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0Abstract
The vast amount of data generated on social media platforms have made them
a valuable source of information for businesses, governments and researchers.
Social media data can provide insights into user behavior, preferences, and
opinions. In this work, we address two important challenges in social media
analytics. Predicting user engagement with online content has become a
critical task for content creators to increase user engagement and reach larger
audiences. Traditional user engagement prediction approaches rely solely
on features derived from the user and content. However, a new class of deep
learning methods based on graphs captures not only the content features but
also the graph structure of social media networks.
This thesis proposes a novel Graph Neural Network (GNN) approach

to predict user interaction with tweets. The proposed approach combines
the features of users, tweets and their engagement graphs. The tweet text
features are extracted using pre-trained embeddings from language models,
and a GNN layer is used to embed the user in a vector space. The GNN model
then combines the features and graph structure to predict user engagement.
The proposed approach achieves an accuracy value of 94.22% in classifying
user interactions, including likes, retweets, replies, and quotes.
Another major challenge in social media analysis is detecting and clas-

sifying social bot accounts. Social bots are automated accounts used to
manipulate public opinion by spreading misinformation or generating fake
interactions. Detecting social bots is critical to prevent their negative impact
on public opinion and trust in social media. In this thesis, we classify social
bots on Twitter by applying Graph Neural Networks. The proposed approach
uses a combination of both the features of a node and an aggregation of the
features of a node’s neighborhood to classify social bot accounts. Our final
results indicate a 6% improvement in the area under the curve score in the
final predictions through the utilization of GNN.

Overall, our work highlights the importance of social media data and the
potential of new methods such as GNNs to predict user engagement and
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detect social bots. These methods have important implications for improving
the quality and reliability of information on social media platforms and
mitigating the negative impact of social bots on public opinion and discourse.
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0Zusammenfassung

Die riesige Menge an Daten, die auf Social-Media-Plattformen generiert wird,
hat sie zu einer wertvollen Informationsquelle für Unternehmen, Regierun-
gen und Forscher gemacht. Daten aus sozialen Medien können Einblicke
in das Verhalten, die Vorlieben und die Meinungen der Nutzer geben. In
dieser Arbeit befassen wir uns mit zwei wichtigen Herausforderungen im
Bereich der Social-Media-Analytik. Die Vorhersage des Nutzerinteresses an
Online-Inhalten ist zu einer wichtigen Aufgabe für die Ersteller von Inhalten
geworden, um das Nutzerengagement zu steigern und ein größeres Publikum
zu erreichen. Herkömmliche Ansätze zur Vorhersage des Nutzerengagements
stützen sich ausschließlich auf Merkmale, die aus dem Nutzer und dem Inhalt
abgeleitet werden. Eine neue Klasse von Deep-Learning-Methoden, die auf
Graphen basieren, erfasst jedoch nicht nur die Inhaltsmerkmale, sondern
auch die Graphenstruktur von Social-Media-Netzwerken.

In dieser Arbeit wird ein neuartiger Graph Neural Network (GNN)-Ansatz
zur Vorhersage der Nutzerinteraktion mit Tweets vorgeschlagen. Der vorge-
schlagene Ansatz kombiniert die Merkmale von Nutzern, Tweets und deren
Engagement-Graphen. Die Textmerkmale der Tweets werden mit Hilfe von
vortrainierten Einbettungen aus Sprachmodellen extrahiert, und eine GNN-
Schicht wird zur Einbettung des Nutzers in einen Vektorraum verwendet. Das
GNN-Modell kombiniert dann die Merkmale und die Graphenstruktur, um
das Nutzerengagement vorherzusagen. Der vorgeschlagene Ansatz erreicht
eine Genauigkeit von 94,22% bei der Klassifizierung von Benutzerinteraktio-
nen, einschließlich Likes, Retweets, Antworten und Zitaten.
Eine weitere große Herausforderung bei der Analyse sozialer Medien ist

die Erkennung und Klassifizierung von Social-Bot-Konten. Social Bots sind
automatisierte Konten, die dazu dienen, die öffentliche Meinung zu manipu-
lieren, indem sie Fehlinformationen verbreiten oder gefälschte Interaktionen
erzeugen. Die Erkennung von Social Bots ist entscheidend, um ihre negativen
Auswirkungen auf die öffentliche Meinung und das Vertrauen in soziale Me-
dien zu verhindern. In dieser Arbeit klassifizieren wir Social Bots auf Twitter
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mit Hilfe von Graph Neural Networks. Der vorgeschlagene Ansatz verwendet
eine Kombination aus den Merkmalen eines Knotens und einer Aggregation
der Merkmale der Nachbarschaft eines Knotens, um Social-Bot-Konten zu
klassifizieren. Unsere Endergebnisse zeigen eine 6%ige Verbesserung der Flä-
che unter der Kurve bei den endgültigen Vorhersagen durch die Verwendung
von GNN.

