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Preface

The following study focuses on key prokaryotic taxa that are associated with
peatland bryophytes, their environmental drivers and their possible ecological

functions.

This thesis was embedded into the ArcBiont project and conducted within the
frame of the Helmholtz International Research Group (HIRG 0007). The thesis was
further supported by the Helmholtz Association of German Research Centres
within the frame of a Helmholtz Young Investigators Group to Susanne Liebner
(grant VH-NG-919). The field work carried out in Svalbard was supported by the
Arctic Field Grant (RiS-ID: 6547) with support of the Svalbard Science Forum (SSF).
The infrastructure was further funded by the Terrestrial Environmental
Observatories Network (TERENO), specifically the North-Eastern German Lowland
Observatory (TERENO-NE).

Field sampling campaigns were conducted in Svalbard, Samoylov, Neiden and in
the Mueritz National Park from 2014 to 2015. The expeditions were organised by
the Helmholtz Centre Potsdam, German Research Centre of Geosciences (GFZ) in
collaboration with the Arctic University of Norway (UiT) and the Alfred-Wegener-
Institute in Potsdam (AWI). The laboratory work here described was mainly
performed at GFZ Potsdam in the section Geomicrobiology, and furthermore at
the department of Arctic and Marine Biology, headed at the Arctic University of
Norway, as well as at the department of Experimental Plant Biology, headed at the

University of South Bohemia (USB) in Ceské Budéjovice.

This thesis is written in British English and organised as a monograph to the Faculty
of Mathematics and Natural Science at the University of Potsdam (UP). It contains

an introduction to the scientific background and the particular research field, the
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description of materials and methods including the study sites and the objectives
of the study, followed by a discussion of the results. The main outcomes are
highlighted in a final conclusion and future prospects are mentioned in a general
outlook. A large part of the achieved results was already published in a shared
first-authorship  manuscript as well as within the following conference

contributions:

Tveit, AT, Kiss, A., Winkel, M. et al. Environmental patterns of brown moss- and
Sphagnum-associated microbial communities. Sci Rep 10, 22412 (2020).
https://doi.org/10.1038/s41598-020-79773-2

A. Kiss, M. Winkel, A.T. Tveit, M. M. Svenning, D. Wagner, T. Hajek, S. Liebner, 2015,
Epi- and endophytic microbial communities of arctic and subarctic peatland
mosses. Conference on Polar and Alpine Microbiology (PAM), September 6-10.

2015, Ceské Budé&jovice, Czech Republic (Abstract, Poster)

A. Kiss, A.T. Tveit, M. Winkel, F. Horn, T. Hajek; M. M. Svenning, D. Wagner, S.
Liebner, 2016, Global and local patterns of bacterial communities associated with
peatland bryophytes. Annual Conference of the Association for General and
Applied Microbiology (VAAM), March 13-16. 2016, Jena, Germany (Abstract, Oral

Presentation)

A. Kiss, AT. Tveit, M. Winkel, F. Horn, T. Hajek; M. M. Svenning, D. Wagner, S.
Liebner, 2016, Global and local patterns of bacterial communities associated with
peatland bryophytes. Annual PhD Day at GFZ German Research Centre for
Geosciences, Section 3.7 Geomicrobiology, April 07. 2016, Potsdam, Germany

(Abstract, Oral Presentation)
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Summary

Summary

Moss-microbe associations are often characterised by syntrophic interactions between
the microorganisms and their hosts, but the structure of the microbial consortia and their

role in peatland development remain unknown.

In order to study microbial communities of dominant peatland mosses, Sphagnum and
brown mosses, and the respective environmental drivers, four study sites representing
different successional stages of natural northern peatlands were chosen on a large
geographical scale: two brown moss-dominated, circumneutral peatlands from the Arctic

and two Sphagnum-dominated, acidic peat bogs from subarctic and temperate zones.

The family Acetobacteraceae represented the dominant bacterial taxon of Sphagnum
mosses from various geographical origins and displayed an integral part of the moss core
community. This core community was shared among all investigated bryophytes and
consisted of few but highly abundant prokaryotes, of which many appear as endophytes
of Sphagnum mosses. Moreover, brown mosses and Sphagnum mosses represent
habitats for archaea which were not studied in association with peatland mosses so far.
Euryarchaeota that are capable of methane production (methanogens) displayed the
majority of the moss-associated archaeal communities. Moss-associated methanogenesis
was detected for the first time, but it was mostly negligible under laboratory conditions.
Contrarily, substantial moss-associated methane oxidation was measured on both, brown

mosses and Sphagnum mosses, supporting that methanotrophic bacteria as part of the



Summary

moss microbiome may contribute to the reduction of methane emissions from pristine

and rewetted peatlands of the northern hemisphere.

Among the investigated abiotic and biotic environmental parameters, the peatland type
and the host moss taxon were identified to have a major impact on the structure of moss-
associated bacterial communities, contrarily to archaeal communities whose structures
were similar among the investigated bryophytes. For the first time it was shown that
different bog development stages harbour distinct bacterial communities, while at the
same time a small core community is shared among all investigated bryophytes

independent of geography and peatland type.

The present thesis displays the first large-scale, systematic assessment of bacterial and
archaeal communities associated both with brown mosses and Sphagnum mosses. It
suggests that some host-specific moss taxa have the potential to play a key role in host

moss establishment and peatland development.



Zusammenfassung

Zusammenfassung

Wahrend die Beziehungen zwischen Moosen und den mit ihnen assoziierten
Mikroorganismen oft durch syntrophische Wechselwirkungen charakterisiert sind, ist die
Struktur der Moos-assoziierten mikrobiellen Gemeinschaften sowie deren Rolle bei der

Entstehung von Mooren weitgehend unbekannt.

Die vorliegende Arbeit befasst sich mit mikrobiellen Gemeinschaften, die mit Moosen
nordlicher, naturnaher Moore assoziiert sind, sowie mit den Umweltfaktoren, die sie
beeinflussen. Entlang eines gro3 angelegten geographischen Gradienten, der von der
Hocharktis bis zur gemaBigten Klimazone reicht, wurden vier naturbelassene Moore als
Probenstandorte ausgesucht, die stellvertretend flr verschiedene Stadien der
Moorentwicklung stehen: zwei Braunmoos-dominierte Niedermoore mit nahezu

neutralem pH-Wert sowie zwei Sphagnum-dominierte Torfmoore mit saurem pH-Wert.

Die Ergebnisse der vorliegenden Arbeit machen deutlich, dass die zu den Bakterien
zdhlenden Acetobacteraceae das vorherrschende mikrobielle Taxon der Sphagnum-
Moose gleich welchen geographischen Ursprungs darstellen und insbesondere innerhalb
des Wirtsmoosgewebes dominieren. Gleichzeitig gehdrten die Acetobacteraceae zum
wesentlichen Bestandteil der mikrobiellen Kerngemeinschaft aller untersuchten Moose,
die sich aus einigen wenigen Arten, daflir zahlreich vorkommenden Prokaryoten

Zusammensetzt.
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Zusammenfassung

Die vorliegende Arbeit zeigt zudem erstmals, dass sowohl Braunmoose als auch
Torfmoose ein Habitat fur Archaeen darstellen. Die Mehrheit der Moos-assoziierten
Archaeen gehorte dabei zu den methanbildenden Gruppen, wenngleich die
metabolischen Aktivitatsraten unter Laborbedingungen meistens kaum messbar waren.
Im Gegensatz hierzu konnte die Bakterien-vermittelte Methanoxidation sowohl an
Braunmoosen als auch an Sphagnum-Moosen gemessen werden. Dies zeigt
eindrucksvoll, dass Moos-assoziierte Bakterien potenziell zur Minderung von
Methanemissionen aus nordlichen, aber auch wiederverndssten Mooren beitragen

konnen.

Ein weiteres wichtiges Resultat der vorliegenden Arbeit ist die Bedeutung des Moortyps
(Niedermoor oder Torfmoor), aber auch der Wirtsmoosart selbst fur die Struktur der
Moos-assoziierten Bakteriengemeinschaften, wahrend die archaeellen
Gemeinschaftsstrukturen weder vom Moortyp noch von der Wirtsmoosart beeinflusst

wurden und sich insgesamt deutlich dhnlicher waren als die der Bakterien.

Dartber hinaus konnte erstmalig gezeigt werden, dass sich die bakteriellen
Gemeinschaften innerhalb der unterschiedlichen Moorsukzessionsstadien zwar ganz
erheblich voneinander unterscheiden, ein kleiner Teil der Bakterien dennoch

Kerngemeinschaften bilden, die mit allen untersuchten Moosarten assoziiert waren.

Bei der hier prasentierten Arbeit handelt es sich um die erste systematische Studie, die
sich auf einer groBen geographischen Skala mit den bakteriellen und archaeellen

Gemeinschaften von Braunmoosen und Torfmoosen aus naturbelassenen nordlichen

Xl



Mooren befasst. Die vorliegenden Ergebnisse machen deutlich, dass die untersuchten
Moose ein ganz spezifisches mikrobielles Konsortium beherbergen, welches mutmaBlich
eine SchlUsselrolle bei der Etablierung der Wirtspflanzen am Anfang der
Moorentwicklung spielt und dartber hinaus das Potential hat, die charakteristischen

Eigenschaften von Mooren sowie deren weitere Entwicklung zu pragen.
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Introduction

1. Introduction

1.1. Peatlands

Neutral, mineral-rich fens and acidic, nutrient-poor bogs display unique environments
that form peat, therefore called 'peatlands' (Zoltai and Vitt 1995, Rydin and Jeglum 2006).
Together with non-peat forming habitats like marshes and swamps, peatlands are
classified as wetlands which display water-saturated habitats with poorly drained soils,
hydrophytic vegetation and biological activities that are adapted to these challenging
conditions (Tarnocai et al. 1988).

Peatlands represent up to 70% of global wetlands and preserve a wealth of information
and chronological records in remains of plants and animals (Chapman et al. 2003).
'Koelbjerg Man' and 'Tollund Man', two well-preserved bog bodies buried for thousands
of years, belong to the best-known archaeological finds worldwide and illustrate the
extraordinary preservative character of peat bogs (Painter 1991, Hansen et al. 2017,
Chapman et al. 2020).

Peatlands are one of the most important ecosystems in the world (Holden 2005) and
represent important habitats for highly adapted species. About 80% of all peatlands
constitute natural and pristine environments (Joosten 2012). These vulnerable, long-
existing ecosystems with widely constant conditions for over 1000 years appear mainly in
remote and agricultural non-usable regions (Opelt, Chobot, et al. 2007). Due to extreme
environmental conditions, such as low temperature, high water saturation, recalcitrant

organic matter and low availability of plant nutrients, dead organic matter (‘peat’)
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accumulates (Freeman et al. 2001, Joosten and Clarke 2002, Holden 2005, MacDonald et
al. 2006). Peatlands store approximately one third of the global soil carbon (C) and 10%
of global freshwater resources (Holden 2005) and act as carbon sinks, therefore holding

important ecosystem functions by regulating climate and water balance.

1.1.1.  Peatland development and peat bog succession

Boreal and subarctic peatlands started to develop as a result of increasing insolation and
temperatures during the Holocene Hypsithermal, when the Fennoscandian Ice Sheet
covered most of the present boreal peatlands in Norway, Sweden, Finland and parts of
western Russia (Kuhry and Turunen 2006). In the Northeast of Germany, complex
paludification processes on larger scales took place during the late Holocene (9200-5700
BP), resulting from sea-level rise (Kaiser et al. 2012), while peat accumulation in polygonal
peatlands of Western Siberia began about 9814 BP (Pastukhov et al. 2021). It is assumed
that many of these newly developed peatlands were initially wet minerotrophic fens
(MacDonald et al. 2006). Based on hydrology and vegetation, peatlands are roughly
divided into fens and bogs (Rydin and Jeglum 2006, Soudzilovskaia et al. 2010, Tuittila et
al. 2013). Fens are typically situated in landscape depressions and receive mineral-rich
water from the belowground (minerotrophic), and the main vegetation comprises a
taxonomically heterogenous group of aquatic bryophytes, so-called 'brown mosses'.
Bogs are characterised by an elevated surface, which is solely fed by precipitation water
(ombrotrophic); they are typically inhabited by aquatic and terrestrial peat mosses of the

genus Sphagnum (Zoltai and Vitt 1995).
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Fens and bogs represent peatland succession stages (Moore 1989, Kuhry et al. 1993,
Fenton and Bergeron 2006, Soudzilovskaia et al. 2010), even though individual allogenic
and autogenic factors characterise each mire succession (Klinger 1996, Hughes and
Dumayne-Peaty 2002). Four processes can initiate peat bog development: primary peat
formation, when peat develops directly on fresh, non-vegetated mineral soil;
terrestrialisation, when shallow water bodies are infilled gradually by vegetation;
paludification, when peat forms on drier, vegetated habitats over inorganic soil in the
absence of water; and finally, peat formation of early Holocene lakes, which occurs mainly
in glaciated areas (Wieder and Vitt 2006). In the boreal zone, terrestrialisation and
subsequent paludification are the most common peat bog successional processes (Kuhry
and Turunen 2006). The development starts with the establishment of sedges and brown
mosses in shallow ponds, leading to a base-rich fen environment with circumneutral pH,
which is strongly influenced by the chemistry of the surrounding mineral soil deposit.
Over time, mesotrophic Sphagnum mosses invade and start to acidify the habitat, leading
to the transition into a poor fen habitat with decreasing pH. Microbial degradation of
organic material is additionally hindered by the decomposition-resistant litter of
Sphagnum mosses and consecutively, peat accumulates. The subsequent raise of the
surface leads to a loss of groundwater influence, resulting in the formation of an
ombrotrophic (rain-fed), highly elevated bog with pH well below 4. Due to the
oligotrophic and acidic conditions in the latter successional stages, Sphagnum mosses
become ultimately dominant and outcompete brown mosses (Figure 1) (Gorham and

Janssens 1992, Zoltai and Vitt 1995, Kuhry and Turunen 2006). While the upper bog layer,
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the acrotelm, consists of dense mats of living Sphagnum moss parts, the subjacent
catotelm layer is characterised by already dead and compressed Sphagnum segments.
Bulk density increases and dissolved oxygen (O) depletes towards the catotelm, and
water velocity is so extremely low, that vertical transport of water and mineral nutrients
into this layer is practically blocked (van Breemen 1995, Christen et al. 1995, Zaitseva 2009).
The transition from a fen into a bog can take several thousands of years, and the bog
development is accompanied by remarkable shifts in the moss vegetation and
subsequent changes in pH, hydrology and nutrient regimes (Merila et al. 2006, Oksanen
2006, Rozema et al. 2006, Tuittila et al. 2013, Gatka and Lamentowicz 2014, Putkinen et al.
2014). Furthermore, the bog development profoundly alters the ecosystem carbon
budget, due to a doubling of net primary production and a fourfold decrease of the

decomposition rate (Soudzilovskaia et al. 2010).
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Figure 1: Schematic peat bog succession. The transition from brown moss-dominated, minerotrophic fens
into Sphagnum-dominated, ombrotrophic bogs is accompanied by considerable shifts in vegetation and
subsequent changes in pH, hydrology and nutrient levels. Mature bogs feature higher net primary
production with simultaneously lower microbial decomposition rates compared to early successional

stages. Taken from http://www.ipcc.ie/a-to-z-peatlands/raised-bogs (modified).

Peatlands exist globally where environmental conditions favour the accumulation of peat,
especially in cold areas such as the boreal and subarctic regions, but also in wet regions,
e.g. in oceanic areas and in the humid tropics (Gunnarsson 2005, Schumann and Joosten
2008). Although about 80% of the worldwide peatlands remained pristine, they are highly
endangered in areas with high human population density and other anthropogenic
impacts (Joosten 2012), which applies particularly for northern peatlands. In order to
understand the complex mechanisms of peatland ecology and degradation processes,

research on northern peatlands is therefore crucial.
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1.1.2. Characteristic peatlands of the northern hemisphere

High Arctic ponds and bogs (Figure 2 a, b) are characterised by a low peat accumulation
rate, since the short and cold arctic summer limits plant growth (Rozema et al. 2006).
Swamps and wet tundra with moderately developed moss layers appear mainly in central
fjord areas (Johansen et al. 2012). Typical bog formations in more dry areas of Svalbard
are active layer mounds on moss-covered valley bottoms with ice-wedge polygon
patterns, but also peat mounds similar to palsas (Akerman and Boardman 1987). Fens and
peat bogs on Svalbard display various microrelief structures and are typically inhabited
by brown mosses and other members of the order Hypnales (leafy mosses) (Solheim et
al. 1996, Tveit et al. 2015, Jaworski 2017); at the same time, the archipelago displays the
northernmost dispersal border of Sphagnum species (Flatberg and Frisvoll 1984a, 1984b,
Greilhuber et al. 2003).

Polygonal tundra (Figure 2 ¢, d) appears in the Arctic where seasonally rapidly decreasing
temperatures lead to crack formations in the shrinking permafrost. Ice wedges form
subsequently, when, after trickling into these open cracks, the water freezes again; the
adjacent soil material heads up in a polygon pattern of low ridges and encloses wet
depressions (MacKay 2000, Minke et al. 2007). The peat in these depressions is not frozen,
but permafrost may occur at greater depths in the mineral soil (Zoltai and Tarnocai 1975).
The prevailing moss vegetation of Siberian polygonal tundra environments comprises
members of Hypnales, e.g. brown mosses (Sommerkorn et al. 1999, Kutzbach et al. 2004,

Liebner et al. 2011, Zibulski et al. 2016).
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Palsa peat bogs (Figure 2 e, f) are typical wetlands of the circumpolar zone, where
permafrost is discontinuous or sporadic. Palsas are peat hummocks with a frozen core
that rises above the mire surface, when frost penetrates the peat and frozen pore water
expands. Palsa degradation occurs naturally when the frozen core reaches the till or silt
layers of the mire, resulting in the collapse of the palsa and often a remaining open pond
(Seppala 2006). In wet depressions and surrounding fen areas, various Sphagnum species
are common (Oksanen 2005, Liebner and Svenning 2013, Kjellman et al. 2018, Hough et
al. 2020), although brown moss-Sphagnum-communities appear at certain palsa
development levels (Bhiry and Robert 2006, Oksanen 2006).

Kettle bogs (Figure 2 g, h) form in kettle hole-shaped basins that have developed by
thawing of residual ice from retreating glaciers, or as a result of karst (Succow and Joosten
2012). Peat formation occurs either downwards from a floating mat under stable water
level conditions or by peat forming upwards, as humus colloids seal off the basin, causing
the water level to rise progressively (‘kettle hole mire mechanism') (Gaudig et al. 2006).
The stratigraphy of kettle bogs displays often basal brown moss peat layers, followed by
layers of Sphagnum peat and mixed cyperaceous-Sphagnum peat (Vitt and Slack 1975,

Andreas and Bryan 1990, Lamentowicz et al. 2008, Landgraf 2010).
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Figure 2: Characteristic peatlands of the northern hemisphere. a) Bathimetric map and geologic log of the
High Arctic-pond Twin Water on Svalbard (b); c) schematic profiles of low-centred (1) and high-centred (2)
polygons in the Arctic tundra; d) low-centred polygon on Samoylov Island, Siberia; e) schematic profile of
a palsa frost mound; f) subarctic palsa peatland in Finnmark, Northern Norway; g) schematic profile of a
kettle bog in the temperate zone; h) kettle bog in the Mueritz National Park, Northern Germany. Taken
from a) Haldorsen, 2010 (modified), c¢) Wales, 2020, e) www.oulu.fi (modified); g) L. Landgraf. Photos by A.
Kiss, except h): S. Liebner
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1.1.3. Anthropogenic threats of northern peatlands

Northern peatlands are extremely sensitive to environmental changes induced by
anthropogenic activities. Direct damage by humans is the most apparent threat to
peatlands (Dise 2009). The exploitation of northern peatlands, like commercial extraction
and drainage for agricultural demand, forestry or horticulture, destructed and shrank
many of these habitats (Chapman et al. 2003). Peat fuel production and utilisation from
pristine fens lead to similar magnitudes of greenhouse impact as from fossil coal (Kirkinen
et al. 2007). The drainage of peatlands induces a loss of water, along with a loss of balance
between accumulation, decomposition and therefore stability of the peat. Moreover,
drained wetlands have negative influences on catchment hydrology. They increase
flooding downstream and reduce water storage capacities, and the increased aeration
enhances microbial induced peat decomposition (Holden et al. 2004).

Less obvious, but potentially as detrimental as direct human damage, and therefore of
major concern, are long-term environmental disturbances, such as climate change (Dise
2009). Northern ecosystems currently experience a matchless era of altered temperature
and precipitation patterns, influencing plant community structure and photosynthesis
rates in northern ecosystems (Myers-Smith and Hik 2018, Jassey and Signarbieux 2019).
Lately, a climate reconstruction study validated the unusual character of the warming in
recent decades (Neukom et al. 2019). Temperatures rise rapidly in the Arctic (Overland et
al. 2019) and turn the carbon sinks into sources, enhancing microbial driven emissions of
powerful greenhouse gases like carbon dioxide (CO2) and methane (CHa4) (Strack et al.

2008, Gorham 2014, Hopple et al. 2020). Further, peatlands are vulnerable, nutrient-
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limited environments where nitrogen (N) deposition can have severe impacts on local
ecosystems. Reactive nitrogen acts as a potent fertilizer (Kihnel et al. 2013) and affects
carbon balances by increasing microbial decomposition rates and subsequent rise of
carbon emissions from ombrotrophic bogs (Aerts et al. 1992, Bragazza et al. 2006). High
loads of atmospheric nitrogen can cause severe growth reduction and mortality of
Sphagnum mosses (Woodin et al. 1985), resulting in the alteration of the typical peatland
bryophyte vegetation towards vascular plant-dominated habitats, e.g. cyperaceous
marshes and wooded fens (Bergamini and Pauli 2001, Turunen et al. 2004, Thormann and
Landgraf 2010). Today, pristine peatlands can be found mainly in the northern latitudes,
while many others are disturbed. For example, no further peat accumulation has been
observed in more than a half of Europe’s peatlands, constituting them as degraded, while
in Germany 99% of all peatlands are drained and therefore considered to be 'dead'
(Joosten 2012). However, knowledge on the prerequisites of peatland recovery grows,
since scientific research focussed lately also on the succession of peat-forming vegetation
or the return of key microbial communities characteristic for peatlands (Emsens et al.

2020, Milner et al. 2020).

1.1.4. Peat bog restoration

Human impacts like airborne nutrient pollution, eutrophication and drainage are major
threats to pristine peatlands (Tsujino et al. 2010). Nutrient loading may alter the bog

vegetation and cause irreversible loss of highly adapted bog species plants such as
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Sphagnum mosses (Bobbink et al. 1998, Gunnarsson et al. 2000, Tsujino et al. 2010), while
improved pond water quality may effectively restore hummocks (Tsujino et al. 2010).

