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Coupling distances between Lévy measures and

applications to noise sensitivity of SDE

Jan Gairing ∗ Michael Högele† Tetiana Kosenkova ‡ Alexei Kulik §

November 15, 2013

Abstract

We introduce the notion of coupling distances on the space of Lévy measures in order to
quantify rates of convergence towards a limiting Lévy jump diffusion in terms of its characteristic
triplet, in particular in terms of the tail of the Lévy measure. The main result yields an
estimate of the Wasserstein-Kantorovich-Rubinstein distance on path space between two Lévy
diffusions in terms of the couping distances. We want to apply this to obtain precise rates
of convergence for Markov chain approximations and a statistical goodness-of-fit test for low-
dimensional conceptual climate models with paleoclimatic data.

Keywords: Lévy diffusion approximation; coupling methods; Wasserstein-Kantorovich-
Rubinstein metric; Skorohod’s invariance principle; statistical model selection.

2010 Mathematical Subject Classification:
60J60; 60J75; 60F17; 60G51; 60H10; 62G32; 62P12.

1 Introduction

This article introduces a family of distances on the set of Lévy measures on R
d, which we shall call

coupling distances since they are based on the coupling-type Wasserstein-Kantorovich-Rubinstein
distance between probability laws. They measure the distance between the appropriately truncated
and normalized tails of Lévy measures. Their construction aims at quantifying the rate of conver-
gence in limit theorems and approximation schemes of Lévy driven jump processes in terms of the
underlying Lévy measures. In particular we are interested in their distribution on path space.

Let us outline briefly two areas where this notion turns out to be useful.
Recall Gnedenko’s theorem about the weak convergence of the row-wise sums Sn =

∑n
k=1 ξkn of

triangular arrays (ξkn)k=1,...,n of independent and row-wise identically distributed random variables.
See for instance Chapter 19, Theorem 2 in [19]. The main condition is the convergence in a
proper sense of the family of Lévy measures Πn(du) = nP(ξ1n ∈ du) to the Lévy measure Π of a
limiting infinitely divisible distribution. The very same condition appears in theorems of Skorokhod
invariance principle-type on the convergence of step-wise processes to a Lévy process in D, which
are also constructed via partial row-wise sums [8]. These classical results allow for generalizations
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to the case of step-wise processes constructed via Markov chains, as treated for instance in [22]
and [23].

In all these results weak convergence is proved, but the rate of convergence is not addressed.
A first step in this direction is to quantify the convergence of Lévy measures Πn to Π in terms
of an appropriate metric. This step is made in the current paper. A functional limit theorem
with an explicit bound for the rate of convergence of step-wise processes for the Markov chain
approximation is subject to a separate paper [24].

A second question we would like to discuss concerns the sensitivity of the solution to a one-
dimensional Lévy driven stochastic differential equation (SDE) with respect to perturbations of
the noise. Consider a sufficiently regular function V : R → R, two Lévy processes (Zj(t))t�0,
j = 1, 2 and the SDEs

Xj(t) = x+

∫ t

0
V (Xj(s)) ds+ Zj(t) t � 0, x ∈ R. (1)

If the characteristic triplets (see Section 2 below) of the two Lévy processes Zj , j = 1, 2 are
close in a sense, it is natural to expect that the laws of the respective solutions Xj , j = 1, 2 should
not deviate too much. To make such a statement precise, the proposed metric turns out to be
particularly valuable. Such problems have a strong motivation coming from statistical inference.

Let us sketch the problem of model selection for low-dimensional climate models. Such sys-
tems can be derived as zero dimensional energy balance models perturbed by random fluctuations
and have been studied extensively, see for instance [1], [2], [4], [12], [14] and [15]. These studies
focus on the transition behavior, metastability and stochastic resonance phenomena for Gaussian
perturbations. The study of climate dynamics suffers from a poor quantity of available (proxy)
data covering climate intrinsic time scales. One of the richest (and best-studied) time series stems
from annual temperature proxies taken from ice cores of the Greenland ice sheet dating back to
80.000 years before present [21]. In [5] Ditlevsen linked the fast non-Gaussian transition behavior
exhibited in the data to the presence of jumps. The analysis of the relation between the frequency
and the size of the large jumps justifies the assumption of a bistable model given by equations of
type (1). This gave rise to further studies of a great variety of such models [10], [13], [16], [17] and
[18]. In [8] and [9] the authors solve the corresponding model selection problem within the class of
α-stable diffusions based on a fine analysis of sample path properties.

The deviation bounds obtained in Section 2 of the current article provide an quantitative in-
strument to asses model selection in the class of general Lévy diffusions with additive noise. The
coupling (semi-) distances proposed here are weak enough in order to be statistically tractable and
allow for an empirical evaluation of a large class of standard diffusion models. In a separate paper
[7], we will carry out this procedure in an empirical analysis of the aforementioned time series. On
the other hand they are sufficiently strong in a toplogical sense in order to measure convergence
rates in functional limit theorems [24].

The present article is organized as follows. We first develop the concept of coupling distances
of Lévy measures and address basic properties. Then we introduce set-up under consideration and
state the main results in Theorem 1 and 2. Section 3 is devoted to the example of α-stable Lévy
measures. The article closes with the proof of the theorems in Section 4.

