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Sicher ist, dass nichts sicher ist.

Selbst das nicht.

Joachim Ringelnatz



Allgemeinverstandliche Zusammenfassung

Obwohl Naturgefahren in ihren Ursachen, Erscheinungen und Auswirkungen grundlegend ver-
schieden sind, teilen sie doch viele Gemeinsamkeiten und Herausforderungen, wenn es um
ihre Modellierung geht. Fehlendes Wissen iiber die zugrunde liegenden Kréfte und deren kom-
plexes Zusammenwirken erschweren die Wahl einer geeigneten Modellstruktur. Hinzu kommen
ungenaue und unvollstdndige Beobachtungsdaten sowie dem Naturereignis innewohnende Zu-
fallsprozesse. All diese verschiedenen, miteinander interagierende Aspekte von Unsicherheit er-
fordern eine sorgfiltige Betrachtung, um fehlerhafte und verharmlosende Einschéatzungen von
Naturgefahren zu vermeiden. Dennoch sind deterministische Vorgehensweisen in Gefahrdungs-
analysen weit verbreitet.

Bayessche Netze betrachten die Probleme aus wahrscheinlichkeitstheoretischer Sicht und bie-
ten somit eine sinnvolle Alternative zu deterministischen Verfahren. Alle vom Zufall beein-
flussten Groflen werden hierbei als Zufallsvariablen angesehen. Die gemeinsame Wahrschein-
lichkeitsverteilung aller Variablen beschreibt das Zusammenwirken der verschiedenen Ein-
flussgrofien und die zugehdrige Unsicherheit/Zufélligkeit. Die Abhéngigkeitsstrukturen der
Variablen kénnen durch eine grafische Darstellung abgebildet werden. Die Variablen werden
dabei als Knoten in einem Graphen/Netzwerk dargestellt und die (Un-)Abhéngigkeiten zwi-
schen den Variablen als (fehlende) Verbindungen zwischen diesen Knoten. Die dargestellten
Unabhéangigkeiten veranschaulichen, wie sich die gemeinsame Wahrscheinlichkeitsverteilung in
ein Produkt lokaler, bedingter Wahrscheinlichkeitsverteilungen zerlegen lasst.

Im Verlauf dieser Arbeit werden verschiedene Naturgefahren (Erdbeben, Hochwasser und
Bergstiirze) betrachtet und mit Bayesschen Netzen modelliert. Dazu wird jeweils nach der Netz-
werkstruktur gesucht, welche die Abhéngigkeiten der Variablen am besten beschreibt. Aufler-
dem werden die Parameter der lokalen, bedingten Wahrscheinlichkeitsverteilungen geschatzt,
um das Bayessche Netz und dessen zugehorige gemeinsame Wahrscheinlichkeitsverteilung voll-
standig zu bestimmen. Die Definition des Bayesschen Netzes kann auf Grundlage von Experten-
wissen erfolgen oder — so wie in dieser Arbeit — anhand von Beobachtungsdaten des zu un-
tersuchenden Naturereignisses. Die hier verwendeten Methoden wahlen Netzwerkstruktur und
Parameter so, dass die daraus resultierende Wahrscheinlichkeitsverteilung den beobachteten
Daten eine moglichst grofle Wahrscheinlichkeit zuspricht. Da dieses Vorgehen keine Experten-
wissen voraussetzt, ist es universell in verschiedenen Gebieten der Gefahrdungsanalyse einsetz-
bar.

Trotz umfangreicher Forschung zu diesem Thema ist das Bestimmen von Bayesschen Net-
zen basierend auf Beobachtungsdaten nicht ohne Schwierigkeiten. Typische Herausforderungen
stellen die Handhabung stetiger Variablen und unvollstdndiger Datensétze dar. Beide Proble-
me werden in dieser Arbeit behandelt. Es werden Losungsansitze entwickelt und in den An-
wendungsbeispielen eingesetzt. Eine Kernfrage ist hierbei die Komplexitat des Algorithmus.
Besonders wenn sowohl stetige Variablen als auch unvollstandige Datensatze in Kombination
auftreten, sind effizient arbeitende Verfahren gefragt. Die hierzu in dieser Arbeit entwickelten
Methoden erméglichen die Verarbeitung von groflen Datensétze mit stetigen Variablen und
unvollstandigen Beobachtungen und leisten damit einen wichtigen Beitrag fiir die wahrschein-
lichkeitstheoretische Gefahrdungsanalyse.
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Summary