Insgesamt unterstreicht unsere Arbeit die Bedeutung von Social-Media-
Daten und das Potenzial neuer Methoden wie GNNs zur Vorhersage des
Nutzer-Engagements und zur Erkennung von Social Bots. Diese Methoden
haben wichtige Auswirkungen auf die Verbesserung der Qualität und Zu-
verlässigkeit von Informationen auf Social-Media-Plattformen und die Ab-
schwächung der negativen Auswirkungen von Social Bots auf die öffentliche
Meinung und den Diskurs.
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1 Introduction

This chapter provides an overall view of the research conducted in this thesis.
Specifically, in Section 1.1 we describe the background contexts in which the
work in this thesis was conducted and introduces the main motivations for
the general research domain. Section 1.2 outlines the chapters in this thesis.
Finally, in Section 1.3 we give a summary of the main research contributions
in the thesis.

1.1 Research Background and Motivation
In recent years, several convolutional neural network architectures have
been proposed for learning over graphs. Graph Neural Networks (GNNs)
have attracted attention due to their ability to combine both node features
and graph structure. This makes them ideal for dealing with data that con-
tains network structures, such as social media data where user networks
are present. GNNs have been applied to a variety of tasks including node
classification, link prediction, and graph classification, among others. In
social media analysis, GNNs have been used for various applications such as
user profiling, recommender systems, and spam bot detection. The ability of
GNNs to learn from both node features and graph structure has made them
effective for modeling the complex relationships and interactions that exist
in social networks. By using GNNs, researchers have been able to capture
not only the content features but also the structural features of social media
data. This has led to the development of more accurate and efficient models
for user engagement prediction, social bot detection, and other social media
analysis tasks.

This thesis investigates the applications of graph neural networks on the
social media data. We first introduce the challenges in data collection on
social media platforms. More over we take a look at Twitter as a social
media website to retrieve tweets from it’s API. We create a system that
can collect the most tweets possible from the Twitter API. An important
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Chapter 1 Introduction

problem in social media mining is predicting user engagement, as it plays
a critical role in understanding user behavior and preferences. Traditional
machine learning models have been applied to predict user engagement by
relying solely on user and content features. However, these models ignore
the underlying network structure of users and their interactions on social
media. Graph Neural Networks (GNNs) have been shown to effectively model
graph-structured data, integrating both node features and graph structure.
Since social media data is inherently graph structured, it is useful to apply
GNNs to predict user engagement. In this work, we explore the use of GNNs
to predict user engagement on Twitter using both user and tweet features,
as well as the network structure of interactions between users and tweets.
Another important task in social media mining is spam bot detection, as

malicious accounts and social bots can harm users and spread misinforma-
tion. Traditional approaches to spam bot detection rely on features such
as account creation date, account activity, and content features. However,
these approaches do not effectively capture the complex relationships and
interactions between users and their network structure. GNNs provide a pow-
erful framework for modeling these interactions and relationships, and thus
have emerged as a promising approach for spam bot detection. In this work,
we explore the use of GNNs for spam bot detection on Twitter, leveraging
features such as user and content features, as well as the network structure
of interactions between accounts. We demonstrate the effectiveness of our
proposed method on a well-known bot detection dataset and propose future
extensions for more effective and efficient bot detection.

1.2 Thesis Outline and Structure

The thesis is structured in the following chapters:
In Chapter 2, we introduce the basics of Graph Neural Networks (GNNs)

and the mathematical concepts necessary to understand them. We described
how GNNs work with graph-structured data, combining not only the node
features but also the graph structure as well. We then discuss the training
process for GNNs, including the use of message-passing algorithms. To
illustrate these concepts, we provided an example in the Karate Club network
showing how GNNs can be used for node classification tasks. Overall, this
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Thesis Outline and Structure Section 1.3

chapter laid the foundation for understanding the role of GNNs in predicting
user engagement and classifying social bot accounts on Twitter in subsequent
chapters.

In Chapter 3, we discuss the importance of collecting data from social media
platforms for research purposes, particularly Twitter, which is a rich source
of user-generated content. However, Twitter’s API has several limitations,
such as restrictions for full data and the inability to retrieve tweets older than
a week. To address these limitations, we propose a system that can retrieve
more live tweets than the streaming API offers by predicting their IDs based
on the Snowflakes algorithm. We describe the architecture of our proposed
system, which enables the collection of more tweets using only ten tokens.
By implementing our system, researchers can access otherwise inaccessible
data, enabling more in-depth analysis of Twitter trends and historical events.

In Chapters 4 and 5, we focus on the task of predicting user engagement
on Twitter. We use an official dataset from the ACM RecSys challenge, which
contains over twoweeks of tweets and four types of interactions: like, retweet,
reply, and quote. We train two models to predict the type of engagement:
gradient boosting trees and graph neural networks.

