
Charged systems in bulk and at interfaces

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
in der Wissenschaftsdisziplin Theoretische Physik

eingereicht an der
Matematisch-Naturwissenschaftlischen Fakultät der Universität Potsdam

angefertigt am
Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm
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Summary

One of the rules-of-thumb of colloid and surface physics is that most surfaces are charged when
in contact with a solvent, usually water. This is the case, for instance, in charge-stabilized col-
loidal suspensions, where the surface of the colloidal particles are charged (usually with a charge
of hundreds to thousands of e, the elementary charge), monolayers of ionic surfactants sitting at
an air–water interface (where the water-loving head groups become charged by releasing counte-
rions), or bilayers containing charged phospholipids (as cell membranes). In this work, we look at
some model-systems that, although being a simplified version of reality, are expected to capture
some of the physical properties of real charged systems (colloids and electrolytes).

We initially study the simple double layer, composed by a charged wall in the presence of its
counterions. The charges at the wall are smeared out and the dielectric constant is the same ev-
erywhere. The Poisson-Boltzmann (PB) approach gives asymptotically exact counterion density
profiles around charged objects in the weak-coupling limit of systems with low-valent counte-
rions, surfaces with low charge density and high temperature (or small Bjerrum length). Using
Monte Carlo simulations, we obtain the profiles around the charged wall and compare it with both
Poisson-Boltzmann (in the low coupling limit) and the novel strong coupling (SC) theory in the
opposite limit of high couplings. In the latter limit, the simulations show that the SC leads in fact
to asymptotically correct density profiles. We also compare the Monte Carlo data with previously
calculated corrections to the Poisson-Boltzmann theory. We also discuss in detail the methods
used to perform the computer simulations.

After studying the simple double layer in detail, we introduce a dielectric jump at the charged
wall and investigate its effect on the counterion density distribution. As we will show, the Poisson-
Boltzmann description of the double layer remains a good approximation at low coupling values,
while the strong coupling theory is shown to lead to the correct density profiles close to the wall
(and at all couplings). For very large couplings, only systems where the difference between the
dielectric constants of the wall and of the solvent is small are shown to be well described by SC.

Another experimentally relevant modification to the simple double layer is to make the charges
at the plane discrete. The counterions are still assumed to be point-like, but we constraint the
distance of approach between ions in the plane and counterions to a minimum distance D. The
ratio between D and the distance between neighboring ions in the plane is, as we will see, one of
the important quantities in determining the influence of the discrete nature of the charges at the
wall over the density profiles. Another parameter that plays an important role, as in the previous
case, is the coupling as we will demonstrate, systems with higher coupling are more subject to
discretization effects than systems with low coupling parameter.

After studying the isolated double layer, we look at the interaction between two double lay-



ers. The system is composed by two equally charged walls at distance d, with the counterions
confined between them. The charge at the walls is smeared out and the dielectric constant is the
same everywhere. Using Monte-Carlo simulations we obtain the inter-plate pressure in the global
parameter space, and the pressure is shown to be negative (attraction) at certain conditions. The
simulations also show that the equilibrium plate separation (where the pressure changes from at-
tractive to repulsive) exhibits a novel unbinding transition. We compare the Monte Carlo results
with the strong-coupling theory, which is shown to describe well the bound states of systems with
moderate and high couplings. The regime where the two walls are very close to each other is also
shown to be well described by the SC theory.

Finally, Using a field-theoretic approach, we derive the exact low-density (“virial”) expansion
of a binary mixture of positively and negatively charged hard spheres (two-component hard-core
plasma, TCPHC). The free energy obtained is valid for systems where the diameters d+ and d−
and the charge valences q+ and q− of positive and negative ions are unconstrained, i.e., the same
expression can be used to treat dilute salt solutions (where typically d+ ∼ d− and q+ ∼ q−) as
well as colloidal suspensions (where the difference in size and valence between macroions and
counterions can be very large). We also discuss some applications of our results.
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Chapter 1

Introduction

Colloidal systems surround us. Smoke, formed by solid particles suspended in air, fog, which is
composed of tiny liquid drops also suspended in air (also known as “aerosol”), milk, a suspension
of liquid drops in another liquid (emulsion) and ink, in general solid particles suspended in a
liquid, are a few examples of colloids that can be ordinarily found in every day’s life. In fact,
colloidal physics and chemistry is one of the scientific fields with most examples of industrial
applications, as for instance in processing food (e.g. stabilization of emulsions, like milk and
mayonnaise), in extraction of oil (with the help of surfactants), pharmaceutics (drug delivery with
hollow polymeric capsules that can in principle transport drugs directly to the places where they
are needed in the body), and even aerospace (use of new super-glues that can glue the joining parts
of airplanes). On the environmental side, colloidal particles can be also used to adsorb pollutants
and purify water. Beyond the technological applicability, very fundamental questions concerning
self-organized order in colloidal systems are being asked (and sometimes answered) within the
realm of soft condensed matter physics[65, 118].

Colloidal suspensions can be roughly divided into lyophilic, i.e., the particles interact favorably
with the solvent and like to stay in solution and lyophobic, which is the opposite: the particles
prefer to stick to each other and form larger aggregates that eventually drop out of solution. One
can avoid this latter process of aggregation by charging the colloidal particles, which then (in
principle) stay away from each other due to the Coulombic repulsive interaction. Electrostatically
stabilized systems can last very long (some water-soluble paints are stabilized this way) even
though the suspension might be only a metastable state. These are the so-called charge stabilized
colloidal suspensions. Another class of charged systems that is also very important are salt (or
electrolyte) solutions. Ions like sodium, potassium, calcium, etc. are fundamental to living cells
(it is no accident that we use salt in our food).

The term colloid was coined by the Scottish chemist Thomas Graham (1805–1869), who found
that substances like starch, gelatin and glue when in solution had very different properties from,
say, sugar or salt. For instance, colloidal particles diffuse much slower when in solution than non-
colloidal particles. Also, if a solution of sugar and glue inside a dialysis bag is put into contact
with a reservoir of water, the sugar diffuses through the membrane into the water, while the glue
is unable to cross the pores of the dialysis bag. We now know that the size of colloidal particles
(or macromolecules, in contrast to simple molecular systems) is responsible for such differences.
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2 Introduction

Cell membrane

Cell membrane

Intercellular

space

Figure 1.1: Photo of two cells close to each other. The cell membranes (clearly visible in the photo) are in general
charged due to the presence of charged phospholipids in their composition, which are organized in a bilayer, as schemat-
ically represented. Picture adapted from Ref. [21].

Typically, colloidal particles have radii that lie between 1 nm and 1000 nm, that is, the particles
are made of many atoms, but not enough to make the object really macroscopic (for this reason
these are often referred to as mesoscopic particles).

In the mesoscopic scale, surface properties can play an extremely important role. To see this,
let us assume a spherical colloidal particle with radius R formed by atoms (or molecules) that
have radius r0. The ratio between the number of atoms (or molecules) that are at the surface and
the total number of atoms in the colloidal particle is approximately given by 4r0/R. This means
that if r0 ∼ 0.1 nm and R ∼ 1 nm, 40% of the atoms forming the colloidal particles are in
fact at its surface; if R ∼ 1000 nm, this number becomes 0.04%, which although small, is not
infinitesimal (as it would be for a macroscopic object). This also shows why colloidal suspension
can sometimes be used as catalysts in chemical reactions, since there is a lot of area available in a
relatively small volume: if one sums the areas of all particles (assuming they are small spheres of
radius 10 nm) that are in a liter of a suspension at volume fraction 0.1, one finds ∼ 104 m2, which
is a quite impressive number.

One of the rules-of-thumb of colloid and surface physics is that most surfaces are charged when
in contact with a solvent (usually water). The charges on the surfaces may be chemically bounded
or adsorbed to the interface, and the pH of the solution can also influence the value of the charge
at the surface. There are usually two interactions between the particles that are important, namely
the electrostatic and the van der Waals. Gravity, for instance, does not play any role: the ratio
between the gravitational and the electrostatic force between two colloidal particles is generally
smaller than 10−25. If the solutions are enough dilute, the van der Waals interactions becomes
also unimportant in comparison to the Coulomb interactions. Colloidal particles that are charged
have typically a surface charge density of one e (elementary charge) per one hundred Å2 (with
a total charge between the hundreds and thousands of e per colloidal particle). The asymmetry
in size and charge between the colloidal particles and their counterions is very large, and is one
of the salient aspects of charged colloids. Loosely speaking, the surface of a colloidal particle
looks to a counterion almost like an infinite charged plane. Charged surfaces are also important in
biological system, as for instance in cell membranes, which contain charged phospholipids (i.e.,
with head-groups that become charged when in solution) in their composition.
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Figure 1.2: Colloidal crystal in coexistence with its fluid (picture from Ref. [59]). Although the particles are equally
charged, some kind of attraction between them has to develop so that the crystal can form.

The pioneering works in the field of charged fluids and colloidal physics done by Faraday,
Debye and Hückel, Gouy and Chapman, Bjerrum, Meyer, Verwey and Overbeek, just to mention
a few, have brought our understanding of these systems to a relatively high standard. However,
there are still many open questions and unexplained phenomena (cf. Fig. 1.2), which makes this an
interesting area for research. We approach here some models that, although crude simplifications
of reality and very simple in their concept, are yet quite challenging. A better knowledge of the
simple double layer (modeled by an infinite charged plane in the presence of counterions), or
of a two-component plasma (also known as the primitive model, where oppositely charged hard
spheres are in solution) can cast some light onto real systems.

Fig. 1.3 summarizes the organization of this thesis. We start by looking at inhomogeneous
charged systems. In the next three Chapters we will study the already mentioned double layer
problem, in its simplest case where a charged wall is in the presence of counterions (Chapter 2),
as well as when some modifications are incorporated so that the idealized model becomes slightly
more realistic: when there is a dielectric jump at the charged interface (Chapter 3) or when the
charges fixed on the wall are made discrete (Chapter 4). We will look at the thermodynamic
properties of these systems with the help of Monte Carlo simulations, and compare it with some
analytical results.

After this, we will look at the interaction between double layers (Chapter 5), where two sim-
ilarly charged walls confine their counterions between them. This is a natural step after studying
the isolated double layer, and has direct consequences to important problems like DNA conden-
sation[99] or the stability of colloidal suspensions[114]. Again, Monte Carlo simulations are used
to study this problem, and comparison with analytical results are also made.

Finally, in Chapter 6 we move from inhomogeneous to bulk systems and calculate the low-
density (“virial”) expansion of the free energy of the two-component plasma. This is an asymptotic
result, only valid for very dilute solutions; however, it allows one to treat in equal footing both
dilute electrolyte solutions (where co- and counterions have similar charge valences and sizes) as
well as dilute colloidal suspensions (where the size and charge asymmetry between the macroions
and their counterions can be of orders of magnitude).



4 Introduction

-q
-


 q
+


-q
-


-q
-

-q
-


-q
-


 q
+


 q
+


 q
+


-q
-
-q
-


-q
-

-q
-


-q
-


d
-


d
+


 q


 q
  q


 q


 q


 q


 q


 q


 q


 q


σ
s


ε
<
 ε
>


 q

 q  q

 q

 q

 q

 q

 q

 q

 q

σs

 q

σs

ε< ε<ε>

 q

d/2-d/2

 q

Inhomogeneous

systems

homogeneous

systems

Simple double layer:

charged wall plus 


counterions

Dielectric jump

at the wall

Discrete charges

at the wall

Ch. 2

Ch. 3

Ch. 4

Interaction between double layers:

two charged walls plus 


counterions

Ch. 5

Two-component hard-core

plasma: low density


expansion

Ch. 6

Figure 1.3: The relation between the various Chapters in this thesis.

We close this thesis in Chapter 7 with some final comments and prospective future work.



Chapter 2

Counterion distribution close to a
charged wall

We study the simple double layer, composed by a charged wall in the presence of its
counterions. The charges at the wall are smeared out and the dielectric constant is
the same everywhere. The Poisson-Boltzmann (PB) approach gives asymptotically
exact counterion density profiles around charged objects in the weak-coupling limit
of systems with low-valent counterions, surfaces with low charge density and high
temperature (or small Bjerrum length). Using Monte Carlo simulations, we obtain
the profiles around the charged wall and compare it with both Poisson-Boltzmann (in
the low coupling limit) and the novel strong coupling (SC) theory in the opposite limit
of high couplings. In the latter limit, the simulations show that the SC leads in fact
to asymptotically correct density profiles. We also compare the Monte Carlo data
with previously calculated corrections to the Poisson-Boltzmann theory. Finally, we
discuss in detail the methods used to perform the computer simulations.

2.1 Introduction

The ionic distribution close to a charged wall (electric double layer) is an old problem which has
attracted attention in recent years[52]. The basic system consists of an impenetrable wall with a
smeared out charge density σs in the presence of its counterions (with charge valence q) immersed
in a solvent characterized by a certain dielectric constant (cf. Fig. 2.1). Some examples where the
double layer problem is relevant can be found in biology (e.g. cell membranes are charged due
to the phospholipids that compose it), in colloidal chemistry (the stability problem of lyophobic
colloids[114]) or in interface physics[47].

The first approximate solution to this model was obtained by Gouy[37] and Chapman[20]
using the Poisson-Boltzmann equation and point-like counterions, in a way similar to the one later
used by Debye and Hückel to treat strong electrolytes[27]. This solution is asymptotically exact
in the limit of weakly charged systems or at high temperatures, where the correlations between the
counterions become less important, and a mean-field theory can be used to describe the system.

Since then, there have been various attempts to improve or correct the Poisson-Boltzmann
(PB) solution[7, 14]. One old example is the concept of Stern layer[108], which assumes a

5
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Figure 2.1: Schematic view of the semi-infinite charged wall with charge density σs and its counterions (with charge
valence q) in solution; ε< and ε> are, respectively, the dielectric constant of the wall and of the solvent where the
counterions are (in this Chapter we will only consider systems with ε< = ε>). The counterions cannot penetrate the wall.

layer of condensed counterions (with approximately 2 Å of thickness) in coexistence with non-
condensed counterions, which would be described by the Poisson-Boltzmann equation. Liquid
state theory[69, 43] has also been applied to these systems, especially with the hypernetted chain
(HNC) closure relation, which has proved to be a very powerful technique regarding charged
systems[11]. When applied to the double layer problem[54, 55, 84, 9], it yields numerical results
that are in very good agreement with computer simulations[40, 15, 25, 53]. However, integral
equation theories sometimes rely on numerical work and fail to provide an intuitive insight into the
problem. More recently, there has been some interest in applying field-theoretic methods[61, 12]
to charged systems. Perturbative field theory has been applied to study different aspects of these
systems, ranging from the critical behavior of the Restricted Primitive Model[51, 17, 76] to the
equation of state of a One-Component Plasma[16, 73]. Also the double layer has been tackled
with these methods, as for instance, to study image-charge effects[81, 96], or to obtain corrections
to Poisson-Boltzmann[83, 95].

In what follows we summarize the field-theoretic derivation[80] of an analytic expression for
the counterion distribution which is asymptotically exact for systems with highly valent counteri-
ons and highly charged surfaces (strong coupling limit), complementing the Poisson-Boltzmann
theory, which is valid in the opposite (weak coupling) limit. We also present in detail the computer
simulations[74] performed to study the double layer and used to test the analytical results.

2.2 Poisson-Boltzmann and strong coupling

The starting point is the Hamiltonian of a system of N counterions,1 each with charge valence q,
at the half-space z > 0 in the presence of an oppositely charged hard-wall located at z = 0 with
surface charge σs, viz.

H
kB T

=

N−1∑

j=1

N∑

k=j+1

q2 `B
|rj − rk|

+ 2πq`Bσs

N∑

j=1

zj , (2.1)

1Without loss of generality, we always assume the counterions to be positively charged.
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where
`B ≡ e2/4πεkBT (2.2)

is the Bjerrum length (the distance at which two elementary charges interact with the same strength
as the thermal energy, kB T ) and rj = (xj , yj, zj) is the position of counterion j. At this point we
do not consider a possible difference in the dielectric constants of the hard-wall and of the solution
(we will look at this in Chapter 3). The first sum in Eq. (2.1) corresponds to the interaction between
counterions in solution, while the second one is the interaction between each counterion and the
charged wall. The system is globally neutral, i.e. σs = q N/A, where A is the area of the wall.
As usual, any effects coming from the lateral finite size of the wall are not taken into account
in the Hamiltonian, since it is assumed that the system is very close to the thermodynamic limit
(N → ∞ and A→ ∞ with fixed σs).

It is convenient to define the Gouy-Chapman length µ ≡ 1/2πq`Bσs, which is the distance
at which a counterion interacts with the (unscreened) charged wall with the same strength as the
thermal energy. If we rescale all lengths according to r = r̃µ, then the Hamiltonian Eq. (2.1)
reads

H
kB T

=
N−1∑

j=1

N∑

k=j+1

Ξ

|̃rj − r̃k|
+

N∑

j=1

z̃j . (2.3)

Notice that after this rescaling, the Hamiltonian depends explicitly only on the coupling parameter

Ξ ≡ q2 `B
µ

= 2πq3`2Bσs. (2.4)

The Hamiltonian in rescaled units can give us some useful information about this system. The
Monte Carlo simulations that we will present show that the typical distance between an ion and
the charged wall is of the order of one Gouy-Chapman length, meaning that the binding energy
per ion (cf. the second term in the rhs of Eq. (2.3)) is of the order of unity. In Fig. 2.2 we show
the snapshots of Monte Carlo simulations for three different values of the coupling, viz. Ξ = 0.1,
10 and 104. For low coupling (Fig. 2.2a), the counterions distribute themselves in a diffuse cloud,
and each counterion is surrounded in all directions by other counterions—a usual situation where
mean-field theory yields good results. The typical distance between the counterions scales like
Ξ1/3, and the repulsion energy per pair goes like Ξ2/3 (cf. the first term in the rhs of Eq. (2.3)),
i.e., the repulsion between counterions becomes small (compared to the biding energy per ion),
and the counterion distribution should be quite disordered. In the other limit, (Fig. 2.2c), the
counterions orginize themselves in a two-dimensional layer close to the wall. Each counterion is
laterally surrounded by other counterions, typically at a distance Ξ1/2 away from each other. The
repulsion energy per pair scales like Ξ1/2, that is, it is now the dominant term in the energy. Note
that here mean-field theory is expected to break down, since the ions are almost independent to
move in the direction perpendicular to the wall, and are only confined by the linear potential due
to the fixed smeared out charge distribution on the wall. In fact, the latter suggests that one should
expect the counterion distribution perpendicular to the wall to decay like an exponential law (cf.
barometric law) for large Ξ.

The partition function of a system of N counterions interacting through the Coulomb potential
vc(r) = `B/r (in units of kBT ) with each other and with a fixed charge distribution σ(r) is given
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0
1085

2171

723.6

0
3.43

6.86

2.29

0
34.3

68.6

22.9

x / µ

x / µ

x / µ

(a)
(b)

(c)

Figure 2.2: Snapshots of counterion distributions containing 75 particles for different values of the coupling constant
Ξ: (a) weak coupling regime (Ξ = 0.1) where the Poisson-Boltzmann prediction is accurate; (b) intermediate coupling
regime (Ξ = 10); (c) strong coupling regime (Ξ = 104). Notice that in (a) there are 8 particles located far away from the
wall which are not shown.

by

Z =
1

N !

∫ N∏

l=1

drl exp

(
−q2

∑

<jk>

vc(rj − rk)− q

∫
drσ(r)

∑

j

vc(r− rj)+
∑

j

h(rj)

)
(2.5)

where the sum over < jk > corresponds to the sum over pairs of counterions and the field h has
been added to calculate density distributions later on. The configurational integral is assumed
to span the upper half-space only (z > 0). At this point we employ a Hubbard-Stratonovich
transformation[36], which leads to

Z =
1

N !

∫ Dφ
Zv

exp

(
−1

2

∫
drdr′φ(r)v−1

c (r − r
′)φ(r′) − ı

∫
drσ(r)φ(r)

)

×
[∫

dreh(r)−ıqφ(r)

]N
(2.6)
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where we introduced the notation Zv =
√

det vc. The inverse of the Coulomb potential, v−1
c , is

defined such that ∫
dr′′v−1

c (r − r
′′) vc(r

′′ − r
′) = δ(r − r

′). (2.7)

Assuming the dielectric constant to be the same everywhere, the Coulomb potential obeys the
Poisson law, viz.

kBTε

e2
∇2vc(r− r

′) = −δ(r − r
′); (2.8)

it follows from Eqs. (2.7) and (2.8) that v−1
c (r) = −∇2δ(r)/4π`B .

For simplicity, we perform a Legendre transformation to the grand-canonical ensemble, Q =∑
N λ

NZ , and thereby introduce the fugacity λ (exponential of the chemical potential). The
grand-canonical partition function can therefore be written as

Q =

∫ Dφ
Zv

exp

(
−
∫

dr

[
[∇φ(r)]2

8π`B
+ ıσ(r)φ(r) − λθ(z)eh(r)−ıqφ(r)

])
(2.9)

where θ(z) = 1 for z > 0 and zero otherwise. Next we rescale the action, similarly to our
previous rescaling analysis of the Hamiltonian. All lengths are rescaled by the Gouy-Chapman
length, r = µr̃, the fluctuating field is rescaled by the valence, φ = φ̄/q. We also use the explicit
form σ(r) = −σsδ(z) (with σs > 0) for the fixed charge distribution. The result is

Q =

∫ Dφ̄
Zv

exp

(
− 1

8πΞ

∫
dr̃

[
[∇φ̄(r̃)]2 − 4ıδ(z̃)φ̄(r̃) − 4Λθ(z̃)eh(r̃)−ıφ̄(r̃)

])
(2.10)

where the rescaled fugacity Λ is defined by

Λ = 2πλµ3Ξ =
λ

2π`Bσ2
s

. (2.11)

The expectation value of the counterion density, ρ(r̃), follows2 by taking a functional derivative
with respect to the generating field h, ρ(r̃) = δ lnQ/δh(r̃)µ3, giving rise to

ρ(r̃)

2π`Bσ2
s

= Λ〈e−ıφ̄(z̃)〉. (2.12)

The normalization condition for the counterion distribution, µ
∫

dz̃ρ(z̃) = σs/q, which fol-
lows directly from the definition of the grand-canonical partition function, leads to

Λ

∫
∞

0
dz̃〈e−ıφ̄(z̃)〉 = 1. (2.13)

This shows that the expectation values of the fugacity term in Eq.(2.10) is bounded and of the
order of unity per unit area.

2In general one should represent the average density as 〈ρ(r̃)〉, the brackets representing thermal averages. In order
to avoid a heavy notation, we do not use this here and ρ is to be understood as the thermal average (unless otherwise
stated).
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Let us first repeat the saddle-point analysis[83], which, because of the structure of the action
in Eq.(2.10), should be valid for Ξ � 1. The saddle-point equation reads

d2φ̄(z̃)

dz̃2
= 2ıΛe−ıφ̄(z̃) (2.14)

with the boundary condition dφ̄(z̃)/dz̃ = −2ı at z̃ = 0. The solution of this differential equation
is

ıφ̄(z̃) = 2 ln
(
1 + Λ1/2z̃

)
(2.15)

while the boundary condition leads to Λ = 1, which shows that the saddle-point approximation
is indeed valid in the limit Ξ � 1. Combining Eqs.(2.12) and (2.15), the density distribution of
counter ions is given by the well-known Poisson-Boltzmann prediction

ρ(z̃)

2π`Bσ2
s

=
1

[1 + z̃]2
. (2.16)

This result is exact in the limit of vanishing Ξ. For a classical derivation of the Poisson-Boltzmann
theory, see [114, 69].

