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Abstract

The field of machine learning studies algorithms that infer predictive models
from data. Predictive models are applicable for many practical tasks such as
spam filtering, face and handwritten digit recognition, and personalized product
recommendation. In general, they are used to predict a target label for a given
data instance. In order to make an informed decision about the deployment of
a predictive model, it is crucial to know the model’s approximate performance.
To evaluate performance, a set of labeled test instances is required that is drawn
from the distribution the model will be exposed to at application time. In many
practical scenarios, unlabeled test instances are readily available, but the process
of labeling them can be a time- and cost-intensive task and may involve a human
expert.

This thesis addresses the problem of evaluating a given predictive model accu-
rately with minimal labeling effort. We study an active model evaluation process
that selects certain instances of the data according to an instrumental sampling
distribution and queries their labels. We derive sampling distributions that min-
imize estimation error with respect to different performance measures such as
error rate, mean squared error, and 𝐹 -measures. An analysis of the distribution
that governs the estimator leads to confidence intervals, which indicate how pre-
cise the error estimation is. Labeling costs may vary across different instances
depending on certain characteristics of the data. For instance, documents differ
in their length, comprehensibility, and technical requirements; these attributes
affect the time a human labeler needs to judge relevance or to assign topics.
To address this, the sampling distribution is extended to incorporate instance-
specific costs. We empirically study conditions under which the active evaluation
processes are more accurate than a standard estimate that draws equally many
instances from the test distribution.

We also address the problem of comparing the risks of two predictive models. The
standard approach would be to draw instances according to the test distribution,
label the selected instances, and apply statistical tests to identify significant
differences. Drawing instances according to an instrumental distribution affects
the power of a statistical test. We derive a sampling procedure that maximizes
test power when used to select instances, and thereby minimizes the likelihood of
choosing the inferior model. Furthermore, we investigate the task of comparing
several alternative models; the objective of an evaluation could be to rank the
models according to the risk that they incur or to identify the model with lowest
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risk. An experimental study shows that the active procedure leads to higher test
power than the standard test in many application domains.

Finally, we study the problem of evaluating the performance of ranking functions,
which are used for example for web search. In practice, ranking performance is
estimated by applying a given ranking model to a representative set of test queries
and manually assessing the relevance of all retrieved items for each query. We ap-
ply the concepts of active evaluation and active comparison to ranking functions
and derive optimal sampling distributions for the commonly used performance
measures Discounted Cumulative Gain (DCG) and Expected Reciprocal Rank
(ERR). Experiments on web search engine data illustrate significant reductions
in labeling costs.
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Kurzfassung

Maschinelles Lernen befasst sich mit Algorithmen zur Inferenz von Vorhersa-
gemodelle aus komplexen Daten. Vorhersagemodelle sind Funktionen, die einer
Eingabe – wie zum Beispiel dem Text einer E-Mail – ein anwendungsspezifisches
Zielattribut – wie „Spam“ oder „Nicht-Spam“ – zuweisen. Sie finden Anwendung
beim Filtern von Spam-Nachrichten, bei der Text- und Gesichtserkennung oder
auch bei der personalisierten Empfehlung von Produkten. Um ein Modell in der
Praxis einzusetzen, ist es notwendig, die Vorhersagequalität bezüglich der zu-
künftigen Anwendung zu schätzen. Für diese Evaluierung werden Instanzen des
Eingaberaums benötigt, für die das zugehörige Zielattribut bekannt ist. Instan-
zen, wie E-Mails, Bilder oder das protokollierte Nutzerverhalten von Kunden,
stehen häufig in großem Umfang zur Verfügung. Die Bestimmung der zugehöri-
gen Zielattribute ist jedoch ein manueller Prozess, der kosten- und zeitaufwendig
sein kann und mitunter spezielles Fachwissen erfordert.

Ziel dieser Arbeit ist die genaue Schätzung der Vorhersagequalität eines gege-
benen Modells mit einer minimalen Anzahl von Testinstanzen. Wir untersuchen
aktive Evaluierungsprozesse, die mit Hilfe einer Wahrscheinlichkeitsverteilung In-
stanzen auswählen, für die das Zielattribut bestimmt wird. Die Vorhersagequali-
tät kann anhand verschiedener Kriterien, wie der Fehlerrate, des mittleren qua-
dratischen Verlusts oder des F-measures, bemessen werden. Wir leiten die Wahr-
scheinlichkeitsverteilungen her, die den Schätzfehler bezüglich eines gegebenen
Maßes minimieren. Der verbleibende Schätzfehler lässt sich anhand von Konfi-
denzintervallen quantifizieren, die sich aus der Verteilung des Schätzers ergeben.
In vielen Anwendungen bestimmen individuelle Eigenschaften der Instanzen die
Kosten, die für die Bestimmung des Zielattributs anfallen. So unterscheiden sich
Dokumente beispielsweise in der Textlänge und dem technischen Anspruch. Die-
se Eigenschaften beeinflussen die Zeit, die benötigt wird, mögliche Zielattribute
wie das Thema oder die Relevanz zuzuweisen. Wir leiten unter Beachtung dieser
instanzspezifischen Unterschiede die optimale Verteilung her. Die entwickelten
Evaluierungsmethoden werden auf verschiedenen Datensätzen untersucht. Wir
analysieren in diesem Zusammenhang Bedingungen, unter denen die aktive Eva-
luierung genauere Schätzungen liefert als der Standardansatz, bei dem Instanzen
zufällig aus der Testverteilung gezogen werden.

Eine verwandte Problemstellung ist der Vergleich von zwei Modellen. Um fest-
zustellen, welches Modell in der Praxis eine höhere Vorhersagequalität aufweist,
wird eine Menge von Testinstanzen ausgewählt und das zugehörige Zielattribut
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bestimmt. Ein anschließender statistischer Test erlaubt Aussagen über die Signi-
fikanz der beobachteten Unterschiede. Die Teststärke hängt von der Verteilung
ab, nach der die Instanzen ausgewählt wurden. Wir bestimmen die Verteilung,
die die Teststärke maximiert und damit die Wahrscheinlichkeit minimiert, sich
für das schlechtere Modell zu entscheiden. Des Weiteren geben wir eine Mög-
lichkeit an, den entwickelten Ansatz für den Vergleich von mehreren Modellen
zu verwenden. Wir zeigen empirisch, dass die aktive Evaluierungsmethode im
Vergleich zur zufälligen Auswahl von Testinstanzen in vielen Anwendungen eine
höhere Teststärke aufweist.

Im letzten Teil der Arbeit werden das Konzept der aktiven Evaluierung und das
des aktiven Modellvergleichs auf Rankingprobleme angewendet. Wir leiten die op-
timalen Verteilungen für das Schätzen der Qualitätsmaße Discounted Cumulative
Gain (DCG) und Expected Reciprocal Rank (ERR) her. Eine empirische Studie
zur Evaluierung von Suchmaschinen zeigt, dass die neu entwickelten Verfahren
signifikant genauere Schätzungen der Rankingqualität liefern als die untersuchten
Referenzverfahren.
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Chapter 1

Introduction

Predictive models play a central role in many practical domains, such as spam
filtering, face or handwritten digit recognition, and personalized product recom-
mendation. In spam filtering, for example, they are used to classify incoming and
outgoing emails as spam or non-spam in order to reduce the amount of unwanted
emails reaching a user’s mailbox. In general, a predictive model is a function that
maps an instance to a target label. The true relationship between instances and
the corresponding labels is typically unknown or hard to describe by an explicit
rule. Research in the area of machine learning is concerned with algorithms that
use a finite set of examples that represent the underlying relationship to infer a
predictive model. The goal is to identify the model with the highest predictive
performance, that is, the model that predicts the label of a new and so far unseen
instance as accurately as possible.

A set of labeled instances is essential to build and to evaluate predictive models.
Unlabeled instances are typically inexpensive and readily available, but acquiring
the corresponding label is often a costly process, which may involve a human
expert. For example, email service providers receive a huge amount of emails
every day, which can be used to build a spam filter. However, these emails have
to be examined manually, since they do not come with the required target label
“spam” or “non-spam”. The predictive performance generally depends on the
number of instance-label pairs that are available to the learning algorithm; an
increased number of training instances yields a more accurate model. However,
an exhausted labeling of all seen instances can become costly. Active learning
algorithms are designed to produce accurate models with minimal labeling effort.
The idea is to build a sequence of intermediate models with increasing predictive
performance. In each step, the algorithm identifies most valuable instances, which
would give the highest improvement to the model learned so far. These instances
are labeled at a cost. Afterwards, the current model will be updated using all
labeled data up to this time, and so on. Depending on the learning task, these
strategies can save considerable labeling effort.
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Before a predictive model can be deployed in practice, its predictive performance
has to be assessed. For this purpose a set of instance-label pairs is required that
is governed by the distribution the model will be exposed to at application time.
If the training data are distributed according to the test distribution, an estimate
of the performance is typically obtained by cross-validation. In practice, however,
training data are often unavailable or do not reflect the desired test distribution.
In the following, we present examples of such application scenarios motivating
the problem setting of the thesis.

Confidential Training Data. When a readily trained model is shipped and
deployed, the training data—which are usually used to estimate the model’s
risk—may be held confidential by the supplier of the model. For instance, a
medical diagnosis system would not typically come with the medical records
that have been used to train it. Another example are credit scoring models,
which predict creditworthiness. Since they are based on confidential data
like credit history, loan application, customer data, etc. the training data
are also held back in this case for privacy reasons. The supplier may provide
a risk estimate, but such estimate might be biased because it is obtained
without access to the test distribution. In order to estimate the predictive
performance of these models accurately, a set of labeled instances is needed
that reflects the test distribution.

Training and Test Distribution Differ. Using cross-validation in order to
obtain consistent performance estimates requires that the training data
reflect the test distribution. This condition is often not met. Off-the-
shelf models such as commercial spam filters or face recognition systems
are trained without the knowledge of the distribution the model will be
exposed to after deployment. In domains in which the distribution of in-
stances changes over a period of time, one may wish to monitor the risk of
the model in order to determine at which point an update becomes neces-
sary. For a reliable estimate one needs access to the current distribution.
As an example, commercial email spam filters have to be updated with an
additional labeled sample in intervals that depend on the extent to which
spammers impose shift on the distribution by employing new strategies to
generate messages. As another example, ranking models often cannot be
evaluated accurately on held-out training data, because query distributions
and item relevance change over time. Instead, considerable effort is spent
on manually labeling the relevance of documents for test queries in order
to track ranking performance.
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Actively Trained Model. Active learning algorithms are used in situation in
which no labeled instances are available in advance. In order to minimize
the labeling effort, active learners query the labels that they predict least
confidently. These instances are not governed by the test distribution.
Hence, the resulting labeled data are a biased sample which would incur
a pessimistic bias on any cross-validation estimate. In order to obtain an
unbiased estimate of the risk, additional test instances have to be labeled.

In these scenarios, estimates are either communicated from the model provider
or result from hold-out evaluations on outdated or biased samples; they can be
arbitrarily inaccurate. In order to evaluate the model accurately, new instances
have to be drawn and labeled at a cost. This thesis addresses the problem of
estimating the performance of a given predictive model accurately at minimal
labeling costs. The standard approach is to draw instances directly from the test
distribution, label these data, and calculate an empirical estimate of the model’s
performance. Instead, we study an active evaluation process that, in analogy to
active learning, queries the labels of the most informative instances. Instances
are selected according to an instrumental sampling distribution. We derive sam-
pling distributions that minimize the estimation error with respect to a certain
performance measure such as error rate, mean squared error, and 𝐹 -measures.
A related problem is to compare two models as confidently as possible on a fixed
labeling budget. We devise an active comparison method that selects instances
according to the instrumental distribution that maximizes the power of a statis-
tical test that compares the performance of two predictive models. Finally, we
investigate active evaluation methods for ranking functions. Empirically, we ob-
serve that all derived procedures outperform the traditional approach on several
classification and regression data sets. Section 1.1 lists own previously published
work and summarizes the main contribution of this thesis. An overview is given
in Section 1.2.
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1.1 Contributions

In this thesis, we develop new evaluation methods to estimate and to compare
the performance of predictive models. We now summarize the main results and
discuss the relation to own publications.

Optimal Sampling Distribution for Risk Estimation. We introduce the
concept of active risk estimation: Instances are selected from a pool of
unlabeled instances in order to evaluate the risk of a given model accu-
rately at minimal labeling costs. We analyze sources of estimation error
of the empirical risk, and derive the sampling distribution that asymptot-
ically minimizes the estimation error. The optimal sampling distribution
depends on unknown quantities. We derive an empirical sampling distribu-
tion that uses the model to decide on instances whose labels are queried.
The resulting active evaluation process can be applied immediately with a
probabilistic prediction model and yields a consistent estimate of the true
risk. An analysis of the distribution that governs the estimator leads to
confidence intervals. We empirically study conditions under which the ac-
tive risk estimate is more accurate than a standard risk estimate that draws
equally many instances from the test distribution. These results have been
published in

[Sawade et al., 2010a] Christoph Sawade, Niels Landwehr, Steffen Bickel,
and Tobias Scheffer. Active Risk Estimation. In Proceedings of the 27th
International Conference on Machine Learning, 2010.

Generalization to 𝐹 -measures. We generalize the regular risk functional to
incorporate 𝐹 -measures, which are common performance measures in in-
formation retrieval tasks. We show that the commonly used statistics con-
stitute consistent estimators of that generalized risk. On this basis, we
derive an evaluation process that actively estimates a generalized risk by
sampling test instances from an instrumental distribution. An analysis of
the sources of estimation error leads to the instrumental distribution that
minimizes estimator variance. Our empirical study supports the conclusion
that the advantage of active over passive evaluation is particularly strong
for skewed classes. These results have been published in

[Sawade et al., 2010b] Christoph Sawade, Niels Landwehr, and Tobias
Scheffer. Active Estimation of F-Measures. In Proceedings of the 24th
Annual Conference on Neural Information Processing Systems, 2010.
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Optimal Sampling Distribution for Hypotheses Testing. We address the
problem of comparing the predictive performance of two given models as
confidently as possible given a fixed labeling budget. We lift the active
evaluation principle to hypothesis testing and derive a sampling distribu-
tion that maximizes test power when used to select instances, and thereby
minimizes the likelihood of choosing the inferior model. Empirically, we
observed that the resulting active comparison method consistently outper-
forms a traditional comparison based on a uniform sample of test instances.
Active comparison identifies the model with lower true risk more often, and
is able to detect significant differences between the risks of two given mod-
els more quickly. We perform experiments under the null hypothesis that
both models incur identical risks, and verified that active comparison does
not lead to increased false-positive significance results. These results have
been published in

[Sawade et al., 2012b] Christoph Sawade, Niels Landwehr, and Tobias
Scheffer. Active Comparison of Prediction Models. In Proceedings of the
26th Annual Conference on Neural Information Processing Systems, 2012.

Cost-Optimal Sampling for Ranking Functions. We study active estima-
tion of ranking performance. A novel aspect of active estimation in a rank-
ing setting is that labeling costs vary according to the number of items
that are relevant for a query. We derive a cost-optimal sampling distri-
butions for the estimation of DCG and ERR. Naïve computation of the
sampling distributions is exponential in the number of items, we derive
polynomial-time solutions by dynamic programming. Experiments on web
search engine data illustrate significant reductions in labeling costs when
estimating the performance of a single ranking model or comparing different
types of ranking models. These results have been published in

[Sawade et al., 2012a] Christoph Sawade, Steffen Bickel, Timo von Oertzen,
Tobias Scheffer, and Niels Landwehr. Active Evaluation of Ranking Func-
tions based on Graded Relevance. In Proceedings of the 22nd European
Conference on Machine Learning, 2012. Best Paper Award.
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1.2 Outline

In this thesis we study evaluation processes for predictive models. The first two
chapters recapitulate the foundations of learning theory and evaluation meth-
ods. The principle ideas of predictive models and how they can be inferred from
data are presented in Chapter 2. In Chapter 3, we introduce the concept of risk
functionals, their essential estimators, and statistical tests which are used to es-
timate the absolute and relative performance of predictive models. Additionally,
we state a new generalization of the traditional risk and derive statements on the
estimators.

In the following two chapters, we focus on scenarios in which test instances have
to be drawn and labeled to obtain an estimate. We study performance measures
which can be expressed as a generalized risk, such as error rate, mean squared
error, and 𝐹 -measures. The sampling distribution that minimizes the estimation
error on a fixed labeling budget with respect to a generalized risk is derived in
Chapter 4. Furthermore, we extend our results to the case in which labeling costs
vary over different instances; the derived sampling distribution involves instance-
specific labeling costs and is optimal for constrained overall costs. In Chapter 5,
we address the problem of comparing the risks of predictive models as confidently
as possible. To this end, we analyze the statistical testing process, which is
resulting in a sampling procedure that maximizes test power. Chapter 6 studies
active evaluation in the context of ranking functions. Many ranking measures
can be formulated as risks, however, the optimal sampling distributions involve
exponential sums. We show how they can be computed in polynomial time for
two important ranking measures using dynamic programming.

In all three chapters, we experimentally study conditions under which the ac-
tive evaluation is more accurate than the standard passive procedure that draws
equally many instances from the test distribution. Finally, Chapter 7 concludes.



Chapter 2

Learning Predictive Models
from Data

The concept of predictive models plays a central role in this thesis. In this
chapter, we present principle ideas of predictive models and summarize the state
of the art of probabilistic learning algorithms. In many practical tasks one aims
at identifying a target label 𝑦 ∈ 𝒴 of a given instance 𝑥 ∈ 𝒳 , where 𝒴 is referred
to as label space and 𝒳 as instance space. An unknown test distribution 𝑝(𝑥, 𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥) is defined over 𝒳 × 𝒴. The conditional distribution 𝑝(𝑦|𝑥) describes
the true relationship between an instance 𝑥 and a label 𝑦. An estimate of 𝑝(𝑦|𝑥)
enables us to infer the most probable label 𝑦 for an instance 𝑥 as well as to
derive a confidence value for any prediction. The process of estimating the true
conditional distribution 𝑝(𝑦|𝑥) is also referred to as learning the relationship
between 𝑥 and 𝑦. For this purpose, a finite set of instance-label pairs

𝑇𝑛 = {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1, . . . , 𝑛} (2.1)

is given, which is called the training data. The training instances (𝑥𝑖, 𝑦𝑖) are
assumed to be independent and identically distributed (i.i.d.) according to 𝑝(𝑥, 𝑦),
that is, the probability of observing the training set 𝑇𝑛 can be decomposed into
a product over the distribution of instance-label pairs:

𝑝({(𝑥𝑖, 𝑦𝑖)|𝑖 = 1, . . . , 𝑛}) =
𝑛∏︁

𝑖=1
𝑝(𝑦𝑖|𝑥𝑖)𝑝(𝑥𝑖). (2.2)

A non-parametric estimate of the distribution 𝑝(𝑦|𝑥) is non-trivial, since the in-
stance space 𝒳 is often a high dimensional vector space (see, e.g., Bishop, 2006,
Chapter 1.4). One possible way to tackle this problem is to model 𝑝(𝑦|𝑥) by a
fixed family of distributions 𝑝(𝑦|𝑥; 𝜃), which is parameterized by a vector 𝜃 ∈ Θ,
and estimate the corresponding parameters from 𝑇𝑛. The set of all possible pa-
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rameterizations Θ is called the model space. Let us assume that the model space
contains a model 𝜃*, that completely characterizes the true relationship between
a label 𝑦 and a given instance 𝑥. Therefore, we replace the conditional distribu-
tion 𝑝(𝑦|𝑥) by 𝑝(𝑦|𝑥; 𝜃*). In order to estimate 𝜃*, we now study the posterior
predictive distribution 𝑝(𝑦|𝑥, 𝑇𝑛) that quantifies the likelihood of a label 𝑦 given
an instance 𝑥 and the training set 𝑇𝑛 under the model assumption. Applying the
law of total probability, the i.i.d.-assumption (see Equation 2.2), and the assump-
tion, that the probability of a model 𝜃 depends only on the observed training
set 𝑇𝑛, the posterior predictive distribution can be expressed as weighted average
over the model-based predictive distributions 𝑝(𝑦|𝑥; 𝜃):

𝑝(𝑦|𝑥, 𝑇𝑛) =
∫︁
𝑝(𝑦|𝑥; 𝜃)𝑝(𝜃|𝑇𝑛)d𝜃. (2.3)

Each of the predictive distributions is weighted by the posterior distribution
𝑝(𝜃|𝑇𝑛), that is, the probability of the model 𝜃 after having seen the training
set 𝑇𝑛. The posterior distribution can be decomposed further into a likelihood,
prior, and marginal likelihood term using Bayes’ rule:

𝑝(𝜃|𝑇𝑛) = 𝑝(𝑇𝑛|𝜃)𝑝(𝜃)
𝑝(𝑇𝑛) . (2.4)

Under the assumption given by Equation 2.2, the likelihood can be expressed as

𝑝(𝑇𝑛|𝜃) =
𝑛∏︁

𝑖=1
𝑝(𝑦𝑖|𝑥𝑖; 𝜃)𝑝(𝑥𝑖). (2.5)

It captures how well the model 𝜃 fits the training data 𝑇𝑛. The data independent
prior 𝑝(𝜃) quantifies the likelihood of a model 𝜃 independently of the data. The
remaining normalization term 𝑝(𝑇𝑛) =

∫︀
𝑝(𝑇𝑛|𝜃)𝑝(𝜃)d𝜃 is known as marginal

likelihood (see Section 2.2).

In order to evaluate Equation 2.3, we need to define the family 𝑝(𝑦|𝑥; 𝜃) and the
prior distribution 𝑝(𝜃). This choice is specific to the learning task; it depends
on the label space 𝒴 and assumptions about the data. In general, a prediction
based on Equation 2.3 is known as Bayesian model averaging. It can be seen
as the optimal decision for an unseen instance 𝑥, since the posterior predictive
distribution accounts for the model uncertainty 𝑝(𝜃|𝑇𝑛) caused by the finiteness
of 𝑇𝑛 (see, e.g., Domingos, 2000; Davidson & Fan, 2006). However, the Bayes
optimal solution is intractable for many choices of the model class. In such a
case, the posterior distribution (see Equation 2.4) can be approximated by some
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point estimate 𝜃̂. The maximum a posteriori (MAP) estimate is obtained by
replacing the expectation E𝜃∼𝑝(𝜃|𝑇𝑛)[𝑝(𝑦|𝑥; 𝜃)] over all models by the prediction
of the most probable model after having seen the training set 𝑇𝑛:

𝑝(𝑦|𝑥, 𝑇𝑛) ≈ 𝑝
(︀
𝑦
⃒⃒
𝑥; 𝜃̂

𝑚𝑎𝑝)︀
, where 𝜃̂

𝑚𝑎𝑝
= arg max

𝜃∈Θ
𝑝(𝜃|𝑇𝑛). (2.6)

If a uniform prior over the model parameters is defined, the MAP estimate reduces
to the maximum likelihood (ML) estimate. It is given by

𝑝(𝑦|𝑥, 𝑇𝑛) ≈ 𝑝
(︀
𝑦
⃒⃒
𝑥; 𝜃̂

𝑚𝑙)︀
, where 𝜃̂

𝑚𝑙
= arg max

𝜃∈Θ
𝑝(𝑇𝑛|𝜃). (2.7)

In Equation 2.7, the posterior predictive distribution is approximated by the
predictive distribution of the model that gives the observed data the highest
probability.

The quality of an approximation 𝑝(𝑦|𝑥; 𝜃) can be assessed by the theoretical label
likelihood, which is defined as

ℒ(𝜃) = exp
(︀
E(𝑥,𝑦)∼𝑝(𝑦|𝑥;𝜃*)𝑝(𝑥) [log 𝑝(𝑦|𝑥; 𝜃)]

)︀
. (2.8)

The theoretical label likelihood is the exponentiated expected value of the per-
instance label likelihood in the logarithmic space. It can be estimated by the
geometric mean of 𝑝(𝑦|𝑥; 𝜃) taken over a set 𝑇𝑛 sampled i.i.d. from 𝑝(𝑥, 𝑦):

ℒ̂𝑛(𝜃) = 𝑛

⎯⎸⎸⎷ 𝑛∏︁
𝑖=1

𝑝(𝑦𝑖|𝑥𝑖; 𝜃). (2.9)

Equation 2.9 is referred to as the per-instance label likelihood. Analogically
to Wasserman (2004, Chapter 9.5), it can be shown that 𝜃̂

𝑚𝑎𝑝
maximizes asymp-

totically the theoretical label likelihood ℒ for any prior distributions 𝑝(𝜃). Thus,
Bayesian model averaging (see Equation 2.3) and the maximum a posteriori es-
timate (see Equation 2.7) are optimal as well for 𝑛 → ∞. In order to analyze
the quality of an estimate 𝜃̂, it can be useful to study also the distance between
the distributions 𝑝(𝑦|x; 𝜃̂) and 𝑝(𝑦|x; 𝜃*). The distance between two arbitrary
distributions 𝑝 and 𝑝′ can be measured by the Kullback-Leibler divergence. It is
defined as

KL[𝑝||𝑝′] =
∫︁

log 𝑝(𝑥)
𝑝′(𝑥)𝑝(𝑥)d𝑥.
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The Kullback-Leibler divergence is non-negative and vanishes if and only if 𝑝 = 𝑝′.
We now show that maximizing ℒ(𝜃) is equivalent to minimizing the Kullback-
Leibler divergence of 𝑝(𝑦|x; 𝜃) from 𝑝(𝑦|x; 𝜃*) in expectation over x. In Equa-
tion 2.10, we make use of the monotonicity of the logarithm and add con-
stants log 𝑝(𝑦|x; 𝜃*):

arg max
𝜃∈Θ
ℒ(𝜃) = arg max

𝜃∈Θ
exp

(︂∫︁∫︁
log 𝑝(𝑦|𝑥; 𝜃)𝑝(𝑦|𝑥; 𝜃*)𝑝(𝑥)d𝑦 d𝑥

)︂
= arg min

𝜃∈Θ

∫︁∫︁
log 𝑝(𝑦|𝑥; 𝜃*)

𝑝(𝑦|𝑥; 𝜃) 𝑝(𝑦|𝑥; 𝜃*)𝑝(𝑥)d𝑦 d𝑥 (2.10)

= arg min
𝜃∈Θ

E𝑥∼𝑝(𝑥) [KL [𝑝(𝑦|𝑥; 𝜃*)||𝑝(𝑦|𝑥; 𝜃)]] . (2.11)

Since 𝜃* ∈ Θ, it follows that the theoretical likelihood is maximized by 𝜃 if
and only if 𝑝(𝑦|𝑥; 𝜃) = 𝑝(𝑦|𝑥; 𝜃*). Consequently, the predictive distributions
of the presented estimators (see Equation 2.3, 2.6, and 2.7) converge indeed
to 𝑝(𝑦|𝑥; 𝜃*).

A predictive model is a function

𝑓𝜃(𝑥) = arg max
𝑦∈𝒴

𝑝(𝑦|𝑥; 𝜃),

which assigns a label 𝑦 ∈ 𝒴 to a given instance 𝑥 ∈ 𝒳 based on a model-based
predictive distribution 𝑝(𝑦|𝑥; 𝜃). The task of determining 𝑓𝜃 in the case of a
finite label space 𝒴 is referred to as a classification problem, whereas if 𝒴 = R
the learning task is called regression. In Section 2.1, we present logistic regression
for classification tasks and Bayesian linear regression for continuous label spaces
in Section 2.2. In order to learn a predictive model a set of labeled instances
is required, which represents the true probability 𝑝(𝑦|𝑥; 𝜃*) of the label 𝑦 for
an instance 𝑥. In the absence of labeled training data, new training instances
have to be labeled at a cost. If the labeling budget is limited, the choice of
instances which will be labeled is crucial to obtain a model with high predictive
performance. In Section 2.3, we discuss active learning strategies, which are used
to determine only a small subset of instances that have to be labeled.
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2.1 Learning a Classification Model

This section recapitulates the logistic regression model following Jordan (1995)
and Bishop (2006, Chapter 4.3). Therefore, we specify the assumptions that are
made about the data and state the prior distribution over the model parameters.
As a result, we present the optimization criterion of the maximum a posteriori
estimate of the model parameters; it can be solved efficiently by standard solvers.
Finally, we introduce a kernelized version of the logistic regression model.

Assumptions of the Logistic Regression Model

We now derive the optimization problem of logistic regression. In general, it
can be interpreted as finding the maximum a posteriori estimate in a classifi-
cation setting. Let x ∈ R𝑑 be a numerical Euclidean vector representation of
an instance 𝑥 and let 𝒴 be a finite space. Inserting Equation 2.4 and 2.5 into
Equation 2.6 leads to

𝜃̂
𝑚𝑎𝑝

= arg max
𝜃∈Θ

∏︀𝑛
𝑖=1 𝑝(𝑦𝑖|x𝑖; 𝜃)𝑝(x𝑖)∏︀𝑛

𝑖=1 𝑝(𝑦𝑖|x𝑖)𝑝(x𝑖)
𝑝(𝜃)

= arg max
𝜃∈Θ

𝑛∏︁
𝑖=1

𝑝(𝑦𝑖|x𝑖; 𝜃)𝑝(𝜃). (2.12)

In the following, we need to specify the distribution 𝑝(𝑦|x; 𝜃) and 𝑝(𝜃). Using
Bayes’ theorem, the model-based predictive distribution 𝑝(𝑦|x; 𝜃) can be reformu-
lated in terms of class-conditional distributions of the instances and a marginal
distribution of the labels:

𝑝 (𝑦|x; 𝜃) =
𝑝
(︀
x|𝑦; 𝜃′)︀ 𝑝 (︀𝑦|𝜃′′)︀∑︀

𝑦∈𝒴 𝑝
(︀
x|𝑦; 𝜃′)︀ 𝑝 (︀𝑦|𝜃′′)︀ . (2.13)

In Equation 2.13, we have subdivided the parameter vector 𝜃 into parameters 𝜃′

which specify the distribution 𝑝
(︀
x|𝑦; 𝜃′)︀ = 𝑝

(︀
x|𝜃′

𝑦

)︀
for instances belonging to

class 𝑦 and parameters 𝜃′′ which correspond to the label distribution 𝑝
(︀
𝑦|𝜃′′)︀.

Since 𝒴 is finite, the labels follow a categorical distribution, which is given by

𝑝
(︀
𝑦|𝜃′′)︀ =

⎛⎝∑︁
𝑦∈𝒴

𝜃′′
𝑦

⎞⎠−1 ∏︁
𝑦∈𝒴

(︀
𝜃′′

𝑦

)︀[[𝑦=𝑦]]
, (2.14)



12 Chapter 2 | Learning Predictive Models from Data

where [[·]] denotes the indicator function and 𝜃′′ =
(︀
𝜃′′

𝑦

)︀
𝑦∈𝒴 with 𝜃′′

𝑦 ≥ 0 is a
vector of parameters that represents the probability of observing the class 𝑦 ∈ 𝒴.
The former term of Equation 2.14 ensures that the distribution is normalized.

Instances belonging to a class 𝑦 ∈ 𝒴 are assumed to be drawn from an exponential
family. An exponential family (see, e.g., Bishop, 2006, Chapter 2.4) is a set of
parameterized distributions which can be expressed in the form

𝑝
(︀
x|𝜃′)︀ = ℎ(x) exp

(︀
𝜑(x)T𝜃′ − ln 𝑔(𝜃′)

)︀
. (2.15)

A certain class of distributions is obtained by instantiating the feature map-
ping 𝜑 : R𝑑 → R𝑒 and the non-negative base measure ℎ : R𝑑 → R, where 𝑒 is
the number of parameters. The feature mapping 𝜑(x) projects the input vec-
tor x into the parameter space and provides all information needed to derive the
probability of x; it is also known as sufficient statistic in the statistics literature.
Finally, the partition function 𝑔(𝜃′)−1 must be chosen in such a way as to ensure
that the probability distribution is normalized.

Distributions that belong to an exponential family are, for example, the multi-
nomial, Poisson, and, in particular, the Gaussian distribution. A random vec-
tor x ∈ R𝑑 is said to be Gaussian if it has the density function

𝒩 (x|𝜇,Σ) = (2𝜋)−𝑑/2|Σ|− 1
2 exp

(︂
−1

2(x− 𝜇)TΣ−1(x− 𝜇)
)︂
, (2.16)

with mean vector 𝜇 ∈ R𝑑 and positive semidefinite covariance matrix Σ ∈ R𝑑×𝑑.
Equation 2.16 can be expressed in the form of an exponential family (see Equa-
tion 2.15) using the quantities

𝜃′ =
(︃

Σ−1𝜇

− 1
2 vec

(︀
Σ−1)︀

)︃
, 𝜑(x) =

(︃
x

x⊗ x

)︃
,

ℎ(x) = (2𝜋)−𝑑/2, 𝑔(𝜂) =
√︁
|Σ| exp

(︀
𝜇TΣ−1𝜇

)︀
, (2.17)

where u⊗v denotes the Kronecker product multiplying each component of u by
each component of v, vec(U) stacks the column vectors of a matrix U below one
another, and |U| is the determinant of a square matrix U.

Having established and motivated the exponential family, we can now derive
the model-based predictive distribution for logistic regression. Let all class-
conditional distributions 𝑝

(︀
x|𝑦; 𝜃′)︀ be a member of some exponential family.
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Then, by using Equation 2.14 and 2.15, the model-based predictive distribu-
tion 𝑝(𝑦|x; 𝜃) given by Equation 2.13 can be expressed as

ℎ(x) exp
(︀
𝜑(x)T𝜃′

𝑦 − ln 𝑔(𝜃′
𝑦)
)︀ (︁∑︀

𝑦∈𝒴 𝜃′′
𝑦

)︁∏︀
𝑦∈𝒴

(︀
𝜃′′

𝑦

)︀[[𝑦=𝑦]]

ℎ(x)
∑︀

𝑦∈𝒴 exp
(︀
𝜑(x)T𝜃′

𝑦 − ln 𝑔(𝜃′
𝑦)
)︀ (︁∑︀

𝑦∈𝒴 𝜃′′
𝑦

)︁∏︀
𝑦∈𝒴

(︀
𝜃′′

𝑦

)︀[[𝑦=𝑦]]

=
exp

(︀
𝜑(x)T𝜃′

𝑦 + 𝑏𝑦

)︀∑︀
𝑦∈𝒴 exp

(︀
𝜑(x)T𝜃′

𝑦 + 𝑏𝑦

)︀ , (2.18)

where we have defined 𝑏𝑦 = ln 𝜃′′
𝑦 − ln 𝑔(𝜃′

𝑦). Notice that, the parameter vec-
tor 𝜃 = (𝜃𝑦)𝑦∈𝒴 comprises all class-wise parameters 𝜃𝑦 = ((𝜃′

𝑦)T, 𝑏𝑦)T. Equa-
tion 2.18 is known as a generalized linear model (McCullagh & Nelder, 1989).

The set of points x, for which it holds that 𝑝(𝑦|x; 𝜃) = 𝑝(𝑦|x; 𝜃), or equivalently,

0 = log 𝑝(𝑦|x; 𝜃)
𝑝(𝑦|x; 𝜃)

= 𝜑(x)T(𝜃𝑦 − 𝜃𝑦) + (𝑏𝑦 − 𝑏𝑦) (2.19)

is called decision boundary. The decision boundary between two arbitrary classes
𝑦, 𝑦 ∈ 𝒴 under a generalized linear model (see Equation 2.19) is given by a linear
combination of 𝜑(x) and the model parameter 𝜃. In particular, it can be shown
that the decision boundary is affine in 𝜑(x) if and only if the class-conditional
distribution 𝑝(x|𝑦; 𝜃) and 𝑝(x|𝑦; 𝜃) belong to the same exponential family (Baner-
jee, 2007). An interesting special case occurs when the class-conditional distri-
butions 𝑝(x|𝑦; 𝜃) are assumed to be Gaussian with identical covariance matrices
for all classes 𝑦 ∈ 𝒴. Then, the identity mapping 𝜑(x) = x is sufficient to
characterize the predictive distribution 𝑝(𝑦|x; 𝜃). The corresponding predictive
model 𝑓𝜃(x) is referred to as a linear model (see, e.g., Bishop, 2006, Chap-
ter 4). In the following, we omit 𝑏𝑦 since it can be encoded by augmenting the
statistic 𝜑(x) by one.

If the prior distribution 𝑝(𝜃) is assumed to be Gaussian 𝜃 ∼ 𝒩 (𝜃|0, Σ̄) with zero
mean and covariance matrix Σ̄, the MAP estimate is given by Proposition 2.1.
Equation 2.20 follows by inserting Equation 2.18 and the Gaussian prior into
Equation 2.13 and the monotonicity of the logarithm. A detailed proof is given
by, e.g., Karsmakers et al. (2007).
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Proposition 2.1 (Maximum a Posteriori for Logistic Regression). If 𝑝(x|𝑦; 𝜃) is
an exponential family, the maximum a posteriori estimate with a Gaussian prior
is given by

𝜃̂
𝑚𝑎𝑝

= arg max
𝜃∈Θ

𝑝(𝜃|𝑇𝑛)

= arg min
𝜃∈Θ

𝑛∑︁
𝑖=1

ℓ𝑙𝑜𝑔 (𝜃, 𝜑(x𝑖), 𝑦𝑖) + 1
2𝜃TΣ̄−1

𝜃, (2.20)

where 𝜃 = (𝜃𝑦)𝑦∈𝒴 denotes the vector of all parameters and the logistic loss

ℓ𝑙𝑜𝑔(𝜃, 𝜑(x), 𝑦) = log
∑︁
𝑦′∈𝒴

exp
(︀
𝜑(x)T𝜃𝑦′

)︀
− 𝜑(x)T𝜃𝑦

measures the disagreement between the prediction and the true label.

Equation 2.20 is also known as penalized log-likelihood estimation. It can been
seen as a minimization of a regularized empirical risk. From this perspective,
the former term constitutes a sum over an instance-specific loss function ℓ𝑙𝑜𝑔

whereas the latter penalizes the model’s complexity. An isotropic covariance
matrix Σ̄ = 𝜎2I with 𝜎 > 0 corresponds to a standard L2-norm regularization of
the decision function 𝑓𝜃 (Tikhonov & Arsenin, 1977).

The optimization problem given by Equation 2.20 is convex and continuously
differentiable for all fixed 𝑦 ∈ 𝒴 and can thus be minimized, for example, by
stochastic gradient descent (also known as Robbins-Monro algorithm; see, e.g.,
Spall, 2003, Chapter 4). The partial gradient with respect to 𝜃𝑦 ∈ R𝑒 is given by

− 𝜕

𝜕𝜃𝑦
log 𝑝(𝜃|𝑇𝑛) =

𝑛∑︁
𝑖=1

𝜕

𝜕𝜃𝑦
ℓ𝑙𝑜𝑔 (𝜃, 𝜑(x𝑖), 𝑦𝑖) +

∑︁
𝑦∈𝒴

Σ̄−1
𝑦,𝑦𝜃𝑦, (2.21)

where the gradient of the logistic loss is given by

𝜕

𝜕𝜃𝑦
ℓ𝑙𝑜𝑔 (𝜃, 𝜑(x), 𝑦′) =

(︃
exp(𝜑(x)T𝜃𝑦)∑︀

𝑦∈𝒴 exp(𝜑(x)T𝜃𝑦) − [[𝑦 = 𝑦′]]
)︃
𝜑(x)

and the inverse covariance matrix Σ̄−1 = (Σ̄−1
𝑦,𝑦)𝑦,𝑦∈𝒴 is given by a block matrix

of pairwise inverse covariances Σ̄−1
𝑦,𝑦.
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The MAP estimate depends on the covariance matrix Σ̄ of the Gaussian prior,
which was assumed to be fixed during the derivation in this section. In practice,
the covariance matrix Σ̄ = 𝜎2I is often assumed to be isotropic; the parame-
ter 𝜎2 can be estimated by cross validation to perform well on so far unseen test
instances (Weiss & Kulikowski, 1990).

Kernel Functions and Implicit Feature Mappings

The feature mapping 𝜑 maps instances into a potentially high-dimensional space,
which in turn affects the number of parameters 𝑒 which have to be estimated
when solving the optimization problem given by Proposition 2.1. Depending
on the assumption about 𝑝(x|𝑦; 𝜃), the parameter space may be large and solv-
ing the optimization problem can become inefficient. However, the representer
theorem (Kimeldorf & Wahba, 1971; Schölkopf et al., 2001) states, that the max-
imizer of Equation 2.20 can be equivalently written as a linear combination over
the mapped training instances, that is, there exists 𝛼𝑖,𝑦 ∈ R such that

𝜑(x)T𝜃̂
𝑚𝑎𝑝

𝑦 =
𝑛∑︁

𝑖=1
𝛼𝑖,𝑦𝜑(x𝑖)T𝜑(x). (2.22)

Substituting Equation 2.22 into Equation 2.20 and 2.21, respectively, leads to the
dual formulation of the multi-class logistic regression. This optimization problem
depends on the parameters 𝛼𝑖,𝑦 rather than 𝜃𝑦; the number of optimization
parameters per class is equal to the number of observed instances 𝑛, which can
be much smaller than the number of dimensions 𝑒 of the mapped instances 𝜑(x).

