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Abstract

The field of machine learning studies algorithms that infer predictive models
from data. Predictive models are applicable for many practical tasks such as
spam filtering, face and handwritten digit recognition, and personalized product
recommendation. In general, they are used to predict a target label for a given
data instance. In order to make an informed decision about the deployment of
a predictive model, it is crucial to know the model’s approximate performance.
To evaluate performance, a set of labeled test instances is required that is drawn
from the distribution the model will be exposed to at application time. In many
practical scenarios, unlabeled test instances are readily available, but the process
of labeling them can be a time- and cost-intensive task and may involve a human
expert.

This thesis addresses the problem of evaluating a given predictive model accu-
rately with minimal labeling effort. We study an active model evaluation process
that selects certain instances of the data according to an instrumental sampling
distribution and queries their labels. We derive sampling distributions that min-
imize estimation error with respect to different performance measures such as
error rate, mean squared error, and F-measures. An analysis of the distribution
that governs the estimator leads to confidence intervals, which indicate how pre-
cise the error estimation is. Labeling costs may vary across different instances
depending on certain characteristics of the data. For instance, documents differ
in their length, comprehensibility, and technical requirements; these attributes
affect the time a human labeler needs to judge relevance or to assign topics.
To address this, the sampling distribution is extended to incorporate instance-
specific costs. We empirically study conditions under which the active evaluation
processes are more accurate than a standard estimate that draws equally many
instances from the test distribution.

We also address the problem of comparing the risks of two predictive models. The
standard approach would be to draw instances according to the test distribution,
label the selected instances, and apply statistical tests to identify significant
differences. Drawing instances according to an instrumental distribution affects
the power of a statistical test. We derive a sampling procedure that maximizes
test power when used to select instances, and thereby minimizes the likelihood of
choosing the inferior model. Furthermore, we investigate the task of comparing
several alternative models; the objective of an evaluation could be to rank the
models according to the risk that they incur or to identify the model with lowest
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risk. An experimental study shows that the active procedure leads to higher test
power than the standard test in many application domains.

Finally, we study the problem of evaluating the performance of ranking functions,
which are used for example for web search. In practice, ranking performance is
estimated by applying a given ranking model to a representative set of test queries
and manually assessing the relevance of all retrieved items for each query. We ap-
ply the concepts of active evaluation and active comparison to ranking functions
and derive optimal sampling distributions for the commonly used performance
measures Discounted Cumulative Gain (DCG) and Expected Reciprocal Rank
(ERR). Experiments on web search engine data illustrate significant reductions
in labeling costs.
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Kurzfassung

Maschinelles Lernen befasst sich mit Algorithmen zur Inferenz von Vorhersa-
gemodelle aus komplexen Daten. Vorhersagemodelle sind Funktionen, die einer
Eingabe — wie zum Beispiel dem Text einer E-Mail — ein anwendungsspezifisches
Zielattribut — wie ,Spam® oder ,,Nicht-Spam® — zuweisen. Sie finden Anwendung
beim Filtern von Spam-Nachrichten, bei der Text- und Gesichtserkennung oder
auch bei der personalisierten Empfehlung von Produkten. Um ein Modell in der
Praxis einzusetzen, ist es notwendig, die Vorhersagequalitdt beziiglich der zu-
kiinftigen Anwendung zu schitzen. Fiir diese Evaluierung werden Instanzen des
Eingaberaums benétigt, fiir die das zugehorige Zielattribut bekannt ist. Instan-
zen, wie E-Mails, Bilder oder das protokollierte Nutzerverhalten von Kunden,
stehen hédufig in grofem Umfang zur Verfiigung. Die Bestimmung der zugehori-
gen Zielattribute ist jedoch ein manueller Prozess, der kosten- und zeitaufwendig
sein kann und mitunter spezielles Fachwissen erfordert.

Ziel dieser Arbeit ist die genaue Schéitzung der Vorhersagequalitit eines gege-
benen Modells mit einer minimalen Anzahl von Testinstanzen. Wir untersuchen
aktive Evaluierungsprozesse, die mit Hilfe einer Wahrscheinlichkeitsverteilung In-
stanzen auswéhlen, fiir die das Zielattribut bestimmt wird. Die Vorhersagequali-
tat kann anhand verschiedener Kriterien, wie der Fehlerrate, des mittleren qua-
dratischen Verlusts oder des F-measures, bemessen werden. Wir leiten die Wahr-
scheinlichkeitsverteilungen her, die den Schétzfehler beziiglich eines gegebenen
Mafles minimieren. Der verbleibende Schétzfehler ldsst sich anhand von Konfi-
denzintervallen quantifizieren, die sich aus der Verteilung des Schétzers ergeben.
In vielen Anwendungen bestimmen individuelle Eigenschaften der Instanzen die
Kosten, die fiir die Bestimmung des Zielattributs anfallen. So unterscheiden sich
Dokumente beispielsweise in der Textldnge und dem technischen Anspruch. Die-
se Eigenschaften beeinflussen die Zeit, die benotigt wird, mogliche Zielattribute
wie das Thema oder die Relevanz zuzuweisen. Wir leiten unter Beachtung dieser
instanzspezifischen Unterschiede die optimale Verteilung her. Die entwickelten
Evaluierungsmethoden werden auf verschiedenen Datensédtzen untersucht. Wir
analysieren in diesem Zusammenhang Bedingungen, unter denen die aktive Eva-
luierung genauere Schétzungen liefert als der Standardansatz, bei dem Instanzen
zuféllig aus der Testverteilung gezogen werden.

Eine verwandte Problemstellung ist der Vergleich von zwei Modellen. Um fest-
zustellen, welches Modell in der Praxis eine héhere Vorhersagequalitit aufweist,
wird eine Menge von Testinstanzen ausgewéhlt und das zugehorige Zielattribut
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bestimmt. Ein anschliefender statistischer Test erlaubt Aussagen tiber die Signi-
fikanz der beobachteten Unterschiede. Die Teststédrke hingt von der Verteilung
ab, nach der die Instanzen ausgewahlt wurden. Wir bestimmen die Verteilung,
die die Teststirke maximiert und damit die Wahrscheinlichkeit minimiert, sich
fiir das schlechtere Modell zu entscheiden. Des Weiteren geben wir eine Mog-
lichkeit an, den entwickelten Ansatz fiir den Vergleich von mehreren Modellen
zu verwenden. Wir zeigen empirisch, dass die aktive Evaluierungsmethode im
Vergleich zur zufilligen Auswahl von Testinstanzen in vielen Anwendungen eine
hohere Teststarke aufweist.

Im letzten Teil der Arbeit werden das Konzept der aktiven Evaluierung und das
des aktiven Modellvergleichs auf Rankingprobleme angewendet. Wir leiten die op-
timalen Verteilungen fiir das Schétzen der Qualitdtsmafle Discounted Cumulative
Gain (DCG) und Ezpected Reciprocal Rank (ERR) her. Eine empirische Studie
zur Evaluierung von Suchmaschinen zeigt, dass die neu entwickelten Verfahren
signifikant genauere Schitzungen der Rankingqualitét liefern als die untersuchten
Referenzverfahren.
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CHAPTER 1

Introduction

Predictive models play a central role in many practical domains, such as spam
filtering, face or handwritten digit recognition, and personalized product recom-
mendation. In spam filtering, for example, they are used to classify incoming and
outgoing emails as spam or non-spam in order to reduce the amount of unwanted
emails reaching a user’s mailbox. In general, a predictive model is a function that
maps an instance to a target label. The true relationship between instances and
the corresponding labels is typically unknown or hard to describe by an explicit
rule. Research in the area of machine learning is concerned with algorithms that
use a finite set of examples that represent the underlying relationship to infer a
predictive model. The goal is to identify the model with the highest predictive
performance, that is, the model that predicts the label of a new and so far unseen
instance as accurately as possible.

A set of labeled instances is essential to build and to evaluate predictive models.
Unlabeled instances are typically inexpensive and readily available, but acquiring
the corresponding label is often a costly process, which may involve a human
expert. For example, email service providers receive a huge amount of emails
every day, which can be used to build a spam filter. However, these emails have
to be examined manually, since they do not come with the required target label
“spam” or “non-spam”. The predictive performance generally depends on the
number of instance-label pairs that are available to the learning algorithm; an
increased number of training instances yields a more accurate model. However,
an exhausted labeling of all seen instances can become costly. Active learning
algorithms are designed to produce accurate models with minimal labeling effort.
The idea is to build a sequence of intermediate models with increasing predictive
performance. In each step, the algorithm identifies most valuable instances, which
would give the highest improvement to the model learned so far. These instances
are labeled at a cost. Afterwards, the current model will be updated using all
labeled data up to this time, and so on. Depending on the learning task, these
strategies can save considerable labeling effort.
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Before a predictive model can be deployed in practice, its predictive performance
has to be assessed. For this purpose a set of instance-label pairs is required that
is governed by the distribution the model will be exposed to at application time.
If the training data are distributed according to the test distribution, an estimate
of the performance is typically obtained by cross-validation. In practice, however,
training data are often unavailable or do not reflect the desired test distribution.
In the following, we present examples of such application scenarios motivating
the problem setting of the thesis.

Confidential Training Data. When a readily trained model is shipped and
deployed, the training data—which are usually used to estimate the model’s
risk—may be held confidential by the supplier of the model. For instance, a
medical diagnosis system would not typically come with the medical records
that have been used to train it. Another example are credit scoring models,
which predict creditworthiness. Since they are based on confidential data
like credit history, loan application, customer data, etc. the training data
are also held back in this case for privacy reasons. The supplier may provide
a risk estimate, but such estimate might be biased because it is obtained
without access to the test distribution. In order to estimate the predictive
performance of these models accurately, a set of labeled instances is needed
that reflects the test distribution.

Training and Test Distribution Differ. Using cross-validation in order to
obtain consistent performance estimates requires that the training data
reflect the test distribution. This condition is often not met. Off-the-
shelf models such as commercial spam filters or face recognition systems
are trained without the knowledge of the distribution the model will be
exposed to after deployment. In domains in which the distribution of in-
stances changes over a period of time, one may wish to monitor the risk of
the model in order to determine at which point an update becomes neces-
sary. For a reliable estimate one needs access to the current distribution.
As an example, commercial email spam filters have to be updated with an
additional labeled sample in intervals that depend on the extent to which
spammers impose shift on the distribution by employing new strategies to
generate messages. As another example, ranking models often cannot be
evaluated accurately on held-out training data, because query distributions
and item relevance change over time. Instead, considerable effort is spent
on manually labeling the relevance of documents for test queries in order
to track ranking performance.



