
Enriching the Web of Data
with

Topics and Links

April 2013

Dissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

eingereicht von
Dipl.-Inf. Christoph Böhm

begutachtet von
Prof. Dr. Felix Naumann, Prof. Dr. Gerhard Weikum, Prof. Dr. Sören Auer

verteidigt am
13. September 2013

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2013/6862/
URN urn:nbn:de:kobv:517-opus-68624
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68624

iv

Abstract

This thesis presents novel ideas and research findings for the Web of Data – a global data

space spanning many so-called Linked Open Data sources. Linked Open Data adheres

to a set of simple principles to allow easy access and reuse for data published on the

Web. Linked Open Data is by now an established concept and many (mostly academic)

publishers adopted the principles building a powerful web of structured knowledge avail-

able to everybody. However, so far, Linked Open Data does not yet play a significant

role among common Web technologies that currently facilitate a high-standard Web

experience.

In this work, we thoroughly discuss the state-of-the-art for Linked Open Data and high-

light several shortcomings – some of them we tackle in the main part of this work.

First, we propose a novel type of data source meta-information, namely the topics of a

dataset. This information could be published with dataset descriptions and support a

variety of use cases, such as data source exploration and selection. For the topic retrieval,

we present an approach coined Annotated Pattern Percolation (APP), which we evaluate

with respect to topics extracted from Wikipedia portals.

Second, we contribute to entity linking research by presenting an optimization model for

joint entity linking, showing its hardness, and proposing three heuristics implemented

in the LINked Data Alignment (LINDA) system. Our first solution can exploit multi-

core machines, whereas the second and third approach are designed to run in a dis-

tributed shared-nothing environment. We discuss and evaluate the properties of our

approaches leading to recommendations which algorithm to use in a specific scenario.

The distributed algorithms are among the first of their kind, i.e., approaches for joint

entity linking in a distributed fashion. Also, we illustrate that we can tackle the entity

linking problem on the very large scale with data comprising more than 100 millions of

entity representations from very many sources.

Finally, we approach a sub-problem of entity linking, namely the alignment of concepts.

We again target a method that looks at the data in its entirety and does not neglect

existing relations. Also, this concept alignment method shall execute very fast to serve

as a preprocessing for further computations. Our approach, called Holistic Concept

Matching (HCM), achieves the required speed through grouping the input by comparing

so-called knowledge representations. Within the groups, we perform complex similarity

computations, relation conclusions, and detect semantic contradictions. The quality of

our result is again evaluated on a large and heterogeneous dataset from the real Web.

In summary, this work contributes a set of techniques for enhancing the current state of

the Web of Data. All approaches have been tested on large and heterogeneous real-world

input.

v

vi

Zusammenfassung

Die vorliegende Arbeit stellt neue Ideen sowie Forschungsergebnisse für das Web of

Data vor. Hierbei handelt es sich um ein globales Netz aus sogenannten Linked Open

Data (LOD) Quellen. Diese Datenquellen genügen gewissen Prinzipien, um Nutzern

einen leichten Zugriff über das Internet und deren Verwendung zu ermöglichen. LOD

ist bereits weit verbreitet und es existiert eine Vielzahl von Daten-Veröffentlichungen

entsprechend der LOD Prinzipien. Trotz dessen ist LOD bisher kein fester Baustein des

Webs des 21. Jahrhunderts.

Die folgende Arbeit erläutert den aktuellen Stand der Forschung und Technik für Linked

Open Data und identifiziert dessen Schwächen. Einigen Schwachstellen von LOD widmen

wir uns in dem darauf folgenden Hauptteil.

Zu Beginn stellen wir neuartige Metadaten für Datenquellen vor – die Themen von

Datenquellen (engl. Topics). Solche Themen könnten mit Beschreibungen von Daten-

quellen veröffentlicht werden und eine Reihe von Anwendungsfällen, wie das Auffinden

und Explorieren relevanter Daten, unterstützen. Wir diskutieren unseren Ansatz für

die Extraktion dieser Metainformationen – die Annotated Pattern Percolation (APP).

Experimentelle Ergebnisse werden mit Themen aus Wikipedia Portalen verglichen.

Des Weiteren ergänzen wir den Stand der Forschung für das Auffinden verschiedener

Repräsentationen eines Reale-Welt-Objektes (engl. Entity Linking). Für jenes Auffinden

werden nicht nur lokale Entscheidungen getroffen, sondern es wird die Gesamtheit der

Objektbeziehungen genutzt. Wir diskutieren unser Optimierungsmodel, beweisen dessen

Schwere und präsentieren drei Ansätze zur Berechnung einer Lösung. Alle Ansätze

wurden im LINked Data Alignment (LINDA) System implementiert. Die erste Methode

arbeitet auf einer Maschine, kann jedoch Mehrkern-Prozessoren ausnutzen. Die wei-

teren Ansätze wurden für Rechnercluster ohne gemeinsamen Speicher entwickelt. Wir

evaluieren unsere Ergebnisse auf mehr als 100 Millionen Entitäten und erläutern Vor-

sowie Nachteile der jeweiligen Ansätze.

Im verbleibenden Teil der Arbeit behandeln wir das Linking von Konzepten – ein Teil-

problem des Entity Linking. Unser Ansatz, Holistic Concept Matching (HCM), betrach-

tet abermals die Gesamtheit der Daten. Wir gruppieren die Eingabe um eine geringe

Laufzeit bei der Verarbeitung von mehreren Hunderttausenden Konzepten zu erreichen.

Innerhalb der Gruppen berechnen wir komplexe Ähnlichkeiten, und spüren semantische

Schlussfolgerungen und Widersprüche auf. Die Qualität des Ergebnisses evaluieren wir

ebenfalls auf realen Datenmengen.

Zusammenfassend trägt diese Arbeit zum aktuellen Stand der Forschung für das Web

of Data bei. Alle diskutierten Techniken wurden mit realen, heterogenen und großen

Datenmengen getestet.

vii

viii

Contents

1 Introduction 1

2 Contributing to the Web of Data:

State-of-the-Art 13

2.1 Creating Data and Schemata . 13

2.2 Creating Meta Information . 17

2.3 Creating Links . 22

3 Topic Mining 31

3.1 Annotated Pattern Percolation . 34

3.2 Annotated Patterns . 37

3.2.1 Annotated Motif Patterns . 38

3.2.2 Mutual Information Patterns . 39

3.3 Pattern Percolation . 42

3.4 The APP System . 45

3.5 Experiments . 50

3.6 Discussion . 59

4 Entity Alignment 61

4.1 Optimization Model . 63

4.1.1 Objective Function . 64

4.1.2 Complexity . 65

4.2 Assignment Algorithm for Multi-core Machines 68

4.3 Assignment Algorithm with Map/Reduce 71

4.4 Assignment Algorithm with Message-passing 75

4.5 The LINDA System . 84

4.5.1 Prior Similarities . 85

4.5.2 Contextual Similarities . 86

4.6 Experiments . 87

4.6.1 Data . 88

4.6.2 Multi-core LINDA . 93

ix

Contents

4.6.3 MR-LINDA . 97

4.6.4 MP-LINDA . 103

4.7 Discussion . 106

5 Concept Alignment 109

5.1 Holistic Concept Matching . 110

5.2 Knowledge Representation . 111

5.3 Match Candidate Groups . 113

5.4 Concept Alignment . 115

5.5 Experiments . 119

5.6 Discussion . 125

6 Conclusion 127

Bibliography 135

x

1 Introduction

Data has become a main pillar of today’s IT world. This change is because computational

infrastructure, e.g, network and storage capabilities, now facilitate handling massive

amounts of data on a daily basis at a fast pace. In the past, large amounts of data

have been collected on tapes, which is an established solution for archiving. In contrast,

today one can store terabytes of data on spinning or solid-state disks, which allows very

fast random access. Furthermore, one can load large data volumes into main memory

allowing an even faster access. In addition, fast network connections enable fast moving

and sharing of data across long distances, which provides flexible and simple access to

data stored in massive data centers.

The sheer availability of such a technical environment leads to novel challenges, ideas,

and opportunities. For instance, organizations can not only archive their data in order to

meet legal regulations; they can actually reason about future developments of products

and trends given observations captured in their historical data. Also, data itself has

become a valuable asset. That is, business models center around data collected from,

for instance, social network users who can then be targeted for Web adds more precisely

than in the past. Further, the ability to share large datasets allows research institutions,

governments, and public agencies to open up internal data collections in order to realize

transparency, repeatability and to allow interoperability.

However, the actual usability of data needs further refinement on many fronts. For in-

stance, a manageable set of access methods (including APIs), data models and respective

serializations should be standardized and adopted by a vast majority of data engineers.

Also, one requires meaningful meta-information to gain an overview of the wealth of

information available. Here, the state-of-the-art lacks common meta-information repre-

sentations as well as methods for its actual creation. Further, there is a need for highly

scalable techniques to create links among entities scattered across the Web. This is im-

portant to achieve interoperability for the Web-of-Data. In the following, we introduce

Open Data and Linked Open Data in particular leading to a more detailed discussion of

these and other shortcomings.

1

1 Introduction

Open Data. Data can be considered as Open Data if it is of a general interest, avail-

able to the public and their terms of use allow some form of exploration, modification

and exploitation, as well as redistribution1. Such data available to the public induces

a variety of opportunities: Most importantly, everyone can now discover the domain

described by the data. This data exploration was formerly reserved for the data owner.

Hence, very many people are able to examine the data from different perspectives, which

can lead to a variety of diverse findings and inspiration. The interconnection of data

from disparate sources allows even further conclusions and a richer picture of the do-

main under consideration. In case there is a community creating and curating a data

source, then, most likely, the information quality improves constantly. Wikipedia2 is

the prime-example of an ever-growing community-curated data source that has a very

high information quality. This way, it became the de-facto standard encyclopedia for

common-world knowledge on the Web.

Currently there is a broad availability of open data. Nevertheless, there are several

challenges to overcome before one productively incorporates such data into a solution

under consideration.

To start with, although Open Data is available to the public it is not necessarily for free.

That is, publishers sell their data, or services based on this data, since their business

model bases on data. For instance, Factual3 offers data about public places derived

from government sources. The well-known social network Facebook4 is one of Factual’s

commercial customers. Other data that is not for free can be found at Socrata5, Microsoft

Azure’s Datamarket6, or DataMarket7.

However, there are also several providers that offer data for free, sometimes imposing us-

age restrictions: Some data shall not be used for commercial purposes; in other cases one

is required to attribute the original publisher. Many public agencies, such as the World-

bank8 or US departments9, chose to provide their data under a Creative Commons10

or similar license. Thus, using open data usually starts with exploring respective terms

of use in order to make sure that the data at hand can be taken into account for the

purpose under consideration.

1Further elaboration on how to define Open Data can be found at opendefinition.org/okd/ and
opendatahandbook.org/en/what-is-open-data/

2http://www.wikipedia.org
3http://www.factual.com
4http://www.facebook.com
5http://www.socrata.com
6https://datamarket.azure.com
7http://www.datamarket.com
8http://data.worldbank.org
9https://data.gov

10http://creativecommons.org

2

opendefinition.org/okd/
opendatahandbook.org/en/what-is-open-data/
http://www.wikipedia.org
http://www.factual.com
http://www.facebook.com
http://www.socrata.com
https://datamarket.azure.com
http://www.datamarket.com
http://data.worldbank.org
https://data.gov
http://creativecommons.org

In addition to the license limitations, one often has to overcome several technical het-

erogeneities that arise from different data origins: First, there are many ways to access

Open Data. It can be downloadable as a whole, e.g., as flat files or database dumps, or

accessible via APIs allowing CRUD-style operations (Create, Read, Update and Delete).

The Open Data Protocol11, for instance, has evolved into a widely-used data access API.

In contrast, for instance, Facebook’s Open Graph Protocol12 is a proprietary API to

incorporate third-party content into Facebook’s social network and vice-versa. Vendor-

specific solutions harbor the risk of frequent API changes and discontinuation. Google’s

Data Protocol13 shows that global players also abandon house-made proprietary solu-

tions.

Then, Open Data comes in a variety of different formats: Some sources allow the down-

load of the entire collection as CSV files or database dumps while others offer pieces of

data in JSON, XML, or publisher-specific serializations.

After accessing the data and processing the respective format, the next challenge is to

understand the schema of the data and the semantics of the data as a whole and single

fields in particular. An amount field, for instance, can be parsed as a string, an integer

or floating point value. Then, the question remains what the field refers to, which unit

is to be used, and what it actually means, e.g., it might comprise a price or a number of

pieces. Thus, understanding data requires a detailed study of proper data documentation

to avoid misusage.

Evidently, the aforementioned challenges hinder inspiration and innovation leading to

novel ideas, findings, and applications.

Linked Open Data. Seemingly independent from these real-world challenges arising

from data heterogeneity, the idea of Linked Open Data (LOD for short) emerged from

the Semantic Web community. Today, Linked Open Data often stands for the core

vision of the Semantic Web, i.e., un-siloing and connecting data on the Web14. In 2006

Tim Berners-Lee featured so-called Linked Open Data as one of his informal design

issues [BL06]. LOD bases on techniques developed in the area of Semantic Web research,

also initially proposed by Berners-Lee et al. [BLHL01]. In analogy to the HyperText Web,

links shall connect arbitrary real-world entities described with RDF, i.e., the Resource

Description Framework [KC04]. RDF is a graph data model that can be seen as a

set of triples consisting of subject, predicate, and object. The subject is the resource

11http://www.odata.org
12http://developers.facebook.com/docs/opengraphprotocol
13https://developers.google.com/gdata
14http://www.scilogs.com/web_science/what-is-the-semantic-web-really-all-about, http://

tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-web-wtf

3

http://www.odata.org
http://developers.facebook.com/docs/opengraphprotocol
https://developers.google.com/gdata
http://www.scilogs.com/web_science/what-is-the-semantic-web-really-all-about
http://tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-web-wtf
http://tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-web-wtf

1 Introduction

under consideration. The predicate describes the relationship among the subject and the

object, which is another resource or a literal. Actual data values, e.g., strings, numbers,

dates, etc. appear as literals. Then, the graph’s nodes are subjects and non-literal

objects connected through edges labeled with predicate names. The Linked Data design

issues state four rules in order to make LOD most valuable for the Web [BL06, SH13]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up an URI, provide useful information, using the standards.

4. Include links to other URIs so that they can discover more things.

The first rule states a common-sense in the Semantic Web field to clearly identify things.

The second rule proposes the use of the standardized and wide-spread HTTP naming

scheme, which includes a commitment to the established Domain Name System. Rule

three asks publishers to return valuable information if such HTTP URI is dereferenced,

i.e., an HTTP request is issued. This shall facilitate human-readability. Note that it

does not suggest what to return in particular. Thus, one can return the entity with all its

predicates and objects, or only predicates with literal values, or all neighboring entities

in the RDF graph versus just some text. The fourth rule can lift the data to the next

level in the value chain, since it asks publishers to connect their data entries to other

data sources. Given such connections, one can easily follow links to discover further

interesting information for the entities under consideration. Note that this is a major

step forward: Data shall not exist in isolated silos anymore. Instead, data should reside

in a context consisting of other entities described in further LOD sources on the Web.

This way, one could answer Join-queries spanning multiple sources without additional

effort, e.g., entity reconciliation, beforehand.

Beyond being connected, all LOD sources provide the same access methods, namely the

linked data interface as well as SPARQL endpoints [BCH07], and return their information

using a common data model, RDF. To be complete, there are several RDF serializations,

e.g., XML [BM04], N3 [BL05, BLC11], JSON-LD [SLK+12], or the Query Result JSON

format [Sea11].

Along with RDF there are two standards for describing the underlying schema of the

data, namely RDFS [BG04] and OWL [W3C09]. The former, RDF Schema, defines a

vocabulary for describing RDF vocabularies. RDFS, with its namespace http://www.

w3.org/2000/01/rdf-schema#, is commonly used in LOD. The latter, the Web Ontol-

ogy Language, allows a more concise formal specification of vocabularies and respective

data. For instance, sameAs can be used to express the equivalence of entities described

4

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#

in individual sources. Schema information is a first-class citizen in LOD sources, since

RDFS and OWL use RDF to describe this information. Thus, the schema can be inher-

ent in the data at hand. However, observations show that LOD often comes as a loose

RDF graph without a fixed set of relationships or a well-defined type of an entity.

Apart from a variety of RDF serializations, LOD with its unified data model, the com-

mon access method, the schema captured in the data and the links across sources may

sound like a silver bullet for today’s data on the Web. Indeed, it is a promising de-

sign vision, since it tackles many problems resulting from simply “throwing data on

the Web”. Further, with SPARQL [PS08, HS12], the RDF query language, it captures

tremendous potential: Imagine that one could possibly query the Web of Data – formed

by interlinked individual LOD sources – in a way we are used to query relational data-

sources with SQL. The LOD community currently examines efficient federated SPARQL

query processing [HMZ10, SPFW13]. However, one is aware that the schema-less nature

of LOD poses a major problem for query federation [PHHD10]. In general, federated

query answering is a challenging task that has been under consideration in the database

community for decades [SL90, Kos00, OV11].

Within the past years the so-called LOD cloud, comprising interlinked LOD sources,

evolved tremendously. Figures 1.1 and 1.2 depict interlinked data sources that fulfill

the basic LOD criteria15. From 09/2007 to 09/2011 the number of sources grew from

28 to 295, i.e., 31.6 billion triples with 504 million (out)links16. At the time of writing

(03/2013), the number of sources approached 330 and the LOD cloud comprises data

from the media, geography, life sciences, and governments as well as large amounts of

user-generated content – see Table 1.1.

Domain # Datasets # Triples in % # (Out-)Links in %

Media 25 1,841,852,061 5.82 50,440,705 10.01
Geographic 31 6,145,532,484 19.43 35,812,328 7.11
Government 49 13,315,009,400 42.09 19,343,519 3.84
Publications 87 2,950,720,693 9.33 139,925,218 27.76
Cross-domain 41 4,184,635,715 13.23 63,183,065 12.54
Life sciences 41 3,036,336,004 9.60 191,844,090 38.06
User-generated content 20 134,127,413 0.42 3,449,143 0.68

295 31,634,213,770 503,998,829

Table 1.1: Number of triples as well as RDF links per domain.
Source: lod-cloud.net/state/#domains, Version 0.3 as of Sep. 2011 by Bizer et al.

15http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/

CKANmetainformation states that data items shall be accessible via dereferencable URIs and
that datasets must have at least 50 RDF in- or outgoing links.

16http://lod-cloud.net as of September 2011

5

lod-cloud.net/state/#domains
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation
http://lod-cloud.net

1 Introduction

SW
Conference

Corpus

DBpedia

RDF Book
Mashup

DBLP
Berlin

Revyu

Project
Guten-
berg

FOAF

Geo-
names

Music-
brainz

Magna-
tune

Jamendo

World
Fact-
book

DBLP
Hannover

SIOC

Sem-
Web-

Central

Euro-
stat

ECS
South-
ampton

BBC
Later +
TOTP

Fresh-
meat

Open-
Guides

Gov-
Track

US
Census
Data

W3C
WordNet

flickr
wrappr

Wiki-
company

Open
Cyc

NEW! lingvoj

Onto-
world

NEW!

NEW!
NEW!

Figure 1.1: The LOD cloud as of 11/2007.
Source: lod-cloud.net by Cyganiak and Jentzsch.

Additionally, there exist vast amounts of data in webpages. For this, one uses Microdata,

Microformats, or RDFa to embed machine-readable information into HTML pages. Mi-

crodata has been around for years and is currently further evolving in the context of the

HTML5 standard [BLN+12, Hic12]. Microformats are a set of purpose specific formats

developed independently17. RDFa [ABMH12] development has been driven by the Se-

mantic Web community and represents a specification of attributes to express structured

data in any markup language. Currently, there is a wealth of information embedded into

websites. Table 1.2 shows recent numbers obtained from a Bing Web crawl as of January

2012 [MP12]. In this crawl approximately 5% of the pages contain embedded data. The

latest development for embedding data into webpages is schema.org18 – an initiative

driven by today’s global search engine players.

For some reason, however, the LOD design vision has not yet come into play for the every-

day Web-experience. That is, it has neither been adopted by commercial data providers

nor has it become the underpinning for currently evolving web applications that gather

very many users. In the latter case it has simply not yet been accepted by the millions

of engineers creating today’s Web. Yahoo’s Web of Concepts [DKP+09] and Google’s

Knowledge Graph [gkg12] are notable exceptions since they borrow ideas from LOD and

contribute to the field. We observe that Google’s Knowledge Graph is powered by large

amounts of structured data and, apparently, Web content is constantly aligned with that

17http://microformats.org
18http://schema.org

6

lod-cloud.net
http://microformats.org
http://schema.org

As of September 2011

Music
Brainz

(zitgist)

P20

Turismo
de

Zaragoza

yovisto

Yahoo!
Geo

Planet

YAGO

World
Fact-
book

El
Viajero
Tourism

WordNet
(W3C)

WordNet
(VUA)

VIVO UF

VIVO
Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UniRef

UniProt

UMBEL

UK Post-
codes

legislation
data.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov.

uk

Traffic
Scotland

theses.
fr

Thesau-
rus W

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

Open
Library
(Talis)

tags2con
delicious

t4gm
info

Swedish
Open

Cultural
Heritage

Surge
Radio

Sudoc

STW

RAMEAU
SH

statistics
data.gov.

uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

SSW
Thesaur

us

Smart
Link

Slideshare
2RDF

semantic
web.org

Semantic
Tweet

Semantic
XBRL

SW
Dog
Food

Source Code
Ecosystem
Linked Data

US SEC
(rdfabout)

Sears

Scotland
Geo-

graphy

Scotland
Pupils &
Exams

Scholaro-
meter

WordNet
(RKB

Explorer)

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS
KISTI

JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints dotAC

DEPLOY

DBLP
(RKB

Explorer)

Crime
Reports

UK

Course-
ware

CORDIS
(RKB

Explorer)
CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov.

ukRen.
Energy
Genera-

tors

reference
data.gov.

uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

Rådata
nå!

PSH

Product
Types

Ontology

Product
DB

PBAC

Poké-
pédia

patents
data.go

v.uk

Ox
Points

Ord-
nance
Survey

Openly
Local

Open
Library

Open
Cyc

Open
Corpo-
rates

Open
Calais

OpenEI

Open
Election

Data
Project

Open
Data

Thesau-
rus

Ontos
News
Portal

OGOLOD

Janus
AMP

Ocean
Drilling
Codices

New
York

Times

NVD

ntnusc

NTU
Resource

Lists

Norwe-
gian

MeSH

NDL
subjects

ndlna

my
Experi-
ment

Italian
Museums

medu-
cator

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

Weather
Stations

London
Gazette

LOIUS

Linked
Open
Colors

lobid
Resources

lobid
Organi-
sations

LEM

Linked
MDB

LinkedL
CCN

Linked
GeoData

LinkedCT

Linked
User

Feedback
LOV

Linked
Open

Numbers

LODE

Eurostat
(Ontology
Central)

Linked
EDGAR

(Ontology
Central)

Linked
Crunch-

base

lingvoj

Lichfield
Spen-
ding

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Klapp-
stuhl-
club

Good-
win

Family

National
Radio-
activity

JP

Jamendo
(DBtune)

Italian
public

schools

ISTAT
Immi-
gration

iServe

IdRef
Sudoc

NSZL
Catalog

Hellenic
PD

Hellenic
FBD

Piedmont
Accomo-
dations

GovTrack

GovWILD

Google
Art

wrapper

gnoss

GESIS

GeoWord
Net

Geo
Species

Geo
Names

Geo
Linked
Data

GEMET

GTAA

STITCH

SIDER

Project
Guten-
berg

Medi
Care

Euro-
stat

(FUB)

EURES

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

CORDIS
(FUB)

Freebase

flickr
wrappr

Fishes
of Texas

Finnish
Munici-
palities

ChEMBL

FanHubz

Event
Media

EUTC
Produc-

tions

Eurostat

Europeana

EUNIS

EU
Insti-

tutions

ESD
stan-
dards

EARTh

Enipedia

Popula-
tion (En-
AKTing)

NHS
(En-

AKTing) Mortality
(En-

AKTing)

Energy
(En-

AKTing)

Crime
(En-

AKTing)

CO2
Emission

(En-
AKTing)

EEA

SISVU

educatio
n.data.g

ov.uk

ECS
South-
ampton

ECCO-
TCP

GND

Didactal
ia

DDC Deutsche
Bio-

graphie

data
dcs

Music
Brainz

(DBTune)

Magna-
tune

John
Peel

(DBTune)

Classical
(DB

Tune)

Audio
Scrobbler
(DBTune)

Last.FM
artists

(DBTune)

DB
Tropes

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

SMC
Journals

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Metoffice
Weather
Forecasts

Discogs
(Data

Incubator)

Climbing

data.gov.uk
intervals

Data
Gov.ie

data
bnf.fr

Cornetto

reegle

Chronic-
ling

America

Chem2
Bio2RDF

Calames

business
data.gov.

uk

Bricklink

Brazilian
Poli-

ticians

BNB

UniSTS

UniPath
way

UniParc

Taxono
my

UniProt
(Bio2RDF)

SGD

Reactome

PubMed
Pub

Chem

PRO-
SITE

ProDom

Pfam

PDB

OMIM
MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Com-
pound

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Affy-
metrix

bible
ontology

BibBase

FTS

BBC
Wildlife
Finder

BBC
Program

mes BBC
Music

Alpine
Ski

Austria

LOCAH

Amster-
dam

Museum

AGROV
OC

AEMET

US Census
(rdfabout)

Figure 1.2: The LOD cloud as of 09/2011.
Source: lod-cloud.net by Cyganiak and Jentzsch.

data. Technical details remain unpublished so far. The LOD community, however, is

aware of the discrepancy between LOD and the real Web. At most large international

conferences in this realm this deficit is under discussion, e.g., at the Semantic Web

Conference (ISWC) or the World Wide Web Conference (WWW) – lately in the Linked

Data on the Web workshop (LDOW) at WWW 2012 [Biz12]. Among others, reasons for

this discrepancy might include19:

(1) Lack of Timeliness, Data Quality, and Influence. Before an organization includes

a data source into its business model, it requires certain guarantees. For instance, the

data must adhere to some well-structured data model; all entities’ descriptions should

be “equally complete”, i.e., they should provide the same set of properties; all property

values must have a particular type; etc. Also, being up-to-date at all times is a prerequi-

site. Further, if such requirements are not met, there are no simple means to contribute

19This argumentation is the authors personal opinion resulting from following the LOD development.
Nevertheless, Hogan et al. also categorize current problems of the Web of Data [HHP+10]. They
identify accessibility issues, syntactical problems, data inconsistencies, as well as non-authoritative
contributions.

7

lod-cloud.net

1 Introduction

Site Triples

facebook.com 2,737,580,921
yahoo.com 856,294,566
tabelog.com 659,670,199
tripadvisor.co.uk 559,423,276
youtube.com 480,077,405
tripadvisor.com 478,847,932
venere.com 365,571,734
myspace.com 266,485,235
tripadvisor.it 184,566,490
yellowpages.com 164,303,902

Table 1.2: Top sites by number of triples. Source: Table 2 in [MP12].

to or influence a data source of interest in order to improve it. In [PHHD10], Polleres

et al. discuss several LOD specific data quality issues inhibiting consumer applications

from fully exploiting that data. Zaveri et al. acknowledge the wide range of Web data

quality and give a comprehensive literature review an data quality metrics that can be

applied to LOD [ZRM+12].

(2) Lack of Reliable Availability. Since many sources stem from academia or the public

sector and thus base on non-stable, non-commercial funding, there is no guarantee that

a data source will be up and running for the next years. As for the US government’s

data site (Data.gov), for instance, there was a budget reduction from $37 to $2 million

in 201120. Currently, the EU is promoting the Digital Agenda to “turn government

data into gold”21. For this, it grants e100 million from 2011 to 2013 to improved

data-handling technologies. But it is not clear what could happen a few years later.

Nevertheless, at the time of writing (03/2013), releasing public-sector information seems

to emerge as a major use-case for LOD. Note that MONDECA, a company dedicated

to providing technology for the management of knowledge structures, maintains a list of

SPARQL endpoint availability22, which usually ranges around 60%. Of course, this issue

also applies to other resources freely available on the Web, including arbitrary APIs, etc.

(3) Lack of Communication Towards Web Engineers. The Semantic Web started

with the ambitious goal to capture the world’s knowledge and facilitate sophisticated

techniques, such as logical inference. The Linked Open Data cloud in particular has been

built as a gigantic academic experiment. Up to this point, the LOD development has

20http://www.guardian.co.uk/news/datablog/2011/apr/05/data-gov-crisis-obama
21http://europa.eu/rapid/pressReleasesAction.do?reference=IP/11/1524
22http://labs.mondeca.com/sparqlEndpointsStatus/index.html

8

http://www.guardian.co.uk/news/datablog/2011/apr/05/data-gov-crisis-obama
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/11/1524
http://labs.mondeca.com/sparqlEndpointsStatus/index.html

mainly been driven by a few hundred senior researchers (from academia and industry)

without attracting many small (e.g., start-ups) or large players that dominate the Web

consumed by billions of people every day. This lack of attraction might be caused by a

lack of communication, e.g., at respective developer conferences. As a result, developers

consider the Semantic Web technology stack, including RDF and SPARQL, as academic,

cumbersome, and bulky. However, some transmissions from academia to industry can

be found. For instance, schema.org is a project powered by the major search engine

providers.

(4) LOD is still in its Infancy. While the former reasons stem from an outside LOD

point-of-view, there are shortcomings in the actual deployment of the current Web of

Data. Hogan et al. evaluate the Web of Data conformance [HUH+12] with respect

to rules taken from the de-facto guide book on how to publish linked data on the

Web [HB11]. The authors give an impressive survey of the LOD deployment status,

analyzing naming issues, interlinkage, resources descriptions, and accessibility. They

conclude, for instance, that there is a lack of human readable meta-information and that

data providers, often, do not provide locally-known in-links.

Links are indeed a major issue. In [HB11], Heath and Bizer discuss three important

types of RDF links, namely relationship links, identity links (mainly sameAs links), and

vocabulary links. The Web of Data currently does not contain as many links as one

would hope for. For instance, sameAs links connect two coreferent resources that de-

scribe the same real-world entity [HB11]. Hogan et al. state that only 29.8% of the

top-level domains link to external domains [HUH+12]23. SameAs.org, a service collect-

ing, managing and providing equivalent URIs [GJM09], has links for approximately 43

million unique URIs. Bizer et al. state that there are (only) approximately 504 mil-

lion links among 31.5 billion triples in the LOD cloud – see Table 1.1. Obviously, most

links stem from life science and bibliographic data sources. Cross-domain-, media-, and

user-generated content sources, where links would be most valuable for general purposes,

do not provide as many links. Unfortunately, many of the existing links are question-

able [DSFM10, HHM+10]. Halpin et al. found only 51% of the sameAs links to be

correct24. The sameAs deployment status is further considered in [DSSM10, HZU+12].

In the latter paper, the authors estimate sameAs link accuracy to be app. 97% – observ-

ing that many of them are trivially correct. This is a poor status, given that already the

23The corpus used has been crawled in 2010 and contains 947 million unique triples spanning content
from 778 data providers, i.e., top level domains.

24In [HHM+10] the authors used copy of the LOD cloud hosted by OpenLink, which amounts to
58,691,520 sameAs triples from 1,202 unique domain names.

9

schema.org

1 Introduction

name, Linked Open Data, features links as a major building block for an interweaved

Web of Data.

Another major issue is the lack of meaningful meta-information published with a data

source, i.e., meta-information that can be understood by human beings but also in-

terpreted by machines. Some publishers consider this meda-data issue – for instance

when creating open government data [FCFOP+11]. Jain et al. state that “currently

there is no mechanism to describe that Jamendo captures music related information,

whereas Geonames captures geographical information. This is a serious drawback if

we envision applications that could seamlessly harness the vast number of facts present

in the cloud.” [JHY+10] Further, Frosterus et al. state “metadata available for [public]

datasets is often minimal, heterogeneous, and distributed, which makes finding a suitable

dataset for a given need problematic.” In particular, “finding suitable datasets based on

different selection criteria such as subject topic, size, licensing, publisher, language etc.

is not supported.” [FHL11] To overcome this, it requires novel meta-information that

could be published as part of voiD description [ACHZ09, ACHZ11], provenance informa-

tion [BCC+13], SPARQL Service Descriptions [Wil12] or in data metadata repositories.

This thesis provides novel research findings for the latter two issues. We devise ap-

proaches for the discovery of links among entities described in disparate sources [BMNW12].

This field of research coined many names for the problem, e.g., entity matching, entity

alignment, or entity assignment, and deduplication. Note that, given the current size

of the Web of Data, these techniques must scale to very large and super-heterogeneous

datasets. Further, most recent entity matching approaches conduct joint reasoning, i.e.,

matching decisions are interdependent across types of data and processing steps. In our

approach, we perform joint reasoning in a scalable manner. In particular, we present a

general optimization model for joint entity matching. For this model, we describe an

approximation of the global optimum and elaborate on three different implementations:

The first implementation, developed with Gerard de Melo, runs on a single machine

but can exploit multi-core processors. The second and third versions run on clusters

of machines in a shared-nothing manner still performing joint reasoning. For this, we

leverage Map/Reduce as well as pure message-passing. Also, we feature an additional

approach, developed with Toni Grütze [Grü11], dedicated to the matching of concepts

from the Web of Data [GBN12]. Here, we came up with a novel grouping scheme and

incorporate it into an existing approach.

As a second major contribution, we propose novel meta-information for the description

of graph-structured data, such as RDF [BKN12]. For this, Johannes Gosda and Eyk

Kny contributed to the implementation and experimentation as part of their master

10

theses [Gos11, Kny12]. We suggest to use sets of concepts for representing the topic of

a dataset. We present a scalable approach, coined Annotated Pattern Percolation, to

derive this information. This way, we facilitate an abstract description of the semantic

content, which can be used in a multitude of scenarios. For instance, it supports human

understanding. Also, given a topic under consideration, it can be used to select and

process an appropriate partition of a large dataset. To the best of our knowledge, the

state-of-the-art does not comprise a comparable approach for the abstract description of

graph data.

Structure of this Work. In the following chapter we introduce different aspects of

contributing to the Web of Data. We distinguish the creation of data (Section 2.1) and

meta-information from data (2.2) as well as the creation of links among data entries (Sec-

tion 2.3). Then, this thesis contributes the following research findings: In Chapter 3, this

work discusses our novel approach for meta-information derived from graph-structred

data. In Chapter 4, we present our scalable algorithms performing joint inference for

aligning entities in the Web of Data. Third, in Chapter 5, this work introduces our

scalable and holistic approach for the well-known problem of concept alignment in the

Web of Data – a special case of ontology alignment. Eventually, Chapter 6 gives on

overall conclusion of this work.

11

1 Introduction

12

2 Contributing to the Web of Data:
State-of-the-Art

From a consumer’s point-of-view the Web of Data consists of the actual data, meta-

information describing that data, and links among data from different providers. In

the following, we give an overview of techniques, platforms, and tools that facilitate

the population and growth of the Web of Data. Some of these contributions stem from

different research communities; others have been developed by Web engineers. Note that

we additionally mention techniques that have not been created for the Web of Data in

particular but deal with equivalent challenges in different domains. The selection of these

additional techniques has been conducted with respect to the technical contributions of

this thesis, i.e., the extraction of topics from graph-structured data and the discovery of

links among entities in distributed data sources.

We first discuss the creation of the actual data including some prominent Linked Open

Data (LOD) examples from various domains (Section 2.1) followed by a discussion of

different means for the creation of meta-information (Section 2.2). In the third part, we

discuss selected techniques for matching entity representations, i.e., methods that can

be used for creating links among LOD (Section 2.3).

2.1 Creating Data and Schemata

Data Publishing Pipelines. There is a broad discussion on how to publish Linked

Data on the Web and the respective life cycle management [ATvN+12, CHM11, Hyl11,

HVTH12, Woo11]. In general, it is a process comprising data modeling (including nam-

ing and describing things) and data generation or data conversion. Conversion can be

conducted fully automatic or in a scripting manner. Mostly, the latter leads to bet-

ter results since scripts created for a particular input dataset can fully incorporate data

modeling decisions. Note that there has not been a consensus on how to convert existing,

mostly relational data to graph data. However, the community is currently developing

standards and tools to support this process. A nice overview of tools can be found in

Chapter 6.2 of [Woo11]; examples include Triplify [ADL+09] and D2RQ [BS04]; W3C

recommendations are available in [ABPS12, DSC12].

13

2 Contributing to the Web of Data: State-of-the-Art

The Major Data Publishing Platform. To reach a wide audience data publishing plat-

forms need to announce the existence of a dataset. Ckan is a prominent data publishing

platform. In particular, ckan is a data catalog system, which contains dataset meta-data

including pointers to the actual data. Though this is a powerful resource for exploring

and finding data on the Web, it has the problem of dead pointers, e.g., reference enti-

ties cannot be shown or the actual dataset access method is outdated. Thus, the ckan

system apparently requires significant manual effort to maintain dataset information for

the publisher on the one hand and to discover up-to-date datasets for the consumer

on the other hand. Since recently, all dataset meta-information can also be obtained

as RDF data. Beside numerous regional installations, e.g., Berlin Open Data25, there

are currently three major installations of the ckan system: datahub.org, data.gov.uk,

and publicdata.eu. Likely, the first, datahub.org, is the most prominent example as

it contains thousands of datasets contributed by various parties. Also it has a group

dedicated to LOD26.

Data.gov.uk is the UK government’s official ckan installation to transparently organize

public sector datasets. Though not all datasets are available as LOD, the UK government

plays a major role in pioneering LOD in the public sector. Also note that the W3C

guidance on publishing open government data [BH09] suggests that data should be

published as soon as it is available in its original format so that it is instantly available

to the public. Then, over time, one should set up a catalog including documentation

and offer human-readable as well as machine-processable transformations.

PublicData.eu is developed by the Open Knowledge Foundation, a UK-based non-profit

organization. This ckan installation has been created as part of the LOD2 project27,

a research project funded by the European Commission dedicated to the development

of methods for exposing and managing large amounts of structured information. On

the project site one can find an intuitive grouping of the data: publicdata.eu/group.

On the other hand, presented meta-information, such as maintainer or provenance, is

relatively scarce. An example for data published as part of the LOD2 project is statistical

data from the world bank28. The LATC project29 is another project in the same realm

targeting (among others) infrastructure development, data publishing as well as best

practices for publishing Linked Data.

25http://daten.berlin.de
26http://thedatahub.org/group/lodcloud
27http://lod2.eu
28http://lod2.eu/BlogPost/1219-publishing-world-bank-linked-data.html
29http://latc-project.eu

14

datahub.org
data.gov.uk
publicdata.eu
datahub.org
Data.gov.uk
PublicData.eu
publicdata.eu/group
http://daten.berlin.de
http://thedatahub.org/group/lodcloud
http://lod2.eu
http://lod2.eu/BlogPost/1219-publishing-world-bank-linked-data.html
http://latc-project.eu

2.1 Creating Data and Schemata

Linked Open Data Examples. A platform like ckan is a means of publishing and or-

ganizing pointers to datasets. In the following we briefly discuss selected examples for

datasets from different domains published as LOD on the Web. GeoSpecies30 contains

information about various species, such as Fungi or Animalia, organized hierarchically

and linked to DBpedia and other LOD. Further, other life-science-related sources, such

as the Gene Ontology31 and HomoloGene32, can be accessed as LOD – though, unfor-

tunately, not reliably at the time of writing.

From the public sector there is, for instance, the Linked Open Government Data por-

tal [DLE+11] developed at the RPI TWC facilitating simple conversion and publication

of raw government data as LOD. Note that the US government collaborates with the

RPI TWC for publishing LOD33.

For public data that has not been published as LOD, we adopted a classic integration

pipeline performing data scrubbing and mapping, entity matching, as well as data fu-

sion [BFH+12]. The integration result is then published as LOD at govwild.org. In

other cases, public agencies, such as the European Environment Agency, publish LOD

directly, e.g., emission trading data as well as data about habitat distribution34.

DBpedia [BLK+09], Freebase [BEP+08, MGM07], and Yago [HSBW12, SKW07] are

well-known Wikipedia-based cross-domain datasets. DBpedia originally used infoboxes

and a static mapping from Wikipedia infobox templates to classes for the extraction of

structured data. Today, the DBpedia team additionally offers community-based mapping

creation and an online Wikipedia content extraction. Freebase contains data contributed

from the community seeded with information from (among others) Wikipedia and Mu-

sicBrainz35. Freebase is not necessarily an LOD source but comes in a graph format and

comprises many links to other sources on the Web. Yago combines Wikipedia data and

WordNet [Fel98]. Initially, Suchanek et al. mapped Wikipedia categories to WordNet

synsets to create a large term hierarchy. Recently, Hoffart et al. additionally incorpo-

rated temporal and spatial data [HSBW12]. The datasets above mentioned have been

(partly) extracted from mostly unstructured Wikipedia data. Note that currently an

effort called Wikidata36 evolves – an initiative to expose Wikipedia knowledge as struc-

tured information. In particular, the project aims at underpinning Wikipedia in that

it provides statements about things including their provenance. With this, Wikipedia

data extraction efforts could become obsolete.

30http://lod.geospecies.org
31http://thedatahub.org/dataset/bio2rdf-goa
32http://thedatahub.org/dataset/bio2rdf-homologene
33See data.gov and http://logd.tw.rpi.edu.
34http://rdfdata.eionet.europa.eu/
35http://wiki.freebase.com/wiki/Data_sources
36http://www.wikidata.org

15

govwild.org
http://lod.geospecies.org
http://thedatahub.org/dataset/bio2rdf-goa
http://thedatahub.org/dataset/bio2rdf-homologene
data.gov
http://logd.tw.rpi.edu
http://rdfdata.eionet.europa.eu/
http://wiki.freebase.com/wiki/Data_sources
http://www.wikidata.org

2 Contributing to the Web of Data: State-of-the-Art

As for Media data, the New York Times (NYT) and the BBC are prime examples for

LOD publishers. The NYT uses tags to organize its media content into topic pages. From

this information it publishes data about people, organizations, and locations, which

was mostly mapped manually to other sources like DBpedia, Freebase or Geonames.

Unfortunately, at the time of writing, it seems like the NYT is not going to publish data

on a regular basis – latest updates date two years back. In contrast, the BBC constantly

releases program-, music-, and other data.

GeoNames37 is an impressive data source containing over 10 million geographical names

and consisting of over 8 million unique features integrated from a multitude of sources

from many public agencies, Wikipedia, the World Factbook, etc.

Ontology Learning. Before the Semantic Web community approached the direct con-

version and generation of data for plugging it into the LOD cloud there was vivid activity

in the field of ontology learning from unstructured data. Here, we proposed an approach

that combines heterogeneous evidences into a graph and then selects the target ontol-

ogy structure leveraging an algorithm based on the dominating set problem [BGL09].

We then examined structural properties of the result. A prominent work in a simi-

lar vein, with regard to structural properties, has been published in the life science

field [AXH+10]. Of course, there are various frameworks and tools covering the en-

tire ontology life-cycle: Prominent examples include the framework by Maedche and

Staab [MS01] as well as Protege by Noy et al. [NSD+01]. The most recent review of

the field has been published by Wong et al. [WLB12]. Additional surveys of ontology

learning approaches can be found in [BCM05, DG08, HEBR11, ZN10]. The broader field

of ontology engineering has been reviewed in [CFLGP03, DSW+00, SMB10].

Leveraging Web Tables. Apart from these efforts to create integrated and structured

LOD sources there is a recent trend to query knowledge in tables on websites: A promi-

nent work in this realm is by Cafarella et al. [CHW+08] who first explored efficient

techniques to gather structured data on the Web and examine the potential of large

table corpora extracted from the Web. In a later paper they describe Octopus, a system

that offers operators to combine the extraction of tables from the Web and the enrich-

ment with context from respective source pages plus additional information form other

sources [CHK09]. Recently, Crestan et al. examine and quantify the different types of

tables that can be found on the Web [CP11]. Further, Dalvi et al. estimate the value

of the long tail in the Web and find that it is worth investigating techniques for the

extraction since there are no large aggregator sites that capture all entities of a specific

37http://www.geonames.org/ontology/documentation.html

16

http://www.geonames.org/ontology/documentation.html

2.2 Creating Meta Information

domain under consideration [DMP12]. For instance, to achieve a coverage of 90% of all

restaurants one has to access at least 1000 websites. These observations motivate the

consideration of raw Web data for the creation of LOD. Note that this analysis is part

of Yahoo’s effort to build a web of concepts [DKP+09].

2.2 Creating Meta Information

Meta-data, i.e., data about data, is important for any type of information – no matter

whether one deals with video files, geographic shape information or the description of

arbitrary things in a graph data model. It is important to be aware of simple statis-

tics, such as dataset size and value distributions, the origin of the data, transformation

processes it underwent, and a sort of semantic description.

Meta-data is useful in a multitude of scenarios: the most obvious case is when data

engineers search for information about a specific topic. How do they know what a

dataset at hand is about and how can they quickly discover connections to other open

sources that they already work with? A data source should provide this information in a

standardized way. A second application is crawling the LOD cloud: Here, raw statistics,

e.g., the number of triples, resources, links, etc., are of interest for scheduling tasks and

provisioning resources. Also, semantic information, such as considered types or related

resources, can facilitate useful segmentation of the data. Query answering for LOD is

another scenario where dataset statistics can support decision making and help achieve

better results more efficiently. A wide availability of well-defined meta-data expedites

data discovery, semantic integration, and usage.

Vocabularies for the Description of Meta-data. The Vocabulary of Interlinked Data-

sets (voiD) addresses the need for meta-data for LOD. VoiD is an RDF-based schema to

describe linked datasets [ACHZ09, ACHZ11]. By providing a standardized vocabulary, it

aims at facilitating the discovery of linked datasets as well as their usage. VoiD offers two

main classes: A void:Dataset describes collections of data published and maintained

by a single provider. A void:Linkset describes entities linking to other sources. Along

with datasets, a number of properties describe technical or statistical features. Similar

to voiD there is DCAT, a vocabulary for the description of data catalogs targeting Web

data catalog integration [MEA12]. The PROV Ontology facilitates the description of

provenance information from a variety of systems from various domains [BCC+13].