Let us now consider the opposite limit, when the coupling constant Ξ is large[80]. In this
case, the saddle-point approximation breaks down, since the pre-factor in front of the action in
Eq.(2.10) becomes small. However, from the field-theoretic partition function Eq.(2.10), it is
clear what has to be done in this limit. Since the fugacity term is bounded, as evidenced by
Eq.(2.13), one can expand the partition function (and also all expectation values) in powers of
Λ/Ξ. Upon Legendre transformation to the canonical ensemble, this gives the standard virial ex-
pansion. The normalization condition Eq.(2.13) can be solved by an expansion of the fugacity as
Λ = Λ0 +Λ1/Ξ+ · · · , which leads to an expansion of the density profile with the small parameter
1/Ξ. While the standard virial expansion fails for homogeneous bulk charged systems because
of infra-red divergences, these divergences are renormalized for the present case of inhomoge-
neous distribution functions via the normalization condition Eq.(2.13). To leading order in this
expansion, the rescaled density is

ρ(r̃)

2π`Bσ2
s

= Λexp

(
−Ξ

2
vc(0) +

1

2π

∫
dr̃′ δ(z̃)

1

|̃r′ − r̃|

)
, (2.17)

where all lengths have been rescaled by µ. From the normalization condition Eq.(2.13) we obtain

Λ0 = exp

(
Ξ

2
vc(0) −

1

2π

∫
dr̃′δ(z′)

1

r̃′

)
(2.18)

and thus to leading order the density distribution is given by

ρ(z̃)

2π`Bσ2
s

= exp(−z̃). (2.19)

This is the exponential decay suggested by the previous scaling analysis of the Hamiltonian. No-
tice that this result is exact in the limit Ξ → ∞. An exponential density profile (however with
a different pre-factor) has also been obtained by Shklovskii[104] using an heuristic model for a
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Figure 2.3: Rescaled counterion density distribution ρ/2π`Bσ2
s as a function of the rescaled distance

�

z = z/µ from
the charged wall. The main figure shows Monte Carlo results for Ξ = 0.1 (open diamonds), Ξ = 10 (open triangles)
and Ξ = 104 (open stars). The solid and the dashed lines denote the Poisson-Boltzmann and the strong coupling theory
predictions, Eqs. (2.16) and (2.19) respectively. The inset shows a log-log plot of the density distribution at distances larger
than

�

z = 4 for Ξ = 105, 104, 100, 10, 1 and 0.1 (from bottom to top). All simulations where performed with 75 particles
and 106 Monte Carlo steps (we define what we call a step in Section 2.4), except the data for Ξ = 0.1 where 600 particles
where simulated. Unless when explicitly shown, the error bars are comparable to or smaller than the symbols.

highly charged surface, where counterions bound to the wall are in chemical equilibrium with free
ions.

We mention in passing that a similar exponential decay would also follow from the lineariza-
tion of the Poisson-Boltzmann equation, very much in the spirit of Debye and Hückel[27]. The
density profile in this case is given by

ρ(z̃)

2π`Bσ2
s

= 2 exp(−2z̃). (2.20)

However, this should be regarded as a coincidence: The Poisson-Boltzmann equation is only valid
when Ξ is small; a linear approximation of the equation cannot describe better the behavior of the
system than the full equation itself, especially for values of Ξ where the equation in expected to
break-down.

2.3 Simulations: results

In this Section we present the results obtained from Monte Carlo simulations on the double layer,
and compare them with the analytical results. The technical aspects concerning the simulations
(calculation of the potentials, finite-size effects, etc.) are presented in the Section 2.4

2.3.1 Density profile

In Fig. 2.3 we show the Monte Carlo results for the average counterion density distribution for
various values of Ξ, as well as the predictions from Poisson-Boltzmann (solid line) and strong
coupling (dashed line). In the main graph (z̃ between 0 and 4), open diamonds correspond to
Ξ = 0.1, open triangles to Ξ = 10 and open stars to Ξ = 104. The error bars are comparable to or
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smaller than the symbol sizes; the system with Ξ = 0.1 was simulated with N = 600, all others
with N = 75. Note the very good agreement between Poisson-Boltzmann and strong coupling
theory with the simulation results at low and high coupling, respectively. The inset in Fig. 2.3
shows Monte Carlos results for Ξ = 105, 104, 100, 10, 1 and 0.1 (from bottom to top) at larger
distances from the wall (between 4 and 10 Gouy-Chapman lengths).

Previous computer simulations[111, 48] have also confirmed the validity of PB at the weak
coupling regime. In fact, a picture that has emerged from previous studies is that PB is a good
description for systems with monovalent counterions, but a poor description for systems with
counterions with higher valence; deviations from the PB behavior can even lead to attraction
between similarly charged plates[40] (see also Chapter 5). Eq. (2.4) gives us the clue to this: q
has a power 3 in the expression for the coupling; if a system with monovalent ions has Ξ . 1,
the same system with divalent ions will have a coupling 8 times larger! As is already clear from
the simulation results Fig. 2.3, a system with Ξ = 10 clearly deviates from the PB curve in the
vicinity of the wall.

The computer simulations done at high Ξ confirm the novel strong coupling limit as the cor-
rect asymptotic limit at infinite coupling. With this in mind, we can say that Fig. 2.3 presents a
unified picture of the simple double layer problem (when only counterions are present): PB is the
asymptotically correct as Ξ → 0, SC is asymptotically correct as Ξ → ∞, and any system with a
Ξ between those limits will present a density profile that is between the power-law (PB) and the
exponential decay (SC). Experimentally, a coupling of Ξ = 100—which is already quite close to
the strong coupling regime—can be reached with divalent counterions for a surface charge den-
sity σs ' 3.9 nm−2, which is feasible with compressed charged monolayers, and with trivalent
counterions with σs ' 1.2 nm−2, which is a typical value (cf. Table 2.1).

The rescaled densities as shown in Fig. 2.3 always fulfill

ρ(0)

2π`Bσ2
s

= 1. (2.21)

This is a trivial consequence of the contact-value theorem[83, 47], which states that the value of
the counterion density at contact with the wall ρ(0) is related to the pressure P acting on the wall
through

P

2π`Bσ2
s

= 1 − ρ(0)

2π`Bσ2
s

. (2.22)

When in equilibrium, P = 0 and the result Eq. (2.21) follows. Incidentally, we remind that in
Eq. (2.20) the density profile obtained through the linearized PB equation leads to a value of 2 for
the rescaled density at contact, violating this theorem. We demonstrate the contact-value theorem
in Appendix C; in Chapter 5 we will use it to calculate the pressure due to the counterions when
they are confined between two similarly charged plates.

At very high couplings, one should expect a crystallization of the counterions into a Wigner
crystal[77, 79]. A two-dimensional one-component plasma is known to crystallize at values of the
plasma parameter Γ ' 125[11], which can be related to our coupling constant Ξ through Ξ = 2Γ2,
meaning that the Wigner crystal should be visible in the simulations at around Ξ ' 31000. In
Fig. 2.4 we show the top view snapshots of two systems with high Ξ, one with Ξ = 104 (below
crystallization) and another with Ξ = 105 (above crystallization). The latter shows, in contrast to
the former, a clear two-dimensional ordering.
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Figure 2.4: Top view snapshots of a system with Ξ = 104 (below the expected crystallization transition) and Ξ = 105

(above).

2.3.2 Two-dimensional pair distribution function

In Section 2.2 we showed that systems in the strong coupling regime exhibit a density profile
that corresponds to a flat structure, in the sense that the average distance between neighboring
counterions is much larger than the average distance between the counterions and the charged
wall. Besides, as Ξ → ∞, the repulsive interactions between counterions become dominant,
and a counterion will be on average surrounded by other counterions in the direction parallel to
the charged wall. Intuitively, one expects that a counterion will actually feel the surrounding
counterions to act as a “cage”, making any movement in the parallel direction very costly in the
energetic point of view (hard-mode).

While this effect is already visible in the snapshots shown in Fig. 2.2, we can establish this
more precisely by looking at the positional correlation between ions. Since this is essentially a
two-dimensional effect, we look at the correlation function[6]

g2D(r̃xy) =
A

N2

〈∑

<ij>

δ(r̃xy − r̃xy,i + r̃xy,j)
〉

(2.23)

where
∑

<ij> denotes a sum over pairs of particles, r̃xy is the two-dimensional vector (x̃, ỹ)
(with magnitude r̃xy) and r̃xy,i is the projection of the position of particle i into the xy plane.
The function g2D(r̃xy) is the two-dimensional analog of the pair distribution function[69]. It
gives the ratio between the probability of finding two counterions at distance r̃xy and the expected
probability for a homogeneous 2D gas with the same bulk density.

In Fig. 2.5 we show simulation results of g2D(r̃xy) for two particular systems, one with Ξ =
0.1 (away from the strong coupling regime) and another with Ξ = 104 (within the strong coupling
regime, but still below crystallization). While in the former g2D shows no spatial structure (except
at very shot distances), the latter shows a clear depletion zone close to zero (few or no counterions
are found at close distances), and an oscillatory behavior indicating a liquid-like two-dimensional
positional order. The first peak gives the average distance between two neighboring counterions
(the diameter of the aforementioned cage), which is approximately given by r̃typ = 2/

√
πN/A

or, when rescaled by µ,

r̃typ = 2
√

2Ξ, (2.24)
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Figure 2.5: Two-dimensional pair correlation function for a system with Ξ = 0.1 (open diamonds) and Ξ = 104 (open
stars), as a function of the xy projected distance between the ions
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rxy = rxy/µ;
�

rtyp = 2/
�
πN/A is the distance

expected between the particles for a homogeneous two-dimensional gas with N/A particles per unit area. The error bars
are comparable to or smaller than the symbols.
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Figure 2.6: Comparison between the analytical prediction for the first correction to Poisson-Boltzmann and Monte
Carlo results for Ξ = 0.1 (open diamonds, 600 particles and 106 MC steps) and Ξ = 1.0 (open triangles, 200 particles
and 2 × 106 MC steps). Unless when explicitly shown, the error bars are comparable to or smaller than the symbols.

which is the distance expected between two neighboring particles in a two-dimensional homoge-
neous fluid (the area per particle is assumed to be a circle of radius r̃typ). This shows the cage
effect when in the high coupling regime, and the idea that the parallel degrees of freedom become
increasingly hard.

2.3.3 Corrections to Poisson-Boltzmann

As already discussed, the Poisson-Boltzmann theory corresponds to a saddle-point approximation
which becomes exact at vanishing coupling. In fact, Ξ can be used as small parameter on a loop
expansion around the saddle-point, leading to systematic corrections to it[83]. If one incorporates
higher-order correction to the theory, how improved are the results when describing systems with
finite, but small, Ξ?
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The analytic expression of the one-loop correction to Poisson-Boltzmann for this particular
geometry has been calculated in Ref. [83]. The corrected density profile reads

ρ(z̃) = ρPB(z̃) + Ξ ρ1(z̃) (2.25)

where ρPB is the Poisson-Boltzmann result, Eq. (2.16), and ρ1 is the one-loop correction to it (for
the explicit expression, see Ref. [83]). In Fig. 2.6 we show the comparison between the analytical
result for ρ1 (full line) with the simulation results for Ξ = 0.1 and Ξ = 1.0. The points shown
correspond to the function

1

Ξ

(
ρ(z̃) − ρPB(z̃)

)
(2.26)

where ρ is the density profile obtained from the simulations. In the regime where the one-loop
correction is enough to correct the saddle-point result, the full line and the points should coincide.
Notice that the function ρ1 is very small, with a maximum value of 0.06 in a region where ρPB
will be of the order of unity (in the rescaled units used here). Naturally, the prefactor Ξ in front
of ρ1 in Eq. (2.25) could be large enough so that this correction becomes important. But while for
the system with Ξ = 0.1 the one-loop correction is enough to account for the (small) deviations
between the simulation results and the PB result, already at Ξ = 1 it is clear that higher order
corrections are necessary if one wishes to account for these deviations. In other words, in the
region where the Ξ prefactor in Eq. (2.25) makes the one loop correction important is also the
region that demands higher order corrections to the theory.

We should emphasize that this question is more of formal interest than of application. Even at
Ξ = 1, where the one-loop is not enough to account for the differences between the MC and PB
results, the relative correction to the PB density profile is of the order of 3%, meaning that PB is
still a good description.

2.4 Simulations: technical aspects

2.4.1 Monte Carlo with periodic boundary conditions

We used the Monte Carlo method with Metropolis algorithm[70, 6] in order to study the thermal
properties, in particular the density profile, of the electrical double layer.

We simulated systems with N point-like counterions (usually between 75 and 600) in a box
of lateral size L̃ with periodic boundary conditions in the directions parallel to the charged wall
(x and y); in the direction z perpendicular to the wall the system is not periodic, and the ions are
confined to the half-space which is not occupied by the wall (see Fig. 2.1). Although there were
in the past some critique[112, 113] on the use of such boundary conditions for charged systems, it
is now established[3] that this procedure yields very good results, provided that a suitable method
is used to calculate the energy.

The typical run-time for the simulations was 106 Monte Carlo steps, where one step is defined
as the sequence of attempts to move each counterion in the system from its present position to a
new randomly chosen position according to the Monte Carlo recipe. In other words, one MC step
is composed of N attempts to move the counterions from their positions. The ratio between the
number of accepted moves and the total number of moves during a simulation (acceptance ratio) in
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Figure 2.7: Schematic top view of the two-dimensional periodic boundary conditions used in the simulations to calculate
the contribution to the electrostatic energy due to the interaction between ion j (and all its replicas) and ion i.

the simulations were always kept between 0.3–0.4, which is the usual rule-of-thumb for obtaining
reasonable statistics. The systems were thermalized before any collection of data for averaging
purposes was taken.

The two-dimensional periodicity of the box is in fact using the intrinsic symmetry of the prob-
lem in order to compensate for the finite size of the simulated systems and prevent artificial surface
effects. The systems in the computer are globally neutral, i.e., the total positive charge equals the
total negative charge, which means that the box sizes used do depend on the number of counte-
rions in the simulations. It is easy to show that, for a system with coupling constant Ξ and N
counterions, the lateral box size in rescaled units should be

L̃ =
L

µ
=

√
2πN Ξ (2.27)

so that electroneutrality is fulfilled.

2.4.2 The Lekner potential

Whenever calculating the force (or the potential) exerted by, say, particle j on particle i, one has to
calculate not only the contribution coming from the pair in the central box (cf. Fig. 2.7), but also
the contributions coming from all the replicas of particle j in the “virtual” simulation boxes (in
principle infinite in number) around the central box. The replicas of particle i do not contribute to
this, provided that the interaction potential between the particles is spherically symmetric. How-
ever, for most short-ranged potentials there is no need to account for the contributions of the
neighboring boxes (except for particles close to the edges of the central box) since, in general, it
is enough to have a box size a few times larger than the range of the interaction in order to avoid
finite-size effects.

For ionic systems, the contributions coming from the replicas in the neighboring boxes cannot
be neglected. The Coulomb potential is long-ranged, i.e., it is a power-law decaying like 1/r
(where r is the distance between two interacting particles) and in the thermodynamic limit the
coupling between parts of the system at large distances contribute non-vanishingly to the total
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energy. Nevertheless, as long as electroneutrality holds, the energy per particle will always be
bounded from below.

In a periodic system the electrostatic energy is

Eel
kBT

=
∑

<ij>

qi qj `B
∑

n

1

|ri − rj + n| , (2.28)

where the sum over n refers to all boxes—the central one and its infinite replicas—and the one
over < ij > refers to the sum over pairs of particles (i 6= j), one located at ri and the other at
rj . With a spherically symmetric potential, the influence of the replicas of a particle over itself is
zero. This sum includes all charged particles in the system, i.e., it is extended to a region that is
globally neutral.

In the computer, the sum over n has to be at some point truncated. It is then desirable to
transform it into a fast converging series, so that the number of terms to be summed before a
reliable truncation is not too big and the computations can be performed reasonably fast. A popular
way to achieve this is known as the Ewald summation[31, 26, 3, 6, 113], first introduced in the
context of ionic crystals. Here we use a different method introduced by Lekner[62, 63, 110]
and Sperb[107]. The main reason is that the use of the Ewald summation for systems with two-
dimensional periodicity (in contrast to crystals, with periodicity in all three dimensions) requires
some modifications to the original method[45, 110], and only works if the ions are confined to a
thin layer in the z direction. The Lekner-Sperb method is general, and is particularly suited for
systems with 2D symmetry[24]. A comparison between the two methods in a system with 3D
symmetry can be found in Ref. [57], and for a system with 2D symmetry in Ref. [110]. We now
demonstrate Lekner’s formula for the electrostatic energy, and apply it to the the case of one plane
in the presence of its counterions.

Let us assume that the simulation box has lateral size L. Due to electroneutrality, the sum
Eq. (2.28) exists, and can be rewritten as

Eel
kBT

= E0 +
`B
2L

∫
drdr′ρ̂c(r)vL(r, r′)ρ̂c(r

′) (2.29)

where

E0 = − `B
2L

∑

i

q2i vL(ri, ri) (2.30)

is the self-energy of each particle in the system and

ρ̂c(r) =
∑

i

qiδ(r − ri) (2.31)

is the charge distribution of point charges, generalizable to any distribution. vL(r, r′) is the poten-
tial at the point r due to the charge distribution at r

′ and its infinite replicas in x and y direction,
given by

vL(r, r′) =

+∞∑

l,m=−∞

1√
[ξ + l]2 + [η +m]2 + ζ2

(2.32)
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where we defined

ξ =
|x− x′|
L

, η =
|y − y′|
L

, ζ =
|z − z′|
L

. (2.33)

This sum has to be handled with care, since its is divergent. To deal with it, we sum and subtract
the value of vL for a reference state (which we do not have to specify) with ξ = α1, η = α2 and
ζ = α3, and rewrite vL as

vL(r, r′) = vL(0) +

+∞∑

l,m=−∞

1√
[ξ + l]2 + [η +m]2 + ζ2

−
+∞∑

l,m=−∞

1√
[α1 + l]2 + [α2 +m]2 + α2

3

. (2.34)

The term vL(0) is the value of vL for the reference state, which is divergent, but the difference
between the two infinite sums is a well defined quantity. Following Lekner[63], we show in
Appendix A that vL can be transformed into the function

vL(r, r′) = vL(0) + C − ln
(
cosh(2πζ) − cos(2πη)

)
+ s(ξ, η, ζ) (2.35)

where s is the (fast converging) series

s(ξ, η, ζ) = 4

∞∑

l=1

cos(2πlξ)

+∞∑

m=−∞

K0

(
2πl
√

[η +m]2 + ζ2

)
(2.36)

and C is a constant that depends on the reference state, given by

C = ln
(
cosh(2πα3) − cos(2πα1)

)
− s(α1, α2, α3). (2.37)

Eq. (2.35) is not only more manageable for calculations than Eq. (2.34): it also converges faster,
and the sums can be typically truncated after a few terms. We will come back to this point later.

For the system of counterions in the presence of the charged wall we can write the charge
distribution ρ̂c as

ρ̂c(r) = q
N∑

i=1

δ(r − ri) − σsδ(z)Θ
L
0 (x)ΘL

0 (y) (2.38)

where ΘL
0 (x) = 1 if 0 < x < L, and 0 otherwise. This corresponds to the charge distribution

within the simulation box, and the electroneutrality condition implies that
∫

drρ̂c(r) = 0, i.e.,
σs = qN/L2. Using Eqs. (2.38) and (2.35) in the electrostatic energy Eq. (2.29) we arrive, after
some algebra, to the formula

Eel
kBT

=
q2`B
L

∑

<ij>

ṽL(ξij , ηij , ζij) + 2πq`Bσs

N∑

i=1

zi

− `Bq
2N2

2L

∫ 1

0
dξ d η ṽL(ξ, η, 0) +Nu0, (2.39)
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Figure 2.8: Average energy per particle for Ξ = 1.0 (open triangles) and Ξ = 100 (open squares) as a function of N ,
the number of counterions in the simulation. The error bars are comparable to or smaller than the symbols.

where ξij = |xi − xj|/L (with similar definitions for ηij and ζij) and

ṽL(ξ, η, ζ) ≡ − ln
(
cosh(2πζ) − cos(2πη)

)
+ s(ξ, η, ζ). (2.40)

u0 is the energy needed to construct one particle (self-energy), and is irrelevant here. The integral
over ṽL in Eq. (2.39) can be done and leads to

∫ 1

0
dξ dη ṽL(ξ, η, 0) = ln(2). (2.41)

Rescaling all lengths with the Gouy-Chapman length as previously done, we finally get

Eel
kBT

=
Ξ

L̃

∑

<ij>

ṽL(ξij , ηij , ζij) +
N∑

i=1

z̃i −
ln(2)

2
√

2π

√
ΞN3/2 (2.42)

which is the electrostatic energy of the simple double layer with periodic boundaries. Notice that
we neglected the self-energy of the particles, and that a constant term cN can be added to Eel

without changing the thermodynamic properties of the system. This is the definition we use to
calculate the electrostatic energy for each trial configuration in the computer simulations. The first
term corresponds to the interaction between the counterions and the second term to the interaction
between the counterions and the charged wall. The third term is the self-energy of the charged
wall with size L × L, which is a constant and irrelevant when N is fixed. This term is important
only when calculating the thermodynamic energy per particle.

For calculating the counterion–counterion interaction we use the formula in Eq. (2.40), which
is in general quite efficient, since the sum s can be truncated after a few terms due to the behavior
of Bessel function at large arguments, viz. K0(x) ∼ expx/

√
x as x → ∞. However, the Bessel

function diverges as its argument becomes small, and the sum s can be very inefficient for small
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Figure 2.9: Specific heat per particle for Ξ = 1.0 (open triangles) and for Ξ = 100 (open squares) as a function of N ,
the number of counterions in the simulation. Unless when explicitly shown, the error bars are comparable to or smaller
than the symbols.

√
η2 + ζ2. To solve this, Sperb[107] proposes the following transformation

4

+∞∑

l=1

cos(2π l ξ)K0(2π l %) = −1.386294 + 2 ln(%) +
1√

ξ2 + %2
− Ψ(1 + ξ) − Ψ(1 − ξ)

+

+∞∑

l=1

(−1/2

l

)
%2 l
[
Z(2 l + 1, 1 + ξ) + Z(2 l + 1, 1 − ξ)

]
, (2.43)

where Ψ is the digamma function and Z is the Hurwitz zeta function[2], and % =
√

[η +m]2 + ζ2.
This series converges very quicky if % is small, provided that ξ < 1/2. When calculating the
sum s in our simulation, we have included typically 5 to 7 terms in the sum in m, and used to
following rule for the sum in l: if % > 3, then we sum only three terms in l; if 1/3 < % < 3, we
sum 2 + Integer

[
3/
√
η2 + ζ2

]
terms in Lekner’s formula; if

√
η2 + ζ2 < 1/3, we use Sperb’s

formula (with 8 terms) in place of Lekner’s. This is a conservative approach, but nevertheless we
do not have to sum more than eleven terms in the l index. One can show that with this recipe the
truncation error in the sums are (in absolute value) equal to or smaller than than approximately
10−11.