Actively Trained Model. Active learning algorithms are used in situation in
which no labeled instances are available in advance. In order to minimize
the labeling effort, active learners query the labels that they predict least
confidently. These instances are not governed by the test distribution.
Hence, the resulting labeled data are a biased sample which would incur
a pessimistic bias on any cross-validation estimate. In order to obtain an
unbiased estimate of the risk, additional test instances have to be labeled.

In these scenarios, estimates are either communicated from the model provider
or result from hold-out evaluations on outdated or biased samples; they can be
arbitrarily inaccurate. In order to evaluate the model accurately, new instances
have to be drawn and labeled at a cost. This thesis addresses the problem of
estimating the performance of a given predictive model accurately at minimal
labeling costs. The standard approach is to draw instances directly from the test
distribution, label these data, and calculate an empirical estimate of the model’s
performance. Instead, we study an active evaluation process that, in analogy to
active learning, queries the labels of the most informative instances. Instances
are selected according to an instrumental sampling distribution. We derive sam-
pling distributions that minimize the estimation error with respect to a certain
performance measure such as error rate, mean squared error, and F-measures.
A related problem is to compare two models as confidently as possible on a fixed
labeling budget. We devise an active comparison method that selects instances
according to the instrumental distribution that maximizes the power of a statis-
tical test that compares the performance of two predictive models. Finally, we
investigate active evaluation methods for ranking functions. Empirically, we ob-
serve that all derived procedures outperform the traditional approach on several
classification and regression data sets. Section [I.1] lists own previously published
work and summarizes the main contribution of this thesis. An overview is given
in Section [[.21
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1.1 Contributions

In this thesis, we develop new evaluation methods to estimate and to compare
the performance of predictive models. We now summarize the main results and

discuss the relation to own publications.

Optimal Sampling Distribution for Risk Estimation. We introduce the
concept of active risk estimation: Instances are selected from a pool of
unlabeled instances in order to evaluate the risk of a given model accu-
rately at minimal labeling costs. We analyze sources of estimation error
of the empirical risk, and derive the sampling distribution that asymptot-
ically minimizes the estimation error. The optimal sampling distribution
depends on unknown quantities. We derive an empirical sampling distribu-
tion that uses the model to decide on instances whose labels are queried.
The resulting active evaluation process can be applied immediately with a
probabilistic prediction model and yields a consistent estimate of the true
risk. An analysis of the distribution that governs the estimator leads to
confidence intervals. We empirically study conditions under which the ac-
tive risk estimate is more accurate than a standard risk estimate that draws
equally many instances from the test distribution. These results have been
published in

[Sawade et al., 2010a] Christoph Sawade, Niels Landwehr, Steffen Bickel,
and Tobias Scheffer. Active Risk Estimation. In Proceedings of the 27th
International Conference on Machine Learning, 2010.

Generalization to F-measures. We generalize the regular risk functional to
incorporate F-measures, which are common performance measures in in-
formation retrieval tasks. We show that the commonly used statistics con-
stitute consistent estimators of that generalized risk. On this basis, we
derive an evaluation process that actively estimates a generalized risk by
sampling test instances from an instrumental distribution. An analysis of
the sources of estimation error leads to the instrumental distribution that
minimizes estimator variance. Our empirical study supports the conclusion
that the advantage of active over passive evaluation is particularly strong
for skewed classes. These results have been published in

[Sawade et al., 2010b] Christoph Sawade, Niels Landwehr, and Tobias
Scheffer. Active Estimation of F-Measures. In Proceedings of the 24th
Annual Conference on Neural Information Processing Systems, 2010.
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Optimal Sampling Distribution for Hypotheses Testing. We address the
problem of comparing the predictive performance of two given models as
confidently as possible given a fixed labeling budget. We lift the active
evaluation principle to hypothesis testing and derive a sampling distribu-
tion that maximizes test power when used to select instances, and thereby
minimizes the likelihood of choosing the inferior model. Empirically, we
observed that the resulting active comparison method consistently outper-
forms a traditional comparison based on a uniform sample of test instances.
Active comparison identifies the model with lower true risk more often, and
is able to detect significant differences between the risks of two given mod-
els more quickly. We perform experiments under the null hypothesis that
both models incur identical risks, and verified that active comparison does
not lead to increased false-positive significance results. These results have
been published in

[Sawade et al., 2012b] Christoph Sawade, Niels Landwehr, and Tobias
Scheffer. Active Comparison of Prediction Models. In Proceedings of the
26th Annual Conference on Neural Information Processing Systems, 2012.

Cost-Optimal Sampling for Ranking Functions. We study active estima-
tion of ranking performance. A novel aspect of active estimation in a rank-
ing setting is that labeling costs vary according to the number of items
that are relevant for a query. We derive a cost-optimal sampling distri-
butions for the estimation of DCG and ERR. Naive computation of the
sampling distributions is exponential in the number of items, we derive
polynomial-time solutions by dynamic programming. Experiments on web
search engine data illustrate significant reductions in labeling costs when
estimating the performance of a single ranking model or comparing different
types of ranking models. These results have been published in

[Sawade et al., 2012a] Christoph Sawade, Steffen Bickel, Timo von Oertzen,
Tobias Scheffer, and Niels Landwehr. Active Evaluation of Ranking Func-
tions based on Graded Relevance. In Proceedings of the 22nd European
Conference on Machine Learning, 2012. Best Paper Award.
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1.2 Outline

In this thesis we study evaluation processes for predictive models. The first two
chapters recapitulate the foundations of learning theory and evaluation meth-
ods. The principle ideas of predictive models and how they can be inferred from
data are presented in Chapter 2} In Chapter [3] we introduce the concept of risk
functionals, their essential estimators, and statistical tests which are used to es-
timate the absolute and relative performance of predictive models. Additionally,
we state a new generalization of the traditional risk and derive statements on the
estimators.

In the following two chapters, we focus on scenarios in which test instances have
to be drawn and labeled to obtain an estimate. We study performance measures
which can be expressed as a generalized risk, such as error rate, mean squared
error, and F-measures. The sampling distribution that minimizes the estimation
error on a fixed labeling budget with respect to a generalized risk is derived in
Chapter[d Furthermore, we extend our results to the case in which labeling costs
vary over different instances; the derived sampling distribution involves instance-
specific labeling costs and is optimal for constrained overall costs. In Chapter [5]
we address the problem of comparing the risks of predictive models as confidently
as possible. To this end, we analyze the statistical testing process, which is
resulting in a sampling procedure that maximizes test power. Chapter [6] studies
active evaluation in the context of ranking functions. Many ranking measures
can be formulated as risks, however, the optimal sampling distributions involve
exponential sums. We show how they can be computed in polynomial time for
two important ranking measures using dynamic programming.

In all three chapters, we experimentally study conditions under which the ac-
tive evaluation is more accurate than the standard passive procedure that draws
equally many instances from the test distribution. Finally, Chapter [7] concludes.



CHAPTER 2

Learning Predictive Models
from Data

The concept of predictive models plays a central role in this thesis. In this
chapter, we present principle ideas of predictive models and summarize the state
of the art of probabilistic learning algorithms. In many practical tasks one aims
at identifying a target label y € ) of a given instance z € X, where ) is referred
to as label space and X as instance space. An unknown test distribution p(z,y) =
p(ylx)p(zx) is defined over X x Y. The conditional distribution p(y|x) describes
the true relationship between an instance x and a label y. An estimate of p(y|x)
enables us to infer the most probable label y for an instance x as well as to
derive a confidence value for any prediction. The process of estimating the true
conditional distribution p(y|z) is also referred to as learning the relationship
between x and y. For this purpose, a finite set of instance-label pairs

T ={(zs,y:)|i=1,...,n} (2.1)

is given, which is called the training data. The training instances (z;,y;) are
assumed to be independent and identically distributed (i.i.d.) according to p(z,y),
that is, the probability of observing the training set 7;, can be decomposed into
a product over the distribution of instance-label pairs:

n

p{(ziy)li = 1,...,n}) = [ [ p(yilz)p(a:). (2.2)

=1

A non-parametric estimate of the distribution p(y|z) is non-trivial, since the in-
stance space X is often a high dimensional vector space (see, e.g., [Bishopl [2006,
Chapter 1.4). One possible way to tackle this problem is to model p(y|z) by a
fixed family of distributions p(y|x; @), which is parameterized by a vector 8 € O,
and estimate the corresponding parameters from 7;,. The set of all possible pa-
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rameterizations O is called the model space. Let us assume that the model space
contains a model 8%, that completely characterizes the true relationship between
a label y and a given instance x. Therefore, we replace the conditional distribu-
tion p(y|z) by p(ylz; 0°). In order to estimate 8, we now study the posterior
predictive distribution p(y|x,T,) that quantifies the likelihood of a label y given
an instance = and the training set 7T,, under the model assumption. Applying the
law of total probability, the i.i.d.-assumption (see Equation, and the assump-
tion, that the probability of a model @ depends only on the observed training
set T, the posterior predictive distribution can be expressed as weighted average
over the model-based predictive distributions p(y|x; 0):

p(ylr.T,) = / p(y]:0)p(6]T;,)d6. (2.3)

Each of the predictive distributions is weighted by the posterior distribution
p(8|T),,), that is, the probability of the model 8 after having seen the training
set T,,. The posterior distribution can be decomposed further into a likelihood,
prior, and marginal likelihood term using Bayes’ rule:

_ 2T 0)p(6)
p(OIT,) = o R (2.4

Under the assumption given by Equation 2.2] the likelihood can be expressed as
p(T,,|0) = Hp yilzi; 0)p(s). (2.5)

It captures how well the model @ fits the training data 7},. The data independent
prior p(0) quantifies the likelihood of a model 0 independently of the data. The
remaining normalization term p(7,,) = [ p(T,,|0)p(0)d6 is known as marginal
likelihood (see Section [2.2).

