
Concepts and Techniques for 3D-Embedded
Treemaps and their Application to

Software Visualization

Dissertation

in partial fulfillment for the academic degree
“doctor rerum naturalium” (Dr. rer. nat.)

submitted by Daniel Limberger

Potsdam, Germany , 22. March 2023

supervised by Prof. Dr. Jürgen Döllner
of the Computer Graphics Systems Group at the

Hasso Plattner Institute | Faculty of Digital Engineering | University of Potsdam

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-63201
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-632014

| iii

“By visualizing information, we turn it
into a landscape that you can explorewith
your eyes: [. . .] a sort of information map.
And when you’re lost in information, an
information map is kind of useful.”

David McCandless [167]

Abstract

This thesis addresses concepts and techniques for interactive visualiza-
tion of hierarchical data using treemaps. It explores (1) how treemaps
can be embedded in 3D space to improve their information content and
expressiveness, (2) how the readability of treemaps can be improved using
level-of-detail and degree-of-interest techniques, and (3) how to design and
implement a software framework for the real-time web-based rendering
of treemaps embedded in 3D. With a particular emphasis on their applica-
tion, use cases from software analytics are taken to test and evaluate the
presented concepts and techniques.

Concerning the �rst challenge, this thesis shows that a 3D attribute space
o�ers enhanced possibilities for the visual mapping of data compared to
classical 2D treemaps. In particular, embedding in 3D allows for improved
implementation of visual variables (e.g., by sketchiness and color weaving),
provision of new visual variables (e.g., by physically based materials and
in situ templates), and integration of visual metaphors (e.g., by reference
surfaces and renderings of natural phenomena) into the three-dimensional
representation of treemaps.

For the second challenge—the readability of an information visualization—
the work shows that the generally higher visual clutter and increased
cognitive load typically associated with three-dimensional information
representations can be kept low in treemap-based representations of both
small and large hierarchical datasets. By introducing an adaptive level-
of-detail technique, we cannot only declutter the visualization results,
thereby reducing cognitive load and mitigating occlusion problems, but
also summarize and highlight relevant data. Furthermore, this approach
facilitates automatic labeling, supports the emphasis on data outliers, and
allows visual variables to be adjusted via degree-of-interest measures.

The third challenge is addressed by developing a real-time rendering frame-
work with WebGL and accumulative multi-frame rendering. The frame-
work removes hardware constraints and graphics API requirements, re-
duces interaction response times, and simpli�es high-quality rendering.
At the same time, the implementation e�ort for a web-based deployment
of treemaps is kept reasonable.

The presented visualization concepts and techniques are applied and evalu-
ated for use cases in software analysis. In this domain, data about software

vi |

systems, especially about the state and evolution of the source code, does
not have a descriptive appearance or natural geometric mapping, making
information visualization a key technology here. In particular, software
source code can be visualized with treemap-based approaches because
of its inherently hierarchical structure. With treemaps embedded in 3D,
we can create interactive software maps that visually map, software met-
rics, software developer activities, or information about the evolution of
software systems alongside their hierarchical module structure.

Discussions on remaining challenges and opportunities for future research
for 3D-embedded treemaps and their applications conclude the thesis.

Zusammenfassung

Diese Doktorarbeit behandelt Konzepte und Techniken zur interaktiven
Visualisierung hierarchischer Daten mit Hilfe von Treemaps. Sie unter-
sucht (1), wie Treemaps im 3D-Raum eingebettet werden können, um ihre
Informationsinhalte und Ausdrucksfähigkeit zu verbessern, (2) wie die Les-
barkeit von Treemaps durch Techniken wie Level-of-Detail und Degree-of-
Interest verbessert werden kann, und (3) wie man ein Software-Framework
für das Echtzeit-Rendering von Treemaps im 3D-Raum entwirft und im-
plementiert. Dabei werden Anwendungsfälle aus der Software-Analyse
besonders betont und zur Verprobung und Bewertung der Konzepte und
Techniken verwendet.

Hinsichtlich der ersten Herausforderung zeigt diese Arbeit, dass ein 3D-
Attributraum im Vergleich zu klassischen 2D-Treemaps verbesserte Mög-
lichkeiten für die visuelle Kartierung von Daten bietet. Insbesondere er-
möglicht die Einbettung in 3D eine verbesserte Umsetzung von visuellen
Variablen (z. B. durch Skizzenhaftigkeit und Farbverwebungen), die Be-
reitstellung neuer visueller Variablen (z. B. durch physikalisch basierte
Materialien und In-situ-Vorlagen) und die Integration visueller Metaphern
(z. B. durch Referenz�ächen und Darstellungen natürlicher Phänomene) in
die dreidimensionale Darstellung von Treemaps.

Für die zweite Herausforderung – die Lesbarkeit von Informationsvisuali-
sierungen – zeigt die Arbeit, dass die allgemein höhere visuelle Unüber-
sichtlichkeit und die damit einhergehende, erhöhte kognitive Belastung,
die typischerweise mit dreidimensionalen Informationsdarstellungen ver-
bunden sind, in Treemap-basierten Darstellungen sowohl kleiner als auch
großer hierarchischer Datensätze niedrig gehalten werden können. Durch
die Einführung eines adaptiven Level-of-Detail-Verfahrens lassen sich nicht
nur die Visualisierungsergebnisse übersichtlicher gestalten, die kogniti-
ve Belastung reduzieren und Verdeckungsprobleme verringern, sondern
auch relevante Daten zusammenfassen und hervorheben. Darüber hinaus
erleichtert dieser Ansatz eine automatische Beschriftung, unterstützt die
Hervorhebung von Daten-Ausreißern und ermöglicht die Anpassung von
visuellen Variablen über Degree-of-Interest-Maße.

Die dritte Herausforderung wird durch die Entwicklung eines Echtzeit-
Rendering-Frameworks mit WebGL und akkumulativem Multi-Frame-
Rendering angegangen. Das Framework hebt mehrere Hardwarebeschrän-

viii |

kungen und Anforderungen an die Gra�k-API auf, verkürzt die Reak-
tionszeiten auf Interaktionen und vereinfacht qualitativ hochwertiges
Rendering. Gleichzeitig wird der Implementierungsaufwand für einen
webbasierten Einsatz von Treemaps geringgehalten.

Die vorgestellten Visualisierungskonzepte und -techniken werden für
Anwendungsfälle in der Softwareanalyse eingesetzt und evaluiert. In die-
sem Bereich haben Daten über Softwaresysteme, insbesondere über den
Zustand und die Evolution des Quellcodes, keine anschauliche Erschei-
nung oder natürliche geometrische Zuordnung, so dass die Informati-
onsvisualisierung hier eine Schlüsseltechnologie darstellt. Insbesondere
Softwarequellcode kann aufgrund seiner inhärenten hierarchischen Struk-
tur mit Hilfe von Treemap-basierten Ansätzen visualisiert werden. Mit in
3D-eingebetteten Treemaps können wir interaktive Softwarelagekarten
erstellen, die z. B. Softwaremetriken, Aktivitäten von Softwareentwick-
ler*innen und Informationen über die Evolution von Softwaresystemen in
ihrer hierarchischen Modulstruktur abbilden und veranschaulichen.

Diskussionen über verbleibende Herausforderungen und Möglichkeiten
für zukünftige Forschung zu 3D-eingebetteten Treemaps und deren An-
wendungen schließen die Arbeit ab.

Table of Contents

1 Introduction 1

1.1 Visualization of Hierarchical Data 1

1.2 Charting Software Systems 2

1.3 Thesis Statements and Objectives 3

2 Fundamentals of 3D-Embedded Treemaps 5

2.1 Data Characteristics 7

2.1.1 Tree-Structured Data 7

2.1.2 Temporal Data . 8

2.1.3 Multivariate Data . 9

2.2 Treemap Visualization Pipeline 9

2.2.1 Taxonomy of Treemaps 10

2.2.2 Treemap Layout . 11

2.2.3 Attribute and Reference Space 12

2.2.4 Visual Variables . 12

2.2.5 Variateness and Expressiveness of Visualizations . 13

2.2.6 Designations of Treemaps in 3 ⊕2 14

2.2.7 Alternatives to 2D Image Synthesis 15

2.3 Visualization Process 15

2.4 Software Cartography using Treemaps 18

2.4.1 Specialization of the Term Software Map 18

2.4.2 General Delimitation of Research Contributions . . 19

3 Visual Variables for 3D-Embedded Treemaps 21

3.1 Visual Variables of 2 and 3 22

3.1.1 Visualization Mapping and Rendering 23

x |

3.1.2 Visual Variables in 3 23

3.2 Sketchy Contours and Surface Hatching 26

3.2.1 Sketchy Outlines for Interactive Visualization 26

3.2.2 Surface Hatching for Interactive Visualization 28

3.2.3 Sketchiness as a Visual Variable in 3 29

3.3 Physically-based Materials and Phenomena 30

3.3.1 Physically-based Materials for Visualization 31

3.3.2 Weather Phenomena for Visualization 33

3.4 In-Situ Templates . 33

3.4.1 Two-State and Multi-State Mappings 34

3.4.2 Two-State Height Mapping 35

3.4.3 Two-State Color Mapping 36

3.4.4 Two-State Height and Color Mapping 37

3.5 Animated Procedural Textures 38

3.5.1 Transition, Animation, and Change 39

3.5.2 Procedural Patterns for Animated Change Display . 40

3.5.3 Pattern Characteristics 42

3.5.4 Pattern Composition 44

3.5.5 Animation Control . 44

3.6 Value-added Adaptations for 3D-Embeddings 45

3.6.1 Height Mapping for Inner-Nodes 45

3.6.2 Height-based Filtering using Reference Surfaces . . 46

3.6.3 Resolution of Visual Data Encodings 47

3.6.4 Addressing Non-Visual Challenges 47

4 Level-of-Detail and Labeling for 3D-Embedded Treemaps 49

4.1 Dynamic Aggregation of Nodes 50

4.1.1 Degree-of-Interest Scoring of Nodes 50

4.1.2 Score Propagation and Processing 51

4.2 Visual Display of Aggregates 53

4.2.1 Aggregation Operators for Color and Height 54

4.2.2 Nesting Level Contouring 55

4.2.3 Animated State Transitions for Aggregates 56

4.2.4 Color Weaving . 56

Table of Contents | xi

4.2.5 Evaluation & Discussion 57

4.3 Dynamic Labeling in 3D-Embedded Treemaps . . . 59

4.3.1 Labeling and Text Rendering 60

4.3.2 Descriptive Label-Placement using OpenLL 61

4.3.3 3D-Embedded Map Legends 63

4.4 Partial 3D-Embedding 63

4.4.1 Node-local Tilt Operator 64

4.4.2 Parameterization of Node-local Tilt 65

5 Web-based Provisioning of 3D-Embedded Treemaps 67

5.1 Rendering of Rectangles and Cuboids 68

5.1.1 WebGL-based Rendering of 3D-Embedded Treemaps 69

5.1.2 On the Use of 3rd-Party Renderers 70

5.2 Responsive Accumulative Rendering 71

5.2.1 Composition of a Progressive Frame 72

5.2.2 Progressive Frame Accumulation 74

5.3 Progressive Sampling Strategies 75

5.3.1 Multi-frame Anti-Aliasing 75

5.3.2 Multi-frame Transparency 77

5.3.3 Multi-frame Screen-Space Ambient Occlusion . . . 79

5.3.4 Multi-frame Depth of Field 80

5.4 3D-embedded Treemaps using treemap.ts 81

6 Software Visualization using 3D-Embedded Treemaps 85

6.1 Static Source Code Metrics 86

6.2 Map Themes for Visual Software Analytics 87

6.3 Assembling Map Themes 88

6.4 Rendering Performance Evaluation 91

7 Conclusions and Future Work 93

7.1 Conclusions . 93

7.2 Outlook and Challenges 94

7.3 Closing Remarks . 96

1 Introduction

Information visualization is the art and science of presenting complex,
abstract data in a clear and e�ective manner. By leveraging visual represen-
tations such as graphs, charts, and maps, information visualization enables
users to explore, understand, and communicate information that would
otherwise be di�cult or impossible to grasp. It faces various challenges,
such as how to e�ectively handle large amounts of data, how to represent
complex relationships and hierarchies, and how to balance simplicity and
detail. Powerful tools have emerged that can “transform data into infor-
mation and information into insights”1.1 and have the potential to help
us to make better decisions, discover new patterns and relationships, and
communicate information more e�ectively.

1.1 Visualization of Hierarchical Data

Figure 1.1: A drawing
of a person having used
hierarchical thinking to
cope with complexity,
created using DALL·E.

“Humans arrange information hierarchically and use hierarchical methods
for reasoning. ‘Hierarchization’ is one of the major conceptual mechanism
to model the world.” [236] It should not surprise that hierarchical data is
ubiquitous and fundamental to almost all systems and application domains.
Our need to explore this data is emphasized by the sheer amount of di�erent
ways that have been created to visualize tree-structured data [209]. These
techniques help to share, shape, and re-use mental images of facets of
data, aiding communication and exploration. Given the wide range of
existing techniques, we focus our e�orts on re�ning and extending the
capabilities of treemaps. They o�er unique advantages for exploring and
understanding complex data sets, making them a natural choice for our
research goals. By building on the strengths of treemaps, we aim to increase
their versatility and help researchers and practitioners make sense of large,
tree-structured, multivariate data.

Treemaps use nested rectangles to represent hierarchical data; each rectan-
gle represents a speci�c portion of the data, with the area of the rectangle
corresponding to the magnitude of the data it represents. This allows users
to identify trends and patterns that might be di�cult to discern from raw
data alone. Treemaps leverage our ability to create cognitive maps [7,
86, 153, 171], which are non-egocentric, coherent representations of our

1.1Carly Fiorina. Information: The Currency of the Digital Age. hp.com/hpinfo/execteam
/speeches/�orina/04openworld.html. Dec. 2004.

https://www.hp.com/hpinfo/execteam/speeches/fiorina/04openworld.html
https://www.hp.com/hpinfo/execteam/speeches/fiorina/04openworld.html

2 | Chapter 1: Introduction

surroundings that we create in our minds (Figure 1.1). Such maps help us
navigate complex environments using visual cues and spatial relationships.
The added data encoding employed by treemaps, e.g., using size, color,
or texture, allows users to tap into complex data intuitively and gain in-
sights into trends, patterns, outliers, anomalies, and similarities, all while
preserving the relationships among data elements.

Figure 1.2: “Flächen-
Diagramm mit zweima-
liger Untertheilung”,
an area diagram with
twofold subdivision from
1877 [259]. The area is
split from left to right,
then, per column, from
bottom to top. For exam-
ple, the b rectangle on the
right represents 70 of its
column’s 100 of the whole
square’s 1 000 units.

Although the space-�lling approach of treemaps is known to information
visualization for at least a century (Figure 1.2); it was famously reintro-
duced in 1991 [125] to visualize the disk space occupied by �les on a
computer. Since then, space-�lling treemaps have been applied to many
domains, and their versatility and algorithmic accessibility have made
them an appealing choice for visualizing data across various domains. For
example, the entire footprint of a rectangular treemap is a single rectangle
representing the root node of the depicted tree-structured data. When
splitting this rectangle recursively according to the number of child nodes,
eventually, only leaf nodes (nodes with no children) are left, each repre-
sented by a single rectangle. Data values associated to these nodes are
mapped to the rectangles’ appearance, e.g., area, color, and texture [25,
44]. By leveraging existing user experiences with popular map services,
treemaps enable users to interact and navigate as well as locate points of
interest within the data in a way that is intuitive and familiar.

1.2 Charting Software Systems

Visual software analytics was chosen as application domain to test and
evaluate this thesis’s �ndings. It focuses on the development and use of
visualizations to help understand and analyze software systems. It involves
the application of data visualization techniques to software engineering
tasks (software visualization), such as software testing, debugging, and
maintenance, as well as the exploration of software data for the purpose of
improving software quality and performance. The goal of visual software
analytics and software visualization in particular, is to provide developers,
testers, and other stakeholders with intuitive and e�ective ways to gain
insights into the behavior, structure, and evolution of software systems.

Sourcing and mining large amounts of test data are inherently easy in
software engineering processes. Moreover, software system and software

engineering data (SWSE data) caters directly to our needs in that it is typi-
cally large, tree-structured, multivariate, and has no intrinsic gestalt, i.e.,
primarily abstract. Software and its associated data are ubiquitous in soci-
ety, permeating virtually all technological innovations and social activities.
Jensen Huang, co-founder and CEO of Nvidia, predicted that “software is
eating the world, but AI is going to eat software.”1.2 Software development
and maintenance have been disrupted by cloud-based arti�cial intelligence
tools such as GitHub’s Copilot [184] and, more recently, OpenAI’s Chat-
GPT [183]. Having the means to facilitate both actionable awareness and

1.2Jensen Huang as interviewed by Tom Simonite. “Nvidia CEO: Software Is Eating the
World, but AI Is Going to Eat Software”. In: Technology Review (May 2017). technolo-
gyreview.com/2017/05/12/151722.

https://www.technologyreview.com/2017/05/12/151722
https://www.technologyreview.com/2017/05/12/151722

Thesis Statements and Objectives | 3

in-depth comprehension of software systems and software engineering
e�orts has become essential to keep up with AI-based assistants.

Figure 1.3: Conceptual
rendering of a software
system and coding e�orts
depicted as 3D city scape.

Charting software systems using treemaps can help to grasp the abstract
nature of SWSE data. It can shape our understanding of its complex struc-
tures and enable us to explore, manipulate, and accurately communicate
the underlying data in more detail. In the spirit of David McCandless,
creating software landscapes that we can explore with our eyes (Figure 1.3)
seems kind of useful when lost in SWSE data.

1.3 Thesis Statements and Objectives

This work originates from the following idea: Suppose there is large tree-
structured data, e.g., from software analysis. Furthermore, assume that
multiple attributes are associated with each data node, such as software
metrics computed for each of the software’s source �les. Thus, the starting
point is large, tree-structured, multivariate data. Now instead of employing
di�erent visualizations or linking multiple views, the question arises, to
what extent can an interactive visualization method enable the display,
exploration, and analysis of such data all by itself?

We chose treemaps as ‘vehicle’ because they are designed for large, tree-
structured, multivariate data at its core [72]. By exploring novel ways of
using treemaps with a 3D attribute space, we present an expressive, scal-
able, and interactive interface for exploring general large, tree-structured,
multivariate data, including software system and software engineering
data. With this in mind, this thesis has the following objectives concerned
with expressiveness (E), scalability (S), and responsiveness (R):

• Extend and explore the data mapping capabilities and o�er versatile
visual variables by embedding 2D treemaps in 3D.

• Decrease visual clutter and complexity and aid interactive explo-
ration of large data using dynamic aggregation and labeling.

• Make 3D-embedded treemaps available for interactive visualization
in common application scenarios by developing a scalable, web-
based rendering strategy.

Based on these ideas and objectives, we outline the means and formally
derive three hypotheses, E , S , and R.

Expressiveness is approached by transferring selected, existing visual
variables of 2D treemaps and introducing novel visual variables to the
three-dimensional attribute space of 3D-embedded treemaps. We evaluate
the capabilities of selected visual variables and assess their suitability for
a meaningful, simultaneous, and unambiguous visual display of data:

Thesis Statement E

Embedding 2D treemaps in a 3D attribute space o�ers additional expres-
siveness over 2D treemaps by the increased set of visual variables available
for the meaningful, simultaneous, unambiguous display of data.

4 | Chapter 1: Introduction

Scalability is achieved by combining two complementary techniques: dy-
namic level-of-detail and labeling. The former is used to circumvent the
common 1:1 mapping of nodes to cuboids, which can lead to visual clutter
[199] and increase visual complexity [103]. The latter addresses a “major
limiting factor to the widespread use of information visualization[, i.e.,]
the di�culty of labeling information abundant displays.” [71]. It enables
high-quality rendering and dynamic placement of text in 3D, taking, e.g.,
location, size, and orientation of nodes into account:

Thesis Statement S

A level-of-detail technique using node-based scoring allows to adapt the
number of graphical elements, and thus to increase the readability of 3D-
embedded treemaps by means of labeling, data summary, and emphasis.

Responsiveness is accomplished by employing a progressive rendering
strategy to implement the techniques presented in this thesis. The techni-
cal requirements and challenges introduced to the image synthesis of 3D
visualizations compared to 2D visualizations are fundamentally challeng-
ing. Nonetheless, we demonstrate how interactive, dynamic 3D-embedded
treemaps can be provisioned in web-based work�ows using WebGL:

Thesis Statement R

Accumulative, multi-frame rendering enables high-quality and responsive
rendering of 3D-embedded treemaps using a web-based graphics API.

The remainder of this work is structured as follows. Chapter 2 provides
the theoretical foundation, introduces all necessary terminology, covers
relevant basics on data, and introduces a visualization pipeline and process
for 3D-embedded treemaps. In chapters 3 to 5, the peer-reviewed and
internationally published contributions on which this work is based are
highlighted in the context of the respective hypotheses E, S , and R.
Applications of selected concepts and techniques are illustrated for visual
software analytics in chapter 6. In addition to chapter 2, chapters 3 to 6
reference more speci�c related work, including results and discussions.
Finally, chapter 7 summarizes this thesis and provides an outlook on
opportunities for future work.

2 Fundamentals
of 3D-Embedded Treemaps

The contents of this chapter are based on the following original publications:

W. Scheibel, D. Limberger, and J. Döllner. “Survey of Treemap Layout Algorithms”. In:
Proc. ACM VINCI. 2020 [L19]

W. Scheibel, M. Trapp, D. Limberger, and J. Döllner. “A Taxonomy of Treemap Visualiza-
tion Techniques”. In: Proc. SciTePress IVAPP. 2020 [L20]

D. Limberger, W. Scheibel, J. Döllner, and M. Trapp. “Visual Variables and Con�guration
of Software Maps”. In: Journal of Visualization (2022) [L23]

Figure 2.1: A “chart
showing the United States
[. . .], with distinction of
sex [male (non-shaded)
and female (shaded)], the
ratio between the total
population over 10 years
of age and the number
of persons reported as
engaged in each principal
class of gainful occupa-
tions [agriculture (brown),
manufactures and mining
(blue), trade and trans-
portation (yellow), per-
sonal and professional ser-
vices (blue hatched),] and
also as attending school
[(yellow hatched)].” [250].
The proportion of the pop-
ulation not accounted for
is shaded in gray.

Treemaps represent a class of fundamental charting techniques that capture
data and hierarchy, and transform them into visual representations by
partitioning a given space into individual shapes. They are “a device for
visualizing statistical facts” [192], well-suited to depict data distributions
in di�erent categories. The area of the shapes typically represents a ratio,
and the shapes’ appearance by means of color, shading, hatching, and
texture can depict additional associated data. This idea of mapping data to
the area of shapes as part of a diagram dates back to the 1780s [78]. The
partitioning is obtained by recursive application of a splitting algorithm
and allows for well-controlled nesting of the shapes (containment). The
“containment property” [125] enables treemaps to represent area-mapped
data in hierarchically structured categories.

Early occurrences of treemaps had denotations such as area charts [259],
mosaic displays [78], hundred-per-cent squares [131], and rectangular sta-

tistical cartograms [193]. Pertinent uses of rectangular area charts can be
found in the �rst statistical atlas of the United States from 1874 [250], fol-
lowing the 1870 Census, and subsequent statistical atlases [248, 249]. The
chart shown in Figure 2.1 for example, visualizes Census data in a 4-level
hierarchy; (1) all citizens accounted for, (2) occupied or not, (3) occupied
within one of �ve occupations, and (4) male or female. It provides easy
access to study speci�c aspects of the 1870 Census data spread over 942
printed pages and its 105 full- and multi-page tables.

So far, the containment of shapes was more of a side-e�ect not intended
to emphasize the data’s hierarchy itself. In the 1970s, deliberate uses of
containment have become more prominent, e.g., for nested diagrams such

6 | Chapter 2: Fundamentals of 3D-Embedded Treemaps

as contour models [126, 127] and Nassi-Shneiderman Diagrams [177] to
illustrate block-structured algorithms and programs. Similar to the hi-
erarchical structure inherent in or associated with data, algorithms and
programs are (with few exceptions) also inherently hierarchical. Eventu-
ally, this led to the deliberate combination of mapping data to area and
hierarchy to a space-�lling, rectangular layout, studied and aptly named
treemaps by Johnson and Shneiderman in 1990 (published in 1991 [125]
and 1992 [216]).

Since then, many diverse uses in various domains and therewith variations,
re�nements, and extensions have been published. The thorough visual
bibliography of tree visualizations, treevis.net, by Hans-Jörg Schulz [209]
captures most of these; about a third of the 333 unique visualization tech-
niques (at the time of writing) is directly based on treemaps. This highlights
that treemaps provide an expressive and versatile basis for advanced in-
formation visualization. This is easily substantiated further by the many
applications, e.g., in biology and medicine for gene ontologies [10], expres-
sions [23], andmicroarrays [266], brain tumor data [243], biodiversity [114],
RNA-sequence expressions [158], and diseases [261, 277]; in demographics

for election analysis [83, 109], regional statistics [123], tra�c analysis [219],
drug adverse e�ects [92], and infant deaths [221]; in businesses for sales
time series [101], motary o�ce cases [258], property transactions [218],
and callcenter phone calls [196]; in �nance for stock markets [128, 217,
267], funding [57, 152], patent classi�cation [143], and income [285]; in
multimedia and social media for photos [27, 91], search results [53], and
sports [46, 244, 246]; and in other areas for distributed processes [280],
CPU utilization [102], rainfall data [137], 5G burst mapping [253], and
co�ee consumption [73].

Figure 2.2: A rendering
from the project “Algo-
rithm 01” created using a
treemap with a random
layout and a Piet Mon-
drian like color palette, by
Dimitris Ladopoulos, 2017.

Similar to the fundamental impact of Ken Perlin’s Noise algorithm [188]
in computer graphics, computer-aided design (CAD), and digital content

creation (DCC), space partitioning algorithms based on treemaps have
become increasingly prevalent in these domains. Especially in architecture
(e.g., �oor planning [163, 170, 282]), generative design (e.g., chip layout [45,
228]), and generative art. Figure 2.2 shows an example of artistic use; one
of the aesthetically well-designed, procedurally generated renderings of
Dimitris Ladopoulos.2.1

The primary use of treemaps, however, has been consistently in the visual
display of �le systems [72, 125, 216, 264] as well as SWSE data [16, 77,
186, 223, 225, 234, 270, 273]. Visual software analytics—combining �ndings
and methods from analytics, visualization, software engineering, and data
engineering to extract, visualize, explore, and analyze SWSE data—is the
primary domain to which this thesis is motivated and dedicated. Treemaps
can give gestalt to otherwise abstract data, thus allowing the synthesis of
visual communication artifacts and supporting visual software analytics.

The remainder of this chapter introduces terminology and related work
relevant to the following chapters; this comprises characteristics of tree-

2.1Dimitris Ladopoulos. Algorithm 01: Exploration of an algorithm to produce treemap style

diagrams. behance.net/gallery/59061121/Algorithm-01. Nov. 2017.

https://www.behance.net/gallery/59061121/Algorithm-01

Data Characteristics | 7

structured, temporal, and multivariate data, the treemap visualization

pipeline, the visualization process, and, �nally, software visualization.

2.1 Data Characteristics

The terminology used to denote data characteristics, particularly its hi-
erarchical structure, time reference, and variateness, is fundamental to
this thesis. Three brief remarks beforehand, however: First, the term data

will be used as a collective noun and treated with singular sense [164]. It
denotes the body of multiple discrete observations comprised of individual
data points, referred to as data values. Second, a distinction between input,
raw, primary, and secondary data is not necessary in terms of content.
Any input data that is immediate subject to visualization or analytics will
be preferably denoted as source data. Some references, including original
publications of the authors themselves, might refer to such data as input
data or raw data equivalently. Third, we will sporadically mention the
abstractness of data and thereby refer to the comprehensibility of its values.
More abstract data is more complicated to interpret, less tangible, and less
imaginable. Visualization typically aims at giving abstract data a gestalt to
make it less abstract and more comprehensible.

How we perceive and think about bits stored in memory depends on how
they were obtained, how they are accessed, what they encode, and what we
want to do with them. To avoid mixing terminologies of di�erent domains
and contexts, we adhere to the rather domain-agnostic terminology used
by Tominski and Schumann [238] for interactive visual data analysis:

Operation N
om

in
al

O
rd
in
al

D
is
cr
et
e

C
on

ti
n
u
n
ou

s

Equality ✓

Order ✓ ✓

Distance ✓ ✓ ✓

Interpolation ✓ ✓ ✓ ✓

Table 2.1: “Operations
possible in di�erent
data domains” adapted
from Tominski and Schu-
mann 2020 (Table 2.2,
p 19) [238].

Data Value A data value denotes an atomic or individual datum.

Data Domain The data domain denotes “the set of values that can po-
tentially appear in the data.” [238] The scale of a domain is either
qualitative (or categorical) or quantitative (or numerical) and implies
what operations are permitted (Table 2.1). Qualitative data is either
nominal or ordinal, and quantitative data is discrete or continuous.

Data Table A data table consists of columns representing data variables

and rows representing data tuples (“depending on the context of use,
[. . .] also called observation, record, item, or object” [238]).

Data Element A data element denotes a data tuple (a row in the data table).

Dimensions and Attributes “Independent variables correspond to the di-

mensions of the [data] space [. . .] the dependent variables describe
the attributes” [238] of the data. A synonym for dimension is key at-
tribute, synonyms for attribute are value attribute and measure [176].

2.1.1 Tree-Structured Data

For our purpose of visualization, we are not inherently interested in how
data is stored, organized, and manipulated (database model) and assume
a table-based, �at model. We are interested, however, in data elements
that are related to one another in a hierarchical, tree-like fashion, modeled

8 | Chapter 2: Fundamentals of 3D-Embedded Treemaps

Figure 2.3: An annotated
(blue), 4-level tree struc-
ture of nine nodes. A, B,
C, and E are parent/inner
nodes, all but A are child
nodes, and D, F, G, H, and
I are leaf nodes.

path from A to H, with

ancestors E, B, and A

parent of D and E

descendants of B

root node

parent-child

relationship

siblings in C

A } level 0

B C } level 1

D E F G } level 2

H I } level 3

using nodes and links. A tree is a hierarchy that does not have cycles, i.e.,
“each child node has only one parent node pointing to it.” [176] Figure 2.3
illustrates a small tree, annotated with the terminology of importance
for subsequent chapters. For a comprehensive list of de�nitions of all
related termini, we refer to Scheibel et al. [L19]. Even though most data
is structured somehow, it is not always inherently hierarchical. As with
the depiction of the census data in Figure 2.1, a tree structure can be
superimposed on the data. This data view serves the purpose of processing,
analysis, and visualization. SWSE data, however, is usually inherently
tree-structured in multiple ways and, similar to time, on di�erent scales.
The most apparent structure comes from attributes depending on source
code �les that are part of a hierarchical �le system. Additionally, the �le
structure of a software project itself tends to be aligned with the overall
design and architecture of the software. Complementary hierarchical
views of a project can be derived from the structure of engineering teams,
integration aspects, testing con�gurations, budgets and goals, and more.

head

commit
merge-commit

branch

temporal

flow

merge

of two

branches

�rst commit of

a new branch

initial commit

Figure 2.4: The develop-
ment of a software project
illustrated in revisions as
seen by git. The �gure is
based on an example of
git-graph by Martin Lange
(github.com/mlange-
42/git-graph).

2.1.2 Temporal Data

Whenever one of the dimensions (not attributes) of the data space is either
time or a reference to time (temporal reference), we characterize this data
as temporal. A value of a time dimension would represent a discrete
point in time encoded, e.g., in UTC or any other time frame. In software
engineering, a software project is typically represented by a �le system
and developed over time. Development is primarily done in chunks and
scattered over branches, e.g., separate code lines for in-progress work and
well-tested, stable code. Each chunk, regardless of its branch, contains a
mostlymanageable set of changes de�ned by the developers and committed
to the project at a particular time.

In the case of git—a distributed version control system for managing source
code—each commit is given an identity in the form of a 160-bit (SHA-1)
or 256-bit (SHA-256) hash.2.2 This hash provides a distinct reference to
the project revision at the time of the commit (Figure 2.4). We assume
SWSE data to be temporal. Note, however, that temporal references other
than commits are also of interest; individual developers intuitively perceive
revisions on a much smaller basis during development, such as working
on a piece of code for several hours or days, evaluating di�erent imple-
mentations locally, and using undo/redo work�ows. For the software

2.2A free and open source version control system available at git-scm.com. In 2017, it was
suggested to migrate from SHA-1 to a stronger hash function. In late 2018 the project
picked SHA-256 as its successor hash (git-scm.com/docs/hash-function-transition).

https://github.com/mlange-42/git-graph
https://github.com/mlange-42/git-graph
https://git-scm.com/
https://git-scm.com/docs/hash-function-transition

Treemap Visualization Pipeline | 9

Haber-MacNabb 1990

Simulation Data Derived Data Abstract Visualization Object Displayable Image

Problem Data Visualization Data Focus Data Santos-Brodlie 2004 Tominsky-Schumann 2020

Data Values Analytical Abstractions Visual Abstractions Image Data

Source Data Tree Structure Layout Treemap Description

Analysis Enrichment

& Filtering Layouting

Treemap

Generation

Rendering

Data Enhancement Attributes Visualization Mapping Rendering

Figure 2.5: A diagram of a visualization pipeline adapted for treemap synthesis. The data-�ow shows how data
(outlined circles) are processed through steps (�lled circles) in three phases (dashed blue). Our preferred terminology is
emphasized (black or bold), and the terminology of three well-known visualization models is referenced accordingly.

development life cycle, the focus shifts, in contrast, to collections of com-
mits in the form of minor and major revisions or weekly, quarterly, or
yearly accumulated changes.

2.1.3 Multivariate Data

“General multidimensional, multivariate data typically span a frame of
reference across multiple abstract dimensions. Along these dimensions
multiple quantitative or qualitative variables are measured.” [237] Soft-
ware system and software engineering data is commonly characterized as
multidimensional and multivariate. The former simply means that every
data element is subject to at least two dimensions. If we now consider one,
two, or more attributes of the data, it is denoted as univariate, bivariate, or
multivariate respectively. Every static measurement of a �le containing
source code (source �le), for example, can be referenced by two dimensions,
the �le path (a unique identi�er or location) and the revision (a temporal
reference). Measurements such as �le size, line of code added, modi�ed, or
removed in that revision, or the number of includes, are all dependent on
both dimensions and, thus, attributes within the data.

2.2 Treemap Visualization Pipeline

The term visualization is de�ned as (1) “the formation of mental visual
images” and as (2) “the act or process of [. . .] putting into visible form.” 2.3

In our more technical context, it denotes the process of transforming data
into a displayable representation, i.e., an image. Today’s understanding of
this process was described �rst in 1990 [94] and has remained substantially
unchanged despite some adaptions in the literature [48, 202, 238]. The
most comprehensive and broadly applicable de�nition by Helwig Hauser
and Heidrun Schumann [105] is not limited to but focuses on three major

2.3Merriam-Webster.com Dictionary, s.v. “visualization”, accessed 22. March 2023, merriam-
webster.com/dictionary/visualization.

https://www.merriam-webster.com/dictionary/visualization
https://www.merriam-webster.com/dictionary/visualization

10 | Chapter 2: Fundamentals of 3D-Embedded Treemaps

Figure 2.6: Illustration
of our hyponymy of four
classes of treemap visu-
alizations adapted from
Scheibel et al. [L20].

Observed boundary between treemaps and other tree representations.

⊂ ⊂ ⊂

Space-�lling

Treemap

Containment

Treemap

Implicit Edge

Representation Tree

Mapped Tree

processing stages: data enhancement, visualization mapping, and rendering.
In order to accommodate for multivariate and multidimensional visual-
ization, data enhancement can be split into data analysis, transforming
problem data into visualization data, and �ltering, transforming visualiza-
tion data into focus data [202]. Tominski and Schumann recently adapted
this further. Instead of focussing on processing stages, they introduce
data stages that are processed using transformation operators and stage
operators [238]. Their observation is most welcomed for a uni�ed nota-
tion as well as improved implementation design of the various techniques
involved in a visualization process.

For our purposes, we have adapted the visualization pipeline, re�ning the
steps and terminology for synthesizing treemaps as illustrated in Figure 2.5.
The source data is analyzed, enriched, and �ltered as part of the data
enhancement stage (also referred to as preprocessing). The result consists
of a tree structure and attributes needed for the subsequent visualization
mapping. This mapping’s main purpose is to compute a treemap layout and
generate a technical treemap description that contains all the information
necessary for image synthesis in the �nal rendering stage.

The following subsections describe the fundamental concepts required for
our visualization mapping. These include (1) de�nitions and classi�ca-
tions of treemaps and treemap layouts, (2) introductions to the concepts
of attribute space, reference space, and visual variables, as well as (3) our
preferences for the terminology used for 3D embeddings.

2.2.1 Taxonomy of Treemaps

Visualizations that depict parent-child relationships while adhering to the
containment property [124, 125] have been historically called treemaps.
Since 1991, many variations and improvements of treemaps and treemap-
like visualizations have been developed. To account for this evolution of
treemaps, we have introduced a re�ned taxonomy that allows classify-
ing all techniques distinctly [L20]. The taxonomy de�nes four classes of
tree-visualizations; S, C, IE, and MT. These classes are designed as hy-
ponymy, meaning that every class has an is-a relationship to its superclass,
i.e., S⊂ C⊂ IE⊂ MT, and can be de�ned as follows:

S Space-�lling treemaps [9, 13, 263, 266] use “the full subdivision and
distribution of a parent[’s] surface or volume for its children, result-
ing in a space-�lling depiction of the leaf nodes.” [L20]

Treemap Visualization Pipeline | 11

Tree-structured Data 2D Treemap Layout100

12 8 10 70

2 2 2 3 1 25 5 40

6 8 11 12 8

2

2

2

3

1

6 8 11

5

40

Slicing a rectangle based on node weights, alternating horizontally and vertically.

Figure 2.8: Illustration of
a treemap layouting pro-
cess based on a small tree
structure of weights using
“slice and dice” algorithm
introduced by Johnson
and Shneiderman [125].

C Containment treemaps [87, 117, 206, 258] do not require the area of
a parent to be fully covered by its children.

IE Implicit edge representation trees [90, 100, 111, 222] are not limited to
containment, but use any implicit edge representations [209], i.e.,
containment, adjacency, and overlap.

MT Mapped trees [175, 178, 226, 239] use either implicit, explicit, or
vicinity relation encoding techniques in combination with a usually
overlap-free spatialization technique.

Figure 2.6 shows sketches that represent the respective properties of each
class. For a more comprehensive classi�cation of related work, various
examples, and a critical discussion we refer to Scheibel et al. [L20]. All
techniques discussed in this paper will be presented, described, and dis-
cussed exclusively in the context of space-�lling treemaps. Although in

Figure 2.7: An example
of a mixed treemap cre-
ated using a hybrid layout
algorithm by Hahn et al.
which uses heuristics to
pick from multiple algo-
rithms [98]. Additional
margins between inner
nodes and children were
created using a custom
per-level post processing.

many cases, they are compatible with other treemap classes. Additionally,
we assume that using paddings and margins in a treemap’s layout does
not result in a containment but a space-�lling treemap.

2.2.2 Treemap Layout

The layout of a rectangular treemap speci�es the position and extent of
every node-representing rectangle (layout element) and can be calculated
using splitting or packing algorithms. These algorithms use (1) the tree
structure combined with an iteration rule for well-de�ned, sequential pro-
cessing of siblings and (2) an attribute as weight. Any domain or attribute
subject to the order operation can be used to derive an iteration rule. Since
most layout algorithms are applied top-down in a recursive fashion and
attributes usually depend on leaf nodes, the weight-mapped attributes can
be aggregated bottom-up to obtain weights for inner nodes:

The selection of a �tting algorithm depends on quality metrics, heuristics,
templates, or pre-trained models and aims at improved readability, stability,
adjacency, and arrangement. For example, the average aspect ratio, average
distance change, or relative direction change, are frequently used quality
metrics [97]. Algorithms can even be switched on an inner-node basis,
resulting in mixed layouts as shown in Figure 2.7 [98, 149]. In any case,
layouting is always a trade-o� between readability and stability to changes
in the source data or tree structure [20, 40, 230, 244, 255]. Since “no

12 | Chapter 2: Fundamentals of 3D-Embedded Treemaps

Figure 2.9: Illustrations
of exemplary visualiza-
tions (depicting random
data) based on the dimen-
sionalities of attribute
space and reference space,
adapted from Dübel et
al. [62] and Tominski
et al. [238]. Moreover,
treemaps (also depicting
random data) in2 ⊕2

and3 ⊕2 are shown.

2D Treemap

3D-Embedded Treemap 2D Reference Space 3D

3D
A
t
t
r
ib
u
t
e
 S
p
ac
e

2D

algorithm is superior in all [. . .] aspects and under all circumstances” [28],
we consider algorithm selection and con�guration as part of the task-
speci�c treemap con�guration [255, 256]. For a comprehensive overview
and classi�cation of existing layouting techniques we refer to Scheibel
et al. [L19] and, without loss of generality, assume rectangular splitting
for the treemaps and techniques discussed in this thesis (Figure 2.8).

2.2.3 Attribute and Reference Space

Most charts and diagrams use graphical elements placed and specialized
within a two-dimensional presentation space. They are straightforward to
create, exchange, and interact with, and we are accustomed to them from
books, papers, websites, reports, and more. Yet, visualization techniques
are not constrained to a 2D presentation space, and “a global distinction
of 2D and 3D is [also] no longer su�cient.” [62] Dübel et al. suggested
distinguishing between the presentation of the attribute space and the
presentation of reference space [62]. The dimensionality of each space is
independent of the dimensionality and variateness of the source data and
is instead subject to the design of the visualization.

The attribute space focuses on the dimensionality of the assembly of graph-
ical elements. Each graphical element is created based on one or more
visual variables depicted within these dimensions. The reference space
focuses on the spatial location of graphical elements. For geo-spatial data,
these are usually the locations of observations. In our case, visualizing tree-
structured abstract data, positions are computed using a treemap layout
algorithm. To uniquely identify attribute-reference-space combinations,
the notation i ⊕ j = {(a, r) | a ∈ i, r ∈ j }, with i, j ∈ {2, 3} is used.
Examples for all four combinations are shown in Figure 2.9.

2.2.4 Visual Variables

Visual variables describe “the graphic dimensions across which a [. . .]
visualization can be varied to encode information.” [200] In other words,

Treemap Visualization Pipeline | 13

they describe aspects of graphical elements that can be used to distinctively
depict data values. Such graphical aspects were established in thematic

mapping, beginning in the late 18th and increasingly in the 19th cen-
tury [64, 160, 197]. Today’s understanding of visual variables is commonly
attributed to Jacques Bertin [24], who introduced the term variables rétini-

ennes (retinal variables). He focussed on variations in forme, orientation,
couleur, grain, valeur, and taille, from french, translated to shape, orienta-
tion, color, texture, color value, and size respectively [25, 26]. Since then,
visual variables have been steadily reiterated, evolved, and evaluated [37,
81, 245] and, in the context of2 ⊕2 visualizations, include, but are not
limited to, location, size, shape, orientation, color hue, color saturation, color
value, texture, arrangement, crispness, resolution, and transparency [200].
Each variable is more or less applicable to encode speci�c data types and
di�ers in e�ectiveness on di�erent tasks [161, 200].