In Chapter 6, we focus on the challenges of detecting spam bots on social
media platforms, especially Twitter. We explore a new approach that uses
Graph Convolutional Networks to classify accounts based on the graph
structure and relationships of Twitter accounts. Our method aggregates
feature information from the neighborhood of each account to improve
classification accuracy. To demonstrate the effectiveness of our proposal,
we tested it on a well-known bot detection dataset. Our results show that
our method outperforms existing approaches for detecting social bots on
Twitter. A possible future extension of this work is to deploy this method in
real-time on Twitter’s streaming API to detect spambots as they are created.
This would enable early detection and mitigation of social bot attacks and
improve the security and integrity of online discourse.

Finally, in Chapter 7, we conclude this thesis and present our final remarks
on future work.
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Chapter 1 Introduction

1.3 Main Contributions
The structure of this thesis involves a synthesis of various publications.
Each upcoming chapter is intricately tied to a specific publication, with
modifications and enhancements made to ensure that they align with the
overarching objectives of the thesis. The concepts and discoveries presented
in different sections of this thesis are as follows:

• Chapter 3: Seyed Ali Alhosseini and Christoph Meinel. The More
The Merrier: Reconstruction of Twitter Firehose. In: International
Conference on Information Networking, ICOIN 2023, Bangkok, Thailand,
January 11-14, 2023. IEEE, 2023, 200–205. doi: 10.1109/ICOIN56518.
2023.10048898. url: https://doi.org/10.1109/ICOIN56518.2023.10048898

• Chapter 4: Seyed Ali Alhosseini, Raad Bin Tareaf, and Christoph
Meinel. Engaging with Tweets: The Missing Dataset On Social
Media. In: Proceedings of the Recommender Systems Challenge 2020.
RecSysChallenge ’20. Virtual Event, Brazil: Association for Computing
Machinery, 2020, 34–37. isbn: 9781450388351. doi: 10.1145/3415959.
3415999. url: https://doi.org/10.1145/3415959.3415999

• Chapter 5: Seyed Ali Alhosseini and Christoph Meinel. Predicting
User Engagements Using Graph Neural Networks on Online
Social Networks. In: IThe 8th IEEE International Conference on Data
Science and Systems, DSS 2022, Chengdu, China, December 18-21, 2022.
IEEE, 2022, 200–205

• Chapter 6: Seyed Ali Alhosseini, Raad Bin Tareaf, Pejman Najafi,
and Christoph Meinel. Detect Me If You Can: Spam Bot Detec-
tion Using Inductive Representation Learning. In: Companion
Proceedings of The 2019 World Wide Web Conference. WWW ’19. San
Francisco, USA: Association for Computing Machinery, 2019, 148–153.
isbn: 9781450366755. doi: 10 . 1145 / 3308560 . 3316504. url: https :
//doi.org/10.1145/3308560.3316504

The following list contains paper and journal publications that were carried
out during the doctoral studies but were not included in this work because
the topics are not related to the thesis:
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Main Contributions Section 1.3

• Raad Bin Tareaf, Seyed Ali Alhosseini, and Christoph Meinel. Does
Personality Evolve? A Ten-Years Longitudinal Study from So-
cial Media Platforms. In: IEEE International Conference on Parallel &
Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing &Network-
ing, ISPA/BDCloud/SocialCom/SustainCom 2020, Exeter, United Kingdom,
December 17-19, 2020. Ed. by Jia Hu, Geyong Min, Nektarios Georgalas,
Zhiwei Zhao, Fei Hao, and Wang Miao. IEEE, 2020, 1205–1213. doi:
10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00179. url:
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.
2020.00179

In this study, as second author, Ali Alhosseini conducted an extensive
review of the literature, synthesizing existing research to inform the
theoretical foundations of the study,

• Raad Bin Tareaf, Seyed Ali Alhosseini, Philipp Berger, Patrick Hennig,
and Christoph Meinel. Towards Automatic Personality Prediction
Using Facebook Likes Metadata. In: 14th IEEE International Confer-
ence on Intelligent Systems and Knowledge Engineering, ISKE 2019, Dalian,
China, November 14-16, 2019. Ed. by Li Zou, Lingling Fang, Bo Fu, and
Panpan Niu. IEEE, 2019, 714–719. doi: 10.1109/ISKE47853.2019.9170375.
url: https://doi.org/10.1109/ISKE47853.2019.9170375

In this study, while both authors were involved in data collection, Ali
Alhosseini took the lead in data interpretation, drawing connections
between findings and the broader research context.

