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Sicher ist, dass nichts sicher ist.

Selbst das nicht.

Joachim Ringelnatz



Allgemeinverständliche Zusammenfassung

Obwohl Naturgefahren in ihren Ursachen, Erscheinungen und Auswirkungen grundlegend ver-
schieden sind, teilen sie doch viele Gemeinsamkeiten und Herausforderungen, wenn es um
ihre Modellierung geht. Fehlendes Wissen über die zugrunde liegenden Kräfte und deren kom-
plexes Zusammenwirken erschweren die Wahl einer geeigneten Modellstruktur. Hinzu kommen
ungenaue und unvollständige Beobachtungsdaten sowie dem Naturereignis innewohnende Zu-
fallsprozesse. All diese verschiedenen, miteinander interagierende Aspekte von Unsicherheit er-
fordern eine sorgfältige Betrachtung, um fehlerhafte und verharmlosende Einschätzungen von
Naturgefahren zu vermeiden. Dennoch sind deterministische Vorgehensweisen in Gefährdungs-
analysen weit verbreitet.

Bayessche Netze betrachten die Probleme aus wahrscheinlichkeitstheoretischer Sicht und bie-
ten somit eine sinnvolle Alternative zu deterministischen Verfahren. Alle vom Zufall beein-
flussten Größen werden hierbei als Zufallsvariablen angesehen. Die gemeinsame Wahrschein-
lichkeitsverteilung aller Variablen beschreibt das Zusammenwirken der verschiedenen Ein-
flussgrößen und die zugehörige Unsicherheit/Zufälligkeit. Die Abhängigkeitsstrukturen der
Variablen können durch eine grafische Darstellung abgebildet werden. Die Variablen werden
dabei als Knoten in einem Graphen/Netzwerk dargestellt und die (Un-)Abhängigkeiten zwi-
schen den Variablen als (fehlende) Verbindungen zwischen diesen Knoten. Die dargestellten
Unabhängigkeiten veranschaulichen, wie sich die gemeinsame Wahrscheinlichkeitsverteilung in
ein Produkt lokaler, bedingter Wahrscheinlichkeitsverteilungen zerlegen lässt.

Im Verlauf dieser Arbeit werden verschiedene Naturgefahren (Erdbeben, Hochwasser und
Bergstürze) betrachtet und mit Bayesschen Netzen modelliert. Dazu wird jeweils nach der Netz-
werkstruktur gesucht, welche die Abhängigkeiten der Variablen am besten beschreibt. Außer-
dem werden die Parameter der lokalen, bedingten Wahrscheinlichkeitsverteilungen geschätzt,
um das Bayessche Netz und dessen zugehörige gemeinsame Wahrscheinlichkeitsverteilung voll-
ständig zu bestimmen. Die Definition des Bayesschen Netzes kann auf Grundlage von Experten-
wissen erfolgen oder – so wie in dieser Arbeit – anhand von Beobachtungsdaten des zu un-
tersuchenden Naturereignisses. Die hier verwendeten Methoden wählen Netzwerkstruktur und
Parameter so, dass die daraus resultierende Wahrscheinlichkeitsverteilung den beobachteten
Daten eine möglichst große Wahrscheinlichkeit zuspricht. Da dieses Vorgehen keine Experten-
wissen voraussetzt, ist es universell in verschiedenen Gebieten der Gefährdungsanalyse einsetz-
bar.

Trotz umfangreicher Forschung zu diesem Thema ist das Bestimmen von Bayesschen Net-
zen basierend auf Beobachtungsdaten nicht ohne Schwierigkeiten. Typische Herausforderungen
stellen die Handhabung stetiger Variablen und unvollständiger Datensätze dar. Beide Proble-
me werden in dieser Arbeit behandelt. Es werden Lösungsansätze entwickelt und in den An-
wendungsbeispielen eingesetzt. Eine Kernfrage ist hierbei die Komplexität des Algorithmus.
Besonders wenn sowohl stetige Variablen als auch unvollständige Datensätze in Kombination
auftreten, sind effizient arbeitende Verfahren gefragt. Die hierzu in dieser Arbeit entwickelten
Methoden ermöglichen die Verarbeitung von großen Datensätze mit stetigen Variablen und
unvollständigen Beobachtungen und leisten damit einen wichtigen Beitrag für die wahrschein-
lichkeitstheoretische Gefährdungsanalyse.
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Summary

Even though quite different in occurrence and consequences, from a modeling perspective many natural
hazards share similar properties and challenges. Their complex nature as well as lacking knowledge
about their driving forces and potential effects make their analysis demanding: uncertainty about the
modeling framework, inaccurate or incomplete event observations and the intrinsic randomness of the
natural phenomenon add up to different interacting layers of uncertainty, which require a careful han-
dling. Nevertheless deterministic approaches are still widely used in natural hazard assessments, holding
the risk of underestimating the hazard with disastrous effects. The all-round probabilistic framework
of Bayesian networks constitutes an attractive alternative. In contrast to deterministic proceedings,
it treats response variables as well as explanatory variables as random variables making no difference
between input and output variables. Using a graphical representation Bayesian networks encode the de-
pendency relations between the variables in a directed acyclic graph: variables are represented as nodes
and (in-)dependencies between variables as (missing) edges between the nodes. The joint distribution
of all variables can thus be described by decomposing it, according to the depicted independences, into
a product of local conditional probability distributions, which are defined by the parameters of the
Bayesian network.

In the framework of this thesis the Bayesian network approach is applied to different natural hazard
domains (i.e. seismic hazard, flood damage and landslide assessments). Learning the network structure
and parameters from data, Bayesian networks reveal relevant dependency relations between the included
variables and help to gain knowledge about the underlying processes. The problem of Bayesian network
learning is casted in a Bayesian framework, considering the network structure and parameters as random
variables itself and searching for the most likely combination of both, which corresponds to the maximum
a posteriori (MAP score) of their joint distribution given the observed data. Although well studied in
theory the learning of Bayesian networks based on real-world data is usually not straight forward and
requires an adoption of existing algorithms. Typically arising problems are the handling of continuous
variables, incomplete observations and the interaction of both.

Working with continuous distributions requires assumptions about the allowed families of distributions.
To “let the data speak” and avoid wrong assumptions, continuous variables are instead discretized
here, thus allowing for a completely data-driven and distribution-free learning. An extension of the
MAP score, considering the discretization as random variable as well, is developed for an automatic
multivariate discretization, that takes interactions between the variables into account. The discretization
process is nested into the network learning and requires several iterations. Having to face incomplete
observations on top, this may pose a computational burden. Iterative proceedings for missing value
estimation become quickly infeasible. A more efficient albeit approximate method is used instead, es-
timating the missing values based only on the observations of variables directly interacting with the
missing variable. Moreover natural hazard assessments often have a primary interest in a certain target
variable. The discretization learned for this variable does not always have the required resolution for a
good prediction performance. Finer resolutions for (conditional) continuous distributions are achieved
with continuous approximations subsequent to the Bayesian network learning, using kernel density
estimations or mixtures of truncated exponential functions.

All our proceedings are completely data-driven. We thus avoid assumptions that require expert knowl-

edge and instead provide domain independent solutions, that are applicable not only in other natural

hazard assessments, but in a variety of domains struggling with uncertainties.
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CHAPTER

ONE

INTRODUCTION

Earthquakes, tsunamis, flood events, landslides, volcanic eruptions – they all and many other
natural hazards are quite different in their causes and effects, but from a modeling perspective
they share a lot of common properties and challenges. Their underlying processes are complex
and not completely understood. The number of influencing factors is large and their interactions
anything but transparent, which makes an identification of the driving forces and a description
of their single and joint effects demanding. This leads to a variety of model structures suggested
in literature, revealing a great uncertainty about the framework to use. Additionally, the
observations on which the natural hazard analysis is based are often sparse, inaccurate and/or
incomplete, which adds another layer of uncertainty on top. Various sources of uncertainty
accumulate, each either corresponding to a lack of knowledge, the epistemic uncertainty, or
to the intrinsic and irreducible aleatoric uncertainty, which comes about the randomness of
the natural phenomenon under study. Ignoring those uncertainties may have disastrous effects,
since it often leads to an underestimation of the hazard.

Nevertheless deterministic approaches are widely used in natural hazard assessments. Tsunami
early warning systems, e.g, evaluate pre-calculated synthetic databases and pick out the sce-
nario ‘closest’ to the current situation to estimate its hazard (Blaser et al., 2011). Recently
developed models for flood damage assessments (i.e., the FLEMOps+r model) use classifica-
tion approaches, where the event under consideration is assigned to its corresponding class and
the caused damage is estimated by taking the mean damage of all observed events that belong
to the same class (Elmer et al., 2010). In seismic hazard analysis the usage of regression-based
ground motion models is common practice, restricting the model to the chosen functional form,
which is defined based on physical constrains (Kühn et al., 2011). Deterministic approaches
provide usually no information or hardly any inside into the uncertainty related to their esti-
mates, but uncertainty is carrier of information and ignoring it as some sort of error would be
wrong.
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Introduction

Figure 1.1: Illustration of a parent set XPa(i)

of Xi.

P (A,B,C,D,E) = p(E|C,D)p(D)p(C|A,B)p(B)p(A)

Figure 1.2: Example for the decomposition
of the joint distribution according to a DAG.

Directed graphical models (DGMs), in particular Bayesian networks, pose a powerful formalism
to capture and express uncertainties. In recent years they have successfully been employed
in a wide range of earth science applications, including tsunami early warning, e.g. (Blaser
et al., 2011), probabilistic seismic hazard analysis, e.g. (Kühn et al., 2011), and automatic
detection and classification of seismic signals, e.g. (Riggelsen et al., 2007). DGMs treat all
random quantities that pertain to a particular hazard domain as random variables, which are
represented as nodes in a directed acyclic graph (DAG).

In the following random variables are indicated by uppercases (usually Xi), while vectors/sets
of random variables are indicated by bold uppercases (usually X). Realizations of the random
variables are indicated by lowercases accordingly (xi or x). If not defined otherwise the set of
all considered random variables is denoted by X = {X1, . . . , Xk}. The dependency relations of
the variables are encoded through the DAG structure, where arcs point from the variables in
the parent set, XPa(i), to Xi (see Fig. 1.1), stating that Xi directly depends on XPa(i). Each
random variable is associated with a conditional distribution p(Xi|XPa(i)) and the joint dis-
tribution of all variables decomposes according to the DAG into a product of the conditionals:
P (X) =

∏
i p(Xi|XPa(i)). Figure 1.2 shows an example. In the framework of this thesis we can

only give a short introduction into DGMs, but there exist several textbooks on the topic, e.g.
(Jensen and Nielsen, 2001; Koller and Friedman, 2009).

We consider three types of DGMs. The main focus is on the application of Bayesian networks
(BNs), which treat all variables equally. Their only restriction on the graph structure is to form
a directed acyclic graph. This allows for a construction of dependency relations that (are close
to) reflect the reality and give insight into the underlying system. A BN is fully described by
its DAG and its parameters, θ, that define the conditional distributions. For discrete variables
the set of parameters corresponds to the conditional (point) probabilities for each combination
of states: θ=

⋃
{θxi|xPa(i)

= p(xi|xPa(i))}. For continuous variables depends the design of the
parameters on the functional form of the conditional distributions.

2
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Figure 1.3: Illustration of a Naive Bayes net-
work structure. The gray node indicates the
class variable.

Figure 1.4: Illustration of a Tree Augmented
Naive Bayes. The gray node indicates the class
variable, the gray edges are the ones added to
the Naive Bayes.

In the applications considered in this thesis network structure and parameters are learned
from data, searching for the pair (DAG,θ) that is most likely to describe the data generating
process. There is no expert knowledge included in the BN learning. Anyhow, if present, expert
knowledge can be exploited to define (elements of) the BN or to set up a BN that reflects our
prior belief and is updated based on the data.

Many natural hazard assessments have an increased interest in the prediction of a certain
target variable. While a BN is designed to capture the joint distribution of all variables, the
Naive Bayes classifier focuses on the variable of interest and may thus be more accurate in
that region. Its network structure is simple and fixed: The target variable, often referred to
as class variable, is the only parent of each other variable, the attributes, and has no parents
itself (see Fig. 1.3 for illustration). Even though it does not reflect the real (in-)dependencies,
the Naive Bayes usually performs well (competitive with or better than BNs) in classification
tasks (Friedman and Goldszmidt, 1996a).

The Tree Augmented Naive Bayes is an extension of the Naive Bayes approach. It allows
to assign one more parent, in addition to the class variable, to each attribute (see Fig. 1.4
for illustration). Maintaining the computational simplicity the Tree Augmented Naive Bayes
classifier thus relaxes the independence assumptions made for Naive Bayes, but is usually still
far from describing the real dependency relations. The improved classification performance thus
does not come without costs. Concentrating on the variable of interest the (Tree Augmented)
Naive Bayes classifier does not capture the joint distribution of all variables, which is needed
to infer into all directions.

Although graphical models are well studied in theory, their application on real-world data
is not straight forward. One of the most dominant problems is the handling of continuous
variables. The main body of this thesis comprises four papers, where graphical models are
applied in the domains of seismic hazard, flood damage and landslides. Each of them requires
a treatment of continuous variables. To avoid assumptions on the families of distributions and

3



Introduction

allow for a distribution free learning the continuous variables are discretized in all applications.
Choosing an ‘optimal’ discretization that leads to a minimum of information loss is anything
but trivial and a major issue in all four papers. The first paper concentrates on the develop-
ment of surrogates for complex ground motion models used in the probabilistic seismic hazard
analysis. The second and third paper investigate a flood damage data set collected after the
2002 and 2005/06 flood events in the Elbe and Danube catchments (Germany). Using the
Bayesian network approach they aim to learn about damage causing and preventing factors
and the interaction of those. The third paper additionally gives a suggestion how to deal with
incomplete observations. The fourth paper adds a landslide analysis to the investigated natural
hazard domains and stresses the benefits of the Bayesian network approach for natural hazard
assessments. The full papers are reprinted in Chapters 2 to 5. In the following the manuscripts
are shortly summarized.

PAPER 1

Graphical Models as Surrogates for Complex Ground Motion Models

Vogel, K., Riggelsen, C., Kühn, N., Scherbaum, F.; 2012. Published in Proceedings of the
11th International Conference on Artificial Intelligence and Soft Computing

One of the most critical elements in probabilistic seismic hazard analysis is the model that describes

the ground motion caused by earthquakes. So-called stochastic models capture the characteristics of the

ground motion well, but since they do not have nice analytical properties a simplified model is often

used instead. This surrogate is usually defined by fitting a regression function to a synthetic data set

generated by the stochastic model. This paper presents Directed Graphical Models as an alternative

to the regression approach. A Bayesian network, a Naive Bayes and a Tree Augmented Naive Bayes

classifier are learned based on a synthetic data set. Continuous variables are discretized for this purpose,

using automatic discretization procedures that choose an ‘optimal’ discretization based on the observed

data. In the (Tree Augmented) Naive Bayes approach the attributes are discretized depending on the

class variable, using a variation of the class entropy to find a discretization that keeps the information

loss small. The class variable itself is not discretized, but approximated with a Gaussian kernel den-

sity estimator. In the Bayesian network approach all variables are discretized simultaneously, using a

multivariate discretization that takes the interaction of the variables into account. The proceeding is

motivated by Monti and Cooper (1998) and is only briefly sketched in this paper. It will be adopted and

enhanced in the following papers. Finally the prediction performance of the learned models is compared

to the regression approach. To increase the precision of the Bayesian network, the discretization learned

for the ground motion variable is ignored and its continuous distribution is, as for the (Tree Augmented)

Naive Bayes, approximated with a kernel density estimator. Compared to the regression approach all

three graphical models perform well in the ground motion prediction. The best prediction performance

is delivered by the Naive Bayes classifier.

4
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PAPER 2

Flood Damage and Influencing Factors: A Bayesian Network Perspective

Vogel, K., Riggelsen, C., Merz, B., Kreibich, H., Scherbaum, F.; 2012. Published in Proceed-
ings of the 6th European Workshop on Probabilistic Graphical Models

In this paper a Bayesian network is learned for flood damage assessments. In contrast to classical ap-

proaches, which often relate the flood damage to the inundation depth only, a variety of potential

influencing factors is considered here, aiming to identify the driving forces and to learn about their sin-

gle and joint effects. The investigated data set comprises 29 variables describing the flooding situation,

building characteristics, precaution, warning, emergency measures, socio-economic factors and the dam-

aged caused to residential buildings. Missing observations are for simplicity randomly replaced. A better

justified prediction procedure for missing values is presented in the following paper. The discretization

of the continuous variables is casted in a Bayesian framework, searching for the most likely triple of

network structure, parameters and discretization given the observed data. The learned network reveals

interactions between flood damage and the considered predictors that are widely neglected in flood

damage assessments. The performance of the learned BN in terms of predicting the building damage is

compared to models currently used for flood damage assessments (namely the stage-damage function

and the FLEMOps+r model) as well as to a Naive Bayes and Tree Augmented Naive Bayes classifier. As

for the ground motion application the approximation of the target variable is refined here using a kernel

density estimator. The best prediction performance is given by the Naive Bayes and Tree Augmented

Naive Bayes, but especially for the Tree Augmented Naive Bayes it stays open to which extend this

is an effect of over-fitting. The prediction performance of the BN is comparable to the FLEMOps+r

model, which is to our knowledge the best model currently in use. Additionally the BN captures the

related uncertainty and allows for inference into all directions.

PAPER 3

Challenges for Bayesian Network Learning in a Flood Damage Assessment
Application

Vogel, K., Riggelsen, C., Scherbaum, F., Schröter, K., Kreibich, H., Merz, B.; 2013. Published
in Proceedings of the 11th International Conference on Structural Safety & Reliability

The flood damage application presented in the previous paper is picked up here again concentrating

now on methodological issues not satisfyingly solved or not discussed so far. The multivariate discretiza-

tion procedure is enhanced to come up with a discretization that is independent of the scaling of the

variables (i.e. the discretization of a variable does not change, if it is considered on a logarithmic scale).

Missing observations are now estimated based on the observations of variables that have direct impact

on the missing variable. This proceeding leads to a change in the learned network structure reveal-

ing dependency relations that match better with expert opinions, especially in context with the rarely

observed variables. Moreover, an approximation of the target variable distribution with mixtures of

truncated exponentials (MTE) is suggested here as an alternative to the kernel density estimator used

in the previous papers. Using the MTE approach the BN performs equally well in the target variable

prediction, while the number of applied parameters reduces considerably compared to the kernel den-

sity estimation. Especially in complex networks the parameter reduction is of importance to keep the

computational effort for inference in reasonable limits.
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PAPER 4

The Application of Bayesian Networks in Natural Hazard Analyses

Vogel, K., Riggelsen, C., Korup, O., Scherbaum, F.; Submitted to Natural Hazards and Earth
System Sciences

The last paper illustrates the flexible applicability of the BN approach and demonstrates its properties

and benefits on way of exemplifications. The BN learning procedures developed so far and presented in

the previous papers are applied here in different natural hazard settings. The seismic data set generated

for the first paper is reused to learn a BN applying the revised discretization procedure presented in

the third paper. To increase the BN’s precision the MTE approximation for continuous distributions

is applied subsequently to the BN learning. The flood damage assessment presented in the second and

third paper is considered once more and an example for inference, investigating the impact of precaution

on flood damage, is given. Adding a third natural hazard to the investigated domains a landslide model

is learned based on a data set that compiles a number of geological, climatic and topographic metrics

throughout the Japanese islands. The model uncertainty related to BN learning is discussed in this

context.

If not mentioned otherwise, the research documented in all presented papers was carried out
by the author of this thesis. Co-authors assisted in an advisory role. In paper 2 and 3 the
prediction performance of the currently used flood damage models (the stage-damage function
and the FLEMOps+r model) was evaluated by Kai Schröter, Heidi Kreibich and Bruno Merz.
The interpretation of the learned landslide model in paper 4 was supported by Oliver Korup.

In addition to the above mentioned papers, the author also participated in the following pub-
lication, which is not included in the thesis:

How useful are complex flood damage models?

Schröter, K., Kreibich, H., Merz, B., Vogel, K., Riggelsen, C., Scherbaum, F.; Submitted to
Water Resources Research

The paper analyzes the prediction performance of several flood damage models of different complexity.

The contribution to this work was the implementation of BNs based on the data set collected after

the Elbe 2002 flood event. Two BNs, comprising 11 and 28 variables, were learned totally data-driven,

while the structures of another two BNs, comprising the same sets of variables, were defined based on

expert knowledge and only the parameters were learned from data. The prediction performance of the

BNs was evaluated considering their ability to predict building damages caused by the same flood event

and in a spatial and temporal transfer.
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Graphical Models as Surrogates for Complex Ground Motion Models

ABSTRACT: In Probabilistic Seismic Hazard Analysis, which has become the basis of

decision making on the design of high risk facilities, one estimates the probability that

ground motion caused by earthquakes exceeds a certain level at a certain site within

a certain time interval. One of the most critical aspects in this context is the model

for the conditional probability of ground motion given earthquake magnitude, source-

site-distance and potentially additional parameters. These models are usually regression

functions, including terms modeling interaction effects derived from expert knowledge. We

show that the framework of Directed Graphical Models is an attractive alternative to the

standard regression approach. We investigate Bayesian Networks, modeling the problem

in a true multivariate way, and we look into Naive Bayes and Tree-Augmented Naive

Bayes, where the target node coincides with the dependent variable in standard ground

motion regression. Our approach gives rise to distribution-free learning when necessary,

and we experiment with and introduce different discretization schemes to apply standard

learning and inference algorithms to our problem at hand.