Given these means for meta-data description the question remains where the data orig-

inates from: It can either be manually created or generated leveraging computational

17

void:Dataset
void:Linkset

2 Contributing to the Web of Data: State-of-the-Art

methods. This thesis proposes a novel method for the generation of topics – a sophisti-

cated type of meta-data.

RDF Meta-data Creation. The aforementioned vocabularies facilitate the description

of relatively simple meta-information, such as statistics, as well as informal descriptions

and data quality statements. Tools meant to create such type of meta-information,

e.g., the IBM information analyzer, mainly originate from traditional database vendors.

Since they are not suitable for graph-structured RDF data, we do not discuss them

here. For RDF data we have developed ProLOD [BNA+10] for iterative RDF data

profiling. ProLOD aims at determining data quality issues. On the other hand, Guéret

et al. examine LOD links in particular [GGSL12]: The authors examine three network

measures and two LOD-tailored approaches to spot poor-quality links and determine

the dataset link quality as a whole. For this, they use manually evaluated links resulting

from Silk linkage rules (see below).

Besides tools there are libraries, such as the NXParser38, which are capable of creating

simple statistics about the data. RDFStats39 computes statistics and outputs them

using the so-called RDFStats statistics vocabulary. Finally, many developers use hand-

crafted scripts to perform meta-data extraction. On Grimnes’ web blog one can find

interesting results of such an approach40. Others use high-end hardware to perform

statistics computation for Web-scale datasets [JAaS+10]. In [BLN11] we report on a set

of Map/Reduce algorithms to create voiD descriptions for Web-scale datasets. Further,

there is, for instance, Virtuoso’s database function RDF VOID STORE41, which creates

descriptions for RDF graphs. The authors of the voiD vocabulary maintain a list of

tools at semanticweb.org/wiki/VoiD.

Community Detection in Graphs. In Chapter 3 we propose a novel, abstract and well-

defined meta-information that describes the topic of a dataset [BKN12]. We define a

topic as a set of types that are related in a specific area of the real world. For the

creation of topics we introduce a novel community detection algorithm for annotated

entity graphs. An annotated entity graph consists of vertices representing entities and

edges capturing relationships among these entities – just like RDF. Additionally, entity

vertices comprise annotations, e.g., the type of the entity or arbitrary attributes. In

particular, our approach determines communities of vertices with respect to topics, i.e.,

it groups the entities according to the topic they deal with. Since entities can be part

38http://code.google.com/p/nxparser/
39http://rdfstats.sourceforge.net
40http://gromgull.net/blog/?s=btc
41http://virtuoso.openlinksw.com/

18

semanticweb.org/wiki/VoiD
http://code.google.com/p/nxparser/
http://rdfstats.sourceforge.net
http://gromgull.net/blog/?s=btc
http://virtuoso.openlinksw.com/

2.2 Creating Meta Information

of multiple topics, an entity can be part of multiple communities. We thus present an

approach to detect overlapping communities.

Community detection in the general cases has been under broad consideration for many

years. Thus, there is a large body of work that emerged from several fields, such as com-

puter science (e.g., social networks and electronic circuits) or biology. Along these lines,

there are several excellent surveys and empirical evaluations [BvH06, For10, LLM10,

POM09, Sch07].

Lately, attributed graphs have gained significant interest. An attributed graph is similar

to what we call an annotated entity graph, i.e., vertices may have attributes. Given

such an attributed graph, Silva et al. determine attribute-structure correlation pat-

terns, i.e., dense subgraphs induced by particular attribute sets [SMZ12]. With these

patterns, the authors target questions, such as how particular interests in social net-

works form communities. That is, the authors seek attribute sets that justify dense

subgraphs via correlation. For this, they create so-called attribute-structure correlation

patterns using significance tests with respect to null graph models. Zhou et al. pro-

pose SA-Cluster, a graph clustering approach that aims at deriving vertex clusters with

homogeneous vertex attribute occurrences [ZCY09]. SA-Cluster incorporates vertex at-

tributes through the addition of attribute nodes and respective edges. Then, the method

uses random-walk vertex distances for a k-medoids-based clustering. Note that this re-

quires the k to be defined beforehand. Observe that variable attribute value importance

influences the random-walk distance matrix. A recent paper by Cheng et al. tackles

this scalability problem, i.e., many computations of the random-walk vertex distance

matrix [CZHY12]. In particular, the authors incrementally update only these portions

of the matrix that depend on variable edge probability values. Moser et al. discuss the

mining of dense subgraphs such that respective vertices share a significant portion of

additional boolean features, i.e., vertex attributes [MCRE09]. Instead, Mougel et al.

discover sets of subgraphs, such that in each set subgraph vertices share a large number

of attributes [MPR+10].

However, all these approaches use vertex attributes as additional or complementary in-

formation when grouping vertices into dense communities and require certain constraints

on the attribute sets to hold for the dense groups. Instead, the approach we present in

Chapter 3 uses relations among these attributes to discover vertex communities and do

not require density. In particular, we exclusively combine patterns of attributes showing

significant correlation to form communities.

Further, most methods target distinct communities and have not (yet) shown to scale

to large graphs with more than a million vertices per dataset like we face them in the

LOD world. Silva at al. use by far the largest dataset for experimentation in [SMZ12],

19

2 Contributing to the Web of Data: State-of-the-Art

namely, approximately 108,000 vertices from DBLP, 272,000 vertices from LastFM, or

294,000 vertices from CiteSeer. All other experiments have been conducted on a few

thousand vertices representing authors from DBLP.

Further, there is a significantly smaller set of techniques that create overlapping commu-

nities [BGMi05, DPV05, DWP+07, Gre08, PSPLPMM10, PDFV05]. The latest survey

in this field is by Xie et al. [XKS13]. These methods compare to our approach in that

we also derive overlapping partitions of nodes.

Note that graph clusterings in general, including the aforementioned approaches, seek

to maximize the ratio of intra- and inter-cluster links. For this objective, Newman

and Girvan propose to maximize the modularity value, which is an NP-hard problem

and thus often solved with heuristics [BDG+07, GMC10, NG04]. Note that modularity

is not invariant to scale, i.e., it cannot produce communities smaller than a specific

size [FB07]. Arenas et al. also argue about disadvantages of modularity and introduce

an extended version of modularity for network motifs [AFFG08]. This way, the authors

seek communities that comprise more motifs [MSOI+02] than a randomized version of

the network at hand. We do not rely on cluster modularity, since the interconnection

of instances through their classes seems to be a more meaningful criterion for topic

discovery in annotated entity graphs. We thus directly model the intuition of related

vertices and respective annotations via patterns by using selected patterns to expand

communities.

Grimnes et al. apply traditional clustering to Semantic Web resources [GEP08]. Since

they use graph distance, graph reachability, or ontological resource similarity, this ap-

proach also does not target a topical partitioning of the data.

Finally, note that as computational power grew during recent years, the community de-

tection field evolved rapidly. That is, many of the approaches mentioned above emerged

simultaneously to our approach.

Relational Database Summarization. From a conceptual point-of-view, closely related

to graph meta-data creation is work on summarizing relational database schemas. The

work most related to ours is by Wu et al. [WRSM08]. The authors describe a system

for discovering topical structures in relational databases in order to support semantic

browsing and large-scale data integration. Their work, however, categorizes relational

tables according to topics – not entities. Wu et al. leverage different evidences, including

attribute values, for this categorization. This is costly and would not scale to the size of

current LOD sources. Further, we target uncovering topical structures inherent in the

graph – not in the data values, i.e., literals.

Yu and Jagadish devise an approach for summarizing hierarchical schemata [YJ06]. For

20

2.2 Creating Meta Information

this they use size, schema coverage, and importance as optimization criteria. Importance

is estimated based on the cardinality of an element as well as its interlinkage. The authors

present iterative algorithms for the creation of summaries, which consist of abstract

elements and links.

In a similar vein, Yang et al. recently presented an approach to discover informative

join paths through a set of query tables [YPS11]. Thus, in this work, summary graphs

are created for a subset of large relational schemata.

Latent Dirichlet Allocation. Another line of related research is topic modeling, which

aims to describe topics of text corpora. Here, Latent Dirichlet Allocation (LDA) [BNJ03]

has attracted considerable interest. LDA is a generative, probabilistic Baysian model,

which derives topics from text corpora. In LDA a topic is a probability distribution over

words, i.e., given a probability threshold a topic is a set of words. Comparably to LDA,

in Chapter 3 we produce sets of annotations; but we work on annotated entity graphs

- not on texts. Note that authors recently tackle scalability issues for LDA: Zhai et

al. propose a parallel LDA implementation based on Map/Reduce [ZBGAA12]. Their

approach does not use Gibbs Sampling; it rather employs variational inference since it

fits better into the Map/Reduce framework. The authors further propose two extensions:

a so-called informed prior to bias topic discovery as well as a technique for the discovery

of topics in multilingual corpora.

Miscellaneous Types of Topics. Finally, there is a number of recent works that deal

with different notions of topics: For instance, authors define a topic as a “spatially

coherent meaningful theme”, i.e., words that are often close in space [YCH+11]. This

approach works on geo-tagged data and thus creates topics from geographic regions

instead of documents or entities in a graph. The authors of [JHL11] define a topic as

“semantically coherent content that is shared by a significant number of documents in

the corpus”. They discover topics by observing significant changes in a document corpus.

Others cluster Web search queries into missions based on topics [ADOM11]. Here, topics

are defined as “the sum of what can be perceived, discovered, or learned about any real

or abstract entity”. A classifier determines the probability that two sets of queries are

topically related, which is the input for an agglomerative clustering.

The approaches just mentioned demonstrate the diverse perception of what is a topic –

no matter whether one deals with graphs, relations, or texts. In Chapter 3 we provide our

definition as well as an abstract representation of topics in attributed graph-structured

data.

21

2 Contributing to the Web of Data: State-of-the-Art

2.3 Creating Links

The third building block of the Web of Data, besides data and respective meta-informa-

tion, are the links that interconnect entities. The entity matching research field evolved

over many years. Thus, to gain an overview is a challenging task. Hence, a number of

surveys was created to be able to grasp the vast majority of approaches – often dedicated

to different domains and use-cases. Table 2.1 at Page 29 lists more than a dozen summa-

rizing works from the last decade and thus illustrates the vivid development and change

in the field. Remember that, interestingly, computational capabilities evolved tremen-

dously over the same time and thus the nature of developed approaches changed, i.e.,

techniques range from early pairwise string similarity-based methods to complex joint

reasoning over many sources. Reasoning in a joint manner is to take a global view when

making local decisions, e.g., the identity of two entities can depend on other entities

connected trough arbitrary relationships. Joint reasoning includes interdependent deci-

sions, i.e., (earlier) decisions influence other (later) decisions. In the literature, the terms

“joint reasoning”, “interdependent -”, or “collective decisions”are used interchangeably.

In the scope of this work, we go into detail for two groups of techniques: Since we target

the large-scale entity matching scenario for the Web of Data, we first discuss works that

promise processing large datasets and thus facilitate large-scale LOD entity matching.

Second, we elaborate on selected approaches specifically dedicated to the Linked Open

Data world – because we deal with LOD.

Since it is a challenge to differentiate approaches from the entity matching field, we mark

differences to the technique we propose in Chapter 4 using a ♦. We use the ♦ mark for

the sake of clarity, since, given the very many approaches, discussions have shown that

it is often not apparent for the reader.

Large-scale Entity Matching. Table 2.2 at Page 30 lists all approaches considered

in the subsequent discussion. It further depicts datasets and respective sizes used for

experiments the authors report on in their work. In Chapter 4 we discuss results obtained

using a dataset comprising roughly 120 million unique entity descriptions.

The work that presents experiments on the largest scale (among those in Table 2.2) has

been published recently by Papadakis et al. [PIN+12]. The authors use blocking based on

entity URI infixes, URI infixes of neighboring entities, as well as literal tokens. Blocking

means to group data according to a blocking key and then conduct pairwise intra-block

comparisons. This way, one saves the many inter -block comparisons. In [PIN+12] the

authors investigate the correlation of Blocking Cardinality and Comparison Cardinality

with respect to effectiveness and efficiency, respectively. This work does not consider

22

2.3 Creating Links

precision and recall. ♦ As opposed to our work, the proposed approach does not perform

joint decisions where discovered similarities are taken into account for further processing.

However, it incorporates shallow mutual dependencies since it leverages neighboring

entity URIs.

Earlier work by Papadakis et al. determines attribute-name independent blocks for

linking sources with loose schemata and noisy data [PINF11]. For this, they simply

ignore attribute names but rely on shared attribute value tokens to build blocks. To

deal with the very large number of blocks they elaborate on a block scheduling strategy

that processes blocks according to the ratio of gain and cost per block. ♦ This work

deals with a pair of sources and does not perform joint processing.

Kolb et al. devise load balancing strategies for running blocking-based matching algo-

rithms with Map/Reduce [KTR12]. Here, mappers compute blocking keys, and reducers

perform the actual matching per block. To distribute the load, the authors compute a

block distribution matrix used to assign blocks or block fragments to compute nodes

according to different schemes, i.e., a schema solely depending on the input or a range-

partitioning scheme. If blocks span across multiple compute nodes they run an ad-

ditional matching step. ♦ Given large compute clusters, Kolb et al. can essentially

run blocking-based approaches on arbitrary dataset sizes. However, it remains unclear

whether presented observations hold for large block sizes beyond a critical limit where

significant block distribution overhead (including additional comparisons) occurs. Also,

Kolb’s work does not consider joint inference. As for blocking with Map/Reduce, Rong

et al. suggest a signature based on an inverted index as blocking key for deduplicating

millions of author names and synthetic strings [RLDZ11]. Niu at al. have taken a similar

approach with Zhishi.links for large LOD datasets [NRZW11]. Here, the reducer consists

of two steps: It first computes a name and a geographic similarity and then, if the first

value exceeds a given threshold, it determines a similarity based on property-value pairs

giving higher weight to functional properties.

Hogan et al.’s work deals with roughly the same dataset size as we do and is particularly

inspired by the requirements of a Semantic Web search engine [HHU+12, HZU+12]. In

their work, the authors aim to analyze large semantic Web data corpora. For this, they

employ a distributed architecture coordinated by a dedicated master and process data

in multiple phases – run, gather, flood, run, etc. That is, they run local computations,

gather partial results on the master, and push aggregated result back to the slaves.

This way, they compute results based on sameAs symmetry and transitivity, explicit

rules leveraging inverse functional properties as well as max-cardinality restrictions and

shared in/out links plus attribute values. Last, they apply OWL rules for a final refine-

ment. ♦ The proposed approach performs in a distributed manner but does not conduct

23

2 Contributing to the Web of Data: State-of-the-Art

distributed joint inference. Instead, it employs distributed sorts and scans of the corpus

to achieve fairly low runtimes for simple methods on a large corpus.

In earlier work, Hogan et al. gained experience with matching based on quasi inverse

functional properties [HPUZ10]. Here, they compute statistics in few passes over the

data – basically performing sorts and counts. From these statistics they induce aggre-

gated probabilities for entities being sameAs other entities. ♦ Again, this is not a joint

matching approach.

SiGMa is an approach closely related to our Multi-Core algorithm (discussed in Sec-

tion 4.2). Its solution is a binary matrix that is approximated iteratively with a greedy

algorithm [LJPD+12]. It performs joint decisions but uses only local neighborhoods.

Also, the authors argue that unique mappings per source induce a higher result qual-

ity42. ♦ The proposed approach matches two sources and achieves fairly low runtime.

However, SiGMa assumes aligned relationships and properties. Also, SiGMa propagates

matching information through the graph but does neither update priority scores nor

reorganize internal data structures accordingly.

Whang and Garcia-Molina do not process very many entities (with respect to other pub-

lications listed) [WGM12]. However, they present a sound framework for the integration

of existing entity resolution algorithms. These algorithms are then scheduled such that

they produce a joint result. That is, a logical execution plan determines the order

of execution (including re-executions) of individual algorithms to ensure interdependent

considerations, e.g., papers should be reconsidered after venues have been merged. Given

the logical plan, the framework creates a physical execution plan incorporating resource

constraints. ♦ Note that the author’s framework needs existing matching techniques

tailored to specific entity types and attributes. The framework thus operates on well-

structured input for which an engineer needs to specify an influence graph. This graph

captures the semantic relationships among entity types.

Rastogi et al. argue that all state-of-the-art collective entity matchers are probabilistic

and suffer from a fundamental problem, namely scalability [RDG11]. They propose

to partition the input into neighborhoods (they use canopy clustering), which can be

considered locally on a single machine. For collective matching decisions they propose

a simple as well as a maximal message passing scheme and show that their framework

produces provably sound and accurate results (empirically shown) for well-behaved entity

matchers. ♦ Throughout the paper they use a Markov-Logic-based entity matcher, which

requires manually created domain-specific rules. Rastogi et al. report on high precision

42In fact, Lacoste-Julien et al. claim that most entity matching solutions rely on unique mappings per
source [LJPD+12]. We support this claim in that we argue that such constraint increases the result
quality. However, this discussion is highly controversial, i.e., reviewers often suggest the opposite.

24

2.3 Creating Links

results and low runtimes on highly structured, and clearly typed dataset. Large-scale

experiments are run on Hadoop at Yahoo. It remains unclear how to identify suitable

partitions for highly heterogeneous LOD entities.

PARIS aligns instances, classes, and relations using (inverse) functional properties [SAS11].

Quasi functionality is computed taking observed property occurrences into account – just

like proposed by Hogan et al. [HPUZ10] (see above). PARIS iteratively adjusts probabil-

ities for matches. Hence, match probabilities recursively depend on previous matching

decisions. The authors run PARIS until reaching a fixpoint. ♦ The input for PARIS are

two well-structured ontologies. Note that the authors also assume unique mappings per

source. This way, they achieve high precision on OAEI data43.

Herschel et al. examine the very general case of detecting intra-source entity matches

in graph-structured data [HNST11]. They assume an iterative process examining can-

didate pairs maintained in a priority queue. The authors organize their data, including

dependencies among entities and the candidate queue in relational tables to exploit fast

sorting, etc. Note that relational storage is beneficial only if the queue is updated in

many places. Sorting a table for only few changes does not make sense. To overcome

this shortcoming the authors incorporate buffering.

♦ The general framework (graph data, iterations and a priority queue) is very similar

to ours. The queue can be organized according to an arbitrary ranking. In particular,

the authors elaborate on a ranking that minimizes entity pair reconsiderations. Instead,

we use the priority queue to refine intermediate solutions towards a global optimum

following a set of constraints. Here, the relational database used by the authors would

constantly have to handle very many updates.

Herschel et al. work with a reference graph encoding entities and dependencies. A

domain expert has to define this graph beforehand and specific relational tables have

to be created. This works for clearly structured data. Instead, we operate on the Web

data graph almost as is. Nevertheless, we can apply arbitrary similarities involving the

graph neighborhood recursively without particular preprocessing.

Herschel et al. further discuss a distributed approach and argue that the Map/Reduce-

framework is not suitable due to interdependent classifications. We show that smart

partitioning of the input data can facilitate distributed collective decisions.

Herschel et al. chose a master-slave setup and maintain a registry that contains infor-

mation about all candidate pairs to be updated and classification results. This way, they

guarantee the equivalence of the distributed and the non-distributed approaches. How-

ever, holding the entire reference graph on a single machine leads to a severe trade-off

43The (O)ntology (A)lignment (E)valuation (I)nitiative is a yearly competition in matching ontologies
organized in various tracks [EFH+09, EFM+10, EFH+11]. Each track focuses on a different challenge.

25

2 Contributing to the Web of Data: State-of-the-Art

between efficient access and available compute resources. In our implementation, we do

not have a central coordination at the price of violating the unique mapping constraint.

Work by Hu et al. deals with pairwise non-joint matching of classes and properties

(no instances) [HCZQ11]. The authors use an existing tool (Falcon-AO [HQ08]) to

process 4,433 ontologies gathered by the Falcon search engine. The matching has been

conducted on six PCs and took nearly one year for the creation of six million mappings.

After filtering the result to ensure high quality 3.1 million mappings remained. The

authors then study mapping-, ontology-, and top-level domain graph properties, such as

power-law-distribution and the small-world phenomenon.

A second paper by Hu et al. reports on a machine-learning-based technique [HCQ11].

The approach creates training data from existing sameAs statements and functional

properties as well as cardinality constraints to select discriminative property values.

Then, property combinations for entity matchings are selected, e.g., latitude and longi-

tude have shown to be effective. ♦ Unfortunately, the authors restrict the evaluation of

their non-joint approach to ten predefined URIs.

Finally, a prominent work that dates three years back is by Arasu et al. [ARS09]. They

propose a declarative framework with precise semantics for collective intra-source entity

matching with constraints. That is, the authors contribute a Datalog-like language to

manually specify the matching process and respective algorithms with theoretical under-

pinning plus physical optimizations. In this work, “collective” stands for the matching of

different types of entities simultaneously, e.g., publications, authors, and venues. “Con-

straints” allow to specify dependencies among these types, e.g., a publication has exactly

one venue.

Entity Matching for LOD. Some of the above discussed approaches have already been

tailored specifically to LOD. Thus, a distinction between the two sets of techniques

(large-scale and made-for-LOD) is not clear-cut. However, in the following, we briefly

discuss prominent approaches that emerged from the Semantic Web field. Most of these

techniques competed in the Ontology Alignment Evaluation Initiative (OAEI) [EFH+09,

EFM+10, EFH+11]. ♦ Note that none of the approaches below conducts joint inference

and they are mostly designed to operate on two well-structured sources.

The Silk Link Discovery Framework is highly prominent [VBGK09]. In 2009, Volz et al.

presented the framework including a declarative language for specifying linkage rules.

With these rules, one can select entity predicate values, and transform as well as com-

pare them to other values using well-known similarity functions. A year later the authors

added an implementation based on Map/Reduce, which is basically undocumented at

the time of writing. A look into the public sources reveals that the mapper conducts

26

2.3 Creating Links

the matching and the reducer filters resulting entity pairs. Next, Isele et al. bundle this

approach into a software that consumes RDF data streams and matches incoming enti-

ties against a set of locally known entities hold in an in-memory cache [IJB10]. In 2011,

the authors presented a feature called MultiBlock, which essentially indexes entities by

all its predicates and hereby allows to form blocks without sacrificing recall [IJB11]. ♦

This approach implements a variant of the well-known blocking technique. Recently, the

authors formalized expressive linkage rules and present a supervised rule learning algo-

rithm based on genetic programming [IB12]. This way, they overcome one of the major

shortcomings of their framework, i.e., Silk linkage rules were manually created, which

remained a tedious task. The authors show the viability of their approach in extensive

evaluations on a multitude of datasets. ♦ In general, the framework is not meant to

conduct interdependent decisions that propagate through the graph constructed from

multiple sources. Also, it is not a suitable approach for noisy and heterogeneous data at

Web-scale where many distinct properties exist and textual labels are sparse but inter-

connections across many sources are available. Also, the latest addition requires training

data for the rule learning.

Ngonga Ngomo and Lyko also tackle the problem of learning linkage rules with a system

called EAGLE [NL12]. Similar to Isele and Bizer [IB12], they employ genetic program-

ming as supervised learning strategy but incorporate active learning to overcome the

need for a large training dataset.

Earlier, Ngonga Ngomo and Auer presented an approach coined LIMES to limit the

number of entity comparisons based on the triangle equation [NA11]. They conclude

that given the distances of the dataset’s entities to reference points, one can estimate

whether the pairwise distance is above a fixed lower bound. Then, pairwise distances

have to be computed only for pairs where this estimate is below the fixed value. ♦

This work is complementary to ours, as it describes how the prior computation for our

algorithm could be optimized if we used a metric.

Similar to the general Silk approach, Hassanzadeh et al. present a framework to declar-

atively specify linkage rules – but for relational tables [HKL+09, HXM+09]. LinQL is

the respective language that facilitates standard data manipulation in combination with

link discovery. A main contribution of this work is to provide a translation of LinQL

to SQL, which allows to benefit from relational operators. For semantic knowledge in

particular, they show how synonym and hyponym relationships can be leveraged when

stored in relational tables.

AgreementMaker is a publicly available framework to express an alignment process com-

bining existing techniques for concept matching [CAS09]. It allows to specify first- and

second-layer matchers that compare concept features, such as labels, comments, and

27

2 Contributing to the Web of Data: State-of-the-Art

annotations, as well as structural properties, respectively. Then, third-layer matchers

combine output from the previous layers. Matchers can be run in parallel or sequentially.

COMA++ is very prominent among frameworks for combining approaches [ADMR05,

DR02]. This system is not exclusively dedicated to ontology integration. COMA++

consists of a repository to store data relevant to the matching process. Additionally, it

comprises an execution engine, which performs the actual matching plus the similarity

combination.

RiMOM tackles the selection of a good combination of strategies for matching ontolo-

gies [LTLL09]. Li et al. calculate a label- and a structure-based ontology similarity

factor. Given these indicators, RiMOM determines a weighting scheme for linguistic

matchers and how to propagate similarity values in the alignment process.

SERIMI also performs in multiple phases [AHSdV11]. It first selects predicates with

literal values that have an entropy higher than average and then creates match candi-

dates by retrieving entity pairs with similar textual labels for these predicates. Second,

SERIMI disambiguates sets of target entities using a Resource Description Similarity,

which captures the intra-candidate-set similarity.

Codi, publicly available as well, stands for Combinatorial Optimization for Data Inte-

gration and is a framework to declaratively model soft and hard constraints [NMS10,

NNMS10]. Soft constraints represent similarities among ontology elements, i.e., poten-

tial correspondences, and hard constraints capture logical axioms. The authors leverage

Markov-logic to determine the maximum probability of all corresponding possible worlds.

Note that this work targets a global optimum where decisions influence each other.

Finally, a visionary work by Cudré-Mauroux et al. describes a framework with two

goals, namely the retrieval of entity equivalences as well as postdating entities, i.e.,

representations that “model the same referent, but taken at different times” [CMHJ+09].

The authors’ system idMesh deals with multiple sources in a decentralized manner and

manages uncertainty. Given entities from multiple Web sources, the authors build factor-

graphs to infer equivalences and time relationships.

28

2.3 Creating Links
T

it
le

an
d

A
u

th
or

s
R

ef
er

en
ce

D
at

a
M

at
ch

in
g,

C
h

ri
st

en
[C

h
r1

2
b

]
A

S
u

rv
ey

of
In

d
ex

in
g

T
ec

h
n

iq
u

es
fo

r
S

ca
la

b
le

R
ec

or
d

L
in

ka
ge

an
d

D
ed

u
p

li
ca

ti
on

,
C

h
ri

st
en

[C
h

r1
2
a
]

T
ow

a
rd

s
L

ar
ge

-S
ca

le
S

ch
em

a
an

d
O

n
to

lo
gy

M
at

ch
in

g,
R

ah
m

[R
a
h

1
1
]

R
es

u
lt

s
of

th
e

O
n
to

lo
gy

A
li

gn
m

en
t

E
va

lu
at

io
n

In
it

ia
ti

v
e,

E
u

ze
n

at
et

al
.

[E
F

H
+

09
,

E
F

M
+

10
,

E
F

H
+

1
1
]

H
o
li

st
ic

C
on

ce
p

t
M

at
ch

in
g

in
th

e
W

eb
of

D
at

a
(C

h
ap

te
r

3)
,

G
rü

tz
e

[G
rü

1
1
]

E
va

lu
at

io
n

of
en

ti
ty

re
so

lu
ti

on
ap

p
ro

ac
h

es
on

re
al

-w
or

ld
m

at
ch

p
ro

b
le

m
s,

K
öp

ck
e

et
al

.
[K

T
R

1
0
]

F
ra

m
ew

or
k
s

fo
r

en
ti

ty
m

at
ch

in
g:

A
co

m
p

ar
is

on
,

K
öp

ck
e

an
d

R
ah

m
[K

R
1
0
a
]

A
n

In
tr

o
d

u
ct

io
n

to
D

u
p

li
ca

te
D

et
ec

ti
on

,
N

au
m

an
n

an
d

H
er

sc
h

el
[N

H
1
0
]

H
a
n

d
b

o
ok

on
O

n
to

lo
gi

es
,

S
ta

ab
an

d
S

tu
d

er
[S

ta
0
9
]

O
n
to

lo
gy

M
at

ch
in

g,
E

u
ze

n
at

an
d

S
h
va

ik
o

[E
S

0
7
]

D
u

p
li

ca
te

R
ec

or
d

D
et

ec
ti

on
,

E
lm

ag
ar

id
et

al
.

[E
IV

0
7
]

A
n

E
m

p
ir

ic
al

S
tu

d
y

of
In

st
an

ce
-B

as
ed

O
n
to

lo
gy

M
at

ch
in

g,
Is

aa
c

et
al

.
[I

v
d

M
S

W
0
7
]

A
S

u
rv

ey
on

O
n
to

lo
gy

M
ap

p
in

g,
C

h
oi

et
al

.
[C

S
H

0
6
]

O
n
to

lo
gy

M
ap

p
in

g:
T

h
e

S
ta

te
of

th
e

A
rt

,
K

al
fo

gl
ou

an
d

S
ch

or
le

m
m

er
[K

S
0
5
]

A
S

u
rv

ey
of

S
ch

em
a-

B
as

ed
M

at
ch

in
g

A
p

p
ro

ac
h

es
,

S
h
va

ik
o

an
d

E
u

ze
n

at
[S

E
0
5
]

A
S

u
rv

ey
of

A
p

p
ro

ac
h

es
to

A
u

to
m

at
ic

S
ch

em
a

M
at

ch
in

g,
R

ah
m

an
d

B
er

n
st

ei
n

[R
B

0
1
]

T
ab

le
2.

1:
S

u
rv

ey
s

re
la

te
d

to
th

e
E

n
ti

ty
-

a
n

d
C

o
n

ce
p

t
M

a
tc

h
in

g
re

se
a
rc

h
fi

el
d

(o
rd

er
ed

b
y

ye
a
r

o
f

p
u

b
li

ca
ti

o
n

).

29

2 Contributing to the Web of Data: State-of-the-Art

T
it

le
an

d
A

u
th

or
s

R
ef

er
en

ce
D

at
as

et
an

d
re

sp
ec

ti
v
e

si
ze

s

B
ey

on
d

10
0

m
il

li
on

en
ti

ti
es

:
la

rg
e-

sc
al

e
b

lo
ck

in
g-

b
as

ed
re

so
lu

ti
on

fo
r

h
et

er
og

en
eo

u
s

d
at

a,
P

ap
ad

ak
is

et
a
l.

[P
IN

+
1
2
]

B
il

li
on

T
ri

p
le

s
C

h
al

le
n

ge
20

09
d

at
a:

18
2m

en
ti

ti
es

L
oa

d
B

al
an

ci
n

g
fo

r
M

ap
R

ed
u

ce
-b

as
ed

E
n
ti

ty
R

es
ol

u
ti

on
,

K
ol

b
et

al
.

[K
T

R
1
2
]

P
ro

d
u

ct
d

es
cr

ip
ti

on
s:

11
0k

P
u

b
li

ca
ti

on
s:

1.
4m

S
ca

la
b

le
an

d
d
is

tr
ib

u
te

d
m

et
h

o
d

s
fo

r
E

M
,

C
on

so
l.

an
d

D
is

am
b

ig
.

ov
er

li
n

ke
d

d
at

a
co

rp
or

a,
H

og
an

et
a
l.

[H
Z

U
+

1
2
]

C
ra

w
le

d
d
at

a:
94

7m
u

n
iq

u
e

tr
ip

le
s

fr
om

78
3

p
ay

-l
ev

el
-d

om
ai

n
s

S
iG

M
a:

S
im

p
le

G
re

ed
y

M
at

ch
in

g
fo

r
A

li
gn

in
g

L
ar

ge
K

n
ow

le
d

ge
B

as
es

,
L

ac
os

te
-J

u
li

en
et

al
.

[L
J
P

D
+

1
2
]

Y
A

G
O

:
1.

4m
en

ti
ti

es
IM

D
b

:
3.

1m
,

4.
8m

en
ti

ti
es

F
re

eb
as

e:
47

4k
en

ti
ti

es

J
oi

n
t

E
n
ti

ty
R

es
ol

u
ti

on
,

W
h

an
g

an
d

G
ar

ci
a-

M
ol

in
a

[W
G

M
1
2
]

S
y
n
th

et
ic

re
co

rd
s:

1k
S

p
o
ck

d
at

a:
1m

p
er

so
n

s,
80

0k
ad

d
re

ss
es

,
35

0k
sc

h
o
ol

s,
an

d
66

0k
jo

b
s

L
IN

D
A

:
D

is
tr

ib
u

te
d

W
eb

-o
f-

D
at

a-
S

ca
le

E
n
ti

ty
M

at
ch

in
g,

B
öh

m
et

al
.

(p
ar

t
of

th
is

th
es

is
,

se
e

C
h

ap
te

r
4
)

[B
M

N
W

1
2
]

B
il

li
on

T
ri

p
le

s
C

h
al

le
n

ge
20

11
d

at
a

+
D

B
p

ed
ia

+
Y

ag
o

+
F

re
eb

as
e

+
G

eo
n

am
es

:
>

11
5m

en
ti

ti
es

L
ar

ge
-s

ca
le

C
ol

le
ct

iv
e

E
n
ti

ty
M

at
ch

in
g,

R
as

to
gi

et
al

.
[R

D
G

1
1
]

B
ib

li
og

ra
p

h
ic

d
at

a:
2.

3m
p
u

b
li

ca
ti

on
s:

4.
6m

au
th

or
s

P
A

R
IS

:
p

ro
b

ab
il

is
ti

c
al

ig
n

m
en

t
of

re
la

ti
on

s,
in

st
an

ce
s,

an
d

sc
h

em
a,

S
u

ch
an

ek
et

al
.

[S
A

S
1
1
]

Y
ag

o:
2.

8m
in

st
an

ce
s,

29
2k

cl
as

se
s

D
B

p
ed

ia
:

2.
4m

in
st

an
ce

s,
31

8
cl

as
se

s
IM

D
B

:
4.

8m
in

st
an

ce
s,

1
5

cl
a
ss

es

S
ca

la
b

le
It

er
at

iv
e

G
ra

p
h

D
u

p
li

ca
te

D
et

ec
ti

on
,

H
er

sc
h

el
et

al
.

[H
N

S
T

1
1
]

IM
D

B
d

at
a:

35
k

m
ov

ie
n

am
es

,
80

0k
ac

to
rs

F
re

ed
b

.o
rg

:
10

k
C

D
s

E
ffi

ci
en

t
en

ti
ty

re
so

lu
ti

on
fo

r
la

rg
e

h
et

er
og

en
eo

u
s

in
fo

rm
at

io
n

sp
ac

es
,

P
ap

ad
ak

is
et

al
.

[P
IN

F
1
1
]

D
B

P
ed

ia
/I

M
D

B
:

23
.5

k
an

d
23

.2
k

en
ti

ti
es

D
B

P
ed

ia
/D

B
P

ed
ia

:
2
×

1.
2m

en
ti

ti
es

H
ow

M
at

ch
ab

le
A

re
F

ou
r

T
h

ou
sa

n
d

O
n
to

lo
gi

es
on

th
e

S
em

an
ti

c
W

eb
,

H
u

et
al

.
[H

C
Z

Q
1
1
]

4,
43

3
on

to
lo

gi
es

ga
th

er
ed

b
y

th
e

F
al

co
n

S
ea

rc
h

E
n

gi
n

e:
2m

cl
as

se
s

an
d

p
ro

p
er

ti
es

A
S

el
f-

T
ra

in
in

g
A

p
p

ro
ac

h
fo

r
R

es
ol

v
in

g
O

b
je

ct
C

or
ef

er
en

ce
on

th
e

S
em

an
ti

c
W

eb
,

H
u

et
al

.
[H

C
Q

1
1
]

56
9.

5m
tr

ip
le

s,
i.

e.
,

76
.4

m
U

R
Is

,
in

cl
u

d
in

g
8m

tr
ip

le
s

u
se

d
fo

r
tr

ai
n

in
g

d
at

a
cr

ea
ti

on

S
om

e
E

n
ti

ti
es

ar
e

m
or

e
eq

u
al

th
an

ot
h

er
s,

H
og

an
et

al
.

[H
P

U
Z

1
0
]

C
ra

w
le

d
d
at

a:
20

m
tr

ip
le

s

L
ar

ge
-S

ca
le

D
ed

u
p

li
ca

ti
on

w
it

h
C

on
st

ra
in

ts
u

si
n

g
D

ed
u

p
al

og
,

A
ra

su
et

al
.

[A
R

S
0
9
]

B
ib

li
og

ra
p

h
ic

d
at

a:
46

0k
en

tr
ie

s

T
ab

le
2.

2:
S

ta
te

-o
f-

th
e-

ar
t

la
rg

e-
sc

al
e

en
ti

ty
m

a
tc

h
in

g
a
p

p
ro

a
ch

es
(o

rd
er

ed
b
y

ye
a
r

o
f

p
u

b
li

ca
ti

o
n

)
w

it
h

re
sp

ec
ti

ve
d

at
as

et
s

u
se

d
fo

r
ex

p
er

im
en

ta
ti

o
n

.

30

3 Topic Mining

A main goal of the LOD vision is to allow easy understanding and re-use of formally raw

(and sometimes hidden) data in order to facilitate novel applications incorporating data

from distributed sources. Given the wealth of data, it is a challenging undertaking for

data engineers to choose appropriate sources for a task at hand. Jain et al. state that

there is currently no mechanism to capture the conceptual description – the topics –

of a dataset [JHY+10]. Currently, 63% of the 295 LOD sources (and 73% of the 41

cross-domain sources) do not provide any meta-information at all44. This is a major

shortcoming of the current LOD implementation.

Consider, for instance, an online warehouse with internal product data to be augmented

with open data, e.g., from some open media database or a source describing geographic

places. To accomplish this augmentation, one could conduct a Web search and might

find the Linked Movie Database, Geonames, or DBpedia. The Linked Movie Database

and Geonames do not provide any semantic meta-information. DBpedia offers a concise

voiD description but the semantic content, i.e., the topics it covers, remains unclear.

For a human expert, the covered topics might be easy to guess in cases, such as IMDB

or GeoNames; but which topics does DBpedia cover? DBpedia describes diverse entities

from the media, politics, arts, science, sports, and many more domains. Other promi-

nent examples for cross-domain data sources are Yago [HSBW12], Freebase [BEP+08],

Zhishi.me [NSW+11], or OpenCyc45. Recently, Best Buy opened its product database

and now offers product specifics, descriptions, and consumer reviews46.

The topic of a data(sub)set can be understood as the dataset’s subject, i.e., it states

what the interplay of all its entities is about. In contrast, a concept or type of an entity is

an abstract idea derived from specific entities, i.e., it generalizes the notion of a specific

group of entities. We use types as annotations of nodes in a graph.

Politics, arts, science, and sports are examples for topics we aim to discover. If given at

all, they are not exposed in a structured manner. We propose novel structured meta-

information, namely sets of types that constitute topics. Then, a topic can be expressed

by all distinct types (not the entities itself) of all entities forming a topic. Note that these

44http://lod-cloud.net/state/#data-set-level-metadata as of September 2011.
45http://sw.opencyc.org
46https://bbyopen.com/announcing-bbyopen-metis-alpha-best-buy-product-catalog-semantic-endpoints

31

http://lod-cloud.net/state/#data-set-level-metadata
http://sw.opencyc.org
https://bbyopen.com/announcing-bbyopen-metis-alpha-best-buy-product-catalog-semantic-endpoints

3 Topic Mining

@pref ix v o i d : <h t tp : // r d f s . org /ns/ void#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms /> .
@pre f ix : <h t t p : // example . com/ onto logy#> .

: d s a vo id :Datase t ;
d c t e r m s : t i t l e ”The Prominent People DB” ;
d c t e r m s : d e s c r i p t i o n ” This i s data about mus ic ians and more . ” ;
void:ur iLookupEndpoint <example . com/> ;
vo id :ur iRegexPatte rn ”ˆexample . com/ onto logy#.+” ;
void :exampleResource : e n t i t y /Bob Marley ;
void :exampleResource : e n t i t y / The Ro l l ing Stones ;
void:numberOfSubjects 4000 ;
vo id :numberOfPredicates 20 ;
void:numberOfObjects 3000 ;
vo id :numberOfTrip les 40000 ;
dc t e rms : sub j e c t : t o p i c 0 1 ;
dc t e rms : sub j e c t : t o p i c 0 2 .

: t o p i c 0 1 a : t o p i c ;
: c o n t a i n s : type /album ;
: c o n t a i n s : type /band ;
: c o n t a i n s : type /manager ;
: c o n t a i n s : type / event ;
: c o n t a i n s : type / c lub .

: t o p i c 0 2 a : t o p i c ;
: c o n t a i n s : type / p lace ;
: c o n t a i n s : type / stadium ;
: c o n t a i n s : type / p laye r ;
: c o n t a i n s : type / f o o t b a l l c l u b ;
: c o n t a i n s : type /brand .

Listing 3.1: Example for topic descriptions as part of a void:Dataset description.

topics may overlap, e.g., the concept of a geographic place can play a role in different

topics, such as sports and transport. We are aware that it is a matter of opinion which

entities exactly form a topic and which do not. However, we believe that there is a

rough common understanding and further provide a set of parameters for our approach

so that the output can range from high-level to fine-grained and thus meets different

requirements (see Section 3.5, Page 53).

For a seamless integration into existing meta-data standards, one could incorporate to-

pics into voiD descriptions or expose them in the form of http://purl.org/dc/terms/

subject property values. Then, users could easily grasp what a dataset is about. Con-

sider Listing 3.1 as an example. Here, we can find the regular voiD information, such

as the datasource title, the SPARQL endpoint, and example resources. In addition, the

description contains the topics of the data – see :topic01 and :topic02 defining sets

of types. From these two collections of types inherent in the data one can conclude that

the data at hand is about music industry and sports related entities. This conclusion

32

http://purl.org/dc/terms/subject
http://purl.org/dc/terms/subject
:topic01
:topic02

{ } { } { }

Bob$
FC$

Barcelona$

Barcelona$ Camp$
Nou$

adidas$

Far$
East$
Tour$

Town$
Hall$

Messi$

The$
Rolling$
Stones$Voodoo$

Lounge$

album$

manager$

band$

club$

place$

@$club$

stadium$

player$

brand$

event$

{album,$band,$manager,$
event,$club}$

{place,$stadium,$player,$
@$club,$brand}$

to
pi
c$
in
st
an

ce
s$

to
pi
cs
$

en
Ft
y$
gr
ap

h$
w
.$a
nn

ot
aF

on
s$

Bob$

Far$
East$
Tour$

Town$
Hall$

The$
Rolling$
Stones$

Voodoo$
Lounge$

Pete$

Uprising$
Tour$

Palace
Park$

Bob$
Marley$

Exodus$
FC$

Barcelona$

Barcelona$

Camp$
Nou$

adidas$
Messi$

Figure 3.1: Running example: filled ellipses (nodes) indicate entities; edges represent relation-
ships among entities; rectangles are annotations. The large transparent ellipses illus-
trate different topics.

could neither be drawn from the title nor from the example resource information.

Further, we envision several technical use cases: For instance, topics can facilitate source

selection for querying the LOD cloud [HHK+10, TZS10]. Here, one could compute the

topics of a query and then determine sources in the cloud whose topic significantly

overlaps with those from the query. Topics can also provide further evidence for link

discovery across data sources. That is, a link among entities from different sources

makes sense only if both entities stem from overlapping topics. Last, RDF indexing

approaches can be supported: topic instances represent node sets of a graph that should

be co-located on disk and indexed respectively [WPWCM11].

Consider Figure 3.1 as a general example that we use throughout this chapter. The top

section shows our input: We work with a graph consisting of nodes representing real-

world entities (blue ellipses) and edges representing relationships among these entities

(blue lines). Additionally, our input contains annotations for entity nodes, i.e., each

entity’s abstract type (grey rectangles). This graph in the top section, for instance,

contains the band The Rolling Stones and their album Voodoo Lounge or the football

club FC Barcelona and the stadium Camp Nou as entity nodes. Moreover, it comprises

instances of managers and brands, etc. Given this graph, one can intuitively distinguish

different topics, e.g., music industry for the left-hand nodes and sports for the right-hand

nodes47. Thus, the example in the top section shows two topic instances that can be

47The actual labeling of topics is not part of this work.

33

3 Topic Mining

identified in the graph (light blue and light green background areas).

The middle section depicts these topic instances, i.e., sets of entities. Note that topic

instances instantiate topics, i.e., they are of a specific topic. Thus, there can be multiple

topic instances that instantiate a single topic. In the example, there are two music

industry topic instances; one contains entities from the rock music business; a second

instance comprises reggae music related entities. Also, the middle section contains one

topic instance for sports.

The bottom section shows the unique abstract representations of the topic instances: We

use sets of types to describe a topic. In our example, there are two topics: music industry =

{album, band,manager, event, club} and sports = {place, stadium, player, fbclub, brand}.
If published as part of voiD descriptions this could be represented as in Listing 3.1.

Such dataset descriptions clearly help a user understand what is in the dataset under

consideration.

In the following we formalize the problem of mining topics from semantically hetero-

geneous graph-structured data and propose an approach called (A)nnotated (P)attern

(P)ercolation (APP) for mining overlapping topics and topic instances. Our approach is

based solely on the data’s graph structure and does not require any literal values. The

result of our approach consists of (1) types forming topics, (2) patterns of type relations

per topic, and (3) sets of entities from the data instantiating the topics. Note that since

we work with a graph capturing entities, our approach is applicable to all sorts of data

that can be converted to such a graph. This graph structure is inherent in RDF data but

could also be derived from tabular information. In Section 3.5 we evaluate our approach

on DBpedia and show that we can reconstruct a portion of the topics that we extracted

from Wikipedia.

3.1 Annotated Pattern Percolation

Topics and Instances. Given a large RDF dataset with heterogeneous content, we want

to derive topics and partition the data into respective topic instances. An RDF triple

(s, p, o) consists of a subject, a predicate, and an object. The subject is the entity the

RDF statement is about. In LOD, subjects and predicates are given as URIs. Objects

are either URIs of other entities or literals. In the following, we define topics as well as

topic instances.

Definition 3.1 (topic)

Given a set R of RDF triples including (s, rdf:type, o) statements, a topic T is a set

of types {t1, . . . , tn} ⊆ {o|(s, rdf:type, o) ∈ R} that are related in a specific area of the

real world.

34

3.1 Annotated Pattern Percolation

Note that we deliberately chose the fuzzy term “related” in order to reflect the many

different kinds of coherence among types in the real world.

