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Abstract

A discrete analogue of the Witten Laplacian on the n-dimensional integer

lattice is considered. After rescaling of the operator and the lattice size we

analyze the tunnel effect between different wells, providing sharp asymp-

totics of the low-lying spectrum. Our proof, inspired by work of B. Helffer,

M. Klein and F. Nier in continuous setting, is based on the construction of

a discrete Witten complex and a semiclassical analysis of the corresponding

discrete Witten Laplacian on 1-forms. The result can be reformulated in

terms of metastable Markov processes on the lattice.
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Introduction

This thesis originates from problems arising in the mathematical analysis

of metastable stochastic processes. The latter is an (old) topic, which -

especially in very recent years - has been receiving growing attention, and a

substantial literature is nowadays available on the subject (see for example

the monograph [85] or the lecture notes [10] and [53] for recent overviews).

Generally speaking, a system evolving in time is said to be metastable,

if there exist distinct critical time scales, each one related to a so-called

metastable state: the latter appears stable as long as the system is observed

on shorter time scales than the critical one, but it becomes unstable if the

time scale is sufficiently large. In particular, the qualitative behaviour of

the system changes abruptly depending on the time scale of observation.

Metastability phenomena show up in the dynamical behaviour of a large

variety of complex real world systems. From a mathematical point of view

the dynamic of such systems may be modelled by means of stochastic pro-

cesses; the underlying mechanism leading to metastability effects is then

explained in terms of suitable scaling limits, phase transitions and univer-

sality features, which are central concepts of modern probability theory and

statistical mechanics.

The basic stochastic process exhibiting metastable behaviour is the small

noise diffusion in a multiwell potential in n-dimensional Euclidean space,

where each local minimum of the potential corresponds to a metastable state

(see equation (0.1) below). Manifold tools have successfully be applied to

its analysis and complement each other to shape a rather satisfactory math-

ematical understanding of this fundamental model. These include mainly

large deviation techniques (see for example [33],[17]), capacity estimates in

a potential theoretic framework ([13], [14], [96]), but also more analytic ap-

proaches, based for example on spectral asymptotics, WKB expansions, etc.

([24],[77],[54], [42], see also the overview [22] and the very recent preprint

[78], based on the two-scale approach for logarithmic Sobolev inequalities

and optimal mass transport techniques).

In this diffusive setting a particularly sharp result, concerning the so-

called Eyring-Kramers formula (sometimes also called Arrhenius’ Law), which

quantifies the average critical time scales at which metastable transitions

occur, was obtained in the paper [42] by B. Helffer, M. Klein and F. Nier.
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Their method is dubbed Witten complex (or supersymmetric) approach to

metastability.1

The main result in [42] is formulated in terms of asymptotic expansions

of the exponentially small eigenvalues of the generator, which very precisely

encode part of the metastable behaviour of the process (see equation (0.12)

below). Indeed the authors consider tunneling through non resonant wells

of a particular Schrödinger operator, also known as Witten Laplacian, this

point of view being an equivalent reformulation of the stochastic metasta-

bility problem in the (reversible) diffusive case.

Their proof efficiently exploits the particular Laplacian-type structure of

the mentioned Schrödinger operator (or, equivalently, of the generator of the

process). In particular it turns out that, from a spectral point of view, it is

more convenient to work with the “square root” of the Witten Laplacian,

given by the so-called Witten differential. Its extension to the algebra of

differential forms gives rise to a complex in the sense of cohomology theory,

and involving the Hodge-type extension of the Witten Laplacian to 1-forms

becomes an important ingredient of this approach.

These algebraic/geometric constructions, which merge the problem in the

larger framework of the exterior algebra of differential forms, are then used

in combination with sophisticated analytical results previously developed

in a series of papers (starting with [45]) by B. Helffer and J. Sjöstrand,

devoted to the semiclassical analysis of tunnel effects. In particular rather

explicit WKB-type expansions and Agmon-type estimates on the decay of

eigenfunctions contained in [48] are instrumental in the Helffer-Klein-Nier

proof.

While the more probabilistic approaches based on large deviations theory

and/or potential theory turned out to be to great extent model independent

and adaptable to various (physically more relevant) situations other than

the diffusive model considered so far, the analytical methods suffer gener-

ally from being rather limited in scope. In particular, the Witten complex

approach mentioned above restricts so far to the setting of diffusions on

manifolds 2 and it would be an important goal to push further the fron-

tiers of its applicability to metastability problems, by extracting as much as

possible its general features based on algebraic structural properties.

1 For a similar point of view see also [99] by J. Kurchan and S. Tanase-Nicola.
2We mention here that after [42] the Witten complex approach was extended by allow-

ing various boundary conditions, see [44] and [72].
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Besides the classical small noise diffusion model in Euclidean space dis-

cussed so far, another fundamental, and relatively simple class of stochas-

tic processes on which to experiment new techniques and test their scope

and flexibility, is its discrete counterpart, obtained from the continuous

space model by restricting the motion to discrete subsets of Euclidean space

(see (0.7) below for an instance of this). It is worth mentioning that such

metastable discrete diffusions naturally arise also in the context of (dis-

ordered) mean field models in Statistical mechanics as the Random field

Curie-Weiss model, after reduction in terms of suitable order parameters

([11]).

In the discrete space setting, much has been studied with the foremen-

tioned probabilistic techniques (see for example [11] and [12] for results

obtained with a potential theoretic approach). On the other hand, when

switching from the continuous case to the discrete one, analytic spectral-

theoretic and semiclassical methods are less developed. Indeed, already in

the simplest case of lattices (i.e. discrete subgroups of Rn) as state space,

a rigorous analytic treatment becomes more problematic and challenging:

generally the combinatorial advantages are here less relevant, and besides

the reduction of space symmetries, the failure of the Leibniz rule is beyond

other drawbacks maybe the most unpleasant fact of the discrete calculus.

Very recently M. Klein and E. Rosenberger started a series of papers, devel-

oping a systematic analysis of the semiclassical tunneling effect for discrete

Schrödinger operators on the rescaled integer lattice (see [64, 65, 66], but

also [49] for previous investigations). Their work is mainly based on mi-

crolocalization techniques and partly provides some of the tools needed for

a purely analytic approach to metastability in discrete setting, which could

possibly lead to results comparable in strength to the one obtained with the

aid of the Witten complex in [42].

This program of an analytic approach to metastability for discrete diffu-

sions is accomplished in the present thesis, by carefully working out all the

missing elements that permit to carry over to the discrete case the analysis

à la Helffer-Klein-Nier.

In particular, a Schrödinger operator on the n-dimensional integer lat-

tice is considered, which is naturally linked to the discrete diffusions under

examination and which can be seen as a discrete equivalent of the Wit-

ten Laplacian on the level of functions. A substantial part of the thesis is

devoted to the definition of a suitable algebraic and geometric framework,

which makes it possible to extend this discrete Witten Laplacian (at first
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only defined on functions on the lattice) on a larger space of discrete dif-

ferential forms, keeping all the relevant supersymmetric properties. The

definitions we propose appear to be new. Indeed, even if in the literature

one can find several attempts of formalizing a discrete differential calculus3,

none of them seems to be well-suited to the problem we consider nor of

direct applicability.

After suitable rescaling of the discrete Witten Laplacians and the lattice

size, crucial semiclassical properties (e.g. harmonic approximation, WKB

expansions) are derived on the full algebra of discrete forms. These are anal-

ogous to the Helffer-Sjöstrand results mentioned above. On the basis of these

preparations, complete asymptotic expansions for the low-lying spectrum of

the discrete Witten Laplace are finally obtained, following essentially the

strategy of [42].

Besides improving existing results with a new method, this thesis can also

be seen as a first step in upgrading the Witten-complex strategy from an

ad-hoc tool to a more systematic approach to metastability problems. On

the other hand, although the contents of this work were worked out with the

express purpose of applying it to metastability questions, they are in fact

independent of that, and, we believe, also interesting from a purely algebraic

and analytic point of view.

The rest of this introduction is structured in four subsections as fol-

lows. Even if the bulk of the thesis is not written directly in terms of

metastable stochastic processes - it is indeed mainly analytic and partly al-

gebraic/geometric in flavour (as the Witten complex approach is)-, we shall

start with an informal discussion of the formentioned metastable diffusions

both in continuous and discrete setting, and clarify their relationship. In-

deed, most of the heuristic arguments and choices of abstract definitions are

better understood with this probabilistic metaphor on the background.

In the second subsection the relation between metastability and spectral

properties is explained in this context. Moreover we recall the Helffer-Klein-

Nier result contained in [42] and state the analogous result for the discrete

case, which is the main theorem of the thesis.

In the third subsection we informally sketch the main ideas of the Witten

complex approach as developed in [42]. In doing this, we point to the main

3The topic of a discrete discrete differential calculus became quite popular in recent

years. Just to mention a few works: [15], [79], [39], [26], [98]. Robin Forman considers in

the context of his discrete Morse theory also discrete Witten Laplacians associated with

cell complexes ([32]).
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Figure 1. An energy function with four wells in dimension 1.

difficulties arising in the discrete case and briefly describe, how these have

been resolved in the present work.

Finally, in the last subsection, a detailed description of the contents of

the thesis is given.

Continuous and discrete metastable diffusions.

Let be given a multiwell energy landscape in n-dimensional Euclidean

space, i.e. a function f : Rn → R, having several local minima. For sim-

plicity we assume f to be smooth, even if the following considerations hold

under much weaker regularity assumptions.

We shall consider a deterministic motion along the (negative) gradient

flow, stochastically perturbed by a small Brownian noise. The intensity of

the stochastic input is given by a parameter 0 < ε � 1. To be specific, we

consider the stochastic equation of motion

dXt = −2∇f(Xt) dt +
√

2ε dWt , (0.1)

where Xt ∈ Rn denotes the ε-dependent state at time t of the system,

∇ := ( ∂
∂x1

, . . . , ∂
∂xn

) is the standard gradient and (Wt)t≥0 is a standard

Brownian motion in Rn. In particular we have for the mean and variance of

the stochastic perturbation we are considering,

E(
√

2εWt) = 0 and Var (
√

2εWt) = 2εt

for every t ≥ 0.

It follows from the standard theory of stochastic differential equations

(see for example [34]) that for each fixed ε > 0 and initial condition x ∈
Rn equation (0.1) admits a unique (possibly exploding) solution Xx,ε :=

9



(Xx,ε
t )t≥0, characterized by having almost surely continuous sample paths

and by satisfying almost surely

Xx,ε
t = x +

∫ t

0
2∇f(Xx,ε

s )ds +
√

2εWt

for every t ≥ 0 (up to explosion).

The focus here is on the family of probability measures (Px,ε)x∈Rn,ε>0 on

the path space C(R+;Rn) induced by the Xx,ε’s, rather than on the par-

ticular pathwise realization given by the latter.4 As is well known, for each

ε > 0 the family (Px,ε)x∈Rn is Markovian, and can be directly constructed

starting from the (formal) generator

Gf,ε = −ε∆ + 2∇f · ∇ (0.2)

by means e.g. of the martingale approach (see [58], [94]). Here ∆ :=∑n
j=1

∂2

∂x2
j

denotes the Laplacian in Rn. The martingale method is based

on the characterization of (Px,ε)x∈Rn as the unique strongly Markovian fam-

ily on continuous path space satisfying for every α ∈ C2
c (Rn;R) (i.e. twice

continuously differentiable and with compact support), every x ∈ Rn and

ε > 0

Px,ε(ϕ0 = x) = 1

and

α(ϕt) − α(ϕ0) −
∫ t

0
Gε,fα (ϕs) ds is a martingale under Px,ε .

This formalizes the idea of Px,ε giving the distribution of the “integral

lines” ofGε,f . Indeed, if instead ofGf,ε only the first order term Tf = 2∇f ·∇
is taken, the solution of the martingale problem would be given by the Dirac

measure on the solution of the characteristic equations{
ϕ̇t = −2∇f(ϕt)

ϕ0 = x
.

Another way to construct Px,ε from Gf,ε relies on the important relation

Ex,ε
(
α(ϕt)

)
= e−tGf,ε α (x) , (0.3)

where Ex,ε denotes expectation with respect to Px,ε and α : Rn → R is

bounded and measurable. Note that the right hand side of (0.3) is formal,

since we did not specify the domain of Gf,ε, nor the space in which the expo-

nential is taken. A far reaching method to deal rigorously with this kind of

approach considers suitable L2 spaces and is linked to the theory of Dirichlet

forms ([35], [75]). In the present setting of a deterministic drift given by a

4In the explosive case the state space Rn is augmented by adding a fictitious point at

infinity, the “cemetery” for the process.
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gradient vector field it is particularly convenient to work in the weighted

space L2(Rn; e−2f/εdx). This is due to the fact that in this weighted space

the generator Gf,ε is symmetric and therefore powerful functional-analytic

tools for selfadjoint operators become available. Indeed, a simple computa-

tion gives with div :=
∑n

i=1
∂
∂xi

Gf,ε α = ε e2f/ε div e−2f/ε ∇ α (0.4)

and symmetry follows via integration by parts.

Now let 〈·, ·〉 be the canonical inner product in Rn, | · | the associated

euclidean norm and assume to fix ideas that

lim
|x|→∞

〈∇f(x), x〉
|x|

= +∞ , (0.5)

which implies a superlinear growth of f at infinity, and in particular that

Zε :=
∫
e−2f(x)/εdx is finite.

The symmetry of Gf,ε reflects the fact that the corresponding Markov

process with initial distribution Z−1
ε e−2f/εdx is reversible: its distribution

is stationary in time and forward and backward evolutions are indistinguish-

able. To be precise, let ρε(x) := Z−1
ε e−2f/ε and

Pρε,ε :=

∫
Px,ε ρε(x) dx .

Then Pρε,ε is invariant under time shift, and can be canonically extended to

a distribution on C(R;Rn) which is invariant under inversion of time. The

measure ρεdx is also called the Gibbs measure of the model.

The main issue we are interested in concerns the long time behaviour

of trajectories under Px,ε when ε is small. Note that for fixed ε > 0 this

problem is settled by suitable ergodicity results, implying that for “nice”

measurable sets A ⊂ Rn and x ∈ Rn

lim
t→∞

Px,ε(ϕ(t) ∈ A) =

∫
A
ρε(x) dx

(see [61] for precise statements).

In the joint limit t → ∞ and ε → 0 it is not hard to see that the result

depends on the order in which the limits are taken. Indeed, letting first

ε → 0, the deterministic gradient flow will dominate and for t → ∞ push

the process to the local minimum corresponding to the well of the initial

position x.

On the other hand, letting first t → ∞, the process beeing ergodic will

distribute according to the Gibbs measure ρεdx. The latter concentrates

for ε → 0 on the deepest possible state of the energy, as a simple Laplace
11



Figure 2. The energy barriers associated with local min-

ima in the example of Figure 1. From the global minimum

of course no transition to deeper wells is possible.

asymptotics shows. As a result, in this reversed order the global minimum

of f is reached regardless of the initial condition x.

In between these two extreme situations, intermediate scalings, with say

t = t(ε) as a diverging function for ε → 0, will lead to a whole range

of possible outcomes: for short time scales (i.e. t growing slowly when ε

approaches 0) the process remains trapped in the local basin of attraction;

for sufficiently large time scales (i.e. t growing fast) the process wil feel

the influence of the Gibbs measure, favouring deepest possible states, and

perform a so-called metastable transition (or tunneling) to some deeper well.

This separation of time scales is usually referred to as metastable be-

haviour, and represents an instance of a dynamical phase transition. The

small noise diffusion determined by (0.1) is considered a paradigmatic model

for this phenomenon.

The previous heuristic picture is made precise by getting quantitative es-

timates on the critical times scales at which metastable transitions occur, i.e

on the mean times necessary to go from a local minimum to a (small neigh-

bourhood) of a deeper one. As already mentioned, this is a well-known and

well-studied problem to which several different techniques have been applied.

The rule of thumb, also called Arrhenius’ Law, is that the critical transition

times are exponentially large when ε → 0: denoting by xj a generic local

minimum of f and by τj the hitting time of a small neighbourhood of the

set of minima of f which lie deeper than xj , we have roughly

Exj ,ε τj ≈ ebj/ε when ε→ 0 , (0.6)

with bj > 0 the minimal “height of the energy barrier” which separates

xj from a deeper well (see Figure 2). The ≈ qualifies here in asymptotic
12



equivalence on logarithmic scale, which does not see the prefactor in front

of the exponential.

Arrhenius’ Law admits sharper asymptotics (its versions taking account

also of the prefactor are sometimes called Eyring-Kramers formulas), gen-

eralisations and variants, depending on various assumptions made on the

geometry of the energy landscape (see [5] for an overview). A particular

sharp result obtained by means of spectral methods will be discussed more

rigorously in the next subsection. Before that, we shall introduce a modifica-

tion of the small noise diffusion model, by passing to its discrete counterpart.

While being paradigmatic in many aspects, the process determined by (0.1)

has features which appear to be not relevant at all for the metastability phe-

nomenon to happen. One of them regards the continuity of paths 5: if we

insist on the long time behaviour of the process being given by the Gibbs

measure e−2f(x)/εdx, one expects the same qualitative behaviour as before

also in the presence of jumps, provided these are not too big6.

We shall not consider general jump processes in Rn but stick for simplicity

to the case in which the motion is restricted to the n-dimensional integer

lattice Zn, rescaled with another small parameter δ > 0, giving the mesh

of the discretization. To keep suitable ergodicity properties, we shall work

now with the Gibbs measure being absolutley continuous with respect to

the counting measure dxδ on δZn, i.e. with

ρε dxδ := Z−1
δ,ε e

−2f(x)/ε dxδ ,

where f : Rn → R is a smooth multiwell energy landscape, satisfying (0.5)

exactly as before, and

Zδ,ε :=
∑
x∈δZn

e−2f(x)/ε .

As before, we introduce the process we have in mind by describing first

its sample paths: in the present discrete space setting, it is more customary

(and simple) to do this by fixing the jump rates of the process ( [84]), rather

than the stochastic differential equation, which would be driven by a Poisson

process ( [58]). To fix the ideas, among the (plenty of) continuous time

5Another aspect which a priori is not relevant for metastability concerns the reversibil-

ity of the process. Irreversible stochastic process - or equivalently - non selfadjoint gen-

erators are not treated here. We mention that large deviation approaches hardly rely on

reversibility assumptions, and are therefore particularly well-suited in this more general

context. See also [30]. Spectral-theoretic approaches are less developed.
6The metastability picture is destroyed for example if one allows jumps from one local

minimum to the other in times of order 1.
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processes reversible with respect to the Gibbs measure, we take a nearest

neighbour walk with jump rate from x ∈ δZn to a nearest neighbour7 y ∈ δZn
given by

rδ,ε(x, y) :=
ε

δ2
exp{−2

ε
[f(

x+ y

2
)− f(x)]} . (0.7)

The continuous time Markov process Xx,δ,ε := (Xx,δ,ε
t )t≥0 with state space

δZn constructed from the jump rates (0.7) can be thought of as follows8: let

rδ,ε(x) :=
∑

y∈δZn:|x−y|=δ

rδ,ε(x, y)

and let

pδ,ε(x, y) :=

{
rδ,ε(x,y)
rδ,ε(x) if x− y ∈ δZn and |x− y| = δ

0 otherwise
.

The process Xx,δ,ε starts in x ∈ δZn, waits an exponentially distributed

time of parameter rδ,ε(x) and jumps with probability pδ,ε(x, y) to y, where

it stays for a further exponentially distributed time with parameter rδ,ε(y)

and then jumps to a third state z with probability pδ,ε(y, z) etc.

Note the validity of the detailed balance condition expressing reversibility

of the process with respect to the Gibbs measure: for every x, y ∈ Rn

e−2f(x)/ε rδ,ε(x, y) = e−2f(y)/ε rδ,ε(y, x) .

In this discrete model the generator is formally given by

Gf,δ,ε α (x) :=
∑

y∈δZn:|x−y|=δ

rδ,ε(x, y) [ α(x) − α(x+ y) ] , (0.8)

with α : δZn → R. This can also be rewritten as

Gf,δ,ε α (x) :=

n∑
j=1

{
r+
δ,ε,j(x) [ α(x)− α(x+δej) ] + r−δ,ε,j(x) [ α(x)− α(x−δej) ]

}
,

where (e1, . . . , en) denotes the canonical basis of Rn and

r+
δ,ε,j(x) := rδ,ε(x, x+ δej) and r−δ,ε,j(x) := rδ,ε(x, x− δej) .

As before, the main issue we are concerned with is about the long time

behaviour of the distribution of Xx,δ,ε
t . Besides t and ε, a third (small)

parameter δ is now entering the game, and manifold situations can be con-

sidered.

7By definition, y ∈ δZn is nearest neighbour of x ∈ δZn if |x− y| = δ.
8This is true at least if f behaves sufficiently well at infinity.
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Heuristically, if the mesh δ of the lattice goes to zero much faster than the

parameter ε, one will see essentially the continuous space small noise diffu-

sion given by (0.1). This is an appearance of the Donsker-Varadhan invari-

ance principle. Indeed, a simple Taylor expansion gives for α ∈ C∞c (Rn;R)

and every ε > 0

Gf,δ,ε α → Gf,ε α for δ → 0

uniformly on compact sets.

In this work we shall restrict to the particular case in which δ = ε. This is

the scaling which appears for example in the classical large deviation theory

for sample paths of random walks (see Mogulskii’s theorem in [25]). More-

over it has some interesting applications in the study of certain mean field

models in statistical mechanics, as the random field Curie Weiss model. In

fact, after a suitable coarse graining, obtained by introducing macroscopic

variables (or order parameters), the dynamic induced on the latter will es-

sentially be described by generators of the type (0.8). The limit δ = ε→ 0

corresponds with this interpretation to the thermodynamic limit of infinite

volume (see [11], [7] and the recent thesis [91]). From this point of view,

the discrete model with δ = ε is the more “physical” with respect to its

continuous counterpart.

Clearly not all features of the discrete processXx,δ,ε are well approximated

by the continuous process Xx,ε when δ = ε→ 0. Indeed, this slower scaling

is critical, in that it changes the law of large numbers of the process: in the

limit δ = ε→ 0 the generator of the discrete diffusion converges again to a

deterministic transport, but this time along a different vector field, where

the hyperbolic sine of the derivatives of f appear. More precisely, we have

with sinh∇f(x) := (sinh ∂
∂x1

f(x), . . . , sinh ∂
∂xn

f(x)) that for α ∈ C∞c (Rn;R)

Gf,ε,ε α (x) → 2 sinh∇f(x) · ∇α (x) for ε→ 0 (0.9)

uniformly on compact sets, to be compared with

Gf,ε α (x) → 2∇f(x) · ∇α (x) for ε→ 0 . (0.10)

The continuous approximation seems therefore not well-suited if e.g. metastable

transition paths are considered. More generally it is not completely clear

which properties of the diffusion are universal also in the slow lattice scaling

δ = ε → 0 and some caution is needed when transferring insights from one

model to the other.

The focus here is again on the mean critical time scales at which metastable

transitions happen. More specifically, we are interested in sharp versions (i.e.
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considering also the prefactor) of Arrhenius’ Law

Ẽxj ,ε τj ≈ ebj/ε when ε→ 0 (0.11)

in the lattice model determined by (0.8) when δ = ε. Here Ẽx,ε denotes

the expectation with respect to the path measure9 induced by the discrete

process X̃x,ε := Xx,ε,ε, and the xj ’s, bj ’s and τj ’s are as in (0.6).

In the next subsection we shall reformulate this problem in a spectral-

theoretic framework and present the main result of this thesis, which pro-

vides an answer to it, by establishing explicitly the prefactor. It will follow

from this result, that for the sake of computing mean critical time scales, the

continuous diffusion still gives the right answer, at least in leading order in

ε. We mention that sharp versions of Arrhenius’law in this discrete setting

were already considered in [11] using potential theory (see also [7]).

Remark 0.1. Large parts of the thesis do not restrict to the nearest neigh-

bour case: more generally we consider also the case in which the support of

the jumps is just symmetric, finite and generates the integer lattice. To be

specific, let E ⊂ Zn be finite and symmetric (i.e. v ∈ E implies −v ∈ E),

assume that every x ∈ Zn can be written as linear combination with integer

coefficients of elements in E, and consider instead of (0.8) the generator

Gf,E,δ,ε α (x) :=
∑
y∈δE

rδ,ε(x, y) [ α(x) − α(x+ y) ] ,

which reduces to (0.8) in the case

E = {e1, . . . , en,−e1, . . . ,−en} .

In the limit δ = ε→ 0 the relevant geometry is now not the one given by

the standard euclidean scalar product on Rn, but by the scalar product gE
induced by E, given by

gE(x, y) :=
n∑

i,j=1

Gi,j xixj ,

where G := (Gi,j) is the inverse of the matrix (
∑

x∈E xixj)i,j. Note that

gE equals the standard scalar product when E = {e1, . . . , en,−e1, . . . ,−en}.
Accordingly, the corresponding continuous diffusion is now determined by

the equation

dXt = −2G−1∇f(Xt) dt +
√

2hG−1dWt .

9Note that the path space consists now of piecewise constant functions.
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The more general case of discrete processes related to reversible diffusions

with inhomogeneous diffusion matrix, that is of the type

dXt = −2G−1(Xt)∇f(Xt) dt + h ∇ ·G−1(Xt)dt +
√

2hG−1dWt ,

is not explicitly considered here, but is in principle treatable along the same

lines.

Spectral picture of metastability and main result.

It is another rule of thumb that in presence of metastability effects some

asymptotic degeneracy of eigenvalues is lurking beneath the surface. We

refer in particular to [60] for early ideas advocating eigenvalue degeneracy

as ultimate characteristic of first order phase transitions. See also [37] for a

more recent attempt to formalize this principle in a rather general setting.

In the particular case of the two models we are considering (i.e. the con-

tinuous diffusion determined by (0.2) and the discrete diffusion determined

by (0.8), with δ = ε) the papers [14] and [12] provide rigorous results which

accurately specify the way the metastable behaviour is encoded into the

spectrum of the respective generators Gf,ε and G̃f,ε := Gf,ε,ε.
10

Here is the punch line: consider Gf,ε as an operator in L2(Rn, e−2f/εdx),

where it is selfadjoint and nonnegative, and assume that f has a finite num-

ber x1, . . . , xm0 of local minima at which for simplicity it takes distinct

values. In particular there exists by (0.5) a unique global minimum which

we shall label with x1. Note also that 0 is an eigenvalue of Gf,ε, which we

shall label with ν1,ε, corresponding to the eigenfunction identically equal to

1. The point is that the next m0 eigenvalues ν2,ε, . . . , νm0,ε following ν1,ε are

exponentially small in ε. Then there is a big gap, the rest of the spectrum

being bounded from below by a constant (see Figure 3).

Moreover each of the m0 − 1 nearly vanishing eigenvalues has a precise

probabilistic meaning: if the local minima x2, . . . , xm0 of f and the eigen-

values ν2,ε, . . . , νm0,ε of Gf,ε are ordered in a suitable way 11, one gets for

10To be fair in [12] the discrete diffusion is considered only on bounded domains, but the

results should be extendable to the non-compact setting by assuming suitable conditions

on f at infinity.
11Note that the global minimum x1 is excluded: it plays of course a special role, since

no metastable transition to a deeper minimum is possible)
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Figure 3. The spectrum of the generators. There are ex-

actly m0 exponentially small eigenvalues, where m0 is the

number of wells in the energy landscape described by f .

every i = 2, . . . ,m0

1

νi,ε
= Exi,ε τi (1 + o(1)) , (0.12)

where τi (as in (0.6)) denotes the hitting time of a small neighbourhood of

the set of minima of f which lie deeper than xi.

Exactly the same spectral feature emerges when analyzing G̃f,ε as an

operator in L2(Rn, e−2f/εdxε) ' `2(εZn, e−2f/ε): also in this discrete case,

there are besides ν̃1,ε = 0 further m0 − 1 exponentially small eigenvalues,

denoted by ν̃2,ε, . . . , ν̃m0,ε and satisfying

1

ν̃i,ε
= Ẽxi,ε τi (1 + o(1)) . (0.13)

The problem of determining the asymptotic behaviour of the mean metastable

transition times Exj ,ετj (see (0.6)) and Ẽxj ,ετj (see (0.11)) can therefore be

phrased as a problem of spectral asymptotics of the respective generators

Gf,ε and G̃f,ε.

The spectral-theoretic point of view towards metastability opens the door

to the use of a variety of methods wich are non-probabilistic in nature. The

following Theorem 0.2, based on the Witten complex approach mentioned

before, gives complete asymptotic expansions on the m0 exponentially small

eigenvalues of the generators Gf,ε and G̃f,ε. In the light of (0.12) and (0.13)

it can be seen as a particularly sharp version of Arrhenius’ Law. The state-

ment concerning Gf,ε derives from the already mentioned result of [42]; the

statement concerning G̃f,ε constitutes the main result of this thesis.

In order to be able to formulate the theorem, one has to attach to each

minimum xi of f (except the global minimum) a corresponding so-called
18



Figure 4. To each local minimum xi (except the global one)

corresponds a relevant saddle point zi.

relevant saddle point zi, which can be informally characterized as follows:

first attach to each trajectory of the process, leading from the minimum in

question to one of the deeper minima, a cost given by the maximum value

of f along the trajectory; then consider the optimal trajectories, i.e. the

ones which minimize the cost. A relevant saddle point zi corresponding to

xi is a point which maximizes f along an optimal trajectory (see Figure 4,

for exact definitions we refer to Section 13).

We call the difference f(zi)−f(xi) the energy barrier corresponding to xi
and assume now that the minima are ordered by decreasing energy barrier,

with x1, the global minimum, having infinite energy barrier by definition.

The first m0 eigenvalues (νi,ε)i=1,...,m0 of Gf,ε and the first m0 eigenvalues

(ν̃i,ε)i=1,...,m0 of G̃f,ε = Gf,ε,ε are assumed to be in ascending order. The

precise assumptions (implying in particular that the relevant saddle point

zi is well-defined and unique) are given after the theorem.

Theorem 0.2.

For every i = 2, . . . ,m0 there exist (uniquely determined) sequences (Pi,k)k∈N0

and (P̃i,k)k∈N0 in R such that

νi,ε ∼
( ∞∑
k=0

εk Pi,k
)
e−

2[f(zi)−f(xi)]

ε (0.14)

and

ν̃i,ε ∼
( ∞∑
k=0

εk P̃i,k
)
e−

2[f(zi)−f(xi)]

ε . (0.15)

Moreover

Pi,0 = P̃i,0 =
|κf,i|
π

[
det Hess f(xi)

] 1
2

| det Hess f(zi)|
1
2

, (0.16)

where κf,i denotes the unique negative eigenvalue of Hess f(zi).
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Formula (0.14) has to be understood as follows: for every integer N we

have

νi,ε e
2[f(zi)−f(xi)]

ε −
N∑
k=0

εk Pi,k = O(εN+1) .

Similarly for formula (0.15).

Note that ν1,ε and ν̃1,ε do not appear in the theorem because we shall

work for simplicity in the case that ν1,ε = ν̃1,ε = 0, which is the typical

situation from a probabilistic point of view. But more general situations

are possible, in which there is no global minimum for f , e−2f/ε is not in-

tegrable/summable, and ν1,ε, ν̃1,ε are different from zero and exponentially

small. This cases are encompassed in [42] for the continuous diffusion.

In general there are three types of assumptions underlying theorems as

Theorem 0.2:

- one sort of assumption concerns the regularity of f : to obtain com-

plete expansions as the ones displayed in (0.14) and (0.15) one needs

f ∈ C∞(Rn). With weaker regularity requirements the expansions

will break down after some power in ε, depending on the smoothness

of f . We restrict here as in [42] for simplicity to the case f ∈ C∞(Rn)

and avoid to keep track of how much smoothness is needed to carry

over each step in the proof.

- one needs suitable conditions on f at infinity, to assure the exis-

tence of discrete spectrum in the neighbourhood of 0. These can be

skipped of course when working on a compact state space. In [42]

rather weak (but not optimal) assumptions are made in terms of

the first and second derivatives of f : they require that there exist

constants C ′, C ′′ > 0 such that for every x outside a compact set

K ⊂ Rn

|∇f(x)| ≥ C ′ and |Hess f(x)| ≤ C ′′|∇f(x)|2 .

As we already mentioned this does not imply that ν1,ε = 0. In this

thesis, to obtain Theorem 0.2 for the discrete generator, we work

under the simplifying assumption that f is a positive definite qua-

dratic function outside a compact set, implying in particular that

ν1,ε = ν̃1,ε = 0. This is a purely technical assumption chosen to fa-

cilitate proofs at several places, but surely more general cases could

be considered, where Theorem 0.2 still holds also in the discrete set-

ting. (for further discussion on how this assumption can be relaxed

see Section 9).
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- there is another bunch of assumptions, whose role is mainly to pick

up a typical situation, thus simplifying the statement of the theorem

by avoiding situations which need taxonomic information: to be

specific, we shall assume in this work that

(i) f is a Morse function

Moreover, denoting by C the set of critical points of f , and by

C(0), C(1) ⊂ C its subsets containing respectively the critical points

of index 0 and 1,

(ii) the critical values {f(x) : x ∈ C} are distinct

(iii) the quantities {f(ζ(1)) − f(ζ(0)) : ζ(1) ∈ C(1), ζ(0) ∈ C(0)} are

distinct.

Note that assumptions (i)-(iii) are generic in the category of smooth

functions. If one of these generic assumptions is dropped, one has

to distinguish case by case and if necessary modify both the proof

and the statement of the theorem regarding the prefactor: if e.g.

some minimum is degenerate, the first term in the expansion may

vanish; if (ii) is dropped, the uniqueness of the relevant saddle point

attached to a minimum is potentially violated and different scenari

can appear: in particular it becomes necessary to understand if the

multiple saddle points have to be climbed up “in series” (i.e. if there

is a metastable transition path issuing from a minimum and crossing

several relevant saddle point) or ‘in parallel” (the process can choose

among different metastable transition paths, related to different rel-

evant saddle points); if (iii) is dropped, one has to be careful since

degeneracy of the eigenvalues of the generator is possible.

The details for these extensions are not contained in the thesis,

and in fact not available in the literature as far as we know, at least

for the discrete case. For further information around that topic in

the continuous setting see [5],[96].

We end this subsection with a few more comments around Theorem 0.2:

As already anticipated in (0.6) (in combination with (0.12)) and (0.11)

(in combination with (0.13)), the rate of the exponential decay of the small

eigenvalues is given by the energy barrier 2[f(xi) − f(zi)] (the factor 2 ap-

pears in accordance with the fact that we have chosen the Gibbs measure

to be proportional to e−2f/ε instead of e−f/ε). The strength of Theorem 0.2
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rests on the statements regarding the asymptotics of the “prefactors”.12

Rigorous results on the prefactor in such a general setting can be already

found in [96], [14],[13], [29],[78] for the continuous diffusion and in [11],[12],

where the leading term of the prefactor is found to be of order 1 in ε. That

the subleading term in the prefactor is of order ε (and more generally, that

complete expansions of the type indicated in Theorem 0.2 exist) appears

to be new in the discrete setting, while in continuous setting it is due, as

mentioned before, to [42].

The explicit expression (0.16) for the leading term, where the quadratic

part of f around the involved critical points appears, also seems to be not

available so far in the literature, as far as the discrete setting is concerned

(but see also [7] for similar situations). Note that according to (0.16) there is

no distinction in the leading terms between the continuous and the discrete

model. One can see (0.16) therefore also as a statement of validity of the

diffusive approximation, at least for the sake of computing leading terms of

metastable transition times, even in the scaling δ = ε. The geometric con-

straint imposed on the process by forcing it to move on the lattice becomes

appreciable only starting from the second term in the expansion.

The Witten complex approach to metastability.

As already stressed at the beginning of the introduction, the main moti-

vation for this thesis arises from the so-called Witten complex or supersym-

metric method in the context of metastability problems introduced in [42]

(see also [43] and [83] for more pedagogic expositions).

To illustrate the main points of this approach it is convenient to rewrite

the generator Gf,ε as introduced in (0.2) in terms of the (de Rham) exterior

differential

d : C∞c (Rn; Λ0Rn) → C∞c (Rn; Λ1Rn) .

Here C∞c (Rn; Λ0Rn) ' C∞c (Rn;R) is the space of smooth compactly sup-

ported 0-forms and C∞c (Rn; Λ1Rn) ' C∞c (Rn;Rn) is the space of smooth

compactly supported 1-forms, and the generator can be rewritten as (see

12 As mentioned in [12] a good understanding of the prefactor becomes important

in applications to disordered models to control additional fluctuations on the long-time

behaviour due to the disorder.
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also (0.4))

Gf,ε = ε d∗fε d with d∗fε := e2f/ε d∗ e−2f/ε .

Here d∗ : C∞c (Rn; Λ1Rn) → C∞c (Rn; Λ0Rn) denotes the formal adjoint of

d with respect to the scalar products in the “flat” spaces L2(Rn, dx; Λ0Rn)

and L2(Rn, dx; Λ1Rn). Observe that, on the other hand, d∗fε is the for-

mal adjoint of d when considering the scalar products of the weighted

spaces L2(Rn, e−2f/εdx; Λ0Rn) and L2(Rn, e−2f/εdx; Λ1Rn). Thus the gen-

erator Gf,ε can be seen as nothing but the Laplacian in the weighted space

L2(Rn, e−2f/εdx;R). 13

The spirit of the supersymmetric approach (see also [99] besides [42]) is to

obtain new insights on the problem by broadening the view and considering

the Hodge-type extension of the “Laplacian” Gf,ε on the full algebra of

differential forms. To be specific, denoting for p = 0, . . . , n− 1 by

d(p) : C∞c (Rn; ΛpRn) → C∞c (Rn; Λp+1Rn)

the de Rham exterior differential acting on the space of p-forms and by

d∗,(p) : C∞c (Rn; Λp+1Rn) → C∞c (Rn; ΛpRn)

its adjoint with respect to the scalar products of the flat spaces L2(Rn, dx; ΛpRn),

one defines for every p = 0, . . . , n

G
(p)
ε,f : C∞c (Rn; ΛpRn) → C∞c (Rn; ΛpRn) ,

by setting14

G
(p)
ε,f := ε d∗f,(p)ε d(p) + ε d(p−1) d∗f,(p−1)

ε ,

with d∗f,(p)ε := e2f/ε d∗,(p) e−2f/ε .

We shall henceforth drop in general the superscript (p) on the operators if

the direct sum acting on the full algebra of forms is intended. The main

feature of the Hodge Laplacian Gf,ε is that it commutes with d as expressed

by the so-called intertwining relation:

Gf,ε d = d Gf,ε . (0.17)

Observe that this has the following implication: if uε is an eigenfunction

corresponding to the eigenvalue νε 6= 0 for G
(0)
f,ε, then αε := duε is an eigen-

form for G
(1)
f,ε, still corresponding to the eigenvalue νε. The identity (0.17) is

13Note that this is a general structural property of reversible Markov processes.
14Here and in analogous situations below we have by convention d(−1) ≡ d

∗f,(−1)
ε ≡

d(n) ≡ d∗f,(n)
ε ≡ 0
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a simple consequence of the complex property d2 ≡ 0, the term “complex”

referring to the fact that this property qualifies the sequence

C∞c (Rn; Λ0Rn)
d(0)

→ C∞c (Rn; Λ1Rn)
d(1)

→ C∞c (Rn; Λ2Rn)
d(2)

→ . . .
d(n−1)

→ C∞c (Rn; ΛnRn)

as a chain complex in the sense of cohomology theory. Analogous consider-

ations hold for d∗fε .

To better understand the origin of the idea of extending the generator

to higher forms, it may be useful to provide some background related to

Witten’s ideas on Morse inequalities contained in his famous paper [103].

We shall first slightly change point of view and pass from the weighted spaces

L2(Rn, e−2f/εdx; ΛpRn) to the flat spaces L2(Rn, dx; ΛpRn) by conjugating

the operators with the unitary transformation given by multiplication with

e−f/ε. To be precise consider for every p = 0, . . . , n

∆
(p)
f,ε := ε e−f/ε G

(p)
f,ε e

f/ε

and for every p = 0, . . . , n− 1

d
(p)
f,ε := ε e−f/ε d(p) ef/ε

and d
∗,(p)
f,ε := ε e−f/ε d∗f,(p)ε ef/ε = ε ef/ε d∗,(p) e−f/ε .

Note that d
(p)
f,ε and d

∗,(p)
f,ε are formally adjoint in the flat L2 spaces and that

the complex property d2
f,ε ≡ 0 still holds. Note also that

∆
(p)
f,ε = d

∗,(p)
f,ε d

∗,(p)
f,ε + d

(p−1)
f,ε d

∗,(p−1)
f,ε

and, up to the factor ε which we introduced to conform with common con-

ventions, ∆
(p)
f,ε has the same spectrum of G

(p)
f,ε. The two point of views are

indeed formally equivalent15 and we shall stick to the flat space setting to

conform with [42] and [103]. A simple computation gives

∆
(0)
f,ε = −ε2∆ + |∇f |2 − ε ∆f

and more generally

∆
(p)
f,ε = ∆

(0)
f,ε ⊗ Id + ε 2 Hess(p) f , (0.18)

with Hess(p) f denoting the natural action of a symmetric matrix on a p-form,

so that in particular Hess(1) f = Hess f . This can be seen as a Schrödinger

15The difference between the two settings is psychological: the operators in the

weighted L2 space are linked to the intuition coming from the diffusion process, and

the considered scaling is a small noise asymptotic; the operators in the flat L2 space turn

out to be Schrödinger-type operators and the small parameter is here “Planck’s constant”.

Standard methods of semiclassical analysis are here more natural and readily available.
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operator with the potential given as a sum of the leading term |∇f |2 and

the subleading term −∆f + 2 Hess(p) f .

The “deformed” Hodge Laplacian ∆f,ε and the “deformed” de Rham

differential df,ε are known as Witten Laplacian and Witten differential re-

spectively, with the latter giving rise to the Witten complex

C∞c (Rn; Λ0Rn)
d

(0)
f,ε→ C∞c (Rn; Λ1Rn)

d
(1)
f,ε→ C∞c (Rn; Λ2Rn)

d
(2)
f,ε→ . . .

d
(n−1)
f,ε→ C∞c (Rn; ΛnRn) .

These operators were used by Edward Witten in [103] to give an analytical

proof of the Morse inequalities on compact manifolds. An account on this

can be found in the survey paper [9] by R. Bott ( see also [48] for a more

rigorous version of Witten’s ideas and [67], where in the introduction a very

brief review of the impact of Witten’s complex in topology and analysis can

be found).

Note that the intertwining relation (0.17) becomes now

∆f,ε df,ε = df,ε ∆f,ε . (0.19)

The key feature of the Witten Laplacian on the algebra of forms is to

complete very nicely the spectral picture given in Figure 3 by involving in

its low-lying spectrum not only the minima of f but all its critical points.

Indeed, with mp denoting the number of critical points of index p of f , one

has that ∆
(p)
f,ε has exactly mp exponentially small eigenvalues with the rest

of its spectrum being bounded from below by a positive constant times ε

(recall that the spectrum of ∆
(p)
f,ε differs by a factor ε from the one of Gf,ε).

In particular

dim Ran 1[0,ε6/5)(∆
(p)
f,ε) = mp . (0.20)

This is seen by suitably “decoupling” the wells of the leading potential

|∇f |2, each of which corresponds to a critical point of f . It turns then

out that only the mp wells corresponding to the critical points of index p

contribute to the low-lying spectrum Spec(∆
(p)
f,ε) ∩ [0, ε6/5). In other terms,

in the case of ∆
(p)
f,ε the mp wells corresponding to the critical points of index

p are resonant in [0, ε6/5), all the others are non-resonant.

Note en passant that once the very rough estimate (0.20) is established it

is not a long way to prove the Morse inequalitites, at least in their simplest
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form, stating that for every p = 0, . . . , n

bp ≤ mp , (0.21)

where bp is the p-th Betti number, which by Hodge theory equals the kernel

of the classical Hodge Laplacian ∆
(p)
H on p-forms. Indeed it is sufficient to

note that ∆
(p)
f,ε has the same kernel as ∆

(p)
H for every ε and (0.21) follows

immediatley from (0.20).

We shall now return to the much harder problem of finding sharp spectral

asymptotics for the small eigenvalues of G
(0)
f,ε, or equivalently of ∆f,ε, the

Witten Laplacian on functions. 16 Now a simple decoupling is not sufficient

and the interaction between the resonant wells has to be analyzed. In the

semiclassical spectral theory of Schrödinger operators the typical strategy

([45],[18]) to understand the splitting of nearly degenerate eigenvalues, due

to tunneling between different resonant wells, can be very roughly summa-

rized as follows:

Step 1 Construct locally for each resonant well of the potential a quasi-

mode17 (typically through a WKB Ansatz). To have some chance

to catch the splitting effect the quasimodes must have as large as

possible support so that at least some overlap among them occurs.

Step 2 Reduce to a finite dimensional linear algebra problem by study-

ing the operator restricted to the eigenspace corresponding to the

considered spectral interval. This restricted operator is represented

as a matrix by chosing as basis the quasimodes projected on the

eigenspace. If the quasimodes are sufficiently well chosen one can

hope to be able to compute approximately the spectrum of this ma-

trix.

To implement this general strategy in the case of ∆
(0)
f,ε in order to ob-

tain (0.14) is a rather daunting task, mainly for the following three rea-

sons: the tunneling between two minima of f occurs by passing through a

non-resonant well, namely the well associated to the corresponding relevant

16We may add at this point that sharp asymptotics of the low-lying spectrum for p > 0

are obtained in the preprint [73]. This case is even more difficult since for p = 0 one has

the advantage of knowing that ∆
(0)
f,εe
−f/ε = 0

17 A quasimode is a function which satisfies the eigenvalue equation only approximately.

According to [18] the term quasimode appeared first in [2].
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saddle point. This is a particularly difficult situation since WKB expan-

sions starting from a minimum break down at the saddle point, and it is

therefore hard to get overlapping quasimodes. Moreover, as we know from

the probabilistic model (see in particular (0.12)), the tunneling between two

minima which is responsible for the appearance of a given non-zero small

eigenvalue may also occur through a well associated to a third minimum,

which is weakly resonant in the terminology of [46], [47] and further compli-

cates the situation. Apart from this, one has to face another complication

in Step 2, related to the fact that the small eigenvalues have distinct expo-

nential decay. Indeed, when diagonalizing the matrix of the operator, error

terms propagate additively (see [48]) and therefore quantities of order of the

larger exponentially small eigenvalues destroy the possibility to accurately

estimate the smaller ones.

All these obstructions are elegantly avoided in [42] by exploiting the par-

ticular Witten complex structure. The guiding ideas are:

1) Use of the fact that ∆
(0)
f,εe
−f/ε = 0 and of the intuition coming from

the behaviour of the stochastic process to construct quasimodes for

each minimum, whose support is sufficiently large to intersect a small

neigbourhood of the corresponding relevant saddle point.

More precisely consider for each minimum xi the “metastable

basin of attraction” Bi given by the connected component of
{
f <

f(zi)
}

containing xi and take as quasimode roughly e−f/ε1Bi suit-

ably normalized to one.

Note that these quasimodes may go far beyond the corresponding

well by including possible weakly resonant wells encountered on the

way to the relevant saddle point. But they loose there efficiency

around the relevant saddle point.

2) The lack of good information in the small region around the relevant

saddle points is patched up by using a local WKB expansion for the

eigenvalue problem of the Witten Laplacian ∆
(1)
f,ε, which is acting on

1-forms. These WKB expansions had already been constructed in

[48] by Helffer and Sjöstrand.

3) Instead of analyzing directly the small eigenvalues of ∆f,ε one con-

siders their square roots, characterized as singular values of df,ε.