2.1 Introduction

In the context of Probabilistic Seismic Hazard Analysis (PSHA) strong ground motion at a
particular site, caused by an earthquake, is modelled by physical relationships between various
parameters, usually dictated by physical principles. This requires accurate knowledge of the
source process, of the properties of the propagation medium as well as of the subsurface under
the site. In regions of well recorded seismicity the most popular modeling approach is to
fit a regression function to the observed data, where the functional form is determined by
expert knowledge. In regions, where we lack a sufficient amount of data, it is popular to fit the
regression function to a data set generated by a so-called stochastic model (Boore, 2003), which
distorts the shape of a random time series according to physical principles to obtain a time
series with properties that match ground-motion characteristics. The stochastic model does
not have nice analytical properties nor does it come in a form amenable for easy analytical
handling and evaluation. In order to determine the ground motion the stochastic model is
simulated, posing a time-consuming and computationally expensive challenge. Instead of using
a stochastic model directly, a surrogate model, which describes the stochastic model in a more
abstract sense (e.g. regression), is often used in PSHA.

In this paper we show how Directed Graphical Models (DGM) may be seen as a viable alter-
native to the classical regression approach. Graphical models have proven to be a “all-round”
pre/descriptive probabilistic framework for many problems. The transparent nature of the
graphical models is attractive from a domain perspective allowing for a better understanding
and gives direct insight into the relationships and workings of a system. A possible application
of DGMs for PSHA is already described in (Kühn et al., 2009).
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In the following sections we give a short introduction into the ground motion domain and
into DGMs. How the DGMs are learned for discrete variables is explained in Section 2.4.
Discretization methods and how we deal with a continuous target variable are given in Section
2.5. In Section 2.6 we apply DGMs to a dataset simulated by a stochastic model and we end
with the conclusions.

2.2 Ground Motion Models

Formally speaking, in ground motion modeling we want to estimate the conditional proba-
bility of a ground motion parameter Y such as (horizontal) peak ground acceleration (PGA)
or spectral acceleration (PSA) given earthquake and site related predictor variables, X. In
the regression approach the ground motion parameter is usually assumed to be log-normally
distributed, lnY = f(X) + ε, with ε ∼ N (0, σ2).

Which predictor variables are used is a matter of choice; in thus sequel we have at our disposal,
X = {M,R, SD,Q0, κ0, VS30}. The moment magnitude of the earthquake (M) and distance
between source and site (R) traditionally have special status in PSHA, however, we treat them
no differently than the other variables: Stress released during the earthquake (SD), attenuation
of seismic wave amplitudes in deep layers (Q0) and near the surface (κ0), Average shear-wave
velocity in the upper 30 m (VS30). 1

Seismological expert knowledge determines the functional form of the regressions function; in
our case a reasonable form for a regression function is the following, which is based on the
description of the Fourier spectrum of seismic ground motion (Boore, 2003),

f(X) = a0 + a1M + a2M · lnSD + (a3 + a4M) ln
√
a2

5 +R2 (2.1)

+a6κR+ a7VS30 + a8 lnSD

with κ = κ0 + t∗, t∗ = R
Q0Vsq

and Vsq = 3.5kms , where ai is fitted to data simulated from
the stochastic model.

2.3 Directed Graphical Models

DGM’s describe a joint probability distribution of a set of variables, X, decomposing it into
a product of (local) conditional probability distributions P (X|DAG,θ) =

∏
i P (Xi|XPa(i)) =∏

i θXi|XPa(i)
according to a directed acyclic graph (DAG), with vertices Xi and edges pointing

from the parent set, XPa(i), to Xi, encoding the conditional independences. The local condi-
tional probability distributions, P (Xi|XPa(i)) may be defined according to our prior knowledge,
e.g., as Gaussians where the mean and the variance could be associated with corresponding
vertices in the DAG. However often we want to make no such explicit assumptions, that is,
we want to be able to model a wide range of distributions, because no prior knowledge may

1In the next sections we will sometimes include Y in X; it will be clear from the context when this is the
case.
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be available. By adhering to categorical distributions we may approximate (by “histograms”)
any continuous distribution asymptotically; this would be called distribution-free learning. E.g.
if estimated from observations, the parameters could be the maximum likelihood estimates,

θ̂xi|xPa(i)
=

n(xi,xPa(i))

n(xPa(i))
using the statistics n(·), the counts of a particular configuration from

data. More about discretization follows in Section 2.5.

In contrast to classical regression, DGMs treat all random quantities, including co-variates,
as random variables. This is not only reasonable, since the measure of the covariates is often
defective, but also allows to infer in “all directions” and calculate any conditional distributions
of interest. Furthermore DGMs offer a different perspective on how variables (including co-
variates) relate, since no assumptions about the functional form for physical relationships
between the variables have to be given. On the other hand, expert knowledge can be included
by the usage of informative priors, both on structure and parameters. For a more detailed
description of DGMs see (Edwards, 2000).

2.4 Learning Approaches for Discrete Variables

In the sections to come we assume that we have at our disposal an i.i.d. sample, d, with n
records (for now assume discretized data); this will in our case be the simulated data from the
stochastic model, from which we want to learn. We investigate DGMs admitting to different
decompositions/factorizations of the joint distribution, that is, the restrictions that are imposed
by the DAG: Bayesian Networks (BNs), Naive Bayes (NBs) and Tree Augmented Naive Bayes
(TANs).

2.4.1 Bayesian Networks

In contrast to the regression approach, for BNs we do not need to make any assumptions
about any (functional or (in)dependence) relationship of the involved variables a priori. When
learned from data, we automatically get a concise surrogate model. By inspecting the learned
BN structure we may get an intuition about the workings of the underlying data generating
system (the stochastic model) from an (in)dependence perspective. The BN at the same time
enables for computing any marginal/conditional of interest.

BN learning involves traversing the space of BNs looking for the one yielding the highest score.
As scoring function we use the Bayesian MAP scoring, introduced in (Riggelsen, 2008), as-
suming a joint uniform prior P (DAG,Θ) = P (Θ|DAG)P (DAG), with P (Θ|DAG) a uniform
product Dirichlet distribution (with restricted hyper-parameters α guaranteeing DAG scor-
ing equivalence), and P (DAG) uniform over BN structures too. This yields the MAP scoring
metric which needs to be maximized,

S(DAG|d) =
∏
i

∏
xPa(i)

∏
xi

θ̂
n(xi,xPa(i))+α(xi,xPa(i))−1

xi|xPa(i)
× regularization term.

10
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To traverse the (simulated) space of essential graphs we use a hill-climber algorithm, applying
the Repeated Covered Arc Reversal operator (Castelo and Kocka, 2003), where arc addition
and removal are the basic operations. Without going into detail, we note that the thus obtained
structure also dictates the parameter estimates of θ as the maximum likelihood (see previous
section), but now based on α(·) + n(·)− 1.

2.4.2 Naive Bayes

In the BN approach, the structure is learned, and all variables are treated equally; there is
no dedicated “output” node. In the context of our surrogate mode there is however a variable
of interest, Y . The network structure in Naive Bayes (NBs) is simple and fixed: The target
variable Y , often referred to as class variable, is the only parent of each attribute Xi. Even
though the assumed independence between the attributes is most likely violated, NBs usually
perform well (competitive with or better than BNs) in classification tasks (Friedman and
Goldszmidt, 1996a). Obviously, in contrast to the BNs, with NBs we lack the ability to gain
insight into the relationships between the variables via inspection.

The (local) conditional distributions may be the usual maximum likelihood estimates; however,
we use the smoothed maximum likelihood estimator given in (Friedman and Goldszmidt, 1996a)

instead, θ̂xi|xPa(i)
= α

n(xi,xPa(i))

n(xPa(i))
+ (1− α)n(xi)

n with α =
n(xPa(i))

n(xPa(i))+5 .

2.4.3 Tree Augmented Naive Bayes

Tree Augmented Naive Bayes (TANs) are an extension of the NBs. They allow each attribute
to have one more parent in addition to the target variable. This relaxes the independence
assumption for the attributes made in NB, but maintains the computational simplicity. In
a TAN construction we start off with the NB structure. To determine on the presence or
absence of connections between the attributes, we use a score based on entropy, Entd(X) =

−
∑

x
n(x)
n log2

n(x)
n . Entropy measures the amount of information, needed to specify X in the

dataset d with n records. We determine for each pair, (Xi, Xj)i 6=j , the explaining away residual
(EAR) (Pernkopf and Bilmes, 2005),

EAR(Xi, Xj |Y ) = Entd(Xi, Y ) + Entd(Xj , Y )− Entd(Xi, Xj , Y )− Entd(Y )

−Entd(Xi)− Entd(Xj) + Entd(Xi, Xj),

which is high for pairs which are mutually informative conditioned on Y and at the same
time not mutually informative unconditionally. In an undirected maximum spanning tree the
weights of the edges are associated with the EAR, all edges with negative weights are deleted
and for the remaining tree(s) we choose a root node and set the direction of the edges pointing
away from the root. These are the edges, which are added to the NB, ultimately yielding the
TAN. The estimation of θ is done as described for NBs.
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2.5 Discretization

For a distribution-free learning, we need to discretize the continuous variables of our data set.
A discretization splits the range of X into (multidimensional) intervals and merges all real
values of one interval into one state of a discrete variable, X′. The number of intervals and
their boundaries have to be chosen carefully, since essential information about the distributions
and dependencies of the variables may be lost otherwise.

2.5.1 Bayesian Network

For BN’s, where we are mainly interested in learning the dependency structure, we discretize
all variables simultaneously, using a multivariate discretization, which takes the interaction be-
tween all connected variables into account. We use a method developed in (Monti and Cooper,
1998), assuming that the observed data, were generated in two steps. In the first step an interval
is selected by drawing from P (X′|DAG). Afterwards we draw X from a uniform distribution
over the selected interval, P (X|X′) =

∏
i P (Xi|X ′i). According to (Monti and Cooper, 1998) we

now seek a discretization d′ of d, which maximizes for a given structure P (d′|DAG)P (d|d′);
here P (d′|DAG) is the so-called marginal likelihood.

The optimal discretization depends on the BN structure and has to be adjusted dynamically
as the structure changes. We do this in an iterative way, similar to (Friedman and Goldszmidt,
1996b), first learning the discretization for an initial network, which in turn is used to learn
a new BN with the MAP-scoring function. The discretization and the BN-learning steps are
repeated until we reach a local maximum of the MAP-score. Starting with different initial
networks can lead to different results. We use the structure of a TAN to start with, but ideally
different initial GMs should be tested.

2.5.2 Naive Bayes and Tree Augmented Naive Bayes

The above mentioned approach is not ideal for the NB and TAN approach. Here our attention
is on the estimation of the target variable, and we discretize only the attributes, while the
continuous target is approximated with a kernel density estimator.

Our method is based on the approach developed in (Fayyad and Irani, 1993), which is widely
used for the discretization of continuous attributes in classification tasks with a discrete class
variable Y . The discretization of each attribute Xi depends on Y , but is independent of the
other attributes. It splits the total dataset d into subsets ∪Kk=1dk = d, where dk includes
all records, for which Xi falls into the k-th interval. We aim to choose interval boundaries
that lead to a small Minimum Description Length (MDL). The MDL can be expressed as∑

k
nk
n Entdk

(Y ) + cost, where nk is the number of records in dk, Entdk
(Y ) is the class entropy

based on the dataset dk and cost is a regularization term restricting the number of intervals.

12
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The above method is only valid for a discrete target variable, but our target is Y = lnPGA,
i.e., continuous. To apply the class entropy, we replace the continuous Y with a discrete approx-
imation Y ′, whose states, y′1, ..., y

′
nY

, correspond to the interval midpoints, we get by splitting
the range of Y into nY equidistant intervals of width ∆Y . We choose a large number nY (e.g.
nY = 512) to allow a precise approximation of Y . In order to estimate Entdk

(Y ) reliably, we
now use a Gaussian kernel density estimator, P̂Y,d, with a bandwidth according to Silverman’s

“rule of thumb” (Silverman, 1986) and set, P̂ (y′i) = ∆Y · P̂Y,d(y = y′i). The class entropy

Entdk
(Y ) ≈ −

∑nY
i=1 P̂ (y′i) log2 P̂ (y′i) can now be used for the discretization of the attributes as

described above.

The very fine discretization allows a precise estimation of Y , while its prediction would be
limited to a couple of states, if we use a coarse discretization as we would get by applying the
method described in Section 2.5.1. Anyhow a coarse discretization is often more effective to
capture the essentials of the joint distribution.

2.5.3 Adopted Parameter Estimation

Working with a continuous variable or rather a discrete one with lots of states Y ′, also requires
a transformed parameter estimation for the graphical model. Using the statistics n(·), would
lead to weak maximum likelihood estimates θ̂Xi|XPa(i)

whenever Y ′ ∈ XPa(i), since they are

based on only a few observations. Hence, in case of Y ′ ∈ XPa(i), we rewrite,

P (Xi|XPa(i)) =
P (Xi,XPa(i))∑
xi
P (xi,XPa(i))

=
P (Y ′|Xi,XPa(i)−Y ′)P (Xi,XPa(i)−Y ′)∑
xi
P (Y ′|xi,XPa(i)−Y ′)P (xi,XPa(i)−Y ′)

,

with XPa(i)−Y ′ = XPa(i) \Y ′. Here P (Y ′|z) is again estimated with a kernel density estimator,

P̂Y,dz , based on dz, which are all records matching z in d. Thus we get P̂ (y′i|z) = ∆Y ·
P̂Y,dz(y = y′i). The Gaussian kernel of the density estimator is smoothed by multiplying it with
a symmetric nY × nY -weight-matrix. The matrix entries are chosen in order to keep the mean
squared error of the target variable prediction small.

2.6 Application Experiment

We generate d from the stochastic model (Boore, 2003), with n = 10.000 records. The predictor
variables are either uniform or exponentially distributed within a particular interval:

M ∼ U[5,7.5], R ∼ Exp[1km, 200km], SD ∼ Exp[0bar,300bar],
Q0 ∼ Exp[0s−1,5000s−1], κ0 ∼ Exp[0s,0.1s], VS30 ∼ U[600 m/s,2800 m/s]

and the PGA is generated by the stochastic model. In the development of the GMs, we use
lnPGA instead of PGA, as we also use Y = lnPGA in the regression model. The learned
GMs are illustrated in Fig. 2.1.
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Figure 2.1: left: BN learned using MAP scoring metric; right: TAN learned with EAR, where the
black edges show the NB and the gray ones the extension to TAN.

The BN structure gives insight into the data generating process. We already know, the learned
direct independences between the attributes hold (no arcs), due to data construction. However,
we observe conditionally induced dependences, which are reflected in the v-connections, e.g.,
R → lnPGA ← SD. The dependency between Q0 and lnPGA is weak in our dataset and
does not induce a conditional dependency to another co-variate. The influence of VS30 may be
ignored; apparently this variable is not essential in establishing lnPGA.

An evaluation of the learned models may be done in terms of the performance of the lnPGA
prediction. However, the BN has not been learned to perform well in terms of predicting lnPGA
well; the BN captures the joint of all variables such that the performance is well “overall” for
all variables. It is therefore somewhat unfair to judge the BN based just on the performance
of one single variable. On the other hand, the TAN only captures the model structure in the
sense that it yields the best performance of predicting lnPGA. The performance test in terms
of lnPGA prediction is done using a 5-fold cross validation and measured using mean squared
errors (MSE); see Tab. 2.1.

For the prediction of lnPGA with the BN, we use the network structure and discretization
of the covariates learned by applying the MAP scoring metric and the discretization method
described in Section 2.5.1, but we ignore the discretization learned for lnPGA. Instead, to
allow a more precise prediction, we discretize lnPGA into nY = 512 equidistant intervals, as it
is also done for NB and TAN (see Section 2.5.2) and recalculate the parameters of the affected
variables as described in Section 2.5.3.

The prediction results of the GMs are quite well compared to the regression, using Eq. (2.1).
There is only one case (4th dataset, BN) in which the GM performs worse than the regression
model. In this case the algorithm failed to learn the connection to Q0. The TAN and NB
perform almost the same; the added flexibility of TANs, including the interaction effects of
some predictor variables, does not seem to result in improvements in terms of MSE.
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1. 2. 3. 4. 5. Avg.

BN 0.569 0.598 0.583 0.759 0.579 0.617
NB 0.488 0.489 0.566 0.592 0.473 0.522
TAN 0.509 0.525 0.566 0.597 0.494 0.538
Regression 0.666 0.679 0.688 0.681 0.650 0.673

Table 2.1: Mean squared errors of a 5-fold cross validation on a synthetic dataset using 8000 records
for learning and a test set of 2000 records.

2.7 Conclusion

We presented an alternative to regression models for the construction of surrogates for ground
motion models. Three GMs (BN, NB and TAN) were investigated along with schemes for dis-
cretization. On average they all perform better than the regression model in terms of predicting
lnPGA. Moreover, the entirely data-driven approach of learning the BN enables for a correct
interpretation of the (in)dependences between the variables, as opposed to imposed algebraic
interaction effects of the regression model. The advantages of GMs can help to tackle typical
problems in PSHA. For instance are variables as κ0 and Q0 usually unknown and therefore not
included in regression models. GMs offer the possibility to work with a distribution function
instead of a precise value. This allows to deal with the uncertainty of these parameters in a
more accurate way as in done in the general regression approach.

An obvious extension to NBs and TANs is to learn the entire Markov blanket of Y ; this
approach would yield an unrestricted Bayesian Network classifier. Hence, for vertex Y learn
the parent set, children set and children’s parent sets. Evaluation/model-selection would in
that case rely on cross-validation of the predictive performance of Y (no direct scoring metric
required).
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Flood Damage and Influencing Factors: A Bayesian Network Perspective

ABSTRACT: Classical approaches for flood risk assessment relate flood damage for a

certain class of objects to the inundation depth, while other characteristics of the flood-

ing situation and the flooded object are widely ignored. Observations on several discrete

and continuous variables collected after the 2002 and 2005/2006 floods in the Elbe and

Danube catchments in Germany offer a unique data mining opportunity in terms of learn-

ing a Bayesian Network. We take an entirely data-driven stance opting not to discretize

continuous variables in advance; rather, we cast the problem in Bayesian framework, and

consider the maximum aposteriori of the joint distribution of the triple, network struc-

ture, parameters and discretization, as the outcome of the analysis. Moreover, motivated

by the work of Merz et al. (2010), who point out the need of an improved flood dam-

age assessment, we re-define the discretization of the target variable, flood loss, once the

network has been learned. Its domain is split into a large number of intervals and the

associated parameters are estimated using a Gaussian kernel density estimator. Although

the prediction of the relative flood loss is comparable to state-of-the-art methods, our

approach benefits from capturing the joint distribution of all factors influencing flood

loss.

3.1 Introduction

Graphical models have in recent years successfully been employed in earth sciences, giving rise
to a wide range of applications, including Tsunami Early Warning, e.g. (Blaser et al., 2011),
Probabilistic Seismic Hazard Analysis, e.g. (Kühn et al., 2011), and Automatic detection and
classification of seismic signals, e.g. (Riggelsen et al., 2007). In this paper we embark on
another problem: flood damage assessment of residential buildings. Typically, the damage to
flooded objects is estimated by stage-damage functions which relate the relative or absolute
damage for a certain class of objects to the water stage or inundation depth (Merz et al., 2010).
Other characteristics of the flooding situation and of the flooded object are rarely taken into
account, although it is clear that flood damage is influenced by a variety of factors such as
inundation duration, contamination of flood water, or quality of external response in a flood
situation. The single and joint effects of these parameters on the degree of damage are largely
unknown and widely neglected in damage assessments. Moreover, the intrinsic uncertainties
associated with these factors are largely ignored. Bayesian Networks (BN) pose an interesting
formalism for capturing the interdependencies and the intrinsic uncertainty involved in flood
risk assessment.

The paper is organized as follows: After giving a description of the data set in Section 3.2
and a brief introduction into learning BNs in Section 3.3, we show in Section 3.4, how we
automatically discretize continuous variables, based on the observed data set, using a maximum
a posteriori (MAP) score to search simultaneously for the best network structure, parameters
and discretization. In Section 3.4.1 we point out, how we employ the learned BN to estimate the
flood loss, using a very fine discretization of the target variable to allow a precise approximation
of its continuous conditional distribution functions. Finally, the results are shown in Section
3.5 and we conclude in Section 3.6.
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3.2 Variable Definitions and Dataset

We take a data mining perspective and aim for learning a BN from observational data. The
observations are collected after the 2002 and 2005/2006 floods in the Elbe and Danube catch-
ments in Germany. Results of computer-aided telephone interviews with 1135 flood affected
households yield i.i.d. data, d = ∪k{x(k)}. Topics relate to various flood parameters (e.g. con-
tamination, water depth), building and household characteristics, precautionary measures, and
flood damage to buildings and contents. The raw data were supplemented by estimates of re-
turn periods, building values, loss ratio, i.e. the relation between the building damage and the
building value, and indicators for flow velocity, contamination, flood warning, emergency mea-
sures, precautionary measures, flood experience and socioeconomic variables (Thieken et al.,
2005; Elmer et al., 2010). Table 3.1 lists 28 candidate variables allocated to 5 domains and
the predictand rloss, which is the direct damage to flooded residential buildings represented
as relative value, i.e. fraction of the building value.