Definition 3.2 (topic instance)

Given a set R of RDF triples and a topic T = {t1, . . . , tn}, a topic instance I =

{e1, . . . , em} is a set of entities such that the types of these entities constitute the topic

T , i.e., T =
⋃
e∈I type(e). The function type(e) yields the types of an entity.

Entities in topic instances shall reflect the type relationships of topics, i.e., entities with

strongly related types should be related similarly. A topic and an instance share the

same relationship as a type and an entity. An entity’s type describes its abstract idea

– though there are many individual representations. An instance’s topic describes what

the instance’s entities are all about – though there can be different instances (i.e., sets

of entities) about the same topic. Observe that the topic- and instance cardinality can

differ, since two entities (of an instance) can have equal types or single entities can

have multiple types. Further note that Definition 3.1 and 3.2 (as well as Definition 3.3)

are customized for RDF data. However, they could easily be restated in order to fit

life-science graphs or social network data, etc.

Data Model. For our topic mining approach, we cast a set of triples into an annotated

entity graph G, with nodes representing entities, and edges representing relationships

with other entities. Specifically, we consider only RDF triples (s, p, o) where s, p, and o

are URIs. Literals and reifications are not taken into account. We thus deal only with

structure inherent to the data. Types of entities, i.e., concepts associated via rdf:type

predicates, constitute entity annotations and are compiled into a set of values associated

with an entity. Another set contains all types used in G. For the definition of these

sets, we use the + sign to denote the recursive application of the rdfs:subClassOf

predicate. Thus, given a set of RDF triples R, (t1, rdfs:subClassOf+, t2) defines t2 to

be any super-type of t1 present in R – not necessarily a direct one.

Definition 3.3 (annotated entity graph)

An annotated entity graph is a vertex-colored graph G = (V,E) with a set of nodes

V representing entities and edges E capturing relations among entities. Entity node

annotations type() are the vertex colors. Given a set of RDF triples R, the set of all

types C as well as V , E and the function type() are defined as follows:

35

3 Topic Mining

C := {o | ∃s : (s, rdf:type, o) ∈ R} ∪

{t | ∃s : (s, rdf:type, o), (o, rdfs:subClassOf+, t) ∈ R}

V := {s, o | (s, p, o) ∈ R} \ C

E := {(s, o) | (s, p, o) ∈ R ∧ s, o ∈ V }

type(s) := {o | (s, rdf:type, o) ∈ R} ∪

{t | (s, rdf:type, o), (o, rdfs:subClassOf+, t) ∈ R}

Intuitively, an annotated entity graph comprises RDF nodes that occur as subject or

object in RDF triples. It does not contain nodes that represent entity type information.

An edge among two nodes exists if there is a triple containing both nodes. Entity node

annotations type() are derived from entity types. C comprises all possible annotations

– that is, it contains all types from the RDF graph.

Given an annotated entity graph derived from an RDF dataset, the problem we tackle

is to derive topics as defined in Definition 3.1. Further, we want to partition the entity

graph in a way such that each partition is a topic instance as in Definition 3.2.

Patterns. The annotated entity graph is the structure we work with throughout our

approach. To mine topics as well as topic instances, we compute a number of different

subgraphs. More specifically, we find patterns that match in an annotated entity graph.

These patterns shall inherently model the notion of relations among types in the real

word from Definition 3.1 and may thus vary depending on the use case. In Section 3.2,

we elaborate on the patterns for topic mining. In the following, we define the general

notion of a pattern and a pattern match.

Definition 3.4 (annotated pattern)

Given a set N of node variables and the set C =
⋃
v∈V type(v) of types from an an-

notated entity graph (from Definition 3.3), an annotated pattern of size s is a triple

p = (Np, Ep, ann()) where (Np, Ep) is a connected graph and ann : Np → C is a func-

tion. The set Np ⊆ N constitutes the nodes, Ep ⊆ Np × Np represents edges, and

|Np| = s. The function ann() returns the annotation of the node q ∈ Np.

Intuitively, an annotated pattern of size s is a connected structure formed by s arbitrary

nodes but with specific type annotations. Note that in such patterns the nodes are anony-

mous, i.e., they stem from node variables. The structure itself is important, since it repre-

sents specific relationships. For instance, the pattern p = ({(a, b, c)}, {(a, b), (b, c), (c, a)},

36

3.2 Annotated Patterns

ann()) with ann(a) = t1, ann(b) = t2, ann(c) = t3 comprises the node variables a, b,

and c as well as edges (a, b), (b, c), (c, a). Importantly, p forms a triangle of nodes anno-

tated with t1, t2, and t3. In contrast, the edges {(a, b), (b, c)} would represent a sequence

of annotated nodes – another pattern. In the following, for ease of reading, we denote

annotated patterns without node variables and the function ann(). Thus, we denote the

aforementioned pattern as p = ({t1, t2, t3}, {(t1, t2), (t2, t3), (t3, t1)}). Further, we use the

terms pattern and annotated pattern synonymously. With the definition of an annotated

pattern, we can now define how we locate such patterns in an entity graph by means of

an annotated pattern match.

Definition 3.5 (annotated pattern match)

A match of an annotated pattern p = (Np, Ep, ann()) in an entity graph G = (V,E) is

a subgraph G′ = (V ′, E′) of G such that

• |Np| = |V ′|,

•
⋃
v∈Np

ann(v) ⊆
⋃
v∈V ′ type(v),

• ∀(v, w) ∈ Ep,∃(v′, w′) ∈ E′ with ann(v) ∈ type(v′) ∧ ann(w) ∈ type(w′).

Intuitively, an annotated pattern matches in an entity graph if the graph contains an

isomorphic subgraph for the pattern. That is, the subgraph comprises nodes annotated

with respective types and these annotated nodes must (at least) be connected in the

same way as the node variables in the pattern. Consider Figure 3.2 as an example of

two annotated pattern matches:

• p1 =({club, album, band}, {(club, album), (album, band)}) (given in red)

matches in the graph from Figure 3.1 at G′1 = ({1,2,3},{(1,2), (2,3)}).

• p2=({band, manager, event},{(band, manager), (manager, event), (event, band)})
(given in light blue)

matches in the graph from Figure 3.1 at G′2 = ({3,4,5},{(3,4), (4,5), (5,3)}).

3.2 Annotated Patterns

In the following we elaborate on determining annotated patterns that represent rela-

tionships among types in the real world (as required in Definition 3.1). Specifically, we

present two alternative approaches that create patterns with different properties. For

one, we extend the notion of network motifs [MSOI+02] with annotations (Section 3.2.1).

37

3 Topic Mining

4

51

32

album+ band+

club+

event+

manager+

Figure 3.2: Two annotated pattern matches in entity graph from Figure 3.1.

Further, we derive patterns from a weighted graph capturing relationships among types

(Section 3.2.2). These patterns are building blocks for topics, since they capture fine-

grained relationships among small groups of types. In order to build topics of a larger

size, we combine these patterns by using a neighborhood criterion for patterns. Given

such neighborhoods, we compute the transitive closure of neighboring patterns to create

topics and respective instances (Section 3.3).

3.2.1 Annotated Motif Patterns

We now present our first approach for the creation of annotated patterns, such that these

patterns represent a common-sense perception of relations in the real world and thus work

well for our approach. For this, we extend the notion of network motifs [MSOI+02]: Milo

et al. define motifs as “recurring, significant patterns of interconnections”. That is, a

pattern is considered to occur “significantly often” in a given graph if its occurrence

frequency is significantly higher in this graph than in random graphs with equal node

properties. Milo et al. use a cutoff probability (P = 0.01) for motifs to occur in random

graphs. Such random graphs shall have the same number of nodes as well as a similar

node degree distribution as the original graph. In our case, we further ensure that nodes

are equally annotated, i.e., the random graphs have a similar type distribution. To

incorporate node annotations, we use an extended version of network motifs, namely

annotated motifs.

Definition 3.6 (annotated motif)

Given an annotated entity graph G = (V,E) with type() and the set of all annotations

C, an annotated motif m = (Cm, Em) of size s, is an annotated pattern of size s that

matches significantly more often in G than in random graphs of equal size with similar

node properties.

Consider again Figure 3.1. Here, one could, for instance, find three annotated patterns

as depicted in Figure 3.3 (assuming statistical significance for these patterns):

38

3.2 Annotated Patterns

album&
band&

club&

event&

band&

manager&

event&

album&

band&

manager&

band&

album&

club&

manager&

Figure 3.3: Patterns extracted from annotated entity graph in Figure 3.1.

• p1=({club, album, band},{(club, album), (album, band)}), and

• p2=({album, band, manager},{(album, band), (band, manager)}), and

• p3=({band, manager, event},{(band, manager), (manager, event), (event, band)}).

In order to consider patterns to occur significantly more often than in random graphs, we

generate graphs that roughly preserve node degrees. That is, given the annotated nodes

from an entity graph, each node has a distinct counterpart in the random graph with

the same annotation and edge degree. The random graph generation essentially shuffles

around edges of the original graph. Then, we use a one-sided t-Test with α = 0.01 in

30 random graphs48 to test whether the occurrence frequency of a pattern at hand is

higher in the original than in the generated graphs.

In the following, if we use annotated motifs as patterns of relations among types, we

denote this with AM patterns.

3.2.2 Mutual Information Patterns

Annotated motifs as relation patterns are an elegant choice, since they directly rely on

the entity graph. That is, one can determine only patterns that actually exist in this

specific case. Unfortunately, it is a computationally expensive process, because one needs

to determine all annotated patterns in a (preferably large) number of random graphs

(see Section 3.4). In order to retain the statistical argument for relation patterns, but

provide a pattern discovery process that is more efficient, we present an approach that

48The number of random graphs was determined by available compute resources.

39

3 Topic Mining

works with an abstract model of relations among types. Interestingly, resulting anno-

tated patterns for relations appear to be more intuitive, though they cannot necessarily

be found in the entity graph.

Definition 3.7

Given an annotated entity graph G = (V,E) with type() and the set of all annotations

C:

• The annotation count ac(c) = |{v ∈ V |c ∈ type(v)}| is the number of nodes in G

annotated with c.

• The annotation edge count ec(c1, c2) = |{(v1, v2) ∈ E|c1 ∈ type(v1)∧c2 ∈ type(v2)}|
is the number of edges among nodes annotated with respective types.

• The constant α =
∑

c1,c2∈C ec(c1, c2) is the total number of edges among annota-

tions via annotated entities.

• The constant β =
∑

v∈V |type(v)| denotes the total number of annotations in the

entity graph.

With these notations at hand, we can define an abstract model of relations among types.

Definition 3.8 (annotation graph)

Given an annotated entity graph G = (V,E) with type() and the set of all annotations

C, an annotation graph is a weighted graph Ḡ = (V̄ , Ē), where V̄ is the set of unique

annotations and Ē is constructed from the entity graph. Edge weights w(c1, c2) are an

estimate of the mutual information among annotations in the entity graph:

V̄ = C

Ē = {(c1, c2) | c1, c2 ∈ C ∧

∃(e1, e2) ∈ E : c1 ∈ type(e1) ∧ c2 ∈ type(e2)}

w(c1, c2) = log
ec(c1, c2)/α

ac(c1)/β ∗ ac(c2)/β

Thus, the annotation graph comprises distinct annotations from an entity graph and

captures relationships among types. These relationships are implicitly given in the en-

tity graph, namely through connected entities annotated with respective types. Further,

the annotation graph models the strength of these relationships with an estimate of the

40

3.2 Annotated Patterns

mutual information (MI), i.e., the weighted probability of two types occurring together

in the entity graph. Note that an annotation graph contains all relations among all types

from an annotated entity graph. In a next step, we solve the following problem for the

extraction of relation patterns among types (which are nodes in the annotation graph).

Definition 3.9 (top k maximum edge connected subgraph problem)

Given an edge-weighted graph Ḡ = (V̄ , Ē) with w() as well as constants k and s, the

top k maximum edge connected subgraph problem is to find k connected subgraphs

Gi = (Vi, Ei) (i = 1, ..., k ∧ |Vi| = s), such that there is no subgraph Gj = (Vj , Ej)

(j 6= 1, ..., k ∧ |Vj | = s) with
∑

e∈Ei
w(e) <

∑
e∈Ej

w(e).

Thus, the problem seeks exactly k connected subgraphs with the highest sum of edge

weights. Since the input is our annotation graph, the output is a set of k highly connected

annotation node structures, i.e., coherent type structures.

Note that the problem from Definition 3.9 is a variant of the NP-hard maximum edge

subgraph problem. However, given the size of the annotation graph (hundreds of nodes),

a size s ≤ 5 (which is sufficient for annotated patterns) as well as a long tail edge weight

distribution, it is feasible to approximate k maximum subgraphs with the bottom-up

branch-and-bound strategy depicted in Algorithm 1.

The input for the heuristic shown in Algorithm 1 is the weighted annotation graph

from Definition 3.8, the requested number of subgraphs k and the size threshold s. In

this heuristic, subgraphs of size i are built from subgraphs of size i − 1 (starting from

the edges in Ḡ, see Line 3). A new subgraph of size i is considered only, if the maximum

weight it can achieve during expansion is among the top k ∗ 100 achievable weights

(Line 2). Given k ∗ 10 subgraphs of size s, we consider each adjacent node (Line 8) and

compute the weight gain as well as the upper bound for the new subgraph (Line 11). If

the upper bound ranges among the top k ∗ 100 upper bounds (Line 12), the subgraph

is further considered and included in a set that is 10 times the size of k (Line 14). The

reason for this is that after further extensions of the pattern, it could exceed the weight

of the kth subgraph. Here, 10 and 100 are empirically chosen factors to ensure that

we do not miss the top-k subgraphs. The removal of low entries from B not among

the top k ∗ 100 upper bounds is implicit in Line 13. The output comprises the top k

subgraphs from each sorted set of subgraphs (descending by weight, Line 15).

In the following, if we use maximum edge connected subgraphs from the annotation

graph as patterns of relations among types, we denote this with MI patterns.

41

3 Topic Mining

Algorithm 1 Top k max-weight connected subgraph heuristic

1: Input: Ḡ = (V̄ , Ē) with w(), and k, s
2: B ← empty sorted (asc) set with fixed size k*100
3: P2 ← sorted (desc) set of node sets per edge ∈ Ē
4: a← average edge weight
5: for i = 3...s do
6: Pi ← empty sorted (desc) set with fixed size k*10
7: for each subgraph p ∈ Pi−1 do
8: for each candidate node c adjacent to p do
9: weight =

∑
u,v∈p,(u,v)∈Ē w(u, v)

10: gain =
∑

u∈p,(u,c)∈Ē w(u, c)

11: ub = weight+ gain+
∑

i≤j<s j ∗ a
12: if |Pi| < k ∗ 10 ∨ B.first < ub then
13: add ub to B
14: add p ∪ {c} to Pi

15: Return: P3[1..k]...Ps[1..k]

3.3 Pattern Percolation

The preceding approaches yield annotated patterns that capture relations among types.

These patterns are the building blocks for larger topics. We now discuss how to combine

these patterns in order to build topics and topic instances. More precisely, we combine

pattern matches since a combination of patterns could result in topics that do not have

instances in the given data. We call this process Annotated Pattern Percolation (APP),

since patterns percolate via respective matches through the entity graph. Intuitively,

patterns percolate through the graph, if the graph comprises overlapping matches for

similar patterns. This process is inspired by Clique Percolation [DPV05, PDFV05].

Consider Figure 3.4 as an example for pattern percolation. Let P = {p1, p2, p3} be a

set of patterns (the red, green and blue one, respectively). In the example, the graph

comprises three pattern matches M = {G′1, G′2, G′3}:

• p1 =({club, album, band}, {(club, album), (album, band)}) (given in red)

matches at G′1 = ({1,2,3}, {(1,2), (2,3)}).

• p2=({album, band, manager},{(album, band), (band, manager)}) (given in green)

matches at G′2 = ({2,3,4}, {(2,3), (3,4)}).

• p3=({band, manager, event},{(band, manager), (manager, event), (event, band)})
(given in blue)

matches at G′3 = ({3,4,5}, {(3,4), (4,5), (5,3)}).

42

3.3 Pattern Percolation

album& band&

club&

event&

manager&32

4

51

Figure 3.4: Overlapping pattern matches in entity graph.

Note that these matches overlap significantly. That is, G′1 (red) shares two of its three

nodes with G′2 (green) and G′2 shares two out of three nodes with G′3 (blue). This way,

there is a percolation of p1 at G′1 via p2 at G′2 to p3 at G′3. Then, the entity nodes from

the chain of pattern matches form a topic instance: here I = {1, 2, 3, 4, 5}. The actual

topic for this instance is the set T =
⋃
e∈I type(e) of annotations from entities in I: here

T = {club, album, band,manager, event}.
In the following, we formalize this intuition and discuss how we implement the percola-

tion process. Given a set P of patterns from an annotated entity graph G, the set M

represents all matches of patterns from P in G. To combine matches from M , we work

with a so-called match graph G∗. This graph allows a simple algorithmic approach for

the pattern percolation, namely the computation of the transitive closure in G∗. First,

we define the notion of annotated pattern neighborhood. Then, we build the graph G∗

that captures such neighborhood information.

Definition 3.10 (annotated pattern neighborhood)

Given two annotated pattern matches G′1 = (V ′1 , E
′
1) and G′2 = (V ′2 , E

′
2) as well as a

degree of overlap d, G′1 and G′2 are neighboring iff the following holds:

∃V̂ = V ′1 ∩ V ′2 such that |V̂ | ≥ d

∧ ∀(v, w) ∈ E′1 : v, w ∈ V̂ → ∃(v, w) ∈ E′2
∧ ∀(v, w) ∈ E′2 : v, w ∈ V̂ → ∃(v, w) ∈ E′1

Definition 3.10 requires two matches to overlap in d of their nodes. We have chosen

d = min (|V1|, |V2|) − 1 in order to derive particularly cohesive topics. Requiring all

edges among overlapping nodes of the first pattern to be present in the second pattern

(and vice versa) further enforces cohesive topics. Of course, one could loosen the criteria

by setting d to min (|V1|, |V2|) − 2 or removing the edge condition. However, we use a

strict setting to ensure pairs of matches that are highly similar and not only overlap in

43

3 Topic Mining

some minor fraction of their nodes. Remember Figure 3.4 as an example. Here, matches

G′1 = ({1,2,3}, {(1,2), (2,3)}) and G′2 = ({2,3,4}, {(2,3), (3,4)}) are neighboring, since

they share two nodes (2, 3) and respective edge. Further, G′2 and G′3 are neighbors. G′1
and G′3 share only one node and thus are not neighboring.

Given the notion of annotated pattern match neighborhood, we combine neighboring

matches to iteratively build topic instances. Intuitively, to build an instance, we start

with an arbitrary match and attach neighboring matches until no more neighbors are

available. The result is a chain of neighboring matches. This chain then comprises all

nodes of a topic instance. This process is repeated until all matches have been tested

for neighboring matches.

In order to implement this approach, we build a match graph G∗ from the annotated

entity graph and respective pattern matches.

Definition 3.11 (match graph)

Given the set M = {G′1, . . . , G′n} of all annotated pattern matches in an annotated entity

graph G, the match graph G∗ = (V ∗, E∗) is constructed as follows:

V ∗ = M

E∗ = {(G′x, G′y)|G′x, G′y ∈M ∧G′x, G′y are neighboring}

Thus, G∗ contains a node for each match from M in G and edges among nodes iff the

matches are neighboring in G. Consider Figure 3.5 as an example: The upper part

depicts the entity graph with its (neighboring) pattern matches from Figure 3.4. Each

of these matches can be found as a node in G∗, shown in the lower part. Edges exist

among the red and the green match as well as among the green and the blue match.

For the percolation of patterns via matches in G, we now compute the transitive closure

for all nodes in G∗. Then, the closure of a node in G∗ also represents all nodes from the

annotated entity graph G that can be combined via neighboring matches. In Figure 3.5,

the closure of the node for the red match contains the green as well as the blue match.

These matches represent nodes 1, . . . , 5 from G – a topic instance.

Each closure in G∗ thus represents a topic instance I, i.e., a subset of entity nodes

from G. Given all topic instances I1, . . . , In in G, the topics of the data in G are

{Ti|Ti =
⋃
e∈Ii type(e)} with i = 1, . . . , n.

With this formal process we can implement a system for mining topics from graph

structures data, i.e., RDF data in particular.

44

3.4 The APP System

album&
band&

manager&

album&
band&

club&

band&

event&

manager&

w"

v"
u"

album& band&

club&

event&

manager&

4

32

4

5

3&

4

51

32

1&

3&2

Figure 3.5: Match graph G∗ created from annotated entity graph G and pattern matches.

3.4 The APP System

In the following, we outline the workflow of the Annotated Pattern Percolation system.

Figure 3.6 shows all involved components. Since we deal with large graphs, we have im-

plemented most of the system using the Map/Reduce paradigm [DG04]. With Map/Re-

duce on a distributed compute platform one can distribute independent map tasks and

consume intermediate results in reducers. In Figure 3.6, we marked these components

with M/R. Besides pre- and postprocessing, the APP system comprises four major sub-

components:

1. Map/Reduce-based Annotated Pattern Finding (MRAPF),

2. AM Pattern Finding,

3. MI Pattern Finding,

4. Pattern Percolation.

Preprocessing. To lower the complexity of our system, the preprocessing performs

an annotation selection for entity graph vertices with more than a single annotation.

Note that this step is not necessarily required but it lowers the pattern finding runtime

in particular. This is because, the finding process enumerates all annotated patterns,

where the number of annotations is an important factor (in terms of time and space).

This is particularly important when working with RDF data, since in RDF entities

often have multiple types. For instances, Volkswagen is a Motor Vehicle Company, a

Company of Germany, a Company established in 1937, etc. With Kny [Kny12] we

developed three strategies for the annotation selection tailored for RDF – each with a

45

3 Topic Mining

Annotated Pattern Percolation

Preprocessing of

RDF input

Postprocessing

User’s

Choice

 (3) MI Pattern Finding

Annotation Graph Construction

k Maximum Edge

Subgraph Discovery

Selected Patterns

(4) Pattern Percolation

G* Construction (M/R)

Transitive Closure (M/R)

(1) MRAPF (M/R)

Match and

Pattern Data(2) AM Pattern Finding

Selected Patterns

Detection of Significant

Annotated Patterns (M/R)

Pattern Data of Input Graph

and Random Graphs

Random Graph Creation

Graph

Data

Pattern

Data

MRAPF (M/R)

Match Data

Figure 3.6: Overview of the components forming the Annotated Pattern Percolation system. The
notation is BPMN [GDW09]; Filled circles indicate start and end of a (sub)process;
rhombs are choices; grey areas show subprocesses.

different underlying intuition. In general, we distinguish the most specific types of an

entity and their super-types. Here, given a type hierarchy, i.e., an ontology, the first ones

are those types of an entity such that there are no known sub-types for that entity. The

super-types are all ancestors of the specific types in the hierarchy.

We now summarize our annotation selection approaches: The first two approaches select

a particular type for an entity by considering the role of the entity it mostly has with

respect to other entities. For this, we take relationships among entities into account.

The third approach does not consider relationships. Instead, it aims to select a type

that semantically covers all known types of an entity.

46

3.4 The APP System

The first approach, Most Probable Domain (MPD), considers the empirical prob-

ability P (t|p) of an entity to be of a specific type t given its relationship p to other

entities. Then, given an entity e, it selects the type t among the most specific types with

the highest average probability P̄e(t) := avg(P (t|p)) over all relationships p of e.

The second approach, Most Significant Domain (MSD), determines the empirical

probability P (t) for each type over all entities in an RDF dataset. For a particular entity

e, it selects the type t among all its types (most specific and super-types), where the

average probability P̄e(t) over all the entity’s relationships differs the most positively

from the expected probability P (t), i.e., (1 + P̄e(t)− P (t))/2.

Finally, the Most Semantic Coverage (MSC) approach computes the Semantic Sim-

ilarity [JC97] among all most specific and respective super-types. It then chooses a type

from the super-types that maximizes the average semantic similarity to all most specific

types of the entity49.

In an evaluation, we tested the considered approaches on DBpedia data with DBpedia

and Yago types. Note that DBpedia contains only hundreds of types and comprises few

hierarchy levels whereas Yago comprises thousands of types and is a deep and manifold

hierarchy. Here we found for DBpedia types that MPD and MSC select mostly the same

types (81%), which are rather specific. In contrast, MSD chooses more general types.

For Yago types we observed that MSD and MSC select similar types. This is because

Yago entities have rich annotations and MSD as well as MSC select more general types

than MPD.

In a manual evaluation we showed DBpedia entities and Yago types to users and used a

majority vote to determine the type most intuitive for humans. To transfer the manual

selection to DBpedia types, we mapped them to Yago types via cooccurrence frequencies.

In the comparison with the automatic selection, we observed for DBpedia that MPD

selects the same type for 47% of considered entities. For Yago types, MSC achieves the

best performance, i.e., it selects the same types for 79% of the considered entities.

Pattern Finding. After the random graph creating we perform MRAPF, which is an

extended version of Map/Reduce-based Pattern Finding (MRPF) [LJC+09]. It per-

forms the enumeration of all matches and respective annotated patterns in an entity

graph. Given annotated patterns (starting from size 2, i.e., edges), the mapper extends

these by locating incident nodes of matches and constructs all possible combinations.

The reducer then removes duplicate patterns. Algorithm 2 details the MRAPF match

and pattern extension Map/Reduce tasks. The input for this job is a match and its

49If there is only one type annotation available, then this one maximizes the semantic similarity. Thus,
the selected type is not necessarily a super-type.

47

3 Topic Mining

Algorithm 2 Map/Reduce-based Annotated Pattern Finding (MRAPF)

Map (key = match = (V ′, E′) , value = setOfPatterns):
Require: G = (V,E)

1: for all p ∈ setOfPatterns do
2: for all adjacent nodes w of match do
3: for all combinations E′′ of edges among w and match do
4: match′ ← (V ′ ∪ {w}, E′ ∪ E′′)
5: patterns← ∅
6: for all combinations of annotations of w and pattern p do
7: add new pattern to patterns

8: emit(key = match′, value = patterns)

Reduce (key = match′, values = list of setOfPatterns):
9: emit(key = match′, value = values.first())

list of respective patterns. A match can comprise several patterns, since, in the gen-

eral case, a node in an entity graph has more than one annotation. For instance, the

match ({x, y, z}, {(x, y), (y, z)}) with annotations type(x) = {c1, c2}, type(y) = {c3},
and type(z) = {c4} generates pattern p1 = ({c1, c3, c4}, {(c1, c3), (c3, c4)}) as well as

p1 = ({c2, c3, c4}, {(c2, c3), (c3, c4)}). In practice, our preprocessing reduces the number

of annotations per entity to one. Thus, in line 1 there is only one pattern p. Note that

the job requires the node adjacency in memory, which can be handled using effective

data structures. With that, we examine all incident nodes (line 2) and determine possi-

ble matches (lines 3 and 4). We then compute all annotated patterns (lines 5-7). Again,

in practice, there is exactly one pattern per match. In line 8, the mapper emits the

current match and all its annotated patterns. Since an extended match can be found

more than once, e.g., both vertex sets {x, y} and {y, z} can be extended to {x, y, z}, the

reducer eliminates duplicates by emitting only one set of patterns.

In practice, we split this phase such that we first extend matches and eliminate dupli-

cates and then determine annotated patterns per distinct match. This way, we save

tremendous network traffic by not sending unnecessary annotated pattern matches from

mappers to reducers. Note that though MRAPF is a computationally expensive process,

it can be accomplished on small-scale Hadoop clusters due to highly tuned pattern- and

match canonization [McK81], serializations, and comparison.

Observe that MRAPF is also part of the AM Pattern Finding. Here, MRAPF runs on a

number of random graphs (created using smart shuffling of edges in the original graph).

Given the total counts of patterns for the input graph as well as the random graphs, the

system computes and selects significant annotated patterns, i.e., annotated motifs, that

48

3.4 The APP System

can be used for the pattern percolation.

For finding MI patterns, the system requires only the original input graph for the an-

notation graph construction and the maximum edges connected subgraph finding. For

the graphs we considered (DBpedia and Yago), both computations can be accomplished

on a single machine. The graph construction involves edge grouping by types and count

computations which can be done efficiently. For the connected subgraph finding we

leverage our branch-and-bound strategy, shown in Algorithm 1.

Pattern Percolation. Eventually, a Map/Reduce program takes the annotated patterns

of choice as well as all annotated pattern matches as input, computes G∗, and determines

the transitive closure for all nodes in G∗. For the closure computation, we employ a

scalable approach based on Disjoint Sets [MP10] implemented as part of Kny’s Master’s

Thesis [Kny12]. Disjoint Sets basically allow constant-time set operations, such as find

as well as union, and can be used to build local closures in mappers that can then be

merged by a single reducer. Eventually, a post-processing, the final step in Figure 3.6,

forms topic instances (sets of entities) and derives topics (sets of annotations).

Complexity of APP. The runtime behavior of APP varies for the different phases.

The enumeration of all annotated patterns (MRAPF in Figure 3.6) has a high worst-

case runtime, because, in theory, there can be
(
n
m

)
∗ am ∗ c patterns in an annotated

entity graph. Here, n is the number of entities in the graph; m is the pattern size; a

is the number of distinct annotations; and c is the number of connected graphs with

n nodes50. However, this is the case only if entity nodes are fully connected and each

entity is annotated with all available annotations. In practice, however, edge degrees

often follow a power-law distribution and our preprocessing selects a single annotation

per entity.

When creating AM patterns ((2) in Figure 3.6), we run MRAPF on a number of random

graphs with equal node properties. The creation of a single random graph is linear in the

number of edges since we essentially remove or shuffle edges. Checking the significance of

annotated patterns, i.e., annotated motifs, is a straight-forward statistical computation

that can be done in constant time.

The retrieval of MI Patterns ((3) in Figure 3.6) consists of the construction of the annota-

tion graph and the detection of k maximum weight connected subgraphs. The annotation

graph construction requires a single traversal of the graph to collect all annotations and

their relationships and is thus linear in the number of edges and the maximum number

of annotations per entity graph node. The top-k maximum weight connected subgraph

50http://oeis.org/A001349

49

http://oeis.org/A001349

3 Topic Mining

problem (Definition 3.9) is NP-hard, since the dense k-subgraph problem [FKP99] is al-

ready NP-hard. To efficiently deal with this complexity issue, we employ the bottom-up

branch-and-bound heuristic shown in Algorithm 1, which works well in light of the typ-

ical power-law distribution of edge degrees and for small subgraph sizes (we use s ≤ 5).

The complexity of Algorithm 1 is in O(s∗k∗o) where s is the size of required subgraphs,

k is the number of desired patterns, and o is the maximum out degree of a node in the

annotation graph.

In theory, the construction of the match graph G∗ ((4) in Figure 3.6) again depends on

the theoretic number of patterns in an annotated entity graph (see above). In practice,

there are less patterns due to sparse entity graphs and a single annotation per entity

node. The final closure computation can then be done in linear time.

In conclusion, these complexity estimations imply feasible runtimes. Nevertheless, it is

a challenging task to deal with large graphs and it requires highly-tuned data structures

for serialization and comparisons. Also, the Map/Reduce framework helps to deal with

the load since resource consumption can be distributed across compute nodes.

3.5 Experiments

In the following we discuss results of our approach for mining topics from graph-structured

data. Note that the entire design of APP shall model the intuition from Definitions 3.1

and 3.2. Again, we are aware of that the underlying “relatedness” of types is fuzzy

and a matter of opinion. However, it is a step forward taking into account that there

are many works dealing with topics; but none of them defines the notion of topics

under consideration – as discussed in Section 2.2. Since there is no common topic def-

inition, there is no common standard to compare results to and it is thus inherently

challenging to judge the quality of our results. In the scope of this thesis, we compare

results from different settings and point to differences to the original clique percolation

(CLP) [DPV05, PDFV05], which relies on entity cliques, whereas we use annotation

connectivity. Further, we present a comparison with topics extracted from Wikipedia

portals51. This is a first attempt to compare topics against a common manually created

standard.

Input. For the evaluation we used DBpedia 3.7 (September 2011), which can be down-

loaded from wiki.dbpedia.org/Downloads37. With the data, Bizer et al. provide an

ontology52, which we additionally used for the annotated entity graph creation. Fur-

51http://en.wikipedia.org/wiki/Wikipedia:Portal
52http://wiki.dbpedia.org/Downloads37#ontologyinfoboxtypes

50

wiki.dbpedia.org/Downloads37
http://en.wikipedia.org/wiki/Wikipedia:Portal
http://wiki.dbpedia.org/Downloads37#ontologyinfoboxtypes

3.5 Experiments

ther, one can download links to Yago2, currently maintained by Hoffart53. We used

these Yago2 links to create a second version of the annotated DBpedia entity graph.

That is, in both cases the graph consists of DBpedia entities. However, the two versions

are annotated with different sets of types, i.e., DBpedia and Yago2 types.

Reference Topics. Wikipedia articles correspond to real-world entities and can thus be

used to construct a Wikipedia entity graph. In conclusion, Wikipedia portals, containing

articles, can be viewed as sets of entities, i.e., topic instances. These portals are similar to

the high-level classifications of the Yahoo! Directory54 or dmoz55. At the time of writing,

Wikipedia featured about 1,100 portals. Portals are intended to present a given topic

and introduce “the reader to key articles, images, and categories that further describe the

subject.” They are organized as a tree with twelve top-level portals (culture, geography,

history, etc.). A typical portal is divided into common information, selected articles,

selected facts, current news, and the like. Many of the links to other articles change

regularly, and many seem randomly chosen rather than providing a stable and principle

reference page. Nevertheless, since it is a manually created reference set, we extract

topics from these portals (from all levels) and compare the results with our approach.

In the following, we focus our evaluation on topics, i.e., sets of types.

We extracted topics from Wikipedia portals in the following manner: We were given sets

of Wikipedia articles – each corresponding to a portal. For each article we determined

the respective DBpedia entity by converting Wikipedia URLs to DBpedia URIs and

removing those not present in DBpedia. For all entities in a set derived from a portal

we then determined associated DBpedia and Yago types, which results in sets of types,

i.e., reference topics.

Topic Comparison. After this procedure we have a set of reference topics for compar-

ison. For the comparison of our topic set with reference topics, we need an assignment

of our topics to appropriate reference topics (our topics are not labeled), and a measure

to evaluate the assignment.

For the assignment, we aim at an automatic process since we deal with hundreds to thou-

sands of topics. There are many different solutions to the bipartite assignment problem,

which include algorithms to achieve a stable marriage property, or to guarantee a max-

imum weighted matching. For simplicity, we have chosen the following straight-forward

assignment procedure: We first compute Jaccard set similarity values sim(Tx, Ty) for

each pair of topics (one from our set and one from the reference set). Then, we assign

53http://wiki.dbpedia.org/Downloads37#linkstoyago2
54http://dir.yahoo.com
55http://www.dmoz.org

51

http://wiki.dbpedia.org/Downloads37#linkstoyago2
http://dir.yahoo.com
http://www.dmoz.org

3 Topic Mining

a topic Tx from our set to a reference topic Ty, iff sim(Tx, Ty) is the maximum for both

topics. That is, there are no topics T ′x or T ′y such that sim(Tx, Ty) < sim(Tx, T
′
y) or

sim(Tx, Ty) < sim(T ′x, Ty). We are aware that requiring the match to be the best fit

for either one of the topics is a very strict criterion. However, this models our intuition

that not all topics from our approach have a corresponding reference topic, nor can all

reference topics be found in our topics. Also, the afore-mentioned more sophisticated

matching approaches would optimize the matching towards a global maximum and would

thus not respect individual results retrieved.

After the assignment, we have pairs of topics: one from our APP result and another one

from the reference set. Now, we calculate precision, recall, and F-measure values to de-

termine how well two topics match. Precision is the fraction of correctly retrieved types;

recall describes the fraction of relevant types retrieved; F-measure is the (weighted)

harmonic mean of precision and recall.

To examine the overlap of resulting topics we determine Jaccard set similarity values

for each pair of topics in the result and show average values and standard deviation.

The Jaccard set similarity is the ratio of the intersection and the union size of two sets

and thus yields values between 0 and 1. Table 3.1 shows pairwise topic overlap for the

Wikipedia portal reference sets.

#annotations Jaccard index

#topics avg. std. avg. std.

MPD 1,061 9.2 9.3 0.068 0.096
DBpedia MSD 1,052 9.7 8.7 0.100 0.109

MSC 1,061 9.2 9.3 0.068 0.096

MPD 1,176 22.2 64.3 0.013 0.040
Yago MSD 1,025 10.1 12.7 0.060 0.088

MSC 1,151 15.0 29.6 0.019 0.054

Table 3.1: Pairwise inter-topic overlap (all pairs) of reference topics extracted from Wikipedia
portals for DBpedia entity graph with DBpedia and Yago annotations. MPD, MSD,
and MSC refer to the different graph preprocessings discussed in Section 3.4.

Annotated Entity Graphs. Given the DBpedia RDF input as well as rdf:type rela-

tionships to DBpedia and Yago types, we created entity graphs. Table 3.2 illustrates

the annotated entity graphs after applying the different preprocessings described in Sec-

tion 3.4, namely MPD, MSD, and MSC. We used these graphs for creating the results

discussed later in this section. In particular, the table shows the dimension of the en-

tity graphs. Remarkably, the graph with DBpedia annotations has more vertices then

52

3.5 Experiments

the other one. This is because not all DBpedia entities have respective Yago types.

On the other hand, the Yago-annotated entity graph comprises thousands of annota-

tions whereas the DBpedia versions have 230-250 annotations. For the Yago-annotated

graphs with different preprocessings there is a tremendous difference of how annota-

tions are distributed across a specific graph. Here the Most Probable Domain approach

(MPD) selects very many different annotations such that on average a single annotation

is used only 18 times. Instead, the Most Semantic Coverage annotation selection (MSC)

uses less than a tenth of the annotations, which results in a higher annotation usage

frequency. In general, Yago-annotations occur fewer times than DBpedia-annotations.

#vertices #edges #annot. avg. #annot. freq.

MPD 1,404,378 5,415,394 251 5595
DBpedia MSD ” ” 235 5976

MSC ” ” 252 5573

MPD 890,737 3,409,886 49537 18
Yago MSD ” ” 5177 172

MSC ” ” 4079 218

Table 3.2: Size of DBpedia entity graph with DBpedia or Yago annotations. We show the number
of vertices, edges, and annotations as well as the average frequency of an annotation
for each graph.

Parameters. We now recap the parameters that influence the Annotated Pattern Per-

colation. For the experiments discussed in the following, we chose settings such that we

cover a reasonable range of possible results.

• The annotation selection during the preprocessing (see Section 3.4) is important,

because it determines the type of annotations that resulting topics can contain.

• The type of patterns used for percolation is crucial since they model the inter-

connection of entities in the real world (see Definition 3.1 and 3.2). We propose

AM and MI patterns (see Section 3.2.1 and 3.2.2). AM patterns produce reliable

matches in an an entity graph since they directly stem from this graph. Manual

inspections, however, indicate that MI patterns yield more intuitive results.

• The pattern size s ∈ N+ influences the coverage of topics, i.e., the higher s, the

narrower the topics.

53

3 Topic Mining

• The number of patterns used for percolation is crucial for the number of topics

created. The fewer patterns percolate, the fewer topics can be retrieved. In the

following, we use k to indicate the number of percolating patterns.

• The pattern overlap d ∈ [1, ..., min(|V1|, |V2|) − 1] (see Definition 3.10) further

influences the size of created topics. The higher d, the smaller and narrower are

resulting topics.

• There is a set of additional parameters that can further influence the annotated

pattern percolation result. For instance, the pattern match overlap definition could

take edge directions and labels into account (so far, we disregard directions and

labels). Finally, there are several pattern and topic filter approaches. We neglect

these further parameter settings to narrow the space for experiments.

Exemplary Results. Table 3.3 shows exemplary results for topics extracted from the

MPD DBpedia entity graphs with different annotations: Topics 1 through 6 comprise

DBpedia annotations; Topics 7 through 11 have Yago types. Topic 1 deals with ad-

ministrative and military-related issues and comprises additional related types, such as

geographic objects. The second topic is similar but does not cover the geographic di-

mension. Topic 3 deals with School or University related Sports entities whereas topic

4, 5, and 6 are about the media business. Here, Topic 4 is the broadest since it contains

relatively general types. Topic 5 adds the television-dimension and Topic 6 additionally

states what the media could be about, i.e., it includes Company and Military Conflict.

Obviously, given a large input entity graph it is challenging to grasp and differentiate

the many resulting topics. To this end, we examined strategies to organize topics in

a hierarchy based on topic containment [Kny12]. A topic contains another topic if it

comprises all its annotations or covers respective semantics, i.e., it is semantically more

general. However, remember that we additionally envision technical use cases, which do

not require “human readability”. Nevertheless, the more manifold annotations are, the

more helpful is a structured view on the result.

Consider Topics 7 through 11 as more complex examples, i.e., results from a Yago-

annotated graph. Here, the topics often come with a specific time, space, or other

additional dimension since the Yago type system covers these. In conclusion, there are

more variations of related topics. Topic 7 deals with english football; the second is

about the british television domain. Topics 9-11 cover the media: Topic 9 is about

albums released by japanese labels in 2001, whereas the 10th topic deals with Australian

music, and the 11th is about groups from the folk music genre.

54

3.5 Experiments

DBpedia annotations
1 Administrative Region, Company, Military Conflict, Office Holder, Person,

Person Function, Radio Station, River, Settlement, Village
2 Member Of Parliament, Military Person, Person,

Person Function, School Settlement
3 Road, School, Settlement, Soccer Player, University
4 Film, Musical Artist, Person, Single
5 Album, Musical Artist, Settlement, Single, Television Show
6 Album, Band, Company, Country, Film, Military Conflict, Musical, Artist,

Single, Town

Yago annotations
7 Association Football Forwards, English Football Clubs, Geoclass Populated Place,

Living People, Person, University, Yago Geo Entity
8 BBC Television Dramas, BBC Television Programmes, British Films, English-

language Films, Independent Films, ITV Television Programmes, Living People
9 2001 Albums, Japanese Record Labels, Living People
10 Album, American Record Labels, Debut Albums, Living People,

Victoria (Australia) Musical Groups
11 American Folk Rock Groups, American Record Labels, Living People,

Musical Groups Established In 2006

Table 3.3: Example topics extracted from DBpedia entity graph with different annotations.

Clique Percolation. In the following, we consider clique percolation results, which serve

as a baseline. With the baseline we can compare precision, recall and F-measure values,

but also size and variance as well as topical overlap of APP results. The clique perco-

lation method is similar to APP, but percolates entity cliques, not annotated patterns.

At the beginning of this project there was no scalable implementation of the clique per-

colation method. However, our implementations implicitly implements CLP through

requiring patterns to be cliques. Table 3.4 shows pairwise overlap of resulting sets of

annotations; Table 3.5 depicts respective precision-, recall-, and F-measure values. For

ease of comparison with further measurements we focus in the discussion on the values

for percolating cliques of size 4. In general, clique percolation retrieves reasonable results

with respect to Wikipedia portals for all entity graph annotation selection approaches

(F-measure values up to 0.8). However, note that only few topics created can be mapped

to Wikipedia portal topics. This is particularly the case for the entity graph with Yago

annotations (Table 3.5) where only about a tenth of the topics created can be mapped

to the reference topic set. This is important since precision and recall refers to the com-

parison of mapped topics, i.e., the two sets of types. Respective values in Table 3.5 (and

the following) are averaged over all pairs of mapped topics.

55

3 Topic Mining

#annotations Jaccard index

clique size avg. std. avg. std.

DBpedia

MPD 3 4.5 2.3 0.068 0.106
4 3.4 1.2 0.059 0.128

MSD 3 4.4 2.2 0.070 0.105
4 4.9 1.9 0.166 0.159

MSC 3 4.5 2.2 0.068 0.105
4 3.4 1.3 0.059 0.128

Yago

MPD 3 5.0 6.2 0.027 0.060
4 4.9 2.2 0.058 0.084

MSD 3 4.5 2.5 0.055 0.103
4 4.0 1.4 0.090 0.140

MSC 3 4.6 3.6 0.023 0.068
4 4.3 1.7 0.064 0.116

Table 3.4: Pairwise inter-topic overlap (all pairs) of topics created with clique percolation for
the DBpedia entity graph with DBpedia and Yago annotations.

clique size #topics #mappings prec. rec. F-m.

DBpedia

MPD 3 6,061 592 0.84 0.77 0.78
4 863 251 0.85 0.83 0.81

MSD 3 8,823 629 0.86 0.80 0.81
4 2,697 311 0.85 0.82 0.81

MSC 3 6,106 577 0.84 0.77 0.78
4 864 246 0.87 0.82 0.81

Yago

MPD 3 27,314 894 0.50 0.38 0.35
4 5,324 359 0.47 0.40 0.34

MSD 3 8,222 584 0.81 0.76 0.75
4 1,602 242 0.81 0.81 0.79

MSC 3 15,122 750 0.62 0.60 0.56
4 3,192 325 0.61 0.64 0.56

Table 3.5: Precision, Recall, and F-Measure (with respect to Wikipedia portals) of topics cre-
ated with clique percolation for the DBpedia entity graph with DBpedia and Yago
annotations.

56

3.5 Experiments

AM Pattern Percolation. Table 3.6 and 3.7 depict respective results for the AM pat-

tern percolation. The small number of mappings to portal topics roughly holds for topics

created with 50,000 AM patterns (Table 3.7). However, the size of the topics, i.e., the

number of annotations per topic, is larger than for CLP and there is a higher (in some

cases much higher) variance among topic sizes (Table 3.6) – these values are comparable

the those for the portals.

The inter-topic overlap is slightly higher (Jaccard values of 0.1-0.18) in some cases. Note

that larger and more manifold topics are a desirable feature. Nevertheless, these more

complex topics make it more challenging to retrieve similar topics like in a reference

set. Thus, precision and recall values drop in some cases. Interestingly, AM pattern

percolation performs significantly better in the case where CLP fails, namely on MPD

selected Yago annotations (Table 3.7, line 4).

#annotations Jaccard index

avg. std. avg. std.