In the past, nearly 530.000 km? of natural peatlands had been drained, mostly in Europe
(Kitson and Bell 2020). Main peatland restoration strategies include the reintroduction of
peat-forming species, e.g.,, Sphagnum, and rewetting, while latter is a controversially
debated issue.

The elevated CO; emissions from drained peatlands are caused by increased frequency
of peat fires, enhanced microbial peat oxidation and the release and activation of
extracellular hydrolase enzymes caused by phenol-oxidising organisms, a phenomenon
known as enzymatic latch theory (Andersen et al. 2013, Kitson and Bell 2020). On the other
hand, rewetted peatlands can enhance microbial driven methanogenesis, leading to
elevated CH4 emissions compared to pristine peatlands (Sachs et al. 2015, Gunther et al.
2020). Consequently, peatland management has to decide on the emission of either CO>
as a weak but persistent, or of CHs4 as a strong but short-living greenhouse gas, if
considering radiative effects and atmospheric lifetimes of both gases (Glnther et al.
2020). Peatland rewetting is cost-effective and simply feasible, but requires a strict water
management to prevent permanently inundated areas and the subsequent formation of
nutrient-rich, shallow lakes with unfavourable greenhouse gas balance (Sachs et al. 2015,
Franz et al. 2016, Glnther et al. 2020, Koebsch et al. 2020). Also, it has to be considered
that bog vegetation and microbiota are already adapted to the dryer conditions and
altered peat geochemistry after long-term drainages (Wen et al. 2018, Gunther et al.

2020). Recently it was proposed that rewetted peatlands contribute to climate change
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mitigation, despite CHs4 emissions, and should be preferred over postponement of
peatland rewetting (Gunther et al. 2020).

However, it is not clear if rewetting alone is sufficient to fully restore drained peatlands.
The restoration depends to a large extent on the return of the pristine microbial
communities and the ecosystem functions they perform (Emsens et al. 2020). Therefore,
the re-establishment of microorganisms may give a hint on the success of peatland

restoration.

1.2. Peatland bryophytes

Bryophytes belong to the embryophyta and are the second largest group of green land
plants. They comprise approximately about 15.000 species and are grouped into the three
paraphyletic divisions Marchantiophyta (liverworts), Bryophyta (mosses) and
Anthocerophyta (hornworts) (Frahm 2007, Von Konrat et al. 2014). These ancient
organisms display the earliest diverging lineages of extant land plants and offer unique
windows into early plant evolution (Shaw et al. 2011). Recent studies suggest that the
embryophyta evolved from already terrestrial charophycean green algae ancestors
(Harholt et al. 2016, Wang et al. 2020), and it is assumed that land plants appeared 700
million years ago (Heckman et al. 2001). Fundamental land plant characters such as water-
conducting tissue, stomata and fungal symbiotic associations evolved primarily in the
bryophyte grade (Ligrone et al. 2012).

Bryophytes are quiet inconspicuous, but surprisingly tough and literally spoken

‘survivalists’: they disperse over large distances - up to several hundreds of kilometres -
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by anemochory of small spores or vegetative propagation organs (Frahm 2007). Due to
their often narrow ecological niches, bryophytes occur in harsh habitats unfavourable for
vascular plants, for example in cold biomes, where they contribute substantially to above-
ground biomass, nitrogen input and soil chemistry control (Cornelissen et al. 2007).
Mosses form 5500 years old banks of several metres depths on Antarctic maritime coasts
(Bjorck 1991) and are able to regrow after 1400 years of glaciations (La Farge et al. 2013,
Roads et al. 2014). They can further thrive in Antarctic lakes of well more than 80 metres
depth (Wagner and Seppelt 2006) or grow unattached on bare ice or on ice pedestals as
‘glacier mice’ (Shacklette 1966, Heusser 1972, Belkina and Vilnet 2015). Thus, mosses are

able to initiate plant succession even on Arctic glaciers (Dickson and Johnson 2014).

1.2.1. Brown mosses

In mire ecology, the term ‘brown moss’ includes calcium-tolerant, non-sphagnaceous
mosses (Vicherova et al. 2017) which belong to the families Amblystegiaceae s.str.
(including  Amblystegium,  Campylium, Drepanocladus and  Palustriella) and
Calliergonaceae (including Calliergon, Scorpidium and Warnstorfia) and comprise up to
170 species. Brown mosses were traditionally circumscribed by morphological features or
habitat preferences (Hedenas and Vanderpoorten 2007). Because of their ability to thrive
under varying moisture conditions, brown mosses display a great phenotypic variability,
and morphological characters are homoplastic (Vanderpoorten et al. 2002). Members of
Amblystegiaceae and Calliergonaceae are probably the most important mosses in

mineral-rich to calcareous wetlands within temperate to polar environments (Hedenas
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and Vanderpoorten 2007, Kooijman 2012). Aquatic brown moss communities growing
under the water table (‘'submerged’) are often the exclusive macrophytic vegetation in
Arctic lakes which are able to cope with low surface irradiance and long ice coverage
(Welsh and Kalff 1974, Sand-Jensen et al. 1999). In low-centred, water-filled polygons of
the Siberian tundra, brown mosses form thick swinging mats (Liebner et al. 2011, Zibulski
et al. 2016). Remains of humified brown mosses in subarctic palsa peatlands and
temperate bogs illustrate their wide distribution and importance at initial bog succession
stages (Arlen-Pouliot and Bhiry 2005, Gaudig et al. 2006, Cai and Yu 2011, Kjellman et al.
2018). In Central Europe, brown moss-dominated rich fens were widely distributed during
the Postglacial but declined rapidly due to anthropogenic caused acidification and

eutrophication (Kooijman 1992, 2012, Landgraf 2010, Thormann and Landgraf 2010).
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Figure 3: Submerged brown mosses form often thick mats under the water table. Brown moss

communities in an Arctic pond on Svalbard; b) a mix of different brown moss species from the same habitat
under the microscope; c) submerged Scorpidium scorpioides growing in water-filled polygonal ponds in the
Siberian tundra, reaching lengths of approximately 20 cm (d) and well above. Photos: A. Kiss, except ¢): C.
Knoblauch

1.2.2. Sphagnum mosses

The family Sphagnaceae comprises the only genus Sphagnum, which includes nearly 300
species (Daniels and Eddy 1990, Mcqueen and Andrus 2007, Zaitseva 2009). They are
almost worldwide distributed and dominate moss community structures especially in the
boreal zone. Certain Sphagnum species have broad ecological preferences according to
water level, pH, conductivity and altitude, thriving therefore in dry hummocks as well as

in wet hollows (Zaitseva 2009, Wojtun et al. 2013).
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Sphagnum mosses are ecosystem engineers that create and maintain boreal peatlands
(Bengtsson et al. 2018). Owing to unique biochemistry, waterlogging and acidifying
capacities, they reduce competition, impede decomposition and build up vast quantities
of peat (Shaw et al. 2003, Bengtsson et al. 2018). Sphagnum species release a
polysaccharide called ' Sphagnan', which displays in its acid form a powerful antimicrobial
compound by lowering pH, inhibiting microbial mineralisation and decomposition more
effectively than lignin-like polyphenols (Painter 1991, Stalheim et al. 2009, Hajek et al.
2011). Therefore, Sphagnum mosses were used for surgery and medical purposes as well
as for transporting archaeological artifacts in the past (Zaitseva 2009, Drobnik and Stebel
2017).

Another unique feature of Sphagnum mosses is their ability to store enormous amounts
of water, owing to dead and non-photosynthetic, hyaline cells (‘'hyalocytes’). The water-
filled hyalocytes can retain multiple times their dry weight and are located in branch
leaves or stems, accounting for up to 80% of the plant volume (van Breemen 1995, Rice
1995, Stalheim et al. 2009, Zaitseva 2009). In this way, hyalocytes can contribute to the
acidification of the surrounding, as rainwater retention is linked with the separation of the
bog surface from the groundwater, especially in combination with hardly decomposable
Sphagnum litter (Vicherova et al. 2017).

Sphagnum mosses are known for their unusually high cation exchange capacity (CEC),
which is accounted for the ability of peat mosses to acidify the surrounding environment
by the exchange of tissue-bound protons for cations (Clymo 1963, Hajek and Adamec

2009, Raven and Edwards 2014). Yet, the role of the high CEC for Sphagnum and its

16



Introduction

biology is still under debate. Besides suppression of vascular plant competitors and
microbial decomposition, high CEC may also enhance the intracellular uptake of cations
and thus extends the availability of minerals in nutrient-limited habitats (Hajek and
Adamec 2009). However, it has been shown that fen brown mosses possess substantial

CEC similar to that of Sphagnum mosses (Soudzilovskaia et al. 2010).

Figure 4: Submerged and emerged Sphagnum species from a subarctic palsa mire. a) dense mats of

Sphagnum riparium growing in a thermokarst pond besides a degrading palsa; b) divergent morphology
of aquatic S. riparium plantlets; ¢, d) terrestrial S. lindbergii form large cushions in lawns and hollows. Photos
by A. Kiss, except b): S. Liebner
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1.3. Moss microbiota

Plants host diverse taxonomic microbial communities — the plant microbiota — which
colonise accessible plant tissue. The plant microbiota comprises eukaryotic organisms,
such as fungi, protists and nematodes, as well as prokaryotic bacteria and archaea, but
also viruses (Stobbe and Roossinck 2014, Jung et al. 2020, Trivedi et al. 2020). Microbes
can be pathogenic, commensal, symbiotic or transient (Alcaraz et al. 2018), and beneficial
microbes confer fitness advantages like growth promotion, nutrient uptake and pathogen
resistance to their host (Vandamme et al. 2007, Jung et al. 2020, Trivedi et al. 2020). The
microbiota contains literally ‘the plant’s second genome’ and shapes the microbiome
(entity of plant-associated microorganisms) by interacting with the host plant and the
external environment (Berg et al. 2014, Alcaraz et al. 2018). Plant microbiomes represent
highly specialised and co-evolved genetic pools and host a rich secondary metabolism

(Mller et al. 2016).

1.3.1. Moss-associated bacteria

Knowledge on moss-associated bacteria, often referred to as ‘'moss bacteriome’ (Marks
et al. 2018, Bouchard et al. 2020, Renaudin et al. 2022), increased during the last decades
and revealed fascinating insights into the interrelationship between hosts and their
prokaryotic symbionts. Beneficial vitamin-producing, N fixing (diazotrophic) and
methane oxidising (methanotrophic) bacteria associated with streptophyte algae and
bryophytes suggest that microbes fostered land colonisation by allowing early land plants

to cope with nutrient poor soils (Knack et al. 2015). Phytohormone producing bacteria,
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which benefit from methanol emitted by bryophyte cells, stimulate in turn organ
development in moss protonema, probably displaying a co-evolution of both symbiotic
partners (Hornschuh et al. 2002, Kutschera 2007). Moss bacteriomes are important
promoters of early succession in arid ecosystems and mediate stress resilience of pioneer
moss vegetation exposed to high UV radiation (Graham et al. 2017, Cao et al. 2020). In
polar regions, bacteria secrete ice-binding proteins on the surface of moss leaves
(Raymond 2016) and contribute to the establishment and maintenance of important
biochemical cycling in submerged ‘moss pillars’ from Antarctica (Nakai et al. 2012). Under
nitrogen limitation, boreal feather mosses secrete chemo-attractants which guide
cyanobacteria like Nostoc sp. towards them (Bay et al. 2013). It is further suggested that
moss-associated diazotrophic bacteria display a major source of biologically fixed N in
nutrient-depleted boreal areas (Holland-Moritz et al. 2018). In Arctic ecosystems, brown
mosses seem to be exceptionally well-adapted for harbouring epiphytic Nostoc
communities (Solheim et al. 1996). A study on submerged Scorpidium scorpioides from
Arctic polygonal tundra revealed even a mutualistic relationship between the moss host,
which incorporates carbon deriving from microbial methane oxidation, and the
associated methanotrophic bacteria which in turn benefit from the oxygen produced
through photosynthesis. By this, methane emissions from these habitats may be reduced
by at least 5% (Liebner et al. 2011). Brown moss-associated bacteria may contribute in
different ways to habitat adaptation of their hosts (Wang et al. 2018), but studies on brown

mosses and their associated microbiota remain sparse.
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Sphagnum bacteriomes, on the contrary, attracted greater scientific interest. Although
Sphagnum mosses create an inhospitable environment for most microbes, they
simultaneously cultivate a diverse microbial community within their tissues, preferably in
hyalocytes next to photosynthetic cells, where they provide expanded surface areas with
regard to the inner cell walls and stable hydration to microorganisms (Granhall and
Hofsten 1976, Raghoebarsing et al. 2005, Kostka et al. 2016). Bacterial community
compositions vary vertically along the top, middle and bottom parts of Sphagnum mosses
and underlying sediments, indicating diverse ecological functions of the microbiota
(Xiang et al. 2013). However, the bacterial associates may contribute to the ecological
dominance of Sphagnum and help the host to survive under changing environmental
conditions (Kostka et al. 2016, Carrell et al. 2020). In Sphagnum-dominated bogs, where
nitrogen is a growth-limiting factor, Nostoc spp. mediate N> fixation in and growths of
Sphagnum mosses (Granhall and Hofsten 1976, Turetsky 2003, Berg et al. 2013).
Diazotrophic microbial activity is highest in the green parts of mosses where
photosynthesis takes place, indicating a light-dependency of bacterial mediated N>
fixation (Basilier and Granhall 1978). Besides cyanobacteria, methanotrophic
Alphaproteobacteria also possess nifH genes, but the extent of their contribution to N>
input in nutrient depleted bogs remains controversial (Liebner and Svenning 2013,
Larmola et al. 2014, Leppanen et al. 2014, Vile et al. 2014, Ho and Bodelier 2015). However,
submerged Sphagnum mosses harbour symbiotic methanotrophic  bacteria
endophytically (living inside the cells), where they oxidise methane to carbon dioxide

(Figure 5); in turn, the obtained carbon is subsequently fixed by the host (Basiliko et al.
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2004, Raghoebarsing et al. 2005). Hence, they contribute significantly to the reduction of
methane emissions from northern peatlands, especially in areas with high water levels
(Kip et al. 2010, van Winden et al. 2010, Parmentier et al. 2011). Interestingly,
methanotrophic bacteria can move through the water and initialise methanotrophic
activity in former inactive Sphagnum plantlets from the same bog (Larmola et al. 2010,

Putkinen et al. 2012).

Chlorophyllous cells
Heterotroph

Cyanobacterium

Figure 5: Schematic illustration showing beneficial microorganisms inside the hyaline cells of Sphagnum.
Functional microbial guilds such as methanotrophic (methane oxidising) and diazotrophic (nitrogen fixing)
bacteria may act as a source of carbon and nitrogen to the host. In turn, the microorganisms benefit from
the photosynthetically produced oxygen, which diffuses through the hyaline cell walls. Taken from Kostka,
2016.
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1.3.2. Moss-associated archaea

Analogous to bacteriomes, archaeomes are the entirety of archaeal cells, including their
genetic material in a particular environment (Moissl-Eichinger et al. 2018); consequently,
moss-associated archaea can be referred to as ‘'moss archaeome’. Archaea are often
considered 'extremophiles’ thriving in inhospitable environments such as deep sea vents,
submarine permafrost sediments, salt pans, mine drainages and permafrost-affected soils
(Ganzert et al. 2007, Morozova and Wagner 2007, Barbier et al. 2012, Cabrera and Blamey
2018, Genderjahn et al. 2018, Winkel et al. 2018). Owing to their often lithoautotrophic
and anaerobic lifestyle and an extraordinary resistance against desiccation, UV radiation
and sub-zero temperatures, methane producing (methanogenic) archaea have even been
studied as model organisms for possible life on Mars (Wagner et al. 2002, Schirmack et
al. 2015, Serrano et al. 2019, Maus et al. 2020).

However, there is a growing scientific interest in archaea inhabiting more moderate
environments, for example as associates of eukaryotic hosts (Wrede et al. 2012, Borrel et
al. 2020). Archaea appear in the phyllospheres (total above-ground plant surface) and
rhizospheres (total root surface) of many plants (Buée et al. 2009, Timonen and Bomberg
2009). As part of prokaryotic communities living inside plant tissues, archaea promote
plant growth and are involved in nutrient cyclings of plant ecosystems (Timonen and
Bomberg 2009, Jung et al. 2020, Sellappan et al. 2020). It has been recently demonstrated
that plant archaeomes are highly diverse and distinct for different plant parts and host
plant-specific (Trivedi et al. 2020). Moreover, archaea are vertically transmitted in native

alpine plants as part of seed microbiomes (Wassermann et al. 2019).
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We face, however, a gap of knowledge regarding archaea and their probable role as moss
symbionts, which is astonishing concerning the numerous studies on methanogenic
archaea and their metabolic activity in northern bog habitats (Krumholz et al. 1995,
Kotsyurbenko et al. 2004, Galand et al. 2005, Metje and Frenzel 2005, Merila et al. 2006,
Cadillo-Quiroz et al. 2008, Bridgham et al. 2013, Tveit et al. 2014, Liebner et al. 2015, Marti
et al. 2015, Reumer et al. 2018, Putkinen et al. 2018, Vigneron et al. 2019). To date, only
one study has investigated the archaeome of different moss and Sphagnum species as
part of an alpine bog vegetation (Taffner et al. 2018). The authors have stated that
functional groups of moss-associated archaea are related to osmotic stress, purine
metabolism and auxin biosynthesis and are thus beneficial for the hosts. It has already
been mentioned previously that archaea are part of the bog core microbiota and display
potential microbial keystone species with importance for their hosts and the whole bog

ecosystem (Bragina et al. 2015).

1.3.3. Endophytic prokaryotic communities

Endophytes are microorganisms residing within plant tissues — the endosphere - such as
leaves, roots and stems (Trivedi et al. 2020). Noteworthy, each individual of the 300.000
plant species existing, is host to one or more endophytes (Strobel and Daisy 2003).

Diversity and network complexity of endophytic prokaryotes is low compared to epiphytic
(living on the plant surface) or soil microbiomes (Tian et al. 2020). Bacteria inhabiting
plant roots tend to be phylogenetically clustered, which points towards a greater

influence of the host plant on endosphere microbiome assembly (Trivedi et al. 2020).
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Endophytic prokaryotes can supply a range of substances that provide protection and
survival value to the host (Strobel et al. 2004). Plant processes are directly influenced by
both the bacteria and archaea, but there is not enough knowledge on the mechanism on
how endophytic prokaryotes contribute to host performance (Trivedi et al. 2020).

Endophytic prokaryotes enter the moss host through the cell pores. The water-filled
hyalocytes of Sphagnum provide favourable conditions in terms of nutrients and pH,
where versatile bacterial microcolonies are attached to the cell wall or thrive inside the
internal spaces of the hyalocytes (Figure 5) (Granhall and Hofsten 1976, Bragina et al.
2012a). Endophytic bacteria can grow actively as clusters in stem hyalocytes and inhabit
both, the emerged (growing above the water table, terrestrial) and the submerged
Sphagnum parts (Raghoebarsing et al. 2005). It has been observed that isolated
endophytic bacteria from different Sphagnum species are able to suppress the growth of
phytopathogenic and toxigenic fungi and are thus potentially antagonistic (Shcherbakov
et al. 2013), while symbiotic functional groups, such as methanotrophs and diazotrophs,
contribute to the carbon and nitrogen budget of their host (Basilier and Granhall 1978,
Raghoebarsing et al. 2005, Kip et al. 2011, Stepniewska et al. 2018, Tian et al. 2020). Owing
to individual habitat preferences and the production of bioactive secondary metabolites,
Sphagnum species display distinct endo- and epiphytic bacterial communities (Opelt et

al. 2007b).
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1.4. Biotic and abiotic influences on moss-associated microorganisms

The prevailing water regime is a key environmental factor that shapes the microbiomes
of terrestrial and aquatic mosses (Leppanen et al. 2014, Wang et al. 2018), influencing for
example the metabolic activity of the moss bacteriome (Raghoebarsing et al. 2005, Kip et
al. 2010, van Winden et al. 2010). Contrarily, the role of pH remains ambiguous due to the
interactions with other abiotic factors (Bragina et al. 2012b, 20123, Jean et al. 2020, Rousk
and Rousk 2020). It has further been shown that the community structure of moss
bacteriomes alters with changing bog succession stages (Putkinen et al. 2014), but also
with changes in temperature (Markham 2009, van Winden et al. 2012). Interestingly, also
light seems to have an influence on metabolic activity of both, diazotrophic an
methanotrophic moss associates (Basilier and Granhall 1978, Liebner et al. 2011, Larmola

et al. 2014, Kox et al. 2020a).

Besides abiotic environmental factors, the surrounding vegetation may also have an
impact on microbial communities (Borga 1994, Opelt et al. 2007a). However, the impact
of the moss host on its prokaryotic assemblages and their metabolic activities remains
ambiguous (Basilier and Granhall 1978, Basilier 1979, Opelt et al. 2007b, 2007a, Gavazov
et al. 2010, Bragina et al. 2012a, Kox et al. 2020b), while some studies point even towards
a peat bog-specific ‘core microbiome’, meaning microbial taxa that are common across
the same plant species or plant microhabitats and potentially fulfil important functions

for both, the host plants and the ecosystem (Bragina et al. 2015).
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1.5. Objectives

Despite several studies on Sphagnum-associated bacterial communities and their
environmental drivers, we face a knowledge gap regarding bacterial and archaeal
communities associated with both, Sphagnum and brown moss taxa from different
peatland types with diverging environmental conditions across a large geographical scale.
No studies exist on the core microbiome of natural northern peatlands spanning from
the High Arctic to the temperate zone, and its presumed role in the transition from
minerotrophic fens to ombrotrophic peat bogs. Moreover, our understanding on the
community structure of moss-associated methanotrophic bacteria and especially of
methanogenic archaea and their potential metabolic activity within their host mosses
remain sparse. Finally, moss-associated prokaryotes from adjacent pristine, disturbed and
rewetted bogs not investigated so far so the effect of peatland degradation and
restoration on structure and metabolic activity of moss-associated bacteria and archaea

remains to be studied.
Therefore, the aims of this thesis were to

|.  Unravel the bacterial and archaeal communities (defined as ‘microbiome’) of both
brown mosses and Sphagnum species from northern bogs with a focus on
epiphytic and endophytic assemblages.

. Investigate the environmental drivers on moss-associated microbial assemblages

across different peatland types on a large geographical scale.
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lIl.  Examine the prokaryotic core community of brown mosses, Sphagnum mosses,
adjacent higher peat bog plants and soil.

IV.  Estimate potential methane oxidation and methane production rates of moss-
associated bacteria and archaea.

V. Investigate the Sphagnum-associated microbial communities of adjacent intact,

rewetted and degraded peat bogs on a local scale.