The dual formulation depends on the mapped data only through inner products.
The inner product can often be computed quite efficiently using kernel functions.
In general, a kernel is referred to a function 𝑘 : R𝑑×R𝑑 → R that constitutes the
inner product 𝑘(x,x′) = 𝜑(x)T𝜑(x′) in some Hilbert space induced by a feature
mapping 𝜑. It can be seen as a similarity measure between two instances x and x′.
Evaluating a kernel function does not necessarily require an explicit mapping of
the instances. For example, a Gaussian distribution assumption of 𝑝(x|𝑦; 𝜃)
yields the feature mapping 𝜑(x) = (x,x⊗x, 1)T (see Equation 2.17). An explicit
computation of the inner product 𝜑(x)T𝜑(x′) requires 𝒪(𝑑2) multiplication and
addition operations. However, the inner product is equivalent to the polynomial
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kernel function

𝑘𝑝𝑜𝑙𝑦(x,x′) =
(︀
xTx′ + 1

)︀𝑎 (2.23)

with degree 𝑎 = 2 (see, e.g., Schölkopf & Smola, 2002, Chapter 2.1). It can be
computed in time 𝒪(𝑑).

Although it is useful to know which transformation 𝜑 has to be applied to an
instance x to implement a specific distribution assumption 𝑝(x|𝑦; 𝜃), the true
distribution class of x is often unknown in practice; often implicit mappings are
used, which are only represented by a kernel function. This raises the question
how kernel functions can be identified. Using the concept of reproducing kernel
Hilbert spaces or Mercer’s theorem, it can be shown, that for any positive semi-
definite function 𝑘 : R𝑑×R𝑑 → R a mapping 𝜑 can be constructed such that the
inner product between two mapped instances is equal to 𝑘 (see, e.g., Schölkopf
& Smola, 2002, Chapter 2.2.2 and 2.2.4). This justifies to use flexible classes
of distributions, that are only implicitly represented by an inner product 𝑘; the
corresponding statistic 𝜑 can be high- or even infinite-dimensional. An example
of a kernel function for which an explicit form of 𝜑 is unknown, is the radial basis
function (RBF) kernel. It is given by

𝑘𝑟𝑏𝑓 (x,x′) = exp
(︂
− 1

2𝜍2 ‖x− x′‖2
)︂
, (2.24)

with bandwidth parameter 𝜍 > 0. The concept of kernel function can be gener-
alized to abstract instances 𝑥 ∈ 𝒳 such as graphs, sequences, or texts. A more
detailed discussion is given by Schölkopf & Smola (2002).
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2.2 Learning a Regression Model

In the previous section, we state the MAP estimate of 𝜃* under the logistic model
assumption for finite label spaces 𝒴. This section presents Bayesian linear regres-
sion following Rasmussen & Williams (2006) for the case that 𝒴 is continuous.

Assumptions of the Bayesian Linear Regression Model

Let assume that the label 𝑦 of a given instance x is generated by a linear
model 𝑓𝜃*(x) = xT𝜃* and perturbed by additive Gaussian noise with zero mean
and fixed but unknown variance 𝜎2:

𝑓𝜃*(x)− 𝑦 ∼ 𝒩 (0, 𝜎2). (2.25)

The true model parameters 𝜃* are unknown but assumed to be drawn from a
normal distribution 𝑝(𝜃) = 𝒩 (𝜃|0,Σ). We now derive the predictive distribu-
tion 𝑝(𝑦|x, 𝑇𝑛) (see Equation 2.3) under these assumptions. Following Equa-
tion 2.25, the model-based predictive distribution under the perturbed Gaussian
model is given by

𝑝(𝑦|x; 𝜃) = 𝒩 (𝑦|𝑓𝜃(x), 𝜎2).

Let X = (x1, . . . ,x𝑛) ∈ R𝑑×𝑛 define the matrix of instances and (𝑦, . . . , 𝑦𝑛)T ∈
𝒴𝑛 the vector of the corresponding labels. Then, the label likelihood can be
expressed by a multivariate Gaussian distribution (see Equation 2.16) by suitable
algebraic manipulation:

𝑛∏︁
𝑖=1

𝑝(𝑦𝑖|x𝑖; 𝜃) =
𝑛∏︁

𝑖=1
𝒩 (𝑦𝑖|𝑓𝜃(x𝑖), 𝜎2)

=
𝑛∏︁

𝑖=1

1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2

(︀
𝑦𝑖 − xT

𝑖 𝜃
)︀2
)︂

=
(︂

1√
2𝜋𝜎

)︂𝑛

exp
(︃
− 1

2𝜎2

𝑛∑︁
𝑖=1

(︀
𝑦𝑖 − xT

𝑖 𝜃
)︀2
)︃

= (2𝜋)−𝑛/2 |𝜎2I|−1/2 exp
(︂
−1

2(y−XT𝜃)T(𝜎2I)−1(y−XT𝜃)
)︂

= 𝒩 (y|XT𝜃, 𝜎2I), (2.26)
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where I ∈ R𝑑×𝑑 denotes the identity matrix of size 𝑑. Since 𝜃 is assumed to be
drawn from a Gaussian distribution, the posterior is also normally distributed.
This yields a closed-form solution of the MAP estimate. The following proposi-
tions state the MAP estimate of 𝜃* and the posterior predictive distribution.

Proposition 2.2 (Maximum a Posteriori for Bayesian Linear Regression). If
the likelihood 𝑝(𝑇𝑛|𝜃) = 𝒩 (y|XT𝜃, 𝜎2I) and the prior 𝑝(𝜃) = 𝒩 (𝜃|0,Σ) are
Gaussian, the posterior distribution 𝑝(𝜃|𝑇𝑛) = 𝒩 (𝜃|𝜃̄, Σ̄) is also Gaussian. The
maximum a posteriori estimate of 𝜃* is given by

𝜃̂
𝑚𝑎𝑝

= arg max
𝜃∈Θ

𝑝(𝜃|𝑇𝑛)

= 𝜃̄,

where 𝜃̄ = 𝜎−2Σ̄Xy and Σ̄ =
(︀
𝜎−2XXT + Σ−1)︀−1.

The predictive distribution reflects the remaining uncertainty about 𝑦 caused by
the label noise 𝜎2 and the uncertainty as a result of estimating the model pa-
rameters from a finite sample X. It is given by Proposition 2.3.

Proposition 2.3 (Posterior Predictive Distribution for Bayesian Linear Regres-
sion). If the posterior 𝑝(𝜃|X,y) = 𝒩 (𝜃|𝜃̄, Σ̄) is Gaussian, the predictive distri-
bution for a new x ∼ 𝑝(x) is given by

𝑝(𝑦|x, 𝑇𝑛) = 𝒩
(︀
𝑦|xT𝜃̄, 𝜏2

x
)︀
, (2.27)

where 𝜏2
x = 𝜎2 + xTΣ̄x.

Proposition 2.2 and 2.3 can be proven by making use of the Gaussian identi-
ties (see, e.g., O’Hagan, 1978).

Since the posterior distribution (see Proposition 2.3) is symmetric and unimodal,
the mode and the mean coincide. Therefore, the Bayes optimal solution and the
maximum a posteriori estimate lead to the same prediction 𝑓𝜃(x). However,
the predictive distribution provides us with an estimate 𝜏2

x of the variance at
instance x.

In contrast to Section 2.1, the maximum a posteriori estimate is given by a closed-
form solution and can be calculated efficiently. However, hyperparameters, such
as the degree of label noise 𝜎2, have to be determined when the model is applied in
practice. Therefore, many selection criteria have been proposed in the statistics
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literature, such as AIC (Akaike, 1974) and BIC (Schwarz, 1978); they assess both
the likelihood and the complexity of the model. Alternatively, hyperparameters
can be tuned by cross-validation (Weiss & Kulikowski, 1990) or by maximizing
the marginal likelihood

𝑝(y|X) = 𝒩 (y|0, 𝜎2I + XTΣX)

as described, for example, by Mardia & Marshall (1984). In the context of
Gaussian processes the gradient of the marginal likelihood can be analytically
derived (Rasmussen & Williams, 2006, Chapter 5.4).

Kernel Functions for Regression

Non-linear relationships are modeled in analogy to Section 2.1: The predictive
distribution given by Equation 2.27 is reformulated, such that it depends on the
data only through inner products. Replacing the inner product by any arbitrary
kernel maps the data points implicitly into another Hilbert space. In the context
of regression, the kernel function is referred to as covariance function.

Let 𝑘 : 𝒳×𝒳 → R be a covariance function. A kernelized version of the predictive
distribution is given by

𝑝(𝑦|x, 𝑇𝑛) = 𝒩
(︁
𝑦
⃒⃒
kT

x
(︀
K + 𝜎2I

)︀−1 y, 𝑘(x,x)− kT
x
(︀
K + 𝜎2I

)︀−1 k𝑥

)︁
,

where K = (𝑘(x𝑖,x𝑗))𝑖,𝑗=1,...,𝑛 denotes the kernel matrix of the training data
and kx = (𝑘(x,x𝑖))𝑖=1,...,𝑛 the vector of covariances between an instance x and
the training instances (see, e.g., Rasmussen & Williams, 2006, Chapter 2.2).
The linear covariance function

𝑘(x𝑖,x𝑗) = xT
𝑖 Σx𝑗

corresponds to the result of Proposition 2.3.

For regression a squared exponential covariance, which is closely related to the
RBF kernel in a classification setting, underestimates the variance of the pre-
dictive distribution (Stein, 1999, Chapter 2.7). Instead, a popular choice is the
more general class of Matérn kernel functions

𝑘𝑚𝑎𝑡(x,x′) = 21−𝜈

Γ(𝜈)

(︂√
2𝜈
𝑙
‖x− x′‖

)︂𝜈

𝐾𝜈

(︂√
2𝜈
𝑙
‖x− x′‖

)︂
, (2.28)
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where 𝐾𝜈 is the modified Bessel function of the second kind (Abramowitz &
Stegun, 1964, Chapter 9.6) of degree 𝜈 and Γ is the gamma function. The pa-
rameter 𝜈 > 0 controls the degree of smoothness and 𝑙 > 0 is the characteristic
length-scale. The Matérn kernel coincides with the squared exponential kernel
as the degrees of freedom approach infinity.

2.3 Active Learning

In the previous sections, we have discussed how to estimate the conditional distri-
bution 𝑝(𝑦|x) for classification and regression. The conditional distribution 𝑝(𝑦|x)
was approximated by a model-based distribution 𝑝(𝑦|x; 𝜃); the optimal model pa-
rameters 𝜃* are estimated from a set of labeled instances. In many application
scenarios that require learning a predictive model, unlabeled instances x are read-
ily available whereas acquiring labels 𝑦 that are distributed according to the true
conditional distribution 𝑝(𝑦|x; 𝜃*) is a costly process. Throughout this thesis, we
focus on pool-based settings in which a large pool 𝐷𝑚 of 𝑚 unlabeled instances
is available. The pool is assumed to be drawn i.i.d. according to the distribu-
tion 𝑝(x). Instances from this pool can be sampled and then labeled according
to 𝑝(𝑦|x; 𝜃*) by an oracle at a cost. If the pool 𝐷𝑚 is too large to label the com-
plete set or an exhausted labeling does not justify the costs, a limited labeling
budget 𝑛 ≪ 𝑚 is typically defined. An obvious approach is to label 𝑛 instances
drawn uniformly from the pool 𝐷𝑚 and use these instances as training set 𝑇𝑛

to learn the predictive model; this strategy is referred to as passive learning.
However, instances need not necessarily be drawn uniformly from the pool.

The research field of active learning in the machine learning literature (MacKay,
1992; Cohn, 1996) and optimal experimental design in the statistics literature (Fe-
dorov, 1972) address the problem of selecting a subset of instances from the
pool 𝐷𝑚 that yields a more accurate model than passive learning. The opti-
mal strategy would be to choose the subset which yields the model with highest
predictive performance. However, to calculate this strategy the unknown test
distribution 𝑝(x, 𝑦; 𝜃*) = 𝑝(𝑦|x; 𝜃*)𝑝(x) needs to be known. In a pool-based
setting, the empirical distribution

𝑝(x) = 1
𝑚

𝑚∑︁
𝑖=1

[[x = x𝑖]] (2.29)

defined over the pool 𝐷𝑚 provides an estimate of the distribution 𝑝(x). Es-



2.3 Active Learning 21

Algorithm 1: Active Learning
input Pool 𝐷𝑚, labeling budget 𝑛.

1: Initialize estimate of model parameters 𝜃̂0
2: for 𝑖 = 0, . . . , 𝑛− 1 do
3: Draw x𝑖 ∼ 𝑞𝜃̂𝑖

(x) from 𝐷𝑚 based on the estimate 𝜃̂𝑖.
4: Query label 𝑦𝑖 ∼ 𝑝(𝑦|x𝑖) from oracle.
5: Update estimate 𝜃̂𝑖+1.
6: end for

output Estimate of the model parameter 𝜃̂𝑛.

timating the conditional distribution 𝑝(𝑦|x; 𝜃*) is difficult, since it is precisely
the quantity we want to estimate by learning a predictive model. To solve this
“chicken and egg” problem, active learning algorithms typically alternate between
selecting instances to label and estimating the model parameters. The selection
strategy can be defined by an instrumental distribution 𝑞𝜃(x) that describes the
probability for choosing the next instance x to label based on a model 𝜃. Algo-
rithm 1 summarizes the typical protocol: Given an initial estimate 𝜃̂0 of 𝜃*, an
instance can be drawn from 𝑞𝜃̂0

(x). After the label 𝑦 is queried from an oracle,
a learning algorithm is applied to the enlarged set of labeled instances to obtain
a refined estimate 𝜃̂𝑖+1. This procedure is repeated until the labeling budget 𝑛
is exhausted.

In the following, we give a brief overview of popular active learning algorithms.
They can be differentiated as to whether the sampling strategy 𝑞𝜃(x) is deter-
ministic or probabilistic. In Section 2.3.1, we analyze active learning algorithms
which choose the next instance to label using a deterministic criterion. In con-
trast, Section 2.3.2 presents sampling distributions minimizing some trade-off
between the variance and the bias of the parameters estimate.

2.3.1 Active Learning with a Deterministic Sampling
Strategy

The choice of the selection strategy 𝑞𝜃(x) in Algorithm 1 (Line 3), which is
applied to query the next instance to label, is crucial for the success of active
over passive learning. Let 𝜃̂𝑖 be the estimate of the model parameters 𝜃* after
having seen 𝑖 instance-label pairs and let 𝜃̂

x,𝑦

𝑖 be the estimate which is based on
an additional instance x with label 𝑦. Schohn & Cohn (2000), Roy & McCallum
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(2001), and Chapelle (2005) propose to query the label 𝑦 of that instance x̄ such
that the model 𝑓

𝜃̂
x̄,𝑦
𝑖

is most accurate in expectation over the unknown label 𝑦,
that is,

x̄ = arg min
ẋ∈𝐷

∑︁
𝑦̇∈𝒴

E(x,𝑦)∼𝑝(x,𝑦;𝜃*)

[︁
𝑦 ̸= 𝑓

𝜃̂
ẋ,𝑦̇
𝑖

(x)
]︁
𝑝(𝑦̇|ẋ; 𝜃*). (2.30)

In order to implement the query strategy, the authors approximate the distri-
bution 𝑝(𝑦|x; 𝜃*) by the estimate 𝑝(𝑦|x; 𝜃̂𝑖) provided by the current model; the
marginal distribution 𝑝(x) is estimated by 𝑝(x) given by Equation 2.29 in a pool-
based setting. Then, Equation 2.30 can be evaluated by learning a model with
parameters 𝜃ẋ,𝑦̇

𝑖 for each instance ẋ ∈ 𝐷 and each feasible label 𝑦̇ ∈ 𝒴. Having
labeled x̄ with 𝑦, the estimate 𝜃̂𝑖 is replaced by the new estimate 𝜃̂

x̄,𝑦

𝑖 , and so on.
If the pool or the label space is large, this approach becomes computationally
intractable.

An alternative strategy is to query the label of the instance x̄, for which the
prediction of the current model 𝑓𝜃̂𝑖

(x̄) is least likely to be correct, that is

x̄ = arg min
x∈𝐷

E𝑦∼𝑝(𝑦|x;𝜃*)

[︁
𝑦 = 𝑓𝜃̂𝑖

(x)
]︁
. (2.31)

Approximating 𝑝(𝑦|x; 𝜃*) by the current model leads to a simple sampling heuris-
tic that selects instances for which the prediction of the model is least confident.
This strategy is known as uncertainty sampling. In a classification scenario, the
instance with lowest confidence is given by

x̄ = arg min
x∈𝐷

max
𝑦∈𝒴

𝑝
(︀
𝑦
⃒⃒
x; 𝜃̂𝑖

)︀
.

For regression problems under the assumption of a Gaussian predictive distribu-
tion 𝑝(𝑦|x; 𝜃) = 𝒩 (𝑦|𝑓𝜃(x), 𝜏2

x) with predictive variance 𝜏2
x for instance x (see

Section 2.2), the most informative instance in the sense of Equation 2.31 is given
by the maximal label variance of the predictive distribution

x̄ = arg max
x∈𝐷

𝜏2
x . (2.32)
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Uncertainty sampling is studied for several learning algorithms as SVMs (Tong
& Koller, 2002), logistic regression (Lewis & Gale, 1994), and Gaussian pro-
cesses (Kapoor et al., 2007). Further uncertainty measures are also examined
in the literature: Dagan & Engelson (1995) use the entropy and Scheffer et al.
(2001) consider the difference between most and second most likely label; they
coincide with Equation 2.31 in the case of a binary classification task. Query by
committee (Seung et al., 1992) is a related approach, where the label uncertainty
of an instance is assessed by measuring the disagreement among a committee
of models rather than using the predictive distribution of a single model. The
committee of models can either be sampled from the posterior distribution (Mc-
Callum & Nigam, 1998) or obtained by boosting and bagging techniques (Abe &
Mamitsuka, 1998).

In general, there is a trade-off between selecting instances to refine the current
model and exploring the whole support of 𝑝(𝑥). Uncertainty sampling algorithms
focus only on instances whose labels are most uncertain and thus tend to discover
only a small region of the instance space. Consequently, the resulting model may
approximate the conditional distribution 𝑝(𝑦|x; 𝜃*) poorly for some regions. If
such a region has high density 𝑝(x), this is known as missed-cluster effect (Schütze
et al., 2006). To tackle this problem, several dual strategies were proposed in
the literature (Osugi et al., 2005; Pandey et al., 2005; Donmez et al., 2007).
Basically, they decide in each iteration between passive and uncertainty sampling
following some heuristic. As another approach, Nguyen & Smeulders (2004) and
Dasgupta & Hsu (2008) propose to first cluster the instance space 𝑝(x) and
then use the cluster assignments to ensure that informative instances from all
regions are be labeled. Finally, active learning strategies have been proposed for a
broad range of other learning tasks such as information extraction (Scheffer et al.,
2001), ranking (Long et al., 2010), and time-series analysis (Singh et al., 2005).
Convergence bounds for active learning with deterministic sampling strategy are
derived by, e.g., Dasgupta (2006), Castro & Nowak (2007), and Hanneke (2011).
A detailed overview is given by Settles (2009).

In this section, we have addressed strategies to decide which instance has to be
labeled. The presented approaches focus on instances whose label is least likely
to be predicted correctly. If examples are selected deterministically in order to
minimize the labeling effort, the resulting sample is irreversible biased according
to the test distribution. Hence, any estimate of the model’s performance on such
an actively drawn sample is pessimistically biased (see, e.g., Schütze et al., 2006).
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2.3.2 Active Learning with an Instrumental Distribution

In the previous section, we considered deterministic sampling strategies in order
to determine most informative instance-label pairs. An alternative procedure is
to draw instances to label randomly from an instrumental distribution 𝑞(x) rather
than from the input distribution 𝑝(x). Situations in which the training instances
are governed by a distribution that differs from the test distribution 𝑝(x) are
known as learning under covariate shift. Intuitively, the instrumental distribu-
tion 𝑞(x) should be chosen such that the resulting estimate 𝑝(𝑦|x; 𝜃̂) is as close as
possible to the conditional distribution 𝑝(𝑦|x; 𝜃*) for a fixed labeling budget 𝑛.
The best-performing model maximizes the theoretical label likelihood (see Equa-
tion 2.8). We have seen (see Equation 2.11), that maximizing the theoretical
likelihood is equivalent to minimizing the expected Kullback-Leibler divergence:

𝜃* = arg min
𝜃∈Θ

exp
(︀
Ex∼𝑝(x) [KL [𝑝(𝑦|x; 𝜃*)||𝑝(𝑦|x; 𝜃)]]

)︀
. (2.33)

Since KL[𝑝||𝑝′] is zero if and only if 𝑝 = 𝑝′, the minimum of optimization problem
given by Equation 2.33 is attained independently of the marginal distribution of 𝑥
if the model space is correctly specified, that is, 𝜃* ∈ Θ. Thus, 𝜃̂

𝑚𝑙
maximizes

asymptotically the theoretical label likelihood even if the instances are drawn
from 𝑞(x) ̸= 𝑝(x). In practice, however, it cannot be ensured that the model
space contains the true model 𝜃*, because the model might be misspecified. In
this case, Equation 2.33 is no longer independent of the marginal distribution 𝑝(x)
and thus the maximum likelihood estimate does not necessarily converge to the
optimal parameters with respect to Equation 2.8.

In order to estimate 𝑝(𝑦|x; 𝜃*) accurately by a misspecified model under covariate
shift, we can make use of the weighted maximum likelihood (WML) estimate

𝜃̂
𝑤𝑚𝑙

= arg max
𝜃∈Θ

𝑛∑︁
𝑖=1

𝑤(x𝑖) log 𝑝(𝑦𝑖|x𝑖; 𝜃). (2.34)

The non-negative weighting function 𝑤 : R𝑑 → R+ is fixed and quantifies the
relative importance of an instance x. Shimodaira (2000) and Wiens (2000) show
that the weighted maximum likelihood 𝜃̂

𝑤𝑚𝑙
converges to the maximal theoretical

label likelihood if the weighting function 𝑤𝑢(x) = 𝑝(x)
𝑞(x) is chosen to be the ratio

of the input and the instrumental distribution. Under this choice, Wiens (2000)
and Kanamori & Shimodaira (2003) derive an instrumental distribution 𝑞*(x)
that minimizes the variance of 𝜃̂

𝑤𝑚𝑙
for regression.
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Although the weights 𝑤𝑢(x) are asymptotically optimal, non-homogeneous im-
portance weights increase the variance of 𝜃̂

𝑤𝑚𝑙
for finite training set sizes. There-

fore, Bach (2006) studies a smoothed weighting function

𝑤(x) =
(︂
𝑝(x)
𝑞(x)

)︂𝜂

,

with trade-off parameter 𝜂 ∈ [0, 1]. He derives a two-step method to estimate
the parameters of a generalized linear model. In each iteration, the instrumental
distribution 𝑞*(x) that maximizes the expected performance gain is computed.
After an instance is drawn from 𝑞*(x) and labeled, 𝜂 is determined by a grid
search such that the predictive performance is maximal.

A closely related task to active learning with an instrumental distribution is
learning from streaming data, where the learning algorithm observes in each
step an unlabeled instance and has to decide whether to query the label or not.
Beygelzimer et al. (2009) use importance weighting to correct the sampling bias
and propose a rejection sampling distribution, which controls the parameters’
variance. The presented theoretical optimal distributions again involve unknown
quantities depending on the true conditional 𝑝(𝑦|x; 𝜃*). To determine if the label
of the (𝑖 + 1)-th incoming example have to be queried, the authors propose to
approximate 𝑝(𝑦|x; 𝜃*) ≈ 𝑝(𝑦|x; 𝜃̂𝑖) by the model 𝜃̂𝑖 learned so far.

In this chapter, we have seen how a predictive model can be learned from data.
Before a predictive model can be shipped and deployed, an estimate of the pre-
dictive performance is required. In the next chapter, we formalize the concept
of predictive performance and show what conclusion about this quantity can be
drawn from an estimate, which is based on a finite set of instances.





Chapter 3

Evaluation of Predictive
Models

This thesis addresses the problem of evaluating a given predictive model as ac-
curately as possible in situations in which labeled instances, which reflect the
test distribution, are unavailable. Before we investigate the case in which labels
have to be queried, this chapter introduces the fundamental concepts of model
evaluation and comparison based on a given sample.

Learning and evaluating can both be seen as instances of statistical inference.
In principle there are two perspectives on statistical inference. From a Bayesian
point of view, one considers one fixed data set; the underlying parameters are
unknown and the subjective beliefs about them are described probabilistically.
In the last chapter, we have followed this perspective in the context of learning
predictive models, since it is considered as natural, when combining prior knowl-
edge of domain experts and observations; the goal was to infer the best model
using the available data. In this chapter, we turn to the frequentistic view. Fre-
quentists assume that the parameters are fixed and consider the observed data
set, which is drawn from some underlying distribution, as random variable. This
view might be more appropriate when evaluating a model, since the analysis is
unconditioned on the current data set and thus corresponds to multiple settings
in which a model is used; the uncertainty about the performance statements is
derived from the fact that we have observed only one data set. Note that the
philosophical differences between the Bayesian and frequentist paradigm have no
impact on the proposed evaluation methods; they can be applied to any statistical
model.

In contrast to Chapter 2, we make no model assumptions about the data gen-
erating process in this context. Therefore, we denote the true distribution of
the observed data by 𝑝(𝑥, 𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥) instead of 𝑝(𝑦|𝑥; 𝜃*)𝑝(𝑥); the no-
tation 𝑝(𝑦|𝑥; 𝜃) refers to the model-based predictive distribution induced by a
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certain predictive model 𝜃. The disagreement between a prediction 𝑓𝜃(𝑥) and
a true label 𝑦 for an instance 𝑥 is measured by a problem-specific loss func-
tion ℓ : 𝒴 × 𝒴 → R. For classification, the zero-one loss ℓ0/1(𝑦, 𝑦) = [[𝑦 ̸= 𝑦]] is
a widely-used choice; it equals one if prediction and true label differ, and is zero
otherwise. For regression, the quadratic loss ℓ2(𝑦, 𝑦) = (𝑦 − 𝑦)2 is a standard
choice. The risk functional constitutes a common theoretical quantity to mea-
sure predictive performance of a predictive model 𝑓𝜃 : 𝒳 → 𝒴 with respect to
the test distribution 𝑝(𝑥, 𝑦). It is defined as the expectation of the loss function
taken over 𝑝(𝑥, 𝑦):

𝑅[𝑓𝜃] = E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [ℓ(𝑓𝜃(𝑥), 𝑦)]

=
∫︁∫︁

ℓ(𝑓𝜃(𝑥), 𝑦)𝑝(𝑥, 𝑦)d𝑦 d𝑥. (3.1)

In a classification setting, the integral over 𝒴 reduces to a finite sum. If the
context is clear, we refer to 𝑅[𝑓𝜃] simply by 𝑅.

Since the true risk depends on the unknown test distribution 𝑝(𝑥, 𝑦), the perfor-
mance of a predictive model 𝑓𝜃 is typically estimated from a sample of labeled
instances. Common estimators are presented in Section 3.1. Furthermore, we
state confidence intervals, which quantify the estimation uncertainty caused by
the finiteness of the sample. In order to compare models reliably, we give a brief
introduction into testing theory in Section 3.2. Finally, in Section 3.3, we intro-
duce a new generalization of the traditional risk functional and show that the
theoretical findings can be extended to its estimator. The generalized risk func-
tional has recently been studied (Sawade et al., 2010b); it additionally captures
the 𝐹𝜂-measure which is a commonly used performance measure for prediction
problems with skewed class distributions.

3.1 Estimating the Model’s Risk

In general, an estimate 𝑅̂𝑛 is an approximation of a quantity 𝑅 based on a set
of instances 𝑥1, . . . , 𝑥𝑛 drawn from a distribution 𝑝(𝑥). The procedure of cal-
culating an estimate is called estimator. Since, sampling instances 𝑥𝑖 from a
distribution 𝑝(𝑥) is a random process, an estimate is a random variable, whose
distribution depends on 𝑝(𝑥). The quality of the approximation 𝑅̂𝑛 can be quan-
tified by the squared deviation of the estimator 𝑅̂𝑛 from the true value 𝑅 in
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expectation over the drawn sample:

MSE𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁
= E𝑥𝑖∼𝑝(𝑥)

[︂(︁
𝑅̂𝑛 −𝑅

)︁2
]︂
. (3.2)

Equation 3.2 is referred to as estimation error. A minimum requirement for an
estimator is consistency. Intuitively, an estimator is consistent, if it indeed calcu-
lates the quantity to be estimated. In order to define the concept of consistency
formally, we need to introduce the notions of convergence of random variables:

Definition 3.1 (Convergence of Random Variables). Let 𝑋1, . . . , 𝑋𝑛 be a se-
quence of random variables, 𝑋 a single random variable, and 𝐹𝑖(𝑥) and 𝐹 (𝑥)
their cumulative distribution functions.

∙ The sequence is said to converge almost surely to 𝑋, if lim𝑛→∞ 𝑋𝑛 = 𝑋

holds with probability one. Almost sure convergence is denoted by 𝑋𝑛
𝑎𝑠−→

𝑋.

∙ The sequence is said to converge in distribution to 𝑋, if lim𝑛→∞ 𝐹𝑛(𝑥) =
𝐹 (𝑥). Convergence in distribution is denoted by 𝑋𝑛

𝑑−→ 𝑋, or 𝑋𝑛
𝑑−→ 𝑝𝑋 ,

where 𝑝𝑋 is the distribution of 𝑋.

Almost sure convergence implies convergence in distribution (see, e.g., Van der
Vaart, 2000, Theorem 2.7). An estimate 𝑅̂𝑛 is (strongly) consistent, if the ran-
dom sequence of estimates 𝑅̂1, . . . , 𝑅̂𝑛 converges almost surely to 𝑅. Thus, the
estimation error MSE vanishes for 𝑛 → ∞ and 𝑅̂𝑛 can indeed be seen as an
estimate of 𝑅.

Another two quantities to investigate the sources of the estimation error for finite
sample sizes are the bias and the variance of an estimator. The variance

Var𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁
= E𝑥𝑖∼𝑝(𝑥)

[︂(︁
𝑅̂𝑛 − E𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁)︁2
]︂

(3.3)

measures the amount of variation of the estimator and the bias

Bias𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁
= E𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁
−𝑅 (3.4)

quantifies the systematic deviation from the value being estimated. If the bias is
zero, the estimate is said to be unbiased. The estimation error can be expressed
in terms of the bias and the variance: In Equation 3.6, we make use of the
definition of the estimation error (see Equation 3.2), expand the square, and



30 Chapter 3 | Evaluation of Predictive Models

add and subtract the expected value of 𝑅̂𝑛. Reordering terms and inserting the
definition of the variance (see Equation 3.3) and the bias (see Equation 3.4) yield
Equation 3.7.

MSE𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁
(3.5)

=
(︁
E𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂2

𝑛 − 2𝑅𝑅̂𝑛 +𝑅2
]︁)︁

+ E𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁2
− E𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁2
(3.6)

=
(︁

Bias𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁)︁2
+ Var𝑥𝑖∼𝑝(𝑥)

[︁
𝑅̂𝑛

]︁
. (3.7)

Equation 3.7 is known as bias-variance decomposition (Geman et al., 1992).

An estimate of the risk 𝑅 (see Equation 3.1) can be obtained by replacing the
unknown distribution 𝑝(𝑥, 𝑦) by an empirical distribution. Given 𝑛 instance-label
pairs (𝑥𝑖, 𝑦𝑖) drawn from 𝑝(𝑥, 𝑦), the joint empirical distribution over the pairs
can be defined in analogy to Equation 2.29:

𝑝(𝑥, 𝑦) = 1
𝑛

𝑛∑︁
𝑖=1

[[(𝑥, 𝑦) = (𝑥𝑖, 𝑦𝑖)]]. (3.8)

The empirical distribution converges uniformly to the test distribution, in the
sense that 𝑝(𝑥, 𝑦) converges for any pair (𝑥, 𝑦) almost surely to 𝑝(𝑥, 𝑦), whereby
the speed of convergence is independent of the considered pair (see, e.g., Van der
Vaart, 2000, Theorem 19.1). Inserting Equation 3.8 into Equation 3.1 yields the
empirical risk, given by an average over the instance-specific losses ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖):

𝑅̂𝑛[𝑓𝜃] = 1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖). (3.9)

The empirical risk 𝑅̂𝑛 is an unbiased estimate of 𝑅. This can be seen by using
the linearity of the expected value and the definition of 𝑅:

E(𝑥𝑖,𝑦𝑖)∼𝑝(𝑥,𝑦)

[︁
𝑅̂𝑛

]︁
= 1
𝑛

𝑛∑︁
𝑖=1

E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [ℓ(𝑓𝜃(𝑥), 𝑦)]

= 𝑅.

Thus, it follows from Equation 3.7 that the estimation error results solely from
the estimator’s variance. In the following, we present the self-normalized im-
portance sampling estimator, which yields a consistent estimate of 𝑅 based on
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a sample drawn from an almost arbitrarily but known instrumental distribu-
tion 𝑞(𝑥). Consistency means asymptotic unbiasedness; that is, the expected
value of the estimate 𝑅̂ converges almost surely to the true value 𝑅. Although
introducing an asymptotically vanishing bias, this estimator gives us the oppor-
tunity to carefully choose instances to obtain an estimator with lower variance
and thus a more accurate estimate.

3.1.1 Self-Normalized Importance Sampling Estimator

Estimating the expected value of a rarely occurring outcome of a random variable
based on a set of instances drawn directly from the underlying distribution can be
inadequate. Assume that a model 𝑓𝜃 is assessed in terms of the zero-one loss ℓ0/1.
If the risk 𝑅[𝑓𝜃] is very low, it is unlikely that an instance 𝑥 with ℓ(𝑓𝜃(𝑥), 𝑦) = 1
occurs in the finite test set; it requires a large number of instances to estimate 𝑅
with high confidence. Test instances (𝑥𝑖, 𝑦𝑖) need not necessarily be drawn ac-
cording to the distribution 𝑝(𝑥, 𝑦). An instrumental 𝑞(𝑥, 𝑦) may be available
that highlights crucial instances. In this section, we introduce the concept of
importance sampling. Importance sampling is a general technique to estimate an
unknown quantity using test instances drawn from an instrumental distribution
instead of 𝑝(𝑥, 𝑦). A precondition for the instrumental distribution is that any
instance (𝑥, 𝑦) that can be drawn from 𝑝(𝑥, 𝑦) can also be drawn from the instru-
mental distribution 𝑞(𝑥, 𝑦). This condition is formalized in Definition 3.2.

Definition 3.2 (Absolutely Continuous). Let 𝑝(𝑥) and 𝑞(𝑥) be distributions de-
fined over a set 𝒳 . The distribution 𝑞(𝑥) is said to be absolutely continuous with
respect to 𝑝(𝑥) if 𝑝(𝑥) > 0 implies 𝑞(𝑥) > 0 for all 𝑥 ∈ 𝒳 .

In the following, we derive a consistent estimator of the risk, when instances
are selected according to an instrumental distribution. For the purpose of this
thesis, we focus on instrumental distributions 𝑞(𝑥, 𝑦) = 𝑝(𝑦|𝑥)𝑞(𝑥) to select un-
labeled instances 𝑥 to label; the corresponding label will be drawn according
to 𝑝(𝑦|𝑥). Let 𝑞(𝑥) be absolutely continuous with respect to the distribution 𝑝(𝑥).
Then, the risk defined over the test distribution can be expressed as expecta-
tion of ℓ(𝑓𝜃(𝑥), 𝑦) taken over the instrumental distribution 𝑞(𝑥, 𝑦) = 𝑝(𝑦|𝑥)𝑞(𝑥)
by weighting the instance-specific losses by the Radon-Nikodym derivatives 𝑝(𝑥)

𝑞(𝑥)
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of 𝑝(𝑥) with respect to 𝑞(𝑥):

𝑅[𝑓𝜃] =
∫︁∫︁

ℓ(𝑓𝜃(𝑥), 𝑦)𝑝(𝑥, 𝑦)d𝑦 d𝑥

=
∫︁∫︁

ℓ(𝑓𝜃(𝑥), 𝑦)𝑝(𝑦|𝑥)𝑝(𝑥)𝑞(𝑥)
𝑞(𝑥)d𝑦 d𝑥

= E(𝑥,𝑦)∼𝑞(𝑥,𝑦)

[︂
𝑝(𝑥)
𝑞(𝑥) ℓ(𝑓𝜃(𝑥), 𝑦)

]︂
. (3.10)

Replacing the distribution 𝑞(𝑥, 𝑦) in Equation 3.10 by its empirical counter-
part 𝑞(𝑥, 𝑦) (see Equation 3.8) induced by 𝑛 instance-label pairs (𝑥𝑖, 𝑦𝑖) drawn
from 𝑞(𝑥)𝑝(𝑦|𝑥) yields an estimator of the true risk:

𝑅̂𝑛,𝑞[𝑓𝜃] =
(︃

𝑛∑︁
𝑖=1

𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

)︃−1 𝑛∑︁
𝑖=1

𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖). (3.11)

Equation 3.11 is referred to as a self-normalized importance sampling estimator in
the statistics literature (see, e.g., Geweke, 1989; Liu, 2001). The estimator 𝑅̂𝑛

(see Equation 3.9) is a special case of 𝑅̂𝑛,𝑞, using the instrumental distribu-
tion 𝑞(𝑥) = 𝑝(𝑥).

The choice of the instrumental distribution 𝑞(𝑥) affects the bias and the variance
of the estimator 𝑅̂𝑛,𝑞 (see Equation 3.7). Hence, for certain sampling distribu-
tions 𝑞(𝑥), the estimator 𝑅̂𝑛,𝑞 of the risk 𝑅 may be a more label-efficient than 𝑅̂𝑛.
In contrast to the empirical risk 𝑅̂𝑛, the estimator 𝑅̂𝑛,𝑞 is biased, because both
the numerator and the denominator depend on the drawn sample. To see this,
consider the expected value of Equation 3.11:

E(𝑥,𝑦)∼𝑞(𝑥,𝑦)

[︁
𝑅̂𝑛,𝑞

]︁
= E(𝑥,𝑦)∼𝑞(𝑥,𝑦)

⎡⎣∑︀𝑛
𝑖=1

𝑝(𝑥𝑖)
𝑞(𝑥𝑖) ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)∑︀𝑛

𝑖=1
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

⎤⎦ .
The expected value of the numerator is 𝑛𝑅, whereas the expectation of the de-
nominator is 𝑛. Since the expectation of a ratio 𝑋

𝑌 is not necessarily equal to
the ratio of the expectations of 𝑋 and 𝑌 , the expected value of 𝑅̂𝑛,𝑞 differs in
general from the risk. Although being biased, Equation 3.11 defines a consistent
estimator of the true risk 𝑅 because the weighting factors 𝑝(𝑥)

𝑞(𝑥) compensate for
the discrepancy between test and instrumental distributions. To see this, note
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that due to the strong law of large numbers the quantities

1
𝑛

𝑛∑︁
𝑖=1

𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)
𝑎𝑠−→ 𝑅 and 1

𝑛

𝑛∑︁
𝑖=1

𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

𝑎𝑠−→ 1

converge almost surely (see Definition 3.2) to their expected values. Then, Slut-
sky’s Theorem (see, e.g., Cramér, 1946) applied to the numerator and denomi-
nator of Equation 3.11 implies that 𝑅̂𝑛,𝑞

𝑎𝑠−→ 𝑅.

The estimation error also depends on the variance of an estimator, and will play a
central role when deriving a cost-efficient sampling distribution 𝑞(𝑥). Lemma 3.1
states that 𝑅̂𝑛,𝑞 is asymptotically normally distributed, and characterizes the
variance of the self-normalized importance sampling estimator in the limit.

Lemma 3.1 (Asymptotic Distribution of Estimator). Let 𝑅̂𝑛,𝑞 be defined as in
Equation 3.11 and let us assume that

1. the expected value 𝑅 = E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [ℓ(𝑓𝜃(𝑥), 𝑦)] exists,

2. the variance Var(𝑥,𝑦)∼𝑝(𝑥,𝑦) [ℓ(𝑓𝜃(𝑥), 𝑦)] is finite,

3. the distribution 𝑞(𝑥) is absolutely continuous with respect to 𝑝(𝑥), and

4. the weights 𝑝(𝑥)
𝑞(𝑥) ≤ 𝐸 are bounded from above by a constant 𝐸 <∞.