DBpedia
MPD 5.3 3.7 0.106 0.107
MSD 5.1 2.9 0.131 0.112
MSC 5.3 3.7 0.104 0.106

Yago
MPD 5.2 76.7 0.181 0.085
MSD 5.3 4.1 0.107 0.108
MSC 7.1 11.0 0.065 0.089

Table 3.6: Pairwise inter-topic overlap (all pairs) of topics created with AM pattern percola-
tion for DBpedia entity graph with DBpedia and Yago annotations (k=50,000).

#topics #mappings prec. rec. F-measure

DBpedia
MPD 7,629 569 0.71 0.75 0.70
MSD 8,711 633 0.78 0.78 0.75
MSC 7,772 574 0.71 0.75 0.70

Yago
MPD 5,025 159 0.51 0.60 0.51
MSD 7,049 477 0.73 0.75 0.71
MSC 6,790 426 0.50 0.59 0.50

Table 3.7: Precision, Recall, and F-Measure (with respect to Wikipedia portals) of topics created
with AM pattern percolation for DBpedia entity graph with DBpedia and Yago
annotations (k=50,000).

57

3 Topic Mining

MI Pattern Percolation. Table 3.8 and 3.9 depict results created with MI patterns

on DBpedia-annotated entity graphs. Experiments on Yago-annotated graphs did not

succeed since the top one million MI Yago-patterns could not be matched. Thus, we

observe that MI patterns do not directly stem from the entity graph – they cover la-

tent relationships instead. By MI pattern definition, these relationships occur in the

graph. Nonetheless, types connected in patterns are not necessarily directly connected

(via entities) in the graph. To overcome this, we propose a variation of the pattern

match neighborhood in Definition 3.10 that does not require equality of annotations. It

rather takes their semantic similarity into account. However, due to a lack of respec-

tive experiments, the semantic similarity pattern match neighborhood is not within the

scope of this thesis and thus left for future work. Instead of MI pattern experiments

with Yago-annotated graphs, we show measurements considering a varying number k of

patterns used for percolation in DBpedia-annotated graphs. The selection of k has been

done such that the number of topics created roughly approaches the number of topics

created with AM patterns.

Considering Tables 3.8 and 3.9 we find that discovered topics are mostly larger than those

created with AM patterns. The topic size variance is also larger than respective values

for AM results, which negatively influences the precision and recall measurement with

respect to Wikipedia portals. Further, though MI patterns create fewer topics (which is

a matter of k), we observe up to 10% more mappings to DBpedia portal topics. These

are the highest values (percentages with respect to created mappings) in this evaluation.

Though this indicates structural similarity of MI pattern topics with the reference topics,

it influences precision and recall values negatively.

#annotations Jaccard index

avg. std. avg. std.

k=100,000
MPD 9.58 8.11 0.06 0.09
MSD 4.9 2.33 0.07 0.12
MSC 7.13 5.86 0.05 0.1

k=300,000
MPD 8.94 7.69 0.05 0.08
MSD 7.41 4.74 0.1 0.1
MSC 7.54 6.1 0.05 0.08

k=600,000
MPD 1.83 1.21 0.0 0.01
MSD 1.62 1.0 0.0 0.0
MSC 1.9 1.3 0.0 0.01

Table 3.8: Pairwise inter-topic overlap (all pairs) of topics created with MI pattern percolation
for DBpedia entity graph with DBpedia annotations
(for a different number of percolating patterns k).

58

3.6 Discussion

#topics #mappings prec. rec. F-measure

k=100,000
MPD 2,495 472 0.51 0.63 0.53
MSD 404 150 0.54 0.72 0.58
MSC 1,210 300 0.50 0.66 0.53

k=300,000
MPD 4,776 663 0.53 0.66 0.56
MSD 2,739 465 0.56 0.69 0.59
MSC 2,789 520 0.52 0.65 0.54

k=600,000
MPD 5,372 696 0.53 0.66 0.56
MSD 5,780 631 0.62 0.72 0.65
MSC 3,120 543 0.52 0.65 0.55

Table 3.9: Precision, Recall, and F-Measure (with respect to Wikipedia portals) of topics created
with MI pattern percolation for DBpedia entity graph with DBpedia annotations
(for a different number of percolating patterns k).

3.6 Discussion

In this chapter we explored the problem of mining topics and respective instances from

heterogeneous graph-structured data. To this end, we presented a novel approach called

Annotated Pattern Percolation, APP for short, which exploits the structural information

inherent to annotated graphs. Note that we avoided textual information from labels,

descriptions, etc. While APP is applicable to data from many fields, we exemplary

applied it to DBpedia – a prominent cross-domain linked dataset. An evaluation against

topics extracted from existing Wikipedia meta-information, namely Wikipedia portals,

shows that we can reasonably reconstruct a portion of this information.

We discussed differences among the original clique percolation method as well as our

APP approach and found that our results are structured differently – in particular they

are more manifold, i.e., they contain larger topics with a wider range of their size. The

broader coverage of topics created by APP makes a comparison to the community-

curated reference topic set even more challenging. Table 3.10 summarizes our findings.

The original method CLP yields better F-measure values due to relatively few mappings

from the result to the reference data. However, AM pattern topics are larger than CLP

topics but they can be mapped similarly to the reference topic set. MI pattern topics

are similar in size and respective variance like Wikipedia portal topics and additionally

map better to the reference data. Finally, note that our APP method achieved higher

precision values for the earlier version 3.6 of DBpedia, which we published in [BKN12].

In conclusion, we believe that extracted topics enable users to gain conceptual insights

into cross-domain datasets. Further, discussed parameters enable a selection of a proper

59

3 Topic Mining

APP setting when applied for technical use-case. Also, the plug-and-play nature of

APP, i.e., allowing the use of different pattern types, enables easy adoption of other

notions of topics. In the future, for instance, one could incorporate frequent subgraphs

or Encyclopedic Knowledge Patterns (EKPs) [NGPC11]. Intuitively, EKPs are small

ontologies that contain a concept c and its relations to the most relevant concepts ci...cj

that can be used to describe c.

The automatic labeling of topics is also part of future work in order to improve the

user experience. As for usability, we conducted first experiments with organizing topics

hierarchically and a web application that allows to browse the resulting topic hierarchy

and respective instances.

Finally, there are further options to incorporate more structural knowledge into our

method. For instance, one can regard edge directions and labels as well as their semantic

similarity.

Unfortunately, since topics in graph-structured data are not an established field of re-

search, any evaluation is inherently challenging and subject to different points of view.

CLP APP with AM APP with MI

Topic size small larger than CPL size and variance
low variance comparable variance most similar

#Mappings 250–300 500 double %

F-measure 0.6− 0.8 0.5− 0.7 0.55

Overlap similar similar similar

Table 3.10: Summary of comparison of baseline and APP to Wikipedia portal reference
topic set.

60

4 Entity Alignment

Linked Open Data (LOD) is a way of interconnecting structured data sources on the

Internet and creating a Web of Data. As the name suggests, the key of LOD is that it can

provide extensive cross-linkage between sources at the level of entities. Links are typically

represented in the form of additional triples with the sameAs predicate. For example,

two sameAs links suffice to connect data about the director David Lynch in DBpedia,

Freebase, and the BBC. This way, one can answer queries that join biographic data from

DBpedia with data about Lynch’s music compositions from the BBC. Obviously, this

form of entity linkage at Web-scale has enormous potential.

Unfortunately, this cross-linkage between LOD sources is not nearly as extensive as one

would hope. Exact numbers are not known. An estimate for the number of sameAs links

is in the order of 400 million56. For example, the New York Times archive provides

sameAs links for only around 5,000 people, 3,000 organizations, and 1,000 locations57.

A huge number of links exist between the major knowledge bases DBpedia and Free-

base, etc. However, these links are trivial as they build upon Wikipedia and can use

article titles as a common denominator. In this thesis, we present automatic methods

that discover highly accurate previously unknown links, while scaling to the enormous

proportions of the Web of Data.

Unlike existing entity matching systems for LOD, such as [HKL+09, VBGK09], which re-

quire dataset-specific matching rules, we aim at a fully automated, domain-independent

system.

At first glance, this problem seems to be identical to the classical record linkage task,

also known as entity resolution. Given several sets of records, e.g., different databases for

the same domain, identify all equivalence classes of records. The problem has received

much attention in the literature, driven by applications, such as de-duplication and other

forms of data cleansing [Coh00, KR10b, NH10, EIV07]. A close look, however, reveals

that there are fundamental differences between the typical record-linkage setting and our

problem of entity mapping in LOD: First, the fine-grained and loose-schema nature of

RDF triples makes it much harder to identify appropriate inputs for similarity functions.

Second, traditional record-linkage methods work best in specific domains where similarity

56http://lod-cloud.net as of September 2009
57http://data.nytimes.com

61

http://lod-cloud.net
http://data.nytimes.com

4 Entity Alignment

measures, thresholds, and other components can be customized. In contrast, the vast

heterogeneity of LOD sources, spanning many different domains, poses a major challenge.

Third, we are facing a much larger number of sources, as opposed to the typical data-

warehouse scenario. This is an additional difficulty, but also an opportunity, because

we can potentially exploit sameAs transitivity over many sources. Finally, many billions

of triples is a daunting scale that poses very high performance and scalability demands,

which standard record-linkage methods do not meet.

These challenges have not been fully addressed by any recent work geared towards LOD,

where the main aim is to assist data publishers in creating links between two well-

structured data sources. They often rely on existing sameAs triples for training and on

comparable schemas across sources. None of these methods were designed for and tested

against Web-scale data. Since we implement domain-independent similarity functions

and design our approach to work in a distributed fashion, we can cope with the size and

diversity of the Web of Data as it continues to grow. We anticipate new LOD sources

with previously unseen properties and highly dynamic data including HTML-embedded

semantic information.

Our approach uses an optimization model that captures the joint evidence for entities

in one source corresponding to entities in other sources. The evidence is based on a

similarity among the neighborhood of an entity and that of another entity to which

a sameAs link could possibly exist. Consider the example of the entity David Lynch

in Freebase and a candidate entity on the BBC site. For inferring that they are truly

the same, we consider both sides’ attributes such as types, birthplace, awards and

also connections to movies, compositions, etc. This typical situation motivates our joint

reasoning approach: The evidence that one refers to the same David Lynch on both

sides increases with the evidence that a certain movie, connected to David Lynch in

Freebase, is the same as a movie referenced by the David Lynch candidate entity in the

BBC site. Note that this reasoning proceeds recursively, i.e., a decision about identity of

neighboring entities may in turn depend on further neighboring entities. Our approach

further takes connected actors, musicians, and places into account (which may in turn

depend on yet more connected entities).

In contrast to other joint entity resolution approaches [HNST11, KSRC09, SD06, WCRM09],

we have encoded our joint evidence task into a weighted graph, and impose additional

constraints on the output. Our LINDA (LINked Data Alignment) approach iteratively

processes the graph by increasing prior sameAs edge scores depending on the joint evi-

dence of the incident nodes’ local neighborhoods. This framework can be instantiated

on a shared memory multi-core system, as well as using a distributed Map/Reduce-

or message-passing-based approach. This way, LINDA can efficiently process graphs

62

4.1 Optimization Model

with > 100 millions of nodes and it is feasible to partition the data and parallelize the

processing on cloud platforms.

In the following, we first discuss the underlying optimization model for our joint entity

matching (Section 4.1) and then describe three algorithms for solving our optimization

problem, i.e., finding good mappings (Sections 4.2 through 4.4). In Section 4.5 we discuss

the similarity functions we plug into our framework and conclude with experiments

in Section 4.6.

4.1 Optimization Model

Given Linked Data subject-predicate-object triples, we would like to match entity iden-

tifiers that come from different sources and represent the same real-world entity.

Input. As specified by the RDF standard, we start with a set of (s, p, o) triples as input.

Similar to Definition 3.3, we cast the set of triples into an entity graph G, with nodes

corresponding to entity URIs, and labeled edges representing predicates. To build the

graph, we consider only RDF triples where s, p, and o are URIs. Literals are compiled

into a set L(s) of values associated with an entity. For each URI e we denote the data

source from which it originates as S(e).

Definition 4.1 (entity graph)

Given a set of RDF triples R, an entity graph is a directed, labeled multigraphG = (V,E)

with a set of nodes V representing entities and edges E capturing relations among

entities.

V := {s | (s, p, o) ∈ R} ∪ {o | (s, p, o) ∈ R}

E := {(s, p, o) | (s, p, o) ∈ R ∧ s, o ∈ V }

L(s) := {o | (s, p, o) ∈ R ∧ o is literal}

S(s) := the data source that s originates from

Desired Output. Our output is a squared binary matrix X, telling us whether any two

URIs represent the same entity or not, i.e., whether a sameAs link (as specified in the

OWL standard) should exist between them. The output is subject to certain constraints.

We require the sameAs relationship to be symmetric and transitive, which corresponds

to establishing equivalence classes of entities.

We do not aim to discover sameAs links within a single data source. Usually, single

sources are much better maintained than the links across sources. High-quality datasets,

63

4 Entity Alignment

such as DBpedia or Freebase, are well-curated and hardly contain duplicate entities.

Moreover, approaches for creating sameAs links within a single source could use source-

specific properties and thus differ from methods for links across sources. Therefore,

intra-source links are orthogonal to this work.

Our entity matching algorithm makes joint decisions for multiple URI pairs when pro-

ducing sameAs links. It is initialized with a prior similarity between entities, based on

the immediate neighborhoods of the URIs given by their respective data sources. The

algorithm iteratively considers similarities between entities in the neighborhoods in or-

der to reinforce or invalidate the matching between two URIs. Output matchings are

gradually built into an assignment matrix X. Dynamically re-computed similarity values

are tracked in a similarity matrix Y of the same shape as X, for which the entries are

maintained in a priority queue.

Definition 4.2 (assignment matrix)

Given an entity graph G = (V,E), an assignment matrix X is a symmetric n×n matrix

with n = |V | and xa,b ∈ {0, 1}. An entry xa,b states whether our algorithm outputs “a

sameAs b”.

The assignment matrix X represents our solution for the entity matching problem. Fea-

sible assignments are constrained as follows:

Definition 4.3 (consistency)

An assignment matrix X is consistent if it satisfies the following constraints:

1. Reflexivity ∀a ∈ V : xa,a = 1
2. Symmetry ∀a, b ∈ V : xa,b = xb,a
3. Transitivity ∀a, b, c ∈ V : xa,b · xb,c ≤ xa,c
4. Unique mapping per data source (optional)

∀a, s 6= S(a) :
∑

b:S(b)=s

xa,b ≤ 1

The optional last constraint states that an entity a cannot simultaneously match two

entities b, b′ that are both from the same second source, since this would imply that b

and b′ are duplicates of each other. This constraint allows us to focus on cross-source

links rather than mappings within data sources. In practice, however, we also found

that the strategy of picking only the best match within each dataset also avoids many

false positives.

4.1.1 Objective Function

To quantify the quality of the output X, we define the following objective function: Let

sim(a, b,G,X) be a similarity function between two entities a and b that may depend on

64

4.1 Optimization Model

the entity graph G as well as the current assignment matrix X. For constant G and X,

sim should be a semimetric, i.e., it does not necessarily satisfy the triangle inequality.

This similarity function should return scores in [−∞,+∞], positive scores in the case of

likely entity matches and negative scores in the case of likely non-matches. Then, the

maximum consistent assignment problem is to find an assignment of X that comprises

maximum similarity information from sim but also satisfies our constraints.

Definition 4.4 (maximum consistent assignment)

Given an entity graph G = (V,E) and a similarity function sim(a, b,G,X), the maximum

consistent assignment problem (MCA) is to find

• a consistent assignment matrix X with values xa,b ∈ {0, 1}

• that maximizes ∑
a,b∈V :S(a) 6=S(b)

xa,b sim(a, b,G,X).

The sim function deliberately depends on X, the desired output of the assignment al-

gorithm: For instance, in our previous example (at the beginning of this chapter), the

similarity of the two David Lynch entities depends on whether the movies Twin Peaks

Fire Walk With Me and Twin Peaks (Prequel) represent the same real-world entity.

Thus the similarity function can reward joint assignments that are globally consistent.

The seemingly recursive structure of the objective function, with X being an argument

to sim, is similar to optimizing non-linear functions. Once we choose a specific sim

function, we obtain an optimization problem with the X entries as variables.

One possible instance of the sim function is to consider the neighbor sets N(a), N(b)

of entities a and b and use an aggregated Jaccard coefficient for the names in N(a) and

N(b) as a similarity function. This could lead to the following simple objective:

max
∑

a,b∈V :S(a)6=S(b)

(
xa,b · avga′∈N(a),b′∈N(b)xa′,b′ · Jaccard(a′, b′)

)
.

While this objective may appear intuitive, we found that this specific objective function

does not achieve a reasonable precision for Linked Data. Instead, we propose a more

sophisticated function, as discussed in Section 4.5. Our assignment algorithm iteratively

computes entries in X, based on evaluating sim on the previous iteration’s X values.

4.1.2 Complexity

We now show that the maximum consistent assignment problem is NP-hard, no matter

whether we include or disregard the optional unique mapping constraint. We first reduce

CLIQUE to MCA. Then, we give a reduction of the minimum multiway cut problem to

65

4 Entity Alignment

show NP-hardness when the optional unique mapping constraint from Definition 4.3

must hold. Note that for this we rely on the decision version of our maximization

problem: Given such a graph and a similarity function, is there a consistent assignment

matrix such that the sum from Definition 4.4 has at least a specific value?

Theorem 4.1

The maximum consistent assignment problem without the unique mapping constraint is

NP-hard.

Proof. We reduce the CLIQUE problem [Kar72] to MCA.

• The CLIQUE problem is to determine whether G = (V,E) contains a clique of size

at least k.

• Given G, we define an instance of MCA as follows:

– Let G′ = (V, ∅) be an entity graph.

– Define sim(a, b,X,G′) = 1 if (a, b) ∈ E and sim(a, b,X,G′) = −∞ otherwise.

• Then, a solution X for MCA induces cliques in G, since the consistency requires

symmetry and transitivity, which essentially is a complete subgraph.

• These cliques are maximal, since otherwise more edges could be added to X in-

creasing its score.

• To determine the maximum clique size, one determines the maximum number of

positive entries per row in X, which shall be at least k − 1.

• Conversely, any clique of size ≥ k implies an X comprising entries for respective

clique edges. This X is consistent, because cliques are fully connected and thus

symmetry and transitivity holds.

• Thus, solving MCA in polynomial time means to determine the maximal clique

size in polynomial time.

Theorem 4.2

The maximum consistent assignment problem is NP-hard if the unique mapping con-

straint must hold.

Proof. We reduce the NP-hard minimum multiway cut problem [DJP+94] to our MCA

problem.

66

4.1 Optimization Model

• Given an undirected graph G = (V,E) with edge weights w(e) ≥ 0 for e ∈ E and a

set of terminals T ⊆ V , the objective is to find a set C ⊆ E of edges with minimal

cost w(C) =
∑
e∈C

w(e) such that every t ∈ T is disconnected from all t′ ∈ T (with

t′ 6= t) in G′ = (V,E\C), i.e., each t resides in a distinct connected component.

• We define an instance of MCA as follows:

– Define sim(a, b,G,X) = w(a, b) if (a, b) ∈ E and −∞ otherwise.

– Define S(v) = S0 if v ∈ T and Sv otherwise.

• Then, an assignment X provides a multiway cut C = {(u, v) ∈ E | xu,v = 0},
because the unique mapping constraint from Definition 4.3 enforces that terminals

are not reachable from one another.

• Intuitively, since C consists of all edges not selected to maximize X’s score, it is

minimal.

• The cost of C is

w(C) =
∑

e=(u,v)∈E:xu,v=0

w(e)

=

(∑
e∈E

w(e)

)
−

 ∑
e=(a,b)∈E:xa,b=1

w(e)


=

(∑
e∈E

w(e)

)
−

 ∑
a,b∈V :S(a)6=S(b)

xa,b sim(a, b,G,X)


=

(∑
e∈E

w(e)

)
− k.

• The cost w(C) of C is minimal, since k :=
∑

a,b∈V :S(a) 6=S(b) xa,b sim(a, b,G,X), i.e.,

the score of X, is maximal by definition.

• Conversely, any multiway cut C ′ with cost k′ implies an assignment X ′ with x′u,v =

1 if (u, v) is connected in (V,E\C ′), and 0 otherwise.

• X ′ is consistent, because reachability in an undirected graph is reflexive, symmet-

ric, and transitive.

• The unique mappings constraint is fulfilled, because each node can be connected

only to a single t ∈ T and hence only to one node from S0. All other nodes have

distinct sources Sv.

67

4 Entity Alignment

• The objective score for X ′ is ∑
a,b∈V :S(a)6=S(b)

x′a,b sim(a, b,G,X ′)

=
∑

e=(a,b)∈E\C′
w(e)

=

(∑
e∈E

w(e)

)
−

(∑
e∈C′

w(e)

)

=

(∑
e∈E

w(e)

)
− k′

• Hence, a minimum multiway cut can be found by finding an optimal assignment.

In the following, we present three different approaches for the NP hard MCA prob-

lem we previously defined. Each of these approaches shall yield a (ideally near-optimal)

solution. However, due to their different processing environments, i.e., one runs on multi-

core machines and the other two perform in a distributed fashion, they exhibit varying

properties, which we discuss throughout the following sections. Eventually, we instanti-

ate these algorithms with specific similarity functions, which together forms the LINDA

system used in the experiments.

4.2 Assignment Algorithm for Multi-core Machines

We now present an algorithm that computes a consistent assignment matrix X with

a high value of the objective function. This first algorithm runs on a single machine

and is able to benefit from multiple cores during operation. The method additionally

benefits from the availability of additional machines during the initialization phase. Our

algorithm iteratively adjusts the values in X with carefully chosen, greedy improvements

in the objective function. X is initialized as a diagonal matrix, i.e., with 1 on the diagonal

and 0 elsewhere. In addition, we use a similarity matrix Y with pairwise, real-valued

similarities: positive values support matches between entities; negative values indicate

non-matches. Y is initialized with values that reflect the pair-wise similarity of entities,

as further described in Section 4.5. Given the previous iteration’s values of X, we then

compute new similarity values for Y , which are maintained in a priority queue, i.e., sorted

by similarity values, and used to adjust elements of X in priority order. Note that both

X and Y are sparse symmetric matrices that do not need to reside entirely in memory.

68

4.2 Assignment Algorithm for Multi-core Machines

Algorithm 3 Multi-Core Assignment Algorithm

1: procedure linda(G)
2: X ← I|V | . identity matrix
3: Q← initial similarities . with Map/Reduce
4: while Q non-empty do
5: dequeue (ya,b, {a, b}) with highest ya,b from Q
6: if ya,b < 0 then break

7: X0 ← X
8: for all a′ ∈ E(a,X0), b′ ∈ E(b,X0) do . assignment
9: xa′,b′ ← 1 . update X

10: xb′,a′ ← 1

11: S ← {(a′, b′) | sim(a′, b′, X,G) 6= sim(a′, b′, X0, G)}
12: for all (a′, b′) ∈ S : xa′,b′ = 0 do in parallel . update Y in parallel
13: fetch (ya′,b′ , {a′, b′}) from Q
14: y∗ ← sim(a′, b′, G,X)
15: if y∗ 6= ya′,b′ then . similarity changed
16: remove (ya′,b′ , {a′, b′}) from Q
17: if y∗ > 0 then
18: enqueue (y∗, {a′, b′}) in Q

19: return X

Moreover, the entries of Y need to be materialized only on demand as needed for the

priority queue. Negative scores do not need to be retained at all, so the Y matrix as

a whole is a conceptual construct only. Nevertheless, in our implementation, both data

structures must be highly efficient to cope with the many value retrievals and updates. In

general, we consider this not to be a bottleneck since main memory capacities increase

tremendously. If main memory is not sufficient, there are highly-efficient disk-backed

data structures.

Algorithm 3 describes the method formally. In line 3, the updatable priority queue Q

is initialized with initial similarity scores ya,b = sim(a, b,G,X), in case they are greater

than zero. In practice, sim is defined to have a negative score for most entity pairs. Using

Map/Reduce, we can efficiently determine which entity pairs can possibly have positive

scores without having to compute a large quadratic number of similarities (details in

Sec. 4.5). The computation of initial similarities can be done in less than 12 hours for

all datasets, ranging from 44 to 120 million entities, discussed in Section 4.6.

The algorithm then repeatedly dequeues the entity pair a, b with the highest similarity

score from the queue and sets xa,b to 1 – see the for-loop starting in line 8. To enforce

transitivity (see Definition 4.3), it considers not only a and b but also all equivalents

E(a,X) = {a′|xa,a′ = 1} of a and E(b,X) = {b′|xb,b′ = 1} of b already identified with

them. The for-loop (line 8) essentially merges the two equivalence classes for a and b.

The loop also ensures that the symmetry constraint from Definition 4.3 is satisfied.

69

4 Entity Alignment

Since sim may depend on X, modifying X means that similarity scores need to be recom-

puted. In line 11, the algorithm determines which pairs of entities may need updating.

Note that this selection varies for different similarity measure. This is particularly im-

portant for the distributed implementations we present in Sections 4.3 and 4.4, because

it may need additional graph traversals to reach required fractions in the graph. For the

similarity function we define later in Section 4.5, updates are required for

• the candidate pairs involving entities in

E(a,X) ∪ E(b,X), since their local neighborhood has changed, as well as

• pairs (a′, b′) where

a′ ∈ {s | (s, p, o) ∈ E, o ∈ E(a,X)} ∪ {o | (s, p, o) ∈ E, s ∈ E(a,X)} and

b′ ∈ {s | (s, p, o) ∈ E, o ∈ E(b,X)} ∪ {o | (s, p, o) ∈ E, s ∈ E(b,X)},
because the similarity of entities connected to entities in E(a,X) ∪E(b,X) might

have changed.

Note that we update only if entities are potential match candidates, i.e., if there is an

initial similarity above zero. In our implementation discussed in Section 4.6, we require

an ngram overlap among entities under consideration, i.e., ngram(a′) ∩ ngram(b′) 6= ∅.
On multi-core machines, the algorithm adjusts the scores of these pairs in Y in parallel.

The new similarity scores ya′,b′ computed in line 14 reflect the fact that we now have

E(a,X) = E(b,X), highlighting the joint mapping strategy of our algorithm.

Our algorithm produces a consistent (Definition 4.3) matrix X if sim(a, b,G,X) = −∞
whenever S(a) = S(b) (i.e., if a and b are from the same source). This is because, re-

flexivity is fulfilled due to the initialization of X in line 2. Symmetry and transitivity

are fulfilled, because all pairwise equivalences between equivalence classes are set simul-

taneously in lines 8 and 9 rather than just the original mappings. Whenever an entity

would need to be connected to two entities from the same source, y∗ in line 14 is −∞,

so the algorithm ends up not making the assignment.

Observe that our algorithm may converge to a local maximum of the objective function.

However, our framework allows easy modifications in the priority order of the queue,

and thus the algorithm’s steps. In particular, randomization can avoid such issues. For

example, one can pick (a, b) pairs from the priority queue at random biased by the pair’s

ya,b value. Then, with low but non-zero probability we skip the highest-priority pairs

and proceed with alternatives.

70

4.3 Assignment Algorithm with Map/Reduce

4.3 Assignment Algorithm with Map/Reduce

The previously described Algorithm 3 computes a consistent assignment matrix for the

objective from Definition 4.4. It exploits multi-core systems in that it performs ya,b

(re)computations in parallel (line 12). In Section 4.6, we will show that it is feasible to

apply this approach to large fractions of the Web of Data. Nevertheless, it is bound by

the number of CPU cores available for parallelism as well as (in our implementation)

the amount of memory available to store the resulting assignment matrix X and (parts

of) the priority queue Q.

To overcome these bounds, we introduce a Map/Reduce-based version of our assignment

algorithm that allows scaling our solution to immense amounts of data, considering

that today’s large cluster sizes range from hundreds to thousands of compute nodes.

With Map/Reduce, a problem is divided into many independent map tasks that consume

and emit key-value-pairs as well as a number of reduce tasks that aggregate intermediate

output to resulting key-value-pairs [DG04]. Figure 4.1 illustrates the workflow of our

Map/Reduce-based approach (MR-LINDA for short).

Before diving into the figures’ details, remember that the acceptance of a sameAs edge

between vertices a and b induces a series of similarity (re)computations: These compu-

tations may depend on an arbitrary fraction of the input graph. Now consider an input

entity graph (see left of Figure 4.1) that is distributed across a cluster and a mecha-

nism to follow edges in the graph. In our Map/Reduce-based approach, reducers handle

specific graph partitions. Hence, if t is the number of edge hops from a or b to related

nodes with edges whose sim values may change, then the algorithm will use t subsequent

reducer calls to trigger the respective similarity recomputations. For the sim function we

define in Section 4.5, a new sameAs edge induces two chunks of recomputations. First,

all queue entries in which a or b are involved must be reconsidered. Second, the con-

texts of equivalents in E(a,X) and E(b,X), as discussed in Section 4.2, must be taken

into account. Thus, similarity recomputation require two edge traversals: one to reach

the equivalents and a second to reach the contexts. These traversals can also be seen

in Figure 4.1 (cf. notify and update messages).

In our Map/Reduce-based approach, each node holds a portion Qi of the queue Q and a

respective partition Gi of the entity graph G. The entity graph partition comprises all

queue entry vertices’ contexts, i.e., their local neighborhoods. Given a pair of entities

(a, b) from the queue, the node to hold the Q entry and respective vertex contexts is

determined by a modulo operation of the first component (a). The queue and entity

graph partitions are stored as sorted lists on the compute nodes. This allows fast merge-

join-like access of required entries on the compute nodes directly, instead of shuffling the

71

4 Entity Alignment

e1 … em
e m
…

 e
1

ei ej y
ei ek y

ek el y
…
…
…
…
… …

ei ej y
…
…

ei ej

…

ek el

Node 1 Node n Input
Queue Q

Result
Matrix X

ei

ej

ek

el

(1) accept

(3) update

Input
Entity Graph G

re
ad

re
ad

Q1

ek el y
…
…

Qn (2) notify*

ei ej y‘

ei ek y‘
…

Queue
Updates

di
st

rib
ut

e

(4) register

di
st

rib
ut

e

di
st

rib
ut

e

G1 Gn

Figure 4.1: Map/Reduce Workflow for the LINDA algorithm.

graph and the queue across the cluster [LS10]. The only information sent from mappers

to reducers are messages about which pairs of vertices to reconsider.

Algorithm 4 shows the map and reduce phases for our first distributed approach. Ad-

ditionally, Figure 4.1 illustrates the flow of the messages. Note that the message flow is

tailored to our sim function as defined later in Section 4.5. In the general case, however,

other sim functions might require further notification steps (indicated by the ∗ in the

figure) to reach the required graph partition.

The input to the mappers in Algorithm 4 are the nodes’ specific queue partitions Qi

as well as the messages sent in previous phases. Each mapper reads Qi and stores the

respective pair of entities in a buffer B if its y value is among the top K entries (line 5).

We refer to K as the acceptance rate. That is, mappers bulk-accept sets of mappings (of

size K) from the queue. Further, mappers forward messages from previous phases (line

7). After mapper completion, a procedure map-close() accepts all pairs of equivalents

for buffered queue entries for the resulting X (line 12 and step (1) in Figure 4.1), i.e., it

writes to a file in the distributed file system. Note that this is where our Map/Reduce-

approach merges respective equivalence classes. Additionally, map-close() emits two

messages: notification indicates the new entry in X and triggers the update for

equivalents’ contexts as well as respective queue entries for a′ (line 13 and step (2)

in Figure 4.1). updateTargets triggers the update of queue entries for b′.

72

4.3 Assignment Algorithm with Map/Reduce

Algorithm 4 Map/Reduce Assignment Algorithm

1: Input: queue partition Qi, messages from previous iterations
2: B ← empty sorted set (asc) of fixed size K
3: procedure map(Key k = (a, b), Value v) . v is similarity ya,b or a message
4: if v is similarity ∧ v > B.first.v then
5: remove first from B, add (k, v) to B . buffer entity pair
6: else if v is notification or update
7: emit (k, v) . forward message from previous phase

8: procedure map-close()
9: for all ((a, b), ya,b) ∈ B do

10: for all a′ ∈ E(a,X0), b′ ∈ E(b,X0) do . merge equivalence classes
11: k′ = (a′, b′), k′′ = (b′, a′)
12: accept k′

13: emit (k′, notification), (k′′, updateTargets)

14: procedure combine(Key k = (a, b), Values V) . V is a set of messages
15: n, t, u = false
16: for all v ∈ V do . aggregate messages
17: if v is notification then n = true
18: if v is updateTargets then t = true

19: if v is update then u = true

20: if n == true then emit (k, notification)

21: if t == true then emit (k, updateTargets)

22: if u == true then emit (k, update)

23: procedure reduce(Key k = (a, b), Value v) . v is a message
24: if v is notification then . react to new equivalence mapping
25: determine contexts C(a) and C(b) from Gi

26: for all (a′, b′) ∈ C(a)× C(b) do
27: emit ((a′, b′), update)

28: for all (a, b∗) ∈ Qi do
29: emit ((a, b∗), update)

30: if v is updateTargets then . trigger update for queue entries
31: for all (a, b∗) ∈ Qi do
32: emit ((a, b∗), update)

33: if v is update then . perform update
34: if umc holds for a′ ∈ E(k.a,X), b′ ∈ E(k.b,X) then
35: register y′ = sim(a, b,X,Gi) for Qi

36: else
37: for all a′ ∈ E(k.a,X), b′ ∈ E(k.b,X) do
38: register y′ = −∞ for Qi

These messages are distributed across the compute cluster in the same manner as the

queue and entity graph partitions. For this distribution, we implemented a custom

partitioner that is used in different places of the algorithm to ensure proper distribution

according to entity pairs. Thus, a message arrives at the compute node where the

73

4 Entity Alignment

respective queue and graph data resides. The partitioned data resides in a distributed

file system. However, due to the principle of locality, reducers are launched where the

data resides locally. To reduce message traffic, we implemented a simple combiner (line

14-22) that passes only one message per message type and target. Message duplicates

can occur, for instance, when updates were triggered by different sources.

Then, a reducer reacts according to the message it receives (the value in line 23). Given

a notification, it uses its graph partition Gi to determine the contexts of a and b

and emits update messages (line 27 and step (3) in Figure 4.1). Further, given its

partition Qi of the queue, it triggers the update of respective entries (line 29). It also

triggers updates when receiving an updateTargets message (line 32), which ensures the

update of the queue entries for the second component of a previously accepted pair. The

actual update of queue entries is triggered when receiving an update message. Then, the

reducer checks whether the unique mapping constraint still holds (umc in line 34) and

computes as well as registers the new y′ value (step (4) in Figure 4.1). If the constraint

is violated, it registers negative values for all pairs of equivalents (line 38). Technically,

updated y-values are written to the distributed file system and then merged during the

following read of the queue partitions in the mapper.

This map(), map-close(), combine(), and reduce() sequence proceeds until a predefined

number of iterations has been reached, a certain number of entries in X has been com-

puted or a specific fraction of the queue has been processed. Note that the round-trip

of the effect of a new entry in X takes two iterations (since we do two edge traversals).

That is, the notification from mapper 1, the update from reducer 1, the forward of

the update in mapper 2 and the actual y value computation in reducer 2. Therefore,

unique mapping constraint violations can occur when accepting sameAs edges, say in

mapper 2, while queue updates for decisions from previous mappers (mapper 1) are still

pending. We quantify this effect in Section 4.6. In certain cases, MR-Linda can also

violate the transitivity constraint. We discuss this issue in the following Section 4.4.

An implementation detail worth mentioning is that we use 64 bit hash values for the

identification of a URI, i.e., a representation of a real-world object. To check whether our

constraints from Definition 4.3 hold, we need dataset information during the assignment

process. In our multi-core-implementation of LINDA we can retrieve such information

from a database. However, this is not a desired feature for a distributed implementation.

Therefore, we encoded additional information, such a dataset id, into the 64 bit URI

identifier. This allows for a very fast check of certain constraints.

74

4.4 Assignment Algorithm with Message-passing

4.4 Assignment Algorithm with Message-passing

The previously described Map/Reduce-based implementation of LINDA allows perform-

ing joint entity matching on a very large scale. This is because, since the publication

of the Google Map/Reduce paper [DG04] (about a decade ago), the Map/Reduce com-

puting paradigm has been adopted by a wide range of global industrial and academic

players and thus runs on clusters with hundreds to thousands of compute nodes.

Map/Reduce was initially used to process large amounts of textual data. Though, it has

shown to be able to solve particular problems for graph data [Coh09, KTF09, LS10]. We

previously discussed how it can be used to perform joint entity matching in entity graphs.

Nevertheless, the Map/Reduce-based approach has shortcomings: In general, Map/Re-

duce is meant to process data once and distill aggregates that can be used in further

steps, which are not necessarily based on Map/Reduce. It is not meant to run in itera-

tions, since iterations require processing the same data multiple times – this is the case in

our Map/Reduce-based LINDA implementation where we iterate over the queue many

times. Recently, a set of approaches dedicated to efficient iterations in a distributed

fashion over large datasets emerged [BHBE10, ELZ+10, ETKM12]. A second set of ap-

proaches particularly focuses on graph data processing [LGK+12, MAB+10]. Later in

this section, we show how we adopt the processing model from [MAB+10] for LINDA.

Constraints in MR-LINDA. Due to the independent bulk processing of chunks from

the queue, our Map/Reduce approach can produce mappings that might violate certain

constraints. For one, the optional unique mapping constraint may be disregarded when

accepting mappings while negative queue updates from previous iterations are still pend-

ing. Further, it might happen that two mappers merge overlapping equivalence classes.

Consider Figure 4.2 as an example. On the left, there are three equivalence classes,

namely E(a,X), E(b,X) = E(c,X), and E(d,X). Further, there are two similarity

values, shown as red edges, that are currently under consideration, i.e., they are ac-

ceptance candidates. When accepting the matchings ((a, b) and (c, d)) simultaneously,

our Map/Reduce-based LINDA takes care of the proper merge of E(a,X) and E(b,X)

as well as E(c,X) and E(d,X). However, in this new situation, shown in the middle

section of the figure, E(a,X) is not equal to E(d,X). This is because the two merges

take place independently and thus cannot regard vertices currently added to the existing

equivalence class E(b,X) = E(c,X). That is, in certain cases the transitivity constraint

can be violated.

To overcome this constraint violation based on the simultaneous extension of an existing

equivalence class, we need a setup in which processes extending classes can exchange

75

4 Entity Alignment

a"

b"

c"

d"

E(a,"X)"

E(b,"X)"
="
E(c,"X)"

E(d,"X)"

E(a,"X‘)"
="
E(b,"X‘)"

E(c,"X‘)"
="
E(d,"X‘)"

E(a,"X‘)"
≠"
E(d,"X‘)"

E(a,"X‘)"
="
E(b,"X‘)"

E(d,"X‘)"

E(a,"X‘‘)"
="
E(b,"X‘‘)"
="
E(d,"X‘‘)"

ini0al"situa0on" direct"merge" merge"with"reschedule"

Figure 4.2: Different equivalence class merges in LINDA. Ellipses illustrate equivalence classes.

information to “block” the class under consideration. Then, we could first merge E(a,X)

with E(b,X) and reschedule the merge of E(c,X) with E(d,X) for a later iteration (see

right part of Figure 4.2). Therefore, we chose to implement a third version of our LINDA

algorithm. For this approach, we aimed at a close coordination among the distributed

processes dealing with different fractions of the graph.

BSP Processing Model. In particular, we adopted an idea recently presented in the

Pregel paper [MAB+10]. Here, the authors employ the Bulk Synchronous Parallel pro-

cessing model (BSP) [Val90] for graphs. In its original form, BSP consists of three

steps:

1. Concurrent asynchronous processing of independent tasks on a set of processors.

This processing may change the state of each task’s environment.

2. Asynchronous communication among the independent tasks.

3. When independent tasks hit a so-called synchronization barrier, they wait until all

tasks completed processing and communication.

In the Pregel model, a graph vertex can be in two different states: it is either active or

inactive. The framework proceeds in supersteps and graph vertices may pass messages

among each other. In each superstep, all active vertices take action. That is, they

receive messages sent in the previous superstep, perform local computation (which can

change their state or mutate the graph topology), and send messages to other vertices.

A vertex can halt only itself, i.e., set itself to inactive. Then, such an inactive vertex

does not take action in the next superstep, unless it receives a message from some other

vertex in the graph. The framework stops when all vertices are inactive. Technically, a

76

4.4 Assignment Algorithm with Message-passing

cluster compute node is responsible for a set of graph vertices. Specifically, it triggers

the local computation on all vertices; it buffers, sends, and fetches messages in batches;

and it takes care of the global superstep synchronization. Since graph vertices may

exchange information among each other, this processing model is also called message-

passing-scheme.

MP-LINDA’s Data Structure. For the implementation of LINDA based on message-

passing (MP-LINDA for short), we extend our entity graph from Definition 4.1.

Definition 4.5 (extended entity graph)

Given an entity graph G = (V,E), an initial queue Q with similarity values, and a

consistent assignment matrix X, an extended entity graph G′ = (V,E,E0, EY , EX)

comprises additional undirected labeled edges E0, EY , and EX .

E0 := {(a, b) | a, b ∈ V ∧ there is a positive prior for a and b}

EY := {(a, b) | a, b ∈ V ∧ ∃(ya,b, {a, b}) ∈ Q}

EX := {(a, b) | a, b ∈ V ∧ xa,b = 1}

y((a, b)) := ya,b, if ∃(ya,b, {a, b}) ∈ Q, −∞ otherwise

p((a, b)) := za,b, if there is a positive prior za,b for a and b

Intuitively, we encode the queue Q (see line 3 in Algorithm 3) populated with initial

similarities as well as the resulting X (see line 2 in Algorithm 3) into the entity graph.

Of course, an initial X contains only ones in the diagonal. Additionally, the extended

entity graph comprises edges among entities, if there is a positive prior. Such prior

exists, if entities are matching candidates. The value itself can be used as smoothing

in the similarity computation, which we discuss in the following Section 4.5. Thus,

the graph can now capture the current state of the algorithm by adding or removing

edges in EY , setting values y((a, b)) for edges in EY , or augmenting the graph with

edges in EX . Observe that y((a, b)) denotes a variable label for an edge (a, b). Later,

we use the notion y((a, b)) := s to denote that the variable is being updated with s.

Further, note that in theory all edges in E0, EY , and EX are undirected. However, in

our implementation discussed below, undirected edges exist twice, since vertices hold

local copies of adjacent edges. In the following, for ease of reading, we use entity graph

(or graph for short) to refer to the extended entity graph as defined in Definition 4.5.

Also, we use the function C(a) to denote the set of vertices in the context of a, i.e., all

vertices adjacent to a via edges in E. Further, we use functions to access certain vertex

77

4 Entity Alignment

properties. In our implementation, we leverage these properties to guarantee mutual

exclusion of vertices during processing to avoid overlapping structural updates in the

graph, i.e., avoid constraint violations as depicted in Figure 4.2.

• Given a vertex, the function id : V → N returns the vertex id.

• Given a set of vertices V ′ ⊆ V , maxid(V
′) := argmaxv∈V ′(id(v)) returns the vertex

with the largest id in V ′.

• Given a vertex, the function E : V → P(V) yields the set of all equivalent vertices

{w|(v, w) ∈ EX} ∪ {v} of v, i.e., it abbreviates E(v,X) for a current state of X.

• Similarly, given a vertex, E′ : V → P(V) yields the set of equivalent vertices

{w|(v, w) ∈ EX} without v.

Pregel additionally defines so-called aggregators to manage global coordination. In

our message-passing-based version of LINDA, we use such an aggregator to manage

a global sorted set A, which holds all distinct current similarity values in descending

order that are larger than a predefined threshold. Note that A represents the order of

similarity values y(e) currently existing for edges e in EY . Thus, EY and A together

form the priority queue. On the set A we use operators, such as ∪ and \ as well as the

function max(A), as follows:

• The operator ∪ adds an element to the set A (which remains sorted implicitly).

• \ removes a value from the set A.

• max(A) returns the largest value from A (without removing it).

MP-LINDA Algorithm. Given these definitions, we can formally specify our message-

passing-based assignment algorithm. We denote messages as [message,o] in brack-

ets. Messages usually comprise their origin, which is the vertex o in the example

[message,o].

MP-LINDA proceeds in two phases shown in Tables 4.1 and 4.2 (Pages 82 and 83),

respectively. The first phase performs the selection of new mappings as well as, most

importantly, the coordination of active vertices. Coordination is necessary, because

otherwise non-consistent equivalence classes might emerge when classes are extended

twice simultaneously. To avoid such simultaneous modifications of classes, MP-LINDA

takes two actions: For one, if a vertex in a class has more than one suitable candidate for a

new mapping, it selects a single edge for the actual mapping creation. The second (more

general) case is that at least two vertices from the same class have suitable candidates

78

4.4 Assignment Algorithm with Message-passing

for a new mapping – remember the class E(b,X) in Figure 4.2. In this case, MP-LINDA

selects one of the vertices in the class and leaves the remaining mapping candidates for

further iterations as shown on the right in Figure 4.2, i.e., it reschedules them. Here,

we first accept the mapping among a and b, which creates the consistent X ′, and then

consider (c, d), which creates X ′′. For the selection of a vertex among a set of vertices, we

use the vertex id, i.e., we select the vertex with the largest id. Of course, this selection

can also be driven by any other deterministic function.

MP-LINDA’s second phase performs similarity recomputations for edges in EY that

might have changed due to newly created mappings. Since we use a joint mapping strat-

egy that incorporates intermediate states of X, i.e., edges in EX , we need to request and

transfer the context (connected via edges in E) of respective vertices to other fractions

in the graph. Below we provide the steps taken for the similarity function that we define

later on in Section 4.5.2. This function makes use of the neighbors of a given entity.

For other similarity functions, appropriate adaptations need to be made. For ease of

presentation, in what follows we omit the similarity update of queue entries involving

equivalents of currently aligned entities. Similarly, we do not include the comparison of

context aspects as defined in Section 4.5.2.

We now elaborate on the details of the algorithm depicted in Tables 4.1 and 4.2: The

algorithm consists of 12 supersteps (step for short). The first four steps make up the

creation of new alignments (Table 4.1). Step 5 trough 12 perform similarity updates

(Table 4.2). We call a full run from Step 1 trough 12 an iteration. The algorithm iterates

until A is empty, i.e., there are no more similarity values to process, or a predefined

threshold for values in A has been reached. It can also stop processing after a given

number of iterations.

