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Introduction

Chapter 1: Introduction

1.1 Concepts in gene regulation

Eukaryotic gene regulation is considerably more complex than in bacteria. The increased
complexity presumably facilitates the sophisticated regulation needed to direct the activities
of many different cell types in a multicellular organisms®?. Gene expression is regulated at
several stages in the pathway from DNA to protein, namely from transcription to protein
degradation. Transcriptional regulation includes controls during initiation, elongation and
termination of transcription. The produced RNA is also subjected to regulation. Mechanisms
controlling the regulation after transcription are regarded as posttranscriptional modifications
(posttranscriptional regulation). It includes regulation at the level of RNA stability, translation,
modification of amino acid residues by addition of foreign groups such as phosphates or
sugars, and regulation at the level of protein degradation®®®"",
In many cases, transcriptional initiation is the most important and tightly regulated level of
gene expression®. In eukaryotic cells, genes are transcribed by three different RNA
polymerases®:
e RNA polymerase | (Poll) it transcribes the ribosomal RNA (rRNA) genes for the
precursor 28S, 18S and 5.8S molecules.
e RNA polymerase Il (Polll) transcribes messenger RNA (mRNA) genes (protein
coding genes), and also some small nuclear RNA genes (snRNAS)
o RNA polymerase Il (Pollll) transcribes transfer RNA (tRNA) genes and other small
RNA genes.
Any protein that is needed for the initiation of transcription is defined as a transcription factor.
Most of the transcription factors are released before RNA polymerase Il (RNA Polll) leaves

rl43l

the promoter™. The factors rather than the enzymes themselves are responsible for

recognizing the sequence components of the promotert>54.

Promoters recognized by RNA Polll exhibit more sequence diversity than promoters
recognized by the other polymerases, and are modular in design®®. The factors that assists
RNA PollI can be divided into three general groups:

1. General factors are required for the initiation of transcription at all promoters. They

join with RNA Polll to form a complex surrounding the startpoint, because RNA Polll
alone cannot initiate transcription. These auxiliary factors are called TFIIX (TFII for
transcription factor of the RNA Polll, and “X” identifies the individual factor). Together

with RNA Polll this complex constitute the basal transcription apparatus®®l. A

1
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schematic view of the molecular apparatus controlling transcription in human cells is
shown in Figure 1-11'""®1. The RNA Polll and the general factors are showed in blue,

"384 They are essential for transcription but

and are regarded as “basal factors
cannot by themselves increase its rate. The fist step during the formation of the
complex at a TATA-box containing promoter is the binding of the factor TFIID to the
TATA-box. TFIID itself is composed of multiple subunits, including the TATA-binding
protein (TBP), which binds a second factor (TFIIB), and a variety of other subunits
called TAFs (for TBP-associated factors). TFIIDs containing different TAFs may
recognize different promoters®. In Figure 1-1 TAFs are regarded as “coactivators”
since TAFs and not TBP itself are the targets for the protein binding of transcription
factors (general and inducible). In the figure they are shown in green and named
according to their molecular weights (in kilodaltons)!"'®. TFIIB bound to TFIID serves
in turn as a bridge to RNA polymerase, which binds to the TBP-TFIIB complex in
association with the factor TFIIF. Following recruitment of RNA Polll to the promoter,
the binding of the factors TFIIE and TFIIH is required for initiation of

transcription!?44364,

ACTIVATORS

—— GO PR TER

COACTINATORS DASAL FACTORS

Picture taken from UG Berkeley websle (htto dwww. be ey edw newsieature s 20 2509 Sdimage bl
Qriginal sowrce : Sclelfic American

Figure 1-1: A schematic view of the typical components of a gene transcribed by RNA
polymerase Il. Basal factors (blue shapes at bottom) together with the RNA Pol form the basal
transcription apparatus. General and inducible transcription factors (activators in red or repressors in
gray) interact with the basal factors through coactivators (green), that are proteins linked to the TBP.
Coactivators are named according to their molecular weights (in kilodaltons)

2. Upstream factors are DNA binding proteins that recognize specific short DNA

sequences located upstream of the startpoint (e.g. Sp1, which binds the GC box).

The activity of these factors is not regulated. They are ubiquitous, and act upon any
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promoter that contains an appropriate DNA binding site. They increase the efficiency
of transcriptional initiation, and are required for a promoter to function at an adequate
level*364,

3. Inducible factors like the upstream factors they recognize short DNA sequences but

they have a regulatory role. They are synthesized or activated at specific
developmental stages or in specific tissues. Therefore, inducible factors are
responsible for the spatial and temporal control of transcription. In Figure 1-1
inducible factors that increase the level of transcription are shown in red (activators),
and inducible factors that decrease or abolish transcription are shown in grey
(repressors) 14356641

A promoter that contains only elements recognized by general and upstream factors should
be transcribed in any cell type. Such promoters may be responsible for the expression of
cellular genes that are constitutively expressed (called sometimes housekeeping genes). The
upstream and inducible factors function by interacting with the basal transcription apparatus,

typically with certain general factors (shown in green as “coactivators” in Figure 1-1)14.

1.1.1 Transcription factors

Transcription factors are proteins that are needed for the initiation of transcription. They
might have a regulatory role mostly by recognizing short DNA sequences (cis-acting sites).
However, binding to DNA is not the only means of action of a transcription factor. A factor
might recognize another factor, or may be incorporated into an initiation complex only in the
presence of several proteins®®®4.

The transcription factors that interact with the DNA to control the transcription recognize DNA
sequences more or less specifically. Once bound to the DNA, these factors may influence
transcription through several mechanisms®®:

1. In most cases they enhance the formation of the preinitiation complex at the TATA-
box/initiator element (a general upstream factor). The interaction with the preinitiation
complex is mediated by a trans-activation domain, able to interact with components of
the basal transcription apparatus.

2. Some transcription factors cause alterations in the chromosomal architecture,
rendering the chromatin more accessible to the RNA polymerase.

3. Some auxiliary factors adjust an optimal DNA conformation for the activity of other
transcription factors.

4. Some factors exert repressing influences, either directly by an active inhibiting
domain, or indirectly by disturbing the required ensemble of factors within a regulatory

sequence.
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5. There is a group of transcription factors that do not directly bind to DNA, but

assemble into higher-order complexes through protein-protein interactions.

Most transcription factors are modular in structure. Usually the following protein domains are

found:

e A DNA binding domain.

¢ An oligomerization domain that allows to form dimers or higher order complexes
with other transcription factors or proteins of the transcriptional machinery.

e A ftrans-activation domain, which is often characterized by a significant over-
representation of certain types of amino acid residues (e.g. glutamine-rich, proline-
rich, serine/threonine rich or acidic activation domains).

¢ A modulating region which is frequently a target of modifying enzymes such as
kinases and phosphatases.

e Sometimes they might also have a ligand-binding domain.

The proposed classification scheme of transcription factors made by Wingender®®® is mainly

based on the properties of the DNA-binding domain. According to this, four large

superclasses of DNA-binding domains are recognized:

1.

Basic domains: factors that have a stretch of mainly basic amino acid residues. For
example the leucine zipper proteins®°®. The leucine zipper is a stretch of amino acids
rich in leucine residues that provides a dimerization motif. Zippers may form homo or
heterodimers!***®!. The region adjacent to the leucine repeats is highly basic in each of
the zipper proteins. In Figure 1-2 the crystal structure of a protein-DNA complex that
represents the leucine zipper GCN4 is shown.

Zinc-coordinating DNA-binding domains. The DNA binding domain is brought to a
defined conformation by coordinated zinc ion(s). This DNA-binding domain was
originally found in the factor TFIIIA, which is required for RNA Pollll to transcribe 5S
rRNA genes!***. In Figure 1-2 the crystal structure of the protein-DNA complexes of
TFIIIA and Zif268 are shown. Both transcription factors contain zinc finger motifs.
Helix-turn-helix: The proteins that have this motif have both the ability to bind DNA and
to dimerize, forming both homo and heterodimers. They share a common type of
sequence: a stretch of 40-50 amino acids contains 2 amphipathic a-helices separated

by a linker region (the loop) of varying length!*>®®

. Figure 1-2 shows the crystal
structure of the protein-DNA complex of ETS-1, a helix-turn-helix transcription factor.

B-Scaffold factors with minor groove contacts: factors where the DNA-contacting
interface is exposed by a scaffold of suitably arranged B-strands and which perform
minor groove contacts. In Figure 1-2 the protein-DNA complex of the TBP, a B-scaffold

factor is shown.
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TEP

ETS GCMN4 Zif?68

Figure 1-2: Examples of DNA-binding domains. In TFIIIA the DNA-binding domain contains
zinc-finger motifs. TBP contains a minor groove DNA-binding motif. LEF-1 is a HMG box. ETS-1is a
helix-turn-helix transcription factor. GCN4 is a bZIP transcription factor. In Zif268 the DNA-binding
domain contains zinc-finger motifs. Picture taken from Dervan, 20011

1.1.2 Representation of transcription factor binding sites

To model a transcription factor binding site (TFBS) the underlying biochemical process has
to be taken into account. A transcription factor recognizes a DNA sequence, which shares
some common features that almost always appears at the same position in the recognized
sequences. Although there is a conserved core within the recognition site, generally certain
positions do not influence binding affinity and hence show more variability!®®¢# 198111,

The specificity of a transcription factor for its target DNA sequence is different from the
specificity of other DNA-binding proteins such as restriction enzymes. The recognition
sequence of a restriction enzyme is a defined DNA sequence, in some cases ambiguities are
allowed. All sites that match the recognition sequence will be cut (unless modified by
methylation) and only matching sequences will be cut. In contrast, TFBSs often show
variations in their recognized sequences, and only few of the positions of the binding site are
conserved!'®. It makes biological sense that transcription factor binding sites are variable,
whereas restriction sites are not. Restriction sites are used as defence mechanisms, and
they need to have an all or none activity. But TFBSs can take advantage of the variability in
the sites to better control gene transcription. Not all promoters should have the same activity,
because some proteins are required by the cell at much higher level than others. The

variability in expression can be partially attained by having promoters with different intrinsic

5



affinities for the RNA polymerase, which implies different sequences in the binding sites.
Likewise, transcription factors often control the expression of several genes, if these genes
are needed to be expressed at different levels, that can be accomplished by having binding
sites with different sequences and different affinities for the protein®®'%!. As an example, in
Figure 1-3 some binding sites recognized by G-box binding factors (bZIP transcription factors)
are shown. It can be observed that all recognition sequences have an invariable core of
ACGT shown in red, that starts at the fourth position.

TCCACGTCTCT
CGTACGTGTCG
CCTACGTGGCG
GGGACGTGGCG
CACACGTCCCG
CGTACGTGTAC
TGTACGTGCTG Figure 1-3: ABRE binding sites.
GATACGTGTTT Sequences recognized by G-box binding
factors (bZIP transcription factors)
consensus CGTACGTGTCG
alternative consensus BVBACGTBBVB

To represent TFBSs the concept of the consensus sequence has been widely used.
However, the exact definition is somewhat arbitrary. In general, the consensus sequence
refers to a sequence that matches all of the examples of a known binding site closely, but not
necessarily exactly. There is a trade-off between the number of mismatches allowed, the
ambiguity in the consensus sequence, and the sensitivity and precision of the
representation'®. In Figure 1-3 two possible consensus sequences can be deduced, and
are presented. One consensus sequence refers to the most prominent base at each position
and does not allow ambiguities. The alternative consensus sequence refers to all observed
bases at each position. If the first consensus sequence is used to identify ABRE binding sites
only one from eight sequences of the list will be identify. Considering the frequency of A,C,G
and T in intergenic sequences of the model plant Arabidopsis thaliana (0.34 for A and T, and
0.16 for C and G)' there would be about one match each 28 Mb. With the alternative
consensus all sequences of the list will be identify. However, a genome wide screening in A.
thaliana will identify a cis-element each 6 kb.

An alternative to consensus sequences is a matrix representation of the site. Figure 1-4
shows a frequency matrix based on the binding sites shown in Figure 1-3. In a frequency
matrix the number of occurrences of each nucleotide at a certain position is count. To predict

new binding sites the counts of the matrix are taken into account, and each putative binding

' See section 5.1
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site is predicted with a score!'®. Generally, putative binding sites composed of nucleotides
rarely observed in the known binding sites represented in the matrix will have low scores.
The decreases of the scores depend on the differences with respect to the most frequent
nucleotides.

Several hundred matrices for specific transcription factors are available in databases such as
TRANSFAC (http:/www.biobase.de). However, the available matrices for many transcription
factors are not specific enough to enable a reliable prediction of sites in long sequences. For

large genomes, thousands of potential binding sites are expected to be found just by chance.

8
0
0
0

- ® O >
Nmio

2 0

2 2
L4

° B
Figure 1-4: Matrix representation of the binding sites presented in Figure 1-3. The red boxes
correspond to the consensus sequence CGTACGTGTCG

1.1.3 Identification of known cis-elements in DNA sequences

The computational detection of regulatory sites (cis-elements) in DNA sequences is a difficult
task, especially in eukaryotes where the TFBSs are generally DNA sequences shorter than
those found in prokaryotes!'®!. Additionally, the recognized sequences are variable, and the
binding sites can be dispersed over very large distances. As a consequence, the rate of false
positive predictions is very high. Errors in the recognition of putative binding sites occur
because of limited knowledge about the structure of a binding site, and the lack of well define
models of transcriptional regulation®®.

The analysis of a query DNA sequence with a consensus sequence or a matrix that
represents a TFBS results in a list of potential binding sites, and their positions in the query
sequence. The output depends critically on the number of binding sites considered to
construct the cis-element model (principally if the query sequence has been screened with
consensus sequences) and the quality of the cis-element model (consensus sequence or
matrix). A binding site represented either by a matrix or a consensus sequence with low
specificity yields frequent matches within a sequence, most of them being false positives®?.
The representation of a binding site as a consensus sequence and posterior screening of a
DNA sequence yield a simple yes/no decision. In a screening with consensus sequences
mismatches that could be tolerated by the binding protein will not be discriminated from a

mismatch that abolishes binding. Matrices are less sensitive to sequence selection, and
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provide a qualitative rating (score), suggesting the likelihood of the binding site. A single
mismatch in a critical position normally greatly reduces the score of the match®®%11",

The challenge is to reduce the number of falsely predicted sites. Recently developed
methods to detect TFBSs often employ criteria such as conservation of sites across different
species, clustering of binding sites in regulatory regions, and enrichment of specific sites in
co-regulated genes. These criteria are based on observations from relatively few
experimentally dissected regulatory regions. Nevertheless, it is already evident that
predictive success increases dramatically as experimental data accumulates and defined
models of distribution and interactions between cis-elements in regulatory regions become

more refined!'867:124]

1.2 ABA signalling in plant development and growth

The phytohormone abscisic acid (ABA) is implicated in a number of developmental events
during the life cycle of higher plants. ABA is not only involved in mediating the response to a
number of environmental stresses, including drought, cold and high salinity, it also plays a
significant role in embryo development and seed maturation 2%,

ABA was discovered independently through the study of abscission of cotton fruits, and
through analysis of dormancy in sycamores (Davies et al. 1988 and Addicot et al. 1983 cited
by Fedoroff, 20025%). ABA is synthesized in almost all cells, but it is also transport from roots
to shoots, and the circulation of ABA in both xylem and phloem is an important aspect of its
physiological role®®. ABA is sent from the roots to target cells in shoots, as soil is drying, to
regulate stomatal closure and leaf development. The most extensively investigated
developmental and physiological effects of ABA are those involved in seed maturation and
dormancy, and the regulation of stomatal movementst.

In A. thaliana alone, more than 50 loci have been demonstrated to function in various
aspects of ABA response. Their products include transcription factors, protein phosphatases
and kinases, RNA binding/processing proteins, GTP proteins, enzymes of phospholipid or
phosphoinositide metabolism, and proteins regulating vesicle trafficking or membrane
localization of specific proteins. Some of these loci have also been identified via diverse
genetic screens including defects in response to other phytohormones (ethylene, auxin or
brassinosteroids), abiotic stresses (osmotic, salt, cold or UV light), and sugars (glucose or
sucrose). The repeated identification of a few loci affecting response to multiple signals had
led to the suggestion that these genes are points of “cross-talk” among signalling
pathways!'?.

To identify the molecular mechanisms of ABA action several approaches have been

adopted. One of them is the isolation and characterization of components involved in the

8



Introduction

transduction of the signal. Taking advantage of ABA response mutants some of the genes
involved in the signal transduction pathway have been cloned ['#'6:30.101103 - ABA_deficient
mutants (aba) as well as ABA-insensitive (abi) mutants have been identified. The aba
mutants have low levels of ABA due to attenuated levels of accumulation in both seeds and
leaves. The abi mutants are impaired or deficient in various responses regulated by ABA
such establishment of dormancy or stomatal closure %",

Because it has been well documented that ABA regulates the expression of a variety of
genes, another approach to study the mechanism of ABA action involves the identification of
cis-acting elements necessary and sufficient for ABA response, and the isolation of trans-
acting factors interacting with these DNA sequences!'?16:30.101.103]

The molecule or molecules that perceive the ABA signal (ABA receptor) remain unknown®".
Different results suggest the presence of both intra and extracellular reception sites for
ABAI"",

The signalling mechanisms involved in the transduction of the signal include a variety of
phospholipid-based signalling pathways, including phospholipase C (PLC), D (PLD) and A;
(PLA;), and pathways involving the formation of diacylglycerol pyrophosphate (DGPP) and
phosphatidylinositol 3,5-bisphosphate (Pl35P2). Protein kinases, and especially mitogen-
activated protein kinases (MAPK) are also involved”?. The signalling components connecting
the ABA-activated MAPK cascade to ABA reception have not yet been identified®® "%,

In guard cells there is evidence that PLC- and PLD-generated phosphatidic acid (PA) and
inositol 1,4,5-triphosphate (IP3) serve as second messengers. PA promotes inactivation of an
inward-rectifying K* channel, and IP; stimulates Ca** release from the vacuole. Cyclic ADP-
ribose (CADPR) is required for both, ABA-induced stomatal closure and ABA-activated gene
expression. Furthermore, cADPR stimulates also release of Ca* from the vacuoleP’.
Evidence is accumulating that membrane vesicle trafficking and fusion are central to ABA
signalling®”.

The signalling mechanisms involved in transcriptional and posttranscriptional regulation by
ABA have not been explored as extensively as have been the mechanisms of signalling to
membrane channels in guard cells. Nonetheless, several transcription factors have been
identified that confer an abi phenotype (abi3, abi4 and abi5) when mutated'?*%. In addition,
two of the five abi mutants isolated so far, carry semidominant mutations in highly similar
proteins that belong to the 2C class of serine-threonine protein phosphatases (PP2C) (abil
and abi2). Both mutants have been used to study the role of protein phosphorylation and
dephosphorylation in ABA signalling™®.

In addition to the MAPK cascade, Ca*-dependent protein kinases (CDPKs) are also
implicated in transmitting the ABA signal to the transcriptional machinery®®®. Plant CDPKs are

similar to mammalian calcium-calmodulin (CaM)-dependent protein kinase Il, and also
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contain an integral CaM domain. Nevertheless, little is known about the role of CaM and
CaM-binding proteins in signalling in plants®®®. It has been hypothesized that protein kinases
and phosphatases that participate in ABA signalling could regulate some transcription factors
constitutively bound to the promoter of ABA-responsive genes, by phosphorylation or
dephosphorylation. In mammals for example, the bZIP transcription factor CREB which

recognizes an ACGT-core cis-element is activated by phosphorylation!*®..

1.3 ABA-related cis-elements

The comparison of different promoters of ABA-responsive genes revealed the presence of a
conserved sequence. This sequence was first identified as a cis-acting element named ABA-
responsive element (ABRE) in wheat (Triticum aestivum), in the gene EM which functions
mainly in seeds during late embryogenesis, and in rice (Oryza sativa) in the gene RAB16,
which is expressed in both dehydrated tissue and maturating seeds!"'”.. ABRE contains an
ACGT core similar to the one found in the so-called G-boxes, that are involved in responses
to other environmental and physiological cues, such as light, cumaric acid, auxin, jasmonic
acid and salicylic acid *2®, Studies with several promoters have led to the isolation of G-box
binding proteins, all of which are leucine zippers (bZIP)!'%!. Considering that G-boxes are
found in promoters that respond to diverse environmental and physiological signals, it is
proposed that the bases flanking the ACGT-core and the interaction with another cis-element
close to the G-box determine the specificity of the promoter. Specific point mutations within
either box result in a dramatic reduction on the induction of a reporter gene upon specific
stimuli (ABA, light)"%121],

In the case of ABA-induced genes, three coupling elements have been described: coupling
element 1 (CE1), coupling element 3 (CE3) and a cis-element called Dehydration
Responsive Element (DRE)!'"'01011031321 The sequences of CE1 and CE3 are different.
However, both elements have a high content of cytosines and/or guanines!'®. Mutational
analyses have showed that the essential sequence of CE1 in barley (Hordeum vulgare) is
CCACC. The most critical base appeared to be the adenine in the middle of the element!'®*!.
The essential sequence of CE3 in barley is GCGTGTC, and because it is nearly identical to
the ABRE sequence ACGTGGC, Hobo et al. 1999 suggested to classify CE3 as a non-
ACGT ABREM,

In barley it was found that the orientation of the ABRE and the CE1 is important for a high
level of ABA induction. The expression of a reporter gene was higher when the cis-elements
ABRE and CE1 were separated by 10, 20 and 30 bp, and lower when the separation was 5,
15 or 25 bp. It appears that the protein that recognizes the G-Box (a bZIP transcription

factor) and the protein that recognizes the CE1 (possibly an AP2 class transcription factor)
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have to be located at the same side of the DNA helix in order to interact with each other!'%?.
In the case of CE3, the orientation of ABRE and CE3 did not play an important role, but the
distance between them was important. Closely located ABRE and CE3 cis-elements showed
more induction of the reporter gene than elements that had a separation of 25 bp. The data
suggest that the interaction of ABRE and CE3 is mediated by other proteins than in the case
of ABRE-CE1!"%],

DRE has been reported to be a coupling element of ABRE only in A. thaliana, and has been
observed to play a role in the ABA-mediated induction of the gene RD29A"®!. The sequence
of the cis-element is TACCGACAT, with a conserved core (CCGAC)"**. DRE has been
reported in other genes responsive to drought and cold stress like KIN1, CORG6.6/KIN2,
CORI15A, RD17/COR47 from A. thaliana, all genes contain both DRE and ABRE in their
promoter regions!’. DRE is considered also as the most important ABA-independent stress
responsive cis-element in genes regulated by osmotic stress. A single copy of DRE is
sufficient to induce gene expression, which indicates that it does not require other elements
for its function in stress-inducible gene expression, unlike ABRE!"*!. The similarity between
the core sequences of CE1 and DRE suggest that AP2 domain transcription factors that bind
CE1 may also be able to bind a different consensus sequence such as DRE although with
less affinity!"%.

The cloning of stress-related MYB transcription factors from A. thaliana and Craterostigma
plantagineum suggest that this class of transcription factors and their recognition sequences
are involved in ABA-induced transcription!’®. A MYB binding sequence is present in the
promoter of the ABA-inducible gene RD22 and is involved in induction by ABA 2354133 MYB
binding sites have been reported also in promoters of the genes AtADH1, COR6.6/KIN2 and
RD20 from A. thaliana. It has been suggested that one of the transcription factors involved in
the recognition of these MYB binding sites in response to ABA is the gene AtMYB2, and that
this system is different from the ABRE-bZIP regulatory system observed in vegetative tissues
and seeds!?,

Finally, the cis-element As1 (activation sequence 1) has been observed in the promoter
region of the gene RD29A of A. thaliana™.The cis-element was first found in viral and T-
DNA promoters. As1-like elements have also been found as functional elements of plant
promoters activated in the course of a defence response upon pathogen attack. They are
recognized by plant nuclear As1 like binding factors ASF-1, the major component of which is

a basic/leucine zipper (bZIP) protein in Nicotiana tabacum!®"!

. In the ABA-responsive gene
RD29A As1 has been considered as a cis-element that confers root-specific. Base
substitution analyses in the As1 binding site led to a lower induction of a reporter gene,
compared to the wild-type element. However, responsiveness of the promoter to ABA is not

completely abolished .
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Chapter 2: Aim of this work

Osmotic stress has a major influence on crop production, affecting dramatically yield harvest.
The involvement of ABA in osmotic stresses such as drought, cold or high salinity has been

3.16,30,35,53,58,68,103,105,117.133.133] - Gonsidering the important biological

extensively documented®
and economical role of osmotic stress and ABA, and the limited knowledge on the interaction
between cis-elements in ABA-responsive genes, it was proposed to use bioinformatic
approaches to detect genes regulated by ABA in A. thaliana. The study was made at a
genome-wide scale, taking advantage of the genome sequence of A. thaliana available since

2000 (Arabidopsis Genome Initiative - AGI™).

The whole genome of A. thaliana was analysed to identify combinations of cis-elements
known to be involved in the regulation of ABA-responsive genes. During the formulation of

this PhD project two key aspects were considered:

1. The project should provide insights into possible interactions between cis-elements
involved in the regulation of ABA-responsive genes in A. thaliana. The extensive
analysis of the in silico predictions should help to identify some interaction principles
between cis-elements, and to propose a model about for the mechanisms of

regulation of ABA-responsive genes.

2. The project should provide a comparison of in silico predictions with experimental
data in order to evaluate the biological reliability of computational predictions. The
experiences from this comparison should facilitate the design and refinement of future

laboratory experiments.
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Chapter 3: Materials

3.1 Bioinformatics

Computational methods were performed on a workstation with a 1.4 GHz Athlon™ processor

running on a LINUX operating system (SuSE Linux, version 2.4.20).

3.2 Molecular biology

3.2.1 Chemical reagents and enzymes

All chemicals used were analytical grade and were from Boehringer (Mannheim), Duchefa
(Haarlem, Netherlands), Fluka (Buchs SG, Switzerland), Invitrogen (Invitrogen GmbH,
Karlsruhe), Merck (Darmstadt) and Sigma-Aldrich (Taufkirchen-Munich).

DNase | was from Roche (Roche Applied Sciences, Mannheim), and the cDNA synthesis kit
from Amershan (Amershan Biosciences, Freiburg).

SYBR® Green Master Mix reagent was obtained from Applied Biosystems (Applied
Biosystems, Warrington, UK).

3.2.2 Buffers and solutions

Unless otherwise specified, solutions were prepared in Milli-Q-grade deionized Water.
Buffers that were used for RNA analyses were made with Milli-Q-Water containing the strong

ribonuclease inhibitor diethyl pyrocarbonate (DEPC).

3.2.3 Plant material and growth conditions

Wild-type plants of Arabidopsis thaliana (L.) Heynth., ecotype C24 were grown
hydroponically in 50% Murashige and Skoog medium!”® (MS-medium), supplemented with
2% sucrose (w/v), under controlled conditions in a growth chamber, under long-day
conditions (16 h light / 8 h dark), at 21°C and 65% relative humidity
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3.2.4 Primers

All primers were synthesized by TIP-MOLBIOL (Berlin) and have been described by
Czechowski et al. 2004%°!

Gene Primer Sequence (5> 3')
Actin 200/600bp forward ACTTTCATCAGCCGTTTTGA
reverse ACGATTGGTTGAATATCATCAG
At1g42990 forward TGGCTAAAAAACGAAGAAGGAGAG
bZIP TF reverse TCAAGCATACGTCCTAGTCTCAAG
At2g46590 forward TGAAACAGGAGACGACGAGGAACC
DAG2/Dof reverse TCATCAGCAGCAGCCTTCATCATC
At5g10030 forward TGCGGTAACAGAACCTTGAGAAGC
OBF4/bZIP TF reverse TGTGGAAAACTTCAGCAGAGCGG
At5g39610 forward GGCTGGTTCCATTCGGTTAATGTG
NAM/NAC TF reverse TCCCCAGCGAATGTCGTAGTGGAT
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Chapter 4. Methods

4.1 Bioinformatics

4.1.1 Construction of datasets

Genome sequences and gene coordinates stored at The Institute for Genomic Research
(TIGR) were used for the analyses®. The gene coordinates define the start and the end of
each putative coding region in the A. thaliana genome. Sequences upstream of the gene
coordinates that indicate the start of a putative coding region were automatically extracted,
using a Perl script designed in-house (Riano-Pachdn, unpublished data). Upstream
sequences were extracted up to the next stop codon (according to the gene coordinates). In
Figure 4-1 intergenic regions are represented in magenta, and coding regions as green
boxes.

Additionally to the intergenic sequences, 1 kb upstream sequences were extracted, using a
modified version of the Perl script mentioned above (In Figure 4-1, 1 kb up-stream

sequences are represented as blue dots).

Geng Istt  Oene_lidop Gene sl Gene TatooGene 3stad  Gene dson  Genemstat  Gene_mshp

-

Intergenic M’ M M’

1 upstream: ) 4, X '

Figure 4-1: Schematic illustration of gene arrangement in protein coding genes. A gene
comprises a coding region and an upstream sequence. Coding regions are represented as green
boxes and upstream sequences as loops in magenta. All sequences between two coding regions were
considered to be intergenic sequences (magenta loops). 1 kb upstream sequences are DNA
sequences extending 1 kb upstream of the translation start of a coding region (blue dots). Translation
start and stop positions were located using the gene coordinates provided by TIGR.

2 ftp://ftp.tigr.org/pub/data/a_thaliana/
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4.1.2 Nucleotide and oligonucleotide composition

The single nucleotide composition of every extracted sequence (intergenic and 1 kb
upstream) was counted using a Perl script (Riafio-Pachén, unpublished data). All nucleotides
in a given sequence were counted, including ambiguities as defined by the Nomenclature
Committee of the International Union of Biochemistry — IUPAC.

For the 1 kb upstream sequences, oligonucleotide composition was assessed using the
program Compseq from EMBOSS® run locally. Default parameters for the program were
the following:

compseq —sequence [database file] -reverse —word [size] —outfile [output_file]

All possible oligonucleotides of a given size, the number of occurrences and observed
frequency in the set of analysed sequences were reported in the output file. Expected

frequencies were calculated according to:

w (4-1)
E=]]f«
i=1
where fy; denotes the frequency of base Xi.
A ratio of representation was calculated with Equation(4-2):
repr = O0-E (4-2)

where O refers to the observed frequency of a given oligonucleotide, and E refers to the
expected frequency of the oligonucleotide. Finally, oligonucleotides were grouped together

with their reverse complement using a Perl script (Riafio-Pachén, unpublished data).