In order to evaluate Equation we need to define the family p(y|x;0) and the
prior distribution p(@). This choice is specific to the learning task; it depends
on the label space ) and assumptions about the data. In general, a prediction
based on Equation 2:3] is known as Bayesian model averaging. It can be seen
as the optimal decision for an unseen instance x, since the posterior predictive
distribution accounts for the model uncertainty p(0|7,,) caused by the finiteness
of T), (see, e.g., Domingos, [2000; [Davidson & Fan| |2006|). However, the Bayes
optimal solution is intractable for many choices of the model class. In such a
case, the posterior distribution (see Equation can be approximated by some



point estimate 6. The mazimum a posteriori (MAP) estimate is obtained by
replacing the expectation Eg.p g7, )[p(y|2; @)] over all models by the prediction
of the most probable model after having seen the training set T},:

p(ylz, Tp,) =~ p(y‘x; émap), where 8 = arg Iglaé(p(0|Tn). (2.6)
€

If a uniform prior over the model parameters is defined, the MAP estimate reduces
to the mazimum likelihood (ML) estimate. It is given by

~ml ~Aml
T,) ~ : h = T, . 2.
p(ylz, Tr) p(y‘x,@ ), where 0 argr;leaé(p( n|6) (2.7)

In Equation 2.7 the posterior predictive distribution is approximated by the
predictive distribution of the model that gives the observed data the highest
probability.

The quality of an approximation p(y|x; @) can be assessed by the theoretical label
likelihood, which is defined as

The theoretical label likelihood is the exponentiated expected value of the per-
instance label likelihood in the logarithmic space. It can be estimated by the
geometric mean of p(y|z; @) taken over a set T, sampled i.i.d. from p(z,y):

n

L£,(0) = Hp(yz‘\a?i;e)- (2.9)

i=1

Equation [2.9] is referred to as the per-instance label likelihood. Analogically
to|Wasserman| (2004, Chapter 9.5), it can be shown that 6" maximizes asymp-
totically the theoretical label likelihood £ for any prior distributions p(@). Thus,
Bayesian model averaging (see Equation and the maximum a posteriori es-
timate (see Equation are optimal as well for n — oco. In order to analyze
the quality of an estimate é, it can be useful to study also the distance between
the distributions p(y|x; 9) and p(y|x;0*). The distance between two arbitrary
distributions p and p’ can be measured by the Kullback-Leibler divergence. Tt is
defined as

KLpl] = [ 1og 52 plajas.
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The Kullback-Leibler divergence is non-negative and vanishes if and only if p = p'.
We now show that maximizing £(0) is equivalent to minimizing the Kullback-
Leibler divergence of p(y|x;0) from p(y|x;0") in expectation over x. In Equa-
tion we make use of the monotonicity of the logarithm and add con-
stants log p(y|x; 0"):

argmax £(0) = arg max exp <// logp(y|x;0)p(yx;g*)p(x)dydx)
€

6co
= arg min // log Mp(yhﬂ")p(w)dy dz (2.10)
oco p(ylz; 6) ’
= argmin Byp (o) [KL [p(yl2; 07)[p(y|z; 0)]] - (2.11)

Since 0* € O, it follows that the theoretical likelihood is maximized by 6 if
and only if p(y|z;0) = p(y|z;0*). Consequently, the predictive distributions
of the presented estimators (see Equation and converge indeed
to p(y|z; 07).

A predictive model is a function
fo(z) = argmax p(y|z; 9),
yey

which assigns a label y € ) to a given instance x € X based on a model-based
predictive distribution p(y|x;0). The task of determining fg in the case of a
finite label space ) is referred to as a classification problem, whereas if ) = R
the learning task is called regression. In Section [2.1] we present logistic regression
for classification tasks and Bayesian linear regression for continuous label spaces
in Section 2.2 In order to learn a predictive model a set of labeled instances
is required, which represents the true probability p(y|z; 0*) of the label y for
an instance x. In the absence of labeled training data, new training instances
have to be labeled at a cost. If the labeling budget is limited, the choice of
instances which will be labeled is crucial to obtain a model with high predictive
performance. In Section [2.3] we discuss active learning strategies, which are used
to determine only a small subset of instances that have to be labeled.
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2.1 Learning a Classification Model

This section recapitulates the logistic regression model following [Jordan| (1995])
and Bishop| (2006, Chapter 4.3). Therefore, we specify the assumptions that are
made about the data and state the prior distribution over the model parameters.
As a result, we present the optimization criterion of the maximum a posteriori
estimate of the model parameters; it can be solved efficiently by standard solvers.
Finally, we introduce a kernelized version of the logistic regression model.

Assumptions of the Logistic Regression Model

We now derive the optimization problem of logistic regression. In general, it
can be interpreted as finding the maximum a posteriori estimate in a classifi-
cation setting. Let x € R? be a numerical Euclidean vector representation of
an instance z and let Y be a finite space. Inserting Equation [2.4] and 2.5 into
Equation [2.6] leads to

émap — argmax Hz 1p(yl|XZ; (Xl) (0)

co Hz pyixp(xi) T

= arg rglggil;[lp(yi|xi;0)p(0). (2.12)

In the following, we need to specify the distribution p(y|x;0) and p(€). Using
Bayes’ theorem, the model-based predictive distribution p(y|x; ) can be reformu-
lated in terms of class-conditional distributions of the instances and a marginal
distribution of the labels:

p (x|y;6") p (y|6”)

p(ylx; ) = Y seyp (x[5:6)p (4167)

(2.13)

In Equation we have subdivided the parameter vector @ into parameters 6’
which specify the distribution p (x|y; 0’) =p (x|0;) for instances belonging to
class y and parameters 8" which correspond to the label distribution p (y|9").

Since Y is finite, the labels follow a categorical distribution, which is given by

-1

|0// . ZO// H (0%/)[[242??]]7 (2.14)

yeEY yey
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where [-] denotes the indicator function and 8" = (OZ)yey with 6 > 0 is a
vector of parameters that represents the probability of observing the class y € V.
The former term of Equation ensures that the distribution is normalized.

Instances belonging to a class y € )V are assumed to be drawn from an ezponential
family. An exponential family (see, e.g., Bishop, 2006, Chapter 2.4) is a set of
parameterized distributions which can be expressed in the form

p (x]6") = h(x) exp (¢(X)T0' —Ing(0")). (2.15)

A certain class of distributions is obtained by instantiating the feature map-
ping ¢ : R? — R® and the non-negative base measure h : R? — R, where e is
the number of parameters. The feature mapping ¢(x) projects the input vec-
tor x into the parameter space and provides all information needed to derive the
probability of x; it is also known as sufficient statistic in the statistics literature.
Finally, the partition function g(@’)~! must be chosen in such a way as to ensure
that the probability distribution is normalized.

Distributions that belong to an exponential family are, for example, the multi-
nomial, Poisson, and, in particular, the Gaussian distribution. A random vec-
tor x € R? is said to be Gaussian if it has the density function

Nl 2) = () 22l ewp (g x- wTE x- ) (216)

with mean vector p € R? and positive semidefinite covariance matrix 3 € R4*9,

Equation can be expressed in the form of an exponential family (see Equa-
tion [2.15)) using the quantities

’_ E_lu _ X
0= <—§Vec (2_1)> ’ x) = (X@x) ’

h(x) = (2m)~4/2, om) = /ISlexp (WIS ), (217)

where u ® v denotes the Kronecker product multiplying each component of u by
each component of v, vec(U) stacks the column vectors of a matrix U below one
another, and |U]| is the determinant of a square matrix U.

Having established and motivated the exponential family, we can now derive
the model-based predictive distribution for logistic regression. Let all class-
conditional distributions p (X|y;0') be a member of some exponential family.
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Then, by using Equation 2.14] and [2:I5] the model-based predictive distribu-
tion p(y|x; @) given by Equation can be expressed as

h() exp (6(x)70; ~1ng(6;)) (Syey 05) Myey (05)" "
h(x) > ey exp (¢(X)T0% —1In 9(0%)) (Egey gg) ey (eg) [5=141

_ e ((b(X)TO; + by)
dey exp (d’(X)TQ% + bg) ’

(2.18)

where we have defined b, = In OZ —In g(0;). Notice that, the parameter vec-
tor @ = (6,)ycy comprises all class-wise parameters 6, = ((6;)7,b,)". Equa-
tion is known as a generalized linear model (McCullagh & Nelder, [1989).

The set of points x, for which it holds that p(y|x; 0) = p(y|x;8), or equivalently,

o plylx; 8)
0=lg ix.0)
= (b(X)T(ay - 0.7?) + (by - b@) (2.19)

is called decision boundary. The decision boundary between two arbitrary classes
Y,y € Y under a generalized linear model (see Equation is given by a linear
combination of ¢(x) and the model parameter 8. In particular, it can be shown
that the decision boundary is affine in ¢(x) if and only if the class-conditional
distribution p(x|y; @) and p(x|y; @) belong to the same exponential family (Baner-
jeel [2007). An interesting special case occurs when the class-conditional distri-
butions p(x|y; @) are assumed to be Gaussian with identical covariance matrices
for all classes y € Y. Then, the identity mapping ¢(x) = x is sufficient to
characterize the predictive distribution p(y|x;0). The corresponding predictive
model fg(x) is referred to as a linear model (see, e.g., |Bishop, [2006, Chap-
ter 4). In the following, we omit b, since it can be encoded by augmenting the
statistic ¢(x) by one.

If the prior distribution p(8) is assumed to be Gaussian 8 ~ N (8]0, X) with zero
mean and covariance matrix 3, the MAP estimate is given by Proposition
Equation follows by inserting Equation and the Gaussian prior into
Equation 2.13] and the monotonicity of the logarithm. A detailed proof is given
by, e.g., |Karsmakers et al. (2007).



14 Chapter 2 | Learning Predictive Models from Data

Proposition 2.1 (Maximum a Posteriori for Logistic Regression). If p(x|y; 0) is
an exponential family, the mazimum a posteriori estimate with a Gaussian prior
s given by

Amap

= T,
6 arg max p(6|T;,)

. " 1 To—1
:argggg;&og (0, 0(x:),31) + 50756, (2:20)

where 8 = (0y)yecy denotes the vector of all parameters and the logistic loss

log (0, 9(x),y) =log Y _ exp (d(x)7,) — ¢(x)78,

y' €y
measures the disagreement between the prediction and the true label.