For this purpose, a comparative large-scale study was designed spanning four brown
moss and Sphagnum-dominated peatlands in the Arctic, subarctic and temperate zones.
Moss and reference samples were collected from altogether 26 sites and the associated
microbial community structures were related to various local environmental parameters.
Moreover, potential methane oxidation and methane production rates mediated by
bacteria and archaea were determined for both, brown mosses and Sphagnum mosses.
The following section gives an overview on the four peatlands and the corresponding

sub-sites which were studied during the course of this thesis.
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1.6. Study sites

1.6.1. High Arctic peatlands of Svalbard (SV)

Svalbard is an archipelago in the Arctic Ocean, and the research settlement Ny-Alesund
(78.9° N, 11.9° E) is located on the western coast of the main island Spitsbergen. The
annual temperature of Ny-Alesund was around - 4,5°C between 1993 — 2011 (Maturilli et
al. 2013). Ny-Alesund is located within an 'Arctic semi-desert' with an annual precipitation
of up to 300 mm (Lakka 2013). The vegetation consists mainly of bryophytes (e.g. Sanionia
uncinata, Aulacomnium turgidum) and vascular plants (e.g. Saxifraga oppositifolia, Salix
polaris, Dryas octopetala and Luzula confusa) (Muraoka et al. 2002).

In the vicinity of Ny-Alesund, three Arctic ponds were chosen as sub-sampling sites: Twin
Water (Norwegian: Tvillingvatnet) (TW) has a surface of 3.50 ha and a maximum depth of
6.3 m. The pond is fed by inflowing ground water from the talus of the Zeppelinfjellet
Mountain (Haldorsen et al. 2010). Gluudneset (GLU) is a sandy headland located about
150 m from the shore, on level ground about 3-4 m above sea level and influenced by
Arctic tern (Sterna paradisaea) and Barnacle geese (Branta leucopsis) (Bengtson et al. 1974,
Lakka 2013). Knudsenheia (KNU) is a small lake at a marine terrace, about 300 m from the
shore (Bengtson et al. 2013), with surrounding dense waterlogged moss layer and
influenced by grazing Branta leucopsis and Svalbard reindeers (Rangifer tarandus

plathyrynchus) (Alves 2011).
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Figure 6: Sampling sites of Svalbard. a) Twin Water with submerged brown moss communities on its shore
(b); €) Gluudneset with moss carpets above and below the water table (d); e) Knudsenheia with thick moss
mats on stony ground (f). Photos by A. Kiss
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1.6.2. Polygonal Tundra of Samoylov (SA)

Samoylov Island (72.4° N, 126.5°) is located in the Arctic Siberian Lena Delta and has an
area of 1200 ha. It is characterised by a mean annual temperature of -14.7°C and a mean
annual precipitation of 190 mm. The landscape is covered by ice wedge polygons with
typical tundra vegetation consisting of dwarf shrub Dryas punctata, various Carex species
and mosses such as Hylocomium splendens, Timmia austriaca, Limprichtia revolvens and
Meesia longiseta. (Hubberten et al. 2003), but also brown mosses like Scorpidium
scorpioides, Drepanocladus cossonii and Warnstorfia exannulata (Liebner et al. 2011).
Samples were taken from various sites represented by three different polygon types: low-
centred polygonal ponds with an open pond surface and a deep waterbody, low-centred

polygonal ponds with sedge coverage and a shallow water body, and high-centred, dry

polygons.
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Figure 7: Sampling sites of Samoylov. a) low-centred, deep polygonal pond with open water and
submerged Scorpidium scorpioides growing completely under the water table (b); c) low-centred, shallow
polygonal pond with Carex aquatilis and submerged S. scorpioides reaching the water table (d); e) dry low-
centred polygon with various moss species and vascular plants (f). All depicted polygons are examples for
sub-sampling sites. Photos by A. Kiss
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1.6.3. Palsa Bogs of Neiden (NEI)

Neiden (69.7° N; 29.4° E) is located in the county of Troms of Finnmark, Northern Norway
within the subarctic zone. The annual average temperature between 1965 and 2011 was
-0.6°C and the annual mean precipitation was about 435 mm. (Liebner and Svenning
2013). The Bgttemyra mire is characterised by palsas which show a declining trend since
the end of the 19" century, most likely due to global warming (Hofgaard 2003, Johnsen
2012). The vegetation consists of Ledum palustre, Empetrum sp., Pleurozium sp. and Rubus
chamaemorus and various sedges such as Eriophorum vaginatum and Carex spp. Within
the surrounding palsa peatland, three different successional palsa stages were selected
as sub-sampling sites: currently degrading palsas with adjacent thermokarst ponds,
inhabited by Sphagnum riparium, thermokarst ponds with S. riparium as remnants of
collapsed palsas and hollows with Sphagnum lindbergii, representing old successional

stages of previously collapsed palsas.
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Figure 8: Sampling sites of Neiden. a) degrading palsa mound with an adjacent thermokarst pond and
floating mats of aquatic Sphagnum fallax (b); c) thermokarst pond remaining from a lately collapsed palsa
with a dense carpet of submerged S. fallax (d); e) hollow as remnant of previously collapsed palsa with
terrestrial S. lindbergii (f). All depicted palsa successional stages represent examples for sub-sampling sites.

Photos by AKiss

33



Introduction

1.6.4. Kettle Bog Peatlands of Mueritz National Park (MUE)

The Mueritz National Park (53.3° N, 13.2° E) is located in Northern Germany within the
temperate zone. The mean annual temperature is 7.8°, the mean annual precipitation is
593 mm. Several kettle bogs are located within the near-natural beech forest (Fagus
sylvatica) Serrahn (Von Oheimb et al. 2005), of which three bogs were chosen for
sampling:

Kiebitzmoor (KIE), a disturbed and rewetted kettle bog with non-typical vegetation like
Drosera rotundifolia, Rhynchospora alba, Juncus effusus, Typha latifolia and Carex curta,
influenced by animals such as wild boar (Sus scrofa).

Heidbergmoor (HEI), a typical oligotrophic rewetted kettle bog with species-poor
Sphagnum fallax-Eriophorum vaginatum vegetation.

Klockenbruch (KLO) represents a pristine and intact kettle bog with an oligotrophic centre,
which is inhabited by Sphagnum magellanicum and Ledum palustre, and a surrounding
mesotrophic, waterlogged margin with Sphagnum fallax (T. Timmermann, personal

communication).
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Figure 9: Sampling sites of Mueritz National Park. a) Heidbergmoor, a hummock-hollow-complex with
emerged and submerged Sphagnum fallax (b); c) Klockenbruch, a kettle bog with S. fallax at its margin
and S. magellanicum growing at the elevated centre (d); e) Kiebitzmoor, a kettle bog with S.

magellanicum (f). Photos by S. Liebner
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2. Material and Methods

2.1. Sampling scheme overview

Two main ecosystems (brown moss- and Sphagnum-dominated peatlands) were studied,
represented by four sites, which are analogous to different stages in the transition from
fens to incipient ombrotrophic bogs: 1) High-Arctic lakes with mixed brown moss
communities on Svalbard (SV); 2) Arctic polygonal tundra ponds with densely growing
brown mosses on Samoylov Island (SA); 3) subarctic Sphagnum palsa peatlands in Neiden
(NEI), and 4) temperate Sphagnum kettle bogs in the Mueritz National Park (MUE). An
overview about the study sites and a simplified sampling scheme is given in Figure 10,
and a detailed overview of the samples and the corresponding sampling sites, biotic
(plant species) variables, environmental variables and geographical coordinates is

provided in Tables STA and S1B.
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Material and Methods

2.2. Sampling of pore water

At each site, pore water was retrieved from three depths when possible; slightly above,
within and below the moss layer by extracting small samples of pore water with
perforated brass tubing according to Liebner et al,, 2015. At the hummock sites, pore
water was extracted from the shallowest depth possible. Ten-ml plastic syringes equipped
with three-way valves were connected to the brass tubes and used to carefully suck out
the pore water. Pore water was transferred to gas-tight 20-ml glass serum vials pre-
treated with 100 pl 1 M HCI and pre-flushed with N2 avoiding air bubbles and stored at

4 °C.

2.3. Sampling of moss plantlets

During a field campaign between June and September 2013, mosses for DNA extraction
were sampled. On SV, submerged brown mosses from three sub-sites were collected:
Bryum pseudotriquetrum in Twin Water (TW), Drepanocladus trichophyllus and Scorpidium
turgescens in Knudsenheia (KNU) and Drepanocladus revolvens and S. turgescens in
Gluudneset (GLU), each in duplicates (sample type 1; all sample types are depicted in
Figure 10). On SA, a mixture of submerged Scorpidium scorpioides and Meesia triquetra
from an interpolygonal crack (PC; sample type 2a) and S. scorpioides from a polygonal
pond (three replicate of plants subsumed to PP; sample type 2b) were collected. At both
locations, SV and SA, sediment underneath the mosses was sampled as references. In NE|,
different successional palsa stages were selected: thermokarst ponds with Sphagnum

riparium adjacent to degrading palsas (one plant within each of the subsites NEI1, NEI2;
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sample type 3a), thermokarst ponds with S. riparium as remnants of collapsed palsas (one
plant within each of the subsites NEI3, NEI4; sample type 3c) and hollows with Sphagnum
lindbergii, representing old successional stages of previously collapsed palsas (one plant
within each of the subsites NEI5, NEI6, NEI7; sample type 3b). From MUE, three subsites
were chosen: Heidbergmoor, a hummock-hollow complex (sample type 4a) with
emerged Sphagnum fallax (three replicate plants within the subsite called HEI2) and
submerged S. fallax (one plant within the subsite called HEI1); Klockenbruch, a kettle bog
with an oligotrophic, elevated centre (sample type 4c) with Sphagnum magellanicum
(three replicate plants within KLO1) and a meso-oligotrophic, lower margin (sample type
4b) with S. fallax (three replicate plants within KLO2); Kiebitzmoor, a formerly drained and
rewetted kettle bog (sample type 4c) with S. magellanicum (three replicate plants within
KIE). In NEI we collected the sedges Eriophorum sp. and Carex sp. (NEI1, NEI5, NEI6, NEI7)
and sediment underneath the mosses (NEI1, NEI2, NEI3, NEI4) as references, with
duplicates for each site and reference type. In MUE, Eriophorum vaginatum (HEI2, KLO1
and KLO2) and Carex sp. (KIE) were collected as references with duplicates for each site
and plant type. Peat or moss batches were sampled using gloves and sterile knifes or
spoons. Leaves, stem and upper root material of vascular plants were manually extracted
from the peat body, washed with sterilised tap water for removal of organisms from the
surrounding environment, cut and used as a bulk reference sample. Complete moss
individuals were sampled and also washed with sterilised tap water prior to storage. All
samples were stored at — 80 °C immediately after sampling until further processing except

for the samples from SA which were continuously stored at — 20 °C.

39



Material and Methods

Mosses for activity measurements were sampled during a field campaign in 2014.
Sampling sites corresponded to those in 2013, except for S8 (SA), which represented a
dry low-centred polygon with a mixture of emerged brown mosses, containing Meesia
sp., Warnstorfia sp. and Drepanocladus sp. Mosses were taken with gloves and a sterile
forceps, placed into Ziplock® plastic bags and stored at -20°C for transport and storage

until activity measurements.

2.4. Analysis of pore water chemistry

The pore water analysis included determinations of pH, temperature, CHs4, DOC and O,
Values of pH were measured in the field using a multi parameter probe Multi 350i from
WTW (Laboratory and Field Products, Nova Analytics). Air and peat temperatures were
measured with a hand-held digital thermometer 2000T (Thermocouple Thermometer,
Digitron Instrumentation Ltd, England) equipped with a 50 cm long probe. Pore water
methane concentrations were measured in triplicates by gas chromatography shortly
after pore water sampling as described elsewhere (Liebner et al. 2015). Briefly, the gas
samples within the headspace were taken with a gas-tight syringe (Hamilton Bonaduz
AG, Bonaduz, Switzerland), and analysed using a gas chromatograph (7890A GC system,
Agilent Technologies, USA), equipped with an HP-PLOT capillary column (@ 0.53 mm, 30
m in length) and a flame ionisation detector (FID) with helium as carrier gas (injector:
45°C; detector: 250°C), which was calibrated with standard gases prior to measurements.
For the determination of DOC values, 20 ml glass vials (Agilent) were flushed with

ultrapure water, baked at 550 °C for 2 h, closed with aluminium-sealed PTFE/butyl septa
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and acidified with 3% HCI Suprapur (VWR). 15 ml of the pore water was filtered with 0.7
um GF/L filter (Whatman). The samples were sent to 'Potsdamer Wasser- und
Umweltlabor GmbH’" (PWU) for DOC analysis. Pore water O> contents were measured in
the field at different depths (above, within and below moss layer, where possible), using

an optical oxygen meter (FireStingOz, PyroScience).

2.5. Cell wall analysis

2.5.1. Cation exchange capacity (CEC)

Up to 45.0 mg of dry moss samples were sealed into labelled polyamide mesh bags. The
bags were submerged in 2 | of 20 mM HCI to soak the moss up and to convert all
carboxylic cation-exchange sites to undissociated form; free protons were then replaced
by repeated thorough wash with distilled water. All the bags were then transferred to 2 |
of 0.5 M ammonium acetate (NH4CH3CO;) and after pH equilibration the ammonium
acetate solution was renewed and adjusted to pH 7.0 using Ammonia Solution (NH4OH).
The bags were repeatedly washed with large amount of distilled water to replace free
NH4" and dried.

The bags were individually immersed to 50 ml of 20 mM HCl and shaken for 15 min to
elute cell-wall bound NH4" ions. The eluate was sampled and NH4" analysed

colorimetrically using Flow Injection Analysis (Foss Tecator AB, Sweden).
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2.5.2. Holocellulose (HC)

Dry plant samples were ball-milled for 2 min at 30 Hz to fine dust (MM200, Retsch) and
about 40.0 mg of the material was washed with 5 ml of 70% acetone in 15 ml Falcon®
tubes and subsequently oven-dried in the tubes at 48 °C. Next, 8 ml of H>O, 75 pl of
glacial acetic acid (CH3COOH) and 150 pl of 25% sodium chlorite (NaClO2) were added.
The tubes were closed shaken and incubated for 1h in a water bath at 75 °C, being shaken
every 10 min. The additions of acetic acid and sodium chlorite and the incubation was
repeated three times. Afterwards, samples were cooled and centrifuged at 4000 x g for
15 min, supernatant was discarded. 10 ml H.O was added, samples were vortexed and
centrifuged at 3000 x g, supernatant was discarded. This wash step was repeated twice,
followed by drying at 70 °C. The residuum is referred to as holocellulose (structural

polysaccharides) and expressed in % of dry mass.

2.5.3. Lignin and Lignin-like polymers (LLP)

To remove phenolic extractives that can interfere with later spectrophotometric
determination of acid-soluble Klason lignin (KL), up to 60.0 mg of milled plant material
was shaken with 5 ml of 70% acetone ((CH3).CO) in 15 ml Falcon® tubes for 1 h. The tubes
were then centrifuged, supernatant discarded, and the pellets dried in the tubes at 48 °C.
Next, 0.4 ml of 72% sulphuric acid (H2SO4) was added to the pellet, the tubes were
vortexed and incubated for 1 h at 23 °C, followed by addition of 11.2 ml of H2O, vortexing
and incubation at 100 °C for 2.5 h. The tubes were then centrifuged at 3000 x g for 15

min and the supernatant was sampled for dissolved lignin analysis and discarded. The
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pellet (Klason lignin, acid-insoluble residuum) was washed three times with 10 ml of water,
centrifuged, oven-dried at 70 °C and expressed in % of dry mass. Acid-soluble Klason
lignin was measured spectrophotometrically at 205 nm (standard mass attenuation
coefficient of 110 I g~' cm™" was applied according to Hatfield and Fukushima 2005) and
expressed in % of dry mass. Acid-soluble Klason lignin and Klason-lignin were summed

to Total Klason lignin (representing lignin-like phenolics in mosses as they lack true lignin).

2.5.4. Bulk moss litter analysis

Plant samples were dried and milled (Pulverisette, Fritsch). About 5.0 mg of sample was
weighed in tin boats (Elementar). Total carbon (TC) and total nitrogen (TN) contents were
determined as double measurements with a carbon, nitrogen and sulphur (CNS) analyser
(Elementar Vario EL Ill). For determining C:N ratios (C/N), quotients of TC and TN were
calculated.

2.6. Moss surface sterilisation and separation of putative epiphytic and
endophytic microbial communities

Between 2.2 and 5.3 g of the moss material pre-treated as described above was thawed
and amended with extraction buffer containing ultrapure DEPC water (AppliChem), 0.85%
Sodium chlorite (NaCl) (Merck), and 0.01% Tween20 (AppliChem) in a ratio 2:1 (weight
percent), modified after (Ikeda et al. 2009). The mixture was shaken horizontally for 1 h at
4 °C prior to ultrasonication (Bandelin Sonoplus HD3100) with pulsation for 2 min (1 s off,
2 s on) at 0.45 W/ml (Morris et al. 1998). Extraction buffer containing the epiphytes was

filtered through a 0.2 um cellulose filter (Sartorius Stedium). The remaining moss was
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surface-sterilised with 0.15% sodium hypochlorite (NaOCI) (Roth) for 1 min, and rinsed
seven times with DEPC water according to a modified protocol by Bay et al., 2013. Filters
and sterilised mosses were ground to powder under sterile conditions with liquid
nitrogen, transferred to lysis tubes and stored at — 20 °C until DNA extraction. For each
moss sample, one filter with wash-off (epiphytes) and two technical replicates of the
surface-sterilised moss (putative endophytes) were used for DNA extraction and

sequencing.

2.7. DNA extraction and sequencing

For the extraction of genomic DNA, 0.4-0.8 g of each the surface treated mosses, the
filters containing the wash-off, the untreated sedges and sediment samples were taken
following the CTAB/phenol-chloroform-based method after (Griffiths et al. 2000). The
concentrations of the DNA yields were quantified with a Nanophotometer P360 (Implen
GmbH, Minchen, Germany) and a Qubit 2.0 Fluorometer (Thermo Fisher Scientific,
Darmstadt, Germany) according to the manufacturer’s protocols. 16S rRNA genes of
bacteria were amplified with the primer combination S-D-Bact-0341-a-S-17 and S-D-
Bact-0785-a-A-21 (Herlemann et al. 2011), while the archaeal 16S rRNA genes were
amplified with the primer combination S-D-Arch-0349-a-S-17 and S-D-Arch-0786-a-A-
20 (Takai and Horikoshi 2000). All primers were labelled with various combinations of
barcodes listed together with primer sequences in Table S1B. The PCR mix consisted of 1
x PCR buffer (Tris-Cl, KCI, (NH4)2SO4, 15 mM MgCl; pH 8.7) (QIAGEN, Hilden, Germany),

0.5 pM of each primer (Biomers, Ulm, Germany), 0.2 mM of each desoxynucleoside
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(Thermo Fisher Scientific, Darmstadt, Germany), and 0.025 U ul™ hot start polymerase
(QIAGEN, Hilden, Germany). The thermocycler was preprogramed to 95 °C for 5 min
(denaturation), followed by 40 cycles of 95 °C for 1 min (denaturation), 56 °C for 45 s
(annealing) and 72 °C for 1 min and 30 s (elongation); the final elongation step was
performed at 72 °C for 10 min. PCR products were purified with a Hi Yield Gel/PCR DNA
fragment extraction kit (Sud-Laborbedarf, Gauting, Germany) following the
manufacturer's protocol. The PCR products obtained from three individual runs per
sample were combined. PCR products of different samples were pooled for sequencing
in equimolar concentrations and compressed in a vacuum centrifuge Concentrator Plus
(Eppendorf, Hamburg, Germany) to a final volume of 10 pl with a concentration of 200
ng/ul. The sequencing and library preparation was performed by the company GATC
(Konstanz, Germany) on an lllumina MiSeq sequencer according to their standard
protocols. The library was prepared with the MiSeq Reagent Kit V3 for 2 x 300 bp paired-
end reads. To consider for the low-diversity amplicon sampling, 15% PhiX control v3

library was used.

2.8. Sequence analyses and bioinformatics

Raw data was demultiplexed using CutAdapt (Martin 2011); e 0.1; —trim-n; no error in
barcodes allowed. Paired-reads were merged using PEAR (Zhang et al. 2014) (Q25; p 10
4. v20), while sequence orientation was standardised using own scripts. All sequences of
low quality were filtered and trimmed using Trimmomatic (Bolger et al. 2014)

(LEADING:25; TRAILING:25; SLIDINGWINDOW:5:25; MINLEN:200). According to the
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QIIME SOP (Caporaso et al. 2011), all chimeras were removed. Reads were finally clustered
into Operational Taxonomic Units (OTUs) using QIIME' pick_open_reference.py script with
a cutoff value of 97% (Caporaso et al. 2011). Representative sequences of the clusters were
annotated with usearch using the curated Greengenes 13.8 taxonomy database
(McDonald et al. 2012). OTUs with a small, sample-wise relative abundance (< 0.01%),
OTUs assigned to chloroplasts and bacterial OTUs within archaeal samples and vice versa

were filtered before further exploration.

2.9. Statistical analyses

In order to obtain the differences in microbial community composition between the sites,
the inverse Simpson index was calculated and the number of OTUs as measures of the
OTU diversity and richness, respectively, were counted. The bubble plot in Figure 15 was
generated with the package ‘ggplot2’ (version 2.2.0) within the statistical software R
(version 3.2.2) (R Core Team 2015).16S rRNA gene datasets of either bacteria or archaea
as correlation matrices of samples were generated using the R function ‘cor’, specifying
the Spearman rank correlation coefficient. Based on the correlation matrices to generate
dendrograms, hierarchical clustering of the samples was calculated using the method
‘agnes’ within the R package ‘cluster’, with default settings. All heatmaps were compiled
using the R package 'heatmap3’ (version 0.3.3). For bacteria, the inverse Simpson index
diversity estimates were calculated using the R package ‘asbio’ (version 1.6-5). For
environmental variables, pairwise t-tests were used and carried out using the R function

‘pairwise.t.test’. For diversity indices, pairwise Mann—Whitney-Wilcoxon tests were used
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and carried out using the R function ‘pairwise.wilcox.test’. In order to quantify the
explanatory power of biotic and environmental variables with respect to the microbial
ecology of the peatlands, canonical correspondence analysis (CCA) was carried out
(package: vegan (version 2.2.1)). Correspondence analysis (CA) was carried out as
described before (Greenacre 2007) and plotted using ‘ggplot2’. Due to lacking
observations for between 23 and 45% of the samples, eight variables (cation exchange
capacity, lignin-like polymers, holocellulose, total nitrogen, total carbon and C:N ratio,
DOC, oxygen and water content) were removed from the initial full model. Variation in
the microbial communities were constrained to the remaining variables; (1) sites (SV, SA,
MUE and NEI), (2) subsite (e.g., KIET), (3) plant species or reference sediment, (4) location
above or below water table, (5) washed and surface-sterilised moss plant (putative
endophytes) or wash-off (epiphytes) (6) pH, (7) methane concentration in pore water, and
(8) temperature. In order to estimate and account for the spatial autocorrelation that the
sites (1) and subsite (2) variables represent, partial CCA was introduced. Running the
model without (1) and (2) showed that the constrained inertia was reduced from 72% of
total inertia to 40%. Subsequent analysis of variance inflation factors revealed that no
remaining variables were redundant. To be considered part of the core microbiota, an
OTU had to be present in 80 out of 122 samples and in both system types (brown moss
and Sphagnum), reflecting a restrictive 66% threshold. Using this threshold, core
communities were calculated. moss system core communities (brown moss or Sphagnum)
were calculated, while moss species communities were calculated with a more restrictive

threshold of 75% (Bragina et al. 2015).
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2.10. Potential methane production and oxidation assays

After preliminary tests, the following samples were chosen for both, CH4 production and
CH4 oxidation tests: KNU (mix of submerged Drepanocladus trichophyllus and Scorpidium
turgescens), GLU (mix of submerged Drepanocladus revolvens and S. turgescens), SO
(submerged Scorpidium scorpioides), S8 (mix of emerged Meesia sp., Warnstorfia sp. and
Drepanocladus sp.), NEI 1 (submerged Sphagnum riparium), NEI 2 (emerged Sphagnum
lindbergii), KLO mag (emerged Sphagnum magellanicum), KLO fall (emerged Sphagnum
fallax), HEI fall (emerged Sphagnum fallax) and HEI fall sub (submerged S. fallax). All
samples were subdivided into four different series: non-sterile moss (‘epiphytes’) with and
without inhibitor (acetylene) and surface-sterilised moss (‘'endophytes’) with and without

inhibitor. Triplicates were prepared from every sample.