Then, 𝑅̂𝑛,𝑞 is asymptotically normally distributed,

√
𝑛
(︁
𝑅̂𝑛,𝑞 −𝑅

)︁
𝑑−→ 𝒩

(︀
0, 𝜎2

𝑞

)︀
,

with asymptotic variance

𝜎2
𝑞 = E𝑥∼𝑞(𝑥)

[︂
𝑝(𝑥)
𝑞(𝑥)

]︂−2
E(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︃(︂
𝑝(𝑥)
𝑞(𝑥)

)︂2
(ℓ(𝑓𝜃(𝑥), 𝑦)−𝑅)2

]︃

=
∫︁ (︂

𝑝(𝑥)
𝑞(𝑥)

)︂2(︂∫︁
(ℓ(𝑓𝜃(𝑥), 𝑦)−𝑅)2

𝑝(𝑦|𝑥)d𝑦
)︂
𝑞(𝑥)d𝑥, (3.12)

where 𝑑−→ denotes convergence in distribution.

We omit this proof here and show a more general result in Section 3.3 instead.
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Finally, it is worth mentioning that an unbiased estimator can be obtained if
the normalizer—the sum of weights

∑︀𝑛
𝑖=1

𝑝(𝑥𝑖)
𝑞(𝑥𝑖) —is replaced by the number of

instances 𝑛. This is known as the standard (not self-normalized) importance
sampling estimator. Although being unbiased, in practice this estimator has often
a higher estimation error caused by higher variance induced by the resampling
weights (see, e.g., Liu, 2001, Chapter 2.5).

3.1.2 Confidence Intervals

In practice a point estimate 𝑅̂𝑛,𝑞 of the true error is often not sufficient, since it
does not quantify the estimation error. This section states confidence intervals
for risk estimators presented in the previous section. Confidence intervals are in-
dicating a region where the true error lies in with certain probability. Specifically,
a two-sided confidence interval [𝑅̂𝑛,𝑞−𝜀𝛼, 𝑅̂𝑛,𝑞 +𝜀𝛼] with coverage 1−𝛼 indicates
that |𝑅 − 𝑅̂𝑛,𝑞| < 𝜀𝛼 holds with a predefined probability 1 − 𝛼, or equivalently
that the probability of observing a deviation of 𝜀𝛼, or a more extreme value, of
the true risk is less than 𝛼.

Confidence Intervals for Normally Distributed Estimators

In order to estimate a confidence interval, we analyze the estimator’s underlying
distribution; the corresponding cumulative distribution quantifies the range cap-
turing the true test error for a certain probability. The assumption of a normally
distributed estimator yields the Wald interval which is closely related to the
commonly used t-test interval. We now turn towards the problem of determining
the Wald interval for the self-normalized importance sampling estimator 𝑅̂𝑛,𝑞.
Following Lemma 3.1, the statistic

√
𝑛
𝑅̂𝑛,𝑞 −𝑅

𝜎𝑞
∼ 𝒩 (0, 1) (3.13)

follows asymptotically a standard normal distribution. In practice, the asymp-
totic variance 𝜎2

𝑞 of the estimator is unknown. Substituting the empirical for the
true variance yields an observable statistic. The empirical variance is given by

𝑆2
𝑛,𝑞 = 𝑛

(︃
𝑛∑︁

𝑖=1

𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

)︃−2 𝑛∑︁
𝑖=1

(︂
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

)︂2 (︁
ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)− 𝑅̂𝑛,𝑞

)︁2
. (3.14)
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It can be derived by replacing the distribution 𝑝(𝑥, 𝑦) in Equation 3.12 by the
empirical distribution function (see Equation 3.8) induced by a labeled sam-
ple (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛). In the case of 𝑝(𝑥) = 𝑞(𝑥), the sample variance

𝑆2
𝑛 = 1

𝑛− 1

𝑛∑︁
𝑖=1

(︁
ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)− 𝑅̂𝑛

)︁2

is an unbiased estimator for 𝜎2
𝑝 (see Bessel’s correction). In contrast, the em-

pirical variance 𝑆2
𝑛,𝑞 is generally biased because both the numerator and the

denominator depend on the drawn sample; see discussion in Section 3.1.1 about
the estimator 𝑅̂𝑛,𝑞. However, Lemma 3.2 states that the empirical variance 𝑆𝑛,𝑞

is a (strongly) consistent estimate of the asymptotic variance 𝜎2
𝑞 .

Lemma 3.2 (Consistency of Empirical Variance). Under the assumptions of
Lemma 3.1 the empirical variance

𝑆2
𝑛,𝑞

𝑎𝑠−→ 𝜎2
𝑞

converges almost surely to the asymptotic variance.

The claim follows by the strong law of large numbers and Slutsky’s theorem. A
detailed proof is given for example by Geweke (1989).

Since 𝑆2
𝑛,𝑞 consistently estimates 𝜎2

𝑞 , the observable statistics

√
𝑛
𝑅− 𝑅̂𝑛,𝑞

𝑆𝑛,𝑞
∼ 𝒩 (0, 1) (3.15)

is also asymptotically normally distributed. Hence, the probability 𝛼 of observing
the Statistic 3.15 or a more extreme value is given by the cumulative distribution
function of the standard normal distribution (see Figure 3.1, top); the bound-
aries of the confidence interval 𝜀𝛼 are given by the 100(1 − 𝛼)-th percentile of
the normal distribution. Lemma 3.3 states the size of the confidence interval for
a given confidence level 𝛼.
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Lemma 3.3 (Wald Interval for Normally Distributed Estimators). Let 𝑅̂𝑛,𝑞 be
normally distributed with expected value 𝑅 and estimated variance 𝑆2

𝑛,𝑞. Then, a
two-sided confidence interval [𝑅̂𝑛,𝑞 − 𝜀𝛼, 𝑅̂𝑛,𝑞 + 𝜀𝛼] with coverage 1 − 𝛼 is given
by

𝜀𝛼 = Φ−1
(︁

1− 𝛼

2

)︁ 𝑆𝑛,𝑞√
𝑛
,

where Φ−1 is the inverse cumulative distribution function of the standard normal
distribution.

Proof. Rewriting the coverage probability in terms of the Statistic 3.15 and re-
solving the absolute value by case differentiation according to the sign of 𝑅̂𝑛,𝑞−𝑅
yields

𝛼 = 𝑝
(︁
|𝑅̂𝑛,𝑞 −𝑅| > 𝜀𝛼

)︁
= 𝑝

(︃
√
𝑛
𝑅̂𝑛,𝑞 −𝑅
𝑆𝑛,𝑞

>
√
𝑛
𝜀𝛼

𝑆𝑛,𝑞

)︃
+ 𝑝

(︃
√
𝑛
𝑅− 𝑅̂𝑛,𝑞

𝑆𝑛,𝑞
>
√
𝑛
𝜀𝛼

𝑆𝑛,𝑞

)︃
.

Let 𝑍 ∼ 𝒩 (0, 1) be a random variable that is standard normally distributed.
Then, the probability that 𝑍 is less than or equal to a certain value 𝑧 is given by
the cumulative distribution function of the the standard normal distribution Φ(𝑧)
and thus

𝛼 = 𝑝

(︂
𝑍 >

√
𝑛
𝜀𝛼

𝑆𝑛,𝑞

)︂
+ 𝑝

(︂
𝑍 >

√
𝑛
𝜀𝛼

𝑆𝑛,𝑞

)︂
= 2

(︂
1− 𝑝

(︂
𝑍 ≤

√
𝑛
𝜀𝛼

𝑆𝑛,𝑞

)︂)︂
= 2

(︂
1− Φ

(︂√
𝑛
𝜀𝛼

𝑆𝑛,𝑞

)︂)︂
. (3.16)

Finally, the claim follows by solving Equation 3.16 for 𝜀𝛼.

Confidence Intervals for Binomial Proportions

The standard confidence interval for 𝑅̂𝑛,𝑞 presented in Section 3.1.2 is only
asymptotically correct (Wasserman, 2004, Section 6.3.2). Although the distribu-
tion of 𝑅̂𝑛,𝑞 converges independently of the choice of ℓ to a normal distribution
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Figure 3.1: Asymptotic distribution of the estimator 𝑅̂𝑛,𝑞 and designated con-
fidence interval of coverage 1 − 𝛼 (top). The width of the standard (blue) and
Wilson (red) confidence interval as a function of the true risk 𝑅 and the sample
size 𝑛 for 𝛼 = 0.05 (bottom).
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(see Lemma 3.1), the convergence rate can be slow if the actual distribution is
skewed (see Berry-Esseen theorem). This can be the case when a classification
model is evaluated with respect to the zero-one loss. In this section, we study
the empirical coverage of confidence intervals for 𝑅̂𝑛 with ℓ = ℓ0/1 and expecta-
tion 𝑅 ∈ [0, 1]. We will see that the interval suffers strongly from the skewness
and the discreteness of the actual binomial distribution of 𝑅̂𝑛. Finally, we discuss
alternative intervals.

The standard confidence interval (see Lemma 3.3) for a binomially distributed
random variable 𝑅̂ can be expressed as

𝜀𝑏𝑖𝑛
𝛼 = Φ−1

(︁
1− 𝛼

2

)︁√︃ 𝑅̂(1− 𝑅̂)
𝑛

,

where the sampling variance is calculated by 𝑆2
𝑛 = 𝑅̂(1− 𝑅̂). In order to assess

the quality of a confidence interval, we define the empirical coverage as

𝜓𝑅

(︁
𝑅̂
)︁

= [[|𝑅̂−𝑅| < 𝜀𝑏𝑖𝑛
𝛼 ]].

The empirical coverage indicates whether the confidence interval centered around
the estimate 𝑅̂ includes the quantity 𝑅 or not. Since 𝑅̂ depends on a set of
randomly drawn instances, the empirical coverage is a random variable. For a
reliable confidence interval, the expected value of 𝜓𝑅 is 1 − 𝛼. The empirical
coverage 𝜓𝑅(𝑅̂𝑛) of the empirical risk 𝑅̂𝑛 is negatively biased, that is, the prob-
ability that the interval covers the true risk 𝜓𝑅(𝑅̂𝑛) = 1 is less than 1− 𝛼 (see,
e.g., Brown et al., 2002). Intuitively, if the value 𝑅 being estimated is close
to the boundaries and the sample size 𝑛 is small, the estimator’s distribution is
very skewed and thus empirical estimates 𝑅̂𝑛 of zero and one occur regularly. An
empirical risk of zero and one, respectively, leads to an empirical variance 𝑆2

𝑛 of
zero which in turn collapses the confidence interval into a single point. Another
reason for the empirical coverage to be biased is that the standard interval is
symmetric and centered around the estimate 𝑅̂𝑛. For reasonable choices of 𝛼
and 𝑛 a negative lower bound 𝑅̂𝑛 − 𝜀𝑏𝑖𝑛

𝛼 < 0 of the confidence interval can be
obtained. Since 𝑅 ≥ 0 holds, the coverage of the feasible part of the interval is
thus lower than 1− 𝛼.

Surprisingly, even if 𝑅 is not close to the boundaries, the empirical coverage of the
confidence interval can be erratically poor. To see this, we now study the expected
empirical coverage probability taken over the outcomes of the estimate 𝑅̂𝑛. It is
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Figure 3.2: Heatmap of the empirical coverage of standard interval with coverage
level 1−𝛼 = 0.95, plotted into a two-dimensional space with axes 𝑅 and 𝑛 (left).
Detailed representation of the empirical coverage for fixed number of instances
and fixed risk, respectively (right). Horizontal lines indicate the theoretical cov-
erage.

given by

E𝑅̂𝑛∼𝑝(𝑅̂𝑛|𝑅,𝑛)

[︁
𝜓𝑅

(︁
𝑅̂𝑛

)︁]︁
=
∫︁
𝜓𝑅

(︁
𝑅̂𝑛

)︁
𝑝(𝑅̂𝑛|𝑅,𝑛)d𝑅̂𝑛.

=
𝑛∑︁

𝑖=0
𝜓𝑅

(︂
𝑖

𝑛

)︂(︂
𝑛

𝑖

)︂
𝑅𝑖 (1−𝑅)𝑛−𝑖

. (3.17)

Equation 3.17 exploits that sampling from 𝑝(𝑥) leads to a finite number of possi-
ble outcomes in a classification setting; the estimate 𝑅̂𝑛 is binomially distributed.
Figure 3.2 (left) shows the expected empirical coverage as a function of the risk 𝑅
and the number of instances 𝑛. The discrete lattice structure of 𝑅̂𝑛 causes an
oscillation in the coverage probability even for larger 𝑛. Hence, standard inter-
val estimates governed by the corresponding estimate 𝑅̂𝑛 may be appropriate or
drastically poor depending on the choice of 𝑛 for a given 𝑅. Figure 3.2 (right)
illustrates the behavior of the coverage probability for fixed 𝑛 and fixed 𝑅, respec-
tively. For small 𝑛, the negative bias caused by collapsed intervals is dominating.
For larger 𝑛, the oscillation effect due to the lattice structure becomes visible. A
more formal investigation is given by Brown et al. (2001).
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In the case in which ℓ is binomially distributed, it would seem more natural to
derive confidence intervals by inverting the exact distribution rather than using a
normal approximation. This idea was proposed by Clopper & Pearson (1934). By
definition, the Clopper-Pearson interval is correct; it guarantees that the cover-
age is at least 1−𝛼 for all sample sizes 𝑛 and values of 𝑅. However, the discrete
structure of the distribution results mostly in very conservative and too wide
ranges. Therefore, many authors argue in favor of approximate confidence inter-
vals (see, e.g., Agresti & Coull, 1998). An alternative to the standard interval is
the Wilson interval (Wilson, 1927). In contrast to the standard interval, we do
not substitute the variance 𝜎2

𝑞 by an empirical estimate. Instead, we study the
squared deviation (𝑅̂𝑛−𝑅)2 for a given confidence level 𝛼 under the assumption
that 𝑅̂𝑛 is normally distributed. From Lemma 3.3, it follows that

√
𝑛
|𝑅̂𝑛 −𝑅|√︀
𝑅(1−𝑅)

≤ Φ−1
(︁

1− 𝛼

2

)︁
holds with probability 1 − 𝛼. Thus, the squared deviation is bounded with
probability 1− 𝛼 by

(︁
𝑅̂𝑛 −𝑅

)︁2
≤ Φ−1

(︁
1− 𝛼

2

)︁2 𝑅(1−𝑅)
𝑛

. (3.18)

The roots of this quadratic equation with respect to the unknown value 𝑅 give
rise to the Wilson confidence interval [𝑅̄𝑛−𝜀𝑤𝑖𝑙

𝛼 , 𝑅̄𝑛 +𝜀𝑤𝑖𝑙
𝛼 ], where we have defined

𝑅̄𝑛 =
𝑅̂𝑛 + 1

2𝑛 Φ−1 (︀1− 𝛼
2
)︀2

1 + 1
𝑛 Φ−1

(︀
1− 𝛼

2
)︀2 (3.19)

𝜀𝑤𝑖𝑙
𝛼 = Φ−1

(︁
1− 𝛼

2

)︁ √︁𝑅̂(1− 𝑅̂) + 1
4𝑛 Φ−1

(︀
1− 𝛼

2
)︀2

√
𝑛+ 1√

𝑛
Φ−1

(︀
1− 𝛼

2
)︀2 . (3.20)

In contrast to the standard confidence interval 𝑅̂𝑛 ± 𝜀𝑏𝑖𝑛
𝛼 , the Wilson interval is

not symmetric to 𝑅̂𝑛; the center is shifted to 𝑅 = 0.5. Furthermore, Figure 3.1,
(bottom) shows that the size of 𝜀𝑤𝑖𝑙

𝛼 is generally larger for extreme values of 𝑅.
Finally, an overview of alternative intervals is given, for example, by Henderson
& Meyer (2001).

Although the coverage of the Wilson interval is closer to the expected coverage
than the standard interval for a binomial loss function, the oscillating behav-
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ior caused by the discreteness of the binomial distribution can not be avoided
without an additional randomization of the estimation process (see, e.g., Brown
et al., 2001). However, note that, 𝑅̂𝑛,𝑞 is in general not binomial distributed
for 𝑝(𝑥) ̸= 𝑞(𝑥) even if ℓ follows a Bernoulli distribution. The resampling
weights 𝑝(𝑥)

𝑞(𝑥) , that live in a potentially continuous space, soften the lattice struc-
ture of possible estimates. We will see in Section 4.4.3 that the empirical coverage
of the corresponding confidence interval increases more smoothly with the num-
ber of observed instances.

3.2 Comparison of Prediction Models

In this section, we summarize the statistical foundations of testing theory which
allow us to compare prediction models accurately. The standard approach to
comparing models is to calculate their empirical risks based on instances that
are governed by the test distribution 𝑝(𝑥) which the models are exposed to in
practice. The underlying distribution of the estimator 𝑅̂𝑛 provides information
on whether the observed difference is significant or due to chance. If instances are
drawn according to an instrumental distribution 𝑞(𝑥), this procedure also applies
to a self-normalized importance sampling estimator 𝑅̂𝑛,𝑞. In Section 3.2.1, we de-
tail a statistical test for estimates based on instances which are drawn according
to an instrumental sampling distribution. Confidence intervals (see Section 3.1.2)
and hypothesis testing are closely related. We discuss their relationship in Sec-
tion 3.2.2. Finally, we present statistical tests that can be used to comparing
multiple models (see Section 3.2.3).

3.2.1 A Statistical Test for Actively Drawn Instances

Given two models 𝑓𝜃1 and 𝑓𝜃2 , our goal is to identify the one with lower risk 𝑅.
Since the true risks are unknown, they are typically estimated from a sample of
labeled test instances. Given estimates 𝑅̂𝑛,𝑞[𝑓𝜃1 ] and 𝑅̂𝑛,𝑞[𝑓𝜃2 ], the difference

Δ̂𝑛,𝑞 = 𝑅̂𝑛,𝑞[𝑓𝜃1 ]− 𝑅̂𝑛,𝑞[𝑓𝜃2 ] (3.21)

provides evidence on which model is preferable; a negative sign of Δ̂𝑛,𝑞 argues in
favor of 𝑓𝜃1 whereas a positive sign makes 𝑓𝜃2 preferable.
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Figure 3.3: Type I and II of a statistical test induced by the distribution of the
estimator Δ̂𝑛,𝑞 under null and alternative hypothesis for a fixed critical value 𝑧𝛼

(top). The 𝑝-value quantifies the likelihood of the observed statistic or a more
extrem value under the null hypothesis (bottom).
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In preferring one model over the other, one rejects the null hypothesis ℎ0 that
the observed difference Δ̂𝑛,𝑞 is only a random effect, and actually Δ = 𝑅[𝑓𝜃1 ]−
𝑅[𝑓𝜃2 ] = 0 holds. Rejecting ℎ0 confidently allows us to conclude that the opposite
(alternative hypothesis ℎ1) is true, that is 𝑅[𝑓𝜃1 ] ̸= 𝑅[𝑓𝜃2 ] justifying to choose the
model with lower empirical risk. To quantify the evidence that can be gathered
from the data, we now analyze the distribution of the test statistic under the null
hypothesis, which leads to the Wald-test (see, e.g., Wasserman, 2004, Chapter
10).

Lemma 3.1 implies that the risk estimates 𝑅̂𝑛,𝑞[𝑓𝜃𝑖
] and thus the difference Δ̂𝑛,𝑞

are asymptotically normally distributed. Furthermore, under the null hypothesis
the mean of Δ̂𝑛,𝑞 is asymptotically zero and hence the statistic

√
𝑛

Δ̂𝑛,𝑞

𝜎𝑛,𝑞

𝑑−→ 𝒩 (0, 1),

where 1
𝑛𝜎

2
𝑛,𝑞 = Var(𝑥,𝑦)∼𝑞(𝑥,𝑦)[Δ̂𝑛,𝑞] denotes the variance of Δ̂𝑛,𝑞, follows asymp-

totically a standard normal distribution. In practice, 𝜎𝑛,𝑞 is unknown. Let

𝛿(𝑥, 𝑦) = ℓ(𝑓𝜃1(𝑥), 𝑦)− ℓ(𝑓𝜃2(𝑥), 𝑦)

denote the difference in loss between the predictions of the two models for a test
instance (𝑥, 𝑦). Then, following Lemma 3.2 with loss function 𝛿(𝑥𝑖, 𝑦𝑖) a con-
sistent estimate of 𝜎2

𝑛,𝑞 is obtained from the labeled sample (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)
drawn from 𝑞(𝑥)𝑝(𝑦|𝑥) by computing empirical variance

𝑆2
𝑛,𝑞 = 𝑛

(︂
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

)︂−2 𝑛∑︁
𝑖=1

(︂
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

)︂2 (︁
𝛿(𝑥𝑖, 𝑦𝑖)− Δ̂𝑛,𝑞

)︁2
. (3.22)

Substituting the empirical for the true standard deviation yields an observable
statistic

√
𝑛

Δ̂𝑛,𝑞

𝑆𝑛,𝑞
. Because 𝑆2

𝑛,𝑞 consistently estimates 𝜎2
𝑛,𝑞 the observable statistic

would be asymptotically standard normally distributed,

√
𝑛

Δ̂𝑛,𝑞

𝑆𝑛,𝑞
∼ 𝒩 (0, 1), (3.23)

if the null hypothesis were true.

The p-value p𝑞 quantifies the likelihood of observing a test statistic or a more
extreme value, by chance under the null hypothesis. The 𝑝-value of the two-sided
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Wald test can be derived in analogy to the proof of Lemma 3.3. It is given by

p𝑞 = 𝑝

(︃
𝑍 >

√
𝑛
|Δ̂𝑛,𝑞|
𝑆𝑛,𝑞

)︃

= 2
(︃

1− Φ
(︃
√
𝑛
|Δ̂𝑛,𝑞|
𝑆𝑛,𝑞

)︃)︃
, (3.24)

where 𝑍 ∼ 𝒩 (0, 1) is standard normally distributed and Φ denotes the cumulative
distribution function of the standard normal distribution. If it falls below a
pre-defined confidence threshold 𝛼 (admissible type I error), one can reject the
null hypothesis and conclude that the models’ risks are significantly different.
Equivalently, the null hypothesis can be rejected if the test statistic exceeds the
corresponding critical value

𝑧𝛼 = Φ−1
(︁

1− 𝛼

2

)︁
.

The type II error rate of a statistical test is the probability of not accepting the
alternative hypothesis ℎ1 although it in fact holds. It is given by

𝛽𝛼,𝑞 = 𝑝 (p𝑞 > 𝛼)

= 𝑝

(︃
√
𝑛
|Δ̂𝑛,𝑞|
𝑆𝑛,𝑞

< 𝑧𝛼

)︃
. (3.25)

Furthermore, 1−𝛽𝛼,𝑞 is known as the power of a statistical test; it is the likelihood
that the 𝑝-value falls below 𝛼, if the alternative hypothesis truly does hold and
the two models indeed incur different risks. The central concepts are summarized
in Figure 3.3.

3.2.2 Relationship between Tests and Confidence Intervals

Confidence intervals and hypothesis testing are closely related. Specifically, the
Wald test with confidence level 1− 𝛼 rejects the null hypothesis Δ = Δ0 if and
only if Δ0 is not covered by the standard confidence interval, that is |Δ0 −
Δ̂𝑛,𝑞| ≥ 𝜀𝛼 (Wasserman, 2004, Theorem 10.10). Therefore, the coverage of the
confidence interval corresponds to confidence level 1− 𝛼 of a statistical test. As
a consequence, employing a Wald-test for binary proportions may yield a poorly
calibrated type I error (see Section 3.1.2).
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As an alternative, Student’s 𝑡-distribution can serve as an approximation of the
distribution of a test statistic under the null hypothesis as well as for the deriva-
tion of confidence intervals in Section 3.1.2. This results in the widely used
Student’s 𝑡-test and the corresponding 𝑡-test interval, respectively. Note, how-
ever, that the statistic (𝑛−1) 𝑆2

𝑛,𝑞

𝜎2
𝑛,𝑞

would have to be governed by a 𝜒2-distribution
with 𝑛− 1 degrees of freedom for the test statistic to be asymptotically governed
by the 𝑡-distribution. This assumption is only satisfied if 𝑆2

𝑛,𝑞 would be a sum
of squared, normally distributed random variables which is reasonable for regres-
sion, but not for classification, and only for the case of 𝑝(𝑥) = 𝑞(𝑥). Nevertheless,
the normal distribution is often replaced by the Student’s 𝑡-distribution even if
the distribution assumption is not justified. Since the 𝑡-distribution has heavier
tails for small 𝑛, the resulting confidences are more conservative and thus more
robust to unlikely events. The 𝑡-distribution converges to the normal distribution.
For the sample sizes 𝑛 that are studied in this thesis, the difference is already
negligible for the considered sample sizes: The corresponding confidence regions
differ by a factor of 𝐹−1

𝑛−1(1 − 𝛼
2 )/Φ−1(1 − 𝛼

2 ) = 1.012 for 𝑛 = 101, where Φ−1

and 𝐹−1
𝜈 are the inverse cumulative distribution functions of the Gaussian and

the 𝑡-distribution with 𝜈 degrees of freedom.

3.2.3 Comparing Multiple Prediction Models

So far we have focused on the problem of comparing the risks of two prediction
models, such as a baseline and a challenger. We might also compare several
alternative models and rank the models according to their risks or to identify the
model with lowest risk.

Comparing multiple prediction models is even more challenging than to evaluate
whether there is any evidence that the performance difference Δ between two
models is significantly different from zero (Demšar, 2006). A naïve strategy to
evaluate the relative performance of 𝑘 different models is to apply multiple pair-
wise Wald or t-test, respectively. However, when testing multiple hypotheses the
probability 𝛼 that at least one of the pairwise difference becomes falsely signifi-
cant under the null hypothesis increases with an increasing number of performed
tests. Hence, 𝛼 exceeds considerably the type I error 𝛼𝑖 = 𝛼′ of each single test 𝑖.
This multiplicity effect can be countered by the Bonferroni correction. Using
the principle of inclusion and exclusion, the probability that one individual null
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hypothesis is rejected although no difference exists can be upper bounded by

𝛼 ≤
𝑘∑︁

𝑖=1
𝛼𝑖 = 𝑘𝛼′.

Then, a reliable overall type I error 𝛼 can be ensured by testing all pairwise differ-
ences at a significance level of 𝛼′

𝑘 . The Bonferroni correction is conservative, that
is, the likelihood that any single null hypothesis is rejected by chance is much less
than the pre-specified confidence threshold 𝛼. In particular, when many models 𝑘
are considered, the power of this method might be impractically low (Salzberg,
1997). A popular choice of reliable, yet powerful, tests that compare multiple
alternatives are, for example, within-subject analysis of variance (ANOVA; see,
e.g., Sheskin, 2004, Test 24) or the Tukey range test (see, e.g., Sheskin, 2004,
Test 21c); both try to reject the null hypothesis

ℎ0 : 𝑅[𝑓𝜃1 ] = . . . = 𝑅[𝑓𝜃𝑘
]

that the risk of all considered models are equal. Rejection of ℎ0 does not imply
that all empirically observed differences are significant; for example, the test
could become significant because one of the alternatives performs clearly worst.
When applying a Tukey test, the homogeneity of the risks is examined by the
likelihood of the observed maximum range, that is

𝜚 = max
𝑖=1,...,𝑘

𝑅̂𝑛,𝑞[𝑓𝜃𝑖 ]− min
𝑖=1,...,𝑘

𝑅̂𝑛,𝑞[𝑓𝜃𝑖 ].

Adjusting the range by a 𝜒2-distributed estimator of the variance

𝑆2
𝑘 = 1

𝑘(𝑘 − 1)
∑︁
𝑖 ̸=𝑗

(︀
𝑆𝑖,𝑗

𝑛,𝑞

)︀2

yields a statistic that is governed by a studentized range distribution with 𝜈 =
(𝑛−1)𝑘 degrees of freedom under the null hypothesis. Let 𝑇 be a random variable
which follows a studentized range distribution. Then, the cumulative distribution
of the studentized range distribution is given by

Ω𝜈(𝑠) = 𝑝(𝑇 ≤ 𝑠)

=
∫︁ ∞

0

(︂
𝑘

∫︁ ∞

−∞
𝜙(𝑡) [Φ(𝑡)− Φ(𝑡− 𝑠𝑢)]𝑘−1 d𝑡

)︂
𝜒(𝑢|𝜈)d𝑢,

where 𝜒 and 𝜙 are the probability density function of the chi-squared and the
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standard normal distribution, respectively. The likelihood of observing 𝜚
𝑆𝑘

or a
more extreme value is given by 1− Ω𝜈 (𝜚𝑆𝑘).

If the likelihood of the observed range 𝜚 falls under a given confidence level 𝛼 the
null hypothesis ℎ0 can be rejected and one can conclude that at least the highest
and the lowest risks are significantly different. However, any subrange |𝑅̂𝑛,𝑞[𝑓𝜃𝑖

]−
𝑅̂𝑛,𝑞[𝑓𝜃𝑗 ]| that is already sufficiently unlikely implies that 𝜚 is also unlikely under
the null hypothesis. Thus, testing all pairwise differences allows us to examine
the risks that differ significantly. Evaluating the power of a multiple comparison
procedure such as the Tukey test is challenging, because it generally requires
repeated numerical calculations of a joint multivariate distribution.

The power of a statistical test describes how likely an effect such as Δ > 0
can be identified. In Section 5, we study its dependence on the drawn sam-
ple (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) in order to derive data selection strategies that increase
the power for a fixed type I error.
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3.3 A Generalized Risk Functional

Several performance measures cannot be expressed as a risk. Perhaps the most
prominent such measure is the 𝐹𝜂-measure (van Rijsbergen, 1979). The 𝐹𝜂-
measure is a weighted harmonic mean of recall and precision. For a given binary
classifier 𝑓𝜃 : 𝒳 → 𝒴 where 𝒴 = {0, 1} and a sample of size 𝑛, let

𝑛𝑡𝑝 =
𝑛∑︁

𝑖=1
𝑦𝑖𝑓𝜃(𝑥𝑖) and

𝑛𝑓𝑝 =
𝑛∑︁

𝑖=1
(1− 𝑦𝑖)𝑓𝜃(𝑥𝑖)

denote the number of true and false positives, respectively, and

𝑛𝑓𝑛 =
𝑛∑︁

𝑖=1
𝑦𝑖(1− 𝑓𝜃(𝑥𝑖))

the number of false negatives. Then, the classifier’s 𝐹𝜂-measure on the sample is
defined as

𝐹𝜂 = 𝑛𝑡𝑝

𝜂(𝑛𝑡𝑝 + 𝑛𝑓𝑝) + (1− 𝜂)(𝑛𝑡𝑝 + 𝑛𝑓𝑛) . (3.26)

Precision and recall are special cases for 𝜂 = 1 and 𝜂 = 0, respectively. This
class of measures takes the marginal distribution of the positive class 𝑦 = +1
into account and is thus more appropriate than measuring the error rate of a
model in domains with highly skewed class distributions. For example, in spam
filtering problems we are often interested in measuring spam and non-spam recall.
Furthermore, in information retrieval tasks 𝐹 -measures for a designated class are
used to assess the quality of text classifiers or the result of a web search.

The 𝐹𝜂-measure is defined as an estimator in terms of empirical quantities. This
is unintuitive from a statistical point of view and raises the question which quan-
tity of the underlying distribution the 𝐹𝜂-measure actually estimates. We will
now introduce the class of generalized risk functionals. Like the risk functional
(see Equation 3.1), the generalized risk is parameterized with a loss function ℓ.
In addition, the generalized risk is parameterized with a function 𝑤 that assigns
a weight 𝑤(𝑥, 𝑦, 𝑓𝜃) to each instance. For example, precision sums over instances
with 𝑓𝜃(𝑥) = 1 with constant weight and gives no consideration to other in-
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stances. Equation 3.27 defines the generalized risk:

𝐺[𝑓𝜃] =
E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)ℓ(𝑓𝜃(𝑥), 𝑦)]

E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)]

=
∫︀∫︀

ℓ(𝑓𝜃(𝑥), 𝑦)𝑤(𝑥, 𝑦, 𝑓𝜃)𝑝(𝑥, 𝑦)d𝑦 d𝑥∫︀∫︀
𝑤(𝑥, 𝑦, 𝑓𝜃)𝑝(𝑥, 𝑦)d𝑦 d𝑥

. (3.27)

Note that the generalized risk (see Equation 3.27) reduces to the regular risk for
𝑤(𝑥, 𝑦, 𝑓𝜃) = 1.

In analogy to the regular risk, a consistent estimator for the generalized risk
functional can be obtained by substituting the true distribution 𝑝(𝑥, 𝑦) with the
empirical distribution function 𝑝(𝑥, 𝑦) (see Equation 3.8):

Proposition 3.1 (Consistency of Empirical Generalized Risks). Let the test
sample (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) be drawn i.i.d. according to 𝑝(𝑥, 𝑦). The quantity

𝐺̂𝑛[𝑓𝜃] =
∑︀𝑛

𝑖=1 ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)𝑤(𝑥𝑖, 𝑦𝑖, 𝑓𝜃)∑︀𝑛
𝑖=1 𝑤(𝑥𝑖, 𝑦𝑖, 𝑓𝜃)

(3.28)

is a consistent estimate of the generalized risk 𝐺 defined by Equation 3.27.

Proof. Due to the weak law of strong numbers the numerator and denominator
converges almost surely to their expected values. Thus, the proposition follows
from Slutsky’s theorem (see, e.g., Cramér, 1946) applied to the numerator and
denominator of Equation 3.28.

We now observe that 𝐹𝜂-measures—including precision and recall—are consis-
tent empirical estimates of generalized risks for appropriately chosen functions 𝑤.

Corollary 3.1 (Consistency of 𝐹 -measures). Let 𝑓𝜃 : 𝒳 → 𝒴 be a predictive
model. 𝐹𝜂 of 𝑓𝜃 is a consistent estimate of the generalized risk with 𝒴 = {0, 1},
𝑤(𝑥, 𝑦, 𝑓𝜃) = 𝜂𝑓𝜃(𝑥) + (1− 𝜂)𝑦 and ℓ = 1− ℓ0/1, where ℓ0/1 denotes the zero-one
loss.
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Proof. The claim follows from Proposition 3.1 since

𝐺̂𝑛 =
∑︀𝑛

𝑖=1(1− ℓ0/1(𝑓𝜃(𝑥𝑖), 𝑦𝑖)) (𝜂𝑓𝜃(𝑥𝑖) + (1− 𝜂)𝑦𝑖)∑︀𝑛
𝑖=1 (𝜂𝑓𝜃(𝑥𝑖) + (1− 𝜂)𝑦𝑖)

=
∑︀𝑛

𝑖=1 𝑓𝜃(𝑥𝑖)𝑦𝑖

𝜂
∑︀𝑛

𝑖=1 𝑓𝜃(𝑥𝑖) + (1− 𝜂)
∑︀𝑛

𝑖=1 𝑦𝑖

= 𝑛𝑡𝑝

𝜂 (𝑛𝑡𝑝 + 𝑛𝑓𝑝) + (1− 𝜂) (𝑛𝑡𝑝 + 𝑛𝑓𝑛) .

Intuitively, precision and recall can be interpreted as accuracy conditioned to
instances which are predicted as positive 𝜓 = [[𝑓𝜃(𝑥) = 1]] or are truly posi-
tive 𝜓 = [[𝑦 = 1]]. The regular risk conditioned to 𝜓 can be rewritten using
Bayes’ theorem (Equation 3.29) and the law of total probability (Equation 3.30):∫︁∫︁

ℓ(𝑓𝜃(𝑥), 𝑦)𝑝(𝑥, 𝑦|𝜓)d𝑦 d𝑥

=
∫︁∫︁

ℓ(𝑓𝜃(𝑥), 𝑦)𝑝(𝜓|𝑥, 𝑦)𝑝(𝑥, 𝑦)
𝑝(𝜓) d𝑦 d𝑥 (3.29)

=
∫︀∫︀

ℓ(𝑓𝜃(𝑥), 𝑦)𝑝(𝜓|𝑥, 𝑦)𝑝(𝑥, 𝑦)d𝑦 d𝑥∫︀∫︀
𝑝(𝜓|𝑥, 𝑦)𝑝(𝑥, 𝑦)d𝑦 d𝑥

. (3.30)

Note that 𝑝(𝜓|𝑥, 𝑦) is deterministic in the sense that 𝜓 has probability zero or
one. This is captured by the weight function 𝑤(𝑥, 𝑦, 𝑓𝜃) in Equation 3.27.

Having established and motivated the generalized risk functional, we turn to-
wards the case in which test instances are not be drawn according to the test
distribution. In analogy to the regular risk 𝑅 in Section 3.1.1, the generalized
risk 𝐺 with respect to the test distribution 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦|𝑥) can be defined
on instances drawn from an instrumental distribution 𝑞(𝑥, 𝑦) = 𝑝(𝑥)𝑞(𝑦|𝑥) by
weighting the instance-specific losses:

E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)ℓ(𝑓𝜃(𝑥), 𝑦)]
E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)]

=
E(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝑝(𝑥)
𝑞(𝑥)𝑤(𝑥, 𝑦, 𝑓𝜃)ℓ(𝑓𝜃(𝑥), 𝑦)

]︁
E(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝑝(𝑥)
𝑞(𝑥)𝑤(𝑥, 𝑦, 𝑓𝜃)

]︁ .

Then, the self-normalized importance sampling estimator of a generalized risk
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can be defined as

𝐺̂𝑛,𝑞[𝑓𝜃] =
∑︀𝑛

𝑖=1
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)𝑤(𝑥𝑖, 𝑦𝑖, 𝑓𝜃)ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)∑︀𝑛

𝑖=1
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)𝑤(𝑥𝑖, 𝑦𝑖, 𝑓𝜃)

, (3.31)

where (𝑥𝑖, 𝑦𝑖) are drawn from 𝑞(𝑥)𝑝(𝑦|𝑥). Because of the weighting factors, Slut-
sky’s Theorem again implies that Equation 3.31 defines a consistent estimator
for 𝐺. Moreover, Lemma 3.4 states that the generalized risk estimator 𝐺̂𝑛,𝑞 is
asymptotically normally distributed, and characterizes its variance in the limit.

Lemma 3.4 (Asymptotic Distribution of Estimator). Let 𝐺̂𝑛,𝑞 be defined as in
Equation 3.31 and let us assume that

1. the expected values E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)ℓ(𝑓𝜃(𝑥), 𝑦)] and
E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)] exist,

2. the expected value E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)] is non-zero,

3. the variances Var(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)ℓ(𝑓𝜃(𝑥), 𝑦)] and
Var(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)] are finite,

4. the distribution 𝑞(𝑥) is absolutely continuous with respect to 𝑝(𝑥), and

5. the weights 𝑝(𝑥)
𝑞(𝑥) ≤ 𝐸 are bounded from above by a constant 𝐸 <∞.

Then, 𝐺̂𝑛,𝑞 is asymptotically normally distributed,

√
𝑛
(︁
𝐺̂𝑛,𝑞 −𝐺

)︁
𝑑−→ 𝒩

(︀
0, 𝜎2

𝑞

)︀
,

with asymptotic variance

𝜎2
𝑞 =

E(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︂(︁
𝑝(𝑥)
𝑞(𝑥)

)︁2
𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝐺)2

]︂
E(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝑝(𝑥)
𝑞(𝑥)𝑤(𝑥, 𝑦, 𝑓𝜃)

]︁2 ,

where 𝑑−→ denotes convergence in distribution.

Proof. Let (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) be drawn according to 𝑞(𝑥)𝑝(𝑦|𝑥). In this proof,
all expectations and variances are over the distribution 𝑞(𝑥)𝑝(𝑦|𝑥). We omit the
underlying distribution to keep the notation uncluttered. Let 𝐺̂0

𝑛,𝑞 =
∑︀𝑛

𝑖=1 𝑣𝑖𝑤𝑖ℓ𝑖
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and 𝑊𝑛 =
∑︀𝑛

𝑖=1 𝑣𝑖𝑤𝑖 denote the numerator and the dominator of 𝐺̂𝑛,𝑞, respec-
tively, where we have defined

𝑣𝑖 = 𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

,

𝑤𝑖 = 𝑤(𝑥𝑖, 𝑦𝑖, 𝑓𝜃), and
ℓ𝑖 = ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖).

Making use of the linearity of the expected value and the definition of 𝐺 (see
Equation 3.27), it follows that

E [𝑊𝑛] = 𝑛E [𝑣𝑖𝑤𝑖] and E
[︁
𝐺̂0

𝑛,𝑞

]︁
= 𝑛𝐺E [𝑣𝑖𝑤𝑖] .