4.1.3 List of known cis-elements

Cis-elements published in PLACE>*’ and AGRIS*?®! were downloaded. In AGRIS, 95 plant-
specific cis-elements are published, and in PLACE 427 cis-elements are published.
Considering that the same cis-element could have different names in each database, each
downloaded cis-element was aligned with the other downloaded entries for the detection of
duplicated elements (pairwise alignments). In alignments with a similarity of 100% (defined
by the identity of the aligned sequences), one of the entries was deleted. The preliminary list
of cis-elements, from which duplicated entries were deleted contained 429 cis-elements (406
from PLACE and 23 from AGRIS). Subsequently, the list of cis-elements was further

inspected to exclude:

8 http://www.dna.affrc.go.jp/PLACE/
* http://arabidopsis.med.ohio-state.edu/AtcisDB/index.jsp
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(i) Cis-elements that were longer than 10 nucleotides, and

(i) Cis-elements that were described too vaguely by the nucleotide ambiguity code. A

cis-element was discarded when it corresponded to more than 16 different

oligonucleotides.

The list of known cis-elements was reduced from 429 to 198 cis-elements, with sizes from 4

to 10 nucleotides. Fifty cis-elements in the final list were described with ambiguities.

The list of cis-elements with 198 entries did not represented 198 different regulatory

elements from plants. Cis-elements with similar names were regarded as functionally related,

and grouped into subcategories. Each subcategory was composed of 2 to 12 cis-elements.

In total 28 subcategories of regulatory elements were established (Table 4-1).

Table 4-1: Groups of similar cis-elements. Cis-elements downloaded from PLACE and AGRIS were

grouped according to the name of the cis-element

Group

Entries

ABRE

12

MYB

—_
N

DRE/LTRE

G-box

TATABOX

AMMORES

CEREGLUBOX

E2F

I-box

POLASIG

W-box

-300ELEMENT

AUXRET

CAAT-box

CCA

GARE

GATA

GT1

HSE

OCTAMER

PYRIMIDINEBOX

RY

S1F

SURE

TATCCA

TGA

NININDININDNINDNINDINDNINDNINDINDNINDNINDINDNINIWWWWwWw w|io | oo

When the ambiguities in the cis-elements were replaced by the corresponding nucleotides,

the list with 198 entries corresponded to 406 unique oligonucleotides.
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The complete list of known cis-elements used is available online under:

www.bio-uni-potsdam.de/jgomez/dbcis.html

4.1.4 Frequency matrices and consensus sequences

The cis-elements ABRE, DRE, CE1, CE3, MYB and As1 have been experimentally
confirmed to be in ABA-responsive genes in different plant species, including A. thaliana, rice
(Oryza sativa), maize (Zea mays), barley (Hordeum vulgare) and tomato (Lycopersicon
esculentum). To obtain accurate Position-Specific Frequency Matrices (PSFM) for each cis-
element, the binding site sequences described in the literature were collected and aligned.
To define the consensus sequences, the most prominent base or combination of bases at
each position was chosen. The consensus sequences are shown in Table 4-2.

PSFMs for each cis-element were deduced from the number of occurrences of each
nucleotide at each position. The different binding sites used to construct the matrices for the
cis-elements ABRE, As1, CE3, DRE and MYB, and the matrices themselves are presented
in Appendix 1. The binding sites and the PSFM of the cis-element CE1 is presented in
section 6.1.

Table 4-2: Consensus sequences deduced for ABA-related cis-elements. The corresponding
binding sites are presented in Appendix 1 or in section 6.1

Element Consensus sequence

ABRE NRYACGTGTM
AS1 TDACGTAA
CE1 SSBCACCSV
CE3 SMCGCSTCGCY
DRE KACCGACMT
MYB MYWAACCA

415 Pattern-based search

The generated consensus sequences were used to screen A. thaliana 1 kb upstream
sequences, to identify pairs of ABA-related cis-elements using a Perl script designed in-
house (Riafio-Pachon, unpublished data) that uses the program fuzznuc from EMBOSS!®.
Pair-wise combinations of cis-elements within a maximal distance of 1 kb were localized in
the query sequence(s) with fuzznuc, and the output was compiled to deliver three kinds of
lists:

1. Pair-wise combinations of cis-elements and number of hits found per pair in the

screened sequences.
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2. Sequence name (or identifier) in which each pair of cis-elements was found.

3. Distance between the cis-elements of a pair.

4.1.6 Matrix-based screening

PSFM were used to screen A. thaliana 1 kb upstream sequences. The programs

MotifScanner*''? and CISTER® were used for the screening.

4.1.6.1 MotifScanner

MotifScanner was implemented by Gert Thijs at the Catholic University of Leuven!""""l to
localize known transcription factor binding sites in a query sequence. Each short sequence of
length x in a query sequence is scored based on a motif and a background model. The motif
model was represented by the PSFM (©), the background model (Bm) was a 2™ order
Markov model, which was estimated from A. thaliana intergenic sequences (the Araset
published by Pavy et al. 1999%%""3l) The probability that the sub-sequence of length x was
generated from the background model was calculated, and also the probability that the sub-
sequence was generated by the motif model.
Based on these two probabilities, a log-ratio score was calculated with:

P(x|®) j (4-3)

Wx) = IOg(P(x 'S, Bm)

4.1.6.2 CISTER

The algorithm CISTER was implemented by Martin Frith at the Department of Biomedical
Engineering in Boston (USA)*Y. A Hidden Markov Model (HMM) is used to detect cis-
element clusters in a query sequence. The transition probabilities represent the prior
expectations concerning the distribution of the cis-elements in a query sequence. Emission
probabilities describe the nucleotide preferences at each position in the cis-element versus
the nucleotide preferences in the query sequence (counted around a window size defined by
the user).

For the transition probabilities the model assumes that the distance between clusters is
geometrically distributed with mean g. The model expects to see any cis-element on either
strand with equal probability. The distance between motifs in a cluster is modeled as a
geometric distribution with mean a, and the number of cis-elements in a cluster is supposed
to be geometrically distributed with mean b.

For the emission probabilities the nucleotide preferences at each position in the cis-element

(PSFM), and the background emission probabilities counted around a window around the
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position of the segment being scanned in the query sequence are compared. The probability
of an instance is calculated by multiplying the transition and emission probabilities.
Thus, the parameters defined by the user are:

g for the mean distance between clusters,

a for the mean distance between elements in a cluster,

b for the mean number of elements in a cluster,

w is the window size, nucleotide frequencies are counted around it.
To fix the parameters, the program was run with a small training set, containing upstream
sequences from different plant species, including A. thaliana. The exact location of the TATA
box and other elements under study was known. The screening included the identification of
the position of the TATA-box and ABA-related cis-elements in the training set (the TATA-box
PSFM was downloaded from the web application of CISTER). After different trials, the
following parameters recognized the correct position of about 70% of the cis-elements
present in the training set:

g=1000, a=20, b=10 and w=150

The screenings were made using these parameters.

4.2 Molecular biology

4.2.1 Sterilization of seeds

Wild-type A. thaliana seeds were sterilized with 70% ethanol. After 2 min of incubation in
ethanol seeds were centrifuged at 380 g for 1 min. On a clean bench the ethanol was
discarded, and 1.5 mL sodium hypochloride (1:5 v/v dilution) and ca. 20 uL of 0.02% Triton
X-100 were added. Seeds were mixed gently and kept at room temperature for 8 min.
Afterwards, seeds were centrifuged at 380 g for 2 min, the supernatant was discarded, and
1.5 mL sterile water and ca. 20 uL 0.02% Triton X-100 were added. Seeds were centrifuged
at 380 g for 2 min. Rinsing with sterile water was repeated three times. Seeds were dried for

3-4 hours, on a sterile filter paper prior to transfer to MS agar medium.

4.2.2 Hormone treatment

A. thaliana plants were grown hydroponically in 50% MS-medium supplemented with 2%
sucrose. Four-week old plants were stimulated with 100 uM cis(+) ABA added to the fresh

medium. Control plants were treated with an equivalent amount of 1 N NaOH used to
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dissolve ABA. Leaf samples were harvested 30, 60, 90, 120 and 300 min after addition of

ABA or NaOH into the medium, and immediately frozen in liquid nitrogen for further analysis.

4.2.3 Isolation of RNA

Total RNA from control and ABA-treated plants was isolated using TRIZOL reagent. Leaf
tissue was ground to a fine powder in liquid nitrogen, homogenized in 1.5 mL TRIZOL, and
incubated at room temperature for 5 min. The samples were centrifuged at 16000 g for 10
min at 4°C to remove cell debris. The supernatant was carefully collected in a new tube and
400 uL chloroform were added. Samples were mixed by vortexing for 15 s, incubated at
room temperature 5 min, and then centrifuged at 9500 g for 15 min at 4°C to separate
phases.

The upper aqueous layer was carefully removed to a clean tube and RNA was precipitated
with 0.6 volumes of isopropanol and 0.1 volumes of 3 M sodium acetate. Samples were left
overnight at —20°C. To pellet the RNA the samples were centrifuged at 13600 g for 15 min at
4°C. The pellet was washed with 500 uL 70% ethanol, and pelleted again by centrifugation.
The pellet was allowed to dry for 5 to 10 min at room temperature, and dissolved in 50 uL
H,0-DEPC. Samples were stored at —20°C.

4.2.4 Spectrophotometric determination of RNA concentration

The RNA concentration was measured at 260 nm wavelength. For the measurement 1puL of
RNA was dissolved in 99 uL H,0-DEPC. An ODysonm Of 1 corresponds to a concentration of
40 pg/mL of single-strand RNA. The ratio between ODysonm and ODo,gonm provides and
estimation of the purity of RNA. Pure preparations of RNA have an OD2gonm/ODagonm Of 2.01%4.

4.2.5 DNase I digestion

Prior to the transcription of RNA into cDNA, RNA was digested to destroy traces of
contaminating genomic DNA. In a final volume of 50 uL approximately 10ug of total RNA
were incubated with RNase-free DNase | at 37°C for one hour. The enzyme was inactivated
by heating at 75°C for 10 min. Absence of genomic DNA was confirmed by PCR using the
pair of primers Actin 200/600, designed on an intronic sequence of actin.

After digestion RNA was purified with EGTA, LiCl and glycogen. For the purification of RNA 6
uL 20 mM EGTA, 5,2 uL 8 M LiCl and 7.4 uL glycogen (5 mg/mL) were added. The mixture
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was incubated at —20°C for 20 min, 300 uL 100% ethanol were added, and samples were
incubated for 1 hour at —20°C. Samples were centrifuged at 13600 g for 30 min at 4°C.
Precipitated RNA was rinsed with 70% ethanol-DEPC, and dissolved in 30 uL H,O-DEPC.

4.2.6 cDNA synthesis

RNA was transcribed in-vitro into cDNA using the first-strand cDNA synthesis kit from
Amershan, following the instructions of the manufacter.

Each reaction was performed in 33 pL, containing about 5 ug total RNA, 200 ng oligo dT
(18mer), 11 uL bulk reaction mix (contains FPLCpure™ murine reverse transcriptase,
RNAguard™, RNase/DNase free BSA and dNTPs in aqueous buffer), and 1uL 0.2 M DTT.

After 1 hour of incubation at 37°C enzyme was inactivated at 70°C for 15 min.

4.2.7 Polymerase chain reaction (PCR)

To check for genomic DNA contaminations, samples were checked by PCR using the pair of
primers actin 200/600 that amplified two fragments, a 200 bp long fragment when cDNA is
used as template, and a 600bp long fragment when genomic DNA is used as template.

Each reaction was performed in a volume of 20 uL, containing 1uL template cDNA, 2 uL 10x
buffer-MgCl, free, 2 uL 25 mM MgCl,, 15 pmol forward and reverse primer, 0.4 uL dNTPs
(10mM each), 1uL self-made Tag-polymerase and water.

DNA amplification was performed in a Robocycler (Stratagene, Heidelberg). A typical

protocol for PCR is shown in Table 4-3.

Table 4-3: Typical PCR protocol

Denaturation Annealing Polymerisation Cycles
94°C — 5 min Initial cycle
94°C — 30sec 65°C — 30 sec (-1°C/cycle) 72°C—-90s 9 cycles
94°C — 30sec 55°C — 30 sec 72°C-90s 20 cycles
72°C — 5 min Final cycle

4.2.8 Real-time PCR (RT-PCR)

cDNA samples that amplified only the 200 bp long fragment with the pair of primers actin
200/600 were used for RT-PCR. Amplification was performed in a 7300 RT-PCR System
(Applied Biosystems, Darmstadt), using SYBR® Green to monitor double strand DNA
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synthesis, in a 96-optical reaction plates. Reactions contained 5 uL 2x SYBR® Green PCR-
Master Mix reagent, 1uL 1:10 dilution of template cDNA, and 500 nM of each gene-specific
primer in a final volume of 10 yL. To minimize pipetting errors, and ensure that each reaction
contained an equal amount of cDNA and primers, an electronic Eppendorf pipette
(Eppendorf, Hamburg) was used to pipette the cDNA and the primer mix, while 2x SYBR®
Green reagent was aliquoted with a 8-well multichannel pipette (ABIMED GmbH,
Langenfeld).

The following standard thermal profile was used for all PCRs: 50°C for 2 min, 95°C for 10
min, 40 cycles at 95°C for 15 s, and 60°C for 1 min. Data acquisition was made using the
SDS 1.2.2 software (Applied Biosystems, Darmstadt).

The level of cDNA was assessed by comparison with values obtained for a control gene
(Ubiquitin 10 — At4g05320). The AC; method was used for relative quantification, and values
were expressed as 274181,

In Figure 4-2 a typical amplification plot is shown. Note the increase in SYBR® Green
fluorescence with increasing PCR cycle number. For most of the samples the slope of the

curves was quite similar, reflecting similar amplification efficiencies.
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Figure 4-2: Amplification

plot of a RT-PCR. The

cycle number is indicated

at the x-axis, the y-axis
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Lnete bustir fluorescence (log scale)

For quantification an arbitrary threshold cycle was defined (Cy), that indicates the fractional
cycle number at which the targets and the reference gene reached a fluorescence level of
0.2 (marked green line in Figure 4-2). AC; is the difference in threshold cycles for target and
reference of samples subjected to the same treatment (ACt =Ciarget —Creference)- 10 cOMpare
treated and untreated samples the AAC; value was calculated, which describes the difference
between AC; values in treated (T) and control (C) samples (AAC; =AC.c - AC71). Relative

2-AACII If 2-AACt

changes in expression with an amplification efficiency of 1 are given by is equal

to 1, there is no difference in the expression level upon treatment. A 2**°! |arger than one
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indicates up-regulation of gene expression upon treatment, whereas a 2! lower than 1
indicates down-regulation of gene expression upon treatment. Actin was used to test the
reliability of the amplification experiment. It is supposed that the expression of actin and other
housekeeping genes is not largely influenced by the treatment, and the 2**° must be close

to one.

4.2.9 DNA array data analysis

Nylon membrane data kindly provided by Dr. Magdalena Ornatowskal’® were used to
determine genes differentially expressed after ABA treatment. Gene expression in A. thaliana
leaves was monitored at 30, 60, 90, 120 and 300 min after ABA or control treatment.

After data acquisition measured radioactivity was normalized by the software Haruspex
developed at the Max-Planck Institute for Molecular Plant Physiology in Golm - Germany (S.
Kloska, B. Essigmann and T. Altmann, unpublished data). Normalization included the
subtraction of local background and indication of values below threshold level (set-up to
twice local background). Haruspex calculated a gene activity value, corresponding to the
ratio between the signal measured in a complex hybridisation and the signal measured in a
reference hybridisation.

The analysis of the data started with the selection of clones that had been measured
successfully in all experiments (control and treatment, all data points). Subsequently, clone
names were substituted by the gene identifiers established by the Arabidopsis Genome
Initiative (regarded as AGI codes)!".

The software GEPAS (http://gepas.bioinfo.cnio.es/cgi-bin/preprocess)*® was used to detect

and delete inconsistent replicates. A replicate measurement was considered inconsistent if
the gene activity was two-times above/below the standard deviation of the other
measurements for the same gene. In the case of genes with at least three valid
measurements, missing values were calculated using KNN, run locally!"®”. Replicates were
merged by the mean.

A ratio of expression was calculated as gene activity of gene i measured in treatment divided
by gene activity of gene i measured in control plants. Ratios were scaled by logarithmic
transformation (Log.), where 0 Log,U stands for no changes. Values greater than 0 denote
positive changes (measured gene activity was higher in treated plants), and values smaller
than zero denote negative changes (measured gene activity was lower in treated plants).

To select differentially expressed genes the recommendation of Thimm et al. 20011'"®! was
followed. A gene was considered to be regulated if it showed at least a three-fold change in

gene expression (£1,58 Log,U).
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Chapter 5: Analysis of intergenic sequences

During the past years many genomes have been fully sequenced. For the
genomic sequence annotations several prediction programs have been used to
deduce gene models, and similarity searches have helped to assign protein
functions®®. Nevertheless, the proportion of predicted genes for which no
functional annotation has been found still large. For example, five years after the
publication of the genome sequence of the model plant A. thaliana about half of
the genes currently do not have any definitive functional annotation!®*”. One
fundamental problem that remains is the identification of genes that respond to a
given external or endogenous stimulus, especially if no functional annotation is
available for these genes.

In this study, the genome sequence of the model plant A. thaliana was used to
predict genes putatively regulated by the phytohormone abscisic acid (ABA). The
major role of the combinatorial action of transcription factors was explored.
Putative target genes were identified by the identification of regulatory cis-
elements in their intergenic regions.

Given the importance of the selected intergenic sequences in the quality of the
predictions, general features of the intergenic regions of A. thaliana were studied.
In this chapter the results concerning nucleotide composition, intergenic region

lengths and oligonucleotide composition of intergenic regions are presented.

5.1 A.thalianaintergenic regions

The analysis of DNA sequences from bacteria (e.g. Rhizobium meliloti, Agrobacterium
tumefaciens, Escherichia coli), human viruses (e.g. EBV, CMV, Vaccinia), and eukaryotes
(e.g. Saccharomyces cerevisiae, Neurospora crassa, Zea mays, Homo sapiens) has shown
that the nucleotide composition changes along different regions of the genome!™. For
instance, the significant differences between non-coding regions and coding regions are
exploited by all gene prediction methods!®”.

The selection of the DNA sequences for the identification of Transcription Factor Binding
Sites (TFBS) is driven by the typical location of the binding sites. In A. thaliana experimental
and computational approaches have shown that TFBSs are mostly located in intergenic

sl23575107111 " The intergenic region in such cases was defined as the non-coding

region
region between two genes. Nevertheless, some exceptions are known were regulatory sites

are located in introns, conferring tissue specific expressiont®"#.
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The sizes of the intergenic regions depend on the compactness of the genome!"'". There is
not a detailed report about lengths and nucleotide compositions of intergenic regions from A.
thaliana performed on the whole genome, which has been available since 2000 %",

The work presented here utilizes the whole genome sequence of A. thaliana to establish
default parameters to be used with TFBS-predicting algorithms, by carefully analysing the
lengths and single nucleotide compositions of intergenic regions.

In this study, the DNA sequence that extends upstream from a coding region to the end of
the preceding coding region was considered as the intergenic region of the mentioned gene
(Figure 4-1). An in-house designed Perl script (Riafio-Pachén, unpublished data) was used
to automatically extract such sequences, using the gene coordinates published in the last
genome release in January 2004°. About 30.000 (29885) intergenic regions of A. thaliana
ecotype Columbia-0 were retrieved, and their lengths and single strand nucleotide
compositions were determined.

As already found for other genomes!"*'#! intergenic regions in A. thaliana exhibit a strong
A+T over C+G bias. According to the single nucleotide composition counted over a single
strand (extracted sequences) the overall frequency of A was equal to the overall frequency of
T, equal to 0.34 (fo = fr = 0.34). The overall frequency of C was equal to the overall frequency
of G, equal to 0.16 (fg = fc =0.16). Undetermined bases (N) account for only 0.33% of the
total. The average %GC in intergenic regions was 32.4.

Few sequences (12) showed a low A +T frequency (A+T <0.4), and corresponded to genome
regions not fully sequenced yet, that are close to centromeres and/or telomeres, or to
extremely short intergenic regions (shorter than 30 bp).

Intergenic sequence lengths ranged from 1 base to 72 kb. Regarding the lengths it must be
kept in mind that intergenic regions, mainly the longer ones, may include DNA that codes for
non-protein-coding RNAs. This is usually overlooked during the process of genome
annotation, where genome sequences are screened for the presence of relatively long open
reading frames (minimum 50 amino acid residues ).

The mean length found for intergenic regions was 1.8 kb with a standard deviation of 2.5 kb.
The median length was 1.1 kb. These results were substantially different from the results
presented by Steffens et al. 2004, where the average length of A. thaliana intergenic
sequences is regarded to range from 2 to 2.5kb!"’!. Although no additional information is
provided by Steffens and co-workers, it is likely that the deduced lengths might be based in
calculations made with the data presented in the analysis of the genome!", and not the result
of a careful analysis like the one present here.

The length distribution of intergenic regions is shown in Figure 5-1. Approximately 54% of the

intergenic regions retrieved have a length of at least 1 kb.

® ftp://ftp.tigr.org/pub/data/a_thaliana/
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Figure 5-1 Distribution of the lengths of intergenic regions in A. thaliana. An intergenic region
was regarded as the sequence upstream of a coding region (Figure 4-1). The start and stop of a
coding region were defined by the gene coordinates provided by TIGR®

The wide range in lengths confirms the length polymorphism of intergenic regions of A.
thaliana, originally outlined by Pavy et al. 1999®% The work of Pavy and co-workers was prior
to the publication of the genome sequence of A. thaliana!", and focused on the evaluation of
gene prediction software using annotated BAC sequences.

Nearly 10% of the extracted intergenic regions (2933 sequences) were shorter than 200 bp.
Open Reading Frame (ORF) annotations showed that most of the corresponding genes were
expressed proteins (618 genes), hypothetical proteins (133 genes), pentatricopeptide (PPR)
repeat-containing proteins (85 genes), hypothetical proteins similar to pseudogenes (43
genes), copia-like retroposon family members (30 genes) and gypsy-like retroposon (Athila)
family members (21 genes), among others.

For 300 intergenic regions, i.e. 1% of all extracted intergenic sequences, the length was
more than 10 kb. As for the short intergenic regions, ORF annotations showed that most of
the corresponding genes were hypothetical proteins (28 genes), expressed proteins (26
genes) gypsy-like retroposon family members (21 genes), gypsi-like retroposon (Athila)
family members (19 genes), copia-like retroposon family members (12 genes) and

pseudogenes, among others.

5.2 Characterisation of 1 kb upstream sequences

Most regulatory sequences in A. thaliana have been located experimentally upstream of the
transcription start site*>">191"1 However, for most A. thaliana genes no information of the

exact transcription start site was available. Therefore, considering that the analysis of

Sftp://ftp.tigr.org/pub/data/a thaliana/
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intergenic regions revealed a median length of 1.1. kb, the computational prediction of
TFBSs was made using 1 kb long sequences upstream of the start of a coding region.
Similar as for intergenic regions, the exact location of the start of a coding region was
assessed using the gene coordinates of the last release of the genome sequence (January
2004).

Normally, putative regulatory regions have been located in A. thaliana within 500 bp and 1 kb
upstream of the transcription or translation start point (e.g., some putative regulatory
sequences responsible for auxin and brassinosteroids responsiveness®, putative MYB
binding sites involved in the up-regulation of genes in plants overexpressing AtMYB2?, and
regulatory sequences involved in the regulation by cold stress!*®). The default length of 1 kb
was applied in all cases, including intergenic regions smaller than 1 kb, because it was not
discarded that some coding sequences exert regulatory actions on a neighbouring gene,
moreover if the intergenic sequence of the neighbouring gene is too short.

After retrieving the set of upstream sequences, the single nucleotide compositions of the
sense DNA strands were analysed. The prevalence of A+T and C+G was slightly changed
compared with the results for whole intergenic regions (fa = fr = 0.32 and fg = fc =0.18), but
the bias towards an increased A+T content was maintained.

Forty sequences were excluded from further analysis, because at least 50% of the sequence

was composed by undetermined nucleotides (N).

5.2.1 Oligonucleotide composition

The specificity of a transcription factor for a binding site arises from the specific interaction
between the DNA binding domain of the transcription factor and the DNA sequence at the
binding site'". Especially in eukaryotes the sequences recognized by the transcription
factors are generally short and variable'?®.. In yeast for instance, the number of well-
conserved bases in a collection of binding sites of a single transcription factor is typically six
to ten!'?,

The set of A. thaliana 1 kb upstream sequences was analysed with respect to their
oligonucleotide composition, under the assumption that sequences with a regulatory role
cannot be abundantly distributed throughout the genome, if precise control of gene-
expression is to be achieved. The analysis was conducted with a particular interest to find
under-represented oligonucleotides.

The number of occurrences of all possible oligonucleotides of a given size (w=2 to w=10)
were counted on both strands of all 1 kb upstream sequences extracted, using the program

compseq from EMBOSS!®.
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The output of the program was the number of occurrences of every possible oligonucleotide
(occ) and the frequency of observation (O). The frequency of observation was the number of
occurrences of each oligonucleotide divided by total number of oligonucleotides possible of
the given size in the set of sequences evaluated.
Under-representation of an oligonucleotide was assessed with respect to a statistical
background model. The background model was the expected frequency of each
oligonucleotide (E), based on the single-nucleotide frequencies (fa, fc, fs, and fr) (Equation
(4-1) — section 4.1.2).
Observed and expected frequencies (O and E, respectively) were compared, and a ratio of
representation was defined according to Equation (4-2) (section 4.1.2)

repr = O0-E

E

According to the ratio of representation defined, under-represented oligonucleotides were
those with negative values, the maximum under-representation score was —1, defining
oligonucleotides not observed in the set of evaluated sequences. Oligonucleotides with repr
values close to 0 do not occur more or less frequently than expected according to the
background model, whereas positive values account for over-represented oligonucleotides,
these values can tend to infinity.
Considering that the number of expected oligonucleotides of increasing size grows
exponentially, and that a transcription factor does not discriminate between binding
sequences on the sense or reverse strand of a DNA fragment, the set of oligonucleotides
was reduced by grouping each oligonucleotide with its reverse complement.
In the case of oligonucleotides of an even-numbered size (w), the number of palindromes of
size w was calculated as n,,=4"?"*]. Therefore, the number of unique oligonucleotides can

be calculated according to Equation (5-1):

U :£+ r]pal (5-1)
2 2

Table 5-1 shows the number of unique oligonucleotides, number of palindromes and number
and percentage of oligonucleotides found under-represented in A. thaliana 1 kb upstream
sequences.

It was observed that at least 50% of the oligonucleotides of any size were slightly to highly
under-represented in A. thaliana 1 kb upstream sequences (Table 5-1). Additionally, the
linear regression coefficient (R?=0.82) between oligonucleotide size and percentage of
under-represented oligonucleotides indicated that there was a strong linear correlation
between both.

When the corresponding equation of the regression curve (y=1.3167x+49.989, where x is

oligonucleotide size) was used to calculate the percentage of under-represented
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oligonucleotides with size w=11, the result of 64% was very close to the observed result
(65%, data no shown).
Table 5-1: Under-represented oligonucleotides in A. thaliana 1 kb upstream sequences.

w=oligonucleotide size, u=number of expected unique oligonucleotides, nps=number of palindromes,
under-represented=number of oligonucleotides found under-represented, percentage in brackets

W u Npal under-represented

2 10 4 5 (50)
3 32 0 7(53)
4 136 16 79 (58)
5 512 0 298 (58)
6 2080 64 1236 (59)
7 8192 0 4941 (60)
8 32896 256 19638 (59)
9 131072 0 80969 (62)
10 524800 1024 325888 (62)

From the data it can be concluded that at least for the analysed oligonucleotide sizes, the
percentage of under-represented oligonucleotides increases linearly with oligonucleotide
size. However, because no data are available for longer oligonucleotide sizes, and the
calculation of the number of occurrences of all possible oligonucleotides of longer sizes is
computationally exhaustive, it cannot be established up to what extent the linear behaviour
can be extrapolated.

The analysis of under-represented oligonucleotides revealed that up to oligonucleotide size
w=8 none of the possible oligonucleotides obtained a ratio of representation equal to —1
(meaning that the given oligonucleotide was not found in the set of A. thaliana 1 kb upstream
sequences). For oligonucleotide size w=9, 0.02% of the possible oligonucleotides were not
observed (20), and in the case of oligonucleotide size w=10 the percentage increases up to
0.92 (4806 oligonucleotides). It is expected that the number of observed oligonucleotides of a
given size decreases when oligonucleotide size increases. It is also expected that the
correlation between both variables do not show a linear correlation.

For dinucleotides (w=2), five from ten possible oligonucleotides were under-represented (see
Table 5-1). Among them, the dinucleotides TA and CG showed the lowest scores (-0.25 and
—0.28, respectively), the other 3 under-represented dinucleotides showed negative scores
which were close to zero. Therefore, their occurrence did not differ markedly from the
background model (single-nucleotide frequencies).

Both dinucleotides that were highly under-represented (TA and CG) were previously found
under-represented in other eukaryotic genomes!™.. It has been speculated that the under-

representation of the dinucleotide TA in intergenic regions that are A+T rich might be directly
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related to the fact that AT or TA containing oligonucleotides possibly adversely affect
supercoiling and/or chromatin structure!™. From another perspective, taking into account the
prominent role of the basal regulatory cis-element TATA-box, the suppression of TA might
minimize the inappropriate binding of general transcription factors.

It has been found that the dinucleotide CG has a relatively normal occurrence in organisms
were no methylase activity has been reported (e.g. Drosophila melanogaster or
Caenorhabditis elegans)!™®. In eukaryotes were methylation of nucleotides has been
reported, the methylation of the cytosine in the dinucleotide CG is considered a regulatory

641 For that reason, the under-

mechanism allowing the suppression of gene activity
representation of the dinucleotide CG in A. thaliana might be directly related to the
methylation machinery.

Among the trinucleotides (w=3), GTA(TAC), ACG(CGT) and CGC(GCG) showed the lowest
scores. These sequences represent extensions of the already mentioned under-represented
dinucleotides. The trinucleotides CNG, that play an important role in plants because the
cytosine is often subjected to methylation!", were also under-represented. The
oligonucleotide CAG(CTG) was found just slightly under-represented (-0,002), compared
with a score of —0,16 for the oligonucleotide CCG(CGG).

The strong under-representation of the trinucleotide CCG(CGG) compared with the
trinucleotide CAG(CTG) cannot be explained simply by its putative role in DNA methylation,
unless it can be proven experimentally that it is more often subjected to methylation than the
other.

In eukaryotes, sequences with regulatory roles are between 4 and 10 nucleotides. To test
whether such sequences were under-represented on a genome-wide scale, the ratio of
representation of oligonucleotides with size w >= 4 were compared with already described
cis-elements.