2.10.1. Surface sterilisation prior to activity tests

Owing to the large amount of moss material needed, the surface sterilisation protocol
used prior to DNA extraction had to be modified: appr. 5.0 g fresh moss material were
washed three times with 1000 ml sterile tap water (autoclaved at 120°C for 2h) and soaked
in 0.15% NaOClI for 1T min. Then, mosses were rinsed with sterile tap water and placed into
120 ml serum vials, sealed with butyl rubber stoppers and a crimp, except for 1-2 plantlets
that were used for sterility check. Therefore, they were pressed onto prepared agar plates,

sealed with parafilm® (amcor) and incubated at room temperature for five days.
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2.10.2. Methane production

Fresh moss material (5.0 g) was weighed into 120 ml serum vials, sealed with butyl rubber
stoppers and a crimp. For CH4 production, sample vials were flushed with N/CO: (1,5 bar;
80:20 v/v). Subsequently, all vials were thoroughly vortexed and incubated at room
temperature in the absence of light. Prior to measurements, the gas chromatograph
(7890A GC system, Agilent Technologies, USA), equipped with an HP-PLOT capillary
column (@ 0.53 mm, 30 m in length) and a flame ionisation detector (FID) with helium as
carrier gas (injector: 45°C; detector: 250°C), was calibrated with standard gases. Gas
samples were taken with a gas-tight glass syringe. CH4 production rates were calculated

from the linear increase in CH4 concentration.

2.10.3. Methane oxidation

Fresh moss material (5.0g) was weighed into 120 ml serum vials, sealed with butyl rubber
stoppers and a crimp. Sample vials were flushed with synthetic air (20% Oz, 80% N2) and
supplied with 1,5% CH4 within the headspace. Further, 60 nl acetylene (CoH2) per ml
headspace was added to samples that were intended as negative controls (Wagner 2017).
Subsequently, all vials were thoroughly vortexed and incubated at room temperature in
the absence of light. Prior to measurements, the gas chromatograph (7890A GC system,
Agilent Technologies, USA), equipped with an HP-PLOT capillary column (& 0.53 mm, 30
m in length) and a flame ionisation detector (FID) with helium as carrier gas (injector:

45°C; detector: 250°C), was calibrated with standard gases. Gas samples were taken with
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a gas-tight glass syringe. CH4 oxidation rates were calculated from the linear decrease in

CHa4 concentration within the headspace.
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3. Results

3.1. Peatland bulk and pore water characteristics

The sites Svalbard (SV) and Samoylov (SA) were inhabited by brown mosses and
represented minerotrophic fens at the earliest stages of peat formation
(‘terrestrialisation’), with circumneutral pH values ranging from 5.8-7.0. The sites Neiden
(NEI) and Mueritz (MUE) were dominated by the genus Sphagnum and represented later
stages of peat formation, (‘paludification”) with acidic pH values ranging from 3.3-5.0,
thus significantly lower than in SV and SA (Figure 11A). DOC values were significantly
higher in Sphagnum compared to brown moss-dominated peatlands, with the highest
concentrations observed in MUE (42.7-229 mg I") and lowest in SV (0.9-6.4 mg I"") (Figure
11B). Methane concentrations were also significantly higher in the Sphagnum compared
to the brown moss ecosystems, with the highest range of concentrations in MUE (21.8—
948 uM) and the lowest in SV (0-124 uM) (Figure 11C). The average soil temperature at
the time of sampling was highest in MUE (16.0 °C, range 14.5-17.6), followed by SA (13.0
°C, range 4.0-19.5), NEI (12.6 °C, range 2.0-20.7 °C) and SV (9.8 °C, range 7.1-12.1 °C)

(Figure 11D).

51



Results

™~ =
=] \
= i
™~ o
© A = o !
- o 4
I a a g‘_
[=9 b —
[T I —_ b 88_ c
' j’_ n\‘ ¥
v
5 - o
st &4
T T T T T T T T
sV SA NE MUE sv SA NE MUE

1000
20
1

=10 0

m

CHas [pmolll]
200 400 600 800
[ 1
o
Temperature [°C]
10
1
I_‘| )

8 ;
[ S e

sV SA NE MUE sV SA NE MIIJE

0
1

Figure 11: Box plots showing the measurements of selected environmental variables. (A) pH, (B) dissolved
organic carbon (DOC), (C) methane and (D) temperature of all subsites in Svalbard (SV, magenta), Samoylov
(SA, blue), Neiden (NEI, dark green) and Mueritz (MUE, light green). Pairwise t-tests suggest that samples
with different letters show a significant (p < 0.05) difference in the mean value between each other. Graphs:
Sizhong Yang
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Results

3.2. Diversity and structure of natural peatland microbial communities

Between 2510 and 289.604 sequences (average of 78.933, median of 68.070 and standard
deviation of 60.092) were obtained for the 122 bacterial data sets. For the 86 archaeal
datasets, between 536 and 83.642 (average 12.626, median of 4892 and standard
deviation of 17.424) sequences were obtained. Due to methodological issues (no PCR
product obtained or failed sequencing), it was not possible to generate 16S rRNA gene
amplicon libraries from 35 samples with bacterial primers and 71 samples with archaeal

primers out of the 157 collected samples.

Compared to the Sphagnum-dominated NEI and MUE sites, there was a significantly
higher bacterial diversity and OTU richness in the moss and reference samples from

brown moss-dominated SV and SA sites (Figure 12).
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Figure 12: Box plots illustrating bacterial alpha-diversities of all sample types. Panel A: Observed OTU;
Panel B: Calculated Inverse Simpson Index; according to a pairwise Mann-Whitney-Wilcoxon test
(significance level set to 0.05), mean diversities of samples from brown moss-dominated sites (group a) are
overall significantly different to Sphagnum-dominated sites (group b). Amb = Amblystegiaceae (brown
mosses), Amb_Sed = sediment references to brown mosses, Sph = Sphagnum, Sph_Sed = sediment
references to Sphagnum, Sph_Vasc = vascular plant references to Sphagnum. Graphs: Alexander Tveit.

The microbial communities in the brown moss-dominated sites displayed the same level
of diversity, independent of the geographical location. Contrarily, the archaeal diversity
was similar between the brown moss and Sphagnum peatlands with overall little
differences between mosses, sediments and vascular plants (Figure S2), except for the
sediment samples of brown moss peatland origin, which displayed slightly higher

archaeal richness than the other sites within these ecosystems.
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3.3. Environmental drivers of moss-associated microbial communities

In order to identify the association between moss taxa, abiotic environmental variables
and the bacterial moss microbiota, a canonical correspondence analysis (CCA) was
performed. Using variance partitioning, the contribution of the variables to the
explanation of total inertia was quantified in the following order from most to least
important: (1) plant species and reference sediment: 19.7% (p. value < 0.001), (2)
temperature: 4.8% (p. value < 0.001), (3) putative endophytes or epiphytes: 4.6% (p. value
< 0.001), (4) methane concentration in pore water: 4.1% (p. value < 0.001), (5) pH: 3.3%
(p. value < 0.001) (6) location above or below water table: 3.2% (p. value < 0.001). By
repeating the procedure with Hellinger transformed data to control for large effects of
low abundant OTUs, the same patterns could be observed at highly similar total and
constrained inertia, suggesting a minor impact of rare OTUs on CCA ordination. The initial
model included sites and subsites in addition to the six above mentioned variables, which
accounted for 32% of the differences between the microbial communities (see materials
and methods). By removing site effects due to the correlation with plant species, the
influence of latter may be substantially underestimated. However, the removed fraction
of the inertia contained in the site variables were considered as ‘environment’, meaning
a mix of abiotic and biotic variables that cannot be studied in isolation with the present
dataset. Owing to the complexity of the dataset, it was not possible to visualise the major
gradients by a single CCA plot. With regard to this, the constraints of the final model

above were plotted separately (Figure 13).
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Figure 13: Canonical correspondence analysis of moss-associated bacterial OTUs. In case of categorical
variables with more than two factors, the axes represent the first and second CCA dimension (A, C), whereas
in case of two factors or continuous variables (B, D, E, F) the first CA dimension is showed on the Y-axis,
while the CCA dimension is showed on the X-axis. (A): Restricted by plant species and reference sediment;
Amb: Brown moss mix; Cx: Carex; Erio: Eriophorum; S.fall: Sphagnum fallax; S.lind: Sphagnum lindbergi;
S.mag: Sphagnum magellanicum; S.rip: Sphagnum riparium; Scor: Scorpidium scorpioides; Scor_Trig: Mix of
Scorpidium scorpioides and Meesia triquetra; Sed: Sediment; Vasc; Mix of vascular plants. (B) Restricted by
location above or below the water table; emrs: Above the water table; sub: Below the water table. (C)
Restricted by putative endophytic: endo; putative epiphytic: epi; reference sample: Ref. (D) Restricted by pH
samples coloured by System; amb: Brown mosses; sph: Sphagnum. (E) Restricted by temperature, samples
coloured by sampling sites; MUE: Mueritz; NEI: Neiden; SA: Samoylov; SV: Svalbard. (F) Restricted by CH4
concentration in pore water, samples coloured by peatland type; amb: Brown moss-dominated; sph:
Sphagnum-dominated.
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The plots show that the bacterial communities correlate substantially with the moss or
vascular plant species (Figure 13A), further by submerged or emerged conditions (Figure

13F).

Since both submerged S. fallax and S. riparium samples clustered together (Figure 13A),
the water table had apparently a stronger impact on the microbiota than the host moss
species. There were also clear differences between endophytic and epiphytic communities
(Figure 13C). Furthermore, considerable differences between the bacterial communities
from brown moss- and Sphagnum-dominated peatlands were visible (Figure 13B, E), in
line with the differences in pH and temperature, whereas the effects of altered CH4
concentrations on the bacterial communities were similar in brown moss and Sphagnum
ecosystems (Figure 13D). The CCA explained virtually 40% of the variance in the dataset.
Owing to the removal of area and subsite variables which were not considered

explanatory variables, the explained variance was small.

A Spearman correlation based dendrogram of the OTU profiles was constructed in order
to allow an evaluation of the habitat and site-dependent structure of the microbial
communities, along with some of the categorical variables. The analysis revealed a very
high level of cumulative clustering in the dataset (0.86), particularly considering the large
size of the dataset. The resulting dendrogram verified some previously observed patterns,
for example the differences associated with dominating moss vegetation (brown moss vs.
Sphagnum) and hydrology (Figure 14). However, it also revealed additional data

structures. Starting from the top of Figure 14, the dendrogram reveals that the bacterial
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communities split by (1) the ecosystem and the corresponding dominating moss type
(brown moss, resp. Sphagnum mosses). (2) Apart from few exceptions, the bacterial
communities within the two peat bog types split by areas. (3) In almost all cases, the
bacterial communities originating from the same subsites clustered together. (4) Within
each subsite, the epiphytic communities and the endophytic communities clustered
separately from each other, whereas the endophytic and epiphytic libraries from the same
plant clustered consistently together. (5) The bacterial communities associated with the
submerged mosses from NEI and MUE clustered together. (6) Within the Sphagnum-
dominated sites, the majority of the vascular plant communities clustered together with

the sediment and submerged moss communities.
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Results

3.4. Microbial taxa associated with brown mosses and Sphagnum
mosses

In order to identify which bacterial and archaeal groups accounted for the majority of
microbial community variation, the microbial communities were studied at the family

level.

3.4.1. Moss-associated bacteria

Within the brown moss-associated bacteria, an evenly high abundance of the following
families could be  observed: Acidimicrobiales_C111,  Pseudoanabaenaceae,
Hyphomicrobiaceae, Sphingomonadaceae and Comamonadaceae (Figure 15). Contrarily,
only the two bacterial families Acetobacteraceae and Acidobacteriaceae dominated the
Sphagnum moss microbiota. Sphingomonadaceae was the only family present at similar
relative abundances in both, the brown moss and the Sphagnum systems. In order to
identify the reasons of these large differences, a more detailed investigation of the OTU

composition of Acetobacteraceae was conducted (Figure S3).

The relative abundance of Acetobacteraceae was higher in Sphagnum than in the brown
moss ecosystems, while the majority of the Acetobacteraceae OTUs were present only in
Sphagnum. However, some OTUs were only present in brown mosses, but only a few
OTUs were present in both the brown moss and Sphagnum peatlands. The same pattern
was observed for other major bacterial taxa such as Acidobacteria (Figure S4),
Acidimicrobiales (Figure S5), and Cyanobacteria (Figure S6). These results suggest that

distinct bacterial communities of Sphagnum- and Amblystegiaceae-dominated peatlands

61



Results

exist, while only individual OTUs occurred in both peatland types. Among the of methane
oxidising bacterial (MOB) community, Methylocystis was most abundant (Figure S7).
Methylocystis occurred in almost all sites, contrarily to most bacterial taxa, but its relative
abundance varied and correlated positively with the amount of methane in the pore
water. The MOB community contained further members within the genus Methylomonas,
although primarily in Sphagnum sites and preferentially under submerged conditions.
Moreover, Methyloferula-associated OTUs as part of the MOB community were also
detected, but at low relative abundances and besides, only restricted to emerged
Sphagnum sites. The fasta files of methanotrophic OTUs in Figure S7 is provided as
additional supplement (S_methanotrophs_fasta). The complete OTU table for bacteria is

online available as supplementary information (Supplementary i: OTU tables).
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Figure 15: Bubble plot displaying the relative abundances of bacterial families (2 0.5% of the total
bacterial sequences within the 16S rRNA gene libraries). The sizes of the circles correspond to the relative
abundances of the depicted families. MUE: Mueritz, Northern Germany (yellow); NEI: Neiden, Northern
Norway (green); SA: Samoylov, Russia (blue); SV: Svalbard, Norway (violet). The samples are sorted by
ecosystem types and latitude from left to right. sub. = submerged. emrs. = emerged/above the water table.
Amb. Mix. = a mix of brown mosses (Amblystegiaceae). S. rip. = Sphagnum riparium. S. fall. = Sphagnum
fallax. S. mag = Sphagnum magellanicum. S. lind. = Sphagnum lindbergii. Graph: Alexander Tveit.

3.4.2. Moss-associated archaea

Unlike the bacterial communities, the archaeal communities did not reveal any
hierarchical clustering patterns related to sample origin (Figure S8). The archaeal
community was dominated by OTUs within the phylum Euryarchaeota, majorly OTUs
representing methanogenic archaea (Figure 16). The most abundant OTU belonged to
the hydrogenotrophic methanogenic family Methanobacteriaceae, which was present in
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almost all the samples of both, brown moss and Sphagnum ecosystems (Figure S9).

Methanomassilicoccaceae, Methanocellales, and Methanosarcinaceae were also
widespread, while Methanosaetaceae occurred mainly in the brown moss dominated
sites. Besides Euryarchaeota, the phylum Bathyarchaeota was abundant throughout most
of the sites, while Woesearchaeota mainly occurred in the brown moss sites. The
complete OTU table for archaea is online available as supplementary information

(Supplementary i: OTU tables).
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Figure 16: Bubble plot displaying the relative abundances of archaeal families (>

0.5% of the total

archaeal sequences in the 16S rRNA gene libraries). The sizes of the circles correspond to the relative
abundances of the families. MUE: Mueritz, Northern Germany (yellow); NEI: Neiden, Northern Norway
(green); SA: Samoylov, Russia (blue); SV: Svalbard, Norway (violet). The samples are sorted by ecosystem
types and latitude from left to right. sub. = submerged. emrs. = emerged/above the water table. Amb. Mix.
= a mix of brown mosses (Amblystegiaceae). S. rip. = Sphagnum riparium. S. fall. = Sphagnum fallax. S. mag
= Sphagnum magellanicum. S. lind. = Sphagnum lindbergii. Graph: Alexander Tveit.
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3.4.3. Bacterial and archaeal core communities

49 out of 13.799 bacterial OTUs (0.4%) were observed in both Sphagnum and brown moss
ecosystems and designated as the ‘core microbiome’. The majority of these OTUs was
affiliated to Acetobacteraceae and Acidobacteriaceae, thus reflecting the dominating
bacterial families of the Sphagnum microbiota. The core microbiome, consisting of these
49 OTUs (52 if only considering mosses) made up 1 - 9% of the total OTU abundance in
the brown moss ecosystems and 12 — 65% in the Sphagnum ecosystems; interestingly, the
OTUs present in both systems are among the most abundant OTUs in Sphagnum sites
(Table S2A). It was further addressed whether the size of all moss core microbiomes was
similar to the individual bacterial core microbiome of brown mosses and Sphagnum
mosses, respectively. By applying the same threshold as for the total core microbiome
(TCM), the core microbiome of brown mosses (Amblystegiaceae) (ACM) comprised 348
OTUs, while the Sphagnum core microbiome (SCM) comprised 142 OTUs (Table S2A). Out
of these, 20 OTUs were shared between TCM and ACM, and 46 were shared between
TCM and SCM. The calculation of the moss species communities of the brown mosses
from Svalbard, the brown mosses of Samoylov (only Scorpidium scorpioides), Sphagnum
riparium, S. fallax, S. lindbergii and S. magellanicum showed that the individual core
microbiomes were in a similar size range as for the broader core microbiomes at 295,
548, 126, 132, 252 and 154 OTUs, respectively (Table S2B). By calculation of the intersects
of these core microbiomes it turned out that the Sphagnum mosses share a larger
proportion of their core microbiomes with each other than with the Amblystegiaceae
(Table S2C). Interestingly, Scorpidium mosses shared more OTUs with the Sphagnum
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species than other brown moss species from Svalbard. Brown mosses from Svalbard and
Samoylov shared the highest number of OTUs, thus reflecting the larger overall number
of OTUs associated to these mosses and their larger core microbiomes. These few OTUs
- compared to the total number of OTUs identified - accounted for a large proportion of
the relative abundance in the microbial communities, which was consistent for all core

microbiomes calculated.

In order to identify the dominant endophytic communities of brown mosses and
Sphagnum mosses, the most abundant OTUs of significantly higher abundance in
endophytic than epiphytic communities were plotted. This showed that almost none of
the most abundant putative endophytes associated with brown mosses was shared with
Sphagnum (Figure 2.8). For the putative endophytic communities, the taxonomic
assignment and list of fasta files are provided as supplementary material
(S_endophytes_taxonomy; S_endophytes_fasta). While the brown moss endophytes
belonged to  Actinobacteria, Proteobacteria,  Chloroflexi,  Firmicutes and
Gemmatimonadetes, the endophytes associated with Sphagnum belonged to several
families within the Proteobacteria, e.g., the Acetobacteraceae. Interestingly, of the 24
most abundant Sphagnum endophyte OTUs, 19 were observed in the total core

microbiome, which displayed primarily epiphytes of brown mosses.
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Figure 17: Heatmap displaying the most abundant OTUs present at significantly higher abundance in
putative endophytic than epiphytic libraries of the same sample. The heatmap shows that endophytic
bacterial communities associated with brown mosses (Amb. mix) from Svalbard and Samoylov form a
distinct cluster apart from putative endophytic communities of Sphagnum mosses from Neiden and
Mueritz. sub. = submerged. emrs. = emerged/above the water table. Amb. Mix. = a mix of Amblystegiaceae.
S. rip. = Sphagnum riparium. S. fall = Sphagnum fallax. S. mag = Sphagnum magellanicum. S. Lind. =
Sphagnum lindbergii. Bacterial communities of brown moss samples from Twin Water (TW), Gluudneset
(GLU) and Knudsenheia (KNU) in Svalbard and from polygonal crack (PC) and polygonal pond (PP) in
Samoylov. Bacterial communities of Sphagnum samples from Klockenbruch (KLO), Kiebitzmoor (KIE),
Heidbergmoor (HEI) in Mueritz, and Neiden (NEI) in Northern Norway. Chi-square contingency table tests
were applied, where the p-values were calculated for Monte Carlo simulations with 5,000 replicates. The
significance threshold was set at 0.001. Of the OTUs present at significantly higher abundance in the putative
endophytic than epiphytic libraries, only OTUs at a higher than 0.5% relative abundance (average of the
two endophytic libraries of each sample) in four or more samples were plotted in the heat map. The colour
intensity corresponds to the binary logarithm of the average relative abundance of the OTU in the two
endophytic libraries multiplied by 100,000. Pearson correlation was used as the basis for the hierarchical
clustering of samples and OTUs in the heatmap. Graph: Alexander Tveit
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34.4. Acetobacteraceae as dominant taxon of the bacterial core
community

Members of the family Acetobacteraceae made up 4.7 % of the total amount of bacterial
OTUs identified (650 vs. 13799) (bacterial OTU table in Supplementary), while their
average percentage increased considerably from brown mosses (2.2 +/- 1.1%) towards

Sphagnum mosses (24.6 +/- 9.8%).