Equation [2:20] is also known as penalized log-likelihood estimation. It can been
seen as a minimization of a regularized empirical risk. From this perspective,
the former term constitutes a sum over an instance-specific loss function £;,4
whereas the latter penalizes the model’s complexity. An isotropic covariance
matrix ¥ = ¢2I with ¢ > 0 corresponds to a standard ,2-norm regularization of
the decision function fg (Tikhonov & Arsenin, (1977).

The optimization problem given by Equation [2.20] is convex and continuously
differentiable for all fixed y € ) and can thus be minimized, for example, by
stochastic gradient descent (also known as Robbins-Monro algorithm; see, e.g.,
Spall, 2003, Chapter 4). The partial gradient with respect to 8, € R® is given by
— log p(6[T) = Zn: 2 (0.6(x:).4:) + 3 £y 105 (2.21)

a0, e, TN e T '

where the gradient of the logistic loss is given by

0

ex X T
87011&09 (0,¢(X),y/) — ( p(¢( ) Oy)

dey exp(¢(X)T0Q

) [y = y’]]) ¢(x)

. . Loel . . .
and the inverse covariance matrix X =~ = (Ey’g)y@@; is given by a block matrix

e . o1
of palrwise 1mverse covariances Ey g
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The MAP estimate depends on the covariance matrix ¥ of the Gaussian prior,
which was assumed to be fixed during the derivation in this section. In practice,
the covariance matrix ¥ = ¢2I is often assumed to be isotropic; the parame-
ter o2 can be estimated by cross validation to perform well on so far unseen test
instances (Weiss & Kulikowskil, [1990).

Kernel Functions and Implicit Feature Mappings

The feature mapping ¢ maps instances into a potentially high-dimensional space,
which in turn affects the number of parameters e which have to be estimated
when solving the optimization problem given by Proposition [2.1} Depending
on the assumption about p(x|y; @), the parameter space may be large and solv-
ing the optimization problem can become inefficient. However, the representer
theorem (Kimeldort & Wahbal (1971} |Scholkopf et al., 2001)) states, that the max-
imizer of Equation [2.20] can be equivalently written as a linear combination over
the mapped training instances, that is, there exists o;, € R such that

o(x)"0,"" =3 0y (x0) (). (2:22)

Substituting Equation 2:22]into Equation [2.20/and [2:21] respectively, leads to the
dual formulation of the multi-class logistic regression. This optimization problem
depends on the parameters o;, rather than 6,; the number of optimization
parameters per class is equal to the number of observed instances n, which can
be much smaller than the number of dimensions e of the mapped instances ¢(x).

The dual formulation depends on the mapped data only through inner products.
The inner product can often be computed quite efficiently using kernel functions.
In general, a kernel is referred to a function k : R x R? — R that constitutes the
inner product k(x,x’) = ¢(x)T¢(x’) in some Hilbert space induced by a feature
mapping ¢. It can be seen as a similarity measure between two instances x and x’.
Evaluating a kernel function does not necessarily require an explicit mapping of
the instances. For example, a Gaussian distribution assumption of p(x|y;@)
yields the feature mapping ¢(x) = (x,x®x,1)" (see Equation . An explicit
computation of the inner product ¢(x)"¢(x’) requires O(d?) multiplication and
addition operations. However, the inner product is equivalent to the polynomial
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kernel function
poty (x,x") = (xTx’ + 1)a (2.23)

with degree a = 2 (see, e.g., |Scholkopf & Smolaj, 2002, Chapter 2.1). It can be
computed in time O(d).

Although it is useful to know which transformation ¢ has to be applied to an
instance x to implement a specific distribution assumption p(x|y; @), the true
distribution class of x is often unknown in practice; often implicit mappings are
used, which are only represented by a kernel function. This raises the question
how kernel functions can be identified. Using the concept of reproducing kernel
Hilbert spaces or Mercer’s theorem, it can be shown, that for any positive semi-
definite function k : R x R — R a mapping ¢ can be constructed such that the
inner product between two mapped instances is equal to k (see, e.g., |Scholkopf
& Smolal 2002, Chapter 2.2.2 and 2.2.4). This justifies to use flexible classes
of distributions, that are only implicitly represented by an inner product k; the
corresponding statistic ¢ can be high- or even infinite-dimensional. An example
of a kernel function for which an explicit form of ¢ is unknown, is the radial basis
function (RBF) kernel. It is given by

1
frog ) = exp (=513 I 1) (2.24)

with bandwidth parameter ¢ > 0. The concept of kernel function can be gener-
alized to abstract instances z € X such as graphs, sequences, or texts. A more
detailed discussion is given by [Scholkopf & Smola) (2002).
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2.2 Learning a Regression Model

In the previous section, we state the MAP estimate of 8" under the logistic model
assumption for finite label spaces ). This section presents Bayesian linear regres-
sion following |Rasmussen & Williams| (2006)) for the case that ) is continuous.

Assumptions of the Bayesian Linear Regression Model

Let assume that the label y of a given instance x is generated by a linear
model fg«(x) = x'0* and perturbed by additive Gaussian noise with zero mean
and fixed but unknown variance o?:

for (x) —y ~ N(0,0%). (2.25)

The true model parameters 8% are unknown but assumed to be drawn from a
normal distribution p(6) = AN (0]0,X). We now derive the predictive distribu-
tion p(y|x,T,) (see Equation under these assumptions. Following Equa-
tion [2:25] the model-based predictive distribution under the perturbed Gaussian
model is given by

p(ylx; 8) = N (y|fo(x),0?).

Let X = (x1,...,%,) € R*" define the matrix of instances and (y,...,y,)" €
Y™ the vector of the corresponding labels. Then, the label likelihood can be
expressed by a multivariate Gaussian distribution (see Equation by suitable
algebraic manipulation:

[1pilxi;6) = H (yil fo(xi), %)
i=1

- 1
H exp <%‘2 (yZ - X;I—O)2>

1\ 1 <& T2
(W) exp( 3 (=10

= (277)_”/2 \UQI|_1/2 exp (—;(y - XT0)" (1) Yy — XT0)>

= N(y|XT"0,5°1), (2.26)
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where I € R?*? denotes the identity matrix of size d. Since 8 is assumed to be
drawn from a Gaussian distribution, the posterior is also normally distributed.
This yields a closed-form solution of the MAP estimate. The following proposi-
tions state the MAP estimate of 8" and the posterior predictive distribution.

Proposition 2.2 (Maximum a Posteriori for Bayesian Linear Regression). If
the likelihood p(T,|0) = N(y|XT0,5%I) and the prior p(@) = N(0]|0,X) are
Gaussian, the posterior distribution p(8|T,) = N(0|0,%) is also Gaussian. The
mazimum a posteriori estimate of 0% is given by

AMma

6" = 6T,
arg maxp(6|T,)
= é,
where 8 = 023Xy and T = (U’QXXT + E_l)_l,

The predictive distribution reflects the remaining uncertainty about y caused by
the label noise o2 and the uncertainty as a result of estimating the model pa-
rameters from a finite sample X. It is given by Proposition 2.3

Proposition 2.3 (Posterior Predictive Distribution for Bayesian Linear Regres-
sion). If the posterior p(8|X,y) = N (8]0, X) is Gaussian, the predictive distri-
bution for a new x ~ p(x) is given by

py|x,T,) =N (y|xTé,T§) , (2.27)

where 72 = 0% + x' Ix.

Proposition and can be proven by making use of the Gaussian identi-
ties (see, e.g., |O’Hagan| 1978).

Since the posterior distribution (see Proposition is symmetric and unimodal,
the mode and the mean coincide. Therefore, the Bayes optimal solution and the
maximum a posteriori estimate lead to the same prediction fg(x). However,
the predictive distribution provides us with an estimate 72 of the variance at
instance x.

In contrast to Section 2.1} the maximum a posteriori estimate is given by a closed-
form solution and can be calculated efficiently. However, hyperparameters, such
as the degree of label noise 02, have to be determined when the model is applied in
practice. Therefore, many selection criteria have been proposed in the statistics
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literature, such as AIC (Akaike, |[1974) and BIC (Schwarz, [1978); they assess both
the likelihood and the complexity of the model. Alternatively, hyperparameters
can be tuned by cross-validation (Weiss & Kulikowski, [1990)) or by maximizing
the marginal likelihood

p(y|X) = N(y[0,0°T + XTEX)

as described, for example, by Mardia & Marshall (1984). In the context of
Gaussian processes the gradient of the marginal likelihood can be analytically
derived (Rasmussen & Williams), 2006, Chapter 5.4).

Kernel Functions for Regression

Non-linear relationships are modeled in analogy to Section [2.1f The predictive
distribution given by Equation [2.27]is reformulated, such that it depends on the
data only through inner products. Replacing the inner product by any arbitrary
kernel maps the data points implicitly into another Hilbert space. In the context
of regression, the kernel function is referred to as covariance function.

Let k : X xX — R be a covariance function. A kernelized version of the predictive
distribution is given by

plylx,T,) = N (y|k,Tc (K+0%) 'y, k(x,x) — kI (K+0°T) kz) ,

where K = (k(xi,%;)); ;_;
and kyx = (k(x,%;)),_, _, the vector of covariances between an instance x and

,, denotes the kernel matrix of the training data

the training instances (see, e.g., |[Rasmussen & Williams| 2006, Chapter 2.2).
The linear covariance function

k(x;,%x;) = xiTij

corresponds to the result of Proposition [2.3

For regression a squared exponential covariance, which is closely related to the
RBF kernel in a classification setting, underestimates the variance of the pre-
dictive distribution (Stein) (1999, Chapter 2.7). Instead, a popular choice is the
more general class of Matérn kernel functions

Fmar(3,%') = i() (“? I — x’||)VKV <*/7 Ix-x1). (2.29)



20 Chapter 2 | Learning Predictive Models from Data

where K, is the modified Bessel function of the second kind (Abramowitz &
Stegunl (1964, Chapter 9.6) of degree v and T" is the gamma function. The pa-
rameter v > 0 controls the degree of smoothness and [ > 0 is the characteristic
length-scale. The Matérn kernel coincides with the squared exponential kernel
as the degrees of freedom approach infinity.

