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(1) Experimental Setup: DAC (3) time-dependent analysis of kinetic processes
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; (5) i1dentification & derivation of physical transport coefficients
33 j Overview of models in computational fluid mechanics. All approaches beyond the
‘[ N - RN RN atomic-scale (molecular dynamics) and below the conventional continuum scale (Navier-Stokes
o iponongnuoet IRUEEARAE solvers) use coarse-grained pseudo-particles which can either move on a fixed lattice (lattice-based ege [ ° °
H-ausdo.rﬁ' """"""""""" : : | pseudo-particle models) or continuously in space (off-lattice pseudo-particle models). Perm eab lllt;)/'-Po rostt.); RelatlonSh lp
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. 2Ty Pseudo-particle models We present a model for calculating permeability of a porous solid-melt polycrystal during melting.
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i % Lo , L 2 icemodes el s Unlike to previous two-phase models, a solid framework is used that does not have a regular
- o~ =iy . Lattice-based models Ualte pmmliovels geometry nor a typical grainsize. Instead, we use a polycrystal that is created on the basis of a
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| N vl iy 1 T T TR NI TR 7 R —— stochastic nucleation and growth process for first-order phase transformations as the starting
Fuad "T— _ | , , | state for partial melting. It is a polycrystal with continuously distributed grainsizes and random
| | | | grain locations.
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B i B Ao e iyl tommprilonc o g g | PR Permeability is then estimated through flow simulation on the constructed 3D porous two-phase body
e W el i H(lfxllt\f;?c%n solid Dissipative pseudo-particle R Q’ é‘ns using the Lattice-Boltzmann (LB) technique. The LB method describes fluid motion with the interaction
percolation e s B D93 % A of a massive number of particles following simple local rules, rules that recover the Navier-Stokes
o % < o equation at the macroscopic scale [Rothman and Zaleski, 1997].
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(6) Comparison with rock samples (in progress) Bl e | SYRYY Sy )| &7 |E . S
g Bcliorndta 22 coarse graining | o It 1s known that the LB flow simulation is able to handle successfully very complex 3D pore
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g el - geometries [Keehm et al., 2004]. Here, the investigated porous framework shows a fractal-like
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The formation of a basaltic melt phase along the grain boundaries of a polycrystalline rock matrix is considered < R o A I ::-; i | / < geometry near to percolation of either melt or solid phase. The flow simulation 1s done with an
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as a time-reversed solidification process and is treated by a 3D computer simulation of nucleation and growth. g v, 7 . : assigned pressure gradient Vp across opposite faces of cubes. From the local flux, the
The obtained microstructures (unconnected porosity, shape of isolated melt pockets, distribution of wetting angle, 2 3¢ ! 3 volume-averaged flux <> is then calculated using Darcy's relationship
size and geometry of percolating melt cluster, permeability threshold) are analyzed and compared with § | NavierStokes Dynamics
experimentally obtained data for partially molten crustal protoliths (see, e.g., Laporte et al., 1997). conservation of «@=-x/MVp
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The resulting melt structure is in general in a good agreement with the experimental data, but becomes increasingly \ : : - : .. :
w b : | b | d bel o including the f fd where « is the (wanted) macroscopic permeability and 1 i1s the dynamic viscosity of the melt.
sensitive to the grain-scale geometry as the melt percentage decreases below 5 %, including the frequency of dry —_— syehonaie —
edges, the tortuosity of melt channels, and the minimum channel cross sections. It depends also significantly on a
Various approaches to computational fluid dynamics together with their preferred range Ref erences.

possible anisotropic growth rate of the solid-melt interphase. Because of these difficulties permeability can no of applicability. Molecular dynamics methods integrate Newton's equations of motion for a set
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longer be expressed as a simple fuction of porosity and grain-size. Simulation Monte Carlo are off-latice pseudo-particle methods in conjunction with Newtorian Keehm Y., T. Mukerji T. and A. Nur. Permeability prediction from thin sections: 3D reconstruction
dynamics. Lattice gas and lattice Boltzmann methods treat flows in terms of coarse-grained 0 o 0 °_
fictive particles which reside on a mesh and conduct translation as well as collision steps entailing and Lattlce_BOltzmann ﬂOW Slmulatlon- GRL) 3 1 ) LO46069 d01° 1 0 1 029/2003 GLO 1 876 1 ) 2004
overall fluid-like behaviour. Navier-Stokes approaches solve continuum-based partial differential
equations which account for the local conservation of mass, momentum and energy. T hese three : : . : :
et hae thelr respectfi trangths at ffemert K nusen noamiens, vihera the K —ycsars nombe| Rothman D.H. and S. Zaleski. Lattice-Gas Cellular Automata. Cambridge Univ. Press, Cambridge, 1997.

(*) Institute Of GeOSCiences . UniverSity Of POtS dam, GOlm is the ratio between the mean free molecule path and a characteristic length scale representing

mesoscopic system heterogeneity (e.g. the obstacle size).