Concerning the treemap visualization pipeline, the visualization mapping
implements the mapping of attributes to visual variables and results in
descriptions of graphical elements as part of the treemap description.
The subsequent image synthesis requires a renderer capable of creating
an accurate, description-conforming visual output. Consequently, the

A1 A2 A3 Aj
E0 81 89 48 06
E1 15 10 90 35
E2 27 24 07 92
E3 08 21 74 29
E4 45 68 85 59

Ei 59 78 19 33

1:1 Mapping

A1 A2 A3 Aj
E0 81 89 48 06
E1 15 10 90 35
E2 27 24 07 92
E3 08 21 74 29
E4 45 68 85 59

Ei 59 78 19 33

Multi-Element Mapping

A1 A2 A3 Aj
E0 81 89 48 06
E1 15 10 90 35
E2 27 24 07 92
E3 08 21 74 29
E4 45 68 85 59

Ei 59 78 19 33

Inter-Element Mapping

A1 A2 A3 Aj
E0 81 89 48 06
E1 15 10 90 35
E2 27 24 07 92
E3 08 21 74 29
E4 45 68 85 59

Ei 59 78 19 33

Intra-Element Mapping

Figure 2.10: Illustrations
of variations in related-
ness between data ele-
ments (left) and graphical
elements (right).

renderer is the primary limiting factor for the design and use of visual
variables and is of signi�cant concern to our research (implicitly re�ected
by our thesis statements E and R). In analogy to the famous statement
“[d]ie Grenzen meiner Sprache bedeuten die Grenzen meiner Welt” by
Ludwig Wittgenstein [276], we have learned that the limitations of our
renderers mean the limitations of our visualizations.

2.2.5 Variateness and Expressiveness of Visualizations

Similar to data, visualizations can be characterized by their variateness
de�ned by the number of attributes depicted. A treemap mapping three
distinct attributes to three distinct visual variables is a multivariate visual-

ization. However, a single attribute mapped to multiple visual variables
would result in a univariate visualization—a simple method to increase
visual accuracy or emphasizes data characteristics for example. The term
multivariate visualization, therefore, certainly implies but does not explic-
itly refer to the source data’s variateness. Similar to this observation, we
introduce degrees of relatedness that advance the classical 1:1 mapping
between data elements and graphical elements of treemaps (Figure 2.10):

Multi-element Mapping A single graphical element can represent multi-
ple data elements and encode, e.g., accumulated, topological, or
otherwise associated information.

Inter-element Mapping A graphical element representing a single data ele-
ment is not limited to exclusively depict data from that element. Ad-
ditional visual variables can be used to superimpose any information
derived from topologically or otherwise associated data elements.

Intra-element Mapping Multiple graphical elements can refer to the same
data item but di�er in the mapping of at least one visual variable.

14 | Chapter 2: Fundamentals of 3D-Embedded Treemaps

With these notions of variateness and relatedness in mind, we de�ne the
expressiveness of a treemap as the measure of relations and visual variables
available for the meaningful, simultaneous, unambiguous display of data.
As noticed by Jacques Bertin, “[i]t is the designer’s duty to make themost of
this variation, [. . .] to �irt with ambiguity without succumbing to it.” [26]
To this end, wewill individually discuss the supposed use and application of
our techniques and describe measures that help preclude “chartjunk” [245]
and facilitate treemap designs that mitigate visual clutter.

2.2.6 Designations of Treemaps in 3 ⊕2

Treemaps in 2 ⊕2 are called 2D treemaps [124]. Every graphical ele-
ment therein is located within two spatial reference dimensions, e.g., a
rectangular coordinate system with x-axis and y-axis. All visual variables
are limited to these two dimensions. Treemaps in3 ⊕3 are called 3D

treemaps [124, 210, 211] or treecubes [182, 194, 232]. They can make full use
of three dimensions, both for positioning and for the design of the graphic
elements. A treemap in2 ⊕3 would be similar to 3D-geovirtual envi-
ronments using billboards [63, 214]—2D graphical elements that always
face the virtual camera—such as glyphs or small charts for encoding data.
To our knowledge, there are currently no treemap techniques explicitly
designed for2 ⊕3.

The treemaps in 3 ⊕ 2—the main subject of our research, especially
due to statement E—have received great attention and can be found in
various variations and specializations. City-metaphors [75, 133, 271, 273],
Information Pyramides [6], and Step Trees [30] may be mentioned here
exemplarily among many others [33, 141, 262, 271, 280]. This attention is
primarily due to their advantages over2⊕2 and3⊕3, namely, (1) the
increased expressiveness for graphical elements, �rst and foremost, the
introduction of height as an additional primary visual variable (Figure 2.11),
(2) no occlusion of by, and (3) no self-occlusion of [62]. Despite this,
no de�nite designation has been established in the literature. The notion
3D, although used occasionally [30, 46, 84, 150, L1, 241], is inconvenient
and misleading. It overlaps with the notion of “true 3-D treemaps [which]
would be volumes partitioned on all 3 dimensions” [247] and suggest that
the third dimension can be used to its full extent, which it cannot.

Figure 2.11: The visual
variables location, area,
and color used in a 2D and
a 3D-embedded treemap.
The three-dimensional
attribute space allows for
additional visual variables
such as height.

color color

height

y y
z

x x

2D Treemap location & area 3D-Embedded Treemap

In 1967 Bertin deliberately restricted the perspective and use of the third
dimension, calling them stereograms (stéréogrammes) [24]. In 1992 David
Turo and Brian S. Johnson used 2 1/2-D [247], and, one year later, Johnson
switched to 2+D in his dissertation [124]. The �rst term emphasizes that

Visualization Process | 15

Figure 2.12: A treemap, 3D-printed in 2015, depicting the small software project globjects [R15]. The prototypical map
was embedded in a wooden frame and the hollowed cuboids could be dynamically lit with LEDs.

only one side of the xz-hyperplane is used, the second that more than
2D but not quite all of 3D is used. Based on 2½D used by Bohnet and
Döllner [33], we originally introduced [L2] and used 2.5D in most of our
previous publications [L10, L4, L21, L5, L9, L18, L15, L13] simply because
it is easier to read and write. In retrospect, however, all these variants
are misleading and seem somewhat arbitrary: It is, for example, di�cult
to precisely de�ne what a 50%-use of a 3D space means. To this end,
we suggest establishing the more precise and straightforward term 3D-

embedded [L22, L23]. It denotes the embedding of graphical elements
in a virtual 3D space, positioned using 2D locations, i.e., based on 2D
treemap layouting, and assembled using 3D-capable visual variables. The
most obvious visual variables of 3D-embedded maps, and 3D-embedded
treemaps in particular, are location, area, color, and height (Figure 2.11).

2.2.7 Alternatives to 2D Image Synthesis

It should be noted that the �nal stage in the visualization pipeline does not
have to be 2D image synthesis. The treemap description itself can be en-
coded as a 3D-�le [L5, L16], e.g., for the purpose of preservation, exchange,
or further processing. Also, the rendering stage can be (1) enhanced to
support stereoscopic rendering for exploration in extended reality [76,
173], or (2) replaced by fabrication, e.g., 3D-printing [75, 203]. Out of
curiosity, we 3D-printed two treemaps in the course of this work [L16].
We investigated the requirements, constraints, and problems associated
with the process of physical fabrication. Our motivation was to allow
software developers to capture versions of a software project as a unique
and outstanding keepsake (Figure 2.12). Such considerations, however,
have not in�uenced the concepts and techniques presented in this thesis.
Instead, the concepts and techniques and our respective implementations
made it very easy to explore and prototypically test such ideas.

2.3 Visualization Process

Most visualizations we deal with in our everyday lives are static in nature.
They are created once, then provisioned and presented using print media,

16 | Chapter 2: Fundamentals of 3D-Embedded Treemaps

digital media, or as part of interactive computing notebooks, and then
viewed. The data and information they convey are well-de�ned and well-
tuned and serve to con�rm or communicate knowledge we already expect
or know. Such static visualizations do not allow direct interaction with
graphical elements or the overall visual display. That is, they do not support
generic tasks such as �ltering, selection, zoom, or comparison through
explicit manipulation of the visualization. However, they have qualities
that facilitate interactions in a perceptual, explorative nature. These include
“avoid distorting what the data have to say[, . . .] encourage the eye to
compare di�erent pieces of data[,] reveal the data at several levels of detail,
from a broad overview to the �ne structure[, and] serve a reasonably
clear purpose [. . .].” [245] These qualities enable interactions in that they
convey multiple layers of detail and abstractions, each serving di�erent
tasks within a dynamic loop of perception and exploration. The general
understanding of what interaction refers to has changed, though. What
used to be printed infographics have become interactive, volatile charts or
dashboards depicting real-time data such as oil prices, Coronavirus cases,
supplies of natural gas, or CO2 emissions.2.4 Interactive graphical displays
are ubiquitous and interactions are generally understood as explicit actions
that directly modify the visualization.

In academia and professional industries, expressive visualizations are an
integral, interactive visual interface to data, perceived and changed in
increments to generate knowledge. A visualization is “expressive if it
allows us to carry out the actions needed to acquire the desired informa-
tion.” [238] Actions denote tasks such as exploring, describing, explaining,
con�rming, and presenting [238]. Our ability to understand and explore
the interplay of tasks and visualizations, e.g., to identify and recommend
compelling visualizations for well-de�ned visual analytics tasks, rests on
the technical capabilities of the visualizations available. An unresponsive,
cluttered, complicated, visually unsightly data display is predestined to
underperform and cause (technical) bias in a comparative study. Funda-
mentally complex visualizations are more complex to implement and, thus,
particularly prone to this problem. This impacts visualization research in
general and limits recommender systems [43], visualization design strate-
gies [176], as well as perception or task-based evaluations [L17]. The
awareness of these limitations and the challenges in visual analytics, e.g.,
expressed by Keim et al. [132], motivated us to improve 3D-embedded
treemaps regarding (1) scalability, supporting little as well as massive data,
(2) interactiveness, integrating 3D-map navigation metaphors and common
interactions such as �ltering, selecting, or highlighting, (3) availability,
providing users on various platforms and devices access to 3D-embedded
treemaps, (4) visual �delity, incorporating high-quality rendering, and
(5) expressiveness, facilitating multivariate depictions of data.

To approach these improvements in a structured way, we adhere to the
interactive visualization process as consolidated by Jarke J. van Wijk [274]
and the visual information seeking mantra introduced by Ben Shneider-
man [215]—two complementary, unrestrictive, generalized frameworks in

2.4ZEIT ONLINE, s.v. “Energiemonitor”, “Corona-Zahlen”, accessed 22. March 2023, zeit.de

https://www.zeit.de

Visualization Process | 17

Knowledge Generation Loop
Source

Data

Visualization

Pipeline Image

Perception

& Cognition InsightFinding

D V I P

Exploration

Loop

Veri!cation

Loop
K

S E K
Visualization User Human

Speci!cation Exploration Knowledge Action Hypothesis

Visualization Process Model

adapted from van Wijk 2006

Knowledge Generation Model

adapted from Sacha et al. 2014

Figure 2.13: Illustra-
tion of the visualization
process adapted from
Wijk [274] (with image
tweak [238]) and the
knowledge generation
model adapted from Sacha
et al. [201] (empty cir-
cles represent artifacts,
�lled circles represent
functions). The latter is
interpreted as re�ned path
from P to E.

visualization design. Wijk’s visualization process and derived knowledge
generationmodels model the interplay between user and visualization. The
visualization pipeline (Figure 2.5) is embedded in an iterative, interactive
loop of visualization, perception, exploration, and re�nement (Figure 2.13).
The visualization is con�gured using a speci�cation that covers every
aspect essential to a visualization, from data selection, mapping, and other
representation con�gurations, such as navigational aspects, resulting in
an updated image-based output. The user then perceives this image, ex-
plores it, and, eventually, gains knowledge, re�nes the speci�cation, and
thereby iterates the interactive loop. Knowledge generation models, most
notably the one introduced by Sacha et al. [201], re�ne this process and
facilitate consolidation, evaluation, and taxonomies in research but have
not explicitly been utilized in this work.

Complementary to the visualization process, we found the visual informa-

tion seeking mantra (VISM) to be of great support to our goals; “overview
�rst, zoom and �lter, then details-on-demand.” [215] VISM introduces a
sequence of generalized interactions instead of speci�c tasks, which eases
the identi�cation of technical requirements for a visualization’s implemen-
tation. It provides a foundation for what a visualization should feature,
facilitating (1) the mapping of �tting tasks and (2) the incremental re�ne-
ment of visual variable con�guration. It also provides guidance on how
knowledge discovery is supported by choosing di�erent interactions and
in what ways the speci�cation is modi�ed and re�ned. More speci�c tasks
such as correlate, associate, distinguish, identify distribution, compare, access
information, and identify value are all supported by treemaps. However,
in order to keep the implementation of our treemap improvements viable,
we consider these as specializations of VISM.

The two concepts emphasize and remind us that the images of our visual-
ization are most likely of temporary use and, more importantly, that the
user’s knowledge is not static but dynamically evolving. The user and the
visualization interact mutually in a continuous loop of speci�cation, visu-
alization, perception, knowledge exploration, and re�nement. For more
re�ned and structured visualization design processes, refer to Tamara Mun-
zner [176] as well as Christian Tominski and Heidrun Schumann [238].

18 | Chapter 2: Fundamentals of 3D-Embedded Treemaps

Figure 2.14: Examples of interactive, 3D-embedded maps of tree-structure data using layouts of icicle plots (left),
treemaps (middle), and sunburst charts (right) created using arboretum [R14].

2.4 Software Cartography using Treemaps

“Unfortunately, it is impossible to represent software in its original form
because it does not have any.” [147] The use of well-known cartographic
techniques to create spatial representations for visualizing and analyz-
ing SWSE data was seeded with the revival of treemaps by Johnson and
Shneiderman [125]. Today this approach is commonly referred to as soft-
ware cartography. Manifold mappings and applications of 3D-embedded
treemaps have been accompanied by the introduction of various similar
terms and metaphors. For example, when Knight et al. [136] discussed a
Software World metaphor, they applied city and district metaphors directly
to software visualization. This metaphor was later used by Langelier et
al. [147] and applied in variations such as Code City and Software City by
Wettel et al. [269, 272] and Steinbrückner et al. [226], respectively. Similarly,
Viana et al. [257] and Balogh et al. [12] used the terms JSCity and Code

Metropolis, respectively. Eventually, Kuhn et al. [142] introduced the term
thematic software maps, though not in the context of classic treemaps.

2.4.1 Specialization of the Term Software Map

The term software map is commonly used within our research group [33,
L1, 205, 242, L2] and used throughout this thesis as well. We prefer just
‘software map’ since it is neither desirable nor intelligible to account for all
aspects of a software system within a single map and somewhat obscure
what a non-thematic software map would be. Furthermore, the term does
not rely on metaphors that may induce false expectations about the visual
appearance of the map. Referring to a city, for example, could indicate
buildings with detailed facades surrounded by streets and walkways cov-
ered by vehicles, pedestrians, urban furniture, and vegetation. Instead,
it claims to make abstract SWSE data visible and locatable through map-
like depictions, and suggests to facilitate exploration and communication.
Moreover, omitting ‘thematic’ makes it straightforward to di�erentiate
maps of di�erent technical or visual characteristics, such as interactive,
stable, animated, or aggregated.

Although, the techniques showcased in the following chapters are �t to be
applied to a variety of similar visualizations (Figure 2.14), the scope of this
work is set by the following specialization of a software map:

Software Cartography using Treemaps | 19

Figure 2.15: An o�ine rendering from the project “Algortihm 01” showing a 3D-embedded treemap using manually
randomized data mapped to weights, heights, and a Piet Mondrian like color palette, by Dimitris Ladopoulos, 2017.

3D-embedded Software Map A 3D-embedded software map (software map)
is a containment treemap (C) in a two-dimensional reference space
(2) encoding software system and software engineering data using
visual variables of a three-dimensional attribute space (3).

2.4.2 General Delimitation of Research Contributions

Transitioning software maps from 2D to 3D-embedded treemaps may ap-
pear to be a minor change, but it has signi�cant implications for their
design, implementation, provisioning, and use for cartographing abstract
data. As such, this work comprehensively explores this transition’s chal-
lenges and opportunities. While techniques and ideas from cartography
are relevant for navigation, interaction, and labeling, this work focuses
on developing 3D-embedded treemaps and evaluating �tness to software
analysis. Although references to works in cartography will be cited, they
are not within the scope of this work.

Figure 2.15 shows a beautiful example of a 3D-embedded software map.
It conveys the basic ideas and best-case aesthetic qualities while incor-
porating the traditional shortcomings of software maps. Every graphical
element (cuboid) might depict a source code �le of a hierarchical software
system. Each cuboid’s area might encode the line of code (LOC), its height,

20 | Chapter 2: Fundamentals of 3D-Embedded Treemaps

the number of changes in the last quarter, and its color, the number of
di�erent developers that have worked on that source �le: blue indicating
more than two, yellow precisely two, and red one or none in the case of
generated code. The map could be used to spot developer activity and
explore knowledge monopolies within the source code. However, for this
speci�c map, the artist has used and tweaked random values for aesthetic
purposes. Despite this, the map captures the conceptual baseline, published
by Johannes Bohnet and Jürgen Döllner [33], that this thesis extends upon
in a vast body of international, peer-reviewed publications [L1] to [L23].
Additionally, novel and customized research prototypes have been created,
which allow for the development of large, dynamic, and interactive soft-
ware maps across di�erent platforms (such as Windows, macOS, Ubuntu,
and other Linux-based distributions) and devices (including desktop, mo-
bile, and web). Most of the �ndings presented in this thesis are based on
these prototypes, which are part of a well-received collection of libraries
and services [R1] to [R15].

3 Visual Variables
for 3D-Embedded Treemaps

The contents of this chapter are based on the following original publications:

H. Würfel, M. Trapp, D. Limberger, and J. Döllner. “Natural Phenomena as Metaphors for
Visualization of Trend Data in Interactive Software Maps”. In: Proc. EG CGVC. 2015 [L2]

D. Limberger, C. Fiedler, S. Hahn, M. Trapp, and J. Döllner. “Evaluation of Sketchiness as
a Visual Variable for 2.5 D Treemaps”. In: Proc. IEEE IV. 2016 [L4]

D. Limberger, M. Trapp, and J. Döllner. “Interactive, Height-Based Filtering in 2.5D
Treemaps”. In: Proc. ACM VINCI. 2018 [L13]

D. Limberger, M. Trapp, and J. Döllner. “In-Situ Comparison for 2.5D Treemaps”. In: Proc.
SciTePress IVAPP. 2019 [L15]

D. Limberger, W. Scheibel, J. Dieken, and J. Döllner. “Visualization of Data Changes
in 2.5D Treemaps using Procedural Textures and Animated Transitions”. In: Proc. ACM
VINCI. 2021 [L21]

D. Limberger, W. Scheibel, J. Döllner, and M. Trapp. “Visual Variables and Con�guration
of Software Maps”. In: Journal of Visualization (2022) [L23]

D. Limberger, W. Scheibel, J. van Dieken, and J. Döllner. “Procedural Texture Patterns for
Encoding Changes in Color in 2.5D Treemap Visualizations”. In: Journal of Visualization
(2022) [L22]

The mapping stage of the visualization pipeline transforms pre-processed
and �ltered data into depictable and reversibly encoded graphical primi-
tives and scenes. This stage is essential for encoding data to visual variables,

Height

Color

Area

Figure 3.1: Fundamental
visual variables avail-
able to a cuboid of a 3D-
embedded treemap.

considering human capacities and abilities to interpret a depiction [265].
“[V]isual variables describe the graphic dimensions across which a map
or other visualization can be varied to encode information.” [200] Embed-
ding 2D treemaps in a spatially three-dimensional attribute space provides
an additional dimension for designing visual variables (Figure 3.2). We
adapt, expand upon existing, and introduce new, specialized visual vari-
ables to enrich the visual vocabulary. “Increasing [this vocabulary] can
provide for richer information resolution” [247] and allow for additional
expressiveness over traditional 2D treemaps, i.e., supporting E .

Several factors often limit the e�ectiveness and expressiveness of treemaps.
First, using multiple visual variables such as area, color, and height (Fig-
ure 3.1) may exceed a user’s capacity to process the displayed information

22 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Figure 3.2: A rendering of a ‘blank’ treemap that only uses height and area for attribute mapping. It illustrates that
there is su�cient space for the use and addition of other visual variables to serve a speci�c use case.

when confronted with complex and massive data. Hence, it is critical to
carefully consider the selection and implementation of visual variables
to prevent overwhelming users and impeding comprehension. Second,
complex visual primitives can detract from a treemap’s e�ectiveness (Fig-
ure 3.2). In line with the visual information seeking mantra (VISM), we
aim to selectively depict additional attributes of multivariate data on de-
mand, focusing on nodes of interest while maintaining the overall context.
Third, the e�ectiveness of visual variables depends on the quality of their
implementation, particularly in terms of rendering. For instance, poorly
implemented transparency increases clutter and be counterproductive.

In our investigation, we focus on concepts and techniques applicable to
cuboids. We outline selected visual variables and discuss value-adding
adaptations, such as �attened inner nodes and height-based �ltering. Pri-
marily, we spotlight four techniques, namely, sketchy outlines and sketchy
hatching [L4], physically-based materials and phenomena [L2], in-situ tem-
plates [L15], and animated transitions using procedural textures [L22].

3.1 Visual Variables of 2 and 3

The choice of a visual variable for mapping multidimensional, multivari-
ate data is determined by the properties of the variable itself, including
selective, associative, quantitative, length, and order properties. These
properties signi�cantly in�uence the perception and understanding of the
presented information [44]. A catalog of map themes compiles commonly
used attribute selections and mappings to visual variables relevant to spe-
ci�c tasks. A map theme de�nes attributes mapped to visual variables. It

Visual Variables of 2 and 3 | 23

represents a topic or use-case-speci�c treemap template that assists users
in visual analytics for data-driven decision-making. This involves to “(1)
derive insight from massive, dynamic, ambiguous, and often con�icting
data, (2) detect the expected and discover the unexpected, (3) provide
timely, defensible, and understandable assessments, and (4) communicate
assessment e�ectively for action” [132]. In the following, we outline visual
variables in 2 and selected metaphors and techniques that have been or
can be used with 3D-embedded treemaps to address these challenges.

To e�ectively employ visual variables of2 [26, 44, 200] in a 3D-embedded
treemap, we need to transfer them to corresponding visual variables in
3. While some transfers may be relatively intuitive, the added dimension
can introduce side e�ects that must be explicitly addressed. For instance,
extruding the area of a rectangle in 2D into volume in 3D requires the user
to be aware of and able to di�erentiate between volume and ground area.
Similarly, implementing color in a 3D environment might involve shading,
shadows, or re�ections, which should be accounted for when choosing a
color scale. Decisions such as whether to apply color encoding to the top,
lateral, or all faces of cuboids must ensure that the visual variable remains
e�ective and comprehensible.

3.1.1 Visualization Mapping and Rendering

The mapping stage transforms tree structure and attributes into a treemap
description, which comprises depictable and reversibly encoded graphical
primitives and scenes. There is not necessarily an explicit representation
of the resulting visualization object in memory. The result may only be
volatile during visualization, especially from an implementation point-of-
view: the distinction between mapping and rendering sustains more on a
conceptual level [204, 241].

The visualization mapping provides attribute values adjusted to the visual
variables, descriptions of graphic primitives, and additional data for ren-
dering. The rendering stage transforms the visualization abstractions, i.e.,
the treemap description, into images using (real-time) image synthesis. As
a result of the rendering stage, the mapped attributes are visually encoded
in the output image.

The simultaneous use of multiple visual variables to encode information
in a single graphic element (superposition) can be used to convey complex
information. Table 3.1 [L23] enlists selected visual variables and their
applicability to (1) inner nodes and leaf nodes, (2) 2D and 3D-embedded
treemaps, and (3) the data type it most certainly can convey.

3.1.2 Visual Variables in 3

Some visual variables in3 are limited to graphical elements with speci�c
characteristics and not applicable otherwise. For example, arrow patterns
applied to the lateral faces of cuboids may not be visible if the height of
the cuboid is zero, resulting in a �at rectangle. Additionally, the choice of
dependent or independent mapping plays a vital role in the e�ectiveness

24 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Node Space Data Type

Visual Variable St
ag
e

In
n
er

N
od

e

Le
af

N
od

e

2
⊕

2

3
⊕

2

N
om

in
al

O
rd
in
al

In
te
rv
al

R
at
io

Area (Foot Print, Size) M ✓ ✓ ✓ ✓ ✓ ◦ ✓

Color R ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Height M ◦ ✓ ✓ ◦ ◦ ✓

Transparency R ◦ ✓ ✓ ◦ ◦ ◦ ✓

Light Emission (Glow) R ◦ ✓ ◦ ✓ ◦ ◦ ✓

Stacking M ✓ ✓ ✓ ✓ ◦ ✓

Stacking (global layer) M ◦ ✓ ✓ ◦ ◦ ✓

Segments M ◦ ✓ ✓ ✓ ✓ ◦ ◦ ✓

Shape Type M ✓ ✓ ✓ ✓ ◦

Shape Parameter M ◦ ✓ ✓ ✓ ◦ ◦ ✓

In-situ (Change, Di�) M ✓ ✓ ✓ ✓

Contour Width R ✓ ✓ ✓ ✓ ✓ ◦ ◦

Contour Color R ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Contour) Stippling R ✓ ✓ ✓ ✓ ✓ ✓ ◦ ◦

Sketchy Contour R ✓ ✓ ✓ ✓ ◦ ✓ ◦ ◦

Surface Pattern (Texture) R ◦ ✓ ✓ ✓ ✓ ✓ ◦ ◦

Surface Noise (Texture) R ◦ ✓ ✓ ✓ ◦ ✓ ◦ ✓

Surface Shading (Texture) R ✓ ✓ ◦ ✓ ◦ ✓ ✓

(Surface) Hatching R ✓ ✓ ✓ ✓ ◦ ✓ ◦ ◦

Nesting-Level Margin R ✓ ✓ ✓ ✓ ◦ ✓

Color Weaving R ✓ ✓ ✓ ✓ ✓ ◦

Height Threshold R ✓ ✓ ◦ ✓ ◦ ◦ ✓

Table 3.1: M – Mapping | R – Rendering | ✓ – Supported | ◦ – Partially Supported.

of visual variables. Dependent mapping establishes a direct connection
between dimensions and attributes, while independent mapping allows
for a separate and �exible representation of dimensions and attributes.
The following outlines selected visual variables, such as height, shape, and
texture, each of which can uniquely contribute to a treemap’s design.

Figure 3.3: Height used
as a visual variable by
extruding the 2D shapes.

Height. The height of cuboids by extrusion of the rectangles [29, 50]
serves as a secondary visual variable (Figure 3.3). We tend to convey
information in the order of decreasing importance for the task: (1) color,
(2) height, and (3) other visual variables. Height allows for an intuitive
encoding of data changes by means of growing or increasing vs. shrinking
or decreasing, respectively. However, height should not be used to directly
depict negative or diverging scales, as this would result in downwards-
facing cuboids. If a negative value range is relevant, it is mapped inversely
to height. If absolute values are relevant, they could be mapped to height

Visual Variables of 2 and 3 | 25

and the sign to color, shape, or texture. Generally speaking, a cuboid
should be high when the underlying data is interesting.

Figure 3.4: Transparency
as a visual variable using
dithering [L23].

Transparency. Transparency, for example, can encode an attribute mea-
suring the relevance of a node. When an object disappears gradually, it
becomes more irrelevant. Transparency can also be used to reduce occlu-
sion and to encode di�erent node states [157]. Last but not least, it allows
to depict removed or planned components, goals, and irrelevant nodes
or just to enhance the expressiveness and visual quality of texturing (Fig-
ure 3.4).

Convex Shapes. Pyramid-like shapes can be used to further encode
an attribute or reduce occlusion [247]. The orientation of the leaf node’s
geometry [147] and the type, employing poly cylinders [162] and three-
dimensional glyphs [32] are further suitable as visual variables. Convex
shapes can also be constructed using, e.g., Voronoi tessellation, resulting
in Voronoi treemaps [13, 98, 180]. When following the approach of space-
�lling curves for non-rectangular layouts, they can be used to create
GosperMaps [9] and stable and predictable Voronoi treemaps [108] based on
additively weighted power Voronoi diagrams. We do not consider to what
extent our concepts and techniques can be applied to convex primitives in
general and instead focus exclusively on cuboids.

Figure 3.5: Top faces
textured with patterns
(nominal mapping) [L7].

Textures. Textures and patterns can be applied to encode categorical
data [L7, 172] (Figure 3.5). Alternatively, texture intensity was suggested as
a visual variable for scales with a natural zero [112]. Textures can be used
to create a distinctive look and feel using, for example, physically-based
materials. Procedural texturing can further be used to superimpose rulers
or stripes, e.g., to make height e�ectively countable or at least increasing
the accuracy of comparability between cuboids. Another approach is to
use procedural textures to encode underlying data distributions [L18].

Juxtaposing and Complex Shapes. To encode multiple states or com-
position, data vases, stacked cuboids, or segmenting/fragmenting can be
used. In remembrance of stacked bar charts, the extruded polytopes can
be subdivided in height, allowing for the depiction of subcategories and
their share of the overall height [84, 118]. This process can further be
utilized, e.g., to encode evolution using evolution segments [226] and data

vases [235].

Topology & Relations. For an emphasis on the topology with respect
to the nested structure of nodes, cushion shading [275] or hierarchical
stippling [221], variations of margins or padding, as well extruded, stacked
inner nodes [29] can be applied. If other relations of nodes in addition to
their tree-structured topology are of interest (e.g., functional dependen-
cies or often-coinciding changes during the development process), edges,
trajectories, or edge bundles can be superimposed on treemaps [42, 111,

26 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

224]. This approach, however, is visually constrained by the number of
depicted relations and data set size. Superimposing relations using tubes
on top of cuboids introduces additional visual complexity not inherent
to the treemap metaphor. Outlines or emissive light can also be used to
emphasize nodes due to user interactions such as �ltering and selection or
to highlight system activity [59].

For a discussion of common visual variables of2, we refer to the overview
given by Robert E. Roth [200]. Furthermore, we generalize color for the
sake of simplicity to ‘just’ color but are aware of the many facets and
impactful uses of color [56, 82, 104, 208]. Other visual variables, enlisted
in the table but not mentioned yet, such as emissive light, color weaving,
height threshold for �ltering, nesting level contouring, shading, proce-
dural texture patterns, sketchiness outlines and sketchy hatching, in-situ
templates, etc., will all be discussed in the remainder of this chapter.

3.2 Sketchy Contours and Surface Hatching

Figure 3.6: Three dif-
ferent illustration styles,
i.e., ballpoint pen, pen-
cil, and marker, are used
to render a cuboid of a
very simple 3D-embedded
treemap [L4]. Biro Style Pencil Style Marker Style

‘To sketch out’ means to create a rough or preliminary version of an idea,
concept, or plan, typically in a quick and informal way. Artists, designers,
and engineers commonly use sketching to visualize their ideas before cre-
ating a �nal product or design. Using non-photorealistic, artistic, and illus-
trative rendering changes how people read the depicted information [116].
It “o�ers di�erent ways of communicating ideas of narrative, purpose,
ownership, accuracy[,] and aesthetic” and it “may be reliably used as a
visual variable on an ordinal scale, but [. . .] caution should be exercised
when representing interval or ratio scale data.” [278] It conveys visual
imprecision, decreases people’s con�dence in the underlying data quality,
and encourages constructive feedback, discussion, and participation [156,
283] as well as supports interactive exploration [39, 89].

This chapter’s �rst spotlight is on sketchiness and shows how it can be
used as a visual variable in 3. We applied sketchy rendering to the
components of a treemap, imitating hand-drawn outlines and �llings.
Thus, a cuboid’s sketchy appearance can map uncertainty, imprecision, or
vagueness, primarily captured by ordinal data with small range.

3.2.1 Sketchy Outlines for Interactive Visualization

The extent to which we can apply sketchiness must be within the ability
to synthesize this style in real-time, i.e., for interactive, responsive frame
rates. In addition, we want to map data to per-node sketchiness, which
means the style and degree of sketchiness can vary across di�erent cuboids,

Sketchy Contours and Surface Hatching | 27

requiring the simultaneous display of di�erent degrees of sketchiness.
Our implementation is split into two rendering techniques that can be
e�ciently processed independently, one for outlines and the other for
hatches. However, we do not map data to them individually but always
combine them to obtain an emphasized, coherent sketchy appearance.

We modeled and examined a small group of three distinguishable hand-
drawn styles which we applied to the non-photorealistic representation of
cuboids using outlines and textures [207]. These styles are ballpoint pen
outlines (biro), outlines imitating colored pencils combined with slightly
desaturated hatching (pencil), and thick outlines and hatches imitating text
markers (marker), as showcased in Figure 3.6.

Sketchy outlines are synthesized by exaggerated graphical inconsistencies,
which cause the impression of vagueness. We achieve this by multiplexing
frequency and amplitude in a stylized, sketchy way [87, 227], using a
technique with parameterized perturbation, overdraw, and texture.

Figure 3.7: An example
for increasing sketchiness
(top to bottom) of a line
using perturbation [L4].

Perturbation. The deviation or disturbance from a stable or steady
state (perturbation) based on noise is used to modify the straightness of
outlines. The maximum perturbation of a stroke correlates to the degree
of sketchiness [35]. Amplitude, frequency or number of octaves, and
type of noise are direct and easy-to-use parameters for controlling the
degree of sketchiness (Figure 3.7). Rather than altering geometry, this is
achieved more e�ciently in image space [151, 179]. To avoid a “shower
door e�ect” [169]—graphical elements appearing to be “swimming through
[a] texture” [145]—edge-aligned billboards in object space [61] can be used.
Instead, we use spatially anchored 3D simplex noise [188] as a source for
perturbation intensity. This means that we use the spatial coordinates of
an outline within the 3D space in which the treemap is embedded as input
to the noise function.

Figure 3.8: An example
for increasing sketchiness
(top to bottom) of a line
using overdraw [L4].

Overdraw. The display of a single outline is not limited to a single
stroke. Overlaying multiple strokes of the same texture but with varying
perturbations (overdraw) can increase the degree of sketchiness. This can
be done, e.g., by shifting the 3D noise look-up randomly for every stroke
(Figure 3.8). Varying the intensity (pressure) per stroke can further increase
the aesthetic appeal of a sketched outline without signi�cantly a�ecting
the perceived degree of sketchiness. It is essential to balance creativity with
clarity and readability when using overdraw. Using too many overlaying
strokes or style variations can be counterproductive, decrease visual clarity,
and increase visual clutter. We suggest restricting sketchiness to a single,
consistent style per treemap and keeping the maximum number of distinct
lines for overdraw rather low [35].

Texture. Thickness and grain of a drawn line are in�uenced by the
drawing tool, the pressure being applied, and the texture of the paper being
used. Such characteristics can be captured and synthesized for real-time
rendering using image-based or procedurally-generated textures. Textures

28 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Figure 3.10: A cuboid
rendered using sketch-
iness to encode “uncer-
tainty, imprecision or
vagueness” [L4]. The scale
ranges from no sketchi-
ness (left) to maximum
sketchiness (right), using
�ve distinct degrees of
sketchiness. The number
of overdrawn outlines
is subsequently incre-
mented, and the intensity
of the hatching (if present)
is designed to decrease
evenly [L4].

can be sourced by scanning or photographing hand-drawn lines on paper
(Figure 3.9). Minor variations of a style can be stored in a texture atlas to
avoid unwanted repetition of patterns by randomly selecting a variation
per stroke from the atlas. The style should match the anticipated treemap

Figure 3.9: Examples
of textures capturing
di�erent styles of sketchy
lines based on di�erent
drawing tools. From top
to bottom, graphite pencil,
ballpoint pen, sharpie,
crayon, and marker [L4].

size or, more precisely, the typical screen size of cuboids displayed in that
style. Small cuboids drawn with lines that are too broad or prominent will
immediately introduce visual clutter. Less prominent styles should be used
with increasing treemap size and node count. Unlike perturbation and
overdraw, we use stroke textures to improve the sketchiness’s aesthetics,
not for direct data mapping.

3.2.2 Surface Hatching for Interactive Visualization

Hatching describes the use of lines or strokes to create shading or tex-
ture. Precomputed [189, 268] or recursive procedural Tonal Art Maps

(TAMs) [229] can be used for this purpose. These sets of texture images
with di�erent stroke densities, i.e., hatch intensities, can be suitably blended
during fragment shading. They also use specially adapted mipmaps to
ensure consistent stroke intensities and widths in image space. Their pa-
rameterization is similar to sketchy outlines; it includes the �ll style, stroke
texture(s), and hatch intensity levels. Hatching and stippling can be used
to convey texture, tone, and shape. Hatching involves creating parallel or
crosshatched lines in closely spaced groups, while stippling involves using
small dots or marks to create a similar e�ect.

Rather than representing light and shading information, the intensity of the
hatching indicates the degree of sketchiness (Figure 3.10). This also makes
it easier to maintain an existing thematic mapping, such as to color. The
propagation of the principal direction of the hatching usually emphasizes
the surface orientation [134, 151]. We have decided to exclude the direction
or orientation of the strokes for data mapping for the time being, although
it could be used for cuboids since they have zero curvature.

Sketchy Contours and Surface Hatching | 29

Figure 3.11: A 3D-embedded treemap applying three di�erent styles of sketchiness. An additional attribute is mapped
to the degree of sketchiness for each leaf node (including none) [L4].

3.2.3 Sketchiness as a Visual Variable in 3

Sketchy outlines and surface hatches can be combined into a promising
candidate for an independent visual variable, sketchiness (cf. Figure 3.10). It
appears to “have the capacity to carry information in its own right” [278]
and allows us to map any ratio-scale data, while being most e�ective for
ordinal data with a small range [L4]. When used in conjunction, the unique
texture characteristics make it particularly useful for encoding uncertainty,
imprecision, or vagueness. It can encode multiple, distinguishable degrees
of sketchiness and be used both on demand and complimentary. It does
not show substantial interference with other visual variables, such as color
and height, likely due to the regular and simple shape of the cuboids.

Our user studies suggest that sketchiness shows similar qualities in 3

as it does in2. Users were capable of recognizing an order when di�er-
ent degrees of sketchiness are depicted. Di�erence in style also matters,
especially for accuracy in selective, pre-attentive processing. Here, for
example, the pencil style signi�cantly outperformed the marker style. We
also con�rmed one of our expectations, that the participants’ ability to
pre-attentively process sketchiness decreases as the number of elements
increases. This underlines our remarks on increasingly large treemaps and
favors an isolated, on-demand use: First, an exclusive use of outlines might
lead to poor pre-attentive processing. Second, when using hatching, the
TAMs’ size and stroke-scales must be adjusted to the treemap size since
our ability to pre-attentively process the individual nodes decreases.

Using �ve degrees of sketchiness, users could bring depicted elements in
an order for multiple styles. It was even possible to account for shading
without sacri�cing the clarity of each individual degree. These results
demonstrate that sketchiness is an e�ective technique for extending the
expressiveness of 3D-embedded treemaps (Figure 3.11).

30 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Figure 3.12: A treemap rendered using path-tracing for more accurate light propagation. It allows us to highlight
individual cuboids using light-emitting materials for the cuboids’ surfaces.

3.3 Physically-based Materials and Phenomena

The physical world provides us with numerous indicators of activity, such
as heat or light. When something is active, we readily associate it with these
two elements, for example, if something is glowing from heat. Similarly,
if there is light in a building at night, we assume someone might inside
(Figure 3.12). Starting with this idea, we investigated how such associations
can be used as a visual variable. “When faced with unfamiliar concepts,
our cognitive system searches for the best mapping between the unknown
concept and existing knowledge of other domains.” [284] If we leverage
this knowledge, e.g., by using physical-based materials or phenomena, we
might be able to make treemaps more intuitive and accessible to users.

This approach can be extended beyond the appearance of individual leaf
nodes to neighborhoods of nodes or inner nodes. Like activity, whole areas
within the treemap could be in�uenced by aging, degeneration, or desola-
tion in terms of their associated materials, or even destruction within their
environment. This includes being overgrown by grass, gathering dust, and
being exposed to natural forces such as �re, rain, wind, or natural disasters.
Using natural phenomena to create visuals immediately triggers common
sense warnings and reminds us to be cautious and considerate of others
when using such an approach. The mere extrapolation of possibilities and
scenarios highlights the potential impact of visual communication and
the emotions it can evoke in the viewer. Therefore, we must use visuals
thoughtfully and deliberately, considering not only their aesthetic appeal
but also their potential impact on the viewer.

This chapter’s second spotlight is on physically-based materials and phe-
nomena and describes how they can be used as a visual variable in 3.

Physically-based Materials and Phenomena | 31

We brie�y discuss roughness, shininess, rustiness, and emissive light and,
w.r.t. weather phenomena, summarize how animated rain and �re can
be integrated. These metaphors can be used to emphasize trends within
the data, and enable us to “emotionalize the visual communication by
providing memorable visualizations.” [34, L2]

3.3.1 Physically-based Materials for Visualization

In real-time rendering, the material of a surface determines how light
interacts with it. Over the past few years, rendering engines have moved
away from simpli�ed, highly approximative Bidirectional Re�ectance Dis-
tribution Functions (BRDFs), such as Lambertian, Oren-Nayar, or most
prominently Blinn-Phong. Most rendering engines have shifted towards
quasi-standardized, physically more accurate approximations, commonly
referred to as physically-based rendering (PBR) [2]. This shift is accompa-
nied by a consolidation of more accurate BRDFs,3.1 their parameterizations,
computations, material libraries, and respective availability.3.2

When we identify suitable metaphors that can communicate an object
state we pair them with a contrary phenomenon and take advantage of
the human visual system to rapidly process visual cues such as shading
and textures [106, 107]. For instance, the roughness of a surface can serve
as a suitable metaphor to visually connotate the up-to-dateness of the data
depicted. High surface roughness can convey a negative state, data being
old or out-of-date, and can be optionally ampli�ed by texture-based and
geometry-based displacement, resulting in a rough appearance. For the
opposite end of that spectrum, low surface roughness in combination with
a high specularity can be used to create a shiny and clean cuboid, resulting
in a positive state; that is, the depicted data is up to date (Figure 3.13).

The following brie�y summarizes the technical characteristics of roughness,
shininess, rustiness, and emissiveness (by means of radiant emittance in
the visible electromagnetic spectrum). It assumes the use of a physically-
based material systemwith a metal-roughness parameterization commonly
available, for example, in theUnreal Engine 4,3.3 as used byWürfel et al. [L2],
as well as in popular WebGL and WebGPU based rendering systems.

Figure 3.14: A cuboid
with a third of its surface
exposing a rusty material.

Rustiness can be achieved by using a material or texture depicting a rusty
surface. A threshold and a procedural noise-based mask are used to
control the exposure of rust (Figure 3.14).

Roughness is initially created by increasing the material’s respective
roughness parameter. However, by combining geometry tessellation,
normal mapping, and vertex displacement, it can be increased fur-
ther. Depending on the required degree of roughness, noise-based

3.1Brent Burley. Physically Based Shading at Disney. SIGGRAPH ’12 Course Notes, dis-
neyanimation.com/[../...]disney_brdf_notes_v3.pdf. 2012.

3.2Lucas�lm Advanced Development Group. Material X: An Open Standard for the Ex-

change of Rich Material and Look-development Content Across Applications and Renderers.
materialx.org. 2017.

3.3Epic Games, Inc. Unreal Engine 4. unrealengine.com. 2015.

https://media.disneyanimation.com/uploads/production/publication_asset/48/asset/s2012_pbs_disney_brdf_notes_v3.pdf
https://media.disneyanimation.com/uploads/production/publication_asset/48/asset/s2012_pbs_disney_brdf_notes_v3.pdf
https://materialx.org/
https://www.unrealengine.com/

32 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Figure 3.13: An example
of adding a connotation to
the data mapping using a
rough-to-shiny metaphor.
This metaphor commu-
nicates deterioration or
negative deviation (rough-
ness) and improvement or
positive deviation (shini-
ness) without need for
further introduction of the
mapping semantics [L2].

Negative Connotation/Association Positive Connotation/Association

cuboid with a rough surface cuboid with a shiny, polished surface

normal mapping (not a�ecting the actual geometry) or tessellation
with subsequent vertex displacement can be used.