Before the first iteration, MP-LINDA populates the global sorted set A by iterating over

all edges in EY (Superstep 0). Then, in Step 1, it selects the maximum current similarity

value from the global set. If this value is zero, the queue has been fully processed and

MP-LINDA can stop processing.

In Step 2, each active vertex retrieves all vertices that are adjacent via edges in EY

labeled with the current maximum similarity value. Intuitively, it dequeues all pairs with

the current maximum similarity. Also, it removes the maximum value from the global

set A (line 7). It then sends three types of messages: [E’(a),a] informs a selected

node about the equivalence class to merge with. Note that the message contains the

equivalence class E′(a) (without a) and the origin of the message a (which in combination

is the complete equivalence class). All non-selected vertices b2 receive a [reschedule,a]

message, which informs them to not add the mapping (b2, a) under consideration, as

another mapping for this vertex (a) has been selected. Further, active nodes inform all

79

4 Entity Alignment

other nodes in their equivalence class that they have taken action.

In Step 3, vertices react according to the message they receive. If they received equi-

valence classes to merge with, they check whether they have the maximum id among

among all active vertices in the class (line 13). If this holds, they forward the class to

merge with to all vertices in their own equivalence class. Otherwise, they add the current

maximum similarity back to the global set A, which causes a reconsideration in the next

iteration.

In Step 4, vertices stop processing if their respective mapping candidate counterpart was

not among the selected vertices in the previous phase, i.e., they received a reschedule

message (lines 20-22). Otherwise, a vertex does the actual setting of new mappings, i.e.,

it adds edges to EX and removes respective counterparts from EY (lines 23-25).

Then, the second phase of the algorithm starts within the same superstep (Step 4 cont.

in Table 4.2). At this point, equivalence classes have been exchanged among matching

vertices. To determine which direction to send the context for the similarity reconsidera-

tion, we again use the ids (lines 27, 28) and forward the equivalence class to the selected

context.

This equivalence class is the target in the following Step 5. In Steps 5 through 7,

equivalents of the context of the selected matching candidate are sent to equivalents of

the context of the other matching candidate.

In Step 8, MP-LINDA determines whether contexts of equivalents of matching candidates

a and b are connected via an edge in EY , i.e., whether a similarity value to reconsider

exists. If this is the case, we send the context of the active vertex to the other context.

Steps 9 through 11 collect information for the reconsideration of similarity values. Step 9

first sends the larger set of neighbors to the smaller set of neighbors of the counterpart.

Note that we chose to deliver the larger context to send fewer (but larger) messages,

since there are fewer message targets in the smaller context. Also note that the current

active vertex cb is an equivalent of a context vertex of a newly matched vertex, i.e., it is

a vertex that must reconsider its similarity edge values.

In Step 10, vertices receive contexts, compute the intersection with their own context,

and send it back. Though we receive only the context (not the equivalents of each

context vertex), we implicitly compare equivalence classes (of contexts), since, due to

transitivity of equivalence, one vertex v (here from a context) from a class E(v) is

sufficient to determine an overlap of E(v) with another class E(w).

In Step 11, the context equivalents of newly identified vertices receive the context as well

as respective context matches from vertices to reconsider the similarity with. With the

superset of all context matches (line 45), MP-LINDA can now recompute similarities.

The function sim′ refers to the similarity sim we define in the following Section 4.5.

80

4.4 Assignment Algorithm with Message-passing

However, its parameters are defined differently, because we explicitly precompute and

pass neighbor matchesM rather than computing them within the function. The resulting

value s is then set as edge label and send to the respective counterpart. In Step 12, the

counterpart sets the newly computed y value s and adds it to the global set A, which

concludes an iteration.

81

4 Entity Alignment

T
ab

le
4.

1:
T

h
e

eq
u

iv
a
le

n
ce

cl
a
ss

m
er

g
e

p
h

a
se

o
f

th
e

M
es

sa
g
e-

P
a
ss

in
g
-b

a
se

d
a
li

g
n

m
en

t
a
lg

o
ri

th
m

.

S
u

p
er

-
A

ct
iv

e
A

ct
io

n
/

st
ep

V
er

te
x

M
es

sa
ge

C
o
n
te

n
t

T
a
rg

et
C

o
m

m
en

t

1
0

∀v
∈
V

∀e
=

(v
,w

)
∈
E

Y
w

it
h
y
(e

)
>
t

In
it

ia
li

ze
th

e
g
lo

b
a
l

so
rt

ed
se

t
A

.
2

A
←
A
∪
{y

(e
)}

3
1

∀v
∈
V

ȳ
:=

m
ax

(A
∪
{0
})

D
et

er
m

in
e

cu
rr

en
t

m
a
x
im

u
m

si
m

il
a
ri

ty
.

4
if
ȳ

=
0

th
en

H
A

L
T

T
er

m
in

a
te

if
th

e
q
u

eu
e

is
em

p
ty

.
5

2
∀a
∈
V

Y
=
{w
|(a
,w

)
∈
E

Y
∧
y
((
a
,w

))
=
ȳ
}

D
et

er
m

in
e

v
er

ti
ce

s
w

it
h

m
a
x
im

u
m

si
m

il
a
ri

ty
.

6
if

(Y
6=
∅)

If
th

e
cu

rr
en

t
ve

rt
ex

h
a
s

y
-e

d
g
es

w
it

h
va

lu
e
ȳ
.

7
A
←
A
\
{ȳ
}

R
em

ov
e

m
a
x
im

u
m

si
m

il
a
ri

ty
fr

o
m

se
t
A

.
8

se
n

d
[
E
’
(
a
)
,
a
]

b 1
=
m
a
x
id

(Y
)

S
en

d
eq

u
iv

a
le

n
ce

cl
a
ss

to
se

le
ct

ed
ve

rt
ex

.
9

se
n

d
[
r
e
s
c
h
e
d
u
l
e
,
a
]

b 2
∈
Y
\
{b

1
}

N
o
ti

fy
n

o
n

-s
el

ec
te

d
ve

rt
ic

es
to

st
o
p

p
ro

ce
ss

in
g
.

10
se

n
d
[
a
c
t
i
v
e
,
a
]

b 3
∈
E
′ (
a
)

N
o
ti

fy
ve

rt
ic

es
in

eq
u

iv
a
le

n
ce

cl
a
ss

.
11

3
b

if
re

ce
iv

ed
[
E
’
(
a
)
,
a
]

If
b

w
a
s

se
le

ct
ed

b
y

a
ve

rt
ex

a
.

12
m

:=
m
a
x
id

({
w
|r

ec
ei

ve
d
[
a
c
t
i
v
e
,
w
]
}

)
If
b’

s
id

is
th

e
la

rg
es

t
am

o
n

g
13

if
(i
d
(b

)
>
id

(m
))

a
ct

iv
e

ve
rt

ic
es
w

in
eq

u
iv

a
le

n
ce

cl
a
ss

.
14

se
n

d
[
E
’
(
a
)
,
a
,
b
]

b′
∈
E

(b
)

S
en

d
eq

u
iv

a
le

n
ce

cl
a
ss

to
b

e
m

er
g
ed

.
15

el
se

16
A
←
A
∪
{ȳ
}

E
ls

e
re

sc
h

ed
u

le
th

is
si

m
il

a
ri

ty
17

se
n

d
[
r
e
s
c
h
e
d
u
l
e
,
b
]

a
′
∈
E

(a
)

a
n

d
in

fo
rm

eq
u

iv
a
le

n
ce

cl
a
ss

es
.

18
if

re
ce

iv
ed

[
r
e
s
c
h
e
d
u
l
e
,
*
]

If
b

w
a
s

n
o
t

se
le

ct
ed

b
y

a
n

o
th

er
ve

rt
ex

a
.

19
A
←
A
∪
{ȳ
}

R
es

ch
ed

u
le

th
is

si
m

il
ar

it
y.

20
4

b′
∈
E

(b
)
∀v
∈
[
E
’
(
a
)
,
a
]

S
to

p
p

ro
ce

ss
in

g
if

re
ce

iv
ed

21
if

re
ce

iv
ed

[
r
e
s
c
h
e
d
u
l
e
,
v
]

a
re

sc
h

ed
u

le
m

es
sa

g
e

fo
r

a
n
y

ve
rt

ex
22

re
tu

rn
fr

o
m
b′

in
re

ce
iv

ed
eq

u
iv

a
le

n
ce

cl
a
ss

.
23

∀v
∈
[
E
’
(
a
)
,
a
]

24
E

X
←
E

X
∪
{(
b′
,v

)}
A

d
d

sa
m

eA
s

ed
g
es

.
25

E
Y
←
E

Y
\
{(
b′
,v

)}
R

em
ov

e
ed

g
e

th
a
t

re
p

re
se

n
ts

q
u

eu
e

en
tr

y.

82

4.4 Assignment Algorithm with Message-passing
T

ab
le

4.
2:

T
h

e
co

n
te

x
t

tr
a
n

sf
er

p
h
a
se

o
f

th
e

M
es

sa
g
e-

P
a
ss

in
g
-b

a
se

d
a
li

g
n

m
en

t
a
lg

o
ri

th
m

.

S
u

p
er

-
A

ct
iv

e
A

ct
io

n
/

st
ep

V
er

te
x

M
es

sa
ge

C
o
n
te

n
t

T
a
rg

et
C

o
m

m
en

t

26
4

co
n
t.

b′
∈
E

(b
)

∀
[
E
’
(
a
)
,
a
,
b
]

re
ce

iv
ed

If
th

is
is

a
se

le
ct

ed
ve

rt
ex

.
27

if
id

(b
)
>
id

(a
)

C
h

o
o
se

d
ir

ec
ti

o
n

fo
r

se
n

d
in

g
co

n
te

x
t.

28
se

n
d
[
E
’
(
a
)
,
a
]

c
∈
C

(b
′)

P
a
ss

eq
u

iv
a
le

n
ce

cl
a
ss

to
b

’s
co

n
te

x
t.

29
5

c
∈
C

(b
′)

se
n

d
[
E
(
c
)
]

a
′
∈
E

(a
)

S
en

d
co

n
te

x
t

ve
rt

ic
es

’
eq

u
iv

a
le

n
ts

to
eq

u
iv

a
le

n
ts

o
f
a
.

30
6

a
′
∈
E

(a
)

se
n

d
[
E
(
c
)
]

c′
∈
C

(a
′)

F
o
rw

a
rd

to
th

e
co

n
te

x
t

o
f
a
’s

eq
u

iv
a
le

n
ts

.
31

7
c′
∈
C

(a
′)

se
n

d
[
E
(
c
)
]

c a
∈
E

(c
′)

F
o
rw

a
rd

to
co

n
te

x
t

eq
u

iv
a
le

n
ts

o
f
a
’s

eq
u

iv
a
le

n
ts

.
32

8
c a
∈
E

(c
′)
∀c

b
∈
[
E
(
c
)
]

33
if

(c
a
,c

b
)
∈
E

Y
If
a
’s

co
n
te

x
t

sh
a
re

s
E

Y
-e

d
g
es

w
it

h
b’

s
co

n
te

x
t,

34
se

n
d
[
C

(c
a
),
c a
]

c b
∈
E

(c
)

se
n

d
a
’s

co
n
te

x
t
C

(c
a
)

to
b’

s
co

n
te

x
t

eq
u

iv
a
le

n
ts

.
35

9
c b
∈
E

(c
)
∀
[
C

(c
a
),
c a
]

re
ce

iv
ed

V
er

ti
ce

s
re

ce
iv

e
co

n
te

x
ts

fo
r
E

Y
-e

d
g
es

p
a
rt

n
er

s.
36

if
(|C

(c
b
)|
<
|C

(c
a
)|)

D
et

er
m

in
e

th
e

sm
a
ll

er
co

n
te

x
t.

37
se

n
d
[
C

(c
a
),
c a
,c

b
]

c
∈
C

(c
b
)

S
en

d
la

rg
er

co
n
te

x
t

to
th

e
sm

a
ll

er
co

n
te

x
t.

38
el

se
(b

es
id

es
o
ri

g
in
c b

,
a
tt

a
ch

E
Y

-e
d

g
e

ta
rg

et
id
c a

)
39

se
n

d
[
C

(c
b
),
c a
,c

b
]

c
∈
C

(c
a
)

40
se

n
d
[
C

(c
a
),
c a
]

c b
R

es
en

d
co

n
te

x
t

to
se

lf
.

41
10

c
∀C

l
∈
[
C

l,
c a
,c

b
]

re
ce

iv
ed

A
ll

sm
a
ll

er
co

n
te

x
ts

re
ce

iv
e

la
rg

er
co

n
te

x
ts
C

l.
42

C
m

:=
C

l
∩
E

(c
)

D
et

er
m

in
e

co
n
te

x
t

ov
er

la
p

(e
n
ti

ty
m

a
tc

h
es

).
43

se
n

d
[
C

m
,c

a
]

c b
S

en
d

m
a
tc

h
es

b
a
ck

to
th

e
se

n
d

er
.

44
11

c b
∀c

a
:
[
C

m
,c

a
]

a
n

d
[
C

(c
a
),
c a
]

re
ce

iv
ed

R
ec

ei
ve

ov
er

la
p

a
n

d
co

n
te

x
t

fo
r
c a

.
45

M
:=
⋃ C m

C
re

a
te

se
t

o
f

a
ll

co
n
te

x
t

en
ti

ty
m

a
tc

h
es

.
46

s
:=

si
m
′ (
c a
,c

b
,p

(c
a
,c

b
),
M
,C

(c
a
))

C
o
m

p
u

te
n

ew
si

m
il

a
ri

ty
.

47
y
((
c b
,c

a
))

:=
s

S
et

n
ew

si
m

il
a
ri

ty
.

48
se

n
d
[
c b
,s
]

c a
In

fo
rm

E
Y

-e
d

g
e

p
a
rt

n
er

a
b

o
u

t
u

p
d

a
te

.
49

12
c a

∀
[
c b
,s
]

re
ce

iv
ed

If
E

Y
-e

d
g
e

va
lu

es
w

er
e

re
co

n
si

d
er

ed
.

50
y
((
c a
,c

b
))

:=
s

U
p

d
a
te

re
sp

ec
ti

ve
y

va
lu

e.
51

A
←
A
∪
{s
}

A
d

d
va

lu
e

to
g
lo

b
a
l

se
t.

52
∀v
∈
V

G
O

T
O

st
ep

1
S

ta
rt

n
ex

t
it

er
a
ti

o
n

w
it

h
st

ep
1
.

83

4 Entity Alignment

4.5 The LINDA System

The LINDA (LINked Data Alignment) system implements the different assignment algo-

rithms of Sections 4.2 - 4.4 in combination with judiciously designed similarity functions.

Note that due to the many domains Linked Data stems from it is highly challenging to

build similarity functions that balance the precision among all domains under considera-

tion. It is not within the scope of this thesis to explore the space of possible similarities,

since this is an orthogonal project and subject to many discussions. Also, we consider

precision to be highly subjective and assessable only with large and thorough user stud-

ies. In this thesis, we mainly focus on how to perform distributed and joint entity

mapping. Nevertheless, in the course of this work, we found that the careful design and

selection of similarity ingredients is a central part of an entity matching system and also

determines the influence of contextual information. In the following, we propose one

possible instantiation for our LINDA algorithms that we found to perform well for the

diverse datasets we considered (described in Section 4.6).

In our implementation, LINDA computes two kinds of similarities between entities a and

b, namely a prior similarity sim0 based on literals and constraints as well as a contextual

similarity simC, which considers the current state of the assignment matrix X:

1. The prior similarity sim0(a, b) is a token-based similarity between literal sets L(a)

and L(b). These literals typically include labels and descriptions, etc. This simi-

larity is computed once beforehand and used to initialize the similarity matrix Y

and later as a smoothing prior (see Section 4.5.1). In theory, one computes prior

similarities for all entity pairs. In practice, however, we use a token frequency

cut-off, which (as a side-effect) reduces comparisons and employ Map/Reduce to

distribute remaining computations. Intuitively, the prior similarity must produce

a high-quality set of matching candidates that can be refined with further infor-

mation.

2. The contextual similarity simC(C(a), C(b), G,X) determines the similarity of the

contexts of a and b. Specifically, we consider all graph neighbors of a and b and

also the equivalence classes among these neighbors, based on the current state of

X. simC is thus recomputed in each iteration (see Section 4.5.2). Intuitively, the

contextual similarity degrades or reinforces matching candidate pairs discovered

with the prior similarity.

The two similarity measures are combined to an overall similarity score sim(a, b,G,X)

as follows.

84

4.5 The LINDA System

Definition 4.6 (similarity score)

Given an entity graph G = (V,E), an assignment matrix X, and two parameters α, θ,

the similarity score for entities a, b ∈ V is:

sim(a, b,G,X) = sim0(a, b) + α simC(C(a), C(b), G,X)− θ.

C(a) and C(b) denote the contexts of a, b and are defined later. The parameter α con-

trols the influence of contextual similarities. θ is used to ensure that the overall scores

are renormalized to values around 0, since positive scores shall reflect likely mappings

and negative scores imply dissimilarities – as required by the objective function in Defini-

tion 4.4. Without such renormalization, i.e., with θ = 0, the objective would encourage

selecting as many mappings as possible, as long as the respective items have at least

some very small probability of matching. Setting θ > 0 ensures that there is a penalty

for matching items that are too dissimilar. We empirically select the parameter values

in Section 4.6.2.

4.5.1 Prior Similarities

Prior similarities sim0(a, b) reflect the direct evidence of two entities matching. Within

the scope of this thesis we chose an intuitive function similar to the well-known Jaccard

Coefficient based on literals. For the prior similarity definition we use the following

functions:

• Given an entity a, T (a) is 1 if a is likely to be a class and 0 otherwise. We leverage

T (a) to avoid matching classes with non-classes.

• Given an entity a, I(a) is true if a URI appears to refer to an information resource,

e.g., a webpage, rather than a real-world entity. We use this to not consider

information resources at all.

• Given an entity a, N(L(a)) provides the bag of word n-grams from all string

literals L(a) of a. Literals longer than 8 tokens are truncated to length 8. If an

individual literal is shorter than n, we use the entire literal. Before forming n-

grams, we apply word stemming, character normalization, and stopword removal.

N-grams that occur more than 1, 200 times are removed, as they are unlikely to

be discriminative (value has been chosen empirically). In case we deal with a

label literal, we additionally add the entire label a fixed number of times to the

bag N(L(a)) to give more weight to such literals. We determine labels through

respective predicates, such as rdfs:label, skos:prefLabel, foaf:name, etc. For

85

4 Entity Alignment

all experiments presented in Section 4.6 we use 3-grams and add label literals 3

times.

• Given an entity a, the source S(a) of a is defined as part of the entity graph

in Definition 4.1.

Definition 4.7 (prior similarity)

Given two entities a and b and their bags of literal n-gramsNa = N(L(a)), Nb = N(L(b)),

the prior similarity is defined as

sim0(a, b) =



−∞ if S(a) = S(b) or T (a) 6= T (b)

or I(a) =true or I(b) =true

or Na ∩Nb = ∅
|Na ∩Nb|

min(|Na|, |Nb|) + ln(|(|Na| − |Nb|)|+ 1)
otherwise.

Note that because sim0(a, b) yields −∞ for cases where S(a) = S(b), T (a) 6= T (b),

I(a) or I(b), or Na ∩ Nb = ∅, we enforce to not match entities within a data sources,

classes with non-classes, information resources, and entities that do not share a single

n-gram, respectively. Unlike the well-known Jaccard set similarity measure, our prior

similarity normalization is biased towards the size of the smaller bag and hence better

accounts for data heterogeneity. This is important, because a frequent case for two

matching entities is that one source contains only few literals, whereas another includes

long textual descriptions.

4.5.2 Contextual Similarities

The contextual similarity simC(C(a), C(b), G,X) of two entities a and b, which depends

on the current values stored in the assignment matrix X, is defined as follows.

Definition 4.8 (entity context)

Given an entity graph G = (V,E), the context C(a) of an entity a is a set of context

tuples (r, n, w), where r is a relation, i.e., an edge label in the entity graph (and a

predicate in the original RDF data), n is a neighboring vertex of a in the entity graph,

and w is a numeric weight. The context of an entity a includes:

• {(r, n, w) | (a, r, n) ∈ E}, i.e., objects n of triples with a as subject,

• {(inv:r, n, w) | (n, r, a) ∈ E}, i.e., subjects n of triples with a as object.

86

4.6 Experiments

Here, inv:r is used to represent the inverse relation of r. The weights w of context tu-

ples are computed as 1
log(freq(r,n)) , where freq(r, n) is the total number of occurrences

of relation r with entity n. Hence, we assign higher weights to less frequent con-

text tuples, since, for instance, (bornIn, ParisFrance, w1) is less discriminative than

(bornIn, ParisTexas, w2), as Paris, France is the birthplace of more people than Paris,

Texas. With the definition of the context C(a) of a vertex a, we can now define the

contextual similarity.

Definition 4.9 (contextual similarity)

Given an entity graph G, an assignment matrix X, and two entities a, b with contexts

Ca = C(a), Cb = C(b), the contextual similarity is

simC(Ca, Cb, G,X) =



∑
(ra,na,wa)
∈Ca

max
(rb,nb,wb)
∈Cb

xna,nb
· wa · sim(ra, rb) if |Ca| ≤ |Cb|

∑
(rb,nb,wb)
∈Cb

max
(ra,na,wa)
∈Ca

xna,nb
· wb · sim(ra, rb) otherwise.

Intuitively, this function finds matching pairs of context tuples and sums up their sim-

ilarity values. Specifically, it first determines the smaller context set Cs and then, for

each tuple ∈ Cs, it sums up weighted similarities for the best matching context tuples

from the other set. We choose to start with the context tuple matching with the smaller

set, because the sum shall yield values ≤ |Ca| (given that tuple similarities are in [0..1]).

The similarity of individual context tuples (ra, na, wa), (rb, nb, wb) depends on the entity

matching as well as the predicate similarity.

The entity matching considers the assignment matrix X at position xna,nb
, which ex-

presses whether the respective entities na, nb are currently considered equivalent.

For the weighted predicate similarity wa ∗ sim(ra, rb), we split the predicate names of

ra and rb into words, remove stopwords, and perform stemming. This procedure yields

two token sequences sa, sb of length la, lb, respectively. Then, we compute the distance

d(sa, sb) of sa and sb as the sum of the smallest edit distances for each word of the smaller

sequence to words of the other sequence. The similarity sim(ra, rb) is then computed as

1− d(sa,sb)
max(la,lb)

.

4.6 Experiments

In the following, we present measurements for our LINDA system. Table 4.3 summarizes

presented approaches and points to the respective evaluation section. We discuss algo-

rithmic choices, i.e., the influence of the contextual similarity, as well as precision and

87

4 Entity Alignment

recall for our multi-core approach (referred to as LINDA1). To reason about accuracy we

rely on manual assessments of result samples. However, we have also published accuracy

results for the simple but prominent OAEI 2010 benchmark in [BMNW12] (Table 1). We

do not consider precision and recall values for the distributed approaches (MR-LINDA

and MP-LINDA), because accuracy is not the focus of this work. Instead, as part of this

thesis, we demonstrate the scalability for the Map/Reduce- and the message-passing-

based approach. In the following, we describe the creation of a sample from the Web

of Data, called LODsample. Then, we quantitatively describe all datasets used in this

section.

Table 4.3: Presented versions of the LINDA algorithm.

Presentation Evaluation
Name (and shorthand) section section
Multi-core LINDA (LINDA1) 4.2 4.6.2
Map/Reduce-based LINDA (MR-LINDA) 4.3 4.6.3
Message-passing-based LINDA (MP-LINDA) 4.4 4.6.4

4.6.1 Data

To evaluate the algorithmic choices of our system on a real-world sample of the Web of

Data, we created a dataset that, unlike existing instance matching datasets, consists of a

variety of different URIs from heterogeneous domains. In particular, we created a list of

seed URIs from diverse domains shown in Table 4.4, which we used as starting points for

a depth-2 LOD crawl. Note that we deliberately chose seeds such that matches occur but

made sure that the matching task is challenging by adding entities with similar labels,

e.g., the city of Berlin, the poet Irving Berlin, and Mount Berlin.

With this LOD sample, we created two sets of manually labeled matching candidate

pairs, named CAND1 and CAND2. The labeling was conducted by two annotators plus

a third person for resolving conflicts. A pair is labeled as true if both entity URIs rep-

resent exactly the same real-world object. In contrast, sameas.org (a public aggregator

for sameAs links) identifies, e.g., the movie The Godfather with the Godfather trilogy

– a pair we would reject. The Fleiss’ kappa scores [Fle71] for the annotations were

0.838 (CAND1) and 0.822 (CAND2). Entities from CAND1 pairs stem from different

datasets, share at least one bi-gram, and one of the two entities is from our list of seed

URIs. CAND1 comprises 11,830 entity URI pairs out of which 30 are positive candidates

(note that 11,279 include a lod.geospecies.org URI). This demonstrates that simple string

similarity measures cannot achieve satisfying results. Thus, the detection of these few

positive candidates is the actual challenge for a matching algorithm. CAND2 pairs ful-

88

4.6 Experiments

Table 4.4: Seed URIs used for the creation of a LOD sample.

The nobel prize winner Albert Einstein
1 http://dbpedia.org/resource/Albert_Einstein

2 http://data.nytimes.com/einstein_albert_per

3 http://rdf.freebase.com/ns/guid.9202a8c04000641f800000000000417c

The musician Anne Jackson
4 http://data.linkedmdb.org/resource/actor/47299

5 http://dbpedia.org/resource/Anne_Jackson

The band Boards of Canada
6 http://dbpedia.org/resource/Boards_of_Canada

7 http://dbtune.org/musicbrainz/resource/artist/69158f97-4c07-4c4e-baf8-4e4ab1ed666e

The poet James Joyce
8 http://dbpedia.org/resource/James_Joyce

9 http://www4.wiwiss.fu-berlin.de/gutendata/resource/people/Joyce_James_1882-1941

the US state Georgia
10 http://dbpedia.org/resource/Georgia_%28U.S._state%29

11 http://sws.geonames.org/4197000/

the country Georgia
12 http://dbpedia.org/resource/Georgia_%28country%29

13 http://sws.geonames.org/614540/

The gangster movie The Godfather 2
14 http://dbpedia.org/resource/The_Godfather_Part_II

15 http://rdf.freebase.com/ns/guid.9202a8c04000641f80000000000861a6

The city of Berlin
16 http://dbpedia.org/resource/Berlin

17 http://rdf.freebase.com/ns/guid.9202a8c04000641f80000000000094d6

18 http://sws.geonames.org/2950159/about.rdf

Irving Berlin, the musician
19 http://rdf.freebase.com/ns/guid.9202a8c04000641f800000000005f5f6

20 http://www.bbc.co.uk/music/artists/5e645519-a175-4fe0-9a9b-eb9dc9f506b5#artist

A mountain called Berlin
21 http://dbpedia.org/resource/Mount_Berlin

22 http://rdf.freebase.com/ns/guid.9202a8c04000641f80000000004df425

The CDU politician Angela Merkel
23 http://dbpedia.org/resource/Angela_Merkel

24 http://rdf.freebase.com/ns/guid.9202a8c04000641f800000000008480e

The species Guinea Pig
25 http://dbpedia.org/resource/Guinea_pig

26 http://www.uniprot.org/taxonomy/10141

27 http://lod.geospecies.org/ses/3KbUP (not accessible anymore)

fill the same similarity criteria as CAND1 but must involve a DBpedia URI and cannot

contain entities from lod.geospecies.org. These criteria ensure that we have a reasonable

percentage of true positives. CAND2 contains 423 candidate entity pairs, 51 of which

are positive examples. This dataset is more diverse than CAND1, because we no longer

require one of the two entities to be from our seed set.

To judge the scalability of our approach we instead use much larger datasets. In par-

ticular, we augmented the Billion Triple Challenge Data (BTC) as of 2011 [Bil] with

89

http://dbpedia.org/resource/Albert_Einstein
http://data.nytimes.com/einstein_albert_per
http://rdf.freebase.com/ns/guid.9202a8c04000641f800000000000417c
http://data.linkedmdb.org/resource/actor/47299
http://dbpedia.org/resource/Anne_Jackson
http://dbpedia.org/resource/Boards_of_Canada
http://dbtune.org/musicbrainz/resource/artist/69158f97-4c07-4c4e-baf8-4e4ab1ed666e
http://dbpedia.org/resource/James_Joyce
http://www4.wiwiss.fu-berlin.de/gutendata/resource/people/Joyce_James_1882-1941
http://dbpedia.org/resource/Georgia_%28U.S._state%29
http://sws.geonames.org/4197000/
http://dbpedia.org/resource/Georgia_%28country%29
http://sws.geonames.org/614540/
http://dbpedia.org/resource/The_Godfather_Part_II
http://rdf.freebase.com/ns/guid.9202a8c04000641f80000000000861a6
http://dbpedia.org/resource/Berlin
http://rdf.freebase.com/ns/guid.9202a8c04000641f80000000000094d6
http://sws.geonames.org/2950159/about.rdf
http://rdf.freebase.com/ns/guid.9202a8c04000641f800000000005f5f6
http://www.bbc.co.uk/music/artists/5e645519-a175-4fe0-9a9b-eb9dc9f506b5#artist
http://dbpedia.org/resource/Mount_Berlin
http://rdf.freebase.com/ns/guid.9202a8c04000641f80000000004df425
http://dbpedia.org/resource/Angela_Merkel
http://rdf.freebase.com/ns/guid.9202a8c04000641f800000000008480e
http://dbpedia.org/resource/Guinea_pig
http://www.uniprot.org/taxonomy/10141
http://lod.geospecies.org/ses/3KbUP

4 Entity Alignment

major Web of Data hubs, namely DBpedia (version 3.6), Yago2, Freebase (as of January

2011), as well as GeoNames (as of mid 2011). The BTC collection is highly heteroge-

neous, including data generated by content management systems and data embedded

into webpages. Each dataset used for the augmentation reasonably enlarges the entire

set on the one hand but also ensures a high coverage of prominent entities in the LOD

network.

Given the raw RDF triples, we first preprocess the data with Map/Reduce. In particular,

we remove identical triples, blank nodes as well as reification statements and compute

prior similarities. We then load the resulting entity graphs into MongoDB instances

(version 2.2.2) [PHM10], which may physically reside on multiple machines and thus

scale horizontally. Additionally, we determine context weights and predicate similarities

– eventually also stored in MongoDB. For the largest dataset we considered (BTC+++

with 636 million unique triples, see below) the entire preprocessing took roughly 15

hours58. With this setup, we can run LINDA on a single machine or produce the input

for the distributed versions. In detail, we created the following datasets:

• LODsample is the depth-2 crawl as described above.

It comprises 1,210,596 triples and describes 443,863 entities.

Its compressed size in the HDFS59 is 188MB. The database size is 2GB.

• BTC+ is the union of the BTC data and DBpedia.

It comprises 157,503,668 triples and describes 43,853,192 entities.

Its compressed size in the HDFS is 27GB. The database size is 44GB.

• BTC++ is the union of the BTC data, DBpedia, Yago, and GeoNames.

It comprises 288,332,370 triples and describes 70,082,459 entities.

Its compressed size in the HDFS is 43GB. The database size is 90GB.

• BTC+++ is the union of the BTC data, DBpedia, Yago, GeoNames, and Freebase.

It comprises 636,048,989 triples and describes 120,986,900 entities.

Its compressed size in the HDFS is 92GB. The database size is 182GB.

Each of these datasets serves a different purpose: We use LODsample to evaluate algo-

rithmic choices. We managed to run our message-passing-based LINDA on BTC+. We

process BTC++ and BTC+++ with the multi-coreversion of our approach to judge the

output accuracy. Also, the Map/Reduce version of LINDA easily processes BTC++ and

BTC+++.

58The runtime refers to the Map/Reduce cluster described later in Section 4.6.3.
59HDFS is a shorthand for the Hadoop distributed file system.

90

4.6 Experiments

Table 4.5: Most frequent preprocessed literal words in BTC+++.

token frequency token frequency token frequency

de 2,001,030 bibsonomi 390,112 section 325,936
song 800,732 river 389,139 born 320,191
school 739,138 district 387,133 forc 315,885
la 727,343 love 383,565 text/plain 312,885
descript 710,045 public 383,101 season 311,704
lyric 622,029 unit 368,450 application/rss+xml 309,600
metrolyr 614,331 nation 368,232 world 306,906
databas 600,224 inform 362,726 station 302,938
world 584,034 wikipedia 356,366 william 298,127
freebas 580,106 american 353,227 artist 297,101
source: 576,005 ¡a 349,679 creek 291,348
rdf 530,333 le 344,312 citi 291,133
state 511,126 transport 339,434 id 290,401
livejournal.com 478,302 el 336,804 full 289,892
user 478,046 type 336,454 ru 289,425
john 477,706 lake 330,493 link 286,562
act 468,061 counti 329,049 en 276,642
book 418,718 church 328,747 1985 275,600
includ 413,886 ca 328,444 episod 273,206
attribut 412,446 list 326,193 interest 272,531

Table 4.5 depicts the most frequent literal tokens in the BTC+++ data after we applied

our preprocessing described in Section 4.5.1. Note that the table shows tokens and

respective frequencies. However, we work with 3-grams with a maximum frequency of

1,200. Nevertheless, the table illustrates what kind of literal data our prior operates on.

Figure 4.3 illustrates the network structure of each dataset. In particular, it shows the

number of entities with a given number of entities in their local neighborhood, i.e., the

vertex out-degree. For LODsample, the maximum out-degree is 26, 92760. The second

to the maximum is in the order of 2, 900. The mean and standard deviation values are

4.2 and 117, respectively. For the BTC+++ data, the maximum, mean and deviation

values are 831770, 6.6, and 388, respectively. The latter numbers are slightly smaller but

roughly hold for BTC+ and BTC++. In general, our LODsample shows comparable

properties, e.g., very many low degree entities, etc. An exception is the range [10− 20[,

which has fewer entities than the range [20−30[. Apparently, we cannot cover all degrees

of interconnectivity with the given size of our sample.

Figure 4.4 illustrates the number of matching candidates per entity. Here, we group

entities by the number of candidate entities they have a positive prior ≥ 0.1 with. For

60Not shown for readability.

91

4 Entity Alignment

1	

10	

100	

1,000	

10,000	

100,000	

[1-­‐10[
 [50-­‐60[
 [100-­‐110[
 [150-­‐160[
 [200-­‐210[
 [250-­‐260[
 [300-­‐310[
 [350-­‐360[
 [400-­‐410[
 [450-­‐460[

#e
n/

te
s	
 (
in
	
 th

ou
sa
nd

,	
 l
og
	
 sc

al
e)
	

context	
 out-­‐degree	

BTC+++	

BTC++	

BTC+	

LODsample	

Figure 4.3: Number of entities (y axis) with respective context out-degree (x axis).

1	

10	

100	

1,000	

10,000	

[1-­‐10[
 [50-­‐60[
 [100-­‐110[
 [150-­‐160[
 [200-­‐210[
 [250-­‐260[
 [300-­‐310[
 [350-­‐360[
 [400-­‐410[
 [450-­‐460[

#e
n/

te
s	
 (
in
	
 th

ou
sa
nd

,	
 l
og
	
 sc

al
e)
	

number	
 of	
 candidates	

BTC+++	

BTC++	

BTC+	

LODsample	

Figure 4.4: Number of entities (y axis) with respective number of matching candidates (x axis),
i.e., entities such that there is a prior ≥ 0.1.

BTC+++, the maximum number of matching candidates is in the range [49, 950 −
49, 960[60. There is a remarkable number of entities (hundreds) with a number of can-

didates around 1, 20060. Then, the number of entities slowly increases to millions for

smaller numbers of candidates. Observe that there is a notable difference in the distri-

bution for the various BTC datasets we use. That is, for instance, there are 336, 933

entities with 200 candidates in the BTC+++ data, whereas there are only 166, 399 and

47, 442 of such entities in the BTC++ and BTC+ data, respectively. In conclusion, since

these candidates are mostly reflected in the queue used for the iterative processing of

LINDA, it requires varying effort to update and reorganize the queue in the case of newly

discovered entity alignments. We observed this effect, for instance, when processing the

BTC++ or BTC+++ data with our first approach. Then, LINDA progresses slowly in

92

4.6 Experiments

the beginning for both datasets due to initial matches for highly connected entities with

very many candidates to be reconsidered. The processing accelerates after a certain set

of entity pairs has been passed. However, the speed-up takes significantly longer for

BTC+++ than for BTC++ data. Most likely, the higher mean number of candidates

is one of the reasons.

4.6.2 Multi-core LINDA

Algorithmic Choices. We now evaluate varying settings for α and θ to suggest a setting

that works well for Linked Open Data. For this, we ran LINDA1 on the LODsample

data and determined precision and recall. Consider Table 4.6. The first result-row of

the table depicts the setting we propose as default (θ = 0.7, α = 2) and shows that

our system delivers high precision results at reasonable levels of recall. Below, we show

the influence of individual parameters, i.e., results obtained by varying α and θ values.

Overall, the algorithm is remarkably robust with respect to changing parameter values.

As expected, higher θ leads to lower recall. The precision increases until θ = 0.7 and

remains stable until θ = 0.9. However, we chose to suggest θ = 0.7 as default to not

sacrifice recall (though it remains stable for this particular dataset). Using θ fixed at

0.7 and varying α, we find that α = 2 performs best on CAND2. On CAND1, α = 1..3

achieved the best results.

Running our algorithm using only the contextual similarities, we obtain high precision

with very low recall with respect to CAND1 and no results for CAND2. Without contex-

tual similarities, both precision and recall drop on CAND2, which highlights our joint

assignment approach as opposed to conventional pairwise similarities. Note that the

contextual influence, of course, highly depends on the strength of the prior similarity.

That is, the better the prior similarity performs, the lower is the contextual influence.

For instance, we found that other prior similarities, e.g., a set instead of a bag in Defini-

tion 4.7, cause a higher variance for the recall. Using conventional Jaccard scores with

our system as a baseline, we find that we outperform the recall in any case and achieve

a much higher precision for CAND2.

We also tested the influence of our context tuple weighting and found that uniform

weights w = 1 instead of frequency-based weights cause a drop in precision and recall.

Finally, we compared our results with a snapshot of sameas.org (as of May 2011), which is

a large aggregator of known collections of sameAs links gathered from numerous sources.

It had a perfect precision on our dataset – although in general it contains numerous links

that are not, strictly speaking, correct. However, its very low recall highlights the need

for large-scale interlinking across the Web of Data.

93

4 Entity Alignment

Note that the results shown in Table 4.6 illustrate the performance for varying contextual

influence (α) and different renormalizations (θ). Obviously, respective values depend on

the interplay of both parameters and, of course, the choice of prior and contextual

similarity functions. The expected precision/recall trade-off can be observed for the

changing θ or by varying the number of accepted mappings from the queue (which

essentially is varying θ). In practice, however, there usually is a precision plateau from

where higher thresholds not necessarily cause higher result confidence – in our case

at θ = 0.7 . . . 0.9. For the results in Table 4.6 we processed the entire queue, i.e., all

matching candidates with an initial similarity > 0. For experiments with much larger

datasets, presented later in this chapter, we had to stop processing after a given number

of iterations or after a specific amount of time.

Accuracy. Next, we show results for LINDA in its multi-core version on large datasets.

The entire system is implemented in Java and uses a thread pool to parallelize the

computation of updated scores y∗ (see the loop starting in line 12 of Algorithm 3). All

LINDA1 experiments with large datasets were conducted on a single server with 80

virtual cores (Intel Xeon E7-4870 @ 2.40GHz) and 512GB RAM.

We ran the algorithm on BTC++ for six days and created roughly 716,000 mappings61.

The BTC++ data queue had a length of 248,264,357 mapping candidate pairs. Remem-

ber that LINDA1 starts up slow due to the queue setup and since early matches cause

many queue updates and reorganizations. These slow iterations take roughly 2 days.

Then, LINDA produces more then 100,000 mappings per day (not requiring the total

CPU power of the machine we had available).

The BTC+++ data queue had a length of 712,176,782. Here, setup and slow iterations

take roughly 5 days. Remember Figure 4.4, which illustrates the tremendous number

of candidates per entity. We experienced much faster start-up times when dealing with

fewer candidate pairs per entity. For BTC+++ we created approximately 1,009,000

mappings in 19 days61.

Table 4.7 illustrates the presence of sources among the resulting mappings62. Remember

that the difference among BTC++ and BTC+++ is that the latter dataset additionally

includes Freebase data (roughly 350 million triples / 50 million URIs more). For the

BTC++ result, 60% of the mappings contain a DBpedia URI. Thus, DBpedia is most

prominent in the result. The fraction of mappings with Yago is 53%, which is the second

61Note that the total runtime and thus the number of mappings created was determined by the time
the machine was available. Therefore, we created this somewhat odd number of mappings. Also note
that we used α = 1 to equally weigh prior and context similarity for this experiment.

62Numbers refer to the first 500k mappings created.

94

4.6 Experiments

Table 4.6: Algorithmic Settings.

Variation CAND1 CAND2
Prec. Rec. Prec. Rec.

LINDA (default: θ = 0.7, α = 2) 0.71 0.46 0.93 0.49

LINDA (θ = 0.15, α = 2) 0.57 0.46 0.80 0.55
LINDA (θ = 0.2, α = 2) 0.60 0.46 0.82 0.55
LINDA (θ = 0.3, α = 2) 0.67 0.46 0.84 0.53
LINDA (θ = 0.4, α = 2) 0.67 0.46 0.84 0.51
LINDA (θ = 0.5, α = 2) 0.71 0.46 0.84 0.51
LINDA (θ = 0.6, α = 2) 0.71 0.46 0.86 0.49
LINDA (θ = 0.7, α = 2) 0.71 0.46 0.93 0.49

LINDA (θ = 0.8, α = 2) 0.71 0.46 0.93 0.49
LINDA (θ = 0.9, α = 2) 0.71 0.46 0.93 0.49
LINDA (θ = 1.0, α = 2) 0.62 0.31 0.93 0.49
LINDA (θ = 1.5, α = 2) 0.67 0.23 0.90 0.37
LINDA (θ = 2.0, α = 2) 0.67 0.23 0.93 0.27
LINDA (θ = 3.0, α = 2) 0.25 0.04 0.88 0.14
LINDA (θ = 4.0, α = 2) 0.25 0.04 0.50 0.02

LINDA (θ = 0.7, α = 1) 0.71 0.46 0.89 0.47
LINDA (θ = 0.7, α = 2) 0.71 0.46 0.93 0.49

LINDA (θ = 0.7, α = 3) 0.71 0.46 0.83 0.49
LINDA (θ = 0.7, α = 4) 0.63 0.38 0.73 0.43
LINDA (θ = 0.7, α = 5) 0.63 0.38 0.73 0.43
LINDA (θ = 0.7, α = 6) 0.59 0.38 0.69 0.43
LINDA (θ = 0.7, α = 7) 0.59 0.38 0.67 0.43
LINDA (θ = 0.7, α = 8) 0.63 0.38 0.67 0.43
LINDA (θ = 0.7, α = 9) 0.63 0.38 0.67 0.43
LINDA (θ = 0.7, α = 10) 0.59 0.38 0.67 0.43
LINDA (θ = 0.7, α = 15) 0.63 0.38 0.66 0.42
LINDA (θ = 0.7, α = 20) 0.63 0.38 0.63 0.39
LINDA (θ = 0.7, α = 25) 0.67 0.38 0.71 0.43
LINDA (θ = 0.7, α = 30) 0.53 0.31 0.59 0.31
LINDA (θ = 0.7, α = 40) 0.53 0.31 0.58 0.29
LINDA (θ = 0.7, α = 50) 0.53 0.31 0.58 0.29
LINDA (θ = 0.7, α = 100) 0.53 0.31 0.58 0.29
LINDA (θ = 0.7, α = 200) 0.53 0.31 0.58 0.29
LINDA (θ = 0.7, α = 1000) 0.53 0.31 0.58 0.29

No Contextual Similarity 0.75 0.46 0.91 0.41
Only Contextual Similarity 1.00 0.04 0.00 0.00

Uniform context weights 0.71 0.38 0.91 0.41
Jaccard prior 1.00 0.08 0.33 0.02

sameas.org 1.00 0.19 1.00 0.09

95

4 Entity Alignment

Table 4.7: Fraction of mappings from respective sources created with LINDA (in %).
Underlined fractions refer to sets we used for the manual evaluation (see Table 4.8.)

Source BTC++ BTC+++

DBpedia to Any 60.10 34.50
DBpedia to Yago 37.12 10.62
DBpedia to Any but Yago 22.97 23.88
Freebase to Any 4.95 73.50
Freebase to DBpedia 0.99 17.41
Freebase to Any but DBpedia 3.96 55.71

most prominent63. 37% of the mappings are among DBpedia and Yago. For BTC+++,

most of the mappings include a Freebase URI (73.5%) and less than 20% of the mappings

are among Freebase and DBpedia.

For the manual evaluation we chose to sample from the major fractions but also eval-

uate mappings specifically not among the most prominent sources in the results. Ta-

ble 4.8 depicts the outcome of the manual evaluation of random samples from BTC++

and BTC+++ results64. For BTC++, we find a reasonable accuracy of 0.73 for ran-

domly selected links. The percentage of true positives is 0.92 for links sampled from

the BTC+++ result. To be critical, the latter result is partly caused by many links

among the Wikipedia-based knowledge bases, namely Freebase, DBpedia, and Yago.

Entities from these sources often have a large textual overlap and thus have high simi-

larity scores. These high scores cause early positions of such pairs in the queue LINDA

processes. Therefore, the none-source specific sample from the BTC+++ result does

de-facto include source specific links.

The samples for DBpedia to Yago (BTC++) and DBpedia to Freebase (BTC+++) yield

an accuracy of 0.96 and 0.92, respectively. For BTC++, DBpedia to Any achieves an

accuracy of 0.63 – observe that this is the hardest matching task evaluated. Freebase to

Any (BTC+++) achieves a higher accuracy of 0.96. Again, this is partly because it still

contains mappings among Wikipedia-based sources. An evaluation for a complementary

set of mappings, i.e., mappings among Freebase and any source that is not Wikipedia-

based, yields an accuracy of 0.84± 0.075 (BTC+++).

With these results, LINDA clearly performs in the range of state-the-art matching ap-

proaches but without source-specific similarity measures, or highly-tuned domain-specific

rules, etc. Instead, we chose a general similarity and exploit joint evidence for matches.