Within the investigated brown mosses, Bryum pseudotriqguetrum from Twin Water (SV)
displayed the lowest percentage of Acetobacteraceae within the total putative endophytic
bacteriome (1.03 +/- 0.24 %), while the highest percentage (4.03 +/- 0.70 %) was found
epiphytically associated with the brown moss mix containing Drepanocladus revolvens
and Scorpidium turgescens from Gluudneset (TW). The percentage of Acetobacteraceae
within the Sphagnum bacteriome increased considerably. With 14.84 +/- 7.16%,
Sphagnum lindbergii mosses originating from hollows in the Palsa peatland (NEI)
displayed the lowest portion of Acetobacteraceae within the epiphytic bacteriomes, while
the highest percentage (28.08 +/- 12.47%) was found within the endophytic bacteriomes
of Sphagnum fallax mosses from HEl and KLO (MUE). Notably, the portion of
Acetobacteraceae within the Sphagnum bacteriomes was constantly higher in the

endophytic than in the epiphytic communities (Figure 18).
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Figure 18: Bar chart displaying the increase of the relative abundance of Acetobacteraceae within total
moss bacteriomes of brown mosses towards Sphagnum mosses. The colours indicate the sampling site
of the moss plantlets: purple = Svalbard (SV); blue = Samoylov (SA); green = Neiden (NEI); yellow = Mueritz
National Park (MUE). Ruled bars display putative endophytic Acetobacteraceae, filled bars depict putative
epiphytic Acetobacteraceae. From left to right: B. pseudotriquetrum = Bryum pseudotriquetrum from Twin
Water (SV); S. scorpioides, M. triquetra = Scorpidium scorpioides and Meesia triquetra from PC (SA); S.
scorpioides = Scorpidium scorpioides from PP (SA); D. trichophyllus, S. turgescens = Drepanocladus
trichophyllus and Scorpidium turgescens from KNU (SV); D. revolvens, S. turgescens = Drepanocladus
revolvens and Scorpidium turgescens from GLU (SV); S. lindbergii = Sphagnum lindbergii from NEI 5-7 (NEI);
S. magellanicum = Sphagnum magellanicum from KIE and KLO (MUE); S. fallax = Sphagnum fallax from HEI
and KLO (MUE); S. riparium = Sphagnum riparium from NEI 1-4 (NEI).

When only focussing on the moss samples of a single subsite, Sphagnum fallax from
Heidbergmoor harboured with 46.1% even the highest relative portion of
Acetobacteraceae within the endophytic bacterial community (bacterial OTU table in

Supplementary).
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The moss-associated Acetobacteraceae remained in large parts unidentified (Figure 19)
Scorpidium scorpioides mosses from Siberian polygonal ponds harboured the largest
group of unidentified Acetobacteraceae (90,2 + 0,8%), whereas Sphagnum fallax mosses
from Heidbergmoor exhibited the smallest group of unassigned Acetobacteraceae at
genus level (40,8 + 1%). The genus Acidocella was mostly pronounced in association with
Sphagnum fallax mosses from Heidbergmoor (55,4 + 1,2%) and less pronounced in
association with brown mosses from Gluudneset (4,6 + 6,4%). Acetobacteraceae of the
genus Roseomonas (15,9 + 5%) and Roseococcus (6,8 + 2,5%) were mainly associated with
brown mosses from Twin Water, while both genera were negligible in association with
Sphagnum mosses. The genus Acidisoma was mostly pronounced in association with
Sphagnum magellanicum from Klockenbruch (5,4 + 2,1%) and less pronounced when
associated with brown mosses from Gluudneset (0,1 + 0,2%). Acetobacteraceae of the
genus Acidiphilium were mainly associated with Sphagnum fallax from Heidbergmoor (0,5

+ 0,3%), but negligible all other samples.
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Figure 19: Relative abundance of identified genera within the family Acetobacteraceae. The majority of
OTUs remained unassigned at genus level (blue). While the genus Acidocella (yellow) was mostly
pronounced in Sphagnum mosses, Roseomonas and Roseococcus appeared solely in association with brown
mosses. GLU = brown mosses from Gluudneset; KNU = brown mosses from Knudsenheia; TW = brown
mosses from Twin Water; PP = Scorpidium scorpioides from Siberian polygonal ponds; PC = Scorpidium
scorpioides and Meesia triquetra from a Siberian polygonal crack; NEI S. rip. = Sphagnum riparium from
Neiden; NEI S. lind. = Sphagnum lindbergii from Neiden; HEI S. fall = Sphagnum fallax from Heidbergmoor;
HEI S. falls = submerged Sphagnum fallax from Heidbergmoor; KLO S. fall. = Sphagnum fallax from
Klockenbruch; KLO S. mag. = Sphagnum magellanicum from Klockenbruch; KIE S. mag. = Sphagnum
magellanicum from Kiebitzmoor.

3.5. Sphagnum bacteriomes of disturbed, rewetted and pristine
temperate kettle bog

Overall, 212 OTUs were associated with mosses and reference vascular plants from MUE
(Venn diagram in Supplementary), while 188 OTUs were only associated with Sphagnum

mosses (Figure 20). Of these, 65 OTUs (34.6%) displayed the core community shared
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between all Sphagnum species from all investigated sites (Figure 20A), including
Acetobacteraceae, Methylocystaceae, Nostocaceae and Caulobacteraceae. If considering
S. fallax and S. magellanicum from KLO separately, the core community comprised still
45 common OTUs (Figure 20B).

Altogether 47 OTUs (25%) were solely associated with S. magellanicum from KIE, including
taxa such as Streptococcus, Ruminococcus, Haemophilus and Prevotella. A total of 29 OTUs
(15.4%) prevailed only in association with S. fallax from HEI, among them taxa such as
Methylococcaceae, Methylobacteriaceae, Geothrix, Kaistia, Paenibacillus and
Rhodanobacter. Among the 13 OTUs (6.9%) that were only associated with Sphagnum
mosses from KLO were genera like Agrobacterium, Nocardia, Accumulibacter and
Methylobacterium. Notably, no OTU was shared exclusively between S. magellanicum

growing in the centre and S. fallax growing at the margin of KLO (Figure 20B).

The bacterial diversity was highest in association with mosses, resp. mosses and vascular
plants from KIE (Shannon indices: 3.617, resp. 3.74), and lowest in KLO (Shannon indices:
3.072, resp. 3.239), while the relative amount of moss-associated OTUs was appr. 28%

higher in KIE compared to HEI and KLO (Table S3).
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Figure 20: Venn diagrams showing the Sphagnum bacteriomes from all subsites within the Mueritz
sampling site. Bacterial OTUs (relative amount and corresponding percentage) associated with Sphagnum
mosses from Heidbergmoor (HEI), Kiebitzmoor (KIE) and Klockenbruch (KLO) (A); Bacterial OTUs associated
with S. fallax from Heidbergmoor (HEI fall) and Klockenbruch (KLO fall) and S. magellanicum from
Kiebitzmoor (KIE mag) and Klockenbruch (KLO mag) (B). Created at:
https://bioinfogp.cnb.csic.es/tools/venny/index.html (Oliveros, J.C. (2007-2015) Venny. An interactive tool
for comparing lists with Venn's diagrams).

3.6. Potential moss-associated methane production and methane
oxidation rates

In general, potential methane oxidation rates exceeded methane production by appr. two
orders of magnitude. Moss-associated methanogenesis was slightly more pronounced in
submerged mosses, while moss-associated methanotrophy was highest in submerged

Sphagnum, up to eight times higher compared to all other samples.

3.6.1. Moss-associated methane production

Potential methane production rates for non-sterile (‘epiphytic’) brown mosses ranged

between 2.40 +/- 0.32 nmol CHsh™" g dw "'and 0.63 +/-0.33 nmol CH4 h™ g dw " (GLU
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non-sterile, resp. SO non-sterile). Potential methane production rates for sterile (putative
endophytic brown mosses ranged between 2.14 +/- 0.2 = 0 nmol CH4 h™ g dw ™ (GLU
sterile, resp. SO, S8). The potential methane production rates for putative epiphytic and
endophytic Sphagnum mosses were negligible or could not be measured, except for the
putative epiphytic methanogenic communities associated with the submerged Sphagnum

fallax (143 +/- 0.2 nmol CHsh™" g dw™).

3.6.2. Moss-associated methane oxidation

Potential methane oxidation (MO) rates for non-sterile (‘epiphytic’) brown mosses ranged
between 33.61 +/- 5.68 nmol CHs h™ g dw " and 10.95 +/-0.91 nmol CHsh™ g dw (S0
non-sterile, resp. S8 non-sterile). Potential methane oxidation rate for sterile
(‘'endophytic’) brown mosses ranged between 15.15 +/- 0.43 and 2.68 +/-0.43 nmol CH4
h' g dw 7 (SO sterile, resp. S8 sterile). Potential methane oxidation rates for putative
epiphytic Sphagnum mosses were with 288.12 +/- 5.51 nmol CHsh™" g dw ™" highest for S.
fallax submerged, and ranged between 72.55 +/- 19.12 and 0.9 +/- 0.08 nmol CH4 h™' g
dw ' for other Sphagnum species (NEI 2 non-sterile, resp. KLO fall. non-sterile).

Potential methane oxidation rates for putative endophytic methane oxidisers associated
with Sphagnum were with 12.97 +/- 2.70 nmol CHs h™' g dw ™ highest in Sphagnum
magellanicum from Klockenbruch, and lowest in NEI 1 sterile (0.48 +/- 0.19 nmol CH4 h™
g dw™); methanotrophic activity was not measurable in two samples, NEI 2 sterile and

KLO fall sterile (Table S4).
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Discussion

4. Discussion

4.1. Environmental influences on moss-associated bacterial
communities

The results of the present work allowed to rank the influences of certain environmental
variables on the microbial community on both, large and small geographical scales.
Corresponding to the hierarchical clustering in the bacterial dendrogram, the peatland
type (brown moss- or Sphagnum-dominated peatlands) had the major impact on
bacterial community structure, which corresponds to other studies reporting on
characteristic microbial communities that evolved in contrasting peatland ecosystems
with different vegetation, water chemistry and hydrology (Andersen et al. 2013, Potter et
al. 2017). Interestingly, testate amoebae communities seemed also to differ when
associated with either brown mosses or Sphagnum mosses (Jassey et al. 2014). Moreover,
species richness and diversity were significantly higher in circumneutral brown moss-
dominated peatlands compared to acidic Sphagnum bogs, which was also reported for
soil bacteria from neutral and acidic environments (Fierer and Jackson 2006, Zhalnina et
al. 2014). Most bacteria are unable to survive under acidic conditions that prevail in
Sphagnum peat bogs, owing to a lack of substantial mechanisms to regulate their
intracellular pH close to neutral when exposed to low extracellular pH (Slonczewski et al.
2009). At the same time, acidophilic bacteria inhabiting Sphagnum peat bogs function
optimally at pH 5, but can even survive at higher pH values (Oren 2018), for example in
sub-neutral brown moss-dominated peatlands. This could explain the association of core

community members such as Acetobacteraceae and Acidobacteriaceae with both, brown
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mosses and Sphagnum mosses. However, pH values are often mutually dependent from
other abiotic factors such as plant-derived tannins and tannin-like compounds (Rousk
and Rousk 2020) and leaf litter (Jean et al. 2020), wherefore the role of pH remains
ambiguous.

The host moss taxon had a greater influence on the bacterial moss-associates compared
to other controlling variables such as pH, hydrology or temperature, which confirms
previous findings on distinct bacterial communities of several Sphagnum species. It has
been stated that S. magellanicum and S. fallax, two peat moss species with different
ecological functions, harbour a suite of highly specific bacteria, independently from the
geographic location (Opelt et al. 2007a, 2007b, Bragina et al. 2012a). One possible
explanation for high degrees of host specificity even over great distances was given by
Bragina and colleagues who reported on haploid sporophytes of S. fallax that contained
a versatile endophytic bacterial consortia, which was obviously passed vertically to the
diploid gametophyte (Bragina et al. 2012a, 2013). Moreover, individual secondary
metabolites produced by particular hosts may further influence the assembly of host-
specific microbiota (Opelt et al. 2007b, Bragina et al. 2012a). Interestingly, the moss-
microbiome composition permits a high predictability of moss species identity, as
revealed by a study on bacterial communities being well-correlated with the phylogenetic
distances of many boreal and tundra bryophytes (Holland-Moritz et al., unpublished).
The present results extend the knowledge on host moss taxa and their particular bacterial
community to other Sphagnum species such as S. riparium and S. lindbergii, but also to

brown mosses such as Scorpidium scorpioides or Meesia triquetra. Furthermore, the
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present work supports previous findings on distinct sediment and plant microbiomes
from the same habitat (Bulgarelli et al. 2012, 2013).

The present results are congruent with Carrell et al, who state a negative correlation
between temperature and moss-associated bacterial diversity (Carrell et al. 2017),
although temperature had obviously only a minor influence on the moss microbiome
(explaining 4.8% of inertia in the partial CCA), despite originating from different climatic
zones. One reason could be the relatively similar temperature ranges at the time of
sampling during the growing season, compared to the mean annual temperatures of the
sites. Besides, other studies reported also on a poor influence of temperature on bacterial
assemblages on short and long time-scales (Radujkovic 2016, Oliverio et al. 2018).

The prevailing water regime seemed to be a key environmental factor shaping the
microbiomes of aquatic Sphagnum and brown mosses and terrestrial Sphagnum species,
which was in some cases more important than the influence of the host plant. For
example, emerged and submerged S. fallax growing in the same subsite within the
temperate  hummock hollow-complex were associated with different microbial
communities, while the microbiota of the latter was more similar to submerged S.
riparium from the subarctic palsa bog. The hydrology of the habitats has been shown
previously to affect the microbiomes of Sphagnum (Mitchell et al. 2003, Raghoebarsing
et al. 2005, Leppanen et al. 2014) and other mosses (Wang et al. 2018), but also to
influence the morphology and physiology of the host mosses (Fiala and Winkler 1969,
Rice 1995, Rice and Schuepp 1995). Thus, it can be concluded that hydrology affects the

moss microbiota both directly and indirectly.
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The prevalence of the methanotrophic genus Methylocystis in wetlands as reported by
several studies (Kip et al. 2011, Putkinen et al. 2012, Knief 2015) was also confirmed within
this study. Methylocystis was present throughout all sites, and its abundance correlated
with pore water methane concentrations (Figure S7), corresponding to related studies
(Larmola et al. 2010, Osudar et al. 2016). Based on the assumption that variations in
Methylocystis communities are rather based on contingent historical events than on
evolutionary acquired fitness (Like 2010, Like et al. 2014), it is suggested that
Methylocystis is able to adapt to the environmental changes associated with peatland
succession, including pH, and rather driven by substrate availability.

Besides Methylocystis, other methanotrophic genera such as Methylomonas and
Methyloferula were substantially abundant in the Sphagnum-dominated sites, but virtually
absent in brown moss-dominated sites. Together with other studies on methanotrophs
such as Methylocystis, Methylocella and Methylocapsa in acidic peatlands (Dedysh et al.
1998, 2002, Dedysh 2009, Vorobev et al. 2011) or Methylobacter in pH-neutral peatlands
(Tveit et al. 2013, 2014), this work underpins the omnipresence of some methanotrophic
bacteria across all investigated peatland types and successional stages, presumably
mainly driven by the prevailing methane regime, while others are restricted to
circumneutral, resp. acidic peatlands.

4.2. Moss-associated archaeal communities and their environmental
drivers

The results of the present thesis reveal that archaea, particularly methanogenic
Euryarchaeota, are commonly found in bryophytes across High Arctic to temperate
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peatlands, which has not been reported before. Interestingly, the investigated moss-
associated archaea were found to be less influenced by biotic and abiotic parameters,
when compared to moss-associated bacteria, but exhibited relatively homogenous
communities within their hosts' bryosphere.

Along with various bacteria, methanogenic archaea were found within the hyaline cells of
two Sphagnum species from an ombrotrophic northern bog, assuming that they gain H>
for methanogenesis from the adjacent diazotrophic microorganisms. The authors
hypothesised that the produced methane is further transferred to CO> by methanotrophic
moss symbionts (Granhall and Hofsten 1976). It was already stated that methanotrophic
archaea in plant spheres are mainly driven by substrate availability and the presence of
bacterial competitors (Karlsson et al. 2012, Ma et al. 2013, Taffner et al. 2018, Alori et al.
2020). Recently, a study on the archaeal communities associated with Sphagnum mosses
and other alpine bog plants has been conducted, in which, so far unclassified archaea
were identified that form an ecosystem-specific core archaeome common to all bog
plants (Taffner et al. 2018). While archaea associated with Sphagnum mosses were already
reported (Taffner et al. 2018), brown moss-associated archaeal communities were never
investigated so far.

The results of the present thesis reveal new and striking insights into the archaeomes of
both, brown mosses and Sphagnum species from circumneutral lakes to acidic kettle
bogs. Compared to the moss bacteriomes, the moss-associated archaeal communities

seemed less influenced by the investigated biotic and abiotic parameters. No distinct

80



Discussion

archaeal community patterns could be estimated for the peatland type, brown mosses or
Sphagnum mosses.

The archaeomes of brown mosses and Sphagnum mosses were mainly represented by
methanogenic Euryarchaeota, but also by Bathyarchaeota and Woesearchaeota. It is
known that salinity has an impact on methanogenic archaea on a global scale, while pH
and temperature display major controls in non-saline soils and lake environments (Wen
et al. 2017). Methanogens are further influenced by ground water level and vegetation
dynamics at different temporal and spatial scales (Wen et al. 2017), while methanogenic
communities are more diverse in shallower lakes (Milferstedt et al. 2010). The present
results support the hypothesis that Woesearchaeota occur as possible syntrophic partners
of methanogens in similar habitats (Liu et al. 2018). Bathyarchaeota is a phylum of global
generalists that thrive in anoxic sediments (Zhou et al. 2018), and its presence within the
bryopshere corresponds to its former observations in peatlands (Xiang et al. 2017, Emsens
et al. 2020), where they presumably degrade aromatic compounds such as cellulose and
lignin (Yu et al. 2018). Despite the ostensible ubiquitous distribution of the archaeal
communities in association with peatland mosses, there was some site-dependent
clustering. For example, the genus Methanosaeta was only found in association with
brown mosses and associated sediments which is in accordance with the biogeography
of Methanosaetaceae being most abundant in pH neutral environments (Wen et al. 2017).
Contrarily, Methanobacterium as the most abundant methanogen was present in all sites

and samples, which underpins former reports on the prevalence of the order
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Methanobacteriales in northern peat bogs in general (Metje and Frenzel 2005, Rooney-
Varga et al. 2007, Tveit et al. 2015) and in circumneutral and acidic soils (Wen et al. 2017).
Interestingly, it has been reported that the archaeomes of S. magellanicum, which
displayed the lowest diversity compared to archaeal communities of other bog plants
such as Eriophorum vaginatum, were mainly involved in auxin biosynthesis, response to
oxidative stress as well as CO; fixation and DNA repair (Taffner et al. 2018). Taken together
with our results, this may lead to the assumption that moss archaeomes display
comparably homogenous communities with plant-promoting features, thriving more or

less uninfluenced from environmental parameters within their hosts bryopshere.

4.3. Distinct patterns of endophytic bacteria

Within this study, distinct patterns of putative endophytic bacteria for both Sphagnum
and brown mosses could be identified. The comparison of endophytic bacterial
communities of brown mosses and Sphagnum species likely reflects a direct influence of
the moss taxa on the microbiota. It has been shown before that bryophytes release
species-specific chemo-attractants which guide beneficial bacterial endophytes towards
them (Bay et al. 2013), while Sphagnum mosses select for beneficial bacteria through
secondary metabolites (Opelt et al. 2007b).

In the frame of this study, the cell wall compositions of certain investigated moss species
were analysed. Similar cell wall-bound components such as polysaccharides and lignin-
like polymers (Table 1) indicate a minor effect of the cell wall composition on the structure

of the moss microbiota. Pectin-like polymers represent a small fraction of cell wall
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polysaccharides and provide the bryophytes with substantial cation exchange capacity
(CEC) (Stalheim et al. 2009, Hajek et al. 2011), which is accounted for the extraordinary
acidifying capacity of Sphagnum mosses (Clymo 1963, Gagnon and Glime 1992). However,
the present results reveal similar CEC values in both moss groups, which is in line with
previous findings (Soudzilovskaia et al. 2010), assuming that the cation exchange does
not reduce and control pH in brown moss-dominated fens due to the substantial
neutralisation capacity of the mineral-rich groundwater. Microbial activity in acidic peat
bogs is further inhibited by pectin-like polymers which are bound to the Sphagnum cell
walls and are released to the environment as so-called sphagnan (Stalheim et al. 2009,
Hajek et al. 2011). Apart from the selection of beneficial microorganisms, Sphagnum
mosses protect themselves against pathogens by the release of antimicrobial substances
or via close association with antagonistic and antifungal bacteria (Rudolph and Samland
1985, Basile et al. 1999, Stalheim et al. 2009, Hajek et al. 2011).

The present work suggests the existence of a distinct putative endophytic microbiome
that differs from the epiphytic communities. It is known that bacterial endophytes can be
host plant-specific and promote the growth and health of their hosts (Sturz et al. 2000,
Berg et al. 2014). Several OTUs that here represented putative endophytes of brown
mosses or Sphagnum were previously reported as host plant-specific, e.g.,
Kineosporiaceae, Hyphomicrobiaceae, Intrasporangiaceae and Acidimicrobiales (Reiter
and Sessitsch 2006, Selbmann et al. 2010, Qin et al. 2012, Yu et al. 2015), and some of
these might be transferred from one generation to another, similarly to Sphagnum

endophytes (Bragina et al. 2012a, Putkinen et al. 2012, Bay et al. 2013). Thus, the
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inheritance and selection of potentially beneficial endophytes on the one hand, and the
active prevention of colonisation by pathogens on the other hand, may provide an
explanation for distinct endophytic communities of both brown mosses and Sphagnum
mosses.

44. The core microbiota and their possible role for peatland
succession

The total core microbiome of brown moss and Sphagnum-dominated ecosystems was
small compared to the total amount of OTUs identified (49 vs. 13799). However, the
Sphagnum core microbiome in our study (142 OTUs) was comparable in size to the alpine
Sphagnum bog core microbiome (260 OTUs) reported elsewhere (Bragina et al. 2015).
Interestingly, these few OTUs were highly abundant within the core community, thus
representing presumably important members of the moss microbiota. On the other site,
the large number of low abundant OTUs outside of the core microbiomes identified in
this study might represent local assemblies of microorganisms from the adjacent
surroundings. Notably, the largest part of the total core microbiome appeared
epiphytically on brown mosses, but were dominant endophytes in Sphagnum. This finding
is consistent across large distances, many subsites, moss species and environmental
conditions, which leads to the assumption that Sphagnum recruited parts of the brown
moss-microbiota during its establishment. Parts of this recruited microbiota might have
adapted to the specific conditions provided by the Sphagnum host and became dominant
endophytes and part of the core microbiome, which might have been were vertically
transferred to the next generation as shown previously (Bragina et al. 2012a). This way,

84



Discussion

over time, a Sphagnum core microbiome might have established that originated at least
in part from brown mosses. An alternative explanation could be that the Sphagnum
mosses recruited their microorganisms independently from peatland succession
processes. If so, the presence of dominant endophytes of Sphagnum and epiphytes of
brown mosses is a coincidence and these bacteria dominate both systems, able to survive
in both types of environments. However, considering that brown mosses and Sphagnum
co-exist during certain stages of peatland succession, which frequently occurred through
history (Kuhry et al. 1993, Rydin et al. 2006, Schumann and Joosten 2008), parts of the
shared microbiome might been transferred during times of co-existence. However, the
existence of an abundant core microbiome throughout brown moss- and Sphagnum-
dominated peatlands and its role during peat bog succession needs to be addressed in
further studies.