2 Main Results

Recall that a Lévy measure on R
d is a σ-finite measure Π on R

d such that∫
Rd

(|u|2 ∧ 1)Π(du) < ∞
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and denote by L the space of such Lévy measures. We do not exclude point masses in {0} here.
For a given Π ∈ L and given r > 0 we want a decomposition of Π into two σ-finite measures ΠH,r

and ΠT,r of the form
Π = ΠH,r +ΠT,r, (2)

such that
• the total mass of ΠT,r is r and
• there exists ε(r) � 0 for which

supp(ΠH,r) = {u : |u| � ε(r)} and supp(ΠT,r) = {u : |u| � ε(r)} ∪ {0}.

Here “H” and “T” stand for “head” and “tail” of the measure, respectively. Such a decomposition
always exists if Π has infinite intensity (Π(Rd) = ∞) and is unique if Π is continuous. Let us
assume for a while that we have such a unique decomposition for all r > 0; a work-around for the
cases omitted here will be given below. For r > 0 we define a probability measure

πr =
1

r
ΠT,r. (3)

Recall that on a metric space (S, d) the Wasserstein-Kantorovich-Rubinstein metric of order 2,
between two probability measures μ, ν on (S, d) is defined by

W2,d(μ, ν) := inf
(ξ,η)∈C(μ,ν)

(
E d2(ξ, η)

)1/2
,

where C(μ, ν) denotes the set of all (μ, ν)-couplings. The space C(μ, ν) consists of all pairs (ξ, η)
of S-valued random elements, defined on the same probability space, such that Law(ξ) = μ and
Law(η) = ν. For further details we refer for instance to [6], Chapter 11, or [26]. In what follows,
we will consider the metric ρ on R

d defined by

ρ(x, y) = |x− y| ∧ 1, x, y ∈ R
d.

The following notion will allow to transfer the concept of optimal couplings from probability dis-
tributions to the space of Lévy measures L.

Definition 1. For Lévy measures Π1,Π2 ∈ L define

Tr(Π1,Π2) := r1/2W2,ρ(π
r
1, π

r
2), r > 0, (4)

T (Π1,Π2) := sup
r>0

Tr(Π1,Π2). (5)

We shall call Tr and T coupling distances on the space L.

The (semi-) distances Tr capture a compound Poisson approximation by coupling the jumps in an
optimal way, which we will make precise in Section 4.

Let us address the decomposition (2) for general Lévy measures.

• If Π(Rd) � r, then clearly ΠH,r := 0 (the zero measure). In order to produce the mass
required in (5) we formally define

ΠT,r := Π + (r −Π(Rd))δ0 (6)

artifically introducing a point mass in 0.
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• In general, ε(r) is defined as the unique ε > 0 such that for some (unique) p ∈ [0, 1)

Π(|u| > ε) + pΠ(|u| = ε) = r.

In this case we set

ΠT,r(du) :=
(
1{|u|>ε} + p1{|u|=ε}

)
Π(du), ΠH,r := Π−ΠT,r. (7)

Remark 1. Note that the choice (7) is not a unique, because instead of the “symmetric” additional
term p1{|u|=ε}Π(du) therein one could take an “asymmetric” one of a form g(u)1{|u|=ε}Π(du) with
any function g such that ∫

{|u|=ε}
g(u)Π(du) = p.

To specify uniquely the construction, we define the coupling distances Tr and T by (4) and (5) with
πr defined by (3) and the convention (7).

The following statement, proved in Section 3 below, gives the basic properties of the coupling
distances Tr and T .

Proposition 1. 1. For every r > 0 the function Tr defines a semimetric on L, that is, it is
nonnegative, symmetric, and satisfies the triangle inequality.

2. For any Π1,Π2 ∈ L

T (Π1,Π2) �
(∫

Rd

(|u|2 ∧ 1)Π1(du)

)1/2

+

(∫
Rd

(|u|2 ∧ 1)Π2(du)

)1/2

< ∞. (8)

The function T is a metric on L.

In Section 3 below we give two examples for the calculation of the coupling distance between
two α-stable Lévy measures Πj , j = 1, 2 with the respective “shape” parameter αj and the “scal-
ing” parameter cj . These calculations illustrate the topology of these measures in terms of their
parameters.

As a first application let us return to the analysis of one-dimensional SDE (1). We shall quantify
the sensitivity of solutions with respect to perturbations with respect to the driving Lévy noise in
terms of T . In what follows, we assume that the drift V satisfies the following weak monotonicity
or one-sided Lipschitz condition:

(V (x)− V (y))(x− y) � L(x− y)2, x, y ∈ R, (9)

then it is well known that unique (strong) solution to (1) can be obtained via usual Picard - type
successive approximation procedure.

Example 1. Generic examples satisfying (9) are polynomials of odd order and negative leading
coefficient

V (x) = βnx
n +

n−1∑
i=0

βix
i, βn < 0, βi ∈ R, n odd.

In applications such a polynomial is often considered as the gradient of an “energy potential”
U : R → R with several local minima such that V = −U ′.
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• The FitzHugh-Nagumo model in neuroscience is an example of such a fourth order potential.
Equation (1) models in this case the membrane voltage under random excitation, recently
studied in the literature e.g. [3], [11], [27].