2.3 Active Learning

In the previous sections, we have discussed how to estimate the conditional distri-
bution p(y|x) for classification and regression. The conditional distribution p(y|x)
was approximated by a model-based distribution p(y|x; 8); the optimal model pa-
rameters 0% are estimated from a set of labeled instances. In many application
scenarios that require learning a predictive model, unlabeled instances x are read-
ily available whereas acquiring labels y that are distributed according to the true
conditional distribution p(y|x; 0™) is a costly process. Throughout this thesis, we
focus on pool-based settings in which a large pool D,, of m unlabeled instances
is available. The pool is assumed to be drawn i.i.d. according to the distribu-
tion p(x). Instances from this pool can be sampled and then labeled according
to p(y|x; 0%) by an oracle at a cost. If the pool D, is too large to label the com-
plete set or an exhausted labeling does not justify the costs, a limited labeling
budget n <« m is typically defined. An obvious approach is to label n instances
drawn uniformly from the pool D,, and use these instances as training set T,
to learn the predictive model; this strategy is referred to as passive learning.
However, instances need not necessarily be drawn uniformly from the pool.

The research field of active learning in the machine learning literature (MacKayl,
1992;|Cohn, {1996)) and optimal experimental design in the statistics literature (Fe-
dorov}, |1972)) address the problem of selecting a subset of instances from the
pool D,, that yields a more accurate model than passive learning. The opti-
mal strategy would be to choose the subset which yields the model with highest
predictive performance. However, to calculate this strategy the unknown test
distribution p(x,y;0") = p(y|x;0")p(x) needs to be known. In a pool-based
setting, the empirical distribution

m

p(x) = % 3 Ik = xi] (2.29)

i=1

defined over the pool D,, provides an estimate of the distribution p(x). Es-
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Algorithm 1: Active Learning

input Pool D,,, labeling budget n.

1: Initialize estimate of model parameters 0,
:fori=0,....n—1do
Draw x; ~ dp, (x) from D,, based on the estimate 0;.
Query label y; ~ p(y|x;) from oracle.
Update estimate éi+1~

6: end for
output Estimate of the model parameter 9n

AN R 2

timating the conditional distribution p(y|x;0*) is difficult, since it is precisely
the quantity we want to estimate by learning a predictive model. To solve this
“chicken and egg” problem, active learning algorithms typically alternate between
selecting instances to label and estimating the model parameters. The selection
strategy can be defined by an instrumental distribution gg(x) that describes the
probability for choosing the next instance x to label based on a model 6. Algo-
rithm |1 summarizes the typical protocol: Given an initial estimate 0o of 6%, an
instance can be drawn from dp, (x). After the label y is queried from an oracle,
a learning algorithm is applied to the enlarged set of labeled instances to obtain
a refined estimate éi+1- This procedure is repeated until the labeling budget n
is exhausted.

In the following, we give a brief overview of popular active learning algorithms.
They can be differentiated as to whether the sampling strategy gg(x) is deter-
ministic or probabilistic. In Section we analyze active learning algorithms
which choose the next instance to label using a deterministic criterion. In con-
trast, Section [2.3.2] presents sampling distributions minimizing some trade-off
between the variance and the bias of the parameters estimate.

2.3.1 Active Learning with a Deterministic Sampling
Strategy

The choice of the selection strategy gg(x) in Algorithm [1| (Line 3), which is
applied to query the next instance to label, is crucial for the success of active
over passive learning. Let 6, be the estimate of the model parameters 0™ after
having seen ¢ instance-label pairs and let @?’y be the estimate which is based on
an additional instance x with label y. |[Schohn & Cohn| (2000), Roy & McCallum
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(2001)), and |Chapelle| (2005) propose to query the label g of that instance x such
that the model fyx.s is most accurate in expectation over the unknown label y,
that is, '

X = argminl » | Biy)mpx,yi600) [y 7 f@;‘«‘@(x)} p(y]%; 67). (2.30)
yey

In order to implement the query strategy, the authors approximate the distri-
bution p(y|x;0") by the estimate p(y|x; 91) provided by the current model; the
marginal distribution p(x) is estimated by p(x) given by Equation in a pool-
based setting. Then, Equation [2:30] can be evaluated by learning a model with
parameters Bz‘y for each instance X € D and each feasible label y € ). Having
labeled x with y, the estimate 0, is replaced by the new estimate 9;”1, and so on.
If the pool or the label space is large, this approach becomes computationally
intractable.

An alternative strategy is to query the label of the instance X, for which the
prediction of the current model f, (X) is least likely to be correct, that is

X = arg )rc%ig Eyp(ylx:0%) [y = fa, (X)} . (2.31)
Approximating p(y|x; 8*) by the current model leads to a simple sampling heuris-
tic that selects instances for which the prediction of the model is least confident.
This strategy is known as uncertainty sampling. In a classification scenario, the
instance with lowest confidence is given by

X = arg min max x;é- .

& xeD yey plufx: ;)

For regression problems under the assumption of a Gaussian predictive distribu-
tion p(y|x;0) = N (y|fe(x),72) with predictive variance 72 for instance x (see
Section [2.2), the most informative instance in the sense of Equation is given
by the maximal label variance of the predictive distribution

< 2
= . 2.32
X = argMax 7, (2.32)
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Uncertainty sampling is studied for several learning algorithms as SVMs (Tong

& Koller], [2002), logistic regression (Lewis & Gale| [1994), and Gaussian pro-

cesses (Kapoor et all [2007). Further uncertainty measures are also examined

in the literature: Dagan & Engelson| (1995)) use the entropy and [Scheffer et al.
(2001)) consider the difference between most and second most likely label; they

coincide with Equation [2.31]in the case of a binary classification task. Query by

committee (Seung et al.| [1992) is a related approach, where the label uncertainty

of an instance is assessed by measuring the disagreement among a committee
of models rather than using the predictive distribution of a single model. The
committee of models can either be sampled from the posterior distribution
[Callum & Nigam)| [1998) or obtained by boosting and bagging techniques
Mamitsukal, 1998).

In general, there is a trade-off between selecting instances to refine the current
model and exploring the whole support of p(z). Uncertainty sampling algorithms
focus only on instances whose labels are most uncertain and thus tend to discover
only a small region of the instance space. Consequently, the resulting model may
approximate the conditional distribution p(y|x;8*) poorly for some regions. If
such a region has high density p(x), this is known as missed-cluster effect
. To tackle this problem, several dual strategies were proposed in
the literature (Osugi et al., [2005; [Pandey et al. 2005 [Donmez et all 2007).
Basically, they decide in each iteration between passive and uncertainty sampling

following some heuristic. As another approach, [Nguyen & Smeulders| (2004)) and

[Dasgupta & Hsu| (2008) propose to first cluster the instance space p(x) and

then use the cluster assignments to ensure that informative instances from all
regions are be labeled. Finally, active learning strategies have been proposed for a
broad range of other learning tasks such as information extraction
2001)), ranking (Long et all, [2010), and time-series analysis (Singh et al., [2005).
Convergence bounds for active learning with deterministic sampling strategy are
derived by, e.g., [Dasguptal (2006)), [Castro & Nowak| (2007), and [Hanneke| (2011]).

A detailed overview is given by (2009).

In this section, we have addressed strategies to decide which instance has to be
labeled. The presented approaches focus on instances whose label is least likely
to be predicted correctly. If examples are selected deterministically in order to
minimize the labeling effort, the resulting sample is irreversible biased according
to the test distribution. Hence, any estimate of the model’s performance on such

an actively drawn sample is pessimistically biased (see, e.g., [Schitze et al.,[2006]).




24 Chapter 2 | Learning Predictive Models from Data

2.3.2 Active Learning with an Instrumental Distribution

In the previous section, we considered deterministic sampling strategies in order
to determine most informative instance-label pairs. An alternative procedure is
to draw instances to label randomly from an instrumental distribution ¢(x) rather
than from the input distribution p(x). Situations in which the training instances
are governed by a distribution that differs from the test distribution p(x) are
known as learning under covariate shift. Intuitively, the instrumental distribu-
tion g(x) should be chosen such that the resulting estimate p(y|x; 9) is as close as
possible to the conditional distribution p(y|x; ™) for a fixed labeling budget n.
The best-performing model maximizes the theoretical label likelihood (see Equa-
tion . We have seen (see Equation , that maximizing the theoretical
likelihood is equivalent to minimizing the expected Kullback-Leibler divergence:

6" = arg min exp (Exep o [KL [p(ylx; 67)[Ip(y[x; 0)]]) - (2.33)

Since KL[p||p'] is zero if and only if p = p’, the minimum of optimization problem
given by Equation [2.33]is attained independently of the marginal distribution of x
if the model space is correctly specified, that is, 8% € ©. Thus, 9ml maximizes
asymptotically the theoretical label likelihood even if the instances are drawn
from ¢(x) # p(x). In practice, however, it cannot be ensured that the model
space contains the true model 6", because the model might be misspecified. In
this case, Equation is no longer independent of the marginal distribution p(x)
and thus the maximum likelihood estimate does not necessarily converge to the
optimal parameters with respect to Equation [2.8]

In order to estimate p(y|x; ™) accurately by a misspecified model under covariate
shift, we can make use of the weighted maximum likelihood (WML) estimate

n
~wml

6 = i)1 i|%i; 0). 2.34
arglenggi:lw(X) og p(yilxi; 0) (2.34)

The non-negative weighting function w : R* — R* is fixed and quantifies the

relative importance of an instance x. [Shimodairal (2000)) and Wiens| (2000) show

~wml
that the weighted maximum likelihood 6" converges to the maximal theoretical
label likelihood if the weighting function w,(x) = % is chosen to be the ratio
of the input and the instrumental distribution. Under this choice, Wiens| (2000)

and [Kanamori & Shimodairal (2003)) derive an instrumental distribution ¢*(x)

o . ~wml .
that minimizes the variance of 6 for regression.
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Although the weights w, (x) are asymptotically optimal, non-homogeneous im-

~wml
portance weights increase the variance of 0" for finite training set sizes. There-
fore, |Bach| (2006) studies a smoothed weighting function

p(x)\"
wix) = (229
q(x)
with trade-off parameter n € [0,1]. He derives a two-step method to estimate
the parameters of a generalized linear model. In each iteration, the instrumental
distribution ¢*(x) that maximizes the expected performance gain is computed.

After an instance is drawn from ¢*(x) and labeled, 7 is determined by a grid
search such that the predictive performance is maximal.