The evaluated cis-elements represented a subset of 198 cis-elements retrieved from the
databases PLACE’ and AGRIS®.. The 198 cis-elements corresponded to 406 unique
oligonucleotides. The differences between the number of cis-elements and unique
oligonucleotides is due to the fact that 50 cis-elements are described using the nucleotide
ambiguity code. For instance, one of the cis-elements describing a MYB binding site was
MWCCWAMC. This transcription factor binding site corresponds to sixteen different
oligonucleotides, since M represents the nucleotides A and C, and W represents the
nucleotides A and T.

The occurrence of the 406 oligonucleotides was then analysed in A. thaliana 1 kb upstream

sequences. In Table 5-2the total number of oligonucleotides representing cis-elements is

" http://www.dna.affrc.qo.jp/PLACE/
8 http://arabidopsis.med.ohio-state.edu/AtcisDB/index.jsp
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displayed for each oligonucleotide size (T). Likewise, the number and percentage of these
oligonucleotides found under-represented in the set of A. thaliana 1 kb upstream sequences

are given.

Table 5-2: Under-represented oligonucleotides in A. thaliana 1 kb upstream sequences that
corresponded to known cis-elements. w=oligonucleotide size, UR=Under-represented
oligonucleotides, T=total number of oligonucleotides of the given size representing cis-elements,
%=(UR/T)*100

w UR/T %

5/7171,43

8/12 (66,67

37/75149,33

36/70151,43

47/100 47,00

© |0 |IN | o |~

32/56 | 57,14

10 30/86 | 34,88

From 406 unique oligonucleotides representing the 198 regulatory cis-elements, 195 were
found under-represented. Table 5-2 shows that when the size of the cis-element increases,
the number of under-represented oligonucleotides corresponding to the cis-element
decreases, although the total number of under-represented oligonucleotides increases with
oligonucleotide size (Table 5-1). Nevertheless, nearly in every dataset at least half of the
oligonucleotides corresponding to described cis-elements were found under-represented in 1
kb upstream sequences.

The list of cis-elements from plants does not refer to 198 different regulatory sequences,
some of the cis-elements are described by more than one sequence. In those cases, these
are cis-elements that were observed in different genes and/or plant species, or are different
sequences of the same kind of cis-element in a given gene.

Based on the name of the cis-elements, regulatory sequences that refer to the same cis-
element were grouped (section 4.1.3). As an example, Table 5-3 shows the three cis-
elements that refer to the cereal glutenin box in the pea (Pisum sativum) LEGA gene,
grouped as CEREGLUBOX.

Table 5-3: Cis-elements retrieved from PLACE that refer to the cereal glutenin box.

w=oligonucleotide size. All elements were grouped as members of CEREGLUBOX based on the
name of the cis-element

W Cis-element name Sequence Group

9 |CEREGLUBOX1PSLEGA TGTTAAAGT |CEREGLUBOX
8 |CEREGLUBOX2PSLEGA TGAAAACT |CEREGLUBOX
9 |CEREGLUBOX3PSLEGA TGTAAAAGT |CEREGLUBOX
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Twenty-six groups were established. The groups that contained the highest number of
regulatory sequences for a given cis-element were (i) ABRE, and (ii) MYB, i.e. MYB factor
binding site. For most of the groups only two regulatory sequences refer to the same cis-
element. Nevertheless, most of the cis-elements in the list were represented by a single
regulatory sequence (108 cis-elements). The groups established, number of regulatory
sequences per group (entries), number of oligonucleotides corresponding to the given
number of entries per group, and number of under-represented oligonucleotides in A.
thaliana 1 kb upstream sequences are shown in Table 5-4. The last row in the table indicates
the results for the 108 cis-elements represented by only a single regulatory sequence (entry).
Table 5-4: Groups of known cis-elements established according to the name of the cis-element.

Cis-elements were retrieved from PLACE and AGRIS. UR=number of under-represented
oligonucleotides in A. thaliana 1 kb upstream sequences

Group Entries Oligonucleotides UR
ABRE 12 55 32
MYB
DRE/LTRE
G-box
TATABOX
AMMORES
CEREGLUBOX
E2F
I-box
POLASIG
W-box
-300ELEMENT
AUXRET
CAAT-box
CCA
GARE
GATA
GT1
HSE
OCTAMER
PYRIMIDINEBOX
RY
S1F
SURE
TATCCA
TGA
Other / one entry

N
N
N
~
N
w
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Table 5-4 shows that some groups with few entries (2 or 3) have a large number of
corresponding oligonucleotides, due to the use of the nucleotide ambiguity code to describe
the sequence of the TFBS (e.g. —300 element or HSE).

The results reported in Table 5-4 demonstrate that for seven groups of cis-elements all
corresponding oligonucleotides were under-represented in A. thaliana 1 kb upstream
sequences (DRE/LTRE, CAAT-box, GARE, GATA, OCTAMER, S1F, and TATCCA). For four
groups of cis-elements nearly all oligonucleotides were under-represented (AMMORES,
CEREGLUBOX, I-box and AUXRET). For three groups of cis-elements only a single
nucleotide was under-represented (E2F, POLASIG and W-box). Finally, none of the
oligonucleotides of the groups CCA, PYRIMIDINEBOX and RY9 were found under-
represented in A. thaliana 1 kb upstream sequences. In general, in 17 of the 26 groups of
cis-elements more than 50% of the oligonucleotides corresponding to cis-elements were
found under-represented.

Exemplarily, a few detailed results are displayed in Table 5-5. All oligonucleotides
corresponding to the cis-elements G-box and TATA-box are shown. The results for the G-
box were chosen because G-boxes are regulatory sequences that are specifically found in
plants. They have been described in promoters of genes that are responsive to a wide
variety of stimuli such as light, or cumaric acid or abscisic acid®®®. The core sequence of a G-
box is the tetranucleotide ACGT, and the specificity of the cis-element is achieved through
the flanking nucleotides, and through the coupling with other cis-elements. An example of a
G-box coupling element is the I-box found in the tobacco (Nicotiana tabacum) RBCSS8
promoter. The group G-box - I-box represents the shortest promoter capable of conferring
light-responsiveness ['*". The results for the TATA-box were chosen because the TATA-box
represents a basal regulatory element in eukaryotic promoters.

Table 5-5: Ratio of representation of the oligonucleotides corresponding to G-box and TATA-

box. Ratios were calculated based on the observed occurrence of each oligonucleotide in A. thaliana
1 kb upstream sequences, according to Equation (4-2)

Name Oligonucleotide Group Ratio
ACGTABOX TACGTA GBOX -0,540
ACGTCBOX GACGTC GBOX -0,270
ACGTTBOX AACGTT GBOX -0,300
ACGTOSGLUB1 GTACGTG GBOX -0,400
GBOXLERBCS CCACGTGGC GBOX 5,220
GBOXPC ACCACGTGGC GBOX 3,290
TATABOX2 TATAAAT TATABOX -0,150
TATABOX3 TATTAAT TATABOX -0,320
TATABOX4 TATATAA TATABOX -0,009
TATABOX5 TTATTT TATABOX 0,160
TATABOXOSPAL TATTTAA TATABOX -0,300
TATABOX1 CTATAAATAC TATABOX 0,060
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Table 5-5 illustrates that four from six oligonucleotides corresponding to G-box sequences
were under-represented in 1 kb upstream sequences. All under-represented oligonucleotides
achieved high scores (-1 is the maximum score for under-representation). Over-represented
oligonucleotides achieved also high scores. According to the documentation provided by
PLACE, only one of the G-boxes was found originally in A. thaliana. One of the sequences
over-represented corresponded to the G-box GBOXLERBCS, that was observed in the gene
RBCS from tomato. The other (GBOXPC) was observed in parsley (Petroselinum crispum).
Both genes are regulated by light.

The G-box originally described in A. thaliana was found under-represented (ACGTTBOX),
and corresponds to a cis-element of the RBCS-3A genel®. The G-boxes ACGTOSGLUBH1,
ACGTABOX and ACGTCBOX corresponded to the genes GLUB1 and RAB16A from rice. All
the G-boxes from rice are involved in tissue specific gene expression. GLUB1 in endosperm
tissue’ and RAB16A in vegetative and floral organ tissues!’”.

Under or over-representation of oligonucleotides underlying G-boxes does not seem to be
directly related to the organism where the transcription factor binding sites were originally
found. However, regarding the over-represented oligonucleotides corresponding to light
responsive elements in tomato and parsley, it was found that the sequences that confer light-
responsiveness in A. thaliana were: (i) under-represented, and (ii) the nucleotides flanking
the ACGT-core involved in the specificity of the cis-element were different from those found

in the light responsive elements of parsley and tomato, as can be observed in Table 5-6.

Table 5-6: Ratio of representation of the oligonucleotides corresponding to light responsive
elements found in A. thaliana, tomato and parsley. Ratios were calculated based on the observed
occurrence of each oligonucleotide in A. thaliana 1 kb upstream sequences, according to Equation
(4-2)

Organism Cis-element Ratio
A. thaliana GAC ACGT AGA -0.06
A. thaliana A ACGT AT -0.47
Tomato CC ACGT GGC 5.22
Parsley ACC ACGT GGC 3.29

Regarding the TATA-box, this cis-element might be considered a priori as a very frequent
cis-element in intergenic regions due to its A+T rich content and its general role as a
transcriptional regulator. It was found that in A. thaliana 1 kb upstream sequences four from
six oligonucleotides corresponding to the TATA-box were under-represented, i.e. the
sequences TATABOX2, 3, 4 and TATABOXOSPAL (see Table 5-5). The other two

oligonucleotides that were over-represented achieved relatively low ratio of representation

° PLACE documentation (http://ftp.dna.affrc.go.jp/pub/dna_place/place.fasta)
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(repr=0.160 and repr=0.060, respectively), and correspond to binding sites described in pea
and in rice.

Also in the case of the TATA-box, none of the cis-elements listed corresponded to the TATA-
box of A. thaliana, and the under-representation or slightly over-representation of the
corresponding oligonucleotides might be related to the suppression of unspecific

transcription initiation.

5.2.2 Oligonucleotide composition of ABA-related cis-elements

ABRE (for Abscisic Acid Responsive Element) and DRE/LTRE (for Dehydration Responsive
Element / Low Temperature Responsive Element) are the two major cis-acting elements
involved in the regulation of gene expression in response to osmotic stress in ABA-
independent and ABA-dependent signalling pathways respectively!'**!.

In addition to these cis-elements, MYB binding sites and Coupling elements (CE1 and CE3)
also play an important role in ABA-mediated gene expression®*°%1%1%4 The glement As1
(Activation sequence 1) was also found in the ABA-responsive gene RD29A from A.
thaliana ™.

Although the cis-element DRE/LTRE modulates ABA-independent gene expression in
response to osmotic stress, cross-talk between different osmotic stresses like drought and
high salinity has been documented. Additionally, it has been shown that DRE can also act as
a coupling element of ABRE[>105:134],

The list of 198 cis-elements (corresponding to 406 oligonucleotides underlying regulatory
sequences) has 32 sequences that refer to the cis-elements ABRE, DRE, MYB, CE1 and
CE3, no entries of the cis-element As-1 were found. The 32 entries correspond to 111 unique
oligonucleotides, and their sizes range from w=5 to w=10 nucleotides.

As has been already shown, most of the cis-elements retrieved from PLACE and AGRIS
corresponded to ABRE and MYB (see Table 5-4). Additionally, 6 entries for the cis-element
DRE/LTRE were found (7 oligonucleotides corresponded to the 6 entries), and only one entry
was found for the cis-elements CE1 and one for CES3.

From the 111 oligonucleotides underlying cis-elements involved in ABA-mediated gene
regulation, 60 oligonucleotides (54%) were found under-represented in A. thaliana 1 kb
upstream sequences.

All oligonucleotides corresponding to the 6 entries of the cis-element DRE/LTRE were under-
represented, 32 out of 55 oligonucleotides corresponding to the 12 entries of the cis-element
ABRE were under-represented, 23 out of 47 oligonucleotides corresponding to the 12 entries
of the cis-element MYB were under-represented. In contrast, the oligonucleotide

corresponding to the cis-element CE1 was not under-represented (repr=0.91).
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For 13 out of 32 cis-elements involved in ABA-mediated gene regulation, the nucleotide
ambiguity code has been used in the description of the binding sites. For these cis-elements
the name of the cis-element, the number of corresponding oligonucleotides and the number
of under-represented oligonucleotides in A. thaliana 1 kb upstream sequences are presented
in Table 5-7.

Table 5-7: Ratio of representation of oligonucleotides corresponding to ABA-related cis-
elements for which the regulatory sequences have been described using the nucleotide
ambiguity code. The column “Ambiguities” denotes the number of corresponding oligonucleotides for
the given cis-element. UR=number of oligonucleotides found under-represented in A. thaliana 1 kb
upstream sequences

Cis-Element Group Sequence Ambiguities UR
ABREMOTIF1 ABRE RYACGTGGC 4 2
ABREBZMRAB28 ABRE TCCACGTSKY 8 0
ABRE-like ABRE BACGTGKM 12 7
ABREOSRAB27 ABRE ACGTSSSC 8 7
MYB MYB MWCCWAMC 16 7
MYB1AT MYB WAACCA 2 0
MYB2 MYB TAACTSGTT 2 2
MYB2CONSENSUSAT MYB YAACKG 4 2
MYB4 MYB AMCWAMC 8 4
MYBCORE MYB CNGTTR 8 4
MYBPZM MYB CCWACC 2 1
ABREATRD22 ABRE RYACGTGGYR 16 10
DRECRTCOREAT DRE/LTRE RCCGAC 2 2

Table 5-7 shows that for two cis-elements (ABREBZMRAB28 and MYB1AT) none of the
underlying oligonucleotides were under-represented in 1 kb upstream sequences. The ABRE
cis-element ABREBZMRAB28 corresponds to an ABRE from maize, found in the regulatory
region of the gene RAB28. The MYB binding site corresponds to a cis-element found in A.
thaliana. Both binding sites have been experimentally proven to be active in the respective
organisms.

All underlying oligonucleotides for the cis-elements MYB2 and DRECRTCOREAT were
found under-represented. The MYB binding site corresponds to a sequence in Petunia, and
the DRE/LTRE cis-element corresponds to a sequence in A. thaliana.

The under-representation of all oligonucleotides underlying the cis-element DRE/LTRE in 1
kb upstream sequences of A. thaliana might plausibly be explained by the fact that this cis-

element activates the transcription of the down-stream gene as a single copy. If the
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corresponding oligonucleotides would be over-represented in regulatory sequences genome-
wide, a precise regulation of gene expression would be difficult to be achieved.
Over-representation of some or all oligonucleotides corresponding to MYB binding sites and
ABRE cis-elements might be explained by the high variability of the sequences that describe
these binding sites. In the case of the cis-elements described as MYB binding sites it was
impossible to establish a minimal conserved core. High variability in the description of a
binding site reflects the current knowledge on the underlying regulatory process. Different
members of a family of transcription factors recognize their target sequences with more or
less affinity, leading to the expression of the target genes at different levels!'®.
Unfortunately, there is no information available about the affinity of ABRE and MYB binding
transcription factors to their target sequence, that could help to distinguish binding sites that
would be bind with high affinity from others than not. It can be speculated that over-
represented ABRE and MYB binding sites are recognized by transcription factors with high
affinity to these sequences, because the target genes must be activated rapidly within few
minutes. These rapid activation enables the plant to react efficiently to transient stimuli such
as stresses. In such cases, a precise regulation is achieved through the tight regulation of
the transcription factors that are activated or deactivated by mean of posttranscriptional
modifications carried-out by members of the corresponding signalling pathways (kinases or
phosphatases). In contrast, under-represented binding sites might be recognized by
transcription factors with low affinity to these sequences. The corresponding target genes are
transcribed at low levels, and are involved in developmental gene expression (tissue-specific
expression). In that sense, the gene DC3 from carrot (Daucus carota) which encodes a LEA
(Late Embryogenesis Abundant) protein was found expressed in response to exogenous
ABA and in seeds. The promoter of the gene is composed by two regulatory regions, the
distal region confers ABA responsiveness in vegetative tissues, and the proximal region
confers seed-specific expression. The binding sites involved are different in sequence!’”".
Examples of ratios of under-represented cis-elements observed in A. thaliana 1 kb upstream
sequences, that were described with only one entry and one oligonucleotide, are displayed in
Table 5-8.

The cis-elements have been originally described in barley (ABRE2HVA22, ABRE3HVA1 and
LTRE1HVBLT49), A. thaliana (ABRELATERD1, LTRECOREATCOR15 and MYB3) and rice
(ABREMOTIFIIIOSRAB16B and CE3OSOSEM). As described earlier, it appears that the
original species for which the cis-elements have been described does not play an important
role when testing whether the corresponding sequence is over or under-represented in

another plant genome.
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Table 5-8: Ratio of representation of oligonucleotides corresponding to ABA-related cis-
elements. Ratios were calculated based on the observed occurrence of each oligonucleotide in A.
thaliana 1 kb upstream sequences, according to Equation (4-2)

w Name Oligonucleotide Group Ratio
10 | ABRE2HVA22 CGCACGTGTC ABRE -0,41
10 | ABRE3HVA1 GCAACGTGTC ABRE -0,47
5 ABRELATERD1 ACGTG ABRE -0,27
10 |ABREMOTIFIIIOSRAB16B| GCCGCGTGGC ABRE -0,46
10 | CE3OSOSEM AACGCGTGTC -0,66
6 LTRE1HVBLT49 CCGAAA DRE/LTRE -0,08
5 LTRECOREATCOR15 CCGAC DRE/LTRE -0,17
8 MYB3 TAACTAAC MYB -0,29
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5.3

Conclusion

The analysis of intergenic regions from A. thaliana revealed that although some
intergenic regions are extremely long (72 kb), most protein coding genes have
intergenic regions not longer than 5 kb, with a median of 1.1 kb. According to Pavy et
al. 1999 it was expected that A. thaliana intergenic regions vary over at least two
orders of magnitude. Here, the analysis based on the genome sequence of A.

thaliana showed intergenic lengths polymorphism of four orders of magnitude.

The analysis of oligonucleotide frequencies showed that around 50% of all possible
nucleotides of different sizes were from slightly to strongly under-represented in A.
thaliana 1 kb upstream sequences. For the analysed oligonucleotide sizes a linear
correlation between the percentage of under-represented oligonucleotides and the
oligonucleotide size was established. The linear correlation could be confirmed for an
oligonucleotide size w=11, but it could not be established whether the linear

relationship applies for longer oligonucleotide sizes, and up to which size.

Biologically relevant oligonucleotides like methylation and hemimethylation
sequences (CG and CNG) were among the most highly under-represented
dinucleotides and trinucleotides. However, not all possible hemimethylation
sequences were equally under-represented. In the case of A. thaliana, experimental
results showed that the highly under-represented trinucleotides (CCG-CGG) were
found less often methylated than the trinucleotides CAG(CTG). In addition, it was
found that the genome of A. thaliana is lightly methylated, with approximately 4% of

methylated cytosines!®®.

Some sequences underlying cis-elements were found under-represented, like
different versions of the TATA-box and well characterised stress responsive cis-
elements. Showing that indeed sequences important for the tight regulation of
expression are sparingly distributed in A. thaliana 1 kb upstream sequences.
Nonetheless, the reason why some sequences that play a role in regulation were not
under-represented could be manifold. Some plausible explanations are:
1. Not all cis-elements listed in PLACE and AGRIS have been proven to be
functional experimentally. Some sequences found in the databases were
predicted on the basis of expression profiling experiments, using computational

tools. It might be possible that the deduced sequences are in fact not functional.
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2. Combinatorial control plays a very important role in gene regulation. It might be
possible that (i) over-represented cis-elements act together with other cis-
elements that are in fact under-represented, or (ii) that some cis-elements
correspond to sequences bound with low affinity by the corresponding
transcription factors, conferring a low level of expression. It is also important to
note, than the distribution of combinations of cis-elements follows a complete
different statistical model that the distribution of single cis-elements.

3. Importantly, some regulatory cis-elements are tightly connected to other
mechanisms of regulation of gene expression such as DNA methylation or
chromatin modification. The influence of these additional components in the
regulation of gene expression cannot be efficiently judged merely from sequence
data.

4. The protein level is also important in the determination of the regulatory network
at a specific spatial and temporal time point. Only the general transcription factors
belonging to the basal transcription apparatus are constitutively expressed.
Inducible transcription factors are tightly regulated (transcriptionally and post-
transcriptionally). The precise control of gene expression in the case of
transcription factors that recognize over-represented binding sites could be
achieved through other mechanisms, like regulation of the activity of the
transcription factor by phosphorylation or dephosphorylation. Such events may be

connected to specific signalling pathway components.

5. Various oligonucleotides similar to regulatory cis-elements involved in ABA-
dependent and ABA-independent gene regulation due to osmotic stress were under-
represented genome-wide. Over-representation of such oligonucleotides in a small
subset of upstream sequences (e.g. corregulated genes) might eventually mean that

the genes evaluated are regulated by ABA or ABA-related stimuli.
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Chapter 6: Computational prediction of genes putatively
regulated by ABA

A genome-wide screening of A. thaliana towards the identification of genes that
are potentially responsive to ABA was carried out by using publicly available
software. The cis-elements that confer ABA responsiveness were used to screen
1 kb upstream sequences. Subsequently, various statistical analyses were
applied to identify statistically significant instances, since not all predicted cis-

elements are expected to be true TFBSs.

6.1 Generation of consensus sequences and matrices

For the genome-wide identification of genes putatively regulated by ABA, 1 kb upstream
sequences were screened using PSFMs and consensus sequences representing the
regulatory elements ABRE, MYB, CE1, CE3 and DRE. Additionally, the matrix and
consensus sequence representing the cis-element As1 was included in the screening!™®.

The consensus sequences and the frequency matrices were derived from aligned binding
sites. There are not exact rules how to deduce a consensus sequence!'™. In this study the
following rules were used:

1. A single nucleotide was chosen for a position, if the nucleotide occurred in at least 60% of
the binding sites at that position.

2. A nucleotide ambiguity code (as defined by IUPAC) representing two nucleotides was
used if a single nucleotide did not occur in at least 60% of the binding sites at that position,
and one of the following three cases applied:

i.  Only two different nucleotides were observed at that position.

i. From three occurring nucleotides, one was present in less than 25% of the
binding sites at that position, and the other two in more than 25% of the binding
sites at that position, or

iii. Two nucleotides were observed in at least 60% of the binding sites at that
position, none of them present in less than 25% of the binding sites, and the other
two were observed in less than 25% of the binding sites at that position.

3. A nucleotide ambiguity code representing three nucleotides was used if three of the four
nucleotides were observed in more than 25% of the binding sites at that position, or if only
three different nucleotides were observed at that position and each nucleotide was observed
in at least 25% of the binding sites.

4. N (any nucleotide) was used in all other cases.
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As an example the binding sites and the consensus sequence derived for CE1 are shown in
Table 6-1. The binding site has a core region of four nucleotides (CACC), shown in capital

letters. All sequences used have a length of nine nucleotides.

Table 6-1: Annotated sequences of the Coupling Element 1 (CE1) found in the literature.
CONSENSUS denotes the deduced consensus sequence

Organism Gene Sequence Reference
Hordeum vulgare HVA22 tgcCACCqgg [102]
Zea mays RAB17 ggcCACCga [101]
Craterostigma plantagineum |CDET27-45 ttgCACCqgt [101]
Triticum aestivum EM acgCACCgc [101]
Hordeum vulgare HVA1l gagCACCgc [101]
Oryza sativa RAB16D gccCACCtg [101]
Oryza sativa RAB 16B gctCACCca [101]
Oryza sativa RAB16C gctCACCcc [101]
Oryza sativa RAB16C acgCACCa [101]
Oryza sativa RAB16C cgtCACCga [101]
Lycopersicon esculentum LE25 actCACCac [101]
Arabidopsis thaliana RAB18 cagCACCct [101]
Oryza sativa RAB16A cacCACCcg [71]
Arabidopsis thaliana ATMYB74 cggCACCga [27]
Arabidopsis thaliana ATMYB102 cggCACCga [27]
CONSENSUS ssbCACCsv

PSFMs were deduced from counts, i.e. the number of occurrences of each nucleotide at
each position. As an example, Figure 6-1 shows the matrix for the element CE1, which is
based on the binding sites presented in Table 6-1. Information about the different binding
sites used to construct the matrices for the cis-elements ABRE, As1, CE3, DRE and MYB,
and the matrices themselves are presented in Appendix 1.
A(330 01 0 0 2

5 6 415 0 15 15 4

57 0 0 0 0 8
14 0 0 0 0 1

N B B Ol

C
G |5
T (2
Figure 6-1: Position-specific frequency matrix constructed from the binding sites presented in

Table 6-1. Columns refer to positions one to nine, rows refers to counts for the nucleotides shown at
the left side of the matrix
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6.2 Ratio of representation of the consensus sequences

The ratio of representation (section 4.1.2) of the oligonucleotides corresponding to each
consensus sequence generated for the cis-elements ABRE, As1, CE1, CE3, DRE and MYB
was computed for A. thaliana 1 kb upstream sequences. Table 6-2 shows the average ratio
of representation for the oligonucleotides corresponding to the consensus sequence of each
cis-element. The total number of oligonucleotides corresponding to each consensus
sequence, the percentage of under-represented oligonucleotides, and the maximum and
minimum ratio of representation observed for the oligonucleotides corresponding to each
consensus sequence are included.

It was found that all oligonucleotides corresponding to the consensus sequence of the cis-
element As1 were under-represented. For this cis-element a low number of experimental
data is provided in the literature. Therefore, the matrix and the consensus sequence
generated were derived from practically identical sequences. More than fifty percent of the
oligonucleotides corresponding to the consensus sequences of the cis-elements DRE and
MYB were under-represented. Exactly fifty percent of the oligonucleotides corresponding to
the consensus sequence of the cis-element CE3 were under-represented, and so were
around forty percent of the oligonucleotides corresponding to the consensus sequences of
the cis-elements ABRE and CEA1.

Table 6-2: Ratio of representation of the oligonucleotides corresponding to the consensus
sequence of each ABA-related cis-element. Ratios were calculated based on the observed
occurrence of each oligonucleotide in A. thaliana 1 kb upstream sequences, according to Equation
(4-2). SD=Standard deviation, TO=Total number of oligonucleotides corresponding to the cis-element,
UR=Percentage of under-represented oligonucleotides, Max and Min ratio=maximum and minimum
ratio of representation observed for the corresponding oligonucleotides

Cis-element Average = SD TO UR Max. ratio | Min. ratio
ABRE 2.38 £4.93 32 38 18.68 -1
As1 -0.21£0.12 3 100 -0.01 -0.37
CE1 0.44 £1.28 72 42 15.83 -0.95
CE3 0.26 + 0.45 8 50 0.58 -0.06
DRE -0.24 £ 0.30 4 75 0.65 -0.68
MYB -0.17 £ 0.39 8 75 0.93 -0.79

The oligonucleotides corresponding to the consensus sequence of the cis-element CE1 were
found on average over-represented. The cis-element CE1 has a short core sequence

(CACC) (Table 6-1). This tetranucleotide was over-represented in 1 kb upstream sequences,
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with a ratio of representation of 0.24, and longer oligonucleotides containing the
tetranucleotide CACC were found also over-represented.

The oligonucleotides corresponding to the consensus sequence of the cis-element ABRE
were on average over-represented. ABRE is a subtype of the plant-specific cis-element so-
called G-box. The core sequence of a G-box is the tetranucleotide ACGT that was under-
represented in 1 kb upstream sequences (ratio of representation of —0.41). Analysing the
results for longer oligonucleotides harbouring the tetranucleotide ACGT it was found that up
to heptamers, oligonucleotides containing the ACGT-core were generally under-represented.
However, the octamer CACGTGGC was highly over-represented in 1 kb upstream
sequences (ratio of representation of 2,75). Thereafter, oligonucleotides longer than w=8
containing the core of the over-represented octamer were also over-represented.

The fact that some oligonucleotides corresponding to the generated consensus sequences
were over-represented in 1 kb upstream sequences complicated the distinction between
spurious matches and real instances of a cis-element in a genome-wide screening. To
overcome this problem, A. thaliana 1 kb upstream sequences were screened looking for
pairs or clusters of ABA-related cis-elements. It has been proven that the identification of
combinations of cis-elements significantly improves the probability to detect the functionally
active cis-elements 14,

Because the background distribution of combinations of cis-elements is unknown in A.
thaliana 1 kb upstream sequences, the significance of the predictions was assessed by
comparing the results obtained for 1 kb upstream sequences with results obtained for
random sequences. In that sense random sequences were used as an approximation to the
background model. Random sequences were generated by randomly shuffling the
sequences while keeping the single nucleotide composition and the length. Hundred
datasets were generated in this way, and all programs used for the determination of
combinations of cis-elements were used with the real and the shuffled datasets.

To test if random sequences were a good approximation to the background model, the ratio
of representation of each oligonucleotide corresponding to the consensus sequence of the
cis-element CE1 was computed in each random dataset. The average ratio of representation
of each oligonucleotide in random datasets was compared with results for the same
oligonucleotide in 1 kb upstream sequences. In random sequences values close to zero are
expected, meaning that the given oligonucleotide do not occur more or less frequently than
expected according to the single nucleotide frequencies.

The results observed in random sequences were in agreement with the expected results. For
most of the oligonucleotides corresponding to the consensus sequence of the cis-element
CE1 the ratio of representation was close to zero. In contrast, about 60% of the
oligonucleotides were over-represented in 1 kb upstream sequences, and the ratio of

representation ranged from 15,83 to —0.95. In Figure 6-2 every bar along the x-axis
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represents an oligonucleotide, the y-axis corresponds to the values for the ratio of

representation (repr) for the given oligonucleotide.

CE1 -ratios for 1 kb upstream sequences CE1 - ratios for random sedquences
15 15
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11 11
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Figure 6-2: Ratio of representation of oligonucleotides corresponding to the consensus
sequence of the cis-element CE1l. Ratios were calculated in 1 kb upstream sequences and in
random sequences. Every bar along the x-axis corresponds to an oligonucleotide, y-axis shows the
ratio of representation calculated according to Equation (4-2)

6.3 Pattern-based search

Cis-elements can be represented as matrices or consensus sequences. One of the
approaches used to screen upstream sequences for ABA-related cis-elements uses
consensus sequences. Positive instances are those subsequences within the input
sequence(s) that exactly match the consensus sequence of the binding site.

To localize pairs of ABA-related cis-elements a program was created that uses fuzznuc from
EMBOSS®. The program looks for all possible pair-wise combinations of cis-elements
separated by a maximal distance of 1 kb. The order of the cis-elements was taken into
account, i.e. pair 1-2 was considered to be different from pair 2-1. After the screening the
output of the program provides three lists: one list with pair-wise combinations of cis-
elements and the number of hits found in the query sequence(s), one with the gene number
(or sequence identifier) in which a given pair has been found, and one with the distances
between the cis-elements of a pair.