3.3 Bayesian Network Learning

Formally speaking a BN decomposes a joint probability distribution/density P (X) into a prod-
uct of (local) conditional probability distributions/densities p(·|·) as P (X) =

∏
i p(Xi|XPa(i))

according to a directed acyclic graph (DAG) with vertices Xi and directed edges from variables
in the parent set XPa(i) to Xi. In case X is continuous and we do not know p(·|·) in advance,
we may approximate the (local) conditional probability distributions by first discretizing the
continuous variables and rely on contingency tables instead; the challenges that this involves is
discussed in Section 3.4. For such a discrete BN we write P (X|DAG,θ) =

∏
i θXi|XPa(i)

, where

θ (the parameters) are conditional probabilities derived from contingency tables. For the rest
of this section we assume all variables X to be discrete.

BN model selection (learning the joint decomposition as well as the local conditional probabil-
ities) is an exercise in traversing the space of BNs looking for the one which maximizes a given
fitness score. As usual for model selection, regularization plays a role in this endeavor. We use
the Bayesian BN MAP score (Riggelsen, 2008) shown to learn BN that are better than those
derived via the marginal likelihood score (the BD-score). The BN is selected as the MAP of
the joint posterior (here both DAG and parameter are being treated as true random variables)

P (DAG,Θ|d) ∝ P (d|DAG,Θ)P (Θ, DAG),

where the joint prior is a product, with P (Θ|DAG) defined to be a product Dirichlet distri-
bution and P (DAG) defined to be uniform over DAGs (we may thus ignore this term when
doing MAP estimation).
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Xi Predictors Scale and range
flood parameters

wst Water depth C: 248 cm below ground to 670 cm above ground
d Inundation duration C: 1 to 1440 h
v Flow velocity indicator O: 0=still to 3=high velocity
con Contamination indicator O: 0=no contamination to 6=heavy contamination
rp Return period C: 1 to 848 yrs

warning and emergency measures

wt Early warning lead time C: 0 to 336 h
wq Quality of warning O: 1=receiver of warning knew exactly what to do to

6=receiver of warning had no idea what to do
ws Indicator of flood warning source N: 0=no warning to 4=official warning through author-

ities
wi Indicator of flood warning information O: 0=no helpful information to 11=many helpful infor-

mation
wte Lead time period elapsed without using it for

emergency measures
C: 0 to 335 h

em Emergency measures indicator O: 1=no measures undertaken to 17=many measures
undertaken

precaution

pre Precautionary measures indicator O: 0=no measures undertaken to 38=many, efficient
measures undertaken

epre Perception of efficiency of private precaution O: 1=very efficient to 6=not efficient at all
fe Flood experience indicator O: 0=no experience to 9=recent flood experience
kh Knowledge of flood hazard N (yes / no)

building characteristics

bt Building type N (1=multifamily house, 2= semi-detached house,
3=one-family house)

nfb Number of flats in building C: 1 to 45 flats
fsb Floor space of building C: 45 to 18000 m2

bq Building quality O: 1=very good to 6=very bad
bv Building value C: 92244 to 3718677 e

socio-economic factors

age Age of the interviewed person C: 16 to 95 yrs
hs Household size, i.e. number of persons C: 1 to 20 people
chi Number of children (< 14 years) in household C: 0 to 6
eld Number of elderly persons (> 65 years) in house-

hold
C: 0 to 4

own Ownership structure N (1=tenant; 2=owner of flat; 3=owner of building)
inc Monthly net income in classes O: 11=below 500 eto 16=3000 eand more
socP Socioeconomic status according to Plapp (2003) O: 3=very low socioeconomic status to 13=very high

socioeconomic status
socS Socioeconomic status according to Schnell et al

(1999)
O: 9=very low socioeconomic status to 60=very high
socioeconomic status

flood loss

rloss loss ratio of residential building C: 0 = no damage to 1 = total damage

Table 3.1: Description of the candidate predictors (C: continuous, O: ordinal, N: nominal).
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The simultaneous joint selection of DAG and parameters yields a DAG which equivalently can
be found by maximizing the structure score

S(DAG|d) =
∏

i,xPa(i),xi

θ̂
n(xi,xPa(i))+α(xi,xPa(i))

xi|xPa(i)

∏
i,xPa(i)

Γ(
∑

xi
α(xi,xPa(i)))∏

xi
Γ(α(xi,xPa(i)))︸ ︷︷ ︸

regularization

,

where the statistics n(·) are the counts of a particular configuration from the data/contingency
table and α(·) are the hyper-parameters of the Dirichlet (restricted as to guarantee uniform
DAG scoring equivalence; see (Riggelsen, 2008)). The BN parameter estimates required for
computing the above score are also the BN parameters, and are given in closed form by

θ̂xi|xPa(i)
=
n(xi,xPa(i)) + α(xi,xPa(i))

n(xPa(i)) + α(xPa(i))
. (3.1)

The BN is learned using a hill-climber approach in the space of DAGs based on the score
given above where arc addition, removal and reversal are the basic operations. DAG equivalent
classes are simulated using the Repeated Covered Arc Reversal operator (Castelo and Kocka,
2003).

3.4 Automatic Discretization

We want to adhere to an entirely data-driven approach for learning BNs and strive for making
none or at least very weak assumption with regard to the functional form of the (local) con-
ditional distributions, p(Xi|XPa(i)). A sufficiently fine discretization of continuous variables,
placing “counts” in contingency tables, enables us to approximate any other (local conditional)
distribution, e.g., a Gaussian, but usually with a larger number of parameters.

To transform a continuous variable into a discrete one, the number of intervals and their bound-
aries have to be chosen carefully. A fine-grained discretization will result in a very sparsely con-
nected BN due to regularization constraints, ultimately not reflecting the interactions we are
interested in. On the other hand, too rough a discretization may not provide the “user” with
the desired degree of resolution required for proper decision support. Various discretization
approaches have been proposed in literature, (Friedman and Goldszmidt, 1996b; Monti and
Cooper, 1998). Inspired by the latter we present a straightforward extension to the BN MAP
learning score, allowing us to determine the “fitness” of a BN and discretization simultaneously,
conditional on continuous data.
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From now on, a superscript c denotes the continuous counterpart of a discretized variable/
configuration, e.g., dc is the original continuous data and d a discretized version thereof. Let
Λ define the discretization, that is, the set of interval boundary points for all variables; a
configuration λ will thus “bin” the original data dc yielding d. Moreover, assume that we
have P (dc|d,Λ); this is the generative model for the continuous data given some discretized
version thereof as defined by Λ. Note that this model is unrelated to the BN; more on this
distribution shortly. It follows that the likelihood for observing dc for a given discretization,
network structure and parameters (the BN) can be written as

P (dc|DAG,Θ,Λ) = P (d|DAG,Θ,Λ) P (dc|d,Λ).

Embedded in a Bayesian context, we are now seeking the MAP of the posterior

P (DAG,Θ,Λ|dc) ∝ P (dc|DAG,Θ,Λ) P (DAG,Θ,Λ)

(3.2)

= P (d|DAG,Θ,Λ)︸ ︷︷ ︸
1

P (dc|d,Λ)︸ ︷︷ ︸
2

P (Θ|DAG,Λ)︸ ︷︷ ︸
3

P (Λ|DAG)︸ ︷︷ ︸
4

P (DAG)︸ ︷︷ ︸
5

.

The product of the terms 1, 3 and 5 is equivalent to the (joint) BN posterior as introduced
in Section 3.3 (terms 1 and 3 now of course depend on the discretization). Let term 4 be
uniform on the space of all possible discretizations, allowing us to ignore this factor in the
MAP estimation.

We define P (Xc
i |Xi,Λi) according to the following considerations: the discrete Xi is associated

with several interval boundaries, such that each state xi has a lower λxi and upper boundary
λxi . In between this interval Xc

i is distributed uniformly, outside it is zero; xi thus “picks” the
uniform interval in which Xc

i can lie. Effectively we arrive at term 2

P (dc|d,Λ) =
∏
i

∏
xi

(
1

λxi − λxi

)n(xi)

,

which leads to a preference of small intervals, while term 1 and 3 counteract the formation of
a high number of intervals.

Discretization and BN learning are nested iteratively: learn a BN for a given discretization,
followed by learning a new discretization, and so on. For a given discretization maximizing
Eq. (3.2) with respect to the BN-pair (DAG, Θ) is equivalent to maximizing the MAP BN
score alone (which is the same as learning the DAG via S(DAG|d, λ) also implying the BN
parameter estimates) because term 2 is independent of the BN. To find the interval boundaries
for the discretization, the variables are discretized iteratively until Eq. (3.2) stops improving,
or until a pre-defined number of iterations has been reached. At each step we select a variable
and employ a binary search for the “best” discretization fixating the intervals for the other
variables.
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3.4.1 A Single Continuous Target

The “optimal” discretization will not necessarily result in the required resolution for a partic-
ular target variable of interest. In our case rloss is of primary interest, and the discretization
described in the last section leads to a discretization into 5 intervals. To achieve a finer reso-
lution we treat, once we learned the BN, the target variable Xi as discrete with a very large
number of states, defined by splitting the range of Xc

i into nXi intervals, e.g., nXi = 512. For
simplicity we use equidistant intervals of width ∆Xi . The states of Xi are the midpoints of
the corresponding intervals. Because of the large number of states, the estimator Eq. (3.1) for
θXi|XPa(i)

, or θXj |XPa(j)
when Xi ∈ XPa(j), is based on very few observations leading to weak

estimates.

To avoid this problem, we use a Gaussian kernel density estimator to adopt the parameter
estimation in the following manner. For θXi|XPa(i)

we set

θ̂xi|xPa(i)
= ∆XiP̃Xc

i |xPa(i)
(xi),

where

P̃Xc
i |xPa(i)

(xi) =
1

n(xPa(i))
√

2π h

∑
k|x(k)

Pa(i)
=xPa(i)

exp

(
−(xc

(k)

i − xi)2

2h2

)

is the Gaussian kernel density estimator, with a bandwidth, h, according to Silverman’s “rule
of thumb” (Silverman, 1986), over all observations of Xc

i , for which XPa(i) = xPa(i).

For Xi ∈ XPa(j) we use Bayes theorem to rewrite

p(Xj |XPa(j)) =
p(Xj ,XPa(j))∑
xj

p(xj ,XPa(j))

=
p(Xi|Xj ,XPa(j)−Xi

) p(Xj ,XPa(j)−Xi
)∑

xj
p(Xi|xj ,XPa(j)−Xi

) p(xj ,XPa(j)−Xi
)

=
p(Xi|Xj ,XPa(j)−Xi

) p(Xj |XPa(j)−Xi
)∑

xj
p(Xi|xj ,XPa(j)−Xi

) p(xj |XPa(j)−Xi
)
,

and we set

θ̂xj |xPa(j)
=

∆XiP̃Xc
i |xj ,xPa(j)−Xi

(xi) θ̂xj |xPa(j)−Xi∑
xj

∆XiP̃Xc
i |xj ,xPa(j)−Xi

(xi) θ̂xj |xPa(j)−Xi

.

Because of the large number of states for the target variable, inference can become time and
space consuming. For relatively small/sparse networks this is not a big issue per se and in our
particular case it has not posed any significant problem.
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Mixtures of truncated Exponentials (MTE) are an alternative to approximate continuous dis-
tributions (Moral et al., 2001). Moreover using MTEs efficient inference is possible (Langseth
et al., 2009b). Methods for their construction are given by e.g. Rumı́ et al. (2006) and Langseth
et al. (2010). However, finding an optimal MTE-representation for a conditional/multivariate
distribution from data is no trivial task. Moreover, learning both network structure and MTEs
simultaneously from data is even more challenging. We leave this task for future work.

3.5 Results

We apply the BN-learning and discretization methods which are described in the last sections to
the data set of Section 3.2. Continuous and ordinal variables are treated in the same manner and
both discretized. Thus, the numbers of states is reduced for continuous as well as for discrete
variables. Only the number of states for the nominal variables (ws, kh, bt, own) remains as
given.

For rloss the majority of the observations is gathered close to the lower domain boundary;
taking the logarithm of rloss results in more equal spread over the domain. To avoid an infinite
domain range, the lower boundary, which corresponds to buildings with no damage, was set
to log(5.5 · 10−6), where 5.5 · 10−5 is the minimal observed loss ratio of damaged buildings.

There are missing values in the data, likely missing (completely) at random, M(C)AR. For
convenience, we for now simply replace them by sampling from the observed values of the
corresponding variable. Principled iterative methods like Expectation Maximization (EM) are
intractable for our purpose, since learning both discretization and the BN means collecting
sufficient statistics via inference (in the E-step of EM) disproportionally often. In the future
the Markov Blanket Predictor (Riggelsen, 2006) will be employed, which is a fast one-pass
approximation to EM, by restricting the attention to predictors of the Markov Blanket of a
variable with a missing observation.

Figure 3.1 shows the BN learned for all variables listed in Tab. 3.1, starting from an initial
“Tree Augmented Naive Bayes” network that was obtained using the method described in
(Vogel et al., 2012a) with rloss as class variable. Some of the variables (wte and fe) have zero
in/out-degree as the data apparently did not support any interactions with other variables.
Variables that belong to the same sub-domain, are in most cases linked via a short path. Even
though all domains are included in the network, there is a clear distinction of the domains
visible. Building characteristics and socio-economic factors have only indirect impact on the
relative building loss, while flood parameters and precautions are closely related to the target
variable. This gives us an idea about the importance of the variables for the calculation of the
relative building loss.
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Figure 3.1: Bayesian network learned over the discretized data; Numbers in the nodes give the number
of discrete states learned.

After the network was learned, rloss is selected as target variable and the number of states
redefined viz. Section 3.4.1. Thus, we get an almost continuous approximation of the conditional
probability function of rloss. Figure 3.2 illustrates the effect of the interval refinement. It shows
the conditional distribution of rloss for the fine discretization in contrast to the coarse one
for a flood event with water depth between 9 cm and 100 cm, a return period between 1 and
99 years and different precaution and warning levels (good: 1≤wq≤2, 13≤pre≤38, 1≤epre≤5;
bad: 3≤wq≤6, 0≤pre≤2, epre=6).

We compare the performance of the BN in terms of the rloss-prediction to flood damage
assessment approaches currently used in Germany, namely to the stage-damage-function ap-
proach and to FLEMOps+r (Elmer et al., 2010). For the stage-damage function approach, a
root function is fitted to the damage data of certain object classes using least squares, i.e.,
the relative damage is a function of the water depth only. FLEMOps+r has been developed
using the same data set and it has been shown to provide superior results compared to other
approaches currently used in Germany. FLEMOps+r calculates the building loss ratio for pri-
vate households using five classes of inundation depth, three intervals of flood frequency, three
individual building types, two classes of building quality, three classes of contamination and
three classes of private precaution. In essence, the data set is stratified into 27 subsamples and
the average loss ratio is used as damage estimator (Elmer et al., 2010).

Additionally we compare the learned BN to the Naive Bayes (NB) and Tree Augmented Naive
Bayes (TAN) learned from the same data set. These models are set up as restricted BNs
with one single target variable in mind. We refer to (Vogel et al., 2012a) for a corresponding
description of an automatic discretization and interval refinement according to Section 3.4.1. Of
course the independence restrictions imposed by these models do not (unlikely) obey “reality”
and can not be used to gain insight into the “workings” of the underlying system. However, in
terms of predictions for a single target, they have shown to often outperform BNs.1

1In fact, discriminative models are even more likely to perform well, e.g., logistic regression.
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Figure 3.2: Conditional Probabilities of rloss for specific flood events using a coarse automatically
learned discretization (shaded histograms) and interval refinement according to Section 3.4.1 (continuous
lines).

To be able to compare to FLEMOps+r, we follow a evaluation policy commonly used in the
field of hydrology: 100 bootstrap samples, each with 100 households, are drawn from the
data set. We complete the results of the stage-damage-function and the FLEMOps+r model
with the rloss-predictions we get from the BN, NB and TAN by using the expectation of the
conditional rloss-distribution as predicted value. The predictions are quantified by the root
mean squared error (RMSE) and the Pearson correlation coefficient.

It is important to stress that no separate test-sets are used: the bootstrap policy described
uses parts of the training data for performance evaluation. This is not legitimate per se, and
may influence the results considerably (optimistically). However, since the number of free
parameters in the stage-damage function and the FLEMOps+r model are relatively small and
the BN MAP criterion accounts for model complexity (it regularizes) these models will not over-
fit and consequently performance testing on the training data will not yield overly optimistic
results. Moreover, the BN MAP score is not a fitness measure of predictive performance of any
target variable in particular, but rather, provides the predictive performance “overall” for all
variables jointly. For the NB and TAN networks the number of free parameters is quite large
and over-fitting might be a problem meaning that they on separate test-set may perform less
well.

Figure 3.3 shows the performance measures for the 100 bootstrap samples in boxplots. It
indicates that in terms of predicting rloss the BN performs well compared to the FLEMOps+r
(the “best” method currently in use). The Naive Bayes and especially the Tree Augmented
Naive Bayes show an improvement in the rloss prediction. However, it is important to note
that the BN model in fact provides us with the joint distribution (the “correct” (in)dependence
relationships) and it is therefore somewhat unfair to compare directly with approaches trying
to improve upon the predictive performance of a single target variable only.
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Figure 3.3: Comparison of flood damage estimation models (sd-f: stage damage function; FL: FLE-
MOps+r − model developed from same data set; BN: Bayesian Network; NB: Naive Bayes; TAN: Tree
Augmented Naive Bayes).

3.6 Conclusion

A BN has been learned from real-life data describing flood related observations on 29 variables,
the majority continuous and some discrete. In general continuous variables pose a challenge,
and often discretization is performed as a pre-processing step prior to BN model selection.
We have extended the BN MAP model selection metric to score not only BNs but simultane-
ously take the proper discretization into account, providing an entirely data-driven approach to
learn from a Bayesian maximum aposteriori (MAP) perspective. From a data mining point of
view, the BN indeed does reveal and confirm non-trivial interactions. The learned network cap-
tures the (in)dependencies revealing connectivity between flood loss and warning, emergency
measures and socio-economic factors, which are widely neglected in flood risk assessment. Ad-
ditionally, from a prediction point of view where the performance of a particular target is of
interest, kernel estimation improves upon the BN “multivariate” view by increasing the degree
of resolution (number of states) required for proper decision support (often derived/dependent
on a single target variable). Compared to existing primarily deterministic flood damage estima-
tion procedures, the BN shows a comparable performance with the added benefit of capturing
and reasoning under uncertainty.
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Challenges for Bayesian Network Learning
in a Flood Damage Assessment Application

ABSTRACT: Learning Bayesian networks from real world data poses challenges of dif-

ferent kinds. In this paper we address the principled handling of continuous variables

in the light of incomplete observations using the example of flood damage assessment.

The described proceeding can easily be transferred to other domains. Avoiding assump-

tions on the distributional family, we discretize the continuous variables thus allowing

for distribution-free learning. The problem is cast in a Bayesian framework: instead of

discretizing as a pre-processing step to the Bayesian network learning, we consider the

maximum aposteriori of the joint distribution of the random variables: network structure,

parameters and discretization. The incomplete observations raise an additional problem

on top. Statistics used for the Bayesian network learning and discretization of the vari-

ables depend on the missing values. Iterative proceedings for the missing value prediction

are infeasible, since they nest additional iterations into the already iterative algorithm for

discretization and Bayesian network learning. Instead we use the non-iterative Markov

Blanket Predictor (Riggelsen, 2006). This approach restricts attention to the Markov

Blanket variables for which similar data records are used to derive several approximate

predictive distributions. The flood damage assessment is based on a data set that involves

29 partly continuous variables and offers a unique opportunity for Bayesian network learn-

ing, taking not only the flooding parameters into account, but considering the warning

situation, precautions, building characteristics and socio-economic factors as well. The

resulting network shows, that the damage caused to a building by a flood event depends

on a variety of factors. Especially flood and precaution parameters seem to have a crucial

impact.

4.1 Introduction

In flood damage assessments we aim to estimate the damage to objects caused by a certain
flood event. Similar to many other geo-scientific problems, we deal with complex processes
where the driving forces are not well understood. The number of potential influencing factors
is large and the single and joint effects of these parameters on the degree of damage are largely
unknown and often neglected. The stage-damage function, which is still widely used in damage
assessments, relates the damage for a certain class of objects to the water stage or inundation
depth (Merz et al., 2010). Other characteristics of the flooding situation and of the flooded
object are rarely taken into account, although flood damage is influenced by a variety of factors
(Thieken et al., 2005). Moreover the intrinsic uncertainties associated with these factors and
the modeling framework are largely ignored.
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Bayesian Networks (BNs) are a probabilistic framework that allows for reasoning under- and
propagation of uncertainty. A probabilistic approach proves to be especially important if the
results are used downstream for decision support purposes (e.g. investment in risk mitiga-
tion), since a probability distribution carries significantly more information about the possible
outcome than a single point estimate. Furthermore, BNs encode the (in-)dependencies of the
involved variables and may thus explicitly be used to capture and illustrate the ‘workings’
of the underlying data generating process. This (in-)dependence structure can be obtained
purely from observational data; no prior expert knowledge required, although if present, tak-
ing a Bayesian stance, it can be included into the learning procedure. A regularization term
controls the complexity of the BN learned. Hence, over-fitting is avoided, even though the
number of involved variables is large compared to the size of the data set.

