidden property (cf. Fig-
ure A.66) with only the Supplier node. The resulting source graph pattern is
depicted in Figure 8.7 and it can be seen that the Supplier role has an adjacent
Offer and Contract object. However, the RequestOfferCollaboration forbids the
existence of an Offer and a Contract in parallel for one Supplier role (cf. Fig-
ure A.45). The Supplier is either part of two RequestOfferCollaborations, which is
not allowed, or the Offer belongs to the RequestOfferCollaboration present in the
source graph pattern. In this case, the aforementioned safety property would
be violated. Hence, it is safe to discard the witness. The reason for which the
Invariant Checker was unable to discard the witness automatically is that the
source graph pattern contains too little context around the Offer node. But, as
we have explained above, any safe completion of the source graph pattern yields
a violation of at least one of the specified safety properties.

Comparison with GROOVE A tool that is commonly used to verify and
investigate the nature of graph-transformation systems is GROOVE [117]. We
used GROOVE to build up the state space of various supply chain networks
consisting only of the Factory implementations. We were not able to build a
GTS in GROOVE that is as expressive as the model we presented in this thesis,
due to the fact that the standard implementation of GROOVE does not support
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Figure 8.7: Source graph pattern of the witness found by the Invariant Checker

time.2 Thus, the model’s behaviour we checked was an over-approximation of
the behaviour we specified in this thesis. The size of the computed state space
is shown in Table 8.3.

Factories in initial graph # states # transitions
2 5 6
4 198 678
8 136928 1156925
9 672883 6510041
10 ≥2097733 ≥22021912

Table 8.3: Size of the state space as computed by GROOVE

The initial graphs were all based on the same schema. They consisted of one
Factory node that only had a Supplier role and the Marker node set, but no
Customer role, and — depending on the initial graph’s size — several copies of
a triple consisting of Factory, Customer role and Supplier role. The rule-set we
used was complete in the sense that we specified the structural part of our rules
in GROOVE but omitted the jump conditions. We further simplified the model
for GROOVE by omitting the rules that can create new Factory instances. For
an initial graph with 10 Factory instances, GROOVE ran for 2064 minutes and
consumed 8GB of memory without finishing the state space exploration. We
thus stopped GROOVE and gave lower bounds for the number of the found
states and transitions.

The simplifications we had to make in order to adapt our model to GROOVE’s
expressiveness yielded a system that could not be verified. I.e. the Invariant
Checker could verify the supply chain system due to the interplay of the jump
conditions and the attribute conditions of the safety properties. But as we had to
omit these for GROOVE, the verified model no longer satisfies the safety prop-
erties. Therefore, we only generated the state space instead of using GROOVE’s
verification capabilities also. The state space generation gives a sufficiently exact
impression of a verification in GROOVE, as a system’s complete state space has

2Attributes of different types are supported, but their value is only changed through rule
applications and does not change continuously.

101



8.2. RAILCAB SYSTEM

to be built up in order to decide whether or not the system is correct. Obviously,
the initial states we used were highly symmetric, and probably graph-shaped
abstractions (see [37]) could have solved this problem for the initial states we
used, but in a more realistic scenario it is unlikely that only factories of the same
type would be used. Consequently, abstraction cannot play off their capabilities
to the full extent.

8.2 RailCab System

The RailCab system has been developed at the University of Paderborn as a
research prototype. The project aims at establishing a new railway system that
is built atop of small autonomous shuttles instead of long and tightly scheduled
trains. Users can book a shuttle or a seat in a shuttle for exactly their desired
connection. The shuttles then challenge each other to provide the best (with
respect to duration and costs) offer for the demanded connection. As shuttles are
autonomous vehicles, they are bound to a schedule and can freely decide where
to go and which route to take. Compared with traditional trains, the energy of
consumption of a single shuttle is enormous in relation to the passengers aboard.
The reason for the high energy consumption is the wind resistance. However, the
wind resistance can be effectively reduced if the shuttles build convoys. For these
convoys, it has to hold that they do not require a mechanical connection, as this
would contradict the shuttles’ flexibility; the shuttles can travel at high speeds;
and lastly, travel at close proximity to each other, otherwise the wind resistance
will again be too high. For two or more shuttles driving in a convoy, strong
and reliable coordination is necessary to avoid collisions. In this thesis, we will
model the coordination protocol as a service contract that can be established
between two shuttles.

In this thesis, we will introduce two different variants of the RailCab system,
which differ in the degree of the detail in which the coordination protocol be-
tween shuttles is specified. The first variant is a purely timed system, i.e. all
continuous behaviour is specified through clocks. In the timed variant, we as-
sume that the system is safe if the coordination protocol is instantiated in time.
The second variant also models the shuttles’ physical movement, which is mod-
elled through variables for acceleration, position and speed. This variant could
be used to show that, using the coordination protocol, physical collisions could
be avoided. For the timed variant, we again omit the control modes as we did
for the supply chain system, as they do not change. However, for the hybrid
variant the control modes are subject to change by the rules and thus we depict
them. In [2] we showed a completely discrete version of the RailCab system,
but this version will not be used in this thesis.

8.2.1 Modelling

The RailCab system is a system from a completely different domain than the
supply chain system. The RailCab system is a safety critical and cyber-physical
system, where the timely execution of the correct rules is necessary to guarantee
a proper functioning of the system. In the RailCab system, the need to use
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urgent rules is much stronger, as we have to enforce that a certain behaviour
takes place. On the other hand, the variety of possibly existing different service
contracts is probably not as great as in the supply chain example. In a first
step, we will introduce the timed variant of the RailCab system and then the
hybrid one.

Timed RailCab System

The RailCab system’s structure is described through the ontology depicted in
Figure 8.8. The ontology comprises the service role Shuttle which is used two
times in the DistanceCoordination service contract, distinguished by the two
associations front and rear. A Shuttle is placed at exactly one Track. The
Shuttle service role has a clock timeAtTrack. This clock is reset each time the
Shuttle moves to the succeeding Track.

Figure 8.8: Ontology for the timed RailCab example

TimedDC collaboration type The Shuttle role’s movement is described
through two rules moveDC (see Figure 8.9(a)) and moveSimple (see Figure 8.9(b)).
Both rules require that the Shuttle is for at least ten time units at the cur-
rent Track before moving on. Each application of one of the move rules re-
sets the timeAtTrack clock for the Shuttle. In contrast to the moveDC rule, the
moveSimple rule forbids that there is another Shuttle at the next Track. The
rule moveDC can only be applied if a DistanceCoordination collaboration has
been instantiated. This is done using the createDC rule (see Figure 8.10). The
createDC rule requires that the Shuttle is at the current Track for at least 3 time
units. The creation of two DistanceCoordination collaboration instances between
two Shuttles is prevented by the use of a NAC.

The timed RailCab System has to satisfy two safety properties. These are
noDC and collision, which make it impossible that a DistanceCoordination

collaboration has not been created and that a collision occurs. In the timed
variant of the RailCab example, the only possibility of encoding a collision is
that two Shuttles are located at the same Track and no DistanceCoordination

collaboration has been instantiated (see Figure 8.11(b)). However, we require
that the DistanceCoordination collaboration is instantiated at least 5 time units
after the rear Shuttle and the front Shuttle are at neighbouring Tracks (see
Figure 8.11(a)).
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(a) The Shuttle role’s moveDC rule (b) The Shuttle role’s moveSimple rule

Figure 8.9: The Shuttle role’s move rules

Figure 8.10: The Shuttle role’s createDc rule

Formally, the timed RailCab System could be specified as follows:

ColtDC = (ColtDC , {Shuttle} , CDtDC , {createDC, moveSimple, moveDC,

removeDC},ΦtDC)

With ΦtDC being given as ΦtDC ≡ �¬noDC ∧�¬collision.

tShuttleComp component type The tShuttleComp component type imple-
ments the DistanceCoordination’s role Shuttle. However, there is no additional
behaviour given for the tShuttleComp. The rules differ from the DistanceCoor-

(a) The noDc property (b) The collision property

Figure 8.11: Safety properties for the timed RailCab system
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Figure 8.12: Ontology used for the RailCab application example

dination collaboration type’s rules in an additional node of type tShuttleComp

that is adjacent to the Shuttle role. No additional properties have been specified
for tShuttleComp.

Hybrid RailCab System

The ontology for the hybrid variant of the RailCab system (see Figure 8.12) ex-
tends the timed RailCab’s ontology by additional concepts. The ontology spec-
ifies two control modes that describe the Shuttle roles’ continuous behaviour.
The two control modes are used depending on the instantiation of the Distance-

Coordination service contract. If a Shuttle is driving alone — i.e. without being
in a convoy — it uses the SpeedControl control mode, whereas otherwise the
PositionControl control mode is in place. A convoy’s leading Shuttle uses the
SpeedControl control mode too. The SpeedControl control mode tries to keep
the Shuttle’s velocity as close as possible to a given target velocity. The Posi-

tionControl mode tries to achieve this for the Shuttle’s position, as driving in
close proximity is essential for reducing the wind resistance.