For the pattern-based search a mathematical model for the calculation of the number of
expected pairs in a single sequence was deduced [Equation (6-1)]. Simple combinatorial
considerations revealed that there are (N-w,-w,+1)*(N-w,-w,+2) possibilities to place a cis-
element of length w,, together with a second cis-element of length w,, in a sequence of
length N. According to this, the number of expected pairs (E) in a sequence of length N
depends on the number of possibilities to place both cis-elements, and the probability to find
each cis-element. These probabilities were calculated according to the single nucleotide

frequencies in 1 kb upstream sequences, using Equation (4-1).
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E=[(N-w, —w, +1)*(N-w, —w, +2)]*P,P, (6-1)

6.3.1 Pairs of ABA-related cis-elements in 1 kb upstream sequences

The total number of occurrences of a given pair of ABA-related cis-elements was counted in
1kb upstream sequences and in each of the hundred random datasets. The results for 1 kb
upstream sequences and average results for random datasets are presented in Table 6-3.
Additionally, according to Equation (6-1), the expected number of occurrences for each
combination of ABA-related cis-elements in 29845 sequences was calculated, and is also
shown. The columns denote the first cis-element of the pair, and the rows denote the

second.

Table 6-3: Total number of occurrences of pairs of ABA-related cis-elements in 1 kb upstream
sequences (1 kb), expected number of occurrences calculated with Equation (6-1) and average
number of occurrences in random datasets. The first column in the table indicates the first cis-
element of the pair, the first row indicates the second. For every pair the first row corresponds to the
number of occurrences in 1 kb, the second to the expected number of occurrences [Equation (6-1)],
and the third to the mean number of occurrences in random datasets, + SD. N/A=No applicable

1 kb
expected ABRE As1 CE1 CE2 DRE MYB
random
X2 82 122 0 23 45
ABRE 0.3 T35 KT 0,01 8.3 23,7
1,2 (10,42) SE.3(I7.41) 435 (Z7.50) 0 (MN/A) 10,1 (13,76) 20,8 (Z5,00)
133 9267 G269 2 1067 3333
Az 73,5 17428 4 8936,5 2.2 18974 5 56166
70,7 (£10,86) | 13819 (f124,54)| 7862 (198,388) 2.9 (x1,77) 18247 (154,22) | 5046,3 (187 49)
23 G919 10135 5 1087 2608
CE1 T 8936 5 45822 1,1 10124 29799
54 B(=5,00) 7518, 7(181,91) | B455,8(178,87) 24(=1,52) 1407 4 (148,35) | 2958,5 (157,22)
0 0 4 0 0 0
CE3 0,01 22 1.1 Fx10* 0,3 07
10} 2,2 (11,07) 2{x1,13) 1{0) 1 (20,22} 1,4 (Z0,63)
18 G448 805 0 173 345
DRE 8.3 1974 .5 10124 0,3 2237 636,3
10,6 (+2,72) 1487 4 (241,90) | 11482 (z34 48) 1,3 (10, 67) 253 5 (+17,03) | 581,2 (124 90)
82 2507 2313 0 376 1228
MYEB 23,7 2516,6 2579,9 0,7 836,35 1810
23,4 (4,63 4270,2 (162 ,69) | 2630,9 (=53,68) 1,7 (x0,B1) 608 (£2568) | 1350,6 (z41.60)

After the screening with the consensus sequences no combinations of the cis-element CE3
with ABRE, CE3, DRE or MYB were counted in 1 kb upstream sequences. In random
datasets few occurrences of CE3 with ABRE, CE3, DRE or MYB, and DRE-CE3, DRE-MYB

arouse from the shuffling process.
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Regarding the order of the pairs, approximately the same number of occurrences of the
reciprocal pairs'® ABRE and DRE, As1 and CE1, As1 and DRE, As1 and MYB, CE1 and
CE3, CE1 and DRE, CE1 and MYB, and DRE and MYB were counted in 1 kb upstream
sequences. In contrast, the reciprocal pairs of the cis-elements ABRE and As1, ABRE and
CE1, and ABRE and MYB showed nearly a two-fold difference. The pairs cis-element2 —
ABRE were counted nearly two times more frequently than ABRE — cis-element2 (Table 6-3).
To select pairs that showed statistically significant differences with respect to random
sequences, the number of instances counted in 1 kb upstream sequences and random
datasets was compared. It was assumed that the number of instances for any combination of
cis-elements was normally distributed. For each combination of cis-elements the probability
(P) that the number of instances in 1 kb upstream sequences belonged to the normal
distribution of values in random datasets was computed, taking into account the mean and
the standard deviation of the number of instances in random datasets. The significance is
given by the confidence interval, here defined as 0.01<P<0.99. Consequently, if the
computed probability is >0.99 or <0.01, the counted number of pairs in 1 kb upstream
sequences is significantly different from the counted number of pairs in random datasets. If
the mean or the standard deviation of the counted number of pairs in random datasets is
equal to zero, the probability is not defined (e.g. for the pairs ABRE-CE3, CE3-ABRE and
CE3-CE3, Table 6-3).

In some cases, the number of expected instances calculated according to Equation (6-1) was
larger than the number of counts in random datasets and/or larger than the number of counts
in 1 kb upstream sequences. The significance of these differences was computed as
described above. The probability that the calculated number of instances belonged to the
normal distribution of the counted number of pairs in random datasets was computed. If the
calculated probability falls above or below the confidence interval (0.01<P<0.99), the
calculated number of instances is significantly different than the counted number of pairs in
random datasets. Both, the number of expected pairs calculated according to Equation (6-1),
and the average number of pairs counted in random datasets are related to background
expectations. Thus, if the differences between the number of pairs counted in random
datasets and the number of pairs calculated is statistically significant, it can be stated that for
this combination of cis-elements a reliable expectation model cannot be established. For that
reason, the respective pair was not considered for further analysis, even if the number of
counts in 1 kb upstream sequences was significantly different from the number of counts in

random datasets.

% As an example the reciprocal pairs of the cis-elements DRE and MYB are DRE-MYB and MYB-
DRE.
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In Table 6-4 the computed probabilities for the comparison between 1 kb upstream

sequences and random datasets are shown. Probabilities that indicate significant differences

between 1 kb upstream sequences and random datasets, and on which no significant

differences between background expectation models'' were found are highlighted in blue.

For the pairs where the comparison between background expectation models showed

significant differences, the corresponding cells are shaded in grey.

Table 6-4: Probability to observe the counted number of pairs in 1 kb upstream sequences with
regard to counted number of pairs in random datasets. The fist column of the table indicates the
first element of the pair; the first row indicates the second. N/A.=No applicable. Cells shaded in grey
indicate significant differences between background expectation models (P>0.99 or P<0.01). Pairs that
showed significant differences (P>0.99 or P<0.01) are highlighted in blue

ABRE |Asl CEl CE3 DRE MYB

ABRE 1 1 1 N/A 1 1

Asl 1 0 0 0.313 0 0
CEl 1 0 1 0.955 0 0.004
CE3 N/A 0.018 0.961 N/A 0 0.014

DRE 0.997 0 0 0.024 0 0

MYB 1 0 0 0.019 0 0

Overall the results showed:

1.

For fifteen pairs the differences observed between 1 kb upstream sequences and
random datasets were significant.

The only CE3-containing pair that showed significant differences between 1 kb
upstream sequences and random datasets was CE3-DRE.

With the exception of the pairs ABRE-CE3 and CE3-ABRE that were not counted in 1
kb upstream sequences, and the pair ABRE-As1, all other pairs involving the cis-
element ABRE showed significant differences between 1 kb upstream sequences and
random datasets.

Almost all pairs involving the cis-element As1 showed significant differences between
background expectation models (observed instances in random datasets and
calculated number of instances according to the deduced model). The only
exceptions were the pairs As1-ABRE, and the reciprocal pairs of the cis-elements
As1 and CE3.

1"

The background expectation models represent the number of instances counted in random

datasets, or the expected number of instances calculated according to Equation (6-1).
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In Table 6-4 if the computed probability was close to zero, the number of instances in 1 kb
upstream sequences was significantly smaller than in random datasets. If the computed
probability was close to one the number of instances in 1 kb upstream sequences was
significantly larger than in random datasets.

From 15 pairs that showed significant differences, six exhibited significant under-
representation in the number of instances compared with random datasets, and nine
exhibited significant over-representation in the number of instances compared with random
datasets. Regarding over-represented pairs, eight are combinations of ABRE with other cis-

elements and with itself. The other over-represented pair was CE1-CE1.

6.3.2 Number of genes that showed pairs of ABA-related cis-elements in 1 kb

upstream sequences

In A. thaliana 1 kb upstream sequences it was observed that 17935 genes were predicted to
have at least one pair of ABA-related cis-elements. Therefore, according to this result 60% of
the annotated A. thaliana genes harbour at least one pair of ABA-related cis-elements.

In Table 6-5 the number of genes that showed any pair of ABA-related cis-elements in the
set of 1 kb upstream sequences and the average number of sequences that showed any pair
of ABA-related cis-elements in the random datasets are shown. The columns denote the first
cis-element of the pair, and the rows denote the second cis-element.

The identified pairs of ABA-related cis-elements may be equally distributed among a large
number of genes, or alternatively, may reside in a small number of genes. To test whether
the number of genes showing a specific pair of ABA-related cis-elements was different from
the number of genes showing the elements separately, the significance score introduced by
Manke et al. 2003 was used®,

The significance score compares as probabilities the frequency of a pair ij with the frequency
of the independent cis-elements i and j. The logarithm of the probability ratio defines the

significance of finding a pair compared with the expectation for the single cis-elements!®>®°!.

’ (6-2)
S = Iog(&]

Here pj; is ni/N (frequency of pair ij in N upstream regions), and p; and p; are ni/N or nj/N,
respectively (frequency of the single cis-elements). Every pair ij and cis-element i and j was
counted only once per upstream sequence, even if it occurred multiple times.

Positive S; scores denote pairs of cis-elements that preferentially occur together®®. If the
significance score is equal to zero, then there is no difference between the frequency of the
pair ij compared with the frequencies of the independent cis-elements. Negative scores

indicate that the pair ij is less frequent than the separate cis-elements.
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Table 6-5: Number of genes that showed any kind of pair of ABA-related cis-elements. The first
column of the table indicates the first element of the pair, the first row indicates the second. For every
pair the first row correspond to the number of genes that showed the given pair of cis-elements in 1 kb
upstream sequences (1 kb) and the second row correspond to the mean number of sequences that
showed the given pair of cis-elements in random datasets + SD. N/A: No applicable

1kb ABRE As1 CE1 CE3 DRE MYB
random
ABRE | 22 79 - 111 0 21 42
0,5 (+0,64) 56,1 (£7,41) 433 (+7,54) 0 (N/A) 10,1 (£3,75) 20,8 (+4,99)
As1 116 6416 4945 2 839 2448
56,1 (£7,71) | 9539,8 (+68,73) - 5855,6 (+60,70) | 1,8 (+1,48) | 1420,3 (£36,90) | 3745,7 (+62,01)
CE1 140 4879 5932 4 772 2019
| 44,04 (+6,73) | 5849,2 (+60,89) - 47194 (+49,53) |  1,6(x1,24) | 1101,4 (+35,07) | 2352,2 (+43,68)
CE3 0 0 4 0 0 0
0,03 (x0,17) 2,04 (£1,21) 1,6 (+1,30) 0 (N/A) 0,2 (+0,45) 0,7 (x0,83)
DRE 17 813 760 0 166 335
10,4 (¥2,62) | 1421,4 (£37,63) -1091,15(i33,01) 0,3 (+0,61) 2496 (+15,67) | 558,4 (+23,75)
MYB 69 2483 2051 0 339 1065
21,7 (+4,28) | 3748,5 (+51,88) -2356,06 (+47,56)| 0,8 (+0,95) 554,4 (+21,48) | 1420,5 (+35,64)

The Sj score is undefined if no instances of the pair or of the independent cis-elements have
been found (i.e. pairs ABRE-CE3, CE3-ABRE, CE3-As1, CE3-CE3, CE3-DRE, CE3-MYB,
DRE-CE3 and MYB-CE3). Table 6-6 shows the calculated Sij scores. For the eight pairs that
were not observed the S; score is regarded as N/A. (no applicable). In the cases were the
number of instances of a pair in 1 kb upstream sequences was significantly over-represented
compared with random datasets (Table 6-4 section 6.3.1), and where the background
expectation models did not show statistically significant differences (Table 6-4, section 6.3.1)
the corresponding cells are shaded grey. The columns denote the first cis-element of the
pair, and the rows the second cis-element.

The results shown in the Table 6-6 revealed that most of the observed pairs of ABA-related
cis-elements obtained a positive S; score, indicating that the pairs were found more
frequently than the independent cis-elements. The negative S; scores observed for the pairs
ABRE-As1 and As1-CE3 indicate that the independent cis-elements were found more
frequently than the pairs. The pair ABRE — MYB was found as frequently as the independent
cis-elements (S;=0). Finally, the pair ABRE-ABRE achieved the largest S; score from all

observed pairs.
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Table 6-6. Significance score (S;) calculated according to the number of genes that showed a
give pair of cis-elements using Equation (6-2). The frequency of a pair is compared with the
frequency of the independent cis-elements. The first column of the table indicates the first cis-element
of the pair, the first row indicates the second cis-element. N/A=No applicable. Grey shaded cells
indicate cases where the number of pairs counted in 1 kb was significantly over-represented
compared with random datasets, and where no statistically significant differences between
background expectation models were observed (see section 6.3.1)

ABRE Asl CE1l CE3 DRE MYB
ABRE 1,028 -0,112 0,071 N/A 0,159 0
Asl 0,055 0,102 0,024 -0,013 0,065 0,070
CE1l 0,172 0,019 0,139 0,324 0,065 0,022
CE3 N/A N/A 0,324 N/A N/A N/A
DRE 0,068 0,052 0,058 N/A 0,208 0,053
MYB 0,216 0,076 0,029 N/A 0,058 0,096

Interestingly, reciprocal pairs showed different S; scores. It was observed that the reciprocal
pair that was observed in more genes obtained the higher S; score. If the number of genes
that showed a reciprocal pair was the same, the S;; score was equal for both pairs.

The reciprocal pair between CE1 and CE3 was observed in the same number of genes (4).
Thus, both pairs obtained the same S; score. Interestingly, the comparison between the
number of pairs observed in 1 kb upstream sequences and in random sequences revealed
that there were no statistical differences between both datasets (see Table 6-4, section
6.3.1). However, these pairs achieved the second highest S; score. This result shows clearly
that the affirmation made by Manke et al. 2003 that S; scores define the significance of
finding a pair in comparison with random expectation is not correct. For that reason, only
pairs that showed significantly over-representation in 1kb upstream sequences compared
with random datasets, and where no statistically significant differences between background
expectation models were found (grey-shaded cells in Table 6-6) were considered further, and
analysed in more detail. The S; score was used then to assess the significance of finding a

pair in comparison with the independent occurrence of the cis-elements.

6.3.3 Distance between ABA-related cis-elements

S;; scores larger than 0 indicate pairs of cis-elements that occur preferentially together. It has
been found that cis-elements conferring responsiveness to the same stimulus or group of
stimuli tend to form clusters showing defined distances between cis-elements’®” ¥l To test
whether pairs that showed high S; scores might also show a defined distance between cis-
elements, and whether reciprocal pairs that achieved higher S; score shown more defined
distance between cis-elements compared with results in random datasets, the distance

distribution of ABA-related cis-elements statistically over-represented in 1 kb upstream
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sequences was plotted in a histogram. The window length of the histogram was 1000 bp,
with mutually exclusive distance intervals of 50 bp. Overlapping cis-elements were excluded
from the analysis. The minimal distance between cis-elements was found to be never smaller
than 15 bp. The distance distribution was compared with the results obtained for the same
pair in random datasets. To allow a direct comparison the number of pairs observed at each
distance interval in each dataset was displayed as percentage of the total number of
observed pairs. Results are shown in Figure 6-3.

The results for the homologous pair ABRE-ABRE (Figure 6-3A) showed that in 1 kb
upstream sequences about 60% of the pairs were separated by a maximum of 50 bp.
Additionally, the distance distribution was clearly different from the distribution observed in
random datasets. The pair ABRE-ABRE showed also the largest S; score (1.028).
Considering that ABRE needs a coupling element to activate transcription, these results
indicate that in A. thaliana ABRE might act as a coupling element of itself.

Other cis-elements that have been reported as coupling elements of ABRE are CE1, CE3
and DRE!*10:47.5054.75,77,83,10313213413%] 'The combinations ABRE-CE3 or CE3-ABRE were not
found in any of the A. thaliana 1 kb upstream sequences. The combinations of ABRE and
CE1 (Figure 6-3C, D) were over-represented in 1 kb, with positive S; scores. The pair ABRE-
CE1, had a distance distribution of its cis-elements that was similar to the results obtained for
random datasets.

In addition, a fixed distance between cis-elements was not observed (Figure 6-3D). The pair
ABRE-CE1, that had a lower S; score (0.071) showed a small peak of pairs having a
distance between cis-elements of 201 to 250 bp. This peak was not observed in random
datasets. The other distance intervals showed approximately the same percentage of pairs
as in random datasets (Figure 6-3C). The positive S scores obtained for both pairs (ABRE-
CE1 and CE1-ABRE) clearly indicate that these cis-elements preferentially occur together in
1 kb upstream sequences. However, the distance distribution of the cis-elements in 1kb
upstream sequences is closely similar to the distance distribution observed in random
datasets. The observed distance between cis-elements of a pair do not support the
observations that were made in monocots, where CE1 was found in close vicinity to ABRE,

in ABA-responsive genes ',

53



Computational predictions

A ABRE - ABRE B CE1-CE1
60 16
1) ()
g 40 o 12
c < 8
2 2
o o
a 0 a 0
o o o o o o o o o o o o o o o o o o o o
Ye) v Te) Yo Te) Yo} Yol Te) Yo Yo Yo Yo Te) 0 Te) Yo Yo} o] 0 Yo
- T ¥ @9 ¥ v @ N ® - T 8 ® ¥ v @ N ®
S © o © & © ©o o o S © o9 © © o © o o
~ N ™ < w © N~ [ce] (o] -~ N ™ < w © N~ [ee] (o]
Sij =1.028 distance (bp) Sij =0,139 distance (bp)
n=22 ERandom 01 kb Upstream n =10139 ERandom  [01 kb Upstream
ABRE - CE 1 D CE1-ABRE
16 20
12 15
S
% ) % 10
é 4 g 5
2
0 0
o o o o o o o o o o o o o o o o o o o o
5 2 g% 35 % B 8 £ 3 3 5 2 8 8 %2 8 8 & 3 3
S 5§ § © 3 3 B 3§ =8 S T 3 & 3 8§ 5 3 =8
-~ N [Sp] < 0 © ~ © (2] — N 5ol < w © ~ =<} (=)
Sij =0.071 distance (bp) Sij=0.172 distance (bp)
n=122 ERandom 001 kb Upstream n =931 WRandom 11 kb Upstream
ABRE - DRE = DRE - ABRE
18 ) 36
() (o)) "
D 12 g =
IS @
O 6 o 12
o @
3 o m .
o o o o o o o o o o o o o o o o o o o o
Yo} 7ol wv Yo Tl w Yol w Yol w0 Yo} wv Te] Yol wn w0 wn w Yol w0
- ¥ & @ 3 @ 9 N ®° 9 - T 8 @ ¥ w @ N 9 9
S © © © © & © 9 o S © 9 © 9 9 © 9 ©
~— N [sp] < w0 © N~ ¢ (o] ~— N ™ < T © N~ [¢e) (o]
Sij =0.159 distance (bp) Sij =0.068 distance (bp)
n=23 B Random [1 kb Upstream n=18 B Random [11 kb Upstream
G ABRE - MYB H MYB - ABRE
20 o 20
2 15 g
£ 10 g 10
) o 5
o 5 o}
80 = 0
O O O o o o o o o o e Q 2 <9 9 9 9o 9 9 o
28 B 2 B8 8 R 88 25 8§35 8 8RR 8 3
22332328355 S8 83%88¢% %88
Sij=0 distance (bp) Sij =0,216 distance (bp)
n=45 B Random O1 kb Upstream n=_82 ERandom [01 kb Upstream
| AS1-ABRE F_igure 6-3. Distance distribqtion_oflABA—reIated
20 cis-elements. Number of pairs significantly over-
© 15 represented in 1 kb upstream sequences compared
g 10 with random datasets. Number of pairs found at
S 5. each distance interval displayed as percentage. In
3 0 each plot at the left-botton the S; score and the
o o o o o o o o o o observed number of pairs in 1 kb upstream
28 8 3 8 & R & F | sequences are indicated. Distances between cis-
S & &5 5 &5 5 5 5 & elements: A. ABRE and ABRE. B. CE1 and CE1.
~ N ™ < T © N~ ¢ »
) distance (bp) C. ABRE and CE1. D. CE1 and ABRE. E. ABRE
Sij = 0,055 P and DRE. F. DRE and ABRE. G. ABRE and MYB.
n=133 ERandom O1kbUpstream | H. MYB and ABRE. |. As1 and ABRE.

54




Computational predictions

Considering that pairs between the cis-elements ABRE and CE3 were not observed in 1 kb
upstream sequences, and that neither CE1 nor CE3 cis-elements have been observed in
ABA-responsive genes of A. thaliana, it might be possible that none of these coupling
elements of monocots act as coupling elements of ABRE in A. thaliana. It might also be
possible that the sequence(s) of the coupling element(s) of ABRE in A. thaliana are different
from those present in monocots. In addition, the results observed by Zhang et al. 2005!"%"!
supported only a weak role of coupling elements in the regulation of ABA-responsive genes.
The authors screened A. thaliana promoter sequences with frequency matrices of the cis-
elements ABRE and CE. Computationally predicted ABA-responsive genes that harbour
ABRE-CE cis-elements could not be confirmed experimentally.

Another cis-element described as coupling element of ABRE in A. thaliana is DRE"®. In this
study it was observed that the pair that achieved the lowest S; score (DRE-ABRE, Figure 6-
3F) showed a distance distribution of cis-elements that was clearly different from the
distribution observed in random datasets. Two tendencies are highlighted by the distance
histogram: (i) large distances between cis-elements (more than 500 bp) were avoided, and
also (ii) short distances (less than 50 bp) were not observed. Two clear peaks of distances
were observed for 1 kb upstream sequences at 101 to 150 bp, and 351 to 400 bp. The pair
ABRE-DRE, despite a larger S; score showed less pronounced peaks in the distance
distribution. The peaks were observed at the following distance intervals: 101 to 200 bp, and
351 to 450 bp, and most of the pairs were observed in the interval 401 to 450 bp
(18%)(Figure 6-3E).

The positive S;; scores for both combinations of ABRE and DRE indicate that these cis-
elements preferentially occur together. However, the distance of the cis-elements makes
unlikely that DRE acts as a coupling element of ABRE. Instead, it is more likely that
combinations of ABRE and DRE are found in genes that respond to osmotic stresses in an
ABA-dependent (mediated by ABRE) and ABA-independent (mediated by DRE) signalling
pathway, allowing cross-talk during osmotic stress. Accordingly, Naruzaka et al. 2003
proposed that DRE-binding proteins (DREB) may co-operate with ABRE-binding proteins
(AREB), coordinating the ABA-dependent gene expression of RD29A. The presence of both
kinds of elements in the promoter of the gene allows that RD29A is induced rapidly or slowly
under dehydration and high salinity stresses. The rapid induction appears to be ABA-
independent, mediated by DRE, whereas the slow induction after the accumulation of ABA is
mediated by the cooperation of ABRE and DRE binding proteins.

The pair ABRE-MYB (Figure 6-3G) was the only pair that showed a S; score of zero, clearly
indicating that the pair of cis-elements does not occur more frequently than the cis-elements
independently. The distance distribution histogram additionally shows that the distance
between cis-elements is not different from the results obtained for random datasets. In
contrast, the pair MYB-ABRE that had one of the highest S; scores (0,216) showed three
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distinct peaks in the distance distribution of cis-elements at 151 to 200 bp, 201 to 250 bp,
and 351 to 400 bp (Figure 6-3H). Approximately 45% (45.1) of the pairs counted in 1 kb
upstream sequences showed one of the already mentioned separation distance between cis-
elements. In random datasets approximately 24% (23.87) of the pairs showed the same
separation distances. The fact that the pair MYB-ABRE achieved an S; score higher than
other cis-elements documented as coupling elements of ABRE (for example CE1 or DRE) is
a very interesting result, and might be related to the following observations:

1. MYB binding sites have been found in ABA-inducible genes'?'**'*! For the induction
of the gene RD22 by ABA additional to the MYB binding site, a G-box which is similar
in sequence to ABRE is needed . The induction of genes harbouring a MYB-ABRE
pair requires protein synthesis®. Thus, as in the case of combinations of DRE and
ABRE, the pair MYB-ABRE might be involved in the slow induction of ABA-regulated
genes.

2. The association found between MYB-ABRE was stronger than the association
between combinations of DRE and ABRE (according to the S; scores). As mentioned
earlier, DRE is a TFBS that can drive the transcription in ABA-dependent and ABA-
independent signalling pathways after osmotic stress, whereas MYB-binding sites
have been associated to the ABA-dependent signalling pathway. Thus, considering
this fact it is not surprising that cis-elements linked to the transcriptional regulation of
genes activated in the same signalling pathway showed a stronger association than
cis-elements involved in gene regulation in separated signalling pathways.

3. The association between MYB-ABRE according to the S; score is stronger than the
association between the cis-elements ABRE and CE1. According to the results
presented here, CE1 might not be a functional binding site in A. thaliana. This
conclusion is supported by the results presented by Zhang et al. 2005!"*"! indicating
that in contrast to the ABA-transcriptional regulation observed in mococotyledoneous
species, in A. thaliana is more likely that ABRE couples with itself to activate the
ABA-mediated transcription.

MYB might act as a coupling element of ABRE, this hypothesis cannot be discarded
completely. However, the mechanism of action implies the formation of dimmers between the
ABRE binding protein (bZIP transcription factors) and the protein binding to the coupling
element (AP transcription factors in the case of CE1). The large distance found between
MYB and ABRE (usually larger than 150 bp), provides only weak support for a direct
interaction between the ABRE binding protein and MYB transcription factors. Instead, it is
more likely that MYB-binding proteins interact with ABRE-binding proteins by forming higher-
order protein complexes. The separation between MYB-ABRE cis-elements (151 to 250 bp
and 351 to 400 bp) provides some hints about the size of the protein complexes necessary to

allow the contact between these cis-elements.
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For the homologous pair CE1-CE1 (Figure 6-3B), a defined distance between cis-elements
could not be clearly defined. Approximately 24% (24.3) of the pairs observed in 1 kb
upstream sequences showed a separation between cis-elements of 1 to 100 bp, compared
with 14.7% in random datasets. For the other distance intervals the percentage of pairs was
almost equal in both cases. Until now, unlike homologous pairs of ABRE elements,
homologous pairs of CEs have not been experimentally described to activate the
transcription of ABA-regulated genes. For that reason, genes predicted to have only CEs in
their upstream sequences are good candidates to be tested experimentally, to establish
whether they are in fact regulated by ABA. Such experiments could also demonstrate
whether in A. thaliana, in contrast to observations made in monocots, homologous pairs of
CE binding proteins confer ABA-responsiveness.

Finally, for the pair As1-ABRE that also showed a positive S; score, the distance distribution
between cis-elements is almost identical in 1 kb upstream sequences and in random
datasets. The only difference between both distributions consisted in a small peak of pairs of
elements with a distance between them of 201 to 250 bp, observed in 1 kb upstream
sequences (Figure 6-3I).

The analysis of the number of pairs and number of genes that harbour ABA-related cis-
elements in 1 kb upstream sequences revealed that:

1. Some combinations of cis-elements were significantly under-represented in 1 kb
upstream sequences compared with random datasets, and some combinations were
significantly over-represented.

2. The S; score defined by Manke et al. 2003, could not be used to evaluate whether
the observed number of pairs was significantly different from the number of pairs
expected by chance. However, was useful to define pairs of cis-elements that occur
preferentially together (positive S; score) compared with the frequency of the
independent cis-elements

The selection of pairs of cis-elements that are significantly over-represented in 1 kb upstream
sequences compared with background expectations notably reduces the number of genes to
be considered putatively regulated by ABA in A. thaliana. From 17935 genes initially
predicted, only 6132 remained as significant predictions, implicating that about 20% of the

annotated genes in A. thaliana might be regulated by ABA.
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6.4 Matrix-based search

To identify putative ABA-responsive genes, two matrix based search algorithms were used.
In contrast to pattern-based searches where a hit is defined as a subsequence identical to
the consensus sequence of the binding site, matrix-based methods are probabilistic
methods, and each putative cis-element obtains a score, which is useful to judge the quality
of the match. Matrix-based searches can be considered as complementary to pattern-based
searches, since such approaches allow the evaluation of higher-order combinations of cis-
elements (and not only pairs). The scores can be used to select high-scoring cis-elements as
the putative functional cis-elements.

The programs MotifScanner'® and CISTERP* were used to screen A. thaliana 1 kb upstream
sequences, to search for combinations of ABA-related cis-elements. In both programs each
cis-element is represented as a PSFM. However, the probability of a match is defined

according to different parameters in each program.

6.4.1 MotifScanner

The program was implemented by Gert Thijs at the Catholic University of Leuven!™®'"?. For
the detection of matches, every query sequence is scanned with each matrix separately and
sequentially, and compared with a background model. The background model used is a
second-order HMM constructed from a subset of A. thaliana intergenic sequences® """, The
score that every match obtains was defined as the ratio between the probability that the
matching subsequence has been generated by the background model, and the probability
that the matching subsequence has been generated by the motif model (determined by the
frequency matrix). High scores indicate large differences between the match and the
background model, i.e. the match is closer to the motif model.
A large number of hits were found in 1 kb upstream sequences. The obtained scores were
scatter values. To select relevant instances and to compare results obtained for different
matrices, the scores were rescaled to values between 0 and 1. For that, the minimum and
maximum scores for each cis-element were computed (Wmin and Wmax, respectively), and
values were rescaled according to Equation (6-3).

Wx —W min (6-3)
W max—W min

W x =

The minimum and maximum scores largely depend on the motif model used (frequency

matrix).
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After the screening with MotifScanner, nearly all 1 kb upstream sequences were predicted to
have at least one of the investigated cis-elements (28935 sequences from 29845). Only few
sequences were predicted to have exactly one cis-element (3356). In this study, the main
focus was on the prediction of genes putatively regulated by ABA, based on the presence of
more than one cis-element that confers ABA-responsiveness. Genes predicted to have
exactly one cis-element were not considered for further analyses.