• Another class of examples can be derived from energy balance models in climatology, see [2],
[5]. Here V describes the interaction between an idealized black body radiation of the Earth
and albedo feedback. Under the proper choice of the parameter the potential U admits two
local minima that correspond to two climate equilibrium states.

Now, let us consider two Lévy processes Zj , j = 1, 2 with the characteristic triplets (aj , bj ,Πj).
Recall that the law of Zj is uniquely determined by its cumulant function or Lévy exponent ψj

given as
EeizZj(t) = etψj(z), z ∈ R, t � 0,

linked to the characteristic triplet via the Lévy-Khinchin formula

ψj(z) = iajz − 1

2
bjz

2 +

∫
R

[
eizu − 1− izτ(u)

]
Πj(du), z ∈ R, (10)

where aj ∈ R, bj � 0,Πj is a Lévy measure and

τ(u) = (|u| ∧ 1) sign (u), u ∈ R.

This choice of the cutoff function τ has some technical advantages. We denote by Xj , j = 1, 2, the
solutions to equation (1), driven by Zj and initial values xj . D(0, 1) denotes the space of càdlàg
paths and is the state space of our solutions. Introduce the following metric ζ on D(0, 1) by

ζ(x, y) = sup
t∈[0,1]

ρ(x(t), y(t)) = ‖x− y‖∞ ∧ 1, ‖x− y‖∞ = sup
t∈[0,1]

|x(t)− y(t)|.

The main results of this article estimate the deviation between the laws of the solutions Xj on
(D(0, 1), ζ) in terms of the metric induced by T and Tr on the set of quadruplets of parameters
(xj , aj , bj ,Πj).

Theorem 1. Let V : R → R be C2 and satisfy condition (9) for some constant L > 0. Let
(aj , bj ,Πj) be two Lévy characteristics and xj ∈ R given initial values, j = 1, 2. Then for any two
solutions Xj of equation (1) driven by Lévy processes Zj with the respective characteristics and for
any r > 0 the following estimate holds true

W 2
2,ζ

(
Law(X1),Law(X2)

)
� Q1

re
L/ arctan(1/2) +Q2

r

where

Q1
r = 2ρ2(x1, x2) +

4

π

(33/4
2

|a1 − a2|+ (
√
b1 −

√
b2)

2 + Ur (Π1) + Ur (Π2)+

+ (π + 33/4)T 2
r (Π1,Π2) + 33/4min(Π1(|u| > 1) + Π2(|u| > 1), r)1/2Tr(Π1,Π2)

)
,

Q2
r =

4

π

√
33/2(

√
b1 −

√
b2)2 + (2π)2(Ur (Π1) + Ur (Π2) + T 2

r (Π1,Π2)),

and

Ur (Πj) =

∫
|u|�εj(r)

u2Πj(du), j = 1, 2.
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The proof of Theorem 1 will be postponed to Section 4. When r → ∞, we have εj(r) → 0 and
Ur(Πj) → 0, j = 1, 2. By construction of the metric T we obtain the following more theoretical
result after polishing the constants.

Theorem 2. Under the assumptions of Theorem 1 there are constants c1, c2 > 0 such that

W 2
2,ζ

(
Law(X1),Law(X2)

)
� c1 Q

1eL/ arctan(1/2) + c2 Q
2, (11)

where

Q1 = ρ2(x1, x2) + |a1 − a2|+ (
√

b1 −
√

b2)
2 + T 2(Π1,Π2)

+
(
Π1(|u| > 1) + Π2(|u| > 1)

)1/2
T (Π1,Π2),

Q2 =

√
(
√

b1 −
√
b2)2 + T 2(Π1,Π2).

Each of the theorems exists in its own right, since they target different ranges of applications.
Clearly, Theorem 2 gives a shorter and a more elegant deviation bound in terms of the metric
induced by the coupling distance T on the set of Lévy characteristics. The bound of Theorem 1
however is sharper but stated only in terms of the semi-distance Tr, r > 0. From the point of view
of practical applications, for example the statistical inference scheme mentioned in the introduction,
it has the advantage that its quantities are easier to handle. Obviously the right-hand side does
not contain a supremum in r, which in particular can be seen as a free parameter defining the
threshold εj(r) between large and small jumps. We refer to [7] for further details.

To illustrate the notion of coupling distances for Lévy measures of infinite intensity we calculate
upper bounds for this quantity for α-stable Lévy measures.

3 Two examples: the value of the coupling distance between one-
sided α-stable measures

Recall that for a one-sided α-stable process, its Lévy measure has the form

Π(du) = αcu−α−11(u)[0,∞) du,

where α ∈ (0, 2) and c � 0. Here we introduce the factor α for further convenience in the calculation.
Parameters α and c are naturally interpreted as the “shape” and the “scaling” parameters, and
one can expect heuristically that two one-sided α-stable measures are “close”, if their respective
parameters are close. As we will see in two examples below, the coupling distance T quantifies this
convergence.

