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Abstract: We consider infinite-dimensional diffusions where the interaction between the co-
ordinates has a finite extent both in space and time. In particular, it is not supposed to be
smooth or Markov. The initial state of the system is Gibbs, given by a strong summable
interaction. If the strongness of this initial interaction is lower than a suitable level, and if
the dynamical interaction is bounded from above in a right way, we prove that the law of the
diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main
tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the
dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.
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1 Introduction

In this paper we study propagation of Gibbsianness for a class of infinite-dimensional diffusions with
general space-time interaction. The diffusion X = (Xi(t))t≥0,i∈Zd solves the Stochastic Differential Equa-
tion (5) where the dynamical interaction splits into a suitable self-interaction and a bounded (possibly)
non-regular space interaction with time memory.

Diffusions with memory, such as stochastic delay equations are indeed very useful for stochastic mod-
eling e.g. in biomathematics, mathematical finance or physics, where delays in the dynamics can represent
memory, inertia in financial systems or time-delayed response of physical systems (see e.g. [DvGVW95],
[HV05], [AHMP07], [WSB04] or [TP01]).

Recall that simple transformations of Gibbs measures may not preserve the Gibbsianness property.
The phenomenon was identified by van Enter, Fernandéz and Sokal in [VEFS93] and, since then, an
extensive effort has been made to find various situations where such pathologies may arise. An example
of a transformation which could yield non-Gibbs measures is time-evolution. More precisely, consider a
system of interacting particles (or spins) living on a certain space S and distributed at time t = 0 according
to some Gibbs measure ν. It may happen that, although the system converges, as time goes to infinity,
towards another Gibbs measure µ, under certain conditions on ν and µ, there exists a period of time where
the time-evolved measure is not Gibbs any more, since an associated absolutely summable interaction
does not exist. Such unexpected behavior was pointed out in the following cases: for discrete state space
S and spin-flip dynamics in [VEFHR02, VEEIK12], in the mean-field set-up, see [KLN07, EK10], for
Markovian diffusions on circles, called planar rotors, in [VER08, VER09] and for continuous unbounded
spins following independent Ornstein-Uhlenbeck dynamics, see [KR06]. Note that dynamical Gibbs-non-
Gibbs transitions have also been investigated from a large-deviation point of view in [VEFHR10].

Here, on the contrary, we are interested in the conservation of Gibbsianness regime for particles living
in continuous state spaces. We search for conditions which assure that the time-evolved measure of a
system of interacting particles starting from a Gibbs distribution stays Gibbsian during its whole time-
evolution.
It turns out that for short-time evolutions, conservation of Gibbsianness is robust, as it was proved
in [DR05] for Markovian R

Z
d
-valued diffusions and in [RRR10] for a particular class of non-Markovian

R
Z

d
-valued diffusions. Earlier propagation of Gibbsianness results during the whole time-evolution could

already be obtained in [DR05] in the following particular case: the R
Z

d
-valued diffusion is prescribed

through a Markov interaction function b, itself defined as the gradient of a Hamiltonian.

Consider a diffusion X = (Xi(t))t≥0,i∈Zd where the dynamical interaction term consists of an ultra-
contractive self-interaction U (which will constrain the free system to converge fast towards a reference
product measure) and a bounded non-regular and non-Markov space-time interaction b regulated by a
multiplicative scalar factor β.
We prove that, for any initial Gibbs measure with inverse temperature β0 bounded above (β0 < β̄0), and
for a dynamical interaction under a certain intensity (β < β̄), the law of the diffusion at any time t is

a Gibbs measure on R
Z

d
, described by an absolutely summable interaction. In that sense, Gibbsianness

propagates for a very large class of R
Z

d
-valued diffusion dynamics which include time-delayed terms.

As a corollary, our method leads to a constructive existence result for a class of infinite-dimensional SDE
with small (possibly) non-Markovian drift. Finally in section 3.6 we state the corresponding propagation
of Gibbsianness result for a system of planar rotors.
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There are in the present paper two main differences and improvements with respect to the paper
[DR05]. First, the Girsanov density of the approximate finite-dimensional diffusions contains stochastic
integrals, which cannot be turned into ordinary (bounded) integrals as was done for gradient diffusions.
In particular the local interaction functionals Ψ introduced in (11) are highly unbounded, even not every-
where defined and their control should be done via (exponential) moments. Secondly, since the interaction
b between the coordinates contains a time component, one cannot make use any more of the decoupling
method as in [DR05], which was a simple way to compare the infinite-dimensional dynamics with another
one much simpler. To bypass these difficulties, the main tool is a cluster expansion in space - uniform in
time - of Girsanov factors coming from the dynamics .

The rest of the paper is divided into the following sections. 2. Framework and main result. 3. Proof
of the main theorem with, in particular, the cluster expansion and the estimates of the cluster weights.
In section 3.6 we come back to examples and applications.

2 Framework and main result

In this section we define the necessary framework for our study and state our main result.

2.1 Interaction and Gibbs measures

The main mathematical concept considered in this paper is that of Gibbs measure on the configuration
space R

Z
d
. It is based on a so-called interaction function, whose we now recall the definition.

Definition 2.1. An interaction φ on R
Z

d
is a collection of functions φΛ from R

Z
d

to R, where Λ is any
finite subset of Z

d, satisfying the following properties.

1. φ is FΛ-measurable, where FΛ denotes the sigma-field generated by the canonical projections on R
Λ

2. φ is absolutely summable, which means that, for all i ∈ Z
d,

∑

Λ∋i ||φΛ||∞ < +∞.

We also recall some other summability assumptions which can be satisfied by an interaction.

(A1) (strong summability) supi∈Zd

∑

Λ∋i(|Λ| − 1)||φΛ||∞ < +∞, where |Λ| denotes the cardinality of Λ .

(A2) (finite-body interaction) φΛ ≡ 0 as soon as |Λ| is large enough.

(A3) (finite-range interaction) φΛ ≡ 0 as soon as the diameter of Λ is large enough.

Remark that (A3)⇒ (A2)⇒ (A1).