• Raad Bin Tareaf, Seyed Ali Alhosseini, and Christoph Meinel. Facial-
Based Personality Prediction Models for Estimating Individuals
Private Traits. In: 2019 IEEE Intl Conf on Parallel & Distributed Pro-
cessing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking, ISPA/B-
DCloud/SocialCom/SustainCom 2019, Xiamen, China, December 16-18,
2019. IEEE, 2019, 1586–1594. doi: 10.1109/ISPA-BDCloud-SustainCom-
SocialCom48970 .2019 .00233. url: https : / /doi .org/10 .1109/ ISPA-
BDCloud-SustainCom-SocialCom48970.2019.00233
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In this study, as second author Seyed Ali Alhosseini provided exper-
tise in statistical analysis and methodology, playing a key role in the
interpretation of results.
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2 Graph Convolution
Neural Networks

In this chapter we introduce Graph Convolutional Neural Networks (GCNN).
We will go through an example of training a simple GCNN on the Zachary’s
karate club network.

2.1 Graph Convolutional Neural Networks

Graphs are abstract mathematical formulations that can express many of
the phenomes we see happening in around us. For example, in chemistry,
molecules are graphs of atoms and the connections between them. In traffic
systems, cities and roads connecting them can be represented using graphs.
Social networks, which is the focus of this thesis is a clear example of the
graph of users and friendship connection between them.
A graph 𝐺 = (𝑉 ;𝐸) consists of a set of nodes 𝑉 and a set of edges 𝐸 that

connect these nodes. Edges are represented as (𝑢; 𝑣) in 𝐸, where 𝑢 and 𝑣 are
nodes in𝑉 . Graphs are often represented using an adjacency matrix𝐴, where
nodes are ordered to correspond to rows and columns of the matrix. The
presence of edges is indicated by entries in this matrix, where 𝐴[𝑢; 𝑣] = 1 if
an edge exists between nodes 𝑢 and 𝑣, and 𝐴[𝑢; 𝑣] = 0 otherwise.

The development of deep learningmodels for graph-structured data presents
unique challenges. Conventional deep learning models, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), are designed
for grid-structured inputs (e.g., images) and sequences (e.g., text), respectively.
To create deep neural networks for general graphs, novel architectures must
be developed.

Graph neural networks (GNNs) employ message-passing to update hidden
embeddings ℎ𝑘𝑢 for each node 𝑢 in 𝑉 during each iteration. The update for
each node 𝑢 is based on information from its neighborhood 𝑁 (𝑢) in the
graph. The update as mentioned in [Ham] can be represented as ℎ(𝑘+1)

𝑢 =

7
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𝒉(𝑘+1)
𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸 (𝑘) (𝒉(𝑘)

𝑢 , 𝐴𝐺𝐺𝐸𝑅𝐺𝐴𝑇𝐸 (𝑘) (𝒉(𝑘)
𝑣 ,∀𝑣 ∈ 𝑁 (𝑢))) (2.1)

The functions UPDATE and AGGREGATE are differentiable and can be
any type of neural networks. The superscripts are utilized to differentiate the
embeddings and functions during the various iterations of message passing.
To maintain high representational capacity and be trainable, an aggregator
function should be symmetric, meaning that it is invariant to permutations
of its inputs. Three possible aggregator functions are the Mean aggregator,
LSTM aggregator, and Pooling aggregator [HYL17b].

2.2 Message passing in GCNN
Graph Convolutional Neural Networks (GCNNs) rely on message passing
as the fundamental mechanism for information exchange and aggregation
across the graph structure. Message passing in GCNNs is a recursive process
in which each node iteratively receives and sends messages to its neighboring
nodes before updating its own state based on the aggregated information.
At each iteration of message transmission, each node receives a message

from each of its neighbors. The message is computed by combining the
feature representation of the sending node with a learnable weighting matrix.
The combination can be a simple dot product or a more complex operation
such as a multilayer perceptron. The resulting message represents the in-
formation that the neighboring node wishes to transmit to the receiving
node. After receiving messages from all neighbors, the node aggregates them
by taking a weighted sum or maximum of the messages. The weights can
be learned or predefined and represent the importance of each neighbor’s
message. The aggregated messages are then combined with the node’s own
feature representation using a different learnable weighting matrix to update
the node’s state. The updated state is passed on to the next iteration of
message passing.

Overall, message passing in GCNNs allows each node to collect information
from its neighbors and use it to update its own state. This mechanism can
capture the local structure of the graph and disseminate information about
it.
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Zachary’s karate club network Section 2.4

2.3 Zachary’s karate club network

The Zachary’s karate club network is a classic example of human interactions.
The network has 34 nodes representing the members of a karate club and 78
edges showing each two individuals who had connections outside the club.
A conflict between two members happens which leads to other members
picking sides and creating two main groups in the network. The network is
studied to predict which group each member joins after the conflict.