One way to test the Lekner summmation is to look at the behavior of the average electrostatic
energy. In Fig. 2.8 we show the average energy per particle obtained from Monte Carlo simulations
for two couplings, viz. Ξ = 1 and Ξ = 100, as a function of the number of counterions N . This
is the energy given by Eq. (2.42) (per particle) averaged over the trial configurations tested by the
computer in the course of the simulations. As expected, after a certain critical size the energy
per particle becomes constant. Notice that the thermodynamic energy per particle is equal to the
values obtained from the simulation plus a constant (which is independent of N or Ξ) that we
neglect.

Another way to test the formula Eq. (2.42) is by looking at the fluctuations of the energy
around its average. This is in fact an useful quantity, since it can be related to the specific heat of
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the system through the fluctuation-dissipation theorem[6]

Cv = kB

〈(δEel
kBT

)2〉
(2.44)

where the brackets 〈 〉 denote the average over the trial configurations, and δEel are the fluctuations
around the total electrostatic energy, viz.

δEel(t) = Eel(t) − 〈Eel〉 (2.45)

at a certain MC step t. In our case, the Cv calculated from the fluctuations is what one could call
the “excess” specific heat, since the ideal gas contribution Cv,id = 3N/2 (in units of kBT ) has to
be added to it in order to obtain the total specific heat. In Fig. 2.9 we show Cv/N obtained from
the same simulations as in Fig.2.8, viz. Ξ = 1 and 100 as a function of N . As expected, Cv/N
also becomes independent of N after a critical size of the system. As a side note, the value of Cv
of the system with Ξ = 1 is close to unity, which is the value predicted by the Poisson-Boltzmann
theory.

2.4.3 Binning

In order to measure the density profiles, we used particle-number histograms in the course of the
simulations, from which the averages were obtained. This basically consists on dividing the half-
space (where the counterions are) in bins of a certain size and counting how many particles are
inside each bin. In the simulations discussed in this Chapter, we had typically 500 bins between
z̃ = 0 and z̃ = 10, i.e., each with size 0.02µ.

2.4.4 Error-bars

The error-bars for each of the measured quantities in the simulations were obtained according
to the block-averaging method[6, 33], which can be understood as follows: assume we run a
simulation from t = 0 to t = td (decade time in MC steps), and that we keep the value of the
observable X(t) at each step. If we divide the decade time into n parts (or “blocks”, usually 10),
then

Xi =
n

td

i td/n−1∑

j=[i−1] td/n

X(j) (2.46)

is the average value of X for the block i (indexed from 1 to n). It follows from this definition that
the average value of X for the decade is the average over blocks, i.e.,

X̄ =
1

n

n∑

i=1

Xi. (2.47)

We run the program for td MC steps and calculate the error-bars for this decade through the
dispersion on the average block-values of X , viz.

∆X̄

2
=

√√√√ 1

n

n∑

i=1

(Xi − X̄)2. (2.48)
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Figure 2.10: The typical time correlation function for one bin in the simulations. In this example, this is c(t) for the bin
number 25 (at distance 0.5µ away from the wall) for a system with 75 particles and Ξ = 10. The correlation initially decays
exponentially (in this case 0.88 exp(−t/5.6)), and later fluctuates around zero. Notice that c(t) has not been normalized
to c(0) (self-correlation).

After this, we run the program for a decade of size t′d = n td; the average value of X in the
decade td becomes the average of X in the block i = 1 of the decade t′d. This procedure is done
recursively until the end of the simulation. For example: if a simulation is run for 106 steps (with
n = 10), and we start this procedure for a minimum block size of t = 103, then we get error-bars
for td = 104 and block size 103, for td = 105 and block size 104 and td = 106 and block size 105.

We use only the error-bars from the last decade. In effect, and coming back to the example
above, this is the same as running 10 simulations of 105 MC steps and looking at the dispersion on
the averages obtained. However, the information provided by the smaller decades tell us already
something about how much we can trust the final error-bars. In fact, if the block sizes are very
small, the X(t) are highly correlated and the error-bars obtained through the block averages will
also be very small; as the blocks become larger, the error-bars also increase, until the block sizes
are so large that they become totally decorrelated, and the error-bars again decrease. We have
observed this behavior in our simulations, and so the error-bars used are in principle reliable.

There is however another way to test whether the block sizes used for obtaining the error-bar
are big enough to be regarded as independent. We looked at the time correlation function for some
of the bins used to calculate the average density profile of the counterions. The time correlation
function is defined as[33]

ct =
1

ttot − t

ttot−t∑

i=1

[X(i) − X̄ ] [X(i + t) − X̄]. (2.49)

In this case, the variable X is the number of particles in a certain bin. In Fig. 2.10 we show the
typical behavior of c(t), in this case for the bin number 25 (i.e., at distance 0.5µ from the wall)
of a system with 75 particles and Ξ = 10. The points are simulation results, and the dashed line
is a curve of the form α exp(−t/τ). At first, the number of particles inside this bin during the
successive steps are highly correlated; this correlation, however, decays exponentially, and later
(in this example already after 40 Monte Carlo steps) c(t) just fluctuates around zero. The decay
time τ is a measure of how many steps the system needs to take so that it becomes uncorrelated:
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Figure 2.11: Simulation results for the correlation times as a function of the distance from the wall. We measured c(t)
for Ξ = 0.1 and 600 particles (open diamonds), Ξ = 10 and 75 particles (open triangles) and Ξ = 104 and 75 particles
(open stars). The points shown correspond to the bins that measure the number of counterions in the first 2µ close to the
charged wall.

if the previously mentioned block sizes are much bigger than this time, then one should expect the
blocks to be statistically independent from each other.

In Fig. 2.11 we show the correlation times obtained for Ξ = 0.1, Ξ = 10 and Ξ = 104 (some
of the simulations presented earlier in Fig. 2.3) as a function of the distance from the charged
wall. It is then clear that the blocks of size 105 used to calculate the error-bars were much larger
than the correlation times—the blocks can be regarded as independent. It is also interesting to
notice that the systems with larger Ξ show smaller correlation times for the particle-number bins.
While this is probably influenced by the number of particles in the simulation (remember that the
simulation with Ξ = 0.1 shown was performed with 600 particles), the systems with Ξ = 10 and
Ξ = 104 shown in this figure have the same number of particles, and direct comparison can be
made. The smaller correlation times indicate that particles have more freedom to move around—
this is another indication that, as Ξ grows, moves in the direction perpendicular to the charged wall
become easier.

2.4.5 Finite-size effects

Any computer simulation has, for practical reasons and technological limitations, much less par-
ticles than what is typical for a macroscopic piece of matter (with the usual 1023 particles). The
periodic boundary conditions and the Lekner potential partially correct this fact. However, one
should test whether or not the number of particles used in the simulations yields results that are at
least consistent, i.e., results that do not change as the number of particles change.

In Fig. 2.12 we show the density profile of a system with Ξ = 0.1 and N = 5, 15, 35 and
600 particles. As it is clear from this figure, already at 35 particles the resulting profile is close to
the profile for 600 particles. From this one concludes that the results for 35 particles is close to
the thermodynamic limit, as far the density profile is concerned, and as long as one believes in the
self-consistency of the Monte Carlo results. Finite-size effects become less important as Ξ grows,
which is not surprising: remember that the box size is related to the number of particles and the
coupling through L̃ =

√
2πNΞ.
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Figure 2.12: Results for the rescaled counterion density distribution as a function of the rescaled distance from the wall
for Ξ = 0.1 and 5 particles and 108 MCS (open stars), 15 particles and 107 MCS (open triangles), 35 particles and 107

MCS (filled stars) and 600 particles and 106 MCS (open diamonds). Notice that finite-size effects almost negligible for 35
particles (in comparison to 600), and that the system with 15 particles is already quite close to the large-N behavior. For
systems with larger Ξ this effect is even stronger. The error bars are comparable to or smaller than the symbols.

When testing the corrections to Poisson-Boltzmann (cf. Section 2.3.3), we have noticed that
the simulations are more sensitive to finite-size effects at low values of Ξ. In Fig. 2.6 we have
shown the simulation results as compared to the analytical prediction to the first correction to
Poisson-Boltzmann. In Fig. 2.13, we show this graphic again, but now for systems with different
sizes. As we see, while for Ξ = 1 the simulations with 75 and 200 particles yield the same
correction, for Ξ = 0.1 we had to go up to 600 particles in order to avoid finite-size effects. For
this latter we needed the (non-negligible) CPU time of approximately 830 hours, or 34.6 days, in
machines with Alpha EV67/667, Alpha EV6/500 or R10000/225 processors. This long running
time is a consequence of the heavy calculations, viz. square roots and Bessel functions, involved
in the Lekner summation.

2.5 Conclusions

We have presented the Monte Carlo simulations obtained for the system composed by a charged
wall in the presence of its counterions. This simple system is characterized by one explicit param-
eter Ξ = 2πq3`2Bσs: we presented the analytical results for the two limiting behaviors, viz. the
time-honored Poisson-Boltzmann theory which is exact in the limit Ξ = 0 and the novel strong
coupling theory[80], which is asymptotically exact in the limit Ξ → ∞. Both limits were con-
firmed through extensive Monte Carlo simulations. The question that now arises is: how relevant
are the results shown here?

In the theoretical point of view, having the two possible limiting behaviors of the system helps
in many ways. Any computer simulation or approximate solution to the simple double layer leads
necessarily to a counterion density distribution that lies between PB and SC. Having the analytic
solutions for the two extreme cases is helpful when doing numerics, since one knows what to
expect from the results. The computer simulations together with the analytical results give a fairly
complete and unified picture of the simple double layer.
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Figure 2.13: Finite-size effects on the first correction to Poisson-Boltzmann. For Ξ = 0.1, the systems simulated had
200 particles and 5 × 106 MCS (filled diamonds) and 600 particles and 106 MCS (open stars). For Ξ = 1.0, the systems
simulated had 75 particles and 5× 106 MCS (filled triangles) and 200 particles and 2× 106 MCS (open triangles). Unless
when explicitly shown, the error bars are comparable to or smaller than the symbols.

In Table 2.1 we show for some Ξ and q the corresponding values of the surface charge density
σs, the Gouy-Chapman length µ and the distance between neighboring ions fixed at the wall
(we will use this information later, when looking at systems with discrete charges fixed at the
wall, instead of a smeared out distribution). From the surface charge density we can assess the
experimental feasibility of a system: for instance, to get Ξ = 100 with monovalent counterions one
would need a charge density at the wall corresponding to one e per 3.2 Å2, which is in principle
very difficult to realize experimentally. On the other hand, the same coupling can be achieved with
divalent ions and compressed monolayers. With trivalent counterions the charge density needed at
the wall to get Ξ = 100 is relatively low and easily realizable experimentally.

From the values of the Gouy-Chapman length one can check to which extend the ionic sizes
matter for a certain system. Ions in solution are in general larger than their bare size due to the
hydration shell[47]. In general, ions like Cl−, Na+, K+ have hydrated radii between 2 and 3 Å
(the former value determined in Section 6.3.2 using the activity coefficient of salts), and for Ca2+

a radius between 4 and 6 Å. The question is: when is it reasonable, in the context of the double
layer, to assume the ions to be point like?

The counterion density profiles obtained have the typical decay length of µ. This means that
if the ions are bigger than or of the order of the Gouy-Chapman length, one should expect packing
effects to become important. But one should also distinguish the two physical situations corre-
sponding to the high and to the low coupling regimes. According to Fig. 2.2, if the system has a
low coupling, the counterions have a three dimensional spatial distribution, and one has to com-
pare the ionic size with the typical distance between particle within the layer of one µ away from
the wall—half of the counterions find themselves within this layer, as one can conclude by inte-
grating Eq. (2.16) for z̃ between 0 and 1. The typical distance is approximately r̃typ = 2[3Ξ]1/3,
which means that for Ξ = 1, rtyp ' 2.9µ; if µ = 7.15 Å (monovalent counterions, see Table 2.1),
then the ions in the first layer will be typically 20 Å away from each other, well above the typical
ionic size. In other words, for the systems in the first row in Table 2.1, the assumption of point-like
counterions is good enough.

If the system has a high coupling (and for this matter Ξ = 10 is already high enough, see
Fig. 2.2b), the charges will prefer to be organized in a two dimensional layer close to the wall: the
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q = 1 q = 2 q = 3

Ξ = 1
σs = 1/321.2
µ = 7.15
a = 17.9

σs = 1/2569.7
µ = 28.6
a = 50.7

σs = 1/8672.7
µ = 64.4
a = 93.1

Ξ = 10
σs = 1/32.1
µ = 0.715
a = 5.7

σs = 1/256.9
µ = 2.86
a = 16.0

σs = 1/867.2
µ = 6.44
a = 29.4

Ξ = 100
σs = 1/3.21
µ = 0.07
a = 1.8

σs = 1/25.7
µ = 0.3
a = 5.1

σs = 1/86.7
µ = 0.6
a = 9.3

Table 2.1: The surface charge density (σs, in Å−2), Gouy-Chapman length (µ, in Å) and the distance between neighbor-
ing ions at the wall (a, in Å) for different values of the coupling and the valence of the counterions. In all cases, the Bjerrum
length `B was assumed to be 7.15 Å, which is its approximate value in water at 25 C. Notice that the Gouy-Chapman
length can be independently fixed (can be made larger or smaller) by changing the value of `B .

typical distance between the ions is approximately given by r̃typ = 2
√

2Ξ. For Ξ = 10, rtyp ' 9µ,
meaning that for a µ = 0.7 Å (monovalent counterions, see Table 2.1) the ions are at (laterally)
∼ 6 Å away from each other, and for µ = 2.9 Å (divalent counterions) the ions are at lateral
distances of ∼ 25 Å away from each other—packing effects might be important in the former
case, it is not in the latter one. Finally, for Ξ = 100, r̃typ ' 28µ and one finds that the typical
lateral distance is ∼ 8.4 Å for divalent counterions, and 16.8 Å for trivalent counterions. In other
words, for the system with trivalent counterions, the point-like assumption is safe. The fact that
for some of the systems µ is smaller than the typical ionic radii is not critical, since the density
profiles shown can be thought of as the probability distribution of finding the center of charge at
distance z̃ from the contact distance between the wall and the ion.

From this we can conclude that the problem studied here, and in particular the strong coupling
regime, is not only of academic interest, but can be realized in the laboratory, using water as
solvent and at room temperature. In fact, multivalent ions play an important role in biological
systems, where organic ions like Spermidine (with valence 3+) or Spermine (with valence 4+), as
well as inorganic ions like Calcium (valence 2+) are present in the cellular medium (in this case,
however, the screening of the ions by other species might change the scenario of the problem).
By changing the temperature and/or the medium where the ions are dissolved, as for instance by
using organic ions in low dielectric constant solvents (as has been recently used in the context of
the critical behavior of ionic solutions[94, 78, 64, 93, 116]), one can fix the Gouy-Chapman length
so that it stays at reasonable values even at very high values of Ξ.

We have up to now assumed the system to have smeared out charge distributions in the plane,
and that the dielectric constant is the same everywhere. How good are these approximations? This
is the question we will address in the next two chapters.



Chapter 3

The influence of the dielectric constant

After studying the simple double layer in detail, we now introduce a dielectric jump at
the charged wall and investigate its effect on the counterion density distribution. As
we will show, the Poisson-Boltzmann description of the double layer remains a good
approximation at low coupling values, while the strong coupling theory is shown to
lead to the correct density profiles close to the wall at all values of Ξ; for very large
Ξ, only systems where the difference between the dielectric constants of the wall and
of the solvent is small are well described by SC (at all values of z̃).

3.1 Introduction

The first modification to the simple double layer problem that we will investigate the influence of a
dielectric jump (that coincides with the charged wall) on the counterion distribution. The situation
is the same as shown in Fig. 2.1, but now with ε< 6= ε>.

Dielectric effects can play an important role in different problems in soft condensed matter, as
for instance in the influence of image-charges on the adsorption of polyelectrolytes onto oppositely
charged surfaces[101], or in the process of ionic binding into specific sites in proteins[90], as in
the activation of certain enzymes through the binding of Ca2+ ions. In the case of the double layer
problem, the motivation to look at this is quite clear: the counterions are generally dissolved in
water (with ε = 80ε0), while the charged surface—either a Langmuir monolayer sitting at the air–
water interface[71], or a charged mica surface in a surface force apparatus[47, 50]—has typically
a very different dielectric constant. Another interesting case, which we will not analyze here, is
when the ions are in the presence of a metallic electrode (with ε = ∞).

The double layer with the dielectric jump has been studied in the past with the help of dif-
ferent techniques, like computer simulations[15], liquid state theories[54, 9], as well as field
theory[96], usually leading to the expected depletion of counterions close to the charged wall
(when the medium where the ions are has the highest dielectric constant). In this Chapter, we will
apply the Monte Carlo simulation techniques used in the previous Chapter to study image-charge
effects, and as in the previous case, we will also test the PB as well the SC predictions.

27
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Figure 3.1: Schematic view of a point charge in the presence of a dielectric jump (modeled by the image-charge to
left). The black dot corresponds to the test point (see text).

3.2 Interaction between charges in the presence of a dielectric jump

We begin with a quick derivation of the electric potential generated by one charge in the presence
of a dielectric jump. We will use here the method of images[102], which is the simplest way to
obtain the potential for this case.

Let us assume the configuration shown in Fig. 3.1. The point charge qe (where q is the charge
valence) is located at r = (0, 0, h) and the dielectric jump at the z = 0 plane. The latter is modeled
by a image-charged q′e at r = (0, 0,−h) and the boundary condition

ε<
∂ϕ(0−)

∂z
= ε>

∂ϕ(0+)

∂z
, (3.1)

where ε< and ε> are the dielectric constants at z < 0 and z > 0, respectively, and ϕ is the
electric potential. Another boundary condition comes from the continuity of ϕ at the wall, i.e.,
ϕ(0−) = ϕ(0+). The potential at a test point located at z > 0 is then given by

ϕ(x, y, z > 0) =
e

4π ε>

[ q
R

+
q′

R′

]
(3.2)

where
R =

√
x2 + y2 + (z − h)2 (3.3)

is the distance between the point charge and the test point and

R′ =
√
x2 + y2 + (z + h)2 (3.4)

is the distance between the image-charge and the test point. For z < 0 the potential reads

ϕ(x, y, z < 0) =
e

4π ε<

q′′

R
. (3.5)

Notice that at a test point in the region z < 0, one would not feel the image-charge q ′e nor the real
charge qe, but a “renormalized” charge q ′′e at the point (0, 0, h). With this we have two unknowns
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(q′ and q′′) and two boundary conditions. Solving this leads to

ϕ(x, y, z) =

{
e/4π ε>

[
q/R + q∆/R′

]
if z > 0

qe/2π R [ε> + ε<] if z < 0.
(3.6)

R and R′ are still given by Eqs. (3.3) and (3.4) and

∆ =
ε> − ε<
ε> + ε<

. (3.7)

Formally solving the Poisson equation, viz.

∇
[
ε(r)∇ϕ(r, r′)

]
= −qeδ(r − r

′) (3.8)

(where ε(r) ≡ ε<θ(−z) + ε>θ(z); θ(z) is 1 if z > 0 and 0 otherwise) with the same boundary
conditions leads, as it should, to the same result for the potential.

We now interpret this. A test point at z < 0 feels only the source charge at (0, 0, h), but with
a different value for its charge. On the other hand, when the test point is in the half-space z > 0 it
not only feels the original source charge at (0, 0, h), but also a second charge (the image-charge)
at (0, 0,−h) with charge qe∆. If ε> > ε< then ∆ is positive and the image has the same sign as
the source charge; if ε> < ε< then ∆ < 0 and source and image-charges have opposite sign. We
will use this potential when writing down the Hamiltonian for the double layer in the presence of
a dielectric jump.

3.3 The Hamiltonian

With arguments similar to the ones just presented, it is easy to show that a plane with charge
density e σs located at the interface where the dielectric jump occurs generates the electric field
(for z > 0)

E =
e σs
2ε>

[1 + ∆], (3.9)

which in fact corresponds to the field generated by the charges in the plate (e σs) and their images
(e σs∆).

With Eq. (3.9) and the potential Eq. (3.6), we can write down the Hamiltonian of a system
composed by a charged wall located at a dielectric jump and its counterions in solution,

H
kB T

=Ξ
N−1∑

j=1

N∑

k=j+1

{
1

|̃rj − r̃k|
+

∆√
[̃rj − r̃k]2 + 4zjzk

}

+

N∑

j=1

{
Ξ∆

4z̃j
+ [1 + ∆]z̃j

}
,

(3.10)

where all lengths have been rescaled with µ = 1/2πq`Bσs (the Gouy-Chapman length) according
to r = r̃µ. As before, Ξ is the coupling parameter as defined in Eq. (2.4) and ∆ is given by
Eq. (3.7). the Bjerrum length now uses ε> in its definition, Eq. (2.2). The first term on the rhs of
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Eq. (3.10) refers to the interaction between the counterions in solution while the second one refers
to the interactions between each counterion and the images of the other counterions; the third
term is the interaction between a counterions and its own image, and the last term corresponds to
the interaction between the counterions and the charged wall. We will only study systems with
∆ > 0; for systems with with negative ∆, one would have to introduce a finite separation between
the solution with the counterions and the dielectric jump to avoid the collapse of the particles onto
their (oppositely charged) images—in other words, we would have to introduce a hard core for the
counterions.

Before we discuss the results obtained with the Monte Carlo simulations, we use the Hamil-
tonian Eq. (3.10) and do a very simple scaling analysis. As in the case treated in the previous
chapter, we can naively assume that the counterions will either be (i) in a three-dimensional disor-
dered structure, with the typical distance between ions scaling like rt ∼ Ξ1/3 or (ii) in a planar-like
structure, with rt ∼ Ξ1/2; as before, the latter structure is the preferred one at high coupling, while
the former at low coupling. Unlike the simple double layer, the particles are not going to be nec-
essarily at a typical distance of one µ away from the wall, as the simulations will demonstrate. As
a first guess, one can say that what will dictate the interaction between one particle and the wall
is the balance between the attraction due to the smeared out charge on the plane (as well as their
images) and the repulsion due to the particle’s own image (which has a charge with the same sign).
The energy per particle is approximately given by

Epl
NkBT

∼ [1 + ∆]z̃ +
Ξ∆

4z̃
. (3.11)

For fixed ∆ and Ξ, this energy per particle has a minimum at

z̃∗ =

√
Ξ∆

4 [1 + ∆]
(3.12)

with the value
Eminpl

kBT
=
√

Ξ∆[1 + ∆] (3.13)

at the minimum. This means that one should expect a maximum in the density profile to occur
approximately at z̃ = z̃∗, irrespective of the coupling.