Given an interaction φ we define the associated Hamiltonian function h = (hΛ)Λ⊂Zdby

hΛ : R
Λ × R

Λc → R, hΛ(xΛ, zΛc) =
∑

Λ′:Λ′∩Λ6=∅

φΛ′(xΛzΛc), (1)

where z is called the boundary condition. We write as usual xΛzΛc as shorthand for the concatenation of
the configuration x restricted to Λ and the configuration z restricted to Λc.
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The finite-volume Gibbs measure with interaction φ at inverse temperature β0 with boundary
condition z w.r.t. an a-priori measure m on R is the probability measure given by

νΛ,z(dxΛ) =
1

Zz
Λ

exp(−β0hΛ(xΛ, zΛc))m⊗Λ(dxΛ) (2)

where Zz
Λ is the renormalizing factor. If the measure m is finite, the scalar Zz

Λ, also called partition
function, is finite too.
As usual the finite-volume measure with free boundary conditions is defined by

νΛ(dxΛ) =
1

ZΛ
exp

(

−β0

∑

A⊂Λ

φA(xΛ)
)

m⊗Λ(dxΛ). (3)

We can now define the concept of (infinite-volume) Gibbs measure.

Definition 2.2. The measure ν is a Gibbs measure with interaction φ at inverse temperature β0 if for
all finite Λ ⊂ Z

d and smooth FΛ-measurable test functions f , the so-called DLR equations are satisfied
∫

f(xΛ) ν(dx) =

∫ ∫

f(xΛ) νΛ,z(dxΛ) ν(dz), (4)

which means that νΛ,z is a regular version of the conditional probability ν(dxΛ|xΛc = zΛc). One denotes
by Gβ0(φ) the set of such Gibbs measures.

2.2 Infinite-volume dynamics

On the path space Ω = C(R+, R)Z
d
, endowed by the canonical sigma-field F , we consider the infinite-

dimensional diffusion defined as solution of the Stochastic Differential Equation:
{

dXi(t) = dBi(t) +
(

− 1
2U ′(Xi(t)) + β bi(t, X)

)

dt, i ∈ Z
d

X(0) ∼ ν,
(5)

where (Bi)i∈Zd is a sequence of real-valued independent Brownian motions, U is a self-potential function,
and the drift term of the ith coordinate at time t, bi(t, ·), may possibly depend on the values of the other
coordinates of the process on the whole time interval [0, t]. Thus the process X could be non-Markov.
We denote by Qν the law of the solution of the SDE (5) (resp. Qx if the initial condition is deterministic,
i.e. ν = δx).

We now state the precise assumptions satisfied by the drift term.

(B1) The self-potential U : R → R is smooth and ultracontractive, in such a way that the one-dimensional
free dynamics

dx(t) = dB(t) − 1

2
U ′(x(t))dt (6)

generates a semi-group which maps L2(m) into L∞(m), where m is its unique stationary probability
measure: m(dx) = 1

Z e−U(x)dx.

(B2) The space-time interaction is the product of a scalar intensity parameter β with a functional b = (bi)i

on Ω which is adapted and local in space and time: There exists a finite neighborhood N ⊂ Z
d

around 0 and a finite memory-time t0 > 0 such that

∀i ∈ Z
d, ∀ω ∈ Ω, bi(t, ω) = bi(t, (ωi+N (s) : t − t0 ≤ s ≤ t)).
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(B3) The drift functional b is bounded, i.e.

∃b̄ > 0 such that sup
i∈Zd

sup
ω∈Ω

sup
t≥0

|bi(t, ω)| ≤ b̄.

The following theorem is the main result of our paper.

Theorem 2.3. Consider Qν , the law of the infinite-dimensional SDE (5) with a drift satisfying assump-
tions (B1)-(B3) and suppose that the initial distribution ν is a Gibbs measure in Gβ0(φ) where φ satisfies
the strong summability assumption (A1). There exists a bound β̄0 > 0 for the initial inverse temperature
and a bound β̄ > 0 for the intensity of the space-time interaction such that, if 0 ≤ β ≤ β̄ and 0 ≤ β0 ≤ β̄0,
for all t ≥ 0 the time-evolved measure Qν ◦ X(t)−1 is a Gibbs measure w.r.t. some interaction φt, which
is then absolutely summable.

Corollary 2.4. The above Theorem 2.3 provides a constructive way to obtain a solution of the SDE (5)
at any time t for small β as limit (in terms of cluster expansions) of finite-dimensional approximations,
whose existence (and uniqueness) is ensured by the assumption (B3).

3 Proof

The dynamics we deal with are obtained by perturbing through the interaction β b a system of independent
evolving components. The law on Ω of the non-interacting system called also infinite-dimensional free
system, corresponding to β = 0 and the deterministic initial value x ∈ R

Z
d
, is denoted by P x and is the

product law
P x = ⊗i∈ZdP xi

i

where P xi

i is the law on C(R+, R) of the one-dimensional SDE (6) with initial condition xi ∈ R.
We denote by pt(xi, ·) its density function at time t with respect to m:

P xi

i ◦ X(t)−1(dyi) = pt(xi, yi)m(dyi). (7)

3.1 A finite-dimensional approximation

As usual, we approximate the infinite-volume dynamics by a sequence of finite-volume dynamics.
Let Λ be a finite subset of Z

d, and define

Λ− = {i ∈ Λ : {i + N} ⊂ Λ} (8)

its N -interior.
Let Qx

Λ denotes the law of the finite-volume dynamics











dXi(t) = dBi(t) +
(

− 1
2U ′(Xi(t)) + β bi(t, X)

)

dt, i ∈ Λ−

dXi(t) = dBi(t) − 1
2U ′(Xi(t)) dt, i ∈ Λ \ Λ−

XΛ(0) = xΛ.

(9)

It is a perturbation of the finite-volume free dynamics P x
Λ =

⊗

i∈Λ P xi

i .
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3.2 Cluster expansion of the finite-dimensional density

First we expand the finite-volume density of the perturbed system w.r.t. the free system.