Shininess is created by increasing the metalness of a physically-based
material while decreasing its roughness, i.e., increasing its smooth-
ness. In doing so, the object will re�ect more of their surroundings,
making them appear more re�ective and shiny.

Radiant Emittance is modeled by assigning a cuboid’s color to its emissive
color, multiplied by an emissive factor. Visually appealing emis-
siveness either requires path-tracing or adequate emulation of light
bleeding (bloom) using image-based post-processing.

Concerning the ‘rough-shiny’ spectrum, a simpli�ed, more e�cient ap-
proach exists that is especially easy to integrate for web-based applications
of treemaps. Instead of a material system, image-based lighting with
just a single, precomputed texture is used: an Irradiance Environment
Convolution Cubemap or Pre�ltered, Mipmapped Radiance Environment

Map (PMREM).3.4 This environment map is convoluted withmore scattered
sample vectors for increasing roughness levels, creating blurrier re�ections.
The sequentially blurrier results for increasing roughness levels are stored
as mipmaps of the cubemap and can be easily fetched using roughness as
the level-of-detail. The cube map and its custom mipmaps can e�ciently
be provisioned by and reconstructed from a single image [185].3.5

Figure 3.15: Physically
simulated light emittance
used as visual variable.

Light radiating, ‘glowing’ cuboids support pre-attentive processing and
are especially useful for emphasizing and highlighting purposes. Physi-
cally simulated, emissive light increases the visual quality, is aesthetically
pleasing (Figure 3.15), and never fails to impress engineers of real-time
rendering systems. Classical highlighting techniques, such as simple color
modulation and outlining, can provide su�cient means for highlighting
and are easy to implement, making them a suitable fallback option, partic-
ularly for interactive, web-based visualization.

3.4Emmett Lalish. Fast, Accurate Image-Based Lighting. drive.google.com/[..]/PMREM-
submission.pdf. 2020.

3.5Daniel Limberger and Philipp Otto. Simpli�ed Transmission of a Cubemap with Custom

Mipmaps using a Single Texture. webgl-operate.org/[..]/ibl-map.png. 2020.

https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
https://webgl-operate.org/examples/data/imagebasedlighting/ibl-map.png

In-Situ Templates | 33

3.3.2 Weather Phenomena for Visualization

Humans frequently use linguistic metaphors in idioms that involve natural
phenomena, such as ‘to go up in �ames’ or ‘grow grass upon’. They can
be suitable for communicating additional information, for example, trends
underlying the depicted data. Natural phenomena, such as weather e�ects,
can a�ect the area surrounding treemap items or a group of adjacent
items. Phenomena such as fog, haze, clouds, rain, or even �re can be used
to visually encode additional information for data mapped to multiple
nodes or comprised by inner nodes. Panas et al. used this approach to
extend the use of a realistic 3D-city metaphor for depicting software back
in 2003 [186]. They assigned quality metrics to building textures and
incorporated visual e�ects such as �re and bolts to highlight hot spots
in code execution and frequent component modi�cations. All of these

Figure 3.16: Superposi-
tion of the weather phe-
nomena rain, clouds, and
�re within a tiny treemap.

phenomena can take on many di�erent forms and intensities. Including
them in visualization design can help emphasizing or directing attention
to regions of interest within a map (Figure 3.16).

Incorporating weather phenomena into data visualization requires so-
phisticated rendering techniques and preferably continuous rendering for
animations, contrasting with the interactive but progressive generation
of images we generally use (cf. chapter 5). For example, clouds, rain, and
�re can be created using particle systems that combine physical simula-
tions of particle movement, textured billboards, and appropriate blending.
However, re�ning and con�guring particle systems to match the intended
phenomenon and aesthetic is not trivial and requires creative tweaking
of many aspects of the systems. More modern rendering engines allow
for volume-based simulations, o�ering clearer parameterization and more
direct control. Nevertheless, it is di�cult to estimate to what extent the
realism of the phenomena a�ects visual communication. A glyph-based
approach, e.g., showing a �ame or cloud emoticon, might be su�cient or
even better suited in many cases.

3.4 In-Situ Templates

When visualizing data, we assume a �xed temporal reference point, i.e., all
data points refer to the same temporal context. To better understand the
evolution and changes in the data, it may help to understand how the data
arrived at its current state and the extent to which it has changed recently.
For simplicity and without limiting generality, we assume a temporally co-
herent tree structure, e.g., using a union tree [244] that considers all nodes
within a range of revisions [L22, 206]. When working with visualizations,
we likely experienced the most straightforward approach; we just switch
interactively between revisions and try to detect changes. Even assuming
that the treemap layout would be stable [20, 254], this task is error-prone
and quite tedious.

A side-by-side comparison or small multiples in case of more than two
revisions [47, 205] allow us to capture the overall evolution of the data and
identify points of interest throughout time. However, to locate individual
data changes, two or more maps must be compared meticulously, which

34 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Figure 3.17: Example of a 3D-embedded treemap using in-situ templates for a simultaneous two-state mapping to
height and color. The implementation of templates can be challenging. For example, the display for a drop in height
(cf. I12 in Figure 3.18) uses procedural arrow textures [L21] and order-independent, stochastic transparency [68].

is again error-prone and tedious. If our interest is in reading individual
changes accurately, the more straightforward approach is to map changes
themselves to visual variables. For example, the absolute di�erence be-
tween the two states of a node can be mapped using height and the sign
of the di�erence using color. Alternatively, one can map the values of one
point in time to height and the degree of change with respect to another
point in time using a �ve-color divergent palette. We refer to this type of
explicit encoding of changes of two data states as change mapping. With
this approach, however, changes are depicted with limited context; we
cannot accurately deduce the value of both states.

This chapter’s third spotlight showcases graphical elements that convey
alterations in color, height, and area directly ‘in place’ (in-situ). We in-
troduce cuboid geometry templates that allow two attribute values, e.g.,
of di�erent time references, to be (1) mapped simultaneously while also
(2) emphasizing their direction of change.

3.4.1 Two-State and Multi-State Mappings

Our objective is to visually represent the corresponding values of an orig-

inal state and a comparative state of a data element simultaneously. We
assume that the di�erent states are individual attributes that share the same
semantic and data characteristics. These can include but are not limited
to di�erent temporal references of a measurement, thresholds, nominal
values, or precomputed statistical values. Consequently, we avoid using
designations such as ‘before’ and ‘after’ or ‘former’ and ‘latter.’ Simultane-
ously mapping attribute values of two states enables direct comparison
and an unbiased, equivalently accurate read-out of the di�erence. We refer

In-Situ Templates | 35

In-Situ Two-State Mapping to Height and Color

R₂ is Comparative State to I₁₂, ...
 ... and is Original State to I₂₃.

R₀ I₀₁ R₁ I₁₂ R₂ I₂₃ R₃

Figure 3.18: Illustration of our preferred in-situ templates for simultaneous two-state attribute mapping using color
and height. Given are the four revisions R0 to R3 for two attributes encoded by the color and height of a node. For
example, the in-situ template I01 shows an increase in height and a color change when R0 is compared to R1. The
squares on each template’s bottom left illustrate how the template would look from above (2D treemap scenario). The
small ‘levitation gaps’ in I01 and I12 pursue an aesthetic function and have been added due to user feedback.

to this as two-state mapping, while a mapping with more than two states
would be a multi-state mapping. In contrast to a change mapping, a two-
state mapping can implicitly or explicitly encode the di�erence visually
but is (1) not limited to the speci�c semantic of that di�erence and (2)
ensures the two attribute values to be encoded explicitly.

Cuboids can be augmented to encode height, color, and area di�erences,
one at a time or all together in-situ [L15]. These templates can be used
as graphical elements for intra-element and inter-element mapping. For
visual comparison, various approaches can be used, such as juxtaposition
(placing graphical elements side-by-side), superimposition (overlaying
graphical elements on top of each other), explicit encoding, and animated
transition for the visual display of original and comparative states [85,
144]. Our templates are designed to be superimposed onto a single treemap
and use any of the three methods for visual comparison within their local
scope. Conceptually, our approach shares similarities with property towers

by Steinbrückner et al. [225] and bricks by Wettel et al. [271], as they
are both capable of encoding multiple states or even the composition of
an attribute. Other approaches, such as variants of data vases [235] and
glyphs [110, 220], are similarly promising but deviate more from the cuboid
appearance.

We identi�ed signi�cant issues with many templates that initially seem
plausible and obvious. These issues are primarily related to reading direc-
tion or orientation and occlusion. Furthermore, we account for the top
view of each template (basically resulting in a 2D treemap) that we prefer to
support for orientation and overview in our 3D-embedded treemaps. Since
minor modi�cations and variations can lead to a multitude of templates, we
focus on exemplary ideas and emphasize their respective problems while
advocating for the most promising templates (Figure 3.18). Even though
templates for the simultaneous two-state mapping to height, color, and
area have been developed [L15], we only discuss templates that support
color encoding, height encoding, and both simultaneously.

3.4.2 Two-State Height Mapping

Given are the two states R4 and R2 as original and comparative states,
respectively, as shown in Figure 3.19. The �rst template, A, exhibits a

36 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Original State

Comparative State

R₄ and R₂
swapped

R₄ R₂ A B C D E F

Figure 3.19: Excerpt of in-situ templates for multi-state mapping to height, shown on the example of R4 and R2.

side-by-side arrangement of two cuboids, most comparable to plain height
mapping. However, it is not rotation-invariant [231], and navigation may
invalidate the reading direction. This can be remedied by dynamically
adjusting the template orientation during navigation or restricting the
virtual camera position and view direction to a predominantly south-north
direction. Template A is also problematic because it is designed for rather
squari�ed cuboids, which is often not the case. Depending on the layout,
cuboids with more or less unfavorable aspect ratios often appear on larger
maps (Figure 3.17).

Template B is more promising, showing the negative di�erence to the
original state as a transparent cuboid. However, this requires dithering,
depth sorting, or order independent transparency (OIT) [68], which can
introduce visual clutter and degrade depth cues if done poorly. Moreover,
it does not work for positive di�erences (e.g., swapping R4 and R2).

Templates C and E map the sign of the di�erence to distinct colors, e.g., yel-
low and violet for negative (decrease) and positive (increase), respectively.
At the same time, this approach is comparatively easy to implement and
understand, provided that the colors do not interfere with the treemap’s
actual color mapping. Templates D and F replace color with explicit di-
rectional encoding using procedurally generated arrow patterns on the
lateral faces of the cuboid’s di�erence area.

We prefer B with D for negative di�erences and F for positive di�erences.
In addition, we use a levitation gap, a small gap that has a constant height
in pixels, i.e., independent of the distance between the gap and the virtual
camera; This is done for aesthetic preferences and helps to discern minor
di�erences better. It can be combined with all templates except H to N .

3.4.3 Two-State Color Mapping

R₄ R₁ G H J K L M N

Figure 3.20: Excerpt of in-situ templates for multi-state mapping to color, shown on the example of R4 and R1.

Template G splits the cuboid vertically, with each half distinctively encod-
ing one of the two attribute values by its color. This approach is analogous

In-Situ Templates | 37

to A, which is problematic for reading direction and elongated aspect
ratios. It should be noted that this template is applicable only if padding be-
tween siblings is applied, which, however, we assume for all 3D-embedded
treemaps; otherwise, the halves of a split cuboid might be indistinguishable
from two contiguous cuboids (also applies to template A for that matter).

Template H encodes the comparative state on the top face. K extends
this to two opposite lateral faces. In both cases, the reading direction is
unequivocal. However, depending on the camera’s position and �eld of
view, some cuboids might only expose a single face to the viewer, making
it unreliable for interactive exploration in 3D. Furthermore, only one state
can be encoded when the cuboid’s height is zero (or viewed from above).

Template K uses a vertical color gradient from the original to the compar-
ative state, ending with the comparative state on the top face. If not used
properly, the color gradient can become incomprehensible and introduce
colors that cannot be mapped back to the data. Intermediate colors must
be computed by �rst interpolating the attribute values and then map the
resulting values to the treemap’s color scale.

Alternatively, color patterns based on procedural texturing can visually
encode di�erences between two states. Template L (and I23) uses a hori-
zontally aligned stripe pattern on the lateral faces to alternate between
the two states. This template is rotation-invariant and can be read even
when partially occluded. Like templates H and K , it does not work for
cuboids with zero height. Using a vertically aligned stripe pattern and a
grid on the top face, as shown with templates M and N , addresses this
issue but poses problems with reading direction and elongated aspect ra-
tios. All considered, we prefer template L (Figure 3.20) among all the color
templates shown. The use of stripes (1) allows for comparing di�erences
between cuboids more accurately, (2) makes it less susceptible to occlusion,
(3) employs an unambiguous reading direction (top face is comparative
state), and (4) facilitates the extension to procedural arrow patterns. The
width of the stripes must be carefully con�gured to ensure the two colors
are discernible with respect to the cuboids’ size on the screen.

3.4.4 Two-State Height and Color Mapping

R₄ and R₀
swapped

R₄ R₀ O P Q S T U

Figure 3.21: Excerpt of in-situ templates for multi-state mapping to color and height, shown for R4 and R0.

To simultaneously encode two states for height and color, we noticed that
most height templates (exceptions are C and E) can be directly augmented
with a second color; A becomes O, B becomes P , and D and F become S
and U , respectively (Figure 3.21). The template Q cannot be used because

38 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

the resulting cuboid remains the same regardless of whether R4 or R0 is
used as the comparison state (T).

With all the above observations on templates, the following Table 3.2 lists
our preferred combination of templates for the di�erent cases in concurrent
two-state mapping to height and color:

color1 = color0 color1 ≠ color0

height1 = height0 – L

height1 > height0 F U

height1 < height0 B & D P & S

Table 3.2: Matrix showing our in-situ template preferences for a simultaneous two-state
mapping to color and height. The state attributes are indexed as 0 and 1 for the original
and comparative state, respectively. When a non-qualitative color mapping is used, the
color scale itself encodes the sign of the di�erence of the values mapped to color.

R₄ R₅

V W

Figure 3.22: Two in-situ
templates for simulta-
neous multi-state map-
ping to color, height, and
area, shown for R4 and
R5 [L15].

Templates for coincident mapping of height, color, and area in two states
have been developed [L15] but are not covered in this thesis. To give an
idea of how this might look, Figure 3.22 shows two templates that support
this purpose. Each template, V and W, encodes nine pieces of information
in-situ, i.e., three value pairs and the sign of their di�erences. The more
attribute values comprised in-situ, the more training and focus are required
for the user to read even a single node.

Instead of replacing many cuboids of the treemap with these templates,
we can place them next to the treemap on the ground plane of our 3D
virtual environment. There, these and other templates could dynamically
illustrate two-state mappings for a few selected nodes using separate,
perfectly square, and richly labeled representations.

3.5 Animated Procedural Textures

When the assignment of an attribute value to visual variables of a treemap
changes, we can make the change more pleasant by not switching instantly.
Instead, we can animate the transitions between the visual representations
of the respective values. This can be done by creating animated transitions
for height and color from the former to the latter state. Drawing on our
�ndings for the in-situ display of di�erences [L15], we investigated how
animated transitions can support and highlight temporal changes within
a series of attribute values [L21]. We developed our in-situ templates for
static display, primarily to support image-based sharing or printing. These
templates encode changes statically, but with a bit of imagination, they
can be read as building instructions for designing animated transitions.
With this in mind and considering our arrow patterns, we explored texture
patterns and their capacity to animate a change in color mapping.

This chapter’s fourth spotlight focuses on animated transitions for color
mapping using procedurally generated texture patterns within 3. We
highlight four patterns and their encoding and compatibility characteristics,

Animated Procedural Textures | 39

Pyramid Inverse Pyramid

Noise pattern combined with a secondary,
Arrow pattern on the former state.

Figure 3.23: A synthetic treemap with n revisions of random attribute values is shown during two animated tran-
sitions between successive data revisions. The examples each show a combination of two procedural patterns used
together to animate transitions between revisions; a noise pattern supported by arrows (left) and a pyramid pattern
supported by squares. The secondary patterns emphasize the direction of change during animation and provide
encoding for static display [L21].

showing how they can convey data changes while maintaining a visually
appealing and easily interpretable representation.

3.5.1 Transition, Animation, and Change

Transition describes the change from a node’s state or mapped value to
another, while an animation is a continuous progression over multiple
states through transitions. Transition does not encode time or duration but
only progress t ∈ [0, 1]where 0marks the start and 1 the end of a transition.
The control value t is then mapped to the pattern progress � ∈ [0, 1]. This
separation allows tweaking the linear mapping � = t using, for example,
easing functions for aesthetic and user-experience purposes [119].

A pattern maps the transition progress for a fragment on a cuboid’s surface,
resulting in a binary per-fragment color choice. This can be achieved
using algorithmic drawing,3.6 signed distance functions,3.7 or procedural
textures [93], all of which can be implemented in fragment shaders. These
patterns are applied to the top and lateral faces of the cuboids, allowing
both colors to be shown on the surface. Let C = [0, 1]3 ⊆ ℝ3 denote
the unit cube in the Euclidean space ℝ3 that is used to provide a local
parameterization of a treemap node. Its surface S is given by the boundary
of C, i.e., S =)C. A pattern on the surface S is a function given by

P ∶ S × [0, 1] → {cf , cl}, (p, �) ↦ P(p, �) = P�(p), (3.1)

3.6Patricio Gonzalez Vivo and Jen Lowe. The Book of Shaders. thebookofshaders.com. 2015.
3.7Inigo Quilez. Computer Graphics, Mathematics, Shaders, Fractals, Demoscene and More.
iquilezles.org/articles/. 1994.

https://thebookofshaders.com/
https://iquilezles.org/articles/

40 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

where cf and cl are colors representing the value of the former state and the
latter state. Furthermore, a pattern P satis�es the following properties:

• ∀p ∈ S, ∀� ∈ [0, 1] ∶ P(p, �) ∈ {cf , cl},

• area({P0 = cl}) = 0 and area({P1 = cl}) = area(S), and

• ∀�1, �2 ∈ [0, 1] ∶ �1 < �2 ⟹ area({P�1 = cl}) ≤ area({P�2 = cl}),

where area denotes the usual area of surface in ℝ3 and the set {P� = cl}

denotes the subset points on S, where the pattern takes the value cl . The
�rst property (1) states that for any point on the surface and any pattern
progress value, the pattern function will output either the former or latter
color, ensuring no mixed colors are introduced. Concerning the latter color,
the properties further describe that (2) at the beginning, none of it is visible,
and at the end, the entire surface is covered by it, and (3) in between, the
covered area steadily increases as the pattern progresses advances.

From the perspective of the visual variable, animation always transitions
between two states of that visual variable. We previously describe these
states of such a two-state mapping as original and comparative states,
focusing on the in-situ comparison. Procedural textures supported the
in-situ templates and emphasized the direction of change for the spatial
dimensions, such as a change in height or area. Now, we shift our focus
to change display, switching to former and latter state. The goal is an
encoding that allows for identifying the former and latter state, magnitude,
and direction of change. We identify these as the direction of animation,
the magnitude of change, and the direction of change, respectively.

The representation of change should visually correspond to the change in
data (visual-data-correspondence) [135], meaning the actual di�erence be-
tween two values and that di�erence’s sign. Animating transitions by inter-
polating height and color attributes is an evident and sound approach [30,
146]. We developed procedural texture patterns to emphasize and support
animated transitions in color, as demonstrated in Figure 3.23 [L21, L22].
The introduction of secondary, supportive patterns allows for an accurate
display of change direction, even for a static display of an image. There are
more aspects to adopting treemaps over time, such as layout stability [92,
206, 244, 255]. Our approach aims to augment height and color mappings
already in use and rely on the user’s existing understanding of treemaps
while emphasizing changes in the data.

3.5.2 Procedural Patterns for Animated Change Display

We explore transition-aware texture patterns designed to be e�ective for
static images and dynamic animated transitions. These patterns mainly
di�er in their appearance, granularity, and the surfaces they are intended
for. We have proposed seven variants in a previous study [L21], but in
this work, we will focus on four: (1) Pyramid, (2) Squares, (3) Noise, and (4)
Arrows (Figure 3.24).

The patterns are intended as conceptual starting points, not as a compre-
hensive list of possible patterns. Additionally, a pattern is not precisely

Animated Procedural Textures | 41

Former/Starting State Latter/Ending State

Pyramid

Squares

Noise

Arrows
'grow-in'

preferred

Arrows
'grow-out'

� = 0.0 � = 1.0

Figure 3.24: Excerpt of
procedural patterns [L21]
for changes encoded in
color. The ‘grow-out’
arrow pattern is our pref-
erence over the ‘grow-in’
variant since the top-face
direction matches growth
(and reduction when in-
versed).

de�ned by a speci�c implementation or a fragment-precise de�nition of
the binary decision to be made. Instead, we aim to capture patterns that
di�er and represent alternative approaches. All patterns, however, encode
the progress by the area ratio of the colors representing the two states.

Pyramid. This pattern builds upon the Pillar pattern—latter color grow-
ing from bottom to top using the cuboid’s lateral faces, and only at the
very end, covering the top face—by including the top faces. Its name de-
scribes the metaphorical process used to derive an implementation of the
pattern: a virtual pyramid is embedded in the cuboid and slowly pushed
towards and through the top. All cuboid fragments intersecting with the
pyramid are assigned the latter upcoming color. This intersection surface
corresponds to the pattern’s progress for lateral faces as well as for the top
face. It can also be inverted to encode the direction of change.

Squares. This pattern is similar to per-fragment dithering. When used
on high-dpi displays or in print, dithering may result in the visual blending
of the two colors, potentially making the colors di�cult to distinguish
or introducing colors outside of the used color scale. We use a scalable
dithering pattern that is scaled and applied to the cuboid’s faces in world
space rather than display pixels. This reduces the visual blurring of colors
while providing a transition. Designing the overhang from a square onto
neighboring faces is challenging from an implementation standpoint. A
straightforward approach is to arrange the squares and loosen their aspect
ratio to create rectangles, so no overhang occurs.

42 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Noise. This pattern employs 3D Perlin noise [188] and a threshold to
partition the surface into the two colors, resulting in organic-looking
surfaces and transition behavior. The scale of the noise must be adjusted
to the treemap’s size. We derive the scale based on the number of nodes in
the tree, as this measure loosely corresponds to the share of the footprint
area one node has in relation to the size of the whole treemap.

Arrows. This pattern generates the appearance of alternating arrows of
di�erent shades and includes the top face as well (full). The arrows can
be inverted to encode the direction of change. However, the top face’s
direction is not unambiguous: assume the arrows point from the middle
on outwards. Considering only the top face, this will most likely be read
as an increase. When considering these arrows crossing into the lateral
faces of a cuboid, they suddenly indicate the opposite, a decrease. Since we
explore the 3D-embedding of treemaps, we favor the latter variant since it
considers the cuboid as a whole.

We propose a set of characteristics to capture the patterns’ abilities for
information encoding. Furthermore, we suggest superimposing two pat-
terns to enhance the change direction for a static display, such as when
the transition progress is at � = 1/2, halfway through the transition.

3.5.3 Pattern Characteristics

We introduced �ve encoding characteristics and four compatibility char-
acteristics for the texture patterns. The encoding characteristics can be
summarized as follows:

∇Monotonic Every point of the surface transitions from former to latter color
only once, ensuring visually consistent transition process (smooth)
without �ickering.

∇DirStates Unambiguously discerns former and latter states in a static image
or during paused animation. This considers di�erent viewpoints
and the potential occlusion of parts of a cuboid.

∇DirChange Unambiguously identi�es the direction of change in value (in-
crease or decrease) in a static image or paused animation. This
considers di�erent viewpoints and the occlusion of parts of a cuboid.

∇RatioLat The ratio of colors on lateral faces matches a transition’s progress.
Lateral faces’ area scales with the value mapped to height and par-
tially with the value mapped to weight.

∇RatioTop The ratio of colors on the top face matches a transition’s progress.
The top face area scales with the value mapped to weight, making it
relevant for top view or 2D treemaps.

The compatibility characteristics are:

∇IndHeight Mapping of change di�erence and change direction does not
compromise a height mapping, including a di�erence being mapped.

Animated Procedural Textures | 43

Encoding – ∇E Compatibility – ∇C

Pattern ∇
M
on

ot
on

ic

∇
D
ir
St
at
es

∇
D
ir
C
h
an
ge

∇
R
at
io
La
t

∇
R
at
io
T
op

∑∇E ∇
In
dH

ei
gh

t

∇
In
dW

ei
gh

t

∇
T
re
eS
iz
e

∇
P
ol
yg

on
al

∑∇C

Pyramid ✓ – – ✓ ◦ 2.0 ◦ ✓ ✓ ◦ 3.0

Arrows ✓ ◦ ✓ ✓ ✓ 4.5 ✓ ✓ ◦ – 2.5

Noise ✓ – – ◦ ◦ 2.0 ✓ ✓ ◦ ✓ 3.5

Squares ✓ – – ✓ ✓ 3.0 ✓ ✓ ◦ ◦ 3.0

Py. + Sq. ✓ ✓ ✓ ✓ ◦ 4.5 ◦ ✓ ✓ ◦ 3.0

No. + Ar. ✓ ✓ ✓ ◦ ◦ 4.0 ✓ ✓ ◦ ◦ 3.0

Table 3.3: ✓ supported | ◦ partial support | – unsupported. Revised evaluation [L21, L22].

∇IndWeight Mapping of change di�erence and direction does not compro-
mise the weight mapping, including a di�erence being mapped.

∇TreeSize The pattern remains meaningful and readable across varying
treemap sizes, i.e., it adjusts easily for large or very large treemaps
while retaining other characteristics.

∇Polygonal The pattern is suitable for treemaps with polygonal shapes, main-
taining its visual metaphor and implementation. This also allows
the pattern to be applied to extruded, non-rectangular shapes.

Table 3.3 gives an overview of the patterns and their encoding and compat-
ibility characteristics. It is based on technical limitations on a feature level
and poses constraints for using proposed patterns. However, additional
limitations might be imposed by user expectations or user experience. The
scores∑∇C and∑∇E are the weighted sum of the respective characteristics.
A supported characteristic count as 1, a partially supported characteristic
as 0.5 and an unsupported characteristic as 0.

Creating a pattern that meets all proposed characteristics remains a chal-
lenge. All proposed patterns are monotonic by design, and among the
patterns proposed, the Arrows pattern excels in encoding characteristics.
Most patterns support the ∇RatioLat characteristic, but in the case of Noise,
it is not trivial to design a function that matches the color ratio to the
progress value. The ∇RatioT op characteristic is supported by fewer patterns,
with the Pyramid pattern only partially providing this characteristic as
the ratio of colors is skewed to the current progress value. The Pyramid
pattern falls short in the independence from height changes (∇IndHeigℎt)
as the color border depends on the cuboid’s height, causing non-linear
movement during simultaneous color and height animation. In terms of
large treemaps (∇T reeSize), the Pyramid pattern performs well, while other
patterns, such as the Squares pattern, might struggle in situations with
limited screen space. The support for non-rectangular treemaps (∇Polygonal)
varies across the proposed patterns.

44 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

Figure 3.25: Combina-
tion of two procedural
patterns. A secondary pat-
tern supports the primary
pattern placed only on the
parts representing either
the former (as can be seen
here) or the upcoming
value [L21].

Former State Secondary Pattern Latter State

Pyramid
+ Squares

Noise
+ Arrows

� = 0.0 � = 1.0

3.5.4 Pattern Composition

Invariant to all patterns is that the direction of state and change value
can be encoded simultaneously. We propose superimposing two di�erent
patterns, using a primary pattern as before but a secondary pattern as an
additional indicator for the direction of change. This allows for a direct,
unambiguous display of change direction when paused and animated, thus
supporting ∇DirStates and ∇DirCℎange .

The choice of the primary pattern does not limit the secondary pattern. We
suggest using a pattern distinct to the primary one, ideally with a uniform
distribution of colors. This ensures that the pattern is distinguishable from
the main pattern and visible without regard to the current transition state.
Figure 3.25 shows examples using the Pyramid and Noise patterns with
Squares and Arrows as secondary patterns, respectively.

The secondary pattern, derived for a static progress value � = 1/2, is applied
using a blend of the base color and a darker shade. Occupying half the
applied surface area, we propose using the surface encoding the former
color for superimposition. As a result, this pattern is exposed (decreasingly)
only towards the end of the transition since the former color’s surface will
vanish. Additionally, it should gradually fade in, not being visible at the
transition’s beginning, to avoid an abrupt appearance at the start.

3.5.5 Animation Control

We can use animation to display the continuous progression over multiple
dataset states and transitions, showcasing changes throughout an entire
treemap and across multiple data snapshots [L22]. Animation is closely
linked to time and duration, from running all transitions simultaneously to
executing them sequentially. To enhance usability, we implement explicit
management of individual transitions, grouping similar changes, and ap-
plying constraints such as separating animations based on visual variables,
ordering value decreases before increases, and grouping animations by
proximity in the treemap.

A virtual, global time advances as the con�gured animation progresses
from one dataset state to another. Per-node transition control values are
updated for each time step, and the treemap is redrawn. The process
concludes when all transitions are complete. Our prototype allows for
independent, simultaneous transitions per node for every mapped data

Value-added Adaptations for 3D-Embeddings | 45

problematic problematic(preferred)

preferred!a) b) c) d)

e)

Nodes at di�. heights,
global reference.

Nodes at di�. heights,
per-parent reference.

Nodes at same height,
per-parent adjustments.

Nodes at di�. heights,
per-node adjustments.

Nodes at same height,
no parent heights!

Figure 3.26: Variations of height reference for simultaneous use of cuboids for leaf and inner nodes (a to d). The ma-
genta and blue horizontal lines suggest deceptive and genuine height readout, respectively. With the virtual camera’s
altitude presumed to be above 20◦ we favor using overlapping or nested rectangles for inner nodes (e). This reduces
occlusion and visual complexity while preserving nesting clues, maintaining labeling of parents, and enabling height
comparison with and without height reference [L13].

attribute, enabling the ordering andmasking of transitions based on various
factors such as transition type, user-de�ned values, and metadata.

3.6 Value-added Adaptations for 3D-Embeddings

Closing this chapter, we brie�y present value-added adaptations for 3D-
embeddings of treemaps. We cannot provide a comprehensive set of design
guidelines for treemaps but focus on speci�c techniques and augmentations.
Such guidelines, especially concerning perception [138] or use of color [191,
208, 279] are not speci�c to treemaps, but relevant for every visualization,
and thus not the focus of this paper. Please refer to geographic, thematic
maps, and commonly used sequential, diverging, and qualitative color
schemes for more information on color. The following remarks are on the
stacking of inner nodes, the resolution of attribute values and their visual
representation, and the bene�ts of using a visual height reference.

3.6.1 Height Mapping for Inner-Nodes

We initially adopted 3D-embedded treemaps with inner node stacking [33],
as we were familiar with this approach and aware of its use by others.
Height mapping for inner nodes in treemaps typically involves creating
platforms [4] or pyramid frustums [5], and placing child nodes on top of
these structures, as depicted in most �gures above so far (e.g., Figure 3.2).
However, alternative approaches for nested depiction exist, such as using
full spheres [16] or hemispheres [14] in combination with transparency.
Transparency can be employed to reduce occlusion and encode di�erent
node states [157].

While working on height-based selection and �ltering in 2018 [L13], we
fundamentally questioned that practice and switched to a �attened display
of inner nodes: simultaneous use of cuboids for leaf and inner nodes should
be applied with care, as it can increase occlusion and visual complexity. In
most application domains, tree-structured data commonly has a modest
hierarchical depth. Nonetheless, an extruded display of inner nodes might
suggest an intentional and meaningful data-to-height mapping, which it
usually is not. Furthermore, heightened and stacked parents aggravate

46 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

preferred!

not obscured not obscured partially obscured partially obscured not obscured

Figure 3.28: Illustrations of variations for the visual display of a height reference, f.l.t.r., emphasizing intersections,
using stilts, using an explicit surface, using an enclosing surface, and using an implicit surface per cuboid [L13].

height comparison on the display of leaf nodes, even with additional tools
such as a height threshold or reference. Figure 3.26 illustrates these issues.
We recommend using nested and �at parent nodes for better structural
comprehension, more accessible labeling, and predictability of item loca-
tions within a treemap. If not stated otherwise, the remainder of this work
assumes nested and �at inner nodes, as used in Figure 3.23.

3.6.2 Height-based Filtering using Reference Surfaces

Height estimation in a 3D-embedded treemap might be hindered due to
perspective foreshortening of cuboids, as well as occlusion (Figure 3.27) or
height distorting parent node representations [29, 67]. We introduced a

Figure 3.27: The height
of the rear cuboid (framed
in white) is partially ob-
scured and can lead to
incorrect reading in this
particular case.

height reference [L13] that (1) increases the accuracy of height readings,
(2) allows for fast and precise identi�cation of similar or correlating nodes,
and (3) prevents miscommunication of height, e.g., caused by overlapping
or occluding cuboids. This technique is based on water-level metaphors or
movable baselines used in 3D histograms to “cognitive aid to augment a
user’s ability to compare the [height] values.” [281]

The goal is to increase the added value of height in a 3D embedding.
Height reference denotes the depiction of a height threshold that can be
interactively modi�ed and enables height-based queries. Such details-on-
demand queries involve identifying nodes of interest based on their height.
This comprises the identi�cation, �ltering, selection, and comparison of
nodes of speci�c, height-related characteristics:

Highest Nodes Identi�cation of order of top-most nodes.

Similar Nodes Accentuation of nodes of similar or same height (peers).

Thresholded Nodes Exclusion or inclusion of nodes that fall below or are
above a threshold, respectively.

We introduced an interaction mechanism that enables interactive, pre-
cise, and direct manipulation of the height reference within the treemap
metaphor [L13]. A preliminary user study indicated that using the height
reference increases accuracy for reading heights.

For the rendering of a height reference, multiple techniques come to mind;
via intersections, an explicit surface, a closed surface, an implicit surface,
stilts, and transparency bases as depicted in Figure 3.28. The most promis-
ing approaches are intersections and implicit surfaces. In the latter, all
cuboids are desaturated below the height threshold on a per-fragment
basis. When applied to all cuboids, the impression of a transparent, in�nite

Value-added Adaptations for 3D-Embeddings | 47

16 bit 8 bit 4 bit 3 bit 2 bit

20 mm,
236 px on 300 dpi

height resolution of this cuboid respective height covered by a 1 bit increment

Figure 3.29: Various
resolutions in respect to
a cuboid with a height of
2 cm, printed with 300 dpi.
It emphasizes that 3 or
4 bits for mapping data
to height may already be
su�cient, especially in
larger treemaps.

surface at the height threshold is created. Inner nodes are not obscured
and can be easily accounted for, and screen-space processing is una�ected.
Instead of a treemap-global use, this technique can also be applied to
an arbitrary subset of nodes. The overall visual display of the treemap’s
structure is fully preserved.

3.6.3 Resolution of Visual Data Encodings

Height mapping in treemaps is often applied with an excessive data reso-
lution that surpasses the available pixel resolution. It further overlooks
humans’ tendency to overestimate the height of distant objects compared
to objects in the foreground—we found signi�cant di�erences in the esti-
mation error for di�erent camera angles [L4]. The previously discussed
use of a height reference aims to mitigate these drawbacks.

Fortunately, the required resolution for a compelling visual display is
usually much lower than the resolution of the mapped data. We recom-
mend reducing the data to a resolution appropriate for the map theme
or task. For example, attributes mapped to area, color, or height do not
require a 32-bit resolution. Often, reducing attribute resolution to a few
bits can improve readability through discriminability and emphasize the
results of the preceding data analysis (Figure 3.29). This improvement can
also be supported from a perceptual perspective: height with perspective
foreshortening is challenging to compare on a per-pixel basis.

The exact size or height of a node should be of subordinate importance.
Most often, transforming the data to a categorical data type, such as irrele-
vant, low, medium, and high (for color, height, or change), or lower-outlier,
below average, average, above average, and upper-outlier (for area), leads to
easily comparable and more e�ective visualizations [270]. Alternatively,
when depicting change, the degree of change might be well accounted
for using �ve or seven discrete levels of a diverging scale. For instance,
�ve distinct colors can indicate substantial increase, increase, stagnation,
decrease, and substantial decrease.

3.6.4 Addressing Non-Visual Challenges

When a 2D or 3D-embedded treemap is barely supportive during explo-
ration, it can help to re-evaluate the visualization design in light of the
given task. The impact on a treemap’s e�ectiveness is often signi�cantly

48 | Chapter 3: Visual Variables for 3D-Embedded Treemaps

in�uenced by the data enhancement stage that precedes visualization map-

ping. The problem or task data must always be carefully prepared for
visualization. This includes resampling, normalization, outlier �ltering,
and accumulating weighted leaf-node data to inner nodes.

Here are some assumptions on data enhancement and treemap con�gura-
tion that can help take advantage of the visual variables of3.

• Ensure height mapping correlates larger heights with higher rele-
vance for speci�c tasks. For example, consider an inverse height
mapping when small or negative values are task-relevant.

• Handle data outliers appropriately, e.g., by removing them, using
non-linear mapping, introducing additional visual variables, or em-
ploying multi-range height mapping, such as stacked percentiles
(preferred).

• Maintain consistent cuboid heights for respective interactions by
adjusting the height of cuboids when the data or attribute mapped
changes. Speci�cally, we advise against height-based �ltering and
selection by modifying the height mapping (e.g., clamping and nor-
malizing the mapped data on the �y).

• Opt for a smaller height scale to reduce occlusion and promote preat-
tentive color processing. Allow color, weight, structure, and labeling
to primarily support any given task, while height and other visual
variables preferably take subordinate roles for details on demand
and other subsequent explorative queries.

• Use discretized height mapping if exact height is unimportant, as
this can improve height comparison and identi�cation.

• When �ne-grained di�erences in height mapping are of interest,
enable users to spot di�erences accurately, for example, by making
the mapping of di�erences more explicit and emphasized.

These assumptions can aid in designing more expressive and compelling
3D-embedded treemaps that harness the power of visual variables in 3,
facilitating a more insightful data exploration experience.

4 Level-of-Detail and Labeling
for 3D-Embedded Treemaps

The contents of this chapter are based on the following original publications:

D. Limberger, W. Scheibel, S. Hahn, and J. Döllner. “Reducing Visual Complexity in
Software Maps using Importance-based Aggregation of Nodes”. In: Proc. SciTePress IVAPP.
2017 [L8]

D. Limberger, W. Scheibel, M. Trapp, and J. Döllner. “Mixed-Projection Treemaps: ANovel
Approach Mixing 2D and 2.5D Treemaps”. In: Proc. IEEE IV. 2017 [L9]

D. Limberger. “Interactive, Adaptive Level-of-Detail in 2.5D Treemaps”. U.S. pat. 9953443.
Seerene GmbH. 2018 [L10]

D. Limberger, A. Gropler, S. Buschmann, J. Döllner, and B. Wasty. “OpenLL: an API for
Dynamic 2D and 3D Labeling”. In: Proc. IEEE IV. 2018 [L11]

D. Limberger, M. Trapp, and J. Döllner. “Depicting Uncertainty in 2.5D Treemaps”. In:
Proc. ACM VINCI. 2020 [L18]

As the amount of hierarchical data increases, 3D-embedded treemaps often

Figure 4.1: 3D-embedded
treemap (top) decluttered
using Aggregation and
Labeling (bottom).

become cluttered making it di�cult to interpret the visual representation.
“Clutter is the state in which excess items, or their representation or orga-
nization, lead to a degradation of performance at some task.” [199] In this
chapter, we explore and demonstrate techniques that improve the readabil-
ity and e�ectiveness of 3D-embedded treemaps. We begin by investigating
the dynamic aggregation of nodes, which allows for the adaptation of
graphical elements based on node-based scoring [L10, L8]. This method
enhances the readability of 3D-embedded treemaps while managing visual
complexity. Next, we discuss the visual display of aggregates, o�ering
insight into data summary and emphasis techniques that further improve
treemap readability [L8, L18]. Moving on, we explore dynamic labeling,
addressing the challenges associated with labeling information-abundant
displays and providing high-quality rendering of text in 3D [L11]. Lastly,
we outline partial 3D-embedding using mixed projections [L9] and discuss
their compliance with the visual information seeking mantra.

With these techniques at our disposal, we strengthen the potential of
3D-embedded treemaps and support our second hypothesis S : reducing
visual clutter and complexity while facilitating the interactive exploration
of extensive data through aggregation and labeling (Figure 4.1).

50 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

4.1 Dynamic Aggregation of Nodes

Visualizing large hierarchical data by 3D-embedded treemaps can result
in visual clutter, which is more pronounced than in 2D treemaps [72].
The 1:1 mapping of nodes to cuboids contributes to this clutter [199],
increasing visual complexity and cognitive load—the e�ort used in working
memory to accomplish a given task [103]. In extreme cases, multiple

Figure 4.2: Treemap
seen from the top, de-
picting tens of thousands
of nodes, most cluttered
within sub-pixel space.

nodes may be depicted within sub-pixel space, distorting their visual
display and hindering meaningful interpretation (Figure 4.2). Treemaps
are particularly suited for handling large data quantities in the �rst place,
easily outperforming many other visualization techniques, which may
struggle with just hundreds of elements.

To address this, we will use appearance distortion [65], which involves
abstraction through aggregation by strategies that change the gestalt of
node representation. We present a dynamic level-of-detail (LoD) technique
that uses per-node scoring for aggregation. Aggregation thereby describes
the process of combining multiple graphical elements into a single, sim-
pli�ed representation to reduce complexity and improve readability. Our
technique (1) adheres to established aggregation guidelines, (2) allows for
multi-resolution—referring to varying levels of detail depending on the
user’s focus—depictions of multivariate data, and (3) facilitates annotation
and e�cient identi�cation of nodes of interest. Our scoring approximates
the importance of nodes by considering degree-of-interest (DoI) measures,
including screen size and user interaction.

Aggregation creates a topological overview, assisting users in recognizing
patterns and correlations [171]. It was used in many forms, e.g., as data-
dependent LoD for pattern detection in time series [102], as progressive
re�nement strategy in treemaps [198], and for subdivision of shapes [66].
The two latter approaches only focus on the scarcity of rendering resources
and limited screen size. The treemap topology can serve as the basis for
zooming during identifying and exploring areas of interest through user
navigation [31, 155]. We support this implicitly through navigation (zoom)
and explicitly through user interaction (fold, unfold), both through scores.
Our approach reduces the need for user navigation in the �rst place and
relies on automated DoI approximation instead.

4.1.1 Degree-of-Interest Scoring of Nodes

In our approach, we built on a “Degree of Interest [DoI] function, which as-
signs to each point in the [tree-]structure, a number telling how interested
the user is in seeing that point, given the current task.” [80] A node’s DoI
is determined by weighted scoring of attribute values, visual appearance,
and user interaction. Our adaptive LoD uses minimal aggregation of inter-
esting areas while maintaining valuable context information summarized,
i.e., aggregated, at lower resolutions. This can reduce the need for user
navigation by guiding the user to relevant data and decreasing the number
of irrelevant, unnecessary navigation steps.

We ensure that apparent data features do not disguise less prominent but
signi�cant details conveyed by nodes with high DoI (nodes of interest). Our

Dynamic Aggregation of Nodes | 51

multi-resolution scoring allows for aggregation control on a global and
local per-node basis. Globally, nodes of certain hierarchy levels may not
be aggregated, such as the �rst two, as these capture the foundational,
usually very stable, characteristic structure of the hierarchy represented.
Locally, the virtual camera’s viewport and distance to graphical elements
are used to approximate screen size. Information density can be changed
through user interaction or focus+context concepts such as lenses [240].

A node n is scored by score functions sc that map to the closed interval
[−1,+1], striving either for or against aggregation with sc > 0 or sc < 0,
respectively. c ∈ C denotes one of various DoI criteria. The total score of a
node ̄ is accumulated using a weighted mean of the set of scores:

̄ =
∑c !csc
∑c !c

, (4.2)

with !c allowing for non-negative, use-case speci�c emphasis of scores.