At vanishing coupling the mean-field solution, as before, should be recovered. In fact, z̃ ∗

vanishes with Ξ1/2, and the (expected) maximum of the density moves towards the wall. The
derivation done in the previous Chapter for the PB solution assumed the same dielectric constant
everywhere; it is a simple matter to show that this is not a necessary condition for PB, and that the
dielectric jump does not change the mean-field result. In other words, with vanishing coupling the
simulations should show density profiles that are very close to the ones predicted by PB.

In Appendix B we derive the expression predicted by the strong coupling theory[80] for the
density profile (at lowest order), which reads

ρ(r̃)

2π`Bσ2
s

=

√
1 + ∆

Ξ∆

1

K1

(√
Ξ∆[1 + ∆]

) exp

(
−[1 + ∆]z̃ − Ξ∆

4z̃

)
, (3.14)
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Figure 3.2: Rescaled density profiles from Monte Carlo simulations (75 particles and 106 MCS) for Ξ = 0.5 and
∆ = 0.1 (open triangles) and ∆ = 0.95 (open diamonds). In Plot (a), the full line corresponds to the PB solutions,
Eq. (2.16). In Plot (b), we also show ∆ = 0.5 (open stars) and compare the simulations with the SC predictions (dashed
lines), Eq. (3.14). The error bars are comparable to or smaller than the symbols.

where K1(x) is the first order modified Bessel function of second kind[2]. The strong coupling
theory (at this order a one-particle theory) predicts a density profile that is determined only by the
interactions between counterions and the wall and counterions and their images. These results can
now be testes with the Monte Carlo simulations.

3.4 Monte Carlo simulations: results

The technical details of the simulations presented here are essentially the same as for the simple
double layer, Section 2.4. We use the Hamiltonian Eq. (3.10) to calculate the electrostatic en-
ergy of the configurations tested in the course of the simulations (as before, we use the Lekner
summation[63]).

In Fig. 3.2a we show the simulation results[72] for a system with Ξ = 0.5 (75 particles and
106 MC steps) for ∆ = 0.1 and 0.95, the latter corresponding approximately to the ∆ for an
interface between water (ε ' 80ε0) and hydrocarbon (ε ' 2ε0). As expected, the maximum of
the density occurs close to z̃∗ (0.11 and 0.25 for each case, respectively); as z̃ grows, the density
profiles quickly converge to the PB prediction, with practically no distinction between them for
z̃ & 3 (inset to Fig 3.2a). At small distances from the wall, the densities fall quickly to zero:
a comparison with the strong coupling theory is done in Fig 3.2b for ∆ = 0.1, 0.5 and 0.95,
where we see that the small distance behavior of the density is approximately dominated by the
counterion–wall and counterion–image interactions (as in Eq. (3.14)).

Fig. 3.3 is the same as Fig. 3.2, but now for Ξ = 10. The full line in Fig. 3.3 corresponds to
the simulation results obtained in the previous Chapter (∆ = 0) for the same coupling. It is clear
that as z̃ grows, the density profile of the systems with ∆ 6= 0 also converge to the profile of the
∆ = 0 system, but at a slower rate than exhibited by the systems with Ξ = 0.5. The small distance
behavior is again approximately given by the SC theory (dashed lines), even though SC is a bad
description for z̃ > 0.5.

Finally, we show in Fig. 3.4 the results for systems well within the strong coupling regime,
viz. Ξ = 103 (Fig. 3.4a, ∆ = 0.1, 0.5 and 0.95) and Ξ = 5 × 104 (Fig. 3.4b, ∆ = 0.1 and
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Figure 3.3: Rescaled density profiles from Monte Carlo simulations (75 particles and 106 MCS) for Ξ = 10 and ∆ = 0.1
(open triangles) and ∆ = 0.95 (open diamonds). In Plot (a), the full line corresponds to the simulation results obtained in
the previous Chapter (∆ = 0) for Ξ = 10. In Plot (b) we also show the results for ∆ = 0.5 (open stars). In all plots the
dashed lines are the SC predictions, Eq. (3.14).The error bars are comparable to or smaller than the symbols.

0.2). It becomes clear that the SC predition, Eq. (3.14), yields only the correct density profiles at
small values of ∆. In fact, the density profiles always have the maximum at z̃ larger than the ones
predicted by SC. This is not surprising, and can be understood if we remind that the SC theory (at
this order) is a one-particle theory; when the highly coupled counterions form the planar structure
at distance ∼ z̃∗ from the wall, SC neglects the repulsive contribution between each particle and
the image of all other particles, which are also organized in a planar structure at ∼ −z̃ ∗. Besides,
the fluctuations of the density around the maximum are quite strong (as the density profiles in
Fig 3.4 demonstrate), and so the multibody correlation effects cannot be so easily overlooked.

3.5 Conclusions

The simulation results can be summarized in the following conclusions: (i) for couplings in the
limit Ξ → 0, the region z̃ � z̃∗ (which vanishes with the square root of the coupling, cf. Eq.(3.12))
is dominated by the counterion–image-charge interaction and SC becomes asymptotically correct;
however, the density profile for large z̃ quickly converges to the profile predicted by the PB theory.
For moderate couplings (Ξ = 10), (ii) the same as (i) is concluded, except that the convergence of
the density profiles to the ∆ = 0 profile slows down with increasing coupling and increasing value
of ∆. Finally, (iii) the very high coupling regime is only correctly described by the SC theory for
small values of ∆; this confirms the conclusion of the previous Chapter, viz. SC is asymptotically
correct as Ξ → ∞ in the case ∆ = 0, but also calls the attention to the fact that a one-particle
theory (as the SC) neglects effects that become important when the dielectric jump is large, in
particular the influence of the images of the other counterions on each counterion. While this
seems to be unimportant for small ∆, it cannot be neglected as ∆ approaches 1.

An interesting, although trivial, aspect of the results shown here is the fact that the ionic cloud
is confined to the region z̃ > 0 not by the hard wall, but by the repulsion between the counterions
and their images: for any non-vanishing coupling and ∆, the entropy gain is not enough to drive
the counterions away from the solution, since the energetic price to cross the wall is infinite.

In all results, as expected, the larger the difference between the dielectric constants at the
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Figure 3.4: Rescaled density profiles from Monte Carlo simulations (75 particles and 106 MCS) for (a) Ξ = 103 and
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interface, the larger is the effect on the density profile. In fact, for larger values of ∆ the repulsion
between the counterion cloud and the wall is larger; a similar effect is responsible for a larger
repulsion between two charged walls (with dielectric jumps) as the difference between the dieletric
constants of the walls and of the solvent with the counterions grows[15].

After investigating the effect of the dielectric constant, we now turn to the effects due to the
discretized nature of the charges at the wall.





Chapter 4

Discrete charges at the wall

In this Chapter we focus our attention on the effects due to the discreteness of the
charges that form the charged plane. The counterions are still assumed to be point-
like, but we constraint the distance of approach between ions in the plane and coun-
terions to a minimum distance D. The ratio between D and the distance between
neighboring ions in the plane is, as we will see, one of the important quantities in
determining the influence of the discrete nature of the charges at the wall over the
density profiles. Another parameter that plays an important role, as in the previous
case, is the coupling Ξ: as we will demonstrate, systems with higher coupling are
more subject to discretization effects than systems with low coupling parameter.

4.1 Introduction

In most experimental setups that entail charged surfaces, the charge on the surface is not smeared
out but formed by chemical groups that are somehow confined to the surface, such that when the
latter is in contact with a solvent, counterions are released and it becomes charged. For example,
monolayers of ionic surfactants at an air–water interface[10] (where the water-loving head groups
release counterions) form a charged layer at the interface. Another example comes from colloidal
particles, as for instance latex spheres[86], which often have carboxyl groups (COOH) chemically
attached to their surface. When the colloidal particles are in solution, these groups loose hydrogens
and become negatively charged (and so the surface of the particle).

Nevertheless, under some conditions the continuum hypothesis for the charge on a surface is
a reasonable assumption; in fact, the success of the Poisson-Boltzmann theory somehow proves
this. Contrary to what happened in the previous Chapters, the solution of the PB equation when
the charges on the wall are discrete demands considerable numerical work; the same happens to
the density profile that follows from the strong coupling theory. In such situations, the Monte
Carlo method becomes the best tool: although numerically demanding (due to the sums needed to
calculate the energy), one is not confined to look at the low (PB) or high (SC) coupling regimes,
but has also access to intermediate regimes.

In this Chapter we consider the point charges fixed at the wall to be in a two-dimensional
square lattice that is at z/µ = z̃ = −D̃. Although this is done for simplicity, such two-dimensional
lattices can be for instance obtained with compressed monolayers[71]. A hard wall is located at
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Figure 4.1: Schematic view of system studied in this Chapter, with discrete charges on the wall.

z̃ = 0, and point-like counterions are free to move in the half-space z̃ > 0 (cf. Fig. 4.1). The min-
imum distance between the fixed charges and the counterions is then D̃ = D/µ, which prevents
the collapse of the counterions into the fixed ions. This distance should roughly correspond to the
radius of the charged groups at the wall plus the radius of the counterions. By assuming point-like
counterions we neglect hard-core effects that will be important for dense systems, where the pack-
ing of the ions—especially close to the wall where the counterion density can be large—influences
the final results by setting a maximum allowed value for the density (dense packing).

One way to estimate the behavior of the counterion distribution is by looking at the electric
field generated by the two-dimensional array of fixed charges. One expects the existence of a
minimum distance away from the lattice (in the perpendicular direction) above which the discrete
nature of the charges on the wall becomes irrelevant. In other words, as one moves away from the
lattice, the charge distribution looks increasingly as if it were smeared out. This is the topic of the
next Section, which proves to be quite useful to interpret the simulation results.

4.2 The electric field due to a 2D square lattice

The electric field generated by the fixed charge density σ(r) is given by[102]

Ẽ ≡ e2E(r)

kBT
=

∫
dr′σ(r′)

`B[
r− r′

]2
r− r

′

|r − r′| , (4.1)

For the hard wall located at z = 0 and the square lattice at z = −D, the fixed charge density reads

σ(r) = −Qδ(z +D)

+∞∑

k=−∞

δ(x− ka)

+∞∑

l=−∞

δ(y − la) (4.2)

where Q is the charge valence of each ion in the array and a is the lattice constant, assumed to
be the same for the x and y directions. The origin of the xy plane is located at one arbitrarily
chosen ion in the lattice. If we put this charge density in Eq. (4.1), then the absolute value of the
z-component of the electric field reads

|Ẽz| = `Bσs
(z +D)

a

+∞∑

k=−∞

+∞∑

l=−∞

1
[
[ξ − k]2 + [η − l]2 + [z +D]2/a2

]3/2 (4.3)
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Figure 4.2: The value of the z-component of the electric field due to a 2D square lattice at z = −D at the point
ξ = η = z = 0 (i.e., at the hard wall and directly above one of the charges in the the lattice), as a function of D/a, where
a is the lattice spacing. Notice that for D/a ' 0.6 the field is only 12% larger than the one expected for a smeared out
distribution (dashed line). The discrete nature of the charges at the wall is important only for small values of D/a.

where we used the fact that the charge density of the lattice σs equals Q/a2; we also used the
definitions ξ = x/a and η = y/a.

Based on Lekner[63], we transform this sum into a fast converging series by applying (i) the
Euler transformation, Eq. (A.2), (ii) the Poisson-Jacobi identity, Eq. (A.3), and finally (iii) the
integral representation of the modified Bessel function of second kind, Eq. (A.5). After some
algebraic manipulation, Eq. (4.3) reads

Ẽz = 2π`Bσs

{
sinh(2π[z +D]/a)

cosh(2π[z +D]/a) − cos(2πη)
+ 4

z + d

a

∞∑

k=1

cos(2πkξ)

×
+∞∑

l=−∞

k√
l2 + [z +D]2/a2

K1

(
2πk

√
l2 + [z +D]2/a2

}
, (4.4)

where K1 is the first order modified Bessel function of second kind[2]. For very large argument,
K1(x) ∼ exp(−x)/√x, i.e., for increasing [z+D]/a the sum involving the Bessel function above
becomes less important, and the field in the z-direction approaches the limiting value |Ẽ0| =
2πσs`B , or |E0| = σs/2ε, which is the field due to an homogeneously charged wall with charge
density σs. In fact, the numerical solution of Eq. (4.4) shows that this limiting solution is attained
quite fast as D/a grows. In Fig. 4.2 we show |Ẽz|/|Ẽ0| for ξ = η = z = 0, i.e., the test point
is at the hard wall but directly above one of the charges at the lattice. For D/a = 0.6, the field
due to the lattice is only ∼ 12% above the one expected for the smeared out distribution; for
D/a = 1, it is 0.8% above (see also Ref. [47] for a similar calculation). In other words, within
the model studied in this Chapter, the discrete nature of the charges is only important when the
distance between the lattice and the hard wall is below approximately half of the distance between
neighboring fixed ions.

Note that the conclusions based on the electric field are basically valid for a system at zero tem-
perature. As the temperature grows, the coupling between the ions at the wall and the counterions
goes down, and one expects the discretization to become even less important, i.e., the minimal
value of D/a below which the discrete nature of the charges at the wall is important should be



38 Discrete charges at the wall

0
113

226

75.2

0
113

226

75.2

0
113

226

75.2

0 113 226 0 113 226 0 113 226

x/µx/µ x/µ

Figure 4.3: Side and top view snapshots for Ξ = 100 (with 81 counterions). From left to right,
�

D = 10 (
�

D/
�

a = 0.4),
�

D = 5 (
�

D/
�

a = 0.2) and
�

D = 3 (
�

D/
�

a = 0.12). Notice that as
�

D/
�

a decreases, the counterions tend to localize, and stay at
the vicinity of the ions fixed at the wall (located below the nodes of the grey lines on the plane).

smaller for systems with low coupling (high temperature) than for systems with high coupling
(low temperature). The simulations will confirm this.

4.3 Simulation results

The Hamiltonian of the system reads

H
kBT

=
N−1∑

j=1

N∑

k=j+1

q2 `B
|rj − rk|

−
N∑

j=1

Np∑

k=1

qQ `B
|rj − rk|

(4.5)

where Q is the charge valence of the particles at the plane and Np is such that qN = QNp

(electroneutrality). The technical details for the simulations done for this system are the same
as what has been described in Section 2.4. We again use the Lekner summation[63] to calculate
the electrostatic energy of the system periodically repeated in the x and y directions, now with
the charges at the wall being also treated as point charges. For practical reasons we used in
the simulations Q = q, simplifying the construction of the lattice of fixed charges in the plane
z/µ = z̃ = −D̃ (for instance, a system with N = 100 with Q = q has a lattice with 10 × 10
charges). In this case the box size is given by L/µ = L̃ =

√
2πNΞ and the lattice constant by

a/µ = ã =
√

2πΞ, after rescaling all lengths with the Gouy-Chapman length µ.
As it became clear in the previous Section, one of the important variables in this system is

the ratio between D, the distance between the lattice and the hard wall (contact distance), and
a, the lattice constant. According to Fig. 4.2, one does not have to simulate systems where this
ratio is of the order 1 or larger, because the answers will be the same as obtained in Chapter 2
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(irrespective of the coupling). When the discretization effects are important, the density profile is
not homogeneous in the directions parallel to the wall: the counterions tend to localize and prefer
to stay in the vicinity of the ions ate the wall, as depicted in Fig. 4.3 for a system with Ξ = 100.
However, we will focus our attention on the integrated counterion density profiles (i.e., integrated
in the directions x and y), which can be compared to the results obtained in Chapter 2.

Fig. 4.4a shows the results[72] for a system with Ξ = 1 (81 particles and 106 MC steps) and
the lattice at two values of D̃ = D/µ, viz. D̃ = 0.1 (D̃/ã = 0.040) and D̃ = 0.3 (D̃/ã = 0.12).
For comparison, we also plot the Monte Carlo results for the same system with the smeared out
charges, as obtained in Chapter 2 (full line). For D̃/ã = 0.040 the deviation between the density
profiles is clear: due to the discretization, the charge density close to the wall is, as expected, a few
times larger than 1 (the value at contact for the rescaled density with smeared out charges). On
the other hand, the discretization is almost unimportant for D̃/ã = 0.12, a value well below what
one would expect from the considerations in the previous Section. In the inset to Fig. 4.4a we see
that all density profiles collapse into one curve (which, as we saw in Chapter 2, is very close to
the PB prediction) quite quickly, with very small differences between the profiles for z̃ > 3. In
Fig. 4.4b we plot the log-log plot of the density profile for z̃. Interesting is the fact that the density
profile of the system with D̃/ã = 0.040 decays initially with a −2/3 power law (cf. linear fit in
the log-log plot) crossing over, as z̃ grows, to the familiar PB behavior (which eventually becomes
a −2 power law).

Fig. 4.5a shows the results for the system with Ξ = 10 (100 particles and 106 MC steps) for
D̃ = 1 (D̃/ã = 0.13) and D̃ = 2 (D̃/ã = 0.25). For D̃/ã = 0.13 the discretization effect is
large (contrary to what happens for the system with Ξ = 1), while for D̃/ã = 0.25, the density
profiles obtained with and without discrete charges are almost the same. In the inset to Fig. 4.5a
we see that the density profile with D̃/ã = 0.13 slowly converges into the profile for the smeared
out system (considerably slower than the case with Ξ = 1 and D̃/ã = 0.040). Finally, in Fig. 4.5b
we again show the log-log plot of the density versus distance: now the initial decay of the curve
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with D̃/ã = 0.13 is approximately the same as the decay of the other curves, that is, it is not a
power-law decay. It is important to note that the contact value of the density profiles for Ξ = 1
and D̃/ã = 0.040 and for Ξ = 10 and D̃/ã = 0.13 are approximately the same, i.e., the effect
due to discretization is, in relative terms, the same in the two cases. Nevertheless, the density
profiles that come out are fundamentally different. Similar conclusions follow from the results for
Ξ = 100 (100 particles and 106 MC steps), which are depicted in Figs. 4.5c and 4.5d for D̃ = 6
(D̃/ã = 0.24) and D̃ = 10 (D̃/ã = 0.4). In the inset we see that the convergence of the curve
with D̃/ã = 0.24 to the other curves is quite slow (at the large z̃ it is difficult to obtain good
statistics, since the densities are very low, and the error bars are large).

With the previous analysis, it becomes also clear that depending on the value of Ξ, the dis-
cretization will be more or less important for the same ratio D̃/ã: for instance, at D̃/ã = 0.12–
0.13, the system with Ξ = 1 is weakly affected by the discretization, while for Ξ = 10 the effect
is quite clear. The same follows for D̃/ã = 0.24–0.25 for the systems with Ξ = 10 (discretization
is almost unimportant) and Ξ = 100 (discretization is important). This behavior is summarized in
Fig. 4.6, where D̃/ã is fixed at approximatelly 0.12 for the three couplings discussed above, viz.
Ξ = 1, 10 and 100. As expected, the system with the highest coupling (or lowest temperature) is
the one that shows the largest contact value for the density at the wall, i.e., discretization becomes
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increasingly important as the coupling parameter grows.

4.4 Conclusions

In summary, we have studied the effects due to the discrete nature of the charges at the wall on
the counterion cloud in solution. The simple analysis using the z-component of the electric field
generated by a two-dimensional square lattice shows that one should expect the discretization to
be important for D̃/ã below approximately 0.5. From the simulations, we have conclued that
the value of D̃/ã below which discretization matters becomes smaller as Ξ decreases, or in other
words, for the same value of D̃/ã the systems with higher Ξ are more sensitive to the discrete
fixed charges. The snapshots shown in Fig 4.3 also show that as D̃/ã decreases, the counterions
tend to localize and “bind” to the fixed ions in the plane, which explains the increase of the contact
value of the density as D̃/ã becomes smaller.

A system with monovalent counterions with a contact distance between ions at the wall and
counterions of approximately 6 Å (which is a reasonable value, cf. Chapter 6) and coupling equal
to 1 would have D̃/ã ∼ 0.33 (cf. Table 2.1); with coupling Ξ = 10, this ratio would be D̃/ã ∼ 1.
In both cases the model used in this Chapter would predict that the discrete nature of the charges
at the wall would not be important. While this might help in understanding why the Poisson-
Boltzmann theory works so well, the experimental systems are much more complicated than the
model used here assumes: for instance, if instead of putting a hard wall at z̃ = 0 one would
put each of the charges at the wall inside a hard half-sphere that would avoid the collapse of the
counterions on the fixed ions, the counterions would be able to sit between ions at the wall, and
the effects of the discretization would in principle be stronger.

In the next Chapter we will look at the interaction between double layers, i.e., we will confine
the counterions between two similarly charged walls and see how this influences the interaction
between the walls. This leads to interesting and relevant questions on, for instance, the stability
of lyophobic colloids[114] (which stay in solution due to the repulsive interaction between the



42 Discrete charges at the wall

macroions) or on the interaction between highly charged DNA molecules[99, 38, 41].



Chapter 5

Counterions confined between two
equally charged walls

After studying the isolated double layer, we look at the interaction between two double
layers. The system is composed by two equally charged walls at distance d with their
counterions confined between them. The charge at the walls is smeared out and the
dielectric constant is the same everywhere. Using Monte-Carlo simulations we obtain
the inter-plate pressure in the global parameter space, and the pressure is shown to
be negative (attraction) at certain conditions. The simulations also show that the
equilibrium plate separation (where the pressure changes from attractive to repulsive)
exhibits a novel unbinding transition. We compare the Monte Carlo results with the
strong-coupling theory, which is shown to describe well the bound states at moderate
and high couplings. The regime where the two walls are very close to each other is
also shown to be well described by the SC theory.

5.1 Introduction

Up to now we have focused our attention on systems with one charged wall where the counterions
were free to move in an infinite half-space. We have seen how the isolated double layer behaves
at low and high coupling, and how the dielectric constant and the discrete character of the charges
at the wall can affect the results obtained for the simplest case. At this point, it is a natural step
to study counterions that are confined between two similarly charged walls, and see how two
double layers interact with each other. This is relevant, for instance, on the problem of stability
of colloidal suspensions[114] (for instance, for an small ion the surface of a colloidal particle is
almost like an infinite plane), stability of lamellar systems[117] and on DNA condensation[99].

It has been known for a long time that two similarly charged plates can attract each other
when in the presence of multivalent counterions. This has been first measured in Monte Carlo
simulations[40, 15], and later observed experimentally with the surface force apparatus[50]. The
Poisson-Boltzmann theory (which is a part of the DLVO theory[47]) predicts on the other hand
that the electrostatic interaction between the surfaces should always be repulsive. In this sense,
the attraction with electrostatic origin came as a surprise, especially if one minds that the DLVO
theory was very successful in the past in explaining many phenomena related to colloidal stability,
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Figure 5.1: Two similarly charged walls at distance d, with their counterions confined between them. Here only systems
with ε> = ε< are considered.

as for instance, the Schulze-Hardy rule[30] (which says that the critical coagulation concentration
varies with the counterion valence like 1/q6).