Lemma 3.1. At any time t, Qx
Λ ◦X(t)−1 is absolutely continuous with respect to P x

Λ ◦X(t)−1 on R
Λ and

its density is given by

f t
Λ(x, y) :=

dQx
Λ ◦ X(t)−1

dP x
Λ ◦ X(t)−1

(yΛ) = EP xy

Λ,[0,t]

[

exp

(

−
∑

A⊂Λ

ΨA,[0,t](X)

)]

. (10)

P xy
[0,t] denotes the law of the bridge on [0, t] obtained by conditioning PΛ to be at time 0 in xΛ and at time

t in yΛ, and the functional ΨA,[0,t] satisfies

ΨA,[0,t](X) =

{

−β
∫ t
0 bi(s, X)dBi(s) + β2

2

∫ t
0 b2

i (s, X)ds if ∃i : A = N + i

0 otherwise
(11)

where the process B is defined as

Bi(t)(ω) = ωi(t) +
1

2

∫ t

0
U ′(ωi(s))ds.

Proof. By Girsanov Theorem,

dQx
Λ(X) = exp

(

∑

i∈Λ−

(

β

∫ t

0
bi(s, X)dBi(s) −

β2

2

∫ t

0
b2
i (s, X)ds

)

)

dP x
Λ(X)

=: MΛ,t(X) dP x
Λ(X)

Let f be a bounded local function on R
Z

d
. Then

EQx
Λ
(f(X(t))) = EP x

Λ

(

MΛ,t(X)f(X(t))
)

=

∫

EP xy

Λ,[0,t]

(

MΛ,t(X)f(X(t))
)

pt(xΛ, yΛ) m(dyΛ)

=

∫

f(yΛ)EP xy

Λ,[0,t]
(MΛ,t(X))pt(xΛ, yΛ)m(dyΛ)

which leads to the desired result. �

Remark 3.2. • The functional Ψ is not defined a priori on the whole path space Ω, but only for
ω ∈ Ω′ ⊂ Ω for which the stochastic integral

∫ t
0 bi(s, ω)dωi(s) makes sense.

• If we would assume the initial inverse temperature to be very small (i.e. β0 vanishing), we could use
the usual cluster expansion techniques with respect to both β0 and β in space to obtain a perturbative
result around the free stationary case (β0 = β = 0). As we would like to treat the more general case
where β0 is not necessarily close to 0, we now develop a more involved space-time cluster expansion
technique, which allows us to control space and time simultaneously.

In the following let us perform, for a fixed time t, the cluster expansion for f t
Λ(x, y) w.r.t. the intensity

β of the dynamical perturbation.
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We decompose the time interval [0, t] into M subintervals Ij := [jT, (j + 1)T ] with length T = t/M ,
where T is a time step length larger than the range t0 of the time-memory of the drift b, in such a way
that [jT − t0, jT + t0] ⊂ [(j − 1)T, (j +1)T ]. This latter condition is important to control the range of the
time interaction.
A temporal edge is a unit space-time pair of the form (i, Ij) with i ∈ Z

d and j ∈ N. Its vertices are the
points (i, jT ) and (i, (j + 1)T ) in Z

d × R+. A space cluster γj , j ∈ N is a finite collection of pairwise
space-connected temporal edges, that is γj = {(i1, Ij), ..., (im, Ij)}, i1, ..., im ∈ Z

d, where the sequence of
subsets i1 + N , i2 + N , · · · , im + N is connected:

(i1 + N ) ∩ (i2 + N ) 6= ∅, . . . , (im−1 + N ) ∩ (im + N ) 6= ∅.

Two space clusters γj
1 and γj

2 are called compatible if no temporal edge of the first one is space-connected
with one temporal edge of the other one.
A time cluster τ i, i ∈ Z

d, is a finite collection of temporal edges of the following type

τ i = {(i, Ij), ..., (i, Ij+r)}, j, r ∈ N.

We call space-time cluster Γ a non-empty collection of space and time clusters of the form

Γ = {γj1
1 , ..., γjs

s ; τ i1
1 , ..., τ

ip
p }.

The spatial support of Γ is the set denoted by [Γ] of all vertices belonging to the temporal edges which
compose Γ. We denote by [Γ]k,l the set of all vertices belonging to the temporal edges which compose Γ
except j = k and j = l. Two space-time clusters are called non-intersecting if their space clusters are
compatible and their time clusters are disjoint.

Proposition 3.3. There exist cluster weights Kt
Γ(x, y) indexed by space-time clusters Γ ⊂ Λ×[0, t], which

depend on t, β, x and y such that

f t
Λ(x, y) = 1 +

∑

v∈N∗

∑

{Γ1,...,Γv}

Kt
Γ1

(x, y) · · ·Kt
Γv

(x, y) (12)

where the last summation is on all pairwise non-intersecting space-time clusters Γl included in Λ × [0, t].

Proof. By simplicity, denote Ψk,j instead of Ψk+N ,Ij
. We develop (10) decomposing the bridge P xy

Λ,[0,t] on

the time interval [0, T ] into a concatenation of bridges of the form P x(j)x(j+1)

Λ,Ij
:

f t
Λ(x, y) = EP xy

Λ,[0,t]

[

exp

(

−
∑

k∈Λ−

Ψk+N ,[0,t](X)

)]

=

∫ ∫ M−1
∏

j=0

∏

k∈Λ−

e−Ψk,j(X) ⊗
0≤j≤M−1

P x(j)x(j+1)

Λ,Ij
(dX)

∏

i∈Λ
0≤j≤M−2

pT (x
(j)
i , x

(j+1)
i ) ⊗

i∈Λ
0≤j≤M−2

m(dx
(j+1)
i )

=

∫ M−1
∏

j=0

∫

∏

k∈Λ−

e−Ψk,j(X)P x(j−1)x(j)

Λ,Ij−1
(dX)P x(j)x(j+1)

Λ,Ij
(dX)

∏

i∈Λ
0≤j≤M−2

pT (x
(j)
i , x

(j+1)
i ) ⊗

i∈Λ
0≤j≤M−2

m(dx
(j+1)
i )
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where x(0) := x ∈ R
Λ and x(M) := y ∈ R

Λ. Now use

∏

k∈Λ−

e−Ψk,j(X) =
∏

k∈Λ−

(1 + e−Ψk,j(X) − 1)