4.1.2 Score Propagation and Processing

The adaptive LoD process by means of scoring and aggregating is illus-
trated in the following algorithm (algorithm 4.1):

1 Function process(tree, map theme)
2 nodes ← nodes of tree
3 attributes ← attributes in map theme
4 foreach attribute in attributes do // attribute accumulation
5 accumulate(post_order(nodes), attribute, aggregation operator)

6 f unctions ← score functions in map theme
7 foreach function in functions do // calc scores for criteria sc
8 score(post_order(nodes), function)

9 foreach node in nodes do // derive each node’s score ̄
10 scores ← list of the node’s scores
11 node.score ← weighted_mean(scores)

// render tree, i.e., trigger recursive draw on root
12 root ← root node of tree
13 tℎresℎold ← aggr. threshold of map theme
14 draw(root, threshold)

15 Function draw(node, threshold)
16 if node is leaf then // render node as leaf
17 render_leaf_cuboid(node)
18 return

19 if node.score ≥ threshold then // render node as aggregate
20 render_aggregate_cuboid(node)
21 return

22 render_inner_cuboid(node)
23 foreach child in node’s children do

24 draw(child, threshold)

Algorithm 4.1: Scoring and aggregating of nodes [L8].

52 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

Figure 4.3: An example of a treemap using a mouse-over score smov for dynamic aggregation control. Thereby, a node’s
score ‘heats up’ when the cursor passes nearby, and slowly ‘cools down’ afterward. This is illustrated in the �gure on
the right, where the score is assigned to a color, from low to high, shown in gray and white, respectively. Alternatively,
a gaze score seye based on gaze tracking could be used similarly.

Given a tree-structured dataset, we accumulate attributes bottom-to-top,
score nodes, derive total scores, and �nally render and aggregate the nodes
top-to-bottom. The functions accumulate and score represent fold opera-
tions, which recursively aggregate attribute values and scores, respectively.
They use an aggregation operator (cf. subsection 4.2.1) that, for example,
computes an average, some deviation, or a summed total. Scoring and score
weights !c used in weighted_mean can be tailored to speci�c use-case
strategies, accounting for the given task and domain. Finally, each inner
node is drawn with or without its children using render_inner_cuboid
or render_aggregate_cuboid respectively. A node drawn without chil-
dren is referred to as an aggregate.

Interaction-based Scoring. Interaction-based scoring [L8] comple-
ments user navigation with direct node interaction capabilities and sup-
ports the VISM. A quasi-binary fold score sagg enables direct user control
over the aggregation state of inner nodes through toggling. Initialized with
0, it toggles to either +1 or −1. Per-node interactions often occur alternat-
ing with user navigation and must be processed immediately. Additional
focus-of-attention measures can include the camera’s look-at direction
(spot score scam), cursor position (mouse-over score smov), and gaze data (gaze
score seye) using eye-tracking (Figure 4.3).

View-based Scoring. View-based scoring [L8] forms the basis of most
LoD techniques and scores the visibility of graphical elements on the screen.
A screen-space area score sssa approximates the number of pixels eventu-
ally used to visualize a single cuboid. Occlusion queries—mechanism to
query “the number of samples that pass the depth and stencil tests”4.1 for
primitives—or the axis-aligned bounding rectangle of a cuboid projected

4.1Ross Cunni�, Matt Craighead, Daniel Ginsburg, Kevin Lefebvre, Bill Licea-
Kane, and Nick Triantos. OpenGL Extension: ARB_occlusion_query. reg-
istry.khronos.org/OpenGL/extensions/ARB/ARB_occlusion_query.txt. 2007.

https://registry.khronos.org/OpenGL/extensions/ARB/ARB_occlusion_query.txt
https://registry.khronos.org/OpenGL/extensions/ARB/ARB_occlusion_query.txt

Visual Display of Aggregates | 53

into screen space can be used to approximate this score. If there is insu�-
cient screen space for the visual display of its children, or if it resides in
sub-pixel space itself, then it scores towards aggregation. A screen-space
threshold can invoke aggregation much earlier, not just avoiding sub-pixel
junk but accounting for screen size and pixel density.

As view-based scoring depends on the virtual camera’s con�guration and
state, it is implicitly controlled by user navigation. Therefore, it needs to
be updated immediately after a user has completed a navigation operation
and presumably continues exploring the data.

Attribute-based Scoring. Attribute-based scoring [L8] provides princi-
pal scores for automated DoI approximation and appropriate initial aggre-
gation. The variance score svar calculates an attribute’s variance or value
range, indicating an inhomogeneous distribution of attribute values among
child nodes. This score is used to argue against aggregation and encourage
additional exploration. A child count score scc quanti�es the number of
immediate children or the absolute number of all contained leaf nodes.
This score lessens the chance of aggregating structurally complex nodes,
which may not necessarily correlate with the nodes’ footprint. Addition-
ally, a node’s isolation with respect to its surrounding neighborhood can
be measured using a local outlier factor [36]. All these scores need to be
processed only if the data itself or the mapping of it changes.

Some scores are less stable and may be distractive due to frequent incom-
prehensible aggregation state changes. Continuous scoring and subsequent
aggregation state changes during ongoing navigation and interactionmight
cause distraction. Hysteresis control, similar to temperature-controlled
devices, could be applied by introducing a switch cool-down period or
adjusting the score’s weight. The key factor is enabling users to intu-
itively comprehend and, when possible, anticipate the aggregation behav-
ior, which allows for optimal utilization during interactive exploration.

4.2 Visual Display of Aggregates

For the aggregation of 2D and 3D graph clusters, the clusters’ bounding box
can be used for the aggregates’ shape [15]. The footprint of all underlying
nodes, including padding, is geometrically aggregated by the aggregate’s
bounding box. This aggregation strategy is common in tree visualizations
such as icicle plots [130] and polar treemaps [52].

With our approach, we replace the associated inner cuboid and all subja-
cent leaf and inner cuboids with a single aggregate cuboid. The inner node
becomes a leaf node and could be represented as such. The aggregate’s
visual variables are used to appropriately summarize the mapped attribute
values of underlying nodes (Figure 4.4). This process results in informa-
tion loss and increases the uncertainty of the treemap by (1) obfuscating
whether or not to explore and investigate further and (2) hindering the
identi�cation of relevant nodes, outliers, or patterns.

54 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

Figure 4.4: Stepwise simpli�cation of a treemap using aggregation, ranging from little aggregation (left) to strong
aggregation (right). The LoD is controlled using DoI scores and, as shown here, is based on the tree level.

Elmqvist and Fekete [66] introduced guidelines for hierarchical aggrega-
tion in 2010. These guidelines describe the characteristics of the resulting
display of aggregates from an observer’s perspective. Though not speci�-
cally designed for 3D-embedded treemaps, we apply all of their following
guidelines to the visual display and use of aggregates:

G1 Entity Budget states that a maximum of displayed entities should be
maintained.

G2 Visual Summary advises aggregates to convey information about their
underlying data.

G3 Visual Simplicity requires aggregates to be clean and simple in their
presentation.

G4 Discriminability demands a distinguishable presentation of aggregates
and data items.

G5 Fidelity indicates that abstractions and, thus, their resulting aggregates
may lie about their underlying data.

G6 Interpretability suggests aggregates always remain correctly interpretable
within the visual mapping.

These guidelines are not a checklist but rather require interpretation within
the visualization and domain.

4.2.1 Aggregation Operators for Color and Height

To reduce the loss of information caused by aggregation, such as the loss of
underlying data distribution and structure, we introduce additional accu-
mulation strategies for the attribute mapping applied to aggregates. These
strategies involve using extended aggregation operators that account for
speci�c data characteristics, including but not limited to outliers, variance,
weighted average, minimum, and maximum.

Visual Display of Aggregates | 55

For a given inner node i, a fold Φ (i, v, o) can be applied, which traverses
the recursive structure of i and builds up a single, aggregated attribute
value using an aggregation operation o on the map theme’s attribute v.
Using an arithmetic mean operator for aggregation is denoted as Φ (i, v, n̄),

non-aggregated node

5-class diverging
spectral scale

Respective Aggregates:
(using di�erent operators)

a) b) c)

d) e)

f) g) h)

Figure 4.5: Di�erent
operators applied to an
aggregates color mapping:
a) visual average (out of
color scale), b) minimum,
c) maximum, d) n̄, e) n̄A, f)
�1, g) �2, and h) �8.

with n̄ as an operator that calculates the mean within a set of attribute
values. This operator might be insu�cient for a given task, as interesting
attributes might cancel each other out or remain unnoticed due to their
marginal share (e.g., due to a high number of children). Instead, attribute
aggregation operators might favor attributes that deviate from the mean.
Operators such as Φ (i, v, n̄A) and Φ (i, v, �e) can be used for this purpose.

The n̄A operator derives the weighted average. Each attribute value is
weighted by the attribute associated with the area of the node. For example,
the node’s spatial arrangement can be considered to emphasize nodes w.r.t.
their area. For large treemaps, we have observed that outliers of height
or color are often found in nodes with medium to small footprints. The
�e operator is an operator that weights each attribute according to its
deviation from the mean: |a − n̄i|

e , where a is an attribute value and e is an
exponential deviation ampli�er. Figure 4.5 illustrates the e�ect of selected
operators on an aggregate’s color.

4.2.2 Nesting Level Contouring

Figure 4.6: f.l.t.r.: step-
wise aggregation of nodes.
Nesting level contouring
on the aggregates makes
them discernable from
leaf nodes and indicates
the number of underlying
hierarchy levels [L8].

Aggregates without further specialization can be indiscernible from the
display of leaves. One way to address this is by truncating the aggregate
cuboids or adding a contour, e.g., through a luminance o�set, causing a
resemblance to padding. Truncation, not applicable in 2D, increases the
visual complexity of the cuboids and is sometimes challenging to recognize.
Contouring, on the other hand, is su�cient to satisfy the discriminability
of aggregates to non-aggregates.

Contouring can also convey additional information about the underlying
structure. For example, multiple contours can hint at the degree of ag-
gregation, indicating the number of an aggregate’s subjacent hierarchy
levels (nesting level). We refer to this nesting-level-based contouring as NL
Contouring and use consecutive luminance o�sets for the nested contours
(Figure 4.6). In order to avoid clutter caused by too many nested contours,
a threshold can be applied and combined with a gradual reduction of the
luminance o�set towards the innermost contour.

56 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

Figure 4.7: Illustration of an animated transition from the non-aggregated (left) to the aggregated state (right) of an
inner-node. Over time, the height attributes are smoothly aligned to the aggregates height and the individual color
attributes are interpolated to the aggregates color attribute.

4.2.3 Animated State Transitions for Aggregates

To enable comprehensible transitions between various LoDs, we support
animated transitions that can smoothly transform a node state from non-
aggregated to aggregated and vice versa. Given the preattentive nature
of motion, aggregation state changes must be applied with care, either
instantaneously or through temporary transitions. A node-local transition
control, linked to the cause of aggregation, enables transitions ranging
from explicit, noticeable, fast to less distractive, unobtrusive, slow and can
be con�gured per treemap.

When directly caused by user interaction, fast or even instant transitions
are preferred to not hinder the user in their task. Transitions caused by
data changes or view-based scoring, on the other hand, can be slower
and more unobtrusive. When a node transitions into an aggregate, the
aggregate fades out, revealing the inner cuboid and all its child nodes with
their height limited to the aggregate’s height. Fading out can be done
using techniques such as dithering or transparency. After an aggregate
has dissolved, its child nodes, previously limited in their height, grow to
their actual height (Figure 4.7). This approach is particularly helpful when
changing the aggregation threshold or enabling view-based scoring.

4.2.4 Color Weaving

Figure 4.8: A small
treemap (top) using color
weaving on top of aggre-
gates (bottom) to indicate
the ratio of color values
mapped to its children.

Aggregates introduce uncertainty, e.g., with respect to the degree of ab-
straction, deviation, or summarization of the underlying, accumulated
data. To decrease the uncertainty inherent to aggregates we can use color
weaving [22, 96, 251] (Figure 4.8). This encodes multiple colors within
the same surface or space and e�ectively re�ects a ratio of colors [96].
Additionally, small charts labeled onto the aggregates’ top faces can be
displayed. We focus on the former and adapt color weaving for use in
3D-embedded treemaps. The technique is applicable to leaf nodes for
data item uncertainty and to aggregates, addressing data distribution or
deviation uncertainty.

For visual encoding of data distribution, three techniques can be consid-
ered: (1) noise with spatial frequency, regularity, and contrast [55, 112], (2)
color weaving, and (3) chart glyphs/icons [34, 220]. The �rst, although easy
to implement, challenges users to visually decode data distribution or the
existence of outliers based on signal frequencies, octaves, and intensities.

Visual Display of Aggregates | 57

Especially for small aggregates or for maintaining a clean overall appear-
ance, small glyphs depicting charts (chart glyphs) can be used (Figure 4.9).
These include a stacked chart, a pie chart, a bar chart, and a ‘color weaving

chart glyph size for
labeling aggregates

Figure 4.9: Example of
four di�erent chart glyphs,
intended as small dynamic
icons, e.g., prepended to
the labeling of aggregates.

chart’, and can be labeled on top of aggregates or displayed as a pre�x of
an inner node’s label (regardless of its aggregation state).

With the help of color weaving, we can explicitly depict uncertainty and
mitigate it in our visualization. This allows for guiding and aiding users
during interactive exploration, e.g., whether to investigate speci�c nodes,
identify relevant nodes, detect outliers, or prevent data from being accu-
mulated in misleading ways. Color weaving can also re�ect the underlying
data concerning other attributes, resulting in unweighted and weighted
depictions. This approach might be suitable for the partial aggregation of
modules with a large number of immediate children.

Color weaving can be combined with NL Contouring without limita-
tions [L18] and supports not only interpretability (G6) but also improves
�delity (G5, aggregates may lie about their underlying data). Furthermore,
aggregates’ discriminability (G4) is increased, and there is no interference
with preexisting shading, contouring, shadowing, or highlighting.

4.2.5 Evaluation & Discussion

“As more items are added to a display, populating a greater volume of
feature space, there is less room in feature space to add new salient
items.” [199] Consequently, we create more space for salient items when
de-populating the feature space, i.e., using our dynamic LoD. For evalua-
tion, we focused on visual clutter using feature congestion and performed
a user study on visual search and the impact of NL Contouring. We also re-
view the aggregates and related techniques concerning the six aggregation
guidelines.

Evaluation of Visual Search. We performed a preliminary user study
to investigate the impact of aggregation on visual search. Participants
were asked to �nd nodes of interest in di�erent treemaps with respect to
height and color mapping. The study used six pairs of images containing
non-aggregated and aggregated views with automated attribute-based
scoring, di�erent camera perspectives, and datasets. We measured the
task-completion time and error rate for each participant and each task
(cf. [L8] for a detailed study design).

Participants recognized the use of the LoD technique and rated it as signif-
icantly improving the visual search task. However, they also noted that
the visual separation of aggregated and non-aggregated nodes needed im-
provement, which we addressed for the follow-up study. Both error rates
and task completion time were signi�cantly reduced using our technique.
The average task completion time was reduced by about 20% but failed to
show a signi�cant e�ect.

58 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

non-aggregated

aggregated

#

0
0 Feature Congestion 1

Figure 4.10: Color-mapped feature congestions (from low, 0 or blue, to high, 1 or red) for a treemap are shown as a
measure of visual clutter. The histograms indicate reduced visual clutter for the aggregated variant (right).

Evaluation of Visual Clutter. To con�rm the actual reduction of visual
clutter by using aggregates, we compute feature congestion [199]. It
measures di�culty searching through a complex display and can be used as
a usability indicator of importance-based aggregation. Feature congestion
was computed for multiple image pairs, each depicting the same treemap,
non-aggregated and aggregated (Figure 4.10). Our LoD technique resulted
in an average reduction of about 50% across these image pairs.

Evaluation of Nesting Level Contouring. We performed a user study to
investigate the readability of NL Contouring. The study aimed to determine
if users can correctly identify aggregated datasets using NL Contours. In a
questionnaire, an aggregated version of a treemap was shown alongside
four valid or invalid depictions (multiple correct answers possible). Most
of the 720 answers given by the 12 participants were correct (cf. [L8]),
indicating that using NL Contours can be e�ective.

G1 Entity budget is always impacted by viewport size. Furthermore,
view-based scoring using a minimal screen-space area threshold
may limit the number of cuboids. The budget can also be restricted
to certain hierarchy levels. Assuming persistent node traversal, the
score for aggregation is applied when the budget is exceeded.

G2 Aggregates with same or similar attribute mapping, depending on
the used aggregation operators, ensure to visually summarize the
underlying data. NL Contouring further allows for assumptions
about the node’s nesting depth. However, the aggregate does not
capture the underlying data structure regarding data localization,
number of nodes, value, or distribution patterns of the mapped
attributes.

G3 For visual simplicity, we rely on the cuboid for aggregation, which
is a simple shape. The visual appearance can be augmented using
NL Contouring, glyphs, and labels.

G4 Contouring and labeling ensure the discriminability of aggregates
over leaf nodes and non-aggregated inner nodes.

G5 Concerning �delity, the visually conveyed information of aggregates
can be con�gured according to given tasks or importance measures
using di�erent aggregation operators.

Dynamic Labeling in 3D-Embedded Treemaps | 59

Figure 4.11: Example of a large treemap depicting source �les of a software project, using aggregates and labels [L8].

G6 The aggregation relies on the existingmechanisms of a 3D-embedded
treemap. Except for the NL Contouring, users are not confronted
with any inconsistencies and, as our evaluations indicate, have no
problems interpreting the data. However, the choice of aggrega-
tion operators might impact the user’s performance and should be
communicated (e.g., through a legend or map theme).

The presented aggregation technique is capable of “reducing a large dataset
into one of moderate size while maintaining dominant characteristics of
the original dataset” [58] while satisfying guidelines for aggregation. It (1)
requires no layout re-computation, (2) allows for (mostly) unambiguous
and self-consistent aggregates, (3) implements well-known interaction con-
cepts, and (4) allows for additional annotation. It enables multi-resolution
depictions of complex information, facilitates e�cient identi�cation of
important nodes, and supports the VISM.

There are limitations; most notably for cases where there are few inner
nodes with a massive number of children, aggregation and the information
it visually comprises become useless. Some form of partial aggregation
may be a solution to address this issue. Nevertheless, there are also some re-
maining prospects. For example, we would like to explore how aggregation
can be used in communication and locus of attention (focal point of a user’s
cognitive focus), guiding, especially when exploring collaboratively.

4.3 Dynamic Labeling in 3D-Embedded Treemaps

Fekete and Plaisant noted in 1999 that “[a] major limiting factor to the
widespread use of information visualization is the di�culty of labeling

60 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

information abundant displays.” [71] Since then, visualization has become
as widespread as ever. Labeling in 3D visualizations, though, is still a
limiting factor today, and rendering APIs and visualization frameworks
still lack label rendering and placement capabilities.

There are several reasons why labeling has remained a relatively unex-
plored area in real-time computer graphics. High-quality text rendering
and placement in 3D are complex tasks that often require considerable re-
sources for prototype development. Furthermore, modern rendering APIs,
such as OpenGL, WebGL, and Vulkan, do not provide built-in support for
text rendering. Industries such as the games industry prioritize artistic
orchestration of labeling and its design. Dynamic and �exible, labeling
is usually only required to a small extent. This does not exactly create
demand for standardized labeling technology.

In the following, we will brie�y touch the topic labeling and text render-
ing, showcase descriptive label placement using OpenLL, and discuss the
implementation of 3D-embedded map legends.

4.3.1 Labeling and Text Rendering

Most 3D-based visualizations today use 2D labels anchored to 3D projected
screen positions [L1]. This usually works well but does not account for
per-pixel occlusion with the visualization’s graphical elements, making
the labels appear detached from the virtual 3D scene. If text is rendered
in 3D, it is often limited to a few instances, usually neither dynamic nor
interactive, and often lacks a qualitative visual display. Moreover, there is
no text rendering support in any of the major graphics APIs such as Open
Graphics Library4.2 (OpenGL),Web Graphics Library4.3 (WebGL), or Vulkan
Graphics and Compute API4.4 (Vulkan).

We developed a glyph-based typesetting and rendering engine [R1, R4] in
combination with a font asset generator supporting web-based, hardware-
accelerated high-quality labeling. Signed distance �elds (SDFs) are used
for glyph shapes to accommodate varying display resolutions, text sizes,
and orientations [79]. Per-pixel screen-space derivatives are employed
for glyph edge anti-aliasing [190], and multiple texture channels may
be added to preserve sharp corners [88]. More complex, spline-based
sampling approaches are considered to overcome bitmap and SDF-based
limitations [60] fully, but as of now, “[. . . such a] method requires consider-
ably more computation.” [148]

Di�erent techniques have been proposed to augment treemaps with text.
One approach is to use the nodes’ surfaces to integrate labels in the form
of internal annotations [L8] (Figure 4.11). This can a�ect the layout com-
putation if applied to inner nodes as well [152, 155]. Another approach

4.2Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Speci�cation - Version 4.6.
khronos.org/registry/OpenGL/specs/core/46.core.pdf. 2019.

4.3Khronos Group. WebGL Speci�cation. khronos.org/registry/webgl/[...]/1.0. 2019.
4.4The Khronos Vulkan Working Group. Vulkan 1.3.243 - A Speci�cation. registry.khronos.
org/vulkan/specs/1.3/pdf/vkspec.pdf. 2023.

https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://registry.khronos.org/vulkan/specs/1.3/pdf/vkspec.pdf
https://registry.khronos.org/vulkan/specs/1.3/pdf/vkspec.pdf

Dynamic Labeling in 3D-Embedded Treemaps | 61

is external labeling, which is not treemap-speci�c but introduces com-
mon problems like “overlaps and data occlusion” [71]. External labels can
be positioned as hovered text near the node [219] or with a connected
line to indicate association [29]. The label size may be used to encode
importance [120].

We introduced Open Label Library [L11, R5] (OpenLL) as a low-level,
implementation-aware speci�cation for dynamic, hardware-accelerated
rendering and adaptive text placement in virtual 3D environments [L11].
It complements rendering APIs and transmission formats, such as GL
Transmission Format4.5 (glTF).

In gaming production, high-end labeling is attributed to artistic e�orts
rather than programming and is the result of tweaking and pre-computing
assets in compliancewith a title’s art direction [L11]. Hardware-accelerated
text rendering does not rely on standard font formats but requires indi-
vidual glyph sprites in texture atlases (glyph atlas). The creation of glyph
atlases for font faces in itself is already an obstacle here; �rst, the font �le
must be parsed, and individual glyphs (characters) must be rendered into
high-resolution bitmasks. These provide the basis for highly downscaled
signed distance �eld computations, which must be packed into rectangular
spaces. In addition to the glyph atlas, a font description �le, e.g., using the
quasi-standard bitmap font format4.6 is required, accounting for kerning
and other typesetting related information. These steps do not account
for the required parameter tweaking w.r.t. distance �eld scaling, glyph
resolution, atlas size and packing variations, glyph padding, and more. We
created an all-in-one font-asset generation service [R6] that takes over
this laborious process. While con�guring the glyph atlas, a live preview
of the font face in 3D is shown, and various rendering settings for quality
control are exposed.

4.3.2 Descriptive Label-Placement using OpenLL

Figure 4.12: Enhancing
treemaps using dynamic
text placement.

A descriptive labeling approach is used, di�erentiating between the actual
text, the placed label, and proxies. Kakoulis and Tollis provide a compre-
hensive introduction to labeling problems identi�ed within cartography
and rendering maps [129]. In our context, labeling refers to placing—not
rendering—labels into a virtual 2D or 3D environment (Figure 4.12). There
are various types of labels, such as internal or embedded [159], external,
boundary, and excentric [181]. Labeling techniques include positioning
names on maps [115], point feature placement [51], external label manage-
ment in 3D object space [233], or force-based labeling [252]. Labels can
also be used as proxies for interaction, as shown by Balata et al. [11].

Our labeling API OpenLL focuses on managing and automatically placing
many labels in virtual 2D and 3D environments in real-time. It does not
provide implementation speci�cs, e.g., for computational math, paralleliza-
tion, or hardware-accelerated rendering, nor does it in�ict a particular

4.5KhronosGroup. glTF Speci�cation, 2.0. github.com/KhronosGroup/glTF/[..]/speci�cation/2.0.
2019.

4.6angelcode.com/products/bmfont/

https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
http://www.angelcode.com/products/bmfont/

62 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

implementation design. Our web-based implementation [R4] has been suc-
cessfully used in various recently published visualizations [8, 139, 260].

The API introduces font face, text (a dynamic sequence of characters), and,
most importantly, a label. The label includes con�guration for typesetting,
positioning, orienting, and rendering regarding a font face and text, i.e.,
a glyph sequence. Placement descriptions include positions, margins, an-
chors, proxies, constraints, or proxies such as lines and points. A label cloud

is available for data-driven, selective labeling. Finally, a proxy consists of
implicit shapes like spheres, cubes, quads, points, lines, or splines used
to (1) partially approximate 2D and 3D scenes or, similarly, (2) describe
dynamic anchors such as a virtual camera or an area of interest. By using
a proxy, we can detach the scene complexity from label placement, reduc-
ing the computational complexity of label placement and con�guration
complexity for developers.

We can create labels that reference a proxy’s vertices, edges, or areas as
an anchor. A cuboid proxy, for example, could expose each of its corners,
edges, center points, or lateral surfaces for anchoring. Proxies can also be
used for detecting overlapping labels, accounting for proxies occluding
labels, or using their extent for level-of-detail control.

A renderer receives labels, handles the computation of their placements, and
draws them according to their description. With this approach, specialized
types of labels may be created, such as Position2DLabel, Position3DLabel,
Rectangle2DLabel, Projected3DLabel, Spline3DLabel, and LabelCloud. The
following shows an examplary usage of three di�erent labels, a label theme,
and a single renderer (Listing 4.1):

1 const fontFace = FontFace.fromFile('opensans.regular.fnt');
2 const theme = new LabelTheme();
3 theme.fontFace = fontFace;
4 theme.fontSize = 0.125; // world space size
5 theme.alignment = 'left';
6 theme.lineAnchor = 'baseline';

8 let label0 = new Position2DLabel({
9 text: 'Hello Word!',

10 fontFace: fontFace,
11 fontSize: { value: 12.0, unit: 'pt' },
12 alignment: 'left',
13 position: { x: 32, y: 8, unit: 'px' },
14 direction: { x: 0.0, y: 1.0} });

16 let label1 = new Position3DLabel();
17 label1.theme = theme;
18 label1.alignment = 'right';
19 label1.position = { x: 0.0, y: 0.0, z: 0.0}
20 label1.direction = { x: 0.0, y: 0.0, z: 1.0}
21 label1.up = { x:-1.0, y: 0.0, z: 0.0}

23 let label2 = new Spline3DLabel();
24 label2.theme = theme;
25 label2.position = { x: 0.0, y: 0.5, z: 0.0}

27 let renderer = new GlyphRenderer();
28 renderer.superSampling = 'rgss'; // rotated grid supersampling
29 renderer.modelViewProjection = camera.modelViewProjection;
30 renderer.draw([label0, label1, label2]);

Listing 4.1: Initialization of di�erent types of labels using webgl-operate.

Partial 3D-Embedding | 63

Figure 4.13: Examples
of 3D-embedded map leg-
ends. They use cuboids
with representative at-
tribute values, placed
right next to the treemap
and labeled accordingly.
They allow to commu-
nicate color and height
mapping, and can indicate
their value ranges.

4.3.3 3D-Embedded Map Legends

A legend explains the mapping of a visualization. For this purpose, we
originally resorted to traditional means such as an overlay, a status bar,
a whole side panel with detailed descriptions for novices, or simpli�ed
illustrations to explain the mapping. Eventually, we explored the extent
to which map legends can be embedded in the same 3 ⊕2 space used
for visualization (Figure 4.13). To this end, we designed multiple layouts
based on cuboids placed outside the treemap. Synthetic attribute mappings
were used to create representative graphical primitives for aspects of our
map theme, such as showcasing the value ranges of height and color by
depicting multiple cuboids within that range. Labeling was then used to
describe the attribute values or names, all within the virtual 3D scene.

Wewant to explore this idea further andmove themap theme con�guration
into the 3D space for future work. By making the map legend not static but
an interactive interface, exposing it to the user to manipulate the attribute
mapping directly should be possible.

4.4 Partial 3D-Embedding

Partial 3D-embedding presents an alternative approach to LoD, providing
on-demand detail. Similar to unfolding an aggregate, we want to expose
3D-embeddings selectively, on demand. We present a technique that tilts
the inner node representations using a�ne transformations and animated
state transitions, mixing orthogonal and perspective projections within a
single treemap. By dynamically mixing di�erent projections, we enable a
seamless integration of 3D-embedded treemaps for regions of interest into
2D treemaps. This facilitates the communication of additional information
by selectively tapping into a three-dimensional attribute space. Users can
control the projection through manual and automated tilting, o�ering
direct control or utilizing animated state transitions.

These interactive mixed-projection treemaps reduce the need for complex
navigation metaphors typically associated with 3 ⊕ 2. Translated
to focus+context and overview+detail work�ows, visual complexity for
overview and context display is reduced while visualizing additional data
in focus or detail areas. In virtual terrain and citymodel visualization, multi-
perspective views with bent projections provide a near-�eld depiction of
increased detail and a context area of less detail [154, 187].

64 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

Figure 4.14: A 2D treemap (center) and a 3D-embedded treemap (right) depicting the same data using color and height.
In contrast, a mixed-projection treemap (left, excerpt of the upper half) with selected nodes tilted reduces visual clutter
and occlusion. It allows to toggle from2 to 3, exposing details on demand, not accounted for in the 2D treemap [L9].

Our approach uses attributed vertex clouds [204] for interactive rendering.
It uses a single geometry encoding and employs the same pipeline for both
2D and 3D-embedded nodes, thus, enabling smooth transitions through
interpolation. This provides the foundation for the development of a node-
local tilt operator. The height mapping and other visual variables of 3

are always available but may go unnoticed for non-tilted nodes due to the
orthographic projection. As a result, the outcomes of screen space e�ects,
such as shading, local ambient occlusion, shadows, and contouring, remain
consistent. This can be seen, for example, in Figure 4.14, where shadows
can be spotted in all three projections.

4.4.1 Node-local Tilt Operator

Figure 4.15: Illustration
of the individual transfor-
mations of Λ for an inner-
node n with perspective
projection applied [L9].

α

TR R TR
‒1

TA TC

The node-local tilt operator is a two-partmechanism that uses a sequence of
parameterized a�ne transformations [L9]. Given a 2D treemap, tilt denotes
the rotation of an inner node. The tilt operation combines a transformation
Λ and a projection Γ. The tilt transformation shifts the node’s rotation axis
by TR using a relative o�set � ∈ [−1,+1], with −1 shifting to the node’s
bottom edge and +1 to its top edge. Then, it rotates the node by the tilt
angle � using R and anchors the node by TA using a preferred relative
location � ∈ [−1,+1]. The complete a�ne transformation is illustrated in
Figure 4.15 and de�ned as follows:

Λ = [TC] TAT
−1
R RTR. (4.3)

TC denotes an optional translation that reduces occlusion introduced when
using a perspective projection. It uses the camera’s eye position and, e.g.,
the node’s vertical extent. The tilt projection Γmixes two given projections
P0 (former) and P1 (latter) w.r.t. the node-local tilt angle and a global angular
threshold �. It is de�ned as:

Γ = (1 − t) P0 + tP1, (4.4)

Partial 3D-Embedding | 65

with t = ��−1, clamped to [0, 1]. If a perspective projection is con�gured
for P1, P0 should be the respective orthographic projection, i.e., covering
the same treemap region to ensure smooth interpolation.

The transformation and projection are applied per-node. They can be in
di�erent states at any time for any node. This process is restricted to global
parameters for �, �, and �. � has to be increased for the transition, starting
at � = 0 for no transition up to the desired �nal tilt angle.

4.4.2 Parameterization of Node-local Tilt

Orthographic Perspective

+1.0

υ

-1.0

-1.0 τ +1.0

Figure 4.16: Parameter
space for � and �, ortho-
graphic and perspective
projection, with � = 60°.
Our preference for the
con�gurations is colored
in blue and green for
partially valuable and
valuable, respectively.

The zoom and pan metaphor is used for navigation in the 2D treemap, and
users can interact directlywith treemap nodes based on directmanipulation
metaphors. Two tilt modes are available: manual tilt and automated tilt.
Manual tilt enables the user to seamlessly increase and decrease the tilt
angle of any node, while automated tilt allows the user to invoke a preset
tilt angle or un-tilt any node with a single input event. For the animated
transitions, arbitrary easing [119] can be applied. Additional interactions
with visual variables in3 can be enabled, such as height-based �ltering.

While perspective projections provide additional information about depth
and are often easier to interpret, orthographic projections facilitate the
comparison of nodes with respect to height and area. Orthographic projec-
tion also eliminates occlusion of adjacent, non-tilted nodes in the overview.
When perspective projection is preferred, we suggest to use � < −0.5 and
move the tilted node ‘behind’ the others (Figure 4.16).

The inclination of inner nodes introduces unused screen space, which may
partially be covered by high cuboids, but may also be further exploited.
A lower alignment seems most bene�cial, as it minimizes the risk of oc-
cluding nearby nodes and provides most additional space for information
display (Figure 4.17). A tilt degree of � = 0° results in no additional height

66 | Chapter 4: Level-of-Detail and Labeling for 3D-Embedded Treemaps

information and a tilt of � = 90° yields most occlusion, but also a node
local skyline, that could be used for an overview in height distribution.
Angles between 30° and 60° were found to be reasonably supportive.

space for additional
information display

Figure 4.17: The inclina-
tion of the tilt introduces
unused screen space.

A partial 3D-embedding counterbalances the limitations inherent to a
full 3D-embedding, e.g., occlusion and perspective-foreshortening. This
approach has been implemented and demonstrated feasible for tilting
parameterization and e�cient image synthesis.

Figure 4.14, for example, represents an analysis of the open-source project
POCO.4.7 The relatively small map consists of 5 775 nodes, each repre-
senting one source code �le. The number of real-lines-of-code (RLOC) is
mapped to the area, the cyclomatic complexity to color, and the average
nesting level of a source code �le is mapped to the height. This map theme
is primarily used to detect source code �les with disproportional nesting
level in comparison to the implemented business logic.

The most straightforward use of a mixed projection can even be a global
one; before starting on partial 3D-embeddings, we used orthographic per-
spective blending for our virtual camera. Whenever the camera is within
a pre-de�ned angle to the up-vector, we start blending the camera projec-
tion into a respective orthographic one, ending with a fully orthographic
projection when looking from above, resulting in a 2D treemap.

4.7Project available at github.com/pocoproject/poco; Analysis of a revision from 03/24/2009.

https://github.com/pocoproject/poco

5 Web-based Provisioning
of 3D-Embedded Treemaps

The contents of this chapter are based on the following original publications:

D. Limberger, B. Wasty, J. Trümper, and J. Döllner. “Interactive Software Maps for
Web-based Source Code Analysis”. In: Proc. ACM Web3D. 2013 [L1]

D. Limberger, W. Scheibel, S. Lemme, and J. Döllner. “Dynamic 2.5D Treemaps using
Declarative 3D on the Web”. In: Proc. ACM Web3D. 2016 [L5]

D. Limberger, K. Tausche, J. Linke, and J. Döllner. “Progressive Rendering using Multi-
frame Sampling”. In: GPU Pro 7: Advanced Rendering Techniques (2016) [L6]

D. Limberger and J. Döllner. “Real-time Rendering of High-quality E�ects using Multi-
frame Sampling”. In: ACM SIGGRAPH 2016 Posters. ACM, 2016 [L3]

D. Limberger, K. Tausche, J. Linke, and J. Döllner. “Progressive Rendering using Multi-
frame Sampling”. In: GPU Pro 360 Guide to Rendering (2018). GPU Pro 7 Reprint [L12]

D. Limberger, M. Pursche, J. Klimke, and J. Döllner. “Progressive High-quality Rendering
for Interactive Information Cartography using WebGL”. in: Proc. ACM Web3D. 2017 [L7]

Today’s interactive information cartography clients, e.g., for visualization
of geo-referenced data or non-spatial software system information, are
preferably accessible to users via web applications. For their provisioning,

Figure 5.1: Top view on
a 3D-embedded treemap
created using an approach
on the opposite end of
image-synthesis spectrum;
o�ine path-tracing using
Autodesk’s 3ds Max.

we need to consider access to and transmission of data, availability of the
application, and robustness and responsiveness for interactive exploration
with that data on arbitrary clients. For non-trivial visualization, we are
highly reliant on hardware-accelerated low-level graphics APIs. Simulta-
neously, we target end-user platforms with heterogeneous hardware and
software, especially mobile devices. This imposes additional challenges
and burdensome constraints on their development, such as (1) having
direct access to neither memory nor resource monitoring, and (2) being
constrained to a tiny subset of graphics API features, WebGL more restric-
tive than comparable APIs for embedded systems, Open Graphics Library

for Embedded Systems5.1 (OpenGL ES).

Most modern rendering techniques are designed and highly optimized
for single-frame execution and are not accessible for web-based graphics
(Figure 5.1). Their assumptions and requirements on GPU features and CPU
resources make them incompatible with responsive rendering that works

5.1Khronos Group. OpenGL ES Version 3.2. khronos.org/registry/OpenGL/specs/es/3.2. 2019.

https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf

68 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

on many end-user devices and platforms. This was further exacerbated
by a major vendor’s delay in supporting WebGL2,5.2 coupled with the
deprecation of OpenGL without endorsing an open successor like Vulkan.
This development strongly undermined the cross-platform compatibility of
numerous research e�orts over the years. However, the incremental nature
of user interactions in information visualization often does not require
strict continuity in rendering due to (1) the lack of dynamic objects and
animations, (2) infrequent data changes, and (3) primarily discontinuous
changes of the virtual camera.

To support our responsiveness statementR, we present concepts and tech-
niques that enable high-quality and responsive rendering of 3D-embedded
treemaps using a web-based graphics API. We begin with a discussion on
rendering quads and cuboids for treemaps. For high-quality aspects of
rendering (post-processing), we present accumulative, multi-frame ren-
dering [L3, L7, L6, L12] and describe e�ects that help increase the visual
quality of our treemaps. Finally, we show how dynamic, interactive, web-
based 3D-embedded treemaps can be created and con�gured using one of
our treemap modules, treemap.ts [R12].

5.1 Rendering of Rectangles and Cuboids

For developing and testing most of the concepts and techniques pre-
sented in this thesis, we primarily used two prototypes for interactive
3D-embedded treemaps that we developed and maintained. First, we
started with a desktop targeting implementation using C++ and OpenGL,
which eventually became our internal research prototype called Arbore-

tum5.3 [R14]. Arboretum allows millions of nodes to be loaded and dis-
played within milliseconds from start to �rst frame (Figure 5.2). Also early
on, and independent of that, we created a renderer with alternative design
goals using C++ and OpenGL ES. With the advent of WebGL, we immedi-
ately ported that renderer to it and had our �rst web-based renderer for
3D-embedded treemaps; plainly named treemap.ts [L1, R12].

As a side product of these two use case agnostic visualization tools, we
have continuously extracted non-treemap related aspects into open source
rendering frameworks and auxiliary libraries, mainly gloperate [R1] and
webgl-operate [R4]. These capture fundamentals required for fast, robust,
and e�cient deployment of interactive, hardware-accelerated visualiza-
tions focusing on3⊕2 and3⊕3. webgl-operate, for example, is the
basis of other visualizations such as the Software Forest [8], a spatiotempo-
ral data visualizer called RoomCanvas [139], and a 3D scatter plotter [260]
for the interactive exploration of clusters in massive data.

In the following sections, we outline selected implementation details on
the rendering of leaf and inner nodes and brie�y compare the similarities

5.2Khronos announced pervasive support of WebGL 2—the development of which
started in 2013, released in 2017—from all major web browsers on February 9, 2022,
khronos.org/blog/[...]support-from-all-major-web-browsers

5.3The term arboretum refers to a botanical garden or park where trees, shrubs, and other
woody plants are cultivated for scienti�c, educational, and ornamental purpose.

https://www.khronos.org/blog/webgl-2-achieves-pervasive-support-from-all-major-web-browsers

Rendering of Rectangles and Cuboids | 69

Figure 5.2: Rendering of an interactive �le explorer using 3D-embedded treemaps created with arboretum [R13].

and di�erences betweenWebGL-based rendering and a much more capable
attributed vertex cloud approach [204, 241] as employed by arboretum.
Additionally, we discuss the bene�ts and limitations of using external,
existing, third-party rendering engines such as three.js or babylon.js in the
context of research-driven development of visualization techniques.

5.1.1 WebGL-based Rendering of 3D-Embedded Treemaps

In our WebGL-based rendering of 3D-embedded treemaps, we support the
layering of cuboids, stacking cuboids on top of each other with or without
a levitation gap. Layered cuboids can be used as graphical primitives for
depicting changes or compositions. These layers are rendered from top to
bottom since the virtual camera is usually positioned above the treemap,
pointing down. Furthermore, we discard bottom faces for all cuboids of the
bottom-most layer, We use instanced drawing with a single or a few (in the
case of in-situ) geometry templates and attribute bu�ers containing the
mapped, pre-processed, GPU-optimized attribute values required for the
visual variables. Treemap layouting is part of the visualization mapping,
and the renderer only processes the resulting quads and cuboids 2D extents
(comprised of two four-component vectors).

The cuboid (and quad) color is assigned in the shader using a dedicated
color scale lookup attribute for rendering purposes. The mapping is done

70 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

earlier, which allows us to match the color attribute resolution to the often
much smaller resolution of the color scale. The height, similarly, is also
applied to the geometry in the vertex shader but was mapped to a height
of 8bit or less during visualization mapping. When the height of a cuboid
is zero, lateral faces are discarded.

Since we promote using �at representations of inner nodes (cf. Figure 5.2),
z-�ghting artifacts will most likely appear. To avoid these and relieve
�ll rate, we use a strict rendering sequence in combination with stencil
masking: First, cuboids (and aggregates) are rendered with depth testing
and stencil masking+writing enabled. Then, the inner nodes are rendered
from bottom to top, still using stencil masking+writing. Finally, we disable
stencil masking and rely on depth testing for the subsequent drawing of
labels, gizmos, and transparent cuboids.

Font assets are created using our font asset generator [R6], and color
scales are either prede�ned in presets or created dynamically [R3]. We
create image-based ID bu�ers for interaction with the graphical elements
and use readback caching (and asynchronous readback when available).
Procedural textures, outlines, emphasizing, and levitation gaps are all
created in shaders. For the cuboid’s shading, we either deploy physically
based rendering or use static shades per face orientation for lighting.

For �ltering, we use CPU-side, range-based masking of leaf nodes. This
masking can be managed using our degree of interest scoring to implement
a dynamic level of detail. Once all quads and cuboids are drawn into
multiple render targets, post-processing continues the image synthesis.

5.1.2 On the Use of 3rd-Party Renderers

In developing our prototypes, we often opt for a low-level approach to
rendering while utilizing third-party libraries for other aspects, such as
math libraries (e.g., glm, gl-matrix), event handling systems (e.g., rxjs),
or comprehensive frameworks for desktop development. We recognize
the advantages of using established rendering engines, including time
savings, community support, extensibility, integration with existing tools,
and improved stability. However, as low-level graphics engineers, we also
recognize the potential drawbacks of these engines, particularly in terms
of performance and �exibility. Most notably, when due to layers of abstrac-
tion, access to underlying low-level APIs and extensions is omitted.