Obviously, this choice gracefully balances accuracy among available sources without the

introduction of custom dataset-specific fine-tuning and works well on a large scale.

63Not shown since the table refers to most prominent datasets.
64The manual judgement was done by a single person – who was not the author of this work.

96

4.6 Experiments

Table 4.8: Accuracy for results on BTC++ and BTC+++. The size per sample is 120.

Sample Accuracy

BTC++ Any to Any Random Sample 0.73 ± 0.09
BTC++ DBpedia to YAGO Sample 0.96 ± 0.03
BTC++ DBPedia to Any but Yago Sample 0.63 ± 0.10

Total (sample size is 360) 0.80 ± 0.05

BTC+++ Any to Any Random Sample 0.92 ± 0.06
BTC+++ Freebase to DBpedia Sample 0.92 ± 0.05
BTC+++ Freebase to Any but DBpedia Sample 0.96 ± 0.03

Total (sample size is 360) 0.94 ± 0.03

4.6.3 MR-LINDA

Setup. The distributed versions of the LINDA algorithm operate entirely on Hadoop.

At this point the open source community deserves a special mention, since Hadoop, a

wide-spread implementation of Map/Reduce, has been developed and pushed forward

under the Apache umbrella, see hadoop.apache.org. We use Cloudera’s CDH3u5, which

is Hadoop version 0.20.265. Our cluster consists of ten (one master, nine slaves) Dell

PowerEdge R720 machines equipped with two Intel Xeon E5-2640 CPUs (12 virtual cores

each), 64GB RAM, and eight internal 2TB SAS 7200 RPM HDDs. All cluster nodes

run Debian Linux (Kernel 3.2.21.1.amd64-smp) and are connected via 10GBit ethernet.

Slave nodes are configured to run up to ten map tasks and ten reduce tasks each in

parallel. For MR-LINDA, the memory usage is limited to 4GB per task. MP-LINDA

requires more memory (we allow up to 15GB) since each compute node loads a complete

fraction of the graph into main memory. In either case, MR-LINDA and MP-LINDA,

the map and reduce tasks represent compute nodes. That is, when we state to run

LINDA on 20 nodes, it is executed as 20 map or reduce tasks. However, in any case, the

input data is partitioned respectively and resides in the Hadoop distributed file system

(HDFS). Then, due to locality, the data is mostly loaded from a local disk in a machine

where a task is launched. The Map input split size is set such that a mapper consumes

a complete graph partition. For instance, when processing the BTC+++ data on 60

nodes the input split size is set to 4GB whereas it must be 12GB when working with 20

nodes.

Data Distribution. Figure 4.5 illustrates the distribution of the queue for the BTC+++

data across compute nodes. It shows the average number of entity pairs on a single node

65http://hadoop.apache.org, http://www.cloudera.com

97

hadoop.apache.org
http://hadoop.apache.org
http://www.cloudera.com

4 Entity Alignment

per similarity range for different numbers of nodes. Obviously, the more nodes we use,

the more balanced is the distribution of queue similarity values. For instance, on 20

nodes there are 5.5 million pairs with values among 0.3−0.4 and roughly 2 million pairs

with values among 1− 1.1. Instead, on 60 nodes there are 1.8 and 0.7 million pairs for

the respective ranges, i.e., the number of pairs in different ranges varies less – though,

of course, the factor remains the same.

0	

1	

2	

3	

4	

5	

6	

[.2-­‐.3[
 [.3-­‐.4[
 [.4-­‐.5[
 [.5-­‐.6[
 [.6-­‐.7[
 [.7-­‐.8[
 [.8-­‐.9[
 [.9-­‐1.0[
 [1.0-­‐1.1[
 [1.1-­‐1.2[
 [1.2-­‐1.3[
 [1.3-­‐1.4[
 [1.4-­‐1.5[
 [1.5-­‐1.6[
 [1.6-­‐1.7[
 [1.7-­‐1.8[
 [1.8-­‐1.9[
 [1.9-­‐2.0[

nu
m
be

r	
 o
f	
 c
an
di
da
te
	
 e
n<

ty
	
 p
ai
rs
	
 (i
n	

m
ill
io
n)
	

similarity	
 range	

n=20	

n=40	

n=60	

Figure 4.5: Average number of candidate entity pairs with respective initial similarity value in
BTC+++ per queue partition for our Map/Reduce-based LINDA.

Scalability. Figure 4.6 and 4.7 show the number of created mappings vs. runtime for

a varying number of compute nodes n (20, 40, and 60) and different acceptance rates K

(50 and 100). In the first figure, we depict values for K = 50 over hundred iterations.

Here, we observe that the cumulative runtime for n = 20 is significantly higher than

for n = 40 or 60, which is because respective queue partitions scanned on each node in

each iteration are significantly larger (see Figure 4.5). This is also the case for the graph

partitions handled on each compute node. Additionally, there are fewer nodes processing

updates and message traffic, which, in Map/Reduce, implies sorting large amounts of

key/value pairs. Interestingly, the runtime for n = 40 and 60 behaves similarly (among

the first 100 iterations). A possible explanation for this similar runtime is a trade-

off between computation time split among compute nodes and message traffic causing

physical network load increasing with more compute nodes involved.

As for the number of created mappings, we observe a slightly increasing growth for all

values of n. This increase is caused by a lower bound for the cumulative number of

created mappings in iteration i, i.e., i ∗ n ∗ K. The increase of the growth happens

because when accepting mappings LINDA merges equivalence classes – and thus creates

98

4.6 Experiments

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	

-m
e	

(in

	
 h
ou

rs
),	

da
sh
ed

	
 li
ne

s	

ac
ce
pt
ed

	
 m
ap
pi
ng
s	
 (
in
	
 m

ill
io
n)
,	

so
lid
	
 li
ne

s	

itera-on	

n=20	

n=40	

n=60	

n=60	

n=40	

n=20	

Figure 4.6: Total number of mappings created and time elapsed for our Map/Reduce-based
LINDA on BTC+++ data. Acceptance rate K = 50.

0	

5	

10	

15	

20	

25	

30	

35	

40	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	
 150	
 160	
 170	
 180	
 190	

-m
e	

(in

	
 h
ou

rs
),	

da
sh
ed

	
 li
ne

s	

ac
ce
pt
ed

	
 m
ap
pi
ng
s	
 (
in
	
 m

ill
io
n)
,	

so
lid
	
 li
ne

s	

itera-on	

n=20	

n=20	

n=40	

n=40	

n=60	

n=60	

Figure 4.7: Total number of mappings created and time elapsed for our Map/Reduce-based
LINDA on BTC+++ data. Acceptance rate K = 100. The marked rectangle is
the range (number of mappings and time) shown in Figure 4.6.

more mappings. For instance, with 60 nodes in iteration i = 100 with an acceptance

rate K = 50 MR-LINDA created 453k mappings in 13 : 10h.

Figure 4.7 shows respective numbers for K = 100 over 200 iterations and n = 20, 40,

and 60. After 200 iterations with acceptance rate K = 100, MR-LINDA created 688k,

1, 592k, or 2, 463k mappings in 37h, 32h, and 35h, respectively. Note that n = 40

runs faster from iteration i ≈ 100 (considering the absolute time per iteration, i.e.,

disregarding the number of created mappings). This observation supports the hypothesis

discussed above and indicates that there is an ideal n with respect to the time per

iteration, which, of course, highly depends on the computing infrastructure. In our case,

99

4 Entity Alignment

all compute nodes run on 9 physical machines. We expect the most beneficial value for n

to be higher in the case of broader physical distribution. Note that our bulk acceptance

strategy, i.e., we accept K pairs from the queue per node and iteration, causes a large

number of messages, i.e., key/value pairs, sent across the network. In case of broader

distribution, fewer processes would send through a single network interface.

On the other hand, obviously, n = 60 produces more mappings – effectively leading to

more mappings per time unit. Also, in other experiments running for approximately 500

iterations, we observed that the time per iteration eventually decreases (likely due to

less message traffic) and thus the number of created mappings per time unit can further

increase.

Message Traffic. Figures 4.8 through 4.1066 discuss the update message traffic and

respective queue updates actually performed. The first figure illustrates the number of

messages sent to trigger similarity reconsiderations for entity pairs. Instead, Figure 4.9

and 4.10 depict the number of similarity recomputations that lead to changed similarity

values in the queue. We show these values for n = 20 and 60 with K = 100. Figure 4.8

illustrates that MP-LINDA sends a large number of update messages across the network.

In iteration two, the setting n = 20 and 60 cause the maximum of 7.2 and 7.6 billion

messages, respectively. This message traffic also causes the longest runtime per iteration

observed. However, message traffic slows down in the following iterations. For n=60 it

remains fluctuating among 5 and 35 million messages per iteration. For n=20 the traffic

levels out to below 5 million with occasional peaks.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	
 101	

to
ta
l	
 n
um

be
r	
 o

f	
 u
pd

ta
e	

m
es
sa
ge
s	

(in
	
 m

ill
io
n)
	

itera>on	

n=20	

n=60	

Figure 4.8: Total number of update messages sent during MR-LINDA processing on BTC+++
data. Acceptance rate K = 100.

66Y-axis in Figure 4.8 through 4.10 are cut-off for readability reason.

100

4.6 Experiments

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	
 101	

to
ta
l	
 n
um

be
r	
 o

f	
 a
ct
ua
l	
 u
pd

ta
es
	

(in
	
 th

ou
sa
nd

)	

itera?on	

n=20	

n=60	

Figure 4.9: Total number of actual updates during MR-LINDA processing on BTC+++ data.
Acceptance rate K = 100.

0	

200	

400	

600	

800	

1000	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	
 101	

av
er
ag
e	

nu

m
be

r	
 o
f	
 a
ct
ua
l	
 u
pd

ta
es
	

itera>on	

n=20	

n=60	

Figure 4.10: Average number of actual updates and standard deviation per compute node during
MR-LINDA processing on BTC+++ data. Acceptance rate K = 100.

Note that these graphs should be compared with care, since in a given iteration both

settings process different portions of the queue and thus handle other fractions of the

entity graph. Nevertheless, as expected, we observe that n not only increases the traffic

but also shortens time between peaks.

In Figure 4.9 we consider actual updates performed and observe that the number of

changed similarity values in the queue behaves similarly for both settings. After n = 60

starts out with 156,325 updates in iteration two, it levels out quickly. The setting n = 20

causes 136,373 updates during the second iteration and levels out more slowly, because

it processes respective queue entries later than the other setting.

Figure 4.10 shows these numbers for a single node in the system (average and standard

101

4 Entity Alignment

deviation over 20 and 60 nodes). Clearly, on average a single node among 60 computes

less actual updates than a node in a system of 20. Considering the standard deviation,

however, we find that some nodes in either setting perform as many updates as nodes

in the other setting.

Unique Mapping Constraint. Finally, we quantify the percentage of mappings violating

the unique mapping constraint. Remember, these constraint violations occur since queue

entry reconsiderations (including negative updates) require two iterations after a change

of the current X. Figure 4.11 shows the percentage of mappings violating the uniqueness

constraint for n = 20, 40, and 60 with K = 100. For the latter two settings, roughly

40% violate the constraint. With n = 20 this fraction is approximately 5 percentage

points smaller. The dashed lines additionally show the size of the violating fraction, if

we allowed three mappings per source, i.e., an entity could be mapped to three entities

from a single other source. In this case, for iterations around 100, the values are roughly

15 percentage points smaller (even more for early iterations).

We see several options to avoid this undesirable effect. For one, we could add an efficient

global coordination that registers X updates and informs compute nodes on-demand.

Second, smarter partitioning of the data could reduce the violations. Then, nodes were

responsible for certain (not necessarily distinct) pairs of sources and it should not happen

that distinct nodes map a single entity to entities from the same other source at the same

time.

Another option is to perform additional post-processing that removes mappings until the

constraint holds. For such post-processing, we are given a set E of equivalent entities

as well as respective acceptance scores score(e, e′) from the MR-LINDA algorithm, and

we seek a partitioning P1...Pn, such that the unique mapping constraint from Defini-

tion 4.3 holds in each partition Pi, n is minimal, and
∑

Pi,1≤i≤n
∑

e1,e2∈Pi
score(e1, e2)

is maximal.

Given the source S(e) for each entity e, there is a partitioning S1...Sm of E by source.

Let |S1| ≥ ... ≥ |Sm|. Thus, m is the maximal size of a partition Pi since we have entities

from m sources in E. Also, the number of required partitions n is |S1|, since all entities

in S1 need to reside in a different partition. Then a simple greedy heuristic to build a

partitioning is the following:

• Create n = |S1| new partitions P1...Pn with a single entity from S1 each;

• For the remaining partitions Sj = S2...Sm and for e ∈ Sj ,

• assign e to Pi where the gain
∑

e′∈Pi
score(e, e′) is maximal and remove Pi as

option for further e′′ ∈ Sj .

102

4.6 Experiments

0	

10	

20	

30	

40	

50	

60	

70	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	
 101	
 111	
 121	
 131	
 141	
 151	
 161	
 171	
 181	
 191	

fr
ac
0o

n	

of
	
 m

ap
pi
ng
s	
 (
in
	
 p
er
ce
nt
)	

itera0on	

n=20	

n=40	

n=60	

Figure 4.11: Percentage of mappings violating the optional unique mapping constraint from Def-
inition 4.3 produced by our Map/Reduce-based LINDA on BTC+++ data. Solid
lines refer to the constraint as it is. Dashed lines refer to the assumption that three
mappings per source are acceptable. Acceptance rate K = 100.

A fourth option is to aim at a distributed implementation of LINDA that closely co-

ordinates compute nodes’ actions. We chose this option and implemented MP-LINDA,

which we evaluate in the following.

4.6.4 MP-LINDA

Setup. Our third version of LINDA, MP-LINDA, has been implemented on top of

Giraph67 – a project donated by Yahoo! to the Apache Software Foundation. Giraph

implements the graph processing model discussed in the Pregel paper [MAB+10] and

aims to add fault tolerance by building on Hadoop68 and using ZooKeeper69 as a central

coordination process. For our implementation we used a Giraph version as of early

2012. At this time, the project was in a very early state and lots of work on the internal

memory management, the RPC framework and its usability was ongoing. Nevertheless,

Giraph was the only open option to realize a message-passing-based implementation in

Java – not least due to the nascent and very supportive community.

For our experiments we used the cluster described in the previous Section 4.6.3 and cre-

ated a JSON dump of the BTC+ entity graph. During this process we limited the vertex

out-degree to 1, 000 (sampled at random) since MP-LINDA passes vertex neighborhoods

to matching candidates. We conduct this out-degree reduction to avoid serialization and

deserialization of very large messages and heavy network load. We expect this reduc-

67http://incubator.apache.org/giraph/
68http://hadoop.apache.org
69http://zookeeper.apache.org

103

http://incubator.apache.org/giraph/
http://hadoop.apache.org
http://zookeeper.apache.org

4 Entity Alignment

tion to not seriously affect the result for two reasons: (1) Hub vertices (with out-degree

� 1, 000) in the entity graph still comprise many relationships. (2) Vertices formerly

connected to hubs only loose none-discriminative relations. Nevertheless, we are aware

that the edge removal lowers the effect of our joint mapping approach. However, we

expect more mature processing platforms and a highly-tuned implementation of MP-

LINDA to be able to deal with larger out-degrees.

Scalability. Figure 4.12 illustrates the number of mappings created as well as resched-

ule messages sent over 150 iterations. In iteration 1 and 2 MP-LINDA creates 60 and 32

mappings, respectively70, and it sends 28 and 11 reschedule messages. In the following,

it creates 2 − 6 mappings per iteration and rarely sends reschedule messages. We ac-

knowledge the low number of created mappings and discuss this effect below. Note that

this behavior is exactly the same for any number n of compute nodes involved. This is

because, compute nodes execute a specific function on each vertex. This execution is

distributed but does not influence the outcome of the vertices, i.e., mapping decisions

and messages sent.

0	

1	

2	

3	

4	

5	

6	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	
 150	

m
ap
pi
ng
s	
 c

re
at
ed

	
 	
 /
	
 	
 m

es
sa
ge
s	
 s
en

t	

itera9on	

reschedule	
 messages	

mappings	
 created	

Figure 4.12: Number of mappings created and reschedule messages sent by MP-LINDA on n =
20, 40, and 60 nodes over iterations (values for different n are identical by algorithm
design).

Figure 4.13, however, shows the time per iteration required to execute all vertices’ com-

pute functions. As expected, this time differs largely for a varying number of compute

nodes, e.g., it is roughly 4min on 60 nodes whereas it is 9− 12min on 20 nodes. We are

aware that these times are long for only very few mappings created. However, remember

that we deal with the BTC+ data and thus handle almost 44 million vertices on 20,

40, or 60 compute nodes physically distributed on 9 machines. Though the machines

70Y-axis in Figure 4.12 is limited to 6 for readability reason.

104

4.6 Experiments

0	

2	

4	

6	

8	

10	

12	

14	

16	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	
 101	
 111	
 121	
 131	
 141	
 151	

,m
e	

(in

	
 m
in
)	

itera,on	

n=20	

n=40	

n=60	

n=180	
 (es,mated)	

Figure 4.13: Time per iteration required by MP-LINDA on n = 20, 40, and 60. Solid graphs
represent measurements; dashed lines show estimated numbers.

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	
 91	
 101	
 111	
 121	
 131	
 141	
 151	

es
.m

at
ed

	
 se
nd

	
 .
m
e	

(in

	
 se
c)
	

co
nt
ex
t	
 i
ds
	
 (i
n	

m
ill
io
n)
	

itera.on	

Figure 4.14: Number of context entity ids sent by MP-LINDA per iteration and estimated net-
work transfer time over iterations. The primary y-axis (left) shows the number of
ids; the secondary axis (right) is for the network time required.

are powerful and can easily cope with the respective number of processes in parallel, 44

million calls to the compute function add up to a sizable amount of time. Figure 4.13

additionally shows the estimated runtime for n = 20 and 60, given the respective other

measurement. Specifically, given the number for n = 20 (solid blue graph), we estimated

that iterations for n = 60 (dashed green line) would require roughly as long as they ac-

tually took (solid green line). In conclusion, given values for n = 60, we follow that the

computation for all vertices with n = 180 would take approximately 1-1:15min (dashed

orange line) plus some network communication overhead.

To quantify the network overhead, Figure 4.14 depicts the number of contextual neigh-

105

4 Entity Alignment

borhood entity ids sent across the network in each iteration. Again, the number differs

largely – depending on the number of mappings created. In iteration one, there are 114

million ids passed to other vertices. Later, it ranges among 0.5− 5 million per iteration.

On the secondary y-axis (on the right) we depict the estimated time to ship these ids

through the network given 64 bit entity ids and assuming 50% actual throughput on gi-

gabit ethernet, i.e., 10243/2 bit/second. With this, we follow that the network traffic is

acceptable (below 7 seconds) for all considered iterations. However, in our experiments,

we observed longer runtimes besides the actual computation times shown in Figure 4.13.

We attribute this to message serialization and deserialization as well as RPC communi-

cation overhead, etc. We expect these additional times to vanish, given a more elaborate

system than Giraph in early 2012.

To further clarify the runtimes, Figure 4.15 shows elapsed times per node and step

during the first 4 iterations. Green areas indicate small values up to 2 seconds; yellow

fields indicate mid-range values; red spots emphasize the highest values. In general, the

first two iterations take longer, which is because they generate more mappings then the

following iterations. Also, the second step takes orders of magnitude more time than

others. This is where MP-LINDA determines y-value edges, maximum ids, and sends

messages to respective candidates as well as equivalents. Step 7 takes also longer then

others due to the transfer of context equivalents to other vertices’ context equivalents,

i.e., the number of generated messages multiplies from Steps 4 through 7. However

the latter effect disappears when fewer mappings are created in later iterations. For

completeness, we refer the reader to the appendix where we additionally show times

without message flushing overhead (Figure 7.1), i.e., spent in the compute function of

the vertices only, as well as time deviations from average values (Figure 7.2 and 7.3).

In Figure 7.1, we can observe active and none-active nodes and that the message creation

in Step 7 is indeed the most time consuming procedure. We are aware that MP-LINDA

messages should be implemented more efficiently.

4.7 Discussion

In this chapter we presented LINDA – the first fully automatic system for entity matching

in the Web of Data that is able to scale far beyond the size of the Billion Triples Challenge

dataset. We contribute an optimization model that formally captures the problem, show

its hardness, and offer three implementations of a greedy strategy to iteratively build

an optimal solution. Unlike previous approaches for Linked Data, LINDA is designed to

operate on all LOD sources in their entirety, without source-specific customization. Our

experiments demonstrate that the LINDA system successfully harnesses joint evidence

106

4.7 Discussion

Iteration step node,1 node,2 node,3 node,4 node,5 node,6 node,7 node,8 node,9 node,10 node,11 node,12 avg max
1 3,680 4,101 3,739 2,935 12,294 3,289 2,852 2,363 2,939 3,229 3,355 3,160 3,690 12,294
2 541,202 556,741 528,050 529,322 525,557 509,777 531,772 508,985 515,508 514,064 509,766 513,441 529,590 571,677
3 1,699 1,745 1,767 1,623 1,708 1,680 1,818 1,990 1,643 1,807 1,821 1,711 1,744 1,990
4 2,106 1,835 3,999 2,207 1,870 3,675 1,968 2,006 3,200 4,451 2,342 1,858 2,643 6,417
5 2,479 2,627 2,454 2,770 2,713 2,479 2,584 2,545 2,670 2,763 3,027 2,858 2,613 3,027
6 5,752 1,873 6,230 2,659 1,798 3,067 2,057 5,118 4,646 6,651 5,946 2,727 3,718 6,651
7 258,814 261,385 262,589 263,458 253,253 258,522 269,247 247,437 258,700 259,522 293,099 275,705 266,911 308,904
8 3,830 4,524 3,314 3,191 4,712 2,984 4,542 2,898 3,293 3,108 3,762 2,952 3,357 4,712
9 11,300 44,838 11,360 5,471 11,229 13,105 53,670 53,813 13,009 13,079 6,063 5,452 16,322 53,813
10 32,343 33,205 31,101 30,938 23,859 27,840 29,355 29,836 31,015 27,354 27,453 28,992 29,397 39,241
11 5,482 5,885 5,616 6,620 6,618 5,852 6,818 6,881 6,879 6,351 7,323 6,350 6,371 7,323
12 3,776 2,845 2,954 3,179 3,489 2,556 3,619 4,140 2,681 3,710 3,428 2,792 3,172 4,140
1 2,380 2,422 2,446 2,518 2,568 2,503 2,378 2,420 2,514 2,416 2,848 2,441 2,530 2,850
2 546,984 560,157 523,338 515,278 520,669 506,198 518,383 499,717 510,699 511,787 502,519 502,365 520,016 568,538
3 1,667 1,677 1,617 1,642 1,622 1,847 1,701 1,593 1,604 1,645 1,833 1,726 1,680 1,847
4 3,114 3,133 1,816 1,957 1,788 1,628 1,775 1,791 1,831 1,789 2,123 1,866 1,978 3,133
5 1,767 1,850 1,801 1,844 1,987 1,900 1,852 1,974 1,886 1,973 1,949 1,819 1,926 2,248
6 1,904 1,904 1,801 3,999 1,783 3,684 3,555 1,818 7,986 5,721 2,724 2,247 2,990 7,986
7 87,308 89,392 93,835 94,969 87,247 88,951 96,819 95,674 92,921 90,210 89,224 97,575 91,825 101,778
8 2,093 2,791 2,173 2,242 3,766 5,407 2,133 2,285 2,442 4,624 2,833 2,274 3,020 5,407
9 6,458 18,465 8,000 6,462 8,659 6,448 6,394 6,462 8,066 6,424 6,442 9,603 8,549 21,212
10 15,757 22,194 19,498 20,150 16,412 19,436 17,793 20,384 19,546 17,363 20,758 20,520 19,209 23,824
11 2,894 3,534 2,446 2,572 3,114 2,883 2,553 2,883 2,705 2,666 2,666 3,390 2,880 3,921
12 2,067 2,133 2,123 1,924 2,094 2,153 2,028 2,073 2,110 2,150 2,190 1,937 2,106 2,266
1 2,639 2,759 2,564 2,402 2,617 2,396 2,624 2,689 2,533 2,539 3,097 2,635 2,612 3,097
2 542,889 558,289 521,509 514,539 514,423 507,224 517,396 498,261 510,887 507,501 504,829 505,745 520,060 570,928
3 1,664 1,729 1,672 1,762 1,717 1,644 1,787 1,698 1,598 1,581 1,888 1,838 1,760 1,978
4 2,037 1,885 1,675 1,724 1,901 1,810 1,703 1,665 1,757 1,683 2,047 1,752 1,769 2,047
5 1,604 1,620 1,581 1,617 1,683 1,618 1,989 1,963 1,808 1,875 1,854 1,695 1,722 1,989
6 1,786 3,383 1,725 1,611 1,742 1,621 1,804 1,901 1,757 1,808 2,014 1,699 1,882 3,383
7 22,828 19,461 28,569 28,362 20,395 15,407 23,210 21,452 27,319 18,188 20,358 22,328 22,579 28,569
8 1,977 1,847 2,252 1,947 1,764 1,784 1,859 2,021 1,944 1,890 2,137 1,835 1,912 2,252
9 2,579 2,577 2,576 2,600 2,584 2,590 2,579 2,579 2,611 2,624 2,589 2,587 2,632 3,429
10 3,107 1,959 2,088 2,006 1,906 2,139 2,433 2,133 2,137 2,166 2,342 2,127 2,385 5,943
11 1,805 1,719 1,805 1,886 1,873 1,849 1,910 1,723 2,002 2,046 2,074 1,862 1,892 2,139
12 2,006 2,155 2,096 1,935 1,858 1,908 2,242 1,985 1,856 1,883 2,159 1,893 1,997 2,242
1 2,576 2,641 2,507 2,702 2,507 2,382 2,652 2,546 2,593 2,603 2,887 2,488 2,594 2,887
2 541,170 557,535 518,373 518,876 518,702 509,320 516,202 499,454 512,668 510,041 503,297 503,807 519,788 570,014
3 1,594 1,626 1,619 1,613 1,717 1,716 1,697 1,651 1,885 1,851 1,803 1,685 1,717 1,885
4 1,691 1,973 1,884 1,641 2,015 1,750 1,804 2,927 1,772 1,701 1,981 1,920 1,875 2,927
5 1,693 1,663 1,705 1,595 1,638 1,707 1,837 1,818 1,602 1,624 1,792 1,664 1,703 1,903
6 1,953 1,751 1,642 1,855 1,759 1,920 1,876 1,791 1,830 1,753 2,091 1,749 1,797 2,091
7 1,645 1,766 1,620 1,733 1,746 1,665 1,831 2,025 1,624 1,722 1,943 1,831 1,765 2,025
8 1,628 1,819 1,629 1,746 2,334 1,705 1,915 1,838 1,757 1,866 1,826 2,014 1,896 3,361
9 1,644 1,722 1,624 1,713 1,720 1,765 1,777 1,821 1,945 1,903 1,857 1,741 1,766 1,945
10 1,709 1,835 1,882 1,736 1,949 1,724 1,903 1,825 1,792 1,741 1,787 2,001 1,817 2,001
11 1,770 1,706 1,735 1,618 1,650 1,687 2,072 1,862 1,641 1,642 1,821 1,706 1,742 2,072
12 1,921 2,005 1,964 2,041 1,938 2,015 1,997 2,105 2,034 2,082 2,213 1,819 2,006 2,213

1

2

3

4

Figure 4.15: Time per compute node and step in MP-LINDA (12 out of 20 nodes, in milliseconds).

and constraints, but also scales by making use of distributed architectures.

Each version of our system comes with varying properties, which we summarize in Ta-

ble 4.9. Our first version, i.e., the multi-core approach, is bound by hardware resources

and performs relatively slow, since it manages evolving similarities as well as the result

on a single machine. However, it achieves good accuracy and delivers a consistent re-

sult. Therefore, it is the approach of choice if the amount of mapping candidates, which

determine queue and result size as well as similarity reconsiderations per iteration, does

not exceed critical hardware limits.

Our Map/Reduce-based approach is highly scalable at the price of violating constraints.

Due to its scalability, it is the method of choice for very large datasets. Note that we

managed to run LINDA1 and MR-LINDA on a dataset with roughly 120 million entity

representations ranging from loosely to highly connected vertices with out-degrees in the

thousands.

Finally, we successfully ran our message-passing implementation on a dataset with

roughly 44 million entities. MP-LINDA delivers a consistent result through the addition

107

4 Entity Alignment

Table 4.9: Comparison of presented algorithms.

multi-core LINDA MR-LINDA MP-LINDA
runtime slow fast medium
scalability low high high
result quality consistent semi-consistent consistent
potential domain-independent use very large datasets large datasets

with few candidate pairs w. unique mapping negligible on large clusters

of close coordination among compute nodes and omitting the bulk accept strategy of

MR-LINDA. However, to allow this coordination, vertices communicate in each super-

step which requires a large cluster and a highly efficient message-passing implementation

to physically distribute the many compute function calls (one per vertex and superstep).

Note that this chapter presents previously unseen experiments on very large datasets that

sometimes ran for days. In all experiments, we did not utilize pre-existing sameAs links

as additional evidence for entity mappings. However, it is fairly straightforward to seed

LINDA with such information during the X matrix initialization and possibly improve

precision and recall of our system. However, for the results presented in Section 4.6.2 we

aimed at a stress test and avoided potentially false links and to prepare for cases where

links are unavailable. We anticipate such cases as the Web of Data keeps growing and

will include more dynamic datasets beyond the current dominance of relatively static

reference collections.

The most promising, but also challenging, direction to enhance this work is to examine

the entity graph distribution on the compute cluster. So far we distribute the graph using

a fixed hashing but do not incorporate any smart strategy taking the entity connectiv-

ity or sources into account. However, smart data distribution could potentially avoid

constraint violations in MR-LINDA but also reduce message traffic in either distributed

implementation.

Also, for future work we envision to automatically generate RDFa for entities detected

in news, blogs, and community forums and then to determine links among the newly

discovered and existing entities. In such a scenario, LINDA needs to deal with data

continuously generated in an online fashion.

To tune LINDA’s accuracy we could incorporate any type of rules by simply adding them

to the prior similarities or by manually assigning specific predicates a higher weight. In

this manner, our algorithms can be made competitive with systems using fine-tuned

dataset-specific similarity measures.

108

5 Concept Alignment

In the previous chapter we explored the problem of creating equivalence classes of entities

from the Web of Data. These entities can be either instances or classes, i.e., we link

different types of entities simultaneously and in a joint manner. In the following, we

specifically target schema-level links across sources from the Web of Data. Schema-level

links are links among concepts (also called classes, types, or vocabulary terms). The

detection of these schema level correspondences is a well-established topic in the database

community [BLN86]. In this chapter, we deal with the respective problem for Linked

Open Data but restrict ourselves to correspondences among classes and do not match

properties. Such links among these abstract entities are inherently important when

querying across multiple LOD sources to allow for a connection of entities of different

types (from different sources). Also, they could, for instance, be used to seed our LINDA

algorithm and thus further improve LINDA’s performance. Finally, a vision is to use such

links among classes in combination with data source topics as discussed in Chapter 3,

e.g., to detect overlapping topics across data sources, which requires schema-level links

to allow for a comparison of topics, i.e., sets of types.

As of September 2011, the LOD cloud comprised 295 sources, which fulfill the basic

LOD principles71, i.e., dereferencable HTTP URIs that provide useful information. The

majority of these 295 data sources (190) use proprietary vocabulary terms, i.e., source-

specific class definitions. Out of these 190 sources, only 15 offer mappings to other

widely deployed vocabularies. Nevertheless, 159 provide dereferencable URIs for their

proprietary terms, i.e., descriptive information for these “new terms” are available.

This observation lead to the goal of utilizing such descriptive information and to develop

a very fast concept alignment approach that can handle thousands to millions of concepts

as a preprocessing for other methods. However, to ensure high-quality output, the

alignment should still consider the data in its entirety, i.e., not simply perform pairwise

local similarity computations. Also, we target an approach that can process content from

the Web, which is heterogeneous in structure, granularity and size as well as completeness

and quality.

In the following we present an approach, coined Holistic Concept Matching (HCM) [GBN12],

71http://lod-cloud.net/state/

109

http://lod-cloud.net/state/

5 Concept Alignment

that processes concept definitions only, i.e., it neglects instance data due to its immense

size. Property definitions are ignored, since we found that their definitions and actual

use differ largely across sources. HCM disregards ontological structure for the actual

alignment creation (if available at all). This is for scalability reasons and since the

structure across diverse ontologies varies largely and is thus not necessarily beneficial.

However, HCM exploits structural information, such as subclass relationships, to verify

derived alignments and find semantic contradictions. HCM’s underlying concept align-

ment strategy is applicable to diverse domains.

5.1 Holistic Concept Matching

For HCM we adopted the well-known grouping strategy in order to achieve results very

quickly. In particular, we group the input data by topic and thus create small groups

of concepts that can be aligned individually. Through the grouping, we can process

Web-scale input data in a few hours on a single machine. However, at the same time we

target a holistic view on the data to leverage the information at hand as a whole. As

we group by topics, we can still infer relationships holistically, i.e., draw conclusions not

only based on a pairwise similarity but additionally rely on alignments and dependencies

among other topically related members from other ontologies but in the same group.

Consider, for instance, five sources (A,B,C,D,E) and let {a1, . . . , am, b1, . . . , bn, c1, . . . ,
co, d1, . . . , dp, e1, . . . , eq} be concepts from these sources. Running a traditional approach

for pairwise ontology alignment would result in many isolated runs, e.g., A−B, A−C,

A−D, etc. This is computationally expensive, because these alignment approaches often

base on complex lexical and structural properties [CAS09, LTLL09, JMSK09]. Further,

these approaches are not designed to process incomplete and highly heterogeneous data

from the Web.

We employ additional knowledge to group respective entities. For instance, let the

three sources A,B,C store media related entities and D,E provide information from

the life sciences. We build groups of concepts, e.g., {a1, . . . , am, b1, . . . , bn, c1, . . . , co}
and {d1, . . . , dp, e1, . . . , eq} – essentially leading to fewer alignment candidates, e.g., A−D
concept pairs will not be considered. Note that these groups must not directly relate

to the input ontologies. For instance, if d1 = human, then it could also reside in the

first group. However, within these groups, we can run computationally more complex

approaches to take an holistic view based on multiple ontologies.

Our general approach, depicted in Figure 5.1, proceeds as follows: The input to HCM

are concept information from the Web of Data, i.e, concept URIs, labels, descriptions,

and structure (if available). For each concept, we extract a knowledge representation

110

5.2 Knowledge Representation

capturing the meaning of a concept (upper part of Figure 5.1). This representation can

be a simple descriptive string, a feature vector, or a more complex data structure. We

then apply topical grouping based on this knowledge representation in order to create

smaller sets of concepts (lower right of Figure 5.1). Within these sets, we then create

alignments by identifying highly similar knowledge representations and by reasoning

among respective concepts using additional structural information from the input as

well as other candidates from the same group (lower left of Figure 5.1).

Note that many techniques can be plugged into this approach. Depending on the knowl-

edge representation, one can choose the specific representation of a concept’s meaning,

topical similarities as well as concept similarities in order to find alignments. In the re-

mainder of this work, we discuss the adoption of Wikipedia category forest [JHS+10] for

HCM (Section 5.2). The topical grouping is done using a set similarity index [XWLY08]

(Section 5.3). For the alignment generation we combine the Wikipedia category forest

similarity [JHS+10] and a rule-based verification approach [JMSK09] (Section 5.4).

{""""}"

Web"of"Data"

concept"
data"

k1,"k2,"k3,"..."" p1,"p2,"p3,"p4,"p5,"...""keywords" pages" forest"

topic"

groups"alignments"

knowledge"representaAon"construcAon"

topical"grouping"alignment"creaAon"

Figure 5.1: Holistic Concept Matching Workflow.

5.2 Knowledge Representation

For the comparison of different concepts we use an abstract representation of its semantic

content, i.e., a so-called knowledge representation. Given a set C of concepts from

many different ontologies gathered from the Web of Data, we build such knowledge

representation for each concept c ∈ C. To this end, we chose Wikipedia category forests

(WCFs) as proposed for the BLOOMS algorithm in [JHS+10, JYV+10]. BLOOMS is a

state-of-the-art alignment algorithm for matching heterogeneous ontologies from many

111

5 Concept Alignment

domains. However, BLOOMS is not meant to scale to the amount of data we target

to process and it does not provide semantic verification and conclusions incorporated in

the alignment creation process. A WCF is a set of Wikipedia category trees created as

follows:

1. Given a single concept c ∈ C, create a list of keywords kw(c) = {k1, . . . , kn}.

2. Given kw(c) = {k1, . . . , kn}, a Wikipedia search for all keywords returns a ranked

list of Wikipedia pages R = {p1, . . . , pm}.

3. For each of the d top-ranked pages {p1, . . . , pd} in R and a height parameter h, we

construct a Wikipedia category tree (discussed below in this section).

This process is also illustrated in the upper part of Figure 5.1. In summary, given a

concept, we extract keywords from its URI and its description; with these keywords

we run a Wikipedia search resulting in pages; for the top-ranked pages, we build trees,

which form so-called Wikipedia category forests.

Keyword Query Generation. To determine keywords kw(c) for a concept c, we use two

orthogonal methods: The first uses tf.idf scored descriptions and the second leverages

the class id, i.e., the concept URI.

The TFIDFn-extractor consumes concept description, i.e., comments and labels. Specif-

ically, we merge description texts, tokenize them, and neglect stop words. We then

determine tf.idf scores for each token with respect to the overall corpus of concept de-

scriptions. Finally, we select the top n tf.idf ranked tokens as keywords kw(c).

The ID-extractor, on the other hand, processes the concept’s URI. This URI is the con-

cept’s unique identifier in its ontology definition. We use a straight-forward approach to

determine a concept id suffix: We truncate the prefix of the URI until the last occur-

rence of either #, :, or /. The suffix must not contain any other character than letters

or underscores. To extract tokens, we split the suffix at camel-case characters and un-

derscores. After removing stop words, this results in the set of keywords kw(c). For in-

stance, the concept id for http://umbel.org/umbel/rc/SpacePlatform_Manned would

be SpacePlatform_Manned. From this we create kw(c) = {space, platform,manned}.
The combination of both extractors, coined I/Tn-extractor, first applies the ID-extractor

and then, if no WCF can be constructed (see next steps), it runs the TFIDFn-extractor

and returns tf.idf scored keywords from concept descriptions instead. Observe that

this combination, the I/Tn-extractor, maximizes the amount of concepts that can be

represented by a WCF.

112

http://umbel.org/umbel/rc/SpacePlatform_Manned
SpacePlatform_Manned

5.3 Match Candidate Groups

Wikipedia Keyword Search. Next, we conduct a Wikipedia full-text search using a

query with all keywords from kw(c) delimited by spaces. From the resulting Wikipedia

pages we choose the top d pages as tree roots for the creation of a WCF. The parameter

d, we call it the forest depth, influences a forest’s coverage of conceptual meanings. That

is, in order to catch all potential meanings of a concept, many Wikipedia articles should

be considered. On the other hand, a deep forest might contain trees not related to the

actual concept since the respective Wikipedia page is ranked too low. Thus, the selection

of the forest depth parameter is a trade-off between semantic coverage and irrelevance.

Wikipedia Category Forests. For the forests construction, we employ the Wikipedia

category hierarchy to build individual trees. Given the result R from the Wikipedia

keyword query, we build trees recursively from the d top-ranked root pages p ∈ R to the

maximal tree height h in the following recursive manner:

1. In recursion 1 ≤ h, for all p1, . . . , pd, determine categories {α1, . . . , αq}.

2. In recursion 2 ≤ h, for all α1, . . . , αq, determine super-categories {β1, . . . , βr}.

3. In recursion 3 ≤ h, for all β1, . . . , βr, determine super-categories {γ1, . . . , γs}.

4. etc.

The height h influences the level of abstraction of a WCF. The higher the trees, the

more category hierarchy layers are considered, which leads to more abstract categories

in the WCF. Instead, the lower the trees, the less probable is a topical overlap among

related concepts. We illustrate different parameter configurations in the experiments

in Section 5.5.

Consider the resource umbel:MannedSpacecraft as an example. The ID-extractor yields

{manned, spacecraft}, which results in the following Wikipedia search result for d =

3: {Human spaceflight, Spacecraft, Orion (spacecraft)}. Figure 5.2 depicts the

tree for the root article Spacecraft (h = 2). Obviously, the higher the tree layer,

the more abstract Wikipedia categories the layer contains. Further, note that some

tree nodes occur multiple times, e.g., spaceflight or aerospace engineering. These

nodes play a significant role in the next phase described in Section 5.3.

5.3 Match Candidate Groups

Previously, we created our knowledge representation of choice, i.e., Wikipedia category

forests – one for each concept. Given these knowledge representations, we now determine

groups of topically related concepts. Similar to our definition in Section 3.1, a topic is

113

umbel:MannedSpacecraft

5 Concept Alignment

ar#cle'

space'tech.'

pressure'

vehicles'by'media'aerospace'engin.'

spacecra7'astronau#cs'

spacecra7'

containers'

pressure'vessels'

spaceflight' aerospace'engin.' spaceflight'

pneuma#cs' gas'tech.'struct.'engin.'

hydraulics'

1st$$
layer$

2nd$$
layer$

category'

root$
node$

Figure 5.2: Wikipedia category tree for the Wikipedia article “Spacecraft” with h = 2. The dark
gray rectangle represents the Wikipedia root page p. The 1st layer is highlighted in
light gray. The white background indicates the 2nd layer categories.

a field of the real world wherein different concepts interplay. To determine concepts’

interplay we examine respective knowledge representations. For the following, the un-

derlying assumption is that a search for alignments among concepts within (and not

across) topics does not cause a major loss of recall. On the other hand, the grouping

by topic reduces the runtime of the alignment generation step by splitting the problem

space into smaller independent alignment tasks. This procedure is often referred to as

blocking or partitioning [Chr07].

Given a set F of WCFs, we aim to identify disjoint groups G1, . . . , Gn ⊂ F of topically

related forests to allow for an independent and parallel processing. That is, we want

groups, such that Gi ∩ Gj = ∅ ∀ i 6= j, 1 ≤ i, j ≤ n ∧
⋃
i=1...nGi = F . In short, we

implemented the following procedure:

1. For each WCF f ∈ F , extract the topic(f) = {t1, . . . , tm}. We define a topic of a

WCF as a set of selected WCF tree nodes.

2. Given a topic topic(f1), identify all forests fi ∈ F with a high topical overlap.

3. Given pairs (f1, fi) with a high topical overlap, form groups of forests by associating

topically overlapping forests transitively.

Topic Extraction. The topic topic(f) of a WCF f is a subset of its tree nodes, i.e.,

selected elements from the different tree levels {p, α1, . . . , αq, β1, . . . , βr, . . . }. We aim

at a selection of tree nodes that disregards highly specific categories like Soviet manned

space program and very generic categories like Humans or Wikipedia article lists, be-

cause these would represent a very generic or too detailed view of the concept’s topic.

We employ a simple yet promising approach for the topic extraction, i.e., we again utilize

the tf.idf measure. Nodes common in a specific tree are scored high due to the high term

frequency value, whereas nodes popular in many trees are scored low due to the inverse

document frequency. Observe that with this scoring scheme, highly specific nodes in

114

5.4 Concept Alignment

trees do not necessarily receive a high score, unless they occur multiple times in a forest.

We rank a WCF’s tree nodes with respect to tf.idf and select the top m nodes for repre-

senting the topic. The choice of m influences the quality of the tree node set representing

the concepts’ topics. Experiments indicated m = 10 to be a reasonable setting. Higher

values lead to very specific topics, whereas smaller m lead to low representativity.

Topic Comparison and Group Creation. Next, we compare the topic sets, i.e., sets

of WCF tree nodes, to identify topically related forests. We use the Jaccard coef-

ficient J and a corresponding threshold θ to determine the similarity of topic sets:

J(topic(f1), topic(f2)) ≥ θ. However, the pairwise comparison of all forest topic sets

leads to a quadratic runtime with respect to the number of forests |F | (in our experi-

ments discussed in Section 5.5, |F | is roughly 300k). To reduce the runtime, we apply

a set-based similarity self-join technique. In particular, we selected ppjoin [XWLY08],

which delivered the most promising results (see Section 5.5).

Ppjoin performs a set similarity self-join. Internally, it reduces the amount of pairs to

be considered with an inverted index and two filtering techniques on the candidate sets,

i.e., prefix and positional filtering72.

With the topic comparison, we can now determine concept groups. Remember that

each concept has a knowledge representation, i.e., a Wikipedia category forest. In the

following we use the terms concept and WCF (forest for short) interchangeably.

To determine groups of topically related WCFs, we form the transitive closure of topically

related forests. In particular, given a set F of Wikipedia category forests, we assign the

forests f1, f2 to the same group if J(topic(f1), topic(f2)) ≥ θ or there is a group with

topic(fα), topic(fβ) and J(topic(f1), topic(fα)) ≥ θ ∧ J(topic(fβ), topic(f2)) ≥ θ. Then,

each transitive closure of forests refers to a group of concepts. We reason about θ later

in Section 5.5.

5.4 Concept Alignment

At this point we operate on groups of topically related Wikipedia category forests, where

each forest refers to a single concept. Note that we can process these groups individually

and can thus easily run the concept alignment in parallel. Also, given the relatively

small groups, we can incorporate additional ontological knowledge from the sources. We

now describe the concept alignment within each group – a domain-independent iterative

process including alignment acceptance and verification. In short, we proceed as follows:

72For the ppjoin, we adapted the open source code available at https://code.google.com/p/

similarity-join-tools/.

115

https://code.google.com/p/similarity-join-tools/
https://code.google.com/p/similarity-join-tools/

5 Concept Alignment

1. We extend a group G of topically related concepts with other related WCFs. These

additional relations stem from the original ontology definitions.

2. We then compare all pairs of forests f1, f2 ∈ G leveraging a forest overlap scoring

function O(f1, f2). Given a threshold ρ, we select all forest pairs with a respective

overlap above the threshold, i.e., O(f1, f2) ≥ ρ, and add these pairs to an alignment

candidate set M .

3. Finally, we create a semantically consistent alignment graph D by iteratively

adding alignment candidates from M . With each addition of an alignment, we

test a set of conditions to avoid contradicting relations. On the other hand, we

additionally add relations concluded from the newly accepted alignment.