Figure 2.1 shows the members of the karate club network and their inter-
actions.
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Figure 2.1: Zachary’s karate club network
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2.4 Modeling the karate club problem using
GCNN

Given the karate club network and the two members who had a dispute;
Assign each member to one of the two groups.

In graph theory this problem is known as a semi-supervised classification
task where the label of two nodes are available and based on the network
structure we try to predict the label for the rest of the nodes.
We use a GNN model to solve this classification task. The GNN model

takes two inputs. The first input is the features of the nodes and the second
input is the edge list from the karate club network. We use the identity matrix
as the features for the nodes. The identity matrix is a square matrix with
ones on the diagonal and zeros elsewhere. The GNN model will aggregate
and transform the features from each nodes’ neighbours and output the
likelihood of each node being assigned to the two groups.

2.5 Training a GCNN
Since we are solving a classification task; we define the loss function as
follows:

−
∑︁
𝑣∈𝑉

𝑦 log(𝑓 (𝑋𝑣)) + (1 − 𝑦) log(1 − 𝑓 (𝑋𝑣)) (2.2)

Formula 2.2 calculates the negative likelihood of two nodes with their true
values. Note that we calculate loss on the two nodes that their labels are
given. We train the model with several epochs to achieve the final labels for
all nodes. As you can see in Figure 2.2, the labels are randomly initialized in
the first epoch. In Figure 2.3, the color assigned to each node is updated after
10 epochs. In the final epoch, we can see each node is classified and assigned
the final label accordingly (Figure 2.4).
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Figure 2.2: Training on the Zachary’s karate club network, initialization
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Figure 2.3: Training on the Zachary’s karate club network, after 10 epochs
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Figure 2.4: Training on the Zachary’s karate club network, final epoch
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3 Social Media Data Collection

In this chapter we introduce a system for collecting tweets through the
Twitter API. We go through Twitter’s API limitations and the tweet ID
format. We show how it is possible to retrieve more tweets based on the
tweet ID and describe the architecture of our proposed system. We conclude
we the open challenges facing social media data collection.

3.1 Introduction
Twitter is a rich micro-blogging platform with live users generating content
that can provide valuable data for research. The Twitter API gives access
to tweets posted by users. Unfortunately, full data access is restricted to
high-paying customers. We propose a system that can access otherwise
unobtainable data. First, our system enables retrieving more live tweets than
the free API returns. Second, it provides means to archive tweets that are
older than a week which Twitter’s API cannot do. We accomplish this by
an informed prediction of tweet IDs generated based on the the Snowflakes
service. Using our system with only 10 tokens, we are able to collect more
than 35 million tweets/week, that were not part of the free tweet stream
provided by Twitter. Our system enables research and deeper analysis of
Twitter trends or historic events by providing large amounts of Twitter data.

There are many online social platforms for people to express themselves,
share their thoughts and interact with one another. Thus, online social net-
works have become a massive source of information spreading and diffusion.
In the past decade we have seen a huge growth of user generated content on
online social networks. Twitter as a micro-blogging service has become a
medium for users to share information and news. It allows communication
through 280 character long messages and comments. These short messages
(similar to an SMS) are called tweets and made the company, founded in 2006,
world famous. After Twitter’s IPO in 2013, it has grown very fast and now
has 200 million daily users worldwide [22b]. Various research groups have
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Chapter 3 Social Media Data Collection

collected this data for topic modeling, community detection, user personality
and behavior analysis etc. However collecting data from Twitter’s API is
limited to a 1% sample of all the tweets. We show it possible to collect a
higher sample of tweets based on the Snowflake algorithm and the format of
tweet ids.

To enable in-depth investigations of tweets, Twitter offers a live stream of
its data as a commercial product called Twitter Firehose. This service is said to
cost a 6-digit sum monthly according to forum entries [3,4]. Nevertheless, it
is used by some management consultancies, security companies and political
offices. Twitter also periodically provides large data sets that can be used
to conduct academic research. These datasets usually comprise a week’s
worth of Twitter’s total traffic. However, there is a great deal of interest for
academic research in a continuous Twitter livestream, as it can provide daily
updated data that exceeds the available data packages from Twitter after only
a few weeks. Similarly, there is great interest in near-complete data sets on a
specific time period (e.g., during elections or natural disasters).

Figure 3.1: Tweet ID Binary Format

The Twitter Application Programming Interface (API) has seen several
changes since the micro-blogging website was first launched in 2006. Before
2009, it was possible for research groups to crawl tweets on Twitter at a large
scale. For example [Kwa+10] collected 106 million tweets and 41.7 million
user profiles. However in September 2009, Twitter announced a new terms
of service with a new rate-limit for the API. Depending on the API function
an authorized user can make a specific number of requests in a 15 minutes
window. For example for collecting followers’ ids 15 requests and for getting
users’ profile 900 requests can be made before you hit the rate limit.