This contradiction attracted special attention to this problem. Most theoretical approaches tried
to include the correlations (not present in PB) between the counterions and which was thought
to be the reason for the discrepancy between the mean-field and the experimental/simulation
results[52, 8]. The first theoretical approach that also showed attraction with electrostatic origin is
due to Kjellander and Marčelja[54], which used sophisticated integral-equation theory (with HNC
closure) and obtained results that compared very well with simulations[40, 54, 53]. Also perturba-
tive expansions around the PB solution[9, 95] and density-functional theory[109, 28] were used,
and predicted as well the existence of an attractive interaction. For plates far away from each other,
i.e., at distances such that the two double layers weakly overlap, the attractive force was obtained
by including in-plane Gaussian fluctuations[91] and, more recently, plasmon fluctuations[60].

In this Chapter, we study the system of confined counterions through extensive Monte Carlo
simulations, and compare it with the analytical predictions for both the weak and the strong cou-
pling regime.

5.2 Attraction: a simple scaling argument

Let us assume that the walls are so close to each other that their distance is smaller than the typical
lateral distance rtyp between two neighboring counterions. In such conditions, a counterion has
lateral correlation with the surrounding counterions—it will stay preferably away from them—but
will be free to move (between the walls) in the perpendicular direction. The probability of finding a
counterion at a certain distance from each of the walls is constant, i.e., the counterions between the
two walls act like a constant charge distribution in the perpendicular direction. The electrostatics
in the system can be modeled by two similarly charged walls with charge density σs that have an
oppositely charged plane between them with charge density 2σs (due to electroneutrality).

We now look at the forces acting on one of the walls, say, the one at d/2 (Fig. 5.1). There are
two contributions to the total force. One comes from the balance between the attraction due to the
(oppositely charged) plane in the middle and the repulsion due the other (similarly charged) wall.
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This contribution reads

Fel
kBT

= −Aσs
{

2σs
2εkBT

− σs
2εkBT

}
= −A 2π`Bσ

2
s (5.1)

whereA is the area of the wall; note that this contribution is attractive. From the ideal gas equation
of state PV = NkBT comes the second contribution to the force: the ideal entropic force (due to
the counterions) acting on the area A is

Fid
kBT

= A
N

V
= 2A

σs
qd
, (5.2)

which is repulsive. In the latter we used the electroneutrality condition σs = qNd/2V , where V
is the volume that confines the N counterions and d is the distance between the walls. Summing
the two contributions, the total pressure acting on the wall is

P

2π`Bσ2
s

= −1 +
2

d̃
(5.3)

where the pressure P is in units of kBT and d̃ = d/µ is the rescaled distance between the walls
(µ ≡ 1/2πq`Bσs is the Gouy-Chapman length). What this scaling argument says is that at d̃ = 2,
the pressure felt by the walls is zero, i.e., the equilibrium distance between the walls is finite.

As previously mentioned, one should mind that this argumentation only holds when the typical
lateral distance between counterions, defined though πr2

typ = q/2σs, is much larger than 2µ,
which is the obtained equilibrium distance between the walls. This is equivalent to say that the
coupling constant (defined and used in the previous Chapters) Ξ ≡ 2πq3`2Bσs has to be larger than
four. As we will demonstrate below, the picture used for this scaling argument is asymptotically
exact in the limit of strong coupling and/or small distances between the walls.

5.3 Poisson-Boltzmann and strong coupling

One can apply to this problem similar analytical techniques as used for the double layer problem.
The saddle-point equation—valid for small coupling parameter—is again the Poisson-Boltzmann
equation, which after rescaling all lengths by the Gouy-Chapman length reads

d2φ̃(z̃)

dz̃2
= 2ıΛe−ıφ̃(z̃), (5.4)

with z̃ ∈ [−d̃/2, d̃/2] and the boundary conditions dφ̃(0)/dz̃ = 0 and φ̃(0) = 0. As before, Λ is
the rescaled fugacity which is determined by the normalization (or electroneutrality) condition

Λ

∫ �

z/2

−
�

z/2
dz̃
〈
e−ıφ(

�

z
〉

= 2. (5.5)

The solution of Eq. (5.4) is
ıφ̃ = 2 ln cos

(
Λ1/2 z̃

)
, (5.6)
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with Λ given by the solution of the transcendental equation

1

Λ1/2
= tan

(
d̃

2
Λ1/2

)
(5.7)

which follows from the normalization condition, Eq. (5.5). Using Eq. (2.12), the PB density profile
of the counterions between the wall finally reads

ρ(r̃)

2π`Bσ2
s

=
Λ

cos2
(
Λ1/2z̃

) . (5.8)

We can use the contact value theorem derived in Appendix C to calculate the pressure acting
on the walls when they are at distance d̃ apart. A positive pressure means that the walls want to go
away from each other (repulsion), while a negative pressure means that the walls want to approach
each other (attraction). The theorem states that the pressure at one of the walls (say, the one at
d̃/2) is related to the density of counterions at contact through

P

2π`Bσ2
s

= −1 +
ρ(d̃/2)

2π`Bσ2
s

, (5.9)

where P is the pressure in units of kBT . From Eqs. (5.8) and (5.7), ρ(d̃/2)/2π`Bσ2
s = 1+Λ, and

consequently Poisson-Boltzmann predicts that

P

2π`Bσ2
s

= Λ. (5.10)

We remind that Λ is always a positive quantity. This a classical result[87, 7, 47], stating that the
plates will always repel each other at the mean-field level. At distances d̃ � 1, Eq. (5.7) yields
the solution Λ ' 2/d̃, and the pressure reads

P

2π`Bσ2
s

=
2

d̃
, (5.11)

which is the ideal gas contribution to the pressure, Eq. (5.2). This means that, according to PB,
when the walls are close enough the counterions behave purely as an ideal gas.

In the other limit, d̃� 1, Λ ' π2/d̃2 and

P

2π`Bσ2
s

=
π2

d̃2
. (5.12)

The latter expression has been used to describe the electrostatic (repulsive) contribution to the
pressure in thick wetting films, and is related to the Langmuir equation[58, 47, 7]. Note that
Eq. (5.12) can be rewritten as P = 1/8q2`Bd

2 showing that in this limit the pressure becomes
independent of the surface charge density

We now turn our attention to the limit Ξ → ∞, where PB breaks-down. Again, as for the
single-wall problem, one can derive the strong coupling (SC) density profile[80]. This is done at
lowest order in Appendix B, and the result is

ρ(z̃)

2π`Bσ2
s

=
2

d̃
, (5.13)
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Figure 5.2: MC results for the rescaled counterion density distribution as a function of the rescaled distance from the
wall z/d in the a) PB limit for Ξ = 0.5 and in the b) SC limit for Ξ = 100 for various separations d̃ = d/µ = 1.5 (open
diamonds), d̃ = 10 (open stars), and d̃ = 30 (open triangles). In a) MC results agree well with the corresponding PB
predictions (Eq.(5.8), solid lines), whereas in b) results for d̃ = 1.5 agree with the asymptotic SC prediction, Eq.(5.13)
(dashed line) and for d̃ = 30 with two decoupled walls in the SC regime, Eq. (5.15).The error bars are comparable to or
smaller than the symbols.

which is a constant density profile. Notice that this is the starting point of the scaling analysis
done in the previous Section. The simulations will confirm this results if Ξ is high enough and if
the walls are close enough to each other. Using again the contact value theorem,

P

2π`Bσ2
s

= −1 +
2

d̃
(5.14)

which is the same as Eq. (5.3) obtained with the simple scaling analysis, and as before, leads to
negative values of the pressure for d̃ > 2. If d̃ is very small (viz. d̃ � 2), the positive (entropic)
contribution dominates over the negative electrostatic contribution (−1 in the rhs of Eq. (5.14)).
This is a subtle difference between PB and SC at small d̃: PB predicts the pressure to be equal to
the one of a pure ideal gas, while SC still corrects it with an electrostatic contribution.

As simulations will show, as d̃ grows the constant profile predicted for large coupling eventu-
ally breaks down. For large Ξ and d̃ → ∞, the MC results show that (cf. Fig. 5.2) the profile is
approximately described by

ρ(z̃)

2π`Bσ2
s

=
1

1 − e−
�

d

{
exp(−z̃ − d̃/2) + exp(z̃ − d̃/2)

}
, (5.15)

which incidentally is a sum of two exponential decays, corresponding to the superposition of the
solutions of two isolated charged walls (with their counterions) in the SC limit.

Before showing the simulations, we can summarize what we have discussed up to now. On
one hand, at low coupling, PB predicts a counterion density profile between the walls that leads
to repulsion between the plates at all distances. On the other hand, at high coupling, there are two
distinct limits, viz. when the distance between the walls is much smaller than the typical lateral
distance between counterions, where a constant density profile between the walls is obtained and
negative pressure (attraction) can occur; the second regime, when the walls are far enough from
each other and the profile is approximately described by Eq. (5.15). We now use the computer
simulations to test these results.
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Figure 5.3: MC results for rescaled counterion density profiles ρ̃ = ρ/2π`Bσ
2 for fixed plate separation d̃ = d/µ = 2

as a function of the rescaled distance z̃ = z/µ from one wall. Symbols correspond to coupling parameters Ξ = 0.5 (open
diamonds), Ξ = 10 (filled diamonds), Ξ = 100 (open stars), and Ξ = 105 (open triangles), exhibiting clearly the crossover
from the PB prediction (solid line, Eq.(5.8)) to the SC prediction (dashed line, Eq.(5.13)). The error bars are comparable
to or smaller than the symbols.

5.4 Monte Carlo results

We performed Monte Carlo simulations on the two-wall system[72], with typically 100–150 coun-
terions and simulated for 106 Monte Carlo steps (MCS, defined as a cycle where the computer
sequentially tries to move each particle in the system). The systems are assumed to be periodic
in the direction parallel to the walls, and the Lekner summation was again used to calculate the
interactions between counterions. The technical details are basically the same as in Section 2.4.

5.4.1 Density profiles

Fig. 5.2 shows the MC counterion density profiles obtained for two values of the coupling, viz.
Ξ = 0.5 and 100, for distances d̃ = 1.5 (open diamonds), 10 (open stars) and 30 (open triangles)
between the walls. Fig. 5.2a shows the good agreement between the simulation and the PB results
(solid lines) for all values of d̃. In Fig. 5.2b the same comparison is made, and PB (thin solid
lines) clearly fails to describe the profiles. Notice that for Ξ = 100, the projected lateral distance
between counterions is r̃typ = 20: for d̃ = 1.5, d̃/r̃typ = 0.075 and, as expected, the constant
density profile given by Eq. (5.13) (dashed line) agrees with the simulations (open diamonds); for
d̃ = 10, d̃/r̃typ = 0.5 and the system is in an intermidiate state, where the counterions density
profile (open stars) is not described by any of the analytical results given above; finally, for d̃ = 30,
d̃/r̃typ = 1.5 and the superposition of two single-wall SC solutions, Eq. (5.15) (dash-dotted line),
agrees with the simulations (open triangles).

In Fig. 5.3 the crossover between the PB (solid line) and the SC (dashed line) is shown for
fixed d̃ = 2 and different couplings, viz. Ξ = 0.5 (open diamonds), Ξ = 10 (filled diamonds),
Ξ = 100 (open stars) and Ξ = 105 (open triangles).
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Figure 5.4: MC results for the rescaled pressure P/2π`Bσ2 as a function of the rescaled plate separation d̃ = d/µ
for the same parameter values as in Fig. 5.3 (and Ξ = 20, open squares), compared with the PB prediction Eq. (5.10)
(solid line) and the SC prediction Eq. (5.14) (dashed line). Inset: Log-log plot of the rescaled pressure as a function of
d̃ = d/µ < 3 for Ξ = 105, 100, 50, 20, 12.5, 10 and 0.5 (from bottom to top). Notice that for small separations between
the plates, the strong coupling description is generally better than Poisson-Boltzmann. The error bars are comparable to
or smaller than the symbols.

5.4.2 Pressure

From the counterion density profiles obtained with the simulations we can calculate the pressure
felt by the walls. If enough data on the density profile close to the walls is available, one can
extrapolate the curve and obtain the contact value (value of the density at a wall), from which
the pressure follows through the contact value theorem, Eq. (5.9). In our simulations, we had
typically bins (for obtaining the density profile, cf. Section 2.4.3) of size 0.02µ, which allowed the
extrapolation of the data to contact.

In Fig. 5.4 we show the pressure for systems with different values of Ξ as a function of the
separation d̃ between the walls. As already seen in the previous figures, the system with Ξ = 0.5
(open diamonds) agrees well with the PB prediction (solid line) given by Eq. (5.10), while the
system with high coupling, Ξ = 105, agrees well with the SC (dashed line) prediction Eq. (5.14)
at this range; notice that for Ξ = 105, r̃typ ∼ 600, meaning that for this system a distance of
d̃ = 20 is still well within the limit where the constant density profile (SC) is valid.

The other systems shown (Ξ = 10, 20 and 100) lie between the two analytical results, but as the
inset in Fig. 5.4 demonstrates, as d̃ decreases the pressure values for these systems are increasingly
closer to the prediction given by SC (with the constant density profile). The system with Ξ = 10
shows always positive pressure (within the error bars, see also Fig. 5.7), while at higher couplings
positive and negative values of the pressure (attraction) occur, and a finite equilibrium distance d̃∗

between the plates arises, viz. where P crosses, with negative derivative, the d-axis. This attractive
behavior between equally charged plates has first been seen in a computer simulation by Guldbrand
et al. for a system with divalent counterions in water at room temperature and σs = 1/71.4 Å−2

(i.e., with Ξ ' 36).
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The long range behavior of the pressure for Ξ = 20, 50 and 100 is shown in more detail in
Fig. 5.5. The lines are fits to the data points: for Ξ = 20, the line is given by 3.62(±0.30) −
3.42(±0.15) ln(d̃), for Ξ = 50, 5.38(±0.30) − 3.29(±0.10) ln(d̃) and finally for Ξ = 100,
6.27(±0.20) − 3.21(±0.10) ln(d̃). If we assume that this attractive contribution to the pres-
sure is approximately of the form P0/d

3, it follows that P0 depends on the coupling through
P0 ' 87.3 − 6.14Ξ (inset in Fig. 5.5); P0 vanishes at Ξ ' 14, which approximatelly coincides
with the coupling below which no binding between the walls occurs (cf. phase diagram, Fig. 5.6).
In other words, the attractive tail of the force between the plates decays approximately like d̃−3,
in agreement with previous results[9, 91, 66]. The prefactor P0 given here approximately agrees
with the same prefactor from Ref. [9] for the aymptotic pressure, but is approximately one order
of magnitude larger than the one from the Ref. [91].

5.4.3 The equilibrium distance between the walls

From the pressure data, it becomes clear that for large values of the coupling there is a finite
value of d̃ where the pressure is zero (the equilibrium distance between the walls), while for low
values of Ξ the pressure is never negative (i.e., the equilibrium distance between the walls is
infinite). This is summarized in Fig. 5.6, where the equilibrium distance for the two-wall system
is plotted as a function of the coupling and of the distance between between the walls. Each point
corresponding to the equilibrium distance was determined by simulating systems in the vicinity of
d̃∗ (where the pressure is zero and its derivative is negative). The full line is only a guide to the
eye, and corresponds to the equilibrium curve: a system above it tends to shrink, one below it to
expand. As the coupling tends to infinity the equilibrium distance saturates around d̃∗ = 2, which
is the asymptotic value predicted by SC. There is a minimum value of Ξ (around 11) below which
no attraction occurs between the plates. As d̃ approaches this value from above, the equilibrium
distance between the walls diverges, exhibiting a novel unbinding transition. Numerically, we
were unable to determine whether this unbinding transition is continuous or discontinous.
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Figure 5.6: Regions of positive (repulsive) and negative (attractive) pressure as a function of the rescaled plate sep-
aration d̃ = d/µ and coupling strength Ξ (valid for small and intermidiate values of

�

d). The dividing line denotes the
equilibrium plate separation d̃∗, which saturates at d̃∗ = 2 for Ξ → ∞ and which grows as Ξ approaches the value
Ξ∗ ≈ 11 from above.

As the distance between the walls grows, the pressure between the plates is expected to vanish
from positive values[40]; one indication for this is the fact that the attractive tail of the pressure
(as previously shown in Fig. 5.5) decays approximately like d̃−3, which is faster than the repulsive
mean-field (PB) decay d̃−2: the latter dominate the former, and the pressure eventually becomes
again positive[9]. This means that one should expect to see a local maximum in the pressure
at large d̃, which indeed has been seen by Guldbrand et al.[40] for Ξ = 14.6, Ξ = 12.9 and
Ξ = 11.3, with a height of approximatelly 20 mM (corresponding in our rescaled pressures to a
height of ∼ 0.012), and located at approximatelly d̃ ∼ 10. This should be compared with our
results in Fig. 5.7 for Ξ = 15, 12.5 and 10: in the three cases shown, the errorbars have a size
comparable to the expected height of the local maximum. In other words, from our data we are
unable to confirm or exclude this effect. Differences in the way the pressure is determined[49]
might explain the difference in the accuracy between our work and Ref. [40].

Although of interest, this latter question is not relevant to the bound state of most systems,
since the line where the plate separation equals the typical lateral distance between counterions
crosses the line shown in Fig. 5.6 at d̃ ∼ 3. This means that for systems with moderate to large
coupling, the bound state is well described by the SC prediction.

5.5 Conclusions

At low enough values of Ξ, the PB solution describes the system quite well. On the other hand,
at high coupling the SC prediction (constant density profile) is confirmed by the simulations in
the regime where the walls are close enough to each other. Two similarly charged walls can
attract each other (although only electrostatic interactions are involved) if the coupling is high
enough; at low values of Ξ the attraction disappears, in agreement with previous results[40, 54]:
the connection between these two distinct behaviors at high and low coupling is done by the
unbinding transition that occurs at approximately Ξ ∼ 11.

Finally, most of the bound states in the phase diagram Fig. 5.6 have equilibrium distances such
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that they are well described by the SC theory. This means that the correlation between counterions
(except in the lateral directions, keeping the ions away from each other) are mostly unimportant
for the bound state.

These results are mostly relevant for planar charged systems, like lamellar membrane systems.
Notice that a system at room temperature with σs = 1/71.4 Å−2 and divalent counterions (in wa-
ter) has Ξ = 36: the bound state is below the dashed curve in Fig. 5.6, and already approximately
described by SC (although in such conditions the counterions are at ∼ 10 Å away from each other,
and packing effects due to their finite size might have some importance). Colloidal particles are
not infinite planes, but the results presented here can also say something about the stability of such
systems (although the attraction mechanism between spheres has extra contributions due to their
finite size[5]). It is known that many systems, like DNA etc., exhibit condensation as multivalent
counterions are introduced in solution. In the case of the two walls, this is easily understood by
noticing that the coupling parameter changes by a factor of 8 when going from mono- to divalent
counterions, and a factor of 27 when going to trivalent counterions. As we saw, systems with large
coupling do have a finite distance of equilibrium between the plates (i.e., show condensation).



Chapter 6

Virial expansion for charged colloids
and electrolytes

Using a field-theoretic approach, we derive the exact low-density (“virial”) expansion
of a binary mixture of positively and negatively charged hard spheres (two-component
hard-core plasma, TCPHC). The free energy obtained is valid for systems where the
diameters d+ and d

−
and the charge valences q+ and q

−
of positive and negative ions

are unconstrained, i.e., the same expression can be used to treat dilute salt solutions
(where typically d+ ∼ d

−
and q+ ∼ q

−
) as well as colloidal suspensions (where the

difference in size and valence between macroions and counterions can be very large).
We also discuss some applications of our results.

6.1 Introduction

The two-component hard-core plasma (TCPHC) has been used for a long time as an idealized
model for electrolyte solutions. In this model (also called “primitive model”), the ions are spherical
particles that interact with each other via hard-core and Coulomb potentials. The positive ions have
a charge q+ e (where e is the elementary charge) and ionic diameter d+, while the negative ions
have a charge −q−e and diameter d−. The particles are immersed in a structureless solvent whose
presence is felt only through the value of the dielectric constant of the medium, and the system is
(globally) electrically neutral (cf. Fig 6.1).

The TCPHC is a quite simplified version of reality. For instance, it treats the solvent—usually
water—as a structureless medium where the charged particles are embedded, neglecting the molec-
ular arrangement that occurs around the ions (which is in the origin of the so-called solvation
forces[47]). Also, it assumes the ions to be spheres with the same dielectric constant as the one of
the solvent, which might be a reasonable approximation only for some ionic systems.

Nevertheless, even with such simplifications, the TCPHC is still not fully understood. A better
understanding of this model is a necessary step if one wishes to develop more realistic approaches
to charged systems. In this Chapter, we turn our attention to the low-density, or virial, expan-
sion of the TCPHC. Since it yields exact results for the thermodynamic variables at vanishing
concentrations, it can be used to describe dilute systems (like colloidal suspensions) as well as to
test approximate results obtained for the TCPHC. We are particularly interested in the effects of
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Figure 6.1: Schematic view of the asymmetric two-component hard core plasma (TCPHC).

asymmetry in size and valence on the behavior of the TCPHC.
Due to the long-range character of the Coulomb potential, it is not easy to obtain the thermo-

dynamic behavior of the TCPHC through the usual methods of statistical mechanics. For exam-
ple, it can be shown[68, 34, 69] that the straightforward application of the cluster expansion to
the TCPHC leads to divergent virial coefficients. Mayer[68] proposed a solution to this problem
through an infinite resummation of the cluster diagrams, carried out such that the divergent con-
tributions to the virial expansion are canceled. With this, he was able to obtain explicitly the first
term in the virial (or low-density) expansion that goes beyond the ideal gas, which turns out to be
the well-known Debye-Hückel limiting law[27]. Haga[42] carried the expansion further and went
up to order 5/2 in the ionic density. More or less at the same time, Edwards[29] also obtained the
virial expansion of the TCPHC by mixing cluster expansion and field theory.

The methods aforementioned always depend on drawing, counting and recollecting the cluster
diagrams which give finite contributions to the expansion up to the desired order in the density.
This can be quite a formidable task, and unfortunately it is easy to “forget” diagrams that are rele-
vant to the series (see for instance comment at pp. 222–223 of Ref. [34]). Also, the generalization
to ions with different sizes can be quite complicated[34]. Besides, the final results are not given in
a closed form, i.e., the final expressions depend on infinite sums that usually have to be evaluated
numerically, which is a consequence of the infinite diagrammatic resummation.

We generalize here a novel field-theoretic technique[82], first introduced for the symmetric
TCPHC (q+ = q− and d+ = d−), in order to obtain the low-density expansion of the asymmetric
TCPHC. This method does not use the cluster expansion (and resummation) and yields analytic,
closed-form results. We obtain the exact low-density expansion up to order 5/2 in the volume
fraction of a system where the sizes and the charge valences of positive and negative ions are
unconstrained, that is, the expression we obtain can be applied, without modifications, to both
electrolyte solutions (where ions and counterions have approximately the same size and valence)
and to colloidal suspensions (where the macro- and counterions have sizes and valences that can
be different by orders of magnitude).

We will take the limit where one of the charged species becomes much smaller and much less
charged than the other one, which corresponds to the colloidal limit. As our main result, we show
that the electrostatic contribution to the free energy of the TCPHC in this limit maps, up to the
second order in the density, into a hard-core one-component plasma with background excluded
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from the particles. We will also look at the mean activity coefficient of electrolytes, which is
related to the exponential of the chemical potential of the charged species and can be measured
experimentally, from which one can get the effective radii of ions when in solution. One of the
interesting aspect of this method is that it allows one to obtain the radii as independent parameters,
in contrast with what happens, for instance, when the radii are measured from crystal lattices[100].