= 1 +
∑

n≥1

∑

{γj
1 ,...,γj

n}

n
∏

l=1

∏

(k,Ij)∈γj
l

(e−Ψk,j(X)−1)

where the last summation is over all pairwise compatible space clusters included in Λ × [0, t].
On the other hand for z(0), ..., z(M) ∈ R,

M−2
∏

j=0

pT (z(j), z(j+1)) =

M−2
∏

j=0

(1 + pT (z(j), z(j+1)) − 1)

= 1 +
∑

τ

∏

Ij∈τ

(pT (z(j), z(j+1)) − 1)

= 1 +
∑

p≥1

∑

{τ1,...,τp}

p
∏

u=1

∏

Ij∈τu

(pT (z(j), z(j+1)) − 1)

(13)

where the summation on the second line is over all collections τ of time intervals of the type Ij ⊂ [0, t]
and the last summation on the third line is over all pairwise disjoint collections of such consecutive time
intervals. One obtains

f t
Λ(x, y) =

∫

R|Λ|(M−1)

M−1
∏

j=0

∫

R|Λ|

(

1 +
∑

n≥1

∑

{γj
1 ,...,γj

n}

n
∏

l=1

∏

(k,Ij)∈γj
l

(

e−Ψk,j(X) − 1
)

)

P x(j−1)x(j)

Λ,Ij−1
(dX)P x(j)x(j+1)

Λ,Ij
(dX)

∏

i∈Λ

(

1 +
∑

p≥1

∑

{τ i
1,...,τ i

p}

p
∏

u=1

∏

Ij∈τ i
u

(pT (x
(j)
i , x

(j+1)
i ) − 1)

)

⊗
i∈Λ

0≤j≤M−1

m(dx
(j)
i )

=: 1 +
∑

v≥1

∑

{Γ1,...,Γv}

Kt
Γ1

(x, y) · ... · Kt
Γv

(x, y)

(14)

where the last summation is on all pairwise non-intersecting space-time clusters Γl included in Λ × [0, t].

Therefore, for Γ = {γj1
1 , ..., γjs

s ; τ i1
1 , ..., τ

ip
p }, the cluster weight Kt

Γ is defined by

Kt
Γ(x, y) =

∫ s
∏

m=1

∫

∏

k∈γjm
m

(

e−Ψk,jm (X) − 1
)

P x(jm−1)x(jm)

Λ,Ijm−1
(dX)P x(jm)x(jm+1)

Λ,Ijm
(dX)

p
∏

u=1

∏

Ij∈τ iu
u

(pT (x
(j)
iu

, x
(j+1)
iu

) − 1) ⊗(i,j)∈[Γ]0,M
m(dx

(j)
i )

=

∫ s
∏

m=1

K(γjm
m )

p
∏

u=1

∏

Ij∈τ iu
u

(pT (x
(j)
iu

, x
(j+1)
iu

) − 1) ⊗(i,j)∈[Γ]0,M
m(dx

(j)
i ) (15)
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with, for any 2 ≤ j ≤ M − 2,

K(γj) :=

∫

∏

k∈γj

(e−Ψk,j(X) − 1) ⊗i∈Λ P
x
(j−1)
i x

(j)
i

i,Ij−1
(dXi)P

x
(j)
i x

(j+1)
i

i,Ij
(dXi)

and for the space-cluster γ1, taking into account the fixed boundary condition x(0) = x

K(γ1) :=

∫

∏

k∈γ1

(e−Ψk,1(X) − 1) ⊗i∈Λ P
xix

(1)
i

i,I0
(dXi)P

x
(1)
i x

(2)
i

i,I1
(dXi),

resp. for the space-cluster γM−1 on the time interval IM−1 = [t − T, t], taking into account the fixed
boundary condition x(M) = y

K(γM−1) :=

∫

∏

k∈γM−1

(e−Ψk,M−1(X) − 1) ⊗i∈Λ P
x
(M−2)
i x

(M−1)
i

i,IM−2
(dXi)P

x
(M−1)
i yi

i,IM−1
(dXi).

�

3.3 Cluster Estimates

The next step is to estimate the cluster weights Kt
Γ(x, y), defined by (15), as function of the small

parameter β.

Proposition 3.4. Let Γ = {γj1
1 , ..., γjs

s ; τ i1
1 , ..., τ

ip
p } be a space-time cluster. There exists a function

λ(β) > 0 vanishing when β tends to 0 such that the cluster weight Kt
Γ(x, y) is bounded uniformly in time

and space as follows:
sup
t≥0

sup
x,y

|Kt
Γ(x, y)| ≤ λ(β)|Γ| (16)

where |Γ|, the cardinality of Γ, is the total number of unit temporal edges which compose Γ.

Proof. To bound the cluster weights we need to interchange integration and products in (15). Therefore
we make use of the following inequalities, generalizing Hölder inequalities, see [MVZ00] Lemma 5.2.

Lemma 3.5. Let (µz)z∈χ be a family of probability measures, each one defined on a measurable space Ez

where the elements z belong to some finite set χ. Let (gk)k be a family of functions on Eχ = ×z∈χEz such
that each gk is χk-local for a certain χk ⊂ χ in the sense that

∀e ∈ Eχ, gk(e) = gk(e|χk
), (17)

and let (ρk)k be positive numbers such that, for all z ∈ χ,
∑

{k:χk∋z}

1/ρk ≤ 1. Then

∣

∣

∣

∣

∫

Eχ

∏

k

gk ⊗z∈χ dµz

∣

∣

∣

∣

≤
∏

(
∫

Eχk

|gk|ρk ⊗z∈χk
dµz

)1/ρk

. (18)
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We apply lemma 3.5 with χ := γj + N , χk := k + N , Ez := C(R+, R), gk := e−Ψk,j − 1, µk :=

P
x
(j−1)
k

x
(j)
k

k,Ij−1
⊗ P

x
(j)
i x

(j+1)
k

k,Ij
and ρi = 4|N | for all i. Since for each i ∈ Λ, there is at most |N | factors k such

that Ψk,j(X) depends on Xi, the assumption
∑

k+N∋i
1

4|N | ≤ 1 is satisfied.
We then obtain the upper bound

|K(γj)| ≤
∏

k∈γj

[
∫

(e−Ψk,j − 1)4N ⊗i∈k+N P
x
(j−1)
i ,x

(j)
i

i,Ij−1
(dXi)P

x
(j)
i ,x

(j+1)
i

i,Ij
(dXi)

]1/4|N |

=:
∏

k∈γj

Kk,j(x
(j−1), x(j), x(j+1)).