Even though quite different in occurrence and consequences, from a modeling perspective many natural
hazards share similar properties and challenges. Their complex nature as well as lacking knowledge
about their driving forces and potential effects make their analysis demanding: uncertainty about the
modeling framework, inaccurate or incomplete event observations and the intrinsic randomness of the
natural phenomenon add up to different interacting layers of uncertainty, which require a careful han-
dling. Nevertheless deterministic approaches are still widely used in natural hazard assessments, holding
the risk of underestimating the hazard with disastrous effects. The all-round probabilistic framework
of Bayesian networks constitutes an attractive alternative. In contrast to deterministic proceedings,
it treats response variables as well as explanatory variables as random variables making no difference
between input and output variables. Using a graphical representation Bayesian networks encode the de-
pendency relations between the variables in a directed acyclic graph: variables are represented as nodes
and (in-)dependencies between variables as (missing) edges between the nodes. The joint distribution
of all variables can thus be described by decomposing it, according to the depicted independences, into
a product of local conditional probability distributions, which are defined by the parameters of the
Bayesian network.

In the framework of this thesis the Bayesian network approach is applied to different natural hazard
domains (i.e. seismic hazard, flood damage and landslide assessments). Learning the network structure
and parameters from data, Bayesian networks reveal relevant dependency relations between the included
variables and help to gain knowledge about the underlying processes. The problem of Bayesian network
learning is casted in a Bayesian framework, considering the network structure and parameters as random
variables itself and searching for the most likely combination of both, which corresponds to the mazimum
a posteriori (MAP score) of their joint distribution given the observed data. Although well studied in
theory the learning of Bayesian networks based on real-world data is usually not straight forward and
requires an adoption of existing algorithms. Typically arising problems are the handling of continuous
variables, incomplete observations and the interaction of both.

Working with continuous distributions requires assumptions about the allowed families of distributions.
To “let the data speak” and avoid wrong assumptions, continuous variables are instead discretized
here, thus allowing for a completely data-driven and distribution-free learning. An extension of the
MAP score, considering the discretization as random variable as well, is developed for an automatic
multivariate discretization, that takes interactions between the variables into account. The discretization
process is nested into the network learning and requires several iterations. Having to face incomplete
observations on top, this may pose a computational burden. Iterative proceedings for missing value
estimation become quickly infeasible. A more efficient albeit approximate method is used instead, es-
timating the missing values based only on the observations of variables directly interacting with the
missing variable. Moreover natural hazard assessments often have a primary interest in a certain target
variable. The discretization learned for this variable does not always have the required resolution for a
good prediction performance. Finer resolutions for (conditional) continuous distributions are achieved
with continuous approximations subsequent to the Bayesian network learning, using kernel density
estimations or mixtures of truncated exponential functions.

All our proceedings are completely data-driven. We thus avoid assumptions that require expert knowl-
edge and instead provide domain independent solutions, that are applicable not only in other natural
hazard assessments, but in a variety of domains struggling with uncertainties.
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CHAPTER

ONE

INTRODUCTION

Earthquakes, tsunamis, flood events, landslides, volcanic eruptions — they all and many other
natural hazards are quite different in their causes and effects, but from a modeling perspective
they share a lot of common properties and challenges. Their underlying processes are complex
and not completely understood. The number of influencing factors is large and their interactions
anything but transparent, which makes an identification of the driving forces and a description
of their single and joint effects demanding. This leads to a variety of model structures suggested
in literature, revealing a great uncertainty about the framework to use. Additionally, the
observations on which the natural hazard analysis is based are often sparse, inaccurate and/or
incomplete, which adds another layer of uncertainty on top. Various sources of uncertainty
accumulate, each either corresponding to a lack of knowledge, the epistemic uncertainty, or
to the intrinsic and irreducible aleatoric uncertainty, which comes about the randomness of
the natural phenomenon under study. Ignoring those uncertainties may have disastrous effects,
since it often leads to an underestimation of the hazard.