For the specification of the system’s continuous behaviour, we introduced a set of
attributes for Shuttles, PositionControlMode, SpeedControlMode, and Tracks. A
Track has two constant attributes start and end. These are used in the move rules
to determine whether a Shuttle has physically left a Track. The two attributes
start and end are constant, because the type Track does not have any control
mode and thus no continuous behaviour is specified. The two control modes own
the attributes pos_ref and v_ref, which hold the value of the current reference
position and reference velocity. The type Shuttle has five attributes - v for the
velocity, a for the acceleration, pos for the position, t for the time since the last
move operation, and length for the Shuttle’s length. The timely derivation of
pos, v and a is determined by the current control mode (cf. laws in Figure 8.12).
t is a clock and thus its derivation is constantly 1 and length is a constant which
does not change over time.

DistanceCoordination collaboration type Whenever a Shuttle moves into
the proximity of another Shuttle — independent of whether or not the ap-
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Figure 8.13: The DistanceCoordination collaboration type’s createDC rule

proached Shuttle is part of a convoy — the DistanceCoordination collaboration
type has to be instantiated between these two Shuttles. Thus, the creation rule
createDC for the DistanceCoordination collaboration type (see Figure 8.13) is
specified as an urgent rule. The createDC rule changes the rear Shuttle’s con-
trol mode from SpeedControlMode to PositionControlMode. The front Shuttle’s
control mode is not changed. The two negative application conditions ensure
that neither of the two Shuttles already has a DistanceCoordination collabora-
tion instance instantiated, where it plays the same role. I.e. the front Shuttle

is allowed to be the rear role in another DistanceCoordination collaboration in-
stance, but not the leading one. The createDC rule is activated after the rear
Shuttle is at the Track for three seconds. The rules for the DistanceCoordination

collaboration type further comprise rules for the movement of the Shuttle if it
is involved in a DistanceCoordination collaboration instance and if it is moving
alone. The corresponding rules are depicted in Figure 8.14. The properties a
DistanceCoordination instance has to fulfil are that the service contract is in-
stantiated whenever it is required (see Figure 8.15(a)) and that no collision —
i.e. two Shuttles that are located at the same track and the positions overlap —
occurs (see Figure 8.15(b)).

(a) move rule for a singular Shuttle (b) move rule for the rear Shuttle in a Dis-

tanceCoordination service contract

Figure 8.14: The Shuttle service role’s move rules

In Figure 8.14(b) only the move rule for a Shuttle role is shown, that is the
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(a) The noDC forbidden property.

(b) The collision forbidden property.

Figure 8.15: Forbidden properties for the RailCab system.

rear part in a DistanceCoordination collaboration instance. Contrary to our first
thoughts, together with the rule in Figure 8.14(a), this is sufficient to move
all Shuttles of a convoy, the first Shuttle of a convoy and a Shuttle driving
alone. This is due to the fact that, within a convoy, i.e. a consecutive chain of
Shuttles each connected through a DistanceCoordination collaboration instance,
each Shuttle other than the first one is the rear part for one DistanceCoordination

collaboration instance. Hence, the moveDC rule (see Figure 8.14(b)) can be
applied. The more general move rule (see Figure 8.14(a)), however, is applicable
to a singular Shuttle and a convoy’s leading Shuttle.

(a) The accel rule (b) The brake rule

Figure 8.16: The Shuttle role’s rules for acceleration and braking

Besides only moving, a Shuttle role can also change its desired speed if it operates
in the SpeedControl control mode. Therefore, two rules for accelerating and
braking are specified (see Figure 8.16).
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Figure 8.17: Evolution diagram for the RailCab example

The complete DistanceCoordination collaboration type can be formally specified
using our notation introduced in Definition 4.10 as:

ColDC = (ColDC , {Shuttle} , CDDC , {createDC, move, moveDC, accel, brake,

passPos, removeDC},ΦDC)

The corresponding class diagram CDDC is given as ontology in Figure 8.12
and the collaboration type’s safety properties are given as ΦDC ≡ G¬∃ noCD ∧
G¬∃ collision with noDC and collision being the graph constraints depicted
in Figures 8.15(a) and 8.15(b), respectively.

ShuttleComp component type The ShuttleComp component type imple-
ments the Shuttle role and refines all rules specified for the role in the Dis-

tanceCoordination service contract. For the ShuttleComp component type, no
additional behaviour has been specified and the corresponding rules only dif-
fer from those for the service role in the additional node of type ShuttleComp.
In consequence, we also have not defined additional safety guarantees for the
component type.

The different parts of the RailCab example are shown in the evolution diagram
given in Figure 8.17. As the timed and the hybrid variant of the RailCab
example merely differ in the specified behaviour, the evolution diagrams look
the same for both variants.

8.2.2 Analysis

We have already mentioned in the modelling Section 8.2.1 that the RailCab
system uses complex rule-sets to specify urgent behaviour. Consequently, re-
finement checking is much more meticulous than for the supply chain example,
where the refinement was given by the construction of the rules. However, in the
RailCab system we have the special situation that one service role is used twice
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Refinement Duration[ms] successful
RSComp ⊑C RDC 47ms X

Table 8.4: Overview of the syntactical refinement check’s duration

in the same service contract and thus implements all of the service contract’s
behavioural rules.

The ShuttleComp component type refines the rules that have been specified for
the Shuttle service role in the DistanceCoordination collaboration type. The re-
sult of the syntactical refinement check for the hybrid RailCab system can be
seen in Table 8.4. The important point here is that the createDC rule is marked
as urgent. Hence, the DistanceCoordination collaboration type uses a complex
rule-set (cf. Definition 6.15) and thus all refining rule-sets — i.e. the Shuttle-

Comp’s rule-set — have to satisfy the Urgent predicate (see Lemma 6.18). The
ShuttleComp component type’s createDC rule does not differ from the Distance-

Coordination collaboration type’s rule and thus the Urgent predicate is fulfilled
for the RailCab example. The same holds for the Preempt predicate, which
is satisfied, as we did not modify the rules. Due to the similarity between the
rule-sets of the timed and the hybrid RailCab variant, we only give the results
for the hybrid RailCab system.

Timed RailCab System

For the timed RailCab system, we had to verify that the collaboration type
DistanceCoordination satisfies the two safety properties noDC and collision.
As a timed system is always a linear hybrid system, we could use our automatic
verification algorithm presented in Section 7.3. The results of the verification
are shown in Table 8.5. The column labelled #LIE contains the number of
systems of linear inequalities that had to be checked. The results have been
computed using an older version of the Invariant Checker and are thus not
directly comparable with the current implementation that has been used for the
supply chain system.

Task #R #P time [ms] #Pairs #LIE
RtDC(ColtDC) |= ΦtDC 4 2 340 68 22

Table 8.5: Detailed evaluation results for the timed RailCab example

Hybrid RailCab System

For the hybrid RailCab System we have modelled the complete behaviour at
the level of the DistanceCoordination collaboration type (see Section 8.2.1) and
the ShuttleComp component type refines this behaviour without adding any new
safety properties. Thus the verification has to be done for the DistanceCoordi-

nation collaboration type only. Table 8.6 shows the results of the verification.
The last column (#HA) shows the number of times the hybrid automaton had
to be checked.

109



8.2. RAILCAB SYSTEM

Task #R #P time [ms] #Sub #Pairs #HA
RDC(ColDC) |= ΦDC 7 4 2429 536 643 20

Table 8.6: Detailed evaluation results for the RailCab application example

The structural check of the Invariant Checker was able to reduce the number of
hybrid automatons that have to be analysed to a total of 20. Each of the other
643 possible counterexamples against the RailCab system’s correctness could be
rejected due to violations of pure structural properties. These are merely cardi-
nality constraints we added, such as that it is forbidden that a Shuttle is located
at two Tracks at the same time (cf. Section A.1). A typical counterexample
that is returned by the Invariant Checker is shown in Figure 8.18. The possible
witness stems from a merge of the moveDC-rule (see Figure 8.14(b)) and the
collision forbidden pattern (see Figure 8.15(b)). The Shuttle s1 has the rear

role and the Shuttle s2 has the front role in the depicted DistanceCoordination

collaboration type instance. The application of rule moveDC moves Shuttle s1

at the same Track where Shuttle s2 is located. Hence, after the rule application,
the two Shuttles can possibly collide with each other.

Figure 8.18: Possible witness against the RailCab system’s correctness

In order to answer the question whether or not the two Shuttle will actually
collide, we can also express this in terms of the reachability of the “failure” state
of our generic automaton (see Section 6.1.3). The generic automaton shown in
Figure 6.4 has to be instantiated with the situation described by the witness the
Invariant Checker computed. The automaton’s initial condition φinit is built
from the jump conditions of preempting rules and forbidden patterns’ attribute
condition found in the source graph pattern. The rule moveDC can only be
preempted by the rule createDC. But createDC does not match in the source
graph pattern, due to the existence of a DistanceCoordination instance. The same
holds for the forbidden property noDC and thus φinit ≡ true. The flow condition
and the location invariant of the “source pattern” location is always the same.
However, the guard at the outgoing transition to the “target pattern” location
uses the moveDC rule’s jump condition: s1.t′ == 0 ∧ s1.pos > t1.end ∧ s1.pos ≥
s2.start. The “target pattern” location’s invariant is determined by structurally
embedded urgent rules’ jump conditions and the forbidden pattern’s attribute
condition. In our example, no urgent rule matches and thus we set φU ≡ false.
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The forbidden pattern is collision and hence φcollision ≡ s2.pos−s2.length <
s1.pos∧s1.pos < s2.pos. It follows that the guard to the “urgent” location is set
to φU ≡ false and the guard to the “failure” location is set to φcollision∧¬φU ≡
φcollision. The flow condition for the “target pattern” location is given through
the combination of the control modes. Thus, the SpeedControlMode controls the
attributes of Shuttle s2 and the PositionControlMode controls the attributes of
Shuttle s1.