In this paper we learn a BN based on a data set with many continuous variables that includes
incomplete observations. A description of the used data set is given in Section 4.2, followed
by a short introduction to BN learning in Section 4.3. To allow for a distribution-free learning
we discretize the continuous values. The discretization is done parallel to the structure and
parameter learning of the BN as described in Section 4.4. Another challenge we have to face
is the handling of incomplete observations. In Section 4.5 we describe the Markov Blanket
approach pertaining to missing values. Finally, in Section 4.6 we show and discuss the BN
learned, followed by the conclusions in Section 4.7.

29



Challenges for Bayesian Network Learning
in a Flood Damage Assessment Application

Figure 4.1: Investigated catchments and location of communities reporting losses from the 2002, 2005
and 2006 flood events in the Elbe and Danube catchments.

4.2 Variables and Data

The used data set d = ∪nk=1{x(k)} is the result of computer-aided telephone interviews with
flood affected households in the Elbe and Danube catchments conducted after the 2002 and
2005/2006 flood events (Fig. 4.1) yielding n = 1135 records. The data contain a variety of
discrete and continuous variables describing the flooding situation, building and household
characteristics, precautionary measures and flood damage to buildings. The raw data were
supplemented by estimates of return periods, building values and loss ratios and indicators
for flow velocity, contamination, flood warning, emergency measures, precautionary measures,
flood experience and socioeconomic variables (Thieken et al., 2005; Elmer et al., 2010). Table
4.1 lists the 28 considered variables allocated to 5 domains and the predictand rloss, which is
the direct damage to flooded residential buildings represented as relative value, i.e. the relation
between the building damage and the building value.
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Xi Predictors Scale and range
flood parameters

wst Water depth C: 248 cm below ground to 670 cm above ground
d Inundation duration C: 1 to 1440 h
v Flow velocity indicator O: 0=still to 3=high velocity
con Contamination indicator O: 0=no contamination to 6=heavy contamination
rp Return period C: 1 to 848 yrs

warning and emergency measures

wt Early warning lead time C: 0 to 336 h
wq Quality of warning O: 1=receiver of warning knew exactly what to do to

6=receiver of warning had no idea what to do
ws Indicator of flood warning source N: 0=no warning to 4=official warning through author-

ities
wi Indicator of flood warning information O: 0=no helpful information to 11=many helpful infor-

mation
wte Lead time period elapsed without using it for

emergency measures
C: 0 to 335 h

em Emergency measures indicator O: 1=no measures undertaken to 17=many measures
undertaken

precaution

pre Precautionary measures indicator O: 0=no measures undertaken to 38=many, efficient
measures undertaken

epre Perception of efficiency of private precaution O: 1=very efficient to 6=not efficient at all
fe Flood experience indicator O: 0=no experience to 9=recent flood experience
kh Knowledge of flood hazard N (yes / no)

building characteristics

bt Building type N (1=multifamily house, 2= semi-detached house,
3=one-family house)

nfb Number of flats in building C: 1 to 45 flats
fsb Floor space of building C: 45 to 18000 m2

bq Building quality O: 1=very good to 6=very bad
bv Building value C: 92244 to 3718677 e

socio-economic factors

age Age of the interviewed person C: 16 to 95 yrs
hs Household size, i.e. number of persons C: 1 to 20 people
chi Number of children (< 14 years) in household C: 0 to 6
eld Number of elderly persons (> 65 years) in house-

hold
C: 0 to 4

own Ownership structure N (1=tenant; 2=owner of flat; 3=owner of building)
inc Monthly net income in classes O: 11=below 500 eto 16=3000 eand more
socP Socioeconomic status according to Plapp (2003) O: 3=very low socioeconomic status to 13=very high

socioeconomic status
socS Socioeconomic status according to Schnell et al

(1999)
O: 9=very low socioeconomic status to 60=very high
socioeconomic status

flood loss

rloss loss ratio of residential building C: 0 = no damage to 1 = total damage

Table 4.1: Variables – C: continuous, O: ordinal, N: nominal.
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4.3 Bayesian Network learning

Based on d a BN is learned that determines the influencing factors for flood damage to residen-
tial buildings. Reflecting the learned independencies between the variables a BN decomposes
a joint probability distribution/density P (X) into a product of (local) conditional probability
distributions/densities p(·|·) as P (X) =

∏
i p(Xi|XPa(i)) according to a directed acyclic graph

(DAG) with vertices Xi and directed edges from variables in the parent set XPa(i) to Xi. In
case X is continuous and we do not know p(·|·) in advance, we may approximate the (local)
conditional probability distributions by first discretizing the continuous variables and rely on
contingency tables instead; the challenges that this involves is discussed in Section 4.4. For
such a discrete BN we write P (X|DAG,θ) =

∏
i θXi|XPa(i)

, where θ (the parameters) are con-
ditional probabilities derived from contingency tables. For the rest of this section we assume
all variables X to be discrete.

BN model selection (learning the joint decomposition as well as the local conditional proba-
bilities) is an exercise in traversing the space of BNs looking for the one which maximizes a
given fitness score. As usual for model selection, regularization plays a role in this endeavor.
We use the Bayesian BN MAP score (Riggelsen, 2008) shown to learn BNs that are better
than those derived via the marginal likelihood score (the BD-score). The BN is selected as the
MAP of the joint posterior (here both DAG and parameter are being treated as true random
variables),

P (DAG,Θ|d) ∝ P (d|DAG,Θ)P (Θ, DAG),

where the joint prior is a product, with P (Θ|DAG) defined to be a product Dirichlet distri-
bution and P (DAG) defined to be uniform over DAGs (we may thus ignore this term when
doing MAP estimation). The simultaneous joint selection of DAG and parameters yields a
DAG which equivalently can be found by maximizing the structure score,

S(DAG|d) =
∏

i,xPa(i),xi

θ̂
n(xi,xPa(i))+α(xi,xPa(i))

xi|xPa(i)

∏
i,xPa(i)

Γ(
∑

xi
α(xi,xPa(i)))∏

xi
Γ(α(xi,xPa(i)))︸ ︷︷ ︸

regularization

where the statistics n(·) are the counts of a particular configuration from the data/contingency
table and α(·) are the hyper-parameters of the Dirichlet (restricted as to guarantee uniform
DAG scoring equivalence; see (Riggelsen, 2008)). The BN parameter estimates required for
computing the above score are also the BN parameters, and are given in closed form by

θ̂xi|xPa(i)
=

n(xi,xPa(i))+α(xi,xPa(i))

n(xPa(i))+α(xPa(i))
.

The space of BNs is explored using a hill-climber approach in the state-space of DAGs based on
the score given above where arc addition, removal and reversal are the basic operations. DAG
equivalent classes (essential graphs) are simulated using the Repeated Covered Arc Reversal
operator (Castelo and Kocka, 2003).
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Figure 4.2: Example for the handling of continuous variables: the dependency structure of the vari-
ables is captured by their discrete representations. The continuous variable, Xc

i , depends only on its
discrete counterpart, Xi and its realization xci is a value in the interval that corresponds to the discrete
realization, xi.

4.4 Automatic Discretization

As mentioned above our data set contains continuous variables that we have to take care
of. Since we strive to make none or at least very weak assumption with regard to the func-
tional form of the (local) conditional distributions, p(Xi|XPa(i)), we discretize the data, thus
allowing for a distribution-free learning. To transform a continuous variable into a discrete
one, the number of intervals and their boundaries have to be chosen carefully. A fine-grained
discretization will result in a very sparsely connected BN due to regularization constraints,
ultimately not reflecting the interactions we are interested in. On the other hand, a too rough
discretization may not provide the “user” with the desired degree of resolution required for
proper decision support.

Similar to our proceeding in (Vogel et al., 2012b), we use a Bayesian approach to extend the
BN MAP score, that was introduced in Section 4.3, for discretization purposes. The extended
score allows us to determine the “fitness” of a BN and discretization simultaneously while
regularizing the total number of BN parameters. It thus avoids too fine discretizations or
dense network structures.

Discretization and BN learning are nested iteratively in our method: learning a BN for a given
discretization, followed by learning a new discretization, and so on. The discretization itself is
an iterative process again: in each iteration we select a variable and employ a binary search
for the “best” discretization of this variable, while the intervals of the other variables are kept
fix. This is repeated until the score, that is described in the following, stops improving or until
a pre-defined number of iterations has been reached.

To define the extended BN MAP score, we use following notations. From now on, a superscript
c denotes the continuous counterpart of a discretized variable/configuration, e.g., dc is the
original continuous data and d a discretized version thereof. Let Λ define the discretization,
that is, the set of interval boundary points for all variables; a configuration λ will thus “bin”
the original data dc yielding d.
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Based on an idea by Monti and Cooper (1998) we assume that all the interaction that takes
place between the variables can be captured by their discrete representations. Thus it is suf-
ficient to define a BN for the discrete variables and to add the continuous variables as nodes
that depend only on their discrete counterpart (see Fig. 4.2). This means the generation (from
a statistical perspective) of a continuous datum xci works as follows: in the first step the dis-
crete datum xi is generated by a multinomial distribution modeled by the discrete BN. In
the second step the continuous datum xci is now generated conditional on the discrete xi —
from a generative perspective we “draw” a value from the given interval “picked” by xi; this
generation process is independent of the BN structure and BN parameters. The probability for
observing dc for a given discretization, network structure and parameters (the BN) can thus
be decomposed into,

P (dc|DAG,Θ,Λ) = P (d|DAG,Θ,Λ) P (dc|d,Λ).

Embedded in a Bayesian context, we are now seeking the MAP of the posterior,

P (DAG,Θ,Λ|dc) ∝ P (dc|DAG,Θ,Λ) P (DAG,Θ,Λ)

= P (d|DAG,Θ,Λ)︸ ︷︷ ︸
1

P (dc|d,Λ)︸ ︷︷ ︸
2

P (Θ|DAG,Λ)︸ ︷︷ ︸
3

P (Λ|DAG)︸ ︷︷ ︸
4

P (DAG)︸ ︷︷ ︸
5

.

The product of the terms 1, 3 and 5 is equivalent to the (joint) BN posterior as introduced
in Section 4.3 (terms 1 and 3 now of course depend on the discretization). Term 4 can be
ignored under the assumption to be uniform on the space of all possible discretizations. The

remaining term 2 was in (Vogel et al., 2012b) defined as P (dc|d,Λ) =
∏
i

∏
xi

(
1

λxi−λxi

)n(xi)
,

where λxi and λxi are the lower and upper interval boundary of the interval that contains xi.
This definition has some weaknesses, we had to counteract in previous calculations:

1. Infinite domain ranges of Xi had to be delimited artificially to avoid infinite interval
lengths and a convergence of term 2 towards zero.

2. Term 2 converges towards infinity, if interval boundaries are artificially chosen within an
infinite small area around one observation. This effect was avoided by allowing interval
boundaries only at the midpoints between two observations.

3. The learned discretization depends on the metric of the variable. The discretization of
e.g. logXi does not correspond to the one of Xi. Therefore the metric of the variable
should be chosen carefully.

A new definition of P (Xc
i |Xi,Λi) is motivated by the following considerations: let’s define a

metric for Xc
i such, that each observation of Xc

i corresponds to one unit of the metric. The
discrete variable, Xi, is associated with several intervals, such that each state xi corresponds to
one interval of length n(xi) in the defined metric, since n(xi) this is the number of realizations
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within the interval. The distribution function of Xc
i given xi is assumed to be uniform within

the interval and zero outside. The definition for term 2 is now,

P (dc|d,Λ) =
∏
i

∏
xi

(
1

n(xi)

)n(xi)

.

Analogue to the definition in (Vogel et al., 2012b) term 2 increases for an increasing number
of intervals, while term 1 and 3 decrease at the same time and balance the resolution of the
discretization.

Using the new definition for term 2, it is of no interest where exactly the interval boundaries
lie. It is sufficient to know which two observations envelope the boundary. Thus we also get a
natural limit for the number of possible discretizations.

In the procedures described so far all variables are treated with the same priority, but actually
we have an increased interest in the estimation of the target variable rloss and may need a
more precise resolution of rloss. More on this is addressed in Section 4.6.

4.5 Missing values

An other problem we have to face, is the handling of missing/incomplete values in our data. The
scoring function we use in Section 4.3 and 4.4 for BN learning and discretization is a function
of the sufficient statistics n(·), that are not defined for incomplete observations. To bypass
the problem we predict the missing values using a predictive distribution, P (U|o,θ, DAG),
defined as a distribution of all missing values u in d, given the observed values, o in d, and a
DAG. With this we can effectively compute the expected sufficient statistics E

[
n(xi,xpa(i))

]
=∑

u n(xi,xpa(i))P (u|o,θ, DAG) which is equivalent to (statistically correct) “summing out”
the missing values in d for missing data mechanisms which are ignorable according to the
missing (completely) at random (M(C)AR) criteria as formally defined in (Little and Rubin,
1987).

In the context of graphical models exists a variety of iterative approaches to determine the pre-
dictive distribution. For example the Structural Expectation-Maximization (Friedman, 1997,
1998) includes the model selection search within the Expectation-Maximization algorithm.
A Bayesian method for learning is given in (Tanner and Wong, 1987), where a stochastic
simulation-based approach for learning parameters, called Data Augmentation, is introduced.
However, in our case we have to run several iterations of BN learning and discretization, each
iteration requiring the estimation of the missing values. An iterative approach for missing value
prediction will thus quickly become infeasible. We adhere to a more efficient albeit approximate
method by applying the Markov Blanket Predictor (Riggelsen, 2006). Basically the algorithm
consists of just two steps: in the G-step (generation step) we generate univariate predictive
distributions; in the E-step (expectation step) we use the predictive distributions to compute
the expected completions of the records and can consequently estimate the expected overall
sufficient statistics.
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Approximate predictive distributions

The basic idea behind the method is to predict a missing variableXi in record l by concentrating
only on its Markov Blanket (MB), XMB(i), which are the variables that directly influence Xi,
i.e. parents, children and parents of children. For illustration see Fig. 4.3, left. Assuming the
MB is fully observed it blocks the influence from all other variables and the missing value
depends only on the observed values in the MB,

P (X
(l)
i |o

(l),θ, DAG)=P (X
(l)
i |x

(l)
MB(i),θ, DAG). (4.1)

When the MB is not completely observed, i.e. some variables therein are missing as well, it
does not shield off the variable with the missing value. However, for approximation purposes we
ignore this (which is not a big issue per se) and go ahead defining the approximate predictive
distribution for each missing variable as above and may decompose Eq. (4.1) according to the
DAG,

P (X
(l)
i |x

(l)
MB(i),θ, DAG) ∝ θXi|xPa(i)

∏
j∈Ch(i)

θXj |xPa(j)
,

where Ch(i) are the variable indices of the children of Xi. The prediction of Xi requires
simple inference, assuming correct parametrization of the BN, hence correct estimates θ̂, prior
to predicting the missing values; however, these we don’t know and unfortunately can not
reliably estimate for MAR missing data mechanisms without resorting to iterative estimation
procedures.

Approximate parameter estimation

To avoid iterative approaches to find θ we re-define the approximate predictive distribution
as follows. We derive a network DAG′ from DAG (see Fig. 4.3) by allocating edges, pointing
to Xi, to each variable of the MB of Xi in DAG: XDAG′

Pa(i) = XDAG
MB(i) and XDAG′

Ch(i) = ∅. The

resulting DAG′ preserves all dependencies given in DAG and can thus, approximating Eq.
(4.1), be used to predict missing values (for any univariate variable of any record),

P (Xi|XDAG′

Pa(i) ,θ
DAG′ , DAG′)

def
= θDAG

′

Xi|XPa(i)
. (4.2)

For the estimation of the parameters θDAG
′

Xi|XPa(i)
in Eq. (4.2) we use a similar cases approach.

The sufficient statistic n(xi,xPa(i)) is estimated with s(xi,xPa(i)), which is a weighted count
of all records where Xi = xi and the observed part of the parents set XPa(i) matches with
xPa(i). The counts are weighted with their degree of match. This means, for each record where
(Xi,XPa(i)) is fully observed we add 1 to s(xi,xPa(i)). For an incomplete observed parents
set we count the possible completions of the record and add 1/number-of-possible-completions
to s(xi,xPa(i)). This means we share the count for the record uniformly among all possible
completions of the parents set. We now use s(·) to estimate the parameters from Eq. (4.2),

θ̂DAG
′

xi|xPa(i)
=

s(xi,xPa(i))∑
xi
s(xi,xPa(i))

that now fully define the approximate predictive distribution for Xi.
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Figure 4.3: left: Markov Blanket of Xi; right: new model DAG′ derived from DAG (all edges
connecting variables in the Markov Blanket of Xi in DAG are directed towards Xi in DAG′).

Selecting predictive variables

For small data samples and dense BN’s we will end up with only few observations for each
combination of parent states. The resulting estimates, θ̂DAG

′
, will thus be based on few ob-

servations and lead to poor results. To avoid this effect, the number of variables used for the
predictive distribution can be reduced. Instead of defining the whole MB of Xi in DAG as
parents of Xi in DAG′, we select only the b best predictors from the MB. The predictors
follow certain constraints and their predictive power can be determined in closed form. For a
more detailed description we refer to (Riggelsen, 2006).

4.6 Application

Based on the data set of Section 4.2 we learn a BN by applying the BN-learning and discretiza-
tion algorithm described in Section 4.3 and 4.4. The missing values are handled as suggested in
Section 4.5 by using only the b = 2 best predictive variables for the estimation of the missing
values. Continuous and ordinal variables are treated in the same manner and both discretized.
Thus, the numbers of states is reduced for continuous as well as for discrete variables. Only
the number of states for the nominal variables (ws, kh, bt, own) remains as given.

As initial network to start with, we choose a Tree Augmented Naive Bayes (TAN) network with
rloss as target variable. Thus we give some initial priority to the damage describing variable
and the resulting BN has a higher probability of being dense in the surrounding of rloss. The
initial TAN is obtained by applying the methods described in (Vogel et al., 2012a).
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Figure 4.4: Bayesian network describing the damage to residential buildings caused by the 2002 and
2005/2006 flood events in the Elbe and Danube catchments; nodes marked with a thicker border belong
to the MB of the relative building loss

The resulting BN, shown in Fig. 4.4, has a number of direct links connecting the damage
describing variable directly with all subdomains except for socio-economic factors. Especially
the domains ‘precaution’ and ‘flood parameters’ are densely connected with rloss, which seems
to be reasonable and coincides with our intuition. Even though around half the records of the
variable ‘flood experience’ are missing, the connection to the building damage, which experts
assume to be valid, is found. This is in contrast to the network learned in (Vogel et al., 2012b),
where missing values were replaced randomly. The found dependency is a hint for getting
improved results by applying the missing value algorithm described in Section 4.5.

The developed model considers a large number of variables. Complete observations for all
included variables are rare, but this is no drawback of the model. BNs are capable to use
incomplete observations. By summing missing variables out, they exploit the information con-
tent that is present. The inclusion of many variables thus actually proves as an advantage,
since it provides additional knowledge e.g. about missing variables that directly influence the
target variable. Looking at the MB of rloss we find several variables (flood duration, water
depth, flow velocity, contamination, building quality, flood experience, knowledge of hazard,
precaution, efficiency of private precaution, warning quality and emergency measures) with
direct influence on the building damage. This supports the assumption made in (Merz et al.,
2010), that demands improved flood damage assessments, taking several variables into account.
Especially precaution and flood parameters seem to have a high influence on the damage of
the building.
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Prediction performance

As mentioned we have an increased interest in the estimation of rloss, but the learned dis-
cretization will not necessarily result in a resolution that matches our requirements for pre-
diction. One way of achieving a better resolution is to refine, once the BN is learned, the dis-
cretization of the target variable by splitting its range into many (e.g. 512) intervals and using
a kernel density estimator re-estimate the BN parameters pertaining to rloss; for details refer
to (Vogel et al., 2012b). However, the larger number of states is detrimental to BN inference
which becomes both more time- and space consuming. An alternative is to use an approxima-
tion based on mixtures of truncated exponentials (MTE) (Moral et al., 2001; Langseth et al.,
2010), allowing for efficient inference because MTEs are closed under probability propagation.
Using MTEs we can define a conditional distribution p(Xi|XPa(i)) by partitioning Ω(Xi,XPa(i))

into hypercubes D1, . . . , DL and defining the density such that within each hypercube, Dl, it
follows the form

p↓Dl
(Xi|XPa(i)) = a0 +

J∑
j=1

aj e bjXi+c
T
j XPa(i) . (4.3)

To fit a (conditional) MTE density to observations, we have to address the following issues:
the determination of the hypercubes into which Ω(Xi,XPa(i)) is partitioned, the determination
of the number of exponential terms in each hypercube and the estimation of the parameters.
We use the maximum likelihood approach described in (Langseth et al., 2010) to solve these
tasks and to define an approximation for the conditional distribution function of Xi = rloss.
It should be recognized that rloss has no parents and Eq. (4.3) thus simplifies to a function
that depends only on Xi. The found density has the form

p(Xi) = 0.015 + 21.46e−71.18Xi + 4.71e−6.88Xi .