Nevertheless deterministic approaches are widely used in natural hazard assessments. Tsunami
early warning systems, e.g, evaluate pre-calculated synthetic databases and pick out the sce-
nario ‘closest’ to the current situation to estimate its hazard (Blaser et al., 2011). Recently
developed models for flood damage assessments (i.e., the FLEMOps+r model) use classifica-
tion approaches, where the event under consideration is assigned to its corresponding class and
the caused damage is estimated by taking the mean damage of all observed events that belong
to the same class (Elmer et al., 2010). In seismic hazard analysis the usage of regression-based
ground motion models is common practice, restricting the model to the chosen functional form,
which is defined based on physical constrains (Kithn et al., 2011). Deterministic approaches
provide usually no information or hardly any inside into the uncertainty related to their esti-
mates, but uncertainty is carrier of information and ignoring it as some sort of error would be
wrong.
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Pa(i)
P(A,B,C,D, E) = pE|CDpD)p(C|AB)pBPpA
Figure 1.1: Illustration of a parent set Xpg(;) Figure 1.2: Example for the decomposition
of X;. of the joint distribution according to a DAG.

Directed graphical models (DGMs), in particular Bayesian networks, pose a powerful formalism
to capture and express uncertainties. In recent years they have successfully been employed
in a wide range of earth science applications, including tsunami early warning, e.g. (Blaser
et al., 2011), probabilistic seismic hazard analysis, e.g. (Kiithn et al., 2011), and automatic
detection and classification of seismic signals, e.g. (Riggelsen et al., 2007). DGMs treat all
random quantities that pertain to a particular hazard domain as random variables, which are
represented as nodes in a directed acyclic graph (DAG).

In the following random variables are indicated by uppercases (usually X;), while vectors/sets
of random variables are indicated by bold uppercases (usually X). Realizations of the random
variables are indicated by lowercases accordingly (z; or x). If not defined otherwise the set of
all considered random variables is denoted by X = {X3,..., X;}. The dependency relations of
the variables are encoded through the DAG structure, where arcs point from the variables in
the parent set, Xpg(;), to X; (see Fig. 1.1), stating that X; directly depends on X pg;). Each
random variable is associated with a conditional distribution p(X;[Xp,(;)) and the joint dis-
tribution of all variables decomposes according to the DAG into a product of the conditionals:
P(X) = [; P(Xi|Xpqa(i)). Figure 1.2 shows an example. In the framework of this thesis we can
only give a short introduction into DGMs, but there exist several textbooks on the topic, e.g.
(Jensen and Nielsen, 2001; Koller and Friedman, 2009).

We consider three types of DGMs. The main focus is on the application of Bayesian networks
(BNs), which treat all variables equally. Their only restriction on the graph structure is to form
a directed acyclic graph. This allows for a construction of dependency relations that (are close
to) reflect the reality and give insight into the underlying system. A BN is fully described by
its DAG and its parameters, 8, that define the conditional distributions. For discrete variables
the set of parameters corresponds to the conditional (point) probabilities for each combination
of states: 0= J{0y,xp, ., = P(¥i[Xpa(;))} For continuous variables depends the design of the
parameters on the functional form of the conditional distributions.
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Figure 1.4: Ilustration of a Tree Augmented
Naive Bayes. The gray node indicates the class
variable, the gray edges are the ones added to
the Naive Bayes.

Figure 1.3: Illustration of a Naive Bayes net-
work structure. The gray node indicates the
class variable.

In the applications considered in this thesis network structure and parameters are learned
from data, searching for the pair (DAG, €) that is most likely to describe the data generating
process. There is no expert knowledge included in the BN learning. Anyhow, if present, expert
knowledge can be exploited to define (elements of) the BN or to set up a BN that reflects our
prior belief and is updated based on the data.

Many natural hazard assessments have an increased interest in the prediction of a certain
target variable. While a BN is designed to capture the joint distribution of all variables, the
Naive Bayes classifier focuses on the variable of interest and may thus be more accurate in
that region. Its network structure is simple and fixed: The target variable, often referred to
as class variable, is the only parent of each other variable, the attributes, and has no parents
itself (see Fig. 1.3 for illustration). Even though it does not reflect the real (in-)dependencies,
the Naive Bayes usually performs well (competitive with or better than BNs) in classification
tasks (Friedman and Goldszmidt, 1996a).