We have specified this concrete instantiation of our generic automaton using
PHAVer’s input language and queried PHAVer whether the location “failure”
is reachable. The location was not reachable and thus a collision could not
happen. However, PHAVer uses an overapproximation to capture the continuous
behaviour. Any attempt to change this by giving additional refinement hints
ended in a segmentation fault, probably due to the excessive memory usage by
PHAVer3

8.3 Summary

In this chapter we have shown that it is possible to successfully model and
verify the supply chain and the RailCab system, using our methodology. The
restrictions we put on the behaviour modelling — i.e. criteria for refining rules,
separation of meta-models — has paid off at the verification stage, as we were
able to reuse the verification results and were able to reduce the necessary checks
to a small number.

The modelled systems are of two completely different natures. Whereas in the
supply chain example the focus is on showing how abstraction and separation
can be efficiently used to specify a complex, open and evolving system, we had
to specify all behaviour for the RailCab system within the DistanceCoordination

service contract. Nevertheless, the RailCab system can still be enhanced with
e.g. different component types that vary in the capabilities they offer. The two
examples differ further. In the supply chain system, it is not required that
an instance of a Contract collaboration type is created. The RailCab’s safety,
however, relies on the instantiation of the DistanceCoordination collaboration
type.

For the supply chain system, we had to cope with the restricted expressiveness of
our modelling language (cf. Subsection 8.1.1). For the modelling of the Factory

component, it would have been beneficial if our modelling language had had
the expressive power of nested application conditions. Finally, we were able to
overcome this limitation through the use of a complex rule-set and preempting
rules. Using preemption, we were able to express the desired behaviour — which
was too complex to be expressed in one rule — in two rules and thus successfully
model the Factory component and finally verify that it behaves correctly.

The RailCab example illustrates the usage of different control modes for differ-
ent modes of operation for the Shuttles. The fact that we model the control
modes as nodes allows us to set and read them easily using StoryPatterns. The

3PHAVer’s memory usage easily reached the 4GB barrier.
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Task Degree of Automation
fully semi

Verify discrete GTS X

Verify linear hybrid GTS X

Verify hybrid GTS X

Check Predicates X

Check syntactical Refinement X

Table 8.7: Tool suppport of different analysis tasks.

expressiveness of the differential equations that can be used in the control modes
only depends on the analysis technique used.

In Chapter 2 we have identified a set of requirements that have to be met by a
modelling and verification approach for SoS. The examples in Chapter 4 have
already shown that our approach is suitable to model SoS. In this chapter, we
have given the proof that our approach is further suited to model physically
complex systems such as the behaviour of the RailCab system, including differ-
ent control modes for the Shuttle role. Additionally, we have shown through the
comparison with GROOVE that our approach scales very well with the system
size (Requirement Scalable Analysis (A1)). The applicability of our verifica-
tion approach (Requirement Applicable Analysis (A2)) is given, too, as we were
able to verify the required safety properties. The required capability to verify
both the system’s behaviour and its reconfigurations (Requirement Analysis of
Reconfiguration (A3)) is inherently given, as our modelling approach does not
distinguish between behaviour and reconfiguration specification. That the last
verification requirement Analysis under restricted knowledge (A4) , which re-
quires the analysis to be applicable under intellectual property constraints, is
satisfied, can be seen from the information we used in the verification of the
different tasks. In each task, we only used the rule-sets that were specified for
the collaboration or the component type and did not use any information that
might be internal to a component type implementation.

Our approach also satisfies Requirement Analysing Evolution (A5). In Sec-
tion 5.3 we have shown that the verification of evolving systems can be tackled
using the techniques that we used for the verification of SoS without evolution.
Hence, in order to verify the evolution step from a system Sysi to a system
Sysi+1, we have to verify that the added component or collaboration type is
correct.

Nevertheless, our approach is not yet able to verify a rigSoaML model fully au-
tomatically, although we have presented the necessary concepts and have shown
that they work in principle. In Table 8.7 we give an overview of the degree of
automation for the different analysis tasks we have presented throughout this
thesis. The verification of hybrid GTS is marked as semi-automatic, as the gen-
eration of the required hybrid automata is not yet supported. For the checking
of the predicates, the pre-processing step that is described in Section 7.4.2 is
not yet implemented.

112



Chapter 9

Related Work

In this thesis we visited several fields ranging from high-level, visual modelling
over formal modelling to analysis and verification, all under the special aspects
that have to be satisfied for SoS. We will give an overview of the work which
is the most relevant for our thesis. As analysis and verification is unfeasible
without formal modelling, we discuss these two aspects together.

9.1 Modelling

SoaML is not the first modelling approach for service-oriented systems, and for
other related domains modelling approaches already existed. In this section
we will review the most relevant of them. Reconfiguration and adaptation are
tightly connected to the research domain of dynamic software architectures. In
contrast to a static software architecture — the dependencies between compo-
nents are determined at design time — a dynamic software architecture features
changing connections between components. One approach that addresses the
modelling of dynamic software architectures is [42]. The paper mainly focuses
on compositions of components, where a component is given as a finite automa-
ton, a set of ports and history variables. What the approach does not support
are clear rules that express the change of the components’ connections. Further,
the creation and deletion of components is not supported yet.

The RailCab example served also as a motivating example for the development of
Mechatronic UML [47, 48]. Mechatronic UML uses UML component diagrams
to describe a system’s structure and real-time statecharts, a real-time exten-
sion of UML statecharts, to specify the components’ behaviour. Mechatronic
UML can then be extended by a reconfiguration capability [46]. Therefore, each
location of a real-time statechart is equipped with the required internal config-
uration of the component. In [87] an approach is presented that also makes use
of collaborations and dynamic structural adaptations. For the verification of
the structural adaptations, the authors made the assumption that the overall
number of roles is small enough, such that they were able to translate reconfig-
uration behaviour into time-automata, which will then be verified. Concerning
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the problems we addressed in this thesis, the Mechatronic UML approach has
some shortcomings. Mechatronic UML only addresses the reconfiguration in-
ternal to a given component; in order to specify a behaviour similar to our
approach, one would have to model a single comprehensive component and the
reconfiguration behaviour within a real-time statechart. However, this requires
that the exact reconfiguration behaviour is known at the design time of the sys-
tem. Regarding the verification capabilities, the use of statecharts and standard
model-checking might be beneficial for the expressiveness of the safety proper-
ties that could be verified. However, the scalability is likely to become an issue
due to the state space explosion and in general it is very cumbersome to verify
structural properties using model-checking techniques which were developed for
the verification of finite automata. Continuous evolution of the systems is also
hard to support, as each addition of a new component into the system requires
the re-verification of the complete system.

A more formal approach is presented by Fiadeiro et al. [67]. The authors present
an algebraic modelling language for the specification of service orchestrations.
In contrast to our work, the authors restrict their approach to orchestrations
and thus to closed systems. Further, an important part of their work is to prove
that the composition of services preserves the services’ overall properties. The
decentralised development of services and components based on the refinement
of services is not discussed in their work. Their formal model also does not cope
with structural dynamics as we do in our work.

9.1.1 Role-based modelling and contracts

UML class diagrams for the structure and graph transformations for the behav-
ior modelling are also employed in [35] to model service-oriented architectures,
but in contrast to our approach services are not modelled as collaborations.

The use of UML collaborations for the modelling of services has been proposed
by several authors and proposals (cf. [28, 39, 43, 119]). In [43] also collabo-
rations have been used, but not UML collaborations. However, none of the
three modelling concepts supports dynamic collaborations. In [119] static but
hierarchic collaborations and the distinction between the collaboration and the
collaboration use are presented. Further, the authors omit the definition of the
roles’ behaviour. This has been done in [43], but only partially - Broy et al. use
sequence diagrams for the behaviour specification. [28] is similar to [119] but
extends [119] with behaviour specifications for the different roles. A profile that
directly supports reconfiguration at an architectural level is UML4SOA [45]. In
contrast to the former profiles, UML4SOA models services a ports. Reconfigu-
ration rules are given at the level of component diagrams that are augmented
with special stereotypes to encode preconditions and the effect of the reconfig-
uration. UML4SOA further provides formal support for the modelled architec-
ture. Therefore, the architecture is translated into graphs and the reconfigura-
tion rules into term-rewrite rules. An LTL model-checker is employed to verify
properties of the architecture. Applied to our application domain, UML4SOA
has some drawbacks. The fact that services are modelled as ports rather than
as collaborations implies that either the complete system specification has to
be known or the analysis technique can cope with an unconnected port (unused
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service in this case). It follows that changes to the system require a new verifi-
cation run, as now possibly other reconfiguration rules can be applied. Lastly,
the profile does not provide a specification of the service behaviour.

All the presented collaboration concepts could be seen as advances in the idea
of contracts, which has been introduced in [84]. A contract consists of a number
of participants, each having some contract obligations to fulfil. Contracts also
support the idea of roles that have to be mapped to classes. But contracts
only support a constant number of participants and do not provide support for
adding or removing participants to contract instances at run-time.