(19)

Remark at that place that we especially used the space-locality of the interaction b (assumption (B2)).
Therefore

|Kt
Γ(x, y)| ≤

∫ s
∏

m=1

∏

k∈γjm
m

Kk,j(x
(j−1), x(j), x(j+1))

p
∏

u=1

∏

Ij∈τ iu
u

(pT (x
(j)
iu

, x
(j+1)
iu

) − 1) ⊗(i,j)∈[Γ]0,M
m(dx

(j)
i ).

(20)
We apply once more lemma 3.5 to bound the right hand side of (20) by

s
∏

m=1

∏

k∈γjm
m

(
∫

K
N1
k,j(x

(j−1), x(j), x(j+1))⊗i,jm(dx
(j)
i )

)1/N1 p
∏

u=1

∏

Ij∈τ iu
u

(
∫

(pT (x
(j)
iu

, x
(j+1)
iu

)−1)N2⊗i,jm(dx
(j)
i )

)1/N2

for any right choice of N1, N2 satisfying 2|N |/N1 + 2/N2 ≤ 1. Choose e.g. N1 = 4|N | and N2 = 4. In the
two next lemmas we will show that the first integral describing the spatial interaction (resp. the second
integral describing the time interaction) is bounded uniformly in t, x and y by a function C1(β) (resp. by
C2(β)), which leads to

|Kt
Γ(x, y)| ≤ C1(β)

∑

m |γjm
m |C2(β)

∑

u |τ iu
u | ≤ max(C1, C2)(β)

∑

m |γjm
m |+

∑

u |τ iu
u | (21)

which yields the claim (16) with λ(β) := max(C1, C2)(β).
In the next lemma we prove appropriate upper bounds for the spatial interaction, that is for the integral
of K, treating first the case where the space cluster γj does not contain any boundary temporal edge,
that is j 6= 0 and j 6= M .

Lemma 3.6. Let j = 1, ..,M − 1. There exists a positive real number C1 depending only on β (and
uniform in t, x, y, k and j), vanishing when β goes to 0, such that the following upper bound holds

∫

K
4|N |
k,j (x(j−1), x(j), x(j+1)) ⊗i∈k+N m(dx

(j)
i ) ≤ C1(β)4|N |. (22)

Proof. Let fix k. Then

∫

K
4|N |
k,j (x(j−1), x(j), x(j+1)) ⊗i∈k+N m(dx

(j)
i )

≤
∫ ∫

(e−Ψk,j(X) − 1)4|N | ⊗i∈k+N P
x
(j−1)
i x

(j)
i

i,Ij−1
(dXi)P

x
(j)
i x

(j+1)
i

i,Ij
(dXi)m(dx

(j−1)
i )m(dx

(j)
i )m(dx

(j+1)
i )

= EPΛ

(

(e−Ψk,j(X) − 1)4|N |)
)

.
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We remark that, for any ζ ∈ R,

(eζ − 1)4|N | = ζ4|N |

(
∫ 1

0
euζdu

)4|N |

= ζ4|N |

∫ 1

0
...

∫ 1

0
e(u1+...+u4|N|)ζdu1...du4|N |.

Hence

EPΛ

(

(e−Ψk,j(X) − 1)4|N |)
)

=

∫

[0,1]4|N|
EPΛ

(Ψ
4|N |
k,j e−(u1+...+u4|N|)Ψk,j ) du1...du4|N |.

The expectation above can be written as ∂
∂z4|N| EPΛ

(e−zΨk,j )

∣

∣

∣

∣

z=u1+...+u4|N|

, the 4|N |th-derivative of the

Laplace transform L of the functional Ψk,j at z = u1 + ... + u4|N |. Let us analyse L:

L(z) = EPΛ
(e−zΨk,j )

= EPΛ

(

exp

[

zβ

∫

Ij

bk(s, X)dBk(s) − z2β2

∫

Ij

b2
k(s, X)ds

]

exp

[

z

(

z − 1

2

)

β2

∫

Ij

b2
k(s, X)ds

])

≤ E
1/2
PΛ

(

exp

[

2zβ

∫

Ij

bk(s, X)dBk(s) −
(2zβ)2

2

∫

Ij

b2
k(s, X)ds

])

E
1/2
PΛ

(

exp

[

z(2z − 1)β2

∫

Ij

b2
k(s, X)ds

])

= E
1/2
PΛ

(

exp

[

z(2z − 1)β2

∫

Ij

b2
k(s, X)ds

])

due to the PΛ-martingale property of t 7→ exp
[

2zβ
∫ t
jT bk(s, X)dBk(s) − (2zβ)2

2

∫ t
jT b2

k(s, X)ds
]

. To bound
not only L but its derivatives, we extend it to the complex plane and notice that

∣

∣

∣

∣

∂

∂z4|N |
L(z)

∣

∣

∣

∣

≤ 4|N |!
ρ4|N |

sup
{ζ∈C:|ζ−z|=ρ}

|L(ζ)| (23)

as soon as L is well defined on B(z, ρ) = {ζ ∈ C : |ζ − z| ≤ ρ}. On B(z, ρ) one has

∣

∣

∣

∣

exp

[

ζ(2ζ − 1)β2

∫

Ij

b2
k(s, X)ds

]∣

∣

∣

∣

≤ exp

[

Re(2ζ2 − ζ)β2

∫

Ij

b2
k(s, X)ds

]

≤ exp

[

3(ρβ)2
∫

Ij

b2
k(s, X)ds

]

≤ exp

(

3(ρβ)2T b̄2

)

.

Therefore (23) becomes
∣

∣

∣

∣

∂

∂z4|N |
L(z)

∣

∣

∣

∣

≤ 4|N |!
ρ4|N |

exp(3(ρβ)2T b̄2).