The Tree Augmented Naive Bayes is an extension of the Naive Bayes approach. It allows
to assign one more parent, in addition to the class variable, to each attribute (see Fig. 1.4
for illustration). Maintaining the computational simplicity the Tree Augmented Naive Bayes
classifier thus relaxes the independence assumptions made for Naive Bayes, but is usually still
far from describing the real dependency relations. The improved classification performance thus
does not come without costs. Concentrating on the variable of interest the (Tree Augmented)
Naive Bayes classifier does not capture the joint distribution of all variables, which is needed
to infer into all directions.

Although graphical models are well studied in theory, their application on real-world data
is not straight forward. One of the most dominant problems is the handling of continuous
variables. The main body of this thesis comprises four papers, where graphical models are
applied in the domains of seismic hazard, flood damage and landslides. Each of them requires
a treatment of continuous variables. To avoid assumptions on the families of distributions and
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allow for a distribution free learning the continuous variables are discretized in all applications.
Choosing an ‘optimal’ discretization that leads to a minimum of information loss is anything
but trivial and a major issue in all four papers. The first paper concentrates on the develop-
ment of surrogates for complex ground motion models used in the probabilistic seismic hazard
analysis. The second and third paper investigate a flood damage data set collected after the
2002 and 2005/06 flood events in the Elbe and Danube catchments (Germany). Using the
Bayesian network approach they aim to learn about damage causing and preventing factors
and the interaction of those. The third paper additionally gives a suggestion how to deal with
incomplete observations. The fourth paper adds a landslide analysis to the investigated natural
hazard domains and stresses the benefits of the Bayesian network approach for natural hazard
assessments. The full papers are reprinted in Chapters 2 to 5. In the following the manuscripts
are shortly summarized.

PAPER 1
Graphical Models as Surrogates for Complex Ground Motion Models

Vogel, K., Riggelsen, C., Kiihn, N., Scherbaum, F.; 2012. Published in Proceedings of the
11th International Conference on Artificial Intelligence and Soft Computing

One of the most critical elements in probabilistic seismic hazard analysis is the model that describes
the ground motion caused by earthquakes. So-called stochastic models capture the characteristics of the
ground motion well, but since they do not have nice analytical properties a simplified model is often
used instead. This surrogate is usually defined by fitting a regression function to a synthetic data set
generated by the stochastic model. This paper presents Directed Graphical Models as an alternative
to the regression approach. A Bayesian network, a Naive Bayes and a Tree Augmented Naive Bayes
classifier are learned based on a synthetic data set. Continuous variables are discretized for this purpose,
using automatic discretization procedures that choose an ‘optimal’ discretization based on the observed
data. In the (Tree Augmented) Naive Bayes approach the attributes are discretized depending on the
class variable, using a variation of the class entropy to find a discretization that keeps the information
loss small. The class variable itself is not discretized, but approximated with a Gaussian kernel den-
sity estimator. In the Bayesian network approach all variables are discretized simultaneously, using a
multivariate discretization that takes the interaction of the variables into account. The proceeding is
motivated by Monti and Cooper (1998) and is only briefly sketched in this paper. It will be adopted and
enhanced in the following papers. Finally the prediction performance of the learned models is compared
to the regression approach. To increase the precision of the Bayesian network, the discretization learned
for the ground motion variable is ignored and its continuous distribution is, as for the (Tree Augmented)
Naive Bayes, approximated with a kernel density estimator. Compared to the regression approach all
three graphical models perform well in the ground motion prediction. The best prediction performance
is delivered by the Naive Bayes classifier.
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PAPER 2
Flood Damage and Influencing Factors: A Bayesian Network Perspective

Vogel, K., Riggelsen, C., Merz, B., Kreibich, H., Scherbaum, F.; 2012. Published in Proceed-
ings of the 6th European Workshop on Probabilistic Graphical Models