Also, a less clear historical connection between roles/collaborations and design
pattern [77] exists, which is reflected today by the fact that design patterns can
be modelled in UML using collaborations. The modelling of design patterns
in UML is advocated in [73, 97]. The authors in [73], however, do not use
UML collaborations for the modelling of design patterns, but develop their own
meta-model and use UML sequence diagrams, which potentially describe partial
behaviour. Kent and Lauder [97] instead propose their own visual notation, but
use sequence diagrams for the behaviour modelling, too.

A more formal approach to the modelling of patterns and behaviour is presented
by Kim and Carrington in [94]. They use Object Z for modelling design patterns
and their behaviour. Although Object Z is a very versatile formal language, the
approach of Kim and Carrington does not support dynamic collaborations.

The OOram Software Engineering method (cf. [116]), which was developed in
the 1970s, already used the distinction between roles and objects. Whereas roles
and objects are often counted to the object-oriented paradigm, OOram assigned
each role a specific behaviour and used behaviour synthesis to derive the final
behaviour. Obviously, the behaviour synthesis is a hard task and can only be
generalised for a restricted set of problems.

9.2 Formal Modelling & Verification

Early in this thesis, we pointed out that testing and naive model-checking of
open service-oriented SoS are not applicable approaches. Nevertheless, a huge
body of work exists that addresses the verification of dynamic and decentralised
systems using formal modelling approaches that range from finite state ma-
chines, over Petri nets and term rewriting, to graph-transformation systems.

An approach that pre-computes all possible reconfigurations of a system and
then applies model-checking for the verification is described by Zhang et al. [135].
This approach can only verify finite state systems. However, open service-
oriented systems are generally infinite state and thus the approach isn’t appli-
cable.

Types are a standard element of modern programming languages, and conse-
quently they have also been used and reflected concerning the verification of
programs. Interesting for our work are especially so-called behavioural type
systems, which subsume not only data elements but also behaviour. Liskov and
Wing [101] give a definition of types and subtypes that is not purely syntactical
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but also implies behavioural compatibility. Mainly, they describe a set of con-
straints that have to be satisfied for a correct subtype relation. However, they
define their theory at a very abstract level of programming languages, where
methods are abstracted to pre- and post-conditions and invariants for types.
Further, they do not provide an automatic proof for the subtype relation.

An approach that directly addresses the formal modelling of SoS is that of
Fitzgerald et al. [68]. In [68], a combination of complementary modelling tech-
niques is presented, each of them addressing different aspects of an SoS. An
enhanced variant of SysML is used to describe the system’s architecture, and
CSP describes the constituent systems’ behaviour, but no modelling language
supports to also model the dynamics that occur in an SoS. Hence, the properties
we are able to verify in our approach cannot be expressed in [68].

To some extent, the systems that we describe in this report can be seen as
ensembles, as introduced by Hölzl and Wirsing [88]. The formal model that
is presented in [88] is very expressive, but lacks the possibility to encapsulate
the services’ behaviour into collaboration - or similar constructs. Further, no
analysis techniques exist yet.

9.2.1 Finite State Machines

Finite state machines are a popular formal model, as they can be verified us-
ing well-established techniques such as model-checking. In this section we will
present several approaches that use finite state machines as an underlying formal
method to describe SOA or SoS.

Beyer et al. [41] argue that web-services should be specified through an inter-
face automaton. Their approach concentrates on the verification of one single
automaton, but does not consider the structural dynamism that is present in a
SoS.

In [27], an approach is introduced that is not dedicated to the verification of
service-oriented systems or SoS directly but addresses the verification of hier-
archical systems. The authors show that the flattening of a hierarchical system
can be avoided by the use of a hierarchical game. Although the results of the au-
thors look promising, their approach requires knowledge of the complete system
to be checked. Therefore it cannot be applied to SoS.

Only closely related is the data-aware approach of Hallé et al. [82]. The au-
thors show a variant of CTL, CTL-FO+, that can be used to verify temporal
properties of the data passed in the messages of an SOA. For the verification, a
transformation to classic CTL is given.

9.2.2 Petri Nets and Process Technologies

Petri Nets are a common formalism to describe service behaviour. Stahl and
Wolf [122] presented an approach to check the compatibility of service compo-
sitions. Therefore they make use of so-called open nets, which are basically
Petri nets with some unconnected places. In a service composition, these places
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are connected to other services and thus the complete behaviour is available.
The authors give sufficient conditions to decide whether two services can be
successfully combined. Compared to our work, this approach only tackles the
refinement aspect, but behaviour preservation cannot be shown. However, it
is possible to show the deadlock-freeness of the combined process. Any fur-
ther verification of the combined processes is not solved; also Petri nets are a
comparatively static formalism that it is hard to use to formally describe the
structural dynamism of service-oriented systems. Another approach, address-
ing the compositional verification of Petri nets is that of Juan et al. [91]. This
approach allows them to efficiently reduce the state space and verify some im-
portant properties of Petri nets, but it does not provide the expressive power to
model structural dynamics.

A transformation-based verification technique is presented in [134]. Web-service
compositions become transformed into an equivalent model that is based on
coloured Petri nets and then verification tools dedicated to the verification of
CP nets are employed. This approach does not support the dynamic structural
changes that are present in our systems. The work of Cheng et al. [53] follows a
similar approach. A transformation-based verification technique is presented in
[134]. Web-service compositions become transformed into an equivalent model
that is based on coloured Petri nets and then verification tools dedicated to
the verification of CP nets are employed. This approach does not support the
dynamic structural changes that are present in our systems. The work of Cheng
et al. [53] follows a similar approach.

Model-checking has been employed to check business process models with vary-
ing numbers of active process instances. In [70, 72, 71], for example, standard
BPEL models are enriched with resource allocation behaviour to ensure the cor-
rect detection of deadlocks and safety violations for web-services compositions
under resource constraints. The same underlying analysis technique — LTSA -
Labelled Transition System Analyser — is used by the authors of [52] for the
verification of service compositions. This approach lacks the functionality to
verify dynamic systems, as the compositions have to be known a priori. Later,
Foster [69] presents an approach that uses finite state machines for the specifi-
cation of the services’ behaviour. Additionally, different modes can be specified,
where each mode represents a pre-defined service configuration. An orchestra-
tor is responsible for managing the service invocations and reacting to events
that trigger mode changes. The orchestrator, the mode configurations and the
services’ behaviour become combined into a finite state process, which is then
analysed. A verification approach like this can only work if the complete system
is known in detail at design time. For SoS, such an approach is therefore not
applicable.

9.2.3 Term Rewriting and π-calculus

For the formal modelling of concurrent and distributed systems, process calculi
are often used. The best suited calculus to model service-oriented self-adaptive
systems is the π-calculus [105], as it specifically allows the modeller to dynam-
ically create new communication channels. Although the π-calculus has been
used to formally describe service-oriented systems [59, 102] and business pro-
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cesses, it lacks the expressiveness of attributed and typed graph-transformation
systems. Nevertheless, the π-calculus is well suited to check systems for bi-
similarity and refinement [57]. Approaches that allow the model checking of
π-calculus specifications are available, but typically only allow the verification
of a restricted subset of the π-calculus. Yang et al. describe an approach to
model check π-calculus specifications with logic programming [133], but they
had to forbid processes that do not contain finite replication or the parallel
composition of processes. The Mobility Workbench [130] allows only a finite
number of processes too.

Baldan et al. present a semantic framework [31] for the specification of open
processes. Their framework is based on the π-calculus and distinguishes two
categories of processes: components and coordinators, where a component is a
closed process, i.e. it is specified without any unbound variables, and a coordi-
nator is a process that has unbound variables, which are then bound to com-
ponents. Hence, a coordinator is comparable to a collaboration in our terms.
What is missing from the work of Baldan et al. is the decoupling of different
coordinators, which is a key element of our approach. Hence, it is not guaran-
teed that the interplay of two coordinators which are combined over a common
process behaves correctly. However, the semantic framework allows us to check
bi-similarity for such open systems. Although bisimulation is hard to check
and an important feature for process calculi, it does not guarantee any safety
properties. Hence, the capability to verify the system is still missing.

In the context of process-based formalisms and the π-calculus, several approaches
have been developed that support type-systems for processes and are used to
ensure correctness through the correctness of the type-systems. In [89], Igarashi
and Kobayashi present a framework for the specification of systems of be-
havioural types for the π-calculus. The basic idea of their approach is express
types as abstract processes. Together with a less expressive calculus that is used
for the abstract processes, this allows them to verify more complex π-calculus
specifications. As the process calculus for the abstract processes does not sup-
port an operator for the creation of new channels, the approach does not reach
the expressiveness of our approach. The use of behavioural types for service
contracts is advocated by Meredith et al. [104], but without any contributions
for their verification.

The problem of deciding safety properties for infinite state π-calculus systems
with the help of behavioural types is addressed in [24]. The basic idea in this
work is that under certain conditions a process satisfies a property φ exactly
if the process type satisfies φ. The types, however, are CCS-terms but not
π-calculus processes, thus the verification of properties for the types is easier.
Properties are given through a logic called spatial logic, which makes it possible
to encode process typical properties, but which is not suited to directly encode
structural properties of systems.