Performance in established engines is typically optimized for preferred use
cases, such as loading and displaying static or animated geometries, but not
necessarily for creating tens of thousands of dynamic cuboids that might
change every frame. These engines often enforce scene concepts, bake
lighting, and introduce overhead through material systems or optimiza-
tion structures like bounding volume hierarchies, typically not intended
for massive dynamic scene changes. Additionally, the abstraction from
hardware and other low-level API speci�cs, while bene�cial for focusing
on higher-level concerns, can sometimes limit access to low-level APIs.
We have encountered these and similar issues with several engines used

Responsive Accumulative Rendering | 71

Figure 5.3: Image of a treemap created using accumulative rendering for anti-aliasing, depth of �eld, and soft shadows.

so far, leading us to prefer custom solutions for the high-performance ren-
dering of dynamic graphical elements. This decision, however, comes with
its trade-o�s, such as spending more time on project setup, deployment,
continuous integration, and quality-of-life measures like context creation,
camera navigation, or typesetting and rendering text.

The choice between using existing engines or developing custom solutions
depends on the speci�cs of a project. Using WebGL is certainly not the
most suitable choice for the scienti�c exploration of visual variables and
studying our perceptual capabilities for visual analytics. However, custom
solutions become increasingly attractive if the focus is on handling massive
amounts of data, interactive testing, verifying technical feasibility, actual
provisioning to experts, and taking advantage of low-level graphics API
features that might be unconventional or barely supported.

5.2 Responsive Accumulative Rendering

In 1990 Haeberli and Akeley described “a system architecture that supports
real-time generation of complex images, e�cient generation of extremely
high-quality images, and a smooth trade-o� between the two” and intro-
duced the accumulation bu�er [95]. We revived the idea of distributing
sampling over multiple consecutive frames to allow sampling-based, real-
time rendering techniques in applications not dependent on continuous
rendering [L6]. This systematic, extensible schema allows developers to
e�ectively handle the increasing implementation complexity of advanced,
sophisticated, real-time rendering techniques while improving responsive-
ness and reducing required hardware resources.

The approach is motivated by the following observations related to 3D
systems and application development:

72 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

• Many interactive data visualizations do not require continuous, high-
quality image generation. Less frequent user interactions and data
changes may allow for relaxed real-time imaging constraints.

• Business and industry applications often face stricter hardware and
API constraints, resulting in a slow adoption of state-of-the-art,
real-time rendering techniques.

• The single-frame design, necessitated by continuous rendering, not
only increases hardware requirements but causes rendering tech-
niques to become increasingly complex to implement and adopt.

By using multi-frame sampling, multiple frames are rendered and accu-
mulated instead of rendering a single frame in response to an update
request. Every accumulation result can be immediately displayed while
the frame quality progressively increases. It distributes rendering cost
over time while providing precise quality control primarily by the number
of subsequent frames to be accumulated. Furthermore, it increases the
responsiveness of our visualization, reduces resource requirements, and
simpli�es the implementation of various rendering e�ects. Favoring re-
sponsiveness and progressively overlaying high-quality features seems to
gain popularity, as can be seen in Sketchfab and 3ds Max by Autodesk 5.4.

Multi-frame sampling allows us to use relatively simple rendering tech-
niques to produce state-of-the-art e�ects. We demonstrated our approach
for a variety of rendering techniques (Figure 5.3), i.e., anti-aliasing (AA),
screen-space ambient occlusion (SSAO), OIT, depth-of-�eld (DoF) [L6], and
physically-based environment and area lighting [185]. We also used it in
three.js [L7, R11] and successfully applied it for progressive, tile-based
rendering for volumetric brain tumor segmentation on MRI [140]. Ap-
proximating glossy screen space re�ections and utilizing massive lighting
to highlight cuboids with local light impact (emissive lighting) should
also be possible. Overall, the multi-frame approach reduces memory us-
age, decreases rendering cost per frame (lowering response times), allows
for better maintainable implementations, and provides simpler easy-to-
understand parameterizations.

5.2.1 Composition of a Progressive Frame

An integral part of today’s hardware-accelerated, real-time rendering
technologies is built on sampling as the “process of rendering images is
inherently a sampling task.” [2] Sampling is generally used to approximate
continuous characteristics and signals, e.g., reducing aliasing artifacts
caused by insu�cient depictions of continuous domains. For single-frame
rendering, sampling is limited to a single frame. Increasing the number
of samples improves the resulting image quality but also increases the
rendering costs per frame in terms of time and memory.

Our approach distributes samples over a well-de�ned number of inter-
mediate frames nMF. Each frame generated during multi-frame sampling

5.4sketchfab.com and autodesk.com/3ds-max

https://sketchfab.com/developers/viewer
http://www.autodesk.com/3ds-max

Responsive Accumulative Rendering | 73

Shadow Mapping,
4 lights, low resolution

Deferred Shading DoF separated

SF

Geometry Rendering,
2 draw calls, SSAA 4x

Ambient Occlusion,
24 samples, separated blurring

Compositing

1ˢᵗ Accumulation Ambient Occlusion,
8 samples, no blurring

nᵗʰ Accumulation

... MF

t time

Figure 5.4: Illustration
of the composition of a
single-frame SF and an
equivalent multi-frame
MF. ForMF, a simpli�ed
shadow pass and 4 SSAO
samples per IF are suf-
�cient; DoF and AA are
inherent due to camera
and NDC shifting. The
additional impact of SSAA
is indicated by red squares
and could be mitigated to
some extent [L6].

computes a unique sample or set of samples based on a kernel. Consecutive
frames are accumulated until nMF frames are computed, and the rendering
pauses. On any update request, the accumulation process is restarted.

Assumptions. The application of multi-frame sampling in 3D systems
and applications is based on the following assumptions:

• The underlying rendering uses sampling as one of its elements.

• Rendering update requests are less frequent, and responsiveness is
favored over intermediate frame quality.

• A converging image quality is not disruptive for the use cases or
usability of 3D systems and applications.

Instead of rendering a single frame SF in response to changed inputs (e.g.,
mapped data, camera movement), multiple intermediate frames (IF) are
rendered and accumulated into a multi-frame MF (Figure 5.4). For it, a
multi-frame number nMF is de�ned, denoting the number of intermediate
frames to be rendered for a full multi-frame. A progressive rendering
control �ow should (1) (re)start rendering of a intermediate frames imme-
diately when any input changes, (2) update the accumulated result after
every intermediate frame, and (3) stop rendering when nMF frames were
rendered, continue displaying the �nal result.

Implementation. To transform a given single-frame, sampling-based
technique into a multi-frame technique, we proceed as follows:

1. We identify segments that are processed repeatedly. A parameter-
ization that controls an iteration per frame (e.g., the number of
samples and lights) often indicates such segments. These iterations
are unrolled and distributed over consecutive frames.

2. We have to verify that (a) an increase in the number of segment
executions results in better quality and (b) each segment’s result can
be accumulated throughout multiple consecutive frames.

74 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

RGB16FR11F_G11F_B10F RGB8 RGB16 RGB32F

Figure 5.5: Accumulation of 1024 frames (AA and DoF) using various texture formats. F.l.t.r., the quality is increasing.

3. We adapt the original technique such that it supports an appropri-
ate sampling characteristic: The sampling type (single or multiple
samples per frame) and the spatiotemporal distribution of samples.

When multi-frame sampling is used with multiple techniques simultane-
ously, depending on their assembly, there might be combinations that
require special attention, for example, stochastic per-fragment discarding
combined with screen-space ambient occlusion.

5.2.2 Progressive Frame Accumulation
[-1,+3]

NDC

[-1,-1]

[+3,-1]

Figure 5.6: NDC-�lling
triangle used to avoid
redundant fragment pro-
cessing.

The accumulation of consecutive frames is implemented using hardware
blending. Alternatively, the accumulation can be executed as a post-
processing pass, e.g., using a NDC-�lling triangle5.5 with a fragment shader
(Figure 5.6). The color c of the nth frame is blended with the accumu-
lated average, e.g., mix(a, c, 1.0/n) in GLSL. This works with a single
accumulation bu�er as long as no adjacent fragments are processed.

On update requests, multi-frame rendering is set up for a multi-frame
number of 1, and accumulation is just blitting this frame, i.e., accumula-
tion is skipped, and the frame is rendered into the accumulation bu�er
directly. Since the scene and its underlying data is assumed to be static
during accumulation, the time per frame is roughly constant for subse-
quent frames. Thus, sampling characteristics can be adapted ad-hoc for
subsequent frames to converge to a targeted frame time.

The accumulation bu�er’s texture format should support su�cient accu-
racy since the weight for frame averaging gets subsequently smaller. Web

Graphics Library5.6 (WebGL2) provides RGB8 by default which may limit
the accuracy and quality of accumulation; small color changes get lost in
the accumulation of later frames (Figure 5.5). Thus, a comparatively small
nMF should be applied, or formats such as RGB32F should be considered.

5.5github.com/cginternals/webgl-operate/[...]/ndc�llingtriangle.ts
5.6Khronos Group. WebGL 2.0 Speci�cation. khronos.org/registry/webgl/[...]/2.0. 2019.

https://github.com/cginternals/webgl-operate/blob/master/source/ndcfillingtriangle.ts
https://www.khronos.org/registry/webgl/specs/latest/2.0/

Progressive Sampling Strategies | 75

5.3 Progressive Sampling Strategies

We can often reduce rendering techniques to their core concept when we
unfold them over multiple frames. Neither caching, sorting, nor other
optimization strategies are required. Some techniques are virtually free
since they are inherent to multi-frame rendering, namely AA and DoF.
The �nal rendering quality, especially the convergence speed and its “tem-
poral tranquility”—the stability and smoothness of an image or animation
over time—strongly depend on a well-designed spatiotemporal sampling
strategy, a kernel. Its characteristics include (1) the number of samples for
targeted quality, (2) spatial or value distribution, (3) sample regularity and
completeness for �nite accumulation, (4) temporal convergence constraints
to the sample sequence, and (5) additional per-fragment randomization.

We avoid GPU-based pseudo-randomness and, instead, precompute kernels
for their speci�c multi-frame number nMF; accumulating additional frames
on top of that is futile. Especially when using low multi-frame numbers,
this may lead to temporal clustering. The presented techniques have
been implemented using the open-source, header-only libraries OpenGL
Mathematics Library5.7 (glm) and glkernel [R10]. They allow a dynamic
computation of kernels of required characteristics at run-time.

We di�erentiate between techniques using either one or multiple samples
per frame. The kernel can be provided using uniforms for a single sample
per frame. When multiple samples per frame are used, it can be encoded
using textures or bu�ers. However, there are minor challenges:

1. When using multiple multi-frame techniques simultaneously, sam-
pling parameterization must be orchestrated with all e�ects in mind,
as they all share the same multi-frame number.

2. Some combinations of techniques may impose additional sampling
constraints, e.g., fragment-based dithering combined with SSAO.

3. Image-based retrieval of ID (e.g., picking) and Depth (e.g., coordi-
nates) becomes ambiguous since IDs and depths cannot be accumu-
lated meaningfully.

The latter issue, we include as a constraint in our kernel designs and make
the �rst frame the single source for id and depth-related readbacks. The
IDs are rendered only in the �rst frame, and we use two depth bu�ers, one
for the �rst frame and the other for all consecutive frames.

5.3.1 Multi-frame Anti-Aliasing

Without taking speci�c countermeasures, image synthesis based on ras-
terization depicts a continuous domain and, thus, usually contains alias-
ing artifacts like jagged edges and moiré patterns. Anti-aliasing is com-
monly applied to mitigate these artifacts, e.g., supersampling and mul-
tisampling: Color or depth bu�ers are rendered at a higher resolution
than the output resolution. While they provide good results for single-
frame-constrained applications, they take up much processing power and

5.7Christophe Riccio. GLM - OpenGL Mathematics Library. glm.g-truc.net. 2019.

http://glm.g-truc.net/

76 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

Figure 5.7: The results of accumulated sub-pixel view frustum shifting for, f.l.t.r., 1, 4, 8, and 64 multi-frames.

memory. Several sampling strategies for post-processing have been cre-
ated, e.g., AMD’s Morphological Anti-Aliasing (MLAA), Nvidia’s Fast Ap-
proximate Anti-Aliasing5.8 (FXAA), and Intels Conservative Morphological

Anti-Aliasing5.9 (CMAA). Their performance and quality vary, and they
all provide a comparably low memory footprint. With temporal anti-
aliasing, another type of anti-aliasing was introduced: Nvidia’s Temporal

Approximate Anti-Aliasing (TXAA) and subsequentlyMulti-Frame Sampled

Anti-Aliasing5.10 (MFAA) result in better quality and increased performance
compared to Multisample Anti-Aliasing (MSAA). Temporal anti-aliasing
uses varying sampling patterns on multiple consecutive frames, albeit
limited (two subsequent frames), as they are still designed for single-frame
rendering. However, all of these will likely become obsolete with the recent
shift towards neural graphics technologies—namely DLSS, FidelityFX, and
XeSS by Nvidia, AMD, and Intel, respectively—for temporal upscaling or
generation of synthetic intermediate frames.

Approach. A sampling o�set in [−0.5,+0.5] is semi-randomly chosen
per frame and transformed into a subpixel o�set. It then added to the
vertices’ xy-coordinates in NDC, e�ectively shifting the complete NDC
space (Listing 5.1). Shifting the camera’s position and center in world
space does not work due to the parallax e�ect.

1 layout(location = 0) in vec3 a_vertex;

3 uniform mat4 u_modelToNDC; // aka u_modelViewProjection
4 uniform vec2 u_ndcOffset; // per-frame offset in [-0.5,+0.5],
5 // pre-mult. by 1 / viewport size
6 void main()
7 {
8 vec4 position_ndc = u_modelToNDC * vec4(a_vertex, 1.0);
9 position_ndc.xy += u_ndcOffset * vec2(position_ndc.w);

10 gl_Position = position_ndc;
11 }

Listing 5.1: Vertex shader (GLSL) implementing sub-pixel shifting of the view-frustum.

5.8Timothy Lottes. FXAA. developer.download.nvidia.com/[...]/FXAA_WhitePaper. 2009.
5.9Filip Strugar and Adam Lake. Conservative Morphological Anti-Aliasing 2.0.
software.intel.com/en-us/articles/conservative-morphological-anti-aliasing-20. 2018.

5.10Nvidia. Multi-Frame Sampled Anti-Aliasing Delivers Better Performance To Maxwell

Gamers. nvidia.com/[...]/multi-frame-sampled-anti-aliasing-[...]/. 2015.

http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://software.intel.com/en-us/articles/conservative-morphological-anti-aliasing-20
https://software.intel.com/en-us/articles/conservative-morphological-anti-aliasing-20
https://www.nvidia.com/en-us/geforce/news/multi-frame-sampled-anti-aliasing-delivers-better-performance-and-superior-image-quality/

Progressive Sampling Strategies | 77

Sampling Characteristics. Pseudo-randomly chosen o�sets within a
square work surprisingly well. The convergence can be sped up using

fragment boundary

Figure 5.8: Illustration of
a anti-aliasing kernel for
nMF = 64. Each dot depicts
a sample, the blue one
being the �rst. Subsequent
samples are colored from
black to white.

uniform, shu�ed samples or common sampling patterns [2]. For our
implementation, we use shu�ed Poisson-disk sampling to generate a
uniform distribution of o�sets for a speci�c number of frames (Listing 5.2).
This prevents clustering and improves convergence, especially for many
samples. To mitigate noticeable shifts during the �rst few frames, we
constrain the �rst sample to the center of the pixel. Sorting all o�sets by
their length (i.e., the distance to the pixel center) is not recommended:
Although it reduces the subtle shifting further, it also results in temporal
clustering. Finally, we use a tile-based Poisson-disk sampling to avoid
clustering at pixel edges and corners of adjacent pixels (Figure 5.8):

1 // 3D array of glm::vec2 values with extent: 64x1x1 (glkernel)
2 auto aaSamples = glkernel::kernel2{ 64 };
3 glkernel::sample::poisson_square(aaSamples, -.5f, .5f);
4 glkernel::shuffle::random(aaSamples, 1); // from 1 to last

6 // ...
7 // while rendering a intermediate frame:
8 const auto ndcOffset = aaSamples[accumCount] / viewport;
9 program.setUniform("u_ndcOffset", ndcOffset);

Listing 5.2: Generation of a spatiotemporal Anti-Aliasing kernel using glkernel in C++.

Performance & Remarks. Accumulating only a few frames usually
results in decent anti aliasing. Our strategy takes about 16 frames to create
optimal results and about 64 frames until improvement by subsequent
frames becomes negligible (Figure 5.7). In comparison, pseudo-random
sampling takes about 1.3 times longer to yield comparable quality and is
less predictable due to clustering. In addition, we can create kernels for
view-frustum shifting that, for example, blur the image by using increased
o�sets with Gaussian distribution.

5.3.2 Multi-frame Transparency

Rendering transparent objects is usually avoided as much as possible.
The most relevant obstacle to using transparency is its implementation
complexity: especially for web-based rendering clients, modern strategies
such as OIT cannot easily be implemented due to limited graphics APIs
and device capabilities (e.g., k-bu�ers not feasible). One solution is to use
stochastic dithering combined with multi-frame sampling [L7]. Other
approaches either achieve high performance by neglecting correctness and
thus quality, or produce credible results by using many rendering passes
or super sampling while lowering rendering performance.

Screen-door transparency applies a threshold pattern to small groups of
fragments [174]; within each group, fragments with an opacity value
lower than their associated threshold are discarded. Drawbacks comprise
highly visible patterns and insu�cient accuracy. Stochastic transparency
improves on that by applying random patterns per pixel using multisam-
pling, but still produces slightly noisy output for a single frame [69]. The

78 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

1 Sample 4 Samples 16 Samples 1024 Samples

Figure 5.9: Convergence for per-fragment (top) and per-object (bottom) transparency thresholding. For per-fragment
thresholding, back-face culling is on. Note the two distinct shadows resulting from the inner and outer spheres.

suggested multiple passes per frame can be transformed to a 1:1 frame
mapping for multi-frame rendering of fast converging transparency.

Approach. Transparent fragments are discarded based on a random
opacity threshold per fragment or object at a time. For per-fragment
thresholding, more accurate and convincing results are achieved with
back-face culling disabled.

each row is an opacity
mask for one frame

transparent opaque

Figure 5.10: Binary
transparency mask for
nMF = 128: For 128 steps
of opacity, 128 uniformly
distributed bits are com-
puted (columns). The nth
intermediate frame uses
the nth row as a mask.

SamplingCharacteristics. Amapping of n distinct opacity values in the
range [0, 1] to associated bitmasks is precomputed on the CPU and provided
to the GPU (Figure 5.10). Additionally, random, fragment-speci�c o�sets
can be used to shu�e the threshold access between adjacent fragments
over time. For object-based transparency, no objects should be discarded
within the �rst frame. Thus, all objects are initially opaque and gradually
converge toward their opacity. For all consecutive frames, the object-based
bit masking is skipping the draw call or discarding fragments based on an
object ID (Figure 5.9).

Performance & Remarks. Stochastic transparency usually requires full
multisampling within a single pass with up to 16 coverage samples per
fragment, requiring extreme amounts of memory. In contrast, multi-frame
transparency requires no additional memory at all. The amount of frames
required for low-noise transparency depends on the current scene’s depth
complexity and camera angle. While the direct use of more advanced
techniques like stochastic transparency might lead to shorter convergence
times, we prefer the more basic approach for its low memory footprint,

Progressive Sampling Strategies | 79

Figure 5.11: The results
of accumulated SSAO
for, f.l.t.r., 1, 4, 16, and 64
multi-frames, with eight
samples per frame.

minimal performance overhead per frame, and implementation simplic-
ity. In contrast to per-object transparency, the per-fragment approach is
challenging to combine, for example, with SSAO, as the g-bu�ers become
noisy and lack coherent surfaces. Per-object transparency is inaccurate
and can neither account for back faces nor concave objects.

5.3.3 Multi-frame Screen-Space Ambient Occlusion

The complex interactions of real-world objects and lights poses a signi�cant
challenge even for today’s most sophisticated real-time rendering engines.
SSAO is commonly used to capture local light obscurance. Since Crytek’s
initial concept, numerous variants and enhancements have been proposed,
e.g., Improved Horizon-based Ambient Occlusion5.11 (HBAO+), screen-space
directional occlusion [195] (SSDO).

Approach. We use the Screen Space Ambient Obscurance [168] with
an optimized kernel and comparable quality to Horizon-based Ambient

Occlusion [19] (HBAO). The kernel is randomly rotated per fragment to
mitigate banding artifacts caused by reusing the kernel for all fragments.
Using our multi-frame approach, noise resolves within a few frames. By

Figure 5.12: Illustra-
tion of a SSAO kernel for
nMF = 16 and 8 samples
per frame. Each dot de-
picts a sample, the blue
one being the �rst. Subse-
quent samples are colored
from black to white.

accumulating SSAO in a dedicated target, blurring can be separated from
the accumulation and reduced with increased sampling. This mitigates
noise in the beginning and smoothly converges to a crisp result.

Sampling Characteristics. The kernel uses a spiral-shaped pattern
projected to a local tangent plane to produce the sample o�sets (Figure 5.12).
We sort the kernel samples in alternating order to ensure a more steady
improvement in image quality for subsequent frames. For n frames and m

samples per frame the set of samples Si for frame i is Si = ⋃m−1
j=0 {s(jn + i)},

with s(k) providing the kth sample of the original kernel. This sequence
ensures that sampling di�erent scales in every intermediate frame.

Performance & Remarks. The number of frames required for a crisp
and noise-free result depends mainly on the desired ambient occlusion
radius. We found about 480 samples for moderate settings to provide a
nearly artifact-free result, i.e., 60 frames when using eight samples per
frame (Figure 5.11). Since most screen-space-based ambient occlusion
techniques are similar, techniques such as SSDO, also accounting for local
light bleeding, should be just as suitable for multi-frame rendering.

5.11Louis Bavoil. HBAO+. geforce.com/hardware/technology/hbao-plus/technology. 2013.

https://www.geforce.com/hardware/technology/hbao-plus/technology

80 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

Figure 5.13: Rendering of a small 3D city using multi-frame for depth-of-�eld, anti-aliasing, screen-space ambient
occlusion, and soft shadows, without causing boundary discontinuities. The focus shifts from front (left) to back (right).

5.3.4 Multi-frame Depth of Field

Depth of �eld is an e�ect that can guide a user’s attention to a particular
region within a scene. The e�ect blurs objects depending on their distance
to a chosen focal plane or point, which usually lies on an object or region
of interest. DoF is often implemented as post-processing, mixing the sharp
focus �eld with one or two (near and far �eld) blurry color bu�ers per
fragment, based on the fragment’s distance to the focal point or plane [41].
More advanced techniques are also available, usually reducing boundary
discontinuities and intensity leakage artifacts and accounting for partial
occlusion usingmultiple focus layers [213]. Thoughmulti-layer approaches
can be adapted to multi-frame rendering, we present a minimal approach
favoring rendering speed over convergence time while still enabling high-
quality DoF (Figure 5.13).

Approach. For DoF, we use a random two-dimensional vector on a unit
disc as a per-frame sample. This vector indicates for each point in a scene
where on its circle of confusion (CoC) it should be rendered on the image
plane. With subsequent sampling, each point gradually covers its circle
of confusion. Similar to our AA approach, the sample vector is added
to the vertices’ xy-coordinates in a vertex shader; this time, however, in
view space before applying the projection matrix (Listing 5.3). It is scaled
with the vertices’ z-distance to the chosen focal plane. Additional post-
processing passes per frame, e.g., separated blurring, are not required.

1 // point in circle of confusion (opt. pre-multiplied by scale)
2 uniform vec2 u_cocOffset;
3 // z-distance to the camera at which objects are in focus
4 uniform float u_focalDistance;

6 void main()
7 {
8 vec4 position_eye = u_modelView * vec4(a_vertex, 1.0);
9 position_eye.xy +=

10 u_cocOffset * (position_eye.z + u_focalDistance);
11 gl_Position = u_projection * position_eye;
12 }

Listing 5.3: Vertex shader (GLSL) implementing CoC shifting in camera space.

3D-embedded Treemaps using treemap.ts | 81

Sampling Characteristics. Poisson-disk samples are sorted by their
distance to the center. The center is used as the �rst sample to omit camera
shaking. Additionally, arbitrary Bokeh shapes can be created by masking
the samples with the desired shape (Listing 5.4):

1 auto cocSamples = glkernel::kernel2{ 128 };
2 glkernel::sample::poisson_square(cocSamples, -1.f, 1.f);
3 // opt: filter samples by position using a 'bokeh' bitmask
4 glkernel::mask::by_value(cocSamples, bitmask);
5 glkernel::sort::distance(cocSamples, 0.f, 0.f);

Listing 5.4: Generation of a spatiotemporal DoF kernel using glkernel in C++.

Performance & Remarks. The number of samples needed for a high-
quality image depends on the largest CoC present in the scene, which is
proportional to the desired e�ect scale and the distance of a point to the
focal plane. Multiplying the maximum radius in pixels by ten adequately
provides a proper multi-frame number. Full convergence may take up
to a few seconds, with the depth of �eld gradually increasing over time,
interestingly often not consciously perceived by users.

5.4 3D-embedded Treemaps using treemap.ts

In the following, we show an excerpt of howwe can use our treemap.ts [R12]
library, and webgl-operate [R4] to create an interactive 3D-embedded
treemap using WebGL and an HTMLCanvasElement.

Initialization. We start by creating a treemap visualization, providing
access to a specialized treemap renderer. Alongside, we create a webgl-
operate canvas on our HTML canvas element, which creates a controller
that delegates multi-frame rendering to the assigned renderer. Thus, we
need to assign the visualization’s renderer to our canvas which kicks o�
the rendering controller so we have everything running (Listing 5.5):

1 import { Configuration, Navigation, Renderer, Visualization
2 gloperate, // webgl-operate re-export
3 } from 'treemap';

5 const visualization = new Visualization();
6 const renderer = visualization.renderer as Renderer;

8 const canvas = new gloperate.Canvas('canvas');
9 canvas.framePrecision = gloperate.Wizard.Precision.half;
10 canvas.controller.multiFrameNumber = 64;
11 canvas.renderer = renderer; // initiates rendering loop (raf)

13 const config = new Configuration();
14 visualization.configuration = config;

Listing 5.5: Initial setup for creating treemaps using treemap.ts and webgl-operate.

We also created a con�guration, which provides the API for con�guring all
treemap related data, and assigned it to the visualization. The visualization
reacts to con�guration changes, maintains an treemap description, and
delegates the rendering of it to the renderer.

82 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

Topology. Next, we create a tree structure using tuples (Listing 5.6).
The structure created in the listing matches the treemaps shown in Fig-
ure 3.23:

1 config.topology = {
2 edges: [// [parentID, nodeID], root ID is always 0
3 [0, 1], [1, 10], [1, 11], [1, 12], [1, 13],
4 [1, 3], [3, 30], [3, 31], [3, 32], [3, 33],
5 [0, 2], [2, 4], [4, 40], [4, 41], [4, 42], [4, 43],
6 [2, 20], [2, 21], [2, 22], [2, 23],
7],
8 format: 'tupled', // or 'interleaved'
9 };

Listing 5.6: Con�guration of the topology of a treemap using treemap.ts.

Layout. For the layout con�guration, we specify the algorithm to be
used, e.g., ’strip’ [217], optionally enable �attening of directories, and
con�gure padding (Listing 5.7). For padding, most notably, we are inter-
ested in accessory padding, which provides us the additional space for
labeling:

1 config.layout = {
2 algorithm: 'strip', weight: 'bufferView:Weight',
3 flattenDirectories: true,
4 parentPadding: { type: 'absolute', value: 0.02 },
5 siblingMargin: { type: 'relative', value: 0.20 },
6 accessoryPadding: { type: 'absolute',
7 direction: 'bottom', value: [0.0, 0.04, 0.03],
8 relativeAreaThreshold: 0.4, targetAspectRatio: 2.0, },
9 };

Listing 5.7: Con�guration of the layout of a treemap using treemap.ts.

Attributes. Before we can continue with attribute mapping, we need
attributes and actual data (attribute values). The con�guration supports
bu�ers and bu�er views, which allows for composing complex data trans-
formation graphs. Thereby, (1) backtracking is used to transform only data
that is actually used by the visualization, and (2) caching is integrated to
avoid duplicate bu�er transformations. In the following listing (Listing 5.8),
we use it, for example, to compute attribute values for the inner nodes of
the ’Weight’ bu�er view, which is assigned as a weight attribute used in
the layout, or create a normalized view based on Gamma:

1 config.buffers = [
2 { identifier: 'Alpha', type: 'uint8',
3 data: new Uint8Array([0, 0, 1, 1, 1, ..., 1, 1]) },
4 { identifier: 'Beta', type: 'uint8',
5 data: new Uint8Array(21) },
6 { identifier: 'Gamma', type: 'uint8',
7 data: new Uint8Array([0, 0, 1, 2, ..., 15, 16]) },
8 { identifier: 'Delta', type: 'float32',
9 data: new Float32Array(21) },

10 { identifier: 'Epsilon', type: 'uint8',
11 data: new Uint8Array(21) }];

13 config.bufferViews = [
14 { identifier: 'Weight', source: 'buffer:Alpha',

3D-embedded Treemaps using treemap.ts | 83

15 transformations: [{ type: 'propagate-up',
16 operation: 'sum' }] },
17 { identifier: 'Beta-Transformed', source: 'buffer:Beta',
18 transformations: [{ type: 'range-transform',
19 sourceRange: [0, 64], targetRange: [0, 0.75] }] },
20 { identifier: 'Gamma-Normalized', source: 'buffer:Gamma',
21 transformations: [{ type: 'normalize',
22 operation: 'min-to-max' }] }];

Listing 5.8: Con�guration of the attributes used by a treemap using treemap.ts.

Mapping. Now we can continue with the mapping to color and height;
we con�gure two stacked layers of cuboids and, for each of them, assign
an attribute to color and height (Listing 5.9). Lastly, we assign each layer a
color map to look up colors in:

1 config.colors = [
2 { identifier: 'emphasis', space: 'hex', value: '#00b0ff' },
3 { identifier: 'auxiliary', space: 'hex',
4 values: ['#00aa5e', '#71237c'] },
5 { identifier: 'inner', space: 'hex',
6 values: ['#e8eaee', '#eef0f4'] },
7 { identifier: 'leaf', space: 'hex',
8 values: ['#ffffff', '#fed500', '#fe8500', '#e62325'] },
9];

11 config.geometry = {
12 parentLayer: { showRoot: false },
13 leafLayers: [
14 { colorMap: 'color:leaf',
15 colors: 'bufferView:Gamma-Normalized',
16 height: 'bufferView:Beta-Transformed' },
17 { colorMap: 'color:leaf',
18 colors: 'buffer:Epsilon',
19 height: 'buffer:Delta' },
20],
21 heightScale: 0.5,
22 levitate: 6.0, // unit: device-independent pixel
23 };

Listing 5.9: Con�guration of colors and the attribute mapping using treemap.ts.

Labeling. In the following, names are randomly selected from the botan-
ical tree catalog and assigned to the inner nodes using a callback (List-
ing 5.10). The callback allows developers to fetch labels on demand:

1 const trees = ['Abies Grandis', ..., 'Viburnum Opulus'];
2 const names = trees.sort(() => Math.random() - 0.5).slice(0,4);
3 const labels = new Map<number, string>([
4 [1, names[0]], [2, names[1]], [3, names[2]], [4, names[3]],
5 /* ... leaf node labels can also be assigned here */]);

7 config.labels.callback = (idsToLabel: Set<number>,
8 callback: Visualization.NameSetCallback) => callback(labels);

Listing 5.10: Setup of a callback to gather label data for a treemap using treemap.ts.

84 | Chapter 5: Web-based Provisioning of 3D-Embedded Treemaps

Randomize Heights. Data mapped to visual variables can be changed
dynamically. The following listing shows how the ’Delta’ bu�er, mapped
to the height of the upper cuboid layer, is �lled with random values (80%
of which are 0.0). After that, this speci�c alteration is reported, and the
renderer is invalidated (Listing 5.11):

1 const delta = config.buffers.find(
2 (buffer) => buffer.identifier === 'Delta');
3 delta?.data = Float32Array.from({ length: 21 },
4 () => Math.random() > 0.8 ? (Math.random() * 0.25) : 0.0);

6 config.altered.alter('geometry');
7 renderer.invalidate();

Listing 5.11: Example for a changing attribute values used by a treemap using treemap.ts.

Node Events. Lastly, we show how highlighting of nodes can be imple-
mented. For it, we subscribe to respective asynchronous treemap observ-
ables, e.g., nodeSelect$ (Listing 5.12). This allows us to be noti�ed when
a cuboid is selected by the user and adjust the con�guration to emphasize
or highlight the selected node:

1 const emphasize = (event: Navigation.NodeEvent) => {

3 // initializes and returns config.geometry.emphasis
4 const emphasis = getOrCreateEmphasis();
5 const index = emphasis.highlight.indexOf(event.node);

7 if (index > -1) {
8 emphasis.highlight.splice(index, 1);
9 } else {

10 emphasis.highlight.push(event.node);
11 }
12 renderer.invalidate(); };

14 renderer.navigation.nodeSelect$.subscribe(emphasize);

Listing 5.12: Example for subscribing to node events of a treemap using treemap.ts.

The con�guration uses (1) strict schema checking, (2) falls back to defaults
whenever empty or invalid con�gurations are made, and (3) allows for
granular alteration reporting and checking. The latter allows the visualiza-
tion to keep the number of mapping changes minimal. The same alteration
mechanism is used for the treemap description to enable the renderer to
decide with custom granularity when to react to speci�c changes.

When data is fetched from custom endpoints, we typically use specialized
adapters that process the incoming data and create a treemap con�gura-
tion. This allowed us to keep the API of treemap.ts use case agnostic and
successfully integrate it into di�erent visualization domains.

More capabilities are exposed by the treemap.ts API, such as procedural
textures, aggregation, height threshold, and animated transitions, all of
which are not shown here. Not all concepts and techniques presented in
this work are integrated into the treemap.ts. But instead, for example, in
Arboretum [R14], forks or spikes [R8], other libraries, and demos [R13].

6 Software Visualization
using 3D-Embedded Treemaps

The contents of this chapter are based on the following original publications:

D. Limberger, B. Wasty, J. Trümper, and J. Döllner. “Interactive Software Maps for
Web-based Source Code Analysis”. In: Proc. ACM Web3D. 2013 [L1]

D. Limberger, W. Scheibel, M. Trapp, and J. Döllner. “Advanced Visual Metaphors and
Techniques for Software Maps”. In: Proc. ACM VINCI. 2019 [L14]

D. Limberger, W. Scheibel, J. Döllner, and M. Trapp. “Visual Variables and Con�guration
of Software Maps”. In: Journal of Visualization (2022) [L23]

The software development life cycle (SDLC) is a continuous cycle involv-
ing planning, designing, developing, testing, deploying, maintaining, and
refactoring software over many years. Maintenance “is typically a signif-
icant portion of life cycle costs” [212] and is associated with debt [3, 38,
70] which accumulates if not addressed upfront. Code comprehension is
a critical part of the software maintenance process, involving cognitive
processes that allow programmers to understand a codebase’s structure,
functionality, and behavior. Code comprehension enables programmers to

Figure 6.1: An interac-
tive software engineering
dashboard visualizing
the latest development
activities and metrics
by interactive software
maps [L1].

perform various tasks such as adaptive, perfective, and corrective mainte-
nance, code reuse, and code leverage. These tasks require programmers to
identify, locate, modify, test, and document code changes a�ecting software
quality, performance, and functionality.

Up-to-date knowledge of the software project, its processes, and source
code is vital in software engineering. Visualization is essential in commu-
nicating data, forecasts, and reasoning to programmers and other stake-
holders [234]. It can help raise awareness of the various factors involved in
technical debt since its “causes are [. . .] mostly invisible (i.e., architectural
debt, structural debt, test debt, documentation debt, code complexity, low
internal quality, coding style violations, and code smells).” [113] “While
practitioners are aware of the concept of technical debt, this knowledge is
implicit, and hence, underutilized.” [113] 3D-embedded software maps can
not only (1) provide visual access to SWSE data but (2) expose technical
dept and (3) facilitate making this knowledge explicit (Figure 6.1).

We successfully integrated 3D-embedded software maps in (1) a desktop
visualization tool targeting experts and, more recently, (2) a digital en-

86 | Chapter 6: Software Visualization using 3D-Embedded Treemaps

Figure 6.2: 3D-embedded software map integrated into a Digital Engineering Platform showing e�orts in complex
code over the last 12 months (activity view). The same attribute is mapped to height and color for emphasis, and both
labeling and aggregation are enabled. Image courtesy of Seerene.

gineering platform for software mining and analysis (Figure 6.2). Since
the collected software system and software engineering data is mostly
inherently tree-structured (cf. chapter 2), it could be visualized using the
web-based, 3D-embedded software map we developed. Our software map
is one of the few core tools for visual root cause analysis in the ‘digital
boardroom’ of the platform and is based on a variant of our treemap library.
It facilitates locating and comprehending higher-level metrics within the
context of the respective software systems, down to the source code units.
These collaborations provided insights into how practitioners approach
visual software analytics and how much they utilize 3D-embedded soft-
ware maps. We will brie�y outline fundamental software metrics and
highlight how these are used in practice through map themes. For the sub-
sequent assembly of software maps, we give an overview of which visual
variables can be used in conjunction, discuss two-state mapping, outline
constraint-based camera navigation, and show results of an evaluation of
our treemap’s rendering performance.

6.1 Static Source Code Metrics

Seemingly simple metrics, such as the number of lines of code, are the
genuine attributes we associate in a 1:1 mapping to source code units
depicted by our visualization. They can be mined using static source
code analysis tools and characterize the individual code units. When
tracked over time, these metrics establish the groundwork for root-cause
analysis and higher-level metrics employed for decision support. Higher-
level metrics, however, abstract their measurement basis and obfuscate
the underlying data and computations into a new discrete measure. By

https://www.seerene.com

Map Themes for Visual Software Analytics | 87

correlating and directly superimposing multiple ‘raw’ measurements, we
not only (1) avoid obstructing their values but, furthermore, (2) allow for
direct exploration of the relationships between characteristics of code units
while (3) maintaining their 1:1 association to code units. The following
metrics form the basis for these correlation mappings:

Lines of Code LoC Probably the most prominent group of measures for
the size of a software system.6.1 It includes specializations on source

lines (SLOC), comment lines (CLOC), non-comment lines (NCLOC),
e�ective lines (ELOC), logical lines (LLOC), blank lines (BLOC), ‘real’
lines (RLOC), or number of statements (NOS).

Density of Comments (DC) The ratio of CLOC to LOC.

Nesting Level (NL) Measure the level of containment of a logical source
code block, with variations like NLMean (mean NL over multiple
code units) and NL#+ (e.g., NL4+ measures the number of lines in
NL4 and higher) are related to cognitive e�ort for comprehension.

Cyclomatic Complexity (CC) Indicator for maintenance e�orts, counting
the number of linearly independent paths of the control �ow through
a code unit [165] scoped to functions, methods, classes, or modules.

There are other metrics, such as the Halstead Complexity measures [99],
the maintainability index (MI) [54], metrics for object-oriented software en-
gineering (MOOSE) [49], or metrics for object-oriented design (MOOD) [1].
3D-embedded software maps, in general, allow us to visualize any met-
rics for the source code hierarchy. The simultaneous display of multiple
higher-level metrics most likely results in incomprehensible mappings.
Moreover, the more complex a metric becomes, the more di�cult it is to
measure that metric reliably and quickly.

Since our map themes exclusively map LOC derivatives to the area, we
rely on its availability. In cases where no source code mining service is
available, we (1) use Tokei6.2 for basic static statistics, i.e., the number of
�les and lines-of-code measurements and (2) use local reporters usually
provided by testing frameworks to measure test coverage. Furthermore,
git-log6.3 has powerful log �ltering and formatting facilities that can be
used to track activities and changes directly from within the repository.

6.2 Map Themes for Visual Software Analytics

Software maps are a general-purpose interactive user interface for informa-
tion display in software analytics. A catalog ofmap themes—sometimes also
referred to as perspective or view [21]—compiles commonly used attribute
selections and mappings to visual variables relevant for domain-speci�c
tasks. Even though not described in detail here, every map theme also

6.1For a rough orientation of source code sizes in LOC, the visualization “Millions of
Lines of Code” by David McCandless. [166] is well suited. It is also available online:
informationisbeautiful.net/visualizations/million-lines-of-code/ (2015).

6.2Erin Power. Tokei. github.com/XAMPPRocky/tokei. 2016.
6.3git-scm.com/docs/git-log

https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://github.com/XAMPPRocky/tokei
https://git-scm.com/docs/git-log

88 | Chapter 6: Software Visualization using 3D-Embedded Treemaps

accounts for color scale speci�cation, custom attribute transformations,
and otherwise relevant parameters for the speci�c visual variables used.

The following map themes are used for visual exploration to support
common software engineering challenges. All themes map LLOC to area:

Technical Dept maps NL to color and CC to height. Allows us to reveal
and monitor technical debts inherent to individual code units.

Risk of Knowledge Drain maps the number of active developers (per node)
to color and a di�cult-to-comprehend measure such as NL or CC to
height. This allows to identify complex code units known only by a
few developers and reveal knowledge distribution.

Code Comprehension maps change frequency to color and code complexity,
e.g., NL4+ or CC, to height. In addition, test coverage is mapped to
sketchiness and superimposed to emphasize di�cult-to-comprehend
modules that have been signi�cantly altered but rarely tested.

Development Hot Spots maps the number of weeks with changes to color
and CC to height. This is similar to a heat map and allows for
highlighting where development e�orts are directed.

Complexity Hotspot maps CC to color and NLMean to height. Allows to
locate source code �leswith a disproportional nesting level compared
to the implemented business logic.

Test Coverage maps test coverage to color, and any complexity metric,
e.g., CC to height. In addition, change in test coverage could be
mapped to shininess (coverage increased) and roughness (coverage
decreased).

A map theme can use a nonlinear mapping such as logarithmic scaling
to emphasize or account for certain aspects of the depicted data. In our
implementation, this is done by interposing bu�er views onto the attributes
with respective transformations.

6.3 Assembling Map Themes

When assembling a map theme, we usually gather all input characteristics
(data types, data resolution, etc.) and specify the use case and related
tasks as clearly as possible. The resulting software maps di�er in their
used metaphors and visual variables. For example, does the task consist
of stepwise exploration or subsequent queries that could be addressed
within the visualization directly? Is the visualization integrated into a
multiple-linked-view setup, preceded by other investigations, or part of a
broader analytics process? At what time and at which frequency the user
needs to complete the task or use the visualization, respectively?

In most cases, our software maps, �rst and foremost, assist the user in
identifying regions or nodes of interest. Then, additional visual variables
are employed for subsequent exploration of the relevant data for those
nodes. Tables 3.1 and 6.1 are intended to facilitate the identi�cation of
promising visual variables and combinations most appropriate for the task.