In this paper a Bayesian network is learned for flood damage assessments. In contrast to classical ap-
proaches, which often relate the flood damage to the inundation depth only, a variety of potential
influencing factors is considered here, aiming to identify the driving forces and to learn about their sin-
gle and joint effects. The investigated data set comprises 29 variables describing the flooding situation,
building characteristics, precaution, warning, emergency measures, socio-economic factors and the dam-
aged caused to residential buildings. Missing observations are for simplicity randomly replaced. A better
justified prediction procedure for missing values is presented in the following paper. The discretization
of the continuous variables is casted in a Bayesian framework, searching for the most likely triple of
network structure, parameters and discretization given the observed data. The learned network reveals
interactions between flood damage and the considered predictors that are widely neglected in flood
damage assessments. The performance of the learned BN in terms of predicting the building damage is
compared to models currently used for flood damage assessments (namely the stage-damage function
and the FLEMOps+r model) as well as to a Naive Bayes and Tree Augmented Naive Bayes classifier. As
for the ground motion application the approximation of the target variable is refined here using a kernel
density estimator. The best prediction performance is given by the Naive Bayes and Tree Augmented
Naive Bayes, but especially for the Tree Augmented Naive Bayes it stays open to which extend this
is an effect of over-fitting. The prediction performance of the BN is comparable to the FLEMOps+r
model, which is to our knowledge the best model currently in use. Additionally the BN captures the
related uncertainty and allows for inference into all directions.

PAPER 3

Challenges for Bayesian Network Learning in a Flood Damage Assessment
Application

Vogel, K., Riggelsen, C., Scherbaum, F., Schroter, K., Kreibich, H., Merz, B.; 2013. Published
in Proceedings of the 11th International Conference on Structural Safety € Reliability

The flood damage application presented in the previous paper is picked up here again concentrating
now on methodological issues not satisfyingly solved or not discussed so far. The multivariate discretiza-
tion procedure is enhanced to come up with a discretization that is independent of the scaling of the
variables (i.e. the discretization of a variable does not change, if it is considered on a logarithmic scale).
Missing observations are now estimated based on the observations of variables that have direct impact
on the missing variable. This proceeding leads to a change in the learned network structure reveal-
ing dependency relations that match better with expert opinions, especially in context with the rarely
observed variables. Moreover, an approximation of the target variable distribution with mixtures of
truncated exponentials (MTE) is suggested here as an alternative to the kernel density estimator used
in the previous papers. Using the MTE approach the BN performs equally well in the target variable
prediction, while the number of applied parameters reduces considerably compared to the kernel den-
sity estimation. Especially in complex networks the parameter reduction is of importance to keep the
computational effort for inference in reasonable limits.
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PAPER 4
The Application of Bayesian Networks in Natural Hazard Analyses

Vogel, K., Riggelsen, C., Korup, O., Scherbaum, F.; Submitted to Natural Hazards and Earth
System Sciences

The last paper illustrates the flexible applicability of the BN approach and demonstrates its properties
and benefits on way of exemplifications. The BN learning procedures developed so far and presented in
the previous papers are applied here in different natural hazard settings. The seismic data set generated
for the first paper is reused to learn a BN applying the revised discretization procedure presented in
the third paper. To increase the BN’s precision the MTE approximation for continuous distributions
is applied subsequently to the BN learning. The flood damage assessment presented in the second and
third paper is considered once more and an example for inference, investigating the impact of precaution
on flood damage, is given. Adding a third natural hazard to the investigated domains a landslide model
is learned based on a data set that compiles a number of geological, climatic and topographic metrics
throughout the Japanese islands. The model uncertainty related to BN learning is discussed in this

context.

If not mentioned otherwise, the research documented in all presented papers was carried out
by the author of this thesis. Co-authors assisted in an advisory role. In paper 2 and 3 the
prediction performance of the currently used flood damage models (the stage-damage function
and the FLEMOps+r model) was evaluated by Kai Schroter, Heidi Kreibich and Bruno Merz.
The interpretation of the learned landslide model in paper 4 was supported by Oliver Korup.

In addition to the above mentioned papers, the author also participated in the following pub-
lication, which is not included in the thesis:

How useful are complex flood damage models?