Note that if νε 6= 0 is a small eigenvalue of ∆
(0)
f,ε with normalized
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eigenfunction uε, then

νε = 〈∆(0)
f,εuε, uε〉 = 〈df,εuε, df,εuε〉 = 〈df,εuε,

df,εuε
‖df,εuε‖

〉
√
νε

i.e.
√
νε = 〈df,εuε, αε〉 , (0.22)

where αε :=
df,εuε
‖df,εuε‖ is a normalized eigenform of ∆

(1)
f,ε thanks to the

intertwining relation (0.19). More generally, it is not hard to show

starting from (0.19) that the image of df,ε restricted to the eigenspace

Ran 1[0,ε6/5)(∆
(0)
f,ε) is contained in the eigenspace Ran 1[0,ε6/5)(∆

(1)
f,ε),

which by (0.20) has dimension m1.

Considering singular values instead of eigenvalues turns out to be

a twofold advantage: on one hand, as can be seen from (0.22), it

naturally drags in the WKB expansions of the point 2) (which are

approximations for the αε above) and no cumbersome matching of

the WKB expansions with the quasimodes of point 1) is needed. On

the other hand, it greatly facilitates the final linear algebra problem.

This last point has to do with the following simple fact regarding

stability of singular values: if Bε is an arbitrary matrix, then mul-

tiplication with a quasi-orthogonal matrix Sε (i.e. Sε = S +O(ε∞)

with S orthogonal), does not change the i-th singular value µi,ε up

to an error which appears multiplicatively and not additively, i.e. (in

case of left multiplication just to give an example)

µi,ε(SεBε) = µi,ε(Bε) (1 +O(ε∞)) .

We stress that the proof in [42] takes advantage of the formalism of dif-

ferential forms18 and of several important results, which were previously

established in [48]: in particular (0.20) in the cases p = 0, 1 and the con-

struction of WKB expansions on the level of 1-forms. Besides local existence

of the latter, [42] takes from [48] a very detailed analysis along the instanton

of the leading WKB amplitude and the WKB phase function and a priori es-

timates on the semiclassical decay of the eigenforms, also called semiclassical

Agmon estimates.

In this thesis the strategy underlying [42] is adapted to the discrete model

defined by (0.8) (for δ = ε), without loss of strength in the conclusions (see

Theorem 0.2).

Several hindrances appeared along the way, first of all due to the fact

that the discrete setting was lacking the necessary foundations to build on.

18Note that even if only the Witten Laplacians for p = 0, 1 are considered, also the

space of 2-forms appears implicitly in the definition of ∆
(1)
f,ε.
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Therefore we had to start from scratch: an important step was to define a

suitable algebra of differential forms, well-suited to the discrete geometry

determined by the process. This generalized algebra consists of forms which

are “nonlinear” in the tangent space and which are well-suited for describing

not only infinitesimal displacements, but also jumps.19

In this framework of generalized forms we introduce an invariantly de-

fined discrete differential complex, its Witten-type deformation and finally

a discrete Witten Laplacian having the following key properties: on one

hand, it is unitary equivalent to the generator (0.8) when restricted to the

level of functions (i.e. 0-forms). On the other hand it shares all the relevant

analytic and algebraic properties of its continuous analogue, in particular

the intertwining property (0.19). Pursuing this route the formulas rapidly

become quite annoying when compared to their continuous analogues, due

to the failure of the Leibniz rule in discrete setting. In order to be able to

efficiently handle these expressions in later sections and gain in transparency

it became almost mandatory to spend some time in developing an ad hoc

compact notation.

On this basis one can proceed with a first, rough asymptotic spectral

analysis, yielding the discrete analogue of (0.20) for p = 0, 1, and by ex-

hibiting local WKB expansions for the discrete Witten Laplacian on 1-forms

around critical points of f having index 1. The rough spectral analysis of

the low-lying spectrum is achieved as in the continuous case with a harmonic

approximation (see [89], [21]). But here additional problems appear, due to

the nonlocality of the discrete operators. These are solved following [65],

where microlocalization techniques are exploited.

The WKB expansions are constructed using standard techniques ([45],[27],

[66]): a proof of existence amounts to show local solvability of singular

eikonal equations and singular linear transport equations. The associated

approximate eigenvalues are shown to be O(ε∞) mimicking an argument

contained in [40] which exploits the intertwining relations. A refined analy-

sis along the instanton, as the one contained in [48] for the continuous case,

is more complicated and indeed still missing. The complications arise from

the fact that the transport occurs now around non-gradient vector fields

(compare (0.9) and (0.10)) and that the solution of the eikonal equation

(the so-called Agmon distance) is a distance which is not arising from a

19We point to the fact that with these generalizations the cotangent space at a point

has now the same dimension of the state space only in the special case in which nearest

neighbour jumps are considered, as in (0.8). In general it will be larger.
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scalar product. Indeed, it turns out to be just a Finslerian distance (see [64]

for more information on this).

Only after this rather long spadework (accomplished in Part I and Part II

of the thesis) one reaches the point where [42] starts. One of the main tasks

one has to face when trying to carry over their strategy without losing ac-

curacy in the remainder estimates is to efficiently deal with Laplace-type

asymptotics of sums. Indeed, when computing the scalar products appear-

ing in the interaction matrix or normalization constants, quantities like the

following appear all over the time:∑
x∈εZn

a(x)e−ϕ(x)/ε .

This problem is solved here by consistently using the Poisson summation

formula, which permits to reduce to classical Laplace integrals.

The fact that the constant functions are in the kernel of the discrete

generator (0.8) implies, as in the continuous case, that e−f/ε is in the kernel

of the discrete Witten Laplacian on functions. We can therefore again work

very efficiently on the level of functions with quasimodes roughly given by

e−f/ε1Bi , where Bi is a metastable basin of attraction as before. However,

with respect to [42] we slightly change the precise definition of each of these

quasimodes, by pushing the border of its support closer to the relevant

saddle point as ε goes to zero (see Section 14). With this trick, we avoid

at once both the use of Agmon estimates (which were developed in [64] on

the level of functions but not on the level of discrete 1-forms) and the need

of a refined analysis of the WKB expansions along the instanton. Indeed,

that our 1-form quasimodes are slightly worse, is balanced by the fact that

our 0-form quasimodes are slightly better than in [42]: no harm in the final

result occurs.

We like to mention that, while the avoidance of Agmon estimates some-

how streamlines the presentation, a refined analysis on the instanton of the

discrete WKB expansions would be still desirable even when the foremen-

tioned trick is applied: without this information the proof of the complete

expansions of the eigenvalues given in (0.15) becomes computationally much

more involved (see Section 15).

For the final linear algebra problem we follow essentially the induction

process proposed in [71], which is a streamlined version of the one contained

in [42].
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Outline of the thesis.

The thesis is divided into four parts. Part I (“Discrete geometries on affine

spaces”) has a foundational character: it is mainly concerned with definitions

and basic properties of de Rham-type complexes, Hodge-type and Witten-

type Laplacians in affine space. The point is that the geometry we consider

on the latter is not the classical geometry induceed by a scalar product on

the tangent space, but the geometry determined by a reversible Markov jump

process. For simplicity we limit ourselves to discrete processes, i.e. those

which are constrained to move on a lattice, but the formalism is presented

in a way which lends itself to straightforward generalizations. We have

chosen to consequently give a coordinate-free representation, enlightnening

the geometric content of the considered objects, which would be hidden in

a more concrete development in the coordinate space Rn.

In Part II (“Semiclassical Witten Laplacians”) we introduce a small scal-

ing parameter ε and derive basic asymptotic properties of the correspnding

rescaled discrete Witten Laplacians concerning the low-lying spectrum.

In Part III (“Asymptotics of small eigenvalues of H(0)
ρε,Λµε

”) we use the

precedently developed framework and tools to derive sharp asymptotics for

the low-lying spectrum of the discrete Witten Laplacian on 0-forms.

Finally, in Part IV (“Appendix”), we present some general abstract re-

sults, which are used at crucial points in the main text and which, to our

knowledge, are not available in the literature in the precise form we need.

Moreover we confine to the last section some straightforward computations,

needed in Part II.

Below we give a short description of the content of each section.

Part I

Section 1.

We fix some basic notation concerning the space we are working on,

namely an n-dimensional affine space M , with underlying vector space V .

Then we introduce spaces of symmetric and alternating p-functions, denoted

by Fs(M × V p) and Fa(M × V p), which generalize the classical spaces of

(covariant) symmetric and alternating p-tensors by dropping the linearity

condition. Motivation and geometric interpretation concerning the defini-

tion of p-functions is provided with a brief excursus on p-cells.
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Section 2.

We introduce various formal operators acting on the spaces of p-functions.

In particular an exterior difference operator δ is defined on the antisymmetric

algebra Fa(M × V ) := ⊕∞p=0Fa(M × V p). The operator δ is the analogue of

the De Rham exterior differential on classical forms and satisfies the basic

complex property δ2 = 0.

Section 3.

A discrete geometry on M is defined in terms of a finite, symmetric and

lattice generating jump distribution µ on the vector space V . If also one

of the corresponding ergodic components in M is chosen, one gets a lattice

graph Λµ, which determines scalar products on spaces of p-functions for

every p. The choice of µ permits to define a formal operator δ∗µ on the

alternating algebra Fa(M × V ), which is dual to δ.

Section 4.

We introduce a formal Hodge Laplacian Lµ acting on Fa(M × V ) and

compute representation formulas.

Section 5.

The discussion of Section 3 is generalized to cover the case in which a

weight function ρ is given on M , describing inhomogeneities in space and

thus possibly breaking the translation invariance. A couple (µ, ρ) is called

an inhomogeneous discrete geometry. If a corresponding weighted lattice

graph Λρµ is chosen, one gets weighted scalar products on the spaces of p

functions. The dual δ∗ρµ of δ is introduced in this setting.

Section 6.

Representation formulas for the formal Hodge Laplacian Lρµ associated

with an inhomogeneous discrete geometry are derived. Suitable realizations

LΛρµ in the L2 spaces determined by lattice graphs Λρµ are introduced by

Friedrichs extensions.

Section 7.

Here we focus our attention on L(0)
ρµ , the restriction of the Hodge Laplacian

to the level of functions and discuss its probabilistic interpretation, recalling

some standard facts about generators of semigroups, Dirichlet forms and

construction of Markov processes.

Section 8.
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We slightly change our point of view: the function ρ is treated as a de-

formation parameter of the operators δ, δ∗µ, rather than an inhomogeneity

perturbing the discrete geometry µ. This point of view is unitarily equiva-

lent to the one developed in Section 5 and 6 and leads to the discrete Witten

Laplacian Hρ,µ, and its L2 realizations Hρ,Λµ with respect to lattice graphs.

Part II

Section 9.

We rescale both ρ and µ with a small parameter ε > 0 by setting ρε :=

e−2f/ε and µε(·) := µ(ε−1·), with f a smooth real function. We derive

useful representation formulas for the leading symbols of the corresponding

rescaled Witten Laplacians. Moreover the basic assumptions made through-

out Part II are declared.

Section 10.

The aim of this section is to provide a rough spectral analysis of the low-

lying spectrum of H(0)
ρε,Λµε

and H(1)
ρε,Λµε

via harmonic approximation. The

dimensions of the low eigenspaces are related to the number of critical points

of f of index 0 and 1.

Section 11.

We construct through a WKB Ansatz quasimodes corresponding to the

small eigenvalues of the semiclassical Witten Laplacian for p = 1. The

main result is stated in Theorem 11.1. It says that in a sufficiently small

neighbourhood Ω around a a critical point of index 1 of f one can find a

smooth phase function ϕ and a smooth amplitude aε such that

e
ϕ
ε H(1)

ρε,µε aεe
−ϕ
ε

∣∣∣
Ω
∼ 0 .

Part III

Section 12.

In this short section we fix the setup and the precise assumptions under-

lying Part III.

Section 13.

The aim of this section is to introduce a convenient labelling of the local

minima of f , to attach to each of them a so-called relevant saddle point at
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which exit from the metastable basin of attraction of the considered mini-

mum occurs. The metastable basins of attraction are smoothed in proximity

of the relevant saddle point, where a corner occurs. These “modified” basins

of attraction will be useful in the definition of the quasimodes on the level of

function in the following Section 14. The discussion in this section concerns

only the geometry of f : the Witten Laplacian, in particular the discrete

nature of the one we are considering in this work, plays no role here.

Section 14.

Following [42] we attach to every minimum of f a quasimode for H(0)
ρε,Λµε

and to every critical point of index 1 of f a quasimode for H(1)
ρε,Λµε

. The for-

mer is obtained by cutting the ground state e−
f
ε outside the basin of attrac-

tion of the considered minimum; the latter by using a WKB-expansion, cut

around a small neigbourhood of the considered saddle point, as constructed

in Section 11. The cut-off function χ
(0)
i,s,ε attached to the i-th minimum

is supported in a small neigbourhood of the modified basin of attraction

and will depend both on ε and a second parameter s > 0. Every choice

of s ∈ [1
2 , 1) will be fine to obtain asymptotic expressions for the low-lying

eigenvalues of H(0)
ρε,Λµε

, with s = 1
2 giving the best (but not optimal) error

estimate. The convenience of developing the theory also for different values

of s will show up only in Section 17, where comparing two possible choices of

s (say s = 1
2 and s =

√
2

2 ) one can easily get rid of the fictitious dependence

on s of the results and thus obtain optimal error estimates.

Section 15.

In this section we analyze the asymptotic behaviour as ε → 0 of the

(square root of the) approximate eigenvalues νapp
i,s,ε determined by the quasi-

modes of the previous section. The key instrument here is the Poisson

summation formula which permits to reduce sums over the scaled lattice

to integrals. Once the passage to integrals is achieved one can comfortably

change from coordinates adapted to the lattice to coordinates adapted to

the local structure of f .

Section 16.

In this section we establish a sharp asymptotic relation between the ap-

proximate eigenvalues computed in Section 15 and the actual small eigen-

values of H(0)
Λρε,µε

. This is obtained by projecting the quasimodes on the

eigenspaces dim Ran 1[0,ε6/5)(H
(0)
ρε,Λµε

) and dim Ran 1[0,ε6/5)(H
(1)
ρε,Λµε

) and study-

ing the singular values of the distorted differential dρε , considered as a map
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from dim Ran 1[0,ε6/5)(H
(0)
ρε,Λµε

) to dim Ran 1[0,ε6/5)(H
(1)
ρε,Λµε

). The good prop-

erties of the quasimodes established in Section 14 permit to conclude with

a straightforward Gaussian elimination, following [71].

Section 17.

The results of Section 15 and Section 16 are combined to get the main

theorem of this thesis (Theorem 17.1), giving complete expansions of the first

m0 eigenvalues of H(0)
Λρε,µε

with explicit leading prefactor. Equation (0.15)

in Theorem 0.2 of this introduction is a direct consequence, noting that the

eigenvalues of the discrete Witten Laplacian differ by a factor ε from the

eigenvalues of G̃f,ε.

Part IV

Appendix A.

We state a theorem on local existence of solutions for a class of matrix-

valued singular linear transport equations under suitable compatibility con-

ditions. This result is instrumental for the construction of WKB expansions

as done in Section 11. The scalar case is a classical result which is proved for

example in [27] or [40]. The higher-dimensional result requires only minor

modifications to the proof and is used for example in [48]. For completeness,

we give a detailed proof adapting the one of [27].

Appendix B.

We consider a class of matrix valued discrete Schrödinger operators on the

scaled lattice εZn. Criteria for essential selfadjointness and localization of

the essential spectrum are given. Moreover we state a result which quantifies

the error commited when approximating the discrete spectrum with the one

of suitable harmonic oscillators sitting at the bottom of the wells of the

potential (harmonic approximation). The proof is omitted since it amounts

in slightly modifying the arguments in [65], where only the scalar case is

treated.

Appendix C.

We consider sums of the type∑
x∈εZn

a(x)e−ϕ(x)/ε ,

with compactly supported and smooth amplitude a and smooth phase ϕ,

having a unique non degenerate global minimum. Complete asymptotics are
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obtained by rescaling properly and using the Poisson summation formula to

reduce to the case of a classical Laplace integral.

Appendix D.

We consider an m1 × m0 matrix Bε (which in the application of Sec-

tion 16.1 corresponds to the discrete Witten differential δ
(0)
ρε restricted on

the m0-dimensional eigenspace Ran 1[0,ε6/5)(H
(1)
ρε,Λµε

) ). It is shown, follow-

ing essentially [71], that if approximately orthogonal bases e1,ε, . . . , em0,ε

and f1,ε, . . . , fm1,ε are found, such that the matrix (〈fi,ε, Bεej,ε〉) is approx-

imately diagonal, then the diagonal of the latter matrix well approximates

the singular values of Bε.

Appendix E.

This last section contains some definitions and complementary computa-

tions used throughout Part II.
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Part I. Discrete geometries on affine spaces

This first part has a foundational character: it is mainly concerned with

definitions and basic properties of de Rham-type complexes, Hodge-type

and Witten-type Laplacians in affine space. The point is that the geometry

we consider on the latter is not the classical geometry induced by a scalar

product on the tangent space, but the geometry determined by a reversible

Markov jump process. For simplicity we limit ourselves to discrete processes,

i.e. those which are constrained to move on a lattice, but the formalism is

presented in a way which lends itself to straightforward generalizations. We

have chosen to consequently give a coordinate-free representation, enlight-

nening the geometric content of the considered objects, which would be

hidden in a more concrete development in the coordinate space Rn. In this

part no scaling limits appear.

1. A generalized tensor algebra

We list in this section some basic terminology and notation that will be

used throughout this work.

The set of natural numbers is denoted by N∗ if 0 is excluded and by N0

otherwise.

Let V be a real vector space of dimension n ∈ N∗. Its generic elements

are denoted by v, w. For the elements of the p-th Cartesian product V p we

use the notation v := (v1, . . . , vp).

Given π ∈ Pp, the set of permutations of {1, . . . , p}, and v ∈ V p we

write πv := (vπ1 , . . . , vπp), where πj is the image of j under π. Similarly,

for s := (s1, . . . , sp) ∈ {−1, 1}p and ℘ := (π, s) ∈ Psign
p := Pp × {−1, 1}p

(the set of signed permutations of p elements), we let sv := (s1v1, . . . , spvp)

resp. ℘v := (s1vπ1 , . . . , spvπp). Moreover sign(s) := s1 · · · sp and sign(℘) :=

sign(π) sign(s).

The basic space considered throughout this work is an affine space M

with underlying real vector space V of fixed dimension n ∈ N∗. The action

of v ∈ V on a point ζ ∈ M is a point in M denoted as usual by ζ + v. For

v ∈ V p and ζ ∈M we define

ζ + v := ζ + v1 + · · ·+ vp .
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We shall refer later to this situation and notation shortly with the phrase

“M is an n-dimensional affine space”.

On M the canonical smooth structure inherited from V is considered.

The classical “tangential” or infinitesimal point of view on smooth manifolds

leads to the notion of tensor fields over the tangent bundle

TM :=
⊔
ζ∈M

TζM ,

with TζM denoting the tangent space of M at ζ.

Since M is affine, there are of course canonical identifications: TζM ' V
for every ζ ∈ M and TM ' M × V . Despite of this it is convenient in the

present context to clearly distinguish between TζM and V , reflecting their

distinct physical interpretation: the former describes possible infinitesimal

displacements of a particle, the latter possible jumps (or finite displace-

ments).

The following definitions of this section attach to the trivial bundle M×V
a tensor algebra tailored to the forementioned physical interpretation of

V . The new tensor algebra is a Fock-type algebra. With the identification

TζM ' V it can be seen as an extension of the usual tensor algebra obtained

by dropping the linearity assumption.

The idea behind the proposed algebraic formalism stems from some simple

considerations on cubical cells. This underlying geometric picture is sketched

briefly in the next subsection. We shall refer to it occasionally for various

geometric interpretations, but it is not strictly necessary for the following

development.

Excursus on p-cells.

Let M be an n-dimensional affine space and let p ∈ N0. A p-cell in M is

a set of 2p not necessarily distinct points ζ1, . . . , ζ2p ∈M , called the vertices

of the cell, satisfying the following property: there exist v ∈ V p and an

enumeration s(1), . . . , s(2p) of the elements of {−1, 1}p such that

ζj = ζ1 +
1

2

p∑
k=1

(vk + s
(j)
k vk) . (1.1)
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We call a p-cell nondegenerate if all its vertices are distinct20 and degen-

erate otherwise. Observe that a p-cell is nondegenerate if and only if all the

vk’s can be taken different from zero and such that for k 6= l both vk 6= vl
and vk 6= −vl hold.

All the possible orderings of the points of a nondegenerate p-cell, p ≥ 1,

are divided into two equivalence classes by the equivalence relation given

by the sign of a permutation. An orientation on a nondegenerate p-cell

is a choice of one of this equivalence classes and an oriented p-cell is a

nondegenerate p-cell together with an orientation. Observe that for a 0-

cell, i.e. a point, there is just one possible orientation. Thus every 0-cell

is canonically oriented, no change of orientation is possible, and there is

no distinction between oriented and non-oriented 0-cells. By convention

degenerate p-cells are included among the oriented p-cells assigning to them

both possible orientations. This means that a change of orientation leaves

degenerate p-cells invariant.

Clearly the representation of p-cells given in (1.1) is not unique. Therefore

it is not very handy to describe with it elementary operations one would

like to perform on (oriented) cells. To facilitate algebraic manipulations

it is convenient to change parametrization. To this purpose observe that a

couple (ζ,v) ∈M×V p describes a p-cell {ζ1, . . . , ζ2p} by taking an arbitrary

enumeration s(1), . . . , s(2p) of the elements of {−1, 1}p and letting for j =

1, . . . , 2p

ζj := ζ +
1

2

p∑
k=1

s
(j)
k vk

(i.e. ζ is the “center” of the cell). Plainly this cell does not depend on the

chosen enumeration s(1), . . . , s(2p) nor on the ordering of the vk’s. Moreover

every p-cell can be described in this way. It follows that the set of cells is in

bijection with the set M × V p/ ∼N , where the equivalence relation ∼N in

V p is given by

v ∼N w if ∃℘ ∈ Psign
p s.t. v = ℘w . (1.2)

The cell corresponding to (ζ, [v]) ∈M × V p/ ∼N is denoted by Cell(ζ, [v]).

Observe that Cell(ζ, [v]) is nondegenerate if and only if for the representative

v (and therefore for every other representative) all the vk’s are different from

zero and such that for k 6= l both vk 6= vl and vk 6= −vl hold.

20Observe that in general even a nondegenerate p-cell is not p-dimensional, where the

dimension of a cell is defined as the dimension of its convex hull. This happens only under

the stronger condition that the vk’s above can be chosen linearly independent.
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Similarly there is a canonical bijection between the set of oriented cells

and M × V p/ ∼O, with ∼O defined via

v ∼O w if ∃℘ ∈ Psign
p with sign(℘) = 1 s.t. v = ℘w . (1.3)

Given (ζ, [v]) ∈ M × V p/ ∼O we denote by Cellsign(ζ, [v]) the oriented cell

given by the points

ζj := ζ +
1

2

p∑
k=1

s
(j)
k vk for j = 0, . . . , 2p ,

with s(1), . . . , s(2p) following the lexicographic order in {−1, 1}p and orien-

tation determined by the ordering (ζ1, . . . , ζ2p) if the cell is nondegenerate.

Note that with the canonical identification TζM ' V , where TζM denotes

the tangent space of M at ζ ∈ M , one can think of a Cell(ζ, [v]) as an

infinitesimal cell for every (ζ,v) ∈M × V p.

Recall that a classical (covariant) p-tensor on M is just a smooth function

α : M × V p → R, which is p-multilinear in V . A particular important

subspace of the space of p-tensors is the one of antisymmetric p-tensors, the

so-called forms. They satisfy for every π ∈ Pp, ζ ∈M and v ∈ V p

α(ζ, πv) = sign(π) α(ζ,v) .

By linearity it follows that also for ℘ ∈ Psign
p

α(ζ, ℘v) = sign(℘) α(ζ,v) .

A p-form α can therefore be thought of as a function on oriented infinitesimal

p-cells, which changes sign by changing orientation of the cell.21

The choice of an Euclidean scalar product - or, equivalently, the choice of

a Brownian motion - gives a geometry on M which is completely described

by means of infinitesimal displacements. In this case the usual tensors are

the natural objects to consider. On the other hand, in presence of a richer

geometry arising from displacements (jumps) that can happen at every finite

length, the linearity condition on the tensors may be too restrictive.22 In the

next subsection we introduce a notation to describe the algebra of tensors

obtained by dropping the linearity condition.

21 An analogous interpretation holds for a symmetric tensor: it is essentially a function

on infinitesimal (nonoriented) cells.
22A fortiori tensors are not suitable if the underlying space is discrete. In this case

there is no notion of tangent vector space available since only finite displacements are

allowed.
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The algebra of p-functions on M .

Recall that M is an affine space with underlying real vector space V of

dimension n ∈ N0. For p ∈ N0 let

F (M × V p) := RM×V
p
,

the set of real functions on M × V p. We shall refer to it as the space of

p-functions on M . Observe that F (M × V p) is a (infinite dimensional)

vector space.

The direct sum F(M × V ) := ⊕∞p=0F (M × V p) is a graded algebra with

respect to the (pointwise) tensor product

⊗ : F (M × V p)× F (M × V p′)→ F (M × V p+p′)

defined via

α⊗ β(ζ, (v,w)) := α(ζ,v) β(ζ,w) .

Observe that ⊗ is not commutative. In the language of graded algebras a

p-function is a homogeneous element of degree p in F(M × V ).

We are interested mainly in the two subspaces of F(M ×V ) given by the

alternating resp. symmetric functions over V . Here an α ∈ F (M × V p) is

called alternating (or antisymmetric) if for every ℘ ∈ Psign
p

α(ζ, ℘v) = sign(℘) α(ζ,v) . (1.4)

On the other hand we call an α ∈ F (M × V p) symmetric if for every

℘ ∈ Psign
p

α(ζ, ℘v) = α(ζ,v) . (1.5)

Observe that if α is alternating, then automatically for every ζ ∈ M and

every v ∈ V p with the property that vi = vj or vi = −vj for some i 6= j or

vi = 0 for some i

α(ζ,v) = 0 . (1.6)

We denote by Fa(M×V p) ⊂ F (M×V p) the vector subspace of alternating

p-functions and define Fa(M × V ) := ⊕∞p=0Fa(M × V p). The latter is not

a subalgebra of F(M × V ), but it is again a graded algebra itself with the

(pointwise) wedge product ∧ defined for α ∈ Fa(M ×V p), β ∈ Fa(M ×V p′)

via

α ∧ β := Alt(p+p′) α⊗ β .
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Here for p ∈ N0, Alt(p) : F (M × V p) → Fa(M × V p) denotes the alter-

nating operator defined as

Alt(p) α(ζ,v) :=
1

p!2p

∑
℘∈Psign

p

sign(℘) α(ζ, ℘v) .

Analogous considerations hold mutatis mutandis for the space of sym-

metric p-functions Fs(M × V p) ⊂ F (M × V p). We repeat them to fix the

notation. Fs(M×V ) := ⊕∞p=0Fs(M ×V p) is a graded algebra with the sym-

metrized tensor product � defined for α ∈ Fs(M × V p), β ∈ Fs(M × V p′)

via

α� β := Sym(p+p′) α⊗ β .

Here for p ∈ N0, Sym(p) : F (M × V p) → Fs(M × V p) denotes the sym-

metrizing operator defined as

Sym(p) α(ζ,v) :=
1

p!2p

∑
℘∈Pp

α(ζ, ℘v) .

Observe that ∧ is anticommutative , while � is commutative.

We intentionally avoid at this point to introduce topologies on F(M ×V )

or even on F (M×V p). This will be the main topic of Section 3. Nevertheless

we point out that by introducing a measure on M×V , the corresponding L2

space would yield a construction reminiscent of the Fock algebra appearing

in Quantum Field Theory. Then Fa(M×V p) (resp. Fs(M×V p)) corresponds

to the space of fermionic (resp. bosonic) states with p-particles.

Sometimes it is convenient to view the space of p-functions not as the

space of real functions on M × V p but as the space of functions from M to

RV p . The latter can be seen as the space of p-functions obtained by fixing a

base point ζ ∈ M . In this context we shall use the notation RV pa to denote

the space of antisymmetric real functions on V p. More precisely ω ∈ RV p is

by definition in RV pa if for every ℘ ∈ Psign
p

ω(℘v) = sign(℘) ω(v) . (1.7)

In the symmetric case the symbol RV ps is used. Moreover we shall write for

an α ∈ F (M × V p),

αv(ζ) := α(ζ,v)

and denote for every fixed v ∈ V p by αv the function ζ 7→ α(ζ,v).

Remark 1.1.
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The discussion on cells of the previous subsection gives the following geo-

metric intepretation of Fa(M × V p) resp. Fs(M × V p) for p ∈ N∗: an al-

ternating p-function is a function on oriented p-cells which changes sign by

changing orientation; in particular it is 0 on degenerate p-cells which by con-

vention are invariant under change of orientation. A symmetric p-function

is a function on cells. For p = 0, p-functions are just functions on M and

there is no distinction between antisymmetric and symmetric functions.

Linear and smooth p-functions.

Let p ∈ N0. We shall consider in particular the subspace Flin(M × V p)

of F (M × V p), consisting of functions which are multilinear with respect

to V p. More precisely, an α ∈ F (M × V p) is by definition an element of

Flin(M × V p) if for every ζ ∈ M , v ∈ V p−1 and every j = 1, . . . , p the

function

w 7→ α(ζ, v1, . . . , vj−1, w, vj , . . . , vp)

is linear over V .

If we restrict to antisymmetric (resp. symmetric) multilinear p-functions

we shall use the symbols Fa,lin(M × V p) (resp. Fs,lin(M × V p)).

For the (finite dimensional) subspace of multilinear elements of RV p we use

the standard notation T pV ∗, whose antisymmetric and symmetric versions

are denoted by T paV ∗ and T ps V ∗.

Another subspace of F (M×V p) which will be considered throughout is the

space of smooth p-functions. More precisely, we shall denote by C∞(M ;RV p)
the set of functions α ∈ F (M × V p) s.t. ζ 7→ α(ζ,v) is infinitely many

times differentiable for every v ∈ V p. Here, restricting to antisymmetric

(resp. symmetric) smooth p-functions we shall use the symbols C∞(M ;RV pa )

(resp. C∞(M ;RV ps )). Similarly we write C∞(M ;T pV ∗), C∞(M ;T paV ∗) and

C∞(M ;T ps V ∗) in the multilinear cases.

Observe that via the canonical identification TζM ' V an α ∈ C∞(M ;T pV ∗)

can be identified with a classical covariant linear p-tensor on the tangent

bundle of M .
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2. The exterior difference operator δ

Let M be an affine space with underlying real vector space V of dimension

n. In this section we shall introduce some basic (formal) operators acting

on the algebra F(M × V ). In particular an exterior difference operator is

defined on the antisymmetric algebra Fa(M ×V ) (see Definition 2.5 below),

which is the analogue of the De Rham exterior differential on classical forms.

We use here the following notation to describe the operations of removing,

adding and exchanging vectors given an element v of the Cartesian product

V p, p ∈ N0.

- For every w ∈ V and every j ∈ {0, · · · , p} define v+(w,j) ∈ V p+1 by

v+(w,j) = (v1, . . . , vj−1, w, vj+1, . . . , vp) .

- For j = {1, · · · , p} define v−(j) ∈ V p−1 by

v−(j) = (v1, · · · , vj−1, vj+1, · · · , vp) .

- For every w ∈ V , every j ∈ {0, · · · , p} and l ∈ {1, · · · , p+ 1} define

v+(w,j)
−(l)

∈ V p by

v+(w,j)
−(l)

:= v̂−(l) ,

with v̂ := v+(w,j). Similarly, for every w ∈ V , every j ∈ {0, · · · , p+

1} and l ∈ {1, · · · , p} define v −(l)
+(w,j)

∈ V p by

v −(l)
+(w,j)

:= v̂+(w,j) ,

with v̂ := v−(l)

Definition 2.1 (Translation, difference and sum operators).

Let M be an n-dimensional affine space. For every p ∈ N0 define the

formal operators T (p), T ?,(p),D(p),D?,(p),S(p) : F (M ×V p)→ F (M ×V p+1)

respectively by

T (p)α (ζ,v) := α(ζ+v1/2,v−(1)) , T ?,(p)α (ζ,v) := α(ζ−v1/2,v−(1)) ,

D(p) := T (p) − T ?,(p) , D?,(p) := T ?,(p) − T (p) ,

S(p) :=
1

2
[ T (p) + T ?,(p) ] .
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Observe that

D(p)α (ζ,v) = α(ζ + v1/2,v−(1)) − α(ζ − v1/2,v−(1)) ,

S(p)α (ζ,v) =
1

2
α(ζ + v1/2,v−(1)) +

1

2
α(ζ − v1/2,v−(1))

and that

D?,(p) = −D(p) .

The choice of the first entry as acting variable in the above definition is

just a convention to fix the notation. Of course any other choice could have

been made for developing the following concepts. We shall also consider for

every w ∈ V the operators T
(p)
w , T

?,(p)
w : F (M ×V p)→ F (M ×V p) given for

α ∈ F (M × V p), (ζ,v) ∈M × V p by

T (p)
w α (ζ,v) := T (p)α (ζ, w,v) , T ?,(p)w α (ζ,v) := T ?,(p)α (ζ, w,v) .

(2.1)

The operators D(p)
w ,D?,(p)w ,S(p)

w : F (M × V p) → F (M × V p) are defined

analogously.

The factor 1
2 in the definition of S(p) is chosen in order to normalize

the following rule for the discrete differentiation of a pointwise product of

p-functions.

Proposition 2.2 (Product rules for D(p) and S(p)).

For every p ∈ N0 and α, β ∈ F (M × V p)

D(p)(αβ) = D(p)α S(p)β + S(p)α D(p)β

and

S(p)(αβ) = S(p)α S(p)β − 1

4
D(p)α D(p)β .

Proof. Dropping for simplicity the superscript (p) we have

D(αβ) = T (αβ) − T ?(αβ) = T α T β − T ?α T ?β =

=
1

2
T α T β +

1

2
T α T β − 1

2
T α T ?β +

1

2
T α T ?β +

− 1

2
T ?α T ?β − 1

2
T ?α T ?β +

1

2
T ?α T β − 1

2
T ?α T β =

= Dα Sβ + Sα Dβ .

An analogous computation yields the statement for S(p). �
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Let k ∈ N∗. The k-th translation, difference and sum operators

T k,(p), T ?,k,(p),Dk,(p),D?,k,(p),Sk,(p) : F (M × V p)→ F (M × V p+k)

are obtained by k-times application of the respective operators. So for ex-

ample

T k,(p) := T (p+k−1) . . . T (p) .

We shall also use for every w ∈ V k the symbols T k,(p)w , T ?,k,(p)w ,Dk,(p)w , S
k,(p)
w

defined in the obvious way starting from (2.1). So for example

Dk,(p)w := D(p)
w1
. . .D(p)

wk
.

If w1 = w2 = · · · = wk = w we shall also write T k,(p)w , etc.

Observe that for each w ∈ V k

Dk,(p)w =
∑

s∈{−1,1}k
sign(s) T k,(p)sw (2.2)

and

S
k,(p)
w =

1

2

∑
s∈{−1,1}k

T k,(p)sw . (2.3)

In particular

D2,(p)
w1,w2

= T (p)
w1
T (p)
w2
− T (p)

w1
T ?,(p)w2

− T ?,(p)w1
T (p)
w2

+ T ?,(p)w1
T ?,(p)w2

(2.4)

and, taking second differences on the diagonal gives:

D2,(p)
w,w α (ζ,v) = α(ζ + w,v) + α(ζ − w,v)− 2α(ζ,v) . (2.5)

Remark 2.3. It follows from (2.2) and (2.3) that for each k ∈ N∗, p ∈ N0,

α ∈ F (M × V p), ℘ = (π, s) ∈ Psign
k and w ∈ V k, we have

Dk,(p)℘w = sign(s) Dk,(p)w

and similarly

Sk,(p)℘w = Sk,(p)w .

In particular, for π ∈ Pk,

Dk,(p)α(ζ, πw,v) = Dk,(p)α(ζ,w,v) , (2.6)

which expresses the symmetry of the difference operator in the acting vari-

ables.
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For every k ∈ N∗ the direct sums ⊕∞p=0T k,(p), ⊕∞p=0T ?,k,(p), ⊕∞p=0Dk,(p),
⊕∞p=0D?,k,(p) and ⊕∞p=0Sk,(p) are denoted respectively by T k, T ?,k, Dk, D?,k

and Sk. The superscript k is dropped in the case k = 1.

Remark 2.4. Let for k, p ∈ N0, α ∈ C∞(M ;RV p) and ζ̄,v ∈ M × V p the

function V 3 w 7→ ∇k,(p)w αv (ζ̄) := ∇k,(p)α (ζ̄, w,v) be the k-th differential

of αv at the point ζ̄. Observe that ∇(p) := ∇1,(p), restricted on the space

C∞(M ;RV p) of smooth linear tensors, is the usual covariant derivative on

an affine space. A formal Taylor series expansion gives

D(p)
w α (ζ,v) ∼

∞∑
k=1
k odd

∇k,(p)w α(ζ,v)

k!2k−1
.

Since the first term in the expansion equals ∇(p), the difference operator can

be seen as a discrete version of the covariant derivative acting on tensors.

For the sum operator we have

S(p)
w α(ζ,v) ∼

∞∑
k=0
k even

∇k,(p)w α(ζ,v)

k!2k
.

Here the first term is the identity operator. In other terms the sum operator

becomes trivial in linear approximation.

Next we define an analogue of the de Rham exterior differential which

will play a major role in the sequel.

Definition 2.5 (Exterior difference operator and symmetric sum

operator).

Let M be an n-dimensional affine space. For p ∈ N0 we define

- the formal exterior difference operators δ(p) : Fa(M×V p)→ Fa(M×
V p+1) by

δ(p) := (p+ 1) Alt(p+1) D(p)

and set δ := ⊕∞p=0δ
(p).

- the formal symmetric sum operators σ(p) : Fs(M × V p) → Fs(M ×
V p+1) by

σ(p) := (p+ 1) Sym(p+1) S(p)

and set σ := ⊕∞p=0σ
(p)
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From the definition it follows that δ(p) has the representation

δ(p)α (ζ,v) =

p+1∑
l=1

(−1)l+1 D(p)α(ζ, vl,v−(l)) . (2.7)

Proposition 2.6 (Complex property for δ).

For every p ∈ N0

δ(p+1)δ(p) ≡ 0 .

Proof. As in the infinitesimal case, this is a consequence of the “Schwarz

Lemma”,

D2,(p)
w1,w2

= D2,(p)
w2,w1

,

valid for every (w1, w2) ∈ V 2 as remarked in (2.6). In fact for ζ ∈ M ,

v ∈ V p+2, observing that the j-th vector appearing in v−(l) is vj if j < l

and is vj+1 if j ≥ l and using the notation v−(l,j) :=
(

v−(l)

)
−(j)

we have

δ(p+1)δ(p) α(ζ,v) =

=

p+2∑
l=2

l−1∑
j=1

(−1)l+j D2,(p)
vl,vj

α (ζ,v−(l,j)) +

p+1∑
l=1

p+1∑
j=l

(−1)l+j D2,(p)
vl,vj+1

α (ζ,v−(j+1,l)) =

=

p+2∑
l=2

l−1∑
j=1

(−1)l+j D2,(p)
vl,vj

α (ζ,v−(l,j)) +

p+1∑
l=1

p+2∑
j=l+1

(−1)l+j−1 D2,(p)
vl,vj

α (ζ,v−(j,l)) =

=

p+2∑
l=2

l−1∑
j=1

(−1)l+j
[
D2,(p)
vl,vj

α (ζ,v−(l,j))−D2,(p)
vj ,vl

α (ζ,v−(l,j))
]

=

= 0 .

�

Remark 2.7. The operator δ can be given a simple geometric interpretation

in terms of oriented cells: recall (1.3) and let (ζ, [v]) ∈M ×V p+1/ ∼O. For

simplicity we assume that Cellsign(ζ, [v]) is nondegenerate. In the degenerate

case similar considerations as the following can be made, and the same con-

clusions will remain valid. The boundary of the convex hull of Cellsign(ζ, [v]),

denoted by ∂ Cellsign(ζ, [v]), is composed of convex hulls of p-cells, 2(p + 1)
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in number and oriented in the standard way using the outer normal. More

precisely, we have

∂ Cellsign(ζ, [v]) =

=

p+1⋃
j=1

[
(−1)j+1 Cellsign(ζ + vj/2, [v−(j)]) ∪ (−1)j Cellsign(ζ − vj/2, [v−(j)])

]
,

where multiplying an oriented cell with −1 amounts to a change of orienta-

tion23. Interpreting an α ∈ Fa(M × V p) as a function on oriented p-cells

(see Remark 1.1), it follows that, for (ζ,v) ∈ M × V p+1, δ(p)α(ζ,v) equals

the sum of the values of α on ∂ Cellsign(ζ, [v]). Requiring that functions on

cells are additive w.r.t. to the union, this fact can be written compactly as

δα = α∂ ,

which can be recognized as a version of the Stokes formula. Observe that

for p = 0 this recovers the usual meaning of the discrete differential of a

function f : M → R evaluated on an oriented 1-cell {ζ1, ζ2} (an “edge”) as

the difference f(ζ2)− f(ζ1).

With the geometric interpretation just given the complex property trans-

lates to the obvious statement that the boundary of a boundary of a cell

vanishes.

23Here, to cover also the case p = 0, we adopt the convention that a 0-cell has two

possible orientations given by ±1.
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3. Discrete geometries and lattice graphs

A (euclidean) geometric structure can be introduced in the affine space M

by fixing a scalar product on the underlying vector space V or - equivalently

- on V ∗, the dual of V . This scalar product is then extended in a canonical

way: first, for every p ∈ N0, to a scalar product on T pV ∗, the p-th tensor

product of V ∗, and then to square integrable sections of Flin(M × V p) by

means of the induced (Riemannian) volume form. More precisely, given a

scalar product g : V ∗ × V ∗ → R, one defines for every p ∈ N0

〈α, β〉(p)g :=

∫
M
gp
(
α(ζ, ·), β(ζ, ·)

)
Vol(dζ) , (3.1)

where dVol is the unique Haar measure (depending on g) assigning uni-

tary measure to a parallelepide spanned by an orthonormal basis of V ,

gp is the p-th tensor product of the given scalar product24 g, and α, β ∈
L2(M×V p, g) := {α ∈ Flin(M×V p) : ζ 7→ α(ζ,v) is Borel measurable ∀v ∈
V p and 〈α, α〉(p)g <∞}.

Such a geometry is homogeneous, in the sense that the metric tensor g is

independent of the base point ζ ∈ M . Moreover it is infinitesimal, in the

sense that it is defined only on the linear tensor algebra.

The aim of this section is to introduce homogeneous geometric structures

in M which take into account finite displacements, by assigning suitable

scalar products on the full space F (M × V ), containing also nonlinear 1-

functions. These are extended in a canonical way to F (M × V p) for every

p ∈ N0. The set of this kind of geometries is much broader, since every finite

geometry contains in particular an infinitesimal geometry. In this work the

attention is restricted to discrete geometries corresponding to a finite number

of admissible jumps, as introduced below. Inhomogeneous perturbations of

discrete geometries wil be considered starting from Section 5.

We assume given as data an n-dimensional affine space M together with

a symmetric measure µ on the underlying vector space V , endowed with

24Recall that for p ∈ N∗ gp is a scalar product on T p(V ∗), defined by setting for pure

tensors

gp(α1 ⊗ · · · ⊗ αp, β1 ⊗ · · · ⊗ βp) = g(α1, β1) . . . g(αp, βp) (3.2)

and then extending by linearity. For p = 0 we define in formula (3.1) above

g0
(
α(ζ), β(ζ)

)
:= α(ζ)β(ζ). Observe that from (3.2) it follows that in particular

gp(α1 ∧ · · · ∧ αp, β1 ∧ · · · ∧ βp) =
1

p!
det
(
g(αi, βj)

)
i,j

.
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the canonical Borel sigma-algebra. The symmetry condition means that

µ(S) = µ(−S) for every Borel set S of M . We assume furthermore that µ

has finite support, i.e. that µ is a finite linear combination of Dirac measures.

The set

E = suppµ \ {0}

will be called the set of admissible jumps in M and µ can be thought of

as a weight attached to each admissible jump.25 By the symmetry of µ it

follows that also E is symmetric, i.e. v ∈ E implies −v ∈ E. In particular

the cardinality of E is even.

For simplicity we assume from the outset that E generates a lattice Γ in

V although at least some parts of the following discussion could be treated

in a more general setting.

Recall that a lattice Γ in V is by definition a discrete subgroup of V with

finite covolume. In our particular case of V being a vector space this is

equivalent to asking that Γ is a discrete subgroup which spans the whole V .

We call a symmetric measure µ on V which has finite, lattice generating

support for short a (homogeneous) discrete geometry. Given a discrete

geometry we denote always by E the associated set of admissible jumps and

by Γ the lattice generated by E. The size of a discrete geometry is defined

as half the cardinality of E and denoted by N .

Remark 3.1. The simplest examples of discrete geometries are those of size

n, which are obtained by taking

E = {e1, . . . , en,−e1, . . . ,−en} ,

where e1, . . . , en form a basis of V , and by taking as µ the delta measure on

the set E:

µ({v}) = 1

if v ∈ E, and µ(S) = 0 if S ∩E = ∅. We refer to discrete geometries of size

n also as (simple) nearest neighbour geometries. Observe that the set

E corresponding to an arbitrary discrete geometry must contain necessarily

n independent vectors and their opposites. So the minimal size of a discrete

geometry is n. On the other hand, as is well known, a finite symmetric

subset of V with cardinality 2N > 2n and containing n independent vectors

does not necessarily generate a lattice. A simple counterexample is E =

{1,
√

2,−1,−
√

2} for n = 1.

25The value of µ in 0 will play no role in the sequel and is defined only for notational

convenience.
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Given an n-dimensional affine space M with discrete geometry µ, consider

the set M/Γ consisting of the equivalence classes of the equivalence relation

∼Γ defined by

ζ ∼Γ ζ
′ if ζ − ζ ′ ∈ Γ .

To each Λ ∈ M/Γ can be given canonically the structure of an undirected

weighted graph, denoted by Λµ, which is embedded in M . The vertices

of Λµ are by definition the elements of the chosen equivalence class Λ. A

pair {ζ, η} of vertices is an edge if and only if there exists an e ∈ E such

that ζ = η + e. The weight of this edge is defined to be µ({e}). We call a

graph Λµ obtained in this way briefly a lattice graph in M associated to

the given discrete geometry µ. The letter Λ is used to denote the set of its

vertices. Observe that Λµ is locally finite (even of bounded degree) since E

is finite by assumption. A particle moving in M with the constraint E (i.e.

only jumps in directions given by E are allowed) is forced to remain on a

particular Λµ, and every vertex in Λµ can potentially be visited. One can

think of a choice of Λµ as a choice of an “ergodic component”.

A discrete geometry µ attaches a nonnegative weight to 1-cells. More

generally, for p ∈ N0 a weight is attached to p-cells in a natural way through

the product measures µp := ⊗pµ. We denote in the sequel for every Λ ∈M/Γ

the counting measure on Λ by dΛ (or Λ(dζ) if we want to stress that the

integration variable is ζ).

Definition 3.2 (Scalar products).

Let M be an n-dimensional affine space with discrete geometry µ. For

every p ∈ N0 and lattice graph Λµ define ‖ · ‖(p)Λµ
: F (M × V p) → [0,∞] by

setting

‖α‖(p)Λµ
:=

( 1

p!2p

∫
M×V p

α2(ζ + v/2,v) Λ(dζ)⊗ µp(dv)
) 1

2
.