The random variables 𝑣1𝑤1, . . . , 𝑣𝑛𝑤𝑛 and 𝑣1𝑤1ℓ1, . . . , 𝑣𝑛𝑤𝑛ℓ𝑛 are i.i.d., there-
fore, under Condition 1 and 3, the central limit theorem implies that 1

𝑛 𝐺̂
0
𝑛,𝑞 and

1
𝑛𝑊𝑛 are asymptotically normally distributed with

√
𝑛

(︂
1
𝑛
𝐺̂0

𝑛,𝑞 −𝐺E [𝑣𝑖𝑤𝑖]
)︂

𝑑−→ 𝒩 (0,Var[𝑣𝑖𝑤𝑖ℓ𝑖])

√
𝑛

(︂
1
𝑛
𝑊𝑛 − E [𝑣𝑖𝑤𝑖]

)︂
𝑑−→ 𝒩 (0,Var[𝑣𝑖𝑤𝑖]) (3.32)

where 𝑑−→ denotes convergence in distribution. From Condition 2 and the con-
vergence statement in Equation 3.32 it follows that

lim
𝑛→∞

𝑝 (|𝑊𝑛| > 0) = 1

and hence the denominator of 𝐺̂𝑛,𝑞 is non-zero for sufficiently large 𝑛. We now
employ the multivariate delta method (see, e.g., Wasserman, 2004, Chapter 5.5)
to extend the convergence results for 𝐺̂0

𝑛,𝑞 and 𝑊𝑛 to a convergence result for the
normalized estimator 𝐺̂𝑛,𝑞. The delta method allows us to derive the asymptotic
distribution of a differentiable function 𝑔 whose input variables are asymptotically
normally distributed. Applying it to the function 𝑔(𝑥, 𝑦) = 𝑥

𝑦 with 𝑥 = 1
𝑛 𝐺̂

0
𝑛,𝑞

and 𝑦 = 1
𝑛𝑊𝑛 yields

√
𝑛

(︃
1
𝑛 𝐺̂

0
𝑛,𝑞

1
𝑛𝑊𝑛

−𝐺

)︃
𝑑−→ 𝒩 (0, 𝜎2

𝑞 ),

𝜎2
𝑞 = ∇𝑔 (𝐺E [𝑣𝑖𝑤𝑖] ,E [𝑣𝑖𝑤𝑖])T Σ∇𝑔 (𝐺E [𝑣𝑖𝑤𝑖] ,E [𝑣𝑖𝑤𝑖])
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where ∇𝑔(𝑥, 𝑦) =
(︁

1
𝑦 ,−

𝑥
𝑦2

)︁T
denotes the gradient of 𝑔 and Σ is the asymptotic

covariance matrix of the input arguments

Σ =
(︃

Var[𝑣𝑖𝑤𝑖ℓ𝑖] Cov[𝑣𝑖𝑤𝑖ℓ𝑖, 𝑣𝑖𝑤𝑖]
Cov[𝑣𝑖𝑤𝑖ℓ𝑖, 𝑣𝑖𝑤𝑖] Var[𝑣𝑖𝑤𝑖]

)︃
.

Furthermore,

∇𝑔 (𝐺E [𝑣𝑖𝑤𝑖] ,E [𝑣𝑖𝑤𝑖])T Σ∇𝑔 (𝐺E [𝑣𝑖𝑤𝑖] ,E [𝑣𝑖𝑤𝑖])

=Var [𝑤𝑖ℓ𝑖𝑣𝑖]− 2𝐺Cov [𝑤𝑖𝑣𝑖, 𝑤𝑖ℓ𝑖𝑣𝑖] +𝐺2 Var [𝑤𝑖𝑣𝑖]
E [𝑣𝑖𝑤𝑖]2

=
E
[︀
𝑤2

𝑖 ℓ
2
𝑖 𝑣

2
𝑖

]︀
− 2𝐺E

[︀
𝑤2

𝑖 ℓ𝑖𝑣
2
𝑖

]︀
+𝐺2E

[︀
𝑤2

𝑖 𝑣
2
𝑖

]︀
E [𝑣𝑖𝑤𝑖]2

=
E
[︀
𝑣2

𝑖𝑤
2
𝑖 (ℓ𝑖 −𝐺)2]︀

E [𝑣𝑖𝑤𝑖]2
.

Condition 3 and 5 imply that the variance 𝜎2
𝑞 is finite. From this, the claim

follows by back substituting 𝑣𝑖, 𝑤𝑖, and ℓ𝑖.

Using uniform weights 𝑤(𝑥𝑖, 𝑦𝑖, 𝑓𝜃) = 1, Lemma 3.4 particularly shows that 𝑅̂𝑛,𝑞

is normally distributed. Thus, the presented generalized risk functional 𝐺 con-
sistently extends the risk functional 𝑅 and its estimators given in Section 3.1.1.
Specifically, in analogy to Section 3.1.2 a two-sided confidence interval [𝐺̂𝑛,𝑞 −
𝜀𝛼, 𝐺̂𝑛,𝑞 + 𝜀𝛼] with coverage 1− 𝛼 is given by 𝜀𝛼 = Φ−1

𝑛

(︀
1− 𝛼

2
)︀ 𝑆𝑛,𝑞√

𝑛
, where

𝑆2
𝑛,𝑞 = 𝑛

(︃
𝑛∑︁

𝑖=1

𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

𝑤(𝑥𝑖, 𝑦𝑖, 𝑓𝜃)
)︃−2

·

𝑛∑︁
𝑖=1

(︂
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

)︂2
𝑤(𝑥𝑖, 𝑦𝑖, 𝑓𝜃)2

(︁
ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)− 𝐺̂𝑛,𝑞

)︁2

is a consistent estimate of 𝜎2
𝑞 based on the labeled sample (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)

drawn from the instrumental distribution 𝑞(𝑥)𝑝(𝑦|𝑥) (see Lemma 3.2).

The estimators presented in this chapter can be used to evaluate the (generalized)
risk of a given model consistently. The labeled instances are assumed to be drawn
either directly from test distribution or from a known instrumental distribution.
In the next chapter, we study the case, in which a labeled sample is not available
in advance and instances have to be labeled at a cost.





Chapter 4

Active Model Evaluation

A predictive model is typically evaluated by exposing it to instances with known
labels and determining the deviance between predicted and actual label. In order
to achieve consistent estimates of the prediction performance, the set of instances
have to reflect the input distribution at test time. However, in many application
scenarios the test distribution diverges from the training distribution. Such a
setting requires to estimate the risk of a given model on separately drawn test
instances.

Recall the example scenario presented in Section 1, in which the model is esti-
mated on confidential data and then provided to a customer. Neither party can
accurately estimate the prediction performance; the customer has no access to
the original training data and the model provider is lacking access to the test
distribution. If the model provider’s estimates are based on out-dated or biased
samples, the risk estimation can be arbitrarily inaccurate. Consequently, in order
to estimate the risk accurately, new test instances have to be drawn and labeled.
The goal of this chapter is to alleviate this problem with a minimal labeling effort.
We present an active evaluation method, in which, in analogy to active learning,
unlabeled instances are drawn from an instrumental distribution and their labels
are queried until a pre-defined budget is exhausted. Using a self-normalized im-
portance sampling estimate the empirical risk on the actively selected sample is
weighted appropriately to compensate for the discrepancy between instrumental
and test distributions which leads to a consistent estimate.

The sampling distribution minimizing the estimation error for (generalized) risks
is derived in Section 4.2. It is optimal when each instance is equally expensive
to label. Section 4.3 extends the optimal sampling distribution to the case of
individual instance-specific costs. In Section 4.4, we explore the relative ben-
efits of active and regular risk estimates under varying problem characteristics
empirically. We study the case of a shift between training and test distribu-
tion as well as the case in which an actively learned model has to be evaluated.
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Finally, Section 4.5 concludes with a discussion concerning similarities and dif-
ferences between active evaluation and active learning. Results of this chapter
has previously been published (Sawade et al., 2010a,b, 2012a).

4.1 Problem Setting

Let 𝑝(𝑦|𝑥; 𝜃) be a given 𝜃-parameterized model of 𝑝(𝑦|𝑥) and let 𝑓𝜃 : 𝒳 → 𝒴
with

𝑓𝜃(𝑥) = arg max
𝑦

𝑝(𝑦|𝑥; 𝜃)

be the corresponding predictive function. We study the problem of estimating
the predictive performance of 𝑓𝜃 in terms of a generalized risk 𝐺 in situations
in which labeled data governed by the test distribution 𝑝(𝑥, 𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥) are
not available. We assume that unlabeled data are readily available and acquiring
labels for selected instances according to the true conditional distribution 𝑝(𝑦|𝑥)
is costly. Instances to label can be drawn from an instrumental distribution 𝑞(𝑥).

When instances are drawn according to an instrumental distribution 𝑞(𝑥) rather
than the original distribution 𝑝(𝑥), the self-normalized importance sampling esti-
mator 𝐺̂𝑛,𝑞 (see Equation 3.31) provides a consistent estimate of the generalized
risk 𝐺 of the given model (see Section 3.3). The estimation error (MSE) of 𝐺̂𝑛,𝑞

depends on the selected instances (𝑥, 𝑦), which are drawn according to the dis-
tribution 𝑞(𝑥)𝑝(𝑦|𝑥). Our goal is to find the instrumental distribution 𝑞(𝑥) such
that the estimation error is minimal for fixed labeling costs 𝑛:

𝑞* = arg min
𝑞

MSE(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝐺̂𝑛,𝑞

]︁
. (4.1)

4.2 Minimizing the Estimation Error

We now turn towards the problem of deriving an optimal sampling distribution 𝑞*

according to Equation 4.1 that minimizes the estimation error when used to se-
lect instances. Section 4.2.1 analytically derives a sampling distribution that is
asymptotically optimal. Section 4.2.2 discusses the empirical sampling distribu-
tion in a pool-based setting and presents the active estimation algorithm.
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4.2.1 Asymptotically Optimal Sampling Distribution

We start our investigation with an analysis of the sources of estimation error.
Recall the bias-variance decomposition of the estimation error (see Equation 3.7).
It states that the estimation error can be expressed as a sum of the squared bias
and the variance of the estimator

MSE(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝐺̂𝑛,𝑞

]︁
= Bias(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝐺̂𝑛,𝑞

]︁2
+ Var(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝐺̂𝑛,𝑞

]︁
.

Because 𝐺̂𝑛,𝑞 is consistent, both Bias[𝐺̂𝑛,𝑞] and Var[𝐺̂𝑛,𝑞] vanish for 𝑛 → ∞.
More specifically, Lemma 4.1 shows that Bias[𝐺̂𝑛,𝑞]2 is of order 1

𝑛2 .

Lemma 4.1 (Bias of Estimator). Let 𝐺̂𝑛,𝑞 be as defined in Equation 3.31. Then,
under the assumptions of Lemma 3.4 there are constants 𝐶 ≥ 0 and 𝑛0 such that⃒⃒⃒

E(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝐺̂𝑛,𝑞

]︁
−𝐺

⃒⃒⃒
≤ 𝐶

𝑛
. (4.2)

is satisfied for all 𝑛 ≥ 𝑛0.

A proof is given, for example, by Liu (2001), Flueck & Holland (1976), and David
& Sukhatme (1974). In order to quantify the bias, the standard approach is to
approximate the ratio estimator using a Taylor series expansion around the expec-
tation of the denominator up to the second power and evaluate the expectation
term-by-term.

According to Lemma 3.4, the estimator 𝐺̂𝑛,𝑞 is asymptotically normally dis-
tributed:

√
𝑛
(︁
𝐺̂𝑛,𝑞 −𝐺

)︁
𝑑−→ 𝒩

(︀
0, 𝜎2

𝑞

)︀
, (4.3)

with asymptotic variance

𝜎2
𝑞 =

E(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︂(︁
𝑝(𝑥)
𝑞(𝑥)

)︁2
𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝐺)2

]︂
E(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝑝(𝑥)
𝑞(𝑥)𝑤(𝑥, 𝑦, 𝑓𝜃)

]︁2 . (4.4)
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Taking the variance of both sides of Equation 4.3, we obtain

𝑛Var(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝐺̂𝑛,𝑞

]︁
𝑑−→ 𝜎2

𝑞 . (4.5)

Because 𝑛Var[𝐺̂𝑛,𝑞] converges to a constant, Var[𝐺̂𝑛,𝑞] is of order 1
𝑛 . As the bias

term vanishes with 1
𝑛2 and the variance term with 1

𝑛 , the expected estimation
error MSE will be dominated by the variance term Var[𝐺̂𝑛,𝑞]. Moreover, the
asymptotic variance 𝜎2

𝑞 = lim𝑛→∞ 𝑛Var[𝐺̂𝑛,𝑞] exists. For large 𝑛, we can thus
approximate

MSE(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝐺̂𝑛,𝑞

]︁
≈ 1
𝑛
𝜎2

𝑞 .

In the following, we will consequently derive a sampling distribution 𝑞* that min-
imizes the asymptotic variance 𝜎2

𝑞 of the estimator 𝐺̂𝑛,𝑞, thereby approximately
solving Problem 4.1. By minimizing estimator variance, selecting test instances
according to 𝑞*(𝑥) will yield (approximately) most accurate estimates for a given
labeling budget. The following theorem derives the sampling distribution that
minimizes the functional 𝜎2

𝑞 .

Theorem 4.1 (Optimal Sampling Distribution). The instrumental distribution
that minimizes the asymptotic variance 𝜎2

𝑞 of the generalized risk estimator 𝐺̂𝑛,𝑞

is given by

𝑞*(𝑥) ∝ 𝑝(𝑥)

√︃∫︁
𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝐺)2

𝑝(𝑦|𝑥)d𝑦. (4.6)

Proof. To minimize the variance with respect to the function 𝑞(𝑥) under the
normalization constraint

∫︀
𝑞(𝑥)d𝑥 = 1 we state the Lagrangian

𝐿 [𝑞, 𝛾] = 𝜎2
𝑞 + 𝛾

(︂∫︁
𝑞(𝑥)d𝑥− 1

)︂
,

with Lagrange multiplier 𝛾 ∈ R. The Lagrangian can be reformulated as fol-
lows. In Equation 4.7, we insert the definition of the asymptotic variance (see
Equation 4.4), apply the law of total expectation to the numerator of 𝜎2

𝑞 , and
rewrite the expectation over 𝑝(𝑥) as an expectation over the instrumental distri-
bution 𝑞(𝑥). Finally, all terms which are independent of 𝑞(𝑥) are subsumed into
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a function 𝑐 of 𝑥 (see Equation 4.8):

𝐿 [𝑞, 𝛾] =
E𝑥∼𝑝(𝑥)

[︁
𝑝(𝑥)
𝑞(𝑥)E𝑦∼𝑝(𝑦|𝑥)

[︁
𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝐺)2

⃒⃒⃒
𝑥
]︁]︁

E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)]2

+ 𝛾

(︂∫︁
𝑞(𝑥)d𝑥− 1

)︂
(4.7)

=
∫︁

𝑐(𝑥)
𝑞(𝑥) + 𝛾 (𝑞(𝑥)− 𝑝(𝑥))⏟  ⏞  

=𝐾[𝑞,𝑥]

d𝑥, (4.8)

where

𝑐(𝑥) = 𝑝(𝑥)2
E𝑦∼𝑝(𝑦|𝑥)

[︁
𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝐺)2

⃒⃒⃒
𝑥
]︁

E(𝑥,𝑦)∼𝑝(𝑥,𝑦) [𝑤(𝑥, 𝑦, 𝑓𝜃)]2
.

It will turn out that we need not constrain the distribution to be nonnega-
tive 𝑞(𝑥) ≥ 0. The optimal function 𝑞* for the constrained problem is given
by the saddle point of the Lagrangian. Since the objective is a convex function
of 𝑞 and the constraint is affine in 𝑞, it follows from the strong duality theorem
that

min
𝑞

max
𝛾

𝐿 [𝑞, 𝛾] = max
𝛾

min
𝑞
𝐿 [𝑞, 𝛾] .

The solution of the inner optimization problem is given by the solution of the
Euler-Lagrange equation

𝜕

𝜕𝑞
𝐾[𝑞, 𝑥] = − 𝑐(𝑥)

𝑞(𝑥)2 + 𝛾 = 0,

that is

𝑞(𝑥) = ±

√︃
𝑐(𝑥)
𝛾
. (4.9)
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Note that we dismiss the negative solution, since 𝑞(𝑥) is a probability density
function. Substituting Equation 4.9 into the Lagrangian 𝐿 we obtain

𝛾* = arg max
𝛾

2√𝛾
∫︁ √︀

𝑐(𝑥)d𝑥− 𝛾. (4.10)

Setting the corresponding derivative to zero leads to

𝛾* =
(︂∫︁ √︀

𝑐(𝑥)d𝑥
)︂2

. (4.11)

Then, the optimal solution can be found by substituting Equation 4.11 into 4.9,
leading to

𝑞*(𝑥) =
√︀
𝑐(𝑥)∫︀ √︀
𝑐(𝑥)d𝑥

. (4.12)

Finally, back substitution of 𝑐 in Equation 4.12 implies the theorem.

We will now detail the optimal sampling distribution for important instances of
the generalized risk functional. They are characterized by their loss function ℓ

and the instance-specific weights 𝑤. Firstly, we study the subfamily of regular
risks. In general, the optimal sampling distribution for regular risks is given by
the following corollary.

Corollary 4.1 (Optimal Sampling Distribution for Risks). The instrumental dis-
tribution that minimizes the asymptotic variance 𝜎2

𝑞 of the regular risk estimator
𝑅̂𝑛,𝑞 is given by

𝑞*(𝑥) ∝ 𝑝(𝑥)

√︃∫︁
(ℓ(𝑓𝜃(𝑥), 𝑦)−𝑅)2

𝑝(𝑦|𝑥)d𝑦. (4.13)

Proof. The proof follows directly from Theorem 4.1 for 𝑤(𝑥, 𝑦, 𝑓𝜃) = 1.

The zero-one error ℓ0/1 and the squared loss ℓ2 are widely-used choices for clas-
sification and regression problems, respectively. Corollary 4.2 states the optimal
sampling distribution for ℓ = ℓ0/1.
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Corollary 4.2 (Optimal Sampling for Zero-One Loss). The sampling distribution
that minimizes 𝜎2

𝑞 for the zero-one loss ℓ0/1 resolves to

𝑞*(𝑥) ∝ 𝑝(𝑥)
√︁

(1− 2𝑅0/1)(1− 𝑝(𝑓𝜃(𝑥)|𝑥)) +𝑅2
0/1, (4.14)

where 𝑅0/1 is the true error rate.

Proof. Rewriting the result of Theorem 4.1 for ℓ = ℓ0/1 in a classification setting,
we obtain

𝑞*(𝑥) ∝ 𝑝(𝑥)
√︃∑︁

𝑦∈𝒴

(︀
ℓ0/1(𝑓𝜃(𝑥), 𝑦)−𝑅0/1

)︀2
𝑝(𝑦|𝑥; 𝜃)

= 𝑝(𝑥)
√︃ ∑︁

𝑦 ̸=𝑓𝜃(𝑥)

(1− 2𝑅0/1)𝑝(𝑦|𝑥; 𝜃) +𝑅2
0/1 (4.15)

= 𝑝(𝑥)
√︁

(1− 2𝑅0/1)(1− 𝑝(𝑓𝜃(𝑥)|𝑥; 𝜃)) +𝑅2
0/1. (4.16)

In Equation 4.15 we make use of the definition of ℓ0/1 and factorize in Equa-
tion 4.16.

Equation 4.14 constructs 𝑞*(𝑥) such that it gives preference to instances whose
loss has a high variance according to 𝑝(𝑦|𝑥). If 𝑅0/1 = 1

2 , the optimal sampling
distribution degenerates to sampling from 𝑝(𝑥).

In the following, we derive the optimal sampling distribution for regression prob-
lems and a squared loss function. In contrast to classification settings a model
assumption about the label noise has to be made to end up with a closed-form
solution. Corollary 4.3 assumes that the observed value 𝑦 is Gaussian distributed
(see Chapter 2.2):

Corollary 4.3 (Optimal Sampling for Squared Loss). Let the observed label 𝑦 be
normally distributed 𝑝(𝑦|𝑥) = 𝒩 (𝑦|𝜇𝑥, 𝜎

2
𝑥). Then, the sampling distribution that

minimizes 𝜎2
𝑞 for the squared loss ℓ2 resolves to

𝑞*(𝑥) ∝ 𝑝(𝑥)
√︁

(𝑓𝜃(𝑥)− 𝜇𝑥)2 (6𝜎2
𝑥 − 2𝑅2 + (𝑓𝜃(𝑥)− 𝜇𝑥)2) + (3𝜎2

𝑥 − 2𝑅2)𝜎2
𝑥 +𝑅2

2,

where 𝑅2 is the true mean squared error.
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Proof. Rewriting the result of Theorem 4.1 for ℓ = ℓ2 yields

𝑞*(𝑥) ∝ 𝑝(𝑥)

√︃∫︁
((𝑓𝜃(𝑥)− 𝑦)2 −𝑅2)2

𝑝(𝑦|𝑥)d𝑦

= 𝑝(𝑥)

√︃∫︁
(𝑓𝜃(𝑥)− 𝑦)4𝑝(𝑦|𝑥)d𝑦 − 2𝑅2

∫︁
(𝑓𝜃(𝑥)− 𝑦)2𝑝(𝑦|𝑥)d𝑦 +𝑅2

2

= 𝑝(𝑥)
(︀
(𝑓𝜃(𝑥)− 𝜇𝑥)4 + 6𝜎2

𝑥(𝑓𝜃(𝑥)− 𝜇𝑥)2 + 3𝜎4
𝑥

−2𝑅2
(︀
(𝑓𝜃(𝑥)− 𝜇𝑥)2 + 𝜎2

𝑥

)︀
+𝑅2

2
)︀1/2

. (4.17)

Equation 4.17 exploits that the two integrals over 𝒴 are raw moments of the
Gaussian distribution 𝑝(𝑦|𝑥).

Since 𝐹 -measures are estimators of generalized risks according to Corollary 3.1,
we can now derive their variance-minimizing sampling distributions. Corol-
lary 4.4 states the optimal sampling distribution for 𝐹𝜂 and, in particular, for
recall and precision.

Corollary 4.4 (Optimal Sampling for 𝐹𝜂). The sampling distribution that min-
imizes the asymptotic variance 𝜎2

𝑞

∙ of the 𝐹𝜂-estimator resolves to

𝑞*(𝑥) ∝ 𝑝(𝑥)·⎧⎨⎩
√︁
𝑝(𝑓𝜃(𝑥)|𝑥)(1−𝐺𝐹𝜂

)2 + 𝜂2(1− 𝑝(𝑓𝜃(𝑥)|𝑥))𝐺2
𝐹𝜂

: 𝑓𝜃(𝑥) = 1

(1− 𝜂)
√︁

(1− 𝑝(𝑓𝜃(𝑥)|𝑥))𝐺2
𝐹𝜂

: 𝑓𝜃(𝑥) = 0,
(4.18)

∙ for recall resolves to

𝑞*(𝑥) ∝ 𝑝(𝑥)
{︃√︀

𝑝(𝑓𝜃(𝑥)|𝑥)(1−𝐺𝑟𝑒𝑐)2 : 𝑓𝜃(𝑥) = 1√︀
(1− 𝑝(𝑓𝜃(𝑥)|𝑥))𝐺2

𝑟𝑒𝑐 : 𝑓𝜃(𝑥) = 0,
(4.19)

∙ for precision resolves to

𝑞*(𝑥) ∝ 𝑝(𝑥)𝑓𝜃(𝑥)
√︁

(1− 2𝐺𝑝𝑟𝑒𝑐)𝑝(𝑓𝜃(𝑥)|𝑥) +𝐺𝑝𝑟𝑒𝑐
2, (4.20)

where 𝐺𝐹𝜂
, 𝐺𝑟𝑒𝑐, and 𝐺𝑝𝑟𝑒𝑐 are the 𝐹𝜂, recall, and precision, in the limit.
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Proof. According to Corollary 3.1, 𝐹𝜂 estimates a generalized risk with 𝒴 =
{0, 1}, 𝑤(𝑥, 𝑦, 𝑓𝜃) = 𝜂𝑓𝜃(𝑥)+(1−𝜂)𝑦 and ℓ = 1−ℓ0/1. Starting from Theorem 4.1,
we derive

𝑞*(𝑥) ∝ 𝑝(𝑥)
√︃ ∑︁

𝑦∈{0,1}

(𝜂𝑓𝜃(𝑥) + (1− 𝜂)𝑦)2 (︀1− ℓ0/1(𝑓𝜃(𝑥), 𝑦)−𝐺𝐹𝜂

)︀2
𝑝(𝑦|𝑥)

= 𝑝(𝑥)
(︁
𝜂2𝑓𝜃(𝑥)

(︀
(1− 𝑓𝜃(𝑥))−𝐺𝐹𝜂

)︀2
𝑝(𝑦 = 0|𝑥)

+ (1− 𝜂(1− 𝑓𝜃(𝑥)))2 (︀
𝑓𝜃(𝑥)−𝐺𝐹𝜂

)︀2
𝑝(𝑦 = 1|𝑥)

)︁ 1
2
.

Equation 4.18 follows by case differentiation according to the value of 𝑓𝜃(𝑥).
Finally, using 𝜂 = 1 and 𝜂 = 0 implies Equation 4.19 and 4.20 immediately.

4.2.2 Empirical Sampling Distribution

In the previous section, we derived the sampling distribution minimizing asymp-
totically the estimation error of 𝑅̂𝑛,𝑞 and 𝐺̂𝑛,𝑞, respectively. Unfortunately, The-
orem 4.1 and Corollaries 4.1-4.4 depend on the test distribution 𝑝(𝑥) and the true
conditionals 𝑝(𝑦|𝑥), which are typically unknown. The typical approach of active
learning algorithms is to choose an instance to label depending on the model
learned far (see Section 2.3). In this section, we transfer this idea to approximate
the unknown quantities in a pool-based setting and discuss its consequences to
the resulting sampling distribution.

Instances governed by the test distribution can be obtained in various ways: They
can either be synthetically generated, selected from a stream of data, or can be
sampled from a given pool. The focus of this thesis is the setting in which a large
pool 𝐷𝑚 of unlabeled test instances is available. Instances from this pool can be
sampled and then labeled at a cost. Drawing instances from the pool replaces
generating them under the test distribution; that is, we approximate 𝑝(𝑥) by the
empirical distribution 𝑝(𝑥) over the pool 𝐷𝑚 (see Equation 2.29).

The optimal sampling distribution depends on the unknown (generalized) risk 𝐺
we want to estimate, and the unknown true conditional 𝑝(𝑦|𝑥). In order to
implement the method, we have to approximate these quantities. Note that as
long as 𝑝(𝑥) > 0 implies 𝑞(𝑥) > 0 for all instances with 𝑤(𝑥, 𝑦, 𝑓𝜃) ̸= 0, any choice
of 𝑞(𝑥) will yield consistent risk estimates because weighting factors 𝑝(𝑥𝑖)

𝑞(𝑥𝑖) account
for the discrepancy between sampling and test distribution (see Lemma 3.4).
That is, 𝐺̂𝑛,𝑞 is guaranteed to converge to 𝐺 as 𝑛 grows large; any approximation
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Figure 4.1: Instrumental distribution for 𝐹𝜂-measures and zero/one-loss over
the predictive distribution in a pool-based setting for 𝐺̌𝑟𝑒𝑐 = 𝐺̌𝑝𝑟𝑒𝑐 = 0.9 =
1 − 𝑅̌0/1 (left). Heatmap of the sampling distribution when evaluating a model
in terms of an 𝐹 -measure, plotted into a two-dimensional space with axes 𝑝(𝑦 =
1|𝑥; 𝜃) and trade-off parameter 𝜂 (center). Heatmap of the sampling distribution
when evaluating the error rate of a model with axes 𝑝(𝑦 = 1|𝑥; 𝜃) and intrinsic
error 𝑅̌ (right).

employed to compute 𝑞* will only affect the number of test examples required to
reach a certain level of estimation accuracy.

To approximate the true conditional, we use the given predictive model 𝑝(𝑦|𝑥) ≈
𝑝(𝑦|𝑥; 𝜃). Since 𝐺 is equally dependent on 𝑝(𝑦|𝑥) it is natural to replace it by
an intrinsic risk calculated from Equation 3.1, in which the integral over 𝒳 is
replaced by a sum over the pool, 𝑝(𝑥) ≈ 𝑝(𝑥), and 𝑝(𝑦|𝑥) ≈ 𝑝(𝑦|𝑥; 𝜃). The
intrinsic generalized risk is given by

𝐺̌[𝑓𝜃] =

∑︀
𝑥∈𝐷

∫︁
𝑤(𝑥, 𝑦, 𝑓𝜃)ℓ(𝑓𝜃(𝑥), 𝑦)𝑝(𝑦|𝑥; 𝜃)d𝑦∑︀

𝑥∈𝐷

∫︁
𝑤(𝑥, 𝑦, 𝑓𝜃)𝑝(𝑦|𝑥; 𝜃)d𝑦

(4.21)

and the intrinsic regular risk by

𝑅̌[𝑓𝜃] = 1
|𝐷|

∑︁
𝑥∈𝐷

∫︁
ℓ(𝑓𝜃(𝑥), 𝑦)𝑝(𝑦|𝑥; 𝜃)d𝑦. (4.22)

Figure 4.1 (left) shows the sampling distribution 𝑞*(𝑥) for specific instances of the
generalized risk functional as a function of the predictive distribution 𝑝(𝑦|𝑥; 𝜃).
If a binary classifier is evaluated with respect to the expected zero-one loss ℓ0/1,
the empirical sampling distribution 𝑞*(𝑥) is symmetric and prefers instances close
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Figure 4.2: Instrumental distribution for squared-loss over the instance-specific
variance 𝜏2

𝑥 in a pool-based setting for 𝑅̌2 = 5 (left). Heatmap of the sampling
distributions when evaluating the mean squared error of a model, plotted into a
two-dimensional space with axes 𝜏2

𝑥 and 𝑅̌ (right).

to the decision boundary 𝑝(𝑓𝜃(𝑥) ̸= 𝑦|𝑥; 𝜃) = 0.5 (blue curve). We observe that
the precision estimator (green curve) dismisses all examples which are classified
as belonging to the negative class 𝑓𝜃(𝑥) = 0. This is intuitive because precision
is a function of true-positive and false-positive examples only. Specifically, pre-
cision is equivalent to the accuracy of a predictive model 𝑓𝜃(𝑥) conditioned to
instances with 𝑓𝜃(𝑥) = 1 (see Section 3.3). Thus, the optimal sampling distribu-
tion for precision (see Equation 4.20) coincides with the sampling distribution for
zero/one-loss (see Corollary 4.2) truncated to the range 𝑝(𝑦 = 1|𝑥,𝜃) > 0.5. By
contrast, the recall estimator (red curve) selects examples on both sides of the
decision boundary, as it has to estimate both the true positive and false negative
rate. Specifically, recall is entirely influenced by instances that belong effectively
to the positive class 𝑦 = 1. Hence, 𝑞*(𝑥) prefers instances which are likely to be
true positive (𝑦 = 1 = 𝑓𝜃(𝑥)) and false negative (𝑦 = 1 ̸= 𝑓𝜃(𝑥)) in this case.
In general, 𝐹 -measures are a weighted harmonic mean of precision and recall,
which is also reflected by the corresponding sampling distributions; the yellow
curve corresponds to 𝜂 = 0.5. Figure 4.1 (center) shows the influence of 𝜂; re-
call and precision belong to 𝜂 = 0 and 𝜂 = 1, respectively. Figure 4.1 (right)
visualizes the asymptotical optimal sampling distribution for all possible values
of the intrinsic risk 𝑅̌ in the case of ℓ = ℓ0/1. Note that the model approxima-
tion implies 𝑅̌ ≤ 0.5. We observe that the intrinsic risk 𝑅̌ acts as a smoothing
parameter and ensures that all instances have some probability to be chosen: if
the risk is assumed to be low, instances near the decision boundary are strongly
preferred; if the risk is equal to random guessing (𝑅̌ = 0.5), active risk estimation
falls back to uniform sampling. In the case that the empirical risk is close to zero,
the estimate is strongly biased because some instances are not likely to be drawn
from the resulting empirical sampling distribution. However, bounding 𝑅̌ by a
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constant, would ensure that all instances have positive probability to be chosen
in practice. Furthermore, this approximation could be improved while evaluating
by an estimate obtained from the labeled sample.

A pre-condition of Corollary 4.3 is that the observed labels 𝑦 ∼ 𝒩 (𝑦|𝜇𝑥, 𝜎
2
𝑥)

follow a normal distribution; the optimal sampling distribution depends on the
unknown mean 𝜇𝑥 and variance 𝜎2

𝑥 of the label distribution. If 𝑝(𝑦|𝑥) is approxi-
mated by the model 𝑝(𝑦|𝑥; 𝜃) and, thus, the first and second moment of the label
distribution are replaced by 𝜇𝑥 ≈ 𝑓𝜃(𝑥) and 𝜎2

𝑥 ≈ 𝜏2
𝑥 , we do assume that 𝑝(𝑦|𝑥; 𝜃)

instead of the true distribution is Gaussian. A normal predictive distribution is
a standard assumption for probabilistic regression models. The variance 𝜏2

𝑥 at
instance 𝑥 would typically be available from a probabilistic predictor, such as
Gaussian processes or Bayesian (kernelized) linear regression (see Section 2.2).
The sampling distribution that minimizes 𝜎2

𝑞 (see Corollary 4.3) in a pool-based
setting, in which 𝑝(𝑥) ≈ 𝑝(𝑥), can thus be approximated by

𝑞*(𝑥) ∝
√︁

(3𝜏2
𝑥 − 2𝑅̌2)𝜏2

𝑥 + 𝑅̌2
2, where 𝑅̌2 = 1

|𝐷|
∑︁
𝑥∈𝐷

𝜏2
𝑥 . (4.23)

Figure 4.2 depicts the sampling distribution given by Equation 4.23.

In the following, we study some alternative approximations of the conditional
distribution. First, consider a classification setting in which the model assess-
ment is based on the zero-one loss or on 𝐹𝜂-measures. Instead of using the
predictive model to approximate the unknown conditionals, an uninformative
approximation 𝑝(𝑦|𝑥) ≈ 1

|𝒴| can be used. In this case, optimal sampling ac-
cording to Equation 4.14 and Equation 4.18 for 𝜂 < 1 degenerates to uniform
sampling with corresponding estimators given by Equation 3.9 for regular and
Equation 3.28 for generalized risks. We denote this baseline as passive estima-
tor. Furthermore, 𝑝(𝑦|𝑥) ≈ 𝑝(𝑦) could be replaced by a multinomial distribution
over 𝑦 rather than an uniform distribution. Then, the resulting sampling distri-
bution is also multinomial; the likelihood of choosing an instance depends only on
the predicted label 𝑓𝜃(𝑥). In the context of spam filtering, this could be more ap-
propriate than uniform sampling. Non-spam emails incur higher misclassification
costs than spam emails. If evaluating a loss function which is defined by a costs
matrix, it is more efficient to identify the infrequent class by using an empirical
estimate of the class prior 𝑝(𝑦). In a regression setting, the passive estimator is
equivalent to assuming equal variances 𝜎2

𝑥 = 𝜎2 for all instances 𝑥 ∈ 𝒳 . This
approximation yield also a uniform sampling distribution.
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Algorithm 2: Active Estimation for Generalized Risks
input Model 𝑓𝜃 with distribution 𝑝(𝑦|𝑥; 𝜃), pool 𝐷𝑚 , labeling budget 𝑛.

1: Compute sampling distribution 𝑞* according to Corollary 4.2, 4.3 or 4.4
using the predictive distribution 𝑝(𝑦|𝑥; 𝜃).

2: for 𝑖 = 1, . . . , 𝑛 do
3: Draw 𝑥𝑖 ∼ 𝑞*(𝑥) from 𝐷𝑚 with replacement.
4: Query label 𝑦𝑖 ∼ 𝑝(𝑦|𝑥𝑖) from oracle.
5: end for
6: Compute 𝐺̂𝑛,𝑞* [𝑓𝜃] (see Equation 3.31).

output Risk estimate 𝐺̂𝑛,𝑞* [𝑓𝜃].

Algorithm 2 summarizes the active evaluation algorithm. It samples 𝑛 instances
with replacement from the pool according to the distribution prescribed by Corol-
lary 4.2 (for zero-one loss), 4.3 (for squared loss), or 4.4 (for 𝐹 -measures) using
the predictive distribution 𝑝(𝑦|𝑥; 𝜃). Labels are queried for these instances. An
interesting special case occurs when the labeling process is deterministic. Since
instances are sampled with replacement, elements may be drawn more than once.
In this case, labels of previously drawn instances can be looked up rather than
be queried from the deterministic labeling oracle repeatedly: hence, the actual
labeling costs may stay below the sample size. In this case, the loop may be
continued until the labeling budget is exhausted.

4.3 Active Evaluation under Instance-Specific
Costs

Active evaluation processes choose instances such that the expected estimation
error is minimal for fixed labeling costs. Up to this point, costs for acquiring la-
bels were assumed to be identical for all instances 𝑥 ∈ 𝒳 . In fact, time and effort
required vary according to instance-specific features. Consider the following ex-
amples. The task in text classification domains is to predict some category as the
topic of a given text. In order to obtain labeled instances, a human expert reads
a text—at least partly—and assigns one of the predefined categories. Labeling
costs may depend on the length of a document, its language, and its technical
difficulty. Inhomogeneous labeling costs also arise when learning or evaluating
ranking functions for web search and other information retrieval domains. Rank-
ing functions are used to sort a set of items, such as text documents or websites,
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by relevance according to an user-defined query. In practice, a representative set
of test queries is acquired by manually assessing the relevance of all retrieved
items for each query. The number of retrieved items and possibly other item-
specific features influence the time to determine the corresponding relevance.

In this section, we generalize our problem setting studied in Section 4.1 by allow-
ing instance-specific labeling costs and constraining overall costs Λ ∈ R rather
than the number of test instances 𝑛 that can be drawn. We denote labeling costs
for an instance 𝑥 by 𝜆(𝑥), and assume that 𝜆(𝑥) is bounded away from zero by
𝜆(𝑥) ≥ 𝜖 > 0. Our goal is to minimize the deviation of 𝐺̂𝑛,𝑞 from 𝐺 under the
constraint that the expected overall labeling costs stay below a budget Λ:

(𝑞*, 𝑛*) = arg min
𝑞,𝑛

MSE(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
𝐺̂𝑛,𝑞

]︁
, (4.24)

s.t. E𝑥∼𝑞(𝑥)

[︃
𝑛∑︁

𝑖=1
𝜆(𝑥𝑖)

]︃
≤ Λ.

Note that Equation 4.24 represents a trade-off between labeling costs and infor-
mativeness of a test instance: optimization over 𝑛 implies that many inexpensive
or few expensive instances could be chosen.

The following theorem extends the optimal sampling results from Theorem 4.1 to
instance-specific labeling costs 𝜆(𝑥) in the sense that it minimizes the estimation
error by minimizing the variance as its dominating component.

Theorem 4.2 (Cost-sensitive Optimal Sampling Distribution). Let 𝐺 be defined
as in Equation 3.27 and 𝜎2

𝑞 = lim𝑛→∞ 𝑛Var[𝐺̂𝑛,𝑞]. The instrumental distribution
that minimizes the asymptotic variance 𝜎2

𝑞 of the generalized risk estimator 𝐺̂𝑛,𝑞

for instance-specific labeling costs 𝜆 is given by

𝑞*(𝑥) ∝ 𝑝(𝑥)√︀
𝜆(𝑥)

√︃∫︁
𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝐺)2

𝑝(𝑦|𝑥)d𝑦, (4.25)

𝑛* = Λ∫︀
𝜆(𝑥)𝑞(𝑥)d𝑥

.

Before we prove Theorem 4.2, we state the following Lemma:
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Lemma 4.2. Let 𝑎 : 𝒳 → R and 𝜆 : 𝒳 → R denote functions on the instance
space such that

∫︀ √︀
𝑎(𝑥)d𝑥 exists and 𝜆(𝑥) ≥ 𝜖 > 0. The functional

𝑊 [𝑞] =
(︂∫︁

𝑎(𝑥)
𝑞(𝑥) d𝑥

)︂(︂∫︁
𝜆(𝑥)𝑞(𝑥)d𝑥

)︂
,

where 𝑞(𝑥) is a distribution over the instance space 𝒳 , is minimized over 𝑞 by
setting

𝑞(𝑥) ∝

√︃
𝑎(𝑥)
𝜆(𝑥) .

Proof. We have to minimize the functional(︂∫︁
𝑎(𝑥)
𝑞(𝑥) d𝑥

)︂(︂∫︁
𝜆(𝑥)𝑞(𝑥)d𝑥

)︂
(4.26)

in terms of 𝑞 under the constraints
∫︀
𝑞(𝑥)d𝑥 = 1 and 𝑞(𝑥) > 0. We first note

that Objective 4.26 is invariant under multiplicative rescaling of 𝑞(𝑥), thus the
constraint

∫︀
𝑞(𝑥)d𝑥 = 1 can be dropped during optimization and enforced in the

end by explicitly normalizing the unconstrained solution. We reformulate the
problem as

min
𝑞

𝐶

∫︁
𝑎(𝑥)
𝑞(𝑥) d𝑥 s.t. 𝐶 =

∫︁
𝜆(𝑥)𝑞(𝑥)d𝑥 (4.27)

which we solve using a Lagrange multiplier 𝛾 by

min
𝑞

𝐶

∫︁
𝑎(𝑥)
𝑞(𝑥) d𝑥+ 𝛾

(︂∫︁
𝜆(𝑥)𝑞(𝑥)d𝑥− 𝐶

)︂
.