Assembling Map Themes | 89

Visual Variable A
re
a
(F
oo

t
P
ri
n
t)

C
ol
or

H
ei
gh

t

T
ra
n
sp
ar
en
cy

Li
gh

t
E
m
is
si
on

St
ac
ki
n
g

St
ac
ki
n
g
(g
lo
ba
l)

Se
gm

en
ts

Sh
ap
e
T
yp

e

Sh
ap
e
P
ar
am

et
er

In
-s
it
u

C
on

to
u
r
W
id
th

C
on

to
u
r
C
ol
or

St
ip
pl
in
g

Sk
et
ch
y
C
on

to
u
r

P
at
te
rn

N
oi
se

Sh
ad
in
g

H
at
ch
in
g

N
L-
C
on

to
u
r

C
ol
or

W
ea
vi
n
g

Area (Foot Print) –

Color ✓ –

Height ✓ ✓ –

Transparency ✓ ◦ ✓ –

Light Emission ✓ ◦ ✓ ◦ –

Stacking ✓ ✓ ✓ ✓ ✓ –

Stacking (global) ✓ ✓ ✓ ✓ ✓ –

Segments ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

Shape Type ✓ ✓ ✓ ✓ ◦ ◦ ◦ ◦ –

Shape Parameter ✓ ✓ ✓ ✓ ✓ ◦ ◦ ◦ –

In-situ ✓ ✓ ✓ ✓ ✓ ◦ ◦ ◦ –

Contour Width ✓ ✓ ✓ ◦ ◦ ✓ ✓ ◦ ◦ ◦ ◦ –

Contour Color ✓ ◦ ✓ ◦ ◦ ✓ ✓ ✓ ◦ ◦ ◦ ✓ –

(Contour) Stippling ✓ ◦ ✓ ◦ ◦ ✓ ✓ ◦ ◦ ◦ ◦ ✓ ✓ –

Sketchy Contour ✓ ✓ ✓ ◦ ◦ ✓ ✓ ◦ ◦ ◦ ◦ ✓ ◦ ◦ –

Surface Pattern ✓ ✓ ✓ ◦ ◦ ✓ ✓ ✓ ✓ ✓ ◦ ✓ ✓ ◦ ◦ –

Surface Noise ✓ ✓ ✓ ◦ ◦ ✓ ✓ ✓ ✓ ✓ ◦ ✓ ✓ ◦ ◦ –

Surface Shading ✓ ✓ ✓ ◦ ◦ ✓ ✓ ◦ ✓ ✓ ◦ ✓ ✓ ✓ ◦ ◦ ◦ –

(Surface) Hatching ✓ ✓ ✓ ◦ ◦ ✓ ✓ ✓ ✓ ✓ ◦ ✓ ✓ ◦ ✓ –

NL-Contour ✓ ◦ ✓ ◦ ◦ ✓ ✓ ◦ ✓ ✓ ✓ ✓ –

Color Weaving ✓ ◦ ✓ ◦ ◦ ◦ ✓ ✓ ✓ ✓ ◦ ◦ ◦ ◦ ◦ ◦ ◦ –

Height Threshold ✓ ✓ ✓ ◦ ✓ ◦ ◦ ◦ ✓ ✓ ✓ ◦ ✓ ✓ ✓ ✓ ✓

Table 6.1: This symmetric is-combinable-with matrix captures our assessment for technical compatibility of visual
variables. However, using four or more visual variables simultaneously should always be carefully considered regardless of
their compatibility. Legend: ✓ – well combinable | ◦ – di�cult to combine.

Whether or not the visual variables can be used depends most certainly
on the limitations of the targeted devices and used frameworks. As stated

former present,
latter not-present

I₀₁ I₁₂

former not-present,
latter present

Figure 6.3: In-situ tem-
plates that help resolve
two-state ghosting.

before, transparency, emissive lighting, and similar, technically demand-
ing visual variables are highly convenient but di�cult to implement for
interactive use.

Two-State Mapping. Since software metrics are typically mined con-
tinuously or regularly, we enable users to optionally select two distinct
attribute revisions for the mapping instead of one. However, each map
theme should include a respective speci�cation for two-state mappings.
The design space can sometimes be di�cult to grasp here, so we presented
and discussed our preferred in-situ templates for simultaneous two-state
attribute mapping using color and height, illustrated in Figure 3.18. Se-
lecting two or more attribute revisions also introduces the problem of
nodes that are only present in one of the revisions; two-state ghosting.
This can also be resolved using our preferred in-situ templates, namely,

90 | Chapter 6: Software Visualization using 3D-Embedded Treemaps

I01 or I12, depending if the node is present in the former or latter state. By
assuming R1 to be the node that is present, and either R0 (former) or R2

(latter) being not present, one can use I01 (latter color, former height zero,
arrows pointing upwards,) or I12 (transparent, former color, latter height
zero, arrows pointing downwards) accordingly (cf. Figure 6.3).

Constraint-based Navigation. Interaction techniques for 2D and 3D-
embedded treemaps typically cover navigational tasks (e.g., pan, zoom,
rotate), selection and �ltering tasks (e.g., implicit or explicit queries speci-
�ed via GUI elements) as well as detail-providing interactions (e.g., tooltips
on hovering, linking cuboids to external resources). For a comprehensive
overview of navigation and interaction techniques, we refer to Jankowski
and Hachet [121]. We use a world-in-hand metaphor for controlling the
virtual 3D camera control, supporting panning, zooming, and rotation.
However, we add a few simple, but essential constraints, assuming a mouse
is the primary input device for camera control:

1. The virtual camera’s center is constrained to y = 0 (ground �oor)
and the extent of the software map’s root node, i.e., a unit square.
This sounds simple but is most e�ective in keeping users from losing
sight of the software map ever.

2. During panning, the initial scene intersection point at the mouse
position is constrained to the mouse position.

Figure 6.4: Screenshot of
our Treemap Designer [R7]
that guides the treemaps
assembly by creating map
theme con�gurations.

3. Rotation is constrained to the camera’s center. The camera’s altitude
must be within a minimum angle and a minimum angular distance
to the up vector. This prevents the software map from being seen
from below or upside down.

4. While zooming, the camera distance is reduced towards the inter-
section point at the mouse position.

Map Theme Designer. Map themes can become quite complex, espe-
cially considering the comprehensive parameterization exposed by the
treemap.ts API (cf. section 5.4) and the number of visual variables (cf. Ta-
ble 6.1), each often with its variations. We have developed a Treemap

Designer [R7] that guides visualization designers, i.e., users of treemap.ts,
in assembling treemaps. During con�guration, (1) a live preview of an
interactive 3D-embedded treemap reacts immediately to changes, and (2)
a JSON-based map theme con�guration is generated that can be used or
shared with others. The tool guides users through grouped con�gura-
tion options that mirror the con�guration structure, provides meaningful
defaults and parameter descriptions, constrains parameter value ranges,
avoids misleading con�gurations, and communicates best practices. We
only created the tool’s �rst iteration (Figure 6.4) and suggest including
presets and integrating more visual variables in the future.

Rendering Performance Evaluation | 91

Figure 6.5: Renderings of the four di�erent-sized datasets used in our performance evaluation, with 3 524, 18 551,
448 322, and 500 071 nodes from left to right, respectively, with (bottom) and without (top) aggregation enabled.

6.4 Rendering Performance Evaluation

We conducted a rendering performance test on various devices and browsers
to evaluate the responsiveness of treemaps created with treemap.ts. We test
four di�erent-sized non-synthetic datasets, in three browsers (thereby both
WebGL versions), on three di�erent devices. Each dataset was measured
with both aggregation o� and on (Figure 6.5). A virtual camera with a
locked altitude was rotated around the treemap multiple times. The cam-
era position was updated every time a full multi-frame of 64 intermediate
frames was �nished. The refresh rate measures are enlisted in Table 6.2.

O
S

B
ro
w
se
r

C
P
U

G
P
U

W
eb
G
L

Refresh Rate in Hz at 1280 × 720px

W
in
do

w
s
10 C i7 960M 2 1 940 227 661 940 45 23 35 106

C i5 520 2 458 117 237 334 21 15 16 59

C i7 530 2 585 166 287 499 22 19 17 81

E i7 530 1 704 133 304 427 23 13 17 55

m
ac
O
S

C m3 615 2 485 280 244 571 21 37 15 144

S m3 615 1 566 286 267 641 21 13 12 150

Aggregation – ✓ – ✓ – ✓ – ✓

Number of Nodes 3 524 18 551 448 322 500 071

Inner Nodes 694 4 230 140 422 70 861

Leaf Nodes 2 830 14 321 307 900 429 210

Table 6.2: Responsiveness of treemaps depicting four di�erent-sized data sets, each
without and with aggregation and with attributes mapped to area, color, and
height, using treemap.ts. The measurements were made for di�erent browsers, i.e.,
Chrome/73.0.3683.86 (C), Edge/18.17763 (E), and Safari/605.1.15 (S), on di�erent devices,
and WebGL versions, using our multi-frame rendering. Each measurement is the average
refresh rate of 6 400 intermediate frames (excluding warmup and AA only), i.e., 100 con-
verged multi-frames with nMF = 64. While 8Hz+ is quasi-interactive, 60Hz is targeted.

92 | Chapter 6: Software Visualization using 3D-Embedded Treemaps

The performance di�erence between the aggregated and non-aggregated
data sets with 448 322 and 500 071 nodes is that the former has extreme hi-
erarchical depth and a higher number of inner nodes, making aggregation
less e�ective. It can further be noticed that aggregation signi�cantly nega-
tively impacts smaller treemaps due to the additional draw calls needed
and the renderer already being highly optimized.

These performance measurements serve as a rough orientation and can
be subject to variability. The tests indicate that multi-frame rendering is
highly responsive, with aggregation further enhancing performance in
some cases. Although not included in the screenshots to ensure anonymity,
all tests had dynamic labeling of inner nodes and a few leaf nodes enabled.
The results indicate ample room for including additional visual variables on
demand. Overall, our multi-frame rendering approach is highly responsive
across various devices and browsers.

7 Conclusions and Future Work

The contents of this chapter are based on the following original publications:

W. Scheibel, J. Hartmann, D. Limberger, and J. Döllner. “Visualization of Tree-structured
Data using Web Service Composition”. In: Springer VISIGRAPP - Extended and Revised

Papers. 2019 [L16]

C. Fiedler, W. Scheibel, D. Limberger, M. Trapp, and J. Döllner. “Survey on User Studies
on the E�ectiveness of Treemaps”. In: Proc. ACM VINCI. 2020 [L17]

7.1 Conclusions

To conclude, we summarize the �ndings of this thesis’s major chapters
3, 4, and 5, regarding their associated thesis statements on expressiveness,
scalability, and responsiveness, respectively.

Conclusions regarding expressivenessE. To increase the data map-
ping capabilities of 2D treemaps for the simultaneous, unambiguous display
of data, we embedded 2D treemaps in a 3D attribute space and provided
versatile visual variables. We explored visual variables for 3D-embedded
treemaps and showed that sketchy contours and surface hatching can
visually encode uncertainty, imprecision, and vagueness. Physically-based
materials, such as rustiness, roughness, shininess, and glow, can emphasize
activity and encode trends. We introduced in-situ templates for two-state
mappings to display two attribute values simultaneously while visually
di�erentiating original and comparative states. Additionally, we show-
cased that procedural textures can convey data changes through animated
transitions, and secondary patterns enable their unambiguous reading
direction. Lastly, value-added adaptations for 3D-embedded treemaps,
such as height-based �ltering using reference surfaces, extend the tools
available for interactive exploration.

Conclusions regarding scalability S. To enhance the readability of
3D-embedded treemaps, we presented a technique for aggregating nodes
through dynamic degree-of-interest scoring and score propagation, along
with the visual display of aggregates using aggregation operators for
color and height. The addition of nesting level contouring, animated

94 | Chapter 7: Conclusions and Future Work

state transitions, and color weaving adheres to the established aggregation
guidelines. All combined help to reduce or avoid visual clutter and facilitate
interactive exploration of large datasets. We showcased dynamic labeling
with descriptive label placement and discussed their hardware-accelerated
rendering and usefulness for 3D-embedded map legends. Additionally,
we showcased a partial 3D-embedding approach using a node-local tilt
operator that allows users to toggle between the 2D and 3D-embedded
display of inner-nodes.

Conclusions regarding responsiveness R. To enable high-quality
and responsive rendering of 3D-embedded treemaps, we explored render-
ing rectangles and cuboids using WebGL in conjunction with a progressive
rendering approach. To ensure high-quality and responsive rendering,
we described progressive sampling strategies, including multi-frame anti-
aliasing, transparency, screen-space ambient occlusion, and depth of �eld.
We, �nally, detailed the use of our treemap.ts library to create and con-
�gure 3D-embedded treemaps for interactive, visual exploration of large
tree-structured data in the browser.

7.2 Outlook and Challenges

The concepts and techniques presented and discussed in this work have
limitations; some challenges have yet to be addressed, marked for future
investigation, or, most likely, need a thorough evaluation. Instead of
focusing on minor aspects, technical details, or low-hanging fruits, we
suggest one primary idea for each main contributing section that we would
like to explore more.

Chapter 3 | Evaluation Tooling A survey on the e�ectiveness of treemaps
by Fiedler et al. [L17] recently reviewed 69 user studies related to
treemaps: “Due to pitfalls and shortcomings in design, conduct, and
reporting of the user studies, there is little that can be reliably de-
rived or accepted as a generalized statement. Fundamental open
questions include con�guration, compatible tasks, use cases, and
perceptional characteristics of treemaps.”[L17] Ideas for appropriate
toolings that guide experiments in information visualization have
been presented [74]. We would like to see an increase in free and
open tools for a more uni�ed and streamlined evaluation of �ndings.
For example, a benchmark for tree visualizations, methodologies [43]
augmented through tools, and (more) public repositories for collec-
tively gathering results could aid in evaluating visual variables and
facilitate informed visualization design.

Chapter 4 | Interactable Labels We created and open-sourced hardware-
accelerated typesetting, placement, and text rendering for virtual
3D environments. Even though UTF-8 is di�cult, typesetting is
limited, and per-glyph coloring and style mixing are not supported,
we found ourselves craving to directly interact with the labels by
selecting the text, changing it, and copying it, all within the 3D

Outlook and Challenges | 95

Figure 7.1: Illustration of a collaborative visual analytics space based on a 3D-embedded treemap. It shows the view of
a user that collaborates with two other users (DL and JV), their views being overlayed (top-right), their virtual camera
positions and look-at directions visualized, and unique colors are used for use associated selections and highlights.

scene. Augmenting 3D visualizations with essential, fundamental
text editing capabilities would certainly enable novel visual analytics
work�ows.

Chapter 5 | Collaborative Exploration Sharing documents and working col-
laboratively and simultaneously is typical for many workloads today
and was recently explored, e.g., for raster and vector images [17,
18]. When presenting interesting results or communicating exciting
insights in visual analytics, we should be able to collaboratively
explore within the same 3D-virtual environment instead of using
screen sharing. We would like to see investigations on how to allow
for awareness of the exploration of collaborators, what they interact
with, how to adjust the visualization mapping, and collaboratively
emphasize and share insights (Figure 7.1).

Chapter 6 | AI-Assisted Assembly We brie�y outlined the most basic de-
sign aid for con�guring 3D-embedded treemaps. We want to see
assembly services similar to AI-based writing assistants reviewing
spelling, grammar, punctuation, clarity, or even engagement and
delivery. An AI-assisted visualization assembly service, e.g., special-
ized for D3.js,7.1 would check the visualization mapping for common
mistakes and make suggestions that support the task, e.g., promoting
more appropriate color scales, proposing attribute transformations,
or advising for additional visual variables for details on demand.
This might help to make visualizations accessible that go beyond
everyday diagrams.

7.1Mike Bostock. D3.js – Data-Driven Documents. d3js.org. 2012.

http://d3js.org/

96 | Chapter 7: Conclusions and Future Work

7.3 Closing Remarks

This work has demonstrated how hierarchical data can be visualized in-
teractively using an advanced treemap approach. The embedding in 3D is
of signi�cant advantage, conceptually and technically, because it can im-
prove both the design scope and the implementation. At the same time, it
becomes clear that very precise considerations are required when it comes
to the design of individual visualization features. Especially here, various
specialized scienti�c contexts can provide valuable considerations and
methods, such as cartographic visualization and real-time rendering. With
the 3D-embedded treemaps presented here, it becomes clear that hierarchi-
cal data—one of the most important categories in the age of ‘Big Data’—can
be visualized in a scalable, readable, precise, and interactive way.

List of Publications

This thesis is based on the following original publications:

[L1] Daniel Limberger, Benjamin Wasty, Jonas Trümper, and Jürgen Döllner. “Inter-
active Software Maps for Web-based Source Code Analysis”. In: Proceedings of
the 18th International Conference on 3D Web Technology. Web3D ’13. ACM, 2013,
pp. 91–98. isbn: 978-1-450321-33-4. doi: 10.1145/2466533.2466550.

[L2] HannesWürfel, Matthias Trapp,Daniel Limberger, and JürgenDöllner. “Natural
Phenomena as Metaphors for Visualization of Trend Data in Interactive Software
Maps”. In: Computer Graphics and Visual Computing. CGVC ’15. The Eurographics
Association, 2015, pp. 69–76. isbn: 978-3-905674-94-1. doi: 10.2312/cgvc.20151246.

[L3] Daniel Limberger and Jürgen Döllner. “Real-time Rendering of High-quality
E�ects using Multi-frame Sampling”. In: ACM SIGGRAPH 2016 Posters. SIG-
GRAPH ’16. ACM, 2016, 79:1–1. isbn: 978-1-450343-71-8. doi: 10.1145/2945078.
2945157.

[L4] Daniel Limberger, Carolin Fiedler, Sebastian Hahn, Matthias Trapp, and Jürgen
Döllner. “Evaluation of Sketchiness as a Visual Variable for 2.5 D Treemaps”.
In: 20th International Conference Information Visualisation. IV ’16. IEEE, 2016,
pp. 183–189. isbn: 978-1-467389-42-6. doi: 10.1109/iV.2016.61.

[L5] Daniel Limberger, Willy Scheibel, Stefan Lemme, and Jürgen Döllner. “Dynamic
2.5D Treemaps using Declarative 3D on the Web”. In: Proceedings of the 21st
International Conference on 3D Web Technology. Web3D ’16. ACM, 2016, pp. 33–
36. isbn: 978-1-450344-28-9. doi: 10.1145/2945292.2945313.

[L6] Daniel Limberger, Karsten Tausche, Johannes Linke, and Jürgen Döllner. “Pro-
gressive Rendering using Multi-frame Sampling”. In: GPU Pro 7: Advanced Ren-

dering Techniques (2016), pp. 155–173. doi: 10.1201/b21261.

[L7] Daniel Limberger, Marcel Pursche, Jan Klimke, and Jürgen Döllner. “Progres-
sive High-quality Rendering for Interactive Information Cartography using We-
bGL”. In: Proceedings of the 22nd International Conference on 3D Web Technol-

ogy. Web3D ’17. Best Paper. ACM, 2017, 8:1–4. isbn: 978-1-450349-55-0. doi:
10.1145/3055624.3075951.

[L8] Daniel Limberger, Willy Scheibel, Sebastian Hahn, and Jürgen Döllner. “Reduc-
ing Visual Complexity in Software Maps using Importance-based Aggregation
of Nodes”. In: Proceedings of the 12th International Joint Conference on Com-

puter Vision, Imaging and Computer Graphics Theory and Applications. IVAPP ’17.
SciTePress, 2017, pp. 176–185. isbn: 978-9-897582-28-8. doi: 10.5220/0006267501
760185.

[L9] Daniel Limberger, Willy Scheibel, Matthias Trapp, and Jürgen Döllner. “Mixed-
Projection Treemaps: A Novel Approach Mixing 2D and 2.5D Treemaps”. In: 21st
International Conference Information Visualisation. IV ’17. IEEE, 2017, pp. 164–169.
isbn: 978-1-538608-31-9. doi: 10.1109/iV.2017.67.

[L10] Daniel Limberger. “Interactive, Adaptive Level-of-Detail in 2.5D Treemaps”.
U.S. pat. 9953443. Seerene GmbH. Apr. 24, 2018.

https://doi.org/10.1145/2466533.2466550
https://doi.org/10.2312/cgvc.20151246
https://doi.org/10.1145/2945078.2945157
https://doi.org/10.1145/2945078.2945157
https://doi.org/10.1109/iV.2016.61
https://doi.org/10.1145/2945292.2945313
https://doi.org/10.1201/b21261
https://doi.org/10.1145/3055624.3075951
https://doi.org/10.5220/0006267501760185
https://doi.org/10.5220/0006267501760185
https://doi.org/10.1109/iV.2017.67

98 | Chapter 7: List of Publications

[L11] Daniel Limberger, Anne Gropler, Stefan Buschmann, Jürgen Döllner, and
Benjamin Wasty. “OpenLL: an API for Dynamic 2D and 3D Labeling”. In: 22nd
International Conference Information Visualisation. IV ’18. IEEE, 2018, pp. 175–181.
isbn: 978-1-538672-02-0. doi: 10.1109/iV.2018.00039.

[L12] Daniel Limberger, Karsten Tausche, Johannes Linke, and Jürgen Döllner. “Pro-
gressive Rendering using Multi-frame Sampling”. In: GPU Pro 360 Guide to Ren-

dering (2018). Reprint of the GPU Pro 7 Article, 2016, pp. 537–553. doi: 10.1201/
9781351261524.

[L13] Daniel Limberger, Matthias Trapp, and Jürgen Döllner. “Interactive, Height-
Based Filtering in 2.5D Treemaps”. In: Proceedings of the 11th International Sym-

posium on Visual Information Communication and Interaction. VINCI ’18. ACM,
2018, pp. 49–55. isbn: 978-1-450365-01-7. doi: 10.1145/3231622.3231638.

[L14] Daniel Limberger, Willy Scheibel, Matthias Trapp, and Jürgen Döllner. “Ad-
vanced Visual Metaphors and Techniques for Software Maps”. In: Proceedings
of the 12th International Symposium on Visual Information Communication and

Interaction. VINCI ’19. ACM, 2019, 11:1–8. isbn: 978-1-450376-26-6. doi: 10.1145/
3356422.3356444.

[L15] Daniel Limberger, Matthias Trapp, and Jürgen Döllner. “In-Situ Comparison
for 2.5D Treemaps”. In: Proceedings of the 14th International Joint Conference

on Computer Vision, Imaging and Computer Graphics Theory and Applications.
IVAPP ’19. SciTePress, 2019, pp. 314–321. isbn: 978-9-897583-54-4. doi: 10.5220/
0007576203140321.

[L16] Willy Scheibel, Judith Hartmann, Daniel Limberger, and Jürgen Döllner. “Visu-
alization of Tree-structured Data using Web Service Composition”. In: Computer

Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP ’17.
Springer International Publishing, 2019, pp. 227–252. isbn: 978-3-030415-90-7.
doi: 10.1007/978-3-030-41590-7_10.

[L17] Carolin Fiedler, Willy Scheibel, Daniel Limberger, Matthias Trapp, and Jürgen
Döllner. “Survey on User Studies on the E�ectiveness of Treemaps”. In: Proceed-
ings of the 13th International Symposium on Visual Information Communication

and Interaction. VINCI ’20. ACM, 2020, 2:1–10. isbn: 978-1-450387-50-7. doi:
10.1145/3430036.3430054.

[L18] Daniel Limberger, Matthias Trapp, and Jürgen Döllner. “Depicting Uncertainty
in 2.5D Treemaps”. In: Proceedings of the 13th International Symposium on Visual

Information Communication and Interaction. VINCI ’20. ACM, 2020, 28:1–2. isbn:
978-1-450387-50-7. doi: 10.1145/3430036.3432753.

[L19] Willy Scheibel, Daniel Limberger, and Jürgen Döllner. “Survey of Treemap
Layout Algorithms”. In: Proceedings of the 13th International Symposium on Visual

Information Communication and Interaction. VINCI ’20. ACM, 2020, 1:1–9. isbn:
978-1-450387-50-7. doi: 10.1145/3430036.3430041.

[L20] Willy Scheibel, Matthias Trapp, Daniel Limberger, and Jürgen Döllner. “A Tax-
onomy of Treemap Visualization Techniques”. In: Proceedings of the 15th Inter-

national Joint Conference on Computer Vision, Imaging and Computer Graphics

Theory and Applications. IVAPP ’20. SciTePress, 2020, pp. 273–280. isbn: 978-9-
897584-02-2. doi: 10.5220/0009153902730280.

[L21] Daniel Limberger, Willy Scheibel, Jan Dieken, and Jürgen Döllner. “Visualiza-
tion of Data Changes in 2.5D Treemaps using Procedural Textures and Animated
Transitions”. In: Proceedings of the 14th International Symposium on Visual In-

formation Communication and Interaction. VINCI ’21. ACM, 2021, 21:1–5. isbn:
978-1-450386-47-0. doi: 10.1145/3481549.3481570.

[L22] Daniel Limberger, Willy Scheibel, Jan van Dieken, and Jürgen Döllner. “Proce-
dural Texture Patterns for Encoding Changes in Color in 2.5D Treemap Visual-
izations”. In: Journal of Visualization (2022). doi: 10.1007/s12650-022-00874-3.

[L23] Daniel Limberger, Willy Scheibel, Jürgen Döllner, and Matthias Trapp. “Visual
Variables and Con�guration of Software Maps”. In: Journal of Visualization (2022).
doi: 10.1007/s12650-022-00868-1.

https://doi.org/10.1109/iV.2018.00039
https://doi.org/10.1201/9781351261524
https://doi.org/10.1201/9781351261524
https://doi.org/10.1145/3231622.3231638
https://doi.org/10.1145/3356422.3356444
https://doi.org/10.1145/3356422.3356444
https://doi.org/10.5220/0007576203140321
https://doi.org/10.5220/0007576203140321
https://doi.org/10.1007/978-3-030-41590-7_10
https://doi.org/10.1145/3430036.3430054
https://doi.org/10.1145/3430036.3432753
https://doi.org/10.1145/3430036.3430041
https://doi.org/10.5220/0009153902730280
https://doi.org/10.1145/3481549.3481570
https://doi.org/10.1007/s12650-022-00874-3
https://doi.org/10.1007/s12650-022-00868-1

List of Repositories

The following software systems, services, libraries, and tools have been
developed or co-developed by the author as part of this thesis. For each
entry, the year of the last modi�cation (main branch) was used, and only
the major contributors are referred to by name. Complete listings of
contributors are available online as part of each repository. All repositories
were last accessed and veri�ed for availability on 22. March 2023 and are
free and open source unless otherwise noted.

[R1] Stefan Buschmann, Willy Scheibel, Daniel Limberger, et al. gloperate – A C++

Library for De�ning and Controlling Modern GPU Rendering and Processing Oper-

ations. gloperate.org. 2014 – 2023. Repository:

∙ github.com/cginternals/gloperate.

[R2] Carolin Fiedler, Willy Scheibel, Daniel Limberger, et al. The Companion Web-

site for the VINCI ’20 publication “Survey on User Studies on the E�ectiveness of

Treemaps”. varg-dev.github.io/treemap-studies. 2018 – 2020. Repository:

∙ github.com/varg-dev/treemap-studies.

[R3] Daniel Limberger. haeley-colors – Color Math and Color Scale Generation for

Real-time Rendering. github.com/halb3/colors. 2022 – 2023. Repository:

∙ github.com/halb3/colors.

[R4] Daniel Limberger et al.webgl-operate – A Robust, Application-agnostic Rendering

Framework using WebGL. webgl-operate.org. 2016 – 2023. Repositories:

∙ github.com/cginternals/webgl-operate and
∙ gitlab.cginternals.com/libs/haeley.js | not public, predecessor.

[R5] Daniel Limberger, Anne Gropler, and Willy Scheibel. OpenLL – Open Label

Library. openll.org. 2015 – 2018. Repositories:

∙ github.com/cginternals/openll and
∙ gitlab.hpi3d.de/treevis/glannotations | not public.

[R6] Daniel Limberger and Willy Scheibel. Font Asset Generator – A Service for the

OpenLL Asset Generator. fonts.varg.dev. 2021. Repositories:

∙ github.com/varg-dev/font-asset-service, and
∙ github.com/varg-dev/font-asset-gui.

[R7] Daniel Limberger andWilly Scheibel. Treemap Designer – A Con�gurator for the

Assembly of Treemaps. treemap.de/treemap-designer.html. 2019. Repositories:

∙ https://github.com/cgcostume/[...]/treemap-designer.ts | not public.

[R8] Daniel Limberger, Willy Scheibel, Stefan Lemme, et al. 2.5D Treemaps using

Declarative 3D. cgcostume.github.io/web3d-treemaps. 2016. Repository:

∙ github.com/cgcostume/web3d-treemaps.

[R9] Daniel Limberger, Willy Scheibel, Roland Lux, et al. glbinding – A C++ Binding

for the OpenGL API. glbinding.org. 2014 – 2023. Repository:

∙ github.com/cginternals/glbinding.

https://https://gloperate.org/
https://github.com/cginternals/gloperate
https://varg-dev.github.io/treemap-studies/
https://github.com/varg-dev/treemap-studies
https://github.com/halb3/colors
https://github.com/halb3/colors
https://webgl-operate.org
https://github.com/cginternals/webgl-operate
https://gitlab.cginternals.com/libs/haeley.js
https://openll.org
https://github.com/cginternals/openll
https://gitlab.hpi3d.de/treevis/glannotations/
https://fonts.varg.dev
https://github.com/varg-dev/font-asset-service
https://github.com/varg-dev/font-asset-gui
https://treemap.de/treemap-designer.html
https://github.com/cgcostume/treemap/blob/develop/examples/treemap-designer.ts
http://cgcostume.github.io/web3d-treemaps/
https://github.com/cgcostume/web3d-treemaps
https://https://glbinding.org/
https://github.com/cginternals/glbinding

100 | Chapter 7: List of Repositories

[R10] Daniel Limberger, Willy Scheibel, Philipp Otto, et al. glkernel – Sampling

Utilities for OpenGL. kernel.varg.dev/docs. 2015 – 2023. Repositories:

∙ github.com/cginternals/glkernel and
∙ github.com/cginternals/glkernel-service.

[R11] Daniel Limberger and Maximilian Söchting. A Multi-frame Sampling Viewer

for 3D Scenes using three.js. cgcostume.github.io/mfsv. 2016. Repositories:

∙ github.com/cgcostume/mfsv and
∙ github.com/cgcostume/multiframesampling (C++ and gloperate).

[R12] Daniel Limberger and Scheibel Willy. treemaps.ts – A Library for Rendering

3D-embedded Treemaps using WebGL. swmap.org. 2016 – 2021. Repositories:

∙ github.com/cgcostume/treemap | not public.

[R13] Jaqueline Pollak, Carsten Walther, Pascal Lange, Daniel Limberger, and Willy
Scheibel. File System Viewer using 2.5D Treemaps. 2015 – 2016. Repositories:

∙ gitlab.hpi3d.de/treevis/mp2016d1 | not public and
∙ gitlab.hpi3d.de/treevis/�lesystemviewer | not public.

[R14] Willy Scheibel,Daniel Limberger, et al. arboretum – A Tree Visualization Frame-

work for Rapid Prototyping. 2013 – 2019. Repositories:

∙ gitlab.hpi3d.de/treevis/arboretum | not public,
∙ gitlab.hpi3d.de/treevis/bp2014d2 | not public,
∙ gitlab.hpi3d.de/treevis/bp2015d2 | not public, and
∙ gitlab.hpi3d.de/treevis/arboretum-viewer | not public.

[R15] Willy Scheibel, Roland Lux, Daniel Limberger, et al. globjects – A Strict C++

Wrapper of OpenGL Objects. globjects.org. 2013 – 2023. Repository:

∙ github.com/cginternals/globjects.

https://kernel.varg.dev/docs
https://github.com/cginternals/glkernel
https://github.com/cginternals/glkernel-service
https://cgcostume.github.io/mfsv/
https://github.com/cgcostume/mfsv/
https://github.com/cgcostume/multiframesampling/
http://swmap.org/
https://github.com/cgcostume/treemap
https://gitlab.hpi3d.de/treevis/mp2016d1
https://gitlab.hpi3d.de/treevis/filesystemviewer/
https://gitlab.hpi3d.de/treevis/arboretum
https://gitlab.hpi3d.de/treevis/bp2014d2
https://gitlab.hpi3d.de/treevis/bp2015d2
https://gitlab.hpi3d.de/treevis/arboretum-viewer
https://https://globjects.org/
https://github.com/cginternals/globjects

Bibliography

[1] Fernando Brito Abreu and Rogério Carapuça. “Object-Oriented Software Engi-
neering: Measuring and Controlling the Development Process”. In: Proceedings
of the 4th International Conference on Software Quality. Vol. 186. 1994, pp. 1–8.

[2] Tomas Akenine-Möller, Eric Heines, and Naty Ho�man. Real-Time Rendering,

Fourth Edition. CRC Press, 2018. isbn: 978-1-351816-15-1.

[3] Nicolli S.R. Alves, Leilane F. Ribeiro, Vivyane Caires, Thiago S. Mendes, and
Rodrigo O. Spínola. “Towards an Ontology of Terms on Technical Debt”. In: 2014
Sixth International Workshop on Managing Technical Debt. MTD ’14. 2014, pp. 1–7.
doi: 10.1109/MTD.2014.9.

[4] Keith Andrews. “Case Study. Visualising Cyberspace: Information Visualisation in
the Harmony Internet Browser”. In: Proceedings of Visualization 1995 Conference.
InfoVis ’95. IEEE, 1995, pp. 97–104. doi: 10.1109/INFVIS.1995.528692.

[5] Keith Andrews. “Visual Exploration of Large Hierarchies with Information Pyra-
mids”. In: Proceedings of the 6th International Conference on Information Visuali-

sation. IV ’02. IEEE, 2002, pp. 793–798. doi: 10.1109/IV.2002.1028871.

[6] Keith Andrews, Josef Wolte, and Michael Pichler. “Information Pyramids®: A
New Approach to Visualizing Large Hierarchies”. In: Proc. IEEE Visualization.
Vol. 97. IEEE Vis ’97. 1997, pp. 49–52.

[7] Daniel Archambault, Helen Purchase, and Bruno Pinaud. “Animation, Small
Multiples, and the E�ect of Mental Map Preservation in Dynamic Graphs”. In:
Transactions on Visualization and Computer Graphics 17.4 (2011), pp. 539–552.
issn: 1077-2626. doi: 10.1109/TVCG.2010.78.

[8] Daniel Atzberger, Tim Cech, Merlin de la Haye, Maximilian Söchting, Willy
Scheibel, Daniel Limberger, and Jürgen Döllner. “Software Forest: A Visu-
alization of Semantic Similarities in Source Code using a Tree Metaphor”. In:
Proceedings of the 16th International Joint Conference on Computer Vision, Imaging

and Computer Graphics Theory and Applications. IVAPP ’21. SciTePress, 2021,
pp. 112–122. isbn: 978-9-897584-88-6. doi: 10.5220/0010267601120122.

[9] David Auber, C. Huet, A. Lambert, B. Renoust, A. Sallaberry, and A. Saulnier.
“GosperMap: Using a Gosper Curve for Laying Out Hierarchical Data”. In: IEEE
Trans Vis Comput Graph. TVCG ’13 19.11 (2013), pp. 1820–1832. issn: 1077-2626.
doi: 10.1109/TVCG.2013.91.

[10] Ketan Babaria. Using Treemaps to Visualize Gene Ontologies. Tech. rep. Human
Computer Interaction Lab and Institute for Systems Research, University of
Maryland, College Park, MD USA, 2001.

[11] Jan Balata, Ladislav Cmolik, and ZdenekMikovec. “On the Selection of 2DObjects
Using External Labeling”. In: Proceedings of the 32nd Annual ACM Conference on

Human Factors in Computing Systems. CHI ’14. ACM, 2014, pp. 2255–2258. isbn:
978-1-450324-73-1. doi: 10.1145/2556288.2557288.

https://doi.org/10.1109/MTD.2014.9
https://doi.org/10.1109/INFVIS.1995.528692
https://doi.org/10.1109/IV.2002.1028871
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.5220/0010267601120122
https://doi.org/10.1109/TVCG.2013.91
https://doi.org/10.1145/2556288.2557288

102 | Chapter 7: Bibliography

[12] Gergő Balogh, Attila Szabolics, and Árpád Beszédes. “CodeMetropolis: Eclipse
over the City of Source Code”. In: 2015 IEEE 15th International Working Conference

on Source Code Analysis and Manipulation. SCAM ’15. 2015, pp. 271–276. doi:
10.1109/SCAM.2015.7335425.

[13] M. Balzer and Oliver Deussen. “Voronoi Treemaps”. In: Proc. IEEE Symp. on

Information Visualization. InfoVis ’05. 2005, pp. 49–56. doi: 10.1109/INFVIS.2005.
1532128.

[14] Michael Balzer and Oliver Deussen. “Hierarchy Based 3D Visualization of Large
Software Structures”. In: Proceedings of the Conference on Visualization ’04. VIS ’04.
IEEE Computer Society, 2004, p. 598.4. isbn: 0-7803-8788-0. doi: 10.1109/VISUAL.
2004.39.

[15] Michael Balzer and Oliver Deussen. “Level-of-detail visualization of clustered
graph layouts”. In: 6th International Asia-Paci�c Symposium on Visualization.
APVIS ’07. IEEE, 2007, pp. 133–140. doi: 10.1109/APVIS.2007.329288.

[16] Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. “Software
Landscapes: Visualizing the Structure of Large Software Systems”. In: Eurograph-
ics / IEEE VGTC Symposium on Visualization. The Eurographics Association, 2004.
isbn: 3-905673-07-X. doi: 10.2312/VisSym/VisSym04/261-266.

[17] Ulrike Bath, Sumit Shekhar, Jürgen Döllner, and Matthias Trapp. “COLiER: Col-
laborative Editing of Raster Images”. In: International Conference on Cyberworlds.
CW ’21. 2021, pp. 33–40. doi: 10.1109/CW52790.2021.00013.

[18] Ulrike Bath, Sumit Shekhar, Julian Egbert, Julian Schmidt, Amir Semmo, Jürgen
Döllner, and Matthias Trapp. “CERVI: Collaborative Editing of Raster and Vector
Images”. In: Springer The Visual Computer 38.12 (2022), pp. 4057–4070. doi: 10.
1007/s00371-022-02522-1.

[19] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. “Image-space Horizon-based
Ambient Occlusion”. In: ACM SIGGRAPH 2008 Talks. 2008, 22:1–1.

[20] Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. “Ordered and
Quantum Treemaps: Making E�ective Use of 2D Space to Display Hierarchies”.
In: ACM Transactions on Graphics 21.4 (2002), pp. 833–854. issn: 0730-0301. doi:
10.1145/571647.571649.

[21] Michael Behrisch et al. “Quality Metrics for Information Visualization”. In: EG
Computer Graphics Forum 37.3 (2018), pp. 625–662. doi: 10.1111/cgf.13446.

[22] Omar Benomar, Houari A. Sahraoui, and Pierre Poulin. “Visualizing software
dynamicities with heat maps”. In: 2013 First IEEE Working Conference on Software

Visualization. VISSOFT ’13. 2013, pp. 1–10. doi: 10.1109/VISSOFT.2013.6650524.

[23] J"org Bernhardt, Stefan Funke, Michael Hecker, and Juliane Siebourg. “Visualiz-
ing Gene Expression Data via Voronoi Treemaps”. In: 2009 Sixth International

Symposium on Voronoi Diagrams. 2009, pp. 233–241. doi: 10.1109/ISVD.2009.33.

[24] Jacques Bertin. Sémiologie graphique. 1967. doi: 10.1002/zamm.19690490917.

[25] Jacques Bertin. Semiology of Graphics. University of Wisconsin Press, 1983. isbn:
978-1-589482-61-6. doi: 10.5555/1095597.

[26] Jacques Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Esri Press, 2010.
isbn: 978-1-589-48261-6.

[27] Donald Bertucci, Md Montaser Hamid, Yashwanthi Anand, Anita Ruangrotsakun,
Delyar Tabatabai, Melissa Perez, and Minsuk Kahng. “Visual Exploration of
Large-Scale Image Datasets for Machine Learning with Treemaps”. In: arXiv
abs/2205.06935 (2022). preprint.

[28] Joseph Bethge, Sebastian Hahn, and Jürgen Döllner. “Improving Layout Quality
by Mixing Treemap-Layouts Based on Data-Change Characteristics”. In: Vision,
Modeling&Visualization. The Eurographics Association, 2017. isbn: 978-3-038680-
49-9. doi: 10.2312/vmv.20171261.

[29] Thomas Bladh, David A Carr, and Jeremiah Scholl. “Extending tree-maps to
three dimensions: A comparative study”. In: Asia-Paci�c Conference on Computer

Human Interaction. APCHI ’04. Springer. 2004, pp. 50–59. doi: 10.1007/978-3-
540-27795-8_6.

https://doi.org/10.1109/SCAM.2015.7335425
https://doi.org/10.1109/INFVIS.2005.1532128
https://doi.org/10.1109/INFVIS.2005.1532128
https://doi.org/10.1109/VISUAL.2004.39
https://doi.org/10.1109/VISUAL.2004.39
https://doi.org/10.1109/APVIS.2007.329288
https://doi.org/10.2312/VisSym/VisSym04/261-266
https://doi.org/10.1109/CW52790.2021.00013
https://doi.org/10.1007/s00371-022-02522-1
https://doi.org/10.1007/s00371-022-02522-1
https://doi.org/10.1145/571647.571649
https://doi.org/10.1111/cgf.13446
https://doi.org/10.1109/VISSOFT.2013.6650524
https://doi.org/10.1109/ISVD.2009.33
https://doi.org/10.1002/zamm.19690490917
https://doi.org/10.5555/1095597
https://doi.org/10.2312/vmv.20171261
https://doi.org/10.1007/978-3-540-27795-8_6
https://doi.org/10.1007/978-3-540-27795-8_6

Bibliography | 103

[30] Thomas Bladh, David A. Carr, and Matjaž Kljun. “The E�ect of Animated Transi-
tions on User Navigation in 3D Tree-maps”. In: 9th International Conference on

Information Visualisation. IV ’05. 2005, pp. 297–305. doi: 10.1109/IV.2005.122.

[31] Renaud Blanch and Eric Lecolinet. “Browsing Zoomable Treemaps: Structure-
Aware Multi-Scale Navigation Techniques”. In: IEEE Trans Vis Comput Graph.
TVCG ’07 13.6 (2007), pp. 1248–1253. issn: 1077-2626. doi: 10.1109/TVCG.2007.
70540.

[32] Sandro Boccuzzo and Harald Gall. “CocoViz: Towards Cognitive Software Vi-
sualizations”. In: Proceedings of the 4th International Workshop on Visualizing

Software for Understanding and Analysis. VISSOFT ’07. IEEE, 2007, pp. 72–79. doi:
10.1109/VISSOF.2007.4290703.

[33] Johannes Bohnet and JürgenDöllner. “Monitoring CodeQuality andDevelopment
Activity by Software Maps”. In: Proceedings of the 2nd Workshop on Managing

Technical Debt. MTD ’11. ACM, 2011, pp. 9–16. isbn: 978-1-450305-86-0. doi:
10.1145/1985362.1985365.

[34] Rita Borgo, Al�e Abdul-Rahman, Farhan Mohamed, Philip W. Grant, Irene Reppa,
Luciano Floridi, and Min Chen. “An Empirical Study on Using Visual Embellish-
ments in Visualization”. In: IEEE Trans Vis Comput Graph 18.12 (2012), pp. 2759–
2768. issn: 1077-2626. doi: 10.1109/TVCG.2012.197.

[35] Nadia Boukhelifa, Anastasia Bezerianos, Tobias Isenberg, and Jean-Daniel Fekete.
“Evaluating Sketchiness as a Visual Variable for the Depiction of Qualitative
Uncertainty”. In: IEEE Trans Vis Comput Graph 18.12 (2012), pp. 2769–2778. issn:
1077-2626. doi: 10.1109/TVCG.2012.220.

[36] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. “LOF:
Identifying Density-Based Local Outliers”. In: Proceedings of the 2000 ACM SIG-

MOD International Conference on Management of Data. SIGMOD ’00. ACM, 2000,
pp. 93–104. isbn: 1-581132-17-4. doi: 10.1145/342009.335388.

[37] Cynthia A. Brewer. “Chapter 7 - Color Use Guidelines for Mapping and Visualiza-
tion”. In: Visualization in Modern Cartography. Vol. 2. Modern Cartography Series.
Academic Press, 1994, pp. 123–147. doi: 10.1016/B978-0-08-042415-6.50014-4.

[38] Nanette Brown et al. “Managing Technical Debt in Software-Reliant Systems”. In:
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research.
FoSER ’10. ACM, 2010, pp. 47–52. isbn: 978-1-450304-27-6. doi: 10.1145/1882362.
1882373.

[39] Je�rey Browne, Bongshin Lee, Sheelagh Carpendale, Nathalie Riche, and Timothy
Sherwood. “Data Analysis on Interactive Whiteboards Through Sketch-based
Interaction”. In: Proceedings of the ACM International Conference on Interactive

Tabletops and Surfaces. ITS ’11. ACM, 2011, pp. 154–157. isbn: 978-1-450308-71-7.
doi: 10.1145/2076354.2076383.