On L2(M × V p,Λµ) := {α ∈ F (M × V p) : ‖α‖(p)Λµ
<∞} the (degenerate)

scalar product 〈·, ·〉(p)Λµ
is defined via

〈α, β〉(p)Λµ
:=

1

p!2p

∫
M×V p

α(ζ + v/2,v) β(ζ + v/2,v) Λ(dζ)⊗ µp(dv) .
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We drop the superscript (p) and write just ‖·‖Λµ and 〈·, ·〉Λµ if no confusion

arises.

Remark 3.3. In fact by L2(M×V p,Λµ) we will henceforth mean with usual

abuse of notation the corresponding set of equivalence classes of functions.

Since dΛ and µ are purely atomic on M × V this is equivalent to consider

functions on suitable discrete subsets. More precisely, let for p ∈ N0

Λ(p) := {(ζ,v) ∈M × Ep s.t. ζ − v/2 ∈ Λ} .

Observe that in particular Λ(0) = Λ and that Λ(p) is countable for every p.

Moreover

L2(M × V p,Λµ) ' {α ∈ RΛ(p)
s.t.

1

p!2p

∑
(ζ,v)∈Λ(p)

α2(ζ,v) µp({v}) <∞} .

Nevertheless, for the purposes we have in mind it is more convenient to work

with equivalence classes of functions defined on the whole bundle M × V p.

Observe that even with this convention, dΛ and µ being counting measures,

the corresponding scalar product can be rewritten as

〈α, β〉(p)Λµ
:=

1

p!2p

∑
(ζ,v)∈M×Ep

α(ζ + v/2,v) β(ζ + v/2,v) µp(v) .

In accordance with previous established notation we use the subscripts a

and s to restrict function spaces to antisymmetric resp. symmetric functions.

More precisely, we let

L2
a(M × V p,Λµ) := L2(M × V p,Λµ)

⋂
Fa(M × V p)

and

L2
s(M × V p,Λµ) := L2(M × V p,Λµ)

⋂
Fs(M × V p) .

It is worth to emphasize that the scalar products 〈·, ·〉(p)Λµ
are not induced

directly by the product measures dΛ⊗ µp on M × V p since a shift appears

in the definition. To describe this shift it is convenient to introduce the

following notation.

Let p ∈ N0 and define the shift operator τ : M × V p →M × V p as the

bijection given by

τ(ζ,v) := (ζ − v

2
,v) .

Its pushforward τ∗ : F (M × V p)→ F (M × V p) acts as

τ∗α(ζ,v) := α(ζ +
v

2
,v) (3.3)
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and gives the set ismorphism

F (M × V p) ' τ∗F (M × V p) ,

where τ∗F (M × V p) denotes the image of F (M × V p) under τ∗. Using τ we

have

〈α, β〉(p)Λµ
:=

1

p!2p

∫
M×V p

τ∗(αβ) dΛ⊗ µp .

It will also be convenient to introduce the notation ‖ · ‖(p)µ and 〈·, ·〉(p)µ to

denote the norm and scalar product induced by µ on RV p : for ω, ω′ ∈ RV p

let

〈ω, ω′〉(p)µ :=
1

p!2p

∫
V p
ωv ω

′
v µ

p(dv) and ‖ω‖(p)µ :=

√
〈ω, ω〉(p)µ . (3.4)

Again we shall drop the superscript (p) in (3.4) if no confusion is possible.

Moreover we shall write RV p,µ to emphasize that we consider the space

RV p as a Hilbert space with scalar product 〈·, ·〉µ. In accordance with the

notation introduced around (1.7) we also write RV
p,µ

a and RV
p,µ

s for the

corresponding restrictions to alternating resp. symmetric functions. Note

that with (3.4) and (3.3) one has (recall that we use the notation Λ(dζ)

instead of dΛ to stress that ζ is the integration variable)

〈α, β〉(p)Λµ
:=

∫
M
〈τ∗α(ζ), τ∗β(ζ)〉(p)µ Λ(dζ) . (3.5)

Remark 3.4. Let α ∈ Fs(M × V p)∪ Fa(M × V p). Then α2 ∈ Fs(M × V p)

and therefore (recall Remark 1.1) it is a function on nonoriented p-cells.

With this interpretation the square of ‖ · ‖(p)Λµ
amounts to a weighted sum of

the values of α2 over all nonoriented p-cells, the weight being given by µp.

Remark 3.5. Since, as observed in (1.6), α(ζ,v) = 0 if α ∈ Fa(M × V p)

and v is such that vi = vj for some i 6= j, one deduces that

L2
a(M × V p,Λµ) = {0} for p > N ,

where N is the size of µ.

It may be convenient in some situations to consider suitable coordinates

adapted to the lattice, and a different description of p-cells based on the

following remark.
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Remark 3.6. Recall the discussion on cells in Section 1, in particular (1.2).

We say that the oriented p-cell given by (ζ, [v]) ∈ M × V p/ ∼O is an ori-

ented E-generated p-cell if v ∈ Ep. A positive orientation is defined

by selecting for every couple of nondegenerate, oriented E-generated p-cells

with opposite orientation one of the two orientations. If such a selection

is given, combining Remark 1.1 and Remark 3.3 leads to the observation

that an element of L2
a(M ×V p,Λµ) is determined by the values of one of its

representatives on the set of positively oriented 26 E-generated p-cells which

are contained in Λ.

Coordinates adapted to the lattice graph Λµ.

Given an n-dimensional affine space M with discrete geometry µ of size

N and a lattice graph Λµ we choose

(i) N elements of E by selecting one vector for every couple of opposite

vectors in E and then order this selection arbitrarily. This produces

first a set denoted by E 1
2

= {e1, . . . , eN} and then an array denoted

by
−→
E = (e1, . . . , eN ).

(ii) a point O in Λ and a basis BΓ = (b1, . . . , bn) of the lattice Γ.

Observe that in general E does not contain a basis of Γ. A simple coun-

terexample in dimension 1 is given by taking E := {2e, 3e,−2e,−3e} for an

arbitrary nonzero vector e. But if E is a nearest neighbour geometry (i.e.

N = n) one can make the choices above with bj = ej for every j = 1, . . . , n.

In the sequel we will assume bj = ej if N = n, although this is not always

necessary.

Remark 3.7. We note that there is a canonical way to select E 1
2

and
−→
E

as described in (i) once a basis of V is given: define E 1
2

as the subset of E

consisting of vectors with first nonzero coordinate being positive, and
−→
E by

ordering the coordinate vectors according to the lexicographic order. Thus it

is in fact enough to make the choice (ii). This point of view is convenient

when dealing with uncountable E, as in the case of general jump processes.

26Observe that positively oriented p-cells are by definition nondegenerate.
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The choice (i) defines positively oriented E-generated cells in the obvious

way (Cell(ζ, [v]) is positively oriented if [v] has a representative which is a

subarray of
−→
E ) and permits to establish a one-to-one correspondence

Φ : M ×
[
Ep/ ∼ O

]
+
→M ×Mp

N ,

where M ×
[
Ep/ ∼ O

]
+

denotes the set of positively oriented E-generated

p-cells and Mp
N is the set of increasing multiindices of length p ∈ N0, i.e.

Mp
N :=

{
I = (i1, . . . , ip) ∈ {1, . . . , N}p : i1 < · · · < ip

}
. (3.6)

This correspondence is described by the following recipe. Given a [v] ∈
Ep/ ∼O take a representative v, reorder and change the signs of its com-

ponents (v1, . . . , vp) according to
−→
E . The resulting vector v̂ ∈ Ep is (well-

defined and is) associated with the multiindex Iv̂ := {i1, . . . , ip} ∈ Mp
N

having the property that

v̂ = eIv̂ ,

where eIv̂ := (ei1 , . . . , eip). Finally set for every (ζ, [v]) ∈M ×
[
Ep/ ∼O

]
+

Φ(ζ, [v]) := (Φ1(ζ, [v]),Φ2([v])) := (ζ − v̂/2, Iv̂) .

Observe that the set of points of the cell given by (ζ, [v]) ∈M×
[
Ep/ ∼O

]
+

is contained in Λ if and only if Φ1(ζ, [v]) ∈ Λ. Recall also that the cardinality

of Mp
N is

(
N
p

)
.

It follows from the considerations of Remark 3.3 that for every p ∈ N0

there is a Hilbert space isomorphism

L2
a(M × V p,Λµ) ' L2(Λ;RM

p
N ,µ) , (3.7)

where

L2(Λ;RM
p
N ,µ) :=

{
(αI)I∈Mp

N
: Λ→ RM

p
N s.t.

∑
ζ∈Λ

∑
I∈MN

p

α2
I(ζ) µI <∞

}
and µI := µp ({eI}) . (3.8)

The isomorphism we consider in (3.7) maps an α ∈ L2
a(M × V p,Λµ) to an

(αI)I∈MN
p
∈ L2(Λ;RM

p
N ,µ) via

αI(ζ) := α(ζ + eI/2, eI) .

The choice (ii) introduces in M coordinates x := (x1, . . . , xn) ∈ Rn with

respect to (O,BΓ). Since BΓ is a basis of Γ it follows that a point ζ ∈ M
is in Λ if and only if its coordinates are integers. This isomorphism Λ ' Zn
gives

L2(Λ;RM
p
N ,µ) ' L2(Zn;RM

p
N ,µ) , (3.9)
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where

L2(Zn;RM
p
N ,µ) :=

{
(αI)I∈Mp

N
: Zn → RM

p
N s.t.

∑
x∈Zn

∑
I∈MN

p

α2
I(x) µI <∞

}
.

Putting together (3.7) and (3.9) gives finally

L2
a(M × V p,Λµ) ' L2(Zn;RM

p
N ,µ) . (3.10)

The operator δ∗µ.

The choice of a discrete geometry permits to define a formal operator

which is dual to δ in a sense that will be specified in Proposition 3.10.

Definition 3.8.

Let M be an affine space with discrete geometry µ. For p ∈ N0 define the

formal operator δ∗µ,(p) : Fa(M × V p+1)→ Fa(M × V p) by setting

δ∗µ,(p) α(ζ,v) :=
1

2

∫
V
D?,(p+1)
w α (ζ, w,v) µ(dw) .

Moreover let δ∗µ := ⊕∞p=0δ
∗µ,(p).

Observe that δ∗µ depends on the chosen discrete geometry µ while δ

does not. Since in the above definition α is antisymmetric, and therefore

α(ζ, w,v) = 0 if w = vj or w = −vj for some j = 1, . . . , p, the integral

can be restricted to the set V \ {±v1, . . . ,±vp}. More precisely, using the

shorthand notation V \ ±v for the latter, the following holds:

δ∗µ,(p)α(ζ,v) :=
1

2

∫
V \±v

D?,(p+1)
w α (ζ, w,v) µ(dw) . (3.11)

Moreover it will be convenient in the sequel to have the representation

δ∗µ,(p)α(ζ,v) = (3.12)

=
1

2(p+ 1)

p+1∑
j=1

(−1)j+1

∫
V \±v

D?,(p+1)
w α(ζ,v+(w,j)) µ(dw) .

Recalling that µ is purely atomic we also get

δ∗µ,(p)α(ζ,v) :=
1

2

∑
w∈E\±v

D?,(p+1)
w α (ζ, w,v) µ({w}) . (3.13)
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Remark 3.9. Observe that for every lattice graph Λµ and α ∈ L2
a(M ×

V p,Λµ) the expressions δα and δ∗µα are well-defined (i.e. independent of

the chosen representative). Moreover the translation invariance of dΛ gives

δα ∈ L2
a(M × V p+1,Λµ) and δ∗µα ∈ L2

a(M × V p−1,Λµ). More precisely

‖δα‖(p+1)
Λµ

≤ 2(p+ 1)
∑
v∈E

µ({v}) ‖α‖(p)Λµ

and

‖δ∗µα‖(p−1)
Λµ

≤ ‖α‖(p)Λµ
.

Proposition 3.10.

For every p ∈ N0, every lattice graph Λµ and α ∈ L2
a(M × V p,Λµ),

β ∈ L2
a(M × V p+1,Λµ)

〈δ(p)α, β〉(p+1)
Λµ

= 〈α, δ∗µ,(p)β〉(p)Λµ
.

Proof. First observe that if γ ∈ L2(M×V p+1,Λµ) and β ∈ L2
a(M×V p+1,Λµ),

then

∫
M×V p+1

(Alt γ) β dΛ⊗ µp+1 =

∫
M×V p+1

γ β dΛ⊗ µp+1

and also∫
M×V p+1

τ∗
(

(Alt γ) β
)
dΛ⊗ µp+1 =

∫
M×V p+1

τ∗
(
γ β

)
dΛ⊗ µp+1 .

It follows that

〈δ(p)α, β〉(p+1)
Λµ

=
1

(p+ 1)!2p+1

∫
M×V p+1

τ∗
(

(δ(p)α) β
)
dΛ⊗ µp+1 =

=
p+ 1

(p+ 1)!2p+1

∫
M×V p+1

τ∗
(

(D(p)α) β
)
dΛ⊗ µp+1 .
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So, using the invariance of dΛ under the action of E, one gets

〈δ(p)α, β〉(p+1)
Λµ

=

=
1

p!2p+1

∫
M×V p+1

[
α(ζ + w1/2 + w/2,w−(1))− α(ζ − w1/2 + w/2,w−(1))

]
β(ζ + w/2,w) Λ(dζ)⊗ µp+1(dw) =

=
1

p!2p

∫
M×V p

α(ζ + u/2,u)

[
− 1

2

∫
V
β(ζ + w/2 + u/2, w,u)− β(ζ − w/2 + u/2, w,u) µ(dw)

]
Λ(dζ)⊗ µp(du)

= 〈α, δ∗µ,(p)β〉(p)Λµ
.

�

Remark 3.11. Let α, β be as above and - say - continuous and compactly

supported with respect to the space variable ζ. Then the previous proposi-

tion continues to be valid also by taking instead of dΛ a Lebesgue measure

(invariant with repect to all translations) on M or more generally any Borel

measure which is invariant with respect to E-translations.

Remark 3.12. The subscript Λµ attached to a formal operator on p-functions

will indicate that we consider it as an operator in the L2 space corresponding

to the lattice graph Λµ. More precisely, for every p ∈ N0 and lattice graph

Λµ we set

δ
(p)
Λµ

: L2
a(M × V p,Λµ)→ L2

a(M × V p+1,Λµ)

and

δ
∗µ,(p)
Λµ

: L2
a(M × V p+1,Λµ)→ L2

a(M × V p,Λµ)

by restricting respectively δ(p) to L2
a(M × V p,Λµ) and δ∗µ,(p) to L2

a(M ×
V p+1,Λµ). This is well defined by Remark (3.9). Both δ

(p)
Λµ

and δ
∗µ,(p)
Λµ

are

bounded, and Proposition 3.10 is equivalent to the statement that δ
∗µ,(p)
Λµ

is

the adjoint of δ
(p)
Λµ

for every p ∈ N0 and lattice graph Λµ.

Proposition 3.13 (Complex property for δ∗µ).

For every p ∈ N0

δ∗µ,(p)δ∗µ,(p+1) ≡ 0 .
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Proof. As in the case of the complex property of δ (see Proposition 2.6), the

complex property of δ∗µ is a consequence of the “Schwarz Lemma”,

D2,(p)
w1,w2

= D2,(p)
w1,w2

,

valid for every (w1, w2) ∈ V 2. This implies for an alternating α

D2,(p)
w1,w2

α(ζ, w2, w1,v) = −D2,(p)
w2,w1

α(ζ, w1, w2,v) .

Therefore

δ∗µ,(p)δ∗µ,(p+1) α(ζ,v) =

= −1

2

∫
V
D(p+1)
w1

δ∗µ,(p+1)α (ζ, w1,v) µ(dw1) =

= −1

2

∫
V
D(p+1)
w1

(
− 1

2

∫
V
D(p+2)
w2

α (ζ, w2, w1,v) µ(dw2)
)
µ(dw1) =

=
1

4

∫
V 2

D2,(p)
w1,w2

α (ζ, w2, w1,v) µ(dw1)⊗ µ(dw2) = 0 .

�

Remark 3.14. The complex property for δ∗µ could also be derived from the

complex property of δ (see Prop. 2.6) and from Prop. 3.10.

Remark 3.15. A simple geometric interpretation can also be given for δ∗µ.

In fact, from the discussion on oriented cells and their boundaries given in

Remark 2.7 it follows that δ∗µ,(p)α(ζ,v) equals the sum of the weighted values

of α on the oriented p + 1-cells having the p-cell Cellsign(ζ, [v]) as part of

their boundary. So δ∗µ,(0) resembles the usual discrete divergence operator,

which sums over the incoming edges at a point.
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4. The discrete Hodge Laplacian Lµ

In this section we introduce on an affine space with discrete geometry a

Hodge-type Laplacian acting on the algebra of antisymmetric functions.

Definition 4.1 (Discrete Hodge Laplacians).

Let M be an n-dimensional affine space and µ a discrete geometry. For

p ∈ N0 the p-th (formal) discrete Hodge Laplacian L(p)
µ : Fa(M × V p) →

Fa(M × V p) is defined by setting

L(p)
µ := δ∗µ,(p)δ(p) + δ(p−1)δ∗µ,(p−1) .

Moreover we let Lµ := ⊕∞p=0L
(p)
µ

The following proposition gives a representation of L(p)
µ which is analogous

to the representation of the standard infinitesimal Hodge Laplacian in Eu-

clidean space, expressing exact equality between the Hodge Laplacian and

the covariant Laplacian. We state the proposition in a compact notation,

which will be particularly useful in later, more involved sections, exploiting

the trace operator with respect to a discrete geometry µ. More precisely,

given P := {Pw1,w2}w1,w2∈V with Pw1,w2 : F (M × V p) → F (M × V p) for

every w1, w2 ∈ V we define

Tr(p)
µ P : F (M × V p)→ F (M × V p)

by setting

Trµ P α (ζ,v) :=
1

2

∫
V
Pw,w α (ζ,v) µ(dw) . (4.1)

Observe that if for every w1, w2 ∈ V the operator Pw1,w2 leaves invariant

the space of alternating functions, then so does Trµ P .

Proposition 4.2.

For every discrete geometry µ on M the discrete Hodge Laplacian is given

by

Lµ = TrµD?D .
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More explicitly we have

L(p)
µ α (ζ,v) = −1

2

∫
V
D2,(p)
w,w α(ζ,v) µ(dw) =

=
1

2

∫
V

[
2α(ζ,v)− α(ζ + w,v)− α(ζ − w,v)

]
µ(dw) =

=
1

2

∑
w∈E

[
2α(ζ,v)− α(ζ + w,v)− α(ζ − w,v)

]
µ({w}) .

The second equality above follows from (2.5), the third from the definition

of µ.

By symmetry one also gets

L(p)
µ α (ζ,v) =

∫
V

[
α(ζ,v)− α(ζ + w,v)

]
µ(dw) .

Remark 4.3. The previous proposition states in particular that L(p)
µ is a

scalar operator. Here we call an operator T : F (M × V p)→ F (M × V p)

a scalar operator if there exists an operator T0 : F (M) → F (M) such that

for every α ∈ F (M ×V p), v ∈ V p, denoting by αv the function ζ 7→ α(ζ,v)

one has

Tα (ζ,v) = T0αv(ζ) for every ζ ∈M .

Otherwise we say that T is a matrix operator.

Proof of Proposition 4.2. This is a straightforward computation. We give

here the details for completeness.

Recalling (see (2.7) and (3.12)) that

δ(p)α (ζ,v+(w,j)) =

p+1∑
l=1

(−1)l+1 Dvl α(ζ,v+(w,j)
−(l)

)

and

δ∗µ,(p)α(ζ,v) =
1

2(p+ 1)

p+1∑
j=1

(−1)j+1

∫
V \±v

D?w α(ζ,v+(w,j)) µ(dw)
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one gets

δ∗µ,(p)δ(p) α(ζ,v) =
1

2(p+ 1)

p+1∑
l,j=1

(−1)j+l
∫
V \±v

D?wD(v+(w,j))l α(ζ,v+(w,j)
−(l)

) µ(dw) =

=
1

2(p+ 1)

p+1∑
j

∫
V \±v

D?wDw α(ζ,v) µ(dw) +

+
1

2(p+ 1)

p+1∑
j,l=1
j<l

(−1)j+l
∫
V \±v

D?wD(v+(w,j))l α(ζ,v+(w,j)
−(l)

) µ(dw) +

+
1

2(p+ 1)

p+1∑
j,l=1
j>l

(−1)j+l
∫
V \±v

D?wD(v+(w,j))l α(ζ,v+(w,j)
−(l)

) µ(dw) .

Using that

α(ζ,v+(w,j)
−(l)

) =


(−1)j α(ζ,v+(w,1)

−(l+1)

) if j > l

(−1)j+1 α(ζ,v+(w,1)
−(l)

) if j < l

gives

δ∗µ,(p)δ(p) α(ζ,v) =
1

2

∫
V \±v

D?wDw α(ζ,v) µ(dw) +

+
1

2(p+ 1)

p+1∑
l=2

l−1∑
j=1

(−1)l+1

∫
V \±v

D?wDvl−1
α(ζ,v+(w,1)

−(l)

) µ(dw) + (4.2)

+
1

2(p+ 1)

p∑
l=1

p+1∑
j=l+1

(−1)l
∫
V \±v

D?wDvl α(ζ,v+(w,1)
−(l+1)

) µ(dw) .

A change of the summation variable in the summand (4.2) yields

1

2(p+ 1)

p+1∑
l=2

l−1∑
j=1

(−1)l+1

∫
V \±v

D?wDvl−1
α(ζ,v+(w,1)

−(l)

) µ(dw) =

=
1

2(p+ 1)

p∑
l=1

l∑
j=1

(−1)l
∫
V \±v

D?wDvl α(ζ,v+(w,1)
−(l+1)

) µ(dw) ,

so

δ∗µ,(p)δ(p) α(ζ,v) =
1

2

∫
V \±v

D?wDw α(ζ,v) µ(dw) +

+
1

2

p∑
l=1

(−1)l
∫
V \±v

D?wDvl α(ζ,v+(w,1)
−(l+1)

) µ(dw) .
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Similarly, recalling that

δ∗µ,(p−1)α(ζ,v−(l)) =
1

2p

p∑
j=1

(−1)j+1

∫
V \±v−(l)

D?w α(ζ,v −(l)
+(w,j)

) µ(dw)

δ(p−1)α (ζ,v) =

p∑
l=1

(−1)l+1 Dvl α(ζ,v−(l))

and observing that V \ ±v−(l) = {vl,−vl} ∪ V \ ±v, we get

δ(p−1)δ∗µ,(p−1)α(ζ,v) =
1

2p

p∑
j,l=1

(−1)j+l
∫
V \±v−(l)

DvlD
?
w α(ζ,v −(l)

+(w,j)

) µ(dw) =

=
1

2p

p∑
j=1

p∑
l=1

(−1)j+l
{
DvlD

?
vl
α(ζ,v −(l)

+(vl,j)

) µ({vl}) +DvlD
?
−vl α(ζ,v −(l)

+(−vl,j)
) µ({vl})

}
+

+
1

2p

p∑
j,l=1
j≤l

(−1)j+l
∫
V \±v

DvlD
?
w α(ζ,v −(l)

+(w,j)

) µ(dw) +

+
1

2p

p∑
j,l=1
j>l

(−1)j+l
∫
V \±v

DvlD
?
w α(ζ,v −(l)

+(w,j)

) µ(dw) .

Using

α(ζ,v −(l)
+(vl,j)

) = (−1)j+lα(ζ,v)

for the first summand and

α(ζ,v −(l)
+(w,j)

) =


(−1)j+1 α(ζ,v+(w,1)

−(l+1)

) if j > l

(−1)j+1 α(ζ,v+(w,1)
−(l+1)

) if j ≤ l

for the second and third summands gives
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δ(p−1)δ∗µ,(p−1)α(ζ,v) =
1

2

∫
±v
DwD?w α(ζ,v) µ(dw) +

+
1

2p

p∑
j=1

p∑
l=j

(−1)l+1

∫
V \±v

DvlD
?
w α(ζ,v+(w,1)

−(l+1)

) µ(dw) +

+
1

2p

p∑
j=1

j−1∑
l=1

(−1)l+1

∫
V \±v

DvlD
?
w α(ζ,v+(w,1)

−(l+1)

) µ(dw) =

=
1

2

∫
±v
DwD?w α(ζ,v) µ(dw) +

− 1

2

p∑
l=1

(−1)l
∫
V \±v

DvlD
?
w α(ζ,v+(w,1)

−(l+1)

) µ(dw) .

�

A fundamental property of the Hodge Laplacian is that it commutes with

its differential.

Proposition 4.4 (Intertwining relations).

For every p ∈ N0, α ∈ Fa(M × V p)

L(p+1)
µ δ(p)α = δ(p)L(p)

µ α

and for every α ∈ Fa(M × V p+1)

L(p)
µ δ∗µ,(p)α = δ∗µ,(p)L(p+1)

µ α .

Proof. This is an immediate consequence of the definition of L(p)
µ and the

complex properties stated in Propositions 2.6 and 3.13. �

Observe that for every lattice graph Λµ and for every p ∈ N0

α ∈ L2
a(M × V p,Λµ) ⇒ L(p)

µ α is well-defined in L2
a(M × V p,Λµ) .

The restriction of L(p)
µ to L2

a(M × V p,Λµ) will be denoted by L(p)
Λµ

. Recall

from Remark 3.5 that L2
a(M × V p,Λµ) = {0} if p > N , where N ≥ n is the

size of µ.
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Remark 4.5. In coordinates adapted to Λµ (see page 55) one has for every

I ∈Mp
N and x ∈ Zn

(
L(p)

Λµ
α
)
I

(x) = L(0)
Λµ

αI (x) =
N∑
j=1

µj [ 2αI(x)−αI(x+ej)−αI(x−ej) ] ,

where µj := µ({ej}) in accordance with the definition given in (3.8).

Proposition 4.6.

Let M be an n-dimensional affine space with discrete geometry µ of size

N ≥ n and let p = 0, . . . , N . Then for every lattice graph Λµ the operator

L(p)
Λµ

is bounded, selfadjoint and positive. Moreover there exists a constant

Kµ > 0 independent of Λ, s.t.

Spec(L(p)
Λµ

) = [0,Kµ] .

In the case N = n

Kµ = 2
∑
v∈E

µ(v) = 4
n∑
j=1

µj .

Proof. Boundedness follows from the fact that translations are bounded op-

erators. Selfadjointness follows immediately from the definition of Lµ and

from Proposition 3.10. Moreover

〈α,Lµα〉Λµ = ‖δα‖2Λµ + ‖δ∗µα‖2Λµ ≥ 0 ,

so L(p)
Λµ

is positive. The statement regarding the spectrum is obtained by

passing to the Fourier representation and analyzing the range of the symbol

of LΛµ .

�
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5. Inhomogeneous discrete geometries

In this section we generalize the previous discussions by introducing a

weight function ρ on M describing possible inhomogeneities in space and

thus possibly breaking the translation invariance.

More precisely we consider here an n-dimensional affine space M together

with a discrete geometry µ and a function ρ : M → (0,∞). We call the

couple (µ, ρ) an inhomogeneous discrete geometry and write for short

ρµ.

As in the homogeneous case, once an inhomogeneous geometry ρµ is given,

a corresponding notion of lattice graph can be introduced. The only differ-

ence with the homogeneous case is that now also the vertices of the graph

have a weight attached, given precisely by ρ. More formally, we call Λρµ a

lattice graph (in M associated to ρµ) if it is a weighted undirected graph

with the following properties: its vertices Λ are the elements of an equiva-

lence class in M under the relation ∼Γ. The weight of the vertex ζ ∈ Λ is

defined to be ρ(ζ). A pair {ζ, η} of vertices is an edge if and only if there

exists an e ∈ E such that ζ = η + e. The weight of this edge is defined to

be µ({e}).

Definition 5.1 (Weighted scalar products).

Let M be an n-dimensional affine space with inhomogeneous discrete ge-

ometry ρµ. For every p ∈ N0 and lattice graph Λρµ, define ‖ · ‖(p)Λρµ
:

F (M × V p)→ [0,∞] by setting

‖α‖(p)Λρµ
:= ‖√ρα‖(p)Λµ

.

On L2(M×V p,Λρµ) := {α ∈ F (M×V p) : ‖α‖(p)Λρµ
<∞} the (degenerate)

scalar product 〈·, ·〉(p)Λρµ
is defined via

〈α, β〉(p)Λρµ
:= 〈α, ρβ〉(p)Λµ

.

As before we will henceforth consider L2(M × V p,Λρµ) as a set of equiv-

alence classes of functions, and set

L2
a(M × V p,Λρµ) := L2(M × V p,Λρµ)

⋂
Fa(M × V p)

and

L2
s(M × V p,Λρµ) := L2(M × V p,Λρµ)

⋂
Fs(M × V p) .
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The operator δ∗ρµ.

The metric distorsion through the inhomogeneity ρ leads to a distorted

adjoint operator of δ.

Definition 5.2.

Let M be an affine space with inhomogeneous discrete geometry ρµ. For

p ∈ N0 define the formal operator δ∗ρµ,(p) : Fa(M × V p+1) → Fa(M × V p)

by setting

δ∗ρµ,(p) α(ζ,v) :=
1

ρ(ζ)
δ∗µ,(p)[ρα](ζ,v) .

Moreover let δ∗ρµ := ⊕∞p=0δ
∗ρµ,(p).

It will be convenient to introduce the notation

D?ρ,(p) :=
1

ρ
D?,(p) ρ . (5.1)

As usual we shall drop the superscript (p) when the corresponding direct

sum is considered.

The following three more explicit expressions for δ∗ρµ,(p) are a direct con-

sequence of the analogous formulae (3.11),(3.12) and (3.13) for δ∗µ,(p).

δ∗ρµ,(p) α(ζ,v) =
1

2

∫
V \±v

D?ρ,(p+1)
w α (ζ, w,v) µ(dw) ,

δ∗ρµ,(p) α(ζ,v) = (5.2)

=
1

2(p+ 1)

p+1∑
j=1

(−1)j+1

∫
V \±v

D?ρ,(p+1)
w α (ζ,v+(w,j)) µ(dw)

and

δ∗ρµ,(p) α(ζ,v) =
1

2

∑
w∈E\±v

D?ρ,(p+1)
w α (ζ, w,v) µ({w}) .
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The analogue to Proposition 3.10 is given by the following. Here it is

convenient to introduce spaces of functions with compact support. More

precisely we let

F0,a(M × V p) :=

{α ∈ Fa(M × V p) : ∃ a compact K ⊂M s.t. α(ζ,v) = 0 ∀ζ ∈ Kc,v ∈ V p} .

Proposition 5.3.

Let p ∈ N0 and α ∈ Fa(M × V p), β ∈ Fa(M × V p+1). If at least one of α

and β has compact support then

〈δ(p)α, β〉(p+1)
Λρµ

= 〈α, δ∗ρµ,(p) β〉(p)Λρµ
.

Proof. This follows immediately from Prop. 3.10. Indeed

〈δ(p)α, β〉(p+1)
Λρµ

= 〈δ(p)α, ρβ〉(p+1)
Λµ

=

= 〈α, δ∗µ,(p)[ρβ]〉(p)Λρµ
= 〈α, δ∗ρµ,(p) β〉(p)Λρµ

.

�

In accordance with Remark 3.12 we attach the subscript Λρµ to δ and

δ∗ρµ,(p) if we consider them as operators in the L2 space corresponding to

the (inhomogeneous) lattice graph Λρµ. More precisely, for every lattice

graph Λρµ and for p ∈ N0 we define

δ
(p)
Λρµ

: F0,a(M × V p)→ L2
a(M × V p+1,Λρµ)

and

δ
∗ρµ,(p)
Λρµ

: F0,a(M × V p+1)→ L2
a(M × V p,Λρµ)

by restricting respectively δ(p) to F0,a(M × V p) and δ∗ρµ,(p) to F0,a(M ×
V p+1). Here (and in the sequel) we do not distinguish between F0,a(M×V p)

and the set of its equivalence classes under the equivalence relation induced

by ‖ · ‖Λρµ . Observe that δ
(p)
Λρµ

and δ
∗ρµ,(p)
Λρµ

are densely defined. In general

they are unbounded. The previous proposition affirms that they are formally

adjoint for every p ∈ N0 and lattice graph Λρµ.

As an immediate consequence of Proposition 3.13 we also have

Proposition 5.4 (Complex property for δ∗ρµ).

For every p ∈ N0

δ∗ρµ(p) δ∗ρµ(p+1) ≡ 0 .
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6. The inhomogeneous discrete Hodge Laplacian Lρµ

We introduce a Hodge-type Laplacian acting on the algebra of antisym-

metric functions in the case of an underlying inhomogeneous discrete geom-

etry.

Definition 6.1 (Discrete Hodge Laplacians: inhomogeneous case).

Let M be an n-dimensional affine space and ρµ an inhomogeneous discrete

geometry. For p ∈ N0 the p-th (formal) discrete Hodge Laplacian L(p)
ρµ :

Fa(M × V p)→ Fa(M × V p) is defined by setting

L(p)
ρµ := δ∗ρµ(p)δ(p) + δ(p−1)δ∗ρµ(p−1) .

Moreover we let Lρµ := ⊕∞p=0L
(p)
ρµ .

The following Proposition 6.2 gives a representation of Lρµ which splits

it into two parts: one acting as a scalar operator and another acting as a

matrix. The scalar term is described in terms of the trace operator, defined

in (4.1). The matrix term is described most conveniently by introducing the

following operations.

Given P := {Pw1,w2}w1,w2∈V 2 with Pw1,w2 : F (M) → F (M) for every

w1, w2 ∈ V , we define for every discrete geometry µ the operator

P ]µ : F (M × V )→ F (M × V )

by setting (
P ]µ α

)
v

:=
1

2

∫
V
Pv,w αw µ(dw) . (6.1)

Moreover, every A : F (M × V ) → F (M × V ) induces for every p ∈ N∗
a dΓ (p)A : F (M × V p) → F (M × V p) defined in the following way. Given

α ∈ F (M × V p), j = 1, . . . , p and v ∈ V p−1, denote by αv,j the 1-function

(ζ, w) 7→ α(ζ, v1, . . . , vj−1, w, vj , . . . , vp−1) .

Then (
dΓ (p)A α

)
v

:=

p∑
j=1

(
A αv−j ,j

)
vj

. (6.2)

In particular dΓ (1)A = A. For convenience we set dΓ (0)A to be zero and

define dΓA := ⊕∞p=0 dΓ
(p)A. Notice the identity

(
dΓ (p)A α

)
v

=

p∑
j=1

(−1)j+1
(
A αv−j ,1

)
vj
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and observe that in the case A = P ]µ, with P := {Pw1,w2}w1,w2∈V 2 and

Pw1,w2 : F (M)→ F (M) for every w1, w2 ∈ V , one gets the expression(
dΓ (p)A α

)
v

=

p∑
j=1

(−1)j+1 1

2

∫
V
Pvj ,w αw,v−j µ(dw) .

Finaly, assume given p ∈ N0, P := {Pw}w∈V and Q := {Qw}w∈V with

Pw, Qw : F (M ×V p)→ F (M ×V p) for every w ∈ V . Then the commutator

[P,Q] := {[P,Q]w1,w2}w1,w2∈V ,

[P,Q]w1,w2 : F (M × V p)→ F (M × V p)

for every (w1, w2) ∈ V 2, is defined by setting

[P,Q]w1,w2 := Pw1Qw2 − Qw2Pw1 .

Recall that in (5.1) we defined D?ρ := 1
ρ D

? ρ.

Proposition 6.2.

For every inhomogeneous discrete geometry ρµ on M the discrete Hodge

Laplacian is given by

Lρµ = Trµ D?ρD + dΓ [D,D?ρ] ]µ .

More explicitly we have for α ∈ Fa(M × V p)

Trµ D?ρD α (ζ,v) =
1

2

∫
V
D?ρw Dw α (ζ,v) µ(dw)

and in the case p = 1

[D,D?ρ] ]µ α (ζ, v) =
1

2

∫
V

[
DvD?ρw −D?ρw Dv

]
α (ζ, w) µ(dw) .

So, on the level of 1-functions, Proposition 6.2 gives

L(1)
ρµ α (ζ, v) =

=
1

2

∫
V
D?ρw Dw α (ζ, v) µ(dw) +

1

2

∫
V

[
DvD?ρw −D?ρw Dv

]
α (ζ, w) µ(dw) .

Before giving the proof of Proposition 6.2, we collect in the following two

remarks some further useful representations of Lρµ, which are a consequence

of it.

For this purpose we use the following notation, which will be useful also

in the sequel.
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Given P := {Pw1,w2}w1,w2∈V 2 and a := {aw1,w2}w1,w2∈V 2 with Pw1,w2 :

F (M × V p) → F (M × V p) and with aw1,w2 ∈ F (M) for every w1, w2 ∈ V ,

we define aP := {aPw1,w2}w1,w2∈V 2 , with aPw1,w2 : F (M×V p)→ F (M×V p)

by setting for α ∈ F (M × V p)(
aPw1,w2 α

)
v

(x) = aw1,w2(x)
(
Pw1,w2 α

)
v

(x) .

Moreover, we define for every s ∈ {−1, 1}2

Ps := {Ps1w1,s2w2}w1,w2∈V 2 .

Remark 6.3. It follows from Proposition 6.2 using (2.4) that

Lρµ =
∑

s∈{−1,1}2
sign(s)

{
Trµ (aρT 2)s + dΓ (āρT 2)s

]µ
}

,

where aρ := {aρ;w1,w2}w1,w2∈V 2, āρ := {āρ;w1,w2}w1,w2∈V 2 and aρ;w1,w2 , āρ;w1,w2 ∈
F (M) are given by

aρ;w1,w2 := − 1

ρ
Tw1 ρ i.e. aρ;w1,w2(ζ) = − ρ(ζ + w1/2)

ρ(ζ)

and

āρ;w1,w2 := Tw1aρ;w2,w1 − aρ;w2,w1 .

Note that aρ;w1,w2 does in fact not depend on w2.

Remark 6.4. Let

rρ,w := −aρ,w,w =
Twρ
ρ

i.e. rρ,w(ζ) =
ρ(ζ + w/2)

ρ(ζ)
. (6.3)

A simple computation gives

Trµ D?ρD α (ζ,v) =

∫
V
rρ,w(ζ)

[
α(ζ,v)− α(ζ + w,v)

]
µ(dw) .

It follows from Proposition 6.2 that for every α ∈ F (M)

L(0)
ρµ α (ζ) =

∫
V
rρ,w(ζ)

[
α(ζ)− α(ζ + w)] µ(dw) .

Proof of Proposition 6.2. This is a straightforward computation, analogous

to the one shown in the proof of Proposition 4.2.

72



Indeed, proceeding exactly as in the proof of Proposition 4.2 with D?ρ
instead of D? gives

δ∗ρµ(p)δ(p) α(ζ,v) =
1

2

∫
V \±v

D?ρw Dw α (ζ,v) µ(dw) +

− 1

2

p∑
l=1

(−1)l+1

∫
V \±v

D?ρw Dvl α (ζ,v+(w,1)
−(l+1)

) µ(dw)

and

δ(p−1)δ∗ρµ,(p−1)α(ζ,v) =
1

2

∫
±v
DwD?ρw α (ζ,v) µ(dw) +

+
1

2

p∑
l=1

(−1)l+1

∫
V \±v

DvlD
?ρ
w α (ζ,v+(w,1)

−(l+1)

) µ(dw) ,

i.e.

L(p)
ρµ α (ζ,v) = δ∗ρµ(p)δ(p) α(ζ,v) + δ(p−1)δ∗ρµ,(p−1)α(ζ,v) =

=
1

2

∫
V
D?ρw Dw α (ζ,v) µ(dw) +

+
1

2

∫
±v

[
DwD?ρw −D?ρw Dw

]
α (ζ,v) µ(dw) +

+
1

2

p∑
l=1

∫
V \±v

(−1)l+1
[
DvlD

?ρ
w −D?ρw Dvl

]
α (ζ,v+(w,1)

−(l+1)

) µ(dw) .

This gives the desired result, by observing that(
dΓ [D,D?ρ] ]µ α

)
v

=
1

2

∫
V

p∑
j=1

(−1)j+1 [DvjD?ρw −D?ρw Dvj ] αw,v−j µ(dw) =

=
1

2

p∑
j=1

∫
V \±v

(−1)j+1
[
DvjD?ρw −D?ρw Dvj

]
αv+(w,1)
−(j+1)

µ(dw) +

+
1

2

p∑
j=1

p∑
l=1

{ [
DvjD?ρvl −D

?ρ
vl
Dvj

]
αv+(vl,1)
−(j+1)

−
[
DvjD

?ρ
−vl −D

?ρ
−vlDvj

]
αv+(vl,1)
−(j+1)

}
=

=
1

2

p∑
j=1

∫
V \±v

(−1)j+1
[
DvjD?ρw −D?ρw Dvj

]
αv+(w,1)
−(j+1)

µ(dw) +

+
1

2

∫
±v

[
DwD?ρw −D?ρw Dw

]
αv µ(dw) .

�
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Observe that the intertwining relations for the Hodge Laplacian, estab-

lished in Prop. 4.4 for the homogeneous case, continue to hold in the in-

homogeneous case thanks to Prop. 5.4. More precisely we have for every

p ∈ N0, α ∈ Fa(M × V p)

L(p+1)
ρµ δ(p) α = δ(p) L(p)

ρµ α

and for every α ∈ Fa(M × V p+1)

L(p)
ρµ δ∗ρµ(p) α = δ∗ρµ(p) L(p+1)

ρµ α .

Consider the restriction L(p)
0,ρµ of L(p)

ρµ on F0,a(M ×V p), the space of alter-

nating p-functions with compact support. By definition of L(p)
ρµ and Propo-

sition 5.3, L(p)
0,ρµ is a well-defined nonnegative and symmetric operator in

L2
a(M ×V p,Λρµ) for every lattice graph Λρµ. In general L(p)

0,ρµ is unbounded

and may be even not essentially selfadjoint.27 A canonical selfadjoint exten-

sion is given by the Friedrichs extension (see [88] Vol.II, Theorem X.23).

Definition 6.5. For every lattice graph Λρµ we denote by L(p)
Λρµ

the Friedrichs

extension of L(p)
0,ρµ, considered as an operator in L2

a(M×V p,Λρµ). Moreover

we set LΛρµ := ⊕∞p=0 L
(p)
Λρµ

.

Recall that the Friedrichs extension is constructed via the associated sym-

metric bilinear form

F0,a(M × V p) 3 α, β 7→ 〈α,L(p)
ρµ β〉

(p)
Λρµ

,

whose closure28 we shall denote by E(p)
Λρµ

, with domainD(E(p)
Λρµ

). The Friedrichs

extension is then characterized by the property that for α, β ∈ D(E(p)
Λρµ

)

E(p)
Λρµ

(α, β) = 〈
√
L(p)

Λρµ
α,
√
L(p)

Λρµ
β〉(p)Λρµ

. (6.4)

Observe that L(p)
Λρµ

is a nonnegative, selfadjoint and in general unbounded

operator in L2
a(M × V p,Λρµ). Moreover it agrees on its domain D(L(p)

Λρµ
)

27Take dimension n = 1, a nearest neighbour discrete geometry µ and fix a lattice

Λ. Take the inhomogeneity ρ satisfying ρ(ζ) = 1
ζ2 for large ζ ∈ Λ and ρ(ζ + v/2) = ζ3

for large ζ ∈ Λ and for every v with µ({v}) > 0. Then one can show that L(0)
Λρµ

is not

essentially selfadjoint. For more details see [20], in particular Example 5.3.1.
28A bilinear form arising from a nonegative symmetric operator is always closable, see

[88] Vol.II, Theorem X.23 for the abstract result, or [63] in our concrete setting.
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with the formal operator, i.e. for every α ∈ D(L(p)
Λρµ

)

L(p)
Λρµ

α = L(p)
ρµ α . (6.5)

To see this observe that for every test function ϕ ∈ F0,a(M ×V p), dropping

for notational simplicity the superscripts (p), we have

〈LΛρµα,ϕ〉Λρµ = 〈α,LΛρµϕ〉Λρµ = 〈α,L0,ρµϕ〉Λρµ = 〈Lρµα,ϕ〉Λρµ ,

where in the last equality Proposition 5.3 was used.

By means of the spectral theorem one can check that L(p)
Λρµ

generates an

analytic contraction semigroup of angle π/2 on L2
a(M × V p,Λρµ), which we

shall denote by

t 7→ e
−tL(p)

Λρµ . (6.6)

For more details on this see for example [31], in particular Example 3.27

and Corollary 4.7 therein.
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7. Probabilistic interpretation of L(0)
ρµ

Assume given an inhomogeneous discrete geometry ρµ. In the present

section we focus our attention on L(0)
ρµ , the restriction of the discrete Hodge

Laplacian to the level of functions. We shall consider the families of gener-

ators { L(0)
Λρµ
}, of semigroups {t 7→ e

−tL(0)
Λρµ} and of bilinear forms { E(0)

Λρµ
}

indexed by the set of lattice graphs corresponding to ρµ, as defined in Defi-

nition 6.5 and in (6.4), (6.6).

In the first subsection we will state some basic properties linked to the

Markovian character of these families. In particular each E(0)
Λρµ

turns out to be

a regular Dirichlet form (see Proposition (7.4)); each semigroup t 7→ e
−tL(0)

Λρµ

is Markovian, irreducible (see Remark 7.5) and is obtained through an

approximation involving a sequence of compacta exhausting M (see Re-

mark 7.6).

In the second subsection we introduce the (in general substochastic) tran-

sition function P ρµ induced by the discrete geometry ρµ (see (7.18)).29 As-

suming that the transition function is stochastic, i.e. no loss of mass occurs,

we shall associate to it a Markovian family of probability measures (Pρµζ ) on

a suitable path space 30, see (7.21). Its link to the operator L(0)
Λρµ

is made

explicit in formula (7.22). The corresponding canonical Markov process

evolves in continuous time and is of pure jump type.

The considerations in this section are known or even standard. Moreover

they are not strictly needed for the subsequent sections. Nevertheless it is

useful to clarify the probabilistic framework in the present context and to

29We use here the following standard terminology: a function P : [0,∞) × A × A →
[0,∞) is a (time-homogeneous) substochastic transition function on the measurable space

(A,A) if

(i) (t, ζ) 7→ P (t, ζ, ·) is a measure with P (t, ζ, A) ≤ 1 for every t ∈ (0,∞), ζ ∈ A.

(ii) (t, S) 7→ P (t, ·, S) is measurable for every t ∈ [0,∞), S ∈ A
(iii) P (t+ s, ζ, S) =

∫
A
P (t, ζ, dη) P (s, η, S) for every t, s ∈ [0,∞), ζ ∈ A and S ∈ A

If equality holds in (i) P is called stochastic.
30In fact there are standard procedures to associate a Markovian family to the transition

function even in the more general substochastic case. A way is to extend the state space

to the set M ∪ † where the additional point † represents the “cemetery” for the process.

We restrict to the nonexplosive (i.e. stochastic) case to avoid unnecessary technical and

notational complications.
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fix some notation for occasional reference to it. Indeed the main motiva-

tion for this work and most of the heuristics behind it originate from this

probabilistic metaphor. We follow here basically [62],[63] for the considera-

tions concerning Dirichlet forms. For more background on continuous time

Markov chains see also [74], [84], [93] and [16].

Remark 7.1. An analogous probabilistic interpretation for L(p)
Λρµ

in the case

p > 0 is not attempted in this work and postponed to subsequent research.

For probabilisitc interpretations of (inhomogeneous) Hodge Laplacians in

continuous space setting and p > 0 we refer the reader to [99]. See also [56].

Markovian properties of L(0)
Λρµ

, t 7→ e
−tL(0)

Λρµ and E(0)
Λρµ

.

Fix an inhomogeneous discrete geometry ρµ on the affine space M . Recall

that in (6.3) we defined for ζ ∈M and v ∈ V

rρ(ζ, v) :=
ρ(ζ + v/2)

ρ(ζ)
.