A closely related task to active learning with an instrumental distribution is
learning from streaming data, where the learning algorithm observes in each
step an unlabeled instance and has to decide whether to query the label or not.
Beygelzimer et al| (2009) use importance weighting to correct the sampling bias
and propose a rejection sampling distribution, which controls the parameters’
variance. The presented theoretical optimal distributions again involve unknown
quantities depending on the true conditional p(y|x; 8*). To determine if the label
of the (i + 1)-th incoming example have to be queried, the authors propose to
approximate p(y|x; 0") = p(y|x; éz) by the model 8; learned so far.

In this chapter, we have seen how a predictive model can be learned from data.
Before a predictive model can be shipped and deployed, an estimate of the pre-
dictive performance is required. In the next chapter, we formalize the concept
of predictive performance and show what conclusion about this quantity can be
drawn from an estimate, which is based on a finite set of instances.






CHAPTER 3

Evaluation of Predictive
Models

This thesis addresses the problem of evaluating a given predictive model as ac-
curately as possible in situations in which labeled instances, which reflect the
test distribution, are unavailable. Before we investigate the case in which labels
have to be queried, this chapter introduces the fundamental concepts of model
evaluation and comparison based on a given sample.

Learning and evaluating can both be seen as instances of statistical inference.
In principle there are two perspectives on statistical inference. From a Bayesian
point of view, one considers one fixed data set; the underlying parameters are
unknown and the subjective beliefs about them are described probabilistically.
In the last chapter, we have followed this perspective in the context of learning
predictive models, since it is considered as natural, when combining prior knowl-
edge of domain experts and observations; the goal was to infer the best model
using the available data. In this chapter, we turn to the frequentistic view. Fre-
quentists assume that the parameters are fixed and consider the observed data
set, which is drawn from some underlying distribution, as random variable. This
view might be more appropriate when evaluating a model, since the analysis is
unconditioned on the current data set and thus corresponds to multiple settings
in which a model is used; the uncertainty about the performance statements is
derived from the fact that we have observed only one data set. Note that the
philosophical differences between the Bayesian and frequentist paradigm have no
impact on the proposed evaluation methods; they can be applied to any statistical
model.

In contrast to Chapter [2| we make no model assumptions about the data gen-
erating process in this context. Therefore, we denote the true distribution of
the observed data by p(z,y) = p(y|z)p(x) instead of p(y|z;0%)p(x); the no-
tation p(y|x; @) refers to the model-based predictive distribution induced by a
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certain predictive model 8. The disagreement between a prediction fg(x) and
a true label y for an instance x is measured by a problem-specific loss func-
tion £: )Y x ) — R. For classification, the zero-one loss £y,1(y,9) = [y # ¥] is
a widely-used choice; it equals one if prediction and true label differ, and is zero
otherwise. For regression, the quadratic loss ¢2(%,y) = (J — y)? is a standard
choice. The risk functional constitutes a common theoretical quantity to mea-
sure predictive performance of a predictive model fg : X — Y with respect to
the test distribution p(z,y). It is defined as the expectation of the loss function
taken over p(z,y):

R[fe] = E(z,y)~p(a, [(f@() y)]
/ (fo(x),y)p(x,y)dy dz. (3.1)

In a classification setting, the integral over ) reduces to a finite sum. If the
context is clear, we refer to R[fg] simply by R.

Since the true risk depends on the unknown test distribution p(z,y), the perfor-
mance of a predictive model fg is typically estimated from a sample of labeled
instances. Common estimators are presented in Section Furthermore, we
state confidence intervals, which quantify the estimation uncertainty caused by
the finiteness of the sample. In order to compare models reliably, we give a brief
introduction into testing theory in Section Finally, in Section we intro-
duce a new generalization of the traditional risk functional and show that the
theoretical findings can be extended to its estimator. The generalized risk func-
tional has recently been studied (Sawade et al., |2010b)); it additionally captures
the F,-measure which is a commonly used performance measure for prediction
problems with skewed class distributions.

3.1 Estimating the Model’s Risk

In general, an estimate R, is an approximation of a quantity R based on a set
of instances x1,...,x, drawn from a distribution p(z). The procedure of cal-
culating an estimate is called estimator. Since, sampling instances z; from a
distribution p(x) is a random process, an estimate is a random variable, whose
distribution depends on p(z). The quality of the approximation R, can be quan-
tified by the squared deviation of the estimator R, from the true value R in
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expectation over the drawn sample:

MSE,,p(a) [Rn} = Eayop(a) [(1%" — R)T . (3.2)

Equation @ is referred to as estimation error. A minimum requirement for an
estimator is consistency. Intuitively, an estimator is consistent, if it indeed calcu-
lates the quantity to be estimated. In order to define the concept of consistency
formally, we need to introduce the notions of convergence of random variables:

Definition 3.1 (Convergence of Random Variables). Let Xi,...,X, be a se-
quence of random wvariables, X a single random variable, and F;(z) and F(z)
their cumulative distribution functions.

e The sequence is said to converge almost surely to X, ¢f lim, oo X, = X
holds with probability one. Almost sure convergence is denoted by X, ——»
X.

e The sequence is said to converge in distribution to X, if lim, o F, () =
F(z). Convergence in distribution is denoted by X, 4, X, or X, 4, PX,
where px is the distribution of X.

Almost sure convergence implies convergence in distribution (see, e.g., [Van der
Vaart, 2000, Theorem 2.7). An estimate R,, is (strongly) consistent, if the ran-
dom sequence of estimates Rl, ..., R, converges almost surely to R. Thus, the
estimation error MSE vanishes for n — oo and R, can indeed be seen as an
estimate of R.

Another two quantities to investigate the sources of the estimation error for finite
sample sizes are the bias and the variance of an estimator. The variance

~

. . 2
Varzin(z) |:RTL:| = ]Erlwp(r) [(Rn - Exlf\/p(r) |:Rni|> :| (3.3)
measures the amount of variation of the estimator and the bias

Biasy,~p(e) | Rn| = Erimpie) || — R (3.4)

quantifies the systematic deviation from the value being estimated. If the bias is
zero, the estimate is said to be unbiased. The estimation error can be expressed
in terms of the bias and the variance: In Equation [3.6] we make use of the
definition of the estimation error (see Equation , expand the square, and
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add and subtract the expected value of R.,. Reordering terms and inserting the
definition of the variance (see Equation [3.3]) and the bias (see Equation 3.4)) yield
Equation

= (Biaszi,vp(z) [RnDQ + Vary, p(a) [ﬁn} . (3.7)

Equation is known as bias-variance decomposition (Geman et al.l |1992).

An estimate of the risk R (see Equation can be obtained by replacing the
unknown distribution p(z, y) by an empirical distribution. Given n instance-label
pairs (z;,y;) drawn from p(z,y), the joint empirical distribution over the pairs
can be defined in analogy to Equation 2:29

n

pesy) = 3 w9) = (0 w0)] (38)

=1

The empirical distribution converges uniformly to the test distribution, in the
sense that p(x,y) converges for any pair (x,y) almost surely to p(x,y), whereby
the speed of convergence is independent of the considered pair (see, e.g., [Van der
Vaart, 2000, Theorem 19.1). Inserting Equation into Equation yields the
empirical risk, given by an average over the instance-specific losses £(fo(x;), yi):

n

Rallfo] = = 3" fo(xi). ). (39)

i=1

The empirical risk R, is an unbiased estimate of R. This can be seen by using
the linearity of the expected value and the definition of R:

n

21 1
Eevomaten) |Bn] = = Y Euuptea [€fo(@).9)]

n -
=1

= R.

Thus, it follows from Equation [3.7] that the estimation error results solely from
the estimator’s variance. In the following, we present the self-normalized im-
portance sampling estimator, which yields a consistent estimate of R based on
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a sample drawn from an almost arbitrarily but known instrumental distribu-
tion g(x). Consistency means asymptotic unbiasedness; that is, the expected
value of the estimate R converges almost surely to the true value R. Although
introducing an asymptotically vanishing bias, this estimator gives us the oppor-
tunity to carefully choose instances to obtain an estimator with lower variance
and thus a more accurate estimate.

3.1.1 Self-Normalized Importance Sampling Estimator

Estimating the expected value of a rarely occurring outcome of a random variable
based on a set of instances drawn directly from the underlying distribution can be
inadequate. Assume that a model fg is assessed in terms of the zero-one loss £y .
If the risk R][fg] is very low, it is unlikely that an instance x with ¢(fg(x),y) =1
occurs in the finite test set; it requires a large number of instances to estimate R
with high confidence. Test instances (z;,y;) need not necessarily be drawn ac-
cording to the distribution p(x,y). An instrumental ¢(z,y) may be available
that highlights crucial instances. In this section, we introduce the concept of
importance sampling. Importance sampling is a general technique to estimate an
unknown quantity using test instances drawn from an instrumental distribution
instead of p(x,y). A precondition for the instrumental distribution is that any
instance (z,y) that can be drawn from p(x,y) can also be drawn from the instru-
mental distribution g(x,y). This condition is formalized in Definition

Definition 3.2 (Absolutely Continuous). Let p(x) and q(x) be distributions de-
fined over a set X. The distribution q(z) is said to be absolutely continuous with
respect to p(x) if p(x) > 0 implies g(x) > 0 for allx € X.

In the following, we derive a consistent estimator of the risk, when instances
are selected according to an instrumental distribution. For the purpose of this
thesis, we focus on instrumental distributions ¢(z,y) = p(y|z)q(x) to select un-
labeled instances z to label; the corresponding label will be drawn according
to p(y|x). Let g(x) be absolutely continuous with respect to the distribution p(z).
Then, the risk defined over the test distribution can be expressed as expecta-
tion of ¢(fo(z),y) taken over the instrumental distribution ¢(z,y) = p(y|z)q(x)

by weighting the instance-specific losses by the Radon-Nikodym derivatives %
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of p(x) with respect to g(x):

Rlfo] = / 0(fo(@), y)p(z, y)dy da

= [[ o vmtuloma >qggdydx
()

p
=Ey)~ — Y- 3.10
(@y)~a(z.y) [q(x) (fo(z) y)] (3.10)
Replacing the distribution ¢(x,y) in Equation by its empirical counter-

part §(x,y) (see Equation induced by n instance-label pairs (x;,y;) drawn
from g(x)p(y|x) yields an estimator of the true risk:

n.qlfo]l = < plx ) p U fo(xi), i) (3.11)

Equation [3.11]is referred to as a self-normalized importance sampling estimator in
the statistics literature (see, e.g., |Geweke, |1989; [Liul 2001). The estimator R,
(see Equation [3.9) is a special case of ﬁn,q, using the instrumental distribu-

tion g(x) = p(x).