It was observed that independent from the considered cis-element, rescaled scores were
always very low, indicating a poor difference between the background model and the motif
model. Additionally, the cis-element that showed the lowest scores was ABRE (about 98% of
the predicted cis-element achieved a score below 0.1), and the cis-element that showed
better scores was As1, with about 50% of the predicted cis-elements that achieved a score
larger than 0.1. In Figure 6-4 the distribution of scores for each considered cis-element is

shown.
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Figure 6-4: Distribution of rescaled scores for MotifScanner. Results observed for A. thaliana 1 kb
upstream sequences. Scores were rescaled according to Equation (6-3)

MotifScanner was also used with the hundred random datasets, to evaluate the scores
obtained for random sequences. It was observed that the shuffling process generated some
random cis-elements. In comparison with 1 kb upstream sequences, more sequences were
predicted on average to have two or more ABA-related cis-elements in random datasets
(27863 + 46 sequences per random dataset, compared to 25578 in 1 kb upstream
sequences). Furthermore, also the mean number of predicted cis-elements in random
datasets was larger than in 1 kb upstream sequences, as can be observed in Table 6-7.
Another observation made is that not all cis-elements were predicted with the same
frequency. Notably the cis-element CE3 was very rarely predicted in either dataset.

Scores observed in the random datasets were compared with the scores observed in 1 kb
upstream sequences, in order to establish whether the two kind of datasets can be

differentiated or not. First, the scores were rescaled according to Equation (6-3), using the
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minimum and maximum values found in 1 kb upstream sequences. During the rescaling
process some hits achieved a score higher than 1. However, rescaling the scores observed
in random datasets with the corresponding minimum and maximum values did not lead to
any change in the observed distribution (data no shown). To allow for direct comparison, the
number of predicted cis-elements for each score interval was displayed as percentage of the
total number of predicted cis-elements (Figure 6-5).

Table 6-7: Number of predicted cis-elements in A. thaliana 1 kb upstream sequences and

average number of cis-elements predicted in hundred random datasets using MotifScanner.
Results for random datasets are given £ SD

Cis-element 1 kb upstream Random datasets
ABRE 7753 11534,9 £ 122,6
As1 34533 41803,8 + 111,0
CE1 25917 26928,9 + 98,3
CE3 61 81,4+ 10,4
DRE 6173 9022,1 + 99,7
MYB 13914 17770,9 + 117 1

Independent of the cis-element considered, it was observed that the score distribution in
either dataset follows the same tendency. In both datasets the predicted ABRE cis-elements
generally obtained very low scores (<0.1) and more than 40% of the predicted As1 cis-
elements obtained scores >0.1. The only small difference observed between both datasets is
related to the predicted CE3 cis-elements. While nearly no cis-elements were observed in
random datasets for the score interval >0-7 to 0.80, a very small peak was observed in 1 kb
upstream sequences (Figure 6-5D).

Considering that no clear differences were observed between both datasets, and that most of
the predicted cis-elements achieved scores <0.1, a threshold score of 0.1 was set. From the
25578 sequences predicted in the set of 1 kb upstream sequences, only 1882 sequences
achieved scores equal to or above the threshold for most of the predicted cis-elements.
Unfortunately, the filter threshold cannot be directly introduced as a parameter into
MotifScanner, and for that reason some of the predicted cis-elements in the subset of 1882

sequences obtained a rescaled score lower than the chosen threshold.
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Figure 6-5 Distribution of rescaled scores for MotifScanner in A. thaliana 1 kb upstream
sequences and in random datasets. Scores for A. ABRE. B: As1. C. CE1. D. CE3. E. DRE. F. MYB

The number of predicted cis-elements in the subset of 1882 sequences was computed.
Furthermore, for each of the hundred shuffled datasets the corresponding 1882 shuffled
sequences were extracted. The average number of predicted cis-elements in this subset of
shuffled sequences was also computed. Results are shown in Table 6-8.

When the results presented in Table 6-7 are compared with the results presented in Table
6-8, it can be observed that for every cis-element under study, only approximately 5% of the
predicted cis-elements were left in either dataset. The number of predicted cis-elements in

the subset of random datasets was still larger than in 1 kb upstream sequences.
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Table 6-8: Number of predicted cis-elements found with MotifScanner in a subset of 1882 1 kb
upstream sequences and average number of predicted cis-elements in the corresponding
subset of shuffled sequences. Results for random datasets are average values given + SD

Cis-element 1 kb upstream Random datasets

ABRE 31 628,5 + 25
As1 3165 2713,4 £ 31
CE1 782 1422,2 + 23
CE3 3 4+2
DRE 266 488,2 + 24
MYB 333 1121+ 30

The score distribution of the subset of 1 kb upstream sequences and the corresponding
distribution observed in random datasets were plotted in a histogram, to evaluate whether
the results of both datasets were different. The number of predicted cis-elements for each
score interval was displayed as percentages of the total number of predicted cis-elements
(Figure 6-6).

The score distribution of the predicted ABRE, CE1 and MYB cis-elements (Figure 6-6A, C
and F) showed clear differences between the subset of 1 kb upstream sequences and the
corresponding random sequences in random datasets. In the case of ABRE (Figure 6-6A)
the percentage of predicted cis-elements that obtained a score <0.1 in 1 kb upstream
sequences was reduced from about 98% to about 60%. In contrast, all predicted ABRE cis-
elements in the set of corresponding shuffled sequences obtained scores below the
threshold. In the case of CE1 (Figure 6-6C) the percentage of predicted cis-elements that
obtained a score equal to or smaller than the threshold of 0.1 in 1 kb upstream sequences is
reduced from about 85% to 38%. Most of the CE1 cis-elements predicted in the
corresponding shuffled sequences achieved a score below the threshold. In the case of MYB
(Figure 6-6F) the percentage of predicted cis-elements that obtained a score equal to or
smaller than the threshold of 0.1 in 1k upstream sequences is reduced from 80% to about
20%, whereas for the corresponding subset of shuffled sequences most of the scores (80%)
were equal to or below the threshold. For the cis-element As1 (Figure 6-6B) it was observed
that even if only a subset of sequences were compared, the distribution of scores was still
very similar for 1 kb upstream sequences and random sequences. The cis-element CE3
(Figure 6-6D) was very rarely predicted in both datasets (Table 6-7 and Table 6-8). For the 3
hits predicted in the subset of 1 kb upstream sequences the score was equal to 0.1. The
predicted CE3 cis-elements in the corresponding subset of shuffled sequences obtained
higher scores. In the case of DRE (Figure 6-6E) the distribution of scores for the subset of 1
kb upstream sequences and corresponding shuffled sequences showed some differences.

About 60% of the predicted cis-elements in the subset of random sequences obtained a
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score equal to or below the threshold of 0.1, compared with 20% in the subset of 1kb
upstream sequences. Most of the cis-elements predicted in the subset of 1 kb upstream

sequences were in the score interval >0.1 to 0.2.
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Figure 6-6: Distribution of rescaled scores for a subset of 1882 1 kb upstream sequences and
corresponding shuffled sequences in the random datasets. Rescaled scores for A. ABRE. B. As1.
C. CE1. D: CES. E. DRE. F. MYB cis-elements

In general, even though only a subset of sequences was analysed, some predicted cis-
elements in the subset of 1 kb upstream sequences showed a score distribution similar to or
worse than corresponding random sequences (e.g. cis-elements As1 and CE3). Other cis-
elements such as ABRE, CE1 and MYB showed a score distribution clearly different from
that observed for the corresponding random sequences.

To investigate whether the results obtained for both subsets of sequences can be taken as

different, a Mantel test’®® was performed.
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The Mantel test is computed over two distance matrices. To compute the distance matrix of
the subset of 1 kb upstream sequences, each sequence was associated to a 6-dimensional
vector. The vector indicates the number of predicted cis-elements of each kind. The first
dimension refers to the number of predicted ABRE cis-elements, the second to the number
of predicted As1 cis-elements, the third to the number of predicted CE1 cis-elements, the
fourth to the number of predicted CE3 cis-elements, the fifth to the number of predicted DRE
cis-elements, and the sixth to the number of predicted MYB cis-elements. The upper panel in
Figure 6-7 shows an example of the scores for each of the predicted cis-elements of five
sequences (Figure 6-7A), and in the lower panel the resulting 6-dimensional vector of each
sequence (Figure 6-7B). The vectors were used to compute the distance matrix between
sequences in the dataset. Distance matrices were calculated using three measurements to

access similarity: Euclidean distance, Hamming distance and Pearson correlation coefficient.

A
AGI ABRE AS1 CE1l CE3 DRE MYB

At1g01100 0 0,22 0,11 0 0 0

0 0,49 0 0 0 0

At1g01480 0 0,25 0 0 0 0,10

At1g02620 0 0,11 0 0 0,15 0

0 0,19 0 0 0 0

At1g02920 0 0,54 0 0 0 0

0 0,17 0 0 0 0

At1g03010 0 0,19 0 0 0 0

0 0,10 0 0 0 0

B
AGI PATTERN OF COUNTS , ,
Figure 6-7: MotifScanner results for a subset of 5
At1g01100 021000] sequences (A. thaliana 1 kb upstream sequences). A.
At1901480 01000 1| Rescaled scores. B. 6-dimensional vector that represents the
At1902620 020010l number of cis-element of each kind predicted per sequence,
At1902920 020000 each of the six digits refers to the counts of a given cis-
At1g03010 020000 ©lement

To compute the 6-dimensional vector for random datasets a slightly different process was
followed. First, the number of predicted cis-elements of each kind per sequence in each
random datasets was counted. Then, the mean number of cis-elements of each kind per
sequence in all random datasets was computed. Afterwards, each sequence was defined
with a 6-dimensional vector. Each dimension corresponded to the mean number of predicted
cis-elements per sequence, i.e. the first dimension to ABRE, the second to As1, the third to
CEA1, the fourth to CE3, the fifth to DRE and the sixth to MYB.

The 6-dimensional vectors were used to calculate the distance matrix between sequences in
this dataset, referred as mean_random in Table 6-9. The same similarity measurements

mentioned above were used to calculate the distance between pairs of sequences.
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An additional set of distance matrices was computed for a subset of random sequences
(dataset R1). The 6-dimensional vectors corresponded to the number of cis-elements per
sequence counted in one random dataset. The order of the dimensions is the same as
before, as are the similarity measurements used to compute the distance matrices.

The Mantel test assumes that the distances in a matrix A are independent of the distances
for the same objects in another matrix B!""®®. The reason for using different similarity
measurements was to test whether the results of the Mantel test are independent of the
similarity measurements used. The reason for using two different distance matrices based on
results for random datasets was to gain some insights into the expected scores for the test,
when the assumption of no correlation between matrices is violated (comparison random vs.
random).

Once the distance matrices have been calculated, the computation of the test starts with the
random permutation of the rows and corresponding columns of one of the two matrices
(arbitrarily chosen). The number of permutations determine the overall precision of the test
(Manly, 1997, cited in Bonnet et al. 2002!"'"). After each permutation the Pearson correlation
coefficient between matrix A and matrix B was calculated. In general, the Pearson correlation
coefficient between non-correlated matrices is low, and with each permutation is degraded or
lost.

The function mantel.randtest of the ade4 software package®'! of the statistical language R®
was used to compute the correlation coefficient and an associated P-value for the Mantel
test. As recommended by Bonnet et al. 2002!"" 5000 permutations were carried out.
Generally, this number of permutations is considered to produce very robust results for an o
= 0.01. If the null hypothesis (no correlation between distance matrices) holds, the correlation
coefficient between matrices is zero or close to zero. The associated P-value estimates
whether the correlation found after the permutations is significant or not. A P-value equal to
or below the significance a (0.01 in this case) indicates a significant correlation between
matrices. In this case the null hypothesis is rejected. The results of the Mantel test are shown
in Table 6-9.

In Table 6-9 the correlation coefficient between the distance matrix for 1 kb upstream
sequences and random sequences was around 0,3 independent of the similarity
measurement used. These correlation coefficients were significantly different from zero, with
a P-value smaller than the «=0.01. Therefore, the null hypothesis was rejected. The
comparison between random matrices showed a correlation coefficient close to one, with a
P-value smaller than the significant o (0.01). The distance matrices in the case of the random
datasets were not independent, and clearly the null hypothesis must be rejected.

Taking all results together (distribution of scores and correlation between distance matrices)
it had to be concluded that the predictions for 1 kb upstream sequences were statistically

similar to predictions for random datasets.
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Table 6-9: Mantel Test for results of MotifScanner. Matrix A and B correspond to distance matrices.
The number of hits per element and sequence were counted for 1882 sequences that achieved a
rescaled score >0.1 in A. thaliana 1 kb upstream sequence. The number of hits per sequence and
element were counted for the corresponding shuffled sequences in each random dataset. R1 is the
distance matrix calculated from the results observed in random dataset one. Mean random is the
distance matrix calculated from the average results observed in the hundred random data sets.
Correlation=Pearson correlation coefficient. a=0,01

Matrix A Matrix B Similarity measurement | Correlation P-value

1 kb upstream Mean random | Euclidean distance 0.2749 <0,01

Pearson correlation

1 kb upstream Mean random 0.3185 <0,01
coefficient

1 kb upstream Mean random | Hamming distance 0.2301 <0,01

1 kb upstream R1 Euclidean distance 0.2731 <0,01
Pearson correlation

1 kb upstream R1 o 0.3164 <0,01
coefficient

1 kb upstream R1 Hamming distance 0.2289 <0,01

Mean random R1 Euclidean distance 0.9705 <0,01
Pearson correlation

Mean random R1 0.9802 <0,01
coefficient

Mean random R1 Hamming distance 0.9779 <0,01

Another method was used to evaluate the presence of ABA-related cis-elements in 1 kb
upstream sequences from A. thaliana. The results will be described in the following section.
As an important aspect, the method used (based on frequency matrices as MotifScanner)

identifies the combination of cis-elements simultaneously, and not sequentially.

6.4.2 CISTER

CISTER stands for Cis-elements Clusters. Martin Frith at the Department of Biomedical
Engineering in Boston (USA) implemented the algorithm, and particular features have been
described in section 4.1.6.2%. Briefly, the query sequence is analysed using a HMM.
Parameters such as “mean number of elements expected per sequence®, “mean distance
between elements® and “mean number of clusters of elements” are considered in the

calculations. The scores obtained with CISTER for a predicted binding site give some hints
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about the similarity of the predicted binding site with the matrix, but also the likelihood of the
distribution of elements.

As described in section 4.1.6.2 the parameters “mean number of clusters”, “mean number of
elements per cluster”, “mean distance between elements” and “window length on which
nucleotide frequencies are counted”, were optimised using a subset of promoters, in which
the exact location of the cis-elements was known.
In the best results achieved, seven out of ten cis-elements were correctly identified. In this
case the parameters were following:

1. mean distance between clusters: g=1000;

2. mean distance between elements in a cluster: a=20;

3. mean number of elements in a cluster: b=10;

4. window length were nucleotide frequencies are counted: w=150.
From the analysed 29845 1 kb upstream sequences, 6317 were predicted to have at least
one of the cis-elements under study. Since this study concentrates on the prediction of genes
putatively regulated by ABA, based on the presence of more than one cis-element conferring
ABA-responsiveness, genes predicted to have exactly one cis-element were not considered
for further analyses.
About half of the positively predicted sequences have exactly one cis-element (3024).
Sequences predicted to have more than one cis-element (3293) corresponded to 11% of the
total number of analysed sequences (29845). This number of positively predicted sequences
is evidently lower than the number of positively predicted sequences found using
MotifScanner (see section 6.4.1). Using MotifScanner 86% of the analysed sequences were
predicted to have more than one ABA-related cis-elements.
As mentioned before, with CISTER the probability of each match reflects the similarity of the
matching subsequence and the motif model (frequency matrix), but it also reflects the
similarity of the query sequence with the model distribution of cis-elements. The probability
threshold for a match is 0.1. In Figure 6-8 the frequency for each observed probability was
plotted in a histogram, and displayed as percentages of the predicted number of cis-
elements.
Figure 6-8 indicates that independent of the considered cis-element only few predictions
achieved a probability equal to the threshold (0.1) or reached a high probability (higher than
0.8). The percentage of predicted cis-elements that achieved a probability between 0.21 and
0.3 was very similar for all cis-elements studied in the course of this work. Interestingly, some
pairs of cis-elements showed practically the same probability distribution, e.g. ABRE and
DRE, CE1 and CE3 and, As1 and MYB.
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Figure 6-8: Distribution of probabilities for CISTER results. Probabilities observed for A. thaliana 1
kb upstream sequences

The program CISTER was also used to predict cis-elements in the hundred random datasets
generated by shuffling. For CISTER as well as for MotifScanner the shuffling process
generated more putative binding sites in the set of random sequences (7448.9 +70 positive
sequences per random dataset, compared to 6317 in A. thaliana 1 kb upstream sequences).
Differences in the number of predicted sequences having more than one cis-element were
not very pronounced between both datasets (upstream sequences or shuffled sequences). In
the case of random datasets 3469 +56 sequences were predicted to have only one cis-
element, while in 1 kb upstream 3293 sequences were predicted.

The screening of both datasets with MotifScanner showed that on average not only more
sequences were predicted in random datasets, but also more cis-elements (Table 6-7).
Results obtained with CISTER were different on that respect. Although the number of
positively predicted sequences in 1kb upstream was smaller (3293), more putative cis-
elements were predicted compared with random datasets. The only exceptions were the cis-
elements As1 and DRE (Table 6-10). Furthermore, the number of predicted cis-elements did
not show the extreme differences that were evident using MotifScanner. The cis-elements
As1 and CE1 for example, were predicted by MotifScanner almost five thousand times more
often than the most rarely predicted cis-element CE3.

To test whether the inclusion of a spatial model for the distribution of the cis-elements results
in a better discrimination between probabilities observed in 1 kb upstream sequences
compared with random datasets, the probability distributions for each predicted cis-element

were compared. Results are shown in Figure 6-9.
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Table 6-10: Number of cis-elements predicted with CISTER in A. thaliana 1 kb upstream
sequences and in random datasets. Average number of cis-elements in random datasets are given
+SD

Cis-element | 1 kb upstream |Random datasets
ABRE 3208 2340,8 £ 69,6
As1 1369 1175,5 £ 45,8
CE1 2815 2104,6 + 57,7
CES3 1974 2069,1 + 54,6
DRE 2277 2752,4 + 63,9
MYB 1647 1569,9 + 48,4
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Figure 6-9: Distribution of probabilities for CISTER results. Probabilities for A. ABRE. B: As1. C.
CE1.D. CE3. E. DRE. F. MYB in 1 kb upstream sequences and in random datasets

Despite the introduction of a spatial model, the distribution of probabilities in both datasets
followed the same tendencies. Some slight differences were observed for the cis-elements

ABRE and CE1 (Figure 6-9A, C), where the percentage of predicted cis-elements that
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achieved high probability values in the set of 1 kb upstream sequences was larger than in
random datasets. In contrast, predictions of DRE achieved always better scores in the set of
random datasets (Figure 6-9E).

To test whether different results are observed if only a subset of sequences is compared, the
positive sequences predicted with CISTER were compared with the results for the
corresponding shuffled sequences in each random dataset. The results in Table 6-11 shown
that the average number of putative cis-elements predicted in the subset of shuffled
sequences corresponding to the positive 1 kb upstream sequences was dramatically smaller
than in 1 kb upstream sequences. The largest difference (13-fold) was observed in the
number of putative ABRE cis-elements predicted with CISTER compared with results
observed for the the corresponding shuffled sequences. Nevertheless, for all cis-element
here under study, the differences in the number of predicted cis-elements in both subsets of
sequences was generally close to an order of magnitude (see Table 6-11).

To assess if the differences in the number of predicted sequences in 1 kb upstream
sequences and in corresponding suffled sequences were statistically significant, a Mantel
test® was performed. The test is calculated using distance matrices. To calculate the
distance matrix in the case of 1 kb upstream sequences, each positive sequence was
converted into a 6-dimensional vector that contains the information about the number of
ABRE, As1, CE1, CE3, DRE and MYB cis-elements observed in each sequence (section
6.4.1).

Table 6-11: CISTER, number of predicted cis-elements in 1 kb upstream sequences and in the

corresponding shuffled sequences of hundred random datasets. Average number of predicted
cis-elements in the subset of random datasets are given + SD

Cis-element | 1 kb upstream |Random datasets
ABRE 3208 238 + 22
As1 1369 120 + 14
CE1 2815 216+ 20
CE3 1974 210+ 19
DRE 2277 280 + 21
MYB 1647 163 £18

Distance matrices were calculated using Euclidean and the Hamming distances. The
Pearson correlation coefficient could not be used, because the distance matrix in the case of
random datasets could not be computed

Similar procedures were used than for caculations of the Mantel test for results with
MotifScanner, including the calculation of two distance matrices for random datasets. One

distance matrix was computed using the average counts observed per sequence and per
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element in random datasets, and is referred as mean_random in Table 6-12. The second
distance matrix refers to the results observed in one of the hundred datasets.

As described at the end of the previous section (see section 6.4.1) the Mantel test assumes
that the distances in a matrix A are independent of the distances for the same object in
matrix B. Objects in one of the matrices are randomly permutated (5000 in this case), and
the Pearson correlation coefficient and a P-value for the correlation are calculated after each
permutation. As in the previous case, the P-value is assessed by comparison with o (¢=0.01
in this case). If the P-value is equal to or lower than the «, the null hypothesis of

independence of the distance matrices is rejected. Results are presented in Table 6-12.

Table 6-12: Mantel Test for results of CISTER. Matrices A and B correspond to distance
matrices. The number of hits per sequence and element were counted in 1 kb upstream sequences,
and in the corresponding shuffled sequences in each random dataset. R1 is the distance matrix
calculated from the results observed in the random dataset one. Mean random is the distance matrix
calculated from the average results observed in the hundred random data sets. Correlation=Pearson
correlation coefficient. a=0,01

Matrix A Matrix B Similarity measurement | Correlation | P-value
1 kb upstream Mean random Euclidean 7.2x10™ 0.454
1 kb upstream Mean random Hamming distance 0.0087 0.04
1 kb upstream R1 Euclidean -6.4x10™ 0.515
1 kb upstream R1 Hamming distance 0.0083 0.05
Mean random R1 Euclidean 0.9666 <0.01
Mean random R1 Hamming distance 0.9682 <0.01

Table 6-12 shows that the correlation coefficient for all comparisons between the distance
matrices calculated for random sequences and 1 kb upstream sequences achieved values
close to zero independent of the similarity measurement used, and a P-value larger than the
a=0.01 (rows 1 — 4). Therefore, the null hypothesis of no correlation between distance
matrices was accepted. The correlation coefficient in the case of the comparison between
random matrices was close to one, and the P-value below the significant a, indicating that
the null hypothesis of independence between both matrices is not valid (rows 5-6).
With the results obtained for the Mantel test it can be concluded that the distances in the
matrix of 1 kb upstream sequences were independent of the distances for the same objects
in either random matrix.
After verifying that the observed differences between random datasets and 1 kb upstream
sequences were statistically significant, the distance matrices calculated for 1 kb upstream
sequences were used to cluster the results, with the aim to find sequences with similar
combinations of cis-elements.
Distance matrices were clustered using the k-means clustering algorithm of the statistical
program RP®Y. To evaluate the best number of clusters that fits the data, the silhouette
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coefficient was calculated when the data were grouped in 2 to 100 clusters. The silhouette
coefficient is a measurement of the compactness of the clusters. It is defined as the ratio
between the inter-cluster distances (that should be maximized) and the intra-cluster
distances (that should be minimized)®, and the values obtained are between zero and one.
A silhouette coefficient close to one indicate compact clusters, with small intra-cluster
distances, and large inter-cluster distances. Some of the computed results of the silhouette
coefficient are shown in Table 6-13. According to the silhouette coefficient the best numbers
of clusters that fit the data is 60. A number of cluster above or below 60 results in a small
silhouette coefficient (silhouette coefficients for k < 60 are no shown in Table 6-13)

Table 6-13: Average silhouette calculated for different cluster number. The distance matrix

calculated for the Mantel test were used to calculate the silhouette coefficient. Similarity measurement:
Euclidean distance. k= cluster number

k Silhouette
60 0.91
62 0.85
64 0.79
66 0.77
68 0.75

As expected, sequences belonging to the same cluster were predicted to have the same
assembly of cis-elements (see Appendix 2). In order to asses the degree of separation
between clusters, Principal Component Analysis (PCA) was used. PCA revealed that most of
the clusters were very close (Figure 6-10). Only the clusters 59, 25, 19, 5 and 46 were
relatively far from the other clusters. The sequences included in each clusters showed the
following combinations of ABA-related cis-elements:

Cluster 59: As1, CE1, CE3, DRE and MYB (no ABRE cis-element)

Cluster 25: CE1 and MYB binding sites.

Cluster 19: CE1.

Cluster 46: As1 and MYB binding sites.

Cluster 5: All elements with the exception of CE3.

The number of sequences per cluster was normally less than hundred, only the clusters 1, 9,
12, 15, 19, 21, 24, 27 and 30 grouped more than 100 sequences (maximum 217 in cluster
15), indicating that ABA-related cis-elements can combine in a relatively large number of
arrangements. However, the differences between combinations are very small.

The functional annotations found for genes belonging to the same cluster were explored.
Functional categories were retrieved from the Gene Ontology annotation (GO)". The
categories employed referred to the third level in the GO hierarchy. It was observed that all

clusters showed very similar GO-categories. The most abundantly observed were
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“metabolism”, “intracellular”, “membrane”, “cell growth and/or maintenance” and “nucleic acid

binding”.
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These two components explain §1.61 % of the point variability.

Figure 6-10: Principal component analysis. Clustering of sequences positively predicted by
CISTER. The number that corresponds to each ellipse indicates the cluster number, and the symbols
represent the member of each cluster. Similarity measurement: Euclidean distance. Number of
clusters k=60
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6.5

Conclusions

Some pairs of ABA-related cis-elements were found significantly over-represented in
1 kb upstream sequences, compared with background expectations. Almost all
combinations of ABRE with other ABA-related cis-elements were over-represented.
However, the pairs ABRE-CE3, CE3-ABRE were not observed in the set of

sequences evaluated, and the pair ABRE-As1 was not over-represented.

Among the over-represented pairs, the homologous pair ABRE-ABRE showed the
highest S; score computed, indicating that the elements preferentially occur together
than independently. Furthermore, around 60% of the pairs showed a distance
between cis-elements <50 bp. Considering that ABRE needs a coupling element to
activate the transcription of its gene, it seems that ABRE is the most important

coupling element of itself in A. thaliana.

Another over-represented pair with a high S; score was the pair MYB-ABRE. The
distance between the two cis-elements showed a tendency to find both cis-elements
of the pair separated by the following distances: 150 to 250 bp, or 400 to 450. These
relatively large distances between cis-elements suggested that MYB does not
function as a coupling element of ABRE. Instead, it might be involved in the slow
induction of ABA-regulated genes, after accumulation of ABA in plants subjected to

osmotic stress.

The reciprocal pair ABRE — MYB was also significantly over-represented. However, a
S score of zero clearly indicated that ABRE and MYB (in that order) do not
preferentially occur together. Additionally, the distances between the cis-elements
were not largely different from results observed in random datasets. These results
underlined the importance of the order of the elements in regulatory sequences, as

has been outlined previously by Shen et al.2004!"%%!.

Pairs of the cis-elements ABRE and CE1 were over-represented in 1 kb upstream
sequences. However, S; scores calculated for the reciprocal pairs ABRE-CE1 and
CE1-ABRE were relatively low. The large distances between the cis-elements
indicate that CE1 is perhaps not such a relevant coupling element of ABRE in A.
thaliana, in contrast with results observed in monocotyledoneous species.
Furthermore, the other coupling element studied here (CE3) was not found in
association with ABRE, and no CE has been experimentally characterized in A.

thaliana. Therefore, it appears that in contrast to observations in monocots, coupling
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elements might not play a major role in the regulation of ABA-responsive genes in A.

thaliana.

The cis-elements ABRE and DRE were significantly over-represented in both spatial
arrangements. The absence of short distances between the elements of the pair
DRE-ABRE might suggest a less relevant role of DRE as a coupling element of
ABRE in A. thaliana. This characteristic, together with the avoidance of large
distances between cis-elements, and positive but low S; scores, support the
observations made by Narusaka et al. 2003 that ABRE and DRE in regulatory
sequences allowed the cross-talk between osmotic stresses (such as drought, cold
and high salinity), making genes responsive to such stresses in ABA-dependent and

ABA-independent signalling pathways.

The poor performance of the program MotifScanner, where the predictions could not
be differentiated from results for random sequences, clearly demonstrates that the
identification of putative cis-elements must not rely merely on sequence similarity
between the motif model and the query sequence. Other features, like probability of
the combination of cis-elements compared with a suitable background model might

improve the performance of the program enormously.

The results gained with the program CISTER, where the number of upstream
sequences predicted to have ABA-related cis-elements was visibly smaller than with
the other programs used, underlining the importance of including additional features

for the prediction of putative transcription factor binding sites.
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Chapter 7: Expression profiling in A. thaliana leaves after
abscisic acid treatment

In-house performed macroarray data were analysed to establish ABA regulated
genes in leaves!”®. Raw expression data were analysed to determine if observed
gene expression changes were attributable to ABA treatment. Genes regulated
as a consequence of the treatment were clustered according to their temporal
expression pattern. Promoters of the genes regulated were analysed, to establish
putative regulatory sequences. The responsiveness of some genes was
independently confirmed via RT-PCR. Finally, the cross-talk with other hormone
signals was assayed comparing the results observed in this study with results
observed in microarray and northern blot experiments for auxins, jasmonate,

brassinosteroids or ethylene treatment.

7.1 General strategy

In a previous research project macroarray experiments were carried out in house for the
large-scale detection of A. thaliana genes differentially regulated by ABA"®. Briefly, nylon
membranes were spotted with about 16.000 single-strand cDNAs from a collection of cDNAs
originally generated at Michigan State University — MSUY®. The collection includes
expressed sequence tags (ESTs) from different tissues and developmental stages, including
seedlings, rosettes, stems, flowers, and roots from plants of different ages.

Experiments were performed in duplicates, to account for technical and biological variation.
Nylon membranes were hybridised with two kinds of probes. The first hybridisation, called
reference hybridisation, was performed to determine the amount of cDNA spotted at each
spot onto the nylon membranes. The probes were short oligonucleotides, which were
homologous to a part of the vector sequence surrounding the ESTs. The second
hybridisation, called complex hybridisation, was performed with a set of radiolabeled cDNAs
derived from total RNA isolated from ABA-treated or untreated plants.