We shall henceforth refer to rρ(ζ, v) µ({v}) as the (jump) rate from ζ to

ζ + v induced by the discrete geometry ρµ. By Remark 6.4

L(0)
ρµ α (ζ) =

∫
V
rρ(ζ, w)

[
α(ζ)− α(ζ + w)] µ(dw) . (7.1)

Remark 7.2. Observe that the jump rates obey the following detailed bal-

ance condition with respect to ρ: for every ζ ∈M and v ∈ V

ρ(ζ) rρ(ζ, v) µ({v}) = ρ(ζ + v) rρ(ζ + v,−v) µ({−v}) . (7.2)

We shall also introduce some notation making precise the notion of being

local with respect to the discrete geometry µ. Given ζ0 ∈M , we denote by

Uµ(ζ0) the set of neighbours of ζ0 relative to µ: i.e. ζ ∈ Uµ(ζ0) if and only

if µ({ζ − ζ0}) > 0. We say that a property holds µ-locally at ζ0 ∈ M if it

holds true for every ζ ∈ Uµ(ζ0).

An important feature of L(0)
ρµ is expressed by the following (versions of

the) minimum principle. First of all, since the jump rates are nonnegative,

it is clear by looking at (7.1) that for α : M → R{
ζ0 is a µ-local minimum of α

}
=⇒ Lρµα (ζ0) ≤ 0 . (7.3)
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Indeed, the following refinement is easily seen to hold true. Let ζ0 be a

µ-local minimum of α. Then we have the two implications{
ζ0 also is a µ-local maximum of α (i.e. α is locally constant at ζ0)

}
(7.4)

=⇒
{
Lρµα (ζ0) = 0

}
and{

ζ0 is not a µ-local maximum of α
}

=⇒
{
Lρµα (ζ0) < 0

}
. (7.5)

Recall from Section 3 that the (finite) support of µ generates a lattice in

V , which is denoted bt Γ. This ellipticity assumption leads to the following

global statement.

Proposition 7.3 (Elliptic minimum principle).

Let α : M → R and Λ ∈M/Γ.

(i) Assume Lρµα ≥ 0 on Λ and that α admits a global minimum on Λ.

Then α is constant on Λ.

(ii) Let z > 0. Assume (Lρµ + z) α ≥ 0 on Λ and that α admits a

nonpositive global minimum on Λ. Then α is constant on Λ. In fact

α ≡ 0 on Λ.

Proof. (i): Let ζ0 be a global minimum of α. Then by (7.5), the assumption

Lρµα(ζ0) ≥ 0 implies

α(ζ1) = α(ζ0) for every ζ1 ∈ Uµ(ζ0) .

In particular every ζ1 ∈ Uµ(ζ0) also is a global minimum for α in Λ. For

generic ζ ∈ Λ take a sequence {ζ0, ζ1, . . . , ζp = ζ} with ζi+1 ∈ Uµ(ζi) and

µ({ζi+1 − ζi}) > 0. Then repeating the above argument step after step for

the whole sequence gives α(ζ) = α(ζ0).

The argument for (ii) is analogous. We report it for completeness. Ob-

serve that (7.5) gives {
(Lρµ + z) α (ζ) ≥ zα(ζ)

}
(7.6)

=⇒
{
ζ is not a µ-local minimum of α or α is locally constant at ζ

}
.

Let ζ0 be a nonpositive global minimum of α. Then (7.6) together with

the assumption

(Lρµ + z) α (ζ0) ≥ 0 (7.7)

implies again

α(ζ1) = α(ζ0) for every ζ1 ∈ Uµ(ζ0) .
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In particular every ζ1 ∈ Uµ(ζ0) also is a nonpositive global minimum for α

in Λ. Moreover α(ζ0) = 0, since by (7.4) α(ζ0) = 1
z (Lρµ + z) α (ζ0), and

the latter is nonnegative by (7.7). The conclusion is achieved by proceeding

iteratively as in (i). �

Consider the family of closed nonnegative symmetric bilinear forms { E(0)
Λρµ
}

indexed by the set of lattice graphs in M corresponding to the discrete ge-

ometry ρµ, as defined in (6.4). Observe that for α ∈ F0(M) (recall that the

latter denotes the set of real functions on M which vanish outside a compact

set of M) and every lattice graph Λρµ

E(0)
Λρµ

(α, α) = 〈α,Lρµα〉(0)
Λρµ

= 〈δα, δα〉(0)
Λρµ

=∫
M

∫
V

[
α(ζ + w/2)− α(ζ − w/2)

]2
ρ(ζ) µ(dw) Λ(dζ) =∫

M

∫
V

[
α(ζ + w)− α(ζ)

]2
ρ(ζ + w/2) µ(dw) Λ(dζ)

or, using the jump rates,

E(0)
Λρµ

(α, α) =

∫
M

∫
V

[
α(ζ+w)−α(ζ)

]2
rρ(ζ, w) µ(dw) ρ(ζ) Λ(dζ) . (7.8)

In the sequel we use standard terminology and results in the theory of

Dirichlet forms. For more informations see in particular [35], [75] [62] and

[63].

Proposition 7.4. E(0)
Λρµ

is a regular Dirichlet form for every lattice graph

Λρµ.

Proof. The Markovian property follows from the representation (7.8). In

fact standard arguments imply that it is sufficient to check the Markovian

property on the smaller domain F0(M). Regularity is straightforward by

construction. For more details see [62]. �

Since E(0)
Λρµ

is a Dirichlet form it follows by standard arguments (see [35])

that the semigroup t 7→ e
−tL(0)

Λρµ is Markovian for every lattice graph Λρµ,

i.e. for α ∈ L2(M,Λρµ)

0 ≤ α ≤ 1 ⇒ 0 ≤ e−tL
(0)
Λρµ α ≤ 1 ,

with the inequalitites to be understood to hold dΛ-almost everywhere. In

particular for every t ∈ [0,∞) the operator e
−tL(0)

Λρµ is positivity preserving,
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i.e. (
α ∈ L2(M,Λρµ) and α ≥ 0

)
⇒ e

−tL(0)
Λρµα ≥ 0 . (7.9)

This is easily seen by applying the semigroup to the sequence
(

1
k (α ∧

k)
)
k∈N∗ , where ∧ denotes the pointwise minimum between two functions.

Equivalent to property (7.9) is

|e−tL
(0)
Λρµ α| ≤ e

−tL(0)
Λρµ |α| (7.10)

for every α ∈ L2(M,Λρµ) (consider |α| ± α).

The Markovian property permits to extend (uniquely) each e
−tL(0)

Λρµ so

that it can be considered as a contraction on the space L1(M,Λρµ). In fact,

for every α ∈ L1(M,Λρµ)∩L2(M,Λρµ) and compact set K ⊂M , using also

the selfadjoitness of e
−tL(0)

Λρµ and (7.10), we have∫
K
|e−tL

(0)
Λρµ α| ρ dΛ ≤

∫
K

(e
−tL(0)

Λρµ |α|) ρ dΛ = (7.11)

=

∫
M
|α| (e

−tL(0)
Λρµ 1K) ρ dΛ ≤

∫
M
|α| ρ dΛ .

Taking a sequence {Km} of compacta exhausting M gives the claimed prop-

erty.31 If the contrary is not explicitly mentioned we will always mean by

t 7→ e
−tL(0)

Λρµ the semigroup on L2(M,Λρµ).

In the next subsection we shall exploit further important properties of

t 7→ e
−tL(0)

Λρµ , which we collect in the following two remarks.

Remark 7.5. The semigroup t 7→ e
−tL(0)

Λρµ is not only positive but also

irreducible (or ergodic in the terminology of [88]). Recall that a positive

semigroup is irreducible if its resolvent is positivity improving (i.e. map-

ping nontrivial dΛ-a.e. nonnegative functions to dΛ-a.e. strictly positive

functions) for sufficiently big real values in the resolvent set. The Markov-

ian property is in general not sufficient for this. To show irreducibility in

the case of t 7→ e
−tL(0)

Λρµ one can use the elliptic minimum principle (see

Proposition 7.3). More precisely: let β ∈ L2(M,Λρµ) with β ≥ 0 and β not

identically zero. Fix z ≥ 0 and let α := (LΛρµ + z)−1 β. Since t 7→ e
−tL(0)

Λρµ

31It is well-known that the Markovian property permits to define contraction semi-

groups t 7→ e
−tL(0)

Λρµ on Lq(M ; Λρµ) for every q ∈ [1,∞]. These semigroups agree on their

common domain and are in general strongly continuous only for q ∈ [1,∞) For details see

[24], in particular Theorem 1.4.1, or [88] Theorem XIII.51.
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is positive it follows that α ≥ 0. Moreover using (6.5) we have for every

ζ ∈ Λ

(Lρµ + z) α (ζ) = β(ζ) ≥ 0 . (7.12)

If there did exist a ζ0 ∈ Λ with α(ζ0) = 0, Proposition 7.3 (ii) would force

α ≡ 0 on Λ. It would follow from (7.12) that β ≡ 0 which is in contradiction

with the definition of β.

Using analyticity of the semigroup, it follows from general principles (see

for example [80], Theorem 3.2, p.306) that irreducibility of the semigroup im-

plies automatically the stronger property that e
−tL(0)

Λρµ is positivity improving

for every t ∈ (0,∞).

Remark 7.6. Let {Kn} be an increasing sequence of compact subsets of

M such that M = ∪Kn. We shall consider for every n the Hilbert space

L2(Kn,Λρµ) consisting of real functions on Kn, with scalar product given by

〈α, β〉n :=
∑

ζ∈Λ∩Kn

α(ζ) β(ζ) ρ(ζ) .

Notice that through zero extension outside Kn each L2(Kn,Λρµ) is canoni-

cally embedded into L2(M,Λρµ). Denote by iKn : L2(Kn,Λρµ)→ L2(M,Λρµ)

this embedding and by πKn : L2(M,Λρµ)→ L2(Kn,Λρµ) its adjoint, i.e. the

canonical projection onto L2(Kn,Λρµ).

For every Kn we consider the (bounded) operator L(0)
Λρµ,Kn on L2(Kn,Λρµ)

obtained from L(0)
Λρµ

by incorporating Dirichlet boundary conditions, i.e.

L(0)
Λρµ,Kn := πKn L

(0)
Λρµ

iKn .

Observe that L(0)
Λρµ,Kn is nonnegative and selfadjoint, so the semigroup t 7→

e
−tL(0)

Λρµ,Kn is well-defined.

In [62, Prop. 2.7] it is proven that for any α ∈ F0(M) and t ∈ [0,∞)

lim
n→∞

iKn e
−tL(0)

Λρµ,Kn πKn α = e
−tL(0)

Λρµ . α (7.13)

For this result, which again does not hold in general for Markovian semi-

groups (for example it can not hold if we consider other selfadjoint extensions

of L(0)
0,ρµ), it is crucial that we defined L(0)

Λρµ
as the Friedrichs extension of an

operator defined on F0(M).
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The transition function P ρµt .

We shall consider the Cauchy problem associated with L(0)
ρµ . In the sequel

the dot over a function denotes as usual differentiation with respect to the

variable t.

Definition 7.7 (Cauchy problem associated with L(0)
ρµ ). We say that a

function [0,∞)×M 3 (t, ζ) 7→ ut(ζ) ∈ R is a solution of the Cauchy problem

associated with L(0)
ρµ , corresponding to the initial value f : M → R, if for

every ζ ∈ M the function t 7→ ut(ζ) is continuous on [0,∞), differentiable

on (0,∞) and if

{
u̇t(ζ) = −L(0)

ρµ ut (ζ) for t > 0, ζ ∈M
u0(ζ) = f(ζ) for ζ ∈M

. (7.14)

We look at the Cauchy problem above as a family of ordinary differential

equations. Note that the equation for t 7→ ut(ζ) is coupled to the equation

of t 7→ ut(η) if and only if ζ − η ∈ Γ.

Observe also that for a solution u as defined in Definition 7.7 the time

derivative t 7→ u̇t(ζ) can be extended by continuity to t = 0 using just the

continuity of t 7→ ut(ζ) and the first equation in (7.14).

Remark 7.8. If the initial value f in (7.14) is nonnegative, then any cor-

responding solution u of the Cauchy problem remains nonnegative for every

t ∈ (0,∞). This is an easy consequence of (7.3). In fact, assume on the

contrary the existence of t, ζ such that ut(ζ) < 0. Then, with

t0 := inf {t > 0 : there exists ζ ∈M s.t. ut(ζ) < 0} ,

we have the existence of a point ζ0 with ut0(ζ0) = 0 , ut0(ζ) ≥ 0 for ζ ∈ M
and u̇t0(ζ0) < 0. On the other hand Property (7.3) together with the first

equation in (7.14) imply that u̇t0(ζ0) ≥ 0, giving a contradiction.

The following result is a consequence of (7.3). A proof can be found in

[57, Theorem 1.3.2]

Proposition 7.9 (Parabolic minimum principle).

Let Λ ∈ M/Γ, K a finite subset of Λ, T > 0 and consider a function

[0, T ] × Λ 3 (t, ζ) 7→ ut(ζ) ∈ R such that t 7→ ut(ζ) is continuous and
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differentiable in [0, T ] for every ζ ∈ K. If
u̇t(ζ) ≥ −Lρµut (ζ) for t ∈ (0, T ], ζ ∈ K
u0(ζ) ≥ 0 for ζ ∈ K
ut(ζ) ≥ 0 for (t, ζ) ∈ [0, T ]× (Λ \ K)

. (7.15)

Then u ≥ 0 on Λ.

Fix an initial value f : M → R. A solution u of (7.14) corresponding

to f is called minimal if u ≤ v for every other solution corresponding to f .

Observe that a minimal solution is by definition unique. We denote in the

sequel for every ζ ∈ M by 1ζ the indicator function of the set {ζ} and by

Λζ the lattice ζ + Γ.

Theorem 7.10 (Existence of the fundamental solution).

There exists a function pρµ : [0,∞) ×M ×M → R such that for every

η ∈M (t, ζ) 7→ pρµ(t, ζ, η) is a minimal solution of the Cauchy problem (7.7)

associated with L(0)
ρµ corresponding to the initial function 1η. Moreover pρµ

has the following properties:

(i) pρµ ≥ 0

(ii) for every t ≥ 0 and ζ ∈M∫
M
pρµ(t, ζ, η) Λζ(dη)) ≤ 1 .

(iii) for every t, s ≥ 0 and ζ, η ∈M

pρµ(t+ s, ζ, η) =

∫
M
pρµ(t, ζ, ζ ′) pρµ(s, ζ ′, η) Λζ(dζ

′) .

(iv) for every t ≥ 0 and ζ, η ∈M

ρ(ζ) pρµ(t, ζ, η) = ρ(η) pρµ(t, η, ζ) .

(v) for every t > 0 and ζ, η ∈M{
pρµ(t, ζ, η) > 0 if ζ − η ∈ Γ

pρµ(t, ζ, η) = 0 otherwise
.

Moreover pρµ has the representation

pρµ(t, ζ, η) =

{
e−tLΛρµ1η(ζ) if ζ, η ∈ Λ for some Λ ∈M/Γ

0 otherwise
. (7.16)
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The function pρµ is called the fundamental solution of the Cauchy

problem (7.14). In another current terminology pρµ is referred to as the heat

kernel, and the name heat equation is used for the Cauchy problem. In the

language of probability the Cauchy problem takes the name of Kolmogorov’s

backward32 equation. There are several well known strategies to prove the

above theorem. For completeness we report here one, which exploits the

L2 semigroup e
−tL(0)

Λρµ and its basic properties derived in the last subsection

using the Dirichlet form E(0)
Λρµ

. This has the advantage of giving immediately

the representation (7.16).

Proof of Theorem 7.10.

Define pρµ as in (7.16). Then standard semigroup theory (see for example

[31, Prop. 6.2, p.45]) together with (6.5) give that pρµ is a solution of the

considered Cauchy problem.

Property (i) is clear since t 7→ e−tLΛρµ is positivity preserving for every lat-

tice graph Λρµ, see (7.9). (In fact (i) must hold a priori due to Remark 7.8.)

Property (ii) follows since t 7→ e−tLΛρµ is a contraction in L1(M ; Λρµ) for

every lattice graph Λρ,µ, see (7.11) . In fact, denoting by Λζ,ρµ the lattice

graph with vertices Λζ , we have∫
M
pρµ(t, ζ, η) Λζ(dη) =

∫
M
e
−tLΛζ,ρµ1η (ζ) Λζ(dη) =

=

∫
M

(e
−tLΛζ,ρµ

1η

ρ(η)
) (ζ) ρ(η) Λζ(dη) ≤

∫
M

1η(ζ)

ρ(η)
ρ(η) Λζ(dη) = 1 .

(iii) is due to the semigroup property of t 7→ e−tLΛρµ , and (iv) to its

selfadjointness:

ρ(ζ) pρµ(t, ζ, η) =

∫
M

(e−tLΛη,ρµ1η) 1ζ ρ dΛζ =

=

∫
M
1η (e−tLΛη,ρµ1ζ) ρ dΛζ =

pρµ(t, η, ζ) ρ(η) .

32Backward hints to the fact that the transition function is reconstructed from the

infinitesimal properties by fixing the arrival state η and determining the starting states of

the particles which reached η in short time t.
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Property (v) is implied by the irreducibility of t 7→ e−tLΛρµ , see Re-

mark 7.5.

To prove minimality, fix η ∈ M and let p̃ be another solution of the

considered Cauchy problem. If ζ /∈ Λη there is nothing to prove, since by

Remark 7.8 p̃(t, ζ) ≥ 0 = pρµ(t, ζ).

So it is enough to consider ζ variable in Λη. Recall the notation of Re-

mark 7.6 and define for ζ ∈ Λη, t ∈ [0,∞)

pn(t, ζ) := iKn e
−tLΛη,ρµ,Kn πKn 1η(ζ)

for an increasing sequence {Kn} of compact subsets of M such that M =

∪Kn. Again by general principles it follows that pn satisfies the Cauchy

problem with Dirichlet boundary conditions, i.e. t 7→ pn(t, ζ) is differentiable

for every ζ ∈ Λη and
ṗn(t, ζ) = −Lρµ pn (t, ζ) for t ∈ (0,∞), ζ ∈ Kn
pn(0, ζ) = 1η(ζ) for ζ ∈ Λη

pn(t, ζ) = 0 for (t, ζ) ∈ [0,∞)× (Λη ∩ Kcn)

. (7.17)

It follows that un := p̃ − pn satisfies the assumptions of Proposition 7.9

with Λ = Λη, so p̃ ≥ pn. Finally, using the approximation (7.13) gives

p̃ ≥ pρµ(·, ·, η) as claimed. �

For every t ∈ [0,∞), ζ ∈M and S ⊂M we define

P ρµt (ζ, S) :=

∫
S
pρµ(t, ζ, η) Λζ(dη) . (7.18)

Properties (i) to (iii) in Theorem 7.10 imply that (t, ζ, S) 7→ P ρµt (ζ, S) is a

substochastic transition function on (M,S), where S denotes the set of all

subsets of M . We refer to it as the transition function associated with

ρµ.33 It shall be interpreted as giving the probability to reach the set S at

time t when starting at ζ. Since∫
{η}

pρµ(t, ζ, ζ ′) Λζ(dζ
′) =

{
pρµ(t, ζ, η) if ζ − η ∈ Γ

0 otherwise

and since, by Property (v), pρµ(t, ζ, η) = 0 if ζ − η 6= Γ, we have that

pρµ(t, ζ, η) gives the probability to reach η at time t when starting at ζ.

33 By Property (v) in Theorem (7.10), we see that ζ 7→ P ρµt (ζ, S) is measurable also

with respect to the Borel sigma algebra B of M . It follows that the restriction of P ρµ to

[0,∞)×M × B is a substochastic transition function on (M,B).
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Fix a lattice Λ ∈M/Γ. Property (v) asserts that starting from ζ ∈ Λ the

probability to leave Λ at some time t is zero (i.e Λ is an absorbing class).

Moreover for every ζ, η ∈ Λ there exists a t ≥ 0 (in fact every t ≥ 0 does

well) such that one can go in time t from ζ to η with positive probability

(i.e. Λ is a communicating class). Therefore the partitioning M = tΛ∈M/ΓΛ

decomposes the state space into absorbing communicating classes. This is

not surprising and just reflects our choice of the support of µ. It is therefore

natural to consider for every lattice Λ and t ≥ 0 the restriction P
Λρµ
t of P ρµt

to (Λ,S∩Λ). We call PΛρµ : t 7→ P
Λρµ
t the transition function associated

with the lattice graph Λρµ. Observe that PΛρµ is irreducible, i.e. the

whole state space Λ is a communicating class with respect to it. Moreover

by Property (iv) it is reversible with respect to the measure given by the

restriction of ρ to Λ.

In general the Cauchy problem (7.14) does not have unique solutions.

In fact (see [62, Theorem 1]) unique solvability for bounded initial data is

equivalent to P ρµ being stochastic, i.e. to∫
M
pρµ(t, ζ, η) Λζ(dη) = 1 (7.19)

for every ζ ∈M .

A sufficient condition for (7.19) to hold is given by (see [74, Corollary

2.34, p.76])

sup
ζ∈M

∫
V
rρ(ζ, w) µ(dw) <∞

with rρ as defined in (6.3).

In the rest of this section we shall make for simplicity the following as-

sumption.

Assumption I.1. The transition function P ρµ associated to ρµ is stochas-

tic.

Consider the set M [0,∞) equipped with the smallest sigma algebra such

that for every t ∈ [0,∞) the canonical projection X̃t : M [0,∞) → (M,B)

given by X̃t(ω) := ωt is measurable. Under the above assumption, by the

classical Kolmogorov extension theorem there exists for every ζ ∈ M a
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unique probability measure P̃ρµζ on M [0,∞) satisfying

P̃ρµζ (X̃t1 = ζ1, . . . , X̃tn = ζn) = (7.20)

= P ρµt1 (ζ, ζ1) P ρµt2−t1(ζ1, ζ2) . . . P ρµtn−tn−1
(ζn−1, ζn)

for every n ∈ N∗ and t1 ≤ · · · ≤ tn ∈ [0,∞).

In fact standard arguments (see [74, Theorem 2.37, p.77]) show that it is

possible to construct probability measures satisfying (7.20) on a much more

regular path space. More precisley, fix Λ ∈M/Γ and let

ΩΛ := {ω : [0,∞)→ Λ s. t. ω is right continuous

with finitely many jumps in any finite interval} ,

equipped with the smallest sigma algebra such that for every t ∈ [0,∞)

the canonical projection XΛ
t : ΩΛ → (Λ,S ∩ Λ) given by XΛ

t (ω) = ωt is

measurable. Then for every ζ ∈ Λ there exists a unique measure Pρµζ on ΩΛ

satisfying

Pρµζ (XΛ
t1 = ζ1, . . . , X

Λ
tn = ζn) = (7.21)

= P ρµt1 (ζ, ζ1) P ρµt2−t1(ζ1, ζ2) . . . P ρµtn−tn−1
(ζn−1, ζn)

for every n ∈ N∗ and t1 ≤ · · · ≤ tn ∈ [0,∞).

We shall denote by Eρµζ the expectation with respect to Pρµζ and refer to

the family of probability measures (Pρµζ )ζ∈M as the Markovian family

associated with ρµ.

Recalling formula (7.16), observing that in the above fromula P ρµ can be

substituted with PΛρµ , and using Property (iv) of Theorem 7.10 gives for

every bounded α : Λ→ R, with
∑

ζ∈Λ α
2(ζ) ρ(ζ) <∞ and every ζ ∈ Λ

Eρµζ α(XΛ
t ) =

∫
M
α(η)

ρ(η)

ρ(ζ)
e−tLΛρµ1ζ (η) Λ(dη) =

1

ρ(ζ)

∫
M

(e−tLΛρµα) (η) 1ζ(η) ρ(η) Λ(dη) ,

i.e.

Eρµζ α(XΛ
t ) = e−tLΛρµ α (ζ) . (7.22)

Standard arguments permit to extend the above formula to every bounded

α.
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Remark 7.11. For every Λ and ζ ∈ Λ we have that XΛ = (XΛ)t∈[0,∞) is by

construction a Markov process with respect to the probability space (ΩΛ,Pρµζ )

with initial value ζ, i.e.

(i) Pρµζ (XΛ = ζ) = 1.

(ii) for every t, s > 0 one has Pρµζ -almost surely

Pρµζ (XΛ
t+s | Fs(XΛ)) = Pρµ

XΛ
s

(XΛ
t ) ,

where Fs(XΛ) is the sigma algebra generated by (XΛ
s′)s′∈[0,s].

The transition function of XΛ is given by PΛρµ for every choice of ζ ∈ Λ.

It follows that XΛ is irreducible. Moreover it satisfies the strong Markov

property (see for example [84]).

Observe also that XΛ is a pure jump process. Let XΛ
t = ζ for some ζ ∈M

and t ≥ 0. Then, by construction, for every t′ > t the process has positive

probability to jump in direction v ∈ V at time t′ if and only if µ({v}) > 0,

independently of ζ (and of t). This means that the support of the jump

measure is finite and homogeneous in space.

Remark 7.12. For every probability measure ρ̃ on Λ one can define the

probability Pρµρ̃ on the path space ΩΛ by setting for every measurable B

Pρµρ̃ (B) :=
∑
ζ∈Λ

Pρµζ (B) ρ(ζ) .

In particular, if
∑

ζ∈Λ ρ(ζ) = 1, one can consider Pρµρ . With respect to the

probability space (ΩΛ,Pρµρ ) the process XΛ has the property to be reversible

(in particular stationary).

Remark 7.13. If ρ is such that∫
V
rρ(ζ, w) µ(dw) = 1

for every ζ ∈ M (i.e. the rates are normalized), one could consider L(0)
ρµ as

the generator of a discrete time Markov chain.
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8. The discrete Witten Laplacian Hρ,µ

Assume given an n-dimensional affine space M together with a discrete

geometry µ and a function ρ : M → (0,∞), as in the preceding sections.

In some situations it is more natural or useful to change point of view and

think of ρ not as an inhomogeneity perturbing the discrete geometry µ, but

rather as a deformation parameter of the operators δ and δ∗µ . This different

point of view turns out to be unitarily equivalent to the previous one (see

in particular Proposition 8.5 below).

The deformation of δ we are going to introduce in Definition 8.1 below is

the discrete analogue of the deformation of the classical de Rham exterior

differential on manifolds introduced by Witten: in his famous paper [103] a

supersymmetric proof of the Morse inequalities is given using the mentioned

deformation and semiclassical analysis.

Definition 8.1 (Discrete Witten complexes and Witten Laplacians).

Let M be an affine space with inhomogeneous discrete geometry ρµ. For ev-

ery p ∈ N0 define the formal operators

δρ :=
√
ρ δ

1
√
ρ

,

δ
∗µ
ρ :=

1
√
ρ
δ∗µ
√
ρ

and

Hρ,µ := δ
∗µ
ρ δρ + δρδ

∗µ
ρ .

The corresponding restrictions to the space of p-functions are denoted re-

spectively by δ
(p)
ρ , δ

∗µ,(p−1)
ρ and H(p)

ρ,µ.

Complex properties, duality properties, intertwining relations, etc. follow

easily from the definitions and previously established facts. We collect them

in the next proposition for future reference.

Proposition 8.2. For every inhomogeneous discrete geometry ρµ

(i) δρδρ ≡ δ∗µρ δ
∗µ
ρ ≡ 0.

(ii) Hρ,µ δρ = δρ Hρ,µ and Hρ,µ δ
∗µ
ρ = δ

∗µ
ρ Hρ,µ

Moreover for every p ∈ N0, lattice graph Λµ and α, α′ ∈ F0,a(M × V p),

β ∈ F0,a(M × V p+1)
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(iii) 〈δ(p)
ρ α, β〉(p+1)

Λµ
= 〈α, δ∗µ,(p)ρ β〉(p)Λµ

(iv) 〈H(p)
ρ,µα, α′〉(p)Λµ

= 〈α,H(p)
ρ,µα′〉(p)Λµ

(v) 〈H(p)
ρ,µα, α′〉(p)Λµ

≥ 0

Notice that properties (iii) - (v) hold with respect to every homogeneous

lattice graph Λµ, while the corresponding properties for δ, δ∗ρµ and Lρµ hold

for every inhomogeneous lattice graph Λρµ (see Proposition 5.3).

In fact the Hilbert spaces on which the above defined formal Witten op-

erators naturally act are the “flat” L2 spaces corresponding to homogeneous

lattice graphs. More precisely we give the following definition, which will be

fundamental for the sequel. Here we use the symbol H(p)
0,ρ,µ for the restriction

of H(p)
ρ,µ to F0,a(M × V p), the space of alternating p-functions with compact

support.

Definition 8.3. For every lattice graph Λµ we denote by H(p)
ρ,Λµ

the Friedrichs

extension of H(p)
0,ρ,µ, considered as an operator in L2

a(M×V p,Λµ). Moreover

we set Hρ,Λµ := ⊕∞p=0H
(p)
ρ,Λµ

.

Observe thatH(p)
ρ,Λµ

is a nonnegative, selfadjoint and in general unbounded

operator in L2
a(M × V p,Λµ). Moreover it agrees on its domain D(H(p)

ρ,Λµ
)

with the formal Witten Laplacian, i.e. for every α ∈ D(H(p)
ρ,Λµ

)

H(p)
ρ,Λµ

α = H(p)
ρ,µ α . (8.1)

The following version of the intertwining relations, involving spectral pro-

jections of H
(p)
ρ,Λµ

, will be a key ingredient in Section 16 for the sake of

comparing exact and approximate eigenvalues.

Proposition 8.4. Fix p ∈ N0. Let c > 0 and consider the interval E :=

[0, c]. Assume that

[c, c+ γ] ∩ Spec
(
H(q)
ρ,Λµ

)
= ∅ (8.2)

for some γ > 0 and for q = p, p+ 1. Then for every α ∈ F0,a(M × V p)

1E
(
H(p+1)
ρ,Λµ

)
δ(p)
ρ α = δ(p)

ρ 1E
(
H(p)
ρ,Λµ

)
α . (8.3)
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Similarly, for every α ∈ F0,a(M × V p+1)

1E
(
H(p)
ρ,Λµ

)
δ∗µ,(p)ρ α = δ∗µ,(p)ρ 1E

(
H(p+1)
ρ,Λµ

)
α .

Proof. Let z ∈ C\[0,∞). Then using Proposition 8.2 (ii) we get immediately

the intertwining relations for the resolvents:(
z −H(p+1)

ρ,Λµ

)−1
δ(p)
ρ α = δ(p)

ρ

(
z −H(p)

ρ,Λµ

)−1
α . (8.4)

Statement (8.3) follows now from Stone’s formula (see [88, Theorem VII.13])

applied with the interval [0 − γ′, c + γ′], with 0 < γ′ < γ, and from the

observation that, due to assumption (8.2),

1E
(
H(q)
ρ,Λµ

)
= 1[0−γ′,c+γ′]

(
H(q)
ρ,Λµ

)
= 1(0−γ′,c+γ′)

(
H(q)
ρ,Λµ

)
for q = p, p+ 1.

The case with δ
∗µ,(p)
ρ instead of δ

(p)
ρ is analogous. �

The link between the present point of view à la Witten and the one de-

veloped in Sections 5 and 6 is given by the so-called ground state trans-

formation. To make this precise, observe that, once a lattice Λ ∈ M/Γ is

selected, there is a canonical Hilbert space isomorphism

L2
a(M × V p,Λρµ)

Φρ' L2
a(M × V p,Λµ) ,

the isomorphism Φρ (the ground state transformation) being the multi-

plication with
√
ρ. In other terms, for α ∈ L2

a(M × V p,Λρµ) and β ∈
L2
a(M × V p,Λµ)

Φρ(α) :=
√
ρα and Φ−1

ρ (β) =
1
√
ρ
β . (8.5)

A simple computation shows that the formal operators are related as

follows.

Hρ,µ =
√
ρ Lρµ

1
√
ρ
. (8.6)

As a consequence, the L2 realizations of the Witten and inhomogeneous

Hodge Laplacians we are considering, are unitarily equivalent.
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Proposition 8.5.

H(p)
ρ,Λµ

is unitarily equivalent to L(p)
Λρµ

for every p ∈ N0 and Λ ∈ M/Γ. In

particular SpecH(p)
ρ,Λµ

= SpecL(p)
Λρµ

.

Proof. By (8.1) and (8.6) we just have to verify that D(H(p)
ρ,Λµ

) transforms

into D(L(p)
Λρµ

) under the ground state transformation Φρ defined in (8.5).

To see this observe that α ∈ D(L(p)
Λρµ

) if and only if there exists a sequence

{αn} ⊂ F0,a(M×V p) such that limn,m ‖δ (αn−αm)‖(p)Λρµ
= 0 and limn ‖(αn−

α)‖(p)Λρµ
= 0. Using the analogous characterization for D(H(p)

ρ,Λµ
) gives that

β =
√
ρα ∈ D(H(p)

ρ,Λµ
) if and only if α = 1√

ρβ ∈ D(L(p)
Λρµ

): just consider

βn =
√
ραn. �

Remark 8.6. Since the ground state transformation preserves the space

of functions with compact support it follows from (8.6) that also L(p)
0,ρµ and

H(p)
0,ρ,µ are unitarily equivalent. Since essential selfadjointness is preserved

under unitarily transformations we have that L(p)
0,ρµ is essentially selfadjoint

in L2
a(M×V p,Λρµ) if and only if it is the case for H(p)

0,ρ,µ in L2
a(M×V p,Λµ).

As we already remarked in Footnote 27 at the end of Section 6, essential

selfadjointness is not fullfilled automatically if no further assumptions are

imposed on ρµ.

Next we give a representation of the formal Witten Laplacian analogous

to the one given in Proposition 6.2 for the inhomogeneous Hodge Laplacian,

by splitting it into a scalar operator and a matrix operator.

We shall use in the sequel the notation D(p)
ρ and D?,(p)ρ to indicate the

ground state transformations of D(p) and D?ρ,(p) (the latter being defined

in (5.1)) respectively. That is

D(p)
ρ :=

√
ρ D(p) 1

√
ρ

and

D?,(p)ρ :=
√
ρ D?ρ,(p) 1

√
ρ

(
= − 1
√
ρ
D(p) √ρ

)
.

The superscript (p) is dropped when the corresponding direct sum is con-

sidered.
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Recall also the definitions of Trµ, dΓ given in (4.1), (6.2) and of the sharp

operator ]µ in (6.1). Proposition 6.2 and (8.6) give immediately:

Proposition 8.7.

For every discrete inhomogeneous geometry ρµ on the affine space M the

following representation holds for the discrete Witten Laplacian.

Hρ,µ = Trµ D?ρDρ + dΓ [Dρ,D?ρ] ]µ .

The analogue of Remark 6.3 is

Remark 8.8. It follows from Proposition 8.7 using (2.4) that

Hρ,µ =
∑

s∈{−1,1}2
sign(s)

{
Trµ (bρT 2)s + dΓ (b̄ρT 2)s

]µ
}

,

where bρ := {bρ;w1,w2}w1,w2∈V 2, b̄ρ := {b̄ρ;w1,w2}w1,w2∈V 2 and bρ;w1,w2 , b̄ρ;w1,w2 ∈
F (M) are given by

bρ;w1,w2 := − 1
√
ρ
Tw1 ρ Tw2

1
√
ρ

i.e. bρ;w1,w2(ζ) = − ρ(ζ + w1/2)√
ρ(ζ)ρ(ζ + w1/2 + w2/2)

and

b̄ρ;w1,w2 := b 1
ρ

;w1,w2
− bρ;w2,w1 .

The analogue of Remark 6.4 is

Remark 8.9. Let

gρ,w := −bρ,w,w =
1
√
ρ
Tw ρ Tw

1
√
ρ

,

i.e.

gρ,w(ζ) =
ρ(ζ + w/2)√
ρ(ζ)ρ(ζ + w)

= rρ(ζ, w)

√
ρ(ζ)

ρ(ζ + w)
,

with the rates rρ as defined in (6.3). A simple computation gives for α ∈
Fa(M × V p)

Trµ D?ρDρ α (ζ,v) = =

∫
V

[
rρ,w(ζ) α(ζ,v) − gρ,w(z) α(ζ+w,v)

]
µ(dw) .

Proposition 8.7 gives therefore for every α ∈ F (M)

H(0)
ρ,µ α (ζ) =

∫
V

[
rρ,w(ζ) α(ζ) − gρ,w(z) α(ζ + w)

]
µ(dw) .
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Note that H(0)
ρ,µ does not annihilate constants as is the case for L(0)

ρµ . Sep-

arating the “kinetic part” (which annihilates constants) from the “potential

parts”, which are obtained by applying the operator to the function with con-

stant value one, gives the following representation: for every α ∈ F (M)

H(0)
ρ,µ α (ζ) =

=

∫
V
gρ(ζ, w)

[
α(ζ)− α(ζ + w)

]
µ(dw) +

( ∫
V

[
rρ(ζ, w)− gρ(ζ, w)

]
µ(dw)

)
α(ζ) .

This can be seen as a discrete Schrödinger operator, with kinetic term∫
V
gρ,w(ζ)

[
α(ζ)− α(ζ + w)

]
µ(dw)

and potential ∫
V

[
rρ,w(ζ)− gρ,w(ζ)

]
µ(dw) .

Therefore we shall refer to the Witten point of view presented in this section

also as the Schrödinger point of view, as opposed to the probabilistic one

which is more natural for L(0)
ρµ as explained in Section 7.
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Part II. Semiclassical discrete Witten Laplacians

In this second part we consider on the affine space M inhomogeneous

discrete geometries, which are rescaled via a small parameter ε > 0. Basic

asymptotic spectral properties of the corresponding rescaled Witten Lapla-

cians are derived. The scaling we consider is analogous to the semiclassical

limit for Schrödinger operators.

9. Semiclassical scaling

As in Part I we consider here throughout an n-dimensional affine space

M with underlying vector space V . Moreover we assume given an inhomo-

geneous discrete geometry ρµ on M . Recall from Section 5 in Part I, that

ρµ consists of a function ρ : M → (0,∞) and a symmetric measure µ on

V with a finite support which generates a lattice Γ in V . Recall also that

E = suppµ \ {0} is referred to as the set of admissible jumps.

The aim of this section is to introduce a scaling of ρµ and to establish

useful representation formulas for the leading symbols of the corresponding

rescaled Witten Laplacians. Moreover we declare the assumptions we shall

adopt throughout the rest of this part (see Assumptions II.1, II.2 below).

Let ε > 0 be a small parameter (the “semiclassical” parameter), and let

f : M → R (the “energy”) be given by

f := −1

2
log ρ .

For ε > 0 the rescaled inhomogeneous geometry ρεµε := (ρε, µε), with

ρε : M → (0,∞) and µε a measure on V , is defined by setting for every

ζ ∈M
ρε(ζ) := e−2f(ζ)/ε

and for every measurable set S in V

µε(S) := µ(ε−1S) .

Observe that ρεµε is an inhomogeneous discrete geometry for every ε > 0.

Moreover the set of admissible jumps (respectively the generated lattice) of

µε is given by εE (respectively εΓ).
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As in Part I we shall consider lattice graphs in M associated with discrete

geometries: we fix for ε > 0 an equivalence class in M under ∼εΓ and denote

by Λε the elements of the chosen equivalence class. The weighted graph

with vertices Λε, edges determined by εE and weight µε on the edges will

be denoted by Λµε ; if we consider the vertices weighted with ρε the symbol

Λρεµε will be used.

We call Hρε,µε = ⊕∞p=0H
(p)
ρε,µε the (formal) rescaled Witten Laplacian

and shall consider its realizations H(p)
ρε,Λµε

as operators in L2
a(M × V p,Λµε):

recall from Section 8 that

Hρε,µε := δ
∗µε
ρε δρε + δρεδ

∗µε
ρε

and thatH(p)
ρε,Λµε

is defined as Friedrichs extension of the restriction ofH(p)
ρε,µε

to p-functions with compact support.

For the sequel it is sometimes convenient not to work in L2
a(M ×V p; Λµε)

but in a suitable L2
a(M × V p,Λε,µ), where Λε,µ is a lattice graph differing

from Λµε by the fact that its edges have weight µ instead of µε. To be precise

we define the scalar product in L2
a(M × V p,Λε,µ) as

〈α, β〉(p)Λε,µ
:=

∫
M
〈τε∗α(ζ), τε∗β(ζ)〉(p)µ Λε(dζ) , (9.1)

where

(τε∗α)v(ζ) := αv(ζ + εv/2)

is the scaled shift operator, dΛε denotes the counting measure on Λε and

〈·, ·〉µ is defined as in (3.5). The superscript (p) in (9.1) will be frequently

omitted. To see the relation to L2
a(M × V p; Λµε) we introduce for ε > 0 the

scaling operator Ψε : F (M × V p)→ F (M × V p), defined as

Ψε α (ζ,v) := α(ζ, εv) . (9.2)

Note that the restriction of Ψε to L2
a(M × V p,Λµε) gives a Hilbert space

isomorphism between the latter and L2
a(M × V p,Λε,µ). Indeed

〈α, β〉(p)Λε,µ
= 〈Ψ−1

ε α,Ψ−1
ε β〉(p)Λµε

.

We can therefore equivalently consider instead of Hρε,µε the formal oper-

ator

H̃ρε,ε,µ := Ψε Hρε,µε Ψ−1
ε (9.3)

and the operator

H̃ρε,Λε,µ := Ψε Hρε,Λµε Ψ−1
ε

acting in L2
a(M × V p,Λε,µ).

96



Throughout this part we make the following smoothness assumption.

Assumption II.1.

(i) f ∈ C∞(M)

(ii) There exists a point O ∈M such that O ∈ Λε for ε > 0.

The smoothness of f together with Remark 8.8 leads through a simple

Taylor expansion to the following representation of H̃ρε,ε,µ:

H̃ρε,ε,µ = Lε,µ + Uf,µ + εMε,f,µ + ε2 Nε,f,µ , (9.4)

where

• Lε,µ := Lµε is the discrete Hodge Laplacian corresponding to the

discrete geoemtry µε as introduced in Section 4, i.e.

Lε,µ α (ζ,v) =

∫
V

[
α(ζ,v)− α(ζ + εw,v)

]
µ(dw) .

• Uf,µ ∈ C∞(M ;R) is given by

Uf,µ(ζ) := ‖2 sinh
∇f(ζ)

2
‖2µ (9.5)

and acts as a multiplication operator.

• Mε,f,µ is a translation operator given by

Mε,f,µ :=
1

4

∑
s∈{−1,1}2

sign(s)
{
− Trµ (mfT 2

ε )s + dΓ 2(mfT 2
ε )s

]µ
}

,

(9.6)

where mf := {mf ;w1,w2}w1,w2∈V 2 and mf ;w1,w2 ∈ C∞(M ;R) is given

by

mf ;w1,w2 := e
1
2
∇w1−w2f ∇2

w1,w2
f

and Tε := (Tεw)w∈V .

• Nε,f,µ is a translation operator of the form

Nε,f,µ =
1

4

∑
s∈{−1,1}2

sign(s)
{

Trµ (nε,fT 2
ε )s + dΓ (n̄ε,fT 2

ε )s
]µ
}

,
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where nε,f := {nε,f ;w1,w2}w1,w2∈V 2 , n̄f := {n̄ε,f ;w1,w2}w1,w2∈V 2 and

nε,f ;w1,w2 , n̄f ;w1,w2 ∈ C∞(M ;R) satisfy for ε→ 0

nε,f ;w1,w2 = O(1) and n̄ε,f ;w1,w2 = O(1) . (9.7)

Remark 9.1. Property (9.7) means that for every w1, w2 ∈ V 2, every j ∈
N0, every compact K ⊂M and every v ∈ V j there exist constants C1, C2 > 0

such that

|∇jvnε,f ;w1,w2(ζ)| + |∇jvn̄ε,f ;w1,w2(ζ)| ≤ C1 for every ε ∈ (0, C2) and every ζ ∈ K .

Remark 9.2. More explicitly, (9.6) says that in the case p = 1, for α ∈
Fa(M × V )

Mε,f,µ α (ζ, v) =

=
1

4

∑
s∈{−1,1}2

{
− 1

2

∫
V
e

1
2
∇(s1−s2)wf(ζ) ∇2

w,wf(ζ) α(ζ + ε(s1 + s2)w, v) µ(dw) +

+
1

2

∫
V

2e
1
2
∇s1v−s2wf(ζ) ∇2

v,wf(ζ) α(ζ + ε(s1 + s2)v, w) µ(dw)
}

.

Remark 9.3. Using the identity coshx− 1 = 2 sinh2 x
2 one gets from (9.5)

Uf,µ(ζ) :=
1

2

∫
V

4 sinh2 ∇wf(ζ)

2
µ(dw) =

∫
V

[cosh∇wf(ζ)− 1] µ(dw) .

Remark 9.4.

Let p ∈ N0, α ∈ Fa(M × V p) and let Ω ⊂ M . The representation (9.4)

implies that there exist ε-independent constants R,C > 0 such that for every

ζ ∈ Ω and ε > 0

‖H̃ρε,ε,µ α (ζ)‖µ ≤ C sup
η∈BR(Ω)

‖α(η)‖µ ,

where BR denotes a ball of radius R around Ω (say with respect to the

distance induced by µ).

Formula (9.4) represents the rescaled Witten Laplacian as a perturbation

of the discrete Schrödinger operator Lε,µ +Uf,µ. For the semiclassical anal-

ysis in the next two sections it will be convenient to introduce the symbol of

Lε,µ +Uf,µ and ofMε,f,µ, which gives the leading term of the perturbation.

More precisely, denoting by V ∗ the dual vector space of V we define the
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kinetic energy Kµ : V ∗ → R as the symbol of Lε,µ, i.e. for every ξ ∈ V ∗
(denoting by ξw the value of ξ on w ∈ V )

Kµ(ξ) :=

∫
V

[1− e−iξw ] µ(dw) = ‖2 sin
ξ

2
‖2µ ,

so that formally

Kµ(εi∇) = Lε,µ .

The Hamiltonian Hf,µ : M × V ∗ → R is then defined as the symbol of

Lε,µ + Uf,µ, i.e.

Hf,µ(ζ, ξ) := Kµ(ξ) + Uf,µ(ζ) = ‖2 sin
ξ

2
‖2µ + ‖2 sinh

∇f(ζ)

2
‖2µ . (9.8)

Similarly, denoting by End(F (V p)) the set of linear operators from F (V p)

to itself, we introduce the subleading symbolMf,µ : M×V ∗ → End(F (V p))

as the symbol of Mε,f,µ, given by

Mf,µ(ζ, ξ) := − Trµ m̊f (ζ, ξ) + dΓ 2 m̊f (ζ, ξ) ]µ , (9.9)

where

m̊f ;w1,w2(ζ, ξ) :=
1

4

∑
s∈{−1,1}2

sign(s) mf ;s1w1,s2w2(ζ) e−
1
2

iξs1w1+s2w2 .

Note that a straightforward calculation (see Lemma E.2 in the appendix

for details) gives

m̊f ;w1,w2(ζ, ξ) = ∇2
w1,w2

f(ζ) cosh
∇w1f − iξw1

2
cosh

∇w2f + iξw2

2

and in particular

m̊f ;w,w(ζ, ξ) = ∇2
wf(ζ)

(
− sin2 ξw

2
+ cosh2 ∇wf(ζ)

2

)
.

Remark 9.5. For the WKB Ansatz which will be developed in Section 11

we will use the following formulas.

Let ϕ ∈ C∞(M ;R). It follows from the identity sin ix = i sinhx that

Hf,µ(ζ,−i∇ϕ(ζ)) = Hf,µ(ζ, i∇ϕ(ζ)) =

= −‖2 sinh
∇ϕ(ζ)

2
‖2µ + ‖2 sinh

∇f(ζ)

2
‖2µ

and

m̊f ;w1,w2(ζ,−i∇ϕ(ζ)) = ∇2
w1,w2

f(ζ) cosh
∇w1(f − ϕ)

2
cosh

∇w2(f + ϕ)

2
.
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In particular, for w1 = w2,

m̊f ;w,w(ζ,−i∇ϕ(ζ)) = ∇2
wf(ζ)

(
sinh2 ∇wϕ(ζ)

2
+ cosh2 ∇wf(ζ)

2

)
.