[40] Mark Bruls, Kees Huizing, and Jarke J. van Wijk. “Squari�ed Treemaps”. In:
Data Visualization 2000: Proceedings of the Joint EUROGRAPHICS and IEEE TCVG

Symposium on Visualization. 2000, pp. 33–42. isbn: 978-3-709167-83-0. doi: 10.
1007/978-3-7091-6783-0_4.

[41] Mike Bukowski, Padraic Hennessy, Brian Osman, and Morgan McGuire. “The
Skylanders SWAP Force Depth-of-Field Shader”. In: GPU Pro 4: Advanced Render-

ing Techniques. An A K Peters Book. Taylor & Francis, 2013, pp. 175–184. isbn:
978-1-466567-43-6.

[42] Stefan Buschmann, Matthias Trapp, and Jürgen Döllner. “Real-Time Animated Vi-
sualization of Massive Air-Tra�c Trajectories”. In: 2014 International Conference
on Cyberworlds. 2014, pp. 174–181. doi: 10.1109/CW.2014.32.

[43] Alma Cantu, Olivier Grisvard, Thierry Duval, and Gilles Coppin. “Identifying
the Relationships Between the Visualization Context and Representation Com-
ponents to Enable Recommendations for Designing New Visualizations”. In: 21st
International Conference Information Visualisation. IV ’17. IEEE Computer Society,
2017, pp. 20–28. doi: 10.1109/iV.2017.55.

https://doi.org/10.1109/IV.2005.122
https://doi.org/10.1109/TVCG.2007.70540
https://doi.org/10.1109/TVCG.2007.70540
https://doi.org/10.1109/VISSOF.2007.4290703
https://doi.org/10.1145/1985362.1985365
https://doi.org/10.1109/TVCG.2012.197
https://doi.org/10.1109/TVCG.2012.220
https://doi.org/10.1145/342009.335388
https://doi.org/10.1016/B978-0-08-042415-6.50014-4
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/2076354.2076383
https://doi.org/10.1007/978-3-7091-6783-0_4
https://doi.org/10.1007/978-3-7091-6783-0_4
https://doi.org/10.1109/CW.2014.32
https://doi.org/10.1109/iV.2017.55

104 | Chapter 7: Bibliography

[44] M. Sheelagh T. Carpendale. Considering Visual Variables as a Basis for Information

Visualisation. Tech. rep. University of Calgary, 2003. doi: 10.11575/PRISM/10182.

[45] Yi-Jun Chang and Hsu-Chun Yen. “Constrained �oorplans in 2D and 3D”. In:
Theoretical Computer Science 607 (2015), pp. 320–336. issn: 0304-3975. doi: 10.
1016/j.tcs.2015.07.063.

[46] Abon Chaudhuri and Han-Wei Shen. “A Self-adaptive Treemap-based Technique
for Visualizing Hierarchical Data in 3D”. In: IEEE Paci�c Visualization Symposium.
Vol. 00. IEEE Computer Society, 2009, pp. 105–112. doi: 10.1109/PACIFICVIS.
2009.4906844.

[47] Yi Chen, Xiaomin Du, and Xiaoru Yuan. “Ordered Small Multiple Treemaps for
Visualizing Time-Varying Hierarchical Pesticide Residue Data”. In: Springer The
Visual Computer 33.6 (2017), pp. 1073–1084. issn: 1432-2315. doi: 10.1007/s00371-
017-1373-x.

[48] Ed H. Chi. “A Taxonomy of Visualization Techniques Using the Data State
Reference Model”. In: Proc. IEEE Symp. on Information Visualization. InfoVis ’00.
IEEE Computer Society, 2000. isbn: 0769508049. doi: 10.5555/857190.857691.

[49] Shyam R. Chidamber and Chris F. Kemerer. “A Metrics Suite for Object Oriented
Design”. In: IEEE Trans. Softw. Eng. 20.6 (1994), pp. 476–493. issn: 0098-5589. doi:
10.1109/32.295895.

[50] Junghong Choi, Oh-hyun Kwon, and Kyungwon Lee. “Strata Treemaps”. In:
ACM SIGGRAPH 2011 Posters. SIGGRAPH ’11. ACM, 2011, 87:1–87:1. isbn: 978-1-
450309-71-4. doi: 10.1145/2037715.2037813.

[51] Jon Christensen, Joe Marks, and Stuart Shieber. “An Empirical Study of Algo-
rithms for Point-feature Label Placement”. In: ACM Trans. Graph. 14.3 (1995),
pp. 203–232. doi: 10.1145/212332.212334.

[52] Mei C. Chuah. “Dynamic Aggregation with Circular Visual Designs”. In: Proc.
IEEE Symp. on Information Visualization. InfoVis ’98. 1998, pp. 35–43. isbn: 0-
818690-93-3. doi: 10.1109/INFVIS.1998.729557.

[53] E. Clarkson, J. Foley, and K. Desai. “ResultMaps: Visualization for Search Inter-
faces”. In: IEEE Trans Vis Comput Graph. TVCG ’09 15 (2009), pp. 1057–1064. issn:
1077-2626. doi: 10.1109/TVCG.2009.176.

[54] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. “Using Metrics to
Evaluate Software System Maintainability”. In: Computer 27.8 (1994), pp. 44–49.
issn: 0018-9162. doi: 10.1109/2.303623.

[55] Alexandre Coninx, Georges-Pierre Bonneau, Jacques Droulez, and Guillaume
Thibault. “Visualization of Uncertain Scalar Data Fields using Color Scales and
Perceptually Adapted Noise”. In: Proc. ACM SIGGRAPH Symposium on Applied

Perception in Graphics and Visualization. APGV ’11. ACM, 2011, pp. 59–66. isbn:
978-1-450308-89-2. doi: 10.1145/2077451.2077462.

[56] Michael Correll, Dominik Moritz, and Je�rey Heer. “Value-Suppressing Uncer-
tainty Palettes”. In: Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems. CHI ’18. ACM, 2018, pp. 1–11. isbn: 978-1-450356-20-6. doi:
10.1145/3173574.3174216.

[57] Christoph Csallner, Marcus Handte, Othmar Lehmann, and John Stasko. “Fund-
Explorer: Supporting the Diversi�cation of Mutual Fund Portfolios using Context
Treemaps”. In: Proc. IEEE Symp. on Information Visualization. InfoVis ’03. 2003,
pp. 203–208. doi: 10.1109/INFVIS.2003.1249027.

[58] Qingguang Cui, Matthew Ward, Elke Rundensteiner, and Jing Yang. “Measuring
Data Abstraction Quality in Multiresolution Visualizations”. In: IEEE Trans Vis

Comput Graph 12.5 (2006), pp. 709–716. doi: 10.1109/TVCG.2006.161.

[59] Veronika Dashuber and Michael Philippsen. “Trace Visualization within the Soft-
ware City Metaphor: A Controlled Experiment on Program Comprehension”. In:
Proceedings of the 2021Working Conference on Software Visualization. VISSOFT ’21.
IEEE, 2021, pp. 55–64. doi: 10.1109/VISSOFT52517.2021.00015.

[60] Will Dobbie. “GPU text rendering with vector textures”. In: (2016). wdobbie.com/
post/gpu-text-rendering-with-vector-textures.

https://doi.org/10.11575/PRISM/10182
https://doi.org/10.1016/j.tcs.2015.07.063
https://doi.org/10.1016/j.tcs.2015.07.063
https://doi.org/10.1109/PACIFICVIS.2009.4906844
https://doi.org/10.1109/PACIFICVIS.2009.4906844
https://doi.org/10.1007/s00371-017-1373-x
https://doi.org/10.1007/s00371-017-1373-x
https://doi.org/10.5555/857190.857691
https://doi.org/10.1109/32.295895
https://doi.org/10.1145/2037715.2037813
https://doi.org/10.1145/212332.212334
https://doi.org/10.1109/INFVIS.1998.729557
https://doi.org/10.1109/TVCG.2009.176
https://doi.org/10.1109/2.303623
https://doi.org/10.1145/2077451.2077462
https://doi.org/10.1145/3173574.3174216
https://doi.org/10.1109/INFVIS.2003.1249027
https://doi.org/10.1109/TVCG.2006.161
https://doi.org/10.1109/VISSOFT52517.2021.00015
http://wdobbie.com/post/gpu-text-rendering-with-vector-textures/
http://wdobbie.com/post/gpu-text-rendering-with-vector-textures/

Bibliography | 105

[61] Jürgen Döllner and Maike Walther. “Real-Time Expressive Rendering of City
Models”. In: 2013 17th International Conference on Information Visualisation. IEEE
Computer Society, 2003, pp. 245–250. doi: 10.1109/IV.2003.1217986.

[62] S. Dübel, M. Röhlig, Heidrun Schumann, and Matthias Trapp. “2D and 3D pre-
sentation of spatial data: A systematic review”. In: 2014 IEEE VIS International

Workshop on 3DVis (3DVis). 2014, pp. 11–18. doi: 10.1109/3DVis.2014.7160094.

[63] Steve Dübel, Martin Röhlig, Christian Tominski, and Heidrun Schumann. “Visu-
alizing 3D Terrain, Geo-Spatial Data, and Uncertainty”. In: Informatics 4 (2017).
issn: 2227-9709. doi: 10.3390/informatics4010006.

[64] Charles Dupin. “Carte �gurative de l’instruction populaire de la France, pl. I.”
In: 2 (1826). gallica.bnf.fr/ark:/12148/btv1b530830640, Accessed via Bibliothèque
national de France on 22. March 2023.

[65] Geo�rey Ellis and Alan Dix. “A Taxonomy of Clutter Reduction for Information
Visualisation”. In: IEEE Trans Vis Comput Graph 13.6 (2007), pp. 1216–1223. issn:
1077-2626. doi: 10.1109/TVCG.2007.70535.

[66] Niklas Elmqvist and Jean-Daniel Fekete. “Hierarchical Aggregation for Informa-
tion Visualization: Overview, Techniques, and Design Guidelines”. In: IEEE Trans

Vis Comput Graph 16.3 (2010), pp. 439–454. issn: 1077-2626. doi: 10.1109/TVCG.
2009.84.

[67] Niklas Elmqvist and P. Tsigas. “A Taxonomy of 3D Occlusion Management for
Visualization”. In: IEEE Trans Vis Comput Graph. TVCG ’08 14 (2008), pp. 1095–
1109. issn: 1077-2626. doi: 10.1109/TVCG.2008.59.

[68] Eric Enderton, Erik Sintorn, Peter Shirley, and David Luebke. “Stochastic Trans-
parency”. In: Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games. I3D ’10. ACM, 2010, pp. 157–164. isbn: 978-1-605589-39-8. doi: 10.1145/
1730804.1730830.

[69] Eric Enderton, Erik Sintorn, Peter Shirley, and David Luebke. “Stochastic Trans-
parency”. In: Proc. of the 2010 ACM SIGGRAPH Symposium on Interactive 3DGraph-

ics and Games. I3D ’10. ACM, 2010, pp. 157–164. doi: 10.1145/1730804.1730830.

[70] John Estdale. “Delaying Maintenance Can Prove Fatal”. In: Software Quality
Management XXVII: International Experiences and Initiatives in IT Quality Man-

agementy. Software Quality Management. Solent University, 2019, pp. 95–106.
isbn: 978-1-999654-92-4.

[71] Jean-Daniel Fekete and Catherine Plaisant. “Excentric Labeling: Dynamic Neigh-
borhood Labeling for Data Visualization”. In: Proceedings ACM SIGCHI Conference

on Human Factors in Computing Systems. CHI ’99. ACM, 1999, pp. 512–519. isbn:
0-201485-59-1. doi: 10.1145/302979.303148.

[72] Jean-Daniel Fekete and Catherine Plaisant. “Interactive Information Visualization
of a Million Items”. In: Symposium on Information Visualization. InfoVis ’02. IEEE,
2002, pp. 117–124. isbn: 978-0-769517-51-3. doi: 10.1109/INFVIS.2002.1173156.

[73] Cong Feng, Minglun Gong, Oliver Deussen, and Hui Huang. “Treemapping
via Balanced Partitioning”. In: Proceedings of the International Conference on
Computational Visual Media. CVM ’19. 2019. doi: 10.3724/SP.J.2096-5796.21.00040.

[74] Carolin Fiedler. “Development of a Framework for Controlled Experiments in
Information Visualisation”. Masters’s Thesis. Hasso Plattner Institute, University
of Potsdam, 2018.

[75] Florian Fittkau, E. Koppenhagen, and W. Hasselbring. “Research Perspective on
Supporting Software Engineering via Physical 3D Models”. In: IEEE 3rd Working

Conference on Software Visualization. VISSOFT ’15. 2015, pp. 125–129. doi: 10.
1109/VISSOFT.2015.7332422.

[76] Florian Fittkau, Alexander Krause, andWilhelmHasselbring. “Exploring software
cities in virtual reality”. In: 2015 IEEE 3rd Working Conference on Software Visual-

ization. VISSOFT ’15. 2015, pp. 130–134. doi: 10.1109/VISSOFT.2015.7332423.

https://doi.org/10.1109/IV.2003.1217986
https://doi.org/10.1109/3DVis.2014.7160094
https://doi.org/10.3390/informatics4010006
https://gallica.bnf.fr/ark:/12148/btv1b530830640
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/TVCG.2009.84
https://doi.org/10.1109/TVCG.2009.84
https://doi.org/10.1109/TVCG.2008.59
https://doi.org/10.1145/1730804.1730830
https://doi.org/10.1145/1730804.1730830
https://doi.org/10.1145/1730804.1730830
https://doi.org/10.1145/302979.303148
https://doi.org/10.1109/INFVIS.2002.1173156
https://doi.org/10.3724/SP.J.2096-5796.21.00040
https://doi.org/10.1109/VISSOFT.2015.7332422
https://doi.org/10.1109/VISSOFT.2015.7332422
https://doi.org/10.1109/VISSOFT.2015.7332423

106 | Chapter 7: Bibliography

[77] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. “Hierarchical Soft-
ware Landscape Visualization for System Comprehension: A Controlled Experi-
ment”. In: IEEE 3rd Working Conference on Software Visualization. VISSOFT 15.
2015, pp. 36–45. doi: 10.1109/VISSOFT.2015.7332413.

[78] Michael Friendly. “A Brief History of the Mosaic Display”. In: Journal of Computa-

tional and Graphical Statistics 11.1 (2002), pp. 89–107. doi: 10.1198/106186002317\-
375631.

[79] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones.
“Adaptively Sampled Distance Fields: A General Representation of Shape for
Computer Graphics”. In: Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques. SIGGRAPH ’00. ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 249–254. isbn: 1-581132-08-5. doi: 10.1145/344779.
344899.

[80] George W. Furnas. “Generalized Fisheye Views”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’86. ACM, 1986, pp. 16–
23. isbn: 0-897911-80-6. doi: 10.1145/22627.22342.

[81] Simone Garlandini and Sara Fabrikant. “Evaluating the E�ectiveness and E�-
ciency of Visual Variables for Geographic Information Visualization”. In: 2009,
pp. 195–211. isbn: 978-3-642038-31-0. doi: 10.1007/978-3-642-03832-7_12.

[82] Simon Garnier, Noam Ross, Bob Rudis, Marco Sciaini, Antônio Pedro Camargo,
and Cédric Scherer. viridis(Lite) - Colorblind-Friendly Color Maps for R. sjmgar-
nier.github.io/viridis/. 2021. doi: 10.5281/zenodo.4679424.

[83] Mohammad Ghoniem, Maël Cornil, Bertjan Broeksema, Mickaël Stefas, and
Benoît Otjacques. “Weighted Maps: Treemap Visualization of Geolocated Quan-
titative Data”. In: Proc. International Society for Optical Engineering. Vol. 9397.
2015. doi: 10.1117/12.2079420. url: http://dx.doi.org/10.1117/12.2079420.

[84] Mark Giereth, Harald Bosch, and Thomas Ertl. “A 3D Treemap Approach for
Analyzing the Classi�catory Distribution in Patent Portfolios”. In: Proc. IEEE
Symp. on Visual Analytics Science and Technology. VAST ’08. 2008, pp. 189–190.
doi: 10.1109/VAST.2008.4677380.

[85] Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusu�, Charles D. Hansen,
and Jonathan C. Roberts. “Visual Comparison for Information Visualization”. In:
Information Visualization 10.4 (2011), pp. 289–309. issn: 1473-8716. doi: 10.1177/
1473871611416549.

[86] Alison Gopnik and Clark Glymour. “Causal Maps and Bayes Nets: A Cognitive
and Computational Account of Theory-formation”. In: 2002, pp. 117–132. isbn:
978-0-521812-29-0. doi: 10.1017/CBO9780511613517.007.

[87] Jochen Görtler, Christoph Schulz, Daniel Weiskopf, and Oliver Deussen. “Bub-
ble Treemaps for Uncertainty Visualization”. In: IEEE Trans Vis Comput Graph.
TVCG ’17 24.1 (2018), pp. 719–728. doi: 10.1109/TVCG.2017.2743959.

[88] Chris Green. “Improved Alpha-tested Magni�cation for Vector Textures and
Special E�ects”. In: ACM SIGGRAPH 2007 Courses. SIGGRAPH ’07. ACM, 2007,
pp. 9–18. isbn: 978-1-450318-23-5. doi: 10.1145/1281500.1281665.

[89] Saul Greenberg, Sheelagh Carpendale, Nicolai Marquardt, and Bill Buxton. Sketch-
ing User Experiences: The Workbook. Morgan Kaufmann Publishers Inc., 2011.
isbn: 978-0-123819-59-8. doi: 10.5555/2208198.

[90] Brendan Gregg. “The Flame Graph”. In: Communications 59.6 (2016), pp. 48–57.
issn: 0001-0782. doi: 10.1145/2909476.

[91] John A. Guerra-Gómez, Cati Boulanger, Sanjay Kairam, and David A. Shamma.
“Identifying Best Practices for Visualizing Photo Statistics and Galleries Using
Treemaps”. In: Proceedings of the International Working Conference on Advanced

Visual Interfaces. AVI ’16. ACM, 2016, pp. 60–63. isbn: 978-1-450341-31-8. doi:
10.1145/2909132.2909280.

[92] John Alexis Guerra-Gómez, M. L. Pack, Catherine Plaisant, and Ben Shneiderman.
“Visualizing Change over Time Using Dynamic Hierarchies: TreeVersity2 and the
StemView”. In: IEEE Trans Vis Comput Graph. TVCG ’13 19 (2013), pp. 2566–2575.
issn: 1077-2626. doi: 10.1109/TVCG.2013.231.

https://doi.org/10.1109/VISSOFT.2015.7332413
https://doi.org/10.1198/106186002317\-375631
https://doi.org/10.1198/106186002317\-375631
https://doi.org/10.1145/344779.344899
https://doi.org/10.1145/344779.344899
https://doi.org/10.1145/22627.22342
https://doi.org/10.1007/978-3-642-03832-7_12
https://sjmgarnier.github.io/viridis/
https://sjmgarnier.github.io/viridis/
https://doi.org/10.5281/zenodo.4679424
https://doi.org/10.1117/12.2079420
http://dx.doi.org/10.1117/12.2079420
https://doi.org/10.1109/VAST.2008.4677380
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1017/CBO9780511613517.007
https://doi.org/10.1109/TVCG.2017.2743959
https://doi.org/10.1145/1281500.1281665
https://doi.org/10.5555/2208198
https://doi.org/10.1145/2909476
https://doi.org/10.1145/2909132.2909280
https://doi.org/10.1109/TVCG.2013.231

Bibliography | 107

[93] Stefan Gustavson. “Procedural Textures in GLSL”. In: OpenGL Insights. CRC Press,
2012, pp. 105–120. isbn: 978-1-439893-76-0.

[94] Robert B Haber and David A McNabb. “Visualization idioms: A conceptual model
for scienti�c visualization systems”. In: Visualization in Scienti�c Computing 74
(1990), pp. 74–93.

[95] Paul Haeberli and Kurt Akeley. “The Accumulation Bu�er: Hardware Support for
High-Quality Rendering”. In: Proceedings of the 17th Annual Conference on Com-

puter Graphics and Interactive Techniques. SIGGRAPH ’90. ACM, 1990, pp. 309–
318. isbn: 0-897913-44-2. doi: 10.1145/97879.97913.

[96] HalehHagh-Shenas, Sunghee Kim, Victoria Interrante, and Christopher G. Healey.
“Weaving Versus Blending: a Quantitative Assessment of the Information Car-
rying Capacities of Two Alternative Methods for Conveying Multivariate Data
with Color”. In: Transactions on Visualization and Computer Graphics 13.6 (2007),
pp. 1270–1277. doi: 10.1109/TVCG.2007.70623.

[97] Sebastian Hahn, Joseph Bethge, and Jürgen Döllner. “Relative Direction Change -
A Topology-based Metric for Layout Stability in Treemaps”. In: Proceedings of
the 12th International Joint Conference on Computer Vision, Imaging and Com-

puter Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017).
INSTICC. SciTePress, 2017, pp. 88–95. isbn: 978-9-897582-28-8. doi: 10.5220/
0006117500880095.

[98] Sebastian Hahn and Jürgen Döllner. “Hybrid-Treemap Layouting”. In: EuroVis
2017 - Short Papers. EuroVis ’17. The Eurographics Association, 2017, pp. 79–83.
isbn: 978-3-038680-43-7. doi: 10.2312/eurovisshort.20171137.

[99] Maurice H. Halstead. Elements of Software Science (Operating and Programming

Systems Series). Elsevier Science Inc., 1977. doi: 10.5555/540137.

[100] Frank van Ham and Jarke J. van Wijk. “Beamtrees: Compact Visualization of
Large Hierarchies”. In: Palgrave Information Visualization 2.1 (2003), pp. 31–39.
doi: 10.1057/palgrave.ivs.9500036.

[101] M. C. Hao, Umeshwar Dayal, Daniel A. Keim, and Tobias Schreck. “Importance-
driven Visualization Layouts for Large Time Series Data”. In: Proc. IEEE Symp. on

Information Visualization. 2005, pp. 203–210. doi: 10.1109/INFVIS.2005.1532148.

[102] Ming C. Hao, Umeshwar Dayal, Daniel A. Keim, and Tobias Schreck. “Multi-
Resolution Techniques for Visual Exploration of Large Time-Series Data”. In:
Eurographics/IEEE VGTC Symposium on Visualization. EUROVIS ’07. 2007, pp. 27–
34. doi: 10.2312/VisSym/EuroVis07/027-034.

[103] Simon Harper, Eleni Michailidou, and Robert Stevens. “Toward a De�nition of
Visual Complexity As an Implicit Measure of Cognitive Load”. In: ACM Trans.

Appl. Percept. 6.2 (2009), 10:1–18. issn: 1544-3558. doi: 10.1145/1498700.1498704.

[104] Mark Harrower and Cynthia A. Brewer. “ColorBrewer.org: An Online Tool for
Selecting Colour Schemes forMaps”. In: Taylor & Francis The Cartographic Journal

40.1 (2003), pp. 27–37. doi: 10.1179/000870403235002042.

[105] Helwig Hauser and Heidrun Schumann. “Visualization Pipeline”. In: Encyclopedia
of Database Systems. Springer US, 2009, pp. 3414–3416. isbn: 978-0-387-39940-9.
doi: 10.1007/978-0-387-39940-9_1133.

[106] Christopher G. Healey and James T. Enns. “Building Perceptual Textures to
Visualize Multidimensional Datasets”. In: Proc. of VIS. VIS ’98. IEEE Computer
Society Press, 1998, pp. 111–118. doi: 10.1109/VISUAL.1998.745292.

[107] Christopher G. Healey and James T. Enns. “Large Datasets at a Glance: Combining
Textures and Colors in Scienti�c Visualization”. In: IEEE TVCG. TVCG ’99 5.2
(1999), pp. 145–167. issn: 1077-2626. doi: 10.1109/2945.773807.

[108] Rinse van Hees and Jurriaan Hage. “Stable and Predictable Voronoi Treemaps for
Software Quality Monitoring”. In: Elsevier Information and Software Technology

87 (2017), pp. 242–258. doi: https://doi.org/10.1016/j.infsof.2016.10.003.

[109] Roland Heilmann, Daniel A. Keim, Christian Panse, andMike Sips. “RecMap: Rect-
angular Map Approximations”. In: Proc. IEEE Symp. on Information Visualization.
InfoVis ’03. 2004, pp. 33–40. doi: 10.1109/INFVIS.2004.57.

https://doi.org/10.1145/97879.97913
https://doi.org/10.1109/TVCG.2007.70623
https://doi.org/10.5220/0006117500880095
https://doi.org/10.5220/0006117500880095
https://doi.org/10.2312/eurovisshort.20171137
https://doi.org/10.5555/540137
https://doi.org/10.1057/palgrave.ivs.9500036
https://doi.org/10.1109/INFVIS.2005.1532148
https://doi.org/10.2312/VisSym/EuroVis07/027-034
https://doi.org/10.1145/1498700.1498704
https://doi.org/10.1179/000870403235002042
https://doi.org/10.1007/978-0-387-39940-9_1133
https://doi.org/10.1109/VISUAL.1998.745292
https://doi.org/10.1109/2945.773807
https://doi.org/https://doi.org/10.1016/j.infsof.2016.10.003
https://doi.org/10.1109/INFVIS.2004.57

108 | Chapter 7: Bibliography

[110] Alexandre Henrique Ichihara Pires, Rodrigo Santos do Amor Divino Lima, Carlos
Gustavo Resque dos Santos, Bianchi Serique Meiguins, and Anderson Gregório
Marques Soares. “A summarization glyph for sets of unreadable visual items in
treemaps”. In: 2020 24th International Conference Information Visualisation (IV).
IV ’20. 2020, pp. 242–247. doi: 10.1109/IV51561.2020.00047.

[111] Danny Holten. “Hierarchical Edge Bundles: Visualization of Adjacency Relations
in Hierarchical Data”. In: IEEE Trans Vis Comput Graph. TVCG ’06 12.5 (2006),
pp. 741–748. issn: 1077-2626. doi: 10.1109/TVCG.2006.147.

[112] Danny Holten, Roel. Vliegen, and Jarke J. van Wijk. “Visual Realism for the
Visualization of Software Metrics”. In: Proc. of VISSOFT. VISSOFT ’05. IEEE
Computer Society, 2005, pp. 1–6. doi: 10.1109/VISSOF.2005.1684299.

[113] Johannes Holvitie, Sherlock A. Licorish, Rodrigo O. Spínola, Sami Hyrynsalmi,
Stephen G. MacDonell, Thiago S. Mendes, Jim Buchan, and Ville Leppänen.
“Technical Debt and Agile Software Development Practices and Processes: An
Industry Practitioner Survey”. In: Inf. Softw. Technol. 96.C (2018), pp. 141–160.
issn: 0950-5849. doi: 10.1016/j.infsof.2017.11.015.

[114] Michael. S. Horn, Matthew Tobiasz, and Chia Shen. “Visualizing Biodiversity with
Voronoi Treemaps”. In: 2009 Sixth International Symposium on Voronoi Diagrams.
2009, pp. 265–270. doi: 10.1109/ISVD.2009.22.

[115] Eduard Imhof. “Positioning Names on Maps”. In: The American Cartographer 2.2
(1975), pp. 128–144. doi: 10.1559/152304075784313304.

[116] Tobias Isenberg. “Evaluating and Validating Non-Photorealistic and Illustrative
Rendering”. In: Image and Video based Artistic Stylisation. Vol. 42. Springer, 2013,
pp. 311–331. doi: 10.1007/978-1-4471-4519-6_15.

[117] Takayuki Itoh, Yasumasa Kajinaga, Yumi Yamaguchi, and Yuko Ikehata. “Hi-
erarchical Data Visualization Using a Fast Rectangle-Packing Algorithm”. In:
Transactions on Visualization and Computer Graphics. TVCG ’04 10 (2004), pp. 302–
313. issn: 1077-2626. doi: 10.1109/TVCG.2004.1272729.

[118] Takayuki Itoh, Hiroki Takakura, Atsushi Sawada, and Koji Koyamada. “Hierar-
chical Visualization of Network Intrusion Detection Data”. In: Computer Graphics

& Applications 26.2 (2006), pp. 40–47. issn: 0272-1716. doi: 10.1109/MCG.2006.34.

[119] łLukasz Izdebski and Dariusz Sawicki. “Easing Functions in the New Form Based
on Bézier Curves”. In: Computer Vision and Graphics. Springer International
Publishing, Sept. 2016, pp. 37–48. isbn: 978-3-319464-17-6. doi: 10.1007/978-3-
319-46418-3_4.

[120] Mahipal Jadeja and Rahul Muthu. “Labeled object treemap: A new graph-labeling
based technique for visualizing multiple hierarchies”. In: Annals of Pure and
Applied Mathematics 13 (2017), pp. 49–62. doi: 10.22457/apam.v13n1a6.

[121] Jacek Jankowski and Martin Hachet. “Advances in Interaction with 3D Environ-
ments”. In: Comput. Graph. Forum 34.1 (2015), pp. 152–190. issn: 0167-7055. doi:
10.1111/cgf.12466.

[122] Jensen Huang as interviewed by Tom Simonite. “Nvidia CEO: Software Is Eating
the World, but AI Is Going to Eat Software”. In: Technology Review (May 2017).
technologyreview.com/2017/05/12/151722.

[123] Mikael Jern, Jakob Rogstadius, and Tobias Åström. “Treemaps and Choropleth
Maps Applied to Regional Hierarchical Statistical Data”. In: 13th International

Conference Information Visualisation. 2009, pp. 403–410. doi: 10.1109/IV.2009.97.

[124] Brian Scott Johnson. “Treemaps: Visualizing Hierarchical and Categorical Data”.
UMI Order No. GAX94-25057. PhD thesis. College Park, MD, USA: University of
Maryland, 1993.

[125] Brian Scott Johnson and Ben Shneiderman. “Tree-Maps: A Space-�lling Approach
to the Visualization of Hierarchical Information Structures”. In: Proc. Conference
on Visualization. VIS ’91. IEEE, 1991, pp. 284–291. isbn: 0-8186-2245-8.

[126] John B. Johnston. “Structure of multiple activity algorithms”. In: Proc. Symp. on

Operating Systems Principles. SOSP ’69. ACM, 1969, pp. 80–82.

https://doi.org/10.1109/IV51561.2020.00047
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/VISSOF.2005.1684299
https://doi.org/10.1016/j.infsof.2017.11.015
https://doi.org/10.1109/ISVD.2009.22
https://doi.org/10.1559/152304075784313304
https://doi.org/10.1007/978-1-4471-4519-6_15
https://doi.org/10.1109/TVCG.2004.1272729
https://doi.org/10.1109/MCG.2006.34
https://doi.org/10.1007/978-3-319-46418-3_4
https://doi.org/10.1007/978-3-319-46418-3_4
https://doi.org/10.22457/apam.v13n1a6
https://doi.org/10.1111/cgf.12466
https://www.technologyreview.com/2017/05/12/151722
https://doi.org/10.1109/IV.2009.97

Bibliography | 109

[127] John B. Johnston. “The Contour Model of Block Structured Processes”. In: SIG-
PLAN Not. 6.2 (1971), pp. 55–82. issn: 0362-1340. doi: 10.1145/1115880.1115883.

[128] Walter-Alexander Jungmeister and David Turo. Adapting Treemaps to Stock

Portfolio Visualization. Tech. rep. University of Maryland, 1992.

[129] Konstantinos G. Kakoulis and Ioannis G. Tollis. “Labeling Algorithms”. In: Hand-
book of Graph Drawing and Visualization. Chapman and Hall/CRC, 2013. isbn:
978-1-584884-12-5.

[130] Benjamin Karran, Jonas Trümper, and Jürgen Döllner. “SYNCTRACE: Visual
Thread-Interplay Analysis”. In: First IEEE Working Conference on Software Visu-

alization. VISSOFT ’13. 2013, pp. 1–10. isbn: 978-1-479914-57-9. doi: 10.1109/
VISSOFT.2013.6650534.

[131] Karl G. Karsten.Charts AndGraphs. Retrieved from archive.org/details/in.ernet.dli.
2015.13852. Prentice-Hall, Inc, 1925.

[132] Daniel A. Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Gorg, Jorn
Kohlhammer, and Guy Melançon. “Visual analytics: De�nition, process, and
challenges”. In: Information Visualization. Lecture Notes in Computer Science 4950
(2008), pp. 154–176. doi: 10.1007/978-3-540-70956-5_7.

[133] Can Keskin and Volker Vogelmann. “E�ective Visualization of Hierarchical
Graphs With the Cityscape Metaphor”. In: Proceedings of the 1997 Workshop

on New Paradigms in Information Visualization and Manipulation. NPIV ’97. ACM,
1997, pp. 52–57. isbn: 1-58113-051-1. doi: 10.1145/275519.275531.

[134] Yongjin Kim, Jingyi Yu, Xuan Yu, and Seungyong Lee. “Line-art Illustration of
Dynamic and Specular Surfaces”. In: Transactions on Graphics 27.5 (), 156:1–
156:10. doi: 10.1145/1409060.1409109.

[135] Gordon Kindlmann and Carlos Scheidegger. “An Algebraic Process for Visualiza-
tion Design”. In: IEEE Trans Vis Comput Graph 20.12 (2014), pp. 2181–2190. issn:
1077-2626. doi: 10.1109/TVCG.2014.2346325.

[136] Claire Knight and Malcom Munro. “Virtual but Visible Software”. In: Conference
on Information Visualization. An International Conference on Computer Visualiza-

tion and Graphics. IV ’2000. IEEE. 2000, pp. 198–205. isbn: 0-769507-43-3. doi:
10.1109/IV.2000.859756.

[137] Aimi Kobayashi, Kazuo Misue, and Jiro Tanaka. “Edge Equalized Treemaps”. In:
16th International Conference on Information Visualisation. IV ’12. 2012, pp. 7–12.
doi: 10.1109/IV.2012.12.

[138] Nicholas Kong, Je�rey Heer, and Maneesh Agrawala. “Perceptual Guidelines for
Creating Rectangular Treemaps”. In: IEEE Trans Vis Comput Graph 16.6 (2010),
pp. 990–998. issn: 1077-2626. doi: 10.1109/TVCG.2010.186.

[139] Bastian König, Daniel Limberger, Jan Klimke, Benjamin Hagedorn, and Jürgen
Döllner. “RoomCanvas: A Visualization System for Spatiotemporal Temperature
Data in Smart Homes”. In: EuroVis 2021 - Short Papers. EuroVis ’21. EG, 2021,
pp. 13–17. isbn: 978-3-038681-43-4. doi: 10.2312/evs.20211048.

[140] Jonas Kordt, Paul Brachmann, Daniel Limberger, and Christoph Lippert. “In-
teractive Volumetric Region Growing for Brain Tumor Segmentation on MRI
Using WebGL”. In: Proceedings of the 26th International Conference on 3D Web

Technology. Web3D ’21. ACM, 2021, 2:1–8. isbn: 978-1-450390-95-8. doi: 10.1145/
3485444.3487640.

[141] Joseph B. Kruskal and James M. Landwehr. “Icicle plots: Better displays for
hierarchical clustering”. In: Taylor & Francis The American Statistician 37 (1983),
pp. 162–168.

[142] Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. “Consistent Layout for The-
matic Software Maps”. In: 2008 15th Working Conference on Reverse Engineering.
WCRE ’08. IEEE, 2008, pp. 209–218. doi: 10.1109/WCRE.2008.45.

[143] Daniel O. Kutz. “Examining the Evolution and Distribution of Patent Classi�ca-
tions”. In: Proc. 8th International Conference on Information Visualisation. IV04.
2004, pp. 983–988. doi: 10.1109/IV.2004.1320261.

https://doi.org/10.1145/1115880.1115883
https://doi.org/10.1109/VISSOFT.2013.6650534
https://doi.org/10.1109/VISSOFT.2013.6650534
https://archive.org/details/in.ernet.dli.2015.13852
https://archive.org/details/in.ernet.dli.2015.13852
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1145/275519.275531
https://doi.org/10.1145/1409060.1409109
https://doi.org/10.1109/TVCG.2014.2346325
https://doi.org/10.1109/IV.2000.859756
https://doi.org/10.1109/IV.2012.12
https://doi.org/10.1109/TVCG.2010.186
https://doi.org/10.2312/evs.20211048
https://doi.org/10.1145/3485444.3487640
https://doi.org/10.1145/3485444.3487640
https://doi.org/10.1109/WCRE.2008.45
https://doi.org/10.1109/IV.2004.1320261

110 | Chapter 7: Bibliography

[144] Sehi L’Yi, Jaemin Jo, and Jinwook Seo. “Comparative Layouts Revisited: Design
Space, Guidelines, and Future Directions”. In: IEEE Trans Vis Comput Graph 27.2
(2021), pp. 1525–1535. doi: 10.1109/TVCG.2020.3030419.

[145] Adam Lake, Carl Marshall, Mark Harris, andMarc Blackstein. “Stylized Rendering
Techniques for Scalable Real-Time 3D Animation”. In: Proceedings of the 1st In-
ternational Symposium on Non-Photorealistic Animation and Rendering. NPAR ’00.
ACM, 2000, pp. 13–20. isbn: 978-1-581132-77-9. doi: 10.1145/340916.340918.

[146] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. “Exploring the Evo-
lution of Software Quality with Animated Visualization”. In: Proceedings of the
2008 IEEE Symposium on Visual Languages and Human-Centric Computing. VL-
HCC ’08. IEEE Computer Society, 2008, pp. 13–20. isbn: 978-1-424425-28-0. doi:
10.1109/VLHCC.2008.4639052.

[147] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. “Visualization-based
Analysis of Quality for Large-scale Software Systems”. In: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering. ASE ’05.
ACM, 2005, pp. 214–223. isbn: 1-58113-993-4. doi: 10.1145/1101908.1101941.

[148] Eric Lengyel. “GPU-Centered Font Rendering Directly from Glyph Outlines”. In:
Journal of Computer Graphics Techniques. JCGT ’17 6.2 (2017), pp. 31–47. issn:
2331-7418.

[149] Jie Liang, Quang Vinh Nguyen, Simeon Simo�, and Mao Lin Huang. “Divide
and Conquer Treemaps”. In: Journal of Visual Languages & Computing 31 (2015),
pp. 104–127. issn: 1045-926X. doi: 10.1016/j.jvlc.2015.10.009.

[150] Peter Liggesmeyer, Jens Heidrich, Jürgen Münch, Robert Kalcklösch, Henning
Barthel, and Dirk Zeckzer. “Visualization of Software and Systems as Support
Mechanism for Integrated Software Project Control”. In: Proc. of HCI. 2009,
pp. 846–855. doi: 10.1007/978-3-642-02574-7_94.

[151] Daniel Müller (now Limberger). “Computergenerierte Bleistiftzeichnungen von
3D-Stadtmodellen”. daniellimberger.de/[../...]Computergenerierte Bleistiftzeich-
nungen von 3D-Stadtmodellen.pdf. Bachelor’s Thesis. Hasso Plattner Institute,
University of Potsdam, 2009.

[152] Shixia Liu, Nan Cao, and Hao Lv. “Interactive Visual Analysis of the NSF Funding
Information”. In: 2008 IEEE Paci�c Visualization Symposium. 2008, pp. 183–190.
doi: 10.1109/PACIFICVIS.2008.4475475.

[153] Zhicheng Liu and John Stasko. “Mental Models, Visual Reasoning and Interac-
tion in Information Visualization: A Top-down Perspective”. In: Transactions on
Visualization and Computer Graphics 16.6 (2010), pp. 999–1008. doi: 10.1109/
TVCG.2010.177.

[154] Haik Lorenz, Matthias Trapp, Jürgen Döllner, and Markus Jobst. “Interactive
Multi-Perspective Views of Virtual 3D Landscape and City Models”. In: The
European Information Society. Springer, 2008, pp. 301–321. doi: 10.1007/978-3-
540-78946-8_16.

[155] Hao Lü and James Fogarty. “Cascaded Treemaps: Examining the Visibility and
Stability of Structure in Treemaps”. In: Proceedings of Graphics Interface 2008.
GI ’08. Canadian Information Processing Society, 2008, pp. 259–266. isbn: 978-1-
568814-23-0. doi: 10.5555/1375714.1375758.

[156] Martin Luboschik, Axel Radlo�, and Heidrun Schumann. “Using Non-Photoreali-
stic Rendering Techniques for the Visualization of Uncertainty”. In: Poster at
IEEE Conference on Information Visualization. InfoVis ’10. Poster. 2010.

[157] Martin Luboschik and Heidrun Schumann. “Discovering the covered: Ghost-
views in information visualization”. In: Proceedings of the 16th International

Conference in Central Europe on Computer Graphics, Visualization and Computer

Vision. WSCG ’08. 2008, pp. 113–118. isbn: 978-80-86943-15-2. doi: 11025/10927.

[158] Shiyong Ma and Zhen Zhang. “OmicsMapNet: Transforming Omics Data to Take
Advantage of Deep Convolutional Neural Network for Discovery”. In: arXiv
Computing Research Repository (2018).

https://doi.org/10.1109/TVCG.2020.3030419
https://doi.org/10.1145/340916.340918
https://doi.org/10.1109/VLHCC.2008.4639052
https://doi.org/10.1145/1101908.1101941
https://doi.org/10.1016/j.jvlc.2015.10.009
https://doi.org/10.1007/978-3-642-02574-7_94
https://daniellimberger.de/resources/2009%20--%20Mueller%20(now%20Limberger)%20--%20Computergenerierte%20Bleistiftzeichnungen%20von%203D-Stadtmodellen.pdfhttps://github.com/cgcostume/portfolio/blob/75440db393c98cb66e7960fca08b145a6aacb6fe/source/resources/2009%20--%20Mueller%20(now%20Limberger)%20--%20Computergenerierte%20Bleistiftzeichnungen%20von%203D-Stadtmodellen.pdf
https://daniellimberger.de/resources/2009%20--%20Mueller%20(now%20Limberger)%20--%20Computergenerierte%20Bleistiftzeichnungen%20von%203D-Stadtmodellen.pdfhttps://github.com/cgcostume/portfolio/blob/75440db393c98cb66e7960fca08b145a6aacb6fe/source/resources/2009%20--%20Mueller%20(now%20Limberger)%20--%20Computergenerierte%20Bleistiftzeichnungen%20von%203D-Stadtmodellen.pdf
https://doi.org/10.1109/PACIFICVIS.2008.4475475
https://doi.org/10.1109/TVCG.2010.177
https://doi.org/10.1109/TVCG.2010.177
https://doi.org/10.1007/978-3-540-78946-8_16
https://doi.org/10.1007/978-3-540-78946-8_16
https://doi.org/10.5555/1375714.1375758
https://doi.org/11025/10927

Bibliography | 111

[159] StefanMaass and Jürgen Döllner. “Embedded labels for line features in interactive
3D virtual environments”. In: Proceedings of the 5th International Conference

on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa.
AFRIGRAPH ’07. ACM, 2007, pp. 53–59. isbn: 978-1-595939-06-7. doi: 10.1145/
1294685.1294695.

[160] Alan M. MacEachren. “The Evolution of Thematic Cartography / A Research
Methodology and Historical Review”. In: Cartographica: The International Journal
for Geographic Information and Geovisualization 16 (1979), pp. 17–33.

[161] Alan M. MacEachren, Robert E. Roth, James O’Brien, Bonan Li, Derek Swingley,
and Mark Gahegan. “Visual semiotics & uncertainty visualization: An empirical
study”. In: IEEE Trans Vis Comput Graph. TVCG ’12 18.12 (2012), pp. 2496–2505.
doi: 10.1109/TVCG.2012.279.

[162] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. “3D Representations for
Software Visualization”. In: Proceedings of the 2003 ACM Symposium on Software

Visualization. SoftVis ’03. ACM, 2003, 27–�. isbn: 1-58113-642-0. doi: 10.1145/
774833.774837.

[163] Fernando Marson and Soraia Raupp Musse. “Automatic Real-time Generation
of Floor Plans Based on Squari�ed Treemaps Algorithm”. In: ACM International

Journal of Computer Games Technology (2010), 7:1–10. doi: 10.1155/2010/624817.