We now have to adapt the definitions for the conditional distributions of the children of rloss.
Here we assume that the only effect of rloss on a child Xj is through the definition of the
hypercubes. This means within an hypercube is p(Xj |XPa(j)) constant in rloss. We use the
method described in (Langseth et al., 2009a) to find for each child variable the best partition
of Ωrloss to define the hypercubes.

The original discretization, that was learned parallel to the BN, splits the domain of rloss into
3 intervals. Figure 4.5 shows two examples of the effect of the resolution refinement for rloss
using the kernel density estimator and the MTE approach.
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Figure 4.5: Top: Approximation of the marginal density of rloss with a discrete distribution for the
learned discretization, with a kernel density estimator and the MTE approach. Bottom: Estimated
conditional densities for a particular observation in the data.

sdf FLEMO BNkernel BNMTE BNdiscr

1 0.0111 0.0108 0.0101 0.0104 0.0456
2 0.0133 0.0114 0.0118 0.0116 0.0415
3 0.0161 0.0145 0.0146 0.015 0.0429
4 0.0200 0.0194 0.0165 0.0169 0.0496
5 0.0166 0.0150 0.0170 0.0163 0.044

Avg 0.0154 0.0142 0.014 0.014 0.0447

Table 4.2: Mean squared errors of a 5-fold cross-validation, where rloss is predicted with the three
models stage-damage function, FLEMOps+r and Bayesian Networks.

We compare the performance of the learned BN in terms of predicting rloss – using the kernel
density estimation and the MTE approach – to flood damage assessment approaches currently
used in Germany, namely to the stage-damage function (sdf) approach and to FLEMOps+r
(Elmer et al., 2010). For the sdf approach, a root function is fitted to the damage data of certain
object classes using least squares, i.e., the relative damage is a function of the water depth only.
FLEMOps+r has been developed using the same data set and it has been shown to provide
superior results compared to other approaches currently used in Germany. FLEMOps+r calcu-
lates the building loss ratio for private households using five classes of inundation depth, three
intervals of flood frequency, three individual building types, two classes of building quality,
three classes of contamination and three classes of private precaution. In essence, the data set
is stratified into 27 subsamples and the average loss ratio is used as damage estimator (Elmer
et al., 2010).
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To evaluate the prediction performance of the models we conduct a 5-fold cross-validation. The
total data set is divided into 5 subsamples of same sizes. In each run we define one of these
subsample to be the test set; the other four are used to learn the BN, sdf and FLEMOps+r
model. The learned models are used to estimate the relative building loss for each record
of the test set, given all observed values (besides the building loss itself). The sdf and the
FLEMOps+r give no estimates for records where the used predictor variables are (partly)
missing, while the BN has no difficulties to handle incomplete observations. The uncertainty
concerning the unobserved variables is captured in the probability function as well as the
uncertainty about the modeling framework and the intrinsic randomness (aleatory uncertainty).
To include all records in our analysis, we define for sdf and FLEMOps+r: the estimated rloss
for incomplete observations is the mean of all observed rloss values.

While sdf and FLEMOps+r give point estimates, the BN provides a distribution function for
rloss (received with the kernel density estimation or with the MTE approach). It is a main
benefit of BNs to keep track of these uncertainties. The identification and communication of
uncertainty is especially important if the results are used for further computations and decision
support. Anyhow, for the model comparison we condense the distribution function to its mean
value, which we define to be the estimate for rloss. Thus we reduce provided information and
disadvantage the BN. Nevertheless the BN provides good prediction results. Table 4.2 gives
for all models the mean squared error of the estimated rloss. For the BN it shows additionally
to the estimation results received with the refined resolutions the mean squared error we
get using the originally learned course discretization. The prediction performance is clearly
improved by the resolution refinement. The two refinements provide similar results – while the
MTE approach requires less parameters – and their prediction performance is comparable to
the one of the FLEMOps+r model. This is a promising result, since the BN is not developed
to approximate the conditional distribution of the target variable, but aims to approximate
the joint distribution of all variables and thus puts as much effort into the prediction of the
building loss as e.g. into the prediction of the number of children. The sdf and FLEMOps+r
aim directly at an optimal prediction of the building loss and do not have the flexibility of
the BN, which allows inference in all directions and can thus be used for predictions of all
(combinations of) variables of interest (e.g. which effect has precaution on the building loss).
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4.7 Conclusion

A BN for flood damage assessment was learned based on a data set describing flood related
observations on a mixture of discrete and continuous variables. Here, as in many real-life ap-
plications, continuous variables and incomplete observations pose a challenge for BN-learning.
Instead of discretizing the continuous variables as a pre-processing step prior to the BN model
selection, we extend the BN MAP model selection metric to score not only BNs, but take
the discretization into account simultaneously. Thus we aim to find the best combination of
BN structure, parameters and discretization; the combination that maximizes the joint pos-
terior. For the handling of the missing values we use an MB approach. This alternative to
iterative methods avoids an additional nesting of iterations and thus keeps the computational
effort feasible. Additionally we showed how the learned BN can be modified for a more precise
estimation of a chosen target variable.

Most of the methods applied here are derived from existing ideas developed and used for
stand-alone problems. Interfacing these individual methods is challenging, because they are
highly interacting. Also the computational efficiency plays an important role in this regard.
The here described proceeding was coded in “R” in a generic fashion. It is a completely data-
driven approach working without significantly human interaction. It can without much ado be
applied to continuous incomplete data sets from other domains, where reasoning under- and
propagation of uncertainty matters.
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The Application of Bayesian Networks in Natural Hazard Analyses

ABSTRACT: In natural hazards we face several uncertainties due to our lack of knowl-

edge and/or the intrinsic randomness of the underlying natural processes. Nevertheless,

deterministic analysis approaches are still widely used in natural hazard assessments, with

the pitfall of underestimating the hazard with potentially disastrous consequences. In this

paper we show that the Bayesian network approach offers a flexible framework for captur-

ing and expressing a broad range of different uncertainties as those encountered in natural

hazard assessments. Although well studied in theory, the application of Bayesian networks

on real-world data is often not straightforward and requires specific tailoring and adaption

of existing algorithms. We demonstrate by way of three case studies (a ground motion

model for a seismic hazard analysis, a flood damage assessment, and a landslide suscep-

tibility study) the applicability of Bayesian networks across different domains showcasing

various properties and benefits of the Bayesian network framework. We offer suggestions

as how to tackle practical problems arising along the way, mainly concentrating on the

handling of continuous variables, missing observations, and the interaction of both. We

stress that our networks are completely data-driven, although prior domain knowledge

can be included if desired.

5.1 Introduction

Natural hazards such as earthquakes, tsunamis, floods, landslides or volcanic eruptions all
share – despite of differing causes, triggers, and effects – many of the same model- and decision
theoretic questions. The underlying natural processes are often complex, while the number of
potential influencing factors is large. The single and joint effects of the driving forces are not
necessarily completely understood, potentially introducing a large degree of uncertainty, which
impacts any quantitative analysis. Additionally, the observation on the basis of which infer-
ence is made is often sparse, inaccurate and incomplete, adding yet another layer of uncertainty
on top. Thus various sources of uncertainty accumulate and interact in a non-trivial fashion.
Indeed, this is one of the reasons why probabilistic approaches are often avoided. Such proba-
bilistic approaches often seem intimidating given the large number of parameters required for
such a proceeding, where the analytical tools needed for a rigorous handling of uncertainties
are unknown or at least not readily available.

Deterministic approaches rarely provide information on the uncertainty related to parameter
estimates beyond the use of statistical measures of dispersion such as standard deviations or
standard errors about empirical means. However, uncertainty is a carrier of information to the
same extent as a point estimate, and ignoring it or dismissing it as simply an error would be
wrong. Ignoring uncertainties in quantitative hazard appraisals may have disastrous effects,
since it often leads to over- or underestimates of certain event magnitudes. Yet, deterministic
approaches are still the state of the art in many applications. For example, tsunami early
warning systems evaluate pre-calculated synthetic databases and pick out the scenario that
appears closest to a given situation in order to estimate its hazard (Blaser et al., 2011).
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In this paper we consider Bayesian networks (BNs) that combine probability theory with graph
theory, thus allowing for an intuitive, consistent, and rigorous way of quantifying uncertainties.
The (in-)dependencies between the involved variables relevant to a particular hazard domain
are translated into a graph structure that enables improved understandings and direct insights
into the relationships and workings of a natural hazard system. Moreover, as BNs capture
the joint distribution of all variables of a given domain, they may be used for expressing
any conditional probability distribution of interest, thereby helping to answer quantitative
questions on specific scenarios or process response chains.

In recent years BNs have already successfully been employed in a wide range of earth sciences,
including automatic classifications of seismic signals e.g. (Riggelsen et al., 2007), tsunami early
warning, e.g. (Blaser et al., 2009, 2011), Probabilistic Seismic Hazard Analyses e.g. (Kühn
et al., 2011), and earthquake induced landslide susceptibility e.g. (Song et al., 2012). Here we
additionally highlight three applications of BNs in natural hazard assessments that illustrate
the flexibility of BNs. Alongside we discuss problems that arise when BNs are learned from
real world data. The handling of continuous variables and incomplete observations is the chief
problem here. Most approaches we use are derived from existing ideas and standard approaches,
but their combination is challenging, since the individual methods are highly interacting.

In the next section we give an introduction into BNs, which is followed by several applications
in natural hazards research. In Section 5.3 we develop a seismic ground motion model based
on a synthetic data set, which serves to showcase some typical BN properties. We demonstrate
an option to deal with continuous variables, making no prior assumptions about their distri-
butional family. In Section 5.4 data collected after the 2002 and 2005/2006 flood events in the
German Elbe and Danube catchments are used to learn a BN for flood damage assessments.
This incomplete data set requires a treatment of missing observations, which is especially chal-
lenging in combination with continuous variables. A last application in Section 5.5 deals with
a regional landslide susceptibility model for Japan, where we investigate how the same set
of potential predictors of slope stability may produce nearly equally well performing, though
structurally different, BNs, thus revealing important variable interactions that are often over-
looked in landslide studies. This application further illustrates the model uncertainty related
to BN learning. Conclusions and scope for future work perspectives are presented in Section
5.6.
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Figure 5.1: Illustration of a parent set XPa(i)

of Xi in a BN.

P (A,B,C,D,E) = p(E|C,D)p(D)p(C|A,B)p(B)p(A)

Figure 5.2: Example for the decomposition of the
joint distribution according to a DAG.

5.2 Bayesian Networks

We operate in the world of probability theory and adhere to the corresponding probability
axioms. We treat all random quantities pertaining to a particular hazard domain, including
the covariates, as true random variables, each associated with a (conditional distribution),
p(·|·). The interactions between those variables, be it measurables, observations or otherwise,
therefore really boils down to the question of how the distributions of those random variables
interact (at all times in accordance with the axioms of probability theory). A BN is a convenient
framework for capturing such interactions, both from an intuitive, but also from a computa-
tional point of view. We refer to (Koller and Friedman, 2009) for a more detailed description
of BNs in general and will restrict ourselves here to a few key aspects of the formalism.

5.2.1 Properties and Benefits

As previously mentioned, BNs combine probability theory with graph theory, representing
all involved variables, X = {X1, . . . , Xk}, as nodes in a directed acyclic graph, DAG; these
variables will coincide with the specific variables of a hazard domain of interest. The arcs of the
DAG point from the variables in the parent set, XPa(i), to Xi (see Fig. 5.1), stating that Xi

directly depends on (is influenced by, is affected by, . . . ) XPa(i). The probability distribution
of Xi is defined conditional on its parents set, p(Xi|XPa(i)). Formally, a BN for X is a pair
(DAG,θ), the structure, DAG and the parameters, θ=

⋃
{θxi|xPa(i)

= p(xi|xPa(i))},1 which
describes a joint distribution factorizing as,

P (X|DAG,θ) =

k∏
i=1

p(Xi|XPa(i)). (5.1)

1Here we assume discrete variables for which the set of parameters corresponds to the conditional (point)
probabilities for each combination of states. For continuous variables the design of the parameters depends on
the particular densities p(·|·).
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Figure 5.2 is an example of a simple BN. Although not immediately clear from Eq. (5.1), a BN
is characterized by many attractive properties which we may profit from in a natural hazard
setting; here we mention a few:

Prop. 1 - Graphical representation: The interactions of the variables of the entire “sys-
tem” are encoded through the DAG. The BN structure thus provides information about
the underlying processes and the way various variables communicate and share “informa-
tion” as it spreads around the network. Formally speaking the DAG encodes independence
assumptions between variables.

Prop. 2 - Use prior knowledge: The intuitive interpretation of a BN makes it possible to
define the BN beforehand based on prior knowledge; alternatively it may be learned from
data, or even a combination of the two (cast as Bayesian statistical problem; see later
for details): pose a prior BN and update it based on observations.

Prop. 3 - Identify relevant variables: By learning the BN from data we may identify the
variables that are (according to the data) relevant. If several “islands” or isolated single
nodes (not connected) appear, then it indicates that these variables potentially may be
irrelevant.

Prop. 4 - Capture uncertainty: Uncertainty can easily be propagated throughout the net-
work, between any nodes/variables; we effectively compute/estimate probability distri-
butions rather than single point estimates.

Prop. 5 - Allow for inference: Instead of explicitly modeling the conditional distribution
of a predefined target variable, the BN captures the joint distribution of all variables. Via
inference, we can express any/all conditional distribution(s) of interest, in any directions
(including forensic and inverse reasoning), e.g. we may ask for an observed damage, what
is a likely intensity of the damage causing event. A detailed example for reasoning is given
in Section 5.4.3.

Inference in BNs is closed under restriction, marginalization and combination enabling
for fast (close to immediate) and exact inference.

Prop. 6 - Use incomplete observations: During predictive inference (i.e., computing a
conditional distribution) incomplete observations of data do not pose a problem to BNs.
By the virtue of the probability axioms, it merely impacts the overall uncertainty in-
volved.

In the course of the paper we will refer to these 1–6 properties to make clear what is meant.

For “real-life” modeling problems, including those encountered in natural hazard analysis,
adhering strictly to the BN formalism is often a challenging task, and consequently the prop-
erties listed above at times seem rather theoretical/academic. In the sections to come we will
by way of examples shed some light on how typical natural hazard problems can be formulated
around BNs. We take a data-driven stance, and the aim is thus to learn BNs from observations
collected; the next section will introduce some key aspects related to inducing BNs.
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5.2.2 Learning Bayesian Networks

Data based BN learning can be seen as an exercise in finding a pair (DAG,θ) which according
to the BN decomposition in Eq. (5.1) could have been “responsible for generating the data”.
For this we traverse the space of pairs looking for the BN which maximizes a given fitness
score; this should however be done with careful consideration to the issues always arising in
the context of model selection, i.e., over-fitting, generalization, etc. Several suggestions for
BN fitness scoring appear in literature derived from different theoretical principles and ideas.
We opt for a Bayesian approach to learn BNs2. This has several advantages and allows us
to elegantly combine prior knowledge and data, i.e. we have encoded our prior belief on the
BN space (DAG,Θ) as P (DAG,Θ), we observe data d and obtain the revised distribution
P (DAG,Θ|d) based upon which we select the most probable BN. More specifically, we may
rewrite the joint posterior as,

P (DAG,Θ|d)︸ ︷︷ ︸
posterior

∝ P (d|DAG,Θ)︸ ︷︷ ︸
likelihood

P (Θ, DAG)︸ ︷︷ ︸
prior

. (5.2)

The prior distribution allows us to compensate sparse data, artifacts, bias, etc. but also allows
us to assign domain specific prior preferences to certain BNs before seeing data (Prop. 2). In
the following applications we work with a non-informative prior, which at the same time acts
as a penalty term that regularizes the DAG complexity and avoids over-fitting. The likelihood
term decomposes according to Eq. (5.1). Detailed descriptions for prior and likelihood term
are given in Appendix 5.A.1.

Using the BN MAP (Bayesian Network Maximum A Posteriori) score we can maximize the
right side of Eq. (5.2) (the product of the prior and the likelihood as given above) as to obtain
the “best” BN given data; see (Riggelsen, 2008) for details with regard to search strategy,
hyper-parameter selection, etc.

In the following section we learn a ground motion model, which is used in probabilistic seismic
hazard analysis, as a BN; the used data set is synthetically generated. This section serves as
an illustration of the BN formalism “in action” and will also present some theoretical and
practical problems along with potential solutions in the context of BN learning. In the sections
thereafter we will use real data.

5.3 Seismic Hazard Analysis: Ground Motion Models

When it comes to decision making on the design of high risk facilities, the hazard arising
from earthquakes is an important aspect. In probabilistic seismic hazard analysis (PSHA) we
calculate the probability of exceeding a certain ground motion at a certain site within a certain
time interval. One of the most critical elements in PSHA, often carrying the largest amount of
uncertainty, is the ground motion model. It describes the conditional probability of a ground

2Note that BNs are not necessarily to be interpreted from a Bayesian statistical perspective.
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Xi Description Distribution[Range]

predictors

M moment magnitude of the earthquake U[5,7.5]
R source-to-site distance Exp[1km, 200km]

SD stress released during the earthquake Exp[0bar,500bar]
Q0 attenuation of seismic wave amplitudes in deep layers Exp[0s−1,5000s−1]

κ0 attenuation of seismic wave amplitudes near the surface Exp[0s,0.1s]
VS30 average shear-wave velocity in the upper 30m U[600m/s,2800m/s]

ground motion parameter

PGA horizontal peak ground acceleration according to the
stochastic model

Table 5.1: Variables used for the ground motion model.

motion parameter, Y , such as (horizontal) peak ground acceleration, given earthquake and
site related predictor variables, X−Y . Ground motion models are usually regression functions,
where the functional form is derived from expert knowledge and the ground motion parameter is
assumed to be log-normally distributed: lnY = f(X−Y ) + ε, with ε ∼ N (0, σ2). The definition
of the functional form of f(·) is guided by physical model assumptions about the single and
joint effects of the different parameters, but also contains some ad hoc elements. Using the
Bayesian network approach there is no prior knowledge required per se, but if present it can
be accounted for by encoding it in the prior term of Eq. (5.2). Is no reliable prior knowledge
available, we work with a non-informative prior and the learned graph structure provides
insight into the dependence structure of the variables and helps for a better understanding of
the underlying mechanism. Modeling the joint distribution of all variables, X = {X−Y , Y },
the BN implicitly provides the conditional distribution P (Y |X−Y , DAG,Θ), which gives the
probability of the ground motion parameter for specific event situations needed for the PSHA.

5.3.1 The Data

The event situation is described by the predictor variables X−Y = {M,R, SD,Q0, κ0, VS30},
which are explained in Tab. 5.1. We generate a synthetic data set consisting of 10.000 records.
The ground motion parameter, Y , is the horizontal peak ground acceleration (PGA). It is gen-
erated by a so called stochastic model (Boore, 2003), which distorts the shape of a random time
series according to physical principles and obtains time series with properties that match the
ground-motion characteristics. The predictor variables are either uniform (U) or exponentially
(Exp) distributed within a particular interval (see Tab. 5.1).

Since the stochastic model does not have nice analytical properties and its usage is non-trival
and time consuming, surrogate models, which describe the stochastic model in a more abstract
sense (e.g. regressions), are usually used in PSHA. We show that BNs may be seen as a viable
alternative to the classical regression approach. However, before doing so, we need to touch
upon some practical issues arising when learning BNs from continuous data.
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For continuous variables we need to define the distributional family for the conditionals p(·|·)
and thus make assumptions about the functional form of the distribution. To avoid such as-
sumptions and “let the data speak”, we discretize the continuous variables, thus allowing for a
completely data-driven and distribution-free learning. In the following subsection we describe
an automatic discretization, which is part of the BN learning procedure and takes the de-
pendencies between the single variables into account. However, the automatic discretization
does not necessarily result in a resolution that matches the requirements for prediction pur-
poses or decision support. To increase the potential accuracy of predictions we approximate,
once the network structure is learned, the continuous conditionals with mixtures of truncated
exponentials (MTE) as suggested by Moral et al. (2001). More on this follows in Section 5.3.3.

5.3.2 Automatic Discretization for Structure Learning

To keep the information loss during the discretization small the number of the intervals and
their boundaries have to be chosen carefully. A fine-grained discretization will result in a
sparsely connected BN due to regularization constrains, while a rough discretization may not
provide the required degree of resolution.

Instead of discretizing as pre-processing step to the Bayesian network learning, we use a multi-
variate discretization approach, that accounts for the BN structure. The “optimal” discretiza-
tion, Λ, thus depends on the DAG of the BN and the observed (continuous) data, dc. Analogue
to Section 5.2.2, we again cast the problem in a Bayesian framework searching for the combi-
nation of (DAG, θ, Λ) that has the highest posterior probability given continuous data,

P (DAG,Θ,Λ|dc) ∝ P (dc|DAG,Θ,Λ)P (DAG,Θ,Λ). (5.3)

Λ is defined by a set of interval boundary points for all variables and bins the original data dc

yielding d. Expanding on an idea by Monti and Cooper (1998) we assume that all communica-
tion/information floss between the variables can be captured by their discrete representations.
For given d and Λ is dc consequently independent of DAG and Θ and the likelihood for
observing dc (for a given discretization, network structure and parameters) can be written as,

P (dc|DAG,Θ,Λ) = P (dc|d,Λ)P (d|DAG,Θ,Λ) (5.4)

and Eq. (5.3) decomposes into

P (DAG,Θ,Λ|dc) ∝ P (dc|d,Λ)︸ ︷︷ ︸
continuous data

P (d|DAG,Θ,Λ)︸ ︷︷ ︸
likelihood (discrete)

P (DAG,Θ,Λ)︸ ︷︷ ︸
prior

.