Example 2. Let Πj , j = 1, 2 be two α-stable Lévy measures with the same shape parameter α
and different scale parameters c1 �= c2. We will show that in this case

T 2(Π1,Π2) �
(

2

2− α

) ∣∣∣c1/α1 − c
1/α
2

∣∣∣α , (12)

which tends to 0 for converging scale parameters. By the explicit formula∫ ∞

ε
αcu−α−1 du = cε−α,
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valid for a one-sided α-stable Lévy measure, we have that

εj(r) =

(
r

cj

)−1/α

, j = 1, 2. (13)

Using this, we obtain

πr
j ((−∞, x]) = 1− cj

rxα
, x �

(
r

cj

)−1/α

j = 1, 2. (14)

Recall that a quantile function of the distribution function F is defined as F [−1](y) = inf{x : F (x) > y},
and that for a uniformly distributed random variable U the random variable F [−1](U) has distri-

bution function F. Denote by F
[−1]
r,j , j = 1, 2 the quantile functions of πr

j , j = 1, 2. Then(
F

[−1]
r,1 (U), F

[−1]
r,2 (U)

)
∈ C(πr

1, π
r
2).

Due to the optimal coupling property of the Wasserstein-Kantorovich-Rubinstein distance we obtain

W 2
2,ρ(π

r
1, π

r
2) � Eρ2

(
F

[−1]
r,1 (U), F

[−1]
r,2 (U)

)
=

∫ 1

0

(∣∣∣F [−1]
r,1 (y)− F

[−1]
r,2 (y)

∣∣∣2 ∧ 1

)
dy. (15)

Using (14) we get the quantile function for πr
j , j = 1, 2:

F
[−1]
r,j (y) =

(
r(1− y)

cj

)−1/α

, 0 � y � 1, j = 1, 2. (16)

Consequently,∫ 1

0

(∣∣∣F [−1]
r,1 (y)− F

[−1]
r,2 (y)

∣∣∣2 ∧ 1

)
dy =

∫ 1

0

([
|r(1− y)|−2/α

∣∣∣c1/α1 − c
1/α
2

∣∣∣2] ∧ 1

)
dy.

To shorten the notation let us denote Δc =
∣∣∣c1/α1 − c

1/α
2

∣∣∣ . By a change of variables z = r(1 − y),

we get eventually

T 2(Π1,Π2) �
∫ ∞

0

[
|z|−2/αΔ2

c

]
∧ 1 dz = Δα

c +

∫ ∞

0
|z|−2/αΔ2

c dz = Δα
c +

α

2− α
Δα

c ,

as claimed.

Example 3. Let Πj , j = 1, 2 be two one-sided Lévy measures with the same scale parameter c, but
different shape parameters 0 < α1 < α2 < 2, say. We will show that in this case for c∗ = 1

2(1+
√
5)

T 2(Π1,Π2) �
(
2
(α2 − α1)

2
(
c∗2 − 2 ln(2) ln

(
α2−α1

α1

) ∧ 0
)

(2− α1)(2− α2)(α1 + α2 − α1α2)
+

2

2− α1

)

×
(
c∗ + ln(α1)− ln(α2 − α1)

)−α2

,

(17)

which tends to 0 if α1 ↗ α2, strictly away from 0 and 2. Like in the previous example, we reduce
the problem to the estimation of

Ir =

∫ 1

0

(∣∣∣F [−1]
r,1 (y)− F

[−1]
r,2 (y)

∣∣∣2 ∧ 1

)
dy, r > 0,

7



where

F
[−1]
r,j (y) =

(
r(1− y)

c

)−1/αj

, 0 � y � 1, j = 1, 2. (18)

Changing the variables t = r(1− y)/c, we get

Ir =
c

r

∫ r/c

0

((
t−1/α1 − t−1/α2

)2 ∧ 1

)
dt, (19)

hence

T 2(Π1,Π2) � c

∫ ∞

0

((
t−1/α1 − t−1/α2

)2 ∧ 1

)
dt. (20)

On (0, 1), the function
(
t−1/α1 − t−1/α2

)2
is decreasing from +∞ to 0. On (1,∞), this function is

bounded by 1. Consequently there exists unique t∗ ∈ (0, 1) such that

t
−1/α1∗ − t

−1/α2∗ = 1, (21)

(
t−1/α1 − t−1/α2

)2 ∧ 1 =

{
1, t � t∗,(
t−1/α1 − t−1/α2

)2
, t > t∗.

The explicit calculation gives∫ ∞

0

((
t−1/α1 − t−1/α2

)2 ∧ 1

)
dt = t∗ +

∫ ∞

t∗

(
t−1/α1 − t−1/α2

)2
dt

= t∗
[

2(α2 − α1)
2

(2− α1)(2− α2)(α1 + α2 − α1α2)
t
−2/α2∗ − 2α1(α2 − α1)

(2− α1)(α1 + α2 − α1α2)
t
−1/α2∗ +

2

2− α1

]

� 2(α2 − α1)
2

(2− α1)(2− α2)(α1 + α2 − α1α2)
t
(α2−2)/α2∗ +

2

2− α1
t∗. (22)

Denote

y = t
−1/α2∗ . (23)

Then (21) can be written in the following form:

yα2/α1 − y = 1. (24)

To simplify the notation we denote

β =
α2 − α1

α1
. (25)

Then for (24) we get

y =

(
1 +

1

y

)1/β

. (26)

If we differentiate equation (26) with respect to β and obtain

dy

dβ
=

d

dβ

(
1 +

1

y

)1/β

= −
(
1 +

1

y

)1/β

(
1

β2
ln(1 +

1

y
) +

1

β

y

1 + y

1

y2
dy

dβ
) (27)
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We resolve the equation for dy
dβ to obtain

dy

dβ
= −

(
1 +

(1 + 1/y)1/β−1

y2β

)−1
ln(1 + 1/y)

β2
(1 + 1/y)1/β

= −
(
(1 + 1/y)−1/β +

(1 + 1/y)−1

y2β

)−1
ln(1 + 1/y)

β2
.