[164] Vivian C McAlister. “Datum isn’t; data are”. In: Canadian journal of surgery.

Journal canadien de chirurgie 59.4 (2016), pp. 220–221. issn: 0008-428X. doi:
10.1503/cjs.009316.

[165] Thomas J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software

Engineering 2.4 (1976), pp. 308–320. doi: 10.1109/TSE.1976.233837.

[166] David McCandless. “Knowledge Is Beautiful”. In: 2013.

[167] David McCandless. The Beauty of Data Visualization. ted.com/talks/david_
mccandless_the_beauty_of_data_visualization. Aug. 2010.

[168] Morgan McGuire, Brian Osman, Michael Bukowski, and Padraic Hennessy. “The
Alchemy Screen-Space Ambient Obscurance Algorithm”. In: Proceedings of the
ACM SIGGRAPH Symposium on High Performance Graphics. HPG ’11. ACM, 2011,
pp. 25–32. isbn: 978-1-450308-96-0. doi: 10.1145/2018323.2018327.

[169] Barbara J. Meier. “Painterly Rendering for Animation”. In: Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’96. ACM, 1996, pp. 477–484. doi: 10.1145/237170.237288.

[170] Maysam Mirahmadi and Abdallah Shami. “A Novel Algorithm for Real-time
Procedural Generation of Building Floor Plans”. In: arXiv Computing Research

Repository abs/1211.5842 (2012).

[171] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. “Layout Adjustment
and the Mental Map”. In: Elsevier Journal of Visual Languages & Computing 6.2
(1995), pp. 183–210. issn: 1045-926X. doi: https://doi.org/10.1006/jvlc.1995.1010.

[172] Pascal Molli, Hala Skaf-Molli, and Christophe Bouthier. “State Treemap: an
Awareness Widget for Multi-Synchronous Groupware”. In: Proceedings of the 7th
International Workshop on Groupware. CRIWG ’01. IEEE, 2001, pp. 106–114. doi:
10.1109/CRIWG.2001.951823.

[173] DavidMoreno-Lumbreras, RobertoMinelli, Andrea Villaverde, JesúsM. González-
Barahona, and Michele Lanza. “CodeCity: On-Screen or in Virtual Reality?” In:
Working Conference on Software Visualization. VISSOFT ’21. 2021, pp. 12–22. doi:
10.1109/VISSOFT52517.2021.00011.

[174] Jurriaan D. Mulder, Frans C. A. Groen, and Jarke J. van Wijk. “Pixel Masks for
Screen-Door Transparency”. In: Proceedings of the Conference on Visualization.
VIS ’98. IEEE Computer Society Press, 1998, pp. 351–358. isbn: 1-581131-06-2.
doi: 10.5555/288216.288309.

[175] Tanja Munz, Michael Burch, Toon van Benthem, Yoeri Poels, Fabian Beck, and
Daniel Weiskopf. “Overlap-Free Drawing of Generalized Pythagoras Trees for
Hierarchy Visualization”. In: 2019 IEEE Visualization Conference. VIS ’19. 2019,
pp. 251–255. doi: 10.1109/VISUAL.2019.8933606.

https://doi.org/10.1145/1294685.1294695
https://doi.org/10.1145/1294685.1294695
https://doi.org/10.1109/TVCG.2012.279
https://doi.org/10.1145/774833.774837
https://doi.org/10.1145/774833.774837
https://doi.org/10.1155/2010/624817
https://doi.org/10.1503/cjs.009316
https://doi.org/10.1109/TSE.1976.233837
https://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization
https://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization
https://doi.org/10.1145/2018323.2018327
https://doi.org/10.1145/237170.237288
https://doi.org/https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1109/CRIWG.2001.951823
https://doi.org/10.1109/VISSOFT52517.2021.00011
https://doi.org/10.5555/288216.288309
https://doi.org/10.1109/VISUAL.2019.8933606

112 | Chapter 7: Bibliography

[176] Tamara Munzner. Visualization Analysis and Design. AK Peters Visualization
Series. CRC Press, 2014. isbn: 978-1-498759-71-7. doi: 10.1201/b17511.

[177] I. Nassi and Ben Shneiderman. “Flowchart Techniques for Structured Program-
ming”. In: SIGPLAN Notices 8.8 (1973). ACM, pp. 12–26. issn: 0362-1340. doi:
10.1145/953349.953350.

[178] Quang Vinh Nguyen and Mao Lin Huang. “Improvements of Space-optimized
Tree for Visualizing and Manipulating Very Large Hierarchies”. In: Selected
Papers from the 2002 Pan-Sydney Workshop on Visualisation - Volume 22. VIP ’02.
Australian Computer Society, Inc., 2002, pp. 75–81. isbn: 1-920682-01-5. doi:
10.5555/1164094.1164106.

[179] Marc Nienhaus and Jürgen Döllner. “Sketchy Drawings”. In: Proc. ACM 3rd

International Conference on Computer Graphics, Virtual Reality, Visualisation and

Interaction in Africa. AFRIGRAPH ’04. ACM, 2004, pp. 73–81. isbn: 978-1-581138-
63-4. doi: 10.1145/1029949.1029963.

[180] Arlind Nocaj and Ulrik Brandes. “Computing Voronoi Treemaps: Faster, Simpler,
and Resolution-independent”. In: EG Computer Graphics Forum 31.3pt1 (2012),
pp. 855–864. doi: 10.1111/j.1467-8659.2012.03078.x.

[181] Ste�en Oeltze-Jafra and Bernhard Preim. “Survey of Labeling Techniques in
Medical Visualizations”. In: Proceedings of the 4th EurographicsWorkshop on Visual

Computing for Biology and Medicine. VCBM ’14. Vienna, Austria: Eurographics
Association, 2014, pp. 199–208. isbn: 978-3-905674-62-0. doi: 10 .2312/vcbm.
20141192.

[182] S. Okajima and Y. Okada. “Treecube+3D-ViSOM: Combinational Visualization
Tool for Browsing 3D Multimedia Data”. In: 11th International Conference on

Information Visualization. 2007, pp. 40–45. doi: 10.1109/IV.2007.117.

[183] OpenAI. “ChatGPT”. In: (Nov. 2022). openai.com/blog/chatgpt.

[184] OpenAI and GitHub. “GitHub Copilot”. In: (2021). copilot.github.com.

[185] Philipp Otto, Daniel Limberger, and Jürgen Döllner. “Physically-based Environ-
ment and Area Lighting using Progressive Rendering in WebGL”. In: Proceedings
of the 25th International Conference on 3D Web Technology. Web3D ’20. ACM,
2020, 15:1–9. isbn: 978-1-450381-69-7. doi: 10.1145/3424616.3424697.

[186] Thomas Panas, Rebecca Berrigan, and John Grundy. “A 3D Metaphor for Soft-
ware Production Visualization”. In: Proc. 7th International Conf. on Information

Visualization. 2003, pp. 314–319. doi: 10.1109/IV.2003.1217996.

[187] Sebastian Pasewaldt, Matthias Trapp, and Jürgen Döllner. “Multiscale Visualiza-
tion of 3D Geovirtual Environments Using View-Dependent Multi-Perspective
Views”. In: Journal of WSCG 19.3 (2011), pp. 111–118.

[188] Ken Perlin. “Improving Noise”. In: ACM Trans. Graph. 21.3 (2002), pp. 681–682.
issn: 0730-0301. doi: 10.1145/566654.566636.

[189] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. “Real-time
Hatching”. In: Proceedings of the 28th Annual Conference on Computer Graphics

and Interactive Techniques. SIGGRAPH ’01. ACM, 2001, pp. 579–584. doi: 10.1145/
383259.383328.

[190] Zheng Qin, Michael D. McCool, and Craig S. Kaplan. “Real-time Texture-mapped
Vector Glyphs”. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics

and Games. I3D ’06. ACM, 2006, pp. 125–132. isbn: 1-595932-95-X. doi: 10.1145/
1111411.1111433.

[191] P. Samuel Quinan, Lace M. K. Padilla, Sarah H. Creem-Regehr, and Miriah Meyer.
“Examining Implicit Discretization in Spectral Schemes”. In: Computer Graphics

Forum 38.3 (2019), pp. 363–374. doi: 10.1111/cgf.13695.

[192] Erwin Raisz. “Rectangular Statistical Cartograms of the World”. In: Journal of
Geography 35.1 (1936), pp. 8–10. doi: 10.1080/00221343608987880.

[193] Erwin Raisz. “The Rectangular Statistical Cartogram”. In: AGS Geographical

Review 24.2 (1934), pp. 292–296. issn: 00167428. doi: 10.2307/208794.

https://doi.org/10.1201/b17511
https://doi.org/10.1145/953349.953350
https://doi.org/10.5555/1164094.1164106
https://doi.org/10.1145/1029949.1029963
https://doi.org/10.1111/j.1467-8659.2012.03078.x
https://doi.org/10.2312/vcbm.20141192
https://doi.org/10.2312/vcbm.20141192
https://doi.org/10.1109/IV.2007.117
https://openai.com/blog/chatgpt
https://copilot.github.com
https://doi.org/10.1145/3424616.3424697
https://doi.org/10.1109/IV.2003.1217996
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/383259.383328
https://doi.org/10.1145/383259.383328
https://doi.org/10.1145/1111411.1111433
https://doi.org/10.1145/1111411.1111433
https://doi.org/10.1111/cgf.13695
https://doi.org/10.1080/00221343608987880
https://doi.org/10.2307/208794

Bibliography | 113

[194] Jun Rekimoto and Mark Green. “The Information Cube: Using Transparency in
3D Information Visualization”. In: Proceedings of the Third Annual Workshop on

Information Technologies & Systems. WITS ’93. 1993, pp. 125–132.

[195] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. “Approximating Dy-
namic Global Illumination in Image Space”. In: Proceedings of the 2009 Symposium

on Interactive 3D Graphics and Games. I3D ’09. ACM, 2009, pp. 75–82. isbn:
978-1-605584-29-4. doi: 10.1145/1507149.1507161.

[196] Richard C. Roberts, Chao Tong, Robert S. Laramee, Gary A. Smith, Paul Brookes,
and Tony D’Cruze. “Interactive Analytical Treemaps for Visualisation of Call
Centre Data”. In: Smart Tools and Apps for Graphics - Eurographics Italian Chapter

Conference. The Eurographics Association, 2016. isbn: 978-3-03868-026-0. doi:
10.2312/stag.20161370.

[197] A. H. Robinson, J. B. Harley, D. Woodward, and G. M. Lewis. Early Thematic

Mapping in the History of Cartography. University of Chicago Press, 1982. isbn:
978-0-226722-85-6.

[198] René Rosenbaum and Bernd Hamann. “Progressive Presentation of Large Hierar-
chies Using Treemaps”. In: 5th International Symposium on Advances in Visual

Computing. Springer Berlin Heidelberg, 2009, pp. 71–80. isbn: 978-3-642105-20-3.
doi: 10.1007/978-3-642-10520-3_7.

[199] Ruth Rosenholtz, Yuanzhen Li, Jonathan Mans�eld, and Zhenlan Jin. “Feature
Congestion: A Measure of Display Clutter”. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. CHI ’05. ACM, 2005, pp. 761–770.
isbn: 978-1-581139-98-3. doi: 10.1145/1054972.1055078.

[200] Robert E. Roth. “Visual Variables”. In: International Encyclopedia of Geography:
People, the Earth, Environment and Technology. John Wiley & Sons, Ltd, 2016.
isbn: 978-1-118786-35-2. doi: 10.1002/9781118786352.wbieg0761.

[201] Dominik Sacha, Andreas Sto�el, Florian Sto�el, Bum Chul Kwon, Geo�rey Ellis,
and Daniel A. Keim. “Knowledge GenerationModel for Visual Analytics”. In: IEEE
Trans Vis Comput Graph. TVCG ’14 20.12 (2014), pp. 1604–1613. issn: 1077-2626.
doi: 10.1109/TVCG.2014.2346481.

[202] Selan dos Santos and Ken Brodlie. “Gaining understanding of multivariate and
multidimensional data through visualization”. In: Computers and Graphics 28.3
(2004), pp. 311–325. issn: 0097-8493. doi: 10.1016/j.cag.2004.03.013.

[203] JoshuaD Scarsbrook, RyanK LKo, Bill Rogers, andDavid Bainbridge. “MetropolJS:
Visualizing and Debugging Large-Scale Javascript Program Structure with Tree-
maps”. In: Proc. of the 26th Conference on Program Comprehension. ICPC ’18. ACM,
2018, pp. 389–392. isbn: 978-1-450357-14-2. doi: 10.1145/3196321.3196368.

[204] Willy Scheibel, Stefan Buschmann, Matthias Trapp, and Jürgen Döllner. “At-
tributed Vertex Clouds”. In: GPU Zen: Advanced Rendering Techniques. Bowker
Identi�er Services, 2017. Chap. Geometry Manipulation, pp. 3–21.

[205] Willy Scheibel, Matthias Trapp, and Jürgen Döllner. “Interactive Revision Ex-
ploration using Small Multiples of Software Maps”. In: Proceedings of the 11th
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications - Volume 2: IVAPP, (VISIGRAPP 2016). INSTICC. SciTePress, 2016,
pp. 131–138. isbn: 978-989758-175-5. doi: 10.5220/0005694401310138.

[206] Willy Scheibel, Christopher Weyand, and Jürgen Döllner. “EvoCells – A Treemap
Layout Algorithm for Evolving Tree Data”. In: Proceedings of the 13th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications – Volume 2: IVAPP. IVAPP ’18. SciTePress, 2018, pp. 273–280. isbn:
978-9-897582-89-9. doi: 10.5220/0006617102730280.

[207] Stefan Schlechtweg and Andreas Raab. “Rendering Line Drawings for Illustrative
Purposes”. In: Computational Visualization: Graphics, Abstraction, and Interactiv-

ity. Springer Verlag, 1998, pp. 65–89. isbn: 978-3-540637-37-0.

[208] Karen B. Schloss, Connor C. Gramazio, Allison T. Silverman, Madeline L. Parker,
and Audrey S. Wang. “Mapping Color to Meaning in Colormap Data Visual-
izations”. In: Transactions on Visualization and Computer Graphics 25.1 (2018),
pp. 810–819. doi: 10.1109/TVCG.2018.2865147.

https://doi.org/10.1145/1507149.1507161
https://doi.org/10.2312/stag.20161370
https://doi.org/10.1007/978-3-642-10520-3_7
https://doi.org/10.1145/1054972.1055078
https://doi.org/10.1002/9781118786352.wbieg0761
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1016/j.cag.2004.03.013
https://doi.org/10.1145/3196321.3196368
https://doi.org/10.5220/0005694401310138
https://doi.org/10.5220/0006617102730280
https://doi.org/10.1109/TVCG.2018.2865147

114 | Chapter 7: Bibliography

[209] Hans-Jörg Schulz. “Treevis.net: A Tree Visualization Reference”. In: IEEE Com-

puter Graphics and Applications 31.6 (2011), pp. 11–15. doi: 10.1109/MCG.2011.103.

[210] Hans-Jörg Schulz, Ste�en Hadlak, and Heidrun Schumann. “The Design Space of
Implicit Hierarchy Visualization: A Survey”. In: IEEE Trans Vis Comput Graph.
TVCG ’10 17.4 (2011), pp. 393–411. doi: 10.1109/TVCG.2010.79.

[211] Hans-Jörg Schulz, Martin Luboschik, and Heidrun Schumann. “Interactive Poster:
Exploration of the 3D Treemap Design Space”. In: IEEE Symposium on Information

Visualization’07. Citeseer. 2007.

[212] ISO Central Secretary. International Standard – Software engineering – Software

life cycle processes – Maintenance. Standard ISO/IEC/IEEE 2021. International
Organization for Standardization, 2022.

[213] Kai Selgrad, Christian Reintges, Dominik Penk, Pascal Wagner, and Marc Stam-
minger. “Real-time Depth of Field Using Multi-layer Filtering”. In: Proceedings of
the 19th Symposium on Interactive 3D Graphics and Games. i3D ’15. ACM, 2015,
pp. 121–127. doi: 10.1145/2699276.2699288.

[214] Amir Semmo, Matthias Trapp, Jan Eric Kyprianidis, and Jürgen Döllner. “In-
teractive Visualization of Generalized Virtual 3D City Models Using Level-of-
Abstraction Transitions”. In: Computer Graphics Forum 31 (2012), pp. 885–894.
issn: 0167-7055. doi: 10.1111/j.1467-8659.2012.03081.x.

[215] Ben Shneiderman. “The Eyes Have It: A Task by Data Type Taxonomy for Infor-
mation Visualizations”. In: IEEE Symposium on Visual Languages. IEEE Computer
Society, 1996, pp. 336–343. doi: 10.1109/VL.1996.545307.

[216] Ben Shneiderman. “Tree Visualization with Tree-Maps: 2-d Space-Filling Ap-
proach”. In: Transactions on Graphics 11.1 (1992), pp. 92–99. issn: 0730-0301. doi:
10.1145/102377.115768.

[217] Ben Shneiderman and Martin Wattenberg. “Ordered Treemap Layouts”. In: Proc.
IEEE Symp. on Information Visualization. 2001, pp. 73–78. doi: 10.1109/INFVIS.
2001.963283.

[218] Aidan Slingsby, Jason Dykes, and Jo Wood. “Con�guring Hierarchical Layouts to
Address Research Questions”. In: IEEE Trans Vis Comput Graph. TVCG ’09 15.6
(2009), pp. 977–984. issn: 1077-2626. doi: 10.1109/TVCG.2009.128.

[219] Aidan Slingsby, Jason Dykes, and Jo Wood. “Using Treemaps for Variable Se-
lection in Spatio-temporal Visualisation”. In: Palgrave Information Visualization

7.3-4 (2008), pp. 210–224. doi: 10.1057/PALGRAVE.IVS.9500185.

[220] Anderson Gregório Marques Soares, Elvis Thermo Carvalho Miranda, Rodrigo
Santos do Amor Divino Lima, Carlos Gustavo Resque dos Santos, and Bianchi
Serique Meiguins. “Depicting More Information in Enriched Squari�ed Treemaps
with Layered Glyphs”. In: Information 11.2 (2020), 123:1–21. issn: 2078-2489. doi:
10.3390/info11020123.

[221] Max Sondag, Wouter Meulemans, Christoph Schulz, Kevin Verbeek, Daniel
Weiskopf, and Bettina Speckmann. “Uncertainty Treemaps”. In: 2020 IEEE Pa-

ci�c Visualization Symposium. Paci�cVis ’20. 2020, pp. 111–120. doi: 10.1109/
Paci�cVis48177.2020.7614.

[222] John Stasko, Richard Catrambone, Mark Guzdial, and KevinMcDonald.An evalua-
tion of space-�lling information visualizations for depicting hierarchical structures.
Tech. rep. 5. GVU Technical Report;GIT-GVU-00-03. 2000, pp. 663–694. doi:
10.1006/ijhc.2000.0420.

[223] Marcel Steinbeck. “An Arc-based Approach for Visualization of Code Smells”.
In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and

Reengineering. SANER 17. 2017, pp. 397–401. doi: 10.1109/SANER.2017.7884641.

[224] Marcel Steinbeck, Rainer Koschke, andMarc O. Rüdel. “Comparing the EvoStreets
Visualization Technique in Two- and Three-dimensional Environments: A Con-
trolled Experiment”. In: Proceedings of the 27th IEEE / ACM International Confer-

ence on Program Comprehension. ICPC ’19. IEEE Press, 2019, pp. 231–242. doi:
10.1109/icpc.2019.00042.

https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1145/2699276.2699288
https://doi.org/10.1111/j.1467-8659.2012.03081.x
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1145/102377.115768
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1109/TVCG.2009.128
https://doi.org/10.1057/PALGRAVE.IVS.9500185
https://doi.org/10.3390/info11020123
https://doi.org/10.1109/PacificVis48177.2020.7614
https://doi.org/10.1109/PacificVis48177.2020.7614
https://doi.org/10.1006/ijhc.2000.0420
https://doi.org/10.1109/SANER.2017.7884641
https://doi.org/10.1109/icpc.2019.00042

Bibliography | 115

[225] Frank Steinbrückner and Claus Lewerentz. “Representing Development History
in Software Cities”. In: Proceedings of the 5th International Symposium on Software

Visualization. SOFTVIS ’10. ACM, 2010, pp. 193–202. isbn: 978-1-450300-28-5.
doi: 10.1145/1879211.1879239.

[226] Frank Steinbrückner and Claus Lewerentz. “Understanding Software Evolution
with Software Cities”. In: Information Visualization 12.2 (2013), pp. 200–216. doi:
10.1177/1473871612438785.

[227] Thomas Strothotte and Stefan Schlechtweg. Non-Photorealistic Computer Graph-

ics: Modeling, Rendering, and Animation. Morgan Kaufmann Publishers Inc., 2002.
isbn: 978-1-558607-87-3. doi: 10.5555/544522.

[228] Suphachai Sutanthavibul, Eugene Shragowitz, and J. Ben Rosen. “An Analyt-
ical Approach to Floorplan Design and Optimization”. In: Proc. of the 27th

ACM/IEEE Design Automation Conference. DAC ’90. ACM, 1991, pp. 187–192.
isbn: 0897913639. doi: 10.1145/123186.123255.

[229] László Szécsi and Marcell Szirányi. “Recursive Procedural Tonal Art Maps”. In:
International Conference in Central Europe on Computer Graphics, Visualization

and Computer Vision. WSCG ’14. The Eurographics Association, 2014, pp. 57–66.

[230] Susanne Tak and Andy Cockburn. “Enhanced Spatial Stability with Hilbert
and Moore Treemaps”. In: IEEE Trans Vis Comput Graph. TVCG ’12 19.1 (2013),
pp. 141–148. issn: 1077-2626. doi: 10.1109/TVCG.2012.108.

[231] Justin Talbot, Vidya Setlur, and Anushka Anand. “Four Experiments on the
Perception of Bar Charts”. In: IEEE Trans Vis Comput Graph. TVCG ’14 20.12
(2014), pp. 2152–2160. doi: 10.1109/TVCG.2014.2346320.

[232] Yoichi Tanaka, Yoshihiro Okada, and Koichi Niijima. “Interactive Interfaces of
Treecube for Browsing 3D Multimedia Data”. In: Proceedings of the Working

Conference on Advanced Visual Interfaces. AVI ’04. ACM, 2004, pp. 298–302. isbn:
1-58113-867-9. doi: 10.1145/989863.989914.

[233] Markus Tatzgern, Denis Kalkofen, Raphael Grasset, and Dieter Schmalstieg.
“Hedgehog Labeling: View Management Techniques for External Labels in 3D
Space”. In: 2014 IEEE Virtual Reality. VR ’14. IEEE, pp. 27–32. doi: 10.1109/VR.
2014.6802046.

[234] Alexandru C. Telea, Ozan Ersoy, and Lucian Voinea. “Visual Analytics in Software
Maintenance: Challenges and Opportunities”. In: International Symposium on

Visual Analytics Science and Technology. EuroVAST ’10. The Eurographics Associa-
tion, 2010. isbn: 978-3-905673-74-6. doi: 10.2312/PE/EuroVAST/EuroVAST10/075-
080.

[235] Sidharth Thakur and Theresa-Marie Rhyne. “Data Vases: 2D and 3D Plots for
Visualizing Multiple Time Series”. In: 5th International Symposium on Advances

in Visual Computing. ISVC ’09. Springer Berlin Heidelberg, 2009, pp. 929–938.
isbn: 978-3-642105-20-3. doi: 10.1007/978-3-642-10520-3_89.

[236] Sabine Timpf. “Abstraction, Levels of Detail, and Hierarchies in Map Series”.
In: Spatial Information Theory. Cognitive and Computational Foundations of Geo-

graphic Information Science. Springer Berlin Heidelberg, 1999, pp. 125–139. isbn:
978-3-540483-84-7. doi: 10.1007/3-540-48384-5_9.

[237] Christian Tominski, Stefan Gladisch, Ulrike Kister, Raimund Dachselt, and Hei-
drun Schumann. “Interactive Lenses for Visualization: An Extended Survey”. In:
Computer Graphics Forum 36.6 (2017), pp. 173–200. doi: 10.1111/cgf.12871.

[238] Christian Tominski and Heidrun Schumann. Interactive Visual Data Analysis.
AK Peters Visualization Series. CRC Press, 2020. isbn: 978-1-498753-98-2. doi:
10.1201/9781315152707. url: https://ivda-book.de.

[239] Farshad Ghassemi Toosi and Nikola S Nikolov. “Circular Tree Drawing by Sim-
ulating Network Synchronisation Dynamics and Scaling”. In: Graph Drawing.
Springer, 2014, pp. 511–512.

[240] Matthias Trapp, Tassilo Glander, Henrik Buchholz, and Jürgen Döllner. “3D
Generalization Lenses for Interactive Focus + Context Visualization of Virtual
City Models”. In: Proceedings of the 12th International Conference Information

Visualisation. 2008, pp. 356–361. doi: 10.1109/IV.2008.18.

https://doi.org/10.1145/1879211.1879239
https://doi.org/10.1177/1473871612438785
https://doi.org/10.5555/544522
https://doi.org/10.1145/123186.123255
https://doi.org/10.1109/TVCG.2012.108
https://doi.org/10.1109/TVCG.2014.2346320
https://doi.org/10.1145/989863.989914
https://doi.org/10.1109/VR.2014.6802046
https://doi.org/10.1109/VR.2014.6802046
https://doi.org/10.2312/PE/EuroVAST/EuroVAST10/075-080
https://doi.org/10.2312/PE/EuroVAST/EuroVAST10/075-080
https://doi.org/10.1007/978-3-642-10520-3_89
https://doi.org/10.1007/3-540-48384-5_9
https://doi.org/10.1111/cgf.12871
https://doi.org/10.1201/9781315152707
https://ivda-book.de
https://doi.org/10.1109/IV.2008.18

116 | Chapter 7: Bibliography

[241] Matthias Trapp, Sebastian Schmechel, and Jürgen Döllner. “Interactive Rendering
of Complex 3D-Treemaps with a Comparative Performance Evaluations”. In:
Proceedings of the International Conference on Computer Graphics Theory and

Applications. GRAPP ’13. SciTePress, 2013, pp. 165–175. isbn: 978-9-898565-46-4.
doi: 10.5220/0004290101650175.

[242] Jonas Trümper and Jürgen Döllner. “Extending Recommendation Systems with
Software Maps”. In: Proceedings of the Third International Workshop on Recom-

mendation Systems for Software Engineering. RSSE ’12. IEEE Press, 2012, pp. 92–96.
isbn: 978-1-467317-59-7. doi: 10.1109/RSSE.2012.6233420.

[243] Alexey Tsymbal, Martin Huber, Sonja Zillner, Tamás Hauer, and Shaohua Kevin
Zhou. “Visualizing Patient Similarity in Clinical Decision Support”. In: LWA 2007

LWA 2007, Lernen - Wissen - Adaption. 2007, pp. 304–311.

[244] Ying Tu and Han-Wei Shen. “Visualizing Changes of Hierarchical Data using
Treemaps”. In: IEEE Trans Vis Comput Graph. TVCG ’07 13.6 (2007), pp. 1286–1293.
issn: 1077-2626. doi: 10.1109/TVCG.2007.70529.

[245] Edward R. Tufte. The Visual Display of Quantitative Information. 2nd ed. Graphics
Press, 2001. isbn: 9-78-096139-214-7.

[246] David Turo. “Hierarchical Visualization with Treemaps: Making Sense of Pro
Basketball Data”. In: Conference Companion on Human Factors in Computing

Systems. CHI ’94. ACM, 1994, pp. 441–442. isbn: 0-89791-651-4. doi: 10.1145/
259963.260441.

[247] David Turo and Brian S. Johnson. “Improving the Visualization of Hierarchies
with Treemaps: Design Issues and Experimentation”. In: Proceedings of the 3rd
Conference on Visualization. VIS ’92. IEEE Computer Society Press, 1992, pp. 124–
131. isbn: 0-8186-2896-0. doi: 10.5555/949685.949711.

[248] United States Census O�ce. 11th census, 1890 and Henry Gannett. Statistical
atlas of the United States, based upon the results of the eleventh census. Retrieved
from the Library of Congress, loc.gov/item/07019233/. Washington, Government
Printing O�ce, 1898.

[249] United States Census O�ce. 12th census, 1900 andHenryGannett. Statistical Atlas
of the United States 1900. Retrieved from archive.org/details/ statisticalatlas00unit/.
Washington, United States Census O�ce, 1903.

[250] United States Census O�ce. 9th census, 1870 and Francis Amasa Walker. Statis-
tical atlas of the United States based on the results of the ninth census 1870 with

contributions from many eminent men of science and several departments of the

government. Retrieved from the Library of Congress, loc.gov/item/05019329/.
New York: Julius Bien, lith, 1874.

[251] Timothy Urness, Victoria Interrante, Ivan Marusic, Ellen Longmire, and Bhara-
thram Ganapathisubramani. “E�ectively Visualizing Multi-Valued Flow Data
using Color and Texture”. In: Proc. 14th IEEE Visualization 2003. VIS ’03. IEEE
Computer Society, 2003, pp. 115–121. doi: 10.1109/VISUAL.2003.1250362.

[252] Mikael Vaaraniemi, Martin Freidank, and Rüdiger Westermann. “Enhancing
the Visibility of Labels in 3D Navigation Maps”. In: Progress and New Trends in

3D Geoinformation Sciences. Springer Berlin Heidelberg, 2013, pp. 23–40. isbn:
978-3-642297-93-9. doi: 10.1007/978-3-642-29793-9_2.

[253] Joel Vanderpypen and Laurent Schumacher. “Treemap-Based Burst Mapping
Algorithm for Downlink Mobile WiMAX Systems”. In: 2011 IEEE Vehicular Tech-

nology Conference. VTC ’11. 2011, pp. 1–5. doi: 10.1109/VETECF.2011.6093072.

[254] Eduardo Faccin Vernier, João Luiz Dihl Comba, and Alexandru C. Telea. “A Stable
Greedy Insertion Treemap Algorithm for Software Evolution Visualization”. In:
Proceedings of the 31st Conference on Graphics, Patterns and Images. IEEE, 2018,
pp. 158–165. doi: 10.1109/SIBGRAPI.2018.00027.

[255] Eduardo Faccin Vernier, Max Sondag, João Luiz Dihl Comba, Bettina Speckmann,
Alexandru C. Telea, and Kevin Verbeek. “Quantitative Comparison of Time-
Dependent Treemaps”. In: Comput. Graph. Forum 39.3 (2020), pp. 393–404. doi:
10.1111/cgf.13989.

https://doi.org/10.5220/0004290101650175
https://doi.org/10.1109/RSSE.2012.6233420
https://doi.org/10.1109/TVCG.2007.70529
https://doi.org/10.1145/259963.260441
https://doi.org/10.1145/259963.260441
https://doi.org/10.5555/949685.949711
https://www.loc.gov/item/07019233/
https://archive.org/details/statisticalatlas00unit/
https://www.loc.gov/item/05019329/
https://doi.org/10.1109/VISUAL.2003.1250362
https://doi.org/10.1007/978-3-642-29793-9_2
https://doi.org/10.1109/VETECF.2011.6093072
https://doi.org/10.1109/SIBGRAPI.2018.00027
https://doi.org/10.1111/cgf.13989

Bibliography | 117

[256] Eduardo Faccin Vernier, Alexandru C. Telea, and João Comba. “Quantitative
Comparison of Dynamic Treemaps for Software Evolution Visualization”. In:
Proc. IEEE Working Conference on Software Visualization. Vol. 00. VISSOFT ’18.
IEEE, 2018, pp. 96–106. doi: 10.1109/VISSOFT.2018.00018.

[257] Marcos Viana, André C. Hora, and Marco Tulio Valente. “CodeCity for (and by)
JavaScript”. In: arXiv Computing Research Repository abs/1705.05476 (2017). url:
http://arxiv.org/abs/1705.05476.

[258] Roel Vliegen, Jarke J. van Wijk, and E. J. van der Linden. “Visualizing Business
Data with Generalized Treemaps”. In: IEEE Trans Vis Comput Graph. TVCG ’06
12.5 (2006), pp. 789–796. issn: 1077-2626. doi: 10.1109/TVCG.2006.200.

[259] Georg Von Mayr. Die Gesetzmässigkeit im Gesellschaftsleben. Vol. 23. De Gruyter
Oldenbourg, 1877.

[260] Lukas Wagner, Daniel Limberger, Willy Scheibel, Matthias Trapp, and Jürgen
Döllner. “A Framework for Interactive Exploration of Clusters in Massive Data
using 3D Scatter Plots and WebGL”. In: Proceedings of the 25th International

Conference on 3D Web Technology. Web3D ’20. ACM, 2020, 31:1–2. isbn: 978-1-
450381-69-7. doi: 10.1145/3424616.3424730.

[261] Nicholas Waldin, Manuela Waldner, Mathieu Le Muzic, Eduard Gröller, David
S. Goodsell, Ludovic Autin, Arthur J. Olson, and Ivan Viola. “Cuttle�sh: Color
Mapping for Dynamic Multi-Scale Visualizations”. In: Computer Graphics Forum

38.6 (2019), pp. 150–164. doi: 10.1111/cgf.13611.

[262] Weixin Wang, Hui Wang, Guozhong Dai, and Hongan Wang. “Visualization
of Large Hierarchical Data by Circle Packing”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’06. ACM, 2006, pp. 517–
520. isbn: 1-59593-372-7. doi: 10.1145/1124772.1124851.

[263] Yan-Chao Wang, Jigang Liu, Feng Lin, and Hock-Soon Seah. “Generating Orthog-
onal Voronoi Treemap for Visualization of Hierarchical Data”. In: Advances in
Computer Graphics. Springer International Publishing, 2020, pp. 394–402. isbn:
978-3-030618-64-3.

[264] Yue Wang, Soon Tee Teoh, and Kwan-Liu Ma. “Evaluating the E�ectiveness of
Tree Visualization Systems for Knowledge Discovery”. In: EuroVis. Vol. 6. 2006,
pp. 67–74.

[265] Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann
Series in Interactive Technologies. Morgan Kaufmann, 2020. isbn: 978-0-128128-
75-6.

[266] Martin Wattenberg. “A note on space-�lling visualizations and space-�lling
curves”. In: Proc. IEEE Symp. on Information Visualization. InfoVis ’05. 2005,
pp. 181–186. doi: 10.1109/INFVIS.2005.1532145.

[267] MartinWattenberg. “Visualizing the StockMarket”. In: CHI ’99 Extended Abstracts
on Human Factors in Computing Systems. CHI EA ’99. ACM, 1999, pp. 188–189.
isbn: 1-58113-158-5. doi: 10.1145/632716.632834.

[268] Matthew Webb, Emil Praun, Adam Finkelstein, and Hugues Hoppe. “Fine Tone
Control in Hardware Hatching”. In: Proceedings of the 2nd International Sym-

posium on Non-photorealistic Animation and Rendering. NPAR ’02. ACM, 2002,
pp. 53–59. doi: 10.1145/508530.508540.

[269] Richard Wettel and Michele Lanza. “CodeCity: 3D Visualization of Large-scale
Software”. In: Companion of the 30th International Conference on Software Engi-

neering. ICSE Companion ’08. ACM, 2008, pp. 921–922. isbn: 978-1-605580-79-1.
doi: 10.1145/1370175.1370188.

[270] Richard Wettel and Michele Lanza. “Program Comprehension Through Software
Habitability”. In: Proceedings of the 15th IEEE International Conference on Program

Comprehension. ICPC ’07. IEEE, 2007, pp. 231–240. isbn: 978-0-769528-60-1. doi:
10.1109/ICPC.2007.30.

[271] Richard Wettel and Michele Lanza. “Visual Exploration of Large-scale System
Evolution”. In: 15th Working Conference on Reverse Engineering. WCRE ’08. IEEE,
2008, pp. 219–228. isbn: 978-0-769534-29-9. doi: 10.1109/WCRE.2008.55.

https://doi.org/10.1109/VISSOFT.2018.00018
http://arxiv.org/abs/1705.05476
https://doi.org/10.1109/TVCG.2006.200
https://doi.org/10.1145/3424616.3424730
https://doi.org/10.1111/cgf.13611
https://doi.org/10.1145/1124772.1124851
https://doi.org/10.1109/INFVIS.2005.1532145
https://doi.org/10.1145/632716.632834
https://doi.org/10.1145/508530.508540
https://doi.org/10.1145/1370175.1370188
https://doi.org/10.1109/ICPC.2007.30
https://doi.org/10.1109/WCRE.2008.55

118 | Chapter 7: Bibliography

[272] Richard Wettel and Michele Lanza. “Visualizing Software Systems as Cities”.
In: 4th International Workshop on Visualizing Software for Understanding and

Analysis. VISSOFT ’07. IEEE, 2007, pp. 92–99. doi: 10.1109/VISSOF.2007.4290706.

[273] Richard Wettel, Michele Lanza, and Romain Robbes. “Software Systems As Cities:
A Controlled Experiment”. In: Proceedings of the 33rd International Conference on
Software Engineering. ICSE ’11. ACM, 2011, pp. 551–560. isbn: 978-1-450304-45-0.
doi: 10.1145/1985793.1985868.

[274] Jarke J. van Wijk. “Views on Visualization”. In: vol. 12. TVCG ’06. IEEE, 2006,
pp. 421–432. doi: 10.1109/TVCG.2006.80.

[275] Jarke J. van Wijk and Huub van de Wetering. “Cushion Treemaps: Visualization
of Hierarchical Information”. In: Proc. IEEE Symp. on Information Visualization.
InfoVis ’99. IEEE. 1999, pp. 73–78. doi: 10.1109/INFVIS.1999.801860.

[276] Ludwig Wittgenstein. “Tractatus Logico-Philosophicus”. In: London: Routledge,
1981 (1922). Ed. by D.F.Pears.

[277] Francis Wolinski. “Visualization of Diseases at Risk in the COVID-19 Literature”.
In: abs/2005.00848 (2020). doi: 10.48550/ARXIV.2005.00848.

[278] Jo Wood, Petra Isenberg, Tobias Isenberg, Jason Dykes, Nadia Boukhelifa, and
Aidan Slingsby. “Sketchy Rendering for Information Visualization”. In: IEEE
Trans Vis Comput Graph. TVCG ’12 18 (2012), pp. 2749–2758. issn: 1077-2626.
doi: 10.1109/TVCG.2012.262.

[279] Yingtao Xie, Tao Lin, Rui Chen, and Zhi Chen. “Toward Improved Aesthetics and
Data Discrimination for Treemaps via Color Schemes”. In: Wiley Color Research

& Application (2017). issn: 1520-6378. doi: 10.1002/col.22196.

[280] Yumi Yamaguchi and Takayuki Itoh. “Visualization of Distributed Processes using
"Data Jewelry Box" Algorithm”. In: Proceedings Computer Graphics International.
2003, pp. 162–169. doi: 10.1109/CGI.2003.1214461.

[281] Ji Soo Yi, Youn ah Kang, John Stasko, and J.A. Jacko. “Toward a Deeper Under-
standing of the Role of Interaction in Information Visualization”. In: IEEE Trans

Vis Comput Graph. TVCG ’07 13.6 (2007), pp. 1224–1231. doi: 10.1109/TVCG.
2007.70515.

[282] E.F.Y. Young, C.C.N. Chu, and Z.C. Shen. “Twin binary sequences: a nonredun-
dant representation for general nonslicing �oorplan”. In: IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 22.4 (2003), pp. 457–469.
issn: 0278-0070. doi: 10.1109/TCAD.2003.809651.

[283] Silvio Zanola, Sara I. Fabrikant, and Arzu Çöltekin. The E�ect of Realism on the

Con�dence in Spatial Data Quality in Stereoscopic 3D Displays: (refereed Extended

Abstract). Geographisches Institut, 2009.

[284] Jin Zhang. “The Implication of Metaphors in Information Visualization”. In:
Visualization for Information Retrieval. Vol. 23. Springer, 2008, pp. 215–237. isbn:
978-3-540751-47-2.

[285] Mengjie Zhou, Wenqing Hu, and Tinghua Ai. “Multi-level thematic map visu-
alization using the Treemap hierarchical representation model”. In: Journal of
Geovisualization and Spatial Analysis 4 (2020), pp. 1–11.

https://doi.org/10.1109/VISSOF.2007.4290706
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1109/TVCG.2006.80
https://doi.org/10.1109/INFVIS.1999.801860
https://doi.org/10.48550/ARXIV.2005.00848
https://doi.org/10.1109/TVCG.2012.262
https://doi.org/10.1002/col.22196
https://doi.org/10.1109/CGI.2003.1214461
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TCAD.2003.809651

	Title
	Imprint

	Abstract
	Zusammenfassung
	Table of Contents
	Introduction
	Visualization of Hierarchical Data
	Charting Software Systems
	Thesis Statements and Objectives

	Fundamentals of 3D-Embedded Treemaps
	Data Characteristics
	Tree-Structured Data
	Temporal Data
	Multivariate Data

	Treemap Visualization Pipeline
	Taxonomy of Treemaps
	Treemap Layout
	Attribute and Reference Space
	Visual Variables
	Variateness and Expressiveness of Visualizations
	Designations of Treemaps in A³⊕R²
	Alternatives to 2D Image Synthesis

	Visualization Process
	Software Cartography using Treemaps
	Specialization of the Term Software Map
	General Delimitation of Research Contributions

	Visual Variables for 3D-Embedded Treemaps
	Visual Variables of A² and A³
	Visualization Mapping and Rendering
	Visual Variables in A³

	Sketchy Contours and Surface Hatching
	Sketchy Outlines for Interactive Visualization
	Surface Hatching for Interactive Visualization
	Sketchiness as a Visual Variable in A³

	Physically-based Materials and Phenomena
	Physically-based Materials for Visualization
	Weather Phenomena for Visualization

	In-Situ Templates
	Two-State and Multi-State Mappings
	Two-State Height Mapping
	Two-State Color Mapping
	Two-State Height and Color Mapping

	Animated Procedural Textures
	Transition, Animation, and Change
	Procedural Patterns for Animated Change Display
	Pattern Characteristics
	Pattern Composition
	Animation Control

	Value-added Adaptations for 3D-Embeddings
	Height Mapping for Inner-Nodes
	Height-based Filtering using Reference Surfaces
	Resolution of Visual Data Encodings
	Addressing Non-Visual Challenges

	Level-of-Detail and Labeling for 3D-Embedded Treemaps
	Dynamic Aggregation of Nodes
	Degree-of-Interest Scoring of Nodes
	Score Propagation and Processing

	Visual Display of Aggregates
	Aggregation Operators for Color and Height
	Nesting Level Contouring
	Animated State Transitions for Aggregates
	Color Weaving
	Evaluation & Discussion

	Dynamic Labeling in 3D-Embedded Treemaps
	Labeling and Text Rendering
	Descriptive Label-Placement using OpenLL
	3D-Embedded Map Legends

	Partial 3D-Embedding
	Node-local Tilt Operator
	Parameterization of Node-local Tilt

	Web-based Provisioning of 3D-Embedded Treemaps
	Rendering of Rectangles and Cuboids
	WebGL-based Rendering of 3D-Embedded Treemaps
	On the Use of 3rd-Party Renderers

	Responsive Accumulative Rendering
	Composition of a Progressive Frame
	Progressive Frame Accumulation

	Progressive Sampling Strategies
	Multi-frame Anti-Aliasing
	Multi-frame Transparency
	Multi-frame Screen-Space Ambient Occlusion
	Multi-frame Depth of Field

	3D-embedded Treemaps using treemap.ts

	Software Visualization using 3D-Embedded Treemaps
	Static Source Code Metrics
	Map Themes for Visual Software Analytics
	Assembling Map Themes
	Rendering Performance Evaluation

	Conclusions and Future Work
	Conclusions
	Outlook and Challenges
	Closing Remarks

	List of Publications
	List of Repositories
	Bibliography