In this chapter, we investigate the following questions:
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Motivation & Background Section 3.2

1. How can we collect a bigger sample of tweets based on the tweet id
format?

2. With how many API keys can we collect a higher sample of tweets
from Twitter’s timeline?

3. How can we build a system that enables retrieving more live tweets?

3.2 Motivation & Background
Twitter offers a variety of APIs to interact with their systems. Among others,
there are live streams that output part of all or even all tweets. These APIs
can be used to discover new trends or do analysis on the live data. Twitter’s
main streaming endpoints are the following:

• 1% sampled stream The 1% sampled stream allows all interested users
to get a picture of what is currently happening on Twitter. It provides
what appears at first glance to be a random 1% fraction of all tweets.
Jürgen Pfeffer et. al. found out that Twitter filters tweets based on
their creation timestamp [PMM18]. All tweets processed by the Twitter
servers having a millisecond in the range from 657 to 666 are routed to
the 1% sampled stream (see Fig. 3.2).

• 10% academic stream This stream is only available to selected re-
searchers and cannot be found on Twitter’s websites. The stream
outputs all tweets from milliseconds 657 to 756 [PMM18].

• 10% enterprise stream Like the academic stream, the enterprise
stream, also called Decahose, outputs 10% of all tweets. Even though
the number of tweets is very similar, different millisecond ranges are
streamed. For the Enterprise stream, all tweets that have a millisecond
with the format X0X are transmitted [PMM18].

• Filtered Stream This endpoint, which can only be accessed with a
developer token, enables filtering of the live feed. With a simple de-
veloper token 5 filter rules can be formulated. If you apply for ’larger’
developer tokens or the academic research token, the number of filter
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rules increases up to 1000. If the filter criterion is not sufficiently re-
strictive, a maximum of 1% of all tweets will be returned. The returned
tweets from filtered stream also count towards the monthly tweet cap.

• Firehose Twitter Firehose was the API endpoint that allowed en-
terprises to stream tweets for a huge amount of money. All tweets
processed by Twitter will be routed to the Firehose stream. This service
was discontinued with the acquisition of Gnip in 2014.

• Lookup Endpoint The Lookup endpoint allows the request of a tweet
by its Snowflake (detailed structure is described in section 3) and returns
the complete tweet object in case the tweet exists. Packages of 100
tweet-ids can be requested per GET request.

Figure 3.2: Sampling based on millisecond windows (Ill. by Jürgen Pfeffer et. al.
[PMM18])

When trying to conduct research of different types with the help of Twitter,
most scientists are left with Twitter’s 1% sampled stream. Even though it
delivers about 60 tweets per second as of February 2022, this is not enough
to get a complete overview of all current events.
For various reasons, there may be an over- or under-representation of

certain accounts [PMM18]. This can happen randomly or with an attempt to
influence exactly those people who use the 1% sampled stream. Looking for
ways to get more tweets, we took a closer look at the tweet-ids, the so-called
Snowflakes. In the process, we realized that these ids are not generated as
randomly as they seem at first glance. In combination with the Lookup API
and the considerations of Jason Baumgartner, we built a software system that
outputs tweet ids with a high hit rate, which we can then query and store.
The Snowflake algorithm generates unique ID numbers at high scale. It

guarantees that the ids are k-sort-able and can be computed in a distributed
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Listing 3.1: Snowflake code, IdWorker.scala
1 . . .
2 val twepoch = 1288834974657 L
3
4 val work e r I dB i t s = 5L
5 val d a t a c e n t e r I d B i t s = 5L
6 . . .
7 val s e qu en c eB i t s = 12L
8
9 val wo r k e r I d S h i f t = s e qu en c eB i t s
10 val d a t a c e n t e r I d S h i f t = s e qu en c eB i t s + wo rk e r I dB i t s
11 val t im e s t ampL e f t S h i f t = s e qu en c eB i t s + wo rk e r I dB i t s
12 + d a t a c e n t e r I d B i t s
13 . . .
14 def nex t I d ( ) : Long = synch ron i z ed {
15 . . .
16 ( ( t imestamp − twepoch ) << t im e s t ampL e f t S h i f t ) |
17 ( d a t a c e n t e r I d << d a t a c e n t e r I d S h i f t ) |
18 ( worker Id << wo r k e r I d S h i f t ) |
19 sequence
20 }

fashion. Twitter uses these as ids for tweets. It is a 64-bit composite id made
up of 42 bits of timestamp in ms, 5 bits of datacenter id, 5bits of worker id
and 12 bits of sequence id (Fig. 1). Since the timestamp is located in the most
significant bits, Snowflakes can be k-sorted by time.

Important evaluations of the structure of Snowflake’s and the distribution
of its individual components were described by [PMM18]. The description
of the different streaming endpoints helped in our analyses and showed that
the sampled stream does not necessarily provide a random representation of
all tweets.