After hybridisation with radiolabeled probes, macroarray filters were scanned with a
phosphorimager (Fuji, Japan) and raw images were analysed with the AIS Image Processing
System. The program semi-automatically identifies each spot of the filter and integrates their
signal intensity. Data were normalized using the software Haruspex, developed at the Max-
Planck Institute of Molecular Plant Physiology, Golm, Germany (S. Kloska, B. Essigmann

and T. Altmann, unpublished data).
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7.2 Biological / technical variation

Five time points were measured (30, 60, 90, 120 and 300 min after ABA treatment). For each
of the time points, two independent hybridisation experiments were conducted. To evaluate
the biological and/or technical variability, the magnitude of the radioactivity (gene activity
according to the Haruspex software) was compared with scatter plots (Figure 7-1A — E). The
gene activity of each clone was compared with itself on membranes hybridised with cDNA
from plants subjected to the same treatment. In Figure 7-1 the x-axis represents the
logarithm of gene activity measured in membrane H2, the y-axis represents the logarithm of
gene activity measured in membrane H1, both membranes were hybridised with cDNA from
plants treated with ABA. For each time point, the variability between hybridisations was not
above or below the threshold of a 3-fold change. This threshold was chosen according to the
recommendations given by Thimm et al. 2001, Thus, for each time point the technical or
biological variability inherent to the experimental procedures (e.g. biological variability,
efficiency of cDNA synthesis, amount of cDNA bound to the membrane) was not significantly
different.

Membranes subjected to different treatments were also compared with scatter plots. For
each clone subjected to the same treatment the average gene activity was calculated, and
average results were plotted. In Figure 7-2A — E, the x-axis represents the average gene
activity for clones hybridised with cDNA from untreated plants, logarithmically transformed.
The y-axis represents the average gene activity for clones hybridised with cDNA from ABA-
treated plants, logarithmic transformed.

Clear changes in expression levels could be observed for all time points. For some clones
the average gene activity was below or above the chosen threshold (3-fold change). Clones
that showed a change in gene activity above the threshold were considered as up-regulated
by the treatment, and clones that showed a change in gene activity below the threshold were
considered as down-regulated by the treatment.

The scatter plot analysis clearly showed that the observed differences in gene expression
can be attributed to the ABA treatment. In contrast, biological variation (RNA was obtained
from independently grown plants) or technical variation (membranes were hybridised
independently) did not largely result in differences in gene activity above or below the 3-fold

change threshold.
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Figure 7-1: Gene activity for membranes H1 versus H2 hybridised with cDNA from ABA-treated
plants (Scatter plots). A. 30. B. 60. C. 90. D. 120. E. 300 min after treatment. To indicate the
significance threshold the guide lines y=3x and y=x/3 were added to the figures
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Figure 7-2: Gene activity for membranes hybridised with cDNA from plants treated with ABA
vs. membranes hybridised with cDNA from control plants (Scatter plots). Average gene activity
for two membranes hybridised with either cDNA. x-axis membranes hybridised with cDNA from control
plants, y-axis membranes hybridised with cDNA from ABA-treated plants. A. 30.. B. 60. C. 90. D. 120.
E. 300 after treatment. To indicate the significance threshold the guide lines y=3x and y=x/3 were
added to the figures
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7.3 ABA-regulated genes

In the previous section it was shown that the observed differences in gene activity were due
to the ABA treatment, and not to technical or biological variations. For the identification of
genes affected by the treatment, only clones that were successfully measured at each time
point, and in each treatment were kept for further analysis.

This procedure reduced the dataset by about 38%, since only around 10.000 from the initial
16.129 clones spotted obtained a gene activity above twice the local background. For the
other clones spotted, not enough product was spotted on at least one membrane.

MSU clone names were translated into gene numbers, according to A. thaliana gene
identifiers established in the Arabidopsis Genome Initiative!. The 10.000 measured clones
correspond to 4757 genes, meaning that not each clone corresponded to a different A.
thaliana gene.

For each membrane and time point, gene activity of clones that corresponded to the same
gene were merged by their mean. Importantly, before merging the values, it was checked
that each single value was not larger than twice the standard deviation of the other
measurements for the same gene. If the gene activity was larger than twice the standard
deviation, the corresponding value was deleted and re-calculated using the KNN method!?"’.
The inspection of replicates of a gene was done automatically, with GEPAS version 1.0

(http://gepas.bioinfo.cnio.es/cgi-bin/preprocess).

A ratio of expression was calculated as the mean gene activity of gene i measured in treated
membranes, divided by the mean gene activity of gene i measured in control membranes.
Ratios were logarithmically transformed on a log, basis (Log,). Based on the ratio of gene
expression (Log,U), the genes regulated by the ABA treatment were those with a ratio >1.58
Log,U (3-fold change) in the case of up-regulation, or with a ratio <-1.58 Log,U in the case of
down-regulation. From the 4757 genes measured, 680 were regulated in at least one time
point. The complete list of genes regulated with their corresponding ORF annotation can be
consulted on-line under:

www.bio-uni-potsdam.de/jgomez/abarequlated.html

In Figure 7-3 the percentage of genes regulated at each time point is presented. It was
observed that after 30 and 60 min of ABA treatment most of the regulated genes showed an
increase in transcript level, while the number of down-regulated genes was very low (less
than 5 % 30 min after treatment, and 10 % 60 min after treatment). Ninety min after
treatment the proportion of down-regulated genes was higher than that of up-regulated
genes. After 120 min of treatment the number of down-regulated genes increased again, and
reached its maximum. Five hours after treatment the proportion of regulated genes was the

smallest for all time points tested, and most of the genes were down-regulated.
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Figure 7-3: Percentage of genes differentially regulated after ABA treatment

7.3.1 Time-dependent analysis of genes regulated by ABA

Different patterns of expression were observed during the time course of the experiment. For
the 680 genes regulated by ABA in at least one time point, genes exhibiting a similar
expression pattern were grouped together. Based on the observations in Figure 7-3, the 90
min time point was chosen as transition time point in gene expression, because before 90
min of treatment most of the ABA-responsive genes were up-regulated, and 90 min after
treatment most responsive genes were down-regulated. Taking this into account, the
following groups of expression profiles were established:

Group 1: Genes that are predominantly down-regulated. This group comprises genes that

were down-regulated in at least four time points, and two genes down-regulated at three time
points (60, 90 and 300 min or 30, 60 and 90 min after treatment respectively). At the other
time points the expression of these genes remained stable. Thirteen genes belonged to this
group (see Figure 7-4A). Among them, six were down-regulated during the course of the
experiment, five were down-regulated in four out of five time points, and two at three out of
five time points. Importantly, other genes down-regulated at three time points were included
in groups 4 or 5, because they were down-regulated at the late phase of the experiment
(starting 90 min after treatment), or transiently down-regulated at the beginning of the
experiment (30 min), and at the end (120 and 300 min after treatment).

Group 2: Genes that are predominantly up-requlated. This group comprises the genes that
were up-regulated in at least four time points. At the other time points the expression of these
genes remained stable. Seven genes belonged to this group (see Figure 7-4B). Among
them, six were up-regulated during the course of the experiment, and one was up regulated
in four out of five time points. Up-regulated genes at three time points were included in group
8, because they were found transiently up-regulated at the beginning of the experiment (30
and 60 min), and at the end (300 min).
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Group 3: Early responsive genes. This category includes genes that responded 30 and/or

60 min after treatment. For the other measured time points the expression remained stable.
Hundred eighty seven genes belonged to this group (see Figure 7-4C). Regarding the up-
regulated genes, 75 were up-regulated 30 min after treatment. Fifty one genes were up-
regulated 60 min after treatment. Twenty genes were up-regulated at both time points (30
and 60 min after treatment). Regarding down-regulated genes, 9 genes were down-regulated
30 min after treatment, 27 genes were down-regulated 60 min after treatment, and 2 genes
were down-regulated at both time points. Finally, 3 genes were up-regulated 30 min after
treatment, and then down-regulated 60 min after treatment.

Group 4: Late responsive genes. This category includes genes responding 90 min after

treatment. This is the biggest group with three hundred and one genes (Figure 7-4D - E).
Among these genes, 180 were down-regulated at one time point (either 90, 120 or 300 min
after treatment), 45 genes were up-regulated at one time point (either 90, 120 or 300 min
after treatment), 70 genes were regulated at two time points, and the most common profile
was down-regulation 90 min after treatment and up-regulation 120 min after treatment (37
genes). Finally, only 6 genes were regulated at three time points, three of them were down-
regulated.

Group 5: Transient down-regulation. As described at the beginning of the section, 90 min

was chosen as the transition time point. In this category genes down-regulated in the early
phase of the ABA treatment (30 and/or 60 min after treatment), and again down-regulated in
the late phase of the stimulus (either time point 90 min after treatment) were included.
Twenty five genes belonged to this group (see Figure 7-4F). Patterns can be sub-divided into
two groups, as shown in Figure 7-4F. Genes down-regulated 30 and 90 min after treatments
are shown in blue, and genes down-regulated at 60 and 120 min are indicated in black. Most
genes included in this group were down-regulated only at two time points (19 genes).

Group 6: Transient down/up requlation. This group includes genes that were down-

regulated in the early phase of the experiment (30 and/or 60 min after treatment), but up-
regulated in the late phase of the experiment (90 min or more after treatment). Eleven genes
belonged to this group (Figure 7-4G). Most genes were down-regulated 60 min after
treatment and up-regulated 120 min after treatment (7 genes).

Group 7: Transient up/down regulation. This group includes genes up-regulated in the

early phase of the experiment (30 and/or 60 min after treatment), but down-regulated in the
late phase of the experiment (90 min or more after treatment). Hundred seven genes
belonged to this group (see Figure 7-4H). About sixty percent of them were up-regulated 60
min after treatment, and down-regulated 120 min after treatment (68 genes).

Group 8: Transient up-regulation. This group includes up-regulated genes in the early

phase of the experiment (30 and/or 60 min after treatment), that are mostly stable 90 min

after treatment, and then up regulated again in the late phase of the experiment (120 or 300
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min after treatment). Eight genes belonged to this group (see Figure 7-41). Only one gene

was up-regulated 90 min after treatment, and the expression pattern is shown in blue. Most

genes were up-regulated 30 and 120 min after treatment.
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Figure 7-4. Time-dependent expression patterns, genes regulated by ABA. Superimposed
patterns of expression. A. group 1, genes predominantly down-regulated. B. group 2, genes
predominantly up-regulated. C. group 3, early-responsive genes (30 and/or 60 min after treatment). D.
group 4, late-responsive genes (up/down regulated or both 90 min or more after treatment). E. group
4, late-responsive genes down-regulated (90 min or more after treatment). F. group 5, transient down-
regulated genes. G. group 6, transient down/up-regulated genes. H. group 7, transient up/down-
regulated genes. |. Group 8, transient up regulated genes. J. group 9, oscillating patterns. Red lines

mark the threshold of up- or down-regulation (+1.58Log,U)
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Group 9: Oscillating patterns. This group comprises twenty-one genes (see Figure 7-4J).

These genes generally showed the following time course of expression: up-regulation 30 and
120 min after treatment, and down regulation 90 min after treatment (11 genes), and are
shown in black in Figure 7-4J. The other patterns of expression were very variable from time
point to time point.

Overall results showed that most of the genes were regulated by ABA at one time point,
either at the beginning or at the end of the experiment (groups 3 and 4). Most of the genes
regulated at two time points were transiently up/down regulated. Only about 10% of the
genes regulated by ABA were regulated in more than two time points, showing complex
patterns of expression. Within the genes regulated at more than two time points, 2%

corresponded to genes regulated at each time point, and belonged to the groups 1, 2 or 9.

7.3.2 Functional groups

To analyse the physiological relevance of genes differentially expressed after ABA treatment
and to gain some insights in the physiological processes affected by the treatment, the
functional categories of the genes regulated by ABA were retrieved from the Gene Ontology
annotation (GO)".. The categories employed referred to the third level of the GO hierarchy.

A gene product could have been assigned to one or more of 107 functional groups (GO
categories). Genes that were regulated by ABA were grouped into 60 GO categories,
including one category that was regarded as NN (no functional assignment in the third level
of hierarchy).

The first 25 most abundantly represented GO categories for genes regulated by ABA are
presented in Table 7-1.

Most of the genes regulated by ABA belonged to the GO category “metabolism” (13%), the
second and third most abundant categories were “intracellular” and “cell growth and/or
maintenance”. The category “intracellular” comprises proteins that are connected to any
cellular membrane, e.g. plastids, vesicle trafficking, endoplasmic reticulum, etc. The category
“cell growth and/or maintenance” compromises proteins involved in cell cycle. Genes without
any functional assignment at the third hierarchical level were the fifth most abundant. A
closer look in the GO-annotation of genes regarded as NN showed that due to the lower
similarity of the coding region of these genes with experimentally determined genes, they are
classified in the category “molecular function”, one of the three basic GO-categories at the

first level of hierarchy (the other categories are “biological process” or “cellular component”).

84



Expression profiling

Table 7-1: GO-functional categories for genes regulated by ABA. No. Genes=number of genes

belonging to the category.GO level of hierarchy 3

GO_category No. Genes %
metabolism 279 17,16
intracellular 272 16,73
cell growth and/or maintenance 180 11,07
membrane 139 8,55
NN 92 5,66
nucleic acid binding 92 5,66
hydrolase activity 70 4,31
transferase activity 57 3,51
nucleotide binding 54 3,32
oxidoreductase activity 44 2,71
response to external stimulus 42 2,58
kinase activity 29 1,78
metal ion binding 26 1,60
response to stress 24 1,47
cell communication 22 1,35
carrier activity 20 1,23
lyase activity 20 1,23
protein binding 16 0,98
ion transporter activity 13 0,80
ligase activity 13 0,80
response to endogenous stimulus 9 0,55
isomerase activity 8 0,49
electron transporter activity 7 0,43
translation factor activity, nucleic acid binding 7 0,43
death 6 0,37

Other categories observed between the 25 most abundantly represented were “response to

” o«

external stimulus”, “responses to stress” and “kinase activity”, as well as a large range of

enzymatic categories.

To evaluate whether the cDNA collection spotted onto the membranes has a bias towards

one of these different categories, mainly towards metabolic gene products, the GO
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annotation at the third level of hierarchy for the genes spotted onto the membranes was
investigated. Table 7-2 shows the 25 most abundantly represented GO categories for the

genes spotted onto the membranes.

Table 7-2: GO-functional categories for genes spotted onto the membrane. No. Genes=number
of genes belonging to the category.GO level of hierarchy 3

GO_category No. Genes %
Metabolism 2605 17,35
Intracellular 2439 16,24
Cell growth and/or maintenance 1566 10,43
Membrane 1248 8,31
nucleic acid binding 826 5,50
hydrolase activity 689 4,59
Transferase activity 637 4,24
NN 635 4,23
nucleotide binding 535 3,56
response to external stimulus 391 2,60
oxidoreductase activity 361 2,40
cell communication 295 1,97
metal ion binding 277 1,85
kinase activity 276 1,84
response to stress 233 1,55
carrier activity 197 1,31
response to endogenous stimulus 155 1,03
lyase activity 139 0,93
protein binding 112 0,75
ion transporter activity 108 0,72
isomerase activity 87 0,58
ligase activity 87 0,58
translation factor activity, nucleic acid binding 72 0,48
receptor activity 67 0,45
morphogenesis 63 0,42

Table 7-2 shows that the genes corresponding to the cDNAs spotted were classified
basically into the same GO categories as genes regulated by ABA. Genes annotated into the
category “metabolism” correspond to around 17% of the genes, and this was the most

abundant category.
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When comparing the 25 most abundant GO categories of genes regulated by ABA with those
of genes spotted onto the membranes, the largest differences were found for the categories
“electron transporter activity” and “death”, which were within the group of the 25 most
common categories in the set of regulated genes, but were not found in the group of the 25
most abundant categories of the genes spotted onto the membranes. Vice versa from the
genes spotted onto the membranes, the categories “receptor activity” and “morphogenesis”
were found within the group of the 25 most common categories, whereas they were not
observed within the group of the 25 most common categories of the genes regulated by ABA.
The analysis of the GO categories for the genes successfully measured confirms that the
collection of cDNAs used (MSU collection) has a bias towards genes classified into the GO

categories “metabolism”, “intracellular’, “membrane” and “cell growth and/or maintenance”.
Furthermore, the ten most abundant GO categories were exactly the same as for genes
regulated by ABA or spotted onto the membranes.

The comparison of the datasets revealed that about the same percentage of genes of each
GO category was found in either data set. The largest absolute difference was found for
genes annotated as NN (no annotation at that level of hierarchy), where 5.7% of the ABA-
regulated genes belonged to this category, whereas only 4.2% of the spotted genes
belonged to it.

The distribution of GO categories for the groups of expression patterns described in section
7.3.1 was investigated to test whether specific GO categories could be associated to each
pattern. It was established that for the groups 1, and 3 - 9 the five most common GO
categories were those listed on the top in Table 7-1, i.e., “metabolism”, “intracellular”,
“‘membrane”, “NN” and “cell growth and maintenance”. In addition the following categories
were particular for each group:

Group 1 (genes predominantly down-regulated). Were classified in the categories “ion

”

transporter activity”, “metal ion binding” and “response to external stimulus”. Some examples
of transporters predominantly down-regulated by ABA were: “K* efflux antiporter, putative
(KEA4)” (At2g19600) and “sulfate transporter family protein” (At5g13550).

Group 2 (genes predominantly up-regulated). This group comprised genes of the categories
“metabolism”, “intracellular’, but also “nucleotide binding”, “cell communication” and
“hydrolase activity”. Examples of predominantly up-regulated “nucleotide binding” genes
were: “calcium-dependent protein kinase 19 (CDPK19)” (At5919450) and “expressed protein”
(At5g55540).

Group 3 (early responsive genes). Were classified in the categories “hydrolase activity”,
“oxidoreductase activity” and “transferase activity”. Examples of early responsive genes with
hydrolase activity were: “protein phosphatase 2C, putative/PP2C” (At2g25070) and
“serine/threonine protein phosphatase 2A (PP2A) regulatory subunit B' (B'beta)”

(At3g09880).
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Group 4 (late responsive genes). In addition to the five most common GO categories, the
category “response to external stimulus” was one of the most prominent ones. Examples of
late responsive genes belonging to the category “response to external stimulus” were
“disease resistance protein (TIR-NBS class), putative” (At1g72890), “superoxide dismutase
(Cu-Zn), chloroplast (SODCP)/copper/zinc superoxide dismutase (CSD2)” (At2g28190), and
“avirulence- responsive protein, putative/avirulence induced gene (AlG) protein, putative”
(At3g28940) .

Group 5 (genes transiently down-regulated). Were classified in the categories “channel/pore
class transporter activity” and “carrier activity”. An example of a gene transiently down-
regulated by ABA belonging to the category “carrier activity” was “calcium-transporting
ATPase1, plasma membrane-type/Ca(2+)-ATPase isoform 1 (ACA1)/plastid envelope
ATPase1 (PEA1)” (Atlg27770).

Group 6 (genes transiently down/up regulated). Considering the physiological role of ABA in
seed maturation and dormancy!®®, it was interesting to observe that in this group the GO
categories “germination”, “post embryonic development” and “response to external stimulus”
were prominent. An example of a gene found transiently down/up regulated that belonged to
this group is “Dof zinc finger protein DAG2/Dof affecting germination 2 (DAG2)” (At2g46590).
Group 7 (genes transiently up/down regulated). In addition to the five most common GO
categories, the GO categories “kinase activity”, “nucleotide binding” and “response to
external stimulus” were observed. Examples of genes classified as kinases were “leucine-
rich repeat transmembrane protein kinase, putative” (At2g02220), “protein kinase, putative”
(At29g05940), “serine/threonine/tyrosine kinase, putative” (At2g24360) and “CBL-interacting
protein kinase 7 (CIPK7)” (At3g23000).

Group 8 (genes transient up-regulated). Genes belonging to this group were also classified
in the GO category “oxidoreductase activity”. An example was “NADH-ubiquinone
oxidoreductase B8 subunit, putative” (At5g47890).

Group 9 (oscillating patterns). Genes of this group were also classified in the GO categories
“kinase activity” and “nucleotide binding”. Some examples of kinases were “S-locus protein
kinase, putative” (At4g27300) and “protein kinase family protein” (At5g11850).

So far the GO annotations found for genes regulated by ABA do not seem to be statistically
different from the annotations found for genes of the cDNA collection used. To verify that
there are no statistically significant differences in GO annotations, the program GOSSIP was

used!'”

. The algorithm uses all categories in the gene ontology (GO) to tests if any
enrichment of terms is found in a test group compared to the annotations in a reference
group. The program calculates a P-value using the one-side Fisher exact test. The null
hypothesis is that the annotations of the test group are sampled randomly from the reference
group. The significance is measured according to the false discovery rate (FDR) that is

calculated for each P-value, and quantifies the expected number of false discoveries in
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relation to the total number of positives at a given P-value. The FDR is kept below an
o threshold (in this case 5 percent or 0.05). Categories significantly enriched are those with a
FDR below the o threshold!".

For the first test, the set of spotted genes was set as the reference group, and the set of ABA
regulated genes was set as the test group. It was observed that the FDR was close to 0.98
for all GO categories. Clearly, none of the categories had a FDR below the threshold of 0.05.
Thus, it was confirmed that there is not a significant enrichment of categories in the set of
regulated genes, compared with spotted genes.

The same test was used to analyse whether there is an enrichment of GO categories in the
set of ABA-regulated genes compared with the GO categories for all genes in the genome.
To perform the test, the reference group was set as the whole genome, and the test group
was set as the ABA-regulated genes.

This comparison showed that there are some GO categories that are enriched in the set of
ABA-regulated genes compared to annotations for the whole genome. These results are

schematically shown in Figure 7-5.
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Figure 7-5: Enrichment of GO categories in the set of ABA-regulated genes compared with GO
categories for the whole genome. Enrichment was tested using the program GOSSIP"®. Enriched
categories are marked as blue boxes

As explained earlier, GO categories are organized hierarchically. The first hierarchical level is

”

divided into three groups: “biological process”, “cellular component” and “molecular function”.
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In Figure 7-5 the second line of boxes shows this hierarchical level at the top of the figure.
Two from the three categories of this hierarchical level are shown. The following hierarchies
descend down to the ninth level at the bottom of the figure. Categories with a FDR below the
threshold of 0.05, and hence significantly enriched in the set of ABA-regulated genes are
shown as blue boxes.

At the third hierarchical level the GO categories “intracellular” and “3-isopropylmalate
dehydratase complex” were significantly enriched in the set of ABA-regulated genes
compared to the whole genome (FDR below the a threshold of 0.05).

In general, nine GO categories at different hierarchical levels were found to be significantly
enriched in the set of ABA-regulated genes compared with annotations for the whole
genome. Considering the role of ABA in osmotic stress responses, the over-representation of
the category “intracellular” is not surprising. The physiological changes associated with
osmotic stress responses include regulation of membrane-associated enzymes and proteins
like dehydrins and LEA proteins!'3*1%8],

7.3.3 Cis-elements in the upstream regions of ABA-regulated genes

To search for over-represented motifs in upstream regions of ABA-regulated genes, 1 kb
upstream sequences were extracted for all genes within a pattern of expression (section
7.3.1), including those genes for which the intergenic region was shorter than 1 kb (333
genes). These sequences were analysed without masking regions of low complexity.
On each set of upstream regions all oligonucleotides of size w=8 were counted on both
strands, and the statistical significance of the number of occurrences was computed.
Significance was computed using the methodology proposed by van Helden!'®!. The
computations are based on the binomial distribution. Briefly, the probability to observe
exactly the number of occurrences for each oligonucleotide of size w=8 was computed.
Then, the probability to observe less or the same number of occurrences was computed.
Finally, the probability to observe the same number of occurrences or more is calculated
according to Equation (7-1). A significance index (sig) was calculated as the negative
logarithm of the computed probability. High values for the significance index correspond to
the most exceptional motifs and are considered as over-represented oligonucleotides in the
set of sequences evaluated.

P(>occ)=1-P(<obs)+P(obs) (7-1)
Oligonucleotides with the highest significance index were compared with the list of cis-
elements generated (section 4.1.3) to investigate if they have been already described as

regulatory sequences in plants.
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None of the oligonucleotides with the highest significance index (sig > 6,5) has been
previously described as cis-regulatory motif. These over-represented oligonucleotides that
might be unknown cis-elements are an important resource for further research, towards the
identification of new cis-elements involved in ABA-mediated gene regulation.

From the list of already described cis-elements, independent of the pattern of expression
(groups 1-9), the motifs MYB, ABRE, -300 element (related to Dof binding sites)“® and

ERELE (Ethylene responsive element)®’!

were the most over-represented motifs of size w=8
in 1 kb upstream sequences of ABA-regulated genes.

For every group the following already defined cis-elements were significantly over-
represented in 1 kb upstream sequences (significance index >0,8):

Group 1 (predominantly down-regulated genes): Cis-elements CCA (recognized by MYB
related transcription factors)“®, ABRE, LREN (light regulatory element)!'?"! and MYB binding
sites.

Group 2 (predominantly up-regulated genes): Cis-elements CACGCAATGMGH3 (confers
auxin inducibility)*®, MYB binding site and SV40.

Group 3 (early responsive genes): Cis-elements ABRE, -300 element, SV40 and TE2F
(involved in transcriptional activation in actively dividing cells and tissues)*?.

Group 4 (late responsive genes): Cis-elements MYB binding site, ABRE, -300 element,
PIATGAPB (involved in light-activated gene expression) ! and RY (cis-element widely
distributed in seed-specific gene promoters)®’.

Group 5 (transiently down-regulated genes): Cis-elements ABRE, CACGCAATGMGHS3,
OCTAMOTIF2 (observed in plant histone genes)*?!, ERELE and SV40.

Group 6 (transiently down/up regulated genes): Cis-elements SV40, MYB binding site, -300
element and CBF1 (responsible for the induction of COR genes by ABA)*9.

Group 7 (transiently up/down regulated genes): Cis-elements —300 element, ABRE and
EREL.

Group 8 (transiently up-regulated genes): Cis-elements ERELE, MYB binding site, EREL,
AMMORESIIUDCRNIAT1 (involved in ammonium-response)* and —300 element.

Group 9 (oscillating patterns): Cis-elements PIATGAPB, ABRE, MYB binding site and
ERELE.

7.3.4 Transcription factors regulated by ABA

It has been experimentally proven that members of the following families of transcription
factors are involved in the regulation of ABA-responsive genes: basic domain leucine zipper
(bZIP proteins) that bind to the cis-element ABRE; basic helix-loop-helix (bHLH proteins) that
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bind to the cis-element MYB binding site; and the ERF/AP2 family of transcription factors,
related to the APETALA2 family, that bind to the cis-element DRE?323:45.69.74.105,122,133]
Another family of transcription factors found to be involved in ABA-independent gene
expression in response to abiotic stresses is the NAC family. These transcription factors
function as transcriptional activators in cooperation with zinc-finger homeodomain proteins,
or alone!™!,

From the 680 genes regulated by ABA, 40 were classified as transcriptional activators
according to the GO annotation. The transcription factors that were found to be regulated by
ABA were classified into families, using a classification scheme prepared by Diego Riafo in-
house (Riafio-Pachon, unpublished data). The results are shown in , it was observed that
most transcription factors regulated by ABA in the present study belonged to the families
APETALA2/EREBP (6 genes), bHLH family (5 genes) and bZIP transcription factor family (3

genes).

Table 7-3: Members of different transcription factor families found to be regulated by ABA in
the present study. Classification of A. thaliana transcription factors into families made by Diego
Riano (Riafio-Pachon, unpublished data)

Transcription Factor Family Regulated
AP2/EREBP 6
bHLH 5
bZIP 3
Aux/IAA family 2
C2C2-CO-like 2
C2C2-Dof 2
G2-like transcription factor family, GARP 2
HB (Homeobox transcription factor family) 2
MYB 2
NAC domain transcription factor family (NAM) 2
TCP transcription factor family 2
Trihelix, Triple-Helix transcription factor family 2
TUB transcription factor family 2
Auxin-responsive factor (ARF) 1
C2C2-GATA 1
C2H2 1
GRAS transcription factor family 1
JUMONUJI family 1
Pseudo ARR transcription factor family 1
TOTAL 40

In section 7.3.1 the time course expression of all 680 ABA-regulated genes was presented.
ABA-regulated genes were grouped according to 9 different expression patterns. Regarding

ABA-responsive transcription factors, none of them showed the expression patterns:
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“predominantly up-regulated” (Group 2), “transient down-regulated” (Group 5) or “transient
up-regulated” (Group 8).
Transcription factors found to be regulated by ABA belonged to the following gene

expression patterns:

Group 1: Predominantly down-regulated genes 1
Group 3: Early responsive genes 12
Group 4: Late responsive genes 15
Group 6: Transient down/up regulated genes 2
Group 7: Transient up/down regulated genes 9
Group 9: Oscillating patterns 1

It was found that members of the families of transcription factors involved in the regulation of
ABA-responsive genes belonged to the groups: “early responsive genes” (Group 3) or “late
responsive genes” (Group 4).

Three out six members of the family AP2/EREBP (some members recognize DRE) were
found up-regulated either 30 min (2 genes) or 120 min after treatment (1 gene). The
transcription factor that was found up-regulated 120 min after treatment was also down
regulated 90 min after treatment. The ORF annotation indicated that it is the transcription
factor RAV2/AP2 (At1g68840). The other three members of the family found to be regulated
by ABA were down-regulated 30, 90 or 300 min after treatment.

Three out of five members of the family bHLH were found to be up-regulated 30, 60 or 120
min after treatment. The gene up-regulated 120 min after treatment was down-regulated 90
min after treatment. The other two members of the family found to be regulated by ABA were
down-regulated 60 or 90 min after treatment.

All regulated members of the bZIP family were regulated 60 or 90 min after treatment. One of
them was up-regulated 60 min after treatment, the other two were down-regulated 90 min

after treatment.

7.4 Independent confirmations via RT-PCR

It was of interest to confirm ABA-responsiveness of the following transcription factors:
1. Dof zinc-finger protein DAG2 (Dof affecting germination 2) (At2g46590). Promoter
analysis showed that DAG2 is expressed throughout the A. thaliana life span, and

activity is restricted to the vascular system in all organs!?

. In seeds, increasing
concentrations of exogenous ABA prevent germination of wild-type and dag2
mutants*?. In this study, expression profiing was made using whole leaves.
Independent RT-PCR confirmation intended to probe whether the expression of

DAG?2 is affected by increasing concentrations of exogenous ABA.
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2. No apical meristem (NAM) family protein (At5g39610). For the members of this
transcription factor family, only the NAC member RD26 has been extensively
documented as being induced by ABAP. The independent confirmation via RT-PCR
was intended to probe the regulation by ABA of another member of the family.