Using ln(2)x � ln(1 + x) for 0 � x � 1 we get

dy

dβ
� − ln(2)

βy

1
β (1 + 1/y)

1 + 1
y2β

(1/β∧1)
.

The differential of y is strictly negative. Hence y is decreasing in β, in particular y(β) � y(1) =
1
2(1 +

√
5), for β � 1. On the set 0 < β � 1

dy

dβ
� − ln(2)

yβ

1
β (1 + 1/y)

1 + 1
y2β

� − ln(2)

yβ

1
β + 1

βy2

1 + 1
y2β

� − ln(2)

yβ
.

With c∗ = y(1) we obtain the estimate

y(β) �
√
c∗2 − 2 ln(2) ln(β) , 0 < β � 1 .

In the light of convention (25) we remark that although the right hand side explodes as β ↘ 0 the
terms of order βy(β) that appear in equation (17) are bounded and converge to zero. In fact we
have

(α2 − α1)
2t

−2/α2∗ � (α2 − α1)
2

(
c∗2 − 2 ln(2) ln

(α2 − α1

α1

) ∧ 0

)
. (28)

Now bearing in mind that 1/y ∈ (0, 1) we estimate equation (27) from below

dy

dβ
� −

(
1 +

1

y

)1/β 1

y
(
1

β2
+

1

β

dy

dβ
) � − 1

β
,

we obtain y � c∗ − ln(β) such that

t∗ � (c∗ − ln
(α2 − α1

α1

)
)−α2 , (29)

which tends to 0 as α1 ↗ α2. Combining (28) and (29) we obtain the bound in (17) and this
completes the proof.

4 Proofs

4.1 Proof of Proposition 1

Statement I follows immediately from the fact that W2,ρ is a metric and the following estimate.
Let Π ∈ L and the zero measure 0 ∈ L. For every r > 0 the element 0r is the delta-measure δ0 and
for every (ξ, η) ∈ C(πr,0r) one has η = 0 a.s. Therefore

Eρ2(ξ, 0) =

∫
Rd

ρ2(u, 0)πr(du) =
1

r

∫
Rd

(u2 ∧ 1)ΠT,r(du).

9



Hence

T 2
r (Π,0) =

∫
Rd

(u2 ∧ 1)ΠT,r(du) �
∫
Rd

(u2 ∧ 1)Π(du) < ∞. (30)

Then by the triangle inequality

Tr(Π1,Π2) � Tr(Π1,0) + Tr(Π2,0) �
(∫

Rd

(u2 ∧ 1)Π1(du)

)1/2

+

(∫
Rd

(u2 ∧ 1)Π2(du)

)1/2

.

Since this bound does not depend on r, also T is finite and (8) holds true. Now, since W2,ρ is a
true metric, T (Π1,Π2) = 0 implies that

πr
1 = πr

2, for all r > 0 ,

which implies that Π1 = Π2. This means that T is a metric.

4.2 Proof of Theorem 1

The proof consists of two parts. In the first step (“construction”) we construct a coupling of the
Lévy processes (Z1, Z2) with given characteristic triplets and a certain optimality property. The
second step (“estimation”) uses Itô’s formula to obtain a bound for the difference of the respective
solutions of the SDE driven by the components of our coupling.

Let (aj , bj ,Πj), j = 1, 2 be two given Lévy triplets. It is well known that a Lévy process Zj with
this characteristic triplet has the Itô-Lévy representation

Zj(t) =
(
aj −Πj(|u| > 1)

)
t+

√
bjWj(t) +

∫ t

0

∫
|u|�1

u ν̃j(ds, du) +

∫ t

0

∫
|u|>1

u νj(ds, du), t � 0,

where Wj is a Wiener process, νj is a Poisson point measure on R
+×R with the intensity measure

dsΠj(du) and ν̃j(ds, du) = νj(ds, du) − dsΠj(du) is the respective compensated Poisson point
measure. Furthermore, Wj , ν̃j

∣∣
|u|�1

and νj
∣∣
|u|>1

are independent. Note that the additional term

Πj(u > 1) which appears in the drift corresponds to our choice of compensating term in (10) equal
to izτ(u), instead of usual izu1{|u|�1}.

The coupling (Z1, Z2) of our choice satisfies the following. The diffusive parts of the components
Zj , j = 1, 2 will be generated by a single Wiener processes W . For given r > 0 we split the Lévy

measures Πj according to relation (2). The “large jump” part ZT,r = (ZT,r
1 , ZT,r

2 ) of (Z1, Z2) is
given as a compound Poisson process

ZT,r(t) =

Nr(t)∑
k=1

ξk, (31)

where N r is a Poisson process with the intensity r, and the random vectors ξk = (ξk,1, ξk,2), k � 1

are i.i.d. and independent of N r. The law of ξk,j equals πr
j = (1/r)ΠT,r

j , j = 1, 2, and the coupling
is chosen in such a way that for each k the joint law κ of (ξk,1, ξk,2) is the optimal coupling in the
Wasserstein-Kantorovich-Rubinstein sense [26], i.e.