In the next two sections we shall assume besides Assumption II.1:

Assumption II.2.

(i) f is a Morse function.

(ii) There exists a compact K ⊂ Rn and coordinates z = (z1, . . . , zn) on

M such that for z ∈ Rn \K

f(z) =
∑
i

z2
i .

Recall that the Morse property means that for every critical point ζ̄ of f

the matrix

(∂zi,zjf)i,j(ζ̄)

of second derivatives with respect to one (and therefore any) coordinate

system is nondegenerate. The number of negative eigenvalues of ∂zi,zjf(ζ̄)

which is also invariant, is called the index of ζ̄. Note that since critical points

of a Morse function can not accumulate, it follows from Assumption II.2(ii)

that f has only finitely many critical points.

Assumption II.2(i) is not very restrictive, in the sense that Morse functions

are generic in the category of smooth functions. We assume it here to avoid

further technical complications, but in principle the type of results we shall

obtain should be extendable with suitable modifications also by allowing

degenerate critical points.

Assumption II.2(ii) is used (as far this Part II is concerned) only in Sec-

tion 10. Indeed some condition on f at infinity has to be assumed in order

to guarantee that the bottom of the essential spectrum of the Witten Lapla-

cian H(p)
ρε,Λµε

is bounded away from zero. This is for example not the case if

f is constant. Of course, assuming exactly quadratic grow, is by no means

optimal. We have chosen this case as a paradigmatic example, which facili-

tates some rather nasty computations, without pushing here much further in

investigating the interesting problem of the relation between the behaviour

of f at infinity and the spectrum of the discrete Witten Laplacian. The

search for more satisfactory assumptions to localize the essential spectrum

is postponed until further research. But we mention that the arguments we
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use in our proofs work at least also in the case of bounded second derivative

and gradient bounded away from zero. More precisely one could assume

with no harm instead of Assumption II.2(ii) the following:

There exists a compact K ⊂ Rn, constants C ′, C ′′ > 0 and coordinates

z = (z1, . . . , zn) on M such that for z ∈ Rn \K
(ii’.a)

n∑
i=1

| ∂
∂zi

f(z)|2 ≥ C ′ .

(ii’.b)
n∑

i,j=1

| ∂2

∂zi∂zj
f(z)|2 ≤ C ′′ .

H̃ρε,Λε,µ in coordinates adapted to the lattice.

In some situations we shall work in a suitable coordinate system adapted

to the present setting. To be precise, when referring in the sequel to co-

ordinates adapted to the lattice, we will mean coordinates on M with

respect to the point O appearing in Assumption II.1 and to an arbitrary

basis BΓ of the lattice Γ ⊂ V .

Recall also from Section 3 (see in particular Remark 3.7) that the choice

of such a basis BΓ associates to the set E of admissible jumps an array−→
E = (e1, . . . , eN ), where N is half the cardinality of E (i.e. the size of µ)

and ej ∈ E for every j = 1, . . . , N . It follows (see in particular (3.10)) that

the choice of BΓ defines a canonical isomorphism

L2
a(M × V p,Λµε) ' L2(εZn;RM

p
N ,µ) ,

where Mp
N is the set of increasing multiindices of length p defined in (3.6).

We shall refer for short to L2(εZn;RM
p
N ,µ) as coordinate space.

Equations (9.10) and (9.12) below give representations in coordinate space

of H̃(p)
ρε,Λε,µ

for p = 0, 1. Analogous formulas are also valid for p > 1 and we

stick to the cases p = 0, 1 just for notational simplicity.

As in Section 3 we use the notation µj := µ{ej} and write α = (αj)j=1,...,N

for the elements of L2(εZn;RM1
N ,µ) = L2(εZn;RN,µ). For every j = 1, . . . , N

the coordinate vector of ej with respect to the basis BΓ is denoted by (eij)i ∈
Rn. Moreover we abuse notation as follows: we do not distinguish between
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functions on M and the corresponding function on coordinate space and

denote by the same symbol H̃(p)
ρε,Λε,µ

both the operator in L2
a(M ×V p,Λε,µ)

and in L2(εZn;RM
p
N ,µ).

With these conventions a straightforward computation (see Lemma E.3

and Lemma E.6 for more details) yields that in L2(εZn;R)
(

= L2(εZn;RM0
N ,µ)

)
H̃(0)
ρε,Λε,µ

= (9.10)

= −
∑
γ∈Zn

µ({γ})
[
τεγ − 1

]
+

N∑
j=1

4µj sinh2 ∇ejf
2

+ ε
∑
γ∈Zn

qε,γ τεγ ,

where τγ denotes translation in direction γ ∈ Rn, i.e.

τγ α (x) := α(x+ γ)

and for ε > 0 and γ ∈ Rn we have qε,γ ∈ C∞(Rn;R) and satisfying

qε,γ = qγ + O(ε) ,

with

qγ :=


− 1

4 µ({γ}) ∇2
γf if γ = ±(ei1)i, . . . ,±(eiN )i

− 1
2

∑N
j=1 µj ∇2

ejf cosh∇ejf if γ = 0

0 otherwise

.

(9.11)

For p = 1 we have in L2(εZn;RN,µ)

H̃(1)
ρε,Λε,µ

= (9.12)

= −
∑
γ∈Zn

µ({γ})
[
τεγ − 1

]
+

N∑
j=1

4µj sinh2 ∇ejf
2

+ ε
∑
γ∈Zn

Qε,γ τεγ ,

where for ε > 0 and γ ∈ Rn we have Qε,γ = (Qε,γ;i,j)i,j=1,...,N with each

Qε,γ;i,j ∈ C∞(Rn;R) and

Qε,γ = Dγ + Gγ + O(ε) . (9.13)

Here Dγ(x) = (Dγ;i,j(x))i,j=1,...,N is a diagonal matrix for every γ, x ∈ Rn
and

Dγ;i,i :=


qγ if γ = ±(ei1)i, . . . ,±(eiN )i

qγ +
∑N

k=1 µk ∇2
ek,ei

f sinh∇ekf if γ = 0

0 otherwise

.

(9.14)
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Moreover Gγ(x) = (Gγ;i,j(x))i,j=1,...,N for every γ ∈ Rn and 34

Gγ;i,j := (9.15)
1
2µj ∇

2
ei,ejf

(
1γ,ei e

1
2
∇ei−ej f + 1γ,−ej e

− 1
2
∇ei−ej f

)
if γ = ±(ek1)k, . . . ,±(ekN )k

1
2µj ∇

2
ei,ejf e

− 1
2
∇ei+ej f + 1

8µj
(
∇2
eif +∇2

ejf
)

sinh 1
2∇ei+ejf if γ = 0

1
2µj ∇

2
ei,ejf e

1
2
∇ei+ej f if γ = (eki )k − (ekj )k

0 otherwise

.

Standard inequalities together with Assumption II.2 (ii) (see Lemma E.7

for more details) give for qε,γ and Qε,γ also the following estimates: there

exists a constant C > 0 and a compact K ⊂ Rn such that for x ∈ Rn \K∑
γ∈Zn

(
|qε,γ(x)| + ‖Qε,γ(x)‖

)
≤ C V (x) , (9.16)

where V is the “potential” appearing both in (9.10) and (9.12) , i.e.

V (x) :=
N∑
j=1

4µj sinh2 ∇ejf(x)

2
.

Remark 9.6. A word of caution may be said about the relation between the

potential Uf,µ appearing in the coordinate-free representation (9.4) and the

potential V appearing in the above coordinate representations of the Witten

Laplacian: if seen as functions, V is just the coordinate expression of Uf,µ.

But the multiplication operator induced by V is not the coordinate expres-

sion of the multiplication operator induced by Uf,µ when p > 0! Indeed when

expressed in coordinates the multiplication operator Uf,µ on 1-functions be-

comes ε-dependent:(
Uf,µ α

)
i

(x) = Uf,µ(x+ ε
1

2
ei) αi(x) . (9.17)

This is why in (9.13) the matrix Dγ appears instead of qγ (the difference is

exactly the ε order term in the expansion of the right hand side of (9.17)).

Note also that the difference between Dγ and qγ is zero at critical points.

Remark 9.7. It is worth to notice that in the case of a nearest neighbour

geometry µ (i.e. N = n, see Remark 3.1) we have

V (x) =

n∑
j=1

4 sinh2 ∂jf

2
.

34For γ ∈ Rn and v ∈ V we define 1γ,v to be equal to 1 if γ are the coordinates of v

with respect to BΓ and 0 otherwise.
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10. The low-lying spectrum

We work here under Assumptions II.1 and II.2 and denote for every p =

0, . . . , n by mp the (finite) number of critical points of f having index p. For

the sake of the reader we recall here that n is the dimension of the affine

space we are working on and that N > n denotes the size of the discrete

geometry µ (see Section 3). For simplicity we restrict here to the Witten

Laplacians with p = 0, 1. But note that the following discussion could also

be extended (mutatis mutandis) to p > 1.

The aim of this section is to prove Theorem 10.1 below which provides

existence of a certain number (related to m0, m1, n and N) of “small”

eigenvalues of H(0)
ρε,Λµε

and H(1)
ρε,Λµε

. This is an important preliminary result

for the analysis which will be developed in Part III, more specifically, for the

reduction of the problem of the spectral asymptotics of small eigenvalues of

H(0)
ρε,Λµε

to a finite dimensional linear algebra problem (see also Remark 10.5

below and Section 16 in Part III). We stress that both the statements for

p = 0 and p = 1 of Theorem 10.1 are used in Part III.

Theorem 10.1.

There exists a constant c > 0 such that for p = 0, 1 and ε > 0 sufficiently

small

Specess

(
H(p)
ρε,Λµε

)
⊂ [c,∞) . (10.1)

Moreover for ε > 0 sufficiently small

dim Ran 1[0,ε6/5)(H
(0)
ρε,Λµε

) = m0 (10.2)

and

dim Ran 1[0,ε6/5)(H
(1)
ρε,Λµε

) = m̃1 , (10.3)

where m̃1 := m1 + m0 (N − n).

Remark 10.2. Note that in the case of a nearest neighbour geometry µ (i.e.

N = n) Theorem 10.1 implies

dim Ran 1[0,ε6/5)(H
(1)
ρε,Λµε

) = m1 ,

as in the case of the continuous Witten Laplacian.
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Remark 10.3. The theorem above gives a rather rough bound from above

on the small eigenvalues. With some more effort one could show as in the

theory of the continuous Witten Laplacian, that the small eigenvalues are

actually exponentially small in ε. More precisely, there exists a constant

c > 0 such that for ε > 0 sufficiently small

dim Ran 1[0,e−c/ε)(H
(0)
ρε,Λµε

) = m0 (10.4)

and

dim Ran 1[0,e−c/ε)(H
(1)
ρε,Λµε

) = m̃1 .

Statement (10.4) can be obtained as in the continuous case by the min-max

theorem, using as test functions in the variational principle χ1e
−f/ε, . . . , χke

−f/ε

where the χk’s are suitable cutoff functions each one localized around a min-

imum of f . We shall not go along this strategy, since in in Part III we will

follow another approach, providing much stronger results than (10.4) on the

small eigenvalues.

Statement (10.3) could be obtained by combining the constructions of

WKB expansions of the next sections with suitable Agmon estimates on the

semiclassical decay of eigenfunctions (see [64] for Agmon estimates in the

present lattice setting, but note that formally only scalar functions are con-

sidered therein).

Note also that from the proof of Theorem 10.1 given below one can deduce

that in both cases p = 0, 1 the rest of the spectrum (i.e. the spectrum apart

from the low-lying spectrum consisting of the small eigenvalues) is bounded

form below by εC with C > 0 a constant.

Remark 10.4. It follows from Assumption II.2(ii) that e−f/ε ∈ L2(M,dΛε)('
L2(εZn;R)) for ε > 0. Since by Proposition B.2 in the appendix H(0)

ρε,µε is

essentially selfadjoint for ε sufficiently small when restricted to the space of

functions with compact support, we can conclude that e−f/ε ∈ D(H(0)
ρε,Λµε

).

It follows that 0 is an eigenvalue of H(0)
ρε,Λµε

. This is in accordance with the

fact that by Assumption II.2(ii) m0 > 0.

Remark 10.5. We shall use Theorem 10.1 in Part III of this work as

follows. Let for p = 0, 1 and ε > 0

F (p)
ε := Ran 1[0,ε6/5)(H

(p)
ρε,Λµε

) .

Then by Proposition 8.4 we have

δ(0)
ρε F (0)

ε ⊂ F (1)
ε
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and Theorem 10.1 gives that Θε : F
(0)
ε → F

(1)
ε , defined as

Θε := δ(0)
ρε

∣∣
F

(0)
ε

,

is for ε > 0 an operator between finite dimensional Hilbert spaces, of dimen-

sion m0 and m̃1.

The strategy of the proof of Theorem 10.1 is the same as in the continuous

space setting, namely to compare the spectrum of the Witten Laplacian with

the spectrum of the harmonic oscillators sitting at the wells of the potential

Uf,µ = ‖2 sinh ∇f2 ‖
2
µ appearing in 9.4.

Proof of Theorem 10.1.

We shall work in coordinates (O,BΓ) adapted to the lattice. Note first

that, due to the coordinate representations (9.10), (9.12) and the estimate (9.16)

we are in the setting of Section B in the appendix. The localization (10.1)

of the essential spectrum is therefore a consequence of Proposition B.3.

The rest of Theorem 10.1 follows from an application of Theorem B.5.

To see this, we introduce first some notation to describe the approximating

harmonic oscillators: we denote by D2 the matrix of second partial deriva-

tives in Rn; after arbitrary ordering of the critical points of f we let x(p,k)

be the coordinate vector of the k-th critical point of index p of f ; moreover

we define the matrix a = (ai,j)i,j=1,...,n via

ai,j :=
1

2

∑
γ∈Zn

µ({γ}) γiγj =
N∑
r=1

µr e
i
re
j
r .

Observe that a and D2f(x(p,k)) commute since both a and D2f(x(p,k)) are

symmetric matrices and a is positive definite.

Recall now equation (9.10) and note that

1

2
D2 ‖2 sinh

∇f
2
‖µ (x(p,k)) =

[
a D2f(x(p,k))

]2
and that for every p = 1, . . . , n and k = 1, . . . ,mp∑

γ∈Zn
qγ(x(p,k)) = − tr aD2f(x(p,k)) ,

where tr stands for the trace of a matrix.
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Recalling (9.12) and (9.13), observe that∑
γ∈Zn

Dγ(x(p,k)) = − tr
[
a D2f (x(p,k))

]
and define for short for every p = 1, . . . , n and k = 1, . . . ,mp the N × N
matrix A(p,k) as

A(p,k) :=
∑
γ∈Zn

Gγ(x(p,k)) .

From the definition of Gγ (see (9.15)) it follows that

A
(p,k)
i,j := 2 µj ∇2

ei,ejf(x(p,k)) = 2
n∑

r′,r=1

µj e
r′
i erj D

2
r′,rf(x(p,k))

and A(p,k) can be rewritten as

A(p,k) = 2 E D2f(x(p,k)) Et Λµ , (10.5)

where Λµ is the diagonal N ×N matrix with (µ1, . . . , µN ) on the diagonal

and E is an N × n matrix with Ei,j = eji . Note that A(p,k) is in general

not a symmetric matrix, but it induces a symmetric operator in RN with

scalar product given by Λµ (i.e. in what we call RN,µ). We shall denote

by λ̃
(p,k
1 , . . . , λ̃

(p,k)
N the eigenvalues of A(p,k). It follows from (10.5) that at

least N −n eigenvalues of A(p,k) vanish. The remaining eigenvalues coincide

(counting multiplicity) with the eigenvalues of D2f(x(p,k))a. Indeed, E has

0-dimensional kernel, and from EtΛµE = a and (10.5) it follows that

A(p,k) E = E D2f(x(p,k))a .

Now consider for every every p = 1, . . . , n and k = 1, . . . ,mp in L2(Rn, dx;R)

H
osc,(0)
p,k := − trD2 + 〈x,

[
a D2f(x(p,k))

]2
x〉 − tr

[
a D2f (x(p,k))

]
and in L2(Rn, dx;RN , Λµ)

H
osc,(1)
p,k := IdN H

osc,(0)
p,k + 2 A(p,k) .

Thanks to Theorem B.5, to prove (10.2) it is enough to show that
⋃
p,k Spec

(
H

osc,(0)
p,k

)
contains only nonnegative numbers and contains 0 with multiplicity m0.

This can be easily checked, observing that

Spec
(
H

osc,(0)
p,k

)
=
{ n∑

i=1

|λ(p,k)
i | (2ri + 1) −

n∑
i=1

λ
(p,k)
i

}
r1,...,rn∈N0

,

where λ
(p,k)
1 , . . . , λ

(p,k)
n are the eigenvalues of aD2f(x(p,k)), and observing

that the expression within braces is always nonnegative and 0 only if k =

1, . . . ,m0 and r1 = · · · = rn = 0 and p = 0.
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Similarly, again by Theorem B.5, to prove (10.2) it is enough to show that⋃
p,k Spec

(
H

osc,(1)
p,k

)
contains only nonnegative numbers and contains 0 with

multiplicity m̃1.

Indeed, we have now

Spec
(
H

osc,(1)
p,k

)
=
{ n∑

i=1

|λ(p,k)
i | (2ri + 1) −

n∑
i=1

λ
(p,k)
i + 2λ̃

(p,k)
j

}
r1,...,rn∈N0
j=1,...,N

and the expression within braces is always nonnegative and 0 only in the

following cases:

1) r1 = · · · = rn = 0 and p = 0 and k = 1, . . . ,m0 and j is such that

λ̃
(0,k)
j = 0 (as we already mentioned there are exactly N −n such j’s

for every fixed k).

2) r1 = · · · = rn = 0 and p = 1 and k = 1, . . . ,m1 and j is such that

λ̃
(1,k)
j equals the only negative eigenvalues of aD2f(x(1,k)).

�

Remark 10.6. Note that with the notation introduced in the proof above,

in the nearest neighbour case a = Λµ, E = Id and

Ap,k = D2f(x(p,k)) Λµ = a D2f(x(p,k)) .
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11. Local WKB expansions

The goal of the present section is to construct good quasimodes corre-

sponding to the small eigenvalues of the semiclassical Witten Laplacian

for p = 1. As emerged from the last section the main contribution to a

given small eigenvalue comes either from a small neighbourhood of a saddle

point35 or of a minimum of f (but recall that the latter case is possible only

if N > n).

Again we do not consider here explicitly the Witten laplacian for p > 1

for the only reason to simplify the presentation: there is no conceptual

difficulty when passing from p = 1 to p > 1. The case p = 0 is special, due

to the fact that we have at hand an explicit expression for the eigenfunction

corresponding to the eigenvalue 0, namely e−f/ε. This feature permits to

construct very efficient quasimodes corresponding to the small eigenvalues

of H(0)
ρε,Λµε

, defined not only locally around the minima of f . The details for

this will be given in Section 14.

In the case p = 1 treated here, the quasimodes are constructed locally

around the involved critical points through a WKB Ansatz. The main result

is Theorem 11.1 below, which treats the case of a saddle point (for the case

of a minimum see Remark 11.11). Given a saddle point ζ̄ of f , we use

the following notation: Bf,µ := (e1, . . . , en) stands for a basis of V which

simultaneously diagonalizes both µ and ∇2f(ζ̄). To be precise, we assume

that (e1, . . . , en) satisfies

1

2

∫
V
µ(dw) e∗i (w) e∗j (w) = 1i,j and ∇2

ei,ejf(ζ̄) = κj 1i,j , (11.1)

where (e∗1, . . . , e
∗
n) denotes the dual basis associated with (e1, . . . , en) and

κ1, . . . , κn ∈ R are the eigenvalues of the nondegenerate symmetric bilinear

form∇2f(ζ̄) with respect to the scalar product induced by µ on V . Moreover

we shall always assume that the basis is ordered in such a way that

κ1 < 0
(

and κ2, . . . , κn > 0
)
.

Observe that in general, unlike the basis BΓ := (b1, . . . , bn) introduced

before (which does so by definition), Bf,µ does not generate the lattice Γ.

To avoid confusion we point also to the fact that while ei is a vector in

Bf,µ the symbol ei stands for an element of E, the set of admissible jumps

corresponding to µ.

35We use the expression saddle point as a shorthand for critical point of index 1.
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Recall also the definition of H̃(1)
ρε,ε,µ in (9.3) and that we work here under

Assumptions II.1 and II.2 36. The meaning of the symbols used to denote

asymptotic relations is standard and explained for completeness at the be-

ginning of Section E in the appendix.

Theorem 11.1 (Local Existence of WKB-type Quasimodes).

Fix a critical point ζ̄ of f having index 1. There exist an open neighbour-

hood Ω of ζ̄, a ϕ ∈ C∞(M ;R) and, for ε > 0, an aε ∈ C∞(M ;RV
p,µ

a ) with

the following properties:

(i)

e
ϕ
ε H̃(1)

ρε,ε,µ aεe
−ϕ
ε

∣∣∣
Ω
∼ 0 .

(ii)

ϕ(ζ̄) = 0 , ∇ϕ(ζ̄) ≡ 0 and ∇2
ei,ejϕ(ζ̄) = |κj | 1i,j .

(iii) there exists a sequence {âk}k∈N0 ⊂ C∞(M ;RV
p,µ

a ) such that

â0(ζ̄) = e1 and aε ∼
∞∑
k=0

εk âk .

Before giving the proof, which will occupy the rest of this section, we

make the following remark on the phase function ϕ.

Remark 11.2.

It will follow from the proof below (in particular from Lemma 11.8) that

the phase function ϕ appearing in Theorem 11.3 locally solves the eikonal

equation given by the “reversed” hamiltonian

Hrev
f,µ(ζ, ξ) := −Hf,µ(ζ, iξ) = ‖2 sinh

ξ

2
|2µ − ‖2 sinh

∇f(ζ)

2
|2µ .

To be specific, there exists an open neighbourhood Ω of ζ̄ such that

Hrev
f,µ(ζ,∇ϕ(ζ)) = 0 for every ζ ∈ Ω . (11.2)

As shown in [64], equation (11.2) together with the “boundary” conditions

ϕ(ζ̄) = 0 and ∇2ϕ(ζ̄) > 0 permits to interpret ϕ
∣∣∣
Ω

as the restriction of a

globally defined Finslerian distance dAg(ζ̄, ·) from the point ζ̄. This distance

36Indeed, as already mentioned, from Assumption II.2 only (i) is needed in this section,

since our constructions are local.
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plays for Hamilton operators on lattice graphs the analogous role of the Ag-

mon distance in the theory of classical Schrödinger operators in continuous

setting: it is in particular the basic geometric object which enters in the anal-

ysis of both the decay of eigenfunctions (Agmon estimates) and the splitting

of eigenvalues in the semiclassical limit (see [64] for Agmon estimates on

the lattice and the Phd thesis [87]).

In classical mechanics dAg is also known as the Jacobi distance associated

with the Hamiltonian Hrev
f,µ , appearing in some formulation of Maupertius

principle. A variational representation of dAg can be given as follows (see

again [64] for details).

Let E : M×V → R be the energy function corresponding to the Hamilton-

ian Hrev := Hrev
f,µ . Recall that the former is obtained from Hrev by a fiber-

wise Legendre transformation. More precisely, consider for every ζ ∈ M

the map ∇Hrev
ζ : V ∗ → V ∗∗ ' V ∗, where Hrev

ζ : V ∗ → R is defined via

Hrev
ζ (ξ) := Hrev(ζ, ξ) (here ∇ denotes the differential with respect to the

variable ξ). Then the energy E is given by

E(ζ, v) := Hrev(ζ, [∇Hrev
ζ ]−1(v)) ,

where [∇Hrev
ζ ]−1 : V → V ∗ is the inverse of ∇Hrev

ζ . Observe that for every

ξ, ξ′ ∈ V ∗

∇ξ′Hrev
ζ (ξ) = 〈2 sinh ξ, ξ′〉µ .

In particular ∇Hrev
ζ (ξ) (and consequently also [∇Hrev

ζ ]−1 (v)) is indepen-

dent of ζ for every ξ ∈ V ∗ (respectively for every v ∈ V ). We shall write

briefly v(ξ) := ∇H̃ζ (ξ) and ξ(v) := [∇H̃ζ ]
−1 (v).

One can show that, given (ζ, v) ∈ M × V \ {0}, one can find a unique

nonnegative scalar r(ζ, v) which by rescaling v projects (ζ, v) to the energy

shell corresponding to energy zero:

E(ζ, r(ζ, v)v) = 0 .

Next define for (ζ, v) ∈M × V

L(ζ, v) := ξv(r(ζ, v)v) .

This turns out to be an absolutely homogeneous Finsler function. The asso-

ciated distance dAg : M ×M → R+ is defined as

dAg(ζ, η) = inf

∫ 1

0
L(γ(t)), γ′(t)) dt ,
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where the infimum is taken over the set of piecewise C1 paths such that

γ(0) = ζ and γ(1) = η. As we already mentioned, one has locally around ζ̄

ϕ = dAg(ζ̄, ·)

Moreover dAg(ζ̄, ·) is locally Lipshitz continuous and satisfies for almost ev-

ery ζ ∈M the eikonal inequality

Hrev
f,µ(ζ, ϕ(ζ)) ≤ 0 .

Notice that in the case of the classical Witten Laplacian on a Riemannian

manifold (M, g) (recall that in this case Hf,g(ζ, ξ) = ‖ξ‖2g + ‖∇f(x)‖2g, so

Hrev
f,g (ζ, ξ) = ‖ξ‖2g − ‖∇f(ζ)‖2 ) the Legendre transformation and the scalar

r(ζ, v) are explicitly computable and one gets L(ζ, v) = ‖∇f(ζ)‖g ‖v‖g. The

associated distance is the usual Agmon distance

inf

∫ 1

0
‖∇f(γ(t))‖g ‖γ′(t)‖g dt .

Observe also that (neglecting the critical points of f where in any case degen-

eracy occurs) this distance has the special property to be not only Finslerian

but even Riemannian: it corresponds to the metric tensor ‖∇f‖g〈·, ·〉g.

As a first step for the proof of Theorem 11.1 we shall first prove the

following, slightly weaker statement.

Proposition 11.3 (Local existence of WKB-type Quasimodes. Weak ver-

sion).

Fix a critical point point ζ̄ of f having index 1. There exist an open

neighbourhood Ω of ζ̄, a ϕ ∈ C∞(M ;R) and, for ε > 0, a νε ∈ R and an

aε ∈ C∞(M ;RV,µa ) with the following properties:

(i)

e
ϕ
ε

[
H̃(1)
ρε,ε,µ − νε

]
aεe
−ϕ
ε

∣∣∣
Ω
∼ 0 .

(ii)

ϕ(ζ̄) = 0 , ∇ϕ(ζ̄) ≡ 0 and ∇2
ei,ejϕ(ζ̄) = |κj | 1i,j .
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(iii) there exists a sequence {ν̂k}k∈N0 ⊂ R such that

ν̂0 = ν̂1 = 0 and νε ∼
∞∑
k=0

εk ν̂k .

(iv) there exists a sequence {âk}k∈N0 ⊂ C∞(M ;RV
p,µ

a ) such that

â0(ζ̄) = e1 and aε ∼
∞∑
k=0

εk âk .

Observe that in order to obtain Theorem 11.1 from this preliminary ver-

sion one has just to show that ν̂k = 0 for every k ∈ N0. This will be

done at the end of the section exploiting the intertwining relations given by

Proposition 8.2 (ii).

Remark 11.4. Note that in Proposition (11.3) the set Ω can be shrinked to

a smaller Ω̃ ⊂ Ω and that aε can be multiplied with a function χ ∈ C∞(M ;R)

having compact support and satisfying χ ≡ 1 on Ω̃. Thus, taking Ω and the

support of aε sufficiently small one gets the following additional property:

ϕ > 0 on supp aε \ {0} for ε > 0 .

Remark 11.5. With the requirement ν̂1 = 0 we limit ourselves in Propo-

sition 11.3 to the construction of a WKB-type quasimode associated with a

low-lying eigenvalue of H̃(1)
ρε,Λε,µ

(equivalently of H(1)
ρε,Λµε

). This is sufficient

for the applications in Part III.

Nevertheless, we remark that the WKB-methods for Schrödinger opera-

tors developed in [45] can also be exploited in the asymptotic analysis of

other eigenvalues 37. This is also possible in the present setting: the paper

[66] contains a general WKB-analysis of a class of discrete Hamilton Oper-

ators including H(0)
ρε,Λµε

. The consideration of generic eigenvalues involves

some technical complications, due to the possible degeneracy of the associated

eigenvalues in the harmonic approximation. Moreover the main statement

has to be modified, since in general half-integer powers of ε appear in the

expansion of νε.

The narrower scope we are interested in permits to simplify the arguments

given in [66] and to streamline the proof. On the other hand, we provide

with Proposition 11.3 an extension of the results contained in [66], which

is crucial for the applications in Part III: we consider operators acting on

37To be more precise: for any given integer N , one can have for ε small enough an

asymptotic analysis of the first N eigenvalues.
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1-functions and we add the properties of ϕ, aε and νε which are specific

to the particular Laplacian-structure of the Hamiltonian operator we are

considering.

Remark 11.6. Observe that the amplitude aε can be multiplied by
∑

j≥0 ε
jKj,

with arbitrary K0 ∈ R\{0} and Kj ∈ R for j ≥ 1, and an arbitrary constant

c ∈ R can be added to the phase ϕ.

With the choices ϕ(ζ̄) = 0 and ‖a0(ζ̄)‖µ = 1 appearing in Proposi-

tion 11.3, the scaling properties of the norm ‖aε e−ϕ/ε‖Λε,µ are as follows: if

we additionally assume that ϕ > 0 on supp aε \{0} for ε > 0 (this is no loss

of generality by Remark 11.4), it follows by repeatedly applying the Laplace

asymptotics (see Corollary C.2) to every term of the Taylor expansion of

‖τε∗ âk e−ϕ/ε‖µ for every k ∈ N0, that

εn/4 ‖aε e−ϕ/ε‖Λε,µ ∼
∞∑
k=0

εk Ik ,

where (Ik)k∈N0 is a sequence in R, with

I0 =
πn/4

(det Hessϕ(0))1/4
.

Remark 11.7. The pointwise estimate (i) in Proposition 11.3 leads easily

to the following norm estimate, which will be exploited in the sequel:

Let Ω ⊂M , ϕ ∈ C∞(M ;R) and, for ε > 0, νε ∈ R and aε ∈ C∞(M ;RV
p,µ

a )

as in Proposition 11.3. Assume furthermore that ϕ > 0 on supp aε \ {0} for

ε > 0 (this is no loss of generality by Remark 11.4). Then

‖(H̃(1)
ρε,ε,µ − νε) aεe

−ϕ/ε‖Λε,µ = O(ε∞) . (11.3)

In fact, taking a compact K ⊂ Ω containing an open neighbourhood of ζ̄,

we have

‖(H̃(1)
ρε,ε,µ − νε) aεe

−ϕ/ε‖2Λε,µ = (11.4)

=

∫
K
‖τε∗ (H̃ρε,ε,µ − νε) aεe−ϕ/ε (ζ)‖µ Λε(dζ) +

+

∫
Kc

‖τε∗ (H̃ρε,ε,µ − νε) aεe−ϕ/ε (ζ)‖µ Λε(dζ) .
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For the first term in the right hand side of (11.4) we use (i) of Proposi-

tion 11.3, giving for every ζ ∈ K, N ∈ N0 and ε sufficiently small (see also

Remark E.1 in the appendix)

‖τε∗ (H̃(1)
ρε,ε,µ − νε) aεe

−ϕ/ε (ζ)‖µ ≤ Const εN e−ϕ(ζ)/ε

with ε-independent constant. It follows (by using for example Corollary C.2)

that ∫
K
‖τε∗ (H̃(1)

ρε,ε,µ − νε) aεe
−ϕ/ε (ζ)‖µ Λε(dζ) = O(ε∞) .

For the second term in the right hand side of (11.4) we use that away

from a fixed neighbourhood of ζ̄ the bound ϕ ≥ Const > 0 holds on supp aε.

Exploiting that supp aε has ε-independent compact support and Remark 9.4

one gets ∫
Kc

‖τε∗ (H̃(1)
ρε,ε,µ − νε) aεe

−ϕ/ε (ζ)‖µ Λε(dζ) ≤ e−γ/ε

for some γ > 0.

Notice also that, due to the intertwining relations (Proposition 8.2 (ii)),

both the pointwise estimate (i) in Proposition 11.3 and the norm estimate (11.3)

still hold true when substituting aεe
−ϕ/ε with δ̃ρε,ε aεe

−ϕ/ε or with δ
∗µ
ρε,ε aεe

−ϕ/ε,

where

δ̃ρε,ε := Ψε δρε Ψ−1
ε and δ̃

∗µ
ρε,ε := Ψε δ

∗µε
ρε Ψ−1

ε . (11.5)

More explicilty, we shall use in the sequel that

‖(H̃(1)
ρε,ε,µ − νε) δ̃ρε,ε aεe

−ϕ/ε‖Λε,µ = O(ε∞) (11.6)

and

‖(H̃(1)
ρε,ε,µ − νε) δ̃

∗µ
ρε,ε aεe

−ϕ/ε‖Λε,µ = O(ε∞) .

Proof of Proposition 11.3. We essentially follow the standard strategy for

establishing WKB-type results for the ground state of a classical Schrödinger

operator in Rn with a nondegenerate potential minimum (see for example

[40],[27]).

Step 1 :
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Let ϕ ∈ C∞(M ;R) and let , for ε > 0, νε ∈ R and aε ∈ C∞(M ;RV,µa ). If

νε and aε admit expansions

νε ∼
∞∑
k=0

εk ν̂k and aε

∣∣∣
Ω
∼
∞∑
k=0

εk âk

for some open neighbourhood Ω of ζ̄, then the left hand side appearing in

(i) admits an expansion in powers of ε:

e
ϕ
ε

[
H̃(1)
ρε,ε,µ − νε

]
aεe
−ϕ
ε

∣∣∣
Ω
∼

∞∑
k=0

εk γk , (11.7)

with γk ∈ C∞(Ω;RV
p,µ

a ) for every k ∈ N0. Statement (11.7) is obtained

by direct computation using Taylor expansions. The details, together with

explicit expressions for the γk’s in terms of ϕ, (âk)k∈N0 and (νk)k∈N0) are

given in Lemma 11.8 below.

Step 2 :

We show that one can find an open neighbourhood Ω of ζ̄, ϕ ∈ C∞(Ω;R),

a sequence (âk)k∈N0 in C∞(Ω;RV
p,µ

a ) and a sequence (νk)k∈N0 in R such that

- the γk’s appearing in (11.7) do identically vanish

- ϕ satisfies (ii) and ν̂0, ν̂1, â0(ζ̄) are given as in (iii) and (iv).

This amounts to show local solvability of singular partial (eiconal and trans-

port type equations). The details are given in Lemma 11.10 below.

Step 3

Let Ω, ϕ,(âk)k∈N0 and (νk)k∈N0 be as in Step 2. A standard Borel sum-

mation in ε gives the existence of νε and aε such that

νε ∼
∞∑
k=0

εk ν̂k and aε ∼
∞∑
k=0

εk âk .

Finally, multiplying both aε and ϕ with a function χ ∈ C∞(M ;R) having

compact support and satisfying χ = 1 on an open neighbourhood of ζ̄ finishes

the proof. �

For the next lemma recall the definition of the Hamiltonian Hf,µ and of

the subleading symbol Mf,µ given in (9.8) and (9.9).
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Lemma 11.8 (Expansion of the WKB Ansatz).

Let ϕ ∈ C∞(M ;R) and for ε > 0 let νε ∈ R and aε ∈ C∞(M ;RV
p,µ

a ).

Assume that

(i) there exists a sequence {ν̂k}k∈N0 ⊂ R such that

νε ∼
∞∑
k=0

εk ν̂k .

(ii) there exist an open Ω ⊂M and a sequence {âk}k∈N0 ⊂ C∞(Ω;RV,µa )

such that

aε

∣∣∣
Ω
∼
∞∑
k=0

εk âk . (11.8)

Then

eϕ/ε
[
H̃(1)
ρε,ε,µ − νε

]
e−ϕ/εaε

∣∣∣
Ω
∼

∼
∞∑
k=0

εk
[
Hf,µ(·, i∇ϕ)− ν̂0

]
âk +

∞∑
k=1

εk
[
T − (Qk + ν̂1)

]
âk−1 ,

where T : C∞(Ω;RV
p,µ

a )→ C∞(Ω;RV
p,µ

a ) is a smooth first order differential

operator given by

T := Trµ
[

2 sinh(∇ϕ) ∇ + ∇(sinh∇ϕ)
]

+ Mf,µ(·,−i∇ϕ)

and, for every k ∈ N∗, Qk is in C∞(Ω;RV
p,µ

a ) and has the form

Qk :=
k−2∑
l=0

{
Dk,l âl + ν̂l+2 âk−l−2

}
,

with Dk,l : C∞(Ω;RV
p,µ

a )→ C∞(Ω;RV
p,µ

a ) for k ∈ N∗, l ∈ {0, . . . , k − 2}.

Remark 11.9. Observe that Q1 ≡ 0. Moreover it will follow from the proof

of Lemma 11.8 that Dk,l is a smooth linear differential operator of order k−l
given by

Dk,l =

=

k−l∑
m=0

∑
s∈{−1,1}2

sign(s)
{

Trµ
( ĉk−l−m

m!
∇̄m
)
s
−

(ˆ̄ck−l−m
m!

∇̄m
)
s

]µ }
,

where (∇̄v1,v2)v1,v2∈V is defined via

∇̄v1,v2 :=
1

2
( ∇v1 + ∇v2 ) (11.9)
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and ĉk := {ĉk;v1,v2}v1,v2∈V 2, ˆ̄ck := {ˆ̄ck;v1,v2}v1,v2∈V 2 with ĉk;v1,v2 , ˆ̄ck;v1,v2 ∈
C∞(M ;R). (For more explicit expressions of the latter see Lemma E.8 in

the appendix)

Proof of Lemma 11.8. First observe that by Remark 8.8 the operator ob-

tained by conjugating H̃(1)
ρε,ε,µ with e−ϕ/ε is given by

eϕ/ε H̃(1)
ρε,ε,µ e

−ϕ/ε = (11.10)∑
s∈{−1,1}2

sign(s)
{
− Trµ

(
cε T 2

ε

)
s

+
(
c̄ε T 2

ε

)
s

]µ
}

,

where, with ρ̃ε := e−2ϕ/ε, for w1, w2 ∈ V

cε;w1,w2 := cf,ε;w1,w2 :=
1√
ρερ̃ε

Tεw1 ρε Tεw2

√
ρ̃ε
ρε

and

−c̄ε;w1,w2 := c−f,ε;w1,w2 − cf,ε;w2,w1 .

The statement of Lemma 11.8 follows now in a straightforward manner

by Taylor expansions of arbitrary order of the coefficients cε, c̄ε and of T 2
ε .

All the computations are reported hereafter for completeness. We shall use

that for every N ∈ N0 (with ∇̄ as in (11.9))

T 2
ε =

N∑
k=0

εk
1

k!
∇̄k + εN+1

∫ 1

0
dt

(1− t)N

N !
T 2
εt ∇̄N+1 (11.11)

and (see Lemma E.8 in the appendix) that

cε =
N∑
k=0

εk ĉk + εN+1 r
(N+1)
c,ε (11.12)

and

c̄ε =
N∑
k=0

εk ˆ̄ck + εN+1 r
(N+1)
c̄,ε (11.13)

with for every k,N ∈ N0, w1, w2 ∈ V , ε > 0 the functions ĉk;w1,w2 , ˆ̄ck;w1,w2 ,

r
(N+1)
c,ε;w1,w2 , r

(N+1)
c̄,ε;w1,w2

in C∞(M ;R) and

r
(N+1)
c,ε;w1,w2 , r

(N+1)
c̄,ε;w1,w2

= O(1) .

Step 1:
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We show that in Ω for every N ∈ N0

eϕ/ε H̃(1)
ρε,ε,µ e−ϕ/εaε =

N∑
k=0

εk Pk + εN+1 R(N+1)
ε , (11.14)

where for k ∈ N0

Pk :=

k∑
k1=0

k−k1∑
k2=0

∑
s∈{−1,1}2

sign(s)
{
− Trµ

( ĉk−k1−k2

k2!
∇̄k2

)
s

+ (11.15)

+
(ˆ̄ck−k1−k2

k2!
∇̄k2

)
s

]µ }
âk1

and, for every N ∈ N0, R
(N+1)
ε is in C∞(Ω;RV,µ) and satisfies R

(N+1)
ε =

O(1).

Indeed, combining (11.11) with (11.12) yields for every N ∈ N0

cε T 2
ε =

N∑
k1=0

N−k1∑
k2=0

εk1+k2 ĉk1

1

k2!
∇̄k2 + εN+1 R(N+1)

c,ε , (11.16)

with

R(N+1)
c,ε := (11.17)

=
N∑

k1=0

εk1 ĉk1 ε
−k1

∫ 1

0
dt

(1− t)N−k1

(N − k1)!
T 2
εt ∇̄N−k1+1 + r

(N+1)
c,ε T 2

ε .

Rearranging terms in (11.16) and (11.17) we get

cε T 2
ε =

N∑
k=0

εk
k∑

k′=0

ĉk−k′
1

k′!
∇̄k′ + εN+1 R(N+1)

c,ε (11.18)

and

R(N+1)
c,ε := (11.19)

=

N∑
k1=0

ĉk1

∫ 1

0
dt

(1− t)N−k1

(N − k1)!
T 2
εt ∇̄N−k1+1 + r

(N+1)
c,ε T 2

ε .

Putting together (11.18) and (11.19), the analogous formulas with c̄ε,

R(N+1)
c̄,ε instead of cε, R(N+1)

c,ε the expression (11.10) and assumption (11.8)

we get in Ω for every N ∈ N0
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eϕ/ε H̃(1)
ρε,ε,µ e−ϕ/εaε =

N∑
k1=0

N−k1∑
k2=0

εk1+k2

k1∑
k′=0

∑
s∈{−1,1}2

sign(s)
{
− Trµ

( ĉk1−k′

k′!
∇̄k′
)
s

+ (11.20)

+
(ˆ̄ck1−k′

k′!
∇̄k′
)
s

]µ }
âk2 + εN+1 R(N+1)

ε ,

with R
(N+1)
ε ∈ C∞(Ω;RV,µ) given by

R(N+1)
ε :=

N∑
k1=0

εk1

k1∑
k′=0

∑
s∈{−1,1}2

sign(s)
{
− Trµ

( ĉk1−k′

k′!
∇̄k′
)
s

+

+
(ˆ̄ck1−k′

k′!
∇̄k′
)
s

]µ }
ε−k1 r

(N−k1+1)
b,ε +

+
∑

s∈{−1,1}2
sign(s)

{
− Trµ R(N+1)

c,ε;s + R(N+1)
c̄,ε;s

]µ }
aε

and

r(N+1)
a,ε := ε−N−1

(
aε −

N∑
k=0

εk âk
)

= O(1) .

Since also aε = O(1), we can conclude using (11.19) (and the analogous

expression for R(N+1)
c̄,ε ) that R

(N+1)
ε = O(1). Moreover, rearranging terms

in (11.20), gives (11.14) as claimed.

Step 2:

We compute in four steps the term Pk appearing in (11.14) and defined

in (11.15).

1) Taking in (11.15) the summands corresponding to k1 = k and k2 = 0

we remain with∑
s∈{−1,1}2

sign(s)
{
− Trµ ĉ0;s + ˆ̄c0;s

]µ
}
âk . (11.21)

Since (see Remark E.9, in particular (E.13) and (E.15) for details)∑
s∈{−1,1}2

sign(s) ĉ0;s1v,s2v = 2 cosh∇vϕ− 2 cosh∇vf
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and ˆ̄c0 ≡ 0, we get for (11.21) the expression

−1

2

∫
V
µ(dv)

[
2 cosh∇vϕ− 2 cosh∇vf

]
âk = Hf,µ(·, i∇ϕ) âk ,

the last equality being due to Remark 9.5.

2) If k ≥ 1, taking in (11.15) the summands corresponding to k1 = k−1

and k2 = 0, we get

∑
s∈{−1,1}2

sign(s)
{
− Trµ ĉ1;s + ˆ̄c1;s

]µ
}
âk−1 . (11.22)

Since (see Remark E.10, in particular (E.17) and (E.19) for details

and recall Remark 9.5)∑
s∈{−1,1}2

sign(s) ĉ1;s1w,s2w =

= −∇2
wϕ cosh∇wϕ + ∇2

wf
(

sinh2 ∇wϕ
2

+ cosh2 ∇wf
2

)
and ∑

s∈{−1,1}2
sign(s) ˆ̄c1;s1w1,s2w2 =

= 2∇w1∇w2f cosh
∇w1(f − ϕ)

2
cosh

∇w2(f + ϕ)

2
,

we get for (11.22) the expression[
Trµ ∇(sinh∇ϕ) + Mf,µ(·,−i∇ϕ)

]
âk−1 .

3) If k ≥ 1, taking in (11.15) the summands corresponding to k1 = k−1

and k2 = 1 we get

∑
s∈{−1,1}2

sign(s)
{
− Trµ

(
ĉ0 ∇̄

)
s

+
(
ˆ̄c0 ∇̄

)
s

]µ
}
âk−1 . (11.23)

Since (see again Remark E.9, in particular (E.12) and (E.15), for

details)

ĉ0;w,w = e−∇wϕ , ĉ0;−w,−w = e∇wϕ and ˆ̄c0;w1,w2 = 0 ,
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we get for (11.23) the expression

〈2 sinh∇ϕ,∇âk−1〉µ .

4) If k = 0, 1 we computed all the summands in (11.15) in the pre-

ceeding steps. If k ≥ 2 the summands not considered until now

correspond to the indexes k1, k2 such that 0 ≤ k1 ≤ k − 2 and

0 ≤ k2 ≤ k − k1:

k−2∑
k1=0

k−k1∑
k2=0

∑
s∈{−1,1}2

sign(s)
{
−Trµ

( ĉk−k1−k2

k2!
∇̄k2

)
s

+
ˆ̄ck−k1−k2

k2!
∇̄k2

)
s

]µ }
âk1 .

(11.24)

The proof of the lemma is thus completed by defining for k ∈
N∗ and k1 ∈ {0, . . . , k − 2} the operator Dk,k1 : C∞(Ω;RV

p,µ
a ) →

C∞(Ω;RV
p,µ

a ) as the operator given by the two internal sums in (11.24),

i.e. via

Dk,k1 :=

=

k−k1∑
k2=0

∑
s∈{−1,1}2

sign(s)
{
− Trµ

( ĉk−k1−k2

k2!
∇̄k2

)
s

+
(ˆ̄ck−k1−k2;s

k2!
∇̄k2

)
s

]µ }
and observing that

−νε aε
∣∣∣
Ω
∼ −

∞∑
k=0

εk
k∑

k1=0

ν̂k1 âk−k1 =

= −
∞∑
k=0

εk ν̂0 âk −
∞∑
k=1

εk
[
ν̂1 âk−1 +

k∑
k1=2

ν̂k1 âk−k1

]
.

�

Lemma 11.10.