Schroter, K., Kreibich, H., Merz, B., Vogel, K., Riggelsen, C., Scherbaum, F.; Submitted to

Water Resources Research

The paper analyzes the prediction performance of several flood damage models of different complexity.
The contribution to this work was the implementation of BNs based on the data set collected after
the Elbe 2002 flood event. Two BNs, comprising 11 and 28 variables, were learned totally data-driven,
while the structures of another two BNs, comprising the same sets of variables, were defined based on
expert knowledge and only the parameters were learned from data. The prediction performance of the
BNs was evaluated considering their ability to predict building damages caused by the same flood event
and in a spatial and temporal transfer.
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GRAPHICAL MODELS AS SURROGATES FOR COMPLEX GROUND MOTION MODELS

ABSTRACT: In Probabilistic Seismic Hazard Analysis, which has become the basis of
decision making on the design of high risk facilities, one estimates the probability that
ground motion caused by earthquakes exceeds a certain level at a certain site within
a certain time interval. One of the most critical aspects in this context is the model
for the conditional probability of ground motion given earthquake magnitude, source-
site-distance and potentially additional parameters. These models are usually regression
functions, including terms modeling interaction effects derived from expert knowledge. We
show that the framework of Directed Graphical Models is an attractive alternative to the
standard regression approach. We investigate Bayesian Networks, modeling the problem
in a true multivariate way, and we look into Naive Bayes and Tree-Augmented Naive
Bayes, where the target node coincides with the dependent variable in standard ground
motion regression. Our approach gives rise to distribution-free learning when necessary,
and we experiment with and introduce different discretization schemes to apply standard
learning and inference algorithms to our problem at hand.

2.1 Introduction

In the context of Probabilistic Seismic Hazard Analysis (PSHA) strong ground motion at a
particular site, caused by an earthquake, is modelled by physical relationships between various
parameters, usually dictated by physical principles. This requires accurate knowledge of the
source process, of the properties of the propagation medium as well as of the subsurface under
the site. In regions of well recorded seismicity the most popular modeling approach is to
fit a regression function to the observed data, where the functional form is determined by
expert knowledge. In regions, where we lack a sufficient amount of data, it is popular to fit the
regression function to a data set generated by a so-called stochastic model (Boore, 2003), which
distorts the shape of a random time series according to physical principles to obtain a time
series with properties that match ground-motion characteristics. The stochastic model does
not have nice analytical properties nor does it come in a form amenable for easy analytical
handling and evaluation. In order to determine the ground motion the stochastic model is
simulated, posing a time-consuming and computationally expensive challenge. Instead of using
a stochastic model directly, a surrogate model, which describes the stochastic model in a more
abstract sense (e.g. regression), is often used in PSHA.

In this paper we show how Directed Graphical Models (DGM) may be seen as a viable alter-
native to the classical regression approach. Graphical models have proven to be a “all-round”
pre/descriptive probabilistic framework for many problems. The transparent nature of the
graphical models is attractive from a domain perspective allowing for a better understanding
and gives direct insight into the relationships and workings of a system. A possible application
of DGMs for PSHA is already described in (Kiihn et al., 2009).
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In the following sections we give a short introduction into the ground motion domain and
into DGMs. How the DGMs are learned for discrete variables is explained in Section 2.4.
Discretization methods and how we deal with a continuous target variable are given in Section
2.5. In Section 2.6 we apply DGMs to a dataset simulated by a stochastic model and we end
with the conclusions.

2.2 Ground Motion Models

Formally speaking, in ground motion modeling we want to estimate the conditional proba-
bility of a ground motion parameter Y such as (horizontal) peak ground acceleration (PGA)
or spectral acceleration (PSA) given earthquake and site related predictor variables, X. In
the regression approach the ground motion parameter is usually assumed to be log-normally
distributed, InY = f(X) + ¢, with € ~ N(0,02).

Which predictor variables are used is a matter of choice; in thus sequel we have at our disposal,
X = {M,R,SD,Qo, ko, Vs30}. The moment magnitude of the earthquake (M) and distance
between source and site (R) traditionally have special status in PSHA, however, we treat them
no differently than the other variables: Stress released during the earthquake (SD), attenuation
of seismic wave amplitudes in deep layers (Qg) and near the surface (kg), Average shear-wave
velocity in the upper 30 m (Vs30). !

Seismological expert knowledge determines the functional form of the regressions function; in
our case a reasonable form for a regression function is the following, which is based on the
description of the Fourier spectrum of seismic ground motion (Boore, 2003),

f(X) = ao+a1M—|-a2M-lnSD—|—(a3+a4M)ln\/a§—|—7R2 (2.1)
+agkR + a7Vs30 + agIn SD

with Kk = kg +t*, " = QOL;/SQ and V= 3.5%”, where q; is fitted to data simulated from
the stochastic model.