E[ρ2(ξk,1, ξk,2)] =

∫∫
ρ2(u1, u2)κ(du1, du2) = W 2

2,ρ(π
r
1, π

r
2).

The jump part ΔẐr of the remaining processs Ẑr = (Z1, Z2)− ZT,r stems from a Lévy measure

Π̂(du1, du2) = δ0(du1)Π
H,r
2 (du2) + ΠH,r

1 (du1)δ0(du2) (32)

10



concentrated on the axes, and is realized by a random Poisson measure

ν̂r = ν̂r1 ⊗ ν̂r2 (33)

with two independent components and which are jointly independent of W and ZT,r. We introduce
the compensated random Poisson measure

ν̃r(ds, du) := ν̂r(ds, du)− dsτ(u1 + u2)Π̂
r(du)

which is also concentrated on the axes almost surely. Therefore marginal processes Ẑr
j , j = 1, 2

have the following shape

Ẑr
j (t) = ajt+

√
bjW (t) +

∫ t

0

∫
R

uj ν̃
r
j (ds, du)− t

∫
R

τ(uj)Π
T,r
j (du). (34)

In the second step (“estimation”) of the proof we derive upper bounds for ζ-difference between
the solutions Xj , j = 1, 2 for equations (1) with initial conditions xj , j = 1, 2 driven by noise
coupling (Z1, Z2) constructed above. We consider the difference process Y (t) = X1(t)−X2(t) and
the smooth and bounded auxiliary function

F (y) = arctan y2.

Due to

y ∧ 1 � 4

π
arctan y, for y � 0 (35)

we obtain

E sup
t∈[0,1]

ρ2(X1(t), X2(t)) �
4

π
E sup

t∈[0,1]
F (Y (t)). (36)

The process Y has the Itô differential representation

dY (t) =
(
V (X1(t))− V (X2(t))

)
dt+ d

(
Ẑr
1(t)− Ẑr

2(t)
)
+ d

(
ZT,r
1 (t)− ẐT,r

2 (t)
)
, (37)

which can be extended further, using the identities for Ẑr
j and ZT,r

j given above. Recall the definition

of ν̂r in (33) and denote by νT,r the Poisson point measure on R
+ × R

2, which is realized by the
compound Poisson process ZT,r = (ZT,r

1 , ZT,r
2 ) of equation (31). By construction its Lévy measure

equals
ΠT,r(du1, du2) = rκ(du1, du2).

For convenience we abbreviate σj =
√

bj , j = 1, 2. Then

dY (t) =
(
V (X1(t))− V (X2(t))

)
dt+ (a1 − a2) dt−

∫
R2

(
τ(u1)− τ(u2)

)
ΠT,r(du) dt

+ (σ1 − σ2) dW (t) +

∫
R2

(u1 − u2)
[
ν̂(dt, du)− dtΠ̂(du)

]
+

∫
R2

(u1 − u2)ν
T,r(dt, du).

(38)
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Now, we apply Itô’s formula for the function F (y) (see [20] Chapter 2)

F (Y (t))− F (Y (0)) =

∫ t

0
F ′(Y (s))

(
V (X1(s))− V (X2(s))

)
ds

+ (a1 − a2)

∫ t

0
F ′(Y (s)) ds

−
∫ t

0

∫
R2

F ′(Y (s))
(
τ(u1)− τ(u2)

)
ΠT,r(du)ds

+ (σ1 − σ2)

∫ t

0
F ′(Y (s)) dW (s)

+
1

2
(σ1 − σ2)

2

∫ t

0
F ′′(Y (s)) ds

+

∫ t

0

∫
R2

[
F (Y (s−) + (u1 − u2))− F (Y (s−)

][
ν̂(ds, du)− Π̂(du)ds

]

+

∫ t

0

∫
R2

[
F (Y (s−) + (u1 − u2))− F (Y (s−))− F ′(Y (s−))(u1 − u2)

]
Π̂(du)ds

+

∫ t

0

∫
R2

[
F (Y (s−) + (u1 − u2))− F (Y (s−)

]
νT,r(ds, du).

(39)

We separate the martingale parts, which come from line 4 and 6 in (39). Since F is bounded we
can also compensate the compound Poisson part in line 8

Mt = (σ1 − σ2)

∫ t

0
F ′(Y (s)) dW (s)

+

∫ t

0

∫
R2

[
F (Y (s−) + (u1 − u2))− F (Y (s−)

][
ν̂(ds, du)− dsΠ̂(du)

]

+

∫ t

0

∫
R2

[
F (Y (s−) + (u1 − u2))− F (Y (s−)

][
νT,r(ds, du)− dsΠT,r(du)

]
.

(40)

Hence we can rewrite (39) as

F (Y (t)) = F (Y (0)) +

∫ t

0
g(X1(s), X2(s)) ds+Mt, (41)

where

g(z1, z2) = (V (z1)− V (z2))F
′(z1 − z2) + (a1 − a2)F

′(z1 − z2) +
1

2
(σ1 − σ2)

2F ′′(z1 − z2)

+

∫
R2

[
F (z1 − z2) + (u1 − u2))− F (z1 − z2)− F ′(z1 − z2)(u1 − u2)

]
Π̂(du)

+

∫
R2

[
F ((z1 − z2) + (u1 − u2))− F (z1 − z2)− F ′(z1 − z2)

(
τ(u1)− τ(u2)

)]
ΠT,r(du)

=: g1(z1, z2) + g2(z1, z2) + g3(z1, z2) + g4(z1, z2) + g5(z1, z2).