This Chapter is organized as follows: in Section 6.2 we describe in detail the steps that lead to
the low-density expansion Eq. (6.36). In Section 6.3 we apply the free energy obtained to colloidal
suspensions and to electrolyte solutions. Finally, Section 6.4 contains some concluding remarks.

6.2 The method

We begin our calculation by assuming a system with N+ positively charged particles with charge
valence q+ and diameter d+, and N− negatively charged particles with charge valence q− and
diameter d−. The global electroneutrality of the system will be imposed in a later stage of the
calculation. As usual, the canonical partition function Z is

Z =
1

N+!N−!

∫ N+∏

i=1

dr
(+)
i

N−∏

j=1

dr
(−)
i exp

(
− H
kBT

)
(6.1)

where r
(+)
i is the position of the ith positively charged particle (the analogous notation is used for

negative particles) and the Hamiltonian H is given by

− H
kB T

= Eself −
1

2

∑

α,β

∫
drdr′ ρ̂α(r)ωαβ(r− r

′)ρ̂β(r
′)

− 1

2

∫
drdr′ [ρ̂+(r) − ρ̂−(r)]vc(r− r

′)[ρ̂+(r′) − ρ̂−(r′)]. (6.2)

The charge-density operator of the ions are defined as

ρ̂+(r) = q+

N+∑

i=1

δ(r − r
(+)
i ), ρ̂−(r) = q−

N−∑

i=1

δ(r − r
(+)
i ), (6.3)

where δ(r − r
′) is the Dirac delta function. The indices α and β in Eq. (6.2) stand for + and

−. In order to make some expressions more compact, we will sometimes use this notation: for
example, αqα means both +q+ and −q−. The sum over α and β in Eq. (6.2) runs over all possible
permutations (viz. ++, −− and +−), i.e., we consider a different short-range potential ω for each
combination (in a later stage, the ω’s will be assumed to be hard-core potentials). The Coulomb
potential is given by vc(r) = `B/r, where `B ≡ e2/(4π ε kB T ) is the Bjerrum length, defined as
the distance at which the electrostatic energy between two elementary charges equals the thermal
energy kB T . Finally, Eself is the self-energy of the system and reads

Eself =
N+

2
[ω++(0) + q2

+vc(0)] +
N−

2
[ω−−(0) + q2

−vc(0)]. (6.4)
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Although the self-energies ωαβ(0) and vc(0) are divergent, they do not pose any problems since
they will be later exactly canceled.

We proceed by applying the Hubbard-Stratonovich transformation, which can be summarized
with the following identity

exp

(
−1

2

∫
drdr′ ρ̂(r)v(r − r

′)ρ̂(r′)

)
=

∫
Dφ exp

(
−1

2

∫
drdr′ φ(r)v−1(r− r

′)φ(r′) − ı
∫

drφ(r)ρ̂(r)

)

∫
Dφ exp

(
−1

2

∫
drdr′ φ(r)v−1(r − r′)φ(r′)

) (6.5)

where v(r) is some general potential and Dφ means that the integrals in the rhs are in fact path
integrals over the fluctuating field φ. While this transformation can be used without problems
when v(r) is the Coulomb potential, for the short-range potential this can be more troublesome:
for instance, a hard-core potential does not even have a defined inverse function! We will anyway
take this formal step for the short-range potential, and, as we will see later, the way we handle the
resulting expressions lead to finite (and consistent) results, viz., the virial coefficients.1

Applying then Eq. (6.5) to Eq. (6.1) we obtain the partition function in a field-theoretic form

Z =

∫ Dψ+ Dψ−

Zψ
Dφ
Zφ

eH̄0 W+W− (6.6)

with the action

H̄0 = −1

2

∑

αβ

∫
drdr′ ψα(r)ω

−1
αβ (r − r

′)ψβ(r
′) − 1

2

∫
drdr′ φ(r)v−1

c (r− r
′)φ(r′), (6.7)

where again the indices α and β stand for + and −. The inverse potentials are formally defined as
the solution of the equation

∑

β

∫
dr′ ωαβ(r − r

′)ω−1
βγ (r′ − r

′′) = δαγ δ(r − r
′′) (6.8)

(δαγ is the Kronecker delta) and
∫

dr′ vc(r − r
′)v−1

c (r′ − r
′′) = δ(r − r

′′). (6.9)

For the Coulomb potential, v−1
c (r) = −∇2δ(r)/4π`B . We have also defined

Wα=
1

Nα!

[
e

[
ωαα(0)+q2αvc(0)

]
/2
∫

dr e−ıqα
[
ψα(r)+αφ(r)

]]Nα

(6.10)

1This can be checked in our calculations by turning-off the charges (or simply be setting `B = 0) in the final result.
Alternatively, one can check this by doing the same calculation as we do here, but having only the hard-core gas from
beginning. As expected, this also leads to the correct virial expansion.
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(α stands for both + and −) and finally,

Zψ =

∫
Dψ+ Dψ− e

−
1

2 �
αβ

�
drdr′ ψα(r)ω−1

αβ (r−r
′)ψβ(r′)

(6.11)

and

Zφ =

∫
Dφ e−

1

2

�
drdr′ φ(r)v−1

c (r−r
′)φ(r′). (6.12)

In order to make the calculations simpler we go to the grand-canonical ensemble. We can do
this through the transformation

Q =
∑

N+N−

λ
N+

+ λ
N−

− Z, (6.13)

where λ+ and λ− are, respectively, the fugacities (exponential of the chemical potential) of the
positively and negatively charged particles. We perform the sum over N+ and N− without con-
straints, i.e., without imposing the electroneutrality condition q+N+ = q−N−. Imposing this con-
dition before going to the grand-canonical ensemble makes, in general, the calculations much more
difficult, if not impossible. Later, as we obtain the low-density expansion, this will be imposed
order-by-order in a consistent way—any infinities arising from the non-neutrality of the system
will be then (automatically) canceled.

In its full form, Q reads

Q =

∫ Dψ+ Dψ−

Zψ
Dφ

Zφ
exp

(
H̄0+λ+

∫
drh+(r)e−iq+φ(r)+λ−

∫
drh−(r)eiq−φ(r)

)
, (6.14)

where H̄0 is given in Eq. (6.7). We defined

hα(r) ≡ exp
(1

2

[
ωαα(0) + q2

αvc(0)
]
− ıqαψα(r)

)
(6.15)

(as before, α stands for both + and −).
Introducing the Debye-Hückel propagator,

v−1
DH(r − r

′) = v−1
c (r− r

′) + I2δ(r − r
′) (6.16)

(with I2 = q2+λ+ + q2−λ−), and doing some algebraic manipulations, we finally arrive to the
grand-canonical free energy density. It is defined through g ≡ − ln

(
Q
)
/V , and reads

g = −λ+ − λ− − 1

2
I2vc(0) −

1

V
ln
(ZDH

Zφ

)
− 1

V
ln
〈
eλ+

�
drQ+(r)+λ−

�
drQ−(r)

〉
, (6.17)

where V is the volume of the system and the brackets 〈· · · 〉 denote averages where ω−1
αβ and

v−1
DH are the propagators. ZDH is defined as Zφ in Eq. (6.12), but having v−1

DH instead of v−1
c as

propagator. The functions Q+(r) and Q−(r) are

Qα(r) = hα(r)e−ıα qαφ(r) − 1 +
1

2
q2αφ

2(r) − 1

2
q2αvc(0). (6.18)
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With the preceding steps we have obtained the exact expression for the grand-canonical free
energy density g (still without imposing electroneutrality). With this, we have what we need to
obtain the low-density expansion of the canonical free energy. In order to do so, we will (i)
expand g in powers of λ+ and λ− (up to a order 5/2), (ii) calculate the concentrations of positive
and negative particles and impose electroneutrality consistently, order-by-order, and (iii) make a
Legendre transformation back to the canonical ensemble.

6.2.1 Expanding g in powers of λ

We start the power-expansion of g by noting that the Fourier transform of the Coulomb potential
is ṽc(k) = 4π`B/k

2. Using this, one is able to express vc(0) as

vc(0) =

∫
dk

(2π)3
4π`B
k2

. (6.19)

Since both ZDH and Zφ are Gaussian (path) integrals, it is easy to show that

1

V
ln

(
ZDH

Zφ

)
= −1

2

∫
dk

(2π)3
ln

(
1 +

4π`BI2
k2

)
. (6.20)

Using Eqs. (6.19) and (6.20), we find

1

2
I2vc(0) +

1

V
ln

(
ZDH

Zφ

)
=

1

12π

[
4π`BI2

]3/2
. (6.21)

Introducing the dimensionless quantity ∆v0 =
√

4π`3BI2 and doing a cumulant expansion in

Q+(r) and Q−(r) of the last term on rhs of Eq. (6.17), we get

g = −λ+−λ−− ∆v3
0

12π`3B
−λ+Z

+
1 −λ−Z−

1 − λ2
+

2
Z++

2 − λ2
−

2
Z−−

2 −λ+λ−Z
+−

2 +O(λ3), (6.22)

with

Z+
1 =

1

V

∫
dr
〈
Q+(r)

〉
(6.23)

and analogous formula for Z−

1 , and

Z++
2 =

1

V

∫
drdr′

{〈
Q+(r)Q+(r′)

〉
−
〈
Q+(r)

〉〈
Q+(r′)

〉}
(6.24)

and similar formulas for Z−−

2 and Z+−

2 .
The symbol O(λ3) in Eq. (6.22) means that any other contribution to the expansion will be

of the order 3 or higher, i.e., with terms like λ3
+, λ2

+λ−, etc. We will expand g up to the order
immediately below 3, which turns out to be 5/2, as we will demonstrate. In order to do so, we need
first to calculate the coefficients Z+

1 , etc., in Eq. (6.22). In order to do so, we need the averages
given in appendix (cf. Eq. (D.1–D.5)). Noticing that vc(0) − vDH(0) = ∆v0, we obtain

Zα1 = eq
2
α∆v0/2 − 1 − 1

2
q2α∆v0 (6.25)
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and

Zαβ2 =

∫
dr

{
e[q2α+q2β ]∆v0/2

[
e−ωαβ(r)−αβ qαqβvDH(r) − 1

]

+
1

2
q2αq

2
βv

2
DH(r)

[
1 − eq

2
α∆v0/2 − eq

2
β∆v0/2

]}
. (6.26)

We remind that

vDH(r) =
`B
r

e−∆v0r/`B (6.27)

was defined (through its inverse) in Eq. (6.16). We now introduce the hard-core through the short-
range potentials, i.e,

ωαβ(r) =

{
+∞ if r <

(
dα + dβ

)
/2,

0 otherwise,
(6.28)

where the indices α and β stand again for + and −; d+ and d− are respectively the (effective)
ionic diameters of the positive and negative particles.

The expressions for Z+
1 , etc., do depend on λ+ and λ−. In order to have a consistent ex-

pansion of g in the fugacities, one should also expand Eqs. (6.25–6.26) in λ+ and λ−, up to the
relevant order, before using them in g, Eq. (6.22). By doing this consistently up to order 5/2 in
the fugacities, one obtains

g̃ ≡ d3
+g = −λ̃+ − λ̃− −m1λ̃

2
+ −m2λ̃

2
− −m3λ̃+λ̃− −

[
n1λ̃

2
+ + n2λ̃

2
− + n3λ̃+λ̃−

]
∆v0

−
[
p1λ̃

2
+ + p2λ̃

2
− + p3λ̃+λ̃−

]
ln∆v0 −

[
r1λ̃

2
+ + r2λ̃

2
− + r3λ̃+λ̃−

]
∆v0 ln∆v0

−
[
s1λ̃+ + s2λ̃−

]
∆v2

0 −
[
t0 + t1λ̃+ + t2λ̃−

]
∆v3

0 + Ω0

[
q+λ̃+ − q−λ̃−

]

− ∆v0

{
Ω1

[
q+λ̃+ − q−λ̃−

]2
− Ω0

[
q4+λ̃

2
+ + q4−λ̃

2
−

− 2q+q−

[q2+ + q2−
2

]
λ̃+λ̃−

]}
+O(λ3), (6.29)

where we used the (dimensionless) variables λ̃+ ≡ d3
+λ+ and λ̃− ≡ d3

+λ−. In this expansion,

∆v0 is taken as a term scaling like λ̃1/2. The coefficients m1, etc. are given explicitly in appendix
(cf. Eqs. (D.7–D.16)).

The coefficients Ω0 and Ω1 are given by the divergent integrals

Ω0 = 2π`B

∞∫

0

dr r , Ω1 = 2π

∞∫

0

dr r2. (6.30)

These terms are present in Eq. (6.29) because global charge neutrality has not been yet demanded.
By imposing this condition, these divergent terms cancel exactly. This is what we show next.
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6.2.2 Imposing electroneutrality

The electroneutrality condition says that the global charge of the system is zero, i.e., q+N+ =
q−N−. In the grand-canonical ensemble, N+ and N− are no longer fixed numbers but average
values. This means that the electroneutrality condition is now given by

q+〈N+〉 = q−〈N−〉. (6.31)

Defining c̃+ = d3
+〈N+〉/V , it is easy to show that

c̃+ = −λ̃+
∂g̃

∂λ̃+

(6.32)

with an analogous formula for c̃−; c̃+ is the volume fractions of the positive ions (notice that it
is also usual to define πc̃+/6 as the volume fraction). As one imposes Eq. (6.31), the fugacities
will depend on each other in a non-trivial way such that the system is, on average, neutral. If the
system were totally symmetric (i.e., q+ = q− and d+ = d−), this dependence would be given by
the relation λ̃+ = λ̃−[82]. However, this is not the case here: we need to find the relation between
the fugacities in an order-by-order basis.

First, we assume that λ̃− can be expanded in terms of λ̃+ such that

λ̃− = a0λ̃+ + a1λ̃
3/2
+ + a2λ̃

2
+ + a3λ̃

2
+ ln λ̃+ + a4λ̃

5/2
+ + a5λ̃

5/2
+ ln λ̃+ +O(λ̃3

+). (6.33)

This is naturally inspired by the expanded form of the grand-canonical free energy g̃. After calcu-
lating c̃+ and c̃− from g̃ (Eq. (6.29)) and putting it into the electroneutrality condition (Eq. (6.31)),
we substitute the occurring λ̃− for its expanded form—given by Eq. (6.33)—in a consistent way,
i.e., the terms of order λ̃3

+ or higher are not taken into account. This operation leads to the ex-

panded form (up λ̃5/2
+ ln λ̃+) of the electroneutrality condition. Solving it consistently, order-by-

order, yields the values of a0, etc., that keep the system globally neutral. For instance, at λ̃+ level,
the expanded form of Eq. (6.31) reads

q+ − a0q− = 0, (6.34)

which naturally gives a0 = q+/q−. With the knowledge of a0, we can then solve the next-order

term (in this case λ̃3/2
+ ) and obtain the value of a1, and so on. The resulting coefficients a0 up to

a5 are given in appendix (cf. Eqs. (D.17–D.22)).
As this order-by-order neutrality condition is imposed, one notices that the terms in Ω0 and

Ω1 in Eq. (6.29) are exactly canceled in a natural way, without any further assumptions. The
resulting expression for g̃, now expanded only in one of the fugacities (in this case λ̃+), is then a
well behaved expansion (its full expression is quite lengthy, and for this reason we will not show
it here). With this, we are ready for the last step in our calculation, i.e., we can transform back to
the canonical ensemble through a Legendre transform.

6.2.3 Low-density expansion: results

We obtained in the last Subsection the grand-canonical free energy g̃ as an expansion on one of
the fugacities (we chose λ̃+), such that the system is globally neutral. In order to go back to the



6.2 The method 61

canonical ensemble, we use the Legendre transform, which in our case is

f̃ = g̃ + c̃+ ln λ̃+ + c̃− ln
(
λ̃−
)
, (6.35)

where f̃ ≡ d3
+F/V kBT , with F as the canonical free energy. Notice that now λ̃− is a function of

λ̃+ according to Eq. (6.33).

The first step to obtain f̃ is to invert the expression given in Eq. (6.32) such that λ̃+ is obtained
as an expansion on c̃+. For consistency reasons, one should not retain, in this expansion, any
terms of order c̃3+ or higher. With this, we obtain λ̃+ = λ̃+(c̃+): plugging this consistently into

Eq.(6.35), we finally obtain f̃ , which reads

f̃ = f̃id +BDHc̃
3/2
+ +B2c̃

2
+ +B2log c̃

2
+ ln c̃+ +B5/2c̃

5/2
+ +B5/2log c̃

5/2
+ ln c̃+ +O

(
c3+
)
. (6.36)

Defining η ≡ q−/q+, ξ ≡ d−/d+ and the coupling parameter ε+ ≡ q2+`B/d+ (which is the ratio
between the Coulomb energy at contact between two positive ions and the thermal energy kBT ),
the coefficients in Eq. (6.36) can be explicitly written as

f̃id = c̃+ ln c̃+ +
c̃+
η

ln
( c̃+
η

)
−
[
1 +

1

η

]
c̃+ (6.37)

which is the ideal contribution to the free energy,

BDH = −2

3

√
πε3+[1 + η]3 (6.38)

which is the coefficient of the Debye-Hückel limiting law term (order 3/2 in c̃+). The higher order
coefficients are

B2 = −π
3
ε3+

{
−H(ε+) − ln ε+ + 2η2

[
H
(
− 2ηε+

1 + ξ

)
+ ln

( 2ηε+
1 + ξ

)]

− η4

[
H
(η2ε+

ξ

)
+ ln

(η2ε+
ξ

)]
− 2η2

[
1 − η2

]
ln η

+
1

2

[
1 − η2

]2
ln
(
36πε3+[1 + η]

)
}

(6.39)

(the function H(x)—not to be confused with the Hamiltonian—is given by Eq. (D.6)),

B2log = −π
6
ε3+
[
1 − η2

]2
, (6.40)
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Figure 6.2: Coefficients (a) B2 and (b) B5/2 of the free energy Eq. (6.36) as functions of ε+ for different values of
η ≡ q−/q+ (with d+ = d−). Notice that B2 is normalized to the second virial of a pure two-component hard-core gas.

B5/2 =
2

3

[
πε3+

]3/2[
1 + η

]1/2
{

5

8
+H

(
ε+
)

+ ln
(
ε+
)

+ η6

[
5

8
+H

(η2ε+
ξ

)

+ ln
(η2ε+

ξ

)]
+ 2η3

[
5

8
+H

(
− 2ηε+

1 + ξ

)
+ ln

( 2ηε+
1 + ξ

)]

+
1

8

[
1 + η

]2[
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]
− 2η3

[
1 + η3

]
ln η

− 1

2

[
1 + η3

]2
ln
(
64πε3+

[
1 + η

])
}

(6.41)

and

B5/2log = −1

3

[
πε3+

]3/2[
1 + η

]1/2[
1 + η3

]2
. (6.42)

The free energy Eq. (6.36) is the exact low density expansion of the asymmetric TCPHC. The
only parameter that is demanded to be small is c̃+; the other parameters, viz. ε+, η and ξ can have
any value. We have chosen the positive ions as the “reference species” (i.e., the expansion is done
with respect to c̃+) without any loss of generality, since the relation between c̃+ and c̃− is fixed
through the electroneutrality condition. As consistency checks, we notice that the expansion f̃ is
symmetric, as expected, with respect to the simultaneous exchange d+ with d− and q+ with q−.
Also, in the limit d+ = d− and q+ = q−, we obtain the same expression as previously calculated
in Ref. [82] for totally symmetric systems. Finally, as one turns-off the charges in the system (or
equivalently, as one takes the limit ε+ → 0), the pure hard-core fluid is recovered, i.e., f̃ becomes
the usual virial expansion with B3/2 and B5/2 equal to zero and B2 equals the second virial of a
two-component hard-core gas. This limit can be also understood as the high-temperature regime:
as the thermal energy largely exceeds the Coulomb energy at contact, the hard core interaction
becomes the only relevant interaction between the particles.

The behavior of the coefficients B2 and B5/2 as functions of the coupling parameter ε+ are
depicted in Figs. (6.2) and (6.3). In Fig. (6.2) the ionic diameters of positive and negative ions are
kept equal (d+ = d−) and the ratio between the charge valences (η) is varied, while in Fig. (6.3)
the charge valences are equal and the ratio between the ionic diameters is varied. These figures
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Figure 6.3: Coefficients (a) B2 and (b) B5/2 of the free energy Eq. (6.36) as functions of ε+ for different values of
ξ ≡ d−/d+ (with q+ = q−). Notice that B2 is normalized to the second virial of a pure two-component hard-core gas.
The inset in (a) shows the behavior of B2 close to ε+ = 0 in a different scale.

highlight the fact that that both coefficients diverge as ε+ goes to infinity. In this limit,

B2 ≈ −π
4

[1 + ξ]4

η2

1

ε+
exp
( 2ηε+

1 + ξ

)
(6.43)

and

B5/2 ≈ π3/2

2

[1 + ξ]4
√

1 + η

η

√
ε+ exp

( 2ηε+
1 + ξ

)
. (6.44)

Note that B5/2 diverges faster (and with opposite sign) than B2. If the higher order terms have
a similar behavior, i.e., if B3 also diverges faster than B5/2 and so on, then one can conclude
that the inclusion of higher order terms will not yield better results at high couplings and higher
concentrations. Naturally this can only be confirmed with the actual calculation of more terms in
the series.

As a final note, we mention that the exponential divergent behavior of B2 and B5/2 when
ε+ → ∞ is due to the increasing importance of the interaction between oppositely charged parti-
cles (ionic pairing) as the coupling parameter increases[13, 32, 119], corresponding for instance
to lower temperatures. This is justified by noting that the argument in the exponential occur-
ring in both asymptotic forms Eqs. (6.43) and (6.44), viz. 2 η ε+/[1 + ξ], can be re-expressed
as 2 q+ q− `B/[d+ + d−], which translates the coupling between positive and negative ions (in
this case, the ratio between the Coulomb contact energy between oppositely charged ions and the
thermal energy kBT ).

6.3 Applications

6.3.1 Colloids

In many colloidal suspensions, flocculation or coagulation (due to the attractive van der Waals in-
teraction between colloidal particles) is prevented by the presence of repulsive electrostatic forces.
These suspensions are generally dilute, with volume fractions of colloidal particles usually not
higher than a few percent. The macro-particles normally have dimensions ranging from 10 to
1000 nm and charges of several thousands e (elementary charge), with much smaller counterions
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that have a charge of a few e. In other words, in such systems the charge and size asymmetry
between ions and counterions is very important.