3. Two members of the bZIP transcription factor family were selected, i.e. genes
At1g42990 and OBF4 (At5g10030). Members of the bZIP transcription factor family
bind to the cis-element ABRE, the most relevant cis-element in ABA mediated gene
regulation[23'32‘45‘59'135].

For these experiments, wild-type A. thaliana cv. C24 plants were grown hydroponically in

half-concentrated MS medium supplemented with 2% sucrose. Four-week old plants were

stimulated with 100 uM ABA mixed into the fresh medium. Leaves were harvested for the
isolation of RNA 30, 60, 90, 120 and 300 min after the addition of ABA. Control plants were
stimulated with an equivalent amount of 1 N NaOH, used to dissolve ABA.

Total RNA was digested with DNasel to avoid the presence of traces of genomic DNA in the

samples that would be used for RT-PCR. RNA was reverse transcribed. The generated

cDNA was used for the RT-PCR experiments. Expression of the target genes was quantified
relative to the expression of a reference gene (ubiquitin 10 - At4g05320). For the analysis,
first the expression level of each target gene was compared with respect to the expression of
the reference gene by calculation of the AC;, which is defined as Ci.target — Ctreference- Ct is the
cycle number were the fluorescence achieved an arbitrary threshold value of 0.2. Secondly,
to compare treated and untreated samples, each AC; value obtained for the treatment (AC.1)
was subtracted from the AC; values obtained for the corresponding control (ACic).

Considering an amplification efficiency of 1, relative changes in expression are given by 2

AACt - \where the AACt value is a logarithmic measurement of the relative changes in the

expression level upon treatment. A 2 equal to one indicates no differences in the

expression level upon treatment. A 2°2“ |arger than one indicates up-regulation of the gene
expression upon treatment, whereas a 2! smaller than 1 indicates down-regulation of the
gene expression upon treatment. In order to assess the robustness of the results, a second
reference gene was used (actin 2 — At3g18780). Considering that no differences in gene
expression are expected for this housekeeping gene after ABA-treatment, a 2°°' ~ 1 was

expected. Experimentally, a slight deviation of this trend was observed for the time points 60

and 90 min after treatment (22*“' = 1.4). For these specific time points, a 2*°' = 1.4 was

taken as no differences in expression level upon treatment, values larger than 1.4 as up-
regulation, and smaller than 1.4 as down-regulation.

Figure 7-6 shows the results observed in the array and in RT-PCR experiments for every

target gene. It was observed that all transcription factors assayed are definitively regulated

by ABA. However, the expression patterns observed in RT-PCR studies were different from

the patterns observed in macroarray experiments. This disagreement between the two
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experiments was unexpected. However, there are some plausible explanations for the
divergences. The plants used for macroarray experiments were grown in soil and ABA was
applied by spraying onto the leaves. In contrast, for RT-PCR experiments, the hormone was
mixed into the medium, to be absorbed by the roots. These changes were made to provide
better controlled experimental conditions.

Nevertheless, it is worth mentioning that also in the literature disagreements between macro
and microarray experiments, and RT-PCR or Northern blot experiments have been
reported®®%° Rajeevan et al. 2001®°! explains that differences might be due to the fact that
in array experiments expression differences of closely related members of gene families may
be masked by cross-hybridisation. Holland et al. 2002 (cited in Czechowski et al. 2004)1!
pointed out that array technologies are qualitative, and that there is not strict linear
correlation between signal strength and transcript abundance. Czechowski et al. 2004
compared the results obtained with Affymetrix and RT-PCR experiments and found that the
agreement observed between both datasets was quite poor®. Furthermore, Raheevan et al.
2001, Czechowski et al. 2004%%! and other authors strongly recommend to perform the
confirmation experiments with the same pool of RNA, to avoid differences inherent to the
quality of the RNA used for either experiments, or the progressive degradation of unstable
RNAS[17’25'85].
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Figure 7-6: Macroarray and RT-PCR results. Left y-axis Log,U, right y-axis 2" values. Bars
denote the average expression values observed in macroarray experiments, lines denote transcript
abundance relative to ubiquitin observed in RT-PCR. The green line added to each plot show
indicates the point where there are no changes in gene expression in RT-experiments. The 2t
values above the green line indicate up-regulation of the target gene, the 222 values below the green
line indicate down-regulation of the target gene
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7.5 Cross-talk with other hormone signals

The analysis of mutants impaired in the response to a certain hormone had revealed that is
not unusual that these plants are also impaired in the response to other hormones. To
investigate which of the ABA-regulated genes found in this study have been found to be
regulated by other phytohormones, the genes regulated by ethylene, jasmonate, indole
acetic acid (IAA) and brassinosteroids treatment (according to expression profiling or
northern blots) were compared with ABA-responsive genes found in this study. Results for

the other hormone signals were downloaded from www.scri.sari.ac.uk. The number of genes

regulated by each treatment is shown in Table 7-4.

Table 7-4: Genes regulated by different phytohormones. Results downloaded from DRASTIC
(www.scri.sari.ac.uk). Overlap=Genes found to be regulated by ABA and by other phytohormone

separately. % = —overlap *1
regulated
Treatment Regulated | Up Down | Overlap %
Brassinosteroids 125 94 31 2 1.6
Ethylene 326 208 118 14 4.3
IAA 61 49 12 5 8.2
Methyl jasmonate 356 251 105 19 5.3

Considering the number of genes regulated by each stimulus, the overlap between ABA and
IAA regulated genes was larger than the overlap between ABA and other hormones,
including ethylene, the phytohormone where more interactions has been reported!®20:3:9.9],

As it would be expected, not always genes that were up- or down-regulated by ABA were
similarly up- or down-regulated by the other hormone. In the case of ABA and
brassinosteroids, 2 genes were found to be regulated by both hormones separately. One
gene was up-regulated by ABA and by brassinosteroids, and one was up-regulated by
brassinosteroids and down-regulated by ABA. In the case of ethylene and ABA, 14 genes
were found to be regulated by both hormones separately. Seven genes were up-regulated by
ethylene, and only one of them was similarly up-regulated by ABA. The other 7 genes were
down-regulated by ethylene, and 6 of them were similarly down-regulated by ABA. However,
these genes were also up-regulated by ABA 30 and/or 60 min after ABA-treatment. Genes
found to be regulated by ABA and ethylene were primordially enzymes. Five genes were
regulated by ABA and IAA separately. Only one gene was down-regulated by IAA, the other
genes were up-regulated by IAA, and all five genes were up-regulated by ABA. One of them
was up/down regulated by ABA. Interestingly, two of the four genes up-regulated by both
hormones are annotated as putative protein kinases, the other 3 genes (including the one

down-regulated by IAA and up-regulated by ABA) are annotated as peroxidases. In the case
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of jasmonate and ABA, 19 genes were regulated separately by both hormones. Ten genes
were down-regulated by jasmonate, 9 of them also down-regulated by ABA (including 4
up/down or down/up regulated). The other 9 genes were up-regulated by jasmonate. Only 2
of the 9 genes up-regulated by jasmonate were similarly up-regulated by ABA. Some of the
genes regulated by ABA and jasmonate were transcription factors of the bZIP and NAC
family.

In general, a very small percentage of ABA-regulated genes was found to be regulated by
other phytohormones. Remarkably (i) nearly all genes regulated by IAA and ABA were up-
regulated by both hormones, and some of them are annotated as putative kinases, that might
be involved in signal transduction, and (ii) nearly all genes up- or down-regulated by

jasmonate were down-regulated by ABA, including some transcription factors.
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7.6

Conclusions

. A group of 680 genes of A. thaliana was found to be regulated by ABA in leaves.

Most of these genes are newly defined as regulated by ABA. Among them are the
transcription factors OBF-4 (At5g10030), bZIP (At1g42990), and the Dof factor DAG2
(At2g46590). The ABA-responsiveness of these genes was independently confirmed
via RT-PCR.

Most of the genes found to be regulated by ABA were regulated at a single time point,
and complex patterns of expression (genes regulated in at least 3 out of 5 time

points) were seldomly found.

Only 3 out of 40 transcription factors found to be regulated by ABA have been
previously reported®*®!. The responsiveness to ABA of one of them (NAC family
protein — At5g39610) common for 3 expression profiling experiments: this study, Seki
et al. 2002 and Hoth et al. 2002°*°"! was independently confirmed via RT-PCR.

Only few of the genes found to be regulated by ABA in this study were regulated by
other phytohormones such as ethylene, brassinosteroids, jasmonic acid or IAA. The
overlap between genes regulated by IAA and ABA showed that all genes regulated
by both hormones are up-regulated by ABA, and nearly all up-regulated by IAA. In
contrast, nearly all genes regulated by ABA and jasmonic acid are down-regulated by
ABA.
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Chapter 8: Biological relevance of computational predictions

The relevance of the genome-wide computational predictions was validated by
comparison with experimental results”®. The genes found to be regulated by
ABA using macroarrays (this study), together with published results on
expression profiling in leaves upon ABA treatment®“’ were taken as the
reference group. Genes predicted to be regulated by ABA by computational
analysis were compared with genes experimentally determined to be regulated
by ABA.

8.1 Reference group —ABA regulated genes found experimentally

Two articles have been published reporting expression profiling results of wild type A.
thaliana leaves stimulated with ABA. In this study, the expression profiling of around 10000
cDNAs corresponding to 4757 genes was analysed, representing about 16% of the genome.
Seki et al. 2002 presented the expression profiling of around 7,000 genes!®”, representing
about 24% of the genome. Hoth et al. 2002 detected 29,475 unique signatures using MPSS'2
and covering ideally 100% of the genome of A. thaliana®. The resulting number of genes
regulated by ABA was different for each approach. In this study 680 genes were found to be
regulated by ABA, while Hoth et al. 2002 reported 1,400 genes °°, and Seki et al. 2002
reported 245 genes. Displaying the results of the three studies in a Venn diagram showed
that 3 genes were regulated by ABA in both macro and microarrays, 46 genes were
regulated by ABA in both macroarray and MPSS, 38 genes were regulated by ABA in both
microarrays and MPSS, and only one gene was regulated by ABA independently of the
screening methodology (Figure 8-1). This was the gene At5g59320, a “lipid transfer protein 3
(LTP3)".

Microarray
: o) MPSS
Seki et al.2002 ﬁ‘ Hoth et al.2002"!

Macroarray
This study

Figure 8-1: Comparison of genes regulated by ABA in different profiling experiments. ABA-
regulated genes identified by Seki et al. 2002"°"! using cDNA microarrays, by Hoth et al. 2002"°% with
MPSS, and in this study with nylon filters

2 MPSS stands for massively parallel signature sequencing
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Reasons for the poor overlap between experiments could be manifold, and might stem from
differences in plant culture conditions, treatments, or the expression profiling method used. In
this study six-week old plants of A. thaliana cv C24 were sprayed with 100 uM ABA, a and
the cDNA library used was obtained from different tissues and plants at different
developmental stages!’®. Seki et al. 2002 used three-week old plants of A. thaliana cv
Columbia-0, grown hydroponically and stimulated with the same concentration of ABA used
in this study. The full-length cDNA library was obtained from plants or seeds subjected to
ABA treatment, drought and cold stress, and included different developmental stages!®®.
Hoth et al. 2002 used four-week old A. thaliana plants cv Landsberg, grown hydroponically
and stimulated with 50 uM ABA. Harvesting time points were also different for each
experiment, in this study the changes in gene expression were monitored at 30, 60, 90, 120
and 300 min after treatment. Seki et al. 2002 monitored the changes in gene expression 1, 2,
5, 10 and 24 hours after ABA-treatment. Finally, Hoth et al. 2002 pooled the RNA isolated 3
and 5 hours after ABA-treatment. Despite the described differences between experiments,
MPSS data and macroarray data showed more common genes than macro and microarrays.
None of the three genes found to be regulated by ABA in both macro and microarrays have
been described before as being regulated by this phytohormone. One of these genes
(At5g42530) was annotated as “expressed protein”.

Interestingly, Seki et al. 20027 reported the use of a library constructed specifically from
plants kept under stress conditions. In comparison with the results reported here and by Hoth
et al. 2002 less genes were found to be regulated by ABA when such a specialized library
was used. In addition to that, the careful analysis of the results presented by Seki et al.
2002 showed that, at least in the case of genes regulated by ABA, not each cDNA clone
corresponded necessarily to a different gene. The degree of redundancy of the library could
not be established with the supplementary data provided by the authors. Extrapolating from
the results observed in the case of ABA-regulated genes, it seems that the real number of
genes represented in the library is actually about one third of the number specified (in total
2,500 genes instead of 7,000).

The set of reference genes was complemented with a list of published ABA-regulated

genes[8,9,20,29,31 ,36,38,40,41,52,55,57,62,63,70,82,92,104,106,109,110,122,125-128,131,133,136]

Finally, the
experimentally confirmed reference group was composed of 2,174 genes. The expression of
these genes has been reported in different tissues and at different developmental stages,

nevertheless most of the expression profiling experiments were made using leaves.
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8.2 Accuracy of computational predictions

The sensitivity of the computational predictions, defined as the number of true positive genes
predicted in silico, was assessed first as the number of genes used to construct the
consensus sequences and the frequency matrices predicted subsequently computationally.
In total 50 TFBSs of A. thaliana were used to generate matrices and consensus sequences.
Seventeen out of 50 genes were subsequently reported by the pattern-based search
(consensus sequences), which is 34% of the genes used, or a sensitivity of the approach of
0.34. In the case of the matrix-based search (CISTER) 8 out of 50 genes were subsequently
reported, representing 16% of the genes used, or a sensitivity of 0.16. The number of genes
predicted by both computational programs was 1056. Only 4 out of 50 genes were initially
used to generate the frequency matrices and the consensus sequences. These were the
genes RD29AM"*? |LEA14, “alcohol dehydrogenase ADH'?? and the expressed protein
At1g16850.
It is important to note that in some cases, in the promoters of the genes selected to construct
the consensus sequences and the frequency matrices, only one ABA-related cis element
was documented. These genes will not be detected by any of the computational approaches
used, where the combination of ABA-related cis elements was evaluated.
A further test of the sensitivity of the computational predictions was carried out. The genes
experimentally determined to be regulated by ABA in this study and in other published
studies were regarded as positive genes (regulated by ABA). This list of genes was
compared with the genes predicted to be regulated by ABA by computational analysis.
Sensitivity was defined as the number of true positive genes (TP), divided by the number of
true positive and false negative genes (FN) (Equation (8-1)).
Sn = TP (8-1)
TP+ FN
In this case, true positives are predicted by computational analysis and experimentally
confirmed as ABA-regulated genes. False negatives are genes that were determined to be
regulated by ABA by experimentation, but not predicted by any of the computational
approaches used.
When the macroarray results presented in this study were compared with the computational
predictions, it was observed that:
1. The number of true positives for predictions made using consensus sequences was

143 genes. The sensitivity was 0.21, meaning that 21% of the genes regulated by

ABA were predicted by this method. Comparing the number of genes regulated by

ABA and predicted computationally at the different time points, it was found that 120

min after treatment, a higher proportion of genes found to be regulated by ABA were
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also predicted correctly. In addition, for the time point 300 min after treatment, most of
the genes found to be regulated by ABA were not computationally predicted (false
negatives).

The number of true positives for predictions made by CISTER was 73 genes. The
sensitivity was 0.11. As above, the comparison between the number of true positive
and false negative genes at different time points showed that 300 min after treatment
more false negatives were observed, while 120 min after treatment more true
positives were observed.

The number of common genes between both computational methods was 1056. The
number of true positives predicted by both methods was 23. The sensitivity in this
case was the lowest (0.03). At each time point only few genes found to be regulated

by ABA were predicted by computational analysis.

Using the reference list of experimentally confirmed ABA-regulated genes (2174 genes), the

sensitivity of the predictions showed that:

1.

Using consensus sequences, the number of true positives was 381 genes. The
sensitivity was 0.22, indicating that around 78% of the genes regulated by ABA
experimentally, were not predicted computationally.

Using CISTER, the number of true positives was 268 genes. The sensitivity was 0.12,
indicating that the number of genes regulated by ABA but not predicted by
computational analysis increases to 88%.

Taking the genes predicted by both computational methods, 97 true positive genes
were found. In this case the sensitivity was 0.04. Results are graphically shown in a

Venn diagram in Figure 8-2.

CISTER Consensus sequences

/N

Reference group

Figure 8-2: Accuracy of computational predictions. Comparison of the number of genes predicted
by CISTER, Consensus sequences, and genes experimentally confirmed to be regulated by ABA
(Reference group)
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Overall, the use of consensus sequences delivers more sensitive results than frequency
matrices. The overlap between computational methods was very small, and the number of
true positive genes even smaller.
The number of experimentally confirmed ABA-regulated genes that were not predicted by
computational analysis ranged from 78 to 97 percent. The analysis of the number of true
positive and false negative genes at different time points in the macroarray experiment
showed that during the late phase of the experiment (300 min after treatment), where only
few genes are regulated by ABA, also only few genes were predicted by computational
analysis. This result, together with the result obtained 120 min after ABA treatment, where
more true positives were found, together with the observation that 40 different transcription
factors were regulated by ABA in macroarray experiments, suggest that multiple regulatory
networks are at work during the time course of the experiment. Computational predictions
identify genes regulated by bZIP transcription factors (carrying ABRE, As1 or CE3 cis
elements), bHLH transcription factors (carrying MYB binding sites) or AP2 transcription
factors (carrying CE1 or DRE cis elements). Genes regulated by other transcription factors
after ABA treatment will not be predicted. This result reflects the poor understanding of the
temporal regulation mechanisms following ABA treatment, and the interplay of different
transcription factors and binding sites during the signal transduction process.
Computational predictions were made over the whole genome, whereas the measurements
were made over 16% of the genome, represented in the cDNA collection used. Therefore,
genes predicted computationally but not represented in the experiment, or genes predicted
but not confirmed to be regulated by ABA experimentally were also investigated.
Regarding genes predicted by any computational method, but not covered by the macroarray
experiment, the following statements can be made:
1. From 6132 genes predicted using consensus sequences, 5182 were not measured
by macroarrays (84%).
2. From 3293 genes predicted using CISTER, 2725 were not measured by macroarrays
(83%).
3. From 1056 genes that overlap between both computational methods, 875 were not
measured by macroarrays (83%)
The specificity of the computational approaches was measured taking into account the
number of true negatives (genes not predicted computationally and not confirmed to be
regulated by ABA experimentally). For this calculation, only results observed in the
macroarray experiment were considered. Specificity was calculated as:
TN (8-2)

Here, TN stands for true negatives, and FP stands for false positives. It was found that:

Sp
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1. From 4077 genes not regulated by ABA in macroarray experiments, 808 were
positively predicted using consensus sequences. In this case the specificity was 0.80.
2. In the case of CISTER, the number of false positives was 495; the specificity was
0.88.
3. In the case of the overlap between computational methods, the number of false
positives was 158; the specificity was 0.96.
Overall results showed that the number of false positives (genes predicted computationally
but not confirmed to be regulated by ABA experimentally) was low, indicating a high
specificity of the computational approaches (between 0.96 and 0.80). However, the number
of false negative genes (not predicted by computational analysis, but confirmed to be
regulated by ABA experimentally) was also very high, indicating a low sensitivity.
The high specificity of the computational approaches is reflected in the few genes predicted
to be putative ABA-regulated genes. Between 10 and 20 percent of the genes of A. thaliana
were predicted to be regulated by ABA in this study, whereas other approaches to localize
transcription factor binding sites identified between 1 and 11 MYB-binding sites, 2 and 3 G-
boxes, and 6 to 7 AP2 binding sites per gene in the A. thaliana genome!'%"].
Despite the high specificity, the low selectivity of the approaches (reflected in the high
number of false negatives) makes it impossible to determine whether every gene predicted to
be ABA-regulated would be experimentally confirmed. Unless a better model of interaction
between the different cis elements and transcription factors involved in the ABA-induced
transcriptional network became available, the selectivity of the computational predictions of
ABA-regulated genes will not increase.
The analysis of the true positive genes (predicted computationally and experimentally
confirmed) revealed that the genes Atlg21760, Atlg77000, Atlg51550, At2g40920,
At3g06380 and At3g61060, that encode proteins that contain the F-box domain—involved in
the re-direction of proteins to the ubiquitin pathway—!" were experimentally confirmed to be
regulated by ABA, and they have putative TFBSs for transcription factors activated upon
ABA treatment. This result confirmed the relevance of the regulation of components of the
proteosome in ABA signalling®?.
Other genes classified as true positives included the DRE-binding protein DREB2A
(At5g05410) and the putative DRE-binding protein At4g16750. The presence of ABA-related
TFBSs indicates that the protein DREB2A, known to bind to DRE-binding sites!’”, is directly
regulated by ABA.
Different transcription factors were found to be regulated by ABA and predicted by
computation, including members of the NAC family (Non Apical Meristem), e.g. At1g01720,
At1g32870, Atlg77450, At2g22290, At4g27410, At5g39610, At5g52880 and At5g61430.
This result is a clear indication of the relevance of the involvement of the NAC transcription

factor family in the ABA transcriptional network. Further work, intended to localize putative
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target genes for these transcription factors and to clarify the possible relationship between
cis-elements, will certainly improve the understanding of the ABA-mediated gene regulatory
network.

A large number of transcription factors belonging to the bHLH and MYB families were also
found to be regulated by ABA and predicted computationally, as well as putative ABRE-
binding transcription factors.

Different genes involved in the auxin signalling pathway were also found to be regulated by
ABA and predicted computationally to be putative targets of transcription factors activated
during ABA-signalling. These included the genes Atlgl7350, At1g48690, At2g28350,
At3g03850, At3g23030, At4g17280, At4g48690 and At5g25890. Furthermore, the results
presented in section 7.5 showed a high level of phytohormonal cross-talk between auxin and
ABA. The putative regulation of components of the auxin signalling pathway by ABA-
activated transcription factors revealed an emerging network interconnection between

components of the ABA transcriptional machinery that has not been studied in any detail yet.
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8.3

Conclusions

The comparison between different expression profiling experiments, conducted using
different A. thaliana accessions (Col-0, C24 and Landsberg) and using different
methodologies and growing conditions, showed only one gene in common.
Additionally, only few genes were comparably regulated by ABA when pairs of
experiments were examined. The large differences between experiments might stem
from differences in plant culture conditions, treatments, or the expression profiling
method used, but might also be connected in some extend with sequence
polymorphisms between accessions of A. thaliana, a common observation in coding

and non-coding genes.

Computational predictions of ABA-related cis elements showed a high specificity,
reflected in the fact that only few genes were predicted to be regulated by ABA. Only
between 4-12 percent of the genes predicted by computational analysis
corresponded to false positives. Despite the high specificity, the low selectivity of the
approaches (i.e. a large number of false negatives) clearly indicates that only a small
proportion of the ABA-regulated genes might be directly regulated by the cis elements
found in ABA-responsive genes. Other genes experimentally determined to be
regulated by ABA might be activated by other transcription factors that, in turn, could

directly or indirectly be regulated by ABA.

The analysis of the ORF and GO annotations of the genes experimentally confirmed
to be regulated by ABA revealed that different members of the NAC family of
transcription factors are regulated by ABA. Furthermore, computational predictions
revealed that the ABA-mediated transcriptional regulation of these genes might be
achieved through the ABA-related cis-elements found in their upstream sequences.
The activation/repression of these transcription factors could play a crucial role in the

transduction of the ABA-signal.

Genes belonging to the auxin signalling pathway experimentally confirmed to be
regulated by ABA and which are at the same time putative targets of transcription
factors involved in the ABA signalling pathway confirmed the close interaction

between both signalling pathways, at least at the transcriptional level.
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Chapter 9: Discussion

It is known that genes in genomes of eukaryotes are regulated by means of multiple
regulatory proteins (transcription factors), acting through specific regulatory sequences
(TFBSs). Normally, the complex networks formed by these interactions are dissected by
laborious perturbation analyses!®”. Having complete genome sequence data available on
one side, and techniques capable of monitoring simultaneously the expression of hundreds
or thousand genes on the other side, the challenge is to understand regulatory mechanisms
of all and every single gene in the genome.

Computational tools for the analysis of gene regulation are designed to speed up the process
of understanding gene regulatory mechanisms. However, the reliable prediction of TFBSs
and in particular the prediction of individual binding sites has proven to be a very difficult
task. In this study, the simultaneous identification of different ABA-related cis-elements was
used to increase predictive reliability.

The idea of using cis-elements to identify genes that respond to certain stimuli is not new. In
Drosophila melanogaster, Dorsal recognition sites were used to identify genome-wide
clusters of binding sites. The accuracy of predictions was around 34% (5 positives out of 15

genes predicted)®”

. In A. thaliana Zhang et al. 2005 used expression-profiling data to
generate ABRE and Coupling Element position weight matrices to identify ABA and abiotic
stress-responsive genes. Considering only the top scoring predictions, the accuracy was
about 67%!"*"!. It has been found that the rate of success strongly depends on the
correctness of the modelled interactions between cis-elements.

Experimentally identified cis-elements involved in ABA-regulated gene expression were used
to find genes putatively regulated by ABA over the whole genome. The outcome of this
analysis indicates that 10 to 20 percent of the genes in the A. thaliana genome might be
regulated by ABA.

Screening of upstream sequences with consensus sequences and matrices suggested that
some regulatory sequences identified in monocots might not play any regulatory role in ABA-
mediated gene regulation in A. thaliana. This finding complicates the eventual identification
of ABA-regulated genes by means of phylogenetic footprinting on ortologous genes of these
two plant species. Phylogenetic footprinting has shown to be relatively successful to reduce

0 yeast®?and humans and mouse®.

the number of falsely predicted sites in drosophilal
The two regulatory sequences that were found to play a dubious role in the regulation of
ABA-responsive genes in A. thaliana were the coupling elements CE1 and CE3. None of
these elements has been identified yet in upstream sequences of ABA-regulated genes in A.

thaliana. In this study, sequences corresponding to CE3 were seldomly found in A. thaliana
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upstream sequences. Additionally, CE3 was not found forming pairs with other ABA-related
cis-elements (using consensus sequences to identify such occurrences). The identification of
putative sequences of CE3 using frequency matrices showed the largest amount of putative
occurrences (Table 6-10). A closer look at the identified sequences showed that they have
little similarity with the consensus sequence of CE3, hence they had low scores.

CE3 is an ABA-related cis-element reported in monocots. Hobo et al. 1999"% proposed to
consider these binding sites as non-ACGT binding sites. In rice, the binding site is
recognized by a transcription factor belonging to the bZIP class of transcription factors, and
the sequence is relatively similar to ABRE (ABRE: ACGTGGC, CE3: GCGTGTC!"®)). This
sequence was under-represented in 1 kb upstream sequences (-0.46). Considering that so
far none of the ABA-responsive genes in A. thaliana has been reported to have active CE3
sequences and taking into account its absence in 1 kb upstream sequences, it is proposed
here that CE3 does not possess any regulatory function in A. thaliana, unlike in monocots.
Sequences corresponding to the coupling element CE1 were found very often in A. thaliana
upstream sequences. Additionally, the element was found to form pairs with other ABA-
related cis-elements. However, the cis-elements of a pair were separated by long distances.
At least in the case of the pairs between ABRE and CE1 the distance between cis-elements
was normally larger than 100 bp. In monocots, and particularly in barley, it was shown that
the interaction between ABRE and CE1 strongly depends on the spacer distance and the
orientation of the elements!"”". It should be noted that ABRE-binding proteins are bZIPs,
capable of forming homo- and heterodimers to bind to their target sequence and thereby
induce transcription!'®°"'**. The ABRE-CE1 complex must be in a particular orientation and
distance to confer ABA-induction, and the distance is always relatively short (maximum 30
bp) suggesting a direct interaction between the transcription factors!'®. It is very unlikely that
large distances between ABRE and CE1 binding sites may lead to a direct interaction
between transcription factors, unless in A. thaliana unlike in monocots, the interaction
between ABRE and CE1 is mediated by other protein(s) linking the transcription factors.
Given the large distance found between ABRE and CE1, a direct interaction between
transcription factors can be discarded.

The results of the computational analyses led to the conclusion that in A. thaliana the
coupling element of ABRE is ABRE itself. This conclusion is based on the following findings:
(i) pairs of ABRE cis-elements were over-represented in upstream sequences compared with
random sequences; (ii) the frequency of the pairs was larger than the frequency of the cis-
element alone; and (iii) the distance between cis-elements was in more than 50% of the
cases shorter than 50 bp. According to these results, it is plausible that homodimers instead
of heterodimer complexes bind to ABRE cis-elements to confer ABA responsiveness in A.

thaliana.
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DRE has been described as a coupling element of ABRE only in A. thaliana!*?. Here, it was
found that very small and large distances between cis-elements were consistently avoided in
upstream sequences. In addition, computational analysis revealed that the gene DREB2A,
known to bind DRE binding sites might be target of transcription factors involved in the ABA-
signalling pathway.

MYB binding sites were significantly over-represented in A. thaliana upstream sequences,
and the distance between elements lead to the conclusion that the transcription factors that
recognize both kinds of sequences do not interact directly but might very likely be part of a
larger regulatory complex. Different transcription factors belonging to the bHLH transcription
factor family (which binds MYB binding sites) and to the MYB family were found to be
regulated by ABA, and to be targets of ABA-regulated transcription factors (the latter
according to computational results).

According to the results observed in the computational screenings, the following interactions
between ABA-related cis-elements are proposed:

1. Homodimers of ABRE-binding proteins recognize ABRE binding sites in ABA-
responsive genes. Observations in mammals pointed out that proteins similar to
ABRE-binding proteins (CREB) are constitutively bind to their target promoters and
being activated by phosphorylation. Phosphorylation does not change the DNA
binding properties, but stimulates the interaction with other proteins, including the
transcriptional machinery!'®.. A similar mechanisms might be found in A. thaliana, and
it is proposed that the phosphorylation of ABRE-binding proteins might be achieved
by kinases of the ABA-signalling pathway.

2. DRE and MYB binding proteins transcriptionally regulated by components of the ABA
signalling pathway bind to their target promoters after transcriptional induction by
ABA-regulated transcription factors. In the case of DRE, DRE-binding proteins have
been shown to be induced independently of ABA after osmotic stress. ABA-mediated
regulation of genes carrying DRE and MYB binding sites requires protein synthesis
and perhaps also the accumulation of transcriptional activators and other signalling
components such as kinases and phosphatases. Once MYB or DRE-binding proteins
have been synthesized, it is very likely that MYB or DRE binding proteins form higher-
order protein complexes together with ABRE-binding proteins. The distance found
between cis-elements might give some indications of the size of the proteins
complexes form.