The likelihood term is defined as for the separate BN learning for discrete data (Section 5.2.2)
and we use a non-informative prior again. For the continuous data we assume that all continuous
observations within the same, by Λ defined interval have the same probability. More information
about the score definition can be found in the Appendix 5.A.1 and technical details are given
in (Vogel et al., 2012b, 2013). In the following we discuss the BN and discretization learned
from the synthetic seismic data set.
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Figure 5.3: Theoretic BN, capturing dependen-
cies of the data generating model.

Figure 5.4: BN learned from the generated syn-
thetic data.

Learned Ground Motion Model

Since we generated the data ourselves, we know which (in)dependencies the involved variables
should adhere to; this is expected to be reflected in the BN DAG we learn from the synthetic
data. Due to data construction are the predictors variables M,R, SD,Q0, κ0, VS30 independent
from each other and PGA depends on the predictors. Figure 5.3 shows the dependence structure
of the variables. The converging edges at PGA indicate that the predictors become conditional
dependent for given PGA. This means for given PGA they carry information about each
other, e.g. for an observed large PGA value a small stress drop indicates a close distance to
the earthquake. The knowledge about the dependence relations gives the opportunity to use
the seismic hazard application for an inspection of the BN learning algorithm regarding to the
reconstruction of the dependencies from the data, which is done in the following.

The network we found to maximize P (DAG,Θ,Λ|dc) for the 10.000 synthetic, seismic data
records is shown in Fig. 5.4. The corresponding found discretization is plotted in Fig. 5.5,
which shows the marginal distributions of the discretized variables. The learned BN differs from
the original one, mainly due to regularization constraints as we will explain in the following:
As mentioned in Section 5.2 the joint distribution of all variables can be decomposed into
the product of the conditionals according to the network structure. For discrete/discretized
variables the number of parameters needed for the definition of p(Xi|XPa(i)) in Eq. (5.1)
corresponds to the number of possible state combinations for (Xi,XPa(i)). Taking the learned
discretization shown in Fig. 5.5, the BN of the data generating process (Fig. 5.3) is defined by
3858 parameters, 3840 needed alone for the description of p(PGA|M,R, SD,Q0, κ0, VS30). A
determination of that many parameters from 10.000 records would lead to a strongly over-fitted
model. Instead we learn a BN, that compromises between model complexity and its ability to
generate the original data. The BN learned under these requirements (Fig. 5.4) consists of only
387 parameters and still captures the most relevant dependencies.
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SD (log-scale)

κ0 (log-scale)

M

Q0 (log-scale)

VS30

R (log-scale)

lnPGA

Figure 5.5: Marginal distribution of the variables, discretized according to the discretization found
for the BN in Fig. 5.4. The number of intervals per variable ranges from 2 to 8.

Figure 5.6 shows the lnPGA values of the data set plotted against the single predictors. A
dependence on stress drop (SD) and distance (R) is clearly visible. These are also the two
variables with remaining converging edges on PGA, revealing that for given PGA SD con-
tains information about R and vice versa. The dependencies between PGA and the remaining
predictors are much less distinctive, such that the conditional dependencies between the pre-
dictors are negligible and the edges can be reversed for the benefit of parameter reduction.
The connection to VS30 is even neglected at all, since its impact on PGA is of minor interest
compared to the variation caused by the other predictors.

Note, that the DAG of a BN actually expresses the independencies (not the dependencies) be-
tween the variables (Prop. 2). This means each (conditional) independence statement encoded
in the DAG must be true, while encoded dependence relations must not hold per se. In turn
this implies that each dependence holding for the data should be encoded in the DAG. The
learning approach applied here fulfills the task quite well, detecting the relevant dependencies,
while keeping the model complexity at a moderate level.

The model complexity depends not only on the DAG, but also on the discretization. A complex
DAG will enforce a small number of intervals and a large number of intervals will only be chosen
for variables with a strong influence on other variables. This effect is also visible for the learned
discretization (Fig. 5.5). PGA is split into 8 intervals, distance and stress drop into 4 and 5,
while the other variables consist of only 2 to 3 intervals.
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SD − PGA

κ0 − PGA

M − PGA

Q0 − PGA

VS30− PGA

R− PGA

Figure 5.6: Dependencies between the predictor variables and lnPGA.
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5.3.3 Approximation of continuous distributions with Mixtures of Expo-
nentials

A major purpose of the ground motion model is the prediction of the ground motion (lnPGA)
based on observations of the predictors; hence, although the BN captures the joint distribution
(Prop. 5) of all involved variables, primary focus is in this context on a single variable, for
which the accuracy of the prediction made with a BN is limited by the resolution of the
discretization learned. For the BN shown above, the discretization of the target variable into 8
intervals enables a quite precise approximation of the continuous distribution, but this is not
necessarily always the case. Complex network structures and smaller data sets used for the BN
learning lead to a coarser discretization of the variables. To still enable precise estimations we
may search for alternative approximations of the (or at least some, in particular the primary
variable(s) of interest) continuous conditional distributions, once the BN has been learned.

Moral et al. (2001) suggest to use mixtures of truncated exponentials (MTEs) for this purpose,
since they allow for the approximation of a variety of functional shapes with a limited number
of parameters (Langseth et al., 2008) and they are closed under the operations used for BN
inference: restriction, combination, marginalization (Langseth et al., 2009b). To approximate
a conditional distribution p(Xi|XPa(i)) with MTEs, we partition the domain Ω(Xi,XPa(i)) into
hypercubes D1, . . . , DL and define the density within each hypercube, Dl, such that it follows
the form

p↓Dl
(Xi|XPa(i)) = a0 +

J∑
j=1

aj e bjXi+c
T
j XPa(i) .

The determination of the hypercubes and the number of exponential terms in each hypercube
as well as the estimation of the single parameters is done according to the maximum likelihood
approach described in (Langseth et al., 2010). In the following we show how the MTE ap-
proximation improves the BN prediction performance compared to the usage of the discretized
variables and we compare the results to those from a regression approach.

Prediction Performance

We conduct a 10-fold cross validation to evaluate the prediction performance of the BN com-
pared to the regression approach: the complete dataset is divided into 10 disjoint subsamples
of which in each trial one is defined as test set, while the others are used to learn the model
(regression function or BN). The functional form of the regression function is determined by
expert knowledge based on the description of the Fourier spectrum of seismic ground motion
and follows the form

f(X−Y ) = a0 + a1M + a2M · lnSD + (a3 + a4M) ln
√
a2

5 +R2 + a6κR+ a7VS30 + a8 lnSD

with κ = κ0 + t∗, t∗ = R
Q0Vsq

and Vsq = 3.5kms .
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Averaged conditional density

BNdiscrete BNMTE regression

0.237 0.320 0.331
0.240 0.297 0.329
0.239 0.298 0.331
0.218 0.255 0.323
0.216 0.260 0.339
0.222 0.257 0.339
0.215 0.252 0.332
0.243 0.317 0.330
0.212 0.249 0.328
0.243 0.315 0.331

Table 5.2: Results of a 10-fold cross valida-
tion to test the prediction performance of the BN
(discrete and MTE approximations of the condi-
tional distributions) and the regression approach.
It shows for each trial the average of the condi-
tional density for the observed lnPGA value.

Mean squared error

BNdiscrete BNMTE regression

1.021 0.749 0.663
1.197 0.963 0.680
1.082 0.821 0.673
1.262 0.951 0.723
1.201 0.851 0.629
1.298 1.059 0.625
1.297 1.077 0.672
1.149 0.713 0.701
1.343 1.161 0.692
1.169 0.841 0.666

Table 5.3: Results of a 10-fold cross valida-
tion to test the prediction performance of the BN
(discrete and MTE approximations of the condi-
tional distributions) and the regression approach.
It shows for each trial the mean squared error of
the predicted lnPGA.

We compare the regression approach in terms of prediction performance to the BN with dis-
cretized variables and with MTE approximations. For this purpose we consider for each model
the conditional density distributions of lnPGA given the other variables and inspect how much
probability each density assigns to the real lnPGA value. For the regression approach the con-
ditional density follows a normal distribution, N (f(X−Y ), σ2), while it is defined via the DAG
and the parameters θ using the BN-models. Table 5.2 shows for each test set the conditional
density of the observed lnPGA averaged over the individual records. An other measure for
the prediction performance is the mean squared error of the estimates for lnPGA (Tab. 5.3).
We define the mean values of the conditional densities as point estimates for lnPGA. For the
regression model the estimate i.e. corresponds to f(x−Y ).

Even though the discretization of lnPGA is relative precise in the discrete BNs (8 intervals
in each trial, except for the first trial, where lnPGA is split into 7 intervals), the MTE
approximation of the continuous conditional distributions improves the prediction performance
of the BN. Still it does not entirely match the precision of the regression function. Anyhow,
the prediction performances are in the same order of magnitude and we must not forget,
that the success of the regression approach relies on the expert knowledge used to define its
functional form, while the structure of the BN is learned totally data driven. Further profits
the regression approach in this example from the fact that the target variable (lnPGA) is
normally distributed, which is not necessarily the case for other applications. Focusing on the
prediction of the target variable the regression approach also does not have the flexibility of
the BN, which is designed to capture the joint distribution of all variables and thus allows for
inference into all directions (Prop. 5), as exemplified in Section 5.4.3. Additional benefits of
BNs, like their ability to make use of incomplete observations, will be revealed in the following
sections, where we investigate real-world data.
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5.4 Flood Damage Assessment

In the previous section we dealt with a fairly small BN (few variables/nodes) and a synthetic
data set. In this section we go one step further and focus on learning a larger BN from real-life
observations on damage caused to residential buildings by flood events. Classical approaches,
so called stage-damage functions, relate the damage for a certain class of objects to the water
stage or inundation depth, while other characteristics of the flooding situation and the flooded
object are rarely taken into account (Merz et al., 2010). Even though it is known that the flood
damage is influenced by a variety of factors (Thieken et al., 2005), stage-damage functions are
still widely used. This is due to the fact that the number of potential influencing factors is
large and the single and joint effects of these parameters on the degree of damage are largely
unknown.

5.4.1 Real-life Observations

The data collected after the 2002 and 2005/2006 flood events in the Elbe and Danube catch-
ments in Germany (Thieken et al., 2005; Elmer et al., 2010) offer a unique opportunity to learn
about the driving forces of flood damage from a BN perspective. Figure 5.7 shows the inves-
tigated catchments. The data set consists of 1135 records of discrete and continuous variables
describing the flooding situation, building and household characteristics, precaution, warning
and emergency measures and building damage. Table 5.4 lists the 29 considered variables allo-
cated to their domains. In Section 5.3.2 we already dealt with the issue of continuous data when
learning BNs; here we will apply the methodology presented there. However, in contrast to the
synthetic data from the previous section, many real world data sets are for different reasons
lacking some observations for various variables, and for the data set at hand the percentage
of missing values is below 20% for most variables yet for others it reaches almost 70%. In the
next subsection we show how we deal with the missing values in the setting of the automatic
discretization described in Section 5.3.2 when learning BNs.

5.4.2 Handling of Incomplete Records

To learn the BN we again maximize the joint posterior for the given data, Eq. (5.3). The
calculation of the joint posterior requires for each variable Xi the number of counts for each
combination of states for (Xi,XPa(i)). However this is only given for complete data and for
missing values it can only be estimated by using expected completions of the data. We note
that a reliable and unbiased treatment of incomplete data sets (no matter which principled
method is applied) is only possible for missing data mechanisms that are ignorable according
to the missing (completely) at random (M(C)AR) criteria as defined in (Little and Rubin,
1987), i.e. the absence/presence of a data value is independent of the unobserved data. For
the data sets considered in this paper we assume the MAR criterion to hold and derive the
predictive function/distribution based on the observed part of the data in order to estimate
the part which is missing.
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Variable Scale and range
flood parameters

Water depth C: 248 cm below ground to 670 cm above ground
Inundation duration C: 1 to 1440 h
Flow velocity indicator O: 0=still to 3=high velocity
Contamination indicator O: 0=no contamination to 6=heavy contamination
Return period C: 1 to 848 yrs

warning and emergency measures

Early warning lead time C: 0 to 336 h
Quality of warning O: 1=receiver of warning knew exactly what to do

to 6=receiver of warning had no idea what to do
Indicator of flood warning source N: 0=no warning to 4=official warning through au-

thorities
Indicator of flood warning information O: 0=no helpful information to 11=many helpful

information
Lead time period elapsed without using it for
emergency measures

C: 0 to 335 h

Emergency measures indicator O: 1=no measures undertaken to 17=many mea-
sures undertaken

precaution

Precautionary measures indicator O: 0=no measures undertaken to 38=many, efficient
measures undertaken

Perception of efficiency of private precaution O: 1=very efficient to 6=not efficient at all
Flood experience indicator O: 0=no experience to 9=recent flood experience
Knowledge of flood hazard N (yes / no)

building characteristics

Building type N (1=multifamily house, 2= semi-detached house,
3=one-family house)

Number of flats in building C: 1 to 45 flats
Floor space of building C: 45 to 18000 m2

Building quality O: 1=very good to 6=very bad
Building value C: 92244 to 3718677 e

socio-economic factors

Age of the interviewed person C: 16 to 95 yrs
Household size, i.e. number of persons C: 1 to 20 people
Number of children (< 14 years) in household C: 0 to 6
Number of elderly persons (> 65 years) in
household

C: 0 to 4

Ownership structure N (1=tenant; 2=owner of flat; 3=owner of building)
Monthly net income in classes O: 11=below 500 eto 16=3000 eand more
Socioeconomic status according to Plapp
(2003)

O: 3=very low socioeconomic status to 13=very
high socioeconomic status

Socioeconomic status according to Schnell et
al (1999)

O: 9=very low socioeconomic status to 60=very
high socioeconomic status

flood loss

rloss − loss ratio of residential building C: 0 = no damage to 1 = total damage

Table 5.4: Variables used for the flood damage assessment. C: continuous, O: ordinal, N: nominal.
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Figure 5.7: Investigated catchments and location of communities reporting losses from the 2002, 2005
and 2006 flood events in the Elbe and Danube catchments.

In the context of BNs a variety of approaches has been developed to estimate the missing values
(so-called “imputation”). Most of these principled approaches are iterative algorithms based on
Expectation-Maximization e.g. (Friedman, 1997, 1998) or stochastic simulations e.g. (Tanner
and Wong, 1987). In our case we already have to run several iterations of BN learning and
discretization, each iteration requiring the estimation of the missing values. Using an iterative
approach for the missing value prediction will thus easily become infeasible. Instead we use a
more efficient albeit approximate method, using the Markov Blanket Predictor developed by
Riggelsen (2006).

The idea is to generate a predictive function which enables for predicting a missing variable Xi

based on the observations of its Markov Blanket (MB), XMB(i). The Markov Blanket identifies
the set of variables directly influencing Xi, i.e. parents, children and parents of children. For
illustration see Fig. 5.8, left. Assuming the MB is fully observed it effectively blocks influence
from all other variables, i.e. the missing value depends only on its MB. When some of the
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Figure 5.8: left: Markov Blanket of Xi; right: new model DAG′ derived from DAG (all edges present
in the Markov Blanket of Xi in DAG are directed towards Xi in DAG′).

variables in the MB are missing, it does not shield off Xi; although maybe not immediately
clear, this follows directly from the BN factorization of the joint distribution. However, for
predictive approximation purposes we choose to always ignore the impact from outside the
MB. Hence, the predictions for Xi based on observed data factorizes according to the DAG in
Fig. 5.8, left, as,

P (Xi|XMB(i),θ, DAG)∝θXi|XPa(i)

∏
j∈Ch(i)

θXj |XPa(j)
, (5.5)

where Ch(i) are the variable indices of the children of Xi. The prediction of Xi requires
inference in the BN (albeit very simple) where correct estimates of all θ are assumed. However,
these in general can’t be given without resorting to iterative procedures. To avoid this we first
define a slightly modified version of the predictive function based on DAG′ which is derived
from DAG by allocating edges, pointing to Xi, to each variable in its MB; see Fig. 5.8. The
resulting DAG′ preserves all dependencies given in DAG and can alternatively be used for the
prediction of Xi,

P (Xi|XDAG′

Pa(i) ,θ
DAG′ , DAG′)

def
= θDAG

′

Xi|XPa(i)
. (5.6)

For this predictive distribution we need to estimate the parameters θDAG
′

Xi|XPa(i)
. However, this

we can approximately estimate without using iterative methods by a similar cases approach3,
described in Appendix 5.A.2. A detailed description for the generation of the predictive distri-
bution is given in (Riggelsen, 2006; Vogel et al., 2013).

To avoid confusions, we want to stress that the MBs of the individual variables change during
the BN-learning procedure. The prediction of the missing values has to be updated for each
change of the DAG.

3Note that more parameters are required for the derived predictive distribution Eq. (5.6), but now at least
all influencing variables are considered jointly, whereas in the former case Eq. (5.5) we would have estimated
the parameters based on the parent sets only if a non-iterative similar cases approach would have been used.
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5.4.3 Results

Coming back to the flood damage data, we have three variables with more than one third of
the observations missing: flood experience (69% missing), warning quality (56% missing) and
lead time elapsed without emergency measures (54% missing). In a first “naive” application
(Vogel et al., 2012b) no special attention was on a proper treatment of missing values; the
missing values were simply randomly imputed resulting in the isolation of two variables (flood
experience and lead time elapsed) in the network; no connection to any other variable was
learned (Fig. 5.9, top). Applying the Markov Blanket predictor the situation changes and
a direct connection from the relative building damage, rloss, to flood experience is found
as well as a connection between warning source and elapsed lead time (Fig. 5.9, bottom).
These relations, especially the first one, match with experts expectations and speak for an
improvement of the learned BN structure.

Using the graphical representation (Prop. 1), as mentioned in Section 5.2.1 the learned DAG
(Fig. 5.9, bottom) gives insight into the dependence relations of the variables. It reveals a
number of direct links connecting the damage describing variable with almost all subdomains.
This supports the demand for improved flood damage assessments that take several variables
into account (Merz et al., 2010). Moreover, the DAG shows which variables are the most rele-
vant for the prediction of rloss. Especially the domains ‘precaution’ and ‘flood parameters’ are
densely connected with the building damage and should be included in any damage assessment
(Prop. 3).

Existing approaches for flood damage assessments usually consider fewer variables and an em-
ployment of a large number of variables is often considered as disadvantageous, since complete
observations for all involved variables are rare. The requirement for complete observations does
not hold for BNs (Prop. 6). The prediction of the building damage, e.g., depends only on the
variables of its Markov Blanket (marked with a bold frame in Fig. 5.9). Is the observation
of the Markov Blanket variables incomplete (not all variables are observed at inference time),
information from outside the Markov Blanket ‘flows’ into the prediction by indirectly marginal-
izing (summing) missing variables out. The use of many variables thus now provides additional
knowledge and proves to be an advantage.

The capability of BNs to predict from incomplete observations enables us to make predictions
at an early stage of an event, employing only the information that is present at any given time.
The prediction can subsequently be updated as new information becomes available.
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BN learned with randomly replaced missing values

BN learned with missing values predicted from Markov Blanket

Figure 5.9: BNs learned for flood damage assessment. Top: missing values are randomly replaced.
Bottom: Missing values are estimated using the Markov Blanket predictor. Nodes with a bold frame
belong to the Markov Blanket of relative building loss and are thus assumed to have direct impact on
the flood loss.
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sdf FLEMOps+r BNMTE

1 0.0111 0.0108 0.0104
2 0.0133 0.0114 0.0116
3 0.0161 0.0145 0.015
4 0.0200 0.0194 0.0169
5 0.0166 0.0150 0.0163

Avg 0.0154 0.0142 0.014

Table 5.5: Mean squared errors of a 5-fold cross-validation, where the relative building loss is predicted
with the three models stage-damage function, FLEMOps+r and Bayesian Networks.

Prediction Performance

The prediction of the relative building loss is of primary interest in flood damage assessments.
Similar to our proceeding for the ground motion modeling, we approximate the distribution of
the target variable with mixtures of truncated exponentials, thus achieving a better resolution
for the distribution of interest. The resulting prediction performance of the BN is compared
to currently used flood damage assessment approaches, namely the stage-damage function
(sdf) and the FLEMOps+r model (Elmer et al., 2010), which was developed from the same
data set, estimating the building damage based on water depth, flood frequency, building
type, building quality, contamination and private precaution. While sdf and FLEMOps+r give
point estimates, the BN gives us a distribution for rloss and thus reveals the uncertainty of
the prediction (Prop. 4). Especially when it comes to decision making, the identification of
uncertainty is a major advantage of the BN. However, to allow for model comparison, we
reduce the distribution provided by the BN to its mean value, which we define to be the
estimate of rloss. Table 5.5 shows the mean squared error of a 5-fold cross validation for the
three model approaches. The prediction performance of the BN is comparable to the one of
the FLEMOps+r, while the BN has the additional advantage to model the whole distribution
of the target variable and to conduct the prediction even though not all variables are observed.
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Averaged building loss for a flood event with good/bad precaution
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Figure 5.10: Top: Distribution of the building loss depending on the precaution. Flood specific
parameters as well as other parameters are unknown and summed out. Bottom: Distribution of the
building loss depending on the precaution for a specific flood situation, where water depth, duration
and flow velocity are known. Other parameters are unknown and summed out.