In such dilute solutions, it is reasonable to neglect the van der Waals interactions between the
colloidal particles. To see this, let us assume an homogeneous system with ∼ 1% volume fraction
(c̃+ ∼ 10−2); the particles will be typically at distances ∼ 6 d+ (center-to-center distance). The
ratio between the van der Waals and the Coulomb interactions at this distance would then be
approximately given by

|vvdW |
|vc|

∼ A
20 ε+

(6.45)

where A is Hamaker constant (in units of kB T ), and the van der Waals interaction is assumed to
be between to equal-sized spheres of diameter d+[47]. In colloidal suspensions, ε+ is typically
very large (at least a few hundreds) while A ∼ 20; in other words, the ratio above is small, and the
Coulomb interaction is dominant. With such typical distances, it is also true that the hard cores will
not play a significant role when considering the interaction between the macro-particles. Its role,
as usual, is to prevent oppositely charged particles to collapse on each other; the size asymmetry
gives some mathematical sense to the very large difference in sizes between the colloidal particles
and their counterions. With this in mind, a very asymmetric TCPHC can be regarded a good model
for some dilute colloidal suspensions, and the free energy Eq. (6.36) can be used to characterize
such systems.

Still motivated by the colloidal suspensions, we now take the following limit: assume d+, q+
and c̃+ fixed, and make both η ≡ q−/q+ and ξ ≡ d−/d+ vanishingly small (this has to be done
with some care, since η = 0 is not well-defined—no electroneutrality). One can then rewrite the
free energy Eq. (6.36) up to second order in c̃ as

f̃ ≈ f̃0 +Bc
DHc̃

3/2
+ +Bc

2c̃
2
+ +Bc

2log c̃
2
+ log c̃+ +O(c̃

5/2
+ ) (6.46)

where

f̃0 = c̃+ ln c̃+ +
c̃+
η

ln
( c̃+
η

)
−
[
1 +

1

η

]
c̃+ +

π

3

[
2ξ3

η2
+

[1 + ξ]3

2η

]
c̃2+, (6.47)

corresponding to the ideal term (for both macro- and counterions) and to the second virial of the
counterion–counterion and macroion–counterion hard-core interaction. This term is independent
of ε+, i.e., it is independent of the electrostatic interaction. The coefficients B c

DH, etc. are given
by

Bc
DH = −2

3

√
πε3+, (6.48)

Bc
2 =

π

3
ε3+

{
H
(
ε+
)
− 1

2
ln
(
36πε+

)}
+
π

2
ε+, (6.49)

Bc
2log ≈ −π

6
ε3+. (6.50)

This limit was taken at fixed values of ε+ and c̃+. In other words, by separating f̃0—which
contains terms that diverge with 1/η—from the other contributions to the free energy—which
are only dependent on the fixed parameters ε+ and c̃+—we are showing that for dilute colloidal
systems it is the ideal contribution of the counterions that dominates the free energy, and cannot
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Figure 6.4: Coefficients Bc
2 (Eq. (6.52)) and d2 (pure OCPHC from Ref. [82]) as functions of the coupling ε+. Notice

that both coefficients are normalized to the second virial of a pure one-component hard-core gas.

be neglected. Effects due to the electrostatic interaction become, in this sense and up to this order,
a true perturbation to the ideal behavior.

At this point, we make a parentheses to briefly introduce another model that is also widely used
to describe charged systems. It is the one-component plasma (OCP), which in its simplest form
consists of a collection of N equally charged particles immersed in a neutralizing background
that assures the global charge neutrality of the system (in the TCPHC electroneutrality is assured
by oppositely charged particles). The OCP, or its quantum mechanical counter-part “jellium,”
has been used to describe degenerate stellar matter (interior of white dwarfs and outer layer of
neutron stars) and the interior of massive planets like Jupiter[46]; in condensed matter physics,
jellium is often used as a reference state when calculating the electronic structure of solids[46, 11].
The simplicity of the OCP made it a model of choice, with results obtained with many different
techniques, from extensions to the Mayer expansion[1, 22, 39] to Monte Carlo simulations[18, 44,
105, 106], as well as integral-equation theory[35, 56, 67] and modifications to the Debye-Hückel
theory[85, 89], to mention a few. For good reviews see Refs. [46, 11].

When the particles have a hard core, the OCP is called one-component hard-core plasma
(OCPHC): what we will see next is that the electrostatic contribution to the free energy in dilute
colloidal suspensions can be almost described through the OCPHC. If we compare the coefficients
Eqs. (6.48–6.50) with the ones previously obtained[82] for the OCPHC (cf. Eqs. (51), (56) and
(57) of Ref. [82]), we see that

Bc
DH = d3/2, (6.51)

Bc
2 = d2 +

π

2
ε+ (6.52)

and
Bc

2log = dln 2, (6.53)

where the notation used in Ref. [82] is kept on the rhs of Eqs. (6.51–6.53). The comparison
between Bc

2 and d2 is shown in Fig. (6.4). This shows that, up to the order c̃2+ ln c̃+ (i.e., for very
dilute colloidal suspension), the OCPHC is almost completely recovered.

This is in fact what one would intuitively expect: each macroion has around it a very large
number of small neutralizing counterions which act like a background. However, there is a small
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Figure 6.5: A particle (with diameter d+ and charge valence q+) in the OCPHC model with and without the penetrating
background.

difference between the TCPHC in this limit and the OCPHC: in the latter, the background pen-
etrates the particles, while in the TCPHC it cannot[115, 11]. In our calculation, this is reflected
in the c̃2+ term, where πε+/2 is the positive extra cost in the free energy that the OCPHC has to
pay (at this order) to expel the background from the hard-core particles. A formal proof of this
would require the re-calculation of the OCPHC with the constrained background, which is outside
the scope of this calculation. We can however motivate this conclusion: assume that the OCPHC
is very dilute, such that each particle and its neighboring background form a neutral entity (in the
spirit of the cell model, see for instance Ref. [4]) that can be regarded independent from the other
particles. The background is assumed to have no entropy, and so the free energy difference per
particle between a system without penetrating background and with penetrating background can
be obtained from the difference in the self-energies. Assuming (cf. Fig 6.5) ρ̂a(r) = q+δ(r) − ρ0

and ρ̂b(r) = q+δ(r) − ρ0

[
1 − θ(d+/2 − r)] (where ρ0 = c+q+ is the background concentration

and θ(x) = 1 if x > 0 and 0 otherwise), this difference reads

∆F

NkBT
=

1

2

∫
drdr′

{
ρ̂b(r)vc(r − r

′)ρ̂b(r
′) − ρ̂a(r)vc(r − r

′)ρ̂a(r
′)

}
=

=ρ0q+4π`B

∫ d+/2

0
dr r +O(c2+) =

=
π

2
c̃+ε+ +O(c2+).

(6.54)

From this follows that the free energy difference (per volume) is ∆f̃ = πc̃2+ε+/2. Note that this
is a positive contribution to the c̃2 term with the same coefficient as the extra term in Eq. (6.49);
this is what one would have to add to the OCPHC to account, at this order, for the exclusion of
the background from the hard core of the particles. In other words, we have shown that in the
colloidal limit, the electrostatic contribution to the free energy of the TCPHC maps exactly, up to
this order, into the one obtained for the OCPHC (with excluded background from the particles).

6.3.2 Ionic activity and radii

In electrochemistry, it is usual to define the mean activity of an electrolyte as

λ± ≡
[
λ
q−
+ λ

q+
−

]1/[q++q−]
, (6.55)
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where λ+ and λ− are respectively the fugacities of the positive and the negative ions. The mean
activity coefficient f± is the ratio between the mean activity of the electrolyte and of an ideal gas,
which is in general given by

f± = exp
( q−
q+ + q−

∂f̃ex

∂c̃+

)
, (6.56)

for a two-component system where the positively charged particles were used as reference species,
in the same way as in Eq. (6.36); f̃ex is the difference between the full free energy and the free
energy of an ideal gas, i.e., f̃ex = f̃ − f̃id, also known as excess free energy.

There are different ways of measuring f±, as for instance, through the change on the freezing
point of the solvent (usually water) with the addition of salt[98], or by measuring the change on
the potential difference between the electrodes of a concentration cell as salt is added[19, 98]
(potentiometry), or by direct measurement of the solvent activity through vapor exchange between
a solution with known activity and the sample[97, 98] (isopiestic). Although dating from the
early nineteen hundreds, these are still the most common techniques used today, especially the
potentiometry, which is regarded as the most precise technique of all. The values of f± are tabled
as function of the salt concentration for many electrolytes[23, 88, 92, 98].

From the free energy Eq. (6.36) and the definition Eq. (6.56) we can get the low density
expansion for the mean activity coefficient of a q+ :q− salt. To compare with experimental results,
it is useful to note that c̃+ = 6.022 × 10−4q−d

3
+%, where d+ is in Ångströms and % is the salt

concentration in moles/liter. After the appropriate expansion, f± reads

f± = 1 + νDH%
1/2 + ν1%+ ν1log% ln %+ ν3/2%

3/2 + ν3/2log%
3/2 ln %+O(%2) (6.57)

(the order 3/2 in the mean activity coefficient is the one consistent to a free energy up to 5/2). The
coefficients νDH, ν1, etc. are given in appendix (cf. Eqs. (D.23–D.27)). At infinite dilution, the
mean activity coefficient goes to 1, which is the prediction for an ideal gas. The first correction to
the ideal behavior is the term νDH%

1/2, which is the prediction one gets from the Debye-Hückel
limiting law (DHLL), and is independent of the ionic diameters (cf. Eq. (D.23)). This means that
there is always a range of concentrations where different salts (but with the same q+ and q−)
will deviate from ideality, but have the same activity. At higher concentrations, the other terms
have to be taken into account, and the ionic sizes begin to play an important role. In fact, as one
fixes `B (' 7.1 Å in water at 25 C) and q+ and q− (which depend on the salt), the only free
parameters in the rhs of Eq. (6.57) are the ionic diameters d+ and d−, which can be used in the
theoretical predictions to fit the experimental values. This leads to effective equilibrium values
of the ionic diameters (when in solution), which one can call the “thermodynamic diameter”, in
contrast to the bare[47] (or crystallographic) and the hydrodynamic diameters—obtained from
mobility measurements[30].

Fitting assuming one mean diameter

We now show the fitting procedure assuming that d+ = d− = d, where d is the mean diameter.
This assumption has been often used in the past to fit activities to theories based on Debye-Hückel,
but modified[98] to account for the ionic sizes (as previously mentioned, the Debye-Hückel lim-
iting law is insensitive to it). Since we force the two diameters to be equal, we only need the
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Figure 6.6: Experimental[23] and theoretical mean activity coefficient f± for various salts as a function of the density %
(in mole/liter). Fig. (a) refers to 1 : 1 salts, viz. HCl (triangles and dashed line, d = 4.38 Å), NaCl (stars and dash-dotted
line, d = 4.00 Å) and KCl (diamonds and dotted line, d = 3.90 Å). Fig. (b) is the same for a 2 : 1 salt, viz. CaCl2 (filled
triangles and dashed line, d = 10.8 Å). In both graphics, the full line denotes the prediction from the DHLL, which is
insensitive to the ionic size.

expansion for f± up to linear order: from the experimental data[103, 23] we calculate

∆f± ≡ fexp± − νDH%
1/2 = νexp1 %+O(%(3/2)). (6.58)

By fitting this function we get the coefficient of the linear term ν exp1 , which we then can use to solve
the equation ν1(d) = νexp1 , from which d follows. In Fig. 6.6a we show the experimental[103]
f± for HCl, NaCl and KCl and the theoretical results, up to linear order in ρ and with the fitted
diameters (or distance of approach) 4.38 Å, 4.00 Å and 3.90 Å, respectively. These values are
very close to the ones obtained in Ref. [103] with a similar fitting, but using the DH theory with
an approximate way to incorporate the ionic sizes. Notice that dHCl > dNaCl > dKCl, which is the
opposite to what happens with the bare diameters. This is in principle due to the hydration shell,
but one should note that the values obtained here are between the bare diameters and the hydrated
values available in the literature[47]. In Fig. 6.6b we show the same, but for CaCl2, and with fitted
diameter of 10.8 Å. For more asymmetric salts (like 3 : 1, etc.) one would need data at lower
densities in order to get good results.

Fitting assuming two diameters

If we now assume that both d+ and d− are unconstrained, we have to use one more term in the
expansion of the activity coefficient and solve the coupled equations

ν1(d+, d−) = νexp1

ν3/2(d+, d−) = νexp3/2

(6.59)

which can be obtained by fitting the function ∆f± ≡ fexp± − νDH%
1/2 − ν1log% ln % = ν1% +

ν3/2%
3/2 +O(%3/2 ln %), or more appropriately,

∆f±
%

= ν1 + ν3/2%
1/2. (6.60)
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Figure 6.7: Fitting procedure for two unconstrained diameters. (a) asymptotic lines that could describe the experimental
values of ∆f±/% at % → 0 (see text) and (b) their position in the [ν1, ν3/2] plane. The full and dashed lines in (a) lead
respectively to the gray and white points in (b). Experimental data from Ref. [23].

What is interesting about this fitting procedure is that the two ionic diameters are independent
parameters, that is, the effective sizes obtained through this fitting do not depend on the size of
a “reference” ion. The latter is needed, for instance, when ionic sizes are calculated from crystal
lattices (also known as the bare ionic diameter[47]), where experimentally one can only measure
the distance between the ions, i.e., the sum the ionic radii: a table with the different ionic sizes
can be constructed, as long as the absolute size of at least one ionic species is known[100]. The
method we show here can potentially give good results for the ionic diameters, as long as there is
enough experimental data at very low densities, as we now demonstrate.

In Fig. 6.7a shows ∆f±/% for NaCl[23] (as a function of %1/2), which should approach a line
as % → 0. From this, the experimental values of ν1 and ν3/2 can be extracted: in this particular
example we show two possible lines in Fig. 6.7a, viz. 2.47−6.00%1/2 (full line) and 2.59−9.94%1/2

(dashed line); notice that in principle both lines could be regarded as the asymptotic limit of the
experimental points. As we show next, one of the lines leads to values of ν1 and ν3/2 that yield
reasonable ionic diameters, while the other not.

Fig. 6.7b shows the mapping of the square 0.1 Å < d+ < 20 Å and 0.1 Å < d− < 20 Å into
the [ν1(d+, d−), ν3/2(d+, d−)] plane (the dark region in Fig. 6.7b), i.e., the region where the sys-
tem Eq. (6.59) has solutions between 0.1 and 20 Å for both ionic diameters. The points shown are
the results from the asymptotic lines in Fig. 6.7a. The point corresponding to the ν1 and ν3/2 given
by the full line falls out of the dark region, contrary to what happens to the point that follows from
the dashed line. That is, according to the full line, d+ and d− lie outside the interval [0.1, 20] Å
(which is not reasonable), while the dashed line leads to d+ = 3.8 Å and d− = 5.4 Å. In other
words, the asymptotic extrapolation of the experimental data is very sensitive to small errors. To
obtain the two ionic diameters with a reasonable degree of confidence as independent parameters,
one needs more data at very low densities (which to the best of our knowledge is not available in
the literature) so that the asymptotic fit can be done. We have shown the case of NaCl, but the
situation is identical for other salts.



70 Virial expansion for charged colloids and electrolytes

6.4 Conclusions

With the help of field theoretic methods we have obtained the exact low density (“virial”) expan-
sion of the TCPHC up to order 5/2 in density. In its general form, the model can be applied
to both electrolyte solutions and dilute colloidal suspensions (when the van der Waals forces are
unimportant); the free energy derived here provides an unified way for handling both systems in
the limit of low concentration. As the calculations above have shown, the generalization to short-
range potentials other than the hard core is possible, although one might be unable to write down
the final results in a closed form.

The behavior of the coefficients B2 andB5/2 suggests that the series is in fact a non-converging
one, meaning that the inclusion of higher order terms is not sure to extended the validity of the free
energy to larger densities. We have seen that the divergent behavior of these coefficients is related
to the ionic pairing[13, 32, 119] which is favored as the coupling increases (this is not present e.g.
in the OCPHC[82]). Also, the use of this expansion is not very good to study phase behavior[75] of
ionic systems: in the situation of a phase-separated system with a very dilute phase in coexistence
with a denser phase, it is possible that the average density in the denser phase already falls outside
the scope of the low density expansion up to the calculated order.

In applying our results to colloidal systems we have concluded that at low density the counte-
rion entropic contribution dominates over the electrostatic contribution due to the macroions; the
latter contribution can be described, in this limit and up to this order, by an OCPHC corrected to
exclude the background from the particles.

Finally we used the theoretical results for the mean activity coefficient in order to fit experi-
mental data and extract effective ionic sizes. In the simplest fitting, where we assumed the two
ionic diameters to be equal, we obtained sizes that are reasonable and close to what one would
expect from the results obtained by other methods. For the more interesting case where the two
ionic sizes are taken as free parameters and determined independently, we have shown that one
would need more experimental data on the mean activity coefficient at very low densities (which,
to the best of our knowledge, is not available in the literature) to get the correct values for the
diameters. With the proper experimental data it would then be a simple matter to get the ionic
sizes.



Chapter 7

Conclusions and outlook

We are now in a position to make a very brief summary of the results obtained here.

In Chapter 2 we have simulated the simple double layer (charged wall in the presence of its
counterions) and compared it with analytical results, both at low and high coupling. The novel
strong coupling theory[80] was confirmed to yield the correct asymptotic counterion distribution
when the coupling parameter Ξ goes to infinity; this complements the classical Poisson-Boltzmann
results, which is asymptotically correct as Ξ → 0. We gave a detailed account of the methods
employed in the computer simulations.

In Chapters 3 and 4 we have looked at two factors that modify (and complicate) the double
layer problem, respectively the presence of a dielectric jump and the discretization of the charges
on the wall. Both modifications can have a dramatic impact on the counterion distribution, as we
have seen, especially in systems with high coupling.

In Chapter 5 we looked at the interaction between two simple double layers. We have also
obtained the celebrated attraction between similarly charged plates. However, as we have demon-
strated, for most systems the equilibrium distance in the bound state is below 3 (in units of Gouy-
Chapman length), which is usually smaller than the projected (lateral) distance between counte-
rions; the density profile in such case is well described by the strong coupling theory, as showed
by the computer simulations. The small d̃ (distance between the walls in units of Gouy-Chapman
length) behavior is also well described by the strong coupling theory, even for systems that at
intermediate d̃ are far from the SC predictions.

Finally in Chapter 6, we have applied field-theoretic tools to derive the low-density expansion
of the asymmetric two-component plasma. We have shown, for instance, that in the colloidal
limit (very large charge and size asymmetry between macroions and counterions) the free energy
is dominated by the entropy of the counterions; the electrostatic contribution to the free energy
was proved, up to second order in density, to map into the one-component plasma. A way of
determining the “thermodynamic radii” of ions in solution from experimental data for the mean
activity coefficient was shown. This is expected to lead to accurate results if more data at low
densities (below 0.005 mole per liter) is available.

There are still many open questions which have not been addressed here but that interesting
and should be looked at in the future. Some examples are:

71
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Making the double layer more realistic

The double layer as treated here is highly idealized. Real systems are much more complicated, and
one should try to bring the modeled systems closer to reality: for instance, discretize the charges at
the wall but given them a shape, e.g. instead of putting a hard wall at z̃ = 0 as we did in Chapter 4,
one could put each of the charges at the wall inside a half-sphere or a cylinder. Another possibility
is to allow the charges at the wall to move in the plane. Mixing up the dielectric jump with the
discretization effects, as well as looking at packing effects due to finite size of the counterions are
also of experimental interest.

Exchange of ions between the wall and the bulk

In many real systems, the charge on the surface is regulated by the pH of the solution. One should
also look at this possibility in the simulations, maybe by assigning a chemical potential to the ions
at the wall instead of keeping their number fixed. Also the simultaneous presence of positively
and negatively charged species at the wall should lead to interesting effects.

Making the wall “flexible”

Another natural step from this work would be to look at fluid membranes that are charged, or
globally neutral but with charged groups. This is a step toward biological systems, and could bring
some answers, for instance, to the problem of electroporation (formation of pores in membranes
due to the application of external electric fields).



Appendix A

The Lekner summation

We show here a quick derivation of the Lekner summation formula for the electrostatic energy
Eq. (2.35), based on the original derivation by Lekner[63]. Our starting point the is the sum

vL(r, r′) = vL(0) +

+∞∑

l,m=−∞

1√
[ξ + l]2 + [η +m]2 + ζ2

−
+∞∑

l,m=−∞

1√
[α1 + l]2 + [α2 +m]2 + α2

3

, (A.1)

where vL(0) is the energy of the reference state given by ξ = α1, η = α2 and ζ = α3. Although
vL(0) is divergent, the difference between the two infinite sums in the rhs is well defined, as we
will show. To obtain a fast convergent form for the sums, we first apply the Euler transformation
(valid for ν > 0)

1

xν
=

1

Γ(ν)

∫
∞

0
dt tν−1e−xt (A.2)

followed by the Poisson-Jacobi identity

+∞∑

m=−∞

e−[u+m]2t =

√
π

t

+∞∑

m=−∞

e−π
2m2/t cos(2πmu) (A.3)

to the infinite sums in Eq. (A.1). After these transformations, vL looks like

vL(r, r′) = vL(0) +

+∞∑

l,m=−∞

{∫
∞

0
dt

1

t
e−t%

2−π2l2/t cos(2πlξ)

−
∫

∞

0
dt

1

t
e−t%̄

2−π2l2/t cos(2πlα1)

}
(A.4)

where %2 = [η+m]2 + ζ2 and %̄2 = [α2 +m]2 +α2
3. We now separate the terms with l = 0 from

the sums above and use the integral representation of the modified Bessel function of second kind,
viz. ∫

∞

0
dt tν−1e−p

2t−π2m2/t = 2

[
π
|m|
|p|

]ν
Kν

(
2π|mp|

)
, (A.5)
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to rewrite vL as

vL(r, r′) = vL(0) +

+∞∑

m=−∞

∫
∞

0
dt

1

t

[
e−t%

2 − e−t%̄
2

]
+ 4

∞∑

l=1

cos(2πlξ)

+∞∑

m=−∞

K0(2πl%)

− 4
∞∑

l=1

cos(2πlα1)
+∞∑

m=−∞

K0(2πl%̄). (A.6)

The term corresponding to l = 0 (the second term in the rhs) leads to

+∞∑

m=−∞

∫
∞

0
dt

1

t

[
e−t%

2 − e−t%̄
2

]
= −

+∞∑

m=−∞

ln(%2/%̄2) = − ln

(
cosh(2πζ) − cos(2πη)

cosh(2πα3) − cos(2πα2)

)
.

(A.7)
With this, we finally arrive to Lekner’s summation formula for the electrostatic energy, which
reads

vL(r, r′) = vL(0) + C − ln
(
cosh(2πζ) − cos(2πη)

)
+ s(ξ, η, ζ) (A.8)

where s is the series

s(ξ, η, ζ) = 4

∞∑

l=1

cos(2πlξ)

+∞∑

m=−∞

K0

(
2πl
√

[η +m]2 + ζ2

)
(A.9)

and C is a constant that depends on the reference state, given by

C = ln
(
cosh(2πα3) − cos(2πα1)

)
− s(α1, α2, α3). (A.10)



Appendix B

The strong coupling regime

We derive in this Appendix the lowest order term of the counterion density profile at the strong
coupling regime[80]. We start with the partition function for N counterions in the presence of a
fixed charge distribution σ(r), which reads

Z =
1

N !