For the function F and its derivatives, we have the following explicit expressions and bounds:

F ′(y) =
2y

1 + y4
, |F ′(y)| � 33/4

2
(42)
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F ′(y)y =
2y2

1 + y4
� (2y2) ∧ 1 = 2(y2 ∧ 1

2
) � F (y)

arctan(1/2)
, (43)

F ′′(y) = 2
1− 3y4

(1 + y4)2
, |F ′′(y)| � 2 (44)

|F (y + δ)− F (y)− F ′(y)δ| � δ2

2
sup
v

|F ′′(v)| � δ2. (45)

Hence, we can bound every summand on the r.h.s. of (42). By the Lipschitz condition (9) and (43)

g1(z1, z2) �
L

arctan(1/2)
F (z1 − z2).

Estimates (42) and (44) yield

g2(z1, z2) �
33/4

2
|a1 − a2|, g3(z1, z2) � (σ1 − σ2)

2.

and (45) and (32),

g4(z1, z2) �
∫
R2

(u1−u2)
2Π̂(du1, du2) =

∫
R

u2ΠH,r
1 (du)+

∫
R

u2ΠH,r
2 (du) = Ur (Π1)+Ur (Π2) . (46)

To estimate g5(z1, z2), we rewrite it in the following way

g5(z1, z2) =
(∫

|u1−u2|�1
+

∫
|u1−u2|>1

)[
· · ·

]
ΠT,r(du),

and note that in any case the absolute value of the term under the
[
· · ·

]
does not exceed π+33/4.

In the case when |u1 − u2| � 1, we have the inequality

F ((z1 − z2) + (u1 − u2))− F (z1 − z2) � F ′(z1 − z2)(u1 − u2) + (u1 − u2)
2,

which comes from the Taylor expansion because |F ′′(z)| � 2. Hence, after simple rearrangements,
we get

g5(z1, z2) � (π + 33/4)

∫
R2

(
(u1 − u2)

2 ∧ 1
)
ΠT,r(du)

+ F ′(z1 − z2)

∫
|u1−u2|�1

[
(u1 − u2)− (τ(u1)− τ(u2))

]
ΠT,r(du)

= (π + 33/4)T 2
r (Π1,Π2) +

33/4

2

∫
|u1−u2|�1

[
(u1 − u2)− (τ(u1)− τ(u2))

]
ΠT,r(du).

Here we have used that ΠT,r = rκ, where κ is the law on R
2 which minimizes the expectation in

the definition of W2,ρ(π
r
1, π

r
2). Consequently,∫

R2

(
|u1 − u2|2 ∧ 1

)
ΠT,r(du) = r

∫
R2

ρ2(u1, u2)κ(du) = rW 2
ρ (π

r
1, π

r
2) = T 2

r (Π1,Π2). (47)

The absolute value of the integrand in the remaining integral can be estimated by

|u1 − u2|+ |τ(u1)− τ(u2)| � 2(|u1 − u2| ∧ 1),
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on {(u1, u2) : |u1 − u2| � 1}. If, in addition, |u1| � 1, |u2| � 1, then τ(uj) = uj , j = 1, 2 and the
integrand vanishes. Hence by the Cauchy-Schwarz-Bunjakovski inequality and equation (47)∫
|u1−u2|�1

[
τ(u1 − u2)− (τ(u1)− τ(u2))

]
ΠT,r(du) � 2

∫
|u1|>1 or |u2|>1

(
|u1 − u2| ∧ 1

)
ΠT,r(du)

� 2

(∫
R2

(
(u1 − u2)

2 ∧ 1
)
ΠT,r(du)

)1/2 (
ΠT,r({u : |u1| > 1 or |u2| > 1})

)1/2

� 2
(
min(Π1(|u| > 1) + Π2(|u| > 1), r) rW 2

2,ρ(π
r
1, π

r
2)
)1/2

. (48)

Therefore we obtain

g5(z1, z2) � (π + 33/4)T 2
r (Π1,Π2) + 33/4min(Π1(|u| > 1) + Π2(|u| > 1), r)1/2 Tr(Π1,Π2).

Then, summarizing all the above, we get

g(z1, z2) �
L

arctan(1/2)
F (z1 − z2) +

33/4

2
|a1 − a2|+ (σ1 − σ2)

2 + Ur (Π1) + Ur (Π2)+

+ (π + 33/4)T 2
r (Π1,Π2) + 33/4min(Π1(|u| > 1) + Π2(|u| > 1), r)1/2 Tr(Π1,Π2). (49)

Denote by

Q̂r =
33/4

2
|a1 − a2|+ (σ1 − σ2)

2 + Ur (Π1) + Ur (Π2)+

+ (π + 33/4)T 2
r (Π1,Π2) + 33/4min(Π1(|u| > 1) + Π2(|u| > 1), r)1/2 Tr(Π1,Π2),

and also we denote

Qr = Q̂r + (π/2)ρ2(x1, x2).