We minimize the r.h.s. choosing ρ2 = 2|N |
3Tβ2b̄2

. Thus

∣

∣

∣

∣

∂
∂z4|N| L(z)

∣

∣

∣

∣

≤ c (β2T )2|N | where c is a positive

constant depending only on b̄ and |N |. Taking the time step T of the order of 1/β, this leads to the
desired inequality (22) with C1(β) :=

√
c
√

β. �

Let us short comment how to compute a similar upper bound in the case of j = 0 (resp. in the case
j = M , in a symmetric way). In that case the spatial support of the cluster γ0 (resp. γM ) contains the
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vertex x (resp. y). In that case one space boundary is fixed (equal to x or y) and we have to control
integrals of the type

∫ ∫

(e−Ψk,0(X) − 1)4|N | ⊗i∈k+N P
xix

(1)
i

i,I0
(dXi)m(dx

(1)
i ) = EP x

Λ

(

(e−Ψk,0(X) − 1)4|N |)
)

.

We then can use the same arguments as in Lemma 3.6, that is identify an exponential martingale and
make use of the boundedness of the drift b.

To estimate the time interaction upper bound C2 appearing in (21), i.e. the forth moment of the
transition kernel pt of the one-dimensional free dynamics, we also have to distinguish between different
types of time clusters composing the space-time cluster Γ: those containing a boundary temporal edge I0

or IM and the other time clusters. The next lemma provides an upper bound in that latter case.

Lemma 3.7. There exists positive constants c′, c′′ depending only on the self potential U such that

(

∫

(p1/β(z, z′) − 1)4m(dz)m(dz′)
)

1
4 ≤ c′e

− c′′

β . (24)

Proof. First
∫

(pT (z, z′) − 1)4m(dz)m(dz′) ≤
∫

||pT (·, ·) − 1||4L∞ m(dz)m(dz′) = ||pT (·, ·) − 1||4L∞ .

Now, under the ultracontractivity assumption (B1) on the self-interaction U , one has a uniform exponen-
tial convergence of pT to 1 (see e.g. the details of the proof in the appendix of [DPRZ02]). Moreover the
rate of convergence is equal to the spectral gap of pT . Thus

∃c′, c′′ > 0,∀T > 0, ||pT (·, ·) − 1||4L∞ ≤ c′e−c′′T (25)

where c′′ is the spectral gap of (pt)t. We obtain the claim (24) taking T = 1/β . �

When the time cluster τ composing Γ contains the boundary temporal edge I0 (resp. IM−1) one has
to estimate the simple integral

∫

(pT (x, z)− 1)4m(dz) (resp.
∫

(pT (z, y)− 1)4m(dz) ) instead of the above
double integration (24) under m⊗m. It vanishes with an exponential rate uniformly in x and y when T
tends to infinity.

Therefore one can take in (21) the upper bound C2(β) := c′e
− c′′

β .

3.4 Cluster expansion and estimates of the logarithm of the finite-dimensional den-

sity

To complete Proposition 3.3 we are now computing an expansion of the logarithm of the density at time
t of the finite-dimensional SDE (9).

Proposition 3.8. For β small enough, the logarithm of the Radon-Nikodym derivative (10) expands as

log f t
Λ(x, y) = −

∑

∆⊂Λ

Φt
∆(x, y) (26)

with
Φt

∆(x, y) =
∑

n≥0

∑

{Γ1,..,Γn}
Tr(Γ1,...,Γn)=∆

C(Γ1, ...,Γn)Kx,y(Γ1) · · · Kx,y(Γn) (27)

where the second sum runs over all collections of disjoint space-time clusters such that their union is
connected and C(Γ1, ...,Γn) are purely combinatorial coefficients independent of x and y.

12



Proof. We alread know that the density function (10) decomposes as

f t
Λ(x, y) = EP x,y

Λ,[0,t]

[

exp

(

−
∑

A⊂Λ

ΨA,[0,t](X)

)]

,

which expands as in (12) with cluster weights of the form Kt
Γ(x, y). We now use Kotecký and Preiss

criterion proven in [KP86] to derive an expansion of its logarithm.
Let Γ be a space-time cluster. We say that another space-time cluster Γ′ is incompatible with Γ if their
associated supports intersect, and we denote this property by the symbol Γ ≁ Γ′. Take now β̄ small
enough such that for β ≤ β̄,

sup
x,y∈R

sup
t>0

∑

Γ′≁Γ

|Kt
Γ′(x, y)|e|Γ′|+log(|Γ′|)

(

≤
∑

Γ′≁Γ

|Γ′|(λ(β)e)|Γ
′|
)

≤ |Γ|. (28)

So, following assertion (2) in [KP86] the logarithm of f t
Λ(x, y) is expandable, and the following holds:

ln(f t
Λ(x, y)) =

∑

n≥0

∑

Γ1,..,Γn

C(Γ1, ...,Γn)Kx,y(Γ1) · ... · Kx,y(Γn). (29)

The second sum runs over collections of compatible space-time clusters such that their union is connected
and C(Γ1, ...,Γn) are combinatorial coefficients coming from the Taylor expansion. Let us now order
the space-time clusters in terms of their spatial projections, which are subsets of Λ: If Tr denotes the
projection on the spatial support we rewrite (29) as −∑

∆⊂Λ Φt
∆(x, y) where Φt

∆ is an interaction function
given by (27).
Moreover Φt

∆ is F∆×F∆-measurable since the cluster weights Kx,y(Γ) depend on x on supp(Γ)∩(Zd×{0})
and on y on supp(Γ) ∩ (Zd × {t}) whose traces are included in ∆.

�

Moreover, Kotecký and Preiss provide a useful estimate of the convergence rate of the interaction
function Φt

∆ in terms of ∆, see inequality (4) in [KP86]:

Lemma 3.9. The function Φt
∆ satisfies

lim
β→0

sup
i∈Zd

sup
t>0

∑

∆∋i

(|∆| − 1)||Φt
∆||∞ = 0. (30)

Proof. Indeed Kotecký and Preiss proved the following bound for the interaction function:

sup
i∈Zd

sup
t>0

∑

∆∋i

(|∆| − 1)||Φt
∆||∞ ≤ 1.