2.3 Directed Graphical Models

DGM’s describe a joint probability distribution of a set of variables, X, decomposing it into
a product of (local) conditional probability distributions P(X|DAG,0) = [[; P(Xi|Xpag)) =
1L 0x,xp, . according to a directed acyclic graph (DAG), with vertices X; and edges pointing
from the parent set, X py(;), to X;, encoding the conditional independences. The local condi-
tional probability distributions, P(X;|X pa(i)) may be defined according to our prior knowledge,
e.g., as Gaussians where the mean and the variance could be associated with corresponding
vertices in the DAG. However often we want to make no such explicit assumptions, that is,
we want to be able to model a wide range of distributions, because no prior knowledge may

In the next sections we will sometimes include Y in X; it will be clear from the context when this is the
case.
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be available. By adhering to categorical distributions we may approximate (by “histograms”)
any continuous distribution asymptotically; this would be called distribution-free learning. E.g.

if estimated from observations, the parameters could be the maximum likelihood estimates,
A (X pa(i))

TilXpa@) n(Xpa(i))
data. More about discretization follows in Section 2.5.

using the statistics n(-), the counts of a particular configuration from

In contrast to classical regression, DGMs treat all random quantities, including co-variates,
as random variables. This is not only reasonable, since the measure of the covariates is often
defective, but also allows to infer in “all directions” and calculate any conditional distributions
of interest. Furthermore DGMs offer a different perspective on how variables (including co-
variates) relate, since no assumptions about the functional form for physical relationships
between the variables have to be given. On the other hand, expert knowledge can be included
by the usage of informative priors, both on structure and parameters. For a more detailed
description of DGMs see (Edwards, 2000).

2.4 Learning Approaches for Discrete Variables

In the sections to come we assume that we have at our disposal an i.i.d. sample, d, with n
records (for now assume discretized data); this will in our case be the simulated data from the
stochastic model, from which we want to learn. We investigate DGMs admitting to different
decompositions/factorizations of the joint distribution, that is, the restrictions that are imposed
by the DAG: Bayesian Networks (BNs), Naive Bayes (NBs) and Tree Augmented Naive Bayes
(TANSs).

2.4.1 Bayesian Networks

In contrast to the regression approach, for BNs we do not need to make any assumptions
about any (functional or (in)dependence) relationship of the involved variables a priori. When
learned from data, we automatically get a concise surrogate model. By inspecting the learned
BN structure we may get an intuition about the workings of the underlying data generating
system (the stochastic model) from an (in)dependence perspective. The BN at the same time
enables for computing any marginal/conditional of interest.

BN learning involves traversing the space of BNs looking for the one yielding the highest score.
As scoring function we use the Bayesian MAP scoring, introduced in (Riggelsen, 2008), as-
suming a joint uniform prior P(DAG,®) = P(O|DAG)P(DAG), with P(®|DAG) a uniform
product Dirichlet distribution (with restricted hyper-parameters a guaranteeing DAG scor-
ing equivalence), and P(DAG) uniform over BN structures too. This yields the MAP scoring
metric which needs to be maximized,

S(DAG|d) = H H H grirexpa)telzixpam) =l regularization term.

lexPa (2)
) XPa(i) Ti

10
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To traverse the (simulated) space of essential graphs we use a hill-climber algorithm, applying
the Repeated Covered Arc Reversal operator (Castelo and Kocka, 2003), where arc addition
and removal are the basic operations. Without going into detail, we note that the thus obtained
structure also dictates the parameter estimates of 8 as the maximum likelihood (see previous
section), but now based on a(-) +n(-) — 1.

2.4.2 Naive Bayes

In the BN approach, the structure is learned, and all variables are treated equally; there is
no dedicated “output” node. In the context of our surrogate mode there is however a variable
of interest, Y. The network structure in Naive Bayes (NBs) is simple and fixed: The target
variable Y| often referred to as class variable, is the only parent of each attribute X;. Even
though the assumed independence between the attributes is most likely violated, NBs usually
perform well (competitive with or better than BNs) in classification tasks (Friedman and
Goldszmidt, 1996a). Obviously, in contrast to the BNs, with NBs we lack the ability to gain
insight into the relationships between the variables via inspection.