The optimal point for the constrained problem satisfies the Euler-Lagrange equa-
tion

𝛾𝜆(𝑥) = 𝐶
𝑎(𝑥)
𝑞(𝑥)2 , (4.28)

and therefore

𝑞(𝑥) =

√︃
𝐶
𝑎(𝑥)
𝛾𝜆(𝑥) . (4.29)
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Resubstitution of Equation 4.29 into the constraint (see Equation 4.27) leads to

𝐶 =
∫︁ √︃

𝐶
𝑎(𝑥)
𝛾𝜆(𝑥)𝜆(𝑥)d𝑥, (4.30)

solving for 𝛾 we obtain

𝛾 = 1
𝐶2

(︂∫︁ √︀
𝐶𝑎(𝑥)𝜆(𝑥)d𝑥

)︂2
. (4.31)

Finally, back substitution of Equation 4.31 into Equation 4.29 yields

𝑞(𝑥) ∝

√︃
𝑎(𝑥)
𝜆(𝑥) .

We now prove Theorem 4.2.

Proof of Theorem 4.2. We first study the minimization of 1
𝑛𝜎

2
𝑞 . Because

E𝑥∼𝑞(𝑥)

[︃
𝑛∑︁

𝑖=1
𝜆(𝑥𝑖)

]︃
= 𝑛

∫︁
𝜆(𝑥)𝑞(𝑥)d𝑥,

the minimization problem can be reformulated as

min
𝑞

min
𝑛

1
𝑛
𝜎2

𝑞 s.t. 𝑛 ≤ Λ∫︁
𝜆(𝑥)𝑞(𝑥)d𝑥

.

Clearly 𝑛* = Λ∫︀
𝜆(𝑥)𝑞(𝑥)d𝑥

solves the inner optimization. The remaining minimiza-
tion over 𝑞 is

𝑞* = arg min
𝑞

𝜎2
𝑞

∫︁
𝜆(𝑥)𝑞(𝑥)d𝑥.

Lemma 3.4 implies

𝜎2
𝑞 ∝

∫︁∫︁
𝑝(𝑥)2

𝑞(𝑥)2𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝑅)2
𝑝(𝑦|𝑥)𝑞(𝑥)d𝑦 d𝑥.
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Setting

𝑎(𝑥) = 𝑝(𝑥)2
∫︁
𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝐺)2

𝑝(𝑦|𝑥)d𝑦

and applying Lemma 4.2 implies Equation 4.25.

Intuitively, the optimal sampling distribution given by Equation 4.25 constitutes
a trade-off between labeling costs and informativeness. It gives preference to
instances with low labeling costs and for which the expected loss deviates strongly
from the expectation taken over all instances. In the case, in which the labeling
costs 𝜆(𝑥) of an instance 𝑥 is exactly correlated with its expected (weighted)
deviation

E𝑦∼𝑝(𝑦|𝑥)

[︁
𝑤(𝑥, 𝑦, 𝑓𝜃)2 (ℓ(𝑓𝜃(𝑥), 𝑦)−𝐺)2

⃒⃒⃒
𝑥
]︁
,

the optimal sampling distribution degenerates to sampling from 𝑝(𝑥).

In the next chapter, we study the active evaluation method with homogeneous
and non-homogeneous labeling costs empirically.

4.4 Empirical Results

In this section we empirically study the estimation performance of active and
passive evaluation methods. Estimating the risk of a model 𝑓𝜃 on separately
drawn test instances is motivated by scenarios, where we cannot obtain a risk
estimate from the original training data (e.g., by cross-validation). Overall, we
conduct experiments in the following application domains, in which the training
data do not reflect the test distribution or are not available.

Spam Filtering Domain. In this domain (referred to as EMAIL), spammers
impose a shift on the distribution of instances over time as they employ new
strategies to generate spam messages. A classifier that has been trained
in the past has to be evaluated with respect to the current distribution.
We collected 169,612 emails from an email service provider between June
2007 and April 2010. Emails are represented using a binary bag-of-words,
resulting in 541,713 distinct features; approximately 5% of all emails are
spam.
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Digit Recognition Domain. The digit recognition domain reflects an appli-
cation scenario in which a classification system is procured and evaluated
in an environment in which the input distribution may diverge from the
training distribution. To realize this scenario, a digit recognition model
is trained on the USPS data set and evaluated on the MNIST data set
and vice versa. The MNIST database contains 70,000 images of scanned
handwritten digits collected by the National Institute of Standards and
Technology (NIST); we use a version of MNIST prepared by Sam Roweis.
The USPS data set containing 11,000 instances, which were accrued in the
context of a project sponsored by the US Postal Service (Hull, 1994). All
digits occur roughly in the same proportion as in MNIST. We rescale the
MNIST images from 28×28 to 16×16 to match the resolution of USPS and
re-compute the bounding box. The rescaled MNIST images differ visually
from the USPS images, the line strokes are generally thicker.

Text Classification Domain. The REUTERS-21578 text classification task
(Frank & Asuncion, 2010) allows us to study the effect of class skew, and
serves as a prototypical domain for active learning. It contains 8,293
newswire articles represented as term-frequency-vectors and categorized
into 65 topics. We experiment on the ten most frequently occurring topics,
leaving 7,285 documents. Table A.1 in Appendix A.2.1 lists the class ratios.

Inverse Dynamics Domain. We use the Sarcos data set, containing 48,933
instances described by 21 features (Vijayakumar et al., 2005). In this re-
gression problem, the task is to predict one of seven torques based on the
motions of a seven degrees-of-freedom anthropomorphic robot arm.

Abalone Domain. We also use the Abalone benchmark data set (Frank &
Asuncion, 2010), which includes 4,177 instances. The age of abalone is
determined by cutting the shell through the cone, staining it, and count-
ing the number of rings through a microscope. In this regression problem,
the task is to predict the age of Abalone from ten physical measurements
including length, diameter, and weight.

We employ kernelized logistic regression (see Section 2.1) for classification tasks.
Hyperparameters are tuned a priori on the training portion of each data set by
cross validation and then kept fixed. It is common to use an RBF kernel (see
Equation 2.24) for digit recognition. The kernel width 𝜍 is tuned by maximizing
the pairwise generalized maximum mean discrepancy (Sriperumbudur et al., 2009)
between the class-conditional distributions 𝑝(𝑥|𝑦) estimated by the respective
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sample. For regression tasks, we employ Gaussian processes (see Section 2.2),
using Bayesian model selection to determine the hyperparameters (Rasmussen &
Williams, 2006). These predictive models provide us with an estimate of 𝑝(𝑦|𝑥)
and 𝜏2

𝑥 , respectively.

In each experiment, we train a model on the training data set and obtain an
active estimate on the evaluation data set using Algorithm 2 (denoted active).
As a baseline, we obtain a risk estimate using test instances drawn uniformly from
the pool (denoted passive). For classification, we also study the online stratified
sampling method proposed by Bennett & Carvalho (2010). The pool of instances
is divided into disjoint strata based on the confidence of the classifier. In each
iteration, we choose a stratum, draw an instance uniformly from that stratum,
and query the label. The optimal strategy is to choose strata proportional to the
standard deviation of the labels. The standard deviation is estimated iteratively
by the queried labels. We split the data such that each stratum contains an
equal portion of the instances, since it is more accurate than using strata of
equal ranges (Bennett & Carvalho, 2010). This baseline is denoted by strat.

The evaluation process is repeated 1,000 times and results are averaged. In case
one of the repetitions results in an undefined estimate, the entire experiment
is discarded (i.e., there is no data point for the method in the corresponding
diagram). This can occur for example when measuring recall and only negative
instances 𝑦 = 0 were drawn. All methods operate on identical labeling budgets.
In order to assess the estimation error |𝐺̂𝑛,𝑞 − 𝐺| we determine the risk of the
model on the entire evaluation data set 𝐷𝑚 and use it as an approximation of
the true risk; that is 𝐺̂𝑚 ≈ 𝐺.

4.4.1 Estimating the Performance of a Model

In this section we study whether—and under which conditions—active risk esti-
mation and active estimation of 𝐹𝜂-measures can lead to more accurate estimates
than risk estimation based on a uniformly drawn sample. We now consider sev-
eral regression and classification scenarios and determine the estimation error
as a function of the labeling budget 𝑛, or Λ if labeling costs vary across the
instances.
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Figure 4.3: Absolute deviation from pool error over number of labeled data for
spam filtering and digit recognition domain. Error bars indicate the standard
error.
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Figure 4.4: Empirical decomposition of the mean squared error in the spam filter-
ing domain for passive (blue curve) and active (red curve) evaluation (left). Esti-
mation error for squared loss over labeling costs for the regression tasks Abalone
(center) and Sarcos (right). Error bars indicate the standard error.

Evaluation under Distribution Shift

Firstly, we study the estimation error for regular risks, precisely error rate and
mean squared error as a function of the number of labeled test instances 𝑛. In the
spam filtering domain, we use the first 42.165 emails received by February 2008
as training portion and the set of 33,296 emails received between February 2008
and October 2008 as evaluation portion. For digit recognition, we consider the
popular problem of distinguishing between digits “4” and “9” which are easily
confused; this results in 13,782 instances for the MNIST database, and 2,200
instances for the USPS database. Either data set are used as training and the
other as test data.

Figure 4.3 shows the average absolute deviation between the risk estimate and
the true risk for active and passive risk estimation for EMAIL, MNIST -USPS,
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Figure 4.5: Estimation error for recall, 𝐹0.5 and precision over labeling costs for
spam filtering. Error bars indicate the standard error.

and USPS-MNIST problems. Error bars indicate the standard error; the zero-
one risk on the entire pool of test instances is 0.0245 for EMAIL, 0.0205 for
USPS, and 0.0280 for MNIST. Figure 4.4 (center, right) shows the estimation
error for the regression tasks Abalone and Sarcos. Each model is trained on
a randomly selected set of 500 instances and is evaluated by the risk on the
remaining instance; the mean squared error on the entire pool is 5.00 and 27.12,
respectively. In all learning problems, active risk estimates are significantly more
accurate than passive risk estimates or, equivalently, a desired level of accuracy is
achieved with significantly fewer test instances. For example, in the spam filtering
domain, active evaluation with 300 test instances achieves approximately the
same accuracy as passive evaluation with 800 instances. For EMAIL the online
stratified sampling approach strat outperforms passive sampling for sufficiently
many labeled instances; it relies on an estimate of the standard deviation within
each strata. In the digit recognition domain, strat attains only a slightly lower
estimation error than passive. This may be due to an inaccurate estimate of the
stratas’ standard deviation or an inadequate choice of the number of strata.

The optimal sampling distributions derived in Section 4.2.1 approximately min-
imize the estimation error by minimizing the asymptotic variance 𝜎2

𝑞 . This is
motivated by the bias-variance decomposition. To study the error of this ap-
proximation we measure the deviation of the averaged estimates 𝑅̂𝑛 and 𝑅̂𝑛,𝑞

over 1,000 repetitions from estimate over the entire pool 𝑅̂|𝐷| and the respec-
tive empirical variance. Figure 4.4 (left) shows the decomposition of the mean
squared error in the spam filtering domain. In fact, except for very small sample
size 𝑛, the error is clearly dominated by the variance of the estimator whereas
the bias is negligible.
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Figure 4.6: Absolute error for 𝐹𝜂-measure estimates for different values of 𝜂 (left)
and over class ratio on a logarithmic scale in the spam filtering domain (center)
and text classification for all ten classes (right). Error bars indicate the standard
error.
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Figure 4.7: Text classification: Estimation error over number of labeled data
for infrequent (left) and frequent (center) class. Distribution of query labeling
costs 𝜆(𝑥) in spam filtering (right).

We now compare active estimation of 𝐹𝜂-measures according to estimation based
on a sample of instances drawn uniformly from the pool. As a baseline, we revisit
the active estimator for zero-one loss. It might perform comparable even if eval-
uating 𝐹𝜂-measures, since both the optimal sampling distributions for the error
rate as well as for 𝐹0.5 (in particular if 𝐹0 ≈ 𝐹1) prefer instances close to the deci-
sion boundary (see Figure 4.1). For this baseline (denoted activeerr) instances are
drawn according to the optimal sampling distribution 𝑞*

0/1 for zero-one risk (see
Equation 4.14), however the 𝐹𝜂-measure is computed according to Equation 3.26
using 𝑞 = 𝑞*

0/1. For the spam filtering domain, Figure 4.5 shows the average
absolute estimation error for 𝐹0 (recall), 𝐹0.5, and 𝐹1 (precision) estimates. True
precision 𝐺̂|𝐷| and recall on the entire pool of test instances are 0.693 and 0.977,
respectively. The active generalized risk estimate active significantly outperforms
the passive estimate passive for all three measures. In order to reach the esti-
mation accuracy of passive with a labeling budget of 𝑛 = 800, active requires
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fewer than 150 (recall), 180 (𝐹0.5), or 100 (precision) labeled test instances. Re-
sults obtained in the digit recognition domain are consistent with these findings
(see Appendix A.2.2). Figure 4.6 (left) shows results for estimating several in-
termediate stages of 𝐹𝜂 for a class ratio of 95% to 5%. Estimates obtained from
active are at least as accurate as those of activeerr, and more accurate for high 𝜂
values.

𝐹𝜂-measures are particularly suited for highly skewed prediction problems when
measuring accuracy is not appropriate. This raises the question how strongly the
benefit of the corresponding sampling distributions depend on the class distribu-
tion. In the spam filtering domain we artificially sub-sampled data to different
ratios of spam and non-spam emails. Figure 4.6 (center) shows the performance
of active, passive, and activeerr for 𝐹0.5 estimation as a function of class skew. We
observe that active outperforms passive consistently. Furthermore, active outper-
forms activeerr for imbalanced classes, while the approaches perform comparably
when classes are balanced. This finding is consistent with the intuition that the
values of accuracy and 𝐹 -measure diverge more strongly for imbalanced classes.

In the text classification domain we estimate the 𝐹0.5-measure for a ten-class clas-
sifiers. Class frequencies range from 0.012 for the smallest class to 0.51 for the
majority class. We use the active, passive, and activeerr approaches to solve the
correspondingly skewed per-class one-vs-rest 𝐹0.5 estimation problem. Figure 4.7
shows the estimation error of active, passive, and activeerr for an infrequent class
(“money-fx”, left) and a frequent class (“earn”, center). These results are repre-
sentative for other frequent and infrequent classes; all results are included in the
Appendix A.2.1. Figure 4.6 (right) shows the estimation error of active, passive,
and activeerr on all ten one-versus-rest problems as a function of the problem’s
class skew (data points correspond to the ten different one-vs-rest estimation
problems). We again observe that active outperforms passive consistently, and
active outperforms activeerr for strongly skewed class distributions.

Evaluation of Actively Trained Models

Active learning can result in more accurate models than learning from uniformly
sampled training examples (passive learning), but it has the disadvantage that
risk estimates obtained on held-out training examples are severely biased (Schütze
et al., 2006). In order to obtain an unbiased estimate of the risk of an actively
learned model, additional test examples have to be labeled, which again increases
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Table 4.1: Active vs. passive learning and active vs. passive risk estimation.
Values in parenthesis indicate standard errors.

EMAIL MNIST USPS

passive
learning (3)

model error 0.1033 (0.00051) 0.0251 (0.00013) 0.0355 (0.00015)

estimation error
cross validation 0.0245 (0.00060) 0.0112 (0.00028) 0.0118 (0.00029)

active
learning

model error 0.0492 (0.00018) 0.0070 (0.00004) 0.0272 (0.00007)

estimation error
active eval. (1) 0.0137 (0.00033) 0.0046 (0.00020) 0.0084 (0.00022)
passive eval. (2) 0.0172 (0.00042) 0.0063 (0.00014) 0.0123 (0.00032)

the labeling costs. We will now study whether the combination of active learning
and active risk estimation can outperform passive learning and risk estimation
by cross validation on a uniformly drawn labeled sample.

We employ logistic regression as base learning algorithm; the active learner always
selects the example with minimal functional margin

𝑥 = arg min
𝑥̄∈𝐷

(︂
𝑝(𝑓𝜃(𝑥̄)|𝑥̄; 𝜃)− max

𝑦 ̸=𝑓𝜃(𝑥̄)
𝑝(𝑦|𝑥̄; 𝜃)

)︂
and updates the model. This is a straightforward multiclass adaption of the
well-known greedy active learning strategy (see Chapter 2.3). We fix the label-
ing budget to 𝑛 = 220 and compare the following three learning and evaluation
protocols.

Protocol (1) draws 20 instances uniformly from the pool, trains an initial
model, and then selects 100 additional training instances actively. The
model is evaluated on further 100 test instances selected by the active risk
estimation procedure.

Protocol (2) trains a model on an initial 20 uniformly drawn and an addi-
tional 100 actively selected training instances, and evaluates the model
on 100 uniformly-drawn instances.

Protocol (3) draws 220 instances uniformly from the pool and runs 10-fold
cross validation.

We consider these settings for EMAIL, USPS and MNIST. In this scenario, we
are interested in both obtaining an accurate model and an accurate estimate of
the risk of this model.



4.4 Empirical Results 79

Table 4.1 shows the true risk over the entire pool (model error) and average ab-
solute deviation of the estimated risk (estimation error) for strategies (1) to (3).
Values in parenthesis indicate standard errors. Active learning consistently gives
more accurate models than passive learning, even though models are trained on
smaller samples. Moreover, we again observe that active risk estimation consis-
tently outperforms passive risk estimation. Note that in all three domains the
combination of active learning and active evaluation gives both the most accurate
model and the most accurate risk estimate.

Evaluation with Instance-Specific Costs

In this section, we study active risk estimation processes under instance-specific
costs in comparison to passive evaluation. To quantify the effect of modeling
costs, we also consider active risk estimation according to Corollary 4.2 that
assumes uniform costs 𝜆(𝑥) = 1 (labeled activeuniC) and a heuristic sampling
distribution 𝑞(𝑥) ∝ 𝜆(𝑥)1/2 only taking into account costs (active𝜆).

In spam filtering, labels have been created by a human expert. The expert
read—at least partially—the email and decides if it belongs to spam or non-
spam. Furthermore, each email whose label is queried incurs storage costs. Since
the actual labeling costs are unknown, we follow a semi-artificial setting to il-
lustrate the effect of costs. We model the labeling effort as proportional to the
corresponding file size; the cost unit is chosen such that average labeling costs
for a query are one. Figure 4.7 (right) shows the distribution of labeling costs
𝜆(𝑥).

Figure 4.8 (center) shows the average absolute deviation between the risk estimate
and the true risk when the labeling budget depends on the storage costs of the
labeled emails. Estimates obtained from active with a labeling budget of Λ = 100
are as accurate as passive for Λ = 800. We observe that modeling both the
costs (indicated by active𝜆) as well as the variance of the estimator (indicated
by activeuniC) reduces the estimation error for fixed Λ. In the following, we study
the influence of these two factors on the estimation error.

The benefit of the costs-sensitive sampling distribution over passive or active
evaluation with uniform costs depends on the relation between costs 𝜆(𝑥) and
label uncertainty

𝑢(𝑥) = E𝑦∼𝑝(𝑦|𝑥;𝜃)

[︁
(ℓ(𝑓𝜃(𝑥), 𝑦)−𝑅)2

⃒⃒⃒
𝑥
]︁
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namely the denominator and numerator of Equation 4.25; in the case in which
expensive instances reduce the label uncertainty most, that is, 𝑢(𝑥) and 𝜆(𝑥) are
equal up to a constant factor, the optimal sampling distribution degenerates to
random sampling, if 𝜆(𝑥)−1 = 𝑢(𝑥) active and activeuniC coincide. We measure
this dependence in terms of the Pearson product-moment correlation coefficient
which is given by

𝜌 =
Cov𝑥∼𝑝(𝑥)[𝑢(𝑥), 𝜆(𝑥)−1]√︀

Var𝑥∼𝑝(𝑥)[𝑢(𝑥)] Var𝑥∼𝑝(𝑥)[𝜆(𝑥)−1]
.

The correlation between costs and label uncertainty on the entire data set EMAIL
is 𝜌 = 0.002. In order to study different correlations, we reassign the labeling
costs 𝜆(𝑥) to the instances regardless of their actual file sizes. Resorting the
labeling costs in a way such that the costs increase with the labeling uncertainty
results in 𝜌 = 0.625. The contrary case yields 𝜌 = −0.265. Figure 4.8 shows
the absolute estimation error for positive (𝜌 = 0.625), original (𝜌 = 0.002) and
negative (𝜌 = −0.265) correlation between 𝑢(𝑥) and 𝜆(𝑥)−1 as a function of
the total labeling budget Λ. In the first case (left) we observe that activeuniC

and active𝜆 perform similarly which indicates that active profits equally from
preferring cheap and informative instances. In the original setting file sizes and
informativeness are slightly positively correlated. Here, active𝜆 attains a slightly
lower absolute estimation error than activeuniC. Finally, in the case of a negative
correlation, active𝜆 achieves significant better results than activeuniC, whereas
the estimation accuracy of active and passive coincide. Figure 4.9 (left) shows
the average of the used labeling budget when it is limited by Λ = 200. For all
methods the budget is nearly exhausted. However, we can observe that active𝜆

comes closest to the stated limit independently of 𝜌, whereas budget used by ac-
tive depends on the correlation between 𝑢(𝑥) and 𝜆(𝑥)−1. Also the number of
instances which are actually drawn depends on if the corresponding sampling dis-
tribution accounts for the costs 𝜆(𝑥) or not; for passive and active𝜆 the number
of drawn instances 𝑛 is independent of the correlation 𝜌, whereas for active and
activeuniC 𝑛 grows with the correlation 𝜌 (see Figure 4.9, center).
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Figure 4.8: Estimation error for zero-one loss over instance-specific labeling costs
for different correlation between costs and label uncertainties for spam filtering.
Error bars indicate the standard error.
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Figure 4.9: Actual used budget (left) and corresponding average number of drawn
instances (center) for a fixed overall labeling budget of Λ = 200 in the spam
filtering domain. Absolute estimation error over variances of the empirical cost
distribution (right). Error bars indicate the standard error.

The impact of non-homogeneous instance-specific costs is also affected by the
variance of the cost distribution. In particular, active reduces to activeuniC if the
variance goes to zero. In order to vary the variance of the empirical distribution
of instance-specific costs, the original costs 𝜆′(𝑥) ∝ 𝜆(𝑥)𝑐 are exponentiated with
a positive number 𝑐 and are normalized; a lower variance of the cost distribution
can be obtained using a value 0 < 𝑐 < 1 between zero and one, a value above one
increases the variance. Figure 4.9 (right) depicts the effect of cost variance. The
benefit of active and active𝜆 over passive and activeuniC increases with higher
variance. This is intuitive, since a high variance of the cost distribution yields in-
stances with low labeling costs. Choosing these instances more likely reduces the
variance of the estimator if 𝑢(𝑥) and 𝜆′(𝑥)−1 are not strongly positive correlated.
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4.4.2 Influence of the Predictive Distribution

Active evaluation relies on the model’s estimate of the output probability in order
to select uncertain instances from the pool. When training and test distributions
differ, the approximation 𝑝(𝑦|𝑥) ≈ 𝑝(𝑦|𝑥; 𝜃) may become poor. In order to study
the relation between the quality of 𝑝(𝑦|𝑥; 𝜃) and the benefit of active (generalized)
risk estimation, we consider two experimental setups.

First, in the spam filtering and digit recognition domain we let the size of the
training sample vary over all powers of two, within the size of the available data
sets. We evaluate each model 1,000 times actively and passively, and determine
the average ratio |𝐺̂𝑛−𝐺|

|𝐺̂𝑛,𝑞* −𝐺| . A value of above one indicates that the active esti-
mate is more accurate than a passive estimate. In order to probe the limitation of
the active risk estimation model, we additionally train and evaluate a naïve Bayes
classifier. Naïve Bayes delivers poorly calibrated probability estimates because
the inaccuracy caused by its inherent independence assumption grows exponen-
tially in the number of attributes. Figure 4.10 (left) shows the results in the
spam filtering and digit recognition domain; each point corresponds to a model
with fixed training set size. The horizontal axis quantifies the quality of 𝑝(𝑦|𝑥; 𝜃)
in terms of the theoretical label likelihood ℒ(𝜃) of the given model 𝜃 (see Equa-
tion 2.8). It is estimated by the average per instance test likelihood on the entire
evaluation data set 𝐷𝑚; that is ℒ̂𝑚(𝜃) ≈ ℒ(𝜃). For model likelihoods of 0.6 and
above (corresponding to at least eight training instances), active evaluation out-
performs passive evaluation, the advantage of active risk estimation grows with
the model likelihood. The three leftmost points correspond to naïve Bayes: The
likelihood of the naïve Bayesian model is close to zero as it misclassifies several
test instances with extreme over-confidence. Active risk estimation rarely selects
such over-confident misses; hence, for naïve Bayes, passive outperforms active
risk estimation. To ensure that all instances have some probability to be chosen,
the intrinsic risk could be bounded (see Section 4.2.2).

Additionally, we consider the gain of active over passive estimation in the spam
filtering domain as a function of the discrepancy between training and testing
data over time. To this end, we keep the training set of emails fixed and move the
time interval from which test instances are drawn increasingly further away into
the future, thereby creating a growing gap between training and test distribution.
Specifically, we divide 127,447 emails from the EMAIL data set received between
February 2008 and April 2010 into ten different test sets spanning approximately



4.4 Empirical Results 83

0 0.5 1
0.6

0.8

1

1.2

1.4

1.6

1.8
Ratio of Estimation Errors (0/1−Loss)

model quality (likelihood on test data)

ra
tio

 o
f e

st
im

at
io

n 
er

ro
rs MNIST

USPS
E−Mail

05/2008 01/2009 08/2009 04/2010

1

1.5

2

2.5

date

ra
tio

 o
f e

st
im

at
io

n 
er

ro
rs

lik
el

ih
oo

d

Ratio of Estimation Errors (0/1−Loss)

0.5

0.6

0.7

0.8

0.9

1
ratio
likelihood

05/2008 01/2009 08/2009 04/2010

1

1.5

2

2.5

3

date

ra
tio

 o
f e

st
im

at
io

n 
er

ro
rs

lik
el

ih
oo

d

0.5

0.6

0.7

0.8

0.9

1
ratio

Ratio of Estimation Errors (F-measure)

likelihood

Figure 4.10: Ratio of estimation error of passive and active risk estimates for
different models and learning tasks (left) and over time in the spam filtering
domain for zero-one loss (center) and 𝐹0.5-measure (right). The horizontal line
indicates the break-even point. Error bars indicate standard errors

2.5 months each. The results for estimating error rate and 𝐹0.5-measure are
depicted in Figure 4.10 (center and right). The red curves show the discrep-
ancy between training and test distribution measured in terms of the average
per instance test likelihood. The likelihood at first continually decreases. It
grows again for the two most recent batches; this coincides with a recent wave
of text-based vintage spam. Blue curves also show the ratio of passive-to-active
estimation errors |𝐺̂𝑛−𝐺|

|𝐺̂𝑛,𝑞* −𝐺| . The active estimate consistently outperforms the
passive estimate; its advantage diminishes when training and test distributions
diverge and the assumption of 𝑝(𝑦|𝑥) ≈ 𝑝(𝑦|𝑥; 𝜃) becomes less accurate. Partic-
ularly, as the average per-instance label likelihood falls towards 0.5, the optimal
sampling distribution coincides with random guessing, and consequently the gain
of active estimation vanishes.

4.4.3 Validation of Confidence Intervals

We have derived confidence intervals for active estimates in Section 3.1.2. These
intervals are approximate for finite 𝑛. We now investigate how accurately the
empirical coverage of the intervals matches the desired confidence level of 1− 𝛼
and compare the width of the confidence intervals for active and passive eval-
uation. For the evaluation method active we use the Wald-interval (denoted
activeWald) based on the standard normal distribution for weighted test samples.
For passive, that draws an unweighted sample of test instances, we compute in-
tervals based on a two-sided t-test (denoted passivet-Test). We do not include
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Figure 4.11: Width of confidence intervals for active and passive estimation
of 𝑅0/1 (left) and 𝐹0.5 (right). Error bars indicate standard errors.
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Figure 4.12: Empirical confidence levels for active and passive estimation of 𝑅0/1
(left) and 𝐹0.5 (right). Error bars indicate standard errors.

Wald intervals for passive evaluation, since the difference is negligible for the
considered sample sizes (see Section 3.2.2). Additionally, we also consider the
Wilson-interval (denoted passiveWilson), which is more reasonable for error-rate
estimates. Figure 4.11 depicts the width 𝑧𝛼 of these confidence intervals for 𝑅0/1
(left) and 𝐹0.5 (right) estimates in the spam filtering domain and a confidence
level of 1 − 𝛼 = 0.95. Wald intervals obtained from active risk estimation are
significantly tighter than those of passive risk estimation (standard confidence
interval based on the t-test and Wilson interval).

We also investigate how accurately the empirical coverage of the intervals matches
the desired confidence level of 1−𝛼. Figure 4.12 shows the fraction of iterations
in which the true (generalized) risk lies within the confidence interval derived
from active and passive risk estimation, determined over 1,000 repetitions of the
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evaluation process. The empirical coverage of actively determined confidence
intervals matches the desired confidence level more closely than the standard
intervals (passivet-Test). Still, at first glance it may appear surprising that em-
pirical coverages are uniformly lower than the prescribed theoretical confidence
levels. However, it is well-known that confidence intervals are only asymptoti-
cally correct (Wasserman, 2004, Section 6.3.2). On small test samples, empirical
risks of zero occur regularly. An empirical risk of zero leads to an empirical vari-
ance of zero which in turn collapses the confidence interval into a single point
(see Section 3.1.2). In contrast, the empirical coverage of Wilson intervals are
reliable, however at the expense of considerably increased interval ranges (see Fig-
ure 3.1, bottom). Finally, note that the empirical coverage of passivet-Test and
also passiveWilson oscillates due to the discrete lattice structure of the binomial
distributed estimators, whereas it increases more smoothly with an increasing
labeling budget for 𝑅̂𝑛,𝑞. For a detailed discussion see Section 3.1.2.

4.5 Summary and Related Work

This chapter has studied a setting in which a given model is to be evaluated
at minimal labeling costs using test instances that can be selected from a large
pool of unlabeled test data. We contribute an active evaluation procedure for
generalized risks, including regular risks as well as 𝐹𝜂-measures, whose sam-
pling distributions 𝑞* minimize the asymptotic variance—and thus asymptoti-
cally the estimation error—of a self-normalized importance sampling estimator.
We also extend our investigation to the case that instance-specific—not necessar-
ily homogeneous—labeling costs are given. The derived instrumental distribution
constitutes a trade-off between drawing informative and inexpensive instances.
Active estimation can be applied immediately with a probabilistic classifier. Un-
calibrated decision function values (such as an SVM would produce) have to be
calibrated using, for instance, a one-dimensional logistic or isotonic regression on
the decision function value.

Empirically, we observe that active evaluation outperforms passive evaluation
when the model has a certain quality—a per-instance label likelihood of 0.6 or
above. Active estimation performs poorly in combination with a naïve Bayesian
classifier which delivers poorly calibrated class probabilities. In experiments with
spam and handwriting recognition problems, we observed active estimates to be
as accurate as passive estimates based on three times as many test examples.
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Furthermore, we observed that a combination of active learning and active es-
timation produces more accurate models and more accurate risk estimates than
cross validation on an equally large uniformly drawn sample. Active estimation
for 𝐹𝜂-measures is preferable in particular for skewed classes. In order to reach
the estimation accuracy based of an uniform drawn sample of size 𝑛 = 800, the
active estimation procedure requires fewer than 150 (recall), 200 (𝐹0.5-measure),
or 100 (precision) labeled test instances in the spam filtering domain. Modeling
instance-specific costs give an additional benefit if they are not anti-correlated
with the label uncertainty of the model. Finally, we observe the confidence in-
tervals of active risk estimates to be tighter and more reliable even for small test
samples.

The presented approach can be seen as an application of the general technique
of importance sampling (Hammersley & Handscomb, 1964) to the problem of
estimating the performance of prediction models. Note that our approach exploits
the predictive distribution defined by the model to be evaluated to derive the
(approximately) optimal importance sampling distribution. In the context of
sampling-based state inference in hidden Markov models, Cappé et al. (2005)
quantify the variance of a self-normalized importance sampler.

Another approach to reduce the variance of an estimate is stratified sampling. In
general, stratified sampling methods divide an inhomogeneous population into a
number of disjoint and more homogeneous subpopulations called strata. Sam-
pling uniformly from each stratum and combining the subpopulation estimates by
a weighted average yields the final estimate. For an appropriate allocation of the
strata, stratified sampling can be more accurate than uniform sampling. Bennett
& Carvalho (2010) derive a procedure to evaluate binary classifiers based on an
allocation proportional to the standard deviation of the true labels. The standard
deviation per stratum is estimated iteratively from the labeled instances and the
number of strata is fixed beforehand. Due to the update of the sampling distri-
bution, resulting confidence intervals based on the Gaussian approximation are
biased. In contrast to our optimal instrumental distribution, the sampling scheme
does not depend on the calibration of the confidence scores. Finally, Druck &
McCallum (2011) extend this approach and use the model-based predictive dis-
tribution to approximate the variance in each individual stratum.

Active evaluation can be considered to be a dual problem of active learning; in
active learning, the goal of the selection process is to minimize the variance of the
predictions or the variance of the model parameters, while in active evaluation
the variance of the risk estimate is reduced (see Section 2.3). In analogy to our
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approach, active learning algorithms use a current model to decide on instances
whose class labels are queried. Specifically, Bach (2006) derives a sampling dis-
tribution under the assumption that the current model gives a good approxima-
tion to the conditional probability 𝑝(𝑦|𝑥). Several active learning algorithms use
importance weighting to compensate for the bias incurred by the instrumental
distribution: for regression (Sugiyama, 2006), exponential family models (Bach,
2006), or SVMs (Beygelzimer et al., 2009). In many scenarios, labeling costs
can vary over different instances. The optimal sampling distribution, which ac-
counts for different labeling costs, extends the variance minimizing distribution
by the reciprocal of the squared root of instance-specific costs. Costs-sensitive
active learning strategies are proposed by Haertel et al. (2008) and Settles et al.
(2008). Haertel et al. (2008) found that this sampling heuristic is effective for
part-of-speech tagging.

Both, active learning and evaluation procedures collect labels and thus infor-
mation about the true test distribution. Active learning algorithms exploit this
knowledge to improve the predictive model and thus the model-based output
probability 𝑝(𝑦|𝑥; 𝜃), which serves as the basis on which the least confident in-
stances are selected. It seems to be natural, to update progressively also the
sampling distribution for risk estimations. In that protocol the probability of an
instance to be selected depends on previously drawn instances. This is critical
from a statistical point of view. Although the estimator 𝐺̂𝑛,𝑞 would still be con-
sistent due to the resampling weights, the sampling distribution 𝑞* is no longer
optimal, since it is derived under the condition that instances are drawn indepen-
dently from an identical distribution. Without this assumption, an appropriate
sampling distribution is analytically intractable.

In the next chapter, we address situations, in which two candidate predictive
models are given and we would like to identify the model with lower risk as
label-efficiently as possible.





Chapter 5

Active Model Comparison

In machine learning, a properly conducted evaluation of predictive models plays
a central role; time after time new algorithms are developed and are compared
to hitherto state of the art methods. Typically, statements of the predictive
performance are governed by comparing estimates of the corresponding risks
obtained from held-out data. In the statistics literature a range of appropriate
tests are proposed that allow us to make the decision to prefer the apparently
best model confidently (see Section 3.2). However, when labeled data are not or
only rarely available, new instances have to be drawn and labeled at a cost.

For example, in computer vision it is common to acquire pre-trained object or
face recognizers from third parties. Such recognizers do not typically come with
the image databases that have been used to train them. The suppliers of the
models could provide risk estimates based on held-out training data; however,
such estimates might be biased because the training data would not necessarily
reflect the distribution of images the deployed models will be exposed to. Another
example are domains where the input distribution changes over a period of time
in which a baseline model, e.g., a spam filter, has been employed. By the time
a new predictive model is considered, a previous risk estimate of the baseline
model may no longer be accurate. In this chapter, we transfer the idea of active
risk estimation studied in the previous chapter to scenarios in which an informed
choice between given predictive models has to be made. We study an active
model comparison process that selects instances from a pool of unlabeled test
instances according to an instrumental distribution and queries their labels. We
derive an instrumental distribution that allows us to make the decision to prefer
the superior model as confidently as possible given a fixed labeling budget, if one
of the models is in fact superior. Equivalently, one may use the instrumental
distribution to minimize the labeling costs required to reach a correct decision at
a prescribed level of confidence.
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Firstly, we study the case of comparing the risks of two predictive models—for
instance, a baseline model and a challenger—as confidently as possible. The
problem setting is laid out in Section 5.1. In Section 5.2, we analyze the statistic
of the Wald test under the null and alternative hypothesis and develop the instru-
mental distribution which maximizes test power. Comparing multiple models is
even harder. We discuss the case in which multiple models have to be compared
in Section 5.3 and propose a heuristic sampling distribution. Section 5.4 explores
active model comparison experimentally and Section 5.5 reviews related work
and concludes. Results of this chapter has previously been published (Sawade
et al., 2012b).

5.1 Problem Setting

Let 𝑝(𝑦|𝑥; 𝜃1) and 𝑝(𝑦|𝑥; 𝜃2) be given 𝜃-parameterized models of 𝑝(𝑦|𝑥), let 𝑓𝜃𝑗 :
𝒳 → 𝒴 with

𝑓𝜃𝑗
(𝑥) = arg max

𝑦
𝑝(𝑦|𝑥; 𝜃𝑗)

be the corresponding predictive functions, and let 𝑅[𝑓𝑗 ] be their risks as defined
by Equation 3.1. Our goal is to determine whether 𝑅[𝑓𝜃1 ] > 𝑅[𝑓𝜃2 ] or 𝑅[𝑓𝜃2 ] >
𝑅[𝑓𝜃1 ] using a sample of labeled test instances (𝑥𝑖, 𝑦𝑖).

The standard approach to comparing two models would be to draw 𝑛 test in-
stances according to the test distribution which the models are exposed to in
practice, label these data, and calculate the empirical risks 𝑅̂𝑛[𝑓𝜃1 ] and 𝑅̂𝑛[𝑓𝜃2 ].
Then, the empirical difference

Δ̂𝑛 = 𝑅̂𝑛[𝑓𝜃1 ]− 𝑅̂𝑛[𝑓𝜃2 ]

= 1
𝑛

𝑛∑︁
𝑖=1

(ℓ(𝑓𝜃1(𝑥𝑖), 𝑦𝑖)− ℓ(𝑓𝜃2(𝑥𝑖), 𝑦𝑖))

provides evidence which model is preferable; a positive sign of Δ̂𝑛 argues in
favor of 𝑓𝜃2 . Given the empirical variance 𝑆2

𝑛 of Δ̂𝑛 (see Equation 3.22), a
(paired) Wald test can be performed (see Section 3.2); the corresponding 𝑝-value
quantifies the likelihood that the empirical difference is due to chance, indicating
how confidently the decision to prefer the apparently better model can be made.

In analogy, when instances are drawn from an instrumental distribution 𝑞(𝑥) a
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Wald test can be applied to quantify the significance of the observed difference

Δ̂𝑛,𝑞 = 𝑅̂𝑛,𝑞[𝑓𝜃1 ]− 𝑅̂𝑛,𝑞[𝑓𝜃2 ]

by discarding the null hypothesis that Δ̂𝑛,𝑞 is observed by chance. The smaller
the 𝑝-value the more confident the risks of 𝑓𝜃1 and 𝑓𝜃2 can be told apart by their
empirical estimates. If the null hypothesis does not hold and the two models
incur different risks, the distribution of the test statistic, and thus the 𝑝-value,
depends on the chosen sampling distribution 𝑞(𝑥). Given a pre-specified confi-
dence threshold, e.g., 𝛼 = 0.05, the power 1− 𝛽𝛼,𝑞 is defined as the probability
that the test will reject the null hypothesis. Our goal is to find the sampling dis-
tribution 𝑞(𝑥) that maximizes test power or, equivalently, minimizes the type II
error

𝑞* = arg max
𝑞

1− 𝛽𝛼,𝑞

= arg min
𝑞

𝛽𝛼,𝑞 (5.1)

for a fixed labeling budget 𝑛.

We will derive an optimal sampling distribution 𝑞* under the assumption that
the models incur different risks. If the null hypothesis does hold, the test statistic
is asymptotically normally distributed (see Equation 3.15), independently of the
choice of 𝑞. Hence, in the case of identical risks the choice of 𝑞(𝑥) does not
influence test results for large 𝑛.