Therefore, since the sum on ∆ converges uniformly in i and t, we can interchange limit in β and summation
on ∆ to obtain the desired result (30).

�

3.5 Gibbsianness of the double-layer measure and Kozlov’s representation theorem

The rest of the proof of Theorem 2.3 follows the same structure as Steps 2 and 3 of [DR05], Section 4, in
which the drift b is Markov and gradient. Nevertheless, to make our paper self-contained, we sketch the
main arguments without giving as much details.
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The time-evolved measure we are interested in, Qν ◦ X(t)−1, is indeed a ν-mixture of the measures
Qx ◦X(t)−1 whose approximating densities are f t

Λ(x, ·). Therefore, in order to prove the Gibbsianness of
Qν ◦X(t)−1, we will prove as an intermediate step, the Gibbsianness of the so-called double-layer measure

(or measure on the bi-space) Qν := Qν ◦ (X(0), X(t))−1 defined on the space R
Z

d×{0,t}.

Lemma 3.10. Let ν ∈ Gβ0(φ), where the interaction φ satisfies (A1). There exist an upper bound β̄0 > 0
for the initial inverse temperature and an upper bound β̄ > 0 for the intensity of the dynamical interaction
such that, for β0 ≤ β̄0 and β ≤ β̄, the measure Qν is a Gibbs measure on the bi-space R

Z
d×{0,t} w.r.t. the

a priori measure m ⊗ m with an interaction associated to the Hamiltonian

H(∆,∆′)(x, y) := h∆ −
∑

i∈∆∪∆′

log(pt(xi, yi)) +
∑

A⊂Zd;A∩(∆∪∆′) 6=∅

Φt
A(x, y) (31)

where h is the Hamiltonian function derived from φ and (∆, ∆′) is short for (∆ × {0}) ∪ (∆′ × {t}).

Proof. Since the interaction φ of the initial Gibbs measure satisfies (A1), there exists β̄0 > 0 such that
for β0 ≤ β̄0,

β0 sup
i∈Zd

∑

Λ∋i

(|Λ| − 1)||φΛ||∞ < 1. (32)

This assumption implies Dobrushin’s uniqueness condition, as it is proved e.g. in [G88], Proposition (8.8).
In particular, for β0 ≤ β̄0, Gβ0(φ) contains as unique element ν, which can be approximated e.g. by the
sequence of finite-volume Gibbs measure νΛ with free boundary condition.

Since the sequence QνΛ
Λ converges towards Qν when Λ increases to Z

d, their joint projection at times 0

and t converges towards Qν := Qν ◦ (X(0), X(t))−1 on R
Z

d×{0,t}. Qν is Gibbs w.r.t. the a priori measure
m(dx, dy) = pt(x, y)m(dx)m(dy) and with interaction

Ψ∆(x, y) := φ∆(x) + Φt
∆(x, y), x, y ∈ R

Z
d

, ∆ ⊂ Z
d. (33)

It follows now from (32) and (33) that there exists a bound β̄ for the intensity of the dynamical interaction
such that, for any β ≤ β̄, the Dobrushin’s uniqueness assumption is satisfied for Ψ on the bi-space. There-
fore Qν is the unique Gibbs measure on the bi-space associated to the interaction (33) or, equivalently,
the unique Gibbs measure associated to the Hamiltonian (31) and the a priori measure m ⊗ m. �

Now the measure Qν can be easily desintegrated in a Gibbsian way w.r.t. the finite dimensional
projections at time t, Qν(·|XΛc(t) = yΛc), which are defined for a.e. y.

Lemma 3.11. Fix a finite set Λ ⊂ Z
d. The conditional law of Qν ◦ (X(0), X(t))−1 given {XΛc(t) = yΛc},

denoted by Qν,yΛc , is a Gibbs measure on R
(Zd×{0})∪(Λ×{t}) with reference measure m and Hamiltonian

HyΛc defined by
H

yΛc

(∆,∆′)(x, zΛ) = H(∆,∆′)(x, zΛyΛc), (∆, ∆′) ⊂ Z
d × Λ. (34)

Furthermore Qν,yΛc can be decoupled as follows

Qν,yΛc (dx, dzΛ) =
1

ZyΛc

Λ

∏

i∈Λ

pt(xi, zi) exp

(

−
∑

A∩Λ6=∅

Φt
A(x, zΛyΛc)

)

m⊗Λ(dzΛ)Q̃ν,yΛc (dx)

where Q̃ν,yΛc (dx) is the unique Gibbs measure on R
Z

d
defined by the interaction Φ̃yΛc given by

{

Φ̃yΛc

i = φi(x) − 1l{i∈Λc} log(pt(xi, yi)), i ∈ Z
d

Φ̃yΛc

∆ = φ∆(x) − 1l∆∩Λ=∅Φ
t
∆(x, yc

Λ),∆ ⊂ Z
d, |∆| ≥ 2.

(35)
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Indeed, due to the estimates already obtained, it is straightforward to show that, for β small enough,
the interaction Φ̃yΛc satisfies Dobrushin’s uniqueness condition uniformly in y and in Λ, as perturbation
of the initial interaction, see [DR05] Lemma 10 and Lemma 11.

Lemma 3.12. The conditional law of Qν◦X(t)−1 given {XΛc(t) = yΛc} admits a density w.r.t. m⊗Λ(dzΛ)
given by

gt,yΛc

Λ (zΛ) =
1

ZyΛc

Λ

∫

RZd

∏

i∈Λ

pt(xi, zi) exp

(

−
∑

A∩Λ6=∅

Φt
A(x, zΛyΛc)

)

Q̃ν,yΛc (dx). (36)

Moreover this density is bounded from below and from above uniformly in y and t, and it is quasilocal, i.e.

lim
∆→Zd

sup
z,z′:z∆=z′∆

|gt,zΛc

Λ (zΛ) − g
t,z′Λc

Λ (z′Λ)| = 0.