Example for Inference: Impact of Precaution

As an example of reasoning (Prop. 5), we consider the effect of precaution on the building loss.
Figure 5.10 shows the distribution of the building loss for a good precaution (precautionary
measures indicator > 14) and a bad precaution (precautionary measures indicator ≤ 14) in a
general case (top: all other variables are unknown and summed out) and for a specific flood
event (bottom: 7.5m ≤ water depth < 96.5m; 82h ≤ duration < 228h; 1 ≤ velocity). We
may appreciate, how a good precaution increases the chance for no or only small building
losses.

Similar investigations may support the identification of efficient precautionary measures, not
only in the context of flood events, but for natural hazards in general. They may also help
to convince authorities or private persons to undertake the suggested precautions. Using the
flexibility of BNs and their ability to model specific situations, BNs may thus contribute to a
better communication between scientists and non-scientific stakeholders. BNs can also be used
for forensic reasoning, i.e. we can turn around the direction of reasoning in the just considered
example and ask for a given observed damage in a specific or general event situation, what is a
likely state of precaution. Forensic reasoning might be of interest e.g. for insurance companies.
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5.5 Landslides

So far we assumed the existence of a unique model that explains the data best, but in practical
problems there may be many models almost as good as the best, i.e. explaining the data
similarly well. This results in an uncertainty about which BN structure to use. We consider
this problem in our last application, where we work on landslides, which are an other ubiquitous
natural hazard in many parts of the world.

A key theme in many landslide studies is the search for those geological, hydroclimatologi-
cal, topographic and environmental parameters that are suitable for sufficiently predicting the
susceptibility to slope failure in a given region. A wide range of multivariate data analysis
techniques has been proposed to meet this challenge. Amongst the more prominent methods
are logistic regression, artificial neural networks, and Bayesian Weights-of-Evidence. The pop-
ularity of such methods is only matched by their seeming success: A recent review of 674
scientific papers on the topic indicates that most reported success rates are between 75% and
95%, which raises the question why landslides still continue to cause massive losses despite
this seemingly high predictive accuracy (Korup and Stolle, 2013). Moreover, success rates do
not show any significant increase over the last ten years regardless of the number of landslide
data or predictors used. An often overlooked key aspect in these analyses is the potential for
correlated or interacting predictor candidates. Few studies have stringently explored whether
this likely limitation is due to physical or statistical (sampling) reasons.

5.5.1 Data

We use a database of nearly 300,000 landslide deposit areas that derive mostly from deep-seated
slow-moving failures and earthflows throughout Japan. This inventory was compiled by the Na-
tional Research Institute for Earth Science and Disaster Prevention NIED (http://lsweb1.ess.
bosai.go.jp/gis-data/index.html), and is one of the largest of its kind available. We have com-
piled a number of geological, climatic, and topographic metrics throughout the Japanese islands
to test their influence on the average fraction of landslide-affected terrain that we computed
within a 10-km radius. Most of our candidate predictors have been used in modified form in
other studies (Tab. 5.6). While all of these candidate predictors may be physically related to
slope instability, part of this choice of predictor composition is intentionally arbitrary in order
to learn more about its effects on BN learning and structure. The final data set used for the
BN learning consists of 553 records, where ∼ 0.4% of the data are missing.
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Name Definition Unit
Mean elevation Average of elevation values within catchment boundaries [m]

Catchment area Log-transformed catchment area [a.u.]

Catchment perimeter Total length of catchment divides [m]

Mean local topographic
relief

Maximum elevation difference in a 10-km radius [m]

Mean annual
precipitation1

Based on interpolated rainfall station data (reference period
1980-2010)

[mm]

Mean coefficient of
variation of annual
precipitation1

Based on interpolated rainfall station data, with standard de-
viation divided by mean (reference period 1980-2010)

[1]

Mean coefficient of
variation of monthly
precipitation1

Based on interpolated rainfall station data, with standard de-
viation divided by mean (reference period 1980-2010)

[1]

Mean surface uplift 2001-
20112

GPS-derived accumulated surface uplift between 2001-2011 [m]

Mean surface uplift 2010-
20112

GPS-derived accumulated surface uplift between 2010-2011 [m]

Mean fraction of 10%
steepest bedrock channels

Average fraction of 10% steepest channels per unit length of
bedrock-river drainage network in a 10-km radius, based on
an arbitrarily set reference concavity θ = 0.45

[1]

Mean bedrock channel
steepness

Average of channel steepness index per reach length, based on
an arbitrarily set reference concavity θ = 0.45

[1]

Regionalised river sinuos-
ity

Average bedrock-channel sinuosity weighted by drainage net-
work length in a 10-km radius calculated as the flow length of
a given channel segment divided by its shortest vertex distance

[1]

Fraction of volcanic
rocks3

Fraction of catchment area underlain by volcanic rocks [1]

Fraction of lakes Fraction of catchment area covered by lakes [1]

Fraction of plutonic
rocks3

Fraction of catchment area underlain by plutonic rocks [1]

Fraction of sedimentary
rocks3

Fraction of catchment area underlain by sedimentary rocks [1]

Fraction of accretionary
complex rocks3

Fraction of catchment area underlain by accretionary complex
rocks

[1]

Fraction of metamorphic
rocks3

Fraction of catchment area underlain by metamorphic rocks [1]

Median area of landslide-
affected terrain

Fraction of landslide terrain per unit catchment area within a
10-km radius calculated using an inventory of mostly prehis-
toric landslide-deposit areas

[1]

1Calculated using data provided by the Japan Meteorological Agency (JMA, www.jma.gov)
2Calculated from secular high-precision levelling data (Kimura et al., 2008)

3Calculated using the seamless digital geological map of Japan (1:200,000) available from the Geological Survey of

Japan (https://gbank.gsj.jp/seamless).

Table 5.6: Variables used for the landslide model.
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5.5.2 Uncertainty in BN structure

Ideally, a given model should adequately encapsulate natural phenomena such as the causes and
triggers of slope instability. However, there may be several equally well poised, but competing,
models because of the intrinsic uncertainty tied to the governing processes. In practice we
also face other limitations that prevent us from focusing on one single best model. The finite
number of observations we have at our disposal for learning, and the fact that it is unclear which
relevant predictor variables to consider for landslide prediction implies that several models may
be justifiable. This is a general problem when attempting to formally model natural systems.
In our case this means that several BNs might explain the data (almost) equally well, i.e.
receive a similar score according to Eq. (5.2).

An additional source of uncertainty can be attributed to the structure learning algorithm used
to maximize the score defined in Eq. (5.2) or – for continuous variables – in Eq. (5.3). For
infinite data sets the algorithm terminates according to Meek’s Conjecture in the (unique)
optimal equivalence class of DAGs (Chickering, 2002), but this does not necessarily hold for
finite data sets, incomplete observations and a search space extended by the discretization.
The algorithm for the traversal of the BN hypothesis space contains stochastic elements and
may get stuck in local optima providing slightly different results for different runs.

To analyze this random behavior, we run the BN learning and discretization algorithm ten
times on the same data set of landslide data. We do not expect to end up with the same BN in
each trial, as the constraints to meet Meek’s Conjecture are not fulfilled. Instead, we are more
interested in documenting how strongly the results differ from each other.

Figure 5.11 gives a summarized representation of the BN DAG structures. The frequency
with which an edge between two variables is learned is encoded by the widths (by scaling it
accordingly). Despite of the difference in DAG structures, all learned BNs seem to model the
data generating process almost equally well, which can be gathered from the score obtained
by Eq.(5.3); for the BNs learned, we get a score between −64364.42 and −64253.98 . This is a
promising result, since it indicates, that even though the algorithm gets stuck in local maxima,
the quality of the results does not differ significantly. This supports the assumption that the
quality of the learned BN is not seriously affected by random effects of the learning algorithm.
Multiple runs of the algorithm on other data sets confirm this assumption.

In the literature on BN learning (and on model learning based on data in general) ideas of how
to handle several competing, but all justifiable BNs have been investigated. Friedman et al.
(1999) use bootstrap sampling to learn BNs from different variations of the data set. Based on
those they develop a confidence measure on features of a network (e.g., the presence of an edge
or membership of a node to a certain Markov Blanket). A Bayesian approach is presented by
Friedman and Koller (2000) and Riggelsen (2005), who approximate the Bayesian posterior on
the DAG space using a Markov Chain Monte Carlo approach. An adaptation of these methods
for the extended MAP score introduced in this paper is left for future work.
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Figure 5.11: Summary of ten learned network structures, based on the same data set. Arrow widths
between the variables are scaled to the number of times they occur in the learned BNs. Likewise, we
color-coded the variables by the frequency with that they occur as part of the Markov Blanket of fraction
of landslide affected terrain (circular node shape), where darker hues indicate more frequent occurrence.

5.5.3 Results

Despite of (or rather thanks to) the DAG structural differences we can glean some instructive
insights from the learned BNs. The fact that we can learn something about the landslide-
affected terrain from several BN structures indicates that the different predictors are highly
interacting, and that a missed link between two variables can often be compensated by other
interactions. To get an understanding which variables are most relevant for predicting landslide-
affected terrain, we coded the variables in Fig. 5.11 by the frequency with that they occur
as part of the target variable’s Markov Blanket, where darker hues indicate more frequent
occurrences.

Perhaps the most surprising aspect of the learned BNs is that only few of the predictors that
have been invoked traditionally to explain landslide susceptibility are duly represented in the
Markov Blanket. These include mean annual precipitation (part of the MB in each run) –
including some derivatives such as precipitation variability (either annual or monthly variation
is part of the MB) – and mean local topographic relief (part of the MB in half of the runs).

Instead, predictors such as regionalised bedrock river sinuosity or short-term (10-year cumu-
lative) surface uplift derived from a dense network of GPS stations seem to provide relevant
information about landslide-affected terrain in Japan. Bedrock river sinuosity may reflect the
ability of rivers to carve more pronounced meanders in rocks with closely spaced defects.
Therefore, sinuosity could be linked to first order to important rock-mass properties that gov-
ern the abundance of landslides. However, the link to contemporary surface uplift is less clear.
Many of Japan’s currently subsiding areas are limited to low-relief forearc areas, which feature
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fewer landslides, hence an indirect link via topography seems plausible. Yet predictors such as
mean elevation or bedrock channel steepness (as a proxy of fluvial erosion and undercutting
of hillslopes) play largely subdued roles in the learned BNs part of the MB. Also, the role of
lithology, expressed by the fractions of different rock types outcropping in a given area form
a highly interacting cluster, where the information about accretionary complexes, i.e. heavily
tectonized and welded remnants of former island arcs, seems to be of major importance for the
landslide prediction. Alternatively it is either the fraction of plutonic, sedimentary or volcanic
rocks that is part of the MB.

The learned BN structures are counter-intuitive compared to many other susceptibility models
that traditionally emphasize hillslope inclination and topographic relief. Further studies must
show, if the found dependencies are regional artifacts or valid on a larger scale. Nevertheless,
these findings illustrate that the BN approach may reveal novel and unexpected insights into
regional landslide prediction by highlighting unusual links between predictor variables that
other multivariate models may not show as clearly. Equally important, BNs underscore which
predictors may yield sufficient predictive potential should others not be available.

5.6 Conclusions

The Bayesian Network approach is a powerful framework to capture uncertainties and prob-
abilistic elements in natural hazard assessments. We demonstrated its flexible applicability in
seismic hazard, flood damage, and landslide susceptibility analyses. Alongside we discussed
the handling of continuous data and incomplete observations as well as the uncertainty about
the model structure, i.e. challenges that may arise when BNs are learned from real world data.
Our suggested way of dealing with these problems is fully data driven and can thus easily be
transfered to other domains.

Since the interest of most natural hazard assessment is in the prediction of a certain target
variable, we compared the prediction performance of the BNs learned for the seismic hazard and
flood damage application to currently used models. In both cases the BNs perform reasonable
well. This is especially promising, since the BNs are designed to capture the joint distribution of
all variables and thus put similar effort into the prediction of each variable, whereas alternative
models focus on predicting the target variable solely. For a better prediction performance, we
might think of different graphical models that share the focus on the target variable. These
could include (tree augmented) Naive Bayes networks or an adapted score for the network
learning that would weight more the target variable. Thus learned networks may also be more
reliable in the identification of the variables relevant for the prediction, but will fail to capture
the overall picture of dependence relations.

Working with BNs we profit from several attractive properties inherent to the BN framework.
Learning the DAG structure and parameters from data, BNs require no prior domain knowl-
edge. Yet if available, it can be exploited via the prior term, which is part of the scoring function.
The discovered (in-)dependence relations help us to understand the underlying process and to
identify (ir-)relevant variables. An intuitive understanding is supported by the graphical rep-
resentation of BNs, although the same data may produce different graphs with comparable
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performance. This highlights the potential for new insights into interactions between large sets
of candidate predictors. The ability of BNs to predict from incomplete observations allows
for hazard estimations at an early stage of an event. Using inference we can estimate missing
values based on observations from related variables. The prediction can be updated as soon as
new information about so far missing variables becomes available.

Capturing the uncertainty and providing a probability distribution instead of a point esti-
mate, BNs provide a valuable contribution on the basis of which decision making should be
made. Allowing for inference they also enable detailed examinations of specific scenarios. Thus
Bayesian Networks may thus be used for an improved communication between scientist and
public authorities and help for a better evaluation of hazards in general.
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5.A Appendix

5.A.1 BN learning: MAP score

For a data based BN learning we search for the pair (DAG,θ) that has the highest probability
for the observed data and thus maximizes the joint posterior

P (DAG,Θ|d)︸ ︷︷ ︸
posterior

∝ P (d|DAG,Θ)︸ ︷︷ ︸
likelihood

P (Θ, DAG)︸ ︷︷ ︸
prior

,

which corresponds to the MAP score of the BN.

Investigating the single components of the score, we find that the likelihood term P (d|DAG,Θ)
is the product of Eq. (5.1) for every independent sample, hence, for complete data this is

P (d|DAG,θ) =

|d|∏
l=1

k∏
i=1

p(x
(l)
i |x

(l)
Pa(i)) =

∏
i,xi,xPa(i)

θ
n(xi,xPa(i))

xi|xPa(i)
, (5.7)

where x
(l)
i is the observed value of Xi in the l-th record and x

(l)
Pa(i) is the corresponding ob-

servation of the parent set. This reduces to a function of n(xi,xPa(i)), the number of counts
(occurrences) of the values (xi,xPa(i)) in the data.

The joint prior distribution decomposes as P (Θ, DAG) = P (Θ|DAG)P (DAG). For the ap-
plications in this paper we assume that all DAGs are equally likely and consequently define
P (DAG) to be uniform over the space of BN structures. P (Θ|DAG) we define as a non-
informative prior, acting at the same time as a penalty term. For discrete data this is a
(product) Dirichlet distribution given by

P (θ|DAG) =
k∏
i=1

∏
xPa(i)

Γ
(∑

xi
α(xi,xPa(i))

)∏
xi

Γ
(
α(xi,xPa(i))

) ∏
xi

θ
α(xi,xPa(i))−1

xi|xPa(i)
, (5.8)

where α(·) are so-called hyper-parameters, primarily governing the regularization (to avoid
over-fitting).

MAP score extension for continuous variables

Are continuous variables contained in the data set, we learn a discretization, Λ, parallel to
the BN. The here used extended MAP score corresponds to the joint posterior of BN and
discretization:

P (DAG,Θ,Λ|dc) ∝ P (dc|DAG,Θ,Λ)P (DAG,Θ,Λ),

Considering Eq. (5.4) we rewrite the equation above as

P (DAG,Θ,Λ|dc) ∝ P (dc|d,Λ)︸ ︷︷ ︸
continuous data

P (d|DAG,Θ,Λ)︸ ︷︷ ︸
likelihood (discrete)

P (DAG,θ,Λ)︸ ︷︷ ︸
prior

.
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DAG′ for C

Estimate θ̂C=t|A=t,B=f :

s(t, (t, f)) = 7
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4

Figure 5.12: Illustration for the calculation of s(·) used for the parameter estimation in DAG′. The
graph on the left shows a DAG′ for the estimation of C depending A and B. The three variables take the
values t and f . An exemplary data set is given in the table on the right together with the contribution
for each record to s ((C = t, (A = t, B = f)).

The likelihood term is defined as in Eq. (5.7) and the prior decomposes into
P (Θ|DAG,Λ)P (Λ|DAG)P (DAG). For P (Λ|DAG) and P (DAG) we assume uniform distribu-
tions analogue as for the original MAP score and we define P (Θ|DAG,Λ) as product Dirichlet
again Eq. (5.8). For the continuous data term we define

P (dc|d,Λ) =
∏
i

∏
xi

(
1

n(xi)

)n(xi)

,

which corresponds to the assumption, that all continuous observations are equally likely within
the same interval. The joint posterior has a closed form as a function of n(·).

5.A.2 Similar cases approach

The estimation of a missing value as described in Section 5.4.2 requires, according to Eq.
(5.6), the prediction of the parameter θDAG

′

Xi|XPa(i)
from incomplete data. Instead of using the

unobserved statistics n(·), we rely on counts of similar cases here. The statistics, s(xi,xPa(i)),
is a weighted count of all records where Xi = xi and the observed part of the parents set
XPa(i) matches with xPa(i); for each record where (Xi,XPa(i)) is fully observed we add 1 to
s(xi,xPa(i)). For an incomplete observed parents set we count the possible completions of the
record and add 1/number-of-possible-completions to s(xi,xPa(i)). Refer to Fig. 5.12 for an
example. We now estimate the parameters

θ̂DAG
′

xi|xPa(i)
=

s(xi,xPa(i))∑
xi
s(xi,xPa(i))

,

fully defining the predictive distribution for Xi Eq. (5.6).
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CHAPTER

SIX

GENERAL CONCLUSIONS AND PERSPECTIVES

6.1 Summary and Context

In this thesis we presented graphical models, in particular Bayesian Networks (BNs), as flex-
ible and powerful tools to capture and express uncertainties in natural hazard assessments.
In all considered applications one or more BNs were learned from synthetically generated or
observed data searching for the BN that explains the data best. There exist different interpre-
tations, what “best” means in this context and accordingly different metrics for BN scoring are
suggested in literature. A thorough treatment of different metrics can be found in Bouckaert
(1995). Here we mention a few. The penalized (log-)likelihood approach stems from the fre-
quentist perspective. The basic idea is to score the BN with its ability to fit the given database
penalized by a term that accounts for the model complexity and favors simpler structures. The
fit to the data is measured by the (log-)likelihood term, while the penalty term, e.g. the AIC
criterion (Akaike, 1974) or the BIC criterion (Schwarz, 1978), usually includes the number of
free model parameters. Another widely used approach, based on the Bayesian perspective, is
the Bayesian Dirichlet scoring metric, often referred to as BD metric (Cooper and Herskovits,
1992; Heckerman et al., 1995). The BD metric makes use of the marginal likelihood, which
is proportional to the posterior probability of the network structure given the data. It thus
acts as a measure for the quality of the BN structure. The scoring metric used in this thesis,
the BN MAP score, adheres to a Bayesian perspective as well. It was developed by Riggelsen
(2008) and seeks for the most probable combination of BN structure and parameters for the
given data. This is in contrast to the BD metric, which seeks only for the most probable BN
structure. It was shown by Riggelsen (2008) that the BN MAP score selects BNs with a better
fit to an independent test set than BNs chosen with the BD metric.
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Working with fully observed and discrete data sets the BN MAP score can easily be calculated
as a function of n(·), where n(x) is defined as the number of occurrences of the state x in
the data. Unfortunately in real-world applications the conditions are not that convenient.
Continuous variables and incomplete observations require an adjustment of the data or the
scoring function. Different suggestions for such adjustments are given in the course of the
dissertation.

The methods developed in this thesis are summarized in the following and it is referred to
their applications as well as to related research. The last section concludes with the benefits
of applying BNs in natural hazard assessments and stresses the importance of a probabilistic
proceeding. Additionally, it gives an outlook on future work perspectives.

6.1.1 Handling continuous variables – data-driven discretization

We face continuous variables in all natural hazard domains considered within this thesis (seis-
mic hazard, flood damage, landslide susceptibility). Handling continuous variables requires
assumptions about the families of distributions. This in turn requires expert knowledge, since
the implied restrictions on the allowed distributions should be well-founded. Moreover, not
all families of distributions grant for an easy analytical handling. To counteract those prob-
lems we discretize the variables instead, which allows for a distribution-free learning. There
exist several discretization procedures (local vs. global, top-down vs. bottom-up, direct vs.
incremental) resulting in different losses of information. Comparative studies, mainly focusing
on classification tasks, are conducted e.g. by Dougherty (1995), Liu et al. (2002) and Yang
and Webb (2002) with the finding that entropy based discretizations usually seem to perform
best in classification tasks. We adopt and enhance the entropy based proceeding suggested
by Fayyad and Irani (1993) to discretize attributes of a (tree augmented) Naive Bayes with a
continuous target variable. The procedure is applied in Chapter 2 for the modeling of ground
motion as well as in the context of flood damage for the (tree augmented) Naive Bayes used
for comparison in Chapter 3. For the variable discretization in BNs the minimal description
length (MDL) principle (Lam and Bacchus, 1994) can be considered as a generalization of the
entropy based proceeding. It balances the complexity of discretization and network structure
against how well the data are fitted. Enhancements of the MDL principle in connection with
BNs are e.g. developed by Friedman and Goldszmidt (1996b) and Wang et al. (2006).