Some experimental evidence from this study and from previous studies suggest that ABRE
might interact with other ABA-related cis-elements in high-order protein complexes, that

induction of ABA-regulated genes mediated by MYB and DRE requires protein synthesis,
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and that ABRE-binding proteins might be constitutively bound to their target sequences. This

is the evidence mentioned above:

1. The activation of the ABA-induced gene RD29A from A. thaliana requires ABRE and
DRE cis-elements. Activation mediated by ABA is a slow activation, suggesting that
protein synthesis is involved’. Both ABRE-binding proteins and DRE-binding
proteins are synthesised after ABA accumulation!”. In this study, it was found that
the expression of the gene DREB2A is up-regulated after ABA-treatment

2. The expression of the gene RD22 from A. thaliana is mediated by the interaction of
MYB and MYC binding sites, where the recognized MYC-binding site is identical to
the ABRE-binding site. The induction of this gene, and other genes with MYB binding
sites in their promoter sequences requires protein synthesis®>l.

3. In this study, different members of the bHLH and MYB family of transcription factors
were found to be regulated by ABA and are putative targets of ABA-regulated
transcription factors. Once these transcription factors are induced and transcribed,
they can bind to their target promoter sequences, and activate the expression of other
ABA-regulated genes.

4. Very few members of the bZIP family of transcription factors (that bind to ABRE)
were induced after ABA treatment and/or were computationally predicted to be
targets of ABA-activated transcription factors, suggesting that ABRE-binding proteins
are bound to their target promoters, and are activated by components of the ABA

signalling pathway such as kinases, without the involvement of protein synthesis.

9.1 Expression profiling of leaves upon ABA stimulus

The action of ABA can be grouped into two categories: (i) avoidance mechanisms, which are
activated very early, trying to minimize the exposure of the plant to stress, and (ii) tolerance
mechanisms, which allow the plant to withstand the stress. During the second phase the
plant accommodates to the new environmental conditions®®..

The avoidance mechanisms result in changes at the cytoplasmic level and includes an
increased expression of specific genes to overcome the new adverse situation. In the case of
osmotic stress or increasing concentrations of ABA, among the genes induced are those that
encode chaperones, LEA proteins, enzymes for osmolyte biosynthesis, detoxification
enzymes, and gene products involved in the transduction of the signal such as protein
kinases, phosphatases, transcription factors and enzymes in  phospholipid
metabolism*'3*'% |n parallel, the expression of some genes that need to be inhibited or

which are not necessary in the ABA response are repressed.
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In this study it was observed that at the beginning of the experiment (30 and 60 min after
treatment) most of the genes were up-regulated, and only a small percentage was
repressed. The large number of up-regulated genes might be related to the “avoidance
mechanism” described.

After 90 min of treatment, most of the regulated genes were down-regulated, including some
previously up-regulated genes. Five hours after treatment, only slight changes in gene
expression were detected, and only about 15% of all genes found to be regulated by ABA
were regulated at that specific time point. It was considered that early responsive genes
where those regulated 30 and 60 min after treatment, whereas late responsive genes were
those regulated after 90 min of treatment. It might be possible that the transition from
avoidance to tolerance mechanisms starts 90 min after treatment.

From the 680 ABA-regulated genes, about one third was annotated as expressed proteins
(177). Their potential function, according to the GO annotation!”), could be in “cell
communication”, “ion transporter activity”, “kinase activity”, “metabolism”, “nucleic acid
binding”, “hydrolase activity”, “secretion” or “protein transport’. Further detailed
characterisation of these genes is needed.

The analysis of the upstream sequences of genes found to be regulated by ABA showed that
ABRE and MYB binding site were among the most highly over-represented cis-elements.
Both cis-elements have been experimentally confirmed as being important in the regulation
of gene expression mediated by ABA in A. thalianal®*'6:7577:78.101,102,105,118,135,137]

Other over-represented cis-elements in upstream sequences were some light-dependent
regulatory elements, like PIATGAPB and LREN. This suggests that genes putatively
regulated by light (involved in the process of photosynthesis!'®"!) might also be regulated by
ABA. Some of these genes were down-regulated (Group 1), and some up- or down-regulated
in the late phase of the experiment (Group 4). This result is in good agreement with the
results presented by Wu et al. 2001 who showed that although photosynthesis is
inhibited under stress, proteins involved in the process might be up- or down-regulated in
response to stress.

The over-representation of ethylene-responsive elements and cis-elements conferring auxin
inducibility was not surprising, and underlined the importance of hormone cross-talk. Cis-
elements conferring responsiveness to ethylene and auxin were found to be over-
represented in genes grouped as “transiently down-regulated” (Group 5), “transiently up-
regulated” (Group 8) and genes that showed oscillating patterns (Group 9).

The interaction between auxin, ethylene and ABA has been already described, mainly the
interaction between ethylene and ABA. It is already evident that interactions among
signalling pathways for different hormones may occur through kinases (e.g.MAPKSs) or other

signalling components®®. Some signalling components could have different targets in
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different signalling pathways, so that certain components could act as nodes for information
transfer between various pathways, functioning as integrators of different signalst®" !,
However, little is known about transcriptional regulation of genes that act in different
signalling pathways. It is becoming evident that genes that act in different pathways might
have binding sites for transcription factors activated by different hormones in their promoter
sequences, to allow the integration of the signals at multiple levels. If the interaction between
different cis-elements involved in apparently separate hormone responses could be
established, and the current knowledge about the relations between transcription factors and
binding sites improves, it would be possible in the future to distinguish direct from indirect
interactions of signalling pathways in hormone responses.

With the present data the exact mechanism of regulation could hardly be established, but it
can be speculated that:

1. The bZIP transcription factor up-regulated after 60 min of treatment (At1g42990)
could lead to the differential expression of some late responsive genes, including the
down-regulation of the other two bZIP transcription factors (At4g36730 and
At5g10030) 90 min after treatment. The over-representation of ABRE cis-elements'
in the upstream sequences of genes belonging to groups 4 and 5 supports this
hypothesis.

3. The expression pattern found for the Dof transcription factors At2g46590 (DAG2) and
At3g61850 (DAGL1), and the over-representation of Dof-binding sites in genes of the
groups 6 and 7 suggest that one factor may down-regulate the other. When one
transcription factor was up-regulated, the other was down-regulated and vice versa.
Likewise, the Dof At3g61850 up-regulated 60 min after treatment might be
responsible for the up-regulation of the genes in group 7, 90 min after treatment. On
the one hand, plants that constitutively over-express or had little or no expression
(due to RNA interference) showed no altered expression of the other transcription
factor in leaves (Dr. Maria Ines Zanor, personal communication). However, on the
other hand, it was proposed that during seed germination the expression of both
genes in maternal tissue plays opposite regulatory roles, since mutations on these

genes caused opposite phenotypes!* ™.

9.2 Comparative analysis of experimental and computational data

The comparison of in silico predictions with experimental results showed a small overlap of

genes predicted by either computational method, and regulated by ABA. It was not expected

*ABRE elements are recognized by bZIP transcription factors
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that in silico predictions and experimental data would coincide perfectly. However, it should
be mentioned that expression profiling experiments showed also a very small overlap. Only
one gene was found to be regulated by ABA in three expression profiling experiments. Other
genes showed contradictory results, and others were found to be regulated in only one
experiment.

It was found that the selectivity of the computational methods used was very high (between
0.8 and 0.9). Only a fraction of genes of A. thaliana were predicted to be putative regulated
by ABA. However, the sensitivity of the approach (identification of genes experimentally
regulated by ABA) was very low. The problems to identify more genes regulated by ABA
seems to be directly related to the fact that ABA signalling involves the activation of a large
and diverse amount of transcription factors that recognize different kind of transcription
factors binding sites. In this study, only a fraction of genes regulated by ABA was detected in
silico, since only few transcription binding sites were represented by either consensus
sequences or frequency matrices.

So far the identification of ABA-regulated genes has been focused on the identification of two
cis-elements in promoter regions, ABRE and CE1. The variety of cis-elements over-
represented in the upstream region of ABA-regulated genes, together with the wide range of
transcription factors up-regulated as result of the stimulation with ABA, showed that the
network of interactions is far more complex. The lack of information about recognition
sequences of A. thaliana transcription factors, together with the inherent difficulties to
precisely define their target genes, allows hypothesizing that there are many functionally
unconfirmed connections between cis-elements.

According to the results of the overlap between computational predictions and experimental
results, it is proposed that genes putatively regulated by ABA might also contain in their
promoter regions binding sites for the NAC family of transcription factors, apart from the sites
considered here.

Another interaction between cis-elements that should be studied in more detail in the future
is the possible interaction between ABA-related and auxin-related cis-elements, since a large
overlap between both signalling pathways is becoming evident.

Based on the observed results, it becomes evident that the regulation of ABA-
induced/repressed genes in A. thaliana is mediated by some of the cis-elements considered
here. However, other cis-elements included in this study, such as the cis-elements As1 and
CE3 might affect the results critically reducing the specificity. In addition, some cis-elements
not included here might improve the detection of ABA-related cis-elements (e.g. NAC-binding

sites or auxin-binding sites).
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Chapter 10: Conclusions

The genome-wide screening for the identification of cis-regulatory elements that confer ABA-
responsiveness revealed that between 10 and 20 percent of the annotated genes in A.

thaliana might be regulated by ABA.

It was possible to identify some pairs of ABA-related cis-elements significantly over-
represented in A. thaliana upstream sequences. The in silico analysis revealed that in the
case of ABA-mediated gene regulation in A. thaliana, some interactions between cis-

elements observed in monocotyledonous species might not be active.

It was predicted computationally that the most prominent cis-elements found in ABA-
responsive genes in A. thaliana are ABRE, DRE and MYB binding sites. Plausible
interactions between these cis-elements might involve the formation of homodimers between
ABRE binding proteins. Between ABRE and DRE, and ABRE and MYB might involve the
formation of protein complexes. It is speculated in this study that the distance between

interacting cis-elements give some hints about the size of the protein complexes involved.

The combination of in silico and experimental approaches revealed that with the present
knowledge about the putative interactions between cis-elements, only a small fraction of the
interconnections between cis- and trans- acting elements are recovered. Some guidelines
about putative new interactions between cis-elements might be interactions between ABA-
and auxin-responsive elements. As well as between ABA-related cis-elements and binding

sites of the NAC family of transcription factors.

In future work, the in silico analysis of the rice genome will provide some insights about

differences between the most important ABA-related cis-elements if any.
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Summary

In silico Identification of Genes Regulated by Abscisic Acid in

Arabidopsis thaliana (L.) Heynh.

Summary

Abscisic acid (ABA) is a major plant hormone that plays an important role during plant growth
and development. During vegetative growth ABA mediates (in part) responses to various
environmental stresses such as cold, drought and high salinity. The response triggered by
ABA includes changes in the transcript level of genes involved in stress tolerance. The aim of
this project was the In silico identification of genes putatively regulated by ABA in A. thaliana.
In silico predictions were combined with experimental data in order to evaluate the reliability
of computational predictions.

Taking advantage of the genome sequence of A. thaliana publicly available since 2000, 1 kb
upstream sequences were screened for combinations of cis-elements known to be involved
in the regulation of ABA-responsive genes. It was found that around 10 to 20 percent of the
genes of A. thaliana might be regulated by ABA.

Further analyses of the predictions revealed that certain combinations of cis-elements that
confer ABA-responsiveness were significantly over-represented compared with results in
random sequences and with random expectations. In addition, it was observed that other
combinations that confer ABA-responsiveness in monocotyledonous species might not be
functional in A. thaliana. It is proposed that ABA-responsive genes in A. thaliana show pairs
of ABRE (abscisic acid responsive element) with MYB binding sites, DRE (dehydration
responsive element) or with itself.

The analysis of the distances between pairs of cis-elements suggested that pairs of ABREs
are bound by homodimers of ABRE binding proteins. In contrast, pairs between MYB binding
sites and ABRE, or DRE and ABRE showed a distance between cis-elements that suggested
that the binding proteins interact through protein complexes and not directly.

The comparison of computational predictions with experimental data confirmed that the
regulatory mechanisms leading to the induction or repression of genes by ABA is very
incompletely understood. It became evident that besides the cis-elements proposed in this
study to be present in ABA-responsive genes, other known and unknown cis-elements might
play an important role in the transcriptional regulation of ABA-responsive genes. For
example, auxin-related cis elements, or the cis-elements recognized by the NAM-family of
transcription factors (Non-Apical meristem).

This work documents the use of computational and experimental approaches to analyse

possible interactions between cis-elements involved in the regulation of ABA-responsive
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Summary

genes. The computational predictions allowed the distinction between putatively relevant
combinations of cis-elements from irrelevant combinations of cis-elements in ABA-
responsive genes. The comparison with experimental data allowed to identify certain cis-
elements that have not been previously associated to the ABA-mediated transcriptional
regulation, but that might be present in ABA-responsive genes (e.g. auxin responsive
elements). Moreover, the efforts to unravel the gene regulatory network associated with the
ABA-signalling pathway revealed that NAM-transcription factors and their corresponding

binding sequences are important components of this network.
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Appendix 1: Binding sites and frequency matrices

1. ABRE
1.1. Binding sites
Organism Gene Sequence Reference
H. vulgare HVA22 gccACGTacac [16]
H. vulgare HVAL CCtACGTggcg [16]
H. vulgare HVA2 cgcACGTgtcg [15]
Z. mays RAB17 CgtACGTgtac [15]
T. aestivum EM cacACGTgccg [15]
C. plantagineum CDET27-45 ggcACGTatgt [15]
O. sativa RAB16A CgtACGTggcg [15]
O. sativa RAB16D CgtACGTggct [15]
L. esculentum LE25 aaaACGTgtca [15]
A. thaliana RAB18 attACGTgtcc [15]
O. sativa RAB16B tacACGTccct [15]
O. sativa RAB16C tacACGTaccc [15]
O. sativa RAB16C cacACGTcctt [15]
0. sativa RAB16C catACGTggcg [15]
Z. mays RAB18 gccACGTgggc [4]
Z. mays RAB18 tccACGTctct [4]
O. sativa OSEM CgQtACGTgtcg [9]
H. vulgare HVA1 CcCctACGTggcg [9]
O. sativa RAB17 gagACGTggcg [3]
O. sativa RAB17 cacACGTcccg [3]
O. sativa RAB17 CgtACGTgtac [3]
O. sativa RAB17 tgtACGTgctg [3]
G. hirsutum LEA D-7 gatACGTagttt [2]
G. hirsutum LEA D-19 CttACGTggat [2]
G. hirsutum LEA D-34 gttACGTgtta [2]
G. hirsutum LEA D-1113 tatACGTggca [2]
A. thaliana RD29B taaACGTggac [22]
A. thaliana RD29B CgtACGTgtca [22]
A. thaliana CggACGTgtcg [8]
A. thaliana gcgacACGTac [8]
A. thaliana ATMYB74 aggacACGTaa [7]
A. thaliana ATMYB102 gggacACGTat [7]
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ABRE binding sites - 1

1.2.

A. thaliana AT1G51090 atgACGTgtat [12]
A. thaliana RD29A catACGTgtcc [12]
A. thaliana COR15A tacACGTggcc [12]
A. thaliana COR15A gccACGTgtaa [12]
A. thaliana COR15A ttcACGTgtat [12]
A. thaliana CORI15A aatACGTgtaa [12]
A. thaliana AT1G01470 gtcACGTgttg [12]
A. thaliana AT1G01470 tatACGTgtct [12]
A. thaliana AT1G01470 tgtACGTgtga [12]
A. thaliana HVA22D cacACGTggcg [12]
A. thaliana HVA22D tcgACGTqgtgg [12]
A. thaliana XERO2 aatACGTgttg [12]
A. thaliana At4g01020 ggaACGTgtaa [12]
A. thaliana At4g01020 agcACGTgtgt [12]
A. thaliana At4g01020 attACGTgtct [12]
A. thaliana At2g15320 ctaACGTgtta [12]
A. thaliana At2g15320 aagACGTggtg [12]
A. thaliana At3g46640 ccaACGTggac [12]
A. thaliana At3g46640 tccACGTggct [12]
A. thaliana At3g46640 atgACGTgttg [12]
A. thaliana Hos1 atcACGTgtcc [12]
A. thaliana At3g50960 aatACGTgttg [12]
A. thaliana At1g27730 gaaACGTgtac [12]
A. thaliana At1g27730 cacACGTgtac [12]
A. thaliana ERD7 ttaACGTggca [12]
A. thaliana ERD7 aagACGTggat [12]
A. thaliana PDC1 tatACGTggga [12]
A. thaliana PDC1 tctACGTgtat [12]
A. thaliana At4g46768 agaACGTgtca [12]
CONSENSUS nryACGTgtm
ABRE_PSMF

A (14 23 8 61 0 3 0 3 0 18 13

C |20 11 19 0 61 0 3 4 7 27 14

G |12 16 10 0 O 58 0 54 18 6 19

T \15 11 24 0 O O 58 0 36 10 15
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2. Asl

2.1.

2.2.

Binding sites

Asl _PSFM

Organism Sequence Reference
A. thaliana tgACGtcA [14]
CaMV taACGtaa [11]
tgACGaaa [18]
N. tabacum taAGCtaa [11]
Agrobacterium tgACG [18]
tgACGtc [18]
N. tabacum ttACGcaa [11]
N. tabacum ttAGCtaa [11]
soybean ttACGtaa [11]
A. thaliana ttATGtca [11]
CaMV tgACGtaa [11]
Agrobacterium aaACGtaa [11]
N. tabacum taACGtca [11]
A. thaliana CtACGtca [11]
CONSENSUS | tdACGtaa
A 14 0 0 1 8 12
C 0 11 2 1 5 O
G 0 2 12 0 0 O
T 12 0 1 0 11 0 O
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3. CES

3.1.

3.2.

Binding sites
Organism Gene Sequence Reference
H. vulgare HVAL cgCGTgtcctc [16]
Z. mays RAB18 cgCGCectcctc [3]
O. sativa OSEM gaCGCgtgtcg [9]
H. vulgare HVAl aaCGCgtgtcc [9]
O. sativa RAB16B gcCGCgtggca [9]
O. sativa mutant seq gaCGCgtggcc [9]
O. sativa LPT2 aCGCgtgg [5]
O. sativa RAB16A ccCGCcgcgct [13]
O. sativa RAB16B caCGGcgcgct [13]
O. sativa RAB16C ccCGGcegcegct [13]
O. sativa RAB16D ggCGCcgcgct [13]
O. sativa RAB16D acCGCcgcgcee [13]
O. sativa OSEM gcGGCctcgcee [8]
CONSENSUS smCGCstcgcy
CE3_PSFM
A(25 0 0 0 O0O0O0OO0TO0TI1
c|5512 0 10 7 0 8 2 10 6
G|53 1 13 2 6559 01
T{0O0O O O 1 08 0 2 2 4
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4. DRE

4.1.

DRE binding sites

Organism Gene Sequence Reference
A. thaliana COR15A ggCCGACctc [19]
A. thaliana COR15B ggCCGACctc [19]
A. thaliana COR78-1 taCCGACat [19]
Z. mays RAB17 aaCCGAGac [3]
Z. mays RAB17 caCCGACqgc [3]
A. thaliana RD29A taCCGACat [22]
A. thaliana RD29A taCCGACat [22]
A. thaliana RD17 taCCGACtt [22]
H. vulgare HVA1l tgCCGACgc [22]
A. thaliana CORI15A ggCCGACat [23]
A. thaliana KIN1 taCCGACat [23]
A. thaliana At1g16850 tgCCGACtc [23]
A. thaliana RD29A gaCCGACta [23]
A. thaliana RD29A agCCGACac [23]
A. thaliana RD17 gaCCGACat [23]
A. thaliana RD17 agCCGACca [23]
A. thaliana At2g42530 ggCCGACct [23]
A. thaliana At2g15970 taCCGACat [23]
A. thaliana KIN2 taCCGACat [23]
A. thaliana ERD10 gaCCGACat [23]
A. thaliana ERD10 tgCCGACqgt [23]
A. thaliana At1g51090 cgCCGACat [12]
A. thaliana At1g51090 agCCGACat [12]
A. thaliana CORI15A ggCCGACct [12]
A. thaliana COR15A gaCCGACag [12]
A. thaliana At1g01470 caCCGACqgt [12]
A. thaliana At1g01470 gaCCGACitt [12]
A. thaliana At1g01470 gaCCGACca [12]
A. thaliana HVA22D caCCGACCg [12]
A. thaliana HVA22D gaCCGACqgt [12]
A. thaliana HVA22D caCCGACct [12]
A. thaliana XERO2 caCCGACqgt [12]
A. thaliana XERO2 gaCCGACqgt [12]
A. thaliana At1g01020 caCCGACat [12]
A. thaliana At1g01020 caCCGACtt [12]
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DRE binding sites - 1

A. thaliana At1g01020 aaCCGACaa [12]
A. thaliana At2g15320 agCCGACat [12]
A. thaliana At29g15320 agCCGACct [12]
A. thaliana At3946640 cgCCGACqgg [12]
A. thaliana At3946640 taCCGACat [12]
A. thaliana At3g46640 aaCCGACct [12]
A. thaliana HOS1 tgCCGACItt [12]
A. thaliana HOS1 taCCGACtt [12]
A. thaliana HOS1 tgCCGACct [12]
A. thaliana At3g50960 gaCCGACqgt [12]
A. thaliana At3g50960 ggCCGACat [12]
A. thaliana At3g50960 caCCGACqgt [12]
A. thaliana FP6 caCCGACqgt [12]
A. thaliana FP6 taCCGACct [12]
A. thaliana FP6 agCCGACct [12]
A. thaliana ERD7 gaCCGACcg [12]
A. thaliana ERD7 gaCCGACca [12]
A. thaliana PDC1 taCCGACat [12]
A. thaliana At1g35300 tgCCGACat [12]
A. thaliana At4g14000 gaCCGACtt [12]
A. thaliana At4g14000 taCCGACcg [12]
A. thaliana At4g14000 agCCGACta [12]
A. thaliana At4g14000 agCCGACca [12]
A. thaliana At4g14000 taCCGACtg [12]
A. thaliana At4g15910 caCCGACct [12]
A. thaliana At4g46768 ggCCGACat [12]
A. thaliana At4946768 gaCCGACct [12]
CONSENSUS kaCCGACmt
4.2. DRE_PSFM

A 11 39 0 0 0 62 0 22 7

C 12 0 62 62 0 0 61 19 5

G 20 23 0 0 62 0 1 11 6

T 19 0 0 0 O O O 10 44
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5.1.

MYB
MYB binding sites
Organism Gene Sequence Reference
A. thaliana RD22 tcAACCa [1]
A. thaliana attAACTg [10]
A. thaliana gtcTAACC [10]
cccAACTg [20]
A. thaliana At5g44420 attAACTa [1]
A. thaliana At5g44420 gttAACTa [1]
A. thaliana Atlg75830 gctAACCa [1]
A. thaliana Atlg75830 ttaAACCa [1]
A. thaliana Atlg75830 cCctAACCa [1]
A. thaliana At2g25510 ttaAACCa [1]
A. thaliana At3g03270 agaAACCa [1]
A. thaliana At3g03270 ccaAACCa [1]
A. thaliana Atlg77120 ataAACCa [1]
A. thaliana Atlg77120 tatAACCa [1]
A. thaliana At5g25980 CtcAACGg [1]
A. thaliana At5925980 actAACCa [1]
A. thaliana At5925980 gcaAACCa [1]
A. thaliana At3g14210 CttAACTg [1]
A. thaliana At5g19550 attAACCa [1]
A. thaliana At5g19550 cCctAACCa [1]
A. thaliana At1g52400 tctAACTg [1]
A. thaliana At1g52400 actAACCa [1]
A. thaliana At4g21830 ttaAACCa [1]
A. thaliana At4g21830 catAACCa [1]
A. thaliana At4g08870 ccaAACCa [1]
A. thaliana At4g08870 ataAACCa [1]
A. thaliana At4g08870 tctAAACt [1]
A. thaliana At1g07920 accAACGg [1]
A. thaliana At1g07920 ttaAACCa [1]
A. thaliana At1g07920 gtaAACCa [1]
A. thaliana Atlg07920 gctAACCa [1]
A. thaliana KIN2 ctaAACCa [1]
A. thaliana KIN2 actAACCa [1]
A. thaliana At1g31580 gttAACCa [1]
A. thaliana At1g31580 CCtAACTg [1]
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MYB binding sites - 1

A. thaliana At2g28000 tctAACCa [1]
A. thaliana At2g28000 atcAACGg [1]
A. thaliana At2g28000 gatAACCa [1]
A. thaliana At5g42530 ccaAACCa [1]
A. thaliana At5g42530 ccaAACCa [1]
A. thaliana At5g24770 ttaAACCa [1]
A. thaliana At5g20830 ataAACCa [1]
A. thaliana At5920830 gctAACCa [1]
A. thaliana At2g19590 CCtAACGg [1]
A. thaliana At2g25510 ctaAACCa [1]
A. thaliana At4g08870 ttaAACCa [1]
A. thaliana At4g08870 agtAACCa [1]
A. thaliana At4g08870 CcCtAACCa [1]
A. thaliana At5g25980 gtaAACCa [1]
A. thaliana At5g25980 tctAACCa [1]
A. thaliana At5g25980 ataAACCa [1]
A. thaliana At3g14210 ccaAACCa [1]
A. thaliana At1g31580 CtcAACTg [1]
A. thaliana At1g31580 ataAACCa [1]
A. thaliana Atlg77120 tcaAACCa [1]
A. thaliana Atlg77120 gtaAACCa [1]
A. thaliana At2g03770 tctAACCa [1]
A. thaliana At3g57050 CttAACCa [1]
A. thaliana At3g57050 acaAACCa [1]
A. thaliana At3g57050 gcaAACCa [1]
A. thaliana At3g29930 acaAACCa [1]
A. thaliana At3g57050 CttAACTg [1]
A. thaliana RD22 tggTTAGC [1]
A. thaliana MYB74 cagTTGAC [1]
P. hybrida acaTTTGa [17]
P. hybrida aagTTAGt [17]

tccAAACg [21]

aatTAACt [21]
A. thaliana RD29B gagCAACt [20]

attTAACt [6]

CONSENSUS mywAACCa
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5.2.

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

MYB_PSFM
A 21 7 29 62 65 8 2 49
C 20 31 7 1 1 60 52 3
G 13 3 4 0 0 1 7 12
T 16 29 30 7 4 1 9 6
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Appendix 2: Combinations of cis-elements. CISTER results. Cis-elements per
cluster. Number of clusters k=60. k=cluster number. n=cis-elements per cluster. Cells shaded in
grey indicate that at least one cis-element of the type was observed in that cluster.is grey shaded.

k| n | ABRE | As! CET CES | DRE | MYVE k| n | ABRE | Ast CE CE3 | DRE | MYB
1 13 11 &
2 M 2 N
i1 & il 8
4 N 4 3
il ¥ 5 W
Bl 3 Bl B
M 71 3
8 0 g 2
5 182 i1 2
0 4 LU
11 B 11 46
12] 210 2] 53
13 3 13 X
4 ¥ 4 3
18 27 B ¥
B &7 B X
78 17 &3
|z LI
18 1% [EI
0 M 0 A
20 2 7
e AR
A7 4 A
4| 153 4 1
L LIPS
i b N
2 18 1k
i L
H A B 5
a1 0N

141



	Titlepage
	Table of contents
	List of abbreviations and Symbols
	List of common and scientific names of plants

	1. Introduction
	1.1 Concepts in gene regulation
	1.1.1 Transcription factors
	1.1.2 Representation of transcription factor binding sites
	1.1.3 Identification of known cis-elements in DNA sequences

	1.2 ABA signalling in plant development and growth
	1.3 ABA-related cis-elements

	2. Aim of this work
	3. Materials
	3.1 Bioinformatics
	3.2 Molecular biology
	3.2.1 Chemical reagents and enzymes
	3.2.2 Buffers and solutions
	3.2.3 Plant material and growth conditions
	3.2.4 Primers


	4. Methods
	4.1 Bioinformatics
	4.1.1 Construction of datasets
	4.1.2 Nucleotide and oligonucleotide composition
	4.1.3 List of known cis-elements
	4.1.4 Frequency matrices and consensus sequences
	4.1.5 Pattern-based search
	4.1.6 Matrix-based screening
	4.1.6.1 MotifScanner
	4.1.6.2 CISTER


	4.2 Molecular biology
	4.2.1 Sterilization of seeds
	4.2.2 Hormone treatment
	4.2.3 Isolation of RNA
	4.2.4 Spectrophotometric determination of RNA concentration
	4.2.5 DNase I digestion
	4.2.6 cDNA synthesis
	4.2.7 Polymerase chain reaction (PCR)
	4.2.8 Real-time PCR (RT-PCR)
	4.2.9 DNA array data analysis


	5. Analysis of intergenic sequences
	5.1 A. thaliana intergenic regions
	5.2 Characterisation of 1 kb upstream sequences
	5.2.1 Oligonucleotide composition
	5.2.2 Oligonucleotide composition of ABA-related cis-elements

	5.3 Conclusion

	6. Computational prediction of genes putatively regulated by ABA
	6.1 Generation of consensus sequences and matrices
	6.2 Ratio of representation of the consensus sequences
	6.3 Pattern-based search
	6.3.1 Pairs of ABA-related cis-elements in 1 kb upstream sequences
	6.3.2 Number of genes that showed pairs of ABA-related cis-elements in 1 kb upstream sequences
	6.3.3 Distance between ABA-related cis-elements

	6.4 Matrix-based search
	6.4.1 MotifScanner
	6.4.2 CISTER

	6.5 Conclusions

	7. Expression profiling in A. thaliana leaves after abscisic acid treatment
	7.1 General strategy
	7.2 Biological / technical variation
	7.3 ABA-regulated genes
	7.3.1 Time-dependent analysis of genes regulated by ABA
	7.3.2 Functional groups
	7.3.3 Cis-elements in the upstream regions of ABA-regulated genes
	7.3.4 Transcription factors regulated by ABA

	7.4 Independent confirmations via RT-PCR
	7.5 Cross-talk with other hormone signals
	7.6 Conclusions

	8. Biological relevance of computational predictions
	8.1 Reference group –ABA regulated genes found experimentally
	8.2 Accuracy of computational predictions
	8.3 Conclusions

	9. Discussion
	9.1 Expression profiling of leaves upon ABA stimulus
	9.2 Comparative analysis of experimental and computational data

	10. Conclusions
	11. References
	Summary
	Appendix
	1. Binding sites and frequency matrices
	1. ABRE
	1.1. Binding sites
	1.2. ABRE_PSMF

	2. As1
	2.1. Binding sites
	2.2. As1_PSFM

	3. CE3
	3.1. Binding sites
	3.2. CE3_PSFM

	4. DRE
	4.1. DRE binding sites
	4.2. DRE_PSFM

	5. MYB
	5.1. MYB binding sites
	5.2. MYB_PSFM

	References

	2. Combinations of cis-elements