The (local) conditional distributions may be the usual maximum likelihood estimates; however,

we use the smoothed maximum likelihood estimator given in (Friedman and Goldszmidt, 1996a)
n(Ti,X pa(s)) ra n(z;) n(Xpa(i))

n(Xpa(i)) n with o = n(Xpa(iy))+5"

instead, 6, =« —a)

i|xPa(i)

2.4.3 'Tree Augmented Naive Bayes

Tree Augmented Naive Bayes (TANs) are an extension of the NBs. They allow each attribute
to have one more parent in addition to the target variable. This relaxes the independence
assumption for the attributes made in NB, but maintains the computational simplicity. In
a TAN construction we start off with the NB structure. To determine on the presence or
absence of connections between the attributes, we use a score based on entropy, Entq(X) =
— > x @ log, @ Entropy measures the amount of information, needed to specify X in the
dataset d with n records. We determine for each pair, (X;, X;);»;, the explaining away residual

(EAR) (Pernkopf and Bilmes, 2005),

EAR(X“X]‘Y) = Entd(Xi,Y) + Entd(Xj, Y) - Entd(Xi,Xj, Y) - Entd(Y)
—Entd(Xi) — Entd(Xj) + Entd(Xi,Xj),

which is high for pairs which are mutually informative conditioned on Y and at the same
time not mutually informative unconditionally. In an undirected mazimum spanning tree the
weights of the edges are associated with the EAR, all edges with negative weights are deleted
and for the remaining tree(s) we choose a root node and set the direction of the edges pointing
away from the root. These are the edges, which are added to the NB, ultimately yielding the
TAN. The estimation of @ is done as described for NBs.

11
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2.5 Discretization

For a distribution-free learning, we need to discretize the continuous variables of our data set.
A discretization splits the range of X into (multidimensional) intervals and merges all real
values of one interval into one state of a discrete variable, X’. The number of intervals and
their boundaries have to be chosen carefully, since essential information about the distributions
and dependencies of the variables may be lost otherwise.

2.5.1 Bayesian Network

For BN’s, where we are mainly interested in learning the dependency structure, we discretize
all variables simultaneously, using a multivariate discretization, which takes the interaction be-
tween all connected variables into account. We use a method developed in (Monti and Cooper,
1998), assuming that the observed data, were generated in two steps. In the first step an interval
is selected by drawing from P(X'|DAG). Afterwards we draw X from a uniform distribution
over the selected interval, P(X|X’) = [, P(X;|X}). According to (Monti and Cooper, 1998) we
now seek a discretization d’ of d, which maximizes for a given structure P(d'|DAG)P(d|d’);
here P(d’|DAG) is the so-called marginal likelihood.

The optimal discretization depends on the BN structure and has to be adjusted dynamically
as the structure changes. We do this in an iterative way, similar to (Friedman and Goldszmidst,
1996b), first learning the discretization for an initial network, which in turn is used to learn
a new BN with the MAP-scoring function. The discretization and the BN-learning steps are
repeated until we reach a local maximum of the MAP-score. Starting with different initial
networks can lead to different results. We use the structure of a TAN to start with, but ideally
different initial GMs should be tested.

2.5.2 Naive Bayes and Tree Augmented Naive Bayes

The above mentioned approach is not ideal for the NB and TAN approach. Here our attention
is on the estimation of the target variable, and we discretize only the attributes, while the
continuous target is approximated with a kernel density estimator.

Our method is based on the approach developed in (Fayyad and Irani, 1993), which is widely
used for the discretization of continuous attributes in classification tasks with a discrete class
variable Y. The discretization of each attribute X; depends on Y, but is independent of the
other attributes. It splits the total dataset d into subsets Ué{:ldk = d, where d; includes
all records, for which X; falls into the k-th interval. We aim to choose interval boundaries
that lead to a small Minimum Description Length (MDL). The MDL can be expressed as
>k SEEntq, (Y) 4 cost, where ny, is the number of records in dy, Entq, (Y') is the class entropy
based on the dataset dj and cost is a regularization term restricting the number of intervals.

12
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The above method is only valid f