4.5. The potential role of Acetobacteraceae for Sphagnum host
mosses and bog ecosystems

The results of this thesis suggest that a versatile group of Acetobacteraceae is not only
part of the peat core microbiome, but associated with both moss types and especially
abundant in association with Sphagnum species. The submerged brown mosses hosted
the genera Roseomonas, Roseococcus and Acidocella, while all investigated Sphagnum
species harboured mainly Acidocella species. A common feature of members within the
family Acetobacteraceae is the production of acetic acid (Komagata et al. 2014, Boistean
et al. 2020), and some genera are even able to oxidise acetic acid further to CO2 and H.O
(Sievers and Swings 2015). While reports on Acetobacteraceae associated with brown
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mosses remain sparse (Tang et al. 2016), their presence and dominance within the
microbiota of Sphagnum from northern and sub-alpine peat bogs has been frequently
reported (Opelt and Berg 2004, Bragina et al. 20123, 2012b, 2015, Xiang et al. 2013, Tsitko
et al. 2014, Holland-Moritz et al. 2018, Tian et al. 2020), which is also supported by the
present work. However, the underlying reasons for the dominance of Acetobacteraceae
in acidic peat bogs have not been explained yet.

The genus Roseomonas was at first primarily linked to human infections (Rihs et al. 1993),
but later isolates were also obtained from freshwater habitats like wetlands (Baik et al.
2012, Lee et al. 2015), ponds (Furuhata et al. 2008), lake sediments, agriculture drainage
water (Jiang et al. 2006), drinking water (Gallego et al. 2006) and estuarine habitats
(Venkata Ramana et al. 2010). Roseomonas species where further detected in
cyanobacterial blooms from Swedish, Chinese and Australian lakes (Eiler and Bertilsson
2004, Jiang et al. 2006, Pope 2007, Zhang et al. 2021) and in Arctic tundra soils (Kim et al.
2016). More recently, a strain was also isolated from the phyllospheres of the olive plant

Elaeocarpus hygrophilus (Damtab et al. 2016).

Members of the genus Roseococcus were isolated from sediments of a Siberian soda lake
(Boldareva et al. 2009) and represented moreover a highly abundant key prokaryote in a
hyper-alkaline, oligotrophic and radioactive fuel storage pond (Ruiz-Lopez et al. 2020).
Besides, Roseococcus spp. were among the dominant bacteria associated with microalgae
from a Chinese artificial lake (Zhang et al. 2021) and part of a bacterial consortia from

freshwater environments that colonised preferably microplastic substrates (Miao et al.
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2019). Among the identified Acetobacteraceae, only Roseomonas and Roseococcus
represent bacteriochlorophyll a (BChla) - containing genera. Moreover, these two genera
were solely associated with brown mosses from Svalbard and Samoylov, but virtually
absent in Sphagnum mosses from Neiden and Mueritz. These findings indicate that
potentially photosynthetic Acetobacteraceae are frequently associated with brown
mosses from circumneutral peatlands, but do not appear within the microbiome of
Sphagnum mosses from acidic peat bogs. Roseomonas and Roseococcus are able to
perform anoxygenic (non-evolving O2) photosynthesis in the presence of oxygen (Yurkov
and Beatty 1998, Koblizek 2015), contrarily to the purple non-sulphur bacteria, which
require anaerobic conditions (Rathgeber et al. 2004, Yurkov and Elizabeth Hughes 2017).
Therefore, these bacteria are referred to as aerobic anoxygenic phototrophic (AAP)
bacteria (Komagata et al. 2014, Pankratov et al. 2020, Salama et al. 2020). AAPs such as
Roseomonas and Roseobacter are unable to fix CO; (Yurkov and Elizabeth Hughes 2017)
and depend therefore on organic compounds as alternative C source, for example
dissolved organic matter (DOC) that derive from the litter, leachates and exudates of
primary producers (Atamna-Ismaeel et al. 2012, Stiefel et al. 2013, Szabo-Tugyi et al. 2019,
Piwosz et al. 2020). Due to relatively low BChla contents and the inability of AAPs to grow
photoautotrophically (Yurkov et al. 1993, Koblizek 2015), light seems to provide primarily
an additional driving force for incorporating complex organic molecules such as DOC and
other coloured dissolved organic matter (CDOM), which leads to a competitive advantage
over exclusively heterotrophic microbes (Fauteux et al. 2015, Koblizek 2015, Szabo-Tugyi

et al. 2019). Therefore, AAPs can thrive in extreme habitats such as acidic, humic-rich peat
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bog lakes (Lew et al. 2015), nutrient-depleted, polar environments (George et al. 2020)
and oligotrophic glacial lakes, where they represent up to 12% of the total bacterial
community (Masin et al. 2012). In line with this, the brown moss-associated Roseomonas
and Roseococcus in the oligotrophic lakes and ponds of Svalbard, resp. Samoylov may
benefit from DOC that is released by the hosts, probably as part of the biofilm on the
surface of the moss hosts. Other studies have already reported on Roseomonas and
Roseococcus as common inhabitants of aquatic biofilms (Furuhata et al. 2013, Wagner et
al. 2015, Miao et al. 2019) and moreover, as initiators of biofilm formation (Furuhata et al.
2008). To the best of our knowledge, no plant-promoting effect was yet reported neither
for Roseomonas, nor for Roseococcus, contrarily to other plant-associated
Acetobacteraceae which are able to fix N> (Pedraza 2008, Saravanan et al. 2008, Reis and
Teixeira 2015) or produce the growth promoting phytohormone indole-3-acetic acid (IAA)

(Kielak et al. 2016, Zhang et al. 2021).

Besides Roseomonas and Roseococcus, Acidocella displayed another distinct genus in
association with brown mosses, and its relative abundance increased remarkably when
associated with Sphagnum mosses (Figure S3). Acidocella occurred further as putative
endophyte in both, brown mosses and Sphagnum and was moreover part of the core
community (Figure 17) of all mosses. The name "Acidocella’ can be translated as ‘acid-
requiring cell’ (Hiraishi 2015) and indicates the need for acid and therefore the preference
for acidic habitats. Acidocella species inhabit strongly acidic, mineral environments with

high loads of heavy metals and aromatic compounds, such as certain shallow lakes

88



Discussion

(Servin-Garciduefias et al. 2013), acidic coal mine drainages (Wichlacz et al. 1986) and
freshwater lakes (Okamoto et al. 2017). Members of this genus grow in the range of pH
3.0 - 6.0 and utilise simple sugars such as fructose and glucose, as well as simple alcohols
such as ethanol (Hiraishi 2015, Okamoto et al. 2017). Like other acidophilic heterotrophic
bacteria, the growth of Acidocella is inhibited by high concentrations of organic acids;
nonetheless, some Acidocella strains have the remarkable capability to grow at low
amounts of acetate, lactate and succinate, which they oxidise to CO2 and Hz (Jones et al.
2013, Hiraishi 2015). In this way, Acidocella may potentially provide additional CO; for their
Sphagnum hosts, which points towards a mutualistic relationship between both and
probably explains the frequent findings of the genus Acidocella within the Sphagnum
bryosphere (Opelt and Berg 2004, Lindo and Gonzalez 2010, Bragina et al. 2012b, 20123,
Graham et al. 2017, Dobrovolskaya et al. 2020). Interestingly, Acidocella seems to play a
major role as plant-promoting symbiont of Nepenthes spp. (carnivorous pitcher plants),
where it thrives within the plant’s digestive fluid, making up 30% of the total bacteriome
(Kanokratana et al. 2016). Here, Acidocella produce bioactive compounds and by this
contributes to pathogen suppression and the maintenance of a suitable digestive
bacterial community (Chan et al. 2020). Analogous to that, Acidocella account for 26% of
the total endophytic bacterial community of S. fallax (data not shown) and may support
the self-defence of Sphagnum by the release of antimicrobial compounds that prevent
the host of microbial and fungal attack, as the host moss does by means of cell wall-
bound polysaccharides (Stalheim et al. 2009, Hajek et al. 2011), phenolic compounds

(Barsheim et al. 2001) and secondary metabolites (Opelt et al. 2007b). Moreover, the
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production and release of acetic acid by Acidocella and other members of the
Acetobacteraceae is a powerful strategy to eliminate microorganisms, as acetic acid
diffuses through the cell membrane, acidifies the cytoplasm and finally disrupts the
proton gradient of prokaryotic competitors (Vidra and Németh 2018). Acidity is accounted
as one of the main control strategies of plants that prevent microbial decomposition
(Lewis and Ausubel 2006) and has a profound influence on the composition of the
Sphagnum-associated microflora (Stalheim et al. 2009). As an ecosystem engineer,
Sphagnum mosses create, inhabit and maintain at the same time an environment
inhospitable for competing plants and degradative prokaryotes (van Breemen 1995,
Johnson et al. 2015, Bengtsson et al. 2018). Acidocella (and other Acetobacteraceae) seem
not only to be extremely well adapted to these harsh conditions, but also seem to
contribute to these low pH values and antimicrobial properties of Sphagnum peat bogs.
This could raise the question if Sphagnum mosses would establish and expand in such as
successful manner without the associated Acidocella. The low pH of acidic peat bogs may
also result from acetic acid (and other organic acids) produced by moss-associated
Acetobacteraceae in the acrotelm, by fermentative acetogenic bacteria within the
catotelm, but also from photochemical formation of acetic acid when UV light degrades
bog water DOC (Bertilsson and Tranvik 1998, Brinkmann et al. 2003). As assumed earlier,
mainly indirect effects such as peat accumulation and subsequent blocking of alkaline soil
water lead to the transition from neutral fens to acidic bogs, since CEC values are similar
among brown mosses and Sphagna (Soudzilovskaia et al. 2010), which is also confirmed

by the data of this work. Similarly, the increasing percentage of moss-associated
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Acetobacteraceae during fen-bog-transition may facilitate the establishment and
expansion of Sphagnum mosses by enhancing peat bog acidification. Acidocella is part of
the core microbiome and appears even as putative brown moss-endophyte in early bog
succession stages, assuming a key role for both the host mosses as well as the bog
ecosystems. Acidocella and related AAB may be encountered as 'hub taxa’ which have
strong effects on host microbiota and the microbial communities of the habitat (Agler et
al. 2016), or may even display 'keystone microbes’ that influence whole-community
dynamics (Herren and McMahon 2018). Thus, Acidocella and other Acetobacteraceae
seem not only to be highly adapted to the extreme acidic and antibiotic
microenvironment created by Sphagnum, they rather may contribute to the prevailing
harsh conditions and facilitate with this probably the establishment of their host during
the early stages of bog development, while supporting host growth and expansion by
beneficial effects such as additional CO> supply and the suppression of moss pathogens.
In turn, Acetobacteraceae such as Acidocella may benefit from organic compounds
deriving from the host mosses, for example DOC released with Sphagnum leachate which
is highly labile and therefore easily consumable (Wickland et al. 2007). In addition,
Sphagnum mosses release ethanol and other volatile organic compounds (VOC)
(Vicherova et al. 2020) which could serve as C source for Acidocella and related

Acetobacteraceae.
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4.6. Moss-associated microbial communities of the methane cycle
and their potential metabolic activity

The present work for the first time investigates both, brown moss- and Sphagnum -
associated prokaryotes of the methane cycle and their potential methane production,
respectively methane oxidation rates. The results demonstrate that mosses of both,
circumneutral and acidic peatlands, are colonised by a versatile methanogenic
community composed by the hydrogenotrophic Methanobacteria, Methanoregula,
Methanomassiliicoccaceae and Methanocellales, as well as the
hydrogenotrophic/acetoclastic Methanosarcina and the acetoclastic Methanosaeta.
However, potential methane production rates could only be measured on submerged S.
fallax and brown mosses, and those rates were low.

The presence of anaerobic methanogenic archaea within the bryosphere is surprising,
since they are exposed to photosynthesis-deriving oxygen which is released across the
entire moss surface, and even to atmospheric oxygen when associated with emerged
Sphagnum mosses. Nevertheless, methanogenic archaea were shown to occur in the
oxygenated spheres of diverse other primary producers such as algal mats, fluid-filled
pitchers and rice rhizospheres (Chakraborty et al. 2000, Erkel et al. 2006, Cadillo-Quiroz
et al. 2010, Krieger and Kourtev 2012, Moissl-Eichinger et al. 2018). This indicates a certain
degree of aerotolerance as a prerequisite for the survival in microaerated plant habitats
(Angel et al. 2012) that probably evolved around the Great Oxygenation Event (Lyu and
Lu 2018) and is realised by enzyme-based mechanisms to combat oxidative stress (Erkel

et al. 2006, Horne and Lessner 2013).
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The discrepancy between the presence of methanogens on all investigated mosses but
observed methanogenesis on brown mosses and submerged S. fallax only could be
explained with methanogens that colonise the mosses from surrounding peat and water,
analogous to methanotrophic bacteria (Putkinen et al. 2012), but switch to a metabolically
inactive, dormant stage when exposed to atmospheric oxygen, e.g. when the water table
drops. Under anoxic conditions and appropriate nutrient supply, methanogenesis may be
reactivated, similarly to rewetted peatlands (Emsens et al. 2020, Urbanova and Barta
2020). While brown mosses and submerged S. fallax provided optimal conditions and
were therefore already 'inoculated’ by metabolically active methanogens from the
corresponding sites, the in situ-methanogenesis of all other investigated sites was
presumably hampered by other factors, for example constantly aerobic conditions
provided by emerged moss hosts, or - in the case of submerged S. riparium - lower
temperatures and DOC availability compared to the submerged S. fallax. These
methanogens may require a longer lag period before starting methanogenesis. If so,
incubation time during activity tests should be prolonged. It has to be mentioned that
acetate was not added during the activity measurements, thus excluding potential
acetoclastic methanogenesis. While some authors state that hydrogenotrophic
methanogenesis prevails in peatlands (Kotsyurbenko et al. 1996, Blodau et al. 2008, St.
James et al. 2021), others report on a higher ratio of acetoclastic methanogenesis
(Kotsyurbenko et al. 2004, Negandhi et al. 2013). However, the mode of methanogenesis
depends also on the pH level (Metje 2006) and on the quality of organic carbon

(Hornibrook et al. 1997, Penning and Conrad 2007, Negandhi et al. 2013).
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The results of this thesis show for the first time that methanogenic archaea can colonise
peatland bryophytes and may be metabolically active under certain conditions.
Nevertheless, potential methane production rates remain low compared to sediment and
peat samples from the same sites (Kiss 2012, Tveit et al. 2013, Knoblauch et al. 2015, Rey-
Sanchez et al. 2019), indicating a minor role of mosses-associated methanogenesis for
overall methane production and release from northern peatlands.

Contrarily to moss-associated methanogenesis, potential methanotrophic activity could
be measured on almost all investigated mosses, comparable to other studies with partly
similar rates (Raghoebarsing et al. 2005, Liebner et al. 2011, Kipfer 2015, Putkinen et al.

2018).

Brown mosses displayed similar potential methane oxidation rates as emerged Sphagnum
species although brown mosses lack hyaline cells that are typical features of Sphagnum
mosses and display a suitable spatial niche for methanotrophic bacteria (Basiliko et al.
2004). Together with lower DOC values and mean annual temperatures, which indicate a
lower habitat productivity, these factors may hamper moss-associated methanotrophy in
Arctic circumneutral peatlands.

Potential methane oxidation rates were most pronounced in submerged S. fallax, which
is in line with previous reports (Raghoebarsing et al. 2005, Kip et al. 2010, Parmentier et
al. 2011, Larmola et al. 2014). A mutualistic relationship characterises the association
between methanotrophic bacteria and submerged Sphagnum and brown mosses, where

the methanotroph benefits from the oxygen produced by photosynthesis, and the moss
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host from the additional CO2 supplied through methane oxidation (Raghoebarsing et al.
2005, Kip et al. 2010, Larmola et al. 2010, Liebner et al. 2011). Owing to the low distances
between methane that is produced in anoxic peat layers and the ambient aerobic
bryosphere, floating moss mats within waterlogged peatlands display appropriate
locations for methane oxidising bacteria, where significant methane oxidation occur
(Basiliko et al. 2004, Blodau et al. 2008). Under such conditions, methane emissions can
be reduced by 50 - 99% (Parmentier et al. 2011, Knoblauch et al. 2015, Kox et al. 2021).
Compared to other investigated sites with dense mats of Sphagnum spp., the hummock-
hollow-complex with emerged and submerged S. fallax was characterised by a small-
scale heterogeneity, where bryophytes and plants with different habitat preferences
coexisted in spatial proximity. Such diverse surface patterns and microforms develop by
complex feedback mechanisms and feature increased nutrient availability and greater
gross primary production (Harris et al. 2020), which may explain higher methane and DOC
concentrations, but also a more versatile methanotrophic community compared to the
thermokarst pond. Thus, small-scale heterogeneity and the resulting enhanced
productivity may lead, together with higher mean annual temperatures, to remarkable
moss-associated methane oxidation in heterogeneous bogs.

Surprisingly, potential methane oxidation rates of submerged S. riparium from a
thermokarst pond were considerably lower compared to emerged S. lindbergii from an
adjacent collapsed palsas (Liebner and Svenning 2013), despite higher in-situ methane

emission rates from the thermokarst pond (Liebner et al. 2015).
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Methylocystis (type Il methanotrophs) and Methylomonas (type | methanotrophs) were
the prevailing methanotrophic genera within our study. They have been frequently
reported as moss associates in acidic bogs (Kip et al. 2011, Liebner and Svenning 2013,
Kox et al. 2021) or as inhabitants of brown moss-dominated ponds (Liebner et al. 2011,
Osudar et al. 2016). Methylocystis is a facultative methane oxidiser that can utilise acetate
in the absence of methane, and was previously described as predominant, but
metabolically less active methanotroph in a palsa peat bog (Liebner and Svenning 2013).
Methylomonas is directly involved in methane oxidation at the peat bog surface as a key
bacteria (Esson et al. 2016) and belongs also to the endophytic methanotrophic
community of various vascular plants of acidic peat bogs (Stepniewska and Kuzniar 2014).

4.7. Diversity and structure of Sphagnum bacteriomes from pristine,
disturbed and rewetted kettle bogs

The close proximity of pristine (KLO), disturbed (KIE) and rewetted (HEI) peat bogs within
the Mueritz National Park provides a unique opportunity to compare the bacteriomes of
the respective Sphagnum species on a geographically small but environmentally
heterogeneous scale. The aim was to assess whether and to what extent these bacterial
moss communities differ from each other. The bacteriomes of Sphagnum mosses from
pristine and disturbed bogs varied widely. In pristine sites, the bacteriomes were
comparably homogenous, with a few but highly abundant bacterial taxa associated with
Sphagnum. Contrarily, the Sphagnum bacteriomes from disturbed sites were more

diverse.
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Within the Mueritz subsites, 65 OTUs (34.6%) displayed the Sphagnum-associated core
community. These OTUs were also found to be part of the core microbiota of all
investigated peatlands in the study. This core community included several functional
groups such as methanotrophs (Methylocystaceae) and diazotrophs (Nostocaceae,
Azospirillum), as well as potential plant promoters (Sinobacteraceae, Caulobacteraceae).
Additionally, members of the Acetobacteraceae, Acidocella and Acidobacteriaceae were
also an integral part the core community. These taxa occur even in disturbed (KIE) and

rewetted (HEI) sites, indicating a resilient and persistent Sphagnum bacteriome.

Among the 47 OTUs (25%) exclusively found in KIE (S. magellanicum) were potential
intestinal taxa of wild game, e.q. Streptococcus (Verkihlen 2005, del Rey et al. 2014),
Ruminococcus (Peruzy et al. 2019, Wilson et al. 2019), Haemophilus (Aguirre et al. 1999,
Cuesta Gerveno et al. 2013) and Prevotella (Fogarty and Voytek 2005, Li et al. 2015). This
underpins the description of KIE as a non-typical, disturbed habitat with unusual
vegetation (Drosera rotundifolia, Rhynchospora alba, Juncus effusus, Typha latifolia, Carex
curta) growing on scarified ground, presumably caused by grazing and wallowing deer
and wild boar. Additionally, a bank of sand that was supposedly inserted into KIE ca. 100
years ago influences most likely the oscillating behaviour of the bog and leads to frequent
overflow and subsequent nutrient enrichment within the bog centre (T. Timmermann,
personal communication). The nutrient content of peat bogs depends particularly on the

nature of the supplied water, and eutrophication and the subsequent development of
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eutrophic vegetation forms in bogs with high flow-through and intensive water exchange
(Landgraf and Notni 2004).

The mesotrophic to eutrophic character of KIE may also result from the rise of the water
table and the subsequent extinction of surrounding tree and shrub layers within the past
years. Although this biomass is excluded from humification when the water level is high,
organic compounds accumulate continuously due to water-logged conditions at those
sites, analogous to growing peat bogs. The resulting interrupted nitrification process
leads to an accumulation of nitrogen in the peat. Similarly, the carbon cycle is interrupted
(Kopp et al. 1982, Mdritz-National Park. National Parkplan und Bestandsanalyse 2003).
The higher pH compared to HEI and KLO may also point towards an eutrophicated
Sphagnum bog. These factors, together with a slightly higher pH compared to the other
subsites, may be responsible for the higher bacterial diversity and the unusual bacterial
composition within KIE. An experimental eutrophication of a Sphagnum peatland
revealed a modification in the taxonomic composition and functioning of microbial
communities and a substantial increase in the bacterial abundance (Mieczan et al. 2015),
confirming the present results.

HEI harboured 29 (15.4%) site-specific OTUs and represented a rewetted and stagnating,
non-oscillating Sphagnum peat bog with oligotrophic to mesotrophic conditions. A
species-poor hummock-hollow-complex consisting of S. fallax and Eriophorum
vaginatum established after the extinction of the tree layer (Betula pubescens), with
submerged Sphagnum fallax growing in the water-filed bog margin (T. Timmermann,

personal communication). HEI harboured the highest relative amount of obligate and
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facultative methane oxidisers such as Methylococcaceae (e.g.,, Methylomonas) and
Methylobacteriaceae, respectively, most likely due to the sufficient methane supply in the
waterlogged sites. The presence of bacteria characteristic for aquatic habitats, e.g.
Geothrix (Coates et al. 1999, Kusel et al. 2008), Flavobacterium (Lew et al. 2018) and Kaistia
(Weon et al. 2008, Jin et al. 2012) underpins further the strong influence of the hydrology
onto the hosts and their microbiomes in HEI. Moreover, numerous plant-associated and
potentially host-promoting bacteria genera shaped the HEl-specific community, for
example Paenibacillus (Selbmann et al. 2010, Hui et al. 2013, Alcaraz et al. 2018),
Flavobacterium (Kolton et al. 2016), Pandoraea (Sickel et al. 2016, Obermeier et al. 2019),
Bosea (Safronova et al. 2015, Ma et al. 2017), Kaistia (Sickel et al. 2016) and Rhodanobacter
(De Clercq et al. 2006, Sickel et al. 2016).