Fix a critical point ζ̄ of f having index 1. There exist a sequence {νk}k=2,... ⊂
R, an open neighbourhood Ω of ζ̄, a ϕ ∈ C∞(Ω;R) and a sequence {ak}k∈N0 ⊂
C∞(Ω;RV

p,µ
a ) such that

(i) ϕ(ζ̄) = 0, ∇ϕ(ζ̄) ≡ 0, ∇2
ei,ejϕ(ζ̄) = |κj | 1i,j and

Hf,µ(ζ, i∇ϕ(ζ)) = 0 for every ζ ∈ Ω .
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(ii) a0(ζ̄) = e1and for every k ∈ N∗

T ak−1 (ζ) = Qk(ζ) for every ζ ∈ Ω , (11.25)

where T : C∞(Ω;RV
p,µ

a )→ C∞(Ω;RV
p,µ

a ) is the first order differ-

ential operator

T := Trµ
[

2 sinh(∇ϕ) ∇ + ∇(sinh∇ϕ)
]

+ Mf,µ(·,−i∇ϕ)

and, for every k ∈ N∗, Qk is in C∞(Ω;RV
p,µ

a ) and has the form

Qk :=
k−2∑
l=0

{
Dk,l al + νl+2 ak−l−2

}
with Dk,l : C∞(Ω;RV

p,µ
a )→ C∞(Ω;RV

p,µ
a ) for k ∈ N∗, l ∈ {0, . . . , k−

2}.

Proof. (i) follows immediately from general results on the existence of solu-

tions of singular eikonal equations, which can be proven by an application

of the local stable manifold theorem for hyperbolic dynamical systems. We

refer to Lemma 3.1 in [66] for a detailed proof.

To prove (ii) we proceed in the standard way by iteration and exploiting

a general result for the existence of solutions of singular transport equations

(see Appendix A, in particular Theorem A.1).

To check that we are in the situation of Theorem A.1, observe that for

every a ∈ C∞(Ω;RV
p,µ

a )

T a(ζ) =

n∑
j=1

Vj(ζ) ∇ej a (ζ) + W (ζ) a (ζ)

with

Vj =
1

2

∫
V
µ(dw) e∗j (w) 2 sinh∇wϕ

and

W := Trµ ∇(sinh∇ϕ) + Mf,µ(·,−i∇ϕ) .

Note that
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(1) Vj(ζ̄) = 0 for every j = 1, . . . , n and the matrix(
∇elVj(ζ̄)

)
l,j

=
(
∇2

ej ,el
ϕ(ζ̄)

)
l,j

= |κj | 1j,l

is diagonal with strictly positive eigenvalues.

(2) The operator

W (ζ̄) = Trµ∇2(ϕ− f)(ζ̄) + ∇2f(ζ̄)
]µ

is selfadjoint on the Hilbert space RV
p,µ

a . Moreover one can check as

follows that it is also nonnegative and has a 1-dim kernel generated

by e1.

Indeed, by definition for every φ ∈ RV,µa with ‖φ‖µ = 1

〈W (ζ̄)φ, φ〉µ =

= 2|κ1| +
1

4

∫
V 2

µ(dv)µ(dw) 2∇v,wf(ζ̄) φw φv . (11.26)

The second summand in (11.26) equals

2
n∑
j=1

κj
1

4

∫
V 2

µ(dv)µ(dw) e∗j (v) e∗j (w) φw φv =

= 2

n∑
j=1

κj

( 1

2

∫
V
µ(dw) e∗j (w) φw

)2
.

Since κj > 0 for j > 1 we get

〈W (ζ̄)φ, φ〉µ ≥ (11.27)

≥ 2|κ1| + 2κ1

( 1

2

∫
V
µ(dw) e∗1(w) φw

)2
.

Cauchy-Schwarz gives( 1

2

∫
V
µ(dw) e∗1(w) φw

)2
≤

≤ 1

2

∫
V
µ(dw) (e∗1(w))2 1

2

∫
V
µ(dw) φ2

w = ‖φ‖2 = 1 ,

with equality holding if and only if ϕ is µ-almost everywhere a scalar

multiple of e∗1. Inserting into (11.27) leads to

〈W (ζ̄)φ, φ〉µ ≥ 2|κ1| + 2κ1 = 0 ,
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with equality only in the mentioned case. Moreover

W (ζ̄) e∗1(v) = 2|κ1| e∗1(v) +
1

2

∫
V
µ(dw) 2∇2

w,vf(ζ̄) e∗1(w) =

= 2|κ1| e∗1(v) + 2

n∑
j,l=1

κj
1

2

∫
V
µ(dw) 1j,l e

∗
j (w) e∗l (v) e∗1(w) =

= 2(|κ1|+ κ1) e∗1(v) = 0 .

Now consider the equation (11.25) for k = 1 (note that Q1 ≡ 0). By The-

orem A.1 there exists an open neighbourhood Ω of ζ̄ and a0 ∈ C∞(Ω;RV,µa )

satisfying {
T a0 (ζ) = 0 for every ζ ∈ Ω

a0(ζ̄) = e∗1
.

For k = 2 we have

Q2 := D2,0 a0 − ν2 a0

and we fix ν2 such that Q2(ζ̄) is orthogonal to a0, i.e. such that Q2(ζ̄) is in

the range of W (ζ̄). To be specific we let

ν2 :=
〈D2,0 a0(ζ̄), a0(ζ̄)〉µ

‖a0(ζ̄)‖2µ
.

Again by Theorem A.1 there exists an a1 satisfying

T a1 (ζ) = Q2(ζ) for every ζ ∈ Ω .

Iterating, once ν2, . . . , νk ∈ R and a0, . . . , ak−1 ∈ C∞(Ω;RV,µ) are con-

structed, we let

νk+2 :=
〈
∑k−1

l=0 Dk+1,l+2 al(ζ̄), a0(ζ̄)〉µ − 〈
∑k−2

l=0 νl+2 ak−l−1(ζ̄), a0(ζ̄)〉µ
‖a0(ζ̄)‖2µ

and define ak as a solution of (11.25) in Ω whose existence is again guaran-

teed by Theorem A.1. �

Having established Proposition 11.3 we can now complete the proof of

Theorem 11.1. We follow here ideas taken from Proposition 5.2.6 in [40].

Proof of Theorem 11.1. Take Ω ⊂M , ϕ ∈ C∞(M ;R) and, for ε > 0, νε ∈ R
and aε ∈ C∞(M ;RV

p,µ
a ) as in Proposition 11.3. Assume furthermore that

ϕ > 0 on supp aε\{0} for ε > 0 (this is no loss of generality by Remark 11.4).
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We have to show that νε ∼ 0. To this end, observe that it is sufficient to

show that

‖δ̃ρε,ε aεe−ϕ/ε‖2Λε,µ = O(ε∞) and ‖δ̃∗µρε,ε aεe−ϕ/ε‖2Λε,µ = O(ε∞) , (11.28)

with δ̃ρε,ε and δ̃
∗µ
ρε,ε as in (11.5). In fact, on one hand, from the very definition

of H̃(1)
ρε,ε,µ and Proposition 8.2 (iii), the property in (11.28) is equivalent to

〈aε e−ϕ/ε, H̃(1)
ρε,ε,µ aε e

−ϕ/ε〉Λε,µ = O(ε∞) . (11.29)

On the other hand we have by the Cauchy-Schwarz inequality and (11.3)

(we also use that by Remark 11.6 the norm of aε e
−ϕ/ε does not grow more

than polynomially in ε) that

〈aε e−ϕ/ε, (H̃(1)
ρε,ε,µ − νε) aε e

−ϕ/ε〉Λε,µ = O(ε∞) ,

i.e.

〈aε e−ϕ/ε, H̃(1)
ρε,ε,µ aε e

−ϕ/ε〉Λε,µ = νε ‖aε e−ϕ/ε‖2Λε,µ + O(ε∞) . (11.30)

From (11.29) and (11.30) (and using again the control on ‖aε e−ϕ/ε‖Λε,µ
given in Remark 11.6) it would follow that νε = O(ε∞) as claimed.

To prove the estimate on δ̃ρε,ε aεe
−ϕ/ε in (11.28) one can proceed as

follows (the estimates on δ
∗µε
ρε aε e

−ϕ/ε can be made in analogous way).

By possibly multiplying aε with a suitable cut-off function we shall assume

henceforth that B2(supp aε) (the ball of radius 2 around supp aε) contains

no critical points of f except ζ̄. Moreover we switch to a 1-well situation

by modifying the function f outside supp aε. To be specific, we consider

f̃ ∈ C∞(M) having the property that

f̃(ζ) = f(ζ) for every ζ ∈ B1(supp aε)

and

∇f̃(ζ) 6= 0 for every ζ ∈ Bc
1(supp aε) .

Now set ρ̃ε := e−2f̃/ε and observe that for ε sufficiently small

H̃(1)
ρ̃ε,ε,µ

δ̃ρ̃ε,ε aε e
−ϕ/ε = H̃(1)

ρε,ε,µ δ̃ρε,ε aε e
−ϕ/ε .

It follows by using Remark 11.3 (in particular (11.6)) that

‖(H̃(1)
ρ̃ε,ε,µ

− νε) δ̃ρ̃ε,ε aε e−ϕ/ε‖Λε,µ = O(ε∞) . (11.31)

As a consequence of the spectral theorem we get from (11.31)

dist
(
νε , Spec(H̃(1)

ρ̃ε,Λε,µ
)
)
‖δ̃ρ̃ε,ε aε e−ϕ/ε‖Λε,µ = O(ε∞) . (11.32)
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Moreover, by invoking Theorem B.5, there exists a strictly positive constant

C such that

dist
(
νε , Spec(H̃(1)

ρ̃ε,Λε,µ
)
)
≥ C ε2 ,

which together with (11.32) yields ‖δρ̃ε aε e−ϕ/ε‖Λε,µ = O(ε∞). Finally

observe that for ε sufficiently small ‖δ̃ρε,ε aε e−ϕ/ε‖Λε,µ = ‖δρ̃ε aε e−ϕ/ε‖Λε,µ .

�

Remark 11.11. Note that if N > n Theorem 11.1 provided quasimodes for

only a part of the low-lying spectrum of H(1)
ρε,Λµε

, namely the part associated

with the critical points of f having index 1. We know from Theorem 10.1

that there are further m0(N−n) small eigenvalues related to the local minima

of f . Local WKB-type quasimodes corresponding to these additional small

eigenvalues can be constructed along the same lines. We will not need this,

since for simplicity we will restrict in Part III to the case N = n.
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Part III. Asymptotics of small eigenvalues of H(0)
ρε,Λµε

In this part we will give a refined analysis in the limit ε → 0 of the low-

lying spectrum ofH(0)
ρε,Λµε

, the rescaled Witten Laplacian acting on functions

as introduced in Part II. The main theorem (see Section 17) shows for each

small eigenvalue the existence of a complete expansion in ε and provides

explicit expressions for the leading term in the expansion. The proof heavily

exploits the results of the previous Part II concerning H(1)
ρε,Λµε

, the rescaled

Witten Laplacian on 1-functions (see in particular Theorem 10.1 and 11.1).

12. Assumptions

The setup of this part is, besides the addition of Assumption III.2 below,

the same as the one of Part II, as described in Section 9. For convenience of

the reader we recall here briefly some crucial definitions and gather all the

assumptions made throughout this part.

We consider throughout an n-dimensional affine space M with underlying

vector space V and assume given an inhomogeneous discrete geometry ρµ

on M . Recall from Section 5 in Part I, that ρµ consists of a function ρ :

M → (0,∞) and a symmetric measure µ on V with a finite support which

generates a lattice Γ in V . Recall also that E = suppµ \ {0} is referred

to as the set of admissible jumps. For ε > 0 the rescaled inhomogeneous

geometry ρεµε := (ρε, µε) is defined by setting for every ζ ∈M

ρε(ζ) := e−2f(ζ)/ε ,

where f := −1
2 log ρ, and by setting for every measurable set S in V

µε(S) := µ(ε−1S) .

Moreover we fix for ε > 0 an equivalence class in M under ∼εΓ and

denote by Λε the elements of the chosen equivalence class. The weighted

graph with vertices Λε, edges determined by εE and weight µε on the edges

will be denoted by Λµε .

The rescaled formal Witten Laplacian Hρε,µε = ⊕∞p=0H
(p)
ρε,µε is defined via

Hρε,µε := δ
∗µε
ρε δρε + δρεδ

∗µε
ρε ,
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where

δρε :=
√
ρε δ

1
√
ρ
ε

and δ
∗µε
ρε :=

1
√
ρ
ε

δ∗µε
√
ρε

and δ and δ∗µε .

The Friedrichs extension in L2
a(M × V p,Λµε) of the restriction of H(p)

ρε,µε

to p-functions with compact support is denoted by H(p)
ρε,Λµε

.

As in Part II we assume

Assumption III.1.

(i) f ∈ C∞(M ;R) and is a Morse function.

(ii) There exists a point O ∈M such that O ∈ Λε for ε > 0.

(iii) There exists a compact K ⊂ Rn and coordinates z = (z1, . . . , zn) on

M such that for z ∈ Rn \K

f(z) =
∑
i

z2
i .

The Morse property and (iii) imply in particular that f has only a finite

number of critical points. We shall denote for p = 0, . . . , n by Cp the set of

critical points of f having index p and by C := ∪p Cp, the set of all critical

points of f . Moreover we let mp (resp. m) the cardinality of Cp (resp.

C). In accordance with lim|ζ|→∞ f(ζ) = +∞ we also set for convenience

f(∞) := +∞.

Our main concern is to get asymptotic results as accurate as possible on

the first m0 eigenvalues H(0)
ρε,Λµε

, whose existence under Assumption III.1 is

guaranteed (for sufficiently small ε) by Theorem 10.1. We shall denote these

small eigenvalues of H(0)
ρε,Λµε

by

ν1,ε ≤ · · · ≤ νm0,ε .

Note that by Remark 10.4 we have ν1,ε = 0 and e−f/ε as an associated

eigenfunction.

Throughout this part we make for simplicity the additional

Assumption III.2.

(i) The critical values {f(ζ) : ζ ∈ C} are distinct.

(ii) The quantities {f(ζ(1))−f(ζ(0)) : ζ(1) ∈ C(1), ζ(0) ∈ C(0)} are distinct.

(iii) µ is a nearest neighbour discrete geometry .
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Recall that (iii) means that the set E of admissible jumps has cardinality

2n. In other terms the size of µ equals the dimension of the affine space

M . This hypothesis is chosen just to simplify the presentation. Require-

ment (i) could be relaxed without alterating the final results, by assuming

uniqueness of the relevant saddle point attached to a minimum as done in

[42]. Finally (i) is chosen to avoid the problem of possible degeneracy of the

small eigenvalues.
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13. Labelling of local minima and relevant saddle points

The aim of this section is to introduce a convenient labelling of the local

minima of f , to attach to each of them a so-called relevant saddle point

at which exit from the metastable basin of attraction of the considered

minimum occurs. There are several equivalent ways to do this (see for

example [13] and [42]), we follow here in particular [70]. We stress that the

discussion below concerns only the geometry of f : the Witten Laplacian,

in particular the discrete nature of the one we are considering in this work,

plays no role here.

For z ∈ R let Nf (z) be the number of connected components of the

sublevel set f−1((−∞, z)).

Observe that the function Nf : z → Nf (z) satisfies the following proper-

ties:

(a) it is locally constant around every z /∈ f(C0 ∪ C1).

(b) it increases by 1 at critical values of f corresponding to minima.

More precisely, if z0 ∈ f(C0),

lim
z↓z0

Nf (z) = lim
z↑z0

Nf (z) + 1 = Nf (z0) + 1 .

(c) it can decrease by 1 at critical values of f corresponding to saddle

points. More precisely, if z1 ∈ f(C1) either Nf remains constant

around z1 or

lim
z↓z1

Nf (z) = lim
z↑z1

Nf (z)− 1 = Nf (z1)− 1 .

(d) Nf ≡ 0 for z small enough and Nf ≡ 1 for z big enough.

Indeed, recalling that by Assumptions III.1.(i) and III.2.(i) f is a Morse

function with distinct critical values, properties (a) to (c) are a consequence

of the local structure of Morse functions. Property (d) is due to the fact

that by Assumption III.1(iii) f admits a global minimum and the set of its

critical points is contained in a compact set.

Remark 13.1. From the above properties of Nf one can easily deduce the

following relation

m1 + 1 ≥ m0 .
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Definition 13.2 (Labelling of local minima and saddle points).

A labelling {ζ(0)
1 , . . . , ζ

(1)
m0} (resp. {ζ(1)

1 , . . . , ζ
(1)
m1+1}) for the elements of C0

(resp. C1 ∪ {∞}) is defined according to the following inductive recipe:

(1) Set ζ
(1)
1 := ∞ and denote by ζ

(0)
1 the global minimum of f , which

exists thanks to Assumption III.1(iii).

(2) Once ζ
(0)
i and ζ

(1)
i are chosen for some i < m0, consider the value

z̄ = max{z ∈ R : z < f(ζ
(1)
i ) and Nf (z) = Nf (ζ

(1)
i ) + 1} .

Denote by ζ
(1)
i+1 the unique element ζ(1) of C1 satisfying f(ζ(1)) = z̄

and by ζ
(0)
i+1 the unique global minimum of the set obtained by sub-

tracting from f−1((−∞, ζ(1)
i+1)) its connected components containing

at least one element of {ζ(0)
1 , . . . , ζ

(0)
i }.

(3) Once ζ
(1)
m0 is chosen, fix an arbitrary labelling ζ

(1)
m0+1, . . . , ζ

(1)
m1+1 for

the remaining elements of C1.

(4) Permute the i’s in order to make the sequence

{f(ζ
(1)
i )− f(ζ

(0)
i )}i=2,...,m0

strictly decreasing, which is possible thanks to Assumption III.2.(ii).

Observe that these labellings provide in particular a one to one correspon-

dance between C0 and a subset of C1 ∪ {∞}:

Definition 13.3 (Relevant saddle points).

For i = 1, . . . ,m0 the point ζ
(1)
i is called the relevant saddle point attached

to the local minimum ζ
(0)
i .

Definition 13.4 (Basins of attraction).

For i = 1, . . . ,m0 we define the basin of attraction Bi of the local minimum

ζ
(0)
i as the closure of the connected component of the set

f−1
(

(−∞, f(ζ
(1)
i ))

)
containing ζ

(0)
i .

Observe that from our conventions it follows that B1 = M . Moreover, for

i = 2, . . . ,m0 the basin Bi is compact and contains ζ
(1)
i in its boundary.

Proposition 13.5. The following statements hold true:

(i) ζ
(0)
i is a strict global minimum of f in Bi.
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(ii) Let i, j = 1, . . . ,m0. Then either Bi ∩Bj = ∅ or Bj ⊂ B̊i or Bi ⊂ B̊j.

Proof. Statement (i) holds by definition of the ζ
(0)
i ’s and Bi’s (recall also

Assumption III.2.(i)).

To prove (ii) observe first that by Assumption III.2.(i) we have

∂Bi ∩ ∂Bj = ∅ . (13.1)

Assume now f(ζ
(1)
i ) < f(ζ

(1)
j ). Then every connected component of the

set f−1
(

(−∞, f(ζ
(1)
i ))

)
is contained in a connected component of the set

f−1
(

(−∞, f(ζ
(1)
j ))

)
, so that either B̊i ⊂ B̊j or B̊i ∩ B̊j = ∅. The first case

together with (13.1) gives Bi ⊂ B̊j . The second case implies also B̊i∩∂Bj = ∅
and ∂Bi ∩ B̊j = ∅, so that using again (13.1) we get Bi ∩ Bj = ∅. Analogous

considerations with the Assumption f(ζ
(1)
i ) > f(ζ

(1)
j ) complete the proof of

(ii). �

Note that for i = 2, . . . ,m0 the basin Bi has a corner at ζ
(1)
i . To facili-

tate the construction of suitable smooth cut-off functions it is convenient to

slightly modify the basins of attraction around the corresponding relevant

saddle points, introducing smooth versions of them. In order to describe

this small surgery we consider the following coordinate systems on M , each

one centered at a relevant saddle point and adapted to the corresponding

quadratic part of f . We shall denote henceforth by κ1 the negative and by

κ2 . . . , κn the positive eigenvalues of the nondegenerate symmetric bilinear

form ∇2f(ζ
(1)
i ) with respect to the scalar product induced by µ on V . We

also write κ
(i)
j for j = 1, . . . , n to stress the dependence on i = 2, . . . ,m0,

and κ
(i)
f,µ,j to highlight the dependence on f and µ.

Definition 13.6 (Adapted Coordinates).

Let i = 2, . . . ,m0. We fix a basis Binw
f,µ := (e1, . . . , en) of V such that,

denoting by (e∗1, . . . , e
∗
n) its associated dual basis,

1

2

∫
V
µ(dw) e∗l (w) e∗j (w) = 1l,j and ∇2

el,ej
f(ζ̄) = κj 1l,j

and such that for sufficiently small t > 0

ζ
(1)
i + te1 ∈ Bi . (13.2)

Moreover we shall denote by (y, z) ∈ Rn, with y ∈ R and z = (z2, . . . , zn) ∈
Rn−1 a coordinate system in M , centered at ζ

(1)
i and induced by the basis
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(e1, . . . , en). We write also y(i), z(i) and e
(i)
j for every j = 1, . . . , n to high-

light the dependence on the index i.

Remark 13.7. Note that a basis Binw
f,µ has the same properties of a basis

Bf,µ as chosen in Section 11 (see (11.1)), apart that here we add condi-

tion (13.2) expressing the fact that e1 is pointing inwards the corresponding

basin of attraction. This is only a convention and also the outward vector

−e1 could have been chosen at this point: signs had to be changed accordingly

in the sequel. The final result (Theorem 17.1) is of course independent of

this convention.

We stress that in general Binw
f,µ is not adapted to (i.e. does not generate)

the lattice Γ. To avoid confusion we point also to the fact that while ei
denotes in the sequel a vector in Binw

f,µ the symbol ei stands for an element

of E, the set of admissible jumps corresponding to µ.

Observe that with respect to the coordinates (y, z) adapted to ζ
(1)
i we

have38

f(y, z) = f(ζ
(1)
i ) − 1

2
|κ1| y2 +

1

2

∑
j

κj z
2
j + Rf (y, z) , (13.3)

with

|Rf (y, z)| ≤ Const (|y|3 + |y|2‖z‖+ |y|‖z‖2 + ‖z‖3)

for every (y, z) contained in a fixed compact subset of Rn. Here ‖ · ‖ denotes

a generic norm in Rn−1. We shall consider in the sequel in particular the

norm ‖z‖κ(i) , defined for z = (z2, . . . , zn) as

‖z‖κ(i) :=

√√√√ n∑
j=2

κ
(i)
j

|κ(i)
1 |

z2
j .

We shall use the following short notations: for each i = 2, · · · ,m0 and r > 0

we define the strips

S−i,r :=
{
ζ ∈M : |y(i)(ζ)| ≤ r

}
and

S+
i,r :=

{
ζ ∈M : ‖z(i)(ζ)‖κ(i) ≤ r

}
.

Moreover, for R, r > 0, we define

Qi,r,R := S−i,r ∩ S+
i,R and Qi,R := Qi,R,R . (13.4)

38With usual abuse of notation we do not distinguish here and in the sequel between

a function on M and the corresponding function on coordinate space.
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Finally, given S ⊂ M and R > 0 we denote by BR(S) the ball of radius R

around S, i.e.

BR(S) :=
{
ζ ∈M : distµ(ζ, S) ≤ R

}
.

Definition 13.8 (Modified basins of attraction).

Let i = 2, · · · ,m0. We denote by B̃i a compact n-dimensional smooth

submanifold of M containing Bi and having the following properties:

(i) there exists an R := Ri > 0 such that

a) ∂B̃i ∩ Qi,2R =
{
ζ ∈M : y(i)(ζ) = 0 and ‖z(ζ)‖κ(i) ≤ 2R

}
b) if r > 0 is sufficiently small, then f(ζ) > f(ζ

(1)
i ) for every

ζ ∈ Br(∂B̃i) \ Qi,R
(ii) if Bi ∩ Bj = ∅ then also B̃i ∩ B̃j = ∅ and if Bi ⊂ B̊j then also

B̃i ⊂ ˚̃Bj
(iii) For r > 0 sufficiently small the only critical point contained in

Br(∂B̃i) is ζ
(1)
i .

The existence of modified basins of attractions can be shown by means

of the following discussion on the local structure of f around saddle points

and using Assumption III.2 (i).

To start with, note that, in the special case in which for some R > 0 the

energy f happens to be exactly quadratic in each Qi,R, we have for every

i = 2, · · · ,m0

f−1(ζ
(1)
i ) ∩ Qi,R =

{
ζ ∈M : y(i)(ζ) = ±‖z(i)(ζ)‖κ(i)

}
∩ Qi,R

and in particular

∂Bi ∩ Qi,R =
{
ζ ∈M : y(i)(ζ) = ‖z(i)(ζ)‖κ(i)

}
∩ Qi,R .

In the general situation we shall use the following rough estimate on the

behaviour f−1(ζ
(1)
i ) near the relevant saddle point (see Fig. 5).

Lemma 13.9.

There exists an R̃ > 0 such that for every i = 2, · · · ,m0,

f−1(ζ
(1)
i ) ∩ Qi,R̃ ⊂

{
ζ ∈M :

∣∣∣± y(i)(ζ)−‖z(i)(ζ)‖κ(i)

∣∣∣ ≤ 1

4
‖z(i)(ζ)‖κ(i)

}
∩ Qi,R̃

(13.5)
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and

∂Bi ∩ Qi,R̃ ⊂
{
ζ ∈M :

∣∣∣ y(i)(ζ)−‖z(i)(ζ)‖κ(i)

∣∣∣ ≤ 1

4
‖z(i)(ζ)‖κ(i)

}
∩ Qi,R̃ .

(13.6)

Figure 5. Picture of Lemma 13.9 in dimension n = 1 with

m := ( |κ(i)
1 |/κ

(i)
2 )

1
2 . In blue the set

{
ζ ∈ M : y(i)(ζ) =

‖z(i)(ζ)‖κ(i)

}
and in red the set ∂Bi.

Proof. We only show (13.6). Equation (13.5) can be shown analogously.

First take R > 0 sufficiently small such that for every i = 2, . . . ,m0{
ζ ∈M : y(i)(ζ) ∈ (−R, 0)

}
∩ Bi = ∅ . (13.7)

Let now i = 2, . . . ,m0 and ζ ∈ ∂Bi \ {z(1)
i } ∩ Qi,R. Note that y(i)(ζ) ≥ 0

due to (13.7). Moreover, by (13.3), we can find a constant K independent

of i and ζ such that with x(i)(ζ) := (y(i)(ζ), z(i)(ζ))∣∣ |y(i)(ζ)|2 − ‖z(i)(ζ)‖2
κ(i)

∣∣ ≤ K ‖x(i)(ζ)‖3 ,

i.e. ∣∣ y(i)(ζ)− ‖z(i)(ζ)‖κ(i)

∣∣ ≤ K ‖x(i)(ζ)‖3

y(i)(ζ) + ‖z(i)(ζ)‖κ(i)

. (13.8)

In the case y(i)(ζ) ≥ ‖z(i)(ζ)‖κ(i) (implying y(i)(ζ) 6= 0) we get from (13.8)

by possibly taking a smaller R > 0

y(i)(ζ)− ‖z(i)(ζ)‖κ(i) ≤ K ′
|y(i)(ζ)|3

y(i)(ζ)
≤ 1

5
y(i)(ζ) ,
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i.e. ∣∣ y(i)(ζ)− ‖z(i)(ζ)‖κ(i)

∣∣ ≤ 1

4
‖z(i)(ζ)‖κ(i) .

Similarly, in the case y(i)(ζ) < ‖z(i)(ζ)‖κ(i) , we get from (13.8)∣∣ y(i)(ζ)− ‖z(i)(ζ)‖κ(i)

∣∣ ≤ K ′ ‖z(i)(ζ)‖3
κ(i)

‖z(i)(ζ)‖κ(i)

≤ 1

4
‖z(i)(ζ)‖κ(i)

.

�

One can construct modified basins of attractions using Lemma 13.9 as

follows.

Step 1 :

Let R̃ as in Lemma 13.9. Take R := 1
4R̃ and r0 > 0 sufficiently small such

that for i, j = 2, . . . ,m0

(i)
(
Bi ∩ Bj = ∅

)
⇒

(
Br0(Bi) ∩ Br0(Bj) = ∅

)
(ii)

(
Bi ⊂ B̊j

)
⇒

(
Br0(Bi) ⊂ B̊j

)
(iii) f(ζ) > f(ζ

(1)
i ) for every ζ ∈

(
Br0(Bi) \ Bi

)
∩ Qc

i,R̃

Note that (iii) can be achieved thanks to Assumption III.2 (i), which implies

that there is no critical point of f on ∂Bi ∩Qci,R̃.

Step 2 :

Construct for every i = 2, . . . ,m0 a compact n-dimensional smooth sub-

manifold B̃i of M satisfying for some 0 < r1 < r0

(i) Br1(Bi) ∩Qci,R̃ ⊂ B̃i ∩Q
c
i,R̃
⊂ Br0(Bi) ∩Qci,R̃

(ii) B̃i ∩Qi,R̃,2R =
{
ζ ∈M : 0 ≤ y(i)(ζ) ≤ R̃ and ‖z(ζ)‖κ(i) ≤ 2R

}
(iii) f(ζ) > f(ζ

(1)
i ) if ζ is both in Qi,R̃ ∩Q

c
i,R̃,2R

and in B̃i ∩ Bci
This is possible thanks to Lemma 13.9 and it is straightforward to check

that the thus constructed B̃i’s are modified basins of attraction.

Remark 13.10. If B̃i is a modified basin of attraction property (i) b) ap-

pearing in Definition 13.8 can be improved in the following sense: for r > 0
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sufficiently small

f(ζ) > f(ζ
(1)
i ) for every ζ ∈ Br(∂B̃i) \ Qi,2r .

This can be seen using Lemma 13.9.

Remark 13.11.

Let B̃i be a modified basin of attraction. Since B̃i is smooth, the inward

unitary normal vector n = n(η) of B̃i is well defined at every point η ∈ ∂B̃i.
For r sufficiently small we shall consider on the set Br(∂B̃i) the coordinates

ζ 7→
(
η(ζ), ι(ζ)

)
∈ ∂B̃i × (0, r) defined by

ζ = η(ζ) + ι(ζ) n(ζ) .

We shall also write ni, ηi and ιi to stress the dependence on i.
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14. Quasimodes

Following [42] we attach to every local minimum of f a quasimode for

H(0)
ρε,Λµε

and to every critical point of index 1 of f a quasimode for H(1)
ρε,Λµε

.

The former is obtained by cutting the ground state e−
f
ε outside the basin

of attraction of the considered local minimum; the latter by using a WKB-

expansion around a small neigbourhood of the considered saddle point.

To make this precise we introduce now suitable cut-off functions: the cut-

off function χ
(0)
i,s,ε attached to ζ

(0)
i will be supported in a small neigbourhood

of the modified basin of attraction B̃i and will depend both on ε and a second

parameter s > 0, which can be thought as fixed throughout. Every choice

of s ∈ [1
2 , 1) will be fine to obtain asymptotic expressions for the low-lying

eigenvalues of H(0)
ρε,Λµε

, with s = 1
2 giving the best (but not optimal) error

estimate, see Proposition 15.1 in Section 15. Therefore, up to Section 16

included, one can think of s = 1
2 . The convenience of developing the theory

also for different values of s will show up only in Section 17, where comparing

two possible choices of s (say s = 1
2 and s =

√
2

2 ) one can easily get rid of

the fictitious dependence on s of the results and thus obtain optimal error

estimates.

Definition 14.1. [Cut-off function corresponding to a local minimum]

Let i = 2, . . . ,m0 and let s > 0. A cut-off function (of order s) corre-

sponding to the local minimum ζ
(0)
i is a function χ

(0)
i,s,ε ∈ C∞(M ;R) also

depending on ε > 0 , satisfying for ε sufficiently small

χ
(0)
i,s,ε(ζ) =


1 if ζ ∈ B̃i \Bεs(∂B̃i)
θ
( ιi(ζ)
εs

)
if ζ ∈ Bεs(∂B̃i)

0 if ζ ∈M \Bεs(B̃i)
,

where B̃i is a modified basin of attraction as in Definition 13.8, ζ 7→ ιi(ζ) is

the coordinate introduced in Remark 13.11 and θ ∈ C∞(R;R) satisfies

θ(t) =

{
1 if t ≥ 1

0 if t ≤ −1
.

Moreover, in the case i = 1 we set for s, ε > 0

χ
(0)
1,s,ε ≡ 1 .
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Remark 14.2.

Recall the definition of the scaling operator Ψε given in (9.2). Let i =

2, . . . ,m0 and s > 0. Observe that for ζ ∈M , v ∈ V and ε > 0

Ψε τ∗ δ χ
(0)
i,s,ε (ζ, v) = χ

(0)
i,s,ε(ζ + εv)− χ(0)

i,s,ε(ζ) ,

so that a Taylor expansion gives

Ψε τ∗ δ χ
(0)
i,s,ε

∣∣∣
Qi,R

∼
∞∑
k=1

ε(1−s)k 1

k!
θ(k)
( y(i)

εs
)
e∗1 , (14.1)

where θ(k) denotes the k-th derivative of the function θ ∈ C∞(R;R) appear-

ing in definition 14.1 and R > 0 is sufficiently small such that ιi(ζ) = y(i)(ζ)

for ζ ∈ Qi,R (recall the definition of the latter in (13.4)).

We shall also use in the sequel that for every k ∈ N0 there exists a constant

C > 0 such that for every ζ in M and ε > 0

‖∇kχi,s,ε(ζ)‖µ ≤ C ε−ks . (14.2)

Moreover, for s ∈ (0, 1) and ε sufficiently small

supp ‖τ∗ δχ(0)
i,s,ε‖µε ⊂ B2εs(∂B̃i) .

Finally note that from Remark 13.10 it follows that for s ∈ (0, 1) there exists

a constant C > 0 such that for ε > 0 sufficiently small

max
supp ‖τ∗ δχ(0)

i,s,ε‖µε
[ f(ζ

(1)
i )− f ] ≤ C ε2s . (14.3)

The cut-off function χ
(1)
i attached to the saddle point ζ

(1)
j will be sup-

ported in an ε-independent but suitably small neighbourhood of ζ
(1)
j . Recall

for this purpose the definitions of Qi,R,r and Qi,R given in (13.4).

Remark 14.3. Let i = 2, . . . ,m1 + 1 and let ϕ
(1)
i ∈ C∞(M ;R) be a phase

function corresponding to the critical point ζ
(1)
i as constructed in Theo-

rem 11.1. Since in particular

ϕ
(1)
i (ζ

(1)
i ) = 0 , ∇ϕ(1)

i (ζ
(1)
i ) ≡ 0 and ∇2

el,ej
ϕ

(1)
i (ζ

(1)
i ) = |κ(i)

j | 1l,j ,

it follows that for sufficiently small R, γ > 0 the estimates

ϕ
(1)
i (ζ) ≥ γ|y(i)(ζ)|2 + γ‖z(i)(ζ)‖2

κ(i) (14.4)

and

f(ζ)− f(ζ
(1)
i ) + ϕ

(1)
i (ζ) ≥ −γ|y(i)(ζ)|2 + γ‖z(i)(ζ)‖2

κ(i) (14.5)
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hold for every ζ ∈ Qi,R. To see (14.5) observe that for every γ′ > 0 there

exists an Rγ′ > 0 such that f(ζ) − f(ζ
(1)
i ) + ϕ

(1)
i (ζ) + γ′|y(i)(ζ)|2 is strictly

positive in Qi,Rγ′ \ {0}. It follows that the function defined by

gi(ζ) :=
f(ζ)− f(ζ

(1)
i ) + ϕ

(1)
i (ζ) + γ′|y(i)(ζ)|2

‖z(i)(ζ)‖2
κ(i) + γ′|y(i)(ζ)|2

,

extended by continuity to ζ
(1)
i is strictly positive in Qi,Rγ′ , so with γ :=

infζ∈Qi,Rγ′
gi(ζ) > 0 one gets

f(ζ)− f(ζ
(1)
i ) + ϕ

(1)
i (ζ) ≥ γ′(γ − 1)|y(i)(ζ)|2 + γ‖z(i)(ζ)‖2

κ(i) ,

giving (14.5) for sufficiently small γ′.

Definition 14.4 (Cut-off function corresponding to a saddle point).

Let i = 2, . . . ,m1 +1. A cut-off function corresponding to the saddle point

ζ
(1)
i is a (ε - independent) function χ

(1)
i ∈ C∞(M ;R) satisfying

χ
(1)
i ≡ 1 on Qi,R and χ

(1)
i ≡ 0 on M \Qi,2R

for some R > 0 such that (14.4) and (14.5) hold in Qi,3R for some suffi-

ciently small γ > 0 and such that for every sufficiently small r > 0

Qi,3R ∩ Br(B̃i) = Qi,r,3R .

We shall also assume that for i 6= j

supp ‖τ∗χ(1)
i ‖µε ∩ supp ‖τ∗χ(1)

j ‖µε = ∅ and supp ‖τ∗χ(1)
i ‖µε ∩ Br(∂B̃j) = ∅

(14.6)

for ε, r > 0 sufficiently small.

Remark 14.5. For our purposes one could alternatively define an ε-dependent

cut-off function χ
(1)
i,ε ∈ C∞(M ;R) corresponding to the saddle point ζ

(1)
i by

just requiring that

χ
(1)
i,ε ≡ 1 on Qi,Rε and χ

(1)
i,ε ≡ 0 on M \Qi,2Rε ,

with Rε going to zero at least as slowly as
√
ε| log ε|. Working with χ

(1)
i,ε

instead of χ
(1)
i would not affect the following results.

Definition 14.6 (Quasimodes and approximate eigenvalues).
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(i) Let i = 1, . . . ,m0 and s > 0. For ε > 0 we define the quasimode

ψ
(0)
i,s,ε ∈ C∞(M ;R) corresponding to ζ

(0)
i as

ψ
(0)
i,s,ε(ζ) := Z

(0)
i,s,ε χ

(0)
i,s,ε(ζ) e−

f(ζ)−f(ζ
(0)
i

)

ε ,

where Z
(0)
i,s,ε is a normalization constant:

Z
(0)
i,s,ε := ‖χ(0)

i,ε e
−
f−f(ζ

(0)
i

)

ε ‖−1
Λµε

and χ
(0)
i,s,ε is a cut-off function corresponding to ζ

(0)
i (see Defini-

tion 14.1).

(ii) Let i = 2, . . . ,m1 + 1. For ε > 0 we define the quasimode ψ
(1)
i,ε ∈

C∞(M ;RV,µεa ) corresponding to ζ
(1)
i as

ψ
(1)
i,ε (ζ) := Z

(1)
i,ε χ

(1)
i (ζ) a

(1)
i,ε (ζ) e−

ϕ
(1)
i

(ζ)

ε ,

where Z
(1)
i,ε is a normalization constant:

Z
(1)
i,ε := ‖χ(1)

i a
(1)
i,ε e

−
ϕ

(1)
i
ε ‖−1

Λµε
,

χ
(1)
i is a cut-off function corresponding to ζ

(1)
i (see Definition 14.4)

and a
(1)
i,ε e−

ϕ
(1)
i
ε ∈ C∞(M ;RV,µεa ) is a WKB quasimode around ζ

(1)
i ,

i.e. Ψε a
(1)
i,ε and ϕ

(1)
i have the properties of the amplitude and phase

appearing in Theorem 11.1, with critical point ζ
(1)
i . Moreover, by

possibly changing sign, we shall assume that Ψεa
(1)
i,0 (ζ

(1)
i ) = e∗1, with

e∗1 as in Definition 13.6.

(iii) Let i = 2, . . . ,m0 and s > 0. For ε > 0 we define the approximate

eigenvalues νappi,s,ε ∈ R as

νappi,s,ε :=
∣∣〈ψ(1)

i,ε , δρε ψ
(0)
i,s,ε〉Λµε

∣∣2 . (14.7)

Given ζ ∈ M we shall denote in the sequel by Hessµ f(ζ) the Hessian of

f with respect to µ at ζ, defined via the identity

∇2
v,wf(ζ) = 〈Hessµ f(ζ) v, w〉µ .
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Remark 14.7. It follows from the discrete Laplace method (see Corol-

lary C.2 in the appendix) that for i = 1, . . . ,m0 and s > 0

Z
(0)
i,s,ε ∼ εn/4

∞∑
k=0

εk Ẑ
(0)
i,k (14.8)

for some s-independent sequence (Ẑ
(0)
i,k )k∈N0 in R with

Ẑ
(0)
i,0 =

(
det Hessµ f(ζ

(0)
i )
) 1

4

π
n
4

.

Similarly for i = 2, . . . ,m1 + 1

Z
(1)
i,ε ∼ εn/4

∞∑
k=0

εk Ẑ
(1)
i,k . (14.9)

Here (Ẑ
(1)
i,k )k∈N0 is a sequence in R with

Ẑ
(1)
i,0 =

|det Hessµ f(ζ
(1)
i )|

1
4

π
n
4

. (14.10)

Remark 14.8. Observe that by definition of δρε (Definition 8.1) for every

i = 1, . . . ,m0 and s, ε > 0

δρε ψ
(0)
i,s,ε = Z

(0)
i,s,ε e

−
f−f(ζ

(0)
i

)

ε δ χ
(0)
i,s,ε .

In particular

δρε ψ
(0)
1,s,ε = 0 .

Note also that by Remark 10.4 we have ψ
(0)
1,s,ε ∈ D(H(0)

ρε,Λµε
), implying that

ψ
(0)
1,s,ε is a normalized eigenfunction of H(0)

ρε,Λµε
with eigenvalue 0.

The next two propositions establish crucial properties of the quasimodes.

Proposition 14.9. Let i, j = 1, . . . ,m0 and s ∈ [0, 1).

(i) There exists a constant γ > 0 s.t. for sufficiently small ε > 0

〈ψ(0)
i,s,ε, ψ

(0)
j,s,ε〉Λµε = 1i,j + O(e−γ/ε) .

(ii) If s ∈ [1
2 , 1), there exists a constant C > 0 s.t. for sufficiently small

ε > 0

〈Hρε,µεψ
(0)
j,ε , ψ

(0)
j,ε 〉Λµε ≤ C e−2[f(ζ

(1)
j )−f(ζ

(0)
j )]/ε .
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Remark 14.10. In fact all we need in the sequel from Proposition 14.9

is property (i) together we the following weak version of property (ii): if

s ∈ [1
2 , 1) there exist constants C > 0 and N ∈ N0 s.t. for sufficiently small

ε > 0

〈Hρε,µεψ
(0)
j,s,ε, ψ

(0)
j,s,ε〉Λµε ≤ C ε−N e−2[f(ζ

(1)
j )−f(ζ

(0)
j )]/ε .

Proof of Prop.14.9.

(i): the case i = j is clear since the quasimodes are normalized by defi-

nition. Assume now i 6= j. Observe that suppχ
(0)
l,s,ε ⊂ B2εs(B̃l) for l = i, j

and recall Proposition 13.5 (ii). In the case Bi ∩ Bj = ∅, it follows from

property (ii) in Definition 13.8 that supp χ
(0)
i,s,ε ∩ supp χ

(0)
j,s,ε = ∅ for

sufficiently small ε, so 〈ψ(0)
i,s,ε, ψ

(0)
j,s,ε〉Λµε = 0. In the case Bj ⊂ B̊i we have

supp χ
(0)
j,s,ε ⊂ supp χ

(0)
i,s,ε for sufficiently small ε and

f(ζ
(0)
j ) > f(ζ

(0)
i )

holds by Proposition 13.5 (i). The latter also gives f > f(ζ
(0)
j ) on supp χ

(0)
j,s,ε\

{ζ(0)
j }. It follows now from the discrete Laplace method (see Corollary C.2)

and from (14.8), that

〈ψ(0)
i,s,ε, ψ

(0)
j,s,ε〉Λµε =

= e
f(ζ

(0)
i

)−f(ζ
(0)
j

)

ε Z
(0)
i,s,ε Z

(0)
j,s,ε

∫
M
χ

(0)
i,s,ε χ

(0)
j,s,ε e

−2[f(ζ)−f(ζ
(0)
j

)]

ε ≤

≤ Const × e
f(ζ

(0)
i

)−f(ζ
(0)
j

)

ε .

The case Bi ⊂ Bj is analogous.

Proof of (ii): we show the stronger statement that for every s ∈ (0, 1)

there exists a constant C > 0 s.t. for sufficiently small ε > 0

〈Hρε,µεψ
(0)
j,s,ε, ψ

(0)
j,s,ε〉Λµε ≤ C εn/2+2−s eCε

2s−1
e−2[f(ζ

(1)
j )−f(ζ

(0)
j )]/ε .
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By Remark 14.8 and using (14.8) we get

〈Hρε,µε ψ
(0)
j,s,ε, ψ

(0)
j,s,ε〉Λµε =

∥∥δρε ψ(0)
j,s,ε

∥∥2

Λµε
=

=
(
Z

(0)
i,s,ε

)2 ∥∥e− f−f(ζ
(0)
i

)

ε δ χ
(0)
i,s,ε

∥∥2

Λµε
=

= e−
2[f(ζ

(1)
i

)−f(ζ
(0)
i

)]

ε
(
Z

(0)
i,s,ε

)2 ∥∥e− f−f(ζ
(1)
i

)

ε δ χ
(0)
i,s,ε

∥∥2

Λµε
≤

≤ Const εn/2 e−
2[f(ζ

(1)
i

)−f(ζ
(0)
i

)]

ε

∥∥e− f−f(ζ
(1)
i

)

ε δ χ
(0)
i,s,ε

∥∥2

Λµε
.

Moreover for ε > 0 sufficiently small∥∥e− f−f(ζ
(1)
i

)

ε δ χ
(0)
i,s,ε

∥∥2

Λµε
=

=

∫
M

∫
V

(
χ

(0)
i,s,ε(ζ + εv)− χ(0)

i,s,ε(ζ)
)2
e−

2[f(ζ+εv/2)−f(ζ
(1)
i

)]

ε Λ(dζ)µ(dv) =

= ε2

∫
B2εs(∂B̃i)

∫
V

( ∫ 1

0
∇vχ(0)

i,ε (ζ + εtv) dt
)2
e−∇vf(ζ) e−

2[f(ζ)−f(ζ
(1)
i

)]

ε Λ(dζ)µ(dv)
(

1 +O(ε)
)
≤

≤ Const ε2−s eConst ε2s−1
.

Note that for the last inequality we used Vol(B2εs(∂B̃i)) ≤ Const εs, and the

estimates (14.2) (with k = 1) and (14.3). �

Proposition 14.11. For i, j = 1, . . . ,m1 and ε small enough

(i)

〈ψ(1)
i,ε , ψ

(1)
i,ε 〉Λµε = 1i,j .

(ii)

〈Hρε,µε ψ
(1)
j,ε , ψ

(1)
j,ε 〉Λµε = O(ε∞) .

Proof. (i) follows immediately from the definition of the ψ
(1)
i,ε ’s and the fact

that cut-off functions corresponding to different saddle points have disjoint

supports.

(ii): by Cauchy-Schwarz it suffices to show that∥∥Hρε,µε ψ(1)
j,ε

∥∥
Λµε

= O(ε∞) .

This can be shown using (i) of Theorem 11.1 and then proceeding as in

Remark 11.7. �

145



15. Computation of approximate small eigenvalues

In this section we analyze the asymptotic behaviour as ε → 0 of the

(square root of the) approximate eigenvalues νapp
i,s,ε, defined in Definition 14.6.

Recall that κ
(i)
f,µ,1 denotes the negative eigenvalue of Hessµ f(ζ

(1)
i ).