The code 3.1 is implementing the Snowflake algorithm, a unique ID gener-
ator used by Twitter to generate tweet IDs. It defines several constants to
configure the number of bits allocated for different parts of the ID generation
process, including the worker ID, datacenter ID, and sequence number. The
nextId() function generates a unique ID by combining a timestamp with
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the worker ID, datacenter ID, and sequence number using bit shifting and
bitwise OR operations. The twepoch variable is a reference point in time (in
milliseconds since the Unix epoch) that is used as the starting timestamp for
ID generation. The synchronized keyword ensures that the nextId() function
can only be executed by one thread at a time to avoid ID collisions.

3.3 Methodology

Baumgartner showed that in practise, Snowflake’s service consist of very few
different datacenter and server ids. Moreover, these ids rarely change over
time. The sequence id follows a pattern as well. To confirm the assumptions,
we streamed the 1% Sampled Stream for about 6 days between Tue Jan 18
2022 21:14:07 GMT+0000 to Mon Jan 24 2022 19:58:40 GMT+0000 and saved
the tweet-ids. This is the data that the following analysis is based on. As
mentioned in section 2, Twitter provides the Lookup API that can be used
to retrieve tweets by tweet id. Any Twitter user can authorize a Twitter
app that allows the app to make 900 requests per 15-minute interval to this
API on behalf of the user, which is exactly one request per second. Given
the structure of Snowflakes it is easy to see that for each datacenter, server,
sequence id combination, there are only 1000 possible snowflakes, one for
each millisecond. In order to lookup all milliseconds for a given triplet, we
need to make 10 API calls with 100 Snowflakes each. If this is supposed to
happen live and continuously, we need 10 user tokens per triplet. Given our
6-day data, we can see that not all triplets are equally likely to exist.

Figure 3.3 shows the distribution of tweet ids over these triplets. Thus, we
can grab about 1.24% of all tweets with 10 user tokens, depending on the
current workload of Twitters servers.

Using this method, the Snowflakes can be guessed. In some cases, a tweet
with this guessed snowflake exists and is then returned via the Twitter-API.
Baumgartner uses several example calculations to show the number of tokens
that can be used to achieve various coverage of the live stream. Since these
calculations are outdated, we recalculated the numbers based on our data.
Figure 3.4 and Table 3.1 show how many API tokens we need for a given live
percentage of tweets.
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Figure 3.3: Percentage of tweets processed by each datacenter, server, sequence-id
triple

3.4 Snowflake Analysis
Given the Snowflake data from our 6-day period, we can run some analyses.
First of all, we tried to verify the calculations of Baumgartner. In doing so,
we quickly encountered large differences in the results. This could be ex-
plained by structural changes in Twitter’s data centers, which was necessary
due to the immense growth or seasonal differences, or a bad sampling in
Baumgartner’s data.

• Timestamps As described in section 3.2, the sampled stream returns
all tweets that are published in the millisecond range between 657 and
666 which equals to 1% of all tweets on average. Our data could verify
that.

• Datacenter and Server IDAccording to our data, Twitter currently op-
erates 28 servers, located in a total of 3 datacenters for their Snowflake
generation. During the time of our stream analysis, there was no change
in the number of servers and their ids. Even after several weeks, the
ids remained the same.

• Sequence IDs The most interesting information for us is the distribu-
tion of the sequence ids. These are the only remaining unknown after
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Figure 3.4: Percentage of tweet-coverage with a given number of User-Token

determining the list of active servers. The distribution of sequence ids
resembles an exponential decay. This means that the first id makes the
most frequent appearance and each subsequent id is used by fewer and
fewer tweets. The following table shows the first 10 Sequence ids with
the number of tweets in our dataset that use them and the percentage
of all tweets from our sample. Figure 3.5 shows the number of tweets
that are assigned to a specific sequence id.

After we identified both the list of servers and the distribution of se-
quence ids, we linked the two pieces of information. This resulted in
an overview that shows the number of processed tweets for each data-
center - server - sequence id combination. In Figure 3.3, you can easily
see which servers belong to which data center. The servers within
a datacenter have a very similar distribution of sequence ids and the
percentage of processed tweets. However, the data centers themselves
have very different workloads and even with the same sequence id
there are large differences.
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Percentage Needed Tokens
1% 8
5% 41
10% 81
20% 195
50% 629
90% 1872
95% 2342
99% 3402
99.9% 5022
99.97% 6788

Table 3.1: Percentage of tweet-coverage with a given number of User-Token

• Server Activity Figure 3.6 shows an overview of all servers in all
data centers during our data collection. The segmentation into the
three data centers can again be seen very clearly. After a little more
than two days of data collection, there were two major downtimes of
individual datacenters. The otherwise busiest datacenter processed very
few tweets for about 6 hours. During the downtime, another datacenter
immediately stepped in and took over all tweets from the outaged one.
There was no distribution between the two remaining data centers.
We observed the same behavior during the downtime of another data
center. In the bottom most line chart in Figure 3.6, we can still see
that the total number of tweets processed did not change during the
downtimes. A roughly sinusoidal wave motion in datacenter activity
can also be seen in the line chart. This appears to be the day-to-day
usage of Twitter in different regions of the world. The datacenters with
id 10 and 13 appear to be geographically close to each other due to the
very similar utilization lines.