The choice of the instrumental distribution ¢(z) affects the bias and the variance
of the estimator Rn,q (see Equation . Hence, for certain sampling distribu-
tions g(x), the estimator ]%n,q of the risk R may be a more label-efficient than R,.
In contrast to the empirical risk f%m the estimator Rn}q is biased, because both
the numerator and the denominator depend on the drawn sample. To see this,
consider the expected value of Equation [3.11}

D 2(%) (fo(zi),y:)
n pxi)
Zi:l q(zi)

Eo.p)~a(a) [Rn,q} =Ey)~aay)

The expected value of the numerator is nR, whereas the expectation of the de-
nominator is n. Since the expectation of a ratio % is not necessarily equal to
the ratio of the expectations of X and Y, the expected value of R, , differs in
general from the risk. Although being biased, Equation [3.11] defines a consistent
estimator of the true risk R because the weighting factors % compensate for
the discrepancy between test and instrumental distributions. To see this, note
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that due to the strong law of large numbers the quantities

1 2 €T as 1 = Tq as
Ezp(x_)ﬁ(fg(xi),y-) — R and — il ) —1

converge almost surely (see Definition [3.2)) to their expected values. Then, Slut-
sky’s Theorem (see, e.g., |Cramér, [1946]) applied to the numerator and denomi-
nator of Equation implies that R, , > R.

The estimation error also depends on the variance of an estimator, and will play a
central role when deriving a cost-efficient sampling distribution ¢(x). Lemma
states that qu is asymptotically normally distributed, and characterizes the
variance of the self-normalized importance sampling estimator in the limit.

Lemma 3.1 (Asymptotic Distribution of Estimator). Let ]:Znyq be defined as in
Equation[3.11) and let us assume that

1. the expected value R = E (4 ) p(a.y) [€(fo(x),y)] exists,
2. the variance Var (g ) p(z,y) [((fo(x),y)] is finite,
3. the distribution q(x) is absolutely continuous with respect to p(x), and

4. the weights p(xg < E are bounded from above by a constant E < co.

Then, Rn,q is asymptotically normally distributed,
Vit (Bug = B) =5 N (0,02),
with asymptotic variance

04 =Eongla) {p(‘r)] 72E(m,y>~q<r>p<y\z> Kp(x)y (€(fo(x),y) — R)?

q(x) q(x)

-/ (zg””i) ( otorn - R>2p<yx>dy) a(z)de, (3.12)

d . . . .
where — denotes convergence in distribution.

We omit this proof here and show a more general result in Section [3.3] instead.
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Finally, it is worth mentioning that an unbiased estimator can be obtained if
n o p(x;)
i=1 q(x;)
instances n. This is known as the standard (not self-normalized) importance

the normalizer—the sum of weights ) —is replaced by the number of
sampling estimator. Although being unbiased, in practice this estimator has often
a higher estimation error caused by higher variance induced by the resampling
weights (see, e.g., |Liu, 2001, Chapter 2.5).

3.1.2 Confidence Intervals

In practice a point estimate ]:Zn,q of the true error is often not sufficient, since it
does not quantify the estimation error. This section states confidence intervals
for risk estimators presented in the previous section. Confidence intervals are in-
dicating a region where the true error lies in with certain probability. Specifically,
a two-sided confidence interval [an —Eas qu +e4] with coverage 1 —« indicates
that |R — ]:En7q| < €4 holds with a predefined probability 1 — «;, or equivalently
that the probability of observing a deviation of €., or a more extreme value, of

the true risk is less than «.

Confidence Intervals for Normally Distributed Estimators

In order to estimate a confidence interval, we analyze the estimator’s underlying
distribution; the corresponding cumulative distribution quantifies the range cap-
turing the true test error for a certain probability. The assumption of a normally
distributed estimator yields the Wald interval which is closely related to the
commonly used t-test interval. We now turn towards the problem of determining
the Wald interval for the self-normalized importance sampling estimator I%mq.
Following Lemma the statistic

Rng =R ~ N(0,1) (3.13)

Oq

Vvn
follows asymptotically a standard normal distribution. In practice, the asymp-

totic variance O'g of the estimator is unknown. Substituting the empirical for the
true variance yields an observable statistic. The empirical variance is given by

n -2 5 2
Spqa=n (Z p(g)) Z (p(“”f)> (é(fe(a:i), i) — Rn,q)2 : (3.14)

q(z;)
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It can be derived by replacing the distribution p(z,y) in Equation by the
empirical distribution function (see Equation induced by a labeled sam-
ple (x1,91),- -+, (n,yn). In the case of p(z) = ¢(x), the sample variance

Si= Z (o) v~ Ba)”

1=

is an unbiased estimator for org

pirical variance S,Ql,q is generally biased because both the numerator and the

(see Bessel’s correction). In contrast, the em-

denominator depend on the drawn sample; see discussion in Section about
the estimator ]%n,q. However, Lemma states that the empirical variance Sy, 4
is a (strongly) consistent estimate of the asymptotic variance o_.

Lemma 3.2 (Consistency of Empirical Variance). Under the assumptions of

Lemma[3.1] the empirical variance
2 as, 2
Snq 9q
converges almost surely to the asymptotic variance.

The claim follows by the strong law of large numbers and Slutsky’s theorem. A
detailed proof is given for example by |Geweke] (1989).

Since S,%’q consistently estimates 02, the observable statistics

R— Ry,

\/ﬁ Sn,q

~ N(0,1) (3.15)
is also asymptotically normally distributed. Hence, the probability « of observing
the Statistic [3.I5 or a more extreme value is given by the cumulative distribution
function of the standard normal distribution (see Figure top); the bound-
aries of the confidence interval e, are given by the 100(1 — «)-th percentile of
the normal distribution. Lemma [3.3 states the size of the confidence interval for

a given confidence level a.
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Lemma 3.3 (Wald Interval for Normally Distributed Estimators). Let R, , be
normally distributed with expected value R and estimated variance S’%yq. Then, a
two-sided confidence interval []:Bnyq — €a, qu + 4] with coverage 1 — «v is given
by

where &~ 4s the inverse cumulative distribution function of the standard normal
distribution.

Proof. Rewriting the coverage probability in terms of the Statistic [3.15] and re-
solving the absolute value by case differentiation according to the sign of énﬂ -R
yields

a=p <|ﬁn,q - R| > Ea)

Rn,q—R>\/ﬁ§a

S”aq n,9

p(vﬁ

Let Z ~ N(0,1) be a random variable that is standard normally distributed.
Then, the probability that Z is less than or equal to a certain value z is given by
the cumulative distribution function of the the standard normal distribution ®(z)
and thus

a:p(Z>\/ﬁ;a)+p(Z>\/ﬁSEa)
n,q n.q

2 (10 (2= vagz))
:2(1—@(«%52)). (3.16)

Finally, the claim follows by solving Equation for &,. O

Confidence Intervals for Binomial Proportions

The standard confidence interval for R, , presented in Section is only
asymptotically correct (Wasserman), 2004, Section 6.3.2). Although the distribu-
tion of R,, , converges independently of the choice of £ to a normal distribution
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Asymptotic Distribution of R, ,

R
[Nlie]

|
0 R — ¢, R R+ e,

Width of Confidence Intervals

Figure 3.1: Asymptotic distribution of the estimator ]%n’q and designated con-
fidence interval of coverage 1 — « (top). The width of the standard (blue) and
Wilson (red) confidence interval as a function of the true risk R and the sample
size n for a = 0.05 (bottom).
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(see Lemma , the convergence rate can be slow if the actual distribution is
skewed (see Berry-Esseen theorem). This can be the case when a classification
model is evaluated with respect to the zero-one loss. In this section, we study
the empirical coverage of confidence intervals for R,, with ¢ = £, /1 and expecta-
tion R € [0,1]. We will see that the interval suffers strongly from the skewness
and the discreteness of the actual binomial distribution of R,,. Finally, we discuss
alternative intervals.

The standard confidence interval (see Lemma |3.3) for a binomially distributed
random variable R can be expressed as

€

)

(1) R

A A

where the sampling variance is calculated by S2 = R(1 — R). In order to assess
the quality of a confidence interval, we define the empirical coverage as

VR (fz) = [|& - R| < £""].

The empirical coverage indicates whether the confidence interval centered around
the estimate R includes the quantity R or not. Since R depends on a set of
randomly drawn instances, the empirical coverage is a random variable. For a
reliable confidence interval, the expected value of ¥ is 1 — a. The empirical
coverage wR(fEn) of the empirical risk R, is negatively biased, that is, the prob-
ability that the interval covers the true risk ¢¥z(R,) = 1 is less than 1 — « (see,
e.g., Brown et al., [2002). Intuitively, if the value R being estimated is close
to the boundaries and the sample size n is small, the estimator’s distribution is
very skewed and thus empirical estimates R,, of zero and one occur regularly. An
empirical risk of zero and one, respectively, leads to an empirical variance S2 of
zero which in turn collapses the confidence interval into a single point. Another
reason for the empirical coverage to be biased is that the standard interval is
symmetric and centered around the estimate R,,. For reasonable choices of a

bin

o™ < 0 of the confidence interval can be

and n a negative lower bound R, —¢
obtained. Since R > 0 holds, the coverage of the feasible part of the interval is

thus lower than 1 — «.