Proposition 15.1. Let i = 2, . . . ,m0 and s ∈ [1
2 , 1). Then for ε > 0

〈ψ(1)
i,ε , δρε ψ

(0)
i,s,ε〉Λµε =

√
ε Pi e−

f(ζ
(1)
i

)−f(ζ
(0)
i

)

ε

(
1 + Ei,s,ε

)
, (15.1)

with

Pi :=

√
|κ(i)
f,µ,1|
π

[
det Hessµ f(ζ

(0)
i )
] 1

4

|det Hessµ f(ζ
(1)
i )|

1
4

(15.2)

and with Ei,s,ε ∈ R satisfying

Ei,s,ε = O(ε1−s) . (15.3)

Moreover for each j = 2, . . . ,m1 + 1 with j 6= i

〈ψ(1)
j,ε , δρε ψ

(0)
i,s,ε〉Λµε = 0 . (15.4)

Remark 15.2. In fact we will show in the proof below that the Ei,s,ε appear-

ing in Proposition 15.1 has the following property: there exists a sequence

(Êi,k)k=(k1,...,k4)∈N4
0

in R with Êi,(0,0,0,0) = Êi,(0,0,k3,k4) = 0 for every k3 ∈ N0

and every k4 ∈ N∗, such that

1 + Ei,s,ε ∼
∑

k=(k1,...,k4)∈N4
0

εk1+sk2+(1−s)k3+(2s−1)k4 Êi,k .

Note that this implies in particular (15.3), since for every choice of s ∈
[1
2 , 1) the biggest terms appearing in the expansion correspond to k = (0, 0, 1, 0),

k = (0, 1, 0, 0) and k = (0, 1, 0, 1).

Proof.

Observe that by definition of ψ
(0)
i,s,ε and ψ

(1)
i,ε (see Definition 14.6) and

Remark 14.8 we have

〈ψ(1)
i,ε , δρε ψ

(0)
i,s,ε〉Λµε = Z

(0)
i,s,ε Z

(1)
i,ε Ii,s,ε , (15.5)
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with the interaction integral Ii,s,ε defined as

Ii,s,ε := 〈χ(1)
i a

(1)
i,ε e

−ϕ(1)
i /ε, e−(f−f(ζ

(0)
i ))/ε δχ

(0)
i,s,ε〉Λµε . (15.6)

Statement (15.4) follows now from the second property in (14.6) giving for

i 6= j and for sufficiently small ε

supp ‖τ∗ χ(1)
j ‖µε ∩ supp ‖τ∗ δχ(0)

i,s,ε‖µε = ∅ .

To prove (15.1) we proceed as follows.

Step 1

Taking out in (15.6) the exponential factor appearing in (15.1) gives

Ii,s,ε = e−
f(ζ

(1)
i

)−f(ζ
(0)
i

)

ε Ĩi,s,ε , (15.7)

with

Ĩi,s,ε :=

∫
M×V

τ∗ χ
(1)
i a

(1)
i,ε e

−
f−f(ζ

(1)
i

)+ϕ
(1)
i

ε δ χ
(0)
i,s,ε dΛε ⊗ dµε =

=

∫
M×V

χ
(1)
i (ζ + εv/2) a

(1)
i,ε (ζ + εv/2, εv) e−

f(ζ+εv/2)−f(ζ
(1)
i

)+ϕ
(1)
i

(ζ+εv/2)

ε

×
(
χ

(0)
i,s,ε(ζ + εv)− χ(0)

i,s,ε(ζ)
)

Λε(dζ)⊗ µ(dv)

.

Taylor expanding around every ζ the term

χ
(1)
i (ζ + εv/2) a

(1)
i,ε (ζ + εv/2, εv) e−

f(ζ+εv/2)−f(ζ
(1)
i

)+ϕ
(1)
i

(ζ+εv/2)

ε

and using that for some sequence (âi,k)k∈N0 in C∞(M ;RV,µa )

Ψε a
(1)
i,ε ∼

∞∑
k=0

εk âi,k

we get

Ĩi,s,ε ∼
∞∑
k=0

εk Ji,s,k,ε , (15.8)

with

Ji,s,k,ε :=

∫
M
〈Ai,k , Ψετ∗ δ χ

(0)
i,s,ε〉µ e−Fi/ε Λε(dζ) ,

i.e., more explicitly,

Ji,s,k,ε :=

∫
M×V

Ai,k(ζ, v) e−Fi(ζ)/ε
(
χ

(0)
i,s,ε(ζ+εv)−χ(0)

i,s,ε(ζ)
)

Λε(dζ)⊗µ(dv) .

147



Here (Ai,k)k∈N0 is an ε-independent sequence of functions in C∞(M ;RV,µ)

having compact support, with

Ai,0(ζ, v) := χ
(1)
i (ζ) e−

1
2

[∇vf(ζ)−∇vϕ(ζ)] âi,0(ζ, v) (15.9)

and

Fi(ζ) := f(ζ)− f(ζ
(1)
i ) + ϕ

(1)
i (ζ) .

For the sake of clarity, we stress that (15.8) actually means that there

exists for ε > 0 and every N ∈ N0 an A
(N+1)
i,ε ∈ C∞(M ;RV,µ) with compact

support such that A
(N+1)
i,ε = O(1) and

Ĩi,s,ε =
N∑
k=0

εk Ji,s,k,ε + εN+1 J
(N+1)
i,s,ε ,

with

J
(N+1)
i,s,ε :=

∫
M×V

A
(N+1)
i,ε (ζ, v) e−Fi(ζ)/ε

(
χ

(0)
i,s,ε(ζ+εv)−χ(0)

i,s,ε(ζ)
)

Λε(dζ)⊗µ(dv) .

Observe that by definition of χ
(1)
i and χ

(0)
i,s,ε (see Def.14.1 and 14.4) there

exists an R > 0 such that for every k ∈ N0

supp 〈Ai,k , Ψετ∗ δ χ
(0)
i,s,ε〉µ ⊂ Qi,2εs,R (15.10)

and

χ
(0)
i,s,ε(ζ + εv)− χ(0)

i,s,ε(ζ)
∣∣∣
Qi,2εs,R

= θ
(y(i)(ζ) + εe∗1(v)

εs
)
− θ
(y(i)(ζ)

εs
)
,

where θ ∈ C∞(R;R) satisfies

θ(t) =

{
1 if t ≥ 1

0 if t ≤ −1
. (15.11)

Step 2

Consider the coordinates x adapted to the lattice and write Ji,s,k,ε as

Ji,s,k,ε =
∑

x∈
√
εZn

Bi,s,k,ε(x) e−Fi,ε(x) ,

where

Bi,s,k,ε(x) :=

∫
V
Ai,k(

√
εx, v)

(
χ

(0)
i,s,ε(
√
εx+ εv)− χ(0)

i,s,ε(
√
εx)

)
µ(dv)
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and

Fi,ε(x) := ε−1 Fi(
√
εx)

(with standard abuse of notation we do not distinguish between a function

on M and the corresponding function on coordinate space).

In terms of h :=
√
ε we are thus reduced to computing

Ji,s,k,h2 =
∑
x∈hZn

Gi,s,k,h(x) ,

where

Gi,s,k,h(x) := Bi,s,k,h2(x) e−Fi,h2 (x) .

In view of applying Proposition C.1 to Gi,s,k,h, we check that for every

multiindex α there exists an h-independent constant Cα > 0 such that for

h > 0 ∫
Rn
|∂αGi,s,k,h(x)| dx ≤ Cα , (15.12)

where ∂α denotes derivation with respect to x. Indeed, note that |∂αGi,s,k,h(x)|
can be expressed as a sum of terms of the type

|∂α′Bi,s,k,h2 |k′ |∂α′′Fi,h|k
′′
e−Fi,h (15.13)

and that (recall Def. 13.6 for the coordinates (y, z) = (y(i), z(i)) and (15.10))

suppBi,s,k,h2 ⊂
{
h|y| ≤ 2h2s−1 and ‖hz‖κ(i) ≤ R

}
⊂
{
|y| ≤ 2 and ‖hz‖κ(i) ≤ R

}
.

Due to Def. 14.4, R can be taken small enough such that for some γ > 0

Fi,h(y, z) ≥ −γ|y|2 + γ‖z‖2
κ(i) if |hy|, ‖hz‖κ(i) ≤ R . (15.14)

In particular, for h sufficiently small, the estimate(15.14) holds on suppBi,s,k,h2 .

Moreover for every multiindex α there exists a constant Cα > 0 (indepen-

dent on h, s and x) such that

a)

|∂αBi,s,k,h(x)| ≤ Cα for h > 0 and every x ∈ Rn .

b) denoting by B1(0) the unit ball centered at the origin

|∂αFi,h(x)| ≤ Cα for h > 0 and every x ∈ B1(0)

and

|∂αFi,h(x)| ≤ Cα|x|2 for h > 0 and every x ∈ Bc
1(0) ∩BC/h(0)
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for every C > 0. The estimate a) follows from the estimates (14.2).

The estimates in b) can be easily obtained from the Taylor expansion

∂αFi,h(x) = h|α|−2∂αFi,h(hx) =

= h|α|−2∂αFi,h(0) + h|α|−1〈∇∂αFi,h(0), x〉 + h|α|
∫ 1

0

(1− t)2

2
〈Hess ∂αFi,h(htx)x, x〉 dt

using, in the cases |α| = 0, 1, that Fi,h(0) = ∇Fi,h(0) = 0.

Using (15.13), (15.14) and the estimates a),b) above (in fact from b) we

need only the case |α| > 0) we can conclude that for h > 0, s ∈ [1
2 , 1) and

every multiindex α there exist k′ ∈ N0 and γ > 0 such that∫
Rn
|∂αGi,s,k,h (x)| dx =

∫
suppBi,s,k,h

|∂αGi,s,k,h (x)| dx ≤

≤ Const

∫
B1(0)

dx + Const

∫
Rn−1

‖z‖k′ e−γ‖z‖2 dz ≤ Const .

Having checked (15.12), it follows from Proposition C.1 that

Ji,s,k,h2 = h−n
∫
Rn
Gi,s,k,h(x) dx + O(h∞) . (15.15)

Step 3

We compute now the integral
∫
Rn Gi,s,k,h(x) dx: first note that

∫
Rn
Gi,s,k,h(x) dx =

∫
Rn
Gi,s,k,h(y, z) dy dz = h2s−1 h−(n−1)

∫
Rn
Gi,s,k,h(h2s−1y,

z

h
) dy dz .

(15.16)

Moreover

Gi,s,k,h(h2s−1y,
z

h
) = Bi,s,k,h2(h2s−1y,

z

h
) e−Fi(h

2sy,z)/h2
=

= 〈Ai,k , Ψh2τ∗ δ χ
(0)
i,s,h2〉µ (h2sy, z) e−Fi(h

2sy,z)/h2
.

In particular, by (15.10), the last integral in (15.16) can be restricted to

the set Qi,2,R :=
{

(y, z) ∈ R× Rn−1 : |y| ≤ 2 and ‖z‖κ(i) ≤ R
}

. On the

latter we have

Ψh2τ∗ δ χ
(0)
i,s,h2 (h2sy, z) = θ(y + h2(1−s)e∗1)− θ(y) .
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A Taylor expansion at y = 0 for every fixed z of the function y 7→
Ai,k(h

2sy, z) and a Taylor expansion at every y for every fixed v ∈ V of

the function y 7→ θ(y + h2(1−s)e∗1(v))− θ(y) gives∫
Rn
Gi,s,k,h(x) dx ∼ h2s−1 h−(n−1)

∞∑
k1=0

∞∑
k2=1

h2sk1+2(1−s)k2 ×

× 1

k1!k2!

∫
Qi,2,R

θ(k2)(y) yk1 〈A(k1)
i,k (0, z) , e∗1〉µ e−Fi(h

2sy,z)/h2
dydz

.

(15.17)

A change in the summation index in (15.17) gives∫
Rn
Gi,s,k,h(x) dx ∼ h h−(n−1)

∞∑
k1,k2=0

h2sk1+2(1−s)k2 ×

× 1

k1!(k2 + 1)!

∫
Qi,2,R

θ(k2+1)(y) yk1 〈A(k1)
i,k (0, z) , e∗1〉µ e−Fi(h

2sy,z)/h2
dydz

.

(15.18)

For the exponential term e−Fi(h
2sy,z)/h2

we write

e−Fi(h
2sy,z)/h2

= e−Fi(0,z)/h
2
e−h

2s−2F
(1)
i (0,z)y e−h

4s−2F
(2)
i (0,z)y2

Rh(y, z) ,

(15.19)

with Rh ∈ C∞(Rn,R) given by

logRh(y, z) := −h−2Fi(h
2sy, z) + h2s−2F

(1)
i (0, z)y + h4s−2F

(2)
i (0, z)y2 .

Expanding the second and third exponential on the right hand side of (15.19)

and using that for some sequence (Li,k5,k6)k5,k6∈N0 in C∞(Rn;R) with Li,0,0 =

1 and Li,0,k6 = 0 for k6 ≥ 1

Rh ∼
∞∑

k5,k6=0

h2[sk5+(2s−1)k6] Li,k5,k6 ,

we get from (15.18)

h−1 h(n−1)

∫
Rn
Gi,s,k,h(x) dx ∼ (15.20)

∼
∑
k∈N6

0

h2[sk1+(1−s)k2+k3(s−1)+k4(2s−1)+sk5+k6(2s−1) (−1)k3+k4

k1!(k2 + 1)!k3!k4!

∫
Qi,2,R

θ(k2+1)(y) ×

× yk1+k3+k4 Li,k5,k6(y, z) [F
(1)
i (0, z)]k3 [F

(2)
i (0, z)]k4 〈A(k1)

i,k (0, z) , e∗1〉µ e−Fi(0,z)/h
2
dydz .
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For the integral in z we use the classical Laplace asymptotic in dimension

n−1. For this puropose note that both z 7→ F
(1)
i (0, z) and its first differential

vanish at z = 0, and also F
(2)
i (0, 0) = 0, implying that for fixed y

z 7→ Ãi,k,k1,k3,k4,k5,k6(y, z) :=

= Li,k5,k6(y, z) [F
(1)
i (0, z)]k3 [F

(2)
i (0, z)]k4 〈A(k1)

i,k (0, z) , e∗1〉µ
vanishes up to order 2k3 + k4 − 1 in z. The Laplace asymptotics gives

therefore

h−(n−1)

∫
‖z‖

κ(i)≤R
Ãi,k,k1,k3,k4,k5,k6(·, z) e−Fi(0,z)/h

2
dydz ∼ (15.21)

∼
∞∑

k7=k3+k∗4/2

h2k7 Ci,k,k1,k3,k4,k5,k6,k7 =

∞∑
k7=0

h2[k7+k3+k∗4/2] Ci,k,k1,k3,k4,k5,k6,k7+k3+k∗4/2
,

where k∗4 = k4 if k4 is even and k∗4 = k4 + 1 if k4 is odd, and with

Ci,k1,k3,k4,k5,k6,k7 ∈ C∞(R;R).

Putting together (15.20) and (15.21) gives∫
Rn
Gi,s,k,h(x)dx ∼ (15.22)

h
∑
k∈N7

0

h2 [ k∗4/2+k7 + s(k1+k3+k5) + (1−s) k2 + (2s−1) (k4+k6) ] Di,k,k ,

with Di,k,k ∈ R.

Finally, (15.8) of Step 1 and (15.15) of Step 2, together with (15.22) give

by suitably rearranging summation indices

Ĩi,s,ε ∼ ε−n/2
√
ε
∑
k∈N4

0

ε[ k1 + sk2 + (1−s)k3 + (2s−1)k4 ] Ki,k ,

with Ki,k ∈ R having the property that for every k3 ∈ N0 and k4 ∈ N∗
Ki,0,0,k3,k4 = 0 .

On the other hand, for the normalization constants we have the expansions

(see Remark 14.7)

Z
(0)
i,ε ∼ εn/4

∞∑
k=∞

εk Ẑ
(0)
i,k

and

Z
(1)
i,ε ∼ εn/4

∞∑
k=0

εk Ẑ
(1)
i,k ,
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with (Ẑ
(0)
i,k )k∈N0 , (Ẑ

(1)
i,k )k∈N0 sequences in R.

Recalling (15.5) and (15.7) this concludes the proof of the expansion of

〈ψ(1)
i,ε , δρε ψ

(0)
i,s,ε〉Λµε in the strong form stated in Remark 15.2.

In order to show the explicit formula (15.2) for the leading term of the

prefactor, note that

Ẑ
(0)
i,0 =

(
det Hessµ f(ζ

(0)
i )
) 1

4

π
n
4

and Ẑ
(1)
i,0 =

|det Hessµ f(ζ
(1)
i )|

1
4

π
n
4

.

Moreover ∫
Rn
Gi,s,0,h(x) dx =

= h h−(n−1)

∫
Qi,2,R

θ(1)(y) 〈Ai,0(0, z), e∗1〉µ e−Fi(0,z)/h
2
dydz

(
1 +O(h2(1−s))

)
=

= h 〈Ai,0(0, 0), e∗1〉µ
π
n−1

2√∏n
j=2 κ

(i)
j

∫ 2

−2
θ(1)(y)dy

(
1 +O(h2(1−s))

)
=

= h
π
n−1

2√∏n
j=2 κ

(i)
j

(
1 +O(h2(1−s))

)
.

For the last equality we used that Ai,0(0, 0) = âi,0(0) by (15.9), that âi,0(0) =

e∗1 by (iii) in Theorem 11.1, and that
∫ 2
−2 θ

(1)(y)dy = θ(2) − θ(−2) = 1

by (15.11). �

153



16. Comparison between exact and approximate small

eigenvalues

In this section we establish the following theorem, which gives a sharp

asymptotic relation between the approximate eigenvalues defined in (14.7)

and the actual small eigenvalues ν2,ε, . . . , νm0,ε of H(0)
Λρε,µε

. Recall that we

already know that ν1,ε = 0.

Theorem 16.1. For i = 2, . . . ,m0

νi,ε = νapp
i,s,ε

(
1 +O(ε∞)

)
.

Proof. This follows (after suitable relabelling of indices) immediately from

Remark 10.5, Theorem D.1 in the appendix and Proposition 16.2 below. �

In the sequel we use the short notation bi := f(ζ
(1)
i ) − f(ζ

(0)
i ) for i =

2, . . . ,m0. Moreover we set for i = 1, . . . ,m0 and s ∈ [1
2 , 1)

ui,s,ε := 1[0,ε6/5)(H
(0)
Λρε,µε

) ψ
(0)
i,s,ε

and for i = 2, . . . ,m1 + 1

αi,ε := 1[0,ε6/5)(H
(1)
Λρε,µε

) ψ
(1)
i,ε .

Proposition 16.2. Fix s ∈ [1
2 , 1).Then

(i) for i, j = 1, . . . ,m0

〈ui,s,ε, uj,s,ε〉Λµε = 1i,j + O(ε∞)

and for i, j = 2, . . . ,m1 + 1

〈αi,ε, αj,ε〉Λµε = 1i,j + O(ε∞) .

(ii) for i = 2, . . . ,m0 we have

a) for ε > 0 sufficiently small

ε2 e−bi/ε ≤ |〈αi,ε, δρε ui,s,ε〉Λµε | ≤ ε−2 e−bi/ε .

b) for j = 2, · · · ,m1 + 1 with j 6= i

|〈αj,ε, δρε ui,s,ε〉Λµε | ≤ O(ε∞) e−bi/ε .
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(iii) δρε u1,s,ε = 0 and for i = 2, . . . ,m0

|〈αi,ε, δρε ui,s,ε〉Λµε |
2 = νapp

i,s,ε

(
1 +O(ε∞)

)
.

In the proof of Proposition 16.2 the following Markov-type inequality is

used repeatedly.

Lemma 16.3. Let T be a selfadjoint nonnegative operator on a Hilbert

space H with domain D. Then for every u ∈ D and every b > 0

‖1[b,∞)(T )u‖2 ≤ 〈Tu, u〉
b

.

Proof. As a consequence of the spectral theorem,

‖1[b,∞)(T )u‖2 = 〈1[b,∞)(T )u, 1[b,∞)(T )u〉 = 〈1[b,∞)(T )u, u〉 =

=

∫ ∞
b

d〈1λ(T )u, u〉 ≤
∫ ∞
b

λ

b
d〈1λ(T )u, u〉 ≤

∫ ∞
0

λ

b
d〈1λ(T )u, u〉 =

=
〈Tu, u〉

b
.

�

Proof of Proposition16.2. Statement (i) follows easily from Propositions 14.9

and 14.11 and Lemma 16.3. Indeed, for the ui,s,ε’s we have

〈ui,s,ε, uj,s,ε〉Λµε = 〈ψ(0)
i,s,ε, ψ

(0)
j,s,ε〉Λµε + 〈ui,s,ε − ψ(0)

i,s,ε, uj,s,ε − ψ
(0)
j,s,ε〉Λµε +

+ 〈ui,s,ε − ψ(0)
i,s,ε, ψ

(0)
j,s,ε〉Λµε + 〈ψ(0)

i,s,ε, uj,s,ε − ψ
(0)
j,s,ε〉Λµε .

Note that by definition ui,s,ε−ψ(0)
i,s,ε = 1[ε6/5,∞)(H

(0)
Λρε,µε

) ψ
(0)
i,s,ε, so by Lemma 16.3

and Proposition 14.9 (ii), we get for some γ > 0

‖ui,s,ε − ψ(0)
i,s,ε‖ ≤ e

−γ/ε .

Together with Proposition 14.9 (i) we can conclude that the ui,s,ε’s are or-

thonormal up to an additive error which is even exponentially small in ε.

The case of the αi,ε’s is analogous, but note that here Proposition 14.11

permits only to get an O(ε∞) error in the end.
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Proof of (ii): for j = 2, . . . ,m1 + 1 and i = 2, . . . ,m0 we have

〈αj,ε, δρε ui,s,ε〉Λµε = 〈αj,ε, δρε 1[ε6/5,∞)(H
(0)
Λρε,µε

) ψ
(0)
i,s,ε〉Λµε =

= 〈αj,ε, 1[ε6/5,∞)(H
(1)
Λρε,µε

) δρε ψ
(0)
i,s,ε〉Λµε = 〈αj,ε, δρε ψ

(0)
i,s,ε〉Λµε ,

where in the second equality we used the intertwining property, given in

Proposition 8.4, and in the last equality we used that 1[ε6/5,∞)(H
(1)
Λρε,µε

) is

selfadjoint and equal to its square.

It follows that

〈αj,ε, δρε ui,s,ε〉Λµε = 〈ψ(1)
i,ε , δρε ψ

(0)
i,s,ε〉Λµε + 〈αi,ε − ψ(1)

i,ε , δρε ψ
(0)
i,s,ε〉Λµε .

(16.1)

Now observe that by Propostion 15.1,

ε e−bi/ε ≤ |〈ψ(1)
j,ε , δρε ψ

(0)
i,s,ε〉Λµε | ≤ ε−1 e−bi/ε (16.2)

if j = i and

〈ψ(1)
j,ε , δρε ψ

(0)
i,s,ε〉Λµε = 0

if j 6= i.

Moreover, in both cases, by Proposition 14.11 (ii), Lemma16.3 and Propo-

sition 14.9

〈αj,ε − ψ(1)
j,ε , δρε ψ

(0)
i,s,ε〉Λµε = O(ε∞) e−bi/ε . (16.3)

Statement (iii) follows from Remark 14.8 in the case i = 1. For i > 1 it

is a consequence of (16.1), (16.2), (16.3), recalling that by definition

νapp
i,s,ε = |〈ψ(1)

j,ε , δρε ψ
(0)
i,s,ε〉Λµε |

2 .

�
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17. Main theorem

Combining the results of Section 15 and Section 16 leads now easily to

complete expansions of the first m0 eigenvalues of H(0)
Λρε,µε

, denoted by

ν1,ε ≤ . . . ≤ νm0,ε .

Recall that we work under Assumptions III.1 and III.2, implying in partic-

ular that ν1,ε = 0. Recall also that κ
(i)
f,µ,1 denotes for each i = 1, . . . ,m0 the

negative eigenvalue of Hessµ f(ζ
(1)
i ).

Theorem 17.1. For each i = 2, . . . ,m0 there exists a sequence (Pi,k)k∈N0

in R with

Pi,0 =
|κ(i)
f,µ,1|
π

[
det Hessmu f(ζ

(0)
i )
] 1

2

| det Hessµ f(ζ
(1)
i )|

1
2

such that

νi,ε ∼ ε e−
2[f(ζ

(1)
i

)−f(ζ
(0)
i

)]

ε

∞∑
k=0

εk Pi,k .

Proof. By Theorem 16.1 we have for every s ∈ [1
2 , 1)

νi,ε = νapp
i,s,ε

(
1 +O(ε∞)

)
.

Taking in particular s1 = 1
2 and s2 =

√
2

2 , it follows from Proposition 15.1

and Remark 15.1 that for l = 1, 2 there exist sequences (P
(sl)
i,k )k∈N4 in R with

P
(sl)
i,0 = 0 such that

√
νi,ε ∼

∼
√
ε Pi,0 e

−
f(ζ

(1)
i

)−f(ζ
(0)
i

ε

(
1 +

∑
k=(k1,...,k4)∈N4

0

εk1+slk2+(1−sl)k3+(2sl−1)k4 P
(sl)
i,k

)
.

It follows that for l = 1, 2 it can be P
(sl)
i,(k1,k2,k3,k4) 6= 0 only if k2 = k3 = k4 =

0. �
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Part IV. Appendix

Appendix A. Singular transport equations

Let Ω ⊂ Rn be an open neighbourhood of 0 and H a Hilbert space

with scalar product 〈·, ·〉H . We denote in the sequel by C∞(Ω;H) (resp.

C∞(Ω; B(H)) ) the space of smooth functions defined on Ω with values in

H (resp. with values in B(H), the space of bounded linear operators on H).

Moreover, for j = 1, . . . , n, we use ∂
∂xj

to denote the j-th partial derivative

acting on smooth functions on Ω.

Consider for an unknown α ∈ C∞(Ω;H) the problem:{
T α (x) = q(x) for every x ∈ Ω

α(0) = ω
. (A.1)

Here q ∈ C∞(Ω;H) (the “inhomogeneity”), ω ∈ H (the “initial value”) and

T : C∞(Ω;H) → C∞(Ω;H) is a linear first order differential operator (the

“transport operator”) of the form

T α (x) :=

n∑
j=1

Vj(x)
∂

∂xj
α (x) +A(x)α(x) ,

with the Vj ’s in C∞(Ω;R) and A ∈ C∞(Ω; B(H)). Moreover we assume

throughout that

(1) Vj(0) = 0 for every j = 1, . . . , n and the matrix
( ∂Vj

∂xl
(0)

)
l,j

is

diagonal with strictly positive eigenvalues.

(2) A(0) is nonnegative, i.e. A(0) is selfadjoint and 〈A(0)u, u〉H ≥ 0 for

every u ∈ H.

Oberve that if a solution α of (A.1) exists under the above assumptions

then necessarily

A(0)ω = q(0) . (A.2)

In fact this compatibility condition is also sufficient for local existence as

stated in the following theorem. In the case H = R this is a classical result

which is proved for example in [27] or [40]. The higher-dimensional result

requires only minor modifications to the proof and is used for example (with

H = Rn) in [48]. For the sake of the reader we give here a complete proof

in the general case adapting the one of [27].
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Theorem A.1.

If the compatibility condition (A.2) holds and Ω is sufficiently small, there

exists a unique α ∈ C∞(Ω;H) solving the problem (A.1). Moreover the

restriction on Ω is independent of the inhomogenity.

Proof. The idea is to solve the equation first in the sense of formal power

series (see Step 1 and 2 below). Here one works only with the principal part

T0 of T (obtained by linearizing V and taking just A(0) as 0-th order term),

and regards the difference T − T0 as an additional inhomogeneity. Then

(Step 3) the equation is solved by the method of characteristics in the space

of functions vanishing at infinite order in 0. The final result is then easily

achieved through a Borel summation (Step 4).

Step 1

By assumption on the Vj ’s we have for j = 1, . . . , n and x in a sufficiently

small neighbourhood of 0

Vj(x) =
∑
m

∂Vj
∂xm

(0) xm +O(‖x‖2) = λjxj +O(‖x‖2) ,

with λj > 0 for every j = 1, . . . , n.

Let T0 : C∞(Rn;H)→ C∞(Rn;H) be defined as

T0 := Vlin +A(0) ,

with

Vlin :=
∑
j

λjxj
∂

∂xj
.

We shall now consider for r ≥ 0 the Hilbert space Prhom(Rn;H) of homo-

geneous polynomials of degree r in Rn with values in H. A generic element

α ∈ Prhom(Rn;H) has the form

α(x) =
∑

r=(r1,...,rn)∈Nn0∑
rj=r

αrx
r ,
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with αr ∈ H for every r and the scalar product 〈·, ·〉r in Prhom(Rn;H) is

defined as

〈α, β〉r :=
∑

r=(r1,...,rn)∈Nn0∑
rj=r

〈αr, βr〉H .

Define for every r ≥ 0 the bounded linear operators

T (r)
0 ,V(r)

lin , A
(r)(0) : Prhom(Rn;H)→ Prhom(Rn;H)

by restricting the corresponding operators to Prhom(Rn;H).

Since for every α, β ∈ Prhom(Rn;H)

〈V(r)
lin α, β〉r =

∑
r=(r1,...,rn)∈Nn0∑

rj=r

∑
j

rjλj 〈αr, βr〉H ,

one sees that V(r)
lin is selfadjoint and, using also the assumption λj > 0 for

every j, that for r > 0

inf
α 6=0

〈V(r)
lin α, α〉r
〈α, α〉r

> 0 .

Since by assumption A(0) is nonnegative, it follows that also

inf
α 6=0

〈T (r)
0 α, α〉r
〈α, α〉r

> 0 ,

implying 0 /∈ Spec(T (r)
0 ). In other words, T (r)

0 is invertible for r > 0.

Observe that for r = 0 in general we have no invertibility since T (0)
0 =

A(0).

Step 2

Define α(0) := ω ∈ P0
hom(Rn;H) and then iteratively α(k) ∈ Pkhom(Rn;H)

for every k ∈ N∗ as the unique solution of

T0 α
(k) = Q(k) ,

where Q(k) ∈ Pkhom(Rn;H) is given by

Q(k) :=
1

k!
∇kq (0)−

k−1∑
k′=0

1

k!
∇k[ (T − T0)α(k′) ] (0) .

Here ∇k denotes the k-th differential operator acting on C∞(Ω;H), which

applied to a function and then evaluated at 0 ∈ Ω yields an element of
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Pkhom(Rn;H). The inhomogeneities Q(k) are chosen in such a way that for

every N ∈ N0

T
N∑
k=0

α(k) =

N∑
k=0

1

k!
∇kq(0) +R(N+1) , (A.3)

with R(N+1) ∈ C∞(Ω;H) vanishing at order N in 0.39 In other words

α(0) + α(1) + . . . uniquely solves (A.1) in the sense of formal power series.

Step 3

We shall consider now the space P∞(Ω;H) of H-valued smooth functions

on Ω vanishing at infinite order in 0 and shall show that, if Ω is sufficiently

small, there exists for every Q ∈ P∞(Ω;H) a unique β ∈ P∞(Ω;H) such

that

T β = Q . (A.5)

The idea is to show, by means of characteristic equations, that a priori any

solution of (A.5) has to equal a certain integral (see formula (A.13) below)

and then to check that this integral indeed solves the equation.

A preliminary observation is the following: since the eigenvalues of the

linearization of V around 0 are strictly positive, it follows from standard

results (see for example [101]) that there exist constants C1, C2, γ > 0 such

that for ‖x‖ ≤ C1 and t ≤ 0 the flow Φ : (t, x) 7→ Φt(x) associated with V is

well defined and satisfies

‖Φt(x)‖ ≤ C2e
−γ|t|‖x‖ . (A.6)

Here ‖ · ‖ denotes the standard norm on Rn. Replacing it by another suit-

ably chosen norm ‖ · ‖∗, allows to take C2 = 1 in (A.6). Hence, possibly

substituting the original Ω with a 0-centered ball, which is sufficiently small

in the norm ‖ · ‖∗, we can assume from now on that Φt(x) ∈ Ω for every

x ∈ Ω and t ≤ 0. Moreover we can assume that Ω is bounded.

39By definition a function R ∈ C∞(Ω;H) vanishes at order N ∈ N0 in 0 if ∇kR(0) ≡ 0

for every k ≤ N . Equivalently if for every compact subset K of Ω there exists a constant

CK such that for every x ∈ K

‖R(x)‖H ≤ CK‖x‖N . (A.4)

R is said to vanish at infinite order in 0 if ∇kR(0) ≡ 0 for every k ∈ N0, i.e. if there

exists a constant CK,N satisfying (A.4) for every compact K ⊂ Ω and N ∈ N0.
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Now, if there exists a solution β of equation (A.5), inserting u(t, x) :=

β(Φt(x)) in the equation would give for every x ∈ Ω and t ≤ 0

d

dt
u(t, x) = −A(Φt(x))u(t, x) + Q(Φt(x)) .

It would follow by variation of constants that for every t0, t ≤ 0 and x ∈ Ω

u(t, x) = B(t, x)B−1(t0, x) u(t0, x) +B(t, x)

∫ t

t0

B−1(s, x) Q(Φs(x)) ds ,

(A.7)

with {B(t, x)}t≤0,x∈Ω a smooth family of bounded linear operators on H

uniquely determined by the property that for every t ≤ 0 and x ∈ Ω{
d
dtB(t, x) = −A(Φt(x)) B(t, x)

B(0, x) = Id
. (A.8)

Using Gronwall’s Lemma one easily gets 40 the existence of a constant K > 0

such that for t ≤ 0

‖B(t, x)‖B(H) + ‖B−1(t, x)‖B(H) ≤ 2eK|t| . (A.10)

On the other hand it follows from (A.6) that for every function R ∈
P∞(Ω, H) and every N ∈ N0 there exists a constant C such that for every

x ∈ Ω

‖R(Φt(x))‖H ≤ Ce−Nγ|t|‖x‖N . (A.11)

Using (A.11) with R = β and R = Q and the estimate (A.10) we obtain

that for every t ≤ 0 and x ∈ Ω the limit for t0 → −∞ of the righthand side

of (A.7) exists and equals

B(t, x)

∫ t

−∞
B−1(s, x) Q(Φs(x)) ds . (A.12)

40We give here the argument for completeness: from (A.8) it follows that for t ≥ 0 and

x ∈ Ω, with B̃(t, x) := B(−t, x)

d

dt
B̃(t, x) = A(Φ−t(x)) B̃(t, x) .

Hence

d

dt
‖B̃(t, x)‖2B(H) ≤ 2‖A(Φ−t(x))‖B(H) ‖B̃(t, x)‖2B(H) ≤ 2

(
sup
s≥0
y∈Ω

‖A(Φ−s(y))‖B(H)

)
‖B̃(t, x)‖2B(H) .

Observing that sup s≥0
y∈Ω
‖A(Φ−s(y))‖B(H) = supy∈Ω ‖A(y)‖B(H) < K <∞ for some K >

0 and applying Gronwall’s Lemma gives ‖B(−t, x)‖B(H) = ‖B̃(t, x)‖B(H) ≤ eKt for t ≥ 0

and x ∈ Ω. To obtain the same estimate with B−1 instead of B observe that from
d
dt

[B(t, x)B−1(t, x)] = 0 it follows that for t ≤ 0 and x ∈ Ω

d

dt
B−1(t, x) = B−1(t, x) A(Φt(x)) . (A.9)

Now, starting from (A.9) instead of (A.8) we can repeat the same arguments as before.
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Letting t→ 0 we would get by continuity the representation

β(x) = u(0, x) =

∫ 0

−∞
B−1(s, x) Q(Φs(x)) ds . (A.13)

This shows that there can be at most one solution of (A.5).

Now let β be defined by (A.13). It remains to check that β ∈ P∞(Ω;H)

and that β solves (A.5). As far as the former property is concerned, using

again (A.10) and (A.11) with R = Q, we get that for every N ∈ N0 there

exists a constant C > 0 such that for every x ∈ Ω

‖β(x)‖H ≤ C‖x‖N
∫ 0

−∞
eK|s|e−Nγ|s| ds .

The integral being finite for N sufficiently large, this implies β ∈ P∞(Ω;H).

To see that β solves (A.5) observe that for every x ∈ Ω,∑
j

Vj(x)
∂

∂xj
β(x) =

d

dt
u (0, x) ,

with u(t, x) := β(Φt(x)). Since, as can be easily checked, B(t, x) = B−1(s−
t, x)B(s, x) for every t, s ≤ 0 and x ∈ Ω, we have with the integral variable

substitution s′ = t + s that u(t, x) equals the expression given in (A.12).

Differentiating the latter with respect to t and evaluating at t = 0 gives the

desired result.

Step 4

Let α(k) be defined as in Step 2 and take an α̃ ∈ C∞(Ω, H) which satisfies

∇kα̃(0) = α(k) for every k ∈ N0. The existence of such an α̃ is ensured by

Borel’s Theorem. 41

By (A.3) the function Q(∞) := q−T α̃ is in P∞(Ω;H) and by Step 3 there

exists a unique β ∈ P∞(Ω;H) satisfying T β = Q∞. It follows that

α := α̃+ β

solves (A.1).

Moreover, if α′ is another solution then α′ − α must be in P∞(Ω;H) by

Step 2. Since

T (α′ − α) = 0 ,

41See for example [82, 1.5.4 on p.30] for real-valued functions. The extension to the

Hilbert space case is trivial.
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we can conclude α′ − α = 0 by Step 3.

�
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Appendix B. Harmonic approximation

Fix n,m ∈ N0. We denote in the following by Mm(R) the set of real

m×m matrices, by At the transposed of A ∈Mm(R), and for every γ ∈ Rn
by τγ the translation in direction γ, i.e.

τγ α (x) := α(x+ γ)

if α : Rn → Rm. The standard euclidean scalar product and norm in Rn
and Rm are denoted by 〈·, ·〉 and ‖ · ‖. The symbol ‖ · ‖ is also used for the

operator norm induced by 〈·, ·〉 on the space Mm(R).

We shall consider for ε > 0 a perturbed discrete Schrödinger operator Hε,

formally defined on the space of functions from Rn to Rm. More precisely

we let

Hε := −Lε + V + ε Mε , (B.1)

where

• Lε is a (scalar) discrete Laplacian, given by

Lε :=
∑
γ∈Zn

aγ
[
τεγ − 1

]
with the constant coefficients aγ satisfying: aγ ≥ 0 for every γ ∈ Zn,

aγ = a−γ for every γ ∈ Zn and aγ > 0 for only finitely many γ’s,

but for enough γ’s such that { γ : aγ > 0} generates Zn.

• V is a scalar multiplication operator, identified with a function V ∈
C∞(Rn;R). We assume throughout that V ≥ 0.

• the perturbation Mε is for ε > 0 a matricial translation operator of

the form

Mε :=
∑
γ∈Zn

Rε,γ τεγ ,

where for ε > 0 and γ ∈ Zn the coefficient Rε,γ is in C∞(Rn;Mm(R))

and Rε,γ ≡ 0 for ε > 0 and γ outside a fixed finite subset of Zn.

Moreover

– for ε > 0 and every γ ∈ Zn,

Rε,γ(x) = Rtε,−γ(x+ εγ) . (B.2)

– there exists for every γ ∈ Zn an Rγ ∈ C∞(Rn;Mm(R)) such

that

Rε,γ = Rγ + O(ε) . (B.3)
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More explicitly, we have withRε,γ = (Rε,γ;i,j)i,j=1...,m and α := (αi)i=1,...,m :

Rn → Rm that for every x ∈ Rn and i = 1, . . . ,m

(
Hε α

)
i

(x) =
∑
γ∈Zn

aγ
[
αi(x+ εγ) − αi(x)

]
+ V (x) αi(x) +

+ ε
∑
γ∈Zn

m∑
j=1

Rε,γ;i,j(x) αj(x+ εγ) .

Observe that Hε is well-defined also as a formal operator on C(εZn;Rm),

the set of functions from εZn to Rm. Moreover the restriction Hε,0 of Hε to

Cc(εZn;Rm), the space of functions from εZn to Rm with finite support, is

symmetric in the Hilbert space

`2(εZn;Rm) :=
{

(αi)i=1,...,m ∈ C(εZn;Rm) s.t.
∑
x∈εZn

m∑
i=1

α2
i (x) <∞

}

whose scalar product and norm we shall denote by 〈·, ·〉ε,`2 and ‖ · ‖ε,`2 .

In general Hε,0 will be unbounded. For its behaviour at infinity we shall

henceforth assume the following.

Assumption IV.1. There exist a compact K ⊂ Rn and constants C ′, C ′′ >

0 such that for every x ∈ Rn \K, ε > 0

(i) V (x) ≥ C ′.
(ii)

∑
γ∈Zn ‖Rε,γ(x)‖ ≤ C ′′ V (x).

Remark B.1. Note the following implication of Assumption IV.1 and con-

dition (B.3): there exists a constant C > 0 such that for every x ∈ Rn,

ε > 0 ∑
γ∈Zn

‖Rε,γ(x)‖ ≤ C (1 + V (x)) . (B.4)

From this it follows that there exists a constant C̃ > 0 such that for ε > 0

and for every α ∈ C∞c (εZn;Rm)

|〈Mεα, α〉ε,`2 | ≤ C̃ (‖α‖2ε,`2 + 〈V α, α〉ε,`2) . (B.5)
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Indeed, using (B.2) we get

|〈Mεα, α〉ε,`2 | ≤
∑
x∈εZn

∑
γ∈Zn

‖Rε,γ(x)‖ ‖α(x+ εγ)‖ ‖α(x)‖ =

=
∑
x∈εZn

∑
γ∈Zn

√
‖Rtε,−γ(x+ εγ)‖ ‖α(x+ εγ)‖

√
‖Rε,γ(x)‖ ‖α(x)‖ ≤

≤
∑
γ∈Zn

√ ∑
x∈εZn

‖Rtε,−γ(x+ εγ)‖ ‖α(x+ εγ)‖2
√ ∑
x∈εZn

‖Rε,γ(x)‖ ‖α(x)‖2 =

=
∑
γ∈Zn

√ ∑
x∈εZn

‖Rε,−γ(x)‖ ‖α(x)‖2
√ ∑
x∈εZn

‖Rε,γ(x)‖ ‖α(x)‖2 .

The inequality (B.4) thus gives for a suitable C̃ > 0

|〈Mεα, α〉ε,`2 | ≤ C̃
∑
x∈εZn

(1 + V (x)) ‖α(x)‖2 ,

which is the same as (B.5).

Proposition B.2. Hε,0 is semibounded from below and essentially selfad-

joint for ε > 0 sufficiently small.

Proof. The inequality (B.5) and the condition V ≥ 0, together with

〈−Lεα, α〉ε,`2 ≥ 0 , (B.6)

valid for ε > 0 and every α ∈ `2(εZn;Rm), imply that Hε,0 is semibounded

from below for sufficiently small ε.

In order to prove essential selfadjointness we may assume without loss of

generality (by possibly adding a constant to V ) that

〈Hε,0α, α〉ε,`2 ≥ ‖α‖2ε,`2 (B.7)

for every ε > 0 smaller than some ε0 > 0 and every α ∈ Cc(εZn;Rm).

Fix ε ∈ (0, ε0). By general principles it is enough to show that Hε,0

has dense range. This is equivalent to show that the only function f ∈
`2(εZn;Rm) satisfying

〈f,Hε,0α〉ε,`2 = 0 ∀α ∈ Cc(εZn;Rm) (B.8)

is the function f ≡ 0.
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For k ∈ N∗ let χk be the indicator function of the closed ball in Rn of

radius k and centered at 0. Then for every f ∈ `2(εZn;Rm)

‖f‖2ε,`2 = lim
k→∞

‖χkf‖2ε,`2 ≤ lim inf
k→∞

〈Hε,0(χkf), χkf〉ε,`2 ,

where for the last inequality we used (B.7). Moreover, if f satisfies (B.8),

one gets by taking α = χkf in (B.8) and by (B.1)

〈Hε,0(χkf), χkf〉ε,`2 = 〈Hε,0(χkf), χkf − f〉ε,`2 =

= 〈−Lε(χkf), (χk − 1)f〉ε,`2 + 〈V χkf, (χk − 1)f〉ε,`2 + (B.9)

+ 〈ε Mε(χkf), (χk − 1)f〉ε,`2 .

The boundedness of Lε and limk→∞ ‖(χk − 1)f‖ε,`2 = 0 imply that the first

summand in (B.9) converges to 0 for k → ∞. The fact that χk and χk − 1

have disjoint support implies that the second term vanishes for every k. �

We shall consider henceforth the unique selfadjoint extension of Hε,0,

which we denote by Hε,Zn . It follows again from Assumption IV.1 that the

essential spectrum of the latter is bounded away from zero:

Proposition B.3. There exists a constant C > 0 such that for ε > 0

sufficiently small

Specess

(
Hε,Zn

)
⊂ [C,∞) .

Proof. Let χ ∈ Cc(Rn;R) and note that seen as a multiplication operator

in `2(εZn;Rm), χ is finite rank (in particular compact) for every ε > 0. It

follows from Weyl’s theorem that

inf Specess

(
Hε,Zn

)
= inf Specess

(
Hε,Zn + χ

)
. (B.10)

Moreover

inf Specess

(
Hε,Zn + χ

)
≥ inf Spec

(
Hε,Zn + χ

)
= (B.11)

= inf
α∈Cc(εZn;Rm)

α 6=0

〈(Hε,0 + χ)α, α〉ε,`2
〈α, α〉ε,`2

,

where for the last equality we used that Cc(εZn;Rm) is a core for Hε,Zn .

Now take χ such that for some constant R > 0 the inequality 1
2V (x) +

χ(x) ≥ R holds for every x ∈ Rn (this is possible thanks to Assump-

tion IV.1 (i)). It follows using also (B.6) and (B.5) that for some constant
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C > 0, ε > 0 sufficiently small and every α ∈ Cc(εZn;Rm)

〈(Hε,0 + χ)α, α〉ε,`2 ≥ 〈(V + χ)α, α〉ε,`2 − ε C
(
〈α, α〉ε,`2 + 〈V α, α〉ε,`2

)
≥

≥ 〈(1

2
V + χ)α, α〉ε,`2 − ε C 〈α, α〉ε,`2 ≥

1

2
R〈α, α〉ε,`2 ,

which together with (B.10) and (B.11) gives the desired result. �

We are interested in the asymptotic behaviour as ε→ 0 of the eigenvalues

of Hε,Zn . The so-called harmonic approximation is obtained by comparison

with a direct sum of suitable harmonic oscillators located at the global min-

ima of V , provided that these are non degenerate. Indeed we shall also

assume the following. Recall that we assume throughout V ≥ 0.

Assumption IV.2. There are exactly N points x̄(1), . . . , x̄(N) such that

V (x̄(k)) = 0. Moreover the matrix

D2V (x̄(k)) :=
( ∂2V

∂xi∂xj
(x̄(k))

)
i,j

is striclty positive definite for every k = 1, . . . , N .

The approximating harmonic oscillators are defined as follows. Let for

i, j = 1, . . . , n

ai,j :=
1

2

∑
γ∈Zn

aγ γiγj ,

and let for x, ξ ∈ Rn

M̂(x, ξ) :=
∑
γ∈Zn

Rγ(x) e−i〈γ,ξ〉

be the leading semiclassical symbol of Mε. Note that for every x ∈ Rn we

have that M̂(x, 0) =
∑

γ∈Zn Rγ(x) is in Mm(R) and satisfies
(
M̂(x, 0)

)t
=

M̂(x, 0) thanks to the assumptions (B.2) and (B.3).