A term rewriting approach for adaptive systems is presented in [44]. The au-
thors use the term rewriting tool robotic systems. The presented approach relies
on a layered architecture and term rewriting theories to specify the adaptation.
Further, a set of tools for the simulation and static model-checking of MAUDE
specifications is shown, that can support the development of adaptive systems.
Compared with our approach, [44] does not support evolution and the clear dis-
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tinction of types and instances, in addition to which the behavioural subtyping
capability is missing.

In [125], the authors present an approach for the formal verification of hierarchi-
cal CSP specifications including time. In the input model used, a CSP process
is equipped with a clock that starts counting when the process becomes active,
and the process has to be terminated before the clock runs out. For the ver-
ification, the authors compute finite-state abstractions which they could show
were time-abstract bisimilar. However, as with most process-based approaches,
[125] fails to model and verify structural dynamics of systems. The evolution of
systems isn’t captured by this approach either.

In their work, Ramos et al. [115] discuss compatibility notions for components.
They use CSP to express that two components are compatible with each other.
The problem they solve exists in a different setting than the one we have in
our approach. We develop the component types in accordance with the roles
of collaboration types. Compatibility is then given through refinement. On the
other hand, we do not check any lifeness properties of our specifications and
thus cannot guarantee that a desired behaviour emerges.

In [81], Gardara et al. presented an approach for the decompositional verifi-
cation of Calculus of Communicating Systems (CCS) processes. The systems
therefore have to be decomposed into modules, which are specified as CCS pro-
cesses. The modules can be separately verified and the verification results can
be combined as long as the system follows some structural constraints. System
evolution is supported through the possibility of updating modules. In com-
parison with our work, they follow a bottom-up approach for the verification.
Hence, the system has to be known in advance, whereas our approach — con-
cerning the verification — is more like a top-down approach. In our approach,
the verification is performed at the type-level, whereas in [81] the instance-level
is checked. Furthermore, reconfiguration is not addressed.

In [58] Dam and Fredlund present an approach to verify open and distributed
systems. Their approach is mainly based on the π-calculus as formal language
and does not directly provide a tool for automatic verification; however, the
authors state that certain steps of the verification could be automated. Dam and
Fredlund describe process networks with changing communication structures.
But although their approach allows for compositional reasoning, the evolution
of the system and reuse of already verified system parts is not part of their work.

Recently Fantechi et al. [66] presented a verification technique based on branch-
ing time logic. The authors used a process calculus dedicated to the orchestra-
tion of web-services as underlying formalism. However, although the approach
provides a good formal support for the verification of service-oriented systems,
the structural dynamics and evolution are not covered.

Real-Time Maude [108], which is based on rewriting logics, is the only approach
we are aware of covering structural changes as well as time. The tool supports
the simulation of a single behaviour of the system as well as bounded model
checking of the complete state space, if it is finite.
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9.2.4 Graph transformation Systems

Ciraci et al. [54] describe an approach that simulates the dynamics in the call-
graph of object-oriented programs using the graph-transformation tool GROOVE.
Based on the state space that is generated by GROOVE, they are able to check
simple properties. Obviously, this approach is not suited to verifying the class
of self-adaptive service-oriented systems that we are investigating in this thesis.

There are only first attempts that address the verification of infinite state sys-
tems with dynamic structure: in [32, 33] graph-transformation systems are
transformed into a finite structure, called a Petri graph which consists of a
graph and a Petri net, each of which can be analysed with existing tools for the
analysis of Petri nets. For infinite systems, the authors suggest an approxima-
tion. The approach is not appropriate for the verification of the coordination of
autonomous vehicles even without time, because it requires an initial configura-
tion and the formalism is rather restricted, e.g. , rules must not delete anything
and do not support NACs.

An approach for the verification of possibly infinite state graph transformation
systems is described by Bauer et al. [37]. They use a technique called neigh-
bourhood abstraction to create a finite set of abstract graphs. The properties
they can verify using this technique have to be specified in a special logic, which
can mainly express path expressions. The logic formulae are evaluated on single
nodes of an abstract graph. The authors state that, due to the abstraction tech-
nique, only a restricted variant of negative application conditions can be sup-
ported. The authors approach shares with our approach the commonality that
graphs are used to represent a potentially infinite number of concretisations.
In their approach, these are abstract graphs, whereas our Invariant Checker
approach uses graph patterns for this purpose. The approach is further dif-
ferentiated from ours Invariant Checker as it relies on model-checking, which
requires a reachability analysis. Although, the neighbourhood abstraction helps
here, the correct degree of abstraction still has to be identified and even if the
abstract GTS are finite, they still might be extremely large and even too large.
The authors have shown in [118] that their neighbourhood abstraction can be
implemented.

An approach which has been successfully applied to verify service-oriented sys-
tems [35, 36] is that of Varró et al. It transforms visual models based on graph
theory into a model-checker specific input [129]. A more direct approach is
GROOVE [117] by Rensink, where the checking works directly with the graphs
and graph transformations. DynAlloy [75] extends Alloy [90] in such a way
that changing structures can be modelled and analysed. For operations and
required properties in the form of logical formulae, it can be checked whether
given properties are operational invariants of the system.

Partner graph grammars are employed in [38] to check topological properties
of the platoon building. The partner abstraction is employed to compute over-
approximations of the set of reachable configurations using abstract interpre-
tation. However, the supported partner graph grammars restrict not only the
model but also the properties, which can be addressed a priori. A further ap-
proach that facilitates abstractions is [76]. Gadducci et al. present a framework
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that supports over- and underapproximation of counterpart models. Although,
this approach is solving the problem of scalability, it is not applicable to the
class of SoS, as evolution is not directly supported and thus the system has to
be verified again for each change that is made to it.

In [62] Ehrig et al. present an approach for the analysis of self-healing systems,
modelled through algebraic graph transformations. In this approach, the sys-
tem’s operational behaviour is split across normal and repair rules. Further
environment rules model the system’s environment and can lead to so-called
failure states. The authors check that all possible failure states can be tack-
led with an appropriate repair rule and hence transformed into a normal state.
In contrast to our approach, the correct behaviour of the normal rules is not
checked. Further, the approach does not allow for the evolution of the self-
healing system.

Wehrheim, Steenken and Woinsch present in [131, 123] an approach for mod-
elchecking of a graph-transformation system. The problem of a possible infinite
state system is tackled by an abstraction from the actual system state through
shape graphs. However, the approach relies on one specific system that could be
verified and does not verify a static property of the system’s rules, independent
of the system’s initial state.

An approach that also uses refinement to guarantee behaviour preservation is
that of Heckel and Thöne [83]. The notion of refinement they use is similar to our
approach, as they also use an abstraction function to map concrete and abstract
graphs. The mapping is defined as the removal of all nodes and edges whose type
is not contained in the abstract type-graph. In our approach the abstraction
function is implicitly given, whereas in that of Heckel and Thöne the abstraction
function could be arbitrarily defined. The most prominent difference between
the two ways of refining graph- transformation systems lies in the definition and
the checking of a behaviour preserving refinement. Our approach makes some
syntactical restrictions on the refined rules. Heckel and Thöne don’t have such
a requirement. On the one hand, this allows them to relate two different GTS
with each other without many restrictions. On the other hand, this requires
that they have to use a model-checker that verifies for each transition in the
abstract system that in the concrete system a correlated path exists. Further,
such an approach complicates the check whether a urgent rule is always applied.
Preemption of graph-transformation rules isn’t supported either.

Kallel et al. provide with MEIDYA [92] an approach to verify invariants in
dynamic software architectures. The software engineer has to model the software
architecture together with a set of reconfiguration operations, which are graph-
transformation rules, and has to provide a set of invariants that the software
architecture has to satisfy. They use the formal language Z with an interactive
theorem prover to verify that no reconfiguration rule violates the invariants. To
enforce correct reconfigurations at run-time, too, they employ aspect-oriented
modelling. In contrast to our work, the verification of the invariants is not fully
automated; however this might allow them to verify more expressive invariants.
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9.3 Summary

From what we have seen, the modelling approach using collaborations and roles
is a standard technique that has been used by several other proposals and papers
before. However, the fact that our collaboration types are designed in a way that
allows their participants — i.e. the components implementing the collaboration
types’ roles — to dynamically join and leave an instance makes our approach
unique.

Concerning the verification, a lot of the graph-transformation based approaches,
that are suitable for the verification of infinite-state systems use abstraction
to tackle the complexity. Whether abstraction is successful in reducing the
state space to a finite one that still allows us to verify the required properties
depends on the system under verification. In principle, the π-calculus and its
derivates are able to express the structural dynamics occurring in SoS. However,
no approach exists that allows us to verify the π-calculus’ full expressiveness.
The term-rewriting based approaches were all restricted to finite state space
systems.

The last critical requirement the presented approaches had to fulfil is evolution
of the systems. Whereas most of the modelling approaches we have presented
could be easily extended to also support evolution, the verification approaches all
require the renewed verification of the complete changed system. This, however,
makes the approaches, even if they have the required expressiveness, inapplicable
to systems of systems that evolve often and in an uncoordinated way.
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Chapter 10

Conclusion

In this thesis we have presented a modelling and verification approach for sys-
tems of systems. In a first step we characterised SoS through a set of different
requirements comprising the aspects of modelling, verification and evolution.
Summarising, our requirements concentrate on the facts that SoS have a high
degree of structural dynamics, are open systems without clearly known bound-
aries and are subject to uncoordinated evolution of their constituent systems.
Additionally, we have identified common scenarios that are typical for these
systems and that describe the possible changes that can happen within them.