Among the 13 OTUs (6.9%) that were solely found in KLO were numerous plant growth-
promoting taxa such as Agrobacterium (Yu et al. 2015, Zhang et al. 2021), Nocardia
(Schellenberger et al. 2010, Trujillo et al. 2015), Accumulibacter (Santana et al. 2016,
Graham et al. 2017) and Methylobacterium (Sickel et al. 2016, Graham et al. 2017), while
latter was frequently reported as moss symbiont (Hornschuh et al. 2002, Kutschera 2007,
Schauer and Kutschera 2011, Tani et al. 2012). This may underpin the important role of
these bacterial taxa for the establishment, resilience and persistence of their Sphagnum
hosts which inhabit extreme narrow ecological niches in ombrotrophic peat bogs.
According to T. Timmermann (personal communication), KLO represents an ideal model
of a pristine and apparently intact, oscillating kettle bog which underwent obviously much

less disturbance events compared to KIE and HEI. The small number of OTUs that appear
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exclusively in KLO could represent a mature, homogenous microbial community that may
have developed and established over a long time period, analogous to vegetation climax
communities (Whittaker and Levin 1977, Fierer et al. 2010). Interestingly, S. magellanicum
growing in the oligotrophic centre and S. fallax growing in the mesotrophic margin of
KLO did not share any common, site-specific OTUs, despite the relative spatial proximity
to each other, while S. magellanicum from KIE and KLO shared 7 OTUs and S. fallax from
KLO and HEI shared 4 OTUs. Considering the similar pore water chemistry and
environmental data of both KLO subsites (S1A), the host species and its habitat preference
may influence the moss microbiota. Sphagnum mosses simultaneously create and inhabit
extreme habitats. Interestingly, different Sphagnum genera evolved with variable niche
evolution rates (Johnson et al. 2015). While hummock-preferring species are able to exist
withing more aquatic environments, hollow-preferring Sphagnum species cannot cope
with the more stressful hummock environment (Rydin et al. 2006, Johnson et al. 2015). As
a characteristic inhabitant of ombrotrophic bogs, S. magellanicum occurs within a
narrower trophic range with very low pH (< 4.1) and ion concentrations (conductivity),
while S. fallax growing in lawns has a broad ecological amplitude with higher pH values
and ion contents (Wojtun et al. 2013). Moreover, S. magellanicum and S. fallax belong to
different sections (Sphagnum, resp. Cuspidata) with distinct metabolites and litter quality
(Bengtsson et al. 2018), which might further affect the associated microbiota.

The present results suggest that disturbed, eutrophicated Sphagnum peat bogs display a
greater bacterial diversity and different bacterial community composition compared to

rewetted and pristine bogs, while low-diversity Sphagnum microbiomes may reflect a
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mature bog and a late successional stage. Intact poor fens and naturally developed
ombrotrophic bogs may remain stable for decades regarding their pH and Sphagnum
coverage, while other bryophyte species and vascular plants decrease (Gunnarsson et al.
2000). Such constant conditions over a long time period promote the establishment of a
species-poor, highly specific microbial community that is associated with Sphagnum
mosses and promotes at the same time growths and resilience of its host. Peat bog
disturbance such as nutrient deposition and draining alters in particular the Sphagnum
vegetation and bog chemistry, with subsequent shifts in the Sphagnum microbiome. The
disturbance intensity is a crucial factor that leads to changes in bacterial community
composition and functional performance, while recovery rates and response of the
bacteriomes depend on functional type and character of disturbance (Berga et al. 2012).
The eutrophication of Sphagnum peat bogs alters microbial processes and parameters,
and increasing habitat fertility might modify the taxonomic composition and functioning
of microbial communities (Mieczan et al. 2015), as can be observed for KIE. The
considerably higher amount of OTUs of S. magellanicum from KIE (137 OTUs) compared
to S. magellanicum growing in KLO (74 OTUs) may be regarded as a further indication of
bog eutrophication, analogous to the substantial increase of bacterial abundances in
eutrophicated Sphagnum bogs (Mieczan et al. 2015). Besides eutrophication, rewetting
after drought can cause substantial shifts in peatland microbiomes (Kitson and Bell 2020,
Unger et al. 2021) while microbial communities may considerably recover upon rewetting
and subsequent re-vegetation of Sphagnum, probably along with a concomitant recovery

of biogeochemical peatland functioning (Elliott et al. 2015, Emsens et al. 2020). Compared
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to the S. magellanicum bacteriomes from KIE and KLO, the numbers of S. fallax-associated
OTUs from the rewetted HEI (109 OTUs) and the pristine KLO margin (80 OTUs) differed
less. The occurrence of various HEI-specific (potential) methanotrophic moss associates
may indicate a gradual recovery state of HEI after rewetting. It has been reported that
methanotrophic bacteria re-establish slowly after rewetting, while the methanogenic
archaea recover rapidly, resulting in prolonged increased methane emissions following
rewetting (Wen et al. 2018). Moreover, the hummock-hollow-complex of HEI provides a
pronounced habitat heterogeneity on a relatively small spatial scale, where emerged and
submerged S. fallax grow side by side. This is also reflected in a versatile Sphagnum-
associated bacteriome with characteristic aquatic and terrestrial taxa. At long sight, the
lacking oscillation capacity and stagnating waterbody with changing water level might
favour the establishment of aquatic Sphagnum-specific microbiomes with presumably

higher diversity compared to the S. fallax microbiome of KLO with more stable conditions.
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5. Conclusion

This work presents novel and comprehensive insights into the microbial communities

associated with peatland bryophytes on a large geographical scale, framed by a

systematic analysis of the environmental factors that shape the community structure of

these moss microbiomes. Moreover, the results of this thesis indicate key prokaryotic taxa

and their potential role for host mosses and peat ecosystems.

Based on the scientific questions raised at the beginning of this thesis, the following key

insights can be summarised:

1.

Both, Sphagnum and brown mosses harbor specific endophytic bacteria. The
epiphytic and endophytic bacterial communities of the individual plantlets differ
clearly from each other.

A core microbiome exists across bryophytes from natural northern peatlands
spanning the High Arctic, subarctic and the temperate zone. This core community is
small, but made up of many bacterial taxa that are epiphytes of brown mosses and
highly abundant endophytes of Sphagnum mosses.

Brown mosses and Sphagnum mosses display an appropriate habitat for archaea and
harbor few, but abundant archaeal species, among which most taxa belong to the
functional group of methanogenic archaea. Thus, also in peatlands methanogenic
archaea are not restricted to anoxic microhabitats such as deep soil layers. Contrarily

to the moss-associated bacteria, the archaeal community structure of brown mosses
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and Sphagnum mosses is similar. Additionally, no clear differences between epiphytic
and endophytic moss archaeomes were observed.

. The impact of the investigated environmental parameters on the moss microbiomes
can be ranked, beginning from the host moss species as the main driver, followed by
the pH regime and the water level. The prevailing temperature has only a minor
impact on the community structure of moss microbiomes.

Within peatland ecosystems, microbial methane production is not restricted to
waterlogged, anoxic soil and peat layers. It is also associated with both, brown mosses
and Sphagnum mosses from the Arctic, subarctic and the temperate zone. However,
methane production rates associated with mosses are very low. In comparison,
potential moss-associated methane oxidation rates are significantly higher.
Moreover, brown mosses display similar potential methane oxidation rates as
emerged Sphagnum species, while submerged Sphagnum mosses from a rewetted

peat bog site show the highest potential activity rates.

The structure of Sphagnum-associated bacterial communities from pristine, rewetted
and degraded peat bogs differs from each other, while the Sphagnum-bacteriome

diversity decreases from degraded towards pristine peat bog sites.

Sphagnum mosses from degraded sites harbour the most versatile bacterial
communities with uncommon bacterial taxa such as Ruminococcus and Haemophilus,

whereas members of the Acetobacteraceae, mainly represented by the genus
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Acidocella, prevail within the ombrotrophic sites. The Sphagnum-associated bacterial
community from the rewetted sites differ according to the prevailing water level.

Members of the bacterial family Acetobacteraceae are an integral part of the core
microbiome and omnipresent in the bryosphere of all investigated mosses, with
Acidocella as a remarkably abundant genus possibly holding a key role in fen-bog-
transition processes. However, a large part within the moss-associated

Acetobacteraceae remained unassigned at the genus level.
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6. Critical remarks and outlook

6.1. Critical remarks

The results of this thesis contribute to a better comprehension of the taxonomy of
Sphagnum- and brown moss-associated prokaryotes from northern peatlands and helps
to better understand the complex relationships between the moss hosts and their
microbial assemblages. The nature of moss-microbe-interactions and the underlying
mechanisms depend on a range of physiological, biochemical and ecological processes
that cannot be explained by the identity of the moss-associated procaryotes. Although
this thesis can, therefore, not disentangle the mechanisms of moss-microbe interaction,

it provides valuable information to formulate testable hypothesis on those interactions.

The presented taxonomic results are based on Operational Taxonomic Units (OTUs), while
recent publications use the Amplicon Sequence Variants (ASV) approach (Jeske and
Gallert 2022, Kolton et al. 2022, Camargo et al. 2023). The use of OTUs in microbial
ecology has been a common practice for many years, and also at the time of data
collection in the frame of this thesis. Compared to OTUs, ASV offer more precise
identification and quantification of microbial taxa by analysing individual sequences
without clustering them into OTUs, thus avoiding a loss of information during processing

steps such as quality filtering (Callahan et al. 2017).

Furthermore, OTUs are analysis-specific and generated internally, hence the achieved

results are not directly comparable with other studies. Each comparison has to be rather
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made indirectly via cross-referencing with different databases, assumed that both OTUs,
i.e., both 97% sequence similarity threshold centroids, accurately represent the organism
present in the respective sample (Jeske and Gallert 2022). However, the interpretation of
microbial community structure depends also on several other factors, including the choice
of sample sequencing, appropriate filtering strategies and the use of taxonomic level for

data clustering (Joos et al. 2020).

In order to gain robust and comparable results in the field of environmental microbiology,
it is furthermore crucial to adapt established methods to the respective sample material,
especially at the initial analysis such as DNA extraction and subsequent amplification.
Therefore, comparisons between different environmental studies should be made with
caution, as the differences observed can base on different DNA extraction approaches or
on the choice of the primers. The fact that certain taxa could not be detected within the
samples by the chosen methods does not necessarily imply that those species are absent
in the respective habitat. For instance, DNA extraction and subsequent analysis of plant-
associated microorganisms can be hampered by plant-deriving phenolic compounds
(Hills and Van Staden 2002). One should therefore be aware that the applied methods do
never cover the entire diversity of microorganisms contained in a sample. In addition to
the influence of the underlying extraction method, the revealed moss-associated
microbial assemblages and their metabolic activity are also influenced by various factors
such as the sampling time, e.g., the growing season. Hence, the outcomes of this thesis

can only display a current snapshot of the plant microbiomes and does not illustrate
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dynamics in community structures and metabolic activity rates. Most of the here
investigated microbial taxa are well adapted to the prevailing low temperatures within
their habitat, with temperature optima lower than those of microorganisms from warmer
climates, but at the same time, these microbiota exhibit higher temperature optima when
in culture (Carson 2018). Therefore, one should be aware that the assessed methane
oxidation and methane production rates display only artificial potential activity rates that

do not reflect microbial metabolic activities under natural conditions.

6.2. Outlook

In this study the microbiomes of brown mosses and Sphagnum mosses from four different
pristine northern bogs have been investigated to assess the community structure of the
bacterial and archaeal associates. Based on the examination of the prokaryotic core
community of northern peat bogs, future work should focus on the question whether this
core microbiome is a result of transfers of epiphytic bacteria from brown mosses to
Sphagnum during natural peatland succession from fens to bogs. For this purpose,
experimental set-ups with axenic moss cultures are conceivable, as described already

elsewhere (Sastad et al. 1998, Hohe and Reski 2005).

In that regard, further studies should investigate the role of endophytic taxa to gain more
insights on the nature of moss host-microbe-interactions, with a special focus on
Acetobacteraceae. This could be accomplished by the use of metagenomic and

metatranscriptomic techniques which provide a complete description of the genomic
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composition and diversity of the moss-associated Acetobacteraceae, possibly
complemented by a ‘multiomics’ approach which combines metagenomic,
metatranscriptomic, metaproteomic and metabolomic data. Such techniques have
already been utilised in multiple studies to investigate soil microbiomes and to unravel
the molecular changes that occur at the community level due to environmental

disturbances (Gamalero et al. 2022).

Based on this work, cultivation and subsequent analysis of yet unknown Acidocella species
and other Acetobacteraceae associated with peatland mosses is suggested. Connected
to this, functional and molecular characterisation of previously isolated Acidocella should
be conducted, i.e. the investigation of in vitro plant growth promoting traits such as IAA
production or phosphate solubilisation (Kalam et al. 2020). This could lead to a better
understanding of the beneficial role of Acidocella for their Sphagnum hosts and enhance
current nature conservation measures such as paludiculture, which have the capacity to

significantly reduce carbon dioxide emissions (Tanneberger et al. 2021).

Moreover, several studies demonstrated the biodegradation capabilities of Acidocella
strains towards toxic industrial pollutants (Okibe et al. 2016, Eze 2021, Eze et al. 2021). This
suggests that Acidocella could play a significant role in the bioremediation of former coal
mining sites, which is of particular interest regarding the current energy transformation
and subsequent phase-out of fossil fuels in Germany. Therefore, it is suggested to

investigate the bioremediation potential of Sphagnum-associated Acidocella by
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conducting tolerance tests against various toxic contaminants present in wastewater from

abandoned coal mining sites.

In order to assess the microbial core community of peatlands on a global scale, it is further
recommended to examine also peat bogs of the Southern hemisphere, for instance within
the Antarctic zone, where both brown mosses and Sphagnum species thrive (Whinam

and Copson 2006, Hedends 2012, Oloo et al. 2016).

In the course of this thesis, a new technique was successfully established to estimate the
moss-associated methane oxidation and methane production of both, the epiphytic and
the endophytic communities. The experimental set-up should be further developed, for
instance by applying varying temperature regimes or controlled light exposure to take

photosynthetic activities of the host mosses in account

Finally, the studied system of moos-microbe associations in pristine, northern peatlands
are currently facing substantial environmental pressure caused by rising surface
temperatures. The impact of these changing conditions on the studied associations
remains unknown, but alterations in vegetation patterns, temperature and precipitation

may profoundly alter the composition and function of moss-microbe communities.
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The complete OTU tables for bacteria and archaea are online available:
https://www.nature.com/articles/s41598-020-79773-2#Sec24

Demultiplexed read sequence data has been deposited at NCBI/Genbank
database wunder the BioProject PRINA356121 with accession numbers
SRR6442387- SRR6442509 for bacteria and SRR6442615-SRR6442637 for archaea.
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% of dry mass); sol-KL=acid-soluble Klason lignin (given in % of dry mass);
HC=content of holocellulose (given in % of dry mass); CEC= cation exchange
capacity (given in peg/g); oxygen in mg L™; CH4 concentration in uM; DOC in mg
L™ C and N in % dry weight; water content in %.
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Supplementary

Additional supplement (S_methanotrophs_fasta).

>1015820 106B_ 38282
TGGGGAATCTTGCGCAATGGGCGAAAGCCTGACGCAGCAACGCCGCGTGCGGGAAGAAGG
CCTTAGGGTTGTAAACCGCTTTCAGTAGGAACGAAAATGACGGTACCTGCAGAAGAAGGT
GCGGCCAACTACGTGCCAGCAGCCGCGGTGACACGTAGGCACCAAGCGTTGTCCGGATTT
ATTGGGCGTAAAGAGCTCGTAGGCGGTTGAGTAAGTCGGGTGTGAAAACTCTGGGCTTAA
CCCAGAGCCGCCACTCGATACTGCTCTGACTTGAGTTCGGTAGGGGAGCAGGGAATTCCT
AGTGTAGCGGTGAAATGCGCAGATATTAGGAGGAACACCGGTGGCGAAGGCGCTGCTCTG
GGCCGAAACTGACGCTGAGGAGCGAAAGCGTGGGTAGCAAACA

>1105814 101B 1589
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGAGTGATGAAGG
CCCTAGGGTTGTAAAGCTCTTTTGTGCGGGAAGATAATGACGGTACCGCAAGAATAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATC
ACTGGGCGTAAAGGGTGCGTAGGCGGGTCTTTAAGTCAGGGGTGAAATCCTGGAGCTCAA
CTCCAGAACTGCCTTTGATACTGAGGATCTTGAGTTCGGGAGAGGTGAGTGGAACTGCGA
GTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACCAGTGGCGAAGGCGGCTCACTGG
CCCGATACTGACGCTGAGGCACGAAAGCGTGGGGAGCAAACA

>1114358 101B_ 71229
TGGGGAATATTGCGCAATGGGCGAAAGCCTGACGCAGCAACGCCGCGTGGGGGATGAAGG
CCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAG
AAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCG
GAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCTGTGAAAATTCGGGG
CTCAACCCCGGACTTGCAGTGGGTACGGGCAGACTAGAGTGTGGTAGAGGAGACTGGAAT
TCCTGGTGTAGCGGTGGAATGCGCAGATATCAGGAGGAACACCAGTGGCGAAGGCGGGTC
TCTGGGCCACAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACA

>1119629 10B 268632
CAAGGAATTTTCGTCAATGGGCGCAAGCCTGAACGAGCAACGCCGCGTGCGGGATGACGG
CCTTCGGGTTGTAAACCGCTTTTTGGGGGGACGATGATGACGGTACCCTCGGAATAAGCC
CCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGGGCAAGCGTTGTCCGGAATT
ACTGGGCGTAAAGCGTCCGCAGGTGGCCCAGCACGTGTTCTGTGAAAGCCCCGCGCTTAA
CGCGGGGAGGCCAGGACAGACTGCTGAGCTGGAGGGGTGCAGAGGGTCGTGGAATTGCCG
GTGTAGTGGTGAAATGCGTAGAGATCGGCAGGAACACCAAGGACGAAGGTAGCGACCTGG
GCACTACCTGACACTCAGGGACGACAGCGTGGGGAGCAAACC

>13505 101B 442
TAGGGAATCTTGCGCAATGGACGAAAGTCTGACGCAGCAACGCCGCGTGAGGGACGAAGG
CTTTCTGAGTTGTAAACCTCTTTCGACAGGAACGATTGTGACGGTACCTGTAGAAGAAGC
ACCGGCCAACTATGTGCCAGCAGCCGCGGTGATACATAGGGTGCAAGCGTTATTCGGATT
TATTGGGCGTAAAGAGCTCGTAGGCGGTTCGACAAGTCGGGTGTTAAACCCCCAGGCTTA
ACCTGGGGCCGCCACCCGAAACTGTTGTGACTAGAGTTTGGTAGGGGATCACGGAATTCC
TGGTGTAGCGGTGGAATGCGCAGATATCAGGAGGAACACCAGTAGCGAAGGCGGTGATCT
GGGCCAATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACA

>155989 101B_ 4385
TGGGGAATATTGGACAATGGGGGAAACCCTGATCCAGCGACGCCGCGTGTGTGAAGAAGG
CCTGCGGGTTGTAAAGCACTTTTAGTGGGGACAAAAAGCCATGGATTAATACTCTGTGGT
CTTGATTTAACCCAAAGAAAAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACA
GAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGACGGTTTTGTAAG
TCAGATGTGAAATCCCTGGGCTCAACCTGGGAACTGCATTTGAAACTGCATGGCTAGAGT
ATGGTAGAGGGAAGTGGAATTTCCGGTGTAGCGGTGAAATGCGTAGATATCGGAAGGAAC
ACCAGTGGCGAAAGCGACTTCCTGGACCAATACTGACGTTCATGTGCGAAAGCGTGGGGA
GCAAACA

>205348 106B_99453
TGGGGAATCTTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGGATGATGAAGG
CCCTAGGGTTGTAAAATCCTTTCGTCAGGGACGATAATGACGGTACCTGAAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATT
ACTGGGCGTAAAGCGCATGTAGGCGGGTCGTTAAGTCGGGGGTGAAAGCCCAGAGCTCAA
CTCTGGAACTGCCTTCGATACTGGCGACCTGGACCCAAGGAGAGGCGAGTGGAATTGCGA

XXiX



Supplementary

GTGTAGAGGTGAAATTCGTAGATATTCGCAGGAACACCAGTGGCGAAGGCGACTCGCTGG
ACTTGTGGTGACGCTGAGATGCGAAAGCGTGGGGAGCAAACA

>217481 101B_2868
TGGGGAATATTGGACAATGGGCGARAGCCTGATCCAGCAATGCCGCGTGAGTGATGAAGG
CCTTAGGGTTGTAAAGCTCTTTCGGGTGGGACGATGATGACGGTACCACCAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATT
ACTGGGCGTAAAGCGCACGCAGGCGGCTCGATAAATTAGAAGTGAAAGCCCCGGGCTTAA
CCTGGGAATTGCTTTTAAGACTGTCGAGCTAGAATCCAGAAGAGGGTAGTGGAATTCCGA
GTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGACTACCTGG
TCTGGCATTGACGCTCATGTGCGAAAGCGTGGGGAGCARACA

>219226 107B_788
TGGGGAATCTTGCGCAATGGCCGAGAGGCTGACGCAGCGACGCCGCGTGGGGGATGAAGC
ATTTCGGTGTGTAAACCCCTGTTGCTCGGGACGAACGATCCTTTTCGAGGGATGTGACGG
TACCGAGTGAGGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGE
GAGCGTTGTCCGGAATCACTGGGCGTAAAGGGCGCGTAGGTGGTTGGATGCGCCGGTGGT
GAAAGCGCAGGGCTCAACCCTGCGTCGGCCATCGGGACGGTCCGACTGGAGCACTGTAGA
GGCAGGTGGAATTCCGGGTGTAGCGGTGGAATGCGTAGAGATCCGGAAGAACACCGGTGG
CGAAGGCGGCCTGCTGGGCAGTTGCTGACACTGAGGCGCGACAGCGTGGGGAGCARACA
>223618 101B_712
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATGCCGCGTGTGTGAAGAAGG
TCTTCGGATTGTAAAGCACTTTCGGCGGGGACGATGATGACGGTACCCGCAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGTTTGCCAAGTTAGATGTGAAATTCCTGGGCTTAA
CCTGGGGGCTGCATTTGATACTGGCAGGCTTGAGTGTGGAAGAGGGTCGTGGAATTCCCA
GTGTAGAGGTGAAATTCGTAGATATTGGGAAGAACACCGGTGGCGAAGGCGGCGACCTGG
TCCATAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA

>227434 101B_722
TGGGGAATCTTGCGCAATGGGCGARAGCCTGACGCAGCCATGCCGCGTGGATGATGAAGG
TCTTAGGATTGTAAAATCCTTTCAGCGGGGACGATAATGACGGTACCCGCAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGATTT
ACTGGGCGTAAAGGGCGCGTAGGCGGACAGTTTAGT TGGGGGTGAAAGCCCGGGGCTCAA
CCTCGGAATTGCCTTCAATACTGGCTGTCTTGAGTATGGGAGAGGTGAGTGGAACTCCGA
GTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGACTCACTGG
CCCATTACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA

>254922 102B 22247
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATGCCGCGTGTGTGAAGAAGG
TCTTCGGATTGTAAAGCACTTTTGGCAGGGACGATGATGACGGTACCTGCAGAATAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGCCTACACAGTCAGATGTGAAATTCCTGGGCTCAA
CCTGGGGACTGCATTTGAGACGTGTAAGCTTGAGTGGAGAAGAGGGTCGTGGAATTACCA
GTGTAGAGGTGAAATTCGTAGATATTGGTAAGAACACCGGTGGCGAAGGCGGCGACCTGG
TCTTTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA

>271114 101B_445
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCAATGCCGCGTGTGTGAAGAAGG
TCTTCGGATTGTAAAGCACTTTTGGCGGGGACGATGATGACGGTACCCGCAGAATAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGCCTACACAGTCAGATGTGAAATTCCTGGGCTCAA
CCTGGGGACTGCATTTGATACGTGTGAGCTTGAGTGAAGAAGAGGGTCGTGGAATTTCCA
GTGTAGAGGTGAAATTCGTAGATATTGGARAGAACACCGGTGGCGAAGGCGGCGACCTGG
TCTTTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCARACA

>279138 101B_2878
TGGGGAATATTGGACAATGGGGGAAACCCTGATCCAGCGACGCCGCGTGTGTGAAGAAGG
CCTGCGGGTTGTAAAGCACTTTTAGTGGGGACAAAAAGCTACGGATTAATACTTCGTGGT
CTTGATTTAACCCAAAGAAAAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACA
GAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGACGGTTTTGTAAG
TCAGATGTGAAATCCCTGGGCTCAACCTGGGAACTGCATTTGAAACTGCATGGCTAGAGT
ATGGTAGAGGGAAGTGGAATTTCCGGTGTAGCGGTGAAATGCGTAGATATCGGAAGGAAC
ACCAGTGGCGAAAGCGACTTCCTGGACCAATACTGACGTTCATGTGCGAAAGCGTGGGGA
GCAAACA
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>37406 101B_ 5900
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATGCCGCGTGAGTGATGAAGG
CCTTAGGGTTGTAAAGCTCTTTCGGGTGGGACGATGATGACGGTACCACCAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATT
ACTGGGCGTAAAGCGCACGCAGGCGGCTCGATAAATTAGAAGTGAAAGCCTTGGGCTTAA
CCTGAGAATTGCTTTTAAGACTGTCGAGCTAGAATCCAGAAGAGGGTAGTGGAATTCCGA
GTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGACTACCTGG
TCTGGCATTGACGCTCATGTGCGAAAGCGTGGGGAGCARACA

>4321318 103B_995
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCAATGCCGCGTGTGTGAAGAAGG
TCTTCGGATTGTAAAGCACTTTCGACGGGGACGATGATGACGGTACCCGTAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGATGGCACAGTCAGATGTGAAATTCCCGGGCTTAA
CCTGGGGGCTGCATTTGATACGTGGTGTCTAGAGTGAGGAAGAGGGTTGTGGAATTCCCA
GTGTAGAGGTGAAATTCGTAGATATTGGGAAGAACACCGGTGGCGAAGGCGGCAACCTGG
TCCTTGACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA

>4355811 107B_7716
TAGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGAGTGAAGAAGG
CCTTAGGGTTGTAAAGCTCTTTTGGCGGGGAAGATAATGACGGTACCCGCAGAATAAGCT
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATC
ACTGGGCGTAAAGCGCACGCAGGCGGATTGATAAGTCGGGGGTGAAATCCCGAGGCTCAA
CCTCGGAATTGCCTTCGATACTGTCTGTCTTGAGTCCGGGAGAGGTGAGTGGAATTCCTA
GTGTAGAGGTGAAATTCGTAGATATTAGGAAGAACACCAGTGGCGAAGGCGGCTCACTGG
CCCGGTACTGACGCTCATGTGCGAAAGCGTGGGGAGCAAACA

>4468101 103B_14348
TGGGGAATATTGGACAATGGGGGAAACCCTGATCCAGCGACGCCGCGTGTGTGAAGAAGG
CCTGCGGGTTGTAAAGCACTTTTAGTGGGGACAAAAAGCCATGGACTAATACTCTGTGGT
CTTGATTTAACCCAAAGAAAAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACA
GAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTARAGCGCGCGTAGACGGTTTTGTAAG
TCAGATGTGAAATCCCTGGGCTCAACCTGGGAACTGCATTTG

>534914 101B_75539
TGGGGAATCTTGCACAATGGACGAAAGTCTGATGCAGCGACGCCGCGTGAGCGATGAAGC
CCTTCGGGGTGTAAAGCTCTTTCGGCAGGGACGATAATGACGGTACCTGAAGAAGAAGCT
GCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGCAGCGAGCGTTGTTCGGAATT
ACTGGGCGTAAAGAGTGTGTAGGCGGTGCTCTAAGTTTGGTGTGAAATCTCCCGGCTCAA
CTGGGAGGGTGCGCCGAAGACTGGAGTGCTCGAGTGTGGGAGAGGAAAGCGGAATTCCTG
GTGTAGCGGTGAAATGCGTAGATATCAGGAGGAACACCTGTGGTGTAGACGGCTTTCTGG
ACCATTACTGACGCTGAGACACGAAAGCGTGGGTAGCAAACA

>538111 101B_323
TGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGAGGGATTAAGG
CCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAAGCGAGAGTGACGGTACCTGCAGAAG
AAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCG
GAATTATTGGGCGTAAAGAGCTTGTAGGCGGTTTGTCGCGTCTGCTGTGARATTTCGGGG
CTCAACCCCGAACTTGCAGTGGGTACGGGCAGACTAGAGTGTGGTAGGGGAGACTGGAAT
TCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTC
TCTGGGCCACTACTGACGCTGAGAAGCGAAAGCATGGGGAGCGAACA

>53994 101B_227
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCAATGCCGCGTGTGTGAAGAAGG
TCTTCGGATTGTAAAGCACTTTTGGCAGGGACGATGATGACGGTACCTGCAGAATAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGCTGTCACAGTCAGATGTGARATTCCTGGGCTCAA
CCTGGGGACTGCATTTGATACGTGGCGGCTTGAGTGGAGAAGAGGGTTGTGGAATTTCCA
GTGTAGAGGTGAAATTCGTAGATATTGGARAGAACACCGGTGGCGAAGGCGGCAACCTGG
TCTTTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCARACA

>557209 101B_4611
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGAGTGATGACGG
CCTTAGGGTTGTAAAGCTCTTTCGCCCACGACGATAATGACGGTAGTGGGAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATT
ACTGGGCGTAAAGCGCGTGTAGGCGGGTCCTTAAGTCAGGGGTGARATGCCAAGGCTCAA
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CCTTGGAACTGCCTTTGATACTGGGGATCTTGAGTCCGGGAGAGGTGAGTGGAACTGCGA
GTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACCAGTGGCGAAGGCGGCTCACTGG
CCCGGAACTGACGCTGAGACGCGAAAGCGTGGGGAGCAAACA

>568398 103B_56704
TGGGGAATTTTGCGCAATGGGGGAAACCCTGACGCAGCAACGCCGCGTGGAGGATGARAT
ATCTTGGTATGTAAACTCCTTTCGATGGGGAAGATTATGACGGTACCCATAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAGGGGGGCAAGCGTTGTTCGGAATT
ATTGGGCGTAAAGGGTGCGTAGGCGGTTTGACAAGTCTTGTGTGAAATCTATGGGCTCAA
CCCATAGTCTGCACAGGAAACTGTCGGGCTTGAGTATGGGAGAGGTGAGTGGAATTTCCG
GTGTAGCGGTGAAATGCGTAGATATCGGAAGGAACACCTGTGGCGAAAGCGGCTCACTGG
ACCATAACTGACGCTGATGCACGAAAGCTAGGGGAGCAAACA

>572984 101B_4836
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATGCCGCGTGGATGAAGAAGG
TCTTCGGATTGTAAAGTCCTTTCGGCGGGGACGATGATGACGGTACCCGCAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGTTTGTACAGTCAGATGTGAAATTCCCGGGCTTAA
CCTGGGGACTGCATTTGATACGTGCAGGCTTGAGTGTGGAAGAGGGTCGTGGAATTCCCA
GTGTAGAGGTGAAATTCGTAGATATTGGGAAGAACACCGGTGGCGAAGGCGGCGACCTGG
TCCATAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA

>576231 106B_65974
TGGGGAATATTGCGCAATGGGCGGAAGCCTGACGCAGCGACGCCGCGTGAGGGATGAAGG
CCTTCGGGTCGTAAACCTCTTTCAGCAGGGAAGAAGCGAGAGTGACGGTACCTGCAGAAG
AAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCG
GAATTATTGGGCGTAAAGAGCTCGTAGGCGGTCTGTCGCGTCTGCTGTGAAAACTCAGGG
CTTAACCCTGAGCTTGCAGTGGGTACGGGCAGACTAGAGTGCGGTAGGGGAGACTGGAAT
TCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTC
TCTGGGCCGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCGAACA

>590450 101B_69181
TGGGGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACGCCGCGTGAATGATGAAGG
CCTTCGGGTTGTAAAGTTCTGTCTTCTGGGACGATAATGACGGTACCAGAGGAGGAAGCC
ACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTT
ACTGGGCGTAAAGGATGCGTAGGCGGACATTTAAGTCAGATGTGAAATACCCGAGCTTAA
CTTGGGTGCTGCATTTGAAACTGGGTGTCTAGAGTGCAGGAGAGGTAAGTGGAATTCCTA
GTGTAGCGGTGAAATGCGTAGAGATTAGGAAGAACACCAGTGGCGAAGGCGACTTACTGG
ACTGTAACTGACGCTGAGGCATGAAAGCGTGGGGAGCAAACA

>647790 101B_583
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGAGTGATGACGG
CCTTAGGGTTGTAAAGCTCTTTCGCTAGGGACGATAATGACGGTACCTAGACAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATT
ACTGGGCGTAAAGCGCGTGTAGGCGGGCTTTTAAGTCAGGGGTGAAATGCCAAGGCTCAA
CCTTGGAACTGCCTTTGATACTGGAAGTCTTGAGTCCGGGAGAGGTGAGTGGAACTGCGA
GTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACCAGTGGCGAAGGCGGCTCACTGG
CCCGGAACTGACGCTGAGACGCGAAAGCGTGGGGAGCAAACA

>688259 107B_54008
TGGGGAATATTGCACAATGGGCGGAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGG
CCTTCGGGTTGTAAACCTCTTTCAGCAGGGACGAAGCGCAAGTGACGGTACCTGCAGAAG
AAGCGCCGGCCAACTACGTGCCAGCAGCCGCGGTAAGACGTAGGGCGCGAGCGTTGTCCG
GATTTATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGACTGTGAAAACCCGCGG
CTCAACCGCGGGCCTGCAGCCGATACGGGCAGGCTAGAGTTCGGTAGGGGAGACTGGAAT
TCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGTC
TCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACA

>798634 102B_123346
TGGGGAATTTTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGCGGGAAGAAGG
CCTTCGGGTTGTAAACCGCTTTTGTCAGGGAAGAAACGCTCCGGGCTAATACCCTGGGGT
AATGACGGTACCTGAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACG
TAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTARAAGCGTGCGCAGGCGGTTATGCAAG
ACAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTTGTGACTGCATAGCTAGAGT
ACGGTAGAGGGGGATGGAATTCCGCGTGTAGCAGTGAAATGCGTAGATATGCGGAGGAAC
ACCGATGGCGAAGGCAATCCCCTGGACCTGTACTGACGCTCATGCACGAAAGCGTGGGGA
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GCAAACA

>806916 101B 4741
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCAATGCCGCGTGGGTGAAGAAGG
TCTTCGGATTGTAAAGCCCTTTCGGCGGGGACGATGATGACGGTACCCGCAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGCTGTTACAGTCAGGCGTGAAATTCCTGGGCTCAA
CCTGGGGACTGCGCTTGATACGTAGTGGCTTGAGTGCGGAAGAGGGTCGTGGAATTCCCA
GTGTAGAGGTGAAATTCGTAGATATTGGGAAGAACACCGGTGGCGAAGGCGGCGACCTGG
TCCGTGACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA

>818605 103B_ 26740
TGGGGAATATTGGACAATGGGGGCAACCCTGATCCAGCAATGCCGCGTGAGTGATGAAGG
CCTTAGGGTCGTAAAGCTCTTTTACCCGGGATGATAATGACAGTACCGGGAGAATAAGCC
CCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGGGCTAGCGTTGTTCGGAATT
ACTGGGCGTAAAGCGCACGTAGGCGGTTACTCAAGTCAGAGGTGAAAGCCCGGGGCTCAA
CCCCGGAACTGCCTTTGAAACTAGGTGACTGGAATCTTGGAGAGGCGAGTGGAATTCCGA
GTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGACTCGCTGG
ACAAGTATTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACA

>870223 101B_ 45564
TGGGGAATATTGCGCAATGGGCGGAAGCCTGACGCAGCGACGCCGCGTGAGGGATGACGG
CCTTCGGGTTGTAAACCTCTTTCAGCTCTGACGAAGCGAGAGTGACGGTAGGAGCAGAAG
AAGCACCGGCCAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCG
GAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCGAATGTGAAAACCCGGGG
CTCAACTCCGGGCCTGCATTCGATACGGGCAGACTAGAGTTCGGTAGGGGAGACTGGAAT
TCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTC
TCTGGGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCAAACA

>979536 103B_ 1946
TGGGGAATCTTGCACAATGGGGGCAACCCTGATGCAGCGACGCCGCGTGAACGATGAAGC
CCTTCGGGGTGTAAAGTTCTTTCGGCAGGGACGATAATGACGGTACCTGAAGAAGAAGCT
GCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGCAGCGAGCGTTGTTCGGAATT
ACTGGGCGTAAAGAGTGTGTAGGCGGTGCTGTAAGTTCGGTGTGAAATCTCCTGGCTTAA
CTGGGAGGGTGCGCCGGAAACTGCAGTGCTCGAGTGTGGGAGAGGAAAGCGGAATTCCTG
GTGTAGCGGTGAAATGCGTAGATATCAGGAGGAACACCTGCGGTGTAGACGGCTTTCTGG
ACCATTACTGACGCTGAGACACGAAAGCGTGGGTAGCAAACA
>New.ReferenceOTU10157 56B 63607
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCAATGCCGCGTGAGTGAAGAAGG
TCTTAGGATTGTAAAGCTCTTTCGGTGGGGACGATGATGACGGTACCCACAGAAGAAGCC
CCGGCTAACGTCGTGCGAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGCGGACATAGTCAGATGTGAAATTCCTGGGCTCAA
CCTGGGGACTGCATTTGATACGTGTTTGCTTGAGTGCGGAAGAGGGTCGTGGAATTCCCA
GTGTAGAGGTGAAATTCGTAGATATTGGGAAGAACACCGGTGGCGAAGGCGGCGACCTGG
TCCGTAACTGACGCTGAGGCGCGAAAGCGTAGGGAGCAAACA
>New.ReferenceOTU13914 114B 65949
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCAATGCCGCGTGGGTGAAGAAGG
TCTTCGGATTGTAAAGCCCTTTTGGCGGGGACGATGATGACGGTACCCGCAGAATAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGCATATACAGTCAGATGTGAAATTCCTGGGCTCAA
CCTGGGGACTGCATTTGAAACGTATGAGCTTGAGTGAAGAAGAGGGTCGTGGAATTTCCA
GTGTAGAGGTGAAATTCGTAGATATTGGAAAGAACACCGGTGGCGAAGGCGGCGACCTGG
TCTTTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA
>New.ReferenceOTU61761 10B 90312
TGGGGAATATTGCGCAATGGGCGGAAGCCTGACGCAGCGACGCCGCGTGAGGGATGAAGG
CCTTCGGGTCGTAAACCTCTTTCAGCAGGGAAGAAGCGAGAGTGACGGTACCTGCAGAAG
AAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCG
GAATTATTGGGCGTAAAGAGCTCGTAGGCGGTCTGTCGCGTCTGCTGTGAAATCTCAGGG
CTTAACCCTGAGCTTGCAGTGGGTACGGGCAGACTAGAGTGCGGTAGGGGAGACTGGAAT
TCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTC
TCTGGGCCGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCGAACA
>New.CleanUp.ReferenceOTU174212 101B 19979
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATGCCGCGTGGGTGAAGAAGG
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TCTTCGGATTGTAAAGCCCTTTTGGCAGGGACGATGATGACGGTACCTGCAGAATAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATG
ACTGGGCGTAAAGGGCGCGTAGGCGGTTTATACAGTCAGATGTGAAATTCCTGGGCTCAA
CCTGGGGACTGCATTTGATACGTATGGACTTGAGTGGAGAAGAGGGTCGTGGAATTTCCA
GTGTAGAGGTGAAATTCGTAGATATTGGAAAGAACACCGGTGGCGAAGGCGGCGACCTGG
TCTTTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACA

xvii.  Additional supplement (S_endophytes_taxonomy; S_endophytes_fasta).

>1120868 10B 94140
TGGGGAATATTGGACAATGGGCGGAAGCCTGATCCAGCAATACCGCGTGTGTGAAGAAGG
CCTGAGGGTTGTAAAGCACTTTCAATGGGAAGGAATACCTAATGGCGAATACCCATTAGA
CTGACATTACCCATACAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGG
AGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGTAGGCGGTTATTTAAGT
CAGATGTGAAAGCCCTGGGCTTAACCTGGGAACTGCATTTGATACTGGATGACTAGAGTT
GAGTAGAGGAGAGTGGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTGAAGGAACA
CCAGTGGCGAAGGCGGCTCTCTGGACTCAAACTGACGCTGAGGTACGAAAGCGTGGGTAG
CAAACA

>535429 102B 10362
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGAGTGATGAAGG
CCTTAGGGTTGTAAAGCTCTTTCGCCAGGGACGATAATGACGGTACCTGGATAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGATTT
ACTGGGCGTAAAGCGCACGTAGGCGGATCTTTAAGTCAGGGGTGAAATCCCGAGGCTCAA
CCTCGGAACTGCCTTTGATACTGGAGGTCTCGAGTCCGGGAGAGGTGAGTGGAAC
>588559 106B 124688
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATACCGCGTGTGTGAAGAAGG
CCTGAGGGTTGTAAAGCACTTTCAATGGGAAGGAATACCTATCGGCGAATACCCGGTAGA
CTGACATTACCCATACAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGG
AGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGTAGGCGGTTCGTTAAGT
CAGATGTGAAAGCCCTGGGCTCAACCTGGGAACTGCATTTGATACTGGCGAACTAGAGTT
GAGTAGAGGAGAGTGGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTGAAGGAACA
CCAGTGGCGAAGGCGGCTCTCTGGACTCAAACTGACGCTGAGGTACGAAAGCGTGGGTAG
CAAACA

>701385 101B 18188
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGAGTGATGAAGG
CCTTAGGGTTGTAAAGCTCTTTCGCCAGGGACGATAATGACGGTACCTGGATAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGATTT
ACTGGGCGTAAAGCGCACGTAGGCGGATCTTTAAGTCAGGGGTGAAATCCCGAGGCTCAA
CCTCGGAACTGCCTTTGATACTGGAGGTCTCGAGTCCGGGAGAGGTGAGTGGAACTGCGA
GTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACCAGTGGCGAAGGCGGCTCACTGG
CCCGGTACTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACA
>New.ReferenceOTU13163 60B_ 79910
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATACCGCGTGTGTGAAGAAGG
CCTGAGGGCTGTAAAGCACTTTCAATGGGAAGGAATACCTATCGGCGAATACCCGGTAGA
CTGACATTACCCATACAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGG
AGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGTAGGCGGTTCGTTAAGT
CAGATGTGAAAGCCCTGGGCTCAACCTGGGAACTGCATTTGATACTGGCGA
>New.ReferenceOTU30099 98B 66480
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGAGTGATGACGG
CCTTAGGGTTGTAAAGCTCTTTCGCTAGGGACGATAATGACGGTACCTAGACAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATT
ACTGGGCGTAAAGCGCACGTAGGCGGATCTTTAAGTCAGGGGTGAAATGCCAAGGCTCAA
CCTTGGAACTGCCTCTGATACTGGAGATCTTGAGTTCGAGAGAGGTGAGTGGAACTGCGA
GTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACCAGTGGCGAAGGCGGCTCACTAG
CTCGATACTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACA
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>New.ReferenceOTU73174 10B 335428
TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCAATACCGCGTGTGTGAAGAAGG
CCTGAGGGTTGTAAAGCACTTTCAATGGGAAGGAATACCTATGGGCTAATACCCTGTAGA
CTGACATTACCCATAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGG
AGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGTAGGCGGTTCGTTAAGT
CAGATGTGAAAGCCCTGGGCTCAACCTGGGAACTGCATTTGATACTGGCGAACTAGAGTT
GAGTAGAGGAGAGTGGAATTTCAGGTGTAGCGGTGAAATGCGTAGAGATCTGAAGGAACA
CCAGTGGCGAAGGCGGCTCTCTGGACTCAAACTGACGCTGAGGTACGAAAGCGTGGGTAG
CAAACA

>New.ReferenceOTU890 118B 97537
TGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGAGTGATGACGG
CCTTAGGGTTGTAAAGCTCTTTCGCACGCGACGATAATGACGGTAGCGTGAGAAGAAGCC
CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGATTA
ACTGGGCGTAAAGGGTGCGTAGGCGGGCTTTTAAGTCAGGGGTGAAATCCCAAGGCTCAA
CCTTGGAACTGCCTTTGATACTGGGAGTCTTGAGTCCGGGAGAGGTGAGTGGAACTGCGA
GTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACCAGTGGCGAAGGCGGCTCACTGG
CCCGGTACTGACGCTGAGGCACGAAAGCGTGGGGAGCAAACA
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