Topical Group Extension. To incorporate immutable axioms from the underlying source

ontologies, we first extend each topical group G with further related WCFs. A WCFs f2

is related to f1 ∈ G if the underlying concept of f2 has an ontology-level relation to the

concept of f1. These relations include owl:equivalentClass and owl:disjointWith as

well as rdfs:subClassOf relationships. We restricted our selection to these relationships

since we consider them to be most relevant to reveal alignment conflicts while keeping

the group size low (which is a desirable property). In the following, the group G refers

to the extended topical group.

Wikipedia Category Forest Comparison. For the comparison of forests within groups,

we employ the tree similarity introduced by Jain et al. [JYV+10]. Given arbitrary trees

t1, t2 from different WCFs, the tree overlap determines common nodes and is defined as

follows:

Overlap(t1, t2) =
log
∑

v∈(t1∩t2)

(
1 + ed(v,t1)

−1−1
)

log 2|t1|

Here, d(v, t) is the distance of a node v to the root in a tree t. Thus, the tree overlap

depends on the distance d of common nodes v ∈ (t1 ∩ t2) to the tree root. The higher

the depth of a shared node, i.e., the more nodes are between the node and the root page,

the smaller the influence of the shared node. The depth of the root page p is set to

d(p, t) = 1.

Observe that tree overlap is not symmetric: Overlap(t1, t2) 6= Overlap(t2, t1). The

authors of BLOOMS+ use this asymmetry to identify parent-child relationships among

concepts. They induce concept equivalence if Overlap(t1, t2) = Overlap(t2, t1).

We extend the tree overlap to a similarity among category forests. For this, we compare

all pairs of trees and select the best matching pair. Given two WCFs f1 and f2 from a

116

5.4 Concept Alignment

group G with f1 6= f2, we define the forest similarity as the maximal harmonic mean of

the overlaps among all tree pairs (t1, t2) with t1 ∈ f1, t2 ∈ f2:

O (f1, f2) = arg max
t1∈f1,
t2∈f2

(
2 ·Overlap(t1, t2) ·Overlap(t2, t1)
Overlap(t1, t2) +Overlap(t2, t1)

)
For the selection of alignment candidates, i.e., the set M , we use a minimum overlap

threshold ρ. That is, M contains all pairs (f1, f2) with O(f1, f2) ≥ ρ. A reasonable

threshold is essential for the alignment quality, because otherwise irrelevant candidates

lower the precision. Also, the following semantic reasoning might not be able to elim-

inate erroneous candidates. Additionally note that the total runtime of the semantic

verification grows with the number of candidates to be considered. Of course, too few

candidates leads to a low recall. In Section 5.5 we evaluate different thresholds and their

influence on the alignment quality.

Alignment Graph Creation. From the previous step, we have a set of scored match

candidates M . In the following, we create the alignment graph D, which captures the

final result. We gradually build this graph by adding existing relations inherent in

the source ontologies and augmenting it with highly-scored, none-contradicting relations

from M .

Definition 5.1 (alignment graph)

Given a group G of WCFs, an alignment graph D = (V,E) is a directed edge-labeled

graph where the forests in G are the nodes, i.e., V = G, and E includes relations among

forests representing concepts. The functions cert, type, and origin capture edge prop-

erties.

cert : G×G→ [0, 1] denotes the alignment certainty.
type : G×G→ {equi, disj, parent, child, onto} captures the type of a relation.

origin : G×G→ {def, detect, infer} provides the origin of an edge.

Intuitively, the higher the certainty of a relation, i.e., the cert value, the more reliable it

is. The type label differentiates edges, i.e., an edge e with type(e) = equi connects two

concepts identified to be equal. Instead, disj marks edges connecting dissimilar concepts.

Edges marked with parent or child stem from rdfs:subClassOf relationships. Onto-

labeled edges indicate concepts to originate from the same source ontology. The origin

of a relation captures what produced the edge. A def edge is an axiom found in the

source ontology. An edge e with origin(e) = detect denotes a verified alignment of two

concepts with O(f1, f2) ≥ ρ. An edge labeled with infer indicates an edge transitively

concluded from other alignments.

117

5 Concept Alignment

To populate the alignment graph D with edges, we perform the following steps:

1. Initialize the alignment graph D with E = ∅.

2. Add relations e among WCFs for concepts originating from the same ontology with

type(e) = onto, cert(e) = 1.0, and origin(e) = def .

3. Populate D with ontology relation edges e labeled cert(e) = 1.0 and origin(e) =

def derived from subClassOf, equivalentClass, and disjointWith triples from

the underlying RDF data. Mark these edges with respective type labels, i.e.,

child/parent, equi, or disjoint.

• For each added ontology relation e = (f1, f2), add the inverse e−1 = (f2, f1)

with equal origin(e−1) and cert(e−1). The type(e−1) equals type(e), unless

type(e) = child or type(e) = parent. Then, add type(e−1) = parent or

type(e−1) = child, respectively.

• For added relations e, e−1 and existing edges e′ ∈ E, include further relations

a derived from E ∪ {e, e−1}. Figure 5.3 illustrates additional conclusions we

draw. Subfigure (a) shows an equivalence closure for type(e) = type(e′) =

equi; (b) shows the closure for an existing disjoint edge, i.e., type(e′) = disj,

and an added equivalence e, which leads to type(a) = disj; similarly, (c)

depicts a disjoint closure for added disjoint relations; (d) and (e) show parent

and child closures for type(e), type(e′) = parent or child, leading to type(a) =

parent or child, respectively.

4. For each candidate alignment e = (f1, f2) in M sorted (desc.) by forest similarity

values O(f1, f2), examine semantic conditions. If there is no semantic contradic-

tion, add e to E with cert(e) = O(f1, f2), type(e) = equi, and origin(e) = infer.

The detection of semantic contradictions uses the current state of D and deter-

mines whether the alignment e = (f1, f2) contradicts an alignment e′ = (f1, f2)

in D. That is, type(e) 6= type(e′), origin(e′) 6= infer, or cert(e′) ≥ cert(e). Ad-

ditionally, we test for multiple-entity correspondences, crisscross correspondences,

and disjointness-subsumption contradictions originally introduced as part of the

ASMOV ontology alignment approach [JMSK09].

• For each added alignment e = (f1, f2), further add the inverse e−1 = (f2, f1)

with same type(), origin(), and cert() values to E.

• For added e, e−1 and existing edges e′ ∈ E, include further relations a derived

from E ∪ {e, e−1} (as discussed above and illustrated in Figure 5.3).

118

5.5 Experiments

f1

f3

f2
e'

e a

f1

f3

f2
e‘

e a

x" x"

x"

x" f1

f3

f2
e'

e a

x"

x"
x"

x" f1

f3

f2
e‘

e a

f1

f3

f2
e‘

e a

x" x"
equivalence disjointness parentship

(a)" (b)" (c)" (d)" (e)"

Figure 5.3: Five types of alignment conclusions, which infer a closure a from an additional relation
e and an existing edge e′ in the alignment graph.

In summary, the previous process first populates the alignment graph with ontological

constraints and then adds alignment candidates in a greedy manner. During the process,

we check the consistency of the graph and additionally add inverse relations as well as

relations concluded from the new state of D.

In the resulting alignment graph D, edges e labeled origin(e) = detect and type(e) =

equi form the result of our approach.

5.5 Experiments

Setup. All HCM experiments ran on a Windows 2008 R2 Enterprise Server with two

quad-core processors (Intel Xeon X5355 @ 2.66GHz) and 32GB of RAM. To evaluate

the performance of our approach in a Web-scale scenario, we used the Billion Triples

Challenge data as of 2011 [Bil] (BTC). Our HCM approach is implemented in Java.

The extraction of conceptual information from the data can be done in a single pass over

the data. We selected concepts, relations, and textual descriptions by considering re-

sources occurring in triples with the following predicates: rdfs:type, rdfs:subClassOf,

rdfs:domain, rdfs:range, owl:equivalentClass, owl:disjointWith, rdfs:label,

and rdfs:comment. With this selection, we retrieved approximately one million con-

cepts from the BTC data.

In contrast to BLOOMS [JHS+10], we cannot use the Wikipedia service, because we is-

sue very many searches as we process thousands of concepts. The many online searches

would thus lead to high network overhead. In contrast, we created a full-text index

for Wikipedia73 (articles and category hierarchy). The index was created with Apache

Lucene74 (v2.3.0) and a modified version of the LuceneSearch75 MediaWiki-plugin im-

plementation (v2.1.3).

73We used the English Wikipedia as of August 3rd, 2011 with roughly 11 million pages.
74http://lucene.apache.org/java/docs/index.html
75http://www.mediawiki.org/wiki/Extension:Lucene-search

119

http://lucene.apache.org/java/docs/index.html
http://www.mediawiki.org/wiki/Extension:Lucene-search

5 Concept Alignment

Additionally, we used MongoDB [PHM10] (v1.6.5) running on the same machine to store

intermediate results created throughout HCM.

The aim of this evaluation is to show the scalability of our approach while achieving

reasonable result quality. Remember that HCM aligns concept definitions only and

shall be usable as preprocessing for more sophisticated approaches such as LINDA. We

therefore target a quick but reliable process.

Knowledge Representation Runtimes. We first consider runtimes for the knowledge

representation construction, i.e., the creation of WCFs, including keyword query gener-

ation, Wikipedia search, and Wikipedia category forest creation (see Section 5.2).

Given the one million concepts form the BTC data, the overall keyword extraction time is

7 minutes. The average number of keywords per concept is 2.77. As expected, the index

query time to retrieve Wikipedia pages is linear to the number of extracted keyword

sets, i.e., concepts under consideration. For instance, given 293k keyword sets from the

I/T3-extractor, the query phase took 64 minutes.

Note that the input to the keyword set extraction comprises one million concepts. How-

ever, the ID-extractor cannot yield a result for all input concepts, since we do not deal

with blank nodes (roughly 50% of all input concept URIs are blank nodes) and mal-

formed URIs. Further, not all keyword sets created yield a Wikipedia query result,

leading to 238k keyword sets that can be used to build category forests. However, the

combination of the concept URI and description-based approach, i.e., the I/T3-extractor,

leads to another 55k usable keyword sets. That is, for the following we deal with 293k

concepts and respective knowledge representations.

The forest construction runtime mainly depends on the forest depth d (the number of

trees in the forest) and the tree height h (the number of levels in a tree). Table 5.1

shows runtimes for the forest construction with different parameters76. The runtime de-

pends linearly on the forest depth d. An increasing tree height h leads to an exponential

runtime increase. Similar to Jain et al., we set h = 4 and d = 10 for the following experi-

ments [JHS+10]. With this configuration, the WCFs consist of 9.53 trees on average. In

total, given fixed values for h and d, the knowledge representation construction amounts

to a linear runtime with respect to the number of input concepts dominated by the WCF

construction.

Group Size Measurements. Given the knowledge representations for the BTC data,

we now examine the grouping output. Figure 5.4 depicts the WCF group distribution

for the BTC data over varying topic similarity thresholds θ. For one, we illustrate the

76The creation of the Wikipedia page and category index took 5:30h utilizing 4 cores.

120

5.5 Experiments

h \ d 5 10 15 20

1 0:06h 0:09h 0:11h 0:14h
2 0:15h 0:23h 0:28h 0:38h
3 0:31h 0:52h 1:18h 1:34h
4 1:13h 3:03h 3:55h 5:45h
5 4:14h 8:28h 14:01h 15:40h

Table 5.1: Forest construction runtime for varying forest h and d parameters
as well as the I/T3-extractor (in hours).

forests'in'groups'of'size'
='2'

≤5'

≤25'

≤250'

≤5k'

≤50k'

≤100k'

>100k'

0'

10'

20'

30'

40'

50'

60'

0'

50'

100'

150'

200'

250'

300'

0.3' 0.4' 0.5' 0.6' 0.7' 0.8' 0.9' 1'

nu
m
be

r'o
f'g
ro
up

s'(
in
'th

ou
sa
nd

s)
,'r
ed

'li
ne

'

nu
m
.'o
f'g
ro
up

ed
'fo

re
st
s'(
in
'th

ou
sa
nd

s)
,'g
re
en

'li
ne

'

topic'similarity'threshold'θ'
'Number'of'grouped'forests' 'Number'of'groups'

Figure 5.4: Forest group distribution for the I/T3 keyword extractor, h = 4, d = 10, topics with
10 tree nodes over varying topic similarity θ. The green graph shows the number of
forests that can be grouped (left axis). The shaded areas below indicate the number
of forest in groups of a specific size, i.e., the group size distribution. The red line
shows the total number of groups (right axis).

number of forests that can be grouped for a given θ (green graph, left axis). Shaded

areas below the green graph depict the number of forests in groups of a given size, e.g.,

groups of size = 2, size ≤ 5, size ≤ 25, etc. Also, we show the total number of created

groups over θ (red graph, right axis).

For the fraction of WCFs that can be grouped, a higher θ leads to a decrease, because

fewer WCF pairs have a sufficient topical overlap. The shaded areas further show that

the higher θ, the more WCFs fall in small groups, which is because a stricter overlap

criterion induces more individual groups. Vice versa, a lower θ results in larger groups

since smaller groups are merged.

The total number of groups clearly increases for higher θ due to the fact that there are

more smaller groups for a higher threshold. The figure shows that θ = 1.0 leads to 138k

(out of 293k) forests that have at least one correspondence with an equal topic. The

121

5 Concept Alignment

majority (92k) appears in groups of size two.

For the following experiments we set θ = 0.7 as default for three reasons: (1) This setting

avoids large WCF groups, which would raise the runtime of the alignment generation

phase. With θ = 0.7, the maximal group size of 4k leads to a reasonable (and feasible)

runtime on a single machine. (2) θ = 0.7 provides a significant topical overlap among

forests and minimizes arbitrary correspondences. (3) This threshold enables the iden-

tification of groups for more than 55% of all available WCFs. That is, we group 162k

WCFs. Remaining WCFs do not have a sufficient topic overlap and can thus not be

considered for the alignment generation.

Group Creation Runtimes. In general, the runtime of the candidate group creation,

i.e., the blocking of WCFs, depends on the number of input WCFs, i.e, their respective

topics and the self-join technique of choice. Figure 5.5 compares runtimes for three set

similarity join techniques over a varying number of topics (topics include the top m = 10

nodes from the WCFs and θ is set to 0.7). The red graph shows the quadratic runtime

for the näıve approach that performs all pairs’ comparisons. The yellow line indicates

values for mpjoin introduced by Ribeiro and Härder [RH09]. Mpjoin tries to minimize

candidate set creation effort.

The green line shows the ppjoin runtime. The latter approach aims to minimize the

candidate set sizes [XWLY08]. Obviously, ppjoin performs best showing a near-linear

runtime. Here, the similarity join for 295k forest topics takes 6 minutes. Remember

that these numbers refer to a large and heterogeneous sample from the current Web

of Data, i.e., the BTC data. Wang et al. introduce a Map/Reduce implementation of

ppjoin [WWL+10], which leads to the conclusion that our approach can also deal with

larger future datasets.

Accuracy on BTC data. To determine the accuracy of our holistic concept match-

ing approach on BTC data, we examine the alignment generation algorithm’s result

(Section 5.4) using different similarity ranges. That is, we test different threshold set-

tings for ρ, namely O(f1, f2) = 1, 1 > O(f1, f2) ≥ 0.95, 0.95 > O(f1, f2) ≥ 0.9, . . . ,

0.75 > O(f1, f2) ≥ 0.7. We did not consider alignments with O(f1, f2) < 0.7, which

is along the lines with findings by Jain et al. where the authors mention an optimal

threshold of 0.85 [JYV+10]. Given the result from our approach, we created a random

sample of 50 alignments for each similarity range. These samples were then manually

evaluated by two independent annotators. In case of conflicts, a third annotator took

the decision. Raters could use one out of three judgements: Equivalence indicates a

correct alignment of two equivalent concepts. Similar indicates a fuzzy match. The two

122

5.5 Experiments

0	

1	

2	

3	

0	
 50	
 100	
 150	
 200	
 250	
 300	

ru
n*

m
e	

(in

	
 h
ou

rs
)	

number	
 of	
 topics	
 (in	
 thousands)	

naive	

mpjoin	

ppjoin	

Figure 5.5: Runtime for the forest grouping with different set similarity join algorithms. h = 4,
d = 10, θ = 0.7, and m = 10.

concepts are related and the sets of instances of the concepts have a significant intersec-

tion. Disjoint indicates an incorrect alignment of two concepts whose sets of concept

instances are disjoint.

Considering only exact equivalence ratings, the inter-annotator agreement, Cohen’s

kappa, is κ = 0.909. Treating similar-rated alignments as correct, the inter-annotator

agreement decreases to κ = 0.817. This decrease is because of a varying perception of re-

latedness. Clearly, similarity is more subjective than strict equivalence. For instance, the

concepts daml:Ammeters and umbel:Voltmeter are related due to their common purpose.

On the other hand, respective instance sets can be disjoint.

Table 5.2 shows the result of our manual evaluation, i.e., accuracy and respective con-

fidence intervals. In the range of 1 > O(f1, f2) ≥ 0.95, 57.5% of the alignments were

labeled as equivalences and additionally 15% as similar. Of course, the number of exact

matches decreases for smaller forest similarities. Consider the following examples show-

ing that our approach retrieves non-trivial and interesting relations among concepts from

ontologies with different scopes.

• yago:PsychoactiveFungi and umbel:HallucinogenicMushroom

• dbpedia:BirdsOfAustralia and opencyc:Parrot

• umbel:AirConditioner and dbpedia:HeatExchangers

123

5 Concept Alignment

equivalences equ. or similar

O(f1, f2) = 1.0 0.964 ±0.036 0.964 ±0.036
1.0 > O(f1, f2) ≥ 0.95 0.575 ±0.143 0.725 ±0.129

0.95 > O(f1, f2) ≥ 0.9 0.481 ±0.145 0.706 ±0.131
0.9 > O(f1, f2) ≥ 0.85 0.071 ±0.066 0.294 ±0.131

0.85 > O(f1, f2) ≥ 0.8 0.053 ±0.053 0.200 ±0.114
0.8 > O(f1, f2) ≥ 0.75 0.053 ±0.053 0.126 ±0.092

0.75 > O(f1, f2) ≥ 0.7 0.071 ±0.066 0.331 ±0.136

Table 5.2: Accuracy and confidence intervals for random samples created from HCM alignments.
The left column shows varying WCF similarity (O(f1, f2)) ranges. The middle col-
umn depicts accuracy values for considering only equivalence judgements as correct
alignments. The rightmost column shows values for considering both, equivalent and
similar pairs, as correct.

Obviously, since the concepts from these pairs stem from heterogeneous ontologies, align-

ments cannot be determined easily by humans. However, our holistic concept matching

approach can deal with this kind of data, because it exploits the broad knowledge for

many domains present in Wikipedia and does not neglect existing information from the

sources.

In [GBN12] we additionally show results for the benchmark track of the well-known

Ontology Alignment Evaluation Initiative Campaign [EFM+10]: here, ρ = 0.7 lead to a

precision of 85% and a recall of 55%.

Runtimes on BTC data. Figure 5.6 illustrates runtimes of the alignment generation

(Section 5.4) for the groups created with θ = 0.7 as depicted in Figure 5.4. Since the

actual alignment performs a pairwise comparison of Wikipedia category trees (whose

number and size is bound by d and s) for all pairs of forests in a group, the runtime is

quadratic in the number of group members. Thus, the overall maximum runtime (31h)

depends on the largest group, which comprises roughly 4k Wikipedia concept forests.

The second largest group requires less than half of the time (14h) for the alignment. The

vast majority of groups can each be aligned in less than 2h, since these groups do not

contain many concepts (see Figure 5.4). Thus, in practice, all groups could be processed

in parallel within the runtime of the largest group.

The alignment graph creation is linear in the number of ontological and candidate rela-

tions. The polynomial alignment verification per added relation additionally influences

the overall runtime. In Figure 5.6, we further show the polynomial regression, given the

measurements for the actual groups.

124

5.6 Discussion

0

6

12

18

24

30

36

0 500 1000 1500 2000 2500 3000 3500 4000

ru
n

ti
m

e
 in

 h
o

u
rs

number of forests per group

runtime Poly. (runtime)

Figure 5.6: Alignment generation runtime different WCF group sizes. The dashed line indicates
the quadratic regression for the total alignment generation time per group. The
experiment was conducted with the I/T3 keyword extraction, forest h = 4 and d = 10,
topics with m = 10 tree nodes and θ = 0.7 as well as a forest overlap ρ = 0.7.

5.6 Discussion

In this chapter we tackled the problem of aligning concepts from many ontologies avail-

able on the Web of Data – simultaneously and in a holistic manner. To this end, we

proposed an abstract workflow consisting of knowledge extraction, grouping, and align-

ment generation to specifically enable scalability while examining many ontologies in its

entirety. We plug state-of-the-art techniques and novel ideas into this workflow and re-

port on promising results with respect to scalability and alignment quality in a Web-scale

alignment scenario. For representing knowledge, we chose Wikipedia category forests.

For grouping the input, we leverage topical information represented as sets of highly

scored Wikipedia category tree nodes as well as a state-of-the-art set similarity index.

Last, the alignment generation leverages Wikipedia category forest overlaps and per-

forms a semantic verification. Thus, our approach is specifically tailored towards a quick

solution but still draws conclusions from a large subset of the ontological relations in the

original sources.

Table 5.3 summarizes the runtimes of the entire HCM approach. Disregarding the pre-

processing, i.e., concept data extraction and Wikipedia index construction, most steps

can be done in a short amount of time. The forest construction requires the longest time

(3h) before the actual matching. The alignment phase runtime varies depending on the

group size, i.e., it is roughly 2h for the majority of groups while the largest group requires

31h for the matching. In total, the process required 44:30h dominated by the alignment

125

5 Concept Alignment

creation for the largest concept group. Disregarding the Wikipedia index creation time

this value is below 40h. Given these short runtimes and the modularity of our approach,

we clearly implemented an alignment workflow that is ready for future large concept

sets. Note that all phases, except the grouping, can be distributed easily. The grouping

itself is fast when using a state-of-the-art set similarity self-join technique.

Future directions might include the exploration of other knowledge representations and

matching techniques that can be plugged into the workflow. The challenge is to identify

approaches that can capture different semantic notions of an input concept but allow

for a grouping that minimizes pairwise considerations. Another direction is to examine

other relationship types, where concept instance data could be helpful for the creation

of knowledge representations. Finally, more elaborate grouping methods could for in-

stance support incremental updates and thus facilitate online ontology alignments for

the growing Web of Data.

time in hours

BTC data preprocessing 03:30
Keyword query generation 00:07
Wikipedia index creation 05:30
Wikipedia search 01:04
Forest construction 03:03
Forest grouping 00:06
Concept alignment (max. time) 31:10

Sum 44:30

Table 5.3: Summary of runtimes throughout the different phases of our approach.

126

6 Conclusion

Summary of the Presented Methods. In this thesis we presented methods for enhanc-

ing the current state of the Web of Data. First, in Chapter 3, we coined the notion of

topics for graph-structured data and discussed our approach called Annotated Pattern

Percolation. This APP method detects overlapping communities of topically related

entities in annotated entity-graphs. For this community detection, we employ only the

structure inherent to the graph and are independent of textual information, such as

labels or descriptions. In an evaluation against manually created reference data from

Wikipedia, we compared properties of varying results and found that we can automati-

cally reconstruct a portion of our reference data at reasonable precision. Note that, since

topics in graph-structured data are not an established field of research, this evaluation

is, to the best of our knowledge, the first of its kind.

The second main part of this work, Chapter 4, discussed how to create links among

entities from the Web of Data in a joint and scalable manner. For this entity alignment,

heterogeneity and size of respective Web datasets pose major challenges. We capture

the problem in an optimization model, i.e., the Maximum Consistent Assignment Prob-

lem, and propose three algorithms to compute good solutions – all implemented in our

LINDA system. Our first approach produces consistent alignments but lacks scalability.

The second approach scales well but violates the result consistency in certain cases. The

third method yields a consistent outcome and scales on large compute clusters. We eval-

uated results on very large heterogeneous real-world datasets and manually determined

accuracy values around 0.9 and above (Section 4.6). Note that we are aware of only one

work [PIN+12] that reports on entity alignment results obtained with datasets larger

than our evaluation data. This work, however, does not perform joint entity linking.

Finally, in Chapter 5, we discussed concept alignment, which is a subproblem of entity

alignment. In this case, we presented an approach that groups the input and then runs

complex alignment and reasoning for concepts within groups. With this strategy, we can

quickly retrieve high-quality output for large real-word data (Section 5.5).

Combined Use-Case. The Web of Data is about interconnected entities described with

RDF and published on the Web. In the future, one shall be able to query this gigantic

knowledge base as if it were a traditional database containing very many tables and

127

6 Conclusion

references among these tables. Figure 6.1 illustrates this vision and the role of our con-

tributions, i.e., methods consuming and contributing linked data. To facilitate queries

combining a variety of entities of different types from many publishers, the query pro-

cessing requires information about which chunks of data to process, i.e., to perform query

source selection. To perform this selection one could either explicitly provide required

topics with the query or compute them from the query. Then, if topics were published

with the data, the processing could determine sources where respective entities interplay

and execute the query on the selected chunk of data.

For the retrieval of information about entities from different sources, one leverages

sameAs links (among others) that must be present in the data. HCM and LINDA

contribute such sameAs links. LINDA has shown to yield accurate output. However,

LINDA could additionally benefit from existing links, e.g., achieve higher recall (which

we did not aim to quantify yet). HCM, for instance, rapidly produces links among

concepts, which could be used to seed LINDA. Then, concept-level links can contribute

evidence for two differently typed entities for being truly the same. Topics, on the other

hand, could be used to develop a smart partitioning of the data when employing the

distributed versions of LINDA.

SW

Conference

Corpus

DBpedia

RDF Book
Mashup

DBLP
Berlin

Revyu

Project
Guten-
berg

FOAF

Geo-
names

Music-
brainz

Magna-
tune

Jamendo

World

Fact-

book

DBLP
Hannover

SIOC

Sem-

Web-

Central

Euro-

stat

ECS

South-

ampton
BBC

Later +
TOTP

Fresh-
meat

Open-

Guides

Gov-
Track

US
Census
Data

W3C
WordNet

flickr
wrappr

Wiki-

company

Open
Cyc

NEW! lingvoj

Onto-
world

NEW!

NEW!

NEW!

WebofData$

APP$

HCM$

LINDA$

Links$

Links$

Topics$

Select$...$
Where$...$
$

Figure 6.1: Overall Use-Case for APP, HCM, and LINDA.

Finally, observe that, though developed for the Web of Data, our methods also apply

to other fields. Our topic mining approach essentially contributes to the general field of

community detection in attributed graphs, which is also of interest for social network

or life science data. LINDA works on entity graphs, which is an abstract representation

of things and respective relationships. The construction of such graphs is not limited

to RDF as input. HCM features an entity grouping and intra-group alignment strategy.

Many building blocks for this strategy, such as the knowledge representation, can be

adapted to other entity alignment scenarios, e.g., when merging multiple complex and

heterogeneous relational datasets.

128

Acknowledgements

First and foremost, I would like to thank Felix Naumann for the opportunity to do my

PhD in his group, his supervision, and for giving me broad flexibility to develop my work

and myself during the past years. Further, I am thankful for the opportunity to visit

the Max Planck Databases and Information Systems group in 2011, where I got to know

Gerhard Weikum and Gerard de Melo, who became de facto co-supervisers. Thanks

for the many critical, well-grounded, and inspiring discussions. Also, many thanks to

Klaus Berberich for the excellent Hadoop know-how exchange. Additionally, I would like

to mention the talented and enthusiastic students who helped to develop and maintain

the thousands of lines of code written for the different projects discussed in this thesis:

Johannes Gosda, Eyk Kny, Toni Grütze, and Nils Rethmeier. Further, I would like to

acknowledge the co-authors and proof-readers of “my” publications. A big thanks to

IBM, among others Albert Maier in Böblingen, for financing a significant part of my

work through an IBM CAS grant (received by Felix Naumann) and awarding me with

two IBM PhD Fellowships. Many thanks to Samira Jaeger for proof-reading this thesis.

Thanks to my lovely family for tolerating me whenever I was not so happy with what I

was doing. Last but definitely not least, I thank the operations folks at HPI in Potsdam

and MPII in Saarbrücken for keeping the computing infrastructure up and running and

for fast response times during the Christmas holidays.

129

Appendix

iteration step node+1 node+2 node+3 node+4 node+5 node+6 node+7 node+8 node+9 node+10 node+11 node+12 mean max
1 2,647.62 3,146.20 2,784.80 1,945.49 11,244.79 2,297.10 1,899.18 1,449.71 1,851.14 2,167.38 2,210.78 1,665.30 2,639.31 11,244.79
2 7.90 28.00 28.84 44.00 7.54 26.43 34.77 51.32 32.97 66.24 18.69 18.61 28.88 66.24
3 9.33 15.04 39.93 46.48 8.68 33.76 47.42 68.16 34.16 65.21 17.21 18.83 31.06 68.16
4 141.19 0.00 80.16 146.80 46.04 82.14 101.19 168.24 66.94 291.94 387.05 42.67 101.85 387.05
5 477.02 596.45 528.14 489.49 513.28 475.48 469.91 429.17 511.50 497.67 661.82 495.98 515.71 661.82
6 2,841.90 0.00 4,285.77 782.92 0.00 1,076.02 0.00 2,985.52 2,540.16 4,508.47 3,300.06 779.22 1,648.71 4,508.47
7 257,083.63 259,666.65 260,930.22 261,727.53 251,448.46 256,853.31 267,235.45 245,480.19 257,049.04 256,845.03 291,204.93 273,888.61 265,068.56 307,059.72
8 1,040.93 1,511.08 996.75 1,033.23 1,316.21 1,214.56 1,223.61 1,103.73 1,177.55 1,204.79 1,622.95 1,063.68 1,179.72 1,622.95
9 4,945.96 14,308.58 4,928.57 3,215.17 3,765.97 5,047.35 44,210.59 45,573.94 6,123.51 5,081.94 3,480.27 2,724.41 9,111.66 45,573.94
10 30,137.94 30,451.76 28,292.28 29,217.60 22,216.10 26,212.87 27,670.51 28,088.06 29,309.93 25,617.66 24,983.34 27,220.42 27,490.93 37,444.34
11 3,063.96 3,921.29 3,387.59 3,566.93 3,710.27 3,874.48 3,842.74 3,961.25 4,005.92 3,535.11 4,130.52 3,508.00 3,798.77 4,434.38
12 61.33 161.98 71.68 60.01 96.76 83.75 87.07 113.70 64.13 64.83 75.84 68.17 83.05 161.98
1 1,487.68 1,538.43 1,553.56 1,659.89 1,570.81 1,532.96 1,488.24 1,501.14 1,622.43 1,540.39 1,898.64 1,493.04 1,591.86 1,898.64
2 0.00 28.03 3.04 27.28 0.00 5.42 27.30 0.00 12.13 38.59 10.11 12.04 11.18 38.59
3 1.61 31.16 3.66 20.79 0.00 6.64 19.90 0.00 12.40 30.08 9.68 6.11 9.98 31.16
4 9.64 56.33 10.13 44.95 0.00 7.49 59.04 0.00 19.00 59.82 17.88 19.55 21.39 59.82
5 155.89 173.24 166.62 188.27 176.10 176.91 150.67 145.78 180.76 150.52 141.44 167.49 173.71 314.48
6 0.00 0.00 0.00 2,248.34 0.00 957.00 1,286.71 0.00 6,005.85 1,961.32 566.80 445.96 920.50 6,005.85
7 85,652.89 87,760.78 92,229.67 93,365.57 85,590.33 87,214.08 95,095.03 94,043.47 91,286.02 88,571.21 87,451.99 95,903.82 90,154.49 100,035.08
8 351.24 507.46 372.23 372.76 441.61 461.93 488.31 560.77 459.75 349.17 347.87 479.01 419.53 560.77
9 2,373.84 14,850.48 2,509.92 1,882.41 4,905.43 1,875.79 1,383.03 1,595.57 1,686.01 1,561.54 1,623.75 7,207.18 3,901.29 18,182.19
10 14,123.84 20,485.96 17,818.05 18,529.06 14,747.24 17,733.12 16,006.40 18,705.22 17,852.47 15,653.87 18,872.17 18,829.90 17,506.12 22,084.19
11 1,146.36 1,501.78 634.88 800.77 1,155.93 790.13 617.27 711.67 897.99 728.97 670.15 1,481.86 962.04 2,049.06
12 42.36 54.84 34.96 29.04 43.33 37.70 45.38 51.21 36.95 29.91 35.35 45.00 40.51 66.98
1 1,711.83 1,797.81 1,645.56 1,515.82 1,668.70 1,502.69 1,545.39 1,636.37 1,605.84 1,641.19 2,090.72 1,687.43 1,658.63 2,090.72
2 0.00 2.49 0.00 0.00 0.00 3.92 0.00 0.00 0.00 0.00 0.00 0.00 0.54 3.92
3 0.00 2.64 0.00 0.00 0.00 8.41 0.00 0.00 0.00 0.00 0.00 0.00 0.74 8.41
4 0.00 5.19 0.00 0.00 0.00 11.07 0.00 0.00 0.00 0.00 0.00 0.00 1.87 11.07
5 29.00 26.26 24.65 30.27 29.34 17.42 21.03 26.84 36.98 25.50 30.52 31.59 27.50 36.98
6 0.00 1,487.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 78.30 1,487.77
7 21,169.62 17,873.32 27,021.40 26,739.36 18,792.62 13,824.72 21,525.93 19,782.73 25,693.06 16,527.13 18,586.87 20,644.76 20,924.45 27,021.40
8 57.14 32.84 59.91 64.24 45.45 27.66 40.69 43.78 126.00 45.85 42.93 40.30 51.26 126.00
9 72.29 46.64 66.47 48.47 71.63 16.21 52.03 50.75 47.25 172.33 55.22 61.55 60.83 172.33
10 266.58 297.21 299.97 313.88 234.85 407.07 381.47 258.59 421.43 301.42 337.96 312.26 332.88 512.77
11 64.74 49.43 60.90 43.45 67.69 19.96 44.49 45.82 74.69 62.46 39.45 71.34 53.38 84.83
12 3.86 3.10 4.57 3.34 4.29 1.74 3.08 3.32 6.42 3.01 2.84 3.86 3.64 6.42
1 2,727.94 2,834.26 2,776.79 2,456.55 2,625.14 2,422.65 2,406.65 2,389.49 2,454.77 2,420.83 2,904.48 2,695.91 2,587.77 2,904.48
2 0.00 17.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 17.62
3 0.00 17.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 17.36
4 0.00 23.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 24.22
5 16.90 13.55 12.99 18.65 14.54 14.86 16.08 17.17 17.50 16.06 6.75 19.93 14.84 19.93
6 0.00 872.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 45.93 872.68
7 10,250.50 8,895.00 7,392.31 11,957.77 8,759.69 10,927.06 8,281.41 8,222.17 9,490.23 9,306.90 8,398.11 8,570.62 9,465.24 13,492.59
8 39.45 28.25 33.25 39.08 37.56 38.53 36.77 31.25 32.26 37.63 26.66 33.10 42.59 146.87
9 205.38 142.96 139.35 279.19 167.11 183.27 160.11 164.91 1,324.34 322.10 47.77 274.74 260.00 1,324.34
10 1,046.35 1,478.12 1,190.94 1,581.14 940.07 1,907.16 949.73 1,204.12 1,037.67 1,292.38 1,455.62 1,254.97 1,422.13 2,805.30
11 202.92 92.63 229.46 249.64 88.95 82.04 69.09 89.63 166.01 96.69 26.99 75.63 107.93 249.64
12 6.91 3.71 3.52 5.03 3.38 3.78 3.19 3.36 4.99 4.82 2.49 3.60 4.40 11.43

1

2

3

4

Figure 7.1: Time in vertex compute function of MP-LINDA per compute node and step (in
milliseconds).

131

iteration step node+1 node+2 node+3 node+4 node+5 node+6 node+7 node+8 node+9 node+10 node+11 node+12 mean
1 8.30 506.89 145.49 *693.82 8,605.48 *342.22 *740.13 *1,189.61 *788.18 *471.94 *428.54 *974.01 2,639.31
2 *20.99 *0.88 *0.04 15.11 *21.34 *2.46 5.89 22.43 4.09 37.36 *10.19 *10.27 28.88
3 *21.73 *16.02 8.87 15.42 *22.38 2.70 16.36 37.10 3.10 34.15 *13.85 *12.23 31.06
4 39.34 *101.85 *21.69 44.95 *55.80 *19.70 *0.65 66.39 *34.91 190.09 285.20 *59.18 101.85
5 *38.69 80.74 12.43 *26.22 *2.43 *40.23 *45.80 *86.54 *4.21 *18.04 146.11 *19.73 515.71
6 1,193.19 *1,648.71 2,637.06 *865.79 *1,648.71 *572.69 *1,648.71 1,336.81 891.45 2,859.76 1,651.35 *869.49 1,648.71
7 *7,984.93 *5,401.91 *4,138.34 *3,341.03 *13,620.10 *8,215.25 2,166.89 *19,588.37 *8,019.52 *8,223.54 26,136.36 8,820.04 265,068.56
8 *138.80 331.36 *182.97 *146.50 136.49 34.84 43.88 *76.00 *2.18 25.07 443.23 *116.05 1,179.72
9 *4,165.70 5,196.93 *4,183.09 *5,896.48 *5,345.69 *4,064.31 35,098.94 36,462.28 *2,988.14 *4,029.71 *5,631.39 *6,387.25 9,111.66
10 2,647.01 2,960.83 801.36 1,726.67 *5,274.83 *1,278.05 179.59 597.13 1,819.00 *1,873.27 *2,507.58 *270.50 27,490.93
11 *734.81 122.52 *411.18 *231.84 *88.49 75.71 43.97 162.49 207.15 *263.66 331.75 *290.77 3,798.77
12 *21.72 78.93 *11.37 *23.04 13.72 0.71 4.02 30.65 *18.91 *18.22 *7.20 *14.88 83.05
1 *104.18 *53.43 *38.30 68.03 *21.05 *58.90 *103.62 *90.72 30.57 *51.47 306.79 *98.82 1,591.86
2 *11.18 16.85 *8.14 16.10 *11.18 *5.76 16.13 *11.18 0.96 27.41 *1.06 0.86 11.18
3 *8.36 21.19 *6.31 10.81 *9.98 *3.33 9.92 *9.98 2.42 20.10 *0.30 *3.87 9.98
4 *11.74 34.94 *11.25 23.56 *21.39 *13.90 37.65 *21.39 *2.38 38.44 *3.50 *1.83 21.39
5 *17.82 *0.47 *7.09 14.56 2.39 3.20 *23.04 *27.93 7.05 *23.19 *32.27 *6.22 173.71
6 *920.50 *920.50 *920.50 1,327.84 *920.50 36.50 366.21 *920.50 5,085.35 1,040.82 *353.70 *474.55 920.50
7 *4,501.60 *2,393.70 2,075.18 3,211.08 *4,564.16 *2,940.41 4,940.54 3,888.98 1,131.53 *1,583.28 *2,702.50 5,749.33 90,154.49
8 *68.29 87.92 *47.30 *46.78 22.08 42.39 68.77 141.24 40.22 *70.37 *71.67 59.48 419.53
9 *1,527.45 10,949.19 *1,391.37 *2,018.88 1,004.14 *2,025.50 *2,518.25 *2,305.72 *2,215.28 *2,339.75 *2,277.54 3,305.89 3,901.29
10 *3,382.28 2,979.85 311.93 1,022.94 *2,758.87 227.00 *1,499.72 1,199.11 346.36 *1,852.24 1,366.06 1,323.78 17,506.12
11 184.31 539.74 *327.16 *161.27 193.89 *171.91 *344.77 *250.37 *64.05 *233.07 *291.89 519.82 962.04
12 1.84 14.33 *5.55 *11.47 2.82 *2.81 4.87 10.70 *3.56 *10.60 *5.16 4.48 40.51
1 53.20 139.18 *13.07 *142.81 10.07 *155.93 *113.24 *22.26 *52.79 *17.44 432.09 28.80 1,658.63
2 *0.54 1.95 *0.54 *0.54 *0.54 3.38 *0.54 *0.54 *0.54 *0.54 *0.54 *0.54 0.54
3 *0.74 1.90 *0.74 *0.74 *0.74 7.67 *0.74 *0.74 *0.74 *0.74 *0.74 *0.74 0.74
4 *1.87 3.32 *1.87 *1.87 *1.87 9.21 *1.87 *1.87 *1.87 *1.87 *1.87 *1.87 1.87
5 1.50 *1.24 *2.85 2.77 1.84 *10.08 *6.47 *0.66 9.48 *2.00 3.02 4.09 27.50
6 *78.30 1,409.47 *78.30 *78.30 *78.30 *78.30 *78.30 *78.30 *78.30 *78.30 *78.30 *78.30 78.30
7 245.17 *3,051.13 6,096.95 5,814.91 *2,131.82 *7,099.73 601.48 *1,141.71 4,768.61 *4,397.32 *2,337.58 *279.68 20,924.45
8 5.89 *18.42 8.65 12.98 *5.80 *23.60 *10.56 *7.48 74.74 *5.40 *8.33 *10.96 51.26
9 11.46 *14.19 5.64 *12.36 10.80 *44.62 *8.80 *10.08 *13.58 111.50 *5.61 0.72 60.83
10 *66.30 *35.67 *32.91 *19.00 *98.03 74.19 48.59 *74.29 88.55 *31.46 5.08 *20.62 332.88
11 11.36 *3.95 7.52 *9.94 14.30 *33.42 *8.89 *7.56 21.31 9.08 *13.93 17.95 53.38
12 0.21 *0.54 0.93 *0.31 0.64 *1.91 *0.56 *0.33 2.77 *0.63 *0.80 0.22 3.64
1 140.17 246.48 189.01 *131.22 37.37 *165.12 *181.13 *198.28 *133.00 *166.94 316.71 108.14 2,587.77
2 *1.38 16.24 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 1.38
3 *1.38 15.98 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 *1.38 1.38
4 *2.50 20.80 *2.50 *2.50 *2.50 *2.50 *2.50 *2.50 *2.50 *2.50 *2.50 *2.50 2.50
5 2.05 *1.30 *1.85 3.81 *0.30 0.02 1.23 2.32 2.66 1.21 *8.09 5.09 14.84
6 *45.93 826.75 *45.93 *45.93 *45.93 *45.93 *45.93 *45.93 *45.93 *45.93 *45.93 *45.93 45.93
7 785.26 *570.24 *2,072.93 2,492.53 *705.55 1,461.81 *1,183.84 *1,243.07 24.98 *158.34 *1,067.14 *894.62 9,465.24
8 *3.14 *14.33 *9.34 *3.51 *5.03 *4.06 *5.82 *11.34 *10.33 *4.96 *15.93 *9.49 42.59
9 *54.62 *117.04 *120.65 19.19 *92.89 *76.73 *99.89 *95.09 1,064.34 62.09 *212.24 14.73 260.00
10 *375.77 56.00 *231.19 159.01 *482.06 485.03 *472.40 *218.01 *384.45 *129.75 33.50 *167.16 1,422.13
11 94.99 *15.30 121.53 141.71 *18.98 *25.89 *38.84 *18.30 58.07 *11.25 *80.94 *32.31 107.93
12 2.51 *0.69 *0.88 0.63 *1.02 *0.62 *1.21 *1.04 0.59 0.42 *1.91 *0.80 4.40

1

2

3

4

Figure 7.2: Difference of individual to average time in vertex compute function of MP-LINDA
per compute node and step (in milliseconds).

132

Iteration step node,1 node,2 node,3 node,4 node,5 node,6 node,7 node,8 node,9 node,10 node,11 node,12 avg
1 "10 411 49 "755 8,604 "401 "838 "1,327 "751 "461 "335 "530 3,690
2 11,612 27,151 "1,540 "268 "4,033 "19,813 2,182 "20,605 "14,082 "15,526 "19,824 "16,149 529,590
3 "45 1 23 "121 "36 "64 74 246 "101 63 77 "33 1,744
4 "537 "808 1,356 "436 "773 1,032 "675 "637 557 1,808 "301 "785 2,643
5 "134 14 "159 157 100 "134 "29 "68 57 150 414 245 2,613
6 2,034 "1,845 2,512 "1,059 "1,920 "651 "1,661 1,400 928 2,933 2,228 "991 3,718
7 "8,097 "5,526 "4,322 "3,453 "13,658 "8,389 2,336 "19,474 "8,211 "7,389 26,188 8,794 266,911
8 473 1,167 "43 "166 1,355 "373 1,185 "459 "64 "249 405 "405 3,357
9 "5,022 28,516 "4,962 "10,851 "5,093 "3,217 37,348 37,491 "3,313 "3,243 "10,259 "10,870 16,322
10 2,946 3,808 1,704 1,541 "5,538 "1,557 "42 439 1,618 "2,043 "1,944 "405 29,397
11 "889 "486 "755 249 247 "519 447 510 508 "20 952 "21 6,371
12 604 "327 "218 7 317 "616 447 968 "491 538 256 "380 3,172
1 "150 "108 "84 "12 38 "27 "152 "110 "16 "114 318 "89 2,530
2 26,968 40,141 3,322 "4,738 653 "13,818 "1,633 "20,299 "9,317 "8,229 "17,497 "17,651 520,016
3 "13 "3 "63 "38 "58 167 21 "87 "76 "35 153 46 1,680
4 1,136 1,155 "162 "21 "190 "350 "203 "187 "147 "189 145 "112 1,978
5 "159 "76 "125 "82 61 "26 "74 48 "40 47 23 "107 1,926
6 "1,086 "1,086 "1,189 1,009 "1,207 694 565 "1,172 4,996 2,731 "266 "743 2,990
7 "4,517 "2,433 2,010 3,144 "4,578 "2,874 4,994 3,849 1,096 "1,615 "2,601 5,750 91,825
8 "927 "229 "847 "778 746 2,387 "887 "735 "578 1,604 "187 "746 3,020
9 "2,091 9,916 "549 "2,087 110 "2,101 "2,155 "2,087 "483 "2,125 "2,107 1,054 8,549
10 "3,452 2,985 289 941 "2,797 227 "1,416 1,175 337 "1,846 1,549 1,311 19,209
11 14 654 "434 "308 234 3 "327 3 "175 "214 "214 510 2,880
12 "39 27 17 "182 "12 47 "78 "33 4 44 84 "169 2,106
1 27 147 "48 "210 5 "216 12 77 "79 "73 485 23 2,612
2 22,829 38,229 1,449 "5,521 "5,637 "12,836 "2,664 "21,799 "9,173 "12,559 "15,231 "14,315 520,060
3 "96 "31 "88 2 "43 "116 27 "62 "162 "179 128 78 1,760
4 268 116 "94 "45 132 41 "66 "104 "12 "86 278 "17 1,769
5 "118 "102 "141 "105 "39 "104 267 241 86 153 132 "27 1,722
6 "96 1,501 "157 "271 "140 "261 "78 19 "125 "74 132 "183 1,882
7 249 "3,118 5,990 5,783 "2,184 "7,172 631 "1,127 4,740 "4,391 "2,221 "251 22,579
8 65 "65 340 35 "148 "128 "53 109 32 "22 225 "77 1,912
9 "53 "55 "56 "32 "48 "42 "53 "53 "21 "8 "43 "45 2,632
10 722 "426 "297 "379 "479 "246 48 "252 "248 "219 "43 "258 2,385
11 "87 "173 "87 "6 "19 "43 18 "169 110 154 182 "30 1,892
12 9 158 99 "62 "139 "89 245 "12 "141 "114 162 "104 1,997
1 "18 47 "87 108 "87 "212 58 "48 "1 9 293 "106 2,594
2 21,382 37,747 "1,415 "912 "1,086 "10,468 "3,586 "20,334 "7,120 "9,747 "16,491 "15,981 519,788
3 "123 "91 "98 "104 0 "1 "20 "66 168 134 86 "32 1,717
4 "184 98 9 "234 140 "125 "71 1,052 "103 "174 106 45 1,875
5 "10 "40 2 "108 "65 4 134 115 "101 "79 89 "39 1,703
6 156 "46 "155 58 "38 123 79 "6 33 "44 294 "48 1,797
7 "120 1 "145 "32 "19 "100 66 260 "141 "43 178 66 1,765
8 "268 "77 "267 "150 438 "191 19 "58 "139 "30 "70 118 1,896
9 "122 "44 "142 "53 "46 "1 11 55 179 137 91 "25 1,766
10 "108 18 65 "81 132 "93 86 8 "25 "76 "30 184 1,817
11 28 "36 "7 "124 "92 "55 330 120 "101 "100 79 "36 1,742
12 "85 "1 "42 35 "68 9 "9 99 28 76 207 "187 2,006

1

2

3

4

Figure 7.3: Difference of individual to average time of MP-LINDA per compute node and step
(in milliseconds).