Sackrowitz & Samuel-Cahn (1999) showed that the expected 𝑝-value equals the
expected power E𝛼∼𝒰(0,1) [𝛽𝛼,𝑞]. Hence, minimizing the type II error of a test that
compares 𝑅̂𝑛,𝑞[𝑓𝜃1 ] and 𝑅̂𝑛,𝑞[𝑓𝜃2 ] for any given confidence level 𝛼 is equivalent to
minimize the 𝑝-value in expectation over all samples of size 𝑛 governed by 𝑞(𝑥).

5.2 Maximizing the Power of a Statistical Test

We now turn towards the problem of deriving an optimal sampling distribution
𝑞* according to Equation 5.1. Our analysis considers the asymptotic case of
𝑛 → ∞, leading to a sampling distribution that is optimal if 𝑛 is sufficiently
large. Section 5.2.1 derives the asymptotically optimal sampling distribution.
Section 5.2.2 discusses the empirical sampling distribution in a pool-based setting
and presents the active model comparison algorithm.
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5.2.1 Asymptotically Optimal Sampling Distribution

Let Δ = 𝑅[𝑓𝜃1 ]−𝑅[𝑓𝜃2 ] denote the true risk difference, and assume Δ ̸= 0. Given
a confidence threshold 𝛼, the test power of a Wald test (see Equation 3.25) equals
the probability that the absolute value of the test statistic exceeds the critical
value 𝑧𝛼 = Φ−1(1− 𝛼

2 ). Asymptotically, it holds that

√
𝑛

Δ̂𝑛,𝑞 −Δ
𝜎𝑛,𝑞

∼ 𝒩 (0, 1).

Since 𝑆𝑛,𝑞 consistently estimates 𝜎𝑛,𝑞, it follows that the test statistic
√
𝑛

Δ̂𝑛,𝑞

𝑆𝑛,𝑞
is

normally distributed with mean
√

𝑛Δ
𝜎𝑛,𝑞

and unit variance,

√
𝑛

Δ̂𝑛,𝑞

𝑆𝑛,𝑞
∼ 𝒩

(︂√
𝑛Δ
𝜎𝑛,𝑞

, 1
)︂
. (5.2)

Equation 5.2 implies that the absolute value
√

𝑛|Δ̂𝑛,𝑞|
𝑆𝑛,𝑞

of the test statistic follows
a folded normal distribution 𝒩𝑓 (𝑥|𝜇, 𝜎2) with location parameter 𝜇 =

√
𝑛Δ

𝜎𝑛,𝑞
and

scale parameter 𝜎2 = 1. Thus, the test power can be approximated in terms of
the cumulative distribution of this folded normal distribution,

𝑝

(︃
2− 2Φ

(︃
√
𝑛
|Δ̂𝑛,𝑞|
𝑆𝑛,𝑞

)︃
≤ 𝛼

)︃
≈ 1−

∫︁ 𝑧𝛼

0
𝒩𝑓

(︂
𝑇

⃒⃒⃒⃒√
𝑛Δ
𝜎𝑛,𝑞

, 1
)︂

d𝑇, (5.3)

where

𝒩𝑓 (𝑇 |𝜇, 1) = 1√
2𝜋

exp
(︂
−1

2 (𝑇 + 𝜇)2
)︂

+ 1√
2𝜋

exp
(︂
−1

2 (𝑇 − 𝜇)2
)︂

denotes the density of a folded normal distribution with location parameter 𝜇
and scale parameter one. We define the shorthand

𝛽𝑛,𝑞 =
∫︁ 𝑧𝛼

0
𝒩𝑓

(︂
𝑇

⃒⃒⃒⃒√
𝑛Δ
𝜎𝑛,𝑞

, 1
)︂

d𝑇 (5.4)

for the approximation of the type II error and the test power 1 − 𝛽𝑛,𝑞 given
by Equation 5.3. In the following, we derive a sampling distribution minimiz-
ing 𝛽𝑛,𝑞, and thereby approximately solving the optimization problem given by
Equation 5.1.



5.2 Maximizing the Power of a Statistical Test 93

Theorem 5.1 (Optimal Sampling Distribution). Let Δ = 𝑅[𝑓1] − 𝑅[𝑓2] with
Δ ̸= 0 and 𝛿(𝑥, 𝑦) = ℓ(𝑓𝜃1(𝑥), 𝑦) − ℓ(𝑓𝜃2(𝑥), 𝑦). For all 𝛼 ∈ (0, 1), the sampling
distribution

𝑞*(𝑥) ∝ 𝑝(𝑥)

√︃∫︁
(𝛿(𝑥, 𝑦)−Δ)2

𝑝(𝑦|𝑥)d𝑦 (5.5)

asymptotically minimizes 𝛽𝑛,𝑞; that is, for any distribution 𝑞 ̸= 𝑞* it holds that
𝛽𝑛,𝑞 > 𝛽𝑛,𝑞* for sufficiently large 𝑛.

Before we prove Theorem 4.1, we show that a sampling distribution asymptot-
ically minimizes 𝛽𝑛,𝑞 if and only if it minimizes the asymptotic variance of the
estimator Δ̂𝑛,𝑞.

Lemma 5.1 (Variance Optimality). Let 𝑞, 𝑞′ denote two sampling distributions.
Then it holds that 𝛽𝑛,𝑞 < 𝛽𝑛,𝑞′ for sufficiently large 𝑛 if and only if

lim
𝑛→∞

𝑛Var(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
Δ̂𝑛,𝑞

]︁
< lim

𝑛→∞
𝑛Var(𝑥,𝑦)∼𝑞′(𝑥)𝑝(𝑦|𝑥)

[︁
Δ̂𝑛,𝑞′

]︁
. (5.6)

Proof. Let 𝛼 ∈ (0, 1) denote a confidence threshold, and let Δ = 𝑅[𝑓𝜃1 ]−𝑅[𝑓𝜃2 ] ̸=
0 denote the true risk difference. The quantity 𝛽𝑛,𝑞 (see Equation 5.4) only
depends on 𝑞 through 𝜎𝑛,𝑞. For sufficiently large 𝑛, 𝛽𝑛,𝑞 is a monotonically
increasing function of 𝜎𝑛,𝑞, because the partial derivative

𝜕

𝜕𝜎𝑛,𝑞
𝛽𝑛,𝑞 =

∫︁ 𝑧𝛼

0

1
2𝜋

(︂
𝑛Δ2

𝜎3
𝑛,𝑞

−
√
𝑛Δ
𝜎2

𝑛,𝑞

𝑇

)︂
·(︃

exp
(︃
−1

2

(︂
𝑇 +

√
𝑛Δ
𝜎𝑛,𝑞

)︂2)︃
+ exp

(︃
−1

2

(︂
𝑇 −

√
𝑛Δ
𝜎𝑛,𝑞

)︂2)︃)︃
d𝑇

is positive for large 𝑛. Let 𝑞 and 𝑞′ denote two arbitrary sampling distributions.
Since 𝜎2

𝑛,𝑞 = 𝑛Var(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)[Δ̂𝑛,𝑞],

lim
𝑛→∞

𝑛Var(𝑥,𝑦)∼𝑞(𝑥)𝑝(𝑦|𝑥)

[︁
Δ̂𝑛,𝑞

]︁
< lim

𝑛→∞
𝑛Var(𝑥,𝑦)∼𝑞′(𝑥)𝑝(𝑦|𝑥)

[︁
Δ̂𝑛,𝑞′

]︁
(5.7)

holds if and only if 𝜎𝑛,𝑞 < 𝜎𝑛,𝑞′ for sufficiently large 𝑛. Condition 5.7 is thus
equivalent to 𝛽𝑛,𝑞 < 𝛽𝑛,𝑞′ for sufficiently large 𝑛.

Lemma 5.1 shows that in order to solve the optimization problem given by Equa-
tion 5.1, we need to find the sampling distribution minimizing the asymptotic
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variance of the estimator Δ̂𝑛,𝑞. This asymptotic variance is characterized by the
following Lemma.

Lemma 5.2 (Asymptotic Variance). Let Δ̂𝑛,𝑞 = 𝑅̂𝑛,𝑞[𝑓𝜃1 ]− 𝑅̂𝑛,𝑞[𝑓𝜃2 ], and 𝜎2
𝑞 =

lim
𝑛→∞

𝑛Var[Δ̂𝑛,𝑞]. Then

𝜎2
𝑞 =

∫︁∫︁
𝑝(𝑥)2

𝑞(𝑥)2 (𝛿(𝑥, 𝑦)−Δ)2
𝑝(𝑦|𝑥)𝑞(𝑥)d𝑦 d𝑥,

where 𝛿(𝑥, 𝑦) = ℓ(𝑓𝜃1(𝑥), 𝑦)− ℓ(𝑓𝜃2(𝑥), 𝑦).

The proof follows from Lemma 3.1 with loss function 𝛿(𝑥, 𝑦). We now prove
Theorem 5.1 by deriving the distribution 𝑞* minimizing the asymptotic variance
as given by Lemma 5.2.

Proof of Theorem 5.1. According to Lemma 5.1 and Lemma 5.2, the distribu-
tion 𝑞* asymptotically minimizing 𝛽𝑛,𝑞 can be derived by minimizing the func-
tional 𝜎2

𝑞 given by Lemma 5.2 in 𝑞 under the constraint
∫︀
𝑞(𝑥)d𝑥 = 1. Following

the proof of Theorem 4.1 with

𝑐(𝑥) = 𝑝(𝑥)2
∫︁

(𝛿(𝑥, 𝑦)−Δ)2
𝑝(𝑦|𝑥)d𝑦

the optimal sampling distribution which asymptotically minimizes the type II er-
ror or, equivalently, maximizes the power of a two-sided Wald test that compares
the risk of two predictive models 𝑓𝜃1 , 𝑓𝜃2 is given by

𝑞*(𝑥) =
𝑝(𝑥)

√︂∫︁
(𝛿(𝑥, 𝑦)−Δ)2

𝑝(𝑦|𝑥)d𝑦∫︁
𝑝(𝑥)

√︂∫︁
(𝛿(𝑥, 𝑦)−Δ)2

𝑝(𝑦|𝑥)d𝑦d𝑥

This proves the claim.

Intuitively, the sampling distribution 𝑞*(𝑥) highlights disagreements between the
models; it prefers instances for which the difference in performance 𝛿(𝑥, 𝑦) is ex-
pected to be high if Δ will be small. We will now derive the optimal sampling
for two standard loss functions.
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Corollary 5.1 (Optimal Sampling for Zero-One Loss). Let ℓ = ℓ0/1 be the zero-
one loss for a binary prediction problem with label space 𝒴 = {0, 1}. The optimal
sampling distribution that minimizes 𝛽𝑛,𝑞 resolves to

𝑞*(𝑥) ∝ 𝑝(𝑥)

⎧⎪⎪⎨⎪⎪⎩
√︀

1− 2Δ(1− 2𝑝(𝑦 = 1|𝑥)) + Δ2, if 𝑓𝜃1(𝑥) > 𝑓𝜃2(𝑥)√︀
1 + 2Δ(1− 2𝑝(𝑦 = 1|𝑥)) + Δ2, if 𝑓𝜃1(𝑥) < 𝑓𝜃2(𝑥)

|Δ|, if 𝑓𝜃1(𝑥) = 𝑓𝜃2(𝑥).

Proof. Rewriting the result of Theorem 5.1 in a classification setting, we obtain

𝑞*(𝑥) ∝ 𝑝(𝑥)
√︃∑︁

𝑦∈𝒴
(ℓ(𝑓𝜃1(𝑥), 𝑦)− ℓ(𝑓𝜃2(𝑥), 𝑦)−Δ)2

𝑝(𝑦|𝑥)d𝑦

= 𝑝(𝑥)
√︃∑︁

𝑦∈𝒴

(︁
(𝑓𝜃1(𝑥)− 𝑦)2 − (𝑓𝜃1(𝑥)− 𝑦)2 − Δ̌

)︁2
𝑝(𝑦|𝑥)d𝑦

= 𝑝(𝑥)
(︁

(𝑓𝜃1(𝑥)− 𝑓𝜃2(𝑥))2

− 2Δ (𝑓𝜃1(𝑥)− 𝑓𝜃2(𝑥)) (1− 2𝑝(𝑦 = 1|𝑥)) + Δ2
)︁ 1

2
. (5.8)

Equation 5.8 expands the zero-one loss, exploiting ℓ(𝑦, 𝑦′) = (𝑦 − 𝑦′)2 for 𝑦, 𝑦′ ∈
{0, 1}. The claim follows by case differentiation according to the value of 𝑓𝜃1(𝑥)
and 𝑓𝜃2(𝑥).

In the following, we derive the optimal sampling distribution for regression prob-
lems and a squared loss function. In analogy to the task of evaluating a single
model (see Chapter 4) we assume Gaussian distributed label noise:

Corollary 5.2 (Optimal Sampling for Squared Loss). Let ℓ = ℓ2 be the squared
loss and let the observed label 𝑦 be normally distributed 𝑝(𝑦|𝑥) = 𝒩 (𝑦|𝜇𝑥, 𝜎

2
𝑥) with

label variance 𝜎2
𝑥 at instance 𝑥. The sampling distribution that minimizes 𝛽𝑛,𝑞

resolves to

𝑞*(𝑥) ∝ 𝑝(𝑥)
√︁

4𝑓1(𝑥)2 (𝜇2
𝑥 + 𝜎2

𝑥)− 4𝑓1(𝑥)(𝑓2(𝑥)−Δ)𝜇𝑥 + (𝑓2(𝑥)−Δ)2, (5.9)

where 𝑓𝑘(𝑥) = 𝑓𝜃1(𝑥)𝑘 − 𝑓𝜃2(𝑥)𝑘.

Proof. Rewriting the result of Theorem 5.1 in a regression setting with squared
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loss, we obtain

𝑞*(𝑥) ∝ 𝑝(𝑥)

√︃∫︁ (︁
(𝑓𝜃1(𝑥)− 𝑦)2 − (𝑓𝜃2(𝑥)− 𝑦)2 − Δ̌

)︁2
𝑝(𝑦|𝑥)d𝑦

= 𝑝(𝑥)
(︂

4𝑓1(𝑥)2
∫︁
𝑦2𝑝(𝑦|𝑥)d𝑦

−4𝑓1(𝑥)
(︀
𝑓2(𝑥)−Δ

)︀ ∫︁
𝑦𝑝(𝑦|𝑥)d𝑦 + (𝑓2(𝑥)−Δ)2

)︂ 1
2

(5.10)

Equation 5.10 expands the loss function, orders terms by decreasing order of 𝑦,
and makes use of the abbreviation 𝑓𝑘(𝑥) = 𝑓𝜃1(𝑥)𝑘 − 𝑓𝜃2(𝑥)𝑘. Then, the claim
follows by observing that the two integrals over 𝒴 are sums of the raw moments∫︁

𝑦 𝑝(𝑦|𝑥)d𝑦 = 𝜇𝑥,∫︁
𝑦2𝑝(𝑦|𝑥)d𝑦 = 𝜇2

𝑥 + 𝜎2
𝑥

of the Gaussian distribution 𝑝(𝑦|𝑥) = 𝒩 (𝑦|𝜇𝑥, 𝜎
2
𝑥).

5.2.2 Empirical Sampling Distribution

The optimal sampling distribution prescribed by Theorem 5.1 depends on the
unknown quantities 𝑝(𝑥) and 𝑝(𝑦|𝑥). In this section, we focus again on pool-
based settings in which instances can be sampled from a large pool 𝐷𝑚 of 𝑚
unlabeled test instances drawn from 𝑝(𝑥); we approximate 𝑝(𝑥) by the empirical
sampling distribution 𝑝(𝑥) defined over 𝐷𝑚 (see Equation 2.29). In the following,
we discuss different approximations of the true conditional distribution 𝑝(𝑦|𝑥)
for ℓ = ℓ0/1 and ℓ = ℓ2.

In Chapter 4, we have studied the problem of evaluating the risk of a single
model as accurately as possible. We observed that approximating the condi-
tional distribution by the predictive distribution of the model being evaluated,
can lead to more accurate risk estimates than risk estimation based on a uni-
formly drawn sample. This approximation can be transferred in a natural way
to the task of comparing two predictive models. We use the competing predic-
tive models 𝑝(𝑦|𝑥; 𝜃1) and 𝑝(𝑦|𝑥; 𝜃2), and assume a mixture distribution 𝑝(𝑦|𝑥; 𝜃)
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Figure 5.1: Heatmap of the sampling distribution with Δ̌ = 0.2 when comparing
the error rate of two models as a function of the predictive distributions of the
competing models (left). Heatmap of the sampling distribution when comparing
two regression models as a function of the variance of an instance 𝜏2

𝑥 and the
deviation of the models’ predictions |𝛿(𝑥)| (right).

giving equal weight to the models 𝜃1 and 𝜃2:

𝑝(𝑦|𝑥) ≈ 𝑝(𝑦|𝑥; 𝜃)

= 1
2𝑝(𝑦|𝑥; 𝜃1) + 1

2𝑝(𝑦|𝑥; 𝜃2). (5.11)

Note that any convex combination of the predictive distributions can be chosen.
In particular, one can think of procedures to optimize the mixture weights during
the evaluation process, as for example, by a maximum a posteriori estimate of
the weights using a beta prior. However, see the discussion in Chapter 7 about
difficulties arising from refining the instrumental distribution.

Finally, Theorem 5.1 depends on the true difference of risks Δ = 𝑅[𝑓𝜃1 ]−𝑅[𝑓𝜃2 ].
Straightforwardly, this risk difference is replaced by a difference Δ̌ of introspective
risks calculated from Equation 3.1, where the integral over 𝒳 is replaced by a
sum over the pool, 𝑝(𝑥) ≈ 𝑝(𝑥), and 𝑝(𝑦|𝑥) is approximated by Equation 5.11:

Δ̌ = 1
𝑚

∑︁
𝑥∈𝐷

∫︁
𝛿(𝑥, 𝑦)𝑝(𝑦|𝑥; 𝜃)d𝑦. (5.12)

Recall that these approximations do not introduce any asymptotic bias: as long
as 𝑝(𝑥) > 0 implies 𝑞(𝑥) > 0, the estimates given by Equation 3.11 and Equa-
tion 3.21 are consistent (see Section 3.1).

When 𝑝(𝑦|𝑥) is approximated by 𝑝(𝑦|𝑥; 𝜃) and Δ by the intrinsic difference Δ̌,
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Corollary 5.1 gives immediately rise to a computable distribution for comparing
models with respect to the zero-one loss:

𝑞*(𝑥) ∝ 𝑝(𝑥)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√︁

1− 2Δ̌(1− 2𝑝(𝑦 = 1|𝑥; 𝜃)) + Δ̌2, if 𝑓𝜃1(𝑥) > 𝑓𝜃2(𝑥)√︁
1 + 2Δ̌(1− 2𝑝(𝑦 = 1|𝑥; 𝜃)) + Δ̌2, if 𝑓𝜃1(𝑥) < 𝑓𝜃2(𝑥)

|Δ̌|, if 𝑓𝜃1(𝑥) = 𝑓𝜃2(𝑥)

Figure 5.1 (left) shows 𝑞* as a function of the predictive distributions 𝑝(𝑦|𝑥; 𝜃𝑖)
for Δ̌ = 0.2, meaning that 𝑓𝜃2 is intrinsically more accurate. It gives highest
preference to instances on which the apparently better model 𝑝(𝑦|𝑥; 𝜃2) ≈ 0.5
is uncertain and on which the inferior model is certain about the corresponding
label. Instances on which the models agree (𝑓𝜃1(𝑥) = 𝑓𝜃2(𝑥)) are rarely chosen;
they are drawn proportionally to the value of the intrinsic difference. Alterna-
tively, an uninformative approximation 𝑝(𝑦 = 1|𝑥) ≈ 0.5 can be used. In this
case, the intrinsic risk difference Δ̌ is zero:

Δ̌ = 1
𝑚

∑︁
𝑥∈𝐷

∑︁
𝑦∈𝒴

(︀
ℓ0/1(𝑓𝜃1(𝑥), 𝑦)− ℓ0/1(𝑓𝜃2(𝑥), 𝑦)

)︀ 1
|𝒴|

= 1
𝑚

1
|𝒴|

∑︁
𝑥∈𝐷

⎛⎝∑︁
𝑦∈𝒴

[[𝑓𝜃1(𝑥) ̸= 𝑦]]−
∑︁
𝑦∈𝒴

[[𝑓𝜃2(𝑥) ̸= 𝑦]]

⎞⎠
= 0

and thus the sampling distribution given by Corollary 5.1 degenerates to uni-
form sampling from the subset of the pool where 𝑓𝜃1(𝑥) ̸= 𝑓𝜃2(𝑥). We denote
this baseline as active ̸=. Note that active ̸= yields an estimator Δ̂𝑛,𝑞 that is con-
sistent only on the subset of instances for which the models disagree. However, a
consistent estimator for the overall difference in risks is obtained by multiplying
Δ̂𝑛,𝑞 with the fraction of pool instances for which 𝑓𝜃1(𝑥) ̸= 𝑓𝜃2(𝑥).

In order to apply the mixture model assumption (see Equation 5.11) to re-
gression problems with a squared loss function (see Corollary 5.2), we assume
that the predictive distributions 𝑝(𝑦|𝑥; 𝜃1) = 𝒩 (𝑦|𝑓𝜃1(𝑥), 𝜏2

𝑥,1) and 𝑝(𝑦|𝑥; 𝜃2) =
𝒩 (𝑦|𝑓𝜃2(𝑥), 𝜏2

𝑥,2) are Gaussian. Since the 𝑘-th raw moments of the mixture dis-
tribution (see Equation 5.11) are given by

E𝑦∼𝑝(𝑦|𝑥;𝜃)
[︀
𝑦𝑘|𝑥

]︀
= 1

2
(︀
E𝑦∼𝑝(𝑦|𝑥;𝜃1)

[︀
𝑦𝑘|𝑥

]︀
+ E𝑦∼𝑝(𝑦|𝑥;𝜃2)

[︀
𝑦𝑘|𝑥

]︀)︀
,
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the empirical sampling distribution can be obtained by substituting

E𝑦∼𝑝(𝑦|𝑥) [𝑦|𝑥] = 𝜇𝑥 ≈ 1
2 (𝑓𝜃1(𝑥) + 𝑓𝜃2(𝑥)) (5.13)

E𝑦∼𝑝(𝑦|𝑥)
[︀
𝑦2|𝑥

]︀
= 𝜇2

𝑥 + 𝜎2
𝑥 ≈

1
2
(︀
𝑓𝜃1(𝑥)2 + 𝑓𝜃2(𝑥)2 + 𝜏2

𝑥,1 + 𝜏2
𝑥,2
)︀

into Equation 5.9. Then, the introspective risk difference Δ̌ defined by Equa-
tion 5.12 is zero: In Equation 5.14, we expand the squares and observe that the
integral term reduces to the expectation of 𝑦. Finally, we insert the approxima-
tion given by Equation 5.13 (see Equation 5.15) and expand the product.

Δ̌ = 1
𝑚

∑︁
𝑥∈𝐷

∫︁
(𝑓𝜃1(𝑥)− 𝑦)2 − (𝑓𝜃2(𝑥)− 𝑦)2𝑝(𝑦|𝑥; 𝜃)d𝑦

= 1
𝑚

∑︁
𝑥∈𝐷

(︀
𝑓𝜃1(𝑥)2 − 𝑓𝜃2(𝑥)2 − 2(𝑓𝜃1(𝑥)− 𝑓𝜃2(𝑥))E𝑦∼𝑝(𝑦|𝑥;𝜃) [𝑦]

)︀
(5.14)

= 1
𝑚

∑︁
𝑥∈𝐷

(︀
𝑓𝜃1(𝑥)2 − 𝑓𝜃2(𝑥)2 − (𝑓𝜃1(𝑥)− 𝑓𝜃2(𝑥))(𝑓𝜃1(𝑥) + 𝑓𝜃2(𝑥))

)︀
(5.15)

= 0.

Thus, the sampling distribution that asymptotically minimizes 𝛽𝑛,𝑞 in a pool
based-setting resolves to

𝑞*(𝑥) ∝
√︁
𝑓1(𝑥)2

(︀
𝑓1(𝑥)2 + 2

(︀
𝜏2

𝑥,1 + 𝜏2
𝑥,2
)︀)︀

for all 𝑥 ∈ 𝐷, where again 𝑓𝑘(𝑥) = 𝑓𝜃1(𝑥)𝑘 − 𝑓𝜃2(𝑥)𝑘. Figure 5.1 (right)
shows 𝑞*(𝑥). It prefers instances with high variance and instances on which
the predictions of the models differ strongly.

Typically, the variances 𝜏2
𝑥,𝑗 of the predictive distribution at instance 𝑥 would

be available from a probabilistic predictor such as a Gaussian process (see Sec-
tion 2.2). If only predictive values 𝑓𝜃𝑗

(𝑥) but no predictive distribution is avail-
able, we cannot estimate the instance-specific label variance 𝜏2

𝑥 = 𝜏2
𝑥,1 + 𝜏2

𝑥,2. In
this case, two simplified instances of Equation 5.9 can be considered. Firstly,
we can assume peaked predictive distributions with 𝜏2

𝑥 → 0. In this case, Equa-
tion 5.9 reduces to

𝑞(𝑥) ∝ (𝑓𝜃1(𝑥)− 𝑓𝜃2(𝑥))2
.

Secondly, we can assume infinitely broad predictive distributions with 𝜏2
𝑥 → ∞,
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Algorithm 3: Active Model Comparison
input Models 𝑓𝜃1 , 𝑓𝜃2 with distributions 𝑝(𝑦|𝑥; 𝜃1), 𝑝(𝑦|𝑥; 𝜃2); pool 𝐷𝑚,

labeling budget 𝑛.
1: Compute sampling distribution 𝑞* (Corollary 5.1 or 5.2) using the mixture

distribution 𝑝(𝑦|𝑥; 𝜃) given by Equation 5.11.
2: for 𝑖 = 1, . . . , 𝑛 do
3: Draw 𝑥𝑖 ∼ 𝑞*(𝑥) from 𝐷𝑚 with replacement.
4: Query label 𝑦𝑖 ∼ 𝑝(𝑦|𝑥𝑖) from oracle.
5: end for
6: Compute 𝑅̂𝑛,𝑞[𝑓𝜃1 ] and 𝑅̂𝑛,𝑞[𝑓𝜃2 ] (see Equation 3.11).
7: Determine 𝑓* ← arg min𝑓∈{𝑓𝜃1 ,𝑓𝜃2 } 𝑅̂𝑛,𝑞[𝑓 ]
8: Compute 𝑝-value for sample (see Equation 3.24)

output 𝑓*, 𝑝-value.

leading to

𝑞(𝑥) = lim
𝜏→∞

√︁
𝑓1(𝑥)2

(︀
𝑓1(𝑥)2 + 2𝜏2

)︀
∑︀

𝑥∈𝐷

√︁
𝑓1(𝑥)2

(︀
𝑓1(𝑥)2 + 2𝜏2

)︀
=

√︁
lim𝜏→∞

𝑓1(𝑥)4

2𝜏2 + 𝑓1(𝑥)2∑︀
𝑥∈𝐷

√︁
lim𝜏→∞

𝑓1(𝑥)4

2𝜏2 + 𝑓1(𝑥)2

∝ |𝑓𝜃1(𝑥)− 𝑓𝜃2(𝑥)|.

We refer to these baselines as active0 and active∞.

Algorithm 3 summarizes the active model comparison algorithm. It samples 𝑛
instances with replacement from the pool according to the distribution prescribed
by Corollary 5.1 (for zero-one loss) and 5.2 (for squared loss), respectively, using
the predictive distribution 𝑝(𝑦|𝑥; 𝜃). Labels are queried for these instances. In
analogy to Algorithm 2, labels of previously drawn instances can be looked up
rather than be queried repeatedly if the labeling process is deterministic.

5.3 Comparing Multiple Prediction Models

So far we have focused on the problem of comparing the risks of two predictive
models. If multiple models are available, standard generalizations of the Wald
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test such as ANOVA or the Tukey test (see Section 5.3) can be conducted. They
try to reject the null hypothesis that the risks of all competing models are equal.
This could occur if only one of the models performs clearly worst. Hence, rejec-
tion of the null hypothesis does not imply that all empirically observed differences
are significant. Choosing a sampling distribution 𝑞(𝑥) that maximizes the power
of such a test would thus not appropriately reflect the objectives of the empirical
evaluation. However, researchers often resort to pairwise hypothesis testing when
comparing multiple prediction models. Accordingly, we derive a heuristic sam-
pling distribution for the comparison of multiple models 𝜃1, ...,𝜃𝑘 as a mixture
of pairwise-optimal sampling distributions,

𝑞*(𝑥) = 1
𝑘(𝑘 − 1)

∑︁
𝑖̸=𝑗

𝑞*
𝑖,𝑗(𝑥), (5.16)

where 𝑞*
𝑖,𝑗 denotes the optimal distribution for comparing the models 𝜃𝑖 and

𝜃𝑗 given by Theorem 4.1. When comparing multiple models, we replace Equa-
tion 5.11 by a mixture over all models 𝜃1, ...,𝜃𝑘.

Learning a predictive model can be thought of as a search through the hypothesis
space with the aim of finding the model with lowest risk. Intuitively, this can
be done by comparing all hypothesis with respect to their risks estimated from
a set of labeled instances. If no labeled instances are available, active learning
strategies allow an label-efficient exploration; the underlying problem of active
learning resembles active comparison with an infinite number of models. The
heuristic sampling distribution given by Equation 5.16 is a mixture of asymptot-
ically pairwise-optimal distributions giving equal weight to each model. In the
case of an infinitive model space a posterior distribution 𝑝(𝜃|𝑇𝑛) can be used
to weight the pairwise optimal sampling distribution by the probability of the
model after observing a labeled data set 𝑇𝑛 and, thus, give higher preference
to instances that highlight differences between models with lower risk. A sam-
pling distribution to comparing infinitely many models 𝜃 ∼ 𝑝(𝜃|𝑇𝑛) can then be
defined as

𝑞*(𝑥) =
∫︁∫︁

𝑞*
𝜃,𝜃̄

(𝑥)𝑝(𝜃|𝑇𝑛)d𝜃 𝑝(𝜃̄|𝑇𝑛)d𝜃̄, (5.17)

where 𝑞*
𝜃,𝜃̄

denotes the optimal distribution for comparing the models 𝜃 and 𝜃̄

given by Theorem 5.1.

To implement the sampling distribution we need to approximate the unknown
quantities 𝑝(𝑥) and 𝑝(𝑦|𝑥) (see Section 5.2.2). When the conditional distribution
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𝑝(𝑦|𝑥) ≈ 1
|𝒴| is approximated by an uniform distribution in the case of ℓ = ℓ0/1,

Equation 5.17 reduces to

𝑞*(𝑥) ∝
∫︁∫︁

[[𝑓𝜃̄(𝑥) ̸= 𝑓𝜃(𝑥)]]𝑝(𝜃|𝑇𝑛)d𝜃 𝑝(𝜃̄|𝑇𝑛)d𝜃̄ (5.18)

in a pool-based setting. The integral in Equation 5.18 is generally intractable.
One approach to approximate the sampling distribution is to sample a set of
models from the posterior distribution 𝑝(𝜃|𝑇𝑛). The proportion of disagreements
between the models on each instance 𝑥 ∈ 𝐷𝑚 serves as selection criterion for
the next instance to label. If the set of labeled instances 𝑇𝑛 is progressively be
used to update the posterior distribution, this procedure equals the query by
committee algorithm discussed in Section 2.3.1.

For regression, consider the simplified instance of Theorem 4.1 which assumes
an infinitely broad predictive distribution. In this case, the optimal sampling
distribution given by Equation 5.17 reduces to

𝑞*(𝑥) ∝
∫︁∫︁

(𝑓𝜃̄(𝑥)− 𝑓𝜃(𝑥))2
𝑝(𝜃|𝑇𝑛)d𝜃 𝑝(𝜃̄|𝑇𝑛)d𝜃̄

= 2
∫︁
𝑓𝜃(𝑥)2𝑝(𝜃|𝑇𝑛)d𝜃 − 2

(︂∫︁
𝑓𝜃(𝑥)𝑝(𝜃|𝑇𝑛)d𝜃

)︂2

= 2 Var𝜃∼𝑝(𝜃|𝑇𝑛) [𝑓𝜃(𝑥)]
∝ 𝜏2

𝑥 − 𝜎2
𝜀 . (5.19)

Equation 5.19 prefers instances with high variance of the predictions and ignores
the uncertainty which is caused by the label variance. This sampling distribu-
tion resembles the selection criterion of uncertainty sampling for regression (see
Section 2.3.1).

5.4 Empirical Results

We study the empirical behavior of active comparison (Algorithm 3, labeled ac-
tive in all diagrams) relative to a risk comparison based on a test sample drawn
uniformly from the pool (labeled passive) and the baselines active0, active∞,
and active ̸= discussed in Section 5.2.2. We also include the active risk esti-
mator presented in Chapter 4 in our study, which infers optimal sampling dis-
tributions 𝑞*

1 and 𝑞*
2 for individually estimating the risks of the models with
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Figure 5.2: Model selection error over labeling costs for comparison of two pre-
diction models (left and center) and comparison of multiple prediction models
(right). Error bars indicate the standard error.

parameters 𝜃1 and 𝜃2. Test instances are sampled from a mixture distribu-
tion 𝑞*(𝑥) = 1

2𝑞
*
1(𝑥) + 1

2𝑞
*
2(𝑥) (labeled activerisk). When studying classification,

we also include the active learning algorithms A2 (Balcan et al., 2006) and
IWAL (Beygelzimer et al., 2009) as baselines by using them to sample test in-
stances. Their model space is the set of predictive models that are to be com-
pared. The confidence parameter of the active learning baselines A2 and IWAL
is set to 𝛿 = 0.05, corresponding to a 95% confidence of the corresponding finite-
sample error bound (for A2 we use the Chernoff bound).

We again conduct experiments on the two classification domains and the two
regression domains described in Section 4.4. Specifically, in the digit recognition
problem logistic regression models with linear kernels against RBF kernels are
compared; for Sarcos and Abalone we study whether a Gaussian process model
with linear kernel or with Matérn kernel (see Equation 2.28) is preferable. In
each domain, two differing models are trained on a randomly selected set of 500
instances; the remaining data serve as the pool of unlabeled test instances used to
compare the models. Using non-linear kernels in spam filtering domain is uncom-
mon, we instead compare models that differ in the recency of their training data.
Specifically, we compare a logistic regression model trained on 5,000 randomly
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sampled messages received between June 2007 and October 2007 to a logistic
regression model trained on 5,000 randomly sampled messages received between
December 2007 and April 2008. Emails received after April 2008 constitute the
pool of test instances. In these four domains we average the evaluation results
over ten pairs of models. Additionally, we study the following object recognition
domain.

Object Recognition Domain. In this domain, the prediction task is to de-
cide whether a given image contains a car (positive class) or not (negative
class). Using Google Image Search, we built a corpus of 4,560 images; ap-
proximately 50% of the images belong to the positive class. For building the
detection models, we follow a bag-of-visual-words approach. First, interest
points are identified for all images, and SIFT features (Lowe, 2004) at the
interest points are computed. Second, a visual vocabulary is built by clus-
tering all SIFT features using 𝑘-means. Third, images are encoded as real
vectors with one feature per cluster; a feature indicates how many interest
points in the image fall into the corresponding cluster. Logistic regres-
sion models are trained on the resulting feature representation. We train
12 detection models that result from varying the interest point detection
method (Harris & Stephens, 1988; Canny, 1986; Förstner & Gülch, 1987)
and the size of the visual vocabulary 𝑘 ∈ {50, 100, 500, 1000}. Additionally,
we train a detection model based on SURF interest point detection (Bay
et al., 2008) and a pyramid matching kernel, using the LIBPMK toolkit de-
scribed by Lee (2008). The 13 models are trained on approximately 10% of
the available images, the remaining images constitute the pool of unlabeled
test examples on which the models are compared.

Our evaluation specifically addresses two main aspects. In Section 5.4.1 we eval-
uate how often the model with lower risk is correctly identified, as a function of
the labeling budget 𝑛. In Section 5.4.2, we evaluate how often the correspond-
ing paired test is unable to reject the null hypothesis although the models differ
(Type II error), and how often a false-positive result is obtained under the null
hypothesis (Type I error). Results are averaged over 5,000 repetitions of the
evaluation process.
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Figure 5.3: Model selection error over labeling costs in the object recognition
domain (left). Average 𝑝-value over labeling costs 𝑛 for Sarcos (center) and
Abalone (right). Error bars indicate the standard error.

5.4.1 Identifying the Model With Lower Risk

We measure model selection error, defined as the fraction of experiments in which
an evaluation method wrongly identifies the model with lower true risk. The
true risk is taken to be the risk over all test instances in the pool. Figure 5.2
(left and center) shows that for the comparison of two models active results
in significantly lower model selection error than passive, or, equivalently, saves
between 70% and 90% of labeling effort. Differences between active and the
simplified variants active0, active∞, and active ̸= are marginal. These variants
do not require an estimate of 𝑝(𝑦|𝑥) by the predictive distributions 𝑝(𝑦|𝑥; 𝜃𝑗),
thus the method is applicable even if no predictive distributions are available or
such an estimate would be very uncertain because of a shift between the training
and test distributions. The active learning algorithms A2 and IWAL applied to
the model space {𝑓𝜃1 , 𝑓𝜃1} coincide with active ̸=, as can be seen from inspection
of Algorithm 1 in the paper by Balcan et al. (2006) and IWAL and Algorithms
1 and 2 in the paper by Beygelzimer et al. (2009); we omit these baselines for
clarity reasons.

Figure 5.2 (right) shows results for the heuristic to compare multiple models
given by Equation 5.16. Here, five differing models are trained using polynomial
kernels of degree 𝑑 ∈ {1, 2, 3, 4, 5}. We again observe that active outperforms pas-
sive, saving between 60% and 85% of labeling effort. In the object recognition
domain, active saves approximately 70% of labeling effort compared to passive.
A2 and IWAL outperform passive but are less accurate than active (see Fig-
ure 5.3, left). In our experiments we observe that the finite-sample bounds of A2

and IWAL are quite loose. Hence, in principal, both methods reduce to passive
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Figure 5.4: True-positive significance rate for different test levels 𝛼 (left). False-
positive significance rate over test level 𝛼 (center) and labeling costs 𝑛 (right).
Dashed line indicates perfect calibration and error bars indicate the standard
error.

applied to the subset {𝑥 ∈ 𝐷𝑚|∃𝑖, 𝑗 : 𝑓𝜃𝑖
(𝑥) ̸= 𝑓𝜃𝑗

(𝑥)} of the pool 𝐷𝑚. In con-
trast, active ̸= is based on a mixture distribution, from which instances are drawn
proportional to the degree of disagreement among the models. The savings for
active over active ̸= are only slightly higher. This is intuitive, since the corre-
sponding sampling distribution are similar (see Figure 5.1, left); they coincide
for Δ̌→ 0.

5.4.2 Significance Testing: Type I and II Errors

Each comparison method returns the model with lower empirical risk and the
𝑝-value of a paired two-sided test, which constitutes a measure of confidence
for our decision to prefer the model with lower empirical risk. We now study
how often a comparison method is able to reject the null hypothesis that two
predictive models incur identical risks, and the calibration of the resulting 𝑝-
values. For the evaluation method active 𝑝-values are computed according to the
Wald test for weighted test samples discussed in Section 3.2 (see Equation 3.24).
For the evaluation method passive that draws an unweighted sample of test
instances we use the more standard 𝑡-test. For classification, the method active ̸=
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Table 5.1: Incurred labeling costs, true-positive significance rate, and false deci-
sion rate for a protocol of drawing test instances until significance of 𝛼 = 0.05 is
obtained or the labeling budget of 𝑛 = 800 is exhausted.

active active∞ active0 activerisk passive

Abalone
labeling costs 362.35 390.24 395.36 484.79 544.74
significance 82.56% 80.16% 76.57% 66.10% 52.39%
false decisions 0.65% 0.73% 1.28% 1.78% 1.87%

Inverse
Dynamics

labeling costs 354.73 357.28 380.56 428.59 444.56
significance 79.51% 78.65% 75.10% 68.86% 66.10%
false decisions 1.17% 1.35% 1.82% 1.85% 2.32%

is equivalent to passive applied to the subset 𝐷̸= = {𝑥 ∈ 𝐷𝑚|𝑓𝜃1(𝑥) ̸= 𝑓𝜃2(𝑥)}
of the pool 𝐷𝑚 (see Section 5.2.2). Labeling effort is thus simply reduced by
a factor of |𝐷̸=|/|𝐷𝑚|. For regression, the analysis is less straightforward as
typically 𝐷̸= = 𝐷𝑚. In this section, we therefore focus on regression problems.