Surprisingly, even if R is not close to the boundaries, the empirical coverage of the
confidence interval can be erratically poor. To see this, we now study the expected
empirical coverage probability taken over the outcomes of the estimate R,. Tt is
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Expected Empirical Coverage

fixed n=50

0.2 0.4 0.6 0.8 1
risk R

fixed R=0.1

0 20 40 60 80 100
number of instances n

coverage probability coverage probability

40 60 80 100
number of instances n

Figure 3.2: Heatmap of the empirical coverage of standard interval with coverage
level 1 —a = 0.95, plotted into a two-dimensional space with axes R and n (left).
Detailed representation of the empirical coverage for fixed number of instances
and fixed risk, respectively (right). Horizontal lines indicate the theoretical cov-
erage.

given by

~

Efmp(BalRm) [wR (Rn)} = / (o (Rn) p(Rn|R,n)dR,,.
= gdm <%) (?) R (1-R)"". (3.17)

Equation exploits that sampling from p(z) leads to a finite number of possi-
ble outcomes in a classification setting; the estimate R, is binomially distributed.
Figure (left) shows the expected empirical coverage as a function of the risk R
and the number of instances n. The discrete lattice structure of Rn causes an
oscillation in the coverage probability even for larger n. Hence, standard inter-
val estimates governed by the corresponding estimate R, may be appropriate or
drastically poor depending on the choice of n for a given R. Figure (right)
illustrates the behavior of the coverage probability for fixed n and fixed R, respec-
tively. For small n, the negative bias caused by collapsed intervals is dominating.
For larger n, the oscillation effect due to the lattice structure becomes visible. A
more formal investigation is given by Brown et al.| (2001)).
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In the case in which £ is binomially distributed, it would seem more natural to
derive confidence intervals by inverting the exact distribution rather than using a
normal approximation. This idea was proposed by |Clopper & Pearson| (1934)). By
definition, the Clopper-Pearson interval is correct; it guarantees that the cover-
age is at least 1 — « for all sample sizes n and values of R. However, the discrete
structure of the distribution results mostly in very conservative and too wide
ranges. Therefore, many authors argue in favor of approximate confidence inter-
vals (see, e.g., |Agresti & Coull, [1998)). An alternative to the standard interval is
the Wilson interval (Wilson, 1927)). In contrast to the standard interval, we do
not substitute the variance 02 by an empirical estimate. Instead, we study the
squared deviation (I?n — R)? for a given confidence level o under the assumption
that R, is normally distributed. From Lemma it follows that

e < (1-9)

holds with probability 1 — a. Thus, the squared deviation is bounded with
probability 1 — « by

(RnfR)2 <91 (1f%)2@. (3.18)

The roots of this quadratic equation with respect to the unknown value R give
rise to the Wilson confidence interval [R,, —e%%, R, +c%"], where we have defined

o R+ e (1-3)

R, 3.19
T lei(g) )

4 R1—R)+ La-1(1—a)
cvil — -1 (1—%) \/ -8 +727(1-3) . (320

Vit oot (1-g)°

In contrast to the standard confidence interval R,, + %", the Wilson interval is
not symmetric to R.; the center is shifted to R = 0.5. Furthermore, Figure
(bottom) shows that the size of €% is generally larger for extreme values of R.

Finally, an overview of alternative intervals is given, for example, by [Henderson
& Meyer| (2001)).

Although the coverage of the Wilson interval is closer to the expected coverage
than the standard interval for a binomial loss function, the oscillating behav-
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ior caused by the discreteness of the binomial distribution can not be avoided
without an additional randomization of the estimation process (see, e.g., |Brown
et al., |2001). However, note that, Rnyq is in general not binomial distributed
for p(x) # q(x) even if ¢ follows a Bernoulli distribution. The resampling
weights %7 that live in a potentially continuous space, soften the lattice struc-
ture of possible estimates. We will see in Section[f.4.3]that the empirical coverage
of the corresponding confidence interval increases more smoothly with the num-

ber of observed instances.

3.2 Comparison of Prediction Models

In this section, we summarize the statistical foundations of testing theory which
allow us to compare prediction models accurately. The standard approach to
comparing models is to calculate their empirical risks based on instances that
are governed by the test distribution p(z) which the models are exposed to in
practice. The underlying distribution of the estimator R, provides information
on whether the observed difference is significant or due to chance. If instances are
drawn according to an instrumental distribution g(x), this procedure also applies
to a self-normalized importance sampling estimator ]A%nvq. In Section we de-
tail a statistical test for estimates based on instances which are drawn according
to an instrumental sampling distribution. Confidence intervals (see Section [3.1.2)
and hypothesis testing are closely related. We discuss their relationship in Sec-
tion [3:2.2] Finally, we present statistical tests that can be used to comparing

multiple models (see Section [3.2.3)).

3.2.1 A Statistical Test for Actively Drawn Instances

Given two models fg, and fg,, our goal is to identify the one with lower risk R.
Since the true risks are unknown, they are typically estimated from a sample of
labeled test instances. Given estimates Ry 4[fo,] and Ry q[fe,], the difference

~

An’q = Rn,q[fel] - Rn,q[fgz] (3'21)

provides evidence on which model is preferable; a negative sign of AWZ argues in
favor of fg, whereas a positive sign makes fg, preferable.
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distribution under hg distribution under h;

type II error 3 type I error

distribution under hg distribution under hq

type I error o

Figure 3.3: Type I and II of a statistical test induced by the distribution of the
estimator A, , under null and alternative hypothesis for a fixed critical value z,
(top). The p-value quantifies the likelihood of the observed statistic or a more
extrem value under the null hypothesis (bottom).
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In preferring one model over the other, one rejects the null hypothesis hg that
the observed difference Amq is only a random effect, and actually A = R[fp,] —
R][fe,] = 0 holds. Rejecting hg confidently allows us to conclude that the opposite
(alternative hypothesis hy) is true, that is R[fg,] # R|[fe,] justifying to choose the
model with lower empirical risk. To quantify the evidence that can be gathered
from the data, we now analyze the distribution of the test statistic under the null
hypothesis, which leads to the Wald-test (see, e.g., Wasserman, 2004, Chapter
10).

Lemma implies that the risk estimates Rnyq[ fo,] and thus the difference An,q
are asymptotically normally distributed. Furthermore, under the null hypothesis
the mean of A,, , is asymptotically zero and hence the statistic

Aniq

V=t L A0, 1),
On,q
where %UTQW = Var(, ,)~q(z,y) [An,q] denotes the variance of Amq, follows asymp-

totically a standard normal distribution. In practice, o, 4 is unknown. Let

0(z,y) = U(fo,(2),y) — £(fo.(x),y)

denote the difference in loss between the predictions of the two models for a test
instance (z,y). Then, following Lemma with loss function d(x;,y;) a con-
sistent estimate of 01217 4 1s obtained from the labeled sample (1,91), - (T, yn)
drawn from ¢(z)p(y|x) by computing empirical variance

S2. =n (p(xf)>_2 Zn: (p(xf)f (5($i,yi) - AW)Z. (3.22)

q(x;) im1 q(x;)

Substituting the empirical for the true standard deviation yields an observable

statistic v/n @"’q . Because S?2 o consistently estimates o2 o the observable statistic
n,q s )

would be asyrﬁptotically standard normally distributed,

A"aq
Sn.q

vn ~ N(0,1), (3.23)

if the null hypothesis were true.

The p-value p, quantifies the likelihood of observing a test statistic or a more
extreme value, by chance under the null hypothesis. The p-value of the two-sided
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Wald test can be derived in analogy to the proof of Lemma [3.3] It is given by

A,
pq=p<Z>x/ﬁ|S 7q'>

n,q

ofi-o i) oo

where Z ~ N (0, 1) is standard normally distributed and ® denotes the cumulative
distribution function of the standard normal distribution. If it falls below a
pre-defined confidence threshold a (admissible type I error), one can reject the
null hypothesis and conclude that the models’ risks are significantly different.
Equivalently, the null hypothesis can be rejected if the test statistic exceeds the
corresponding critical value

za:qﬂ(kg).
2

The type II error rate of a statistical test is the probability of not accepting the
alternative hypothesis h; although it in fact holds. It is given by

Ba,g =P (pg > @)

=p (ﬁén’d < Za> . (325)

n,q

Furthermore, 1—- 3, 4 is known as the power of a statistical test; it is the likelihood
that the p-value falls below «, if the alternative hypothesis truly does hold and
the two models indeed incur different risks. The central concepts are summarized

in Figure [3.3]

3.2.2 Relationship between Tests and Confidence Intervals

Confidence intervals and hypothesis testing are closely related. Specifically, the
Wald test with confidence level 1 — « rejects the null hypothesis A = Aq if and
only if Ag is not covered by the standard confidence interval, that is [Ag —
An,q| > &4 (Wasserman) 2004, Theorem 10.10). Therefore, the coverage of the
confidence interval corresponds to confidence level 1 — « of a statistical test. As
a consequence, employing a Wald-test for binary proportions may yield a poorly
calibrated type I error (see Section [3.1.2)).
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As an alternative, Student’s ¢-distribution can serve as an approximation of the
distribution of a test statistic under the null hypothesis as well as for the deriva-
tion of confidence intervals in Section [3.1.2] This results in the widely used

Student’s t-test and the corresponding t-test interval, respectively. Note, how-
2
ever, that the statistic (n—1) i;"‘ would have to be governed by a y2-distribution

with n — 1 degrees of freedom for the test statistic to be asymptotically governed

by the t-distribution. This assumption is only satisfied if S,Ql,q would be a sum
of squared, normally distributed random variables which is reasonable for regres-
sion, but not for classification, and only for the case of p(z) = g(x). Nevertheless,
the normal distribution is often replaced by the Student’s ¢-distribution even if
the distribution assumption is not justified. Since the t-distribution has heavier
tails for small n, the resulting confidences are more conservative and thus more
robust to unlikely events. The ¢-distribution converges to the normal distribution.
For the sample sizes n that are studied in this thesis, the difference is already
negligible for the considered sample sizes: The corresponding confidence regions
differ by a factor of F, (1 — £)/® (1 — ¢) = 1.012 for n = 101, where ®~!
and F, ! are the inverse cumulative distribution functions of the Gaussian and
the t-distribution with v degrees of freedom.

3.2.3 Comparing Multiple Prediction Models

So far we have focused on the problem of comparing the risks of two prediction
models, such as a baseline and a challenger. We might also compare several
alternative models and rank the models according to their risks or to identify the
model with lowest risk.

Comparing multiple prediction models is even more challenging than to evaluate
whether there is any evidence that the performance difference A between two
models is significantly different from zero (Demsar, 2006]). A naive strategy to
evaluate the relative performance of &k different models is to apply multiple pair-
wise Wald or t-test, respectively. However, when testing multiple hypotheses the
probability « that at least one of the pairwise difference becomes falsely signifi-
cant under the null hypothesis increases with an increasing number of performed
tests. Hence, o exceeds considerably the type I error a; = o’ of each single t