Recall that
F (y) � y ∧ (π/2) � (π/2)(y ∧ 1),

and therefore F (Y (0)) � (π/2)ρ2(x1, x2). Then, due to F � 0 and Q̂r � 0, representation (41) and
bound (49) yield that for t ∈ [0, 1]

F (Y (t)) � F (Y (0)) +
L

arctan(1/2)

∫ t

0
F (Y (s)) ds+ Q̂r +Mt

� Qr +
L

arctan(1/2)

∫ 1

0
F (Y (s)) ds+Mt a.s.

Hence we get that

EF (Y (t)) � Qr +
L

arctan(1/2)

∫ 1

0
EF (Y (s)) ds (50)

and

E sup
t∈[0,1]

F (Y (t)) � Qr +
L

arctan(1/2)

∫ 1

0
EF (Y (s)) ds+E sup

t∈[0,1]
|Mt|. (51)

Applying the Gronwall lemma, we obtain from (50)

EF (Y (t)) � Qr exp(
Lt

arctan(1/2)
) (52)
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which makes it possible to re-write (51) to the form

E sup
t∈[0,1]

F (t) � Qr exp(
L

arctan(1/2)
) +E sup

t∈[0,1]
|Mt|. (53)

To estimate martingale term in (53) we apply Doob’s maximal moment inequality

E sup
t∈[0,T ]

|Mt|p �
(

p

p− 1

)p

E|MT |p.

with p = 2:

E sup
t∈[0,1]

M2
t � 4EM2

1 = 4(σ1 − σ2)
2

∫ 1

0
E(F ′(Y (s)))2 ds

+ 4

∫ 1

0

∫
R2

E
[
F (Y (s) + (u1 − u2))− F (Y (s))

]2
dsΠ̂(du)

+ 4

∫ 1

0

∫
R2

E
[
F (Y (s) + (u1 − u2))− F (Y (s))

]2
dsΠT,r(du);

(54)

the last identity comes from (40), note that the noises involved in the three summands in the right
hand side of (40) are independent.

Now, let us estimate three terms in the r.h.s. of (54).

1. Using the inequality (42) and the bound (52) we have

4(σ1 − σ2)
2

∫ 1

0
E (F ′(Y (s)))2 ds � 4(σ1 − σ2)

2 3
3/2

4
= 33/2(σ1 − σ2)

2.

2. Using Taylor estimate and inequality (42) and the analogous reasoning to (46) yield

[F (Y (s) + (u1 − u2))− F (Y (s))
]2

�
[
π ∧

(33/4
2

|u1 − u2|
)]2

� π2
(
|u1 − u2|2 ∧ 1

)
.

Then

4

∫ 1

0

∫
R2

E
[
F (Y (s) + (u1 − u2))− F (Y (s))

]2
dsΠ̂(du) � 4π2

∫
R2

(
|u1 − u2|2 ∧ 1

)
Π̂(du)

= 4π2 [Ur (Π1) + Ur (Π2)] .

3. Similarly,

4

∫ 1

0

∫
R2

E
[
F (Y (s) + (u1 − u2))− F (Y (s))

]2
dsΠT,r(du) � 4π2

∫
R2

(
|u1 − u2|2 ∧ 1

)
ΠT,r(du)

= 4π2T 2
r (Π1,Π2).

Eventually the martingale estimates amount to

E sup
t∈[0,1]

|Mt| �
(
E sup

t∈[0,1]
M2

t

)1/2
�

√
33/2|σ1 − σ2|2 + (2π)2(Ur (Π1) + Ur (Π2) + T 2

r (Π1,Π2)).

(55)
Collecting (53) and (55) yields the final bound for (36). This completes the proof.
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4.3 Proof of Theorem 2

Theorem 2 is almost a direct consequence of Theorem 1. Recall that when r → ∞, we have
εj(r) → 0, Ur(Πj) → 0 for j = 1, 2 and Tr(Π1,Π2) → T (Π1,Π2). For r → ∞, Q1

r → Q1′ and
Q2

r → Q2′ , where

Q1′ = 2ρ2(x1, x2) +
4

π

(33/4
2

|a1 − a2|+ (
√
b1 −

√
b2)

2+

+ (π + 33/4)T 2(Π1,Π2) + 33/4
(
Π1(|u| > 1) + Π2(|u| > 1)

)1/2
T (Π1,Π2)

)
,

Q2′ =
4

π

√
33/2(

√
b1 −

√
b2)2 + (2π)2(T 2(Π1,Π2)).

In a last step we take the maximum of all prefactors.
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with small Lévy noise. Springer Lecture Notes in Mathematics, Vol. 2085, 2013.

[11] C. Doss, M. Thieullen. Oscillations and random perturbations of a FitzHugh-Nagumo system.
Preprint hal-00395284, 2009.

[12] K. Hasselmann. Stochastic climate models: Part I. Theory. Tellus, 28:473–485, 1976.
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nentially light jumps. Ann. Probab., 37 (2) 530-564, 2009.

[19] B.V. Gnedenko, A.N. Kolmogorov. Limit distributions for sums of independent random vari-
ables. Addison-Wesley, 1968.

[20] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North-
Holland, Kodansha ltd., Tokyo, 1981.

[21] Members NGRIP. NGRRIP data. Nature, 431:147–151, 2004.

[22] V.S. Koroliuk, N. Limnios, I.V. Samoilenko. Lévy approximation of impulsive recurrent process
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