∫ N∏

j=1

drj exp

(
−1

2

∫
drdr′

[
ρ̂c(r) + σ(r)

]
vc(r, r

′)
[
ρ̂c(r

′) + σ(r′)
])

(B.1)

where

ρ̂c(r) = q
N∑

j=1

δ(r − rj), (B.2)

δ(r) is the Dirac delta-function, q is the valence of the counterions and vc is the Coulomb potential
given by the solution of the equation

−kBT
e2

∇ ·
[
ε(r)∇vc(r, r′)

]
= δ(r − r

′), (B.3)

which is nothing but the Poisson law. The equation above is given in its most general form, with
a space-varying dielectric constant ε(r) and a potential that is not assumed to depend only on the
distance between the charge that generates the field at r and the test point at r ′.

To make this partition function more manageable, we apply a Hubbard-Stratonovich and a
Legendre transformation, obtaining the grand-partition function of the system in a field-theoretic
form (see also Chapter 6). After this, the grand-partition function looks like

Q =

∫ Dφ
Zv

exp

(
−
∫

drdr′φ(r)v−1(r, r′)φ(r′) − ı

∫
dr
σ(r)

q
φ(r) + λ

∫

V
dre−ıφ(r)

)
(B.4)

where λ is the fugacity (exponential of the chemical potential) of the counterions and the integral∫
V spans the volume where the counterions are. We have rescaled the field such that φ → qφ

and used the definition v−1(r, r′) ≡ v−1
c (r, r′)/q2, where the inverse Coulomb potential, v−1

c , is
related to vc through ∫

dr′′v−1
c (r − r

′′) vc(r
′′ − r

′) = δ(r − r
′). (B.5)
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76 The strong coupling regime

Using the latter equation and Poisson’s law given in Eq. (B.3), it turns out that

v−1
c (r, r′) = −kBT

e2
∇ ·
[
ε(r)∇δ(r − r

′)
]
. (B.6)

With the help of a generating field, it has been shown in Chapter 2 that the average local
density of counterions is given by

ρ(r) = λ〈e−ıφ(r)〉. (B.7)

It follows from electroneutrality the normalization condition

N =

∫

V
drρ(r) (B.8)

or, using Eq. (B.7) and assuming lateral symmetry,

Λ

∫
dz̃ 〈e−ıφ̄(z̃)〉 = 1, (B.9)

where Λ = λ/2π`Bσ
2
s and z̃ = z/µ; the integration over z̃ is carried out at the volume where

the counterions are. The normalization condition can be solved by an expansion of the fugacity as
Λ = Λ0 + Λ1/Ξ + · · · , and after a Legendre transformation, the density profile is obtained in the
canonical ensemble as an expansion where 1/Ξ is the small parameter[80]. In the following we
will only look at the lowest order term of the expansion, and so the normalization condition can
be, in general, easily solved. Using Eq. (B.7), the density at lowest order then reads

ρ(r) = λ

∫
Dφ eH̄∫
Dφ eH̄2

(B.10)

where

H̄ = −1

2

∫
dr′dr′′φ(r′)v−1(r′, r′′)φ(r′) − ı

∫
dr′φ(r′)

[σ(r′)

q
+ δ(r′ − r)

]
(B.11)

and

H̄2 = −1

2

∫
dr′dr′′φ(r′)v−1(r′, r′′)φ(r′′) − ı

∫
dr′φ(r′)

σ(r′)

q
. (B.12)

Notice that in the fugacity disappeared from H and H2. After completing the quadratic terms in
H and H2, it follows from Eq. (B.10) that

ρ(r)

2π`Bσ2
s

= Λexp

(
−q

2

2
vc(r, r) − q

∫
dr′σ(r′)vc(r

′, r)

)
, (B.13)

where we already rescaled the density by the factor 2π`Bσ
2
s . This is the lowest order result for the

density profile of counterions at the strong coupling regime[80]. The expression for the simplest
double layer has been derived in Chapter 2. We now particularize to the cases treated in Chapter 3
and 5.
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B.1 One charged plane with dielectric jump

The Coulomb potential is given by (cf. Chapter 3)

vc(r, r
′) = `B

[
1

|r − r′| +
∆√

[r− r′]2 + 4zz′

]
(B.14)

for z, z′ > 0. Notice that here `B = e2/4πε>kBT , where ε> is the dielectric constant of the
half-space where the counterions are immersed, and σ(r) = −σsδ(z). Note that now

vc(r, r) = vc(0) +
`B∆

2z
. (B.15)

At lowest order, one gets from the normalization condition Eq.(B.9) that for ∆ > 0

Λ0 =

√
1 + ∆

Ξ∆

1

K1

(√
Ξ∆[1 + ∆]

) exp

(
Ξ

2
vc(0) −

1

2π

∫
dr̃′δ(z′)

1 + ∆

r̃′

)
, (B.16)

with all lengths (also in the self-energy) rescaled by µ, from which follows that

ρ(r̃)

2π`Bσ2
s

=

√
1 + ∆

Ξ∆

1

K1

(√
Ξ∆[1 + ∆]

) exp

(
−[1 + ∆]z̃ − Ξ∆

4z̃

)
, (B.17)

where K1(x) is the first order modified Bessel function of second kind[2]. In the limit x → 0,
K1(x) ' 1/x, i.e., in the limit ∆ → 0 this expression reduces to the pure exponential decay
derived in Chapter 2, as expected.

If ∆ < 0, the normalization condition leads to a prefactor in Λ0 that can have positive or
negative values, depending on Ξ and ∆. This is a clear sign of inconsistency, which can be easily
understood: the presence of the dielectric jump at the wall leads to an attractive potential that
diverges as 1/z at z = 0, with the consequent divergent behavior of the density at the wall. The
only way to avoid this is to put the dielectric jump behind the hard wall, or to put the charges
inside hard spheres, so that the counterions never touch their (oppositely charged) images.

B.2 Two charged walls

In this case, the Coulomb potential is the simple vc(r, r′) = `B/|r − r
′|, and σ(r) = −σs

[
δ(z +

d/2)+ δ(z−d/2)
]
. Again at lowest order, one obtains from the normalization condition Eq.(B.9)

that

Λ0 = exp

(
Ξ

2
vc(0) −

1

2π

∫
dr̃′
[
δ(z̃′ + d̃/2) + δ(z̃′ − d̃/2)

] 1

r̃′

)
, (B.18)

and it follows that
ρ(z̃)

2π`Bσ2
s

=
2

d̃
, (B.19)

where d̃ = d/µ, as usual.





Appendix C

The contact value theorem

We start with the grand-canonical partition function of a system of moving and fixed charges (the
latter given by the charge distribution σ(r)),

Q =

∫ Dφ
Zv

exp

(
−
∫

drdr′φ(r)v−1(r, r′)φ(r′) − ı

∫
dr
σ(r)

q
φ(r) + λ

∫

V
dre−ıφ(r)

)
(C.1)

(cf. Eq. (B.4)). As in Appendix B, v−1 = v−1
c /q2, with v−1

c given by Eq. (B.6). The
∫
V corre-

sponds to the integration over the volume where the counterions are.
We are here interested in two cases: (i) one charged plane is in the presence of its counteri-

ons and (ii) two equally charged wall confining their counterions between them. The dielectric
constant is assumed to be the same everywhere, i.e., v(r, r′) = v(r − r

′). In the first case the
pressure at equilibrium is zero, and we will get the exact value of the density of counterions at
contact, while in the second case we will be interested in the pressure itself (we use this result in
Chapter 5).

The pressure acting on the wall(s) is given by

P =
1

A

∂ lnQ
∂Lz

(C.2)

where the pressure P is in units of kBT , and A is the lateral area (which is infinite in the thermo-
dynamic limit). It is implicitly assumed that when one wall is present, it is fixed to z = Lz , while
when two wall are present, one is at z = 0 and the other1 at z = Lz . Q depends on Lz through
the fixed density profile σ(r), which reads

σ(r) = −σs
q
δ(z − Lz) (C.3)

for one wall and
σ(r) = −σs

q
[δ(z) + δ(z − Lz)] (C.4)

for two walls, and through the volume V where the ions are confined, in the first case ] −∞, Lz]
(notice that here the ions are assumed to be confined to the left half-space, contrary to previous

1In Chapter 5 we put the walls at z = −d/2 and z = d/2. We use a different notation in this appendix, without loss
of generality, since it is more convenient for the derivation that follows.
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80 The contact value theorem

Chapters but without loss of generality) and in the second case [0, Lz]. By completing the squares
in the action in Eq. (C.1), we can rewrite Q as

Q = exp

(
− 1

2q2

∫
drdr′σ(r)v(r, r′)σ(r′)

)∫ DΦ

Zv
eH̄ (C.5)

where the action reads

H̄ = −
∫

drdr′Φ(r)v−1(r, r′)Φ(r′) + λ

∫

V
dre−ıΦ(r)−

�
dr′v(r,r′)σ(r′)/q (C.6)

and Φ(r) = φ(r) + ı
∫

dr′v(r, r′)σ(r′)/q. We use Eq. (C.5) to calculate the pressure, which then
reads

P =
1

A

〈
∂H̄
∂Lz

〉
− 1

2q2A

∂

∂Lz

[ ∫
drdr′ σ(r)v(r, r′)σ(r′)

]
. (C.7)

The derivative of H has to be done with some care, with special attention to the fact that the
confining volume V where the counterions are also depends explicitly on Lz; with this in mind,
we obtain

∂H̄
∂Lz

= λ

∫
dr δ(z − Lz) e−ıΦ(r)−

�
dr′v(r,r′)σ(r′)/q

− λ

∫

V
dr e−ıΦ(r)−

�
dr′v(r,r′)σ(r′)/q ∂

∂Lz

[∫
dr′ v(r, r′)

σ(r′)

q

]
. (C.8)

If we use ρ(r) = λ〈eıφ(r)〉, and the fact that the density profile has lateral symmetry, we finally
obtain the pressure as

P = ρ(Lz) −
1

qA

∫

V
dr ρ(r)

∂

∂Lz

[∫
dr′ v(r, r′)σ(r)

]

− 1

2q2A

∂

∂Lz

[∫
drdr′ σ(r)v(r, r′)σ(r′)

]
(C.9)

which is the contact value theorem in its general form. We can now particularize it to the two cases
of interest.

C.1 One wall

In this case, σ(r) = −σsδ(z − Lz)/q and v(r, r′) = q2`B/|r − r
′|. It follows that

− 1

2q2A

∂

∂Lz

[∫
drdr′ σ(r)v(r, r′)σ(r′)

]
= 0 (C.10)

and

− 1

qA

∫

V
dr ρ(r)

∂

∂Lz

[∫
dr′ v(r, r′)σ(r)

]
= −2π`Bσ

2
s . (C.11)
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In the latter, we used the fact that the density profile has xy symmetry and
∫

V
dr ρ(r) = N = A

σs
q
. (C.12)

Since the pressure is zero when the system is in equilibrium, we arrive at the final result

ρ(Lz)

2π`Bσ2
s

= 1. (C.13)

C.2 Two walls

Now σ(r) = −σs[δ(z) + δ(z − Lz)]/q, and it follows that

− 1

2q2A

∂

∂Lz

[∫
drdr′ σ(r)v(r, r′)σ(r′)

]
= 2π`Bσ

2
s (C.14)

and

− 1

qA

∫

V
dr ρ(r)

∂

∂Lz

[∫
dr′ v(r, r′)σ(r)

]
= −4π`Bσ

2
s . (C.15)

Notice that we used σs = qN/2A in the latter integral. It finally follows that

P

2π`Bσ2
s

= −1 +
ρ(Lz)

2π`Bσ2
s

, (C.16)

which relates the pressure felt by the walls and the contact value of the counterion density distri-
bution. Notice that if P = 0 (for instance when Lz → ∞), this expression reduces to Eq. (C.13),
as expected.





Appendix D

Some expressions used in the low
density expansion

D.1 Averages needed for Z1 and Z2

The following expressions were used to obtain Eqs. (6.25–6.26). In order to have more compact
formulas we use the Greek letters α and β instead of + or −. For instance, α qα means both +q+
and −q−.

〈
hα(r)

〉
= eq

2
αvc(0)/2, (D.1)

〈
e−ıαqαφ(r)

〉
= e−q

2
αvDH(0)/2, (D.2)

〈
hα(r)hβ(r

′)
〉

= e−ωαβ(r−r
′)+
[
q2αvc(0)+q2βvc(0)

]
/2, (D.3)

〈
e−ıα qαφ(r)−ıβ qβφ(r′)

〉
= e−

[
q2αvDH(0)+q2βvDH(0)

]
/2e−αβ qαqβvDH(r−r

′), (D.4)

〈
φ2(r′)e−ıα qαφ(r)

〉
= e−q

2
αvDH(0)/2

[
vDH(0) − q2

αv
2
DH(r − r

′)
]
. (D.5)

We remind that 〈· · · 〉 are averages where ω−1 and v−1
DH are the propagators.

D.2 The coefficients in the grand-canonical free energy

We give here the explicit expressions for the coefficients in g, Eq. (6.29). It is useful to define the
function

H(x) =
11

6
− 2γ +

1

x3
e−x
[
2 − x+ x2

]
− Γ(0, x) − lnx, (D.6)
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where γ is Euler’s constant and Γ(a, b) is the incomplete Gamma-function[2]. The coefficients
then read

m1 =
π

3

q6+`
3
B

d3
+

{
−H

(q2+`B
d+

)
+ ln

(3d+

`B

)}
, (D.7)

m2 =
π

3

q6−`
3
B

d3
+

{
−H

(q2−`B
d−

)
+ ln

(3d−
`B

)}
, (D.8)

m3 =
2π

3

q3+q
3
−`

3
B

d3
+

{
H
(2q+q−`B
d+ + d−

)
− ln

(3[d+ + d−]

2`B

)}
, (D.9)

n1 =
π

3

q8+`
3
B

d3
+

{
−5

8
− 2H

(q2+`B
d+

)
+ ln

(12d2
+

`2B

)}
, (D.10)

n2 =
π

3

q8−`
3
B

d3
+

{
−5

8
− 2H

(q2−`B
d−

)
+ ln

(12d2
−

`2B

)}
, (D.11)

n3 =
2π

3

q3+q
3
−`

3
B

d3
+

{
−5

8
q+q− +

[q+ − q−]2

2
H
(
−2q+q−`B
d+ + d−

)

+ q+q− ln
(2[d+ + d−]

`B

)
− q2+ + q2−

2
ln
(3[d+ + d−]

2`B

)}
,

(D.12)

p1 =
π

3

q6+`
3
B

d3
+

, p2 =
π

3

q6−`
3
B

d3
+

, p3 = −2π

3

q3+q
3
−`

3
B

d3
+

, (D.13)

r1 =
2π

3

q8+`
3
B

d3
+

, r2 =
2π

3

q8−`
3
B

d3
+

, (D.14)

r3 =
2π

3

q3+q
3
−`

3
B

d3
+

[
q+q− − q2+ + q2−

2

]
, (D.15)

s1 =
q4+
8
, s2 =

q4−
8
, t0 =

d3
+

12π`3B
, t1 =

q6+
48
, t2 =

q6−
48
. (D.16)

D.3 The coefficients in λ̃−

In Eq. (6.33) we have established the dependence of λ̃− as a power expansion of λ̃+. The coeffi-
cients a0, a1, etc. must be such that the system is globally neutral. These are given by

a0 =
q+
q−
, (D.17)

a1 =
q2+
q−

[
q2+ − q2−

]
√
π`3B
d3
+

[
1 +

q−
q+

]
, (D.18)
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a2 =
q+
q2−

[
−2m2q+ + 2m1q− +m3[q1 − q2]

]
+
π

6

q2+`
3
B

q−d3
+

[
q+ + q−

]2

×
[
7q3+ − 9q2

+q− + 2q3
−

]
+
π

3

q2+`
3
B

q−d3
+

[
q5+ − q3+q

2
− + q2+q

3
− − q5−

]

× ln
(4π`3B
d3
+

q+
[
q+ + q−

])
, (D.19)

a3 =
π

3

q2+`
3
B

q−d3
+

[
q5+ − q3+q

2
− + q2+q

3
− − q5−

]
, (D.20)

a4 =
`
3/2
B

24q3
−

√
πq+

(
q+ + q−

){
24n1

[
5q+q

2
− − q3−

]
+ 24n2

[
q3+ − 5q+q

2
−

]

+ 72n3

[
q2+q− − q+q

2
−

]
+ 24m1

[
q2+q

3
− − 3q+q

4
−

]
+ 24m2

[
−4q4

+q−

− q3+q
2
− + 7q2

+q
3
−

]
+ 12m3

[
2q4+q− − q3+q

2
− − 6q2

+q
3
− + 5q+q

4
−

]

+
π`3B
d3
+

q2+q
2
−[q+ + q−]2

[
26q5

+ − 34q4
+q− − 31q3

+q
2
− + 67q2

+q
3
−

− 45q+q
4
− + 17q5

−

]}
+
π3/2

6

q
5/2
+ `

9/2
B

q−d
9/2
+

[
q+ − q−

][
q+ + q−

]5/2

×
[
10q4

+ − 11q3
+q− + 13q2

+q
2
− − 4q+q

3
− + 3q4

−

]

× ln
(4π`3B
d3
+

q+
[
q+ + q−

])
, (D.21)

a5 =
π3/2

6

q
5/2
+ `

9/2
B

q−d
9/2
+

[
q+ − q−

][
q+ + q−

]5/2[
10q4

+ − 11q3
+q−

+ 13q2
+q

2
− − 4q+q

3
− + 3q4

−

]
ln
(4π`3B
d3
+

q+
[
q+ + q−

])
. (D.22)

Notice that m1, m2, etc. were defined in Eqs. (D.7–D.16).

D.4 The coefficients in the mean activity coefficient

In Eq. 6.57 we obtained the low-density expansion of the mean activity coefficient of ionic solu-
tions where the ions have valences q+ and q− and effective diameters d+ and d− (in Ångströms).
Defining ω ≡ 6.022×10−4`3Bq

6
+q− (with η ≡ q−/q+ and ξ ≡ d−/d+), the coefficients in Eq. 6.57

read
νDH = −η

√
πω[1 + η], (D.23)

ν1 =
πωη

6[1 + η]

{
−1 + 3η + 8η2 + 3η3 − η4 + 4

[
H
(
ε+
)

+ ln
(
ε+
)]

+ 4η4
[
H
(η2ε+

ξ

)
+ ln

(η2ε+
ξ

)]
− 8η2

[
H
(
− 2ηε+

1 + ξ

)
+ ln

( 2ηε+
1 + ξ

)]

+ 8η2[1 − η2] ln(η) −
[
2 − 4η2 + 2η4

]
ln
(
36πω[1 + η]

)}
, (D.24)
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ν1log = −πωη
3

[1 − η]2[1 + η], (D.25)

ν3/2 =
η[πω]3/2

24
√

1 + η

{
42 − 6η − 14η2 + 68η3 − 14η4 − 6η5 + 42η6

+ 40
[
1 − 2η

5

][
H
(
ε+
)

+ ln
(
ε+
)]

+ 40η6
[
1 − 2

5η

][
H
(η2ε+

ξ

)

+ ln
(η2ε+

ξ

)]
+ 112η3

[
H
(
− 2ηε+

1 + ξ

)
+ ln

( 2ηε+
1 + ξ

)]

− 16η3
[
7 − 2η2 + 5η3

]
ln(η) + 8η

[
1 − η2

]2
ln
(
36πω[1 + η]

)

− 20
[
1 + η3

]2
ln
(
64πω[1 + η]

)}
, (D.26)

ν3/2log = −η[πω]3/2

6

√
1 + η

[
5 − 7η + 7η2 + 7η3 − 7η4 + 5η5

]
. (D.27)



Appendix E

Notation

We list here some of the symbols used in this work. We tried to keep the notation as clear and
consistent as possible, but sometimes the same symbol has been used in different Chapters for
different quantities. When this is the case (or there is a risk of confusion) we indicate in bold the
Chapter where the symbols are used.

˜ Chs. 2–5: denotes that a length has been rescaled with the Gouy-Chapman
length µ according to r̃ = r/µ.
Ch. 6: denotes that a variable has been multiplied by d3

+, e.g. f̃ = d3
+ f .

A Hamaker constant.
A Area.
Cv Specific heat at constant volume.

c+, c− Bulk concentration of positive and negative ions.

D Ch. 4: Distance at contact between ions on the wall and counterions.
d Ch. 5: Distance between the walls.

d+, d− Ch. 6: Diameters of the positive and negative ions.

e Elementary charge unit. In SI units, e = 1.60 × 10−19 C.

F , f Canonical ensemble free energy, total and per unit volume respectively.

f± Mean activity coefficient.

g Grand-canonical ensemble free energy per volume.

H Hamiltonian.
H̄ Field-theoretic action.
ı Imaginary unit, ı =

√
−1.

kB Boltzmann constant. In SI units, kB = 1.38 × 10−23 J K−1.

L Box size in the simulations.
`B Bjerrum length. Distance at which the electrostatic interaction between two

elementary charges equals the thermal energy, i.e., `B ≡ e2/4π ε kB T .

N Chs. 2–5: number of counterions.
N+, N− Ch. 6: Number of positive and negative ions.
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P Pressure (in units of kBT ).

Q Grand-canonical ensemble partition function.

Q Ch. 4: Charge valence of the charges fixed on the plane.

q Chs. 2–5: Charge valence of counterions.

q+, q− Ch. 6: Charge valence of positive and negative ions.

T Temperature.

V Volume.
vc(r) Coulomb potential given by Eq. (B.3). In the simplest case, vc(r) = `B/r.

vDH(r) Debye-Hückel potential (Eqs. (6.16) and (6.27)).

Z Canonical ensemble partition function.

∆ Dielectric jump constant (image charge prefactor), defined in Eq. (3.7).

δ(r) Dirac delta function.
ε,ε>,ε< Dielectric constant of a medium. For water, ε ' 80 ε0.

ε0 Dielectric constant of vacuum. In SI units, ε0 = 8.85 × 10−12.

ε+ Ch. 6: Coupling parameter of the positive ions, defined as q2
+`B/d+.

ζ Used in the Lekner summation as |zi − zj |/L.

η Ch. 2: used in the Lekner summation as |yi − yj |/L.
Ch. 6: charge ratio q−/q+.

θ(z) Theta function: 1 if z > 0, 0 otherwise.

Λ Rescaled fugacity, λ/2π`Bσ2
s .

λ, λ+, λ− Fugacity (exponential of the chemical potential).

λ± Mean activity.

µ Gouy-Chapman length. It is the distance at which the electrostatic interaction
between a charge q e and a charged plate (with charge density σs e) equals the
thermal energy, i.e., µ ≡ 1/2π q `B σs.

Ξ Coupling constant, Ξ ≡ q2 `B/µ.

ξ Ch. 6: used in the Lekner summation as |xi − xj|/L.
Ch. 6: size ratio d−/d+.

ρ(r) Thermal average of the local counterion density distribution.

ρ̂(r) Instantaneous charge distribution (sum of deltas), as in Eq. (6.3).

σ(r) General fixed charge density distribution.

σs Charge density on the plates; number of charges per unit area.

φ(r) Fluctuating field, conjugate to the charge density.

ψ+(r), ψ−(r) Fluctuating fields, conjugate to the number density.

ωαβ Ch. 6: hard core potential.
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