Before presenting our own approach, we first discussed the state-of-the-art mod-
elling standard SoaML, which is promoted by the OMG. After having identi-
fied SoaML’s weaknesses, we were able to overcome these and present our own
modelling approach called rigSoaML. rigSoaML reuses SoaML’s basic concepts
such as collaborations, roles and components, but enhances them with a new
behaviour specification, a well-defined inheritance relationship and evolution
diagrams. The behaviour specification is given through StoryPatterns, a com-
pact notation for graph-transformation rules. Inheritance between the different
entities of our modelling approach, such as components, collaborations, and
roles, has been formally defined as a refinement relationship. Evolution di-
agrams point out which collaborations, components and roles specialise each
other. Formally, these concepts are mapped to typed and attributed graphs
and sets of graph-transformation rules. We also made the properties that have
to be fulfilled first-class citizens for rigSoaML, and hence they have to be given
for each collaboration and component type. This approach allows us to give a
comprehensive specification of open service-oriented systems of systems.

Our modelling approach rigSoaML allows us to verify SoS in a reasonably ef-
ficient way. Thereby, the developed verification concept is twofold. At the
conceptual level we have described a verification scheme that gives us the obli-
gations we have to check at the concrete level. The verification scheme assumes
that two rule-sets refine each other and that the collaboration and component
types satisfy their properties. Under these assumptions, we were able to show
that the overall system is safe. At the concrete level, we have proved that the
rule-sets do refine each other and that they met the safety properties. There-
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fore, we presented a notion of refinement for a set of graph-transformation rules
and developed a tool — the Invariant Checker — that is capable of verifying
inductive invariants for graph-transformation systems.

Finally, we have evaluated our modelling and verification technique using two
application examples, showing that our approach satisfies the requirements we
identified for self-adaptive service-oriented systems.

10.1 Outlook

This thesis provides answers in a complex field of computer science and at the
same time raises new questions. Concerning the modelling aspect, it would
be beneficial to raise the modelling language’s expressiveness. This could be
achieved through the introduction of nested application conditions to StoryPat-
terns, which would — to some extent — allow us to make the modelling more
intuitive. However, a stronger modelling language always has to be supported by
a verification technique that can verify the more expressive language. For graph
transformation, it has already been shown that arbitrary combinations of nested
application conditions are as expressive as first order logic on graphs [113], and
hence verification for such languages is generally not possible [56]. The mod-
elling could further be supported by a comprehensive modelling environment
that allows the developer to specify abstract and concrete component and col-
laboration types. The modelling environment then automatically performs the
different required checks, such as verification of the safety properties, refinement
check and that the preempt and urgent predicates are satisfied.

Concerning the verification, we will complete the filter chain for the verification
of non-linear hybrid GTS (see. Section 7.3) such that the manual invocation of
PHAVer is not necessary any longer. Additionally, we will implement the missing
pre-processing step that is required for the check of the preempt and urgent
predicates. The Invariant Checker approach can under some conditions return
false negatives, i.e. counterexamples against the system’s correctness, which are
actually not counterexamples. This, to some extent, happens due to too little
context being available in the source and target graph patterns. Actually, only
the necessary information for the combination of a graph- transformation rule
and a forbidden graph pattern are available for the algorithm. This can yield
a situation where the algorithm returns false negatives, as e.g. a preempting
graph-transformation rule could not be applied to the source graph pattern.
In Section 6.3, we have already argued that it is possible to enrich the source
and the target graph pattern with additional information that is available from
the system specification. Further, the Invariant Checker algorithm is currently
only able to verify the absence of forbidden patterns, but it might be useful as
well to have the capabilities to verify that some patterns are preserved by a set
of graph-transformation rules. E.g. for a token-ring protocol, we can currently
verify that no participants hold two tokens at the same time, but the equally
important statement that one token always exists cannot be verified.

From the scenarios we introduced in Section 2.5, a few are not yet supported by
our approach. These are the deletion or removal of collaboration and component
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types from the system specification and the update of component types. These
three scenarios are not yet supported, as we have no possibility of knowing which
instances or subtype is still using the specifications. One possible solution to
this problem could be the introduction of a lease model for the specifications.
Each instance has to lease all the specifications (including the super-types) it
uses for a given period of time. If this period has passed, the instance must
no longer use the specification but has to renew the lease. If a specification is
marked for removal, the lease to use this specification could be renewed. After
the last lease has run out, the specification could be safely removed. In principle,
updates of component types could be handled similarly; however, at least for
refined component types this might not be sufficient as the refinement has to be
rechecked after the update. Thus, an update of component types will probably
only be possible for concrete component types, which must not be refined.

This thesis discussed the problems that arise when developing service-oriented
systems of systems at a conceptual and theoretical level. For the implementation
of these systems, a model-driven engineering approach has to be established that
does not invalidate the verification results. Especially for hybrid systems, this
becomes an issue, as timing constraints that are encoded in the system have
to be met by the implementation. First attempts have been made to compute
the worst case execution time (WCET) for StoryPatterns [126]. However, this
approach mainly targets the local execution of StoryPattern, whereas for our
system class at least the network delay has to be considered too.

In this thesis, we have shown a way to verify SoS against a formal specification.
However, it still has to be ensured that, at run-time, components which were
newly introduced into the system fulfil the required properties. Solutions for
this problem include the introduction of certificates, which allow us to easily
check that a component type or collaboration type has been successfully veri-
fied. Another solution is proof-carrying code — i.e. the newly added artifacts
provide their correctness proof upon request. Further, an infrastructure sim-
ilar to Minsky’s law governed interaction [106, 120] could be employed. One
possible implementation could be a middleware at which components have to
register. The registration comprises, among other things, a behaviour specifi-
cation based on StoryPatterns. The middleware could then verify that these
StoryPatterns conform with the system specification and further ensure that
the components’ actions all conform with the registered behaviour. Beside the
work of Minsky et al. other approaches concerning the run-time checking of
service-oriented systems exist. Similar to Minsky, Coronato and De Pietro [55]
developed another middleware-based approach. In their approach, the system
is constantly monitored and repair strategies are enacted whenever an error oc-
curs. For service-oriented systems, Ghezzi and Guinea [78] advocate the use
of pre- and post-conditions for the invocation of external services within an
orchestration.
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Appendix A

Complete Examples

In this chapter we will give an overview of the complete application examples.
Obviously, some of the figures we will show here, have already been shown
throughout the course of this thesis.

A.1 RailCab System

A.1.1 Timed DistanceCoordination collaboration type

Figure A.1: Ontology for the time RailCab example

Figure A.2: The Shuttle role’s moveDC rule



A.1. RAILCAB SYSTEM

Figure A.3: The Shuttle role’s moveSimple rule

Figure A.4: The Shuttle role’s createDc rule

Figure A.5: The Shuttle role’s destroyDC rule

Figure A.6: The noDc property

Figure A.7: The collision property
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A.1. RAILCAB SYSTEM

A.1.2 DistanceCoordination collaboration type

Figure A.8: Ontology used for the RailCab application example - Figure 8.12

Figure A.9: The DistanceCoordination collaboration type’s createDC rule Fig-
ure 8.13

Figure A.10: move rule - Figure 8.14(a)
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A.1. RAILCAB SYSTEM

Figure A.11: moveDC rule - Figure 8.14(b)

Figure A.12: The accel rule - Figure 8.16(a)

Figure A.13: The brake rule - Figure 8.16(b)

Figure A.14: The passPos rule
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A.1. RAILCAB SYSTEM

Figure A.15: The destroyDC rule

Figure A.16: The noDC forbidden property - Figure 8.15(a)

Figure A.17: The collision forbidden property - Figure 8.15(b)

Figure A.18: The atTwoTracks forbidden property
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A.1. RAILCAB SYSTEM

Figure A.19: The twoIsAt forbidden property

A.1.3 ShuttleImpl component type

Figure A.20: Ontology used for the RailCab application example - Figure 8.12

Figure A.21: The DistanceCoordination collaboration type’s createDC rule Fig-
ure 8.13
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A.1. RAILCAB SYSTEM

Figure A.22: move rule - Figure 8.14(a)

Figure A.23: moveDC rule - Figure 8.14(b)

Figure A.24: The accel rule - Figure 8.16(a)

Figure A.25: The brake rule - Figure 8.16(b)
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A.2. SUPPLY CHAIN SYSTEM

Figure A.26: The passPos rule

Figure A.27: The destroyDC rule

A.2 Supply Chain System

A.2.1 Contract Collaboration

Figure A.28: The ContractCollaboration’s class-diagram CDCC
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A.2. SUPPLY CHAIN SYSTEM

Figure A.29: createCollab rule

Figure A.30: createContract rule - also in Figure 4.4

Figure A.31: deleteContract rule

Figure A.32: destroyCollab rule
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A.2. SUPPLY CHAIN SYSTEM

Figure A.33: notTwoContracts safety property - also in Figure 4.3

A.2.2 Abstract Factory

Figure A.34: The AbstrFactory’s class diagram CDAFac

Figure A.35: custRecall safety property

Figure A.36: supRecall safety property

Figure A.37: noCustContract safety property
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A.2. SUPPLY CHAIN SYSTEM