133

Bibliography

[ABMH12] Ben Adida, Mark Birbeck, Shane McCarron, and Ivan Herman. Rdfa core 1.1. http:

//www.w3.org/TR/rdfa-core/, June 2012. W3C Recommendation.

[ABPS12] Marcelo Arenas, Alexandre Bertails, Eric Prud’Hommeaux, and Juan Sequeda. Rec-
ommendation: A Direct Mapping of Relational Data to RDF. http://www.w3.org/TR/
rdb-direct-mapping/, September 2012. W3C Recommendation.

[ACHZ09] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing
Linked Datasets: On the Design and Usage of voiD, the Vocabulary Of Interlinked
Datasets. In Proceedings of the Linked Data on the Web workshop at the WWW Con-
ference (LDOW), 2009.

[ACHZ11] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing
Linked Datasets with the VoID Vocabulary. http://www.w3.org/TR/void, March 2011.
W3C Interest Group Note.

[ADL+09] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David Au-
mueller. Triplify: Light-weight Linked Data Publication from Relational Databases. In
Proceedings of the International World Wide Web Conference (WWW), pages 621–630,
2009.

[ADMR05] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema and
Ontology Matching with COMA++. In Proceedings of the ACM SIG Management Of
Data Conference (SIGMOD), pages 906–908, 2005.

[ADOM11] Luca Maria Aiello, Debora Donato, Umut Ozertem, and Filippo Menczer. Behavior-
driven Clustering of Queries into Topics. In Proceedings of the Conference on Informa-
tion and Knowledge Management (CIKM), pages 1373–1382, 2011.

[AFFG08] Alex Arenas, Alberto Fernandez, Santo Fortunato, and Sergio Gomez. Motif-based
Communities in Complex Networks. Journal Phys. A: Math. Theor., 41:224001, 2008.

[AHSdV11] Samur Araujo, Jan Hidders, Daniel Schwabe, and Arjen P. de Vries. SERIMI - Resource
Description Similarity, RDF Instance Matching and Interlinking. Computing Research
Repository, abs/1107.1104, 2011.

[ARS09] Arvind Arasu, Christopher Re, and Dan Suciu. Large-scale Deduplication with Con-
straints using Dedupalog. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pages 952–963, 2009.

[ATvN+12] Sören Auer, Sebastian Tramp, Bert van Nuffelen, Robert Isele, Jens Lehmann, Lorenz
Bühmann, Christian Dirschl ü Pablo N. Mendes, Hugh Williams, Orri Erling, and
Michael Hausenblas. Managing the Life-Cycle of Linked Data with the LOD2 Stack. In
Proceedings of the International Semantic Web Conference (ISWC), 2012.

[AXH+10] Gil Alterovitz, Michael Xiang, David P. Hill, Jane Lomax, Jonathan Liu, Michael
Cherkassky, Jonathan Dreyfuss, Chris Mungall, Midori A. Harris, Mary E. Dolan, Ju-
dith A. Blake, and Marco F. Ramoni and. Ontology Engineering. nature biotechnology,
28(2):128–130, 2010.

[BCC+13] Khalid Belhajjame, James Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes,
Stephan Zednik, and Jun Zhao. PROV-O: The PROV Ontology. http://www.w3.org/

TR/prov-o/, March 2013. W3C Proposed Recommendation.

135

http://www.w3.org/TR/rdfa-core/
http://www.w3.org/TR/rdfa-core/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/void
http://www.w3.org/TR/prov-o/
http://www.w3.org/TR/prov-o/

Bibliography

[BCH07] Chris Bizer, Richard Cyganiak, and Tom Heath. How to Publish Linked Data on the
Web. http://linkeddata.org/docs/how-to-publish, 2007. superseeded by the book
Heath2011.

[BCM05] Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini, editors. Ontology Learning
from Text: Methods, Evaluation and Applications, volume 123 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2005.

[BDG+07] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner. On Finding Graph Clusterings with Maximum Mod-
ularity. In Proceedings of the International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 121–132, 2007.

[BEP+08] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: A Collaboratively Created Graph Database for Structuring Human Knowledge.
In Proceedings of the ACM SIG Management Of Data Conference (SIGMOD), pages
1247–1250, 2008.

[BFH+12] Christoph Böhm, Markus Freitag, Arvid Heise, Claudia Lehmann, Andrina Mascher, Fe-
lix Naumann, Vuk Ercegovac, Mauricio Hernandez, Peter Haase, and Michael Schmidt.
GovWILD: Integrating Open Government Data for Transparency. In Proceedings of the
International World Wide Web Conference (WWW), pages 321–324, 2012.

[BG04] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema/, February 2004. W3C Recommendation.

[BGL09] Christoph Böhm, Philip Groth, and Ulf Leser. Graph-Based Ontology Construction from
Heterogenous Evidences. In Proceedings of the International Semantic Web Conference
(ISWC), pages 81–96, 2009.

[BGMi05] Jeffrey Baumes, Mark Goldberg, and Malik Magdon-ismail. Efficient Identification of
Overlapping Communities. In Proceedings of the ISI, 2005.

[BH09] Daniel Bennett and Adam Harvey. Publishing Open Government Data. http://www.

w3.org/TR/gov-data, September 2009. W3C Working Draft.

[BHBE10] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. HaLoop: Efficient
Iterative Data Processing on Large Clusters. Proceedings of the VLDB Endowment
(PVLDB), 3(1):285–296, 2010.

[Bil] Billion Triple Challenge 2011 Dataset. http://km.aifb.kit.edu/projects/btc-2011.

[Biz12] Christian Bizer. Microdata, RDFa, Web APIs, Linked Data: Competing or Comple-
mentary? Panel Discussion introductory slides in Proceedings of the Linked Data on
the Web workshop at the WWW Conference (LDOW), April 2012.

[BKN12] Christoph Böhm, Gjergji Kasneci, and Felix Naumann. Latent Topics in Graph-
Structured Data. In Proceedings of the Conference on Information and Knowledge
Management (CIKM), 2012.

[BL05] Tim Berners-Lee. An RDF language for the Semantic Web - Notation3. http://www.

w3.org/DesignIssues/Notation3.html, August 2005. Design Issues.

[BL06] Tim Berners-Lee. Informal Design Issues: Linked Data. http://www.w3.org/

DesignIssues/LinkedData.html, June 2006. Design Issues, last change 06/2009.

[BLC11] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax. http:

//www.w3.org/TeamSubmission/n3/, March 2011. W3C Team Submission.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284:34–43, 2001.

[BLK+09] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - A Crystallization Point for
the Web of Data. Journal of Web Semantics, Science, Services and Agents on the
World Wide Web, 7(3):154–165, 2009.

136

http://linkeddata.org/docs/how-to-publish
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/gov-data
http://www.w3.org/TR/gov-data
http://km.aifb.kit.edu/projects/btc-2011
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/

Bibliography

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys, 18:323–364, 1986.

[BLN11] Christoph Böhm, Johannes Lorey, and Felix Naumann. Creating voiD Descriptions for
Web-scale Data. Journal of Web Semantics, Science, Services and Agents on the World
Wide Web, 9(3):339–345, 2011.

[BLN+12] Robin Berjon, Travis Leithead, Erika Doyle Navara, Edward O’Connor, and Silvia Pfeif-
fer. Html5. http://www.w3.org/TR/html5/, December 2012. W3C Candidate Recom-
mendation.

[BM04] Dave Beckett and Brian McBride. RDF/XML Syntax Specification. http://www.w3.

org/TR/REC-rdf-syntax/, February 2004. W3C Recommendation.

[BMNW12] Christoph Böhm, Gerard de Melo, Felix Naumann, and Gerhard Weikum. LINDA:
Distributed Web-of-Data-Scale Entity Matching. In Proceedings of the Conference on
Information and Knowledge Management (CIKM), 2012.

[BNA+10] Christoph Böhm, Felix Naumann, Ziawasch Abedjan, Dandy Fenz, Toni Grütze, Daniel
Hefenbrock, Matthias Pohl, and David Sonnabend. Profiling Linked Open Data with
ProLOD. In Proceedings of the International Workshop on New Trends in Information
Integration (NTII), 2010.

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.
Journal of ML Research, 3:993–1022, 2003.

[BS04] Christian Bizer and Andy Seaborne. D2RQ - Treating Non-RDF Databases as Virtual
RDF Graphs. In Proceedings of the International Semantic Web Conference (ISWC),
2004. http://d2rq.org.

[BvH06] Sylvain Brohee and Jacques van Helden. Evaluation of Clustering Algorithms for
Protein-protein Interaction Networks. BMC Bioinformatics, 7:488–507, 2006.

[CAS09] Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. AgreementMaker: Efficient
Matching for Large Real-world Schemas and Ontologies. Proceedings of the VLDB
Endowment (PVLDB), 2:1586–1589, 2009.

[CFLGP03] Oscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez. Methodologies,
Tools and Languages for Building Ontologies: Where is their meeting point? Data and
Knowledge Engineering (DKE), 46(1):41–64, 2003.

[CHK09] Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. Data Integration for the
Relational Web. The VLDB Journal, 2:1090–1101, 2009.

[CHM11] Richard Cyganiak, Michael Hausenblas, and Eoin McCuirc. Linking Government Data,
chapter Official Statistics and the Practice of Data Fidelity. Springer, 2011.

[Chr07] Peter Christen. Towards Parameter-free Blocking for Scalable Record Linkage. Technical
Report TR-CS-07-03, The Australian National University, 2007.

[Chr12a] Peter Christen. A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication. IEEE Transactions on Knowledge and Data Engineering, 24:1537–1555,
2012.

[Chr12b] Peter Christen. Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, 2012.

[CHW+08] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
WebTables: Exploring the Power of Tables on the Web. In Proceedings of the VLDB
Endowment (PVLDB), 2008.

[CMHJ+09] Philippe Cudré-Mauroux, Parisa Haghani, Michael Jost, Karl Aberer, and Hermann
De Meer. idMesh: Graph-based Disambiguation of Linked Data. In Proceedings of the
International World Wide Web Conference (WWW), pages 591–600, 2009.

137

http://www.w3.org/TR/html5/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://d2rq.org

Bibliography

[Coh00] William W. Cohen. Data Integration using Similarity Joins and a Word-based Informa-
tion Representation Language. ACM Transactions on Information Systems, 18:288–321,
2000.

[Coh09] Jonathan Cohen. Graph Twiddling in a MapReduce World. Computing in Science and
Engineering, 11(4):29–41, 2009.

[CP11] Eric Crestan and Patrick Pantel. Web-scale Table Census and Classification. pages
545–554, 2011.

[CSH06] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A Survey on Ontology Mapping. ACM
SIGMOD Record, 35(3):34–41, 2006.

[CZHY12] Hong Cheng, Yang Zhou, Xin Huang, and Jeffrey Xu Yu. Clustering Large Attributed
Information Networks: An Efficient Incremental Computing Approach. Data Mining
and Knowledge Discovery, 25(3):450–477, 2012.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Proceedings of the International Symposium on Operating System Design
and Implementation, 2004.

[DG08] Lucas Drumond and Rosario Girardi. A Survey of Ontology Learning Procedures. In
Workshop on Ontologies and their Applications. http://ceur-ws.org, 2008.

[DJP+94] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The Complexity of Multiterminal Cuts. SIAM Journal on Computing, 23:864–894, 1994.

[DKP+09] Nilesh Dalvi, Ravi Kumar, Bo Pang, Raghu Ramakrishnan, Andrew Tomkins, Philip
Bohannon, Sathiya Keerthi, and Srujana Merugu. A Web of Concepts. In Proceedings
of the SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
1–12, 2009.

[DLE+11] Li Ding, Timothy Lebo, John S Erickson, Dominic DiFranzo, Alvaro Graves, Gregory T
Williams, Xian Li, James Michaelis, Jin Zheng, Zhenning Shangguan, Johanna Flores,
Deborah L McGuinness; J, and James A Hendler. TWC LOGD: A Portal for Linked
Open Government Data Ecosystems. Journal of Web Semantics, Science, Services and
Agents on the World Wide Web, 9(3), 2011.

[DMP12] Nilesh Dalvi, Ashwin Machanavajjhala, and Bo Pang. An Analysis of Structured Data
on the Web. Proceedings of the VLDB Endowment (PVLDB), 5(7):680–691, 2012.

[DPV05] Imre Derényi, G Palla, and Tamás Vicsek. Clique Percolation in Random Networks.
APS Physical Review Letters, 94, 2005.

[DR02] Hong Hai Do and Erhard Rahm. COMA - A System for Flexible Combination of
Schema Matching Approaches. In Proceedings of the Internatial Conference on Very
Large Databases, pages 610–621, 2002.

[DSC12] Souripriya Das, Oracle Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF
Mapping Language. http://www.w3.org/TR/r2rml/, September 2012. W3C Recom-
mendation.

[DSFM10] Li Ding, Joshua Shinavier, Tim Finin, and Deborah L. McGuinness. owl:sameAs and
Linked Data: An Empirical Study. In Proceedings of the Web Science Conference:
Extending the Frontiers of Society On-Line (WebSci), 2010.

[DSSM10] Li Ding, Joshua Shinavier, Zhenning Shangguan, and Deborah McGuinness. SameAs
Networks and Beyond: Analyzing Deployment Status and Implications of owl:sameAs
in Linked Data. In Proceedings of the International Semantic Web Conference (ISWC),
November 2010.

[DSW+00] A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa, and V. R. Benjamins. Wonder-
Tools?: A Comparative Study of Ontological Engineering Tools. International Journal
of Human-Computer, 52(6):1111–1133, 2000.

138

http://www.w3.org/TR/r2rml/

Bibliography

[DWP+07] Nan Du, Bin Wu, Xin Pei, Bai Wang, and Liutong Xu. Community Detection in Large-
scale Social Networks. In WebKDD and SNA-KDD workshop, 2007.

[EFH+09] Jérôme Euzenat, Alfio Ferrara, Laura Hollink, Antoine Isaac, Cliff Joslyn, Véronique
Malaisé, Christian Meilicke, Andriy Nikolov, Juan Pane, Marta Sabou, François
Scharffe, Pavel Shvaiko, Vassilis Spiliopoulos, Heiner Stuckenschmidt, Ondrej Sváb-
Zamazal, Vojtech Svátek, Cássia Trojahn dos Santos, George A. Vouros, and Shenghui
Wang. Results of the Ontology Alignment Evaluation Initiative. In Workshop on On-
tology Matching, 2009.

[EFH+11] Jérôme Euzenat, Alfio Ferrara, Willem Robert van Hage, Laura Hollink, Christian
Meilicke, Andriy Nikolov, Dominique Ritze, François Scharffe, Pavel Shvaiko, Heiner
Stuckenschmidt, Ondrej Sváb-Zamazal, and Cássia Trojahn dos Santos. Results of the
Ontology Alignment Evaluation Initiative. In Workshop on Ontology Matching, 2011.

[EFM+10] Jérôme Euzenat, Alfio Ferrara, Christian Meilicke, Juan Pane, François Scharffe, Pavel
Shvaiko, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vojtech Svátek, and Cássia Tro-
jahn dos Santos. Results of the Ontology Alignment Evaluation Initiative. In Workshop
on Ontology Matching, 2010.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
Record Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 19:1–16, 2007.

[ELZ+10] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy
Qiu, and Geoffrey Fox. Twister: A Runtime for Iterative MapReduce. In Proceedings of
the ACM International Symposium on High Performance Distributed Computing, pages
810–818, 2010.

[ES07] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag, 2007.

[ETKM12] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. Spinning Fast
Iterative Data Flows. Proceedings of the VLDB Endowment (PVLDB), 5(11):1268–1279,
2012.

[FB07] S. Fortunato and M. Barthélemy. Resolution Limit in Community Detection. Proceedings
of the National Academy of Sciences (PNAS), 104(1):36, 2007.

[FCFOP+11] Kelli de Faria Cordeiro, Fabricio Firmino de Faria, Bianca de Oliveira Pereira,
André Freitas, Jo ao Vitor Villas Boas Freitas, Ana Christina Bringuente, Lucas
de Oliveira Arantes, and Rodrigo Calhau. An Approach for Managing and Semanti-
cally Enriching the Publication of Linked Open Governmental Data. In In Proceedings
of the Workshop in Applied Computing for Electronic Government (WCGE), SBBD., 9
2011.

[Fel98] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
1998.

[FHL11] Matias Frosterus, Eero Hyvönen, and Joonas Laitio. Linking Government Data, chapter
Creating and Publishing Semantic Metadata about Linked and Open Datasets, pages
95–112. Springer, 2011.

[FKP99] Uriel Feige, Guy Kortsarz, and David Peleg. The Dense k-Subgraph Problem. Algorith-
mica, 29:2001, 1999.

[Fle71] Joseph L. Fleiss. Measuring Nominal Scale Agreement Among many Raters. Psycho-
logical Bulletin, 76:378–382, 1971.

[For10] Santo Fortunato. Community Detection in Graphs. APS Physical Review, 486:75–174,
2010.

[GBN12] Toni Grütze, Christoph Böhm, and Felix Naumann. Holistic and Scalable Ontology
Alignment for Linked Open Data. In Proceedings of the Linked Data on the Web work-
shop at the WWW Conference (LDOW), 2012.

139

Bibliography

[GDW09] Alexander Grosskopf, Gero Decker, and Mathias Weske. The Process: Business Process
Modeling using BPMN. Meghan Kiffer Press, 2009.

[GEP08] Gunnar A. Grimnes, Peter Edwards, and Alun Preece. Instance-based Clustering of
Semantic Web Wesources. In Proceedings of the Extended Semantic Web Conference
(ESWC)), 2008.

[GGSL12] Christophe Guéret, Paul Groth, Claus Stadler, and Jens Lehmann. Assessing Linked
Data Mappings using Network Measures. In Proceedings of the Extended Semantic Web
Conference (ESWC)), pages 87–102, 2012.

[GJM09] Hugh Glaser, Afraz Jaffri, and Ian Millard. Managing Co-reference on the Semantic
Web. 2009.

[gkg12] Introducing the Knowledge Graph: things, not strings.
http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html,
May 2012. The Official Google Blog.

[GMC10] B.H. Good, Y.A. De Montjoye, and A. Clauset. Performance of Modularity Maximiza-
tion in Practical Contexts. APS Physical Review E, 81(4):046106, 2010.

[Gos11] Johannes Gosda. Überlappendes Clustering annotierter Graphen durch Motif-
Perkolation. Master’s thesis, Hasso Plattner Institute, 2011.

[Gre08] Steve Gregory. A Fast Algorithm to Find Overlapping Communities in Networks. In
Proceedings of the European Conference on Principles and Practice of Knowledge Dis-
covery in Databases, 2008.

[Grü11] Toni Grütze. Holistic Concept Matching in the Web of Data. Master’s thesis, Hasso
Plattner Institute, 2011.

[HB11] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data
Space. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan &
Claypool, 1 edition, 2011. http://linkeddatabook.com/editions/1.0/.

[HCQ11] Wei Hu, Jianfeng Chen, and Yuzhong Qu. A Self-training Approach for Resolving
Object Coreference on the Semantic Web. In Proceedings of the International World
Wide Web Conference (WWW), pages 87–96, 2011.

[HCZQ11] Wei Hu, Jianfeng Chen, Hang Zhang, and Yuzhong Qu. How Matchable are four thou-
sand Ontologies on the Semantic Web. In Proceedings of the Extended Semantic Web
Conference (ESWC)), pages 290–304, 2011.

[HEBR11] Maryam Hazman, Samhaa R. El-Beltagy, and Ahmed Rafea. A Survey of Ontology
Learning Approaches. International Journal of Computer Applications, 22(8):36–43,
2011.

[HHK+10] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sattler, and
Jürgen Umbrich. Data Summaries for On-Demand Queries over Linked Data. In Pro-
ceedings of the International World Wide Web Conference (WWW), 2010.

[HHM+10] Harry Halpin, Patrick J. Hayes, James P. McCusker, Deborah L. McGuinness, and
Henry S. Thompson. When owl:sameAs isn’t the Same: An Analysis of Identity Links
on the Semantic Web. In Proceedings of the International Semantic Web Conference
(ISWC), 2010.

[HHP+10] A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres. Weaving the Pedantic
Web. In Proceedings of the Linked Data on the Web workshop at the WWW Conference
(LDOW), 2010.

[HHU+12] Aidan Hogan, Andreas Harth, Jürgen Umrich, Sheila Kinsella, Axel Polleres, and Stefan
Decker. Searching and Browsing Linked Data with SWSE: the Semantic Web Search
Engine. Journal of Web Semantics, Science, Services and Agents on the World Wide
Web, 9, 2012.

140

http://linkeddatabook.com/editions/1.0/

Bibliography

[Hic12] Ian Hickson. HTML Microdata. http://www.w3.org/TR/microdata/, October 2012.
W3C Working Draft.

[HKL+09] Oktie Hassanzadeh, Anastasios Kementsietsidis, Lipyeow Lim, Renée J. Miller, and Min
Wang. A Framework for Semantic Link Discovery over Relational Data. In Proceedings
of the Conference on Information and Knowledge Management (CIKM), 2009.

[HMZ10] Peter Haase, Tobias Mathäß, and Michael Ziller. An evaluation of approaches to feder-
ated query processing over linked data. In Proceedings of the International Conference
on Semantic Systems (I-SEMANTICS), 2010.

[HNST11] Melanie Herschel, Felix Naumann, Sascha Szott, and Maik Taubert. Scalable Iterative
Graph Duplicate Detection. IEEE Transactions on Knowledge and Data Engineering
(TKDE), (preprint), 2011.

[HPUZ10] Aidan Hogan, Axel Polleres, Jürgen Umbrich, and Antoine Zimmermann. Some entities
are more equal than others: Statistical Methods to Consolidate Linked Data. In Pro-
ceedings of the Workshop on New Forms of Reasoning for the Semantic Web: Scalable
& Dynamic, 2010.

[HQ08] Wei Hu and Yuzhong Qu. Falcon-AO: A practical ontology matching system. Journal
of Web Semantics, Science, Services and Agents on the World Wide Web, 6(3):237–239,
2008.

[HS12] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. http://www.w3.org/
TR/sparql11-query/, July 2012. W3C Working Draft.

[HSBW12] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia. Arti-
ficial Intelligence Journal, Special Issue on Artificial Intelligence, Wikipedia and Semi-
Structured Resources, 2012.

[HUH+12] Aidan Hogan, Jürgen Umbrich, Andreas Harth, Richard Cyganiak, Axel Polleres, and
Stefan Decker. An empirical survey of Linked Data conformance. Journal of Web
Semantics, Science, Services and Agents on the World Wide Web, 14:14–44, 2012.

[HVTH12] Bernadette Hyland, Boris Villazón-Terrazas, and Michael Hausenblas. Best Practices for
Publishing Linked Data. https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.
html, October 2012. W3C Editor’s Draft.

[HXM+09] Oktie Hassanzadeh, Reynold Xin, Renée J. Miller, Anastasios Kementsietsidis, Lipyeow
Lim, and Min Wang. Linkage Query Writer. Proceedings of the VLDB Endowment
(PVLDB), 2:1590–1593, 2009.

[Hyl11] Bernadette Hyland. Cookbook for Open Government Linked Data. http://www.w3.

org/2011/gld/wiki/Linked_Data_Cookbook, December 2011.

[HZU+12] Aidan Hogan, Antoine Zimmermann, Jürgen Umbrich, Axel Polleres, and Stefan Decker.
Scalable and Distributed Methods for Entity Matching, Consolidation and Disambigua-
tion over Linked Data Corpora. Journal of Web Semantics, Science, Services and Agents
on the World Wide Web, 10:76–110, January 2012.

[IB12] Robert Isele and Christian Bizer. Learning Expressive Linkage Rules using Genetic
Programming. PVLDB, 5(11):1638–1649, 2012.

[IJB10] Robert Isele, Anja Jentzsch, and Christian Bizer. Silk Server - Adding missing Links
while consuming Linked Data. In Workshop on Consuming Linked Data, 2010.

[IJB11] Robert Isele, Anja Jentzsch, and Christian Bizer. Efficient Multidimensional Blocking
for Link Discovery without losing Recall. In Proceedings of the International Workshop
on the Web and Databases (WebDB), 2011.

[IvdMSW07] Antoine Isaac, Lourens van der Meij, Stefan Schlobach, and Shenghui Wang. An Em-
pirical Study of Instance-Based Ontology Matching. In Proceedings of the International
Semantic Web Conference (ISWC), volume 4825, pages 253–266, 2007.

141

http://www.w3.org/TR/microdata/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.html
https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.html
http://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook
http://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook

Bibliography

[JAaS+10] Cliff Joslyn, Bob Adolf, Sinan al Saffar, John Feo, Eric Goodman, David Haglin, Greg
Mackey, and David Mizell. High Performance Semantic Factoring of Giga-Scale Semantic
Graph Databases. Contribution to Semantic Web Challenge at ISWC, 2010.

[JC97] J.J. Jiang and D.W. Conrath. Semantic Similarity Based on Corpus Statistics and
Lexical Taxonomy. In Proceedings of the Conference on Research in Computational
Linguistics, pages 19–33, 1997.

[JHL11] Yookyung Jo, John E. Hopcroft, and Carl Lagoze. The Web of Topics: Discovering the
Topology of Topic Evolution in a Corpus. In Proceedings of the International World
Wide Web Conference (WWW), 2011.

[JHS+10] Prateek Jain, Pascal Hitzler, Amit P. Sheth, Kunal Verma, and Peter Z. Yeh. Ontology
Alignment for Linked Open Data. In Proceedings of the International Semantic Web
Conference (ISWC), 2010.

[JHY+10] Prateek Jain, Pascal Hitzler, Peter Z. Yeh, Kunal Verma, and Amit P. Sheth. Linked
Data is Merely More Data. In AAAI Symposium on Linked Data Meets Artificial Intel-
ligence, 2010.

[JMSK09] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. Ontology Match-
ing with Semantic Verification. Journal of Web Semantics, Science, Services and Agents
on the World Wide Web, 7:235–251, 2009.

[JYV+10] Prateek Jain, Peter Z. Yeh, Kunal Verma, Reymonrod G. Vasquez, Mariana Damova,
Pascal Hitzler, and Amit P. Sheth. Contextual Ontology Alignment of LOD with an
Upper Ontology: A Case Study with Proton. In Proceedings of the Extended Semantic
Web Conference (ESWC)), 2010.

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a
symposium on the Complexity of Computer Computations, pages 85–103, 1972.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. http://www.w3.org/TR/rdf-concepts/, February 2004.
W3C Recommendation.

[Kny12] Eyk Kny. Erweiterung und Optimierung eines Graph-Clustering-Verfahrens. Master’s
thesis, Hasso Plattner Institute, 2012.

[Kos00] Donald Kossmann. The State-of-the-art in Distributed Query Processing. ACM Com-
puting Surveys, 32:422–469, 2000.

[KR10a] Hanna Köpcke and Erhard Rahm. Frameworks for Entity Matching: A Comparison.
Data and Knowledge Engineering (DKE), 69:197–210, 2010.

[KR10b] Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A comparison.
Data and Knowledge Engineering (DKE), 69:197–210, 2010.

[KS05] Yannis Kalfoglou and Marco Schorlemmer. Ontology Mapping: The State of the Art.
In Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab, and M. Uschold, editors, Se-
mantic Interoperability and Integration, Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2005.

[KSRC09] Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti. Collec-
tive Annotation of Wikipedia Entities in Web Text. In Proceedings of the ACM SIG
Knowledge Discovery and Data Mining Conference (SIGKDD), 2009.

[KTF09] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS: A Peta-
Scale Graph Mining System Implementation and Observations. In Proceedings of the
IEEE International Conference on Data Mining (ICDM), pages 229–238, 2009.

[KTR10] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of Entity Resolution
Approaches on Real-world Match Problems. Proceedings of the VLDB Endowment
(PVLDB), 3:484–493, 2010.

142

http://www.w3.org/TR/rdf-concepts/

Bibliography

[KTR12] Lars Kolb, Andreas Thor, and Erhard Rahm. Load Balancing for MapReduce-based
Entity Resolution. In Proceedings of the IEEE International Conference on Data Engi-
neering (ICDE), pages 618–629, 2012.

[LGK+12] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Distributed GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud. Proceedings of the VLDB Endowment (PVLDB), 5(8):716–
727, 2012.

[LJC+09] Yang Liu, Xiaohong Jiang, Huajun Chen, Jun Ma, and Xiangyu Zhang. MapReduce-
Based Pattern Finding Algorithm Applied in Motif Detection for Prescription Com-
patibility Network. In Proceedings of the of the International Symposium on Advanced
Parallel Processing Technologies, 2009.

[LJPD+12] Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Grae-
pel, and Zoubin Ghahramani. SiGMa: Simple Greedy Matching for Aligning Large
Knowledge Bases. Computing Research Repository, abs/1207.4525, 2012.

[LLM10] Jure Leskovec, Kevin J. Lang, and Michael Mahoney. Empirical Comparison of Algo-
rithms for Network Community Detection. In Proceedings of the International World
Wide Web Conference (WWW), 2010.

[LS10] Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph Algorithms in
MapReduce. In Workshop on Mining and Learning with Graphs, 2010.

[LTLL09] Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. RiMOM: A Dynamic Multistrategy On-
tology Alignment Framework. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 21(8):1218–1232, 2009.

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the ACM SIG Management Of Data Conference (SIGMOD), pages
135–146, 2010.

[McK81] Brendan D. McKay. Practical Graph Isomorphism. Congressus Numerantium, 30:45–87,
1981.

[MCRE09] Flavia Moser, Recep Colak, Arash Rafiey, and Martin Ester. Mining Cohesive Patterns
from Graphs with Feature Vectors. In Proceedings of the SIAM International Conference
on Data Mining (SDM), pages 593–604, 2009.

[MEA12] Fadi Maali, John Erickson, and Phil Archer. Data Catalog Vocabulary (DCAT). http:
//www.w3.org/TR/vocab-dcat/, April 2012. W3C Working Draft.

[MGM07] Scott Meyer, Jutta Degenerand John Giannandrea, and Barak Michener. A Platform for
Scalable, Collaborative, Structured Information Integration. In International Workshop
on Information Integration on the Web, 2007.

[MP10] Fredrik Manne and Md. Mostofa Ali Patwary. A Scalable Parallel Union-Find Algorithm
for Distributed Memory Computers. pages 186–195, 2010.

[MP12] Peter Mika and Tim Potter. Metadata Statistics for a Large Web Corpus. In Proceedings
of the Linked Data on the Web workshop at the WWW Conference (LDOW), 2012.
Version as of April 14, 2012.

[MPR+10] Pierre-Nicolas Mougel, Marc Plantevit, Christophe Rigotti, Olivier Gandrillon, and
Jean-Francois Boulicaut. Constraint-Based Mining of Sets of Cliques Sharing Vertex
Properties. In Workshop on Analysis of Complex NEtworks ACNE co-located with
ECML PKDD, 2010.

[MS01] Alexander Maedche and Steffen Staab. Ontology Learning for the Semantic Web. IEEE
Intelligent Systems, 16(2):72–79, 2001.

[MSOI+02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
Motifs: Simple Building Blocks of Complex Networks. Science, 298:824–827, 2002.

143

http://www.w3.org/TR/vocab-dcat/
http://www.w3.org/TR/vocab-dcat/

Bibliography

[NA11] Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES - A Time-Efficient Approach for
Large-Scale Link Discovery on the Web of Data. In Proceedings of the of the International
Joint Conference on Artificial Intelligence (IJCAI), 2011.

[NG04] M. E. J. Newman and M. Girvan. Finding and Evaluating Community Structure in
Networks. APS Physical Review E, 69:026113+, 2004.

[NGPC11] Andrea Giovanni Nuzzolese, Aldo Gangemi, Valentina Presutti, and Paolo Ciancarini.
Encyclopedic Knowledge Patterns from Wikipedia Links. In Proceedings of the Inter-
national Semantic Web Conference (ISWC), 2011.

[NH10] Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detection. Morgan
& Claypool, 2010.

[NL12] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. EAGLE: Efficient Active Learning of Link
Specifications using Genetic Programming. In Proceedings of the Extended Semantic
Web Conference (ESWC)), 2012.

[NMS10] M. Niepert, C. Meilicke, and H. Stuckenschmidt. A Probabilistic-logical Framework for
Ontology Matching. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2010.

[NNMS10] Jan Noessner, Mathias Niepert, Christian Meilicke, and Heiner Stuckenschmidt. Lever-
aging Terminological Structure for Object Reconciliation. In Proceedings of the Extended
Semantic Web Conference (ESWC)), pages 334–348, 2010.

[NRZW11] Xing Niu, Shu Rong, Yunlong Zhang, and Haofen Wang. Zhishi.links results for OAEI
2011. In Proceedings of the Workshop on Ontology Matching. CEUR-WS.org, 2011.

[NSD+01] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen.
Creating Semantic Web contents with Protege-2000. IEEE Intelligent Systems, 16(2):60–
71, 2001.

[NSW+11] Xing Niu, Xinruo Sun, Haofen Wang, Shu Rong, Guilin Qi, and Yong Yu. Zhishi.me:
Weaving Chinese Linking Open Data. In Proceedings of the International Semantic Web
Conference (ISWC), pages 205–220, 2011.

[OV11] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems.
Springer, 3rd edition, 2011.

[PDFV05] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. Uncovering the Over-
lapping Community Structure of Complex Networks in Nature and Society. Nature,
435:814–818, 2005.

[PHHD10] Axel Polleres, Aidan Hogan, Andreas Harth, and Stefan Decker. Can we ever catch up
with the Web? Semantic Web, 1(1,2):45–52, April 2010.

[PHM10] Eelco Plugge, Tim Hawkins, and Peter Membrey. The Definitive Guide to MongoDB:
The NoSQL Database for Cloud and Desktop Computing. Apress, 2010.

[PIN+12] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Palpanas, and Wolf-
gang Nejdl. Beyond 100 million entities: Large-scale Blocking-based Resolution for
Heterogeneous Data. pages 53–62, 2012.

[PINF11] George Papadakis, Ekaterini Ioannou, Claudia Niederée, and Peter Fankhauser. Efficient
Entity Resolution for Large Heterogeneous Information Spaces. pages 535–544, 2011.

[POM09] Mason A. Porter, Jukka-Pekka Onnela, and Peter J. Mucha. Communities in Networks.
Notices of the American Mathematical Society, 56, 2009.

[PS08] Eric Prud’Hommeaux and Andy Seaborne. SPARQL Query Language for RDF. http:

//www.w3.org/TR/rdf-sparql-query/, January 2008. W3C Recommendation.

[PSPLPMM10] Arnau Padrol-Sureda, Guillem Perarnau-Llobet, Julian Pfeifle, and Victor Muntés-
Mulero. Overlapping Community Search for Social Networks. In Proceedings of the
IEEE International Conference on Data Engineering (ICDE), 2010.

144

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

Bibliography

[Rah11] Erhard Rahm. Towards Large-Scale Schema and Ontology Matching. In Schema Match-
ing and Mapping, chapter 1, pages 3–27. Springer Berlin / Heidelberg, 2011.

[RB01] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. The VLDB Journal, 10:334–350, 2001.

[RDG11] Vibhor Rastogi, Nilesh Dalvi, and Minos Garofalakis. Large-scale Collective Entity
Matching. Proceedings of the VLDB Endowment (PVLDB), 4:208–218, 2011.

[RH09] Leonardo A Ribeiro and Theo Härder. Efficient Set Similarity Joins Using Min-prefixes.
In Advances in Databases and Information Systems, pages 88–102. Springer Berlin /
Heidelberg, 2009.

[RLDZ11] Chuitian Rong, Wei Lu, Xiaoyong Du, and Xiao Zhang. Efficient Duplicate Detection
on Cloud using a new Signature Scheme. In Proceedings of the international conference
on Web-age information management, pages 251–263, 2011.

[SAS11] Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS: Probabilistic Align-
ment of Relations, Instances, and Schema. In Proceedings of the VLDB Endowment
(PVLDB), volume 5, pages 157–168, 2011.

[Sch07] S. Schaeffer. Graph Clustering. Computer Science Review, 1:27–64, 2007.

[SD06] Parag Singla and Pedro Domingos. Entity Resolution with Markov Logic. In Proceedings
of the IEEE International Conference on Data Mining (ICDM), 2006.

[SE05] Pavel Shvaiko and Jérôme Euzenat. A Survey of Schema-Based Matching Approaches.
JDS, IV:146–171, 2005.

[Sea11] Andy Seaborne. SPARQL 1.1 Query Results JSON Format. http://www.w3.org/TR/

sparql11-results-json, September 2011. W3C Working Draft.

[SH13] Steve Speicher and Michael Hausenblas. Linked Data Platform 1.0. http://www.w3.

org/TR/ldp/, March 2013. W3C Working Draft.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago - A Core of Semantic
Knowledge. In Proceedings of the International World Wide Web Conference (WWW),
2007.

[SL90] Amit P. Sheth and James A. Larson. Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases. ACM Computing Surveys,
22:183–236, 1990.

[SLK+12] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Mark Birbeck.
JSON-LD Syntax 1.0. http://www.w3.org/TR/json-ld-syntax, July 2012. W3C Work-
ing Darft, see also http://json-ld.org.

[SMB10] Elena Simperl, Malgorzata Mochol, and Tobias Bürger. Achieving Maturity: the State
of Practice in Ontology Engineering in 2009. International Journal of Computer Science
and Applications, 7(1):45–65, 2010.

[SMZ12] Arlei Silva, Wagner Meira, Jr., and Mohammed J. Zaki. Mining Attribute-structure
Correlated Patterns in Large attributed Graphs. Proceedings of the VLDB Endowment
(PVLDB), 5(5):466–477, 2012.

[SPFW13] Andy Seaborne, Axel Polleres, Lee Feigenbaum, and Gregory Todd Williams. SPARQL
1.1 Federated Query. http://www.w3.org/TR/sparql11-federated-query/, March
2013. W3C Recommendation.

[Sta09] Rudi Staab, Steffen; Studer, editor. Handbook on Ontologies. Springer, 2009.

[TZS10] Duc Thanh Tran, Lei Zhang, and Rudi Studer. Summary Models for Routing Keywords
to Linked Data Sources. In Proceedings of the International Semantic Web Conference
(ISWC), 2010.

[Val90] Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications of the
ACM, 33(8):103–111, 1990.

145

http://www.w3.org/TR/sparql11-results-json
http://www.w3.org/TR/sparql11-results-json
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/json-ld-syntax
http://json-ld.org
http://www.w3.org/TR/sparql11-federated-query/

Bibliography

[VBGK09] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Discovering and
Maintaining Links on the Web of Data. In Proceedings of the International Semantic
Web Conference (ISWC), 2009.

[W3C09] W3C OWL Working Group. OWL 2 Web Ontology Language. http://www.w3.org/

TR/owl2-overview, October 2009. W3C Recommendation.

[WCRM09] Michael L. Wick, Aron Culotta, Khashayar Rohanimanesh, and Andrew McCallum. An
Entity Based Model for Coreference Resolution. In Proceedings of the SIAM Interna-
tional Conference on Data Mining (SDM), 2009.

[WGM12] Steven Euijong Whang and Hector Garcia-Molina. Joint Entity Resolution. In Proceed-
ings of the IEEE International Conference on Data Engineering (ICDE), 2012.

[Wil12] Gregory Todd Williams. SPARQL 1.1 Service Description. http://www.w3.org/TR/

sparql11-service-description/, January 2012. W3C Working Draft.

[WLB12] Wilson Wong, Wei Liu, and Mohammed Bennamoun. Ontology Learning from Text: A
Look Back and Into the Future. ACM Computing Surveys, 44(4):20:1–20:36, 2012.

[Woo11] David Wood, editor. Linking Government Data. Springer, 2011.

[WPWCM11] Marcin Wylot, Jigé Pont, Mariusz Wisniewski, and Philippe Cudré-Mauroux.
dipLODocus[RDF] - Short and Long-Tail RDF Analytics for Massive Webs of Data.
In Proceedings of the International Semantic Web Conference (ISWC), 2011.

[WRSM08] Wensheng Wu, Berthold Reinwald, Yannis Sismanis, and Rajesh Manjrekar. Discovering
Topical Structures of Databases. In Proceedings of the ACM SIG Management Of Data
Conference (SIGMOD), 2008.

[WWL+10] Chaokun Wang, Jianmin Wang, Xuemin Lin, Wei Wang, Haixun Wang, Hongsong Li,
Wanpeng Tian, Jun Xu, and Rui Li. MapDupReducer: Detecting Near Duplicates over
Massive Datasets. In Proceedings of the ACM SIG Management Of Data Conference
(SIGMOD), pages 1119–1122, 2010.

[XKS13] Jierui Xie, Stephen Kelley, and Boleslaw K. Szymanski. Overlapping Community De-
tection in Networks: the State of the Art and Comparative Study. ACM Computing
Surveys, 45(4), 2013. see also Computing Research Repository arXiv:1110.5813.

[XWLY08] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient Similarity Joins
for Near Duplicate Detection. In Proceedings of the International World Wide Web
Conference (WWW), pages 131–140, 2008.

[YCH+11] Zhijun Yin, Liangliang Cao, Jiawei Han, Chengxiang Zhai, and Thomas Huang. Geo-
graphical Topic Discovery and Comparison. In Proceedings of the International World
Wide Web Conference (WWW), 2011.

[YJ06] Cong Yu and H. V. Jagadish. Schema Summarization. In Proceedings of the VLDB
Endowment (PVLDB), pages 319–330, 2006.

[YPS11] Xiaoyan Yang, Cecilia M. Procopiuc, and Divesh Srivastava. Summary Graphs for Rela-
tional Database Schemas. Proceedings of the VLDB Endowment (PVLDB), 4(11):899–
910, 2011.

[ZBGAA12] Ke Zhai, Jordan Boyd-Graber, Nima Asadi, and Mohamad Alkhouja. Mr. LDA: A
Flexible Large Scale Topic Modeling Package using Variational Inference in MapReduce.
In Proceedings of the International World Wide Web Conference (WWW), 2012.

[ZCY09] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph Clustering based on Structural/At-
tribute Similarities. Proceedings of the VLDB Endowment (PVLDB), 2(1):718–729,
2009.

[ZN10] Amal Zouaq and Roger Nkambou. A Survey of Domain Ontology Engineering: Methods
and Tools. In Advances in Intelligent Tutoring Systems, pages 103–119. Springer, 2010.

146

http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/sparql11-service-description/
http://www.w3.org/TR/sparql11-service-description/

Bibliography

[ZRM+12] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann, and
Sören Auer. Quality Assessment Methodologies for Linked Open Data. Semantic Web,
2012.

All links were last followed in March 2013.

147

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	2 Contributing to the Web of Data: State-of-the-Art
	2.1 Creating Data and Schemata
	2.2 Creating Meta Information
	2.3 Creating Links

	3 Topic Mining
	3.1 Annotated Pattern Percolation
	3.2 Annotated Patterns
	3.2.1 Annotated Motif Patterns
	3.2.2 Mutual Information Patterns

	3.3 Pattern Percolation
	3.4 The APP System
	3.5 Experiments
	3.6 Discussion

	4 Entity Alignment
	4.1 Optimization Model
	4.1.1 Objective Function
	4.1.2 Complexity

	4.2 Assignment Algorithm for Multi-core Machines
	4.3 Assignment Algorithm with Map/Reduce
	4.4 Assignment Algorithm with Message-passing
	4.5 The LINDA System
	4.5.1 Prior Similarities
	4.5.2 Contextual Similarities

	4.6 Experiments
	4.6.1 Data
	4.6.2 Multi-core LINDA
	4.6.3 MR-LINDA
	4.6.4 MP-LINDA

	4.7 Discussion

	5 Concept Alignment
	5.1 Holistic Concept Matching
	5.2 Knowledge Representation
	5.3 Match Candidate Groups
	5.4 Concept Alignment
	5.5 Experiments
	5.6 Discussion

	6 Conclusion
	Bibliography