Boundedness and quasilocality of gt,yΛc

Λ allow to apply Kozlov’s representation (Theorem 2 in [K74])
which insures the existence of an (absolute summable) interaction φt for Qν ◦ X(t)−1.

3.6 Additional remarks

3.6.1 Direct applications

In this section we give some concrete examples for which the assumptions (B1)-(B3) on U and b are
satisfied, and thus Theorem 2.3 and Corollary 2.4 hold true.
Recall first some sufficient conditions which imply the ultracontractivity of the one-dimensional free
dynamics (6), assumption (B1):

(1) lim inf
|x|→∞

U
′′
(x) > 0, (2) ∃C s.t. U

′′ − 1

2
(U

′
)2 ≤ C, (3) ∃M > 0 s.t.

∫

|x|>M

1

U ′(x)
dx < +∞.

Properties (1) and (2) ensure the existence of a unique strong solution to the SDE (6) and the existence
of a unique invariant probability measure, whereas property (3) ensures the ultracontractivity of the
associated semigroup, see [KKR93].

Example 1. (Markovian case) Let U satisfy above assumptions (1)-(3) and b be a Markovian finite range
bounded drift. It thus satisfies (B2) and (B3). This case includes the one treated in [DR05].

Example 2. (Stochastic resonance) One can generalize the free dynamics in such a way that it remains
Markovian but is no more time-homogeneous, introducing an external periodic signal in the dynamics
(6). These models are used to describe the so-called stochastic resonance effect, see e.g. [WSB04, B10,
KLYMY10]. So, let us consider as concrete example the following dynamics

dx(t) = dB(t) − 1

2

(

x3(t) − x(t) − A sin(t)
)

dt, (37)

where the drift derives from a time-independent potential given by U(x) := 1
4x4 − 1

2x2 together with a
bounded time-periodic forcing with amplitude A > 0. In that case properties (1)-(3) are satisfied.

Example 3. (Free dynamics with delay) One can generalize the free dynamics introducing a delayed
feedback. It then becomes non Markovian. The over-damped particle motion in the double-well quartic
potential as introduced in [TP01] furnishes such an example:

dx(t) = dB(t) − 1

2

(

x3(t) − x(t) − αx(t − t0)
)

dt , (38)

where α > 0 is the strength of the feedback.
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The following examples are non-Markovian since they include a time memory.

Example 4. (Independent dynamics with time memory) Let U satisfy (1)-(3). We define the drift by

bi(t, ω) :=

{

∫ t
0 ǫ(s)f(ωi(s))ds if t < t0

∫ t
t−t0

ǫ(s)f(ωi(s))ds if t ≥ t0
(39)

where f : R → R is a measurable bounded function and the time-memory function ǫ : [0,∞) → R is
assumed to be integrable. This kind of drift b is non-Markovian since it depends on a finite time window
with length t0.

Example 5. (Interaction with finite extent in space and time) Let U satisfy (1)-(3). Fix t0 > 0 and
define the dift by

bi(t, ω) :=

{

∫ t
0 αi(t − s, ω(s))dVs if t < t0

∫ t
t−t0

αi(t − s, ω(s))dVs if t ≥ t0
(40)

where the bounded variation integrator Vs can be deterministic or stochastic and adapted. The functions
αi are bounded and spatially local:

αi(·, x) = αi(·, xN ). (41)

Therefore b depends on a finite time window with length t0.

3.6.2 Planar rotors

In this section we would like to discuss how the above result for propagation of Gibbsianness can be
adapted to planar rotors diffusions with non-Markovian drift. It leads to a generalization of the conser-
vation results presented in [VER09], where the authors considered Markovian dynamics.

Let us first introduce the setting. Take now S
Z

d
as configuration space where S is the unit circle,

which we can identify with the space interval [0, 2π) where 0 and 2π are considered to be the same points.
We consider the solution X⊙ = (X⊙

i (t))t≥0,i∈Zd of the following infinite system of Stochastic Differential
Equations

{

dX⊙
i (t) = dB⊙

i (t) + β bi(t, X
⊙)dt, i ∈ Z

d

X⊙(0) ∼ ν,
(42)

on the path space ΩS := C(R+, S)Z
d

endowed by the canonical sigma-field F . (B⊙
i (t))t≥0,i∈Zd is a se-

quence of independent Brownian motions living on the circle S and the drift term of the ith coordinate,
again denoted by bi(t, ·), can depend on the values of the other coordinates on the whole time-interval
[0, t]. Furthermore ν is supposed to be a suitable initial Gibbs measure. Let Qν denote the law of the
solution of the SDE (42) with initial measure ν.

In the following let us present our assumptions.
The interaction defining the initial Gibbs measure is supposed to be strong summable, that is it satisfies
(A1). In the framework of planar rotors, since S is compact, the class of such interactions is indeed much
larger than for unbounded spins.
The circle is the simplest compact manifold, hence we get immediately the ultracontractivity of the
semigroup associated to the free dynamics, see for example [GZ02] Theorem 3.3 and exercise 3.8.
We assume that the space-time interactions bi are local in space and time and bounded, that is it satisfy
assumption (B2) and (B3).
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Then we can formulate our result in the context of planar rotors. Its proof follows the same steps as
in section 3.1-3.5, hence we will not repeat it here.

Theorem 3.13. Consider Qν , the law of the infinite-dimensional SDE (42) with a drift satisfying as-
sumptions (B2) and (B3) and suppose that the initial distribution ν is a Gibbs measure in Gβ0(φ) where
φ satisfies the strong summability assumption (A1). There exists a bound β̄0 > 0 for the initial inverse
temperature and a bound β̄ > 0 for the intensity of the space-time interaction such that, if 0 ≤ β ≤ β̄
and 0 ≤ β0 ≤ β̄0, for all t ≥ 0 the time-evolved measure Qν ◦ X(t)−1 is a Gibbs measure w.r.t. some
interaction φt, which is then absolutely summable.

Corollary 3.14. The above Theorem 3.13 provides a constructive way to obtain a solution of the SDE (42)
at any time t for small β as limit (in terms of cluster expansions) of finite-dimensional approximations,
whose existence (and uniqueness) is ensured by the assumption (B3).
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