A.2.3 RequestOffer Collaboration

Figure A.38: The RequestOfferCollaboration’s class diagram CDROC

Figure A.39: createROC rule

Figure A.40: createRequest rule
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A.2. SUPPLY CHAIN SYSTEM

Figure A.41: makeOffer rule

Figure A.42: createContract rule

Figure A.43: deleteContract rule
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A.2. SUPPLY CHAIN SYSTEM

Figure A.44: destroyROC rule

Figure A.45: noOfandContract safety property

Figure A.46: noOfandRequest safety property
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A.2. SUPPLY CHAIN SYSTEM

Figure A.47: noTwoContracts safety property

Figure A.48: noTwoOffers safety property

Figure A.49: noTwoRequests safety property
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A.2. SUPPLY CHAIN SYSTEM

A.2.4 Factory

Figure A.50: The Factory’s class diagram CDFac

Figure A.51: createCollab rule

Figure A.52: sendRequest rule
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A.2. SUPPLY CHAIN SYSTEM

Figure A.53: makeOffer rule. Also in Figure 8.3

Figure A.54: createContract rule

Figure A.55: createContract2 rule
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A.2. SUPPLY CHAIN SYSTEM

Figure A.56: deleteContract rule for the Customer role

Figure A.57: deleteOtherContract rule for the Customer role

Figure A.58: deleteContract rule for the Supplier role
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A.2. SUPPLY CHAIN SYSTEM

Figure A.59: destroyCollab rule for the Customer role

Figure A.60: destroyCollab rule for the Supplier role

Figure A.61: comp2Marker safety property
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A.2. SUPPLY CHAIN SYSTEM

Figure A.62: cust2Con safety property

Figure A.63: custLateRecall safety property

Figure A.64: markerNoCon safety property

Figure A.65: ofButNoMarker safety property

Figure A.66: offerButNoCust safety property

Figure A.67: sup2Comp safety property
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A.2. SUPPLY CHAIN SYSTEM

Figure A.68: supConwithouthCustCon safety property. See also Figure 8.2

Figure A.69: supEarlyRecall safety property
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Appendix B

Formal Foundations

B.1 Graphs

Definition B.1 (Type-graph). A type-graph T is a labeled and directed graph,
given as a tupel T = (V,E, lV , lE, s, t) where V is a set of vertexes,E ⊆ V × V
is a set of directed edges, lV : V 7→ A is a vertex labeling function, lE : E 7→ A
is an edge labeling function, s, t : E 7→ V returns for each edge it’s source and
target vertex, respectively. A is a globally defined alphabet holding all possible
types for nodes and edges.

A type-graph T is said to be well-defined if the types assigned to the vertexes
and edges are pair-wise disjoint.

Definition B.2 (Typed Graph). A typed graph G is given as a tupel G =
(V,E, lV , lE , s, t, T ) where V is a set of vertexes, E ⊆ V ×V is a set of directed
edges, lV : V 7→ VT assigns each vertex in V a type in the type-graph T ,LE :
E 7→ VE assigns each edge in E a type in the type-graph T ,s, t : E 7→ V returns
for each edge it’s source and target vertex, respectively, and T is a type-graph.

A graph G conforms to it’s type-graph T iff:

∀e : e ∈ E =⇒ lV (s(e)) = s(lE(e)) ∧ lV (t(e)) = t(lE(e))

A graph G′ is called a subgraph of G iff, V ′ ⊆ V and E′ ⊆ E and is denoted as
G′ ≤ G. We write G′ < G ff V ′ ⊂ V or E′ ⊂ E.

The set of all graphs is denoted as G

In some cases it is useful to restrict a graph G, typed over type-graph T , to
a set of nodes and edges. This can be done by defining a type-graph T ′ ≤ T

and removing all elements from G that are not typed over elements contained
in T ′. We write this as G′ = G|T ′ . Where G′ is given as follows: V ′ = {v|v ∈
V ∧ lV (v) ∈ VT ′} and E′ = {e|e ∈ E ∧ lE(e) ∈ ET ′}

Definition B.3 (Graph morphism). A graph morphism m = (mv,me) is a
structure and type preserving mapping between two graphs G,H ∈ G with mv :



B.2. GRAPH TRANSFORMATIONS

VG 7→ VH and me : EG 7→ EH such that:

∀(v, v′) :(v, v′) ∈ mv → lv(v) = lv(v′)

∀(e, e′) :(e, e′) ∈ me → le(e) = le(e′) ∧ (s(e), s(e′)) ∈ mv

∧ (t(e), t(e′)) ∈ mv

A morphism between G and H is denoted as G
m
−→ H or G → H for short.

If the functions mv,me are injective functions we say that m is an injective

morphism and denote this as G →֒ H or G
m
→֒ H if we want to explicitly name

the morphism. If the morphism m consists of two bijective functions, we say
that G and H are isomorphic to each other. We denote two isomorphic graphs
G and H as G ≈ H, if we further want to stress the isomorphism we make it
explicitly as G ≈m H. m is then called an isomorphism.

A subgraph isomorphism between two graph G,H ∈ G exists if there is a subgraph
G′ ≤ G and a isomorphism m, such that G′ ≈m H. A subgraph isomorphism is
denoted as G .m H

Definition B.4 (Graph constraint). A graph constraint C is given as C =
(∃P,

∧

i∈I Ni) where P and each Ni for i ∈ I is a graph with P < Ni and

P
ni−→ Ni. A graph G satisfies a constraint C iff

∃q : P
q
−→ G

6 ∃q′
i : Ni

q′
i−→ G such that q′

i ◦ ni = q ∀i ∈ I

We shall denote G |= C if a graph G satisfies a constraint C.

The above definition of graph constraints conforms to the widely used defini-
tion that is given in [63] for application conditions with the difference that our
definition does not allow for nesting of graph constraints.

B.2 Graph Transformations

Definition B.5 (Graph Transformation Rule). A graph transformation rule r
is defined as r = (L,R,K, l, r, A−) where: L,R,K ∈ G are three graphs, that are
typed over the same type graph, l = (lv, le), r = (rv, re) are total and injective

graph isomorphism, with L
l
←− K and K

r
−→ R and A− is a set of graphs encoding

negative application conditions (NACs) with Ni ∈ A−, L
ni

→֒ Ni and L ≤ Ni. L
and R are called left- and right-hand-side, respectively, and K is called interface
graph. We also denote a graph transformation rule as L ← K → R. The rule
deletes all elements that are in L but not in ran(l) and creates elements that
are in R but not in ran(r).

Definition B.6 (Applicability of Graph Rules). A graph rule L
l
←− K

r
−→ R

is applicable to a graph G if we can find a match L
m
−→ G which satisfies the

dangling condition: all edges e adjacent to the image mv(v) of a deleted node
v are also part of the image of m, e ∈ ran(m). The identification condition
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meaning ∀e1, e2 : e1, e2 ∈ L ∧ e1 6= e2 → m(e1) 6= m(e2), i.e. m has to be
injective.

Ni

qi

6=

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵

L

m

��

ni

``❆❆❆❆❆❆❆❆
K

l
oo r //

d

��

R

m∗

��
G D

l∗
oo r∗

// H

And for each Ni ∈ A− we must not find an injective morphism qi such that
ni ◦ qi = m. The applicability of a graph transformation rule r can be encoded
as a graph constraint Appl(r) such that the rule r is applicable in graph G iff
G |= Appl(r)1.

Definition B.7 (Graph Transformation Systems). A graph transformation
system (GTS) S is given as a tuple S = (G0, R, p, T ) where G0 ∈ G is the
initial graph, R is a set of graph transformation rules, p : R 7→ R is a transitive
function that indicates preempting rules, and T is a type-graph such that G0 and
all rules in R are typed over T .

Definition B.8 (Semantics of GTS). The semantics of a GTS S is given
through a labeled transition system (LTS) LS = (S0, S, δ) where S is a set of
states, S0 ∈ S is the system’s initial state and δ : S × S is the LTS’ transition
relation. Each state in S we assign a graph, such that G0 is assigned to S0 and
the pair (S, T ) ∈ δ if there exists a rule r ∈ R and a morphism m such that

GS
r,m
⇒ GT and it does not exists a rule r′ and morphism m′ with (r′, r) ∈ p and

GS
r′,m′

⇒ GT ′ . Where GS and GT refer to the graphs that are assigned the sates
S and T , respectively.

B.3 Hybrid Graph Transformations

Hybrid graph transformations differ from the variant that has been introduced
above in that they not only specify discrete behavior but also have a continuous
part. The continuous part is typically modelled through a set of attributes and
laws that describe the change of the attributes’ valuations over time. At the
level of type-graphs we will specify the attributes that are assigned to any node
of a given type. At graph level we assign a valuation to all pairs of nodes and
attributes. Graph transformation rules will be enriched with a jump condition,
that constrains the attribute valuations for which the graph transformation rule
will be enabled and allows us to encode an update of the attributes’ valuation.

Before we can define attributed type graphs and attributed graphs we have to
introduce A a global set of attributes and

.