The 𝑝-value of a paired two-sided test constitutes a measure of confidence for the
decision to prefer the model with lower empirical risk. Figure 5.3 (center, right)
shows the average 𝑝-value for active and passive as a function of the labeling
budget 𝑛. Active comparison results in lower average 𝑝-values, in particular for
large 𝑛. Figure 5.4 (left) shows how often the active and passive comparison
methods are able to reject the null hypothesis that both models incur identical
risks, for different 𝛼-levels of the test and a labeling budget of 𝑛 = 800. The
true risk incurred by the prediction models 𝑓𝜃1 and 𝑓𝜃2 is never equal in these
experiments. We observe that active is able to reject the null hypothesis more
often and with a higher confidence. In the Abalone domain, active rejects the null
hypothesis at 𝛼 = 0.001 more often than passive is able to reject it at 𝛼 = 0.1.

In order to evaluate the Type I error of the tests based on active and passive
sampling, we also conduct experiments under the null hypothesis. The experi-
mental setup is changed such that whenever a new test instance 𝑥 is chosen and
the predictions 𝑦 = 𝑓𝜃1(𝑥) and 𝑦′ = 𝑓𝜃2(𝑥) are queried, we swap the predicted
labels 𝑦 and 𝑦′ with probability 0.5. This protocol guarantees that the expected
risks of 𝑓𝜃1 and 𝑓𝜃2 are identical. Figure 5.4 (center) shows the rate of false-
positive test results as a function of the 𝛼-level of the test for a labeling budget
of 𝑛 = 800. We observe that Type I errors are well calibrated for both tests, as
the false-positive rate stays below the (ideal) diagonal line. Figure 5.4 (right)
shows the false-positive rate for 𝛼 = 0.05 as a function of 𝑛. Both tests are
conservative for small 𝑛, and approach the expected false-positive rate of 0.05 as
𝑛 grows larger.
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We finally follow a protocol in which test instances are drawn and labeled until
a paired two-sided test indicates a significant difference between the risks of 𝑓𝜃1

and 𝑓𝜃2 at 𝛼 = 0.05, or the labeling budget of 𝑛 = 800 is exhausted. We do not
enforce the null hypothesis by swapping prediction labels; the true risk incurred
by the prediction models 𝑓𝜃1 and 𝑓𝜃2 is never equal. Note that due to the
repeated statistical testing carried out in this protocol, the resulting 𝑝-values will
not be correctly calibrated. Table 5.1 shows the average labeling costs incurred,
fraction of experiments in which a significance result is obtained, and the fraction
of experiments in which a significance result is obtained but the wrong model is
chosen (false decision rate). In both domains, active incurs the lowest average
labeling costs, obtains significance results most often, and has the lowest false
decision rate.

5.5 Summary and Related Work

In this chapter, we studied a setting in which two predictive models have to be
compared at minimal labeling costs using test instances that can be selected from
a large pool of unlabeled test data. Typically, a statistical test is used to measure
how confidently the decision to prefer the apparently better model can be made.
We have derived an active comparison procedure for regression and classifica-
tion tasks whose sampling distribution asymptotically maximizes the power or,
equivalently, minimizes the Type II error of a two-sided Wald test. The sampling
distribution intuitively gives preference to test instances on which the models
disagree strongly. The proposed method is directly applicable with probabilistic
models that provide a predictive distribution 𝑝(𝑦|𝑥; 𝜃). We also proposed two
simplified variants of the method that empirically perform almost as well and do
not require a predictive distribution 𝑝(𝑦|𝑥; 𝜃), and a heuristic generalization of
the optimal sampling distribution for comparing multiple prediction models. In
contrast to Chapter 4, in which we have studied active data acquisition strategies
for the assessment of an individual existing model, in terms of generalized risks,
the task was to assess the relative performance of two or more existing models,
without necessarily determining absolute risks precisely.

The active comparison problem that we have studied can be seen as an extreme
case of active learning, in which the model space contains only two (or, more
generally, a small number of) models. For the special case of classification with
zero-one loss and two models under study, a simplified version of the sampling
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distribution we have derived coincides with the sampling distribution used in
the A2 and IWAL active learning algorithms proposed by Balcan et al. (2006)
and Beygelzimer et al. (2009). For A2 and IWAL, the derivation of this distri-
bution is based on finite-sample complexity bounds, while in our approach, it is
based on maximizing the power of a statistical test comparing the models under
study. Furthermore, the latter approach has the advantage that it directly gen-
eralizes to regression problems. A further difference to active learning is that our
goal is not only to choose the best model, but also to obtain a well-calibrated
𝑝-value indicating the confidence with which this decision can be made. We have
discussed the relationship between existing active learning algorithms and our
approach in the case of an infinite number of models in Section 5.3.

Madani et al. (2004) study active model selection, where the goal is also to iden-
tify a model with lowest risk. The main difference to our approach is that in
their setting costs are associated with obtaining predictions 𝑦 = 𝑓(𝑥), while in
our setting costs are associated with obtaining labels 𝑦 ∼ 𝑝(𝑦|𝑥). Hoeffding
races (Maron & Moore, 1993) and sequential sampling algorithms (Scheffer &
Wrobel, 2003) perform efficient model selection by keeping track of risk bounds
for candidate models and removing models that are clearly outperformed from
consideration. The goal of these methods is to reduce computational complexity,
not labeling effort.

Empirically, we observed that the proposed active comparison method consis-
tently outperforms a traditional comparison based on a uniform sample of test
instances. Active comparison identifies the model with lower true risk more of-
ten, and is able to detect significant differences between the risks of two given
models more quickly. In the five experimental domains that we studied, per-
forming active comparison resulted in a saved labeling effort of between 60% and
over 90%. We also performed experiments under the null hypothesis that both
models incur identical risks, and verified that active comparison does not lead to
increased false-positive significance results.

In the next chapter, we study evaluation task in the ranking domain. In this
domain, performance measures have to assess a list of returned items rather
than a single label. Computing the optimal sampling strategy for evaluating and
comparing ranking functions can thus be challenging.





Chapter 6

Active Evaluation of
Ranking Functions

Evaluating the quality of ranking functions is a core task in web search and other
information retrieval domains. Because query distributions and item relevance
change over time, ranking models often cannot be evaluated accurately on held-
out training data. Instead, considerable effort is spent on manually labeling the
relevance of query results for test queries in order to track ranking performance.

The standard approach to evaluate a ranking function is to draw a random sam-
ple of test queries from 𝑝(𝑥), obtain relevance labels of all retrieved items for
each query, and compute average empirical performance. However, the results
in Chapter 4 and Chapter 5 indicate that estimation accuracy can be improved
by drawing test examples from an appropriately engineered instrumental dis-
tribution 𝑞(𝑥) rather than the data distribution 𝑝(𝑥), and correcting for the
discrepancy between 𝑝(𝑥) and 𝑞(𝑥) by importance weighting. In analogy to ac-
tive learning, this is carried out by first sampling a large pool of unlabeled data
from 𝑝(𝑥), and then actively sampling test instances from this pool. In this chap-
ter, we apply the principle of active evaluation to the problem of estimating the
performance of ranking functions. A crucial feature of ranking domains is that
labeling costs vary according to the number of result items and item-specific at-
tributes such as document length. This problem has been studied in Section 4.3.

Section 6.1 reviews ranking functions that are based on graded relevance and
presents two commonly used performance measures, namely, Discounted Cumu-
lative Gain (DCG) and Expected Reciprocal Rank (ERR). In Section 6.2, we de-
rive cost-optimal sampling distributions for DCG and ERR. For these measures
a naïve computation of the empirical sampling distribution is exponential in the
number of the retrieved items. We derive polynomial-time solutions by dynamic
programming. Section 6.3 presents empirical results and Section 6.4 concludes.
Results of this chapter has previously been published (Sawade et al., 2012a).



112 Chapter 6 | Active Evaluation of Ranking Functions

6.1 Ranking Functions and Measures

Let 𝒳 denote a space of queries, and 𝒵 denote a finite space of items. We study
ranking functions

r : 𝑥 ↦→
(︀
𝑟1(𝑥), . . . , 𝑟|r(𝑥)|(𝑥)

)︀T

that, given a query 𝑥 ∈ 𝒳 , return a list of |r(𝑥)| items 𝑟𝑖(𝑥) ∈ 𝒵 ordered by
relevance. Ranking performance of r is defined in terms of graded relevance
labels 𝑦𝑧 ∈ 𝒴 that represent the relevance of an item 𝑧 ∈ 𝒵 for the query 𝑥,
where 𝒴 ⊂ R is a finite space of relevance labels with minimum zero (irrelevant)
and maximum 𝑦𝑚𝑎𝑥 (perfectly relevant). We summarize the graded relevance of
all 𝑧 ∈ 𝒵 in a label vector y ∈ 𝒴𝒵 with components 𝑦𝑧 for 𝑧 ∈ 𝒵.

In order to evaluate the quality of a ranking r(𝑥) for a single query 𝑥, we consider
two commonly used ranking performance measures: discounted cumulative gain
(DCG), given by

ℓ𝑑𝑐𝑔 (r(𝑥),y) =
|r(𝑥)|∑︁
𝑖=1

𝜅𝑑𝑐𝑔

(︀
𝑦𝑟𝑖(𝑥), 𝑖

)︀
(6.1)

𝜅𝑑𝑐𝑔 (𝑦, 𝑖) = 2𝑦 − 1
log2(𝑖+ 1) ,

and expected reciprocal rank (ERR), given by

ℓ𝑒𝑟𝑟 (r(𝑥),y) =
|r(𝑥)|∑︁
𝑖=1

1
𝑖
𝜅𝑒𝑟𝑟

(︀
𝑦𝑟𝑖(𝑥)

)︀ 𝑖−1∏︁
𝑙=1

(1− 𝜅𝑒𝑟𝑟

(︀
𝑦𝑟𝑙(𝑥)

)︀
) (6.2)

𝜅𝑒𝑟𝑟 (𝑦) = 2𝑦 − 1
2𝑦𝑚𝑎𝑥

,

as introduced by Järvelin & Kekäläinen (2002) and Chapelle et al. (2009), re-
spectively.

DCG scores a ranking by summing over the relevance of all documents discounted
by their position in the ranking. ERR is based on a probabilistic user model: the
user scans a list of documents in the order defined by r(𝑥) and chooses the first
document that appears sufficiently relevant; the likelihood of choosing a docu-
ment 𝑧 is a function of its graded relevance score 𝑦𝑧. If 𝑠 denotes the position of
the chosen document in r(𝑥), then ℓ𝑒𝑟𝑟 (r(𝑥),y) is the expectation of the recipro-
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cal rank 1/𝑠 under the probabilistic user model. Both DCG and ERR discount
relevance with ranking position, ranking quality is thus most strongly influenced
by documents that are ranked highly. Alternatively, evaluation measures can be
truncated such that they only take into account the 𝑘 most highly ranked docu-
ments (Järvelin & Kekäläinen, 2002). Truncated measures are popular in mobile
applications where only a small number of documents can be presented to a user.

In contrast to the evaluation tasks studied in the previous chapters, the label
space in ranking domains is typically structured. Let 𝑝(𝑥,y) = 𝑝(𝑥)𝑝(y|𝑥) denote
the joint distribution over queries 𝑥 ∈ 𝒳 and label vectors y ∈ 𝒴𝒵 the model is
exposed to. We assume that the individual relevance labels 𝑦𝑧 for items 𝑧 are
drawn independently given a query 𝑥:

𝑝(y|𝑥) =
∏︁
𝑧∈𝒵

𝑝(𝑦𝑧|𝑥, 𝑧). (6.3)

This assumption is common in pointwise ranking approaches, e.g., regression
based ranking models (Cossock & Zhang, 2008; Mohan et al., 2011). The ranking
performance of r with respect to 𝑝(𝑥,y) can then be expressed as a risk

𝑅[r] =
∫︁∫︁

ℓ (r(𝑥),y) 𝑝(𝑥,y)d𝑥 dy, (6.4)

where ℓ ∈ {ℓ𝑑𝑐𝑔, ℓ𝑒𝑟𝑟} denotes the performance measure under study.

Recall that the joint distribution 𝑝(𝑥,y) is unknown; the ranking performance
can be estimated either by an empirical average 𝑅̂𝑛 (see Equation 3.8) over a
set of test queries 𝑥1, ..., 𝑥𝑛 and graded relevance labels y1, ...,y𝑛 drawn i.i.d.
from 𝑝(𝑥,y) or by a set of instances drawn according to an instrumental distri-
bution 𝑞(𝑥). In the latter case, a consistent estimator 𝑅̂𝑛,𝑞 can be defined by
Equation 3.11. For certain choices of the sampling distribution 𝑞(𝑥), 𝑅̂𝑛,𝑞 may
be a more label-efficient estimator of the true performance 𝑅 than 𝑅̂𝑛.

We assume that drawing unlabeled data 𝑥 ∼ 𝑝(𝑥) from the true distribution of
queries the model is exposed to is inexpensive, whereas obtaining relevance labels
is costly. In the ranking domain, costs for acquiring each label are associated with
the number of items |r(𝑥)| returned by r and possibly item-specific features such
as the length of a document whose relevance has to be determined; the labeling
costs may vary over the queries 𝑥 ∈ 𝒳 . The labeling costs for a query 𝑥 are
denoted by 𝜆(𝑥). We assume that 𝜆(𝑥) is bounded away from zero by 𝜆(𝑥) ≥
𝜖 > 0. In this chapter, we are pursuing two objectives. Our first goal is to



114 Chapter 6 | Active Evaluation of Ranking Functions

minimize the deviation of 𝑅̂𝑛,𝑞 from 𝑅 with respect to the ranking measures
DCG and ERR under the constraint that expected overall labeling costs stay
below a budget Λ ∈ R:

(𝑞*, 𝑛*) = arg min
𝑞,𝑛

E(𝑥,y)∼𝑞(𝑥)𝑝(y|𝑥)

[︂(︁
𝑅̂𝑛,𝑞 −𝑅

)︁2
]︂
, (6.5)

s.t. E𝑥∼𝑞(𝑥)

[︃
𝑛∑︁

𝑖=1
𝜆(𝑥𝑖)

]︃
≤ Λ.

A second task, which is of particular interest in practice, is to estimate the relative
performance of two ranking models; for instance, in order to evaluate the result of
an index update or the integration of novel sources of training data. To estimate
relative performance of two ranking functions r1 and r2 as cost-efficiently as
possible, Equation 6.5 can be replaced by

(𝑞*, 𝑛*) = arg min
𝑞,𝑛

E(𝑥,y)∼𝑞(𝑥)𝑝(y|𝑥)

[︂(︁
Δ̂𝑛,𝑞 −Δ

)︁2
]︂
, (6.6)

s.t. E𝑥∼𝑝(𝑥)

[︃
𝑛∑︁

𝑖=1
𝜆(𝑥𝑖)

]︃
≤ Λ,

where Δ̂𝑛,𝑞 = 𝑅̂𝑛,𝑞[r1]− 𝑅̂𝑛,𝑞[r2] and Δ = 𝑅[r1]−𝑅[r2].

In the next section, we state sampling distributions 𝑞* asymptotically solving
Equations 6.5 and 6.6 for DCG and ERR and discusses the computation of em-
pirical sampling distributions in a pool-based seeting.

6.2 Optimal Sampling Distributions

In Chapter 4 and Chapter 5, we derived the sampling distribution that asymptot-
ically minimizes the estimation error. Since the expected deviation is dominated
by the variance for large 𝑛 (see Section 4.2.1), we have approximated

E(𝑥,y)∼𝑞(𝑥)𝑝(y|𝑥)

[︂(︁
𝑅̂𝑛,𝑞 −𝑅

)︁2
]︂
≈ 1
𝑛
𝜎2

𝑞 and

E(𝑥,y)∼𝑞(𝑥)𝑝(y|𝑥)

[︂(︁
Δ̂𝑛,𝑞 −Δ

)︁2
]︂
≈ 1
𝑛
𝜏2

𝑞 ,
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where

𝜎2
𝑞 = lim

𝑛→∞
𝑛Var(𝑥,y)∼𝑞(𝑥)𝑝(y|𝑥)

[︁
𝑅̂𝑛,𝑞

]︁
,

𝜏2
𝑞 = lim

𝑛→∞
𝑛Var(𝑥,y)∼𝑞(𝑥)𝑝(y|𝑥)

[︁
Δ̂𝑛,𝑞

]︁
.

Note that, Corollary 4.1 and Theorem 5.1 hold also in the case of a structured
label space. The sampling distributions that minimize the quantities 1

𝑛𝜎
2
𝑞 and

1
𝑛𝜏

2
𝑞 , thereby approximately solving Problems 6.5 and 6.6, are thus given by

𝑞*(𝑥) ∝ 𝑝(𝑥)√︀
𝜆(𝑥)

√︃∫︁
(ℓ(r(𝑥),y)−𝑅)2

𝑝(y|𝑥)dy and (6.7)

𝑞*(𝑥) ∝ 𝑝(𝑥)√︀
𝜆(𝑥)

√︃∫︁
(𝛿(𝑥, 𝑦)−Δ)2

𝑝(y|𝑥)dy, (6.8)

where

𝛿(𝑥, 𝑦) = ℓ(r1(𝑥),y)− ℓ(r2(𝑥),y) (6.9)

denotes the performance difference of the two ranking models for a labeled test
query (𝑥,y). The optimal number of drawn instances is

𝑛* = Λ∫︀
𝜆(𝑥)𝑞(𝑥)d𝑥

in each case.

We now turn towards the problem of evaluating the sampling distributions in
practice. The sampling distributions prescribed by Equation 6.7 and Equation 6.8
depend on the unknown test distribution 𝑝(𝑥), the true conditional distribu-
tion 𝑝(y|𝑥) =

∏︀
𝑧∈𝒵 𝑝(𝑦𝑧|𝑥, 𝑧), and the true performance 𝑅 and Δ = 𝑅[r1]−𝑅[r2],

respectively. In analogy to Section 4.2.2 and 5.2.2, we study a setting in which
queries are sampled from a pool 𝐷𝑚 of 𝑚 unlabeled queries and approximate the
distribution 𝑝(𝑥) ≈ 𝑝(𝑥) by the empirical distribution (see Equation 2.29). For
the large class of pointwise ranking methods—that is, methods that produce a
ranking by predicting graded relevance scores for query-document pairs and then
sorting documents according to their score—a model 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃) can typically be
derived from the graded relevance predictor. This model can be used to approx-
imate the conditional 𝑝(𝑦𝑧|𝑥, 𝑧). Likewise, 𝑅[r] is replaced by an introspective
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performance 𝑅̌[r] calculated from Equation 3.1, where the integral over 𝒳 is re-
placed by a sum over the pool, 𝑝(𝑥) ≈ 𝑝(𝑥), and 𝑝(y|𝑥) =

∏︀
𝑧∈𝒵 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃).

The performance difference Δ is approximated by Δ̌ = 𝑅̌[r1] − 𝑅̌[r2]. Recall
that as long as 𝑝(𝑥) > 0 implies 𝑞(𝑥) > 0, the weighting factors ensure that
such approximations do not introduce an asymptotic bias in our estimator (see
Equation 3.11). With these approximations, we arrive at the following empirical
sampling distributions in a ranking setting.

Derivation 1. When relevance labels for individual items are independent given
the query (see Equation 6.3), and the conditional 𝑝(𝑦𝑧|𝑥, 𝑧) is approximated by a
model 𝑝(𝑦|𝑥, 𝑧; 𝜃) of graded relevance, the sampling distributions minimizing 1

𝑛𝜎
2
𝑞

and 1
𝑛𝜏

2
𝑞 in a pool-based setting resolve to

𝑞*(𝑥) ∝ 1√︀
𝜆(𝑥)

√︃
Ey∼𝑝(y|𝑥)

[︂(︁
ℓ(r(𝑥),y)− 𝑅̌

)︁2
⃒⃒⃒⃒
𝑥; 𝜃

]︂
(6.10)

and

𝑞*(𝑥) ∝ 1√︀
𝜆(𝑥)

√︃
Ey∼𝑝(y|𝑥)

[︂(︁
𝛿(𝑥, 𝑦)− Δ̌

)︁2
⃒⃒⃒⃒
𝑥; 𝜃

]︂
, (6.11)

respectively. Here, for any function 𝑔(𝑥,y) of a query 𝑥 and label vector y,

Ey∼𝑝(y|𝑥) [𝑔(𝑥,y)|𝑥; 𝜃] =
∑︁

y∈𝒴𝒵

𝑔(𝑥,y)
∏︁
𝑧∈𝒵

𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃) (6.12)

denotes expectation of 𝑔(𝑥,y) with respect to label vectors y generated according
to 𝑝(𝑦𝑧|𝑥, 𝑧,𝜃).

For an intuition of the sampling distributions see Section 4.2.2, 4.3, and 5.2.1.
Computation of the empirical sampling distributions given by Equations 6.10
and 6.11 requires the computation of E [𝑔(𝑥,y)|𝑥; 𝜃], which is defined in terms
of a sum over exponentially many relevance label vectors y ∈ 𝒴𝒵 ; a mere appli-
cation of the previous results would be intractable in practice. However, The-
orem 6.1 states that the empirical sampling distributions can be computed in
polynomial time.
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Theorem 6.1 (Polynomial-time computation of empirical sampling distribu-
tions). The empirical sampling distribution given by Equation 6.10 can be com-
puted in time

𝒪
(︁
𝑚|𝒴|max

𝑥
|r(𝑥)|

)︁
for ℓ ∈ {ℓ𝑑𝑐𝑔, ℓ𝑒𝑟𝑟}.

The empirical sampling distribution given by Equation 6.11 can be computed in
time

𝒪
(︁
𝑚|𝒴|max

𝑥
(|r1(𝑥) ∪ r2(𝑥)|)

)︁
for ℓ = ℓ𝑑𝑐𝑔,

𝒪
(︁
𝑚|𝒴|max

𝑥
(|r1(𝑥)| · |r2(𝑥)|)

)︁
for ℓ = ℓ𝑒𝑟𝑟.

where 𝑚 is the number of unlabeled queries in the pool 𝐷𝑚.

Polynomial-time solutions are derived by dynamic programming. Specifically, af-
ter substituting Equations 6.1 and 6.2 into Equations 6.10 and 6.11 and exploiting
the independence assumption given by Equation 6.3, Equations 6.10 and 6.11 de-
compose into cumulative sums and products of expectations over individual item
labels 𝑦 ∈ 𝒴. These sums and products can be computed in polynomial time. A
detailed proof of Theorem 6.1 is included in the Appendix A.1.

The active estimation algorithm for DCG and ERR follows Algorithm 2 and 3;
queries 𝑥1, ..., 𝑥𝑛 are sampled with replacement from the pool according to the dis-
tribution prescribed by Derivation 1 and items included in r(𝑥𝑖) or r1(𝑥𝑖)∪r2(𝑥𝑖)
are annotated by a human labeler. Then, an estimate 𝑅̂𝑛,𝑞 of the true (relative)
ranking performance can be computed with respect to the gain function ℓ𝑑𝑐𝑔

and ℓ𝑒𝑟𝑟, respectively.

6.3 Empirical Results

We compare active estimation of ranking performance (Algorithm 2 and 3, la-
beled active), where instances are drawn according to Equation 6.10 or Equa-
tion 6.11, respectively, to estimation based on a test sample drawn uniformly
from the pool (labeled passive). The computation of the optimal sampling dis-
tribution 𝑞* from Derivation 1 requires a model 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃) of graded relevance.
If no such model is available, a uniform distribution 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃) = 1

|𝒴| can be
used instead. In contrast to the measures studied in Chapter 4, the optimal
sampling distributions for evaluating the performance in terms of DCG or ERR
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do not degenerates to uniform sampling. We denote this baseline by activeuniD.
In analogy to Section 4.4.1, we study two simplified sampling distributions in
order to quantify the effect of modeling costs; activeuniC assumes 𝜆(𝑥) = 1 for
all 𝑥 ∈ 𝒳 in Equations 6.10 and 6.11 and the heuristic sampling distribution
𝑞(𝑥) ∝ 𝜆(𝑥)−1/2 is based only on costs (labeled active𝜆). We have shown how
the resulting sampling distributions can be computed in polynomial time (see
Derivation 1 and Theorem 6.1).

Experiments are performed on the Microsoft Learning to Rank MSLR-WEB30k
data set (see Microsoft Research, 2010). It contains 31,531 queries, and a set of
documents for each query whose relevance for the query has been determined by
human labelers in the process of developing the Bing search engine. The resulting
3,771,125 query-document pairs are represented by 136 features widely used in
the information retrieval community (such as query term statistics, page rank,
and click counts). Relevance labels take values from 0 (irrelevant) to 4 (perfectly
relevant).

The data are split into five folds. On one fold, we train ranking functions using
different graded relevance models (details below). The remaining four folds serve
as a pool of unlabeled test queries; we estimate (in Section 6.3.1) or compare (in
Section 6.3.2) the performance of the ranking functions by drawing and labeling
queries from this pool according to Algorithm 2 and 3 using the instrumental
distribution discussed above. Test queries are drawn until a labeling budget Λ is
exhausted. Labeling a query 𝑥 involves rating the relevance of all documents in
the associated list r(𝑥) for the query (119 documents on average). To quantify
the human effort realistically, we model the labeling costs 𝜆(𝑥) as proportional to
a sum of costs incurred for labeling individual documents 𝑧 ∈ r(𝑥); labeling costs
for a single document 𝑧 are assumed to be logarithmic in the document length.

All evaluation techniques, both active and passive, can approximate ℓ𝑑𝑐𝑔 and ℓ𝑒𝑟𝑟

for a query 𝑥 by requesting labels only for the first 𝑘 documents in the ranking.
The number of documents for which the MSLR-WEB20k data set provides labels
varies over the queries at an average of 119 documents per query. In our experi-
ments, we use all documents for which labels are provided for each query and for
all evaluation methods under investigation. Alternatively, one could choose to
approximate ℓ𝑑𝑐𝑔 and ℓ𝑒𝑟𝑟 more coarsely by labeling fewer documents per query
than suggested in the MSLR-WEB30k data set. Since the ranking measures
ERR and DCG are monotonically increasing with the number of ranked items,
this choice incur an additional bias regarding to the true ranking performance.
The trade-off between bias and labeling costs per query applies equally to active
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Figure 6.1: Distribution of the number of documents per query (left) and the
query labeling costs 𝜆(𝑥) (right) in the Microsoft Learning to Rank Dataset.

and passive estimation methods and is thus orthogonal to the query selection
problem studied in this chapter.

Figure 6.1 (left) shows the distribution of the number of documents per query
over the entire data set. The cost unit is chosen such that average labeling costs
for a query are one. Figure 6.1 (right) shows the distribution of labeling costs
𝜆(𝑥). All results are averaged over the five folds and 5,000 repetitions of the
evaluation process. Error bars indicate the standard error.

6.3.1 Estimating the Performance of a Ranking Function

Based on the outcome of the 2010 Yahoo ranking challenge (Mohan et al., 2011;
Chapelle & Chang, 2011), we choose a pointwise ranking approach and employ
Random Forest regression (Breiman, 2001) to train graded relevance models on
query-document pairs. The ranking function is obtained by returning all doc-
uments associated with a query sorted according to their predicted graded rel-
evance. We apply the approach of Li et al. (2007) and Mohan et al. (2011) to
obtain the probability estimates 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃) required by active and activeuniC

from the Random Forest model. As an alternative graded relevance model, we
also study a MAP version of Ordered Logit (McCullagh, 1980); this model di-
rectly provides us with probability estimates 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃). For both models, a
ranking function is obtained by returning all documents associated with a query
sorted according to their predicted graded relevance. Half of the available train-
ing fold is used for actual model training, the other half is used as a validation
set to tune hyperparameters of the respective ranking model.
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Figure 6.2: Estimation error over Λ when evaluating Random Forest regression
(left column) and Ordered Logit (right column) with performance measure ERR
(top) and DCG (bottom). Error bars indicate the standard errors.

Figure 6.2 shows absolute deviation between true ranking performance and esti-
mated ranking performance as a function of the labeling budget Λ for the perfor-
mance measures ERR and DCG. True performance is taken to be the performance
over all test queries. We observe that active estimation is significantly more ac-
curate than passive estimation; the labeling budget can be reduced from Λ = 300
by between 10% and 20% depending on the ranking method and performance
measure under study.

6.3.2 Comparing the Performance of Ranking Functions

We additionally train linear Ranking SVM (Herbrich et al., 2000) and the ordinal
classification extension to Random Forests (Li et al., 2007; Mohan et al., 2011),
and compare the resulting ranking functions to those of the Ordered Logit and
Random Forest regression models. For the comparison of Random Forest vs.
Ordered Logit both models provide us with estimates 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃); in this case a
mixture model (see Equation 5.11) is employed as described in Section 5.2.2. We
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Figure 6.3: Model selection error over labeling budget Λ when comparing Ran-
dom Forest regression vs. classification (left), Ordered Logit vs. Ranking SVM
(center), and Ordered Logit vs. Random Forest regression (right). The per-
formance measure is ERR (top) and DCG (bottom). Error bars indicate the
standard error.

measure model selection error, defined as the fraction of experiments in which
an evaluation method does not correctly identify the model with higher true
performance. Figure 6.3 shows model selection error as a function of the available
labeling budget for different pairwise comparisons and the performance measures
ERR and DCG. Active estimation more reliably identifies the model with higher
ranking performance, saving between 30% and 55% of labeling effort compared
to passive estimation. We observe that the gains of active versus passive are not
only due to differences in query costs; the baseline activeuniC, which does not
take into account query costs for computing the sampling distribution, performs
almost as well as active.

As a further comparative evaluation we simulate an index update. An out-
dated index with lower coverage is simulated by randomly removing 10% of all
query-document pairs from each result list r(𝑥) for all queries. Random Forest
regression is employed for graded relevance prediction. Active and passive esti-
mation methods are applied to estimate the difference in performance between
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Figure 6.4: Absolute estimation error over labeling costs Λ for a simulated index
update affecting 10% of items for each query (left). Absolute estimation error
comparing ranking functions trained on 100,000 vs. 200,000 query-document
pairs over Λ (center), and over training set size of second model at Λ = 100
(right). The performance measure is ERR (top) and DCG (bottom). Error bars
indicate the standard error.

models based on the outdated and current index. Figure 6.4 (left) shows absolute
deviation of estimated from true performance difference over labeling budget Λ
for the performance measures ERR and DCG. We observe that active estimation
quantifies the impact of the index update more accurately than passive estima-
tion, saving approximately 75% of labeling effort for the performance measure
ERR and about 30% labeling effort for DCG.

We finally simulate the incorporation of novel sources of training data by compar-
ing a Random Forest model trained on 100,000 query-document pairs (r1) to a
Random Forest model trained on between 120,000 and 200,000 query-document
pairs (r2). The difference in performance between r1 and r2 is estimated us-
ing active and passive methods. Figure 6.4 (center) shows absolute deviation of
estimated from true performance difference for models trained on 100,000 and
200,000 instances as a function of Λ. Active estimation quantifies the perfor-
mance gain resulting from additional training data more accurately, reducing
labeling costs by approximately 45% (ERR) and 30% (DCG). Figure 6.4 (right)
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Figure 6.5: Heatmap of the sampling distribution 𝑞*(𝑥) when evaluating a Ran-
dom Forest regression model in terms of DCG, plotted into a two-dimensional
space with axes 𝜆(𝑥) and E[ℓ(𝑥,y)|𝑥; 𝜃] (left). Number of queries drawn by
passive and active estimation methods for a labeling budget of Λ = 100 when
evaluating a Random Forest regression model in terms of DCG (right).

shows estimation error as a function of the number of query-document pairs the
model r2 is trained on for Λ = 100. Since the model r1, which is trained on
100,000 instances, is kept fixed, the performance difference between the models
and thus the estimation error increases with an increasing number of training
data. Active estimation significantly reduces the estimation error compared to
passive estimation for all training set sizes.

6.3.3 Influence of Query Costs on the Sampling
Distribution

The empirical sampling distributions prescribed by Derivation 1 select queries 𝑥 ∈
𝐷𝑚 based on their cost 𝜆(𝑥) and intrinsic expectations of ranking performance
given by 𝑅̌ (Equation 6.10) and Δ̌ (Equation 6.11), respectively. Figure 6.5
(left) shows a representative example of the sampling distribution 𝑞*(𝑥) given by
Equation 6.10 plotted into a two-dimensional space with axes 𝜆(𝑥) and intrinsic
expected ranking performance E[ℓ(𝑥,y)|𝑥; 𝜃] for the query 𝑥. We observe that
low-cost queries are preferred over high-cost queries, and queries for which the
intrinsic ranking performance E[ℓ(𝑥,y)|𝑥; 𝜃] for query 𝑥 is far away from the
intrinsic overall performance 𝑅̌ are more likely to be chosen (in the example,
approximately 𝑅̌ = 26).

Optimization problems 6.5 and 6.6 constitute a trade-off between labeling costs
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and informativeness of a test query: optimization over 𝑛 implies that many in-
expensive or few expensive queries could be chosen. On average, active estima-
tion prefers to draw more (but cheaper) queries than passive estimation (Equa-
tions 6.10 and 6.11). Figure 6.5 (right) shows the number of queries actually
drawn by the different evaluation methods for a labeling budget of Λ = 100 when
estimating absolute DCG for Random Forest regression. We observe that the
active estimation methods that take into account costs in the computation of the
optimal sampling distribution (active and activeuniD) draw more instances than
passive and activeuniC.

6.4 Summary and Related Work

There has been significant interest in learning ranking functions from data in
order to improve search result relevance in information retrieval (Li et al., 2007;
Zheng et al.; Burges, 2010; Mohan et al., 2011). This has partly been driven by
the recent release of large-scale data sets derived from commercial search engines,
such as the Microsoft Learning to Rank data sets (see Section 6.3) and the Yahoo
Learning to Rank Challenge data sets (Chapelle & Chang, 2011). These data
sets serve as realistic benchmarks for evaluating and comparing the performance
of different ranking algorithms.

In this chapter, we have applied ideas from active risk estimation (see Chap-
ter 4) and active comparison (see Chapter 5) to the problem of estimating the
performance of ranking functions as accurately as possible for a fixed labeling
budget. We explicitly model instance-specific labeling costs as proportional to a
sum of logarithmic document lengths and constrain overall costs rather than the
number of test instances that can be drawn. In a ranking setting, optimal sam-
pling distributions derived from Theorem 4.1 and Theorem 5.1 involve sums over
an exponential number of joint relevance label assignments (see Derivation 1).
We have shown that they can be computed in polynomial time using dynamic
programming (see Theorem 6.1).

Besides sampling queries, it is also possible to sample subsets of documents to
be labeled for a given query. Carterette et al. (2006) use document sampling
to decide which of two ranking functions achieves higher precision at 𝑘. Aslam
et al. (2006) use document sampling to obtain unbiased estimates of mean average
precision and mean R-precision. Carterette & Smucker (2007) study statistical
significance testing from reduced document sets.
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Empirically, we observed that active estimates of ranking performance are more
accurate than passive estimates. In different experimental settings—estimation
of the performance of a single ranking model, comparison of different types of
ranking models, simulated index updates—performing active estimation resulted
in saved labeling efforts of between 10% and 75%.





Chapter 7

Conclusion

Evaluating the performance of predictive models becomes challenging if labeled
instances that represent the desired test distribution are unavailable. The overall
goal of this thesis was to devise evaluation procedures that enable us to estimate
the predictive performance of a given model as accurately as possible at minimal
labeling costs. Chapter 3 has presented commonly used performance measures
and estimators which are the fundamental tools for model evaluation and com-
parison. In particular, we have generalized the regular risk functional and have
shown that 𝐹 -measures, which are defined as empirical estimates, consistently
estimate a quantity that falls into the class of generalized risks (see Section 3.3).
An analysis of the distributions that governs the estimators gives rise to confi-
dence intervals and statistical tests which quantify the remaining uncertainty of
the estimate with respect to the true quantity. All estimates require a set of la-
beled instances drawn either directly from the test distribution or from a known
instrumental distribution.

When labeled instances are not available in advance or do not represent the test
distribution, new instances have to be drawn and labeled. In many practical
applications, drawing unlabeled instances from the distribution the model is ex-
posed to is inexpensive, whereas obtaining the labels is a costly process and typi-
cally involves a human expert. A standard approach is to draw instances directly
from the test distribution and query their labels at a cost until some pre-defined
labeling budget is exhausted. However, the set of test instances—for which the
relevance labels have to be determined—does not necessarily have to be a ran-
dom set sampled from the test distribution; drawing instances independently of
their expected label outcome may not be label-efficient. In Chapter 4, we intro-
duced a new, active evaluation process. This process consists of an instrumental
distribution and a corresponding estimator. The instrumental distribution is
used to select more label-efficient set of instances. The choice determines the
effectiveness of the evaluation process in terms of the labeling costs needed to
achieve a certain level of accuracy or, equivalently, the expected estimation error
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for a fixed labeling budget. We have analyzed the asymptotic distribution of
the performance estimator and have derived the instrumental distribution that
asymptotically minimizes the estimation error of the active estimator when used
to select instances.

The active estimator exploits properties of the considered performance measure
and the model to be evaluated. It can be immediately applied to evaluate prob-
abilistic predictive models with respect to any generalized risk. We studied dif-
ferent performance measures for regression and classification problems in several
domains. Compared to estimates based on sampling directly from the test dis-
tribution, estimates from active evaluation are more accurate when the model
has a certain quality; the active evaluation procedure outperforms the standard
approach for a per-instance label likelihood of 0.6 or above. The advantage of
active estimates of 𝐹 -measures are particularly strong for skewed classes. More-
over, we observed the confidence intervals of active estimates to be tighter and
more reliable even for small test samples. These results indicate that estimation
accuracy can be improved by drawing test examples from an appropriately engi-
neered instrumental distribution. However, performance measures, which assess
the predictive performance independently of the discrimination threshold cannot
be expresses as a generalized risk. This holds for the area under the receiver
operating characteristic curve (AUC), the precision-recall break-even point, as
well as the maximal F-score. Devising an optimal sampling procedure for these
measures is an interesting opportunity for future research.

The task of comparing two predictive models and identifying the model with
higher performance as confidently as possible on a fixed labeling budget was
studied in Chapter 5. A statistical test is typically used to reject the hypothesis
that observed performance differences are due to chance. We have derived the in-
strumental distribution that asymptotically maximizes the power of a two-sided
paired Wald test, and thereby minimizes the likelihood of choosing the inferior
model for a fixed labeling budget. The instrumental distribution intuitively gives
preference to test instances on which the models disagree strongly. Proper test
procedures for multiple models consist of several sequent steps and are thus hard
to be analyzed. We have derived a heuristic instrumental distribution for com-
paring multiple models as a mixture of pairwise-optimal sampling distributions.
Empirically, we observed that the active comparison method identifies the model
with lower risk more often. Furthermore, significant risk differences are more
quickly detected than by a traditional comparison, which is based on a uniform
sample of test instances. We also have verified that active comparisons do not
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lead to increased false-positive significance results. Simplified variants of the ac-
tive comparison method have been identified which do not rely on the predictive
distribution. They do not depend on the model quality and are empirically still
competitive.

In Chapter 4 and 5, we have derived active evaluation and comparison processes
which are applicable for performance measures that can be decomposed into
instance-specific loss functions. However, this decomposition can be arbitrarily
complex and computing the corresponding optimal distribution efficiently may
be challenging. In Chapter 6, we used active estimators to evaluate the quality of
ranking functions. For the commonly used performance measures discounted cu-
mulative gain (DCG) and expected reciprocal rank (ERR) a naïve computation of
the empirical sampling distribution is exponential in the number of the retrieved
items. We have derived a polynomial-time solution using dynamic programming
and have studied the benefit of our method using a real word data set for web
search. In addition of drawing queries, it is also reasonable in practice to sample
subsets of documents to be labeled for a given query. However, this approach
leads to serious problems, since the considered performance measures depend on
the relevance labels of all individual documents for a given query. Substituting
missing entries with an estimate or a default value yields an estimate that is
strongly biased.

Active evaluation is reminiscent of active learning (see Section 2.3) in many ways.
Firstly, the active comparison problem can be seen as an extreme case of active
learning, in which the model space contains only a finite number of models. We
have discussed extensions to comparing infinitely many models and the relation-
ship to existing active learning methods in Section 5.3. Secondly, the unknown
conditional distribution is of particular interest and has to be estimated accu-
rately in order to derive predictive models and to evaluate their performance.
Unfortunately, the theoretical optimal sampling distribution in each case de-
pends on this unknown distribution. In analogy to active learning algorithms,
our approach uses the current model to decide on instances whose class labels are
queried. Active learning algorithms improve the estimate of the true conditional
distribution with increasing number of labeled instances. It seems to be natural
to extend also the active evaluation process to iteratively refine the instrumental
distribution. However, the instrumental distribution that minimizes the estima-
tion error of the predictive performance, does not yield an optimal estimate of
the model parameters. Therefore the labeled instances are not optimal to im-
prove the active evaluation process. Aside from this, a sampling distribution
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that varies as the instances are drawn is in conflict with the i.i.d.-assumption.
However, this assumption enables us to analyze the estimation error. Devel-
oping dual techniques which trade off between sampling instances according to
the given model and improving the predictive distribution provides interesting
research opportunities beyond the scope of this thesis. The active evaluation
procedure proposed in this thesis uses a constant sampling distribution, which is
proven to be asymptotically optimal.
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Appendix

A.1 Proof of Theorem 6.1

In order to show that the empirical sampling distributions, which are given by
Equations 6.10 and 6.11 can be computed efficiently, we have to show that Equa-
tion 6.12 can be computed efficiently. This can be done by suitable algebraic
manipulation, exploiting the independence assumption given by Equation 6.3.
In the following proofs, we denote by 𝑚 the number of unlabeled queries of the
pool 𝐷𝑚. All expectations and variances are over the distribution 𝑞(𝑥)𝑝(y|𝑥).
We omit the underlying distribution to keep the notation uncluttered.