3.4.1 Further Improvements
In previous section, we have shown how the analysis of the snowflakes has
an impact on the hit rate when creating the tweet-ids. By choosing the best
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Figure 3.5: Percentage of tweets per Sequence-ID

performing server, we can sometimes collect twice as many tweets as with
the worst performing server with the same sequence id. However, in Figure
3.7 we see that it is not always one specific datacenter that consistently
processes the most tweets. For example, the most active datacenter has the
id 13 and experiences a downtime of about 3 hours on January 21, 2022,
between 9 am and 12 pm CET. With a static determination of the best server,
we would therefore not be able to collect a single tweet during this time. The
same applies due to the different workloads resulting from the geographical
position and the local time of the datacenters. The data center with the id 11
is more active between 6 p.m. and midnight CET than the overall most active
data center with the id 13. With this knowledge we have built our system in
such a way that the guessing of the snowflakes is not done with a static table,
but dynamically. For each 10 minute time window we store the number of
tweets sent by each datacenter, server, sequence id combination over the
1% Sampled Stream. We then use the best combinations for our requests
depending on the number of tokens available to us. In this way, we also
avoid querying sequence id 0 at the datacenter with the fewest tweets when
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Sequence ID Tweets Percentage Cumulative Percentage
0 5741186 24.199% 24.119 %
1 4581115 19.309% 43.428 %
2 3599038 15.170% 58.598 %
3 2697723 11.371% 69.969 %
4 1930844 8.138% 78.107 %
5 1463997 6.170% 84.277 %
6 1087688 4.584% 88.861 %
7 794253 3.347% 92.208 %
8 571228 2.407% 94.615 %
9 400903 1.689% 96.304 %

Table 3.2: Sample Stream Coverage with first 10 Sequence ids

sequence id 1 at the datacenter with the most tweets has a higher chance of
being a hit. Datacenter downtimes are also avoided this way and we waste
as few queries as possible.

3.5 System Architecture
The goal of our system is to download as many tweets as possible in an
unbiased way given a certain number of tokens. The number of tokens limits
the number of API calls we can make, so the system must make sure that we
perform requests at a rate compatible with our tokens. There are multiple
ways one could go about this.

It makes sense to know how many potential Snowflakes we can check in
a given time, so that we do not generate more than actually needed. That
is why we chose to have one component that inherently rate-limits the
Snowflake-guess generation by design called the Task-manager. It looks
at the distribution of server ids, datacenter ids, sequence ids and generates
Snowflakes based on the most active combinations in order to maximize the
hit rate of supposed Snowflakes. These potential Snowflakes are then pushed
to a queue where workers will take them, use the OAuth tokens to fetch the
content and metadata for them, and save the data into a database. In order
to acquire this distribution of ids, another component, the Analysis worker,
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Figure 3.6: All servers in all three data centers and their utilization over time

is continuously observing the 1% sampled stream that Twitter provides. It
decodes the Snowflakes, counts the occurrences of the id-triplets and saves
them for every ten-minute window. Since the 1% are selected by the ms
range of the Snowflakes, there should not be any bias towards any datacenter,
worker or sequence id. This data is then used by the Task-manager for
choosing the best combinations.

3.6 Implementation

We chose to develop the backend based on dockerized microservices. Services
communicate via HTTP requests if necessary and move data through a
RabbitMQ message queue. Our system consists of the Core Components as
well as Of-The-Shelf Components. After a brief look at our ReactJS9 webapp,
we will take a detailed look at the backend services that are responsible for
retrieving the tokens.
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Figure 3.7: Data center utilization over time
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Figure 3.8: System Architecture, red arrows indicate data flow

3.6.1 Webapp

The webapp will serve as the project’s public website, encouraging users
to donate their OAuth tokens. It also manages the OAuth workflow, where
the user logs into Twitter and authenticates the app to use their token. In
addition, the webapp handles a token storage and makes it available in the
form of an API.

• Structure The webapp includes several pages, the most important of
them is the landing page. This page directly allows authenticating
our app on Twitter for donating the Oauth token. Moreover, a dia-
gram shows how many tweets can be covered with the current and
future number of tokens. In addition to the present homepage, there
is the about page, which goes into more detail about how our system
works, giving the user the assurance that we are