A the first derivation over the time
of A. The attribute’s derivation is controlled by laws. These laws can change
depending on the overall system’s behavior. Therefore we will model the laws

1The applicability constraint for a graph transformation rule R : L ← K → R is basi-
cally given through the rule’s left-hand-side L, the rule’s negative application conditions and
additional NACs that encode the dangling condition cf. [65]
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through special nodes that are called control modes. Control modes can be
written, i.e. created and deleted, and read, i.e. matched and forbidden, by
hybrid graph transformation rules. An alternative the introduction of control
modes, would have been the use of a special mode attribute but then the laws
had to be also dependent of the mode attribute.

Definition B.9 (Attributed Type Graphs). An attributed type graph TGA
is given as a tuple TGA = (V,E, lv, le, s, t, Attr, CM) where V,E, lv, le, s, t are
defined as in Definition B.1 and Attr : A 7→ V is a partial function that assigns
the global set of attributes to the nodes of the type graph and CM ⊂ V is a
special set of nodes called control modes. Each control mode is only allowed to
be adjacent to exactly one other node. Further, each control mode cm ∈ CM
has a function fcm : R≥0 7→ (Av 7→ R) where v is the node adjacent to cm and
Av = {a|a ∈ A ∧Attr(a) = v}.

Obviously, in the above definition the function fcm is a compact representation
for a differential equation. For any positive real number r ∈ R

≥0 the function
has a mapping to an attribute valuation Av 7→ R. The above definition of
attributed type graphs is somehow related to the definition of hybrid automata
by Alur et al. [26]. The difference clearly is that the number of attributes or
variables, as [26] calls them, is not fixed but depends on the nodes that are
available in the actual graph. The fact that in attributed type graphs a node
can have different control modes (also only one at a time) is not an advantage
compared to hybrid automata as this is supported through different activities
(cf. [26]).

Definition B.10 (Attributed Graph). An attributed graph is a graph that
is additionally equipped with a valuation β. The attributed and typed graph
G = (V,E, lV , lE , s, t, T, β) is defined as a graph introduced in Definition B.2
and has a valuation β : A× V 7→ R such that

∀a, v, r : ((a, v), r) ∈ β ∧ a ∈ Attr ∧ v ∈ V ∧ r ∈ R =⇒ AttrT (a) = lV (v)

and

∀a, v : a ∈ A ∧ v ∈ V ∧Attrt(a) = lV (v) =⇒ ∃r : r ∈ R ∧ β((a, v)) = r

We say an attributed graph is well-formed if each node v ∈ V with lV (v) being
adjacent to a set of nodes C with C ⊂ CMT is adjacent to exactly one node v′

with lV (v′) ∈ C.

From an attributed graph G we can derive the attributed graph G′ = G⊕ t with
t ∈ R which differs from G only in the valuation β′. In β′ for each node v ∈ V
being adjacent to a control mode c the valuation for the variable subset Av is
replaced by the valuation fc(t).We use (G, β) as a shorthand notation for an
attributed graph if it’s single constituents are not important for understanding.

The above definition of attributed graphs gives us graphs that are enriched with
a valuation function that assigns each valid pair of nodes and attributes exactly
one value. A pair of attributed and nodes is valid if and only if the graph’s
type-graph connects the node’s type with the attribute. Further the valuation
has to be defined for all valid pairs of nodes and attributes that occur in the
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attributed graph. In the further we will use v.a as a shorthand reference to the
attribute of type a ∈ A that is connected to the node v.

Definition B.11 (Hybrid Graph Transformation Rule). A hybrid graph trans-
formation rule P = (L,R,K, l, r, A−, φ) where the first constituents of the tuple
are defined as in Definition B.5 and φ : (A× (VL ∪ VR) 7→ R) 7→ B assigns the
valuation pairs for the left- and right-hand side of the rule a boolean value.

The application of a hybrid graph transformation rule is defined as follows:

Definition B.12 (Hybrid Graph Transformation Rule Application). A hybrid
graph transformation rule P = (L,R,K, l, r, A−, φ) is applicable to the attributed
graphs G,H iff the (discrete) graph transformation rule P ′ = (L,R,K, l, r, A−)

is applicable to G
P ′,m
⇒ H and the graphs valuations in the image of m and m∗

satisfy φ
φ(βmG ∪ β

m∗

H ) ≡ true

Where βm denotes the valuations of the attributed graphs G and H, respectively
that are translated over the morphism m.

Given the constructs we have defined above we can now introduce in complete
analogy to the discrete scenario hybrid graph transformation systems and define
their semantics. A hybrid graph transformation system (HGTS) is defined as
a (discrete) GTS, but now the initial graph is an attributed graph, the rules
are hybrid graph transformation rules and in addition to the priorities we also
introduce the concept of urgent rules. Urgent rules in contrast to non-urgent
rules have to be applied, once they are enabled.

Definition B.13 (Hybrid Graph Transformation Systems). A hybrid graph
transformation systems (HGTS) S = (G0, R, p, T,Ru) is given as an initial
attributed graph G0, a set of hybrid graph transformation rules R, a transitive
preemption function p : R 7→ R, an attributed type graph T and a set of urgent
rules Ru ⊆ R.

The semantics of an HGTS has to be defined differently compared to a discrete
GTS, as we now have to consider the continuous changes of the attributes’
valuations over the time.

Definition B.14 (Semantics of HGTS). The semantics of a hybrid graph
transformation systems S are given through a labeled transition systems L =
(S0, S, δ) where S is a set of states, each of them corresponding to a graph GS,
S0 ∈ S is the LTS’ initial state and corresponds to G0. The transition relation
δ ⊆ S × R × S ∪ S × R × S is given as (SP , r, SQ) ∈ δ with ST , SQ ∈ S and

r ∈ R iff ∃m such that GT
r,m
⇒ GQ and 6 ∃r′,m′ with p(r′, r) and GT

r′,m′

⇒ G′
Q.

(SP , t, SQ) ∈ δ with SP , SQ ∈ S and t ∈ R iff GQ = GS ⊕ t and if 6 ∃0 ≤ t′ < t

and ru ∈ Ru such that ru is applicable in Gs ⊕ t′.
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Appendix C

The Invariant Checker’s

Input Model

In Chapter 7 we introduced our tool — the Invariant Checker — we use to
verify safety properties in GTS and HGTS. The verification algorithm have been
introduced in Section 6.1 at an abstract level and in Section 7.2 and following
we described the implementation aspects. In this chapter we will focus on the
input model the Invariant Checker expects and how GTS including forbidden
pattern are specified in that input model.

Figure C.1: SaMiGra’s graph package

The Invariant Checker can verify GTS that are specified using the SaMiGra



meta-model. SaMiGra is a general purpose meta-model for the specification of
graph transformation based systems. It is implemented using EMF1. SaMiGra
consists of several packages. The most central package is the graph package
that allows to specify graphs using nodes and edges. Graphs are typed over
type-graphs. A type-graph mainly consists of NodeTypes and EdgeTypes. Ed-
geTypes can be equipped with source- and target-cardinalities. NodeTypes can
have AttributeTypes for which we distinguish between discrete AttributeTypes
and ContAttrTypes for continuous attributes. For each AttributeType a Sort
and for each continuous attributes also a derivation has to be specified. The
Sorts are not predefined and the user can model them together with a fitting
algebra and signature2. However for the typical needs a standard-signature and
-algebra is part of SaMiGra and can be used from any SaMiGra model. Although
control modes can be specified in SaMiGra (simply specifying a node), the laws
for the attributes’ timely derivation can not be specified using SaMiGra, yet.

Figure C.2: SaMiGra’s type-graph package

SaMiGra also allows the specification of graph transformation rules. A graph
transformation rule is specified as a left- and a right hand side, whereas the LHS
can contain DeletedNodes and PreservedNodes and the RHS can contain Creat-
edNodes and PreservedNodes (same holds for edges). For a PreservedNode or a
PreservedEdge the corresponding element in the graph rule’s other side has to be
specified. This directly gives us the morphism between a graph rule’s two sides.
The type of nodes and edges is mandatory. In conformance with Definition B.5
a graph transformation rule can be augmented with NACs. In SaMiGra NACs
are encoded as general nested graph conditions, but the Invariant Checker cur-
rently only supports NACs. An application condition is considered a NAC if it
is a NegatedCondition, having a nested Quantification, with the quantor being
set to EXISTS, a context graph no further nesting. The the nesting reached it’s
end is modeled through a TerminationCondition.

1http://www.eclipse.org/modeling/emf
2Although it is possible to define custom signatures and algebras, the Invariant Checker

currently does only support the standard-algebra and -signature that are part of the SaMiGra
plug-in.
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Figure C.3: SaMiGra’s rules package

Forbidden properties have to be specified at the type-graph level. This is useful
as their intention is to restrict the instances of the type-graph. Therefore, each
type-graph can have a number of TypeGraphConditions. For TypeGraphCon-
ditions SaMiGra allows the same level of expressiveness as for graph conditions
in graph transformations rules.

A meta-model can be used to express a lots of the different constraints, that
a correct instance model has to fulfill. However, some constraints cannot be
expressed in a meta-model. E.g. the relation between a Node and an Attribute
has to reflected by the corresponding NodeType and AttributeType, or that an
Edge must not connect two Nodes that are children of different Graphs. These
two and a lot more subtle constraints have been specified in a validation plug-in
that can be used to validate SaMiGra-models. An Invariant Checker specific
plug-in checks that only these constructs of SaMiGra are used that the Invariant
Checker understands.
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