Empirical Sampling Distribution for Absolute Estimation
(see Equation 6.10) with ℓ = ℓ𝑑𝑐𝑔

It suffices to show that the intrinsic performance 𝑅̌ (see Equation 4.22) can be
computed in time 𝒪(𝑚|𝒴|max𝑥 |r(𝑥)|), and that for any 𝑥 ∈ 𝒳 the quantity
E[(ℓ(r(𝑥),y)− 𝑅̌)2|𝑥,𝜃] can be computed in time 𝒪(|𝒴||r(𝑥)|) given 𝑅̌.

We first note that for any 𝑧 ∈ 𝒵, it holds that

E [𝜅𝑑𝑐𝑔 (𝑦𝑧, 𝑖)|𝑥; 𝜃]

=
∑︁

y∈𝒴𝒵

𝜅𝑑𝑐𝑔 (𝑦𝑧, 𝑖)
∏︁

𝑧′∈𝒵
𝑝(𝑦𝑧′ |𝑥, 𝑧′; 𝜃)

=
∑︁
𝑦𝑧

∑︁
y∈𝒴𝒵∖{𝑧}

𝜅𝑑𝑐𝑔 (𝑦𝑧, 𝑖)
∏︁

𝑧′∈𝒵
𝑝(𝑦𝑧′ |𝑥, 𝑧′; 𝜃)

=
∑︁
𝑦𝑧

𝜅𝑑𝑐𝑔 (𝑦𝑧, 𝑖) 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃)
∑︁

y∈𝒴𝒵∖{𝑧}

∏︁
𝑧′∈𝒵∖{𝑧}

𝑝(𝑦𝑧′ |𝑥, 𝑧′; 𝜃)

=
∑︁
𝑦𝑧

𝜅𝑑𝑐𝑔 (𝑦𝑧, 𝑖) 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃), (A.1)
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where y ∈ 𝒴𝒵∖{𝑧} is a vector of relevance labels 𝑦𝑧′ for all 𝑧′ ∈ 𝒵 ∖ {𝑧}. The
expected value E [𝜅𝑑𝑐𝑔 (𝑦𝑧, 𝑖)|𝑥; 𝜃] can thus be computed in time 𝒪(|𝒴|).

Let 𝜅𝑖 = 𝜅𝑑𝑐𝑔

(︀
𝑦𝑟𝑖(𝑥), 𝑖

)︀
, such that the DCG can be expressed as ℓ𝑑𝑐𝑔 (r(𝑥),y) =∑︀|r(𝑥)|

𝑖=1 𝜅𝑖. Then, for ℓ = ℓ𝑑𝑐𝑔 it holds that

𝑅̌ = 1
𝑚

∑︁
𝑥∈𝐷𝑚

E [ℓ (r(𝑥),y)|𝑥; 𝜃]

= 1
𝑚

∑︁
𝑥∈𝐷𝑚

∑︁
y∈𝒴𝒵

|r(𝑥)|∑︁
𝑖=1

𝜅𝑖

∏︁
𝑧∈𝒵

𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃)

= 1
𝑚

∑︁
𝑥∈𝐷𝑚

|r(𝑥)|∑︁
𝑖=1

E [𝜅𝑖|𝑥; 𝜃] ,

therefore 𝑅̌ can be computed in time𝒪(𝑚|𝒴|max𝑥 |r(𝑥)|). We furthermore derive

E
[︂(︁
ℓ (r(𝑥),y)− 𝑅̌

)︁2
⃒⃒⃒⃒
𝑥; 𝜃

]︂

= E

⎡⎢⎣
⎛⎝|r(𝑥)|∑︁

𝑖=1
𝜅𝑖 − 𝑅̌

⎞⎠2
⃒⃒⃒⃒
⃒⃒⃒𝑥; 𝜃

⎤⎥⎦
= E

⎡⎣ |r(𝑥)|∑︁
𝑖=1

𝜅2
𝑖 + 2

|r(𝑥)|∑︁
𝑖=1

|r(𝑥)|∑︁
𝑙=𝑖+1

𝜅𝑖𝜅𝑙 − 2𝑅̌
|r(𝑥)|∑︁
𝑖=1

𝜅𝑖 + 𝑅̌2

⃒⃒⃒⃒
⃒⃒𝑥; 𝜃

⎤⎦ (A.2)

=
|r(𝑥)|∑︁
𝑖=1

(︃
E
[︀
𝜅2

𝑖

⃒⃒
𝑥; 𝜃

]︀
+ 2E [𝜅𝑖|𝑥; 𝜃]

|r(𝑥)|∑︁
𝑙=𝑖+1

E [𝜅𝑙|𝑥; 𝜃]

− 2𝑅̌E [𝜅𝑖|𝑥; 𝜃]
)︃

+ 𝑅̌2 (A.3)

Equation A.2 expands the square of sums twice and in Equation A.3 we make use
of the independence assumption for item relevance (see Equation 6.3) from which
follows that E [𝜅𝑖𝜅𝑙|𝑥; 𝜃] = E [𝜅𝑖|𝑥; 𝜃]E [𝜅𝑙|𝑥; 𝜃]. Equation A.3 can now be
evaluated in time 𝒪(|𝒴||r(𝑥)|): cumulative sums over 𝑙 and all terms of the form
E [𝜅𝑖|𝑥; 𝜃] as well as E

[︀
𝜅2

𝑖

⃒⃒
𝑥; 𝜃

]︀
can be precomputed in time 𝒪(|𝒴||r(𝑥)|) (see

Equation A.1), and the second summand of Equation A.3 can then be computed
in time 𝒪(|𝒴||r(𝑥)|). Thus, the empirical sampling distribution can overall be
computed in time 𝒪(𝑚|𝒴|max𝑥 |r(𝑥)|).
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Empirical Sampling Distribution for Absolute Estimation
(see Equation 6.10) with ℓ = ℓ𝑒𝑟𝑟

It suffices to show that the intrinsic performance 𝑅̌ (see Equation 4.22) can
be computed in time 𝒪(𝑚|𝒴|max𝑥 |r(𝑥)|), and that for any 𝑥 ∈ 𝒳 the quan-
tity E[(ℓ(r(𝑥),y) − 𝑅̌)2|𝑥; 𝜃] can be computed in time 𝒪(|𝒴||r(𝑥)|) given 𝑅̌.
Let 𝜅𝑖 = 𝜅𝑒𝑟𝑟

(︀
𝑦𝑟𝑖(𝑥)

)︀
and 𝜅1:𝑖 = 1

𝑖 𝜅𝑖

∏︀𝑖−1
𝑙=1(1 − 𝜅𝑙), such that the ERR can

be expressed as ℓ𝑒𝑟𝑟 (r(𝑥),y) =
∑︀|r(𝑥)|

𝑖=1 𝜅1:𝑖. From the independence assumption
for item relevance (Equation 6.3), it follows that

E [𝜅1:𝑖|𝑥; 𝜃] = 1
𝑖
E
[︀
𝜅𝑒𝑟𝑟

(︀
𝑦𝑟𝑖(𝑥)

)︀⃒⃒
𝑥; 𝜃

]︀ 𝑖−1∏︁
𝑙=1

(︀
1− E

[︀
𝜅𝑒𝑟𝑟

(︀
𝑦𝑟𝑙(𝑥)

)︀⃒⃒
𝑥; 𝜃

]︀)︀

In analogy to ℓ = ℓ𝑑𝑐𝑔 (see Equation A.1) it follows that

E [𝜅𝑒𝑟𝑟 (𝑦𝑧)|𝑥; 𝜃] =
∑︁
𝑦𝑧

𝜅𝑒𝑟𝑟 (𝑦𝑧) 𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃) (A.4)

for any item 𝑧 ∈ 𝒵 and can thus be computed in time 𝒪(|𝒴|). Thus, all terms
E [𝜅1:𝑖|𝑥; 𝜃] for 𝑖 = 1, ..., |r(𝑥)| can together be computed in time 𝒪(|𝒴||r(𝑥)|),
since all terms of the form E [𝜅𝑒𝑟𝑟 (𝑦𝑧)|𝑥; 𝜃] (see Equation A.4) can be precom-
puted in time 𝒪(|𝒴||r(𝑥)|) and subsequently the cumulative products over 𝑙 can
be computed in time 𝒪(|𝒴||r(𝑥)|). Therefore, 𝑅̌ for ℓ = ℓ𝑒𝑟𝑟 can be computed in
time 𝒪(|𝒴||𝐷|max𝑥 |r(𝑥)|), since it holds that

𝑅̌ = 1
𝑚

∑︁
𝑥∈𝐷𝑚

E [ℓ (r(𝑥),y)|𝑥; 𝜃]

= 1
𝑚

∑︁
𝑥∈𝐷𝑚

∑︁
y∈𝒴𝒵

|r(𝑥)|∑︁
𝑖=1

𝜅1:𝑖
∏︁
𝑧∈𝒵

𝑝(𝑦𝑧|𝑥, 𝑧; 𝜃)

= 1
𝑚

∑︁
𝑥∈𝐷𝑚

|r(𝑥)|∑︁
𝑖=1

E [𝜅1:𝑖|𝑥; 𝜃] .

We now turn towards the quantity

E
[︁

(ℓ(r(𝑥),y)− 𝑅̌)2
⃒⃒⃒
𝑥; 𝜃

]︁
.
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We expand the square of sums twice in Equation A.5. Equation A.6 follows from
the independence assumption (Equation 6.3):

E
[︂(︁
ℓ (r(𝑥),y)− 𝑅̌

)︁2
⃒⃒⃒⃒
𝑥; 𝜃

]︂

= E

⎡⎣ |r(𝑥)|∑︁
𝑖=1

𝜅2
1:𝑖 + 2

|r(𝑥)|∑︁
𝑖=1

|r(𝑥)|∑︁
𝑙=𝑖+1

𝜅1:𝑖𝜅1:𝑙 − 2𝑅̌
|r(𝑥)|∑︁
𝑖=1

𝜅1:𝑖 + 𝑅̌2

⃒⃒⃒⃒
⃒⃒𝑥; 𝜃

⎤⎦ (A.5)

=
|r(𝑥)|∑︁
𝑖=1

(︂
E
[︀
𝜅2

1:𝑖
⃒⃒
𝑥; 𝜃

]︀
+ 2

|r(𝑥)|∑︁
𝑙=𝑖+1

E [𝜅1:𝑖𝜅1:𝑙|𝑥; 𝜃]− 2𝑅̌E [𝜅1:𝑖|𝑥; 𝜃]
)︂

+ 𝑅̌2. (A.6)

In contrast to Equation A.3 in the proof of ℓ = ℓ𝑑𝑐𝑔, items used to calculate 𝜅1:𝑖

and 𝜅1:𝑙 in the second summand overlap. However, we note that for 𝑙 > 𝑖 the
following decomposition holds:

𝜅1:𝑙 =1
𝑙
𝜅𝑙

(︃
𝑖−1∏︁
𝑘=1

(1− 𝜅𝑘)
)︃

(1− 𝜅𝑖)
(︃

𝑙−1∏︁
𝑘=𝑖+1

(1− 𝜅𝑘)
)︃
. (A.7)

Thus
∑︀|r(𝑥)|

𝑙=𝑖+1 E [𝜅1:𝑖𝜅1:𝑙|𝑥; 𝜃] can be expressed as follows. In Equation A.8, we
insert the definition of 𝜅1:𝑖 and the decomposition given by Equation A.7 for
𝜅1:𝑙. The rest follows from the independence assumption (see Equation 6.3) and
reordering terms:

|r(𝑥)|∑︁
𝑙=𝑖+1

E

[︃
1
𝑖
𝜅𝑖

(︃
𝑖−1∏︁
𝑘=1

(1− 𝜅𝑘)
)︃
·

1
𝑙
𝜅𝑙

(︃
𝑖−1∏︁
𝑘=1

(1− 𝜅𝑘)
)︃

(1− 𝜅𝑖)
(︃

𝑙−1∏︁
𝑘=𝑖+1

(1− 𝜅𝑘)
)︃⃒⃒⃒⃒
⃒𝑥; 𝜃

]︃
(A.8)

= 1
𝑖

|r(𝑥)|∑︁
𝑙=𝑖+1

E [𝜅𝑖 (1− 𝜅𝑖)|𝑥; 𝜃]E
[︃

𝑖−1∏︁
𝑘=1

(1− 𝜅𝑘)2

⃒⃒⃒⃒
⃒𝑥; 𝜃

]︃
·

E

[︃
1
𝑙
𝜅𝑙

𝑙−1∏︁
𝑘=𝑖+1

(1− 𝜅𝑘)

⃒⃒⃒⃒
⃒𝑥; 𝜃

]︃
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= 1
𝑖
E [𝜅𝑖 (1− 𝜅𝑖)|𝑥; 𝜃]

(︃
𝑖−1∏︁
𝑘=1

E
[︁

(1− 𝜅𝑘)2
⃒⃒⃒
𝑥; 𝜃

]︁)︃
·

|r(𝑥)|∑︁
𝑙=𝑖+1

1
𝑙
E [𝜅𝑙|𝑥; 𝜃]

|r(𝑥)|∏︀
𝑘=𝑖+1

E [ (1− 𝜅𝑘)|𝑥; 𝜃]

|r(𝑥)|∏︀
𝑘=𝑙

E [ (1− 𝜅𝑘)|𝑥; 𝜃]

= 1
𝑖
E [𝜅𝑖 (1− 𝜅𝑖)|𝑥; 𝜃]

(︃
𝑖−1∏︁
𝑘=1

E
[︁

(1− 𝜅𝑘)2
⃒⃒⃒
𝑥; 𝜃

]︁)︃
·⎛⎝ |r(𝑥)|∏︁

𝑘=𝑖+1
E [ (1− 𝜅𝑘)|𝑥; 𝜃]

⎞⎠ |r(𝑥)|∑︁
𝑙=𝑖+1

E [𝜅𝑙|𝑥; 𝜃]

𝑙
|r(𝑥)|∏︀
𝑘=𝑙

E [ (1− 𝜅𝑘)|𝑥; 𝜃]
. (A.9)

Equation A.9 and thus Equation A.6 can be evaluated in time 𝒪(|𝒴||r(𝑥)|), since
all cumulative products over 𝑘, cumulative sums over 𝑙, and expected values can
together be precomputed in time 𝒪(|𝒴||r(𝑥)|). Thus, the empirical sampling
distribution can overall be computed in time 𝒪(|𝒴||𝐷|max𝑥 |r(𝑥)|).

Empirical Sampling Distribution for Comparative Estimation
(Equation 6.11) with ℓ = ℓ𝑑𝑐𝑔

Since the intrinsic risks 𝑅̌[r𝑖] can be computed in time 𝒪(|𝒴||𝐷|max𝑥 |r𝑖(𝑥)|)
and hence the difference Δ̌ = 𝑅̌[r1]− 𝑅̌[r2] can be computed in time

𝒪(|𝒴||𝐷|max
𝑥

(|r1(𝑥) ∪ r2(𝑥)|))

it is sufficient to show that for any 𝑥 ∈ 𝒳 the quantity

E
[︁

(ℓ(r1(𝑥),y)− ℓ(r2(𝑥),y)− Δ̌)2
⃒⃒⃒
𝑥; 𝜃

]︁
can be computed in time 𝒪(|𝒴||𝐷||r1(𝑥) ∪ r2(𝑥)|). In order to simplify notation
we define an inverse ranking function

r−1 : 𝒳 × 𝒵 → {1, . . . , |r(𝑥)|} ∪ {∞}. (A.10)

Given a query 𝑥 ∈ 𝒳 and an item 𝑧 ∈ 𝒵 it returns the position in the list of
results r−1 : (𝑥, 𝑟𝑖(𝑥)) ↦→ 𝑖 if item 𝑧 is contained in the results of ranking func-
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tion r and infinity otherwise. Then, ℓ𝑑𝑐𝑔 (see Equation 6.1) can be equivalently
written as

ℓ𝑑𝑐𝑔 (r(𝑥),y) =
∑︁
𝑧∈𝒵

𝜅𝑑𝑐𝑔

(︀
𝑦𝑧, r−1(𝑥, 𝑧)

)︀
,

since 𝜅𝑑𝑐𝑔 (𝑦,∞) = 0.

Let 𝜅𝑧 = 𝜅𝑑𝑐𝑔

(︀
𝑦𝑧, r−1

1 (𝑥, 𝑧)
)︀
− 𝜅𝑑𝑐𝑔

(︀
𝑦𝑧, r−1

2 (𝑥, 𝑧)
)︀

be the difference of the loss
functions for two ranking functions. Then, we derive

E
[︁

(ℓ(r1(𝑥),y)− ℓ(r2(𝑥),y)− Δ̌)2
⃒⃒⃒
𝑥; 𝜃

]︁
= E

⎡⎣(︃∑︁
𝑧∈𝒵

𝜅𝑧 − Δ̌
)︃2
⃒⃒⃒⃒
⃒⃒𝑥; 𝜃

⎤⎦
= E

⎡⎢⎣∑︁
𝑧∈𝒵

𝜅2
𝑧 +

∑︁
𝑧∈𝒵

∑︁
𝑧∈𝒵
𝑧 ̸=𝑧

𝜅𝑧𝜅𝑧 − 2
∑︁
𝑧∈𝒵

𝜅𝑧Δ̌ + Δ̌2

⃒⃒⃒⃒
⃒⃒⃒𝑥; 𝜃

⎤⎥⎦ (A.11)

=
∑︁
𝑧∈𝒵

(︃
E
[︀
𝜅2

𝑧

⃒⃒
𝑥; 𝜃

]︀
+ E [𝜅𝑧|𝑥; 𝜃]

(︂∑︁
𝑧∈𝒵
𝑧 ̸=𝑧

E [𝜅𝑧|𝑥; 𝜃]− 2Δ̌
)︂)︃

+ Δ̌2 (A.12)

Equation A.11 expands the square of sums twice and in Equation A.12 we make
use of the independence between different items (see Equation 6.3).

A single quantity of the form E [𝜅𝑧|𝑥; 𝜃] can be computed in time 𝒪(|𝒴|) (see
Equation A.1). Since the expectation E

[︀
𝜅𝑑𝑐𝑔

(︀
𝑦𝑧, r−1

𝑖 (𝑥, 𝑧)
)︀⃒⃒
𝑥; 𝜃

]︀
equals zero

for all 𝑧 ∈ 𝒵 not contained in the results of r𝑖(𝑥), the sums over 𝑧 ∈ 𝒵 can be
computed in time 𝒪(|𝒴|max𝑥(|r1(𝑥) ∪ r2(𝑥)|)). Thus, the empirical sampling
distribution can overall be computed in time 𝒪(|𝒴||𝐷|max𝑥(|r1(𝑥)∪r2(𝑥)|)).

Empirical Sampling Distribution for Comparative Estimation
(Equation 6.11) with ℓ = ℓ𝑒𝑟𝑟

Since the intrinsic risks 𝑅̌[r𝑖] can be computed in time 𝒪(|𝒴||𝐷|max𝑥 |r𝑖(𝑥)|)
and hence the difference Δ̌ = 𝑅̌[r1]− 𝑅̌[r2] can be computed in

𝒪(|𝒴||𝐷|max
𝑥

(|r1(𝑥) ∪ r2(𝑥)|))
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it is sufficient to show that for any 𝑥 ∈ 𝒳 the quantity

E
[︁

(ℓ(r1(𝑥),y)− ℓ(r2(𝑥),y)− Δ̌)2
⃒⃒⃒
𝑥; 𝜃

]︁
can be computed in time 𝒪(|𝒴||r1(𝑥)||r2(𝑥)|). From the independence assump-
tion (Equation 6.3) it follows that

E
[︁

(ℓ(r1(𝑥),y)− ℓ(r2(𝑥),y)− Δ̌)2
⃒⃒⃒
𝑥; 𝜃

]︁
=

2∑︁
𝑘=1

(︂
E
[︁
ℓ𝑒𝑟𝑟 (r𝑘(𝑥),y)2

⃒⃒⃒
𝑥; 𝜃

]︁
+ 2Δ̌(−1)𝑘E [ℓ𝑒𝑟𝑟 (r𝑘(𝑥),y)|𝑥; 𝜃]

)︂
+ Δ̌2

− 2E [ℓ𝑒𝑟𝑟 (r1(𝑥),y) ℓ𝑒𝑟𝑟 (r2(𝑥),y)|𝑥; 𝜃] . (A.13)

In analogy to Equation A.6 in the proof of Theorem 6.1, it can be shown that
all terms except E [ℓ𝑒𝑟𝑟 (r1(𝑥),y) ℓ𝑒𝑟𝑟 (r2(𝑥),y)|𝑥; 𝜃] in Equation A.13 can be
computed in linear time. In the following we show, that

E [ℓ𝑒𝑟𝑟 (r1(𝑥),y) ℓ𝑒𝑟𝑟 (r2(𝑥),y)|𝑥; 𝜃]

can be computed in 𝒪(|𝒴||r1(𝑥)||r2(𝑥)|). Let 𝜅𝑧 = 𝜅𝑒𝑟𝑟 (𝑦𝑧) and the inverse
ranking function r−1 be defined as in proof for ℓ = ℓ𝑑𝑐𝑔 (see Equation A.10).
Furthermore, we define

𝜅̄𝑧′<𝑧,𝑡 = (1− 𝜅𝑧′)[[r−1
𝑡 (𝑥,𝑧′)<r−1

𝑡 (𝑥,𝑧)]],

where [[·]] → {0, 1} denotes the indicator function. Then, ℓ𝑒𝑟𝑟 (r(𝑥),y) can be
expressed as sum over the pool of items 𝒵:

ℓ𝑒𝑟𝑟 (r(𝑥),y) =
∑︁
𝑧∈𝒵

1
r−1(𝑥, 𝑧)𝜅𝑧

∏︁
𝑧′∈𝒵

𝜅̄𝑧′<𝑧,𝑡.

Then we derive

E [ℓ𝑒𝑟𝑟 (r1(𝑥),y) ℓ𝑒𝑟𝑟 (r2(𝑥),y)|𝑥; 𝜃]

=
∑︁
𝑧∈𝒵

∑︁
𝑧∈𝒵

1
r−1

1 (𝑥, 𝑧)
1

r−1
2 (𝑥, 𝑧)

·

E

[︃(︂
𝜅𝑧

∏︁
𝑧′∈𝒵

𝜅̄𝑧′<𝑧,1

)︂(︂
𝜅𝑧

∏︁
𝑧′∈𝒵

𝜅̄𝑧′<𝑧,2

)︂⃒⃒⃒⃒
⃒𝑥; 𝜃

]︃
. (A.14)
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The expectation in Equation A.14 can be decomposed as follows. In analogy to
the proof of Theorem 6.1 for absolute estimation with ℓ = ℓ𝑒𝑟𝑟 (see Equation A.7),
we decompose the cumulative products into disjoint item sets: In Equation A.15,
we exclude factors depending on 𝑧 and 𝑧, respectively. Equation A.16 and A.17
follow from the independence assumption (Equation 6.3). Furthermore, we sum-
marize factors over the same items in Equation A.17. Finally, we again make use
of the independence assumption for item relevance and abbreviate the products
over the disjoint factors (Equation A.18):

E

[︃(︂
𝜅𝑧

∏︁
𝑧′∈𝒵

𝜅̄𝑧′<𝑧,1

)︂(︂
𝜅𝑧

∏︁
𝑧′∈𝒵

𝜅̄𝑧′<𝑧,2

)︂⃒⃒⃒⃒
⃒𝑥; 𝜃

]︃

= E

[︃
𝜅𝑧𝜅̄𝑧<𝑧,1

(︂∏︁
𝑧′ ̸=𝑧

𝜅̄𝑧′<𝑧,1

)︂

𝜅𝑧𝜅̄𝑧<𝑧,2

(︂ ∏︁
𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)<r−1

1 (𝑥,𝑧)

𝜅̄𝑧′<𝑧,2

)︂(︂ ∏︁
𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)>r−1

1 (𝑥,𝑧)

𝜅̄𝑧′<𝑧,2

)︂⃒⃒⃒⃒
⃒𝑥; 𝜃

]︃
(A.15)

= E [𝜅𝑧𝜅̄𝑧<𝑧,1𝜅𝑧𝜅̄𝑧<𝑧,2|𝑥; 𝜃]

E

⎡⎢⎢⎢⎣
(︂ ∏︁

𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)<r−1

1 (𝑥,𝑧)

𝜅̄𝑧′<𝑧,1

)︂(︂ ∏︁
𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)<r−1

1 (𝑥,𝑧)

𝜅̄𝑧′<𝑧,2

)︂⃒⃒⃒⃒⃒⃒⃒⃒
⃒𝑥; 𝜃

⎤⎥⎥⎥⎦

E

⎡⎢⎢⎢⎣
(︂ ∏︁

𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)>r−1

1 (𝑥,𝑧)

𝜅̄𝑧′<𝑧,2

)︂⃒⃒⃒⃒⃒⃒⃒⃒
⃒𝑥; 𝜃

⎤⎥⎥⎥⎦ (A.16)

= ℓ=
𝑥 (𝑧, 𝑧)

(︂ ∏︁
𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)<r−1

1 (𝑥,𝑧)

E [ 𝜅̄𝑧′<𝑧,1𝜅̄𝑧′<𝑧,2|𝑥; 𝜃]
)︂
·

(︂ ∏︁
𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)>r−1

1 (𝑥,𝑧)

E [ 𝜅̄𝑧′<𝑧,2|𝑥; 𝜃]
)︂

(A.17)

= ℓ=
𝑥 (𝑧, 𝑧) ℓ<

𝑥 (𝑧, 𝑧) ℓ>
𝑥 (𝑧, 𝑧) , (A.18)
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where

ℓ=
𝑥 (𝑧, 𝑧) =

⎧⎪⎪⎨⎪⎪⎩
E
[︀
𝜅2

𝑧

⃒⃒
𝑥; 𝜃

]︀
, if 𝑧 = 𝑧

E
[︁
𝜅𝑧(1−𝜅𝑧)[[r−1

2 (𝑥,𝑧)<r−1
2 (𝑥,𝑧)]]

⃒⃒⃒
𝑥; 𝜃

]︁
·E
[︁
𝜅𝑧(1−𝜅𝑧)[[r−1

1 (𝑥,𝑧)<r−1
1 (𝑥,𝑧)]]

⃒⃒⃒
𝑥; 𝜃

]︁
, if 𝑧 ̸= 𝑧,

(A.19)

ℓ<
𝑥 (𝑧, 𝑧) =

∏︁
𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)<r−1

1 (𝑥,𝑧)

E
[︁

(1−𝜅𝑧′)[[r−1
2 (𝑥,𝑧′)<r−1

2 (𝑥,𝑧)]]+1
⃒⃒⃒
𝑥; 𝜃

]︁
, (A.20)

ℓ>
𝑥 (𝑧, 𝑧) =

∏︁
𝑧′ ̸=𝑧

r−1
1 (𝑥,𝑧′)>r−1

1 (𝑥,𝑧)

E
[︁

(1−𝜅𝑧′)[[r−1
2 (𝑥,𝑧′)<r−1

2 (𝑥,𝑧)]]
⃒⃒⃒
𝑥; 𝜃

]︁
. (A.21)

Individual expected values in Equations A.19–A.21 can be computed in 𝒪(|𝒴|)
(see Equation A.4). Cumulative products in Equation A.20 and A.21 can be
precomputed incrementally for all items 𝑧 ∈ 𝒵 using the order given by r−1

1 in
time 𝒪(|𝒴||𝒵|). Since 1

r−1
𝑖 (𝑥,𝑧) equals zero for all 𝑧 ∈ 𝒵 not contained in the re-

sults of r𝑖(𝑥), Equation A.14 can be computed in 𝒪(|𝒴||r1(𝑥)||r2(𝑥)|). Thus, the
sampling distribution can overall be computed in 𝒪(|𝒴||𝐷|max𝑥(|r1(𝑥)||r2(𝑥)|)).

A.2 Comprehensive Empirical Results

In this section, we present additional empirical results. We study the task of
estimating 𝐹 -measures of text classification models in Section A.2.1 and of digit
recognition models in Section A.2.2.

A.2.1 Text Classification Domain

Table A.1 (top) lists the true one-vs-rest precision, 𝐹0.5-measure, recall, and ac-
curacy of the actively trained model for the ten classes in the Reuters-21578 text
classification domain. Figure A.1 shows the estimation error of active, passive,
and activeerr over number of labeled data, for precision, 𝐹0.5 and recall estimates
and all ten classes in the text classification domain.
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Table A.1: Class ratios and model quality for active learned model for ten most
frequent occurring topics in Reuters corpus (top). Class ratios and model quality
of digit recognition model on MNIST (bottom).

class class ratio accuracy precision recall 𝐹0.5

Reuters

earn 0.510 0.978 0.976 0.980 0.978
acq 0.280 0.974 0.942 0.966 0.954

crude 0.044 0.994 0.972 0.879 0.923
trade 0.041 0.995 0.937 0.940 0.938

money-fx 0.034 0.991 0.872 0.861 0.867
interest 0.027 0.992 0.851 0.843 0.847

ship 0.020 0.994 0.886 0.820 0.850
sugar 0.016 0.998 0.972 0.921 0.946
coffee 0.015 0.999 1.000 0.900 0.947
gold 0.012 0.998 0.954 0.911 0.932

MNIST

0 0.097 0.995 0.966 0.978 0.972
1 0.113 0.978 0.955 0.844 0.896
2 0.099 0.986 0.937 0.918 0.927
3 0.102 0.980 0.885 0.920 0.902
4 0.098 0.987 0.930 0.937 0.933
5 0.092 0.980 0.932 0.840 0.884
6 0.098 0.991 0.951 0.962 0.956
7 0.104 0.978 0.972 0.810 0.883
8 0.096 0.962 0.744 0.926 0.825
9 0.099 0.977 0.849 0.940 0.891

A.2.2 Digit Recognition Domain

We consider a digit recognition domain in which training and testing distributions
diverge because the data originate from different sources. To realize this scenario,
a digit recognition model is trained on the USPS data set and evaluated on the
MNIST data set. We use a version of MNIST prepared by Sam Roweis. MNIST
images were rescaled from 28 × 28 to 16 × 16 pixels to match the resolution of
USPS and the bounding box was recomputed. Images are represented by their
256 numeric pixel values. There are 10 classes, 11,000 training and 70,000 test
instances. We train a single multi-class model using an RBF kernel.

We evaluate one-versus-rest 𝐹 -measures for each class, resulting in ten different
evaluation tasks. Table A.1 (bottom) lists the true one-vs-rest precision, 𝐹0.5-
measure, recall, and accuracy of the trained model on the ten different estimation
problems corresponding to digits 0 to 9. Figures A.2 and A.3 show the estimation
error of active, passive, and activeerr over number of labeled data, for precision,
𝐹0.5 and recall estimates and the ten different one-vs-rest estimation problems
corresponding to digits 0 to 9 in the digit recognition domain.
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Figure A.1: Text Classification: Estimation error over number of labeled data, for
recall, 𝐹0.5 and precision estimates. Classes (from left to right and top to bottom):
“earn”, “acq”, “crude”, “trade”, “money-fx”, “interest”, “ship”, “sugar”, “coffee”
and “gold”. Error bars indicate the standard error.
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Figure A.2: Digit Recognition: Estimation error over number of labeled data for
recall, 𝐹0.5, and precision estimates for digits 0 to 4 (from top to bottom). Error
bars indicate the standard error.
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Figure A.3: Digit Recognition: Estimation error over number of labeled data for
recall, 𝐹0.5, and precision estimates for digits 5 to 9 (from top to bottom). Error
bars indicate the standard error.





Notation
This section summarizes the notation and symbols used throughout the thesis.
In general, a vector x = (𝑥𝑖)𝑖=1,...,𝑛 with components 𝑥1, . . . , 𝑥𝑛 is denoted by
a lower case bold letter. If the components are the elements of a finite set 𝑋,
we also write 𝑥 = (𝑥)𝑥∈𝑋 . Upper case bold letters such as X = (x1, . . . ,x𝑛)T =
(𝑥𝑖𝑗)𝑖,𝑗=1,...,𝑛 refer to matrices; the element in the 𝑖-th row and 𝑗-th column is
denoted by 𝑥𝑖𝑗 . Greek letters are used to emphasize scalar values, vectors, and
matrices as parameters of a model or a distribution. The notations 𝑥 ∼ 𝑝(𝑥)
and 𝑥 ∼ 𝑝 denote that a random variable 𝑥 has density 𝑝(𝑥). Estimates of a
quantity are denoted by a hat such as 𝑅̂. If the estimate is based on a model, we
highlight this intrinsic approximation by a check such as 𝑅̌. The following list
gives an overview over frequently used terms.

Model and Parameters

𝑥 Observed data instance, page 7.

x Numerical Euclidean vector representation of instance 𝑥,
page 11.

𝜑(x) Feature mapping (or sufficient statistic) of a vector x,
page 11.

𝑘(𝑥, 𝑥′) Kernel function, i.e., inner product of instances 𝑥 and 𝑥′

in a Hilbert space induced by a mapping 𝜑, page 15.

𝒳 Instance space such as R𝑑, page 7.

𝑦 Target label, page 7.

𝒴 Label space. Labels can be categorical (classification
problem), continuous (regression problem), or complex
(structured prediction problem), page 7.

𝒵 Space of items which can be retrieved by a ranking func-
tion, page 112.

𝑇𝑛 Training set of 𝑛 instance-label pairs (𝑥𝑖, 𝑦𝑖) which is
used to infer model parameters, page 7.

𝐷𝑚 Pool of 𝑚 unlabeled instances that are drawn indepen-
dently from the distribution 𝑝(𝑥), page 20.
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𝜃 Vector of model parameters. The data are assumed to
be generated by a model with unknown parameters (de-
noted 𝜃*), page 7.

Θ Model space. Set of all possible parameter vectors such
as R𝑒, page 7.

𝑓𝜃 Predictive model parameterized with a model parame-
ter 𝜃. Maps an instance to a label, page 10.

𝜆(𝑥) Instance-specific labeling costs, i.e., the costs resulting
from labeling an instance 𝑥 with the true target label,
page 68.

Λ Available budget to label instances, page 68.

Probability Notation

𝑝(𝑥, 𝑦) Probability density function of test data, page 7.

𝑞(𝑥, 𝑦) Probability density function of an instrumental distribu-
tion used to highlight instance-label pairs, page 31.

𝒩 (x | 𝜇,Σ) Probability density function of the multivariate Gaussian
(or normal) distribution with mean vector 𝜇 and covari-
ance matrix Σ, page 12.

𝒩𝑓 (𝑥 | 𝜇, 𝜎2) Probability density function of the folded normal distri-
bution with location parameter 𝜇 and scale parameter 𝜎2,
page 92.

𝑈(𝑥 | 𝑎, 𝑏) Probability density function of the (continuous) uniform
distribution with boundaries 𝑎 and 𝑏, page 91.

𝜒(𝑥 | 𝜈) Probability density function of the 𝜒2-distribution with 𝜈
degrees of freedom, page 44.

Φ(𝑥) Cumulative distribution function Φ : R → [0, 1] of the
standard normal distribution, page 36.

𝐹𝜈(𝑥) Cumulative distribution function 𝐹𝜈 : R → [0, 1] of Stu-
dent’s 𝑡-distribution with 𝜈 degrees of freedom, page 44.

Ω𝜈(𝑥) Cumulative distribution function Ω𝜈 : R → [0, 1] of the
studentized range distribution with 𝜈 degrees of freedom,
page 47.
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KL[𝑝 ‖ 𝑞] Kullback-Leibler divergence. It measures the difference
between two distributions 𝑝 and 𝑞, page 9.

E𝑥∼𝑝(𝑥) [𝑢(𝑥)] Expectation of a real-valued function 𝑢(𝑥) w.r.t. the un-
derlying distribution 𝑝(𝑥) of the argument 𝑥, page 9.

Var𝑥∼𝑝(𝑥) [𝑢(𝑥)] Variance of a real-valued function 𝑢(𝑥) w.r.t. the under-
lying distribution 𝑝(𝑥) of the argument 𝑥, page 29.

Cov𝑥∼𝑝(𝑥) [𝑢(𝑥), 𝑣(𝑥)] Covariance of the real-valued functions 𝑢(𝑥) and 𝑣(𝑥)
w.r.t. the underlying distribution 𝑝(𝑥) of their argu-
ment 𝑥, page 52.

Risks and Estimators

ℒ[𝑓𝜃] Theoretical label likelihood of model 𝑓𝜃, page 9.

ℓ(𝑦, 𝑦) Loss function ℓ : 𝒴 × 𝒴 → R measures the disagreement
between two labels, e.g., the prediction 𝑦 = 𝑓𝜃(𝑥) and
the true label 𝑦, page 28.

𝑅[𝑓𝜃] Risk of model 𝑓𝜃, i.e., the expected value of a loss func-
tion ℓ w.r.t the test distribution 𝑝(𝑥, 𝑦), page 28.

𝐺[𝑓𝜃] Generalized risk of model 𝑓𝜃. It is parameterized with
a loss function ℓ and a further function 𝑤 that assigns a
weight 𝑤(𝑥, 𝑦, 𝑓𝜃) to each instance 𝑥, page 48.

𝐹𝜂[𝑓𝜃] 𝐹 -measure of classifier 𝑓𝜃, page 48.

𝛿(𝑥, 𝑦) Difference of the loss between two models 𝑓𝜃1 and 𝑓𝜃2 for
a data point (𝑥, 𝑦), page 94.

Δ Risk difference between two models 𝑓𝜃1 and 𝑓𝜃2 , page 41.

𝛼 Type I error of a statistical test or of a confidence inter-
val, page 34.

𝛽𝛼,𝑞 Type II error of a statistical test, page 44.

p𝑞 𝑝-value of a statistical test, page 43.

MSE𝑥∼𝑝(𝑥)

[︁
𝑅̂
]︁

Mean squared error of estimate 𝑅̂ w.r.t. the distribu-
tion 𝑝(𝑥). It is a measure for the estimation error of 𝑅̂,
page 28.
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Bias𝑥∼𝑝(𝑥)

[︁
𝑅̂
]︁

Bias of estimate 𝑅̂ w.r.t. the distribution 𝑝(𝑥). It quan-
tifies the systematic deviation of 𝑅̂ from the value being
estimated, page 29.

Var𝑥∼𝑝(𝑥)

[︁
𝑅̂
]︁

Variance of estimate 𝑅̂ w.r.t. the distribution 𝑝(𝑥). It
quantifies the amount of variation of 𝑅̂, page 29.

Miscellaneous

|𝑆| Cardinality of a finite set 𝑆, page 63.

[[𝜓]] Indicator function. It returns 1 if statement 𝜓 is satisfied
and 0 otherwise, page 11.

u⊗ v Kronecker product. It multiplies each component of u
by each component of v, page 12.

vec(U) Operator that stacks the column vectors of a matrix U
below another, page 12.

|X| Determinant of a matrix X, page 12.

𝒪(𝑔(𝑛)) Landau notation. A function 𝑓(𝑛) is a member of the
class 𝒪(𝑔(𝑛)), if the quotient |𝑓(𝑥)/𝑔(𝑥)| is bounded as 𝑥
goes to infinity, page 15.
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The field of machine learning studies algorithms that infer predictive 
models from data. Predictive models are applicable for, e.g., spam filter-
ing, face and handwritten digit recognition, and personalized product re-
commendation. To estimate a model’s performance, a set of labeled test 
instances is required that is sampled from the same distribution to which 
the model will be applied. In many practical scenarios, unlabeled test 
 instances are readily available, but the process of labeling them is a time- 
and cost-intensive task that usually involves human experts.

This thesis addresses the problem of accurately evaluating and comparing 
given predictive models with minimal labeling effort. We study active mod-
el evaluation processes that select, according to an instrumental sampling 
distribution, instances of the data to be labeled. We derive optimal sam-
pling distributions that minimize estimation error with respect to several 
performance measures. For the related problem of efficiently comparing 
the performance of predictive models, we devise an active comparison 
method that maximizes the likelihood of identifying the superior model.

Empirically, we investigate model evaluation and comparison problems in 
several domains and show under which conditions the active evaluation 
processes are more accurate than standard estimates given equally many 
test instances.
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