We take again a Bayesian stance instead and treat the discretization, Λ, as random variable
as well as the network structure, DAG, and the parameters, Θ. We seek for the combination
of those three with the largest posterior probability given the data. In this manner we extend
the BN MAP score by adding the discretization to the variables of which we aim to maximize
the joint posterior probability. For the definition of the extended BN MAP score we make
use of the multivariate discretization procedure developed by Monti and Cooper (1998). The
procedure is introduced and shortly explained in Chapter 2. The key idea is to assume that
all interactions between the variables can be captured by their discrete representations. Thus,
it is sufficient to define a BN on the discrete variables, while each continuous variable depends
only on its discrete counterpart, i.e. it is independent of the BN. This allows us to decompose
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the likelihood term of the continuous data, dc, into the likelihood term of the discrete data,
d, multiplied by the distribution of the continuous data given the discrete ones,

P (dc|DAG,Θ,Λ)︸ ︷︷ ︸
likelihood (continuous)

= P (d|DAG,Θ,Λ)︸ ︷︷ ︸
likelihood (discrete)

P (dc|d,Λ)︸ ︷︷ ︸
continuous|discrete

.

We apply the above decomposition in Chapter 3 to define an extended version of the BN MAP
score valid for continuous data. The continuous variables are in this context defined to be
uniformly distributed over the interval which is determined by the discrete value. The discrete
likelihood term is already part of the original BN MAP score and can be expressed as a function
of n(·).

The definition of the continuous variables’ distribution has some week points which are dis-
cussed in Chapter 4: First, it results in a discretization that depends on the scaling of the
variables. Second, the extended BN MAP score converges towards zero, if the variables are de-
fined on an infinite domain range. To avoid this, an artificial definition of boundaries is required
for the variable distributions. Third, if an interval of the discretization is chosen infinitely small
around an observation, the score converges towards infinity. Thus, the score favors discretiza-
tions with infinitely small intervals and we have to counteract their generation by limiting the
allowed minimal size of an interval. In Chapter 4 we present an alternative definition of the
extended BN MAP score that avoids the three mentioned problems. In contrast to the defini-
tion in Chapter 3 the continuous variables are not assumed to be uniformly distributed over
the selected interval, but over all observations within the interval. The score thus depends on
the number of observations per interval and not on the interval length. Consequently infinite
or very small intervals pose no complications and the score is independent of the scaling of the
variables. Additionally, the score does not depend on the exact position of the interval bound-
aries, instead it is sufficient to know which two observations envelope an interval boundary.
The revised discretization is applied in Chapter 4 and 5 to the data sets already considered
in Chapter 2 (ground motion) and Chapter 3 (flood damage) as well as to a further data set
describing landslide susceptibility.

6.1.2 Avoid coarse resolutions – approximate continuous distributions

An adequate discretization is a trade-off between the number of intervals and the number of
observations per interval. To identify the (in-)dependencies between the variables reliably, it
is important to maintain a sufficient amount of observations in each interval (and in interval
combinations of related variables). To fulfill this demand discretizations that are automatically
learned often result in only a few intervals. This is especially the case for variables that depend
on many other variables, since they are considered in combination with the states of their
parents. The learned discretization may thus not reflect the desired resolution, in particular
not if we are interested in the estimation of a certain target variable. In Chapter 2 we suggest
therefore to approximate the distribution of the target variable of the learned ground motion
model with a Gaussian kernel density estimator. The network structure learned before and
the discretization for the other variables is kept fixed. The proceeding, including the required
parameter adaption, is described in more detail in Chapter 3 and in this context applied to the
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flood damage assessment. For both, the ground motion model and the flood damage model,
the approximation with the kernel density estimator improves the prediction performance
of the model, but at the same time it extensively increases the number of parameters used
for the model definition. In more complex models or if we want to approximate more than
one variable with the kernel density estimator the exploding number of parameters poses a
computational burden. Alternatives that are less parameter intensive, but also less flexible,
are approximations with continuous distributions. The families of distributions that allow for
exact inference are limited. Conditional Gaussian distributions belong to those families and
are well studied representations of continuous variable distributions in BNs (Lauritzen, 1992;
Lauritzen and Jensen, 2001). However, besides of their quite confined functional shape, they
are limited by the fact that they do not tolerate continuous parents for discrete variables.
Koller et al. (1999) instead propose to model the distributions of discrete variables that have
continuous parents as mixtures of exponentials, but this entails in the application of Monte
Carlo methods for the conduction of inference.

Moral et al. (2001) suggest to apply mixtures of truncated exponentials (MTEs) for the repre-
sentation of all variable distributions, discrete and continuous ones. MTEs are not only closed
under the operations used for BN inference (Langseth et al., 2009b), but also allow for the
approximation of a variety of functional shapes with a limited number of parameters (Langseth
et al., 2008). We employ the MTE approach in Chapter 4 and 5 for the approximation of the
target variable in the flood damage model. It is shown in Chapter 4 that the prediction perfor-
mance of the flood damage model does not suffer under the replacement of the kernel density
estimation with the MTE approach. At the same time the number of model parameters drops
significantly. In Chapter 5 we also apply the MTE approach to the ground motion model,
modeling the distributions of all variables as MTEs. For the ground motion prediction the
MTE approach does not perform as well as the kernel density estimation applied in Chapter 2.
However, for the sake of parameter reduction and computational efficiency the MTE approach
might be preferable depending on the planned application of the ground motion model.

6.1.3 Handling of missing values

Another big issue in natural hazard assessments is the handling of incomplete data sets. Many
real-world data lack observations for different reasons. Within this thesis we consider incom-
plete data sets in Chapter 3 to 5. Missing data generally pose a problem in BN learning,
since the BN scoring metric does not longer have a closed form (n(·) is not defined for incom-
plete observations). In Chapter 3 we omit the problem while concentrating on the question
of discretization simply by filling in missing values randomly drawing from the existing data.
This proceeding distorts the original data set and garbles dependency relations between the
variables. However, if the percentage of missing values is very small, the change in the data
set is not crucial and the proceeding serves as a feasible solution. In Chapter 4 we consider
the same data set as in Chapter 3 with a more attentive estimation of the missing values.
It is important to note that reliable estimates, no matter which method is applied, are only
possible for missing data mechanisms that are ignorable according to the missing (completely)
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at random (M(C)AR) criteria as defined in (Little and Rubin, 1987). We assume the MAR
criteria to hold for all incomplete data sets considered within this thesis.

First attempts of handling incomplete data in BN learning were restricted to the learning of
parameters, while the network structure was kept fixed (Lauritzen, 1995). Efforts to learn pa-
rameters and structure from incomplete data are widely based on the expectation maximization
(EM) algorithm (Dempster et al., 1977; Friedman, 1998). The iterative procedure predicts the
missing values based on the current model (expectation step) and updates the model based
on the completed data set (maximization step). As pointed out by Friedman (1998) the de-
terministic EM algorithm is prone to get stuck in nearest local optima. Multiple restarts are
suggested to solve this problem.

The search space explored by stochastic search algorithms is more comprehensive. Laskey and
Myers (2003) and Riggelsen (2005) suggest stochastic proceedings that make use of the Markov
Chain Monte Carlo theory for the missing value prediction. Still, the proceedings are compu-
tational expensive. In our case we already have to run several iterations of BN learning and
discretization, each iteration requiring the estimation of the missing values. Applying an iter-
ative approach for the missing value prediction will thus quickly become infeasible. We adhere
to a more efficient albeit approximate method instead and apply the Markov Blanket predictor
developed by Riggelsen (2006). The basic idea is to predict the missing values based only on
the observations of the corresponding Markov Blanket. A detailed description of the proceed-
ing is given in Chapter 4, where the Markov Blanket predictor is applied in the flood damage
assessment. Comparing the BNs learned in Chapter 3 and 4 from the same incomplete data
set, we find that the BN structure learned with the Markov Blanket predictor matches better
with expert expectations than the one learned with a random replacement of missing values.
This is especially the case in regions where variables are observed not often and dependency
relations are not recognizable from the data with random replacements. The Markov Blanket
predictor apparently preserves dominant (in-)dependencies.

6.1.4 Model uncertainty

Working with real-world data there usually exist many models that explain the data equally
well (receive a similar score). The applied algorithm picks only one of these likely models.
Neither does the algorithm necessarily pick the most likely model nor does the solution, the
chosen model, capture the uncertainty about the model structure. For the ground motion
models and the flood damage models learned in this thesis, we assumed that the learned
model is the one and only that explains the data best. Interpreting the model structures it
should be considered that they do not pose the only explanation.

We consider the problem of model uncertainty in Chapter 5 where we run the BN learning
algorithm ten times on the same data set for a landslide susceptibility study. The resulting
network structures differ from each other, providing different explanations for the observed
data. The different solutions occur due to stochastic elements in the learning procedure and
the proneness of the algorithm to get stuck in local maxima when learning from a finite data set.
However, despite of the different structures, all learned BNs model the data equally well (receive
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a similar score). This result indicates that the quality of the learned BN is not significantly
affected by random effects. Still, it stays the problem that there is no unique explanation of
the data and a learned BN contains no information about alternative models and the model
uncertainty. Different suggestions, how to deal with several competing, but all justifiable BNs
are given in literature. Several restarts of the algorithm, for which the initial starting BN can
be varied or the training data set is modified by bootstrap sampling (Friedman et al., 1999)
give insight into the variety of explaining models. Friedman and Koller (2000) and Riggelsen
(2005) alternatively suggest to use a Markov Chain Monte Carlo approach to simulate the
posterior distribution of the BN structure. An adoption of these methods for the extended BN
MAP score is beyond the scope of this thesis, but an interesting topic for further research.

6.2 Conclusion and future work perspectives

The benefits of applying BNs in natural hazard assessments are particularly stressed in Chapter
5 and picked up again in the following. The graphical representation supports an intuitive
understanding of the underlying mechanism and reveals how variables share information and
how it ‘flows’ through the network. This relieves the communication of the learned model
to the user. It shows at one glance which variables are considered to be most relevant for
the prediction of a certain variable of interest and which variables are assumed to be totally
independent of that variable. The intuitive interpretation of the BN allows moreover to define
the BN structure based on expert knowledge. This structure can be used directly as model
structure or can be defined as a prior that is updated based on data. Alternatively, the BN
can be learned purely data-driven as it was done for the applications considered within this
thesis. The data based proceeding uncovers the relationships of the variables concealed in the
data and may thus reveal unexpected interactions. However, it can not distinguish between
artifacts in the data and true dependencies. If present, an exploitation of expert knowledge
is hence especially advisable for sparse data sets. It can be included into the analysis via the
prior term of the scoring function. How this is realized in detail is left for future work. It might
e.g. be thought of a scoring of the edges according to the expert’s belief in their justification.
Another option is to score the presence/absence of a variable in another variables Markov
Blanket according to the expert’s belief.

An essential advantage of BNs is the probabilistic proceeding. It allows for the propagation
and expression of uncertainties. This is extremely important in natural hazard assessments
as demonstrated in the following seismic hazard example. An earthquake of small magnitude
will usually cause a small ground motion, but in rare cases it can also cause a moderate
or even a strong ground motion. A region with many, but only small earthquakes will be
judged to be save based only on the expected values of ground motion, since cases where small
magnitudes provoke large ground motions are ignored. In reality the frequent appearance of
small magnitude events increases the chance for a large ground motion, but this can be only
captured by a probabilistic proceeding. Still, deterministic proceedings are widely used in
natural hazard assessments. This is not always due to a missing applicability of probabilistic
methods, but has in some cases also political reasons. Deterministic statements, that transmit
an impression of confidence, are preferred by a majority of people. Decision makers may also

77



General Conclusions and Perspectives

favor deterministic results as they simplify the choice of action and a careful examination
of uncertainty is (too) time consuming. The challenge is thus not only in the identification of
uncertainty, but also in its communication. The need for the consideration of uncertainty has to
be communicated as well as the uncertainty itself. Expressing uncertainty in a way that helps for
decision support instead of raising confusion is a non-trivial task. An intuitively understandable
suggestion in the context of tsunami early warning was delivered by Blaser et al. (2011, 2012).
Considering different potentially tsunami causing situations the probabilities of four tsunami
levels were calculated under the usage of BNs. The different levels were color-coded (no tsunami
– green, small tsunami – yellow, moderate tsunami – orange, major tsunami – red) and their
probabilities were displayed in a bar with four accordingly colored segments. The length of
each segment corresponds to the probability of the associated tsunami level. The graphical
representation supports a quick and intuitive understanding of the hazard and the related
uncertainty. Still, to be used for decision support, it is essential to have the results quickly at
hand. BNs allow to fulfill this demand enabling for fast, close to immediate inference. Moreover,
inference can be conducted even though not all variables are observed yet. This allows for a
hazard evaluation already at an early stage of the considered event. The estimation can be
updated as soon as new information about so far missing variables becomes available.

Capturing the joint distribution of all variables and not only a specific conditional distribution,
BNs allow to infer into all directions and to express any conditional distribution of interest.
We may thus investigate individual dependency relations and specifically ask for the impact
of a certain (set of) variable(s) on another (set of) variable(s). Such investigations clarify the
dependency relations between the variables and may thus contribute to a better communication
between scientist and non-scientific stakeholders. The effect of specific precautionary measures
e.g. can be investigated in detail and considered for different conceivable scenarios. For instance
in Chapter 5 the impact of precaution on the building damaged caused by flood events is
examined. BNs can also be used for inverse reasoning. E.g. the intensity of an historic event
can be estimated based on documented caused damages. BNs may thus help to reconstruct
past events.

However, describing the joint distribution of all variables BNs might be less accurate in the
prediction of a certain target variable. The scoring function used to learn BNs from data is
designed to choose a BN that explains the complete data set. All variables are considered to
be equally important. Yet, many natural hazard assessments are especially interested in the
prediction of a certain target variable. As mentioned before (tree augmented) Naive Bayes
classifiers focus on the prediction of the target variable. They thus often outperform BNs
in classification tasks, although the network structure is fixed (or at least very limited in
the allowed variations) and usually does not capture the true dependencies. This raises the
questions if we can achieve a better prediction performance by considering the complete DAG
space and choosing a BN that is evaluated according to its ability to predict the target variable.
In this context we may think of an alternative scoring function for BNs. This function can e.g.
give more weight to the target variable or score the BN’s prediction performance. If we learn
the BN from complete data, we can restrict the search space of all DAGs to the Markov Blanket
of the target variable. How the search algorithm and the scoring metric look in detail is left
for future work.
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A further research perspective is the direct learning of BNs with MTEs representations for con-
tinuous variables. So far we discretized the variables in the learning procedure and searched
for the best combination of discretization, network structure and parameters. In some cases we
approximated the continuous distributions with MTEs afterwards to achieve a finer resolution.
However, it is not evident that the selected network structure is the best choice in combina-
tion with MTEs. It would be more accurate to already consider the combination of network
structure and MTEs during the learning phase as it is suggested by Romero et al. (2006).
There, MTEs representations are learned for each DAG visited during the DAG traversal and
the resulting BNs are scored using a penalized likelihood score. However, this proceeding is
extremely demanding in computational costs. For this reason the number of exponential terms
as well as the number of splits for the partitioning of the domain is kept constant. It stays
to show if such or a similar proceeding is applicable to and beneficial for the applications
considered within this thesis.

Another option to deal with continuous distributions in BNs is the application of copulas
(Nelson, 2006). Copulas offer a general framework for constructing multivariate distributions
by linking univariate marginals. Yet, constructing high-dimensional copulas is difficult and
usually achieved by combining bivariate copulas. In practice those applications are generally
limited to a small number of variables. Elidan (2010, 2013) suggests therefore the combination
of copulas with the BN approach. The decomposition of the joint distribution into local terms
provided by a BN reduces the dimensionality of the domain and thus enables the application
of copulas in high-dimensional problems. The application of copulas in the context with BNs
is beyond the scope of this thesis, but on the agenda for further research.

Despite of the above mentioned open issues the methods developed and applied in this thesis
already pose an important contribution to the establishment of BNs in natural hazard as-
sessments. Solutions for two dominant challenges for BN learning from real-world data are
presented, namely the handling of continuous variables with unknown family of distributions
and the handling of incomplete data. Since the algorithms that tackle the individual problems
are highly interacting, computational efficiency is of special importance when the underlying
training data comprise both, continuous variables and incomplete observations. The proceed-
ings suggested in this thesis take care about computational feasibility. They thus enable the
treatment of large data sets with continuous variables and missing data and make the benefits
of BNs accessible for the considered natural hazard assessments. Additionally they are purely
data driven and can thus easily be transferred to further natural hazard domains or other
domains of the reader’s interest.
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Kühn, N. M., Riggelsen, C., and Scherbaum, F. (2011). Modeling the Joint Probability of
Earthquake, Site, and Ground-Motion Parameters Using Bayesian Networks. Bulletin of the
Seismological Society of America, 101(1), 235–249.

Lam, W. and Bacchus, F. (1994). Learning Bayesian belief networks: An approach based on
the MDL principle. Computational Intelligence, 10(3), 269–293.

Langseth, H. and Nielsen, T. D., Rumı́, R., and Salmerón, A. (2008). Parameter estimation in
mixtures of truncated exponentials. In 4th European Workshop on Probabilistic Graphical
Models, 169–176.

Langseth, H., Nielsen, T. D., Rumı́, R., and Salmerón, A. (2009a). Maximum Likelihood Learn-
ing of Conditional MTE Distributions. Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, 240–251.

Langseth, H., Nielsen, T. D., Rumı́, R., and Salmerón, A. (2009b). Inference in hybrid Bayesian
networks. Reliability Engineering & System Safety, 94(10), 1499–1509.

Langseth, H., Nielsen, T. D., Rumı́, R., and Salmerón, A. (2010). Parameter estimation and
model selection for mixtures of truncated exponentials. International Journal of Approximate
Reasoning, 51(5), 485–498.

Laskey, K. B. and Myers, J. W. (2003). Population Markov Chain Monte Carlo. Machine
Learning, 50(1-2), 175–196.

Lauritzen, S. L. (1992). Propagation of Probabilities, Means, and Variances in Mixed Graphical
Association Models. Journal of the American Statistical Association, 87(420), 1098–1108.

Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data.
Computational Statistics & Data Analysis, 19(2), 191–201.

Lauritzen, S. and Jensen, F. (2001). Stable local computation with conditional Gaussian
distributions. Statistics and Computing, 11(2), 191–203.

Little, R. and Rubin, D. (1987). Statistical analysis with missing data, volume 4. Wiley, New
York.

Liu, H., Hussain, F., Tan, C. L. I. M., and Dash, M. (2002). Discretization : An Enabling
Technique. Data mining and knowledge discovery, 6(4), 393–423.

Merz, B., Kreibich, H., Schwarze, R., and Thieken, A. H. (2010). Assessment of economic flood
damage. Natural Hazards and Earth System Science, 10, 1697–1724.

Monti, S. and Cooper, G. F. (1998). A multivariate discretization method for learning Bayesian
networks from mixed data. In Fourteenth conference on Uncertainty in artificial intelligence,
404–413.

Moral, S., Rumı́, R., and Salmerón, A. (2001). Mixtures of Truncated Exponentials in Hybrid
Bayesian Networks. Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
156–167.

82



BIBLIOGRAPHY

Nelson, R. B. (2006). An introduction to copulas. Springer Berlin.

Pernkopf, F. and Bilmes, J. (2005). Discriminative versus generative parameter and struc-
ture learning of Bayesian network classifiers. In 22nd international conference on Machine
Learning, 657–664.

Riggelsen, C. (2005). MCMC learning of Bayesian network models by Markov blanket decom-
position. In Machine Learning: ECML 2005, 329–340.

Riggelsen, C. (2006). Learning Bayesian Networks from Incomplete Data: An Efficient Method
for Generating Approximate Predictive Distributions. In SIAM International conf. on data
mining, 130–140.

Riggelsen, C. (2008). Learning Bayesian Networks: A MAP Criterion for Joint Selection of
Model Structure and Parameter. In ICDM, 2008. Eighth IEEE International Conference on
Data Mining, 522–529.

Riggelsen, C., Ohrnberger, M., and Scherbaum, F. (2007). Dynamic bayesian networks for real-
time classification of seismic signals. In PKDD 2007. 11th European conference on Principles
and Practice of Knowledge Discovery in Databases, 565–572.

Romero, V., Rumı́, R., and Salmerón, A. (2006). Learning hybrid Bayesian networks using
mixtures of truncated exponentials. International Journal of Approximate Reasoning, 42(1),
54–68.

Rumı́, R., Salmerón, A., and Moral, S. (2006). Estimating mixtures of truncated exponentials
in hybrid bayesian networks. Test, 15(2), 397–421.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2),
461–464.

Silverman, B. (1986). Density estimation for statistics and data analysis, Vol. 26. Chapman
& Hall/CRC.

Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., and Wei, B. (2012). Susceptibil-
ity assessment of earthquake-induced landslides using Bayesian network: A case study in
Beichuan, China. Computers & Geosciences, 42, 189–199.

Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data augmen-
tation. Journal of the American statistical Association, 82(398), 528–540.

Thieken, A. H., Müller, M., Kreibich, H., and Merz, B. (2005). Flood damage and influencing
factors: New insights from the August 2002 flood in Germany. Water resources research,
41(12), W12430.
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