Then, recalling that V has N global minima, define for every k = 1, . . . , N

the formal operators

Hosc
k := −

n∑
i,j=1

ai,j ∂
2
xi,xj +

1

2
〈D2V (x̄(k))x, x〉 + M̂(x̄(k), 0)

and denote by Hosc
k;Rn the Friedrichs extension in L2(Rn, dx;Rm) of the re-

striction of Hosc
k to C∞c (Rn;Rm). Finally let

Hosc
Rn := ⊕Nk=1 H

osc
k;Rn .
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Remark B.4. Observe that Hosc
k;Rn is not exactly a harmonic oscillator in

the classical sense, since a := (ai,j)i,j is not the identity matrix and since

there is an additional constant given by the matrix M̂(x̄(k), 0). But one can

still explicitly compute the full spectrum of Hosc
Rn . Indeed, observe first that

Hosc
k;Rn has the same spectrum as H̃osc

k;Rn, the latter being obtained as Friedrichs

extension of

H̃osc
k := −

n∑
i,j=1

∂2
xi,xj +

1

2
〈aD2V (x̄(k))x, x〉 + M̂(x̄(k), 0) ,

since H̃osc
k;Rn = Φ Hosc

k;RnΦ−1 with Φ the linear transformation on L2(Rn, dx;Rm)

given by Φα(x) := α(
√
ax). Now let for every k = 1, . . . , N be ω

(k)
1 , . . . , ω

(k)
n

the square roots of the positive symmetric matrix 1
2aD

2V (x̄(k)) and let µ
(k)
1 , . . . , µ

(k)
m

be the eigenvalues of the symmetric matrix M̂(x̄(k), 0). Then the spectrum

of H̃osc
k;Rn is given by

Spec
(
H̃osc
k;Rn

)
=
{ n∑

i=1

ω
(k)
i (2ri + 1) + µ

(k)
j

}
r1,...,rn∈N0
j=1,...,m

.

Finally, the spectrum of Hosc
Rn is given by the union

⋃N
k=1 Spec

(
H̃osc
k;Rn

)
.

The relation between the spectrum of Hε,Zn and Hosc
Rn is quantified by

the following fundamental result. We omit the proof which can be done

by slightly modifying the arguments in [65], where only the case m = 1 is

treated. Reference [65] is based on classical results on harmonic approxima-

tion of Schrödinger operators in Rn (see [89, 21, 27, 43]).

Theorem B.5.

The operator Hε,Zn has for any fixed j0 ∈ N∗ and ε > 0 sufficiently small

at least j0 eigenvalues.

Moreover, denoting by νj,ε the j’th eigenvalue of Hε,Zn and by νosc
j the

j’th eigenvalue of Hosc
Rn (by increasing order and counting multiplicity in

both cases) we have

νj,ε = ε νosc
j + O(ε6/5) .
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Appendix C. Asymptotics of sums

The main tool to compute asymptotics of integrals with respect to rescaled

lattice measures is the following simple application of the Poisson summation

formula.

Proposition C.1.

Let fh ∈ C∞c (Rn;R) for h > 0 42 and assume that there exists an N0 ∈ N0

with the following property: for every multiindex α of length |α| ≥ N0 there

exists an h-independent constant Cα > 0 such that∫
Rn
|∂αfh (x)| dx ≤ Cα . (C.1)

Then

hn
∑
x∈hZn

fh(x) −
∫
Rn
fh(x) dx = O(h∞) . (C.2)

Proof. The Poisson summation formula gives for h > 0∑
x∈Zn

fh(hx) = h−n
∑
x∈Zn

f̂h(x/h) , (C.3)

where f̂h : Rn → R is the Fourier transform of fh, defined as

f̂h(x) :=

∫
Rn
fh(y) e−2πix·y dy .

Rewrite the identity (C.3) as

hn
∑
x∈hZn

fh(x) = f̂h(0) +
∑

x∈Zn\{0}

f̂h(x/h) (C.4)

and observe that

f̂h(0) =

∫
Rn
fh(x) dx .

The remainder
∑

x∈Zn\{0} f̂h(x/h) appearing on the right hand side of (C.4)

is estimated using standard decay properties of the Fourier transform. To

be precise, observe that for h > 0, every multiindex α and every x ∈ Rn

|(x/h)α f̂h(x/h)| =
1

(2π)α
|∂̂αfh (x/h)| .

This last identity together with the estimate

|∂̂αfh (x/h)| ≤
∫
Rn
|∂αfh (y)| dy ,

42We stress that here (as elsewhere) fh ∈ C∞c (Rn;R) is a condition given on fh for

every fixed h. In particular the supprot of fh is allowed to grow to infinity with h→ 0.
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again valid for h > 0, every multiindex α and every x ∈ Rn gives for the

remainder∣∣∣ ∑
x∈Zn\{0}

f̂h(x/h)
∣∣∣ ≤ h|α| ∫

Rn
|∂αfh (y)| dy

∑
x∈Zn\{0}

1

|xα|
.

The claim (C.2) follows now immediatley from the assumption (C.1). �

Corollary C.2 (Laplace asymptotics).

Let a ∈ C∞c (Rn;R) and ϕ ∈ C∞(Rn;R). Assume that there exists an

x0 ∈ Rn such that

ϕ(x0) = 0 , Hessϕ(x0) > 0 , ϕ(x) > 0 for every x ∈ supp a \ {x0} .

(C.5)

Then there exists a sequence (Ik)k∈N0 in R with

I0 =
(2π)n/2 a(x0)√
det Hessϕ(x0)

(C.6)

such that

εn/2
∑
x∈εZn

a(x) e−ϕ(x)/ε ∼
∞∑
k=0

εk Ik .

Proof. With h :=
√
ε and fh(x) := a(hx) e−ϕ(hx)/h2

we have

εn/2
∑
x∈εZn

a(x) e−ϕ(x)/ε = hn
∑
x∈hZn

fh(x) .

Observe that the classical Laplace asymptotics (see for example [41, Theo-

rem 4.2.1]) gives∫
Rn
fh(x) dx = h−n

∫
Rn
a(x) e−ϕ(x)/h2 ∼

∞∑
k=0

h2k Ik ,

with the sequence (Ik)k∈N0 in R and I0 as in (C.6).

Thus, to finish the proof, it is sufficient to show that fh satisfies the

assumption (C.1) of Proposition C.1. To this end, observe that for every

multiindex α

|∂αfh| = gh,α e
−ϕh , (C.7)

where ϕh(x) := ϕ(hx)
h2 and gh,α can be expressed as a sum of products with

factors of the type |∂α′ϕh(x)| and |∂α′′ah(x)|, with ah(x) := a(hx).

Moreover, observe that
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(i) For every multiindex α there exists a constant Cα > 0 (independent

of h and x) such that

a)

|∂αah(x)| ≤ Cα for h > 0 and every x ∈ Rn .

b) denoting by B1(0) the unit ball centered at the origin

|∂αϕh(x)| ≤ Cα for h > 0 and every x ∈ B1(0)

and

|∂αϕh(x)| ≤ Cα|x|2 for h > 0 and every x ∈ Bc
1(0) ∩ supp ah .

The estimate a) follows from the assumption that a has compact

support. The estimates in b) can be easily obtained from the

Taylor expansion

∂αϕh(x) = h|α|−2∂αϕ(hx) =

= h|α|−2∂αϕ(0) + h|α|−1〈∇∂αϕ(0), x〉 + h|α|
∫ 1

0

(1− t)2

2
〈Hess ∂αϕ(htx)x, x〉 dt

using that htx varies in a (h-independent) compact set when

x ∈ supp ah, t ∈ [0, 1] and using, in the cases |α| = 0, 1, that

ϕ(0) = ∇ϕ(0) = 0.

(ii) From (C.5) it follows that there exists a γ > 0 (independent of h)

such that

ϕ(x) ≥ γ|x|2 for every x ∈ supp a

or, equivalently, for h > 0

ϕh(x) ≥ γ|x|2 for every x ∈ supp ah .

Using (C.7) and the estimates (i) and (ii) above (in fact from (i) b) we

need only the case |α| > 0) we can conclude that for h > 0 and every

multiindex α there exist k ∈ N0 and γ > 0 such that∫
Rn
|∂αfh (x)| dx =

∫
supp ah

|∂αfh (x)| dx ≤

≤ Const

∫
B1(0)

e−γ|x|
2
dx + Const

∫
supp ah

|x|k e−γ|x|2 dx ≤ Const .

�
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Appendix D. Asymptotics of the spectrum of a matrix

Let m0,m1 ∈ N∗ and let, for ε > 0, Bε be a m1 ×m0 real matrix. We

shall consider for ε > 0 the m0 ×m0 matrix

Aε := Bt
ε Bε ,

with Bt
ε denoting the transposed of Bε. Observe that Aε is symmetric and

nonnegative, i.e. for every x ∈ Rm0

〈Aεx, x〉 = 〈x,Aεx〉 ≥ 0 .

Here and in the sequel 〈·, ·〉 stands for the standard scalar product in coor-

dinate space.

We shall denote for ε > 0 by (λi,ε)i=1,...,m0 the set of eigenvalues of Aε
ordered such that

λ1,ε ≥ . . . ≥ λm0,ε ≥ 0 .

The following theorem is a slight modification of a result proven in [71].

For completeness we shall give here a selfcontained proof.

Theorem D.1.

For ε > 0 let (ei,ε)i=1,...,m0 be a basis of Rm0 and (fi,ε)i=1,...,m1 a basis of

Rm1. Assume that m1 ≥ m0 − 1 and that

(i) for i, j = 1 . . . ,m0

〈ei,ε, ej,ε〉 = 1i,j + O(ε∞)

and for i, j = 1, . . . ,m1

〈fi,ε, fj,ε〉 = 1i,j + O(ε∞) .

(ii) Bε em0,ε = 0 and there exists a strictly increasing sequence (bi)i=1,...,m0−1

in R such that for i = 1, . . . ,m0 − 1

a) there exists an N ∈ N0 such that for ε > 0 sufficiently small

εN e−bi/ε ≤ |〈fi,ε, Bε ei,ε〉| ≤ ε−N e−bi/ε

b) for j = 1, · · · ,m1 with j 6= i

|〈fj,ε, Bε ei,ε〉| ≤ O(ε∞) e−bi/ε .

Then λm0,ε = 0 and for every i = 1, . . . ,m0 − 1

λi,ε = |〈fi,ε, Bε ei,ε〉|2
(

1 +O(ε∞)
)
. (D.1)

174



Remark D.2. Observe that from Theorem D.1 it follows that under the

assumptions made therein

λ1,ε > . . . > λm0,ε = 0 for ε small enough.

This is the situation we are interested in, but observe that analogous ver-

sions of Theorem D.1 hold mutatis mutandis in the case that for some

m̄ ∈ {1, . . . ,m0}

λ1,ε > . . . > λm̄,ε = λm̄+1,ε = . . . = λm0,ε = 0

or in the case

λ1,ε > . . . > λm0,ε > 0 .

Before giving the proof of Theorem D.1 we fix some notation and termi-

nology.

Given an m × n matrix C we denote by ‖C‖ its operator norm and by

µ1(C) ≥ · · · ≥ µn ≥ 0 its singular values. Recall that by definition µi(C)

equals the square root of the i-th eigenvalue (according to a decreasing

ordering) of the n×n symmetric and nonnegative matrix CtC. Note that C

and Ct have the same non-zero singular values. 43 As a consequence, if for

another m × n matrix C ′ and i = 1, . . . ,m we have µi(C
′t) ≤ µi(C

t), then

also µi(C
′) ≤ µi(C) for i = 1, . . . , n.

We shall call an ε-dependent square matrix Sε quasi-orthogonal if there

exists an orthogonal matrix S such that

Sε = S +O(ε∞) .

Remark D.3. The transposed of a quasi-orthogonal matrix and the product

of two quasi-orthogonal matrices are again quasi-orthogonal. Moreover ev-

ery quasi-orthogonal matrix is invertible for ε sufficiently small, with quasi-

orthogonal inverse. Note also that

‖Cε‖ ≤ 1 +O(ε∞) (D.2)

if Cε is quasi-orthogonal.

43Indeed, if u is an eigenvector of CtC, then Cu is eigenvector of CCt with same

eigenvalue, provided that Cu 6= 0, and an analogous statement holds for an eigenvector v

of CCt. That C and Ct have the same non-zero singular values follows also immediately

from the singular value decomposition.
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We say that two ε-dependent m× n matrices Cε, C
′
ε are quasi-equivalent

if there exists an m × m quasi-orthogonal matrix Sε and an n × n quasi-

orthogonal matrix Rε such that

C ′ε = Sε Cε Rε .

By Remark D.3 this is an equivalence relation.

The proof of Theorem D.1 is based on the following simple lemma.

Lemma D.4. Let Cε, C
′
ε be m× n quasi-equivalent matrices. Then

µi(C
′
ε) = µi(Cε)

(
1 +O(ε∞)

)
. (D.3)

Proof. Let S and C be respectively an n × n and an n ×m matrix. From

the inequality ‖SCx‖2 ≤ ‖S‖2‖Cx‖2 , valid for every x ∈ Rn, and from the

min-max theorem for symmetric matrices one gets for every i = 1, . . . , n

µi(SC) ≤ ‖S‖ µi(C) . (D.4)

Similarly, if R is an m×m matrix, using ‖Rt‖ = ‖R‖, one gets for every

i = 1, . . . ,m

µi((CR)t) = µi(R
tCt) ≤ ‖R‖ µi(Ct) ,

implying for i = 1, . . . , n

µi(CR) ≤ ‖R‖ µi(C) . (D.5)

The inequalities (D.4),(D.5) together with (D.2) give (D.3), using that

by assumption there exist quasi-orthogonal matrices Sε and Rε such that

C ′ε = Sε Cε Rε and using that Cε = S−1
ε C ′ε R

−1
ε .

�

Proof of Theorem D.1. We will show that Bε is quasi-equivalent to a diag-

onal m1 ×m0 matrix Dε = (Di,j,ε)i,j , satisfying for i = 1, . . . ,m0 − 1

Di,i,ε = 〈fi,ε, Bε ei,ε〉
(

1 +O(ε∞)
)

and Dm0,m0,ε = 0. Observe that this implies (D.1) by Lemma D.4, since

[µi(Bε)]
2 = λi,ε.

Step 1
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Define the m1 ×m0 matrix B
(1)
ε := (B

(1)
i,j,ε)i,j as

B
(1)
i,j,ε := 〈fi,ε, Bε ej,ε〉

and observe that, writing the ei,ε’s and fj,ε’s as column vectors, and letting

Eε = (e1,ε, . . . , em0,ε) and Fε = (f2,ε, . . . , fm1+1,ε) we have

B(1)
ε = F tε Bε Eε .

From assumption (i) it follows that F tε and Eε are quasi-orthogonal, and

therefore B
(1)
ε and Bε are quasi-equivalent. Note that the m0-th column of

B(1) is zero. If B(1) happens to be diagonal the proof is thus completed.

Otherwise one can proceed with a Gaussian-type elimination to diagonalize

B(1), as explained in Step 2.

Step 2

For k, l = 1, . . . ,m1 and α ∈ R define the left elementary matrix

S(k, l;α) := Id + αE(k, l) ,

where Id denotes the m1×m1 identity matrix and Ek,l is the m1×m1 matrix

with (k, l)-th entry equal to 1 and all other entries equal to zero. Observe

that multiplying S(k, l;α) on the left of an m1×m0 matrix C has the effect

of adding to the k-th row of C α times the l-th row of C.

Similarly one defines for k, l = 1, . . . ,m0 and α ∈ R an m0 × m0 right

elementary matrix R(k, l;α) which by multiplcation on the right operates

analogously on columns of an m1 ×m0 matrix.

Note that αε = O(ε∞) implies that Sk,l;αε andRk,l;αε are quasi-orthogonal.

If B
(1)
ε has non-vanishing offdiagonal entry on the first column, say at row

k = 2, . . . ,m1, we let

B(2)
ε := S(k, 1; 〈f1,ε, Bεe1,ε)〉 B(1)

ε .

We have now B
(2)
k,1,ε = 0. Moreover, using assumption (ii),

B
(2)
k,k,ε = 〈fk,ε, Bε ek,ε〉

(
1 +O(ε∞)

)
, (D.6)

while for k′ 6= k, 1

B
(2)
k,k′,ε = O(ε∞) 〈fk′,ε, Bε ek′,ε〉 . (D.7)

Repeating this procedure at most m1 − 2 times, one eliminates all the

non-zero off-diagonal entries of the first column, obtaining a matrix B
(3)
ε ,

still quasi-equivalent to Bε and satisfying (D.6) and (D.7) for every k =

2, . . . ,m1.
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Similarly, using the right elementary matrix, one eliminates all the non-

zero off-diagonal entries of the first row, obtaining a matrix B
(4)
ε , still quasi-

equivalent to Bε and satisfying (D.6) and (D.7) for every k = 2, . . . ,m1.

The procedure can be repeated for the second column and second row,

and continuing this way one obtains in the end a diagonal matrix Dε with

the properties announced at the beginning of the proof. �
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Appendix E. Complementary comments and computations

Notation for asymptotic expansions.

We use in this work the following standard notation. If N ∈ N0 and

νε ∈ R for ε > 0,

νε = O(εN )

means that there exist constants C1, C2 > 0 such that |νε| ≤ C1 εN for

ε ∈ (0, C2). If there exists a sequence {ν̂k}k∈N0 ⊂ R such that for every

N ∈ N0

νε −
N∑
k=0

εk ν̂k = O(εN+1)

we write for short

νε ∼
∞∑
k=0

εk ν̂k .

More generally, if instead of νε we deal with smooth ε-dependent func-

tions, we use the O and ∼ notation as follows: let Ω ⊂ M be open and

for ε > 0 let αε ∈ C∞(Ω;RV
p,µ

a ) for some p ∈ N0. Assume there exists an

N ∈ N0 such that for every j ∈ N0, every compact K ⊂ Ω and every v ∈ V j

there exist constants C1, C2 > 0 satisfying∥∥∥ ∇jv αε(ζ)
∥∥∥
µ
≤ C1 ε

N for ε ∈ (0, C2) and for every ζ ∈ K .

In this case we write

αε = O(εN ) .

If there exists a sequence {α̂k}k∈N0 contained in C∞(Ω;RV
p,µ

a ) such that

for every N ∈ N0

αε −
N∑
k=0

εk α̂k = O(εN+1)

we shall write for short

αε ∼
∞∑
k=0

εk α̂k .

In particular αε ∼ 0 means that αε = O(εN ) for every N ∈ N0. In this case

we write also αε = O(ε∞).
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Remark E.1. Let Ω ⊂ M be open and α ∈ C∞(Ω;RV
p,µ

a ). Recall the

definition of the scaled shift operator:

(τε∗α)v(ζ) = αv(ζ + εv/2)

appearing in the definition of the scalar product in L2(M × V p,Λε,µ) given

in (9.1). It can be easily seen that the property αε = O(εN ) for some N ∈ N0

is equivalent to the following:

For every j ∈ N0, every compact K ⊂ Ω and every v ∈ V j there exist

constants C1, C2 > 0 satisfying∥∥∥ ∇jv τε∗αε(ζ)
∥∥∥
µ
≤ C1 ε

N for ε ∈ (0, C2) and for every ζ ∈ K .

In fact this is the property one uses when estimating L2 norms where the

shift appears. Observe that, due to the fact that µ has finite support, τε∗αε(ζ)

is well-defined for every ε ∈ (0, C2) and ζ ∈ K as long as C2 is chosen

sufficiently small.

Complements to Section 9.

Lemma E.2. For w1, w2 ∈ V and (ζ, ξ) ∈ V × V ∗

m̊f ;w1,w2(ζ, ξ) :=
1

4

∑
s∈{−1,1}2

sign(s) e
1
2
∇s1w1−s2w2f(ζ) ∇2

s1w1,s2w2
f(ζ) e−

1
2
iξs1w1+s2w2 =

(E.1)

= ∇2
w1,w2

f(ζ) cosh
∇w1f − iξw1

2
cosh

∇w2f + iξw2

2
.

In particular

m̊f ;w,w(ζ, ξ) = ∇2
wf(ζ)

(
− sin2 ξw

2
+ cosh2 ∇wf(ζ)

2

)
. (E.2)

Proof. We have

m̊f ;w1,w2(ζ, ξ) =
1

4

∑
s∈{−1,1}2

∇2
w1,w2

f(ζ) e
1
2
∇s1w1−s2w2f(ζ) − 1

2
iξs1w1+s2w2 =

=
1

2
∇2
w1,w2

f(ζ)
{

cosh
(1

2
(∇w1f(ζ)− iξw1) − 1

2
(∇w2f(ζ) + iξw2)

)
+

+ cosh
(1

2
(∇w1f(ζ)− iξw1) +

1

2
(∇w2f(ζ) + iξw2

) }
.
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Statement (E.1) follows now by using with x = 1
2(∇w1f(ζ) − iξw1) and

y = 1
2(∇w2f(ζ)+iξw2 the identity cosh(x+y) = coshx cosh y+sinhx sinh y,

implying cosh(x+ y) + cosh(x− y) = coshx cosh y.

Statement (E.2) follows by using the identity cosh(a + b) cosh(a − b) =

sinh2 a+ cosh2 b with a = 1
2(∇wf(ζ) and b = iξw.

�

Lemma E.3.

(1) As an operator in L2(εZn;R)

H̃(0)
ρε,Λε,µ

=
∑
γ∈Zn

bε,γ τεγ , (E.3)

where bε,γ : Rn → R for every γ ∈ Rn, ε > 0 and

bε,γ :=


µ({γ}) bρε;εγ,εγ if γ = ±(ek1)k, . . . ,±(ekN )k

−
∑N

k=1 µk
(
bρε;εek,−εek + bρε;−ek,ek

)
if γ = 0

0 otherwise

.

(E.4)

(2) As an operator in L2(εZn;RN , µ)

H̃(1)
ρε,Λε,µ

=
∑
γ∈Zn

[
Bd
ε,γ + Bε,γ

]
τεγ , (E.5)

where Bd
ε,γ = (Bd

ε,γ;i,j)i,j=1,...,N , Bε,γ = (Bε,γ;i,j)i,j=1,...,N with Bd
ε,γ;i,j , Bε,γ;i,j :

Rn → R for every γ ∈ Rn, ε > 0, i, j = 1, . . . , N , given by the fol-

lowing: Bd
ε,γ;i,j = 0 if i 6= j and for i = 1 . . . , N

Bd
ε,γ;i,i :=


µ({γ}) Tεei bρε;εγ,εγ if γ = ±(ek1)k, . . . ,±(ekN )k

−
∑N

k=1 µk
(
Tεei bρε;εek,−εek + Tεei bρε;−εek,εek

)
if γ = 0

0 otherwise

.

(E.6)

Moreover for i, j = 1, . . . , N

Bε,γ;i,j :=


1γ,ei µj Tεei b̄ρε;εei,εej + 1γ,−ej µj Tεei b̄ρε;−εei,−εej if γ = ±(ek1)k, . . . ,±(ekN )k

− µj Tεei b̄ρε;−εei,εej if γ = 0

− µj Tεei b̄ρε;εei,−εej if γ = (eki )k − (ekj )k

0 otherwise

.

(E.7)
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Remark E.4. For convenience we recall here the definitions of bρ and b̄ρ
given in Remark 8.8:

bρ;w1,w2 := − 1
√
ρ
Tw1 ρ Tw2

1
√
ρ

and

b̄ρ;v1,v2 := b 1
ρ

;v1,v2
− bρ;v2,v1 .

Note that in particular

bρε;εei,εej (x) = − exp
1

ε

[
− 2f(x+ ε

ei
2

) + f(x) + f(x+ ε
ei + ej

2
)
]

Tεek bρε;εei,εej (x) = − exp
1

ε

[
−2f(x+ε

ei + ek
2

) + f(x+ε
ek
2

) + f(x+ε
ei + ej + ek

2
)
]

Tεek b̄ρε;εei,εej (x) = − exp
1

ε

[
2f(x+ ε

ei + ek
2

) − f(x+ ε
ek
2

) − f(x+ ε
ei + ej + ek

2
)
]

+

+ exp
1

ε

[
− 2f(x+ ε

ej + ek
2

) + f(x+ ε
ek
2

) + f(x+ ε
ei + ej + ek

2
)
]
.

Remark E.5. One can check for every γ, x ∈ Rn, i, j = 1 . . . , N the

relations bε,γ(x) = bε,−γ(x + εγ), µjB
d
ε,γ;i,j(x) = µiB

d
ε,−γ;j,i(x + εγ) and

µjBε,γ;i,j(x) = µiBε,−γ;j,i(x + εγ) which express the symmetry of H̃(0)
ρε,Λε,µ

with respect to the scalar product of L2(εZn;R) and of H̃(1)
ρε,Λε,µ

with respect

to the scalar product of L2(εZn;RN,µ).

Proof of Lemma E.3.

(i) (case p = 0):

(Note that for p = 0, H̃(0)
ρε,Λε,µ

and H(0)
ρε,Λµε

are defined by the same

formula).

From Remark 8.8 it follows that

H(0)
ρε,Λµε

=
∑

s∈{−1,1}2
sign(s)

N∑
j=1

µj
(
bρε;εs1ej ,εs2ej τ 1

2
ε(s1+s2)ej

+ bρε;−εs1ej ,−εs2ej τ− 1
2
ε(s1+s2)ej

)
.

Considering the different signs case by case gives (E.3).
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(ii) (case p = 1):

From Remark 8.8 it follows that

(
H̃(1)
ρε,Λε,µ

α
)
i

=
∑

s∈{−1,1}2
sign(s)

1

2

N∑
j=1

µj

{
(Tεei bρε;εs1ej ,εs2ej ) τ 1

2
ε(s1+s2)ej

αi + (Tεei bρε;−εs1ej ,−εs2ej ) τ− 1
2
ε(s1+s2)ej

αi +

+ (Tεei b̄ρε;εs1ei,εs2ej ) τ 1
2
ε(s1+1)ei+

1
2
ε(s2−1)ej

αj − (Tεei b̄ρε;εs1ei,−εs2ej ) τ 1
2
ε(s1+1)ei+

1
2
ε(−s2−1)ej

αj

}
.

Again considering the different signs case by case gives (E.5).

�

For the next Lemma recall that qγ , Dγ and Gγ were defined in (E.6),

(9.14) and (9.15) as follows:

qγ :=


− 1

4 µ({γ}) ∇2
γf if γ = ±(ek1)k, . . . ,±(ekN )k

− 1
2

∑N
j=1 µj ∇2

ejf cosh∇ejf if γ = 0

0 otherwise

,

Dγ;i,i :=


qγ if γ = ±(ek1)k, . . . ,±(ekN )k

qγ +
∑N

k=1 µk ∇2
ek,ei

f sinh∇ekf if γ = 0

0 otherwise

,

Gγ;i,j :=


1
2µj ∇

2
ei,ejf

(
1γ,ei e

1
2
∇ei−ej f + 1γ,−ej e

− 1
2
∇ei−ej f

)
if γ = ±(ek1)k, . . . ,±(ekN )k

1
2µj ∇

2
ei,ejf e

− 1
2
∇ei+ej f + 1

8µj
(
∇2
eif +∇2

ejf
)

sinh 1
2∇ei+ejf if γ = 0

1
2µj ∇

2
ei,ejf e

1
2
∇ei+ej f if γ = (eki )k − (ekj )k

0 otherwise

.

Recall also that

V (x) :=
N∑
j=1

4µj sinh2 ∇ejf(x)

2
=

N∑
j=1

2µj [cosh∇ejf(x) − 1] .
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Lemma E.6.

Let bε,γ, Bd
ε,γ and Bε,γ as defined in (E.4), (E.6) and (E.7). Then there ex-

ist for ε > 0, every γ ∈ Rn and i, j = 1, . . . , N functions b̃ε,γ , B̃
d
ε,γ;i,j , B̃ε,γ;i,j ∈

C∞(Rn;R) such that with B̃d
ε,γ = (B̃d

ε,γ;i,j)i,j and B̃ε,γ = (B̃ε,γ;i,j)

b̃ε,γ = O(1) , B̃d
ε,γ = O(1) , B̃ε,γ = O(1)

and

bε,γ =


−µ({γ}) + ε [qγ + ε b̃ε,γ ] if γ = ±(ek1)k, . . . ,±(ekN )k

2N + V + ε [qγ + ε b̃ε,γ
]

if γ = 0

0 otherwise

,

Bd
ε,γ =


−µ({γ}) + ε [Dγ + ε B̃d

ε,γ ] if γ = ±(ek1)k, . . . ,±(ekN )k

2N + V + ε [Dγ + ε B̃d
ε,γ

]
if γ = 0

0 otherwise

,

Bε,γ = ε [Gγ + ε B̃ε,γ
]
.

Proof. Recall Remark E.4.

Case I: bε,γ

We have by Taylor expansion of f

bρε;εei,εej (x) := − exp
1

ε

[
− 2f(x+ ε

ei
2

) + f(x) + f(x+ ε
ei + ej

2
)
]

=

= − exp
[
− 1

2
∇ei−ejf(x)

]
exp

[
ε

1

4

(
− 1

2
∇2
eif(x) +

1

2
∇2
ejf(x) +∇2

ei,ejf(x) +O(ε)
)]

.

Case Ia: bε,γ with γ = ±e1, . . . ,±eN . Then

bε,γ := µ({γ}) bρε;εγ,εγ = −µ({γ}) exp
[
ε

1

4

(
∇2
γ,γf +O(ε)

)]
.

Case Ib: bε,γ with γ = 0. Then

bε,γ := −
N∑
k=1

µk
(
bρε;εek,−εek + bρε;−εek,εek

)
=
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=
N∑
k=1

µk

(
exp

[
−∇ekf

]
exp

[
ε

1

4

(
−∇2

ek
f +O(ε)

)]
+

+ exp
[
∇ekf

]
exp

[
ε

1

4

(
−∇2

ek
f +O(ε)

)] )
.

Case II: Bd
ε,γ

Taylor expanding f we get

Tεek bρε;εei,εej = − exp
[
− 1

2
∇ei−ejf

]
×

× exp
[
ε

1

4

(
− 1

2
∇2
eif +

1

2
∇2
ejf +∇2

ei,ejf −∇
2
ei,ek

f +∇2
ej ,ek

f +O(ε)
)]

.

Case IIa: Bd
ε,γ;i,i with γ = ±e1, . . . ,±eN . Then

Bd
ε,γ;i,i := µ({γ}) Tεei bρε;εγ,εγ = −µ({γ}) exp

[
ε

1

4

(
∇2
γ,γf +O(ε)

)]
.

Case IIb: Bd
ε,γ;i,i with γ = 0. Then

Bd
ε,γ;i,i := −

N∑
k=1

µk
(
Tεei bρε;εek,−εek + Tεei bρε;−εek,εek

)
=

=

N∑
k=1

µk

(
exp

[
−∇ekf

]
exp

[
ε

1

4

(
−∇2

ek
f − 2∇2

ek,ei
f +O(ε)

)]
+

+ exp
[
∇ekf

]
exp

[
ε

1

4

(
−∇2

ek
f + 2∇2

ek,ei
f +O(ε)

)] )
.

Case III: Bε,γ

Taylor expanding f we get

Tεek b̄ρε;εei,εej := Tεek b 1
ρε

;εei,εej
− Tεek bρε;εej ,εei =

= − exp
[ 1

2
∇ei−ejf

]
×

× exp
[
ε

1

4

(1

2
∇2
eif −

1

2
∇2
ejf −∇

2
ei,ejf +∇2

ei,ek
f −∇2

ej ,ek
f +O(ε)

)]
+

+ exp
[ 1

2
∇ei−ejf

]
×

× exp
[
ε

1

4

(
− 1

2
∇2
ejf +

1

2
∇2
eif +∇2

ei,ejf −∇
2
ej ,ek

f +∇2
ei,ek

f +O(ε)
)]

.

185



Case IIIa’: Bε,γ;i,j with γ = ei Then

Bε,γ;i,j := µj Tεei b̄ρε;εei,εej =

= − µj exp
[ 1

2
∇ei−ejf

]
×

× exp
[
ε

1

4

(1

2
∇2
eif −

1

2
∇2
ejf − 2∇2

ei,ejf +∇2
ei,eif +O(ε)

)]
+

+ µj exp
[ 1

2
∇ei−ejf

]
×

× exp
[
ε

1

4

(
− 1

2
∇2
ejf +

1

2
∇2
eif +∇2

ei,eif +O(ε)
)]

.

Case IIIa”: Bε,γ;i,j with γ = −e1, . . . ,−eN . Then

Bε,γ;i,j := µj Tεei b̄ρε;−εei,−εej =

= − µj exp
[
− 1

2
∇ei−ejf

]
×

× exp
[
ε

1

4

(1

2
∇2
eif −

1

2
∇2
ejf −∇

2
eif +O(ε)

)]
+

+ µj exp
[
− 1

2
∇ei−ejf

]
×

× exp
[
ε

1

4

(
− 1

2
∇2
ejf +

1

2
∇2
eif + 2∇2

ei,ejf −∇
2
eif +O(ε)

)]
.

Case IIIb: Bε,γ;i,j with γ = 0. Then

Bε,γ;i,j = −µj Tεei b̄ρε;−εei,εej =

= µj exp
[
− 1

2
∇ei+ejf

]
×

× exp
[
ε

1

4

(1

2
∇2
eif −

1

2
∇2
ejf −∇

2
eif +O(ε)

)]
+

− µj exp
[
− 1

2
∇ei+ejf

]
×

× exp
[
ε

1

4

(
− 1

2
∇2
ejf +

1

2
∇2
eif − 2∇2

ei,ejf −∇
2
eif +O(ε)

)]
.
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Case IIIc: Bε,γ;i,j with γ = ei − ej . Then

Bε,γ;i,j = −µj Tεei b̄ρε;εei,−εej =

= µj exp
[ 1

2
∇ei+ejf

]
×

× exp
[
ε

1

4

(1

2
∇2
eif −

1

2
∇2
ejf + 2∇2

ei,ejf +∇2
eif +O(ε)

)]
+

− µj exp
[ 1

2
∇ei+ejf

]
×

× exp
[
ε

1

4

(
− 1

2
∇2
ejf +

1

2
∇2
eif +∇2

eif +O(ε)
)]

.

The result follows then by expanding in each case the exponential depending

on ε. �

Lemma E.7.

With the notation as in Lemma E.6 and with qε,γ := qγ + εb̃ε,γ, Qε,γ :=

Dγ +Gγ + ε[B̃d
ε,γ + B̃ε,γ ] the following holds: there exists a constant C > 0

and a compact K ⊂ Rn such that for x ∈ Rn \K∑
γ∈Zn

(
|qε,γ(x)| + ‖Qε,γ(x)‖

)
≤ C V (x) .

Proof. Due to Assumption II.2(ii) (implying that the Taylor expansion of f

stops at the second order term) we have for fixed ε and large |x|∑
γ∈Zn

|qε,γ(x)| ≤

≤
N∑
k=1

2 µ{k}
{

cosh∇ekf(x)

∣∣e−ε 1
4
∇2
ek
f(x) − 1

∣∣
ε

+

∣∣eε 1
4
∇2
ek
f(x) − 1

∣∣
ε

}
.

We conclude by observing that the fractions are uniformly bounded in x and

ε due to the boundedness of the second derivatives of f .

The case of ‖Qε,γ(x)‖ can be treated similarly by using the inequalities

e
1
2
|∇eif | e

1
2
|∇ej f | ≤ 1

2

(
e|∇eif | + e|∇ej f |

)
≤ cosh∇eif + cosh∇ejf .

�
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Complements to the proof of Theorem 11.1.

The following lemma deals with asymptotic expansions in powers of ε of

certain coefficients appearing with the WKB-Ansatz of Lemma 11.8. In or-

der to prove the mentioned asymptotic expansions it is convenient to express

exponentials of sums as series involving Bell-polynomials. Recall that for

k ∈ N∗ the k-th complete Bell polynomial Bk : Rk → R is defined via

Bk
[

(xj)j=1,...,k

]
:=

k∑
q=1

∑
(qj)∈Nk−q+1

0∑
j qj=q∑
j j qj=k

k!

k−q+1∏
j=1

1

qj !

(xj
j!

)qj
.

For convenience we set B0 := 1. Observe that B1

[
x
]

= x and B2

[
(x1, x2)

]
=

x2
1 − x2. Given a sequence (xk)k∈N0 in R and an N ∈ N0 we shall denote

by (x
(N)
k )k∈N0 the sequence truncated at N , defined by setting x

(N)
k = xk

for k ≤ N and x
(N)
k = 0 for k ≥ 0. The utility of Bell-polynomials for

our purposes stems from the fact that for every sequence (xk)k∈N0 in R and

N ∈ N0 we have the identity

exp
[ N∑
k=1

εk
xk
k!

]
=

∞∑
k=0

εk
1

k!
Bk[ (xNj )j=1,...,k , ] (E.8)

as can be easily checked by writing the exponential series, using the multi-

nomial theorem for the power of sums and suitably rearranging terms in the

series.

Lemma E.8.

Let f, ϕ ∈ C∞(M ;R) and define for every w1, w2 ∈ V the function

cε;w1,w2 ∈ C∞(M ;R) by

cε;w1,w2 := cf,ε;w1,w2 := e
f+ϕ
ε Tεw1 e

−2f
ε Tεw2 e

f−ϕ
ε .

Then for every N ∈ N0

cε =
N∑
k=0

εk ĉk + εN+1 r
(N+1)
c,ε ,

with

ĉk;w1,w2 := ĉf,k;w1,w2 :=

:= e
∇w2 (f−ϕ)−∇w1 (f+ϕ)

2
1

k!
Bk
[ ( −2∇jw1f +∇jw1+w2

(f − ϕ)

j2j
)
j=2,...,k+1

]
(E.9)
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and r
(N+1)
c,ε;w1,w2 in C∞(M ;R) satisfying r

(N+1)
c,ε;w1,w2 = O(1).

Proof. We have

cε;w1,w2 = exp ε−1
[
ϕ+ f − 2Tεw1f + Tεw1Tεw2(f − ϕ)

]
.

A Taylor expansion gives for every N ∈ N0

ε−1
[
ϕ+ f − 2Tεw1f + Tεw1Tεw2(f − ϕ)

]
= (E.10)

=
∇w2(f − ϕ)−∇w1(f + ϕ)

2
+

N∑
k=1

εk
−2∇k+1

w1
f + ∇k+1

w1+w2
(f − ϕ)

2k+1(k + 1)!
+

+ εN+1 r̃
(N+1)
c,ε;w1,w2 ,

with

r̃
(N+1)
c,ε;w1,w2 :=

∫ 1

0
dt

(1− t)N+1

(N + 1)!

−2Tεtv1 ∇N+2
w1

f + Tεt(w1+w2)∇N+2
w1+w2

(f − ϕ)

2N+2
= O(1) .

It follows from (E.10) using (E.8) that

cε =

N∑
k=0

εk ĉk + εN+1 r
(N+1)
c,ε

with the ck’s as in (E.9) and with

εN+1 r
(N+1)
c,ε :=

N∑
k=1

εk ĉk
(

exp[ εN+1 r̃
(N+1)
c,ε ]−1

)
+

∞∑
k=N+1

εk ĉ
(N+1)
k exp[ εN+1 r̃

(N+1)
c,ε ]

and

ĉ
(N+1)
k;w1,w2

:=

= e
∇w2 (f−ϕ)−∇w1 (f+ϕ)

2
1

k!
Bk
[ ( ( −2∇jw1f +∇jw1+w2

(f − ϕ)

j2j
)(N+1)

)
j=2,...,k+1

]
.

In particular, r
(N+1)
c,ε = O(1) for every N ∈ N0 as claimed. �

Remark E.9. [Computation of ĉ0 and ˆ̄c0]

We compute here more explicit formulas for the leading coefficients ĉ0 and
ˆ̄c0, the latter being defined as

ˆ̄c0;w1,w2 := ˆ̄cf,0;w1,w2 := ĉf,0;w2,w1 − ĉ−f,0;w1,w2 .
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Since by definition

ĉf,k;w1,w2 =

= e
∇w2 (f−ϕ)−∇w1 (f+ϕ)

2
1

k!
Bk
[ ( −2∇jv1f +∇jv1+v2

(f − ϕ)

j2j
)
j=2,...,k+1

]
,

using B0 = 1, we get for k = 0

ĉf,0;w1,w2 = e
∇w2 (f−ϕ)−∇w1 (f+ϕ)

2 . (E.11)

In particular

ĉf,0;w,w = e−∇wϕ , ĉf,0;−w,−w = e∇wϕ (E.12)

and

ĉf,0;−w,w = e∇wf , ĉf,0;w,−w = e−∇wf .

It follows that∑
s∈{−1,1}2

sign(s) ĉf,0;s1w,s2w = 2 cosh∇wϕ− 2 cosh∇wf . (E.13)

To compute ˆ̄c0;w1,w2 observe that

ĉ−f,0;w1,w2 = exp
1

2

[
−∇w2(f + ϕ)−∇w1(ϕ− f)

]
. (E.14)

Using (E.14) together with (E.11) gives

ˆ̄c0;w1,w2 = ĉf,0;w2,w1 − ĉ−f,0;w1,w2 =

= exp
1

2

[
∇w1(f − ϕ)−∇w2(f + ϕ)

]
− exp

1

2

[
−∇w2(f + ϕ)−∇w1(ϕ− f)

]
=

= 0 . (E.15)

Remark E.10. [Computation of ĉ1 and ˆ̄c1]

We compute here more explicit formulas for the subleading coefficients ĉ1
and ˆ̄c1, the latter being defined as

ˆ̄c1;w1,w2 := ˆ̄cf,1;w1,w2 := ĉf,1;w2,w1 − ĉ−f,1;w1,w2 .

Since by definition

ĉf,k;w1,w2 =

= e
∇w2 (f−ϕ)−∇w1 (f+ϕ)

2
1

k!
Bk
[ ( −2∇jv1f +∇jv1+v2

(f − ϕ)

j2j
)
j=2,...,k+1

]
,

using B1(x) = x, we get

ĉf,1;w1,w2 = e
∇w2 (f−ϕ)−∇w1 (f+ϕ)

2

( −2∇2
w1
f +∇2

w1+w2
(f − ϕ)

8

)
. (E.16)
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In particular

ĉf,1;w,w =
( 1

4
∇2
wf−

1

2
∇2
wϕ
)
e−∇wϕ , ĉf,1;−w,−w =

( 1

4
∇2
wf−

1

2
∇2
wϕ
)
e∇wϕ

and

ĉf,1;−w,w = −1

4
∇2
wf e

∇wf , ĉf,1;w,−w = −1

4
∇2
wf e

−∇wf .

It follows that ∑
s∈{−1,1}2

sign(s) ĉ1;s1w,s2w =

=
( 1

2
∇2
wf −∇2

wϕ
)

cosh∇wϕ +
1

2
∇2
wf cosh∇wf .

Using the identities

1

2
cosh∇wϕ = sinh2 ∇wϕ

2
+

1

2
and

1

2
cosh∇wf = cosh2 ∇wf

2
− 1

2

we also get ∑
s∈{−1,1}2

sign(s) ĉ1;s1w,s2w =

= −∇2
wϕ cosh∇wϕ + ∇2

wf
(

sinh2 ∇wϕ
2

+ cosh2 ∇wf
2

)
. (E.17)

Finally we notice that the identity coshx = cosh2 x
2 + sinh2 x

2 gives∑
s∈{−1,1}2

sign(s) ĉf,ϕ,1;s1w,s2w =

= −∇2
wϕ

(
cosh2 ∇wϕ

2
+ sinh2 ∇wϕ

2

)
+ ∇2

wf
(

sinh2 ∇wϕ
2

+ cosh2 ∇wf
2

)
=

= −∇2
wϕ cosh∇wϕ+∇2

wf cosh∇wf + ∇2
wf
(

sinh2 ∇wϕ
2
− sinh2 ∇wf

2

)
.

To compute ˆ̄c1 observe that

ĉ−f,1;w1,w2 = e
−∇w2 (f+ϕ)−∇w1 (ϕ−f)

2

( 2∇2
w1
f −∇2

w1+w2
(f + ϕ)

8

)
. (E.18)

Using (E.18) together with (E.16) gives

ˆ̄c1;w1,w2 = ĉf,1;w2,w1 − ĉ−f,1;w1,w2 =

=
( −2∇2

w1
f +∇2

w1+w2
(f − ϕ)− 2∇2

w2
f +∇2

w1+w2
(f + ϕ)

8

)
×

× exp
1

2

[
∇w1(f − ϕ)−∇w2(f + ϕ)

]
.
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Applying the identity

∇2
w1+w2

= ∇2
w1

+ 2∇w1∇w2 +∇2
w2

we get

ˆ̄c1;w1,w2 =
1

2
∇w1∇w2f exp

1

2

[
∇w1(f − ϕ)−∇w2(f + ϕ)

]
.

It follows that ∑
s∈{−1,1}2

sign(s) ˆ̄c1;s1w1,s2w2 =

= 2∇w1∇w2f cosh
∇w1(f − ϕ)

2
cosh

∇w2(f + ϕ)

2
. (E.19)
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[55] Huisinga W., Meyn S., Schütte C., Phase transitions and metastability in Markovian

and molecular systems. Ann. Appl. Probab. 14 (1), 419-458 (2004).

[56] Hsu E., Stochastic Analysis on Manifolds. American Math. Soc. (2002).

[57] Huang X., On stochastic completeness of weighted graphs Phd thesis, Univ. of Biele-

feld (2011).

[58] Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes.

North-Holland Mathematical Library 24. Amsterdam-New York, North-Holland

Publ. Co. (1981).

[59] Jona-Lasinio G., Martinelli F., Scoppola E., New approach to the semiclassical limit

of quantum mechanics I. Comm. Math. Phys. 80, 223-254 (1981).

[60] Kac M., Mathematical mechanisms of phase transitions. Brandeis lectures, Gordon

and Breach (1966).

[61] Khasminskii, R. Stochastic Stability of Differential Equations. Originally published

in Russian, by Nauka, Moskow 1969. 1st English ed. published 1980 under R.Z.

Has’minski in the series Mechanics: Analysis by Sijthoff and Noordhoff. 2nd Edition

Springer (2012).

[62] Keller M., Lenz D., Dirichlet forms and stochastic completeness of graphs and sub-

graphs. J. reine angew. Math. (Crelles Journal) 666, 189-223 (2012).

[63] Keller M., Lenz D., Unbounded Laplacians on graphs: basic spectral properties and

the heat equation. Math. Model. Nat. Phenom. 5(4), 198-224 (2010).

[64] Klein M., Rosenberger E., Agmon-Type Estimates for a Class of Difference Operators.

Ann. H. Poincarè 9, 1177 - 1215 (2008).

195



[65] Klein M., Rosenberger E., Harmonic approximation of difference operators. J. Funct.

Anal. 257, 3409 - 3453 (2009).

[66] Klein M., Rosenberger E., Asymptotic eigenfunctions for a class of difference oper-

ators. Asymptotic Analysis 73 (1-2) 1-36 (2011).

[67] Koldan N., Prokhorenkov I., Shubin M., Semiclassical Asymptotics on Manifolds with

Boundary. in: Spectral analysis in geometry and number theory, 239-266, Contemp.

Math 484, Amer. Math Soc. (2009).

[68] Kolokoltsov V. N., Semiclassical Analysis for Diffusions and Stochastic Processes.

Lecture Notes in Math. 1724, Springer (2000).

[69] Kolokoltsov V. N., Makarov K. A., Asymptotic Spectral Analysis of a Small Diffusion

Operator and the Life Times of the corresponding Diffusion Process. Russ. Journal

Math. Phys 4 (3), 341-360 (1996).

[70] Le Peutrec D., Etudes de petites valeurs propres du Laplacien de Witten. Phd thesis,

Univ. de Rennes 1 (2009).

[71] Le Peutrec D., Small singular values of an extracted matrix of a Witten complex.

CUBO, A Mathematical Journal 11 (4), 49-57 (2009).

[72] Le Peutrec D., Small eigenvalues of the Neumann realization of the semiclassical
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[75] Ma Z., Röckner M., Introduction to the Theory of (Non-Symmetric) Dirichlet forms.

Springer (1991).

[76] Mathieu P., Zero White Noise Limit through Dirichlet forms, with application to

diffusions in a random medium. Prob. Th. Relat. Fields 99, 549-580 (1994).

[77] Mathieu P., Spectra, exit times and long time asymptotics in the zero-white-noise

limit. Stoch. and Stoch. Rep. 55, 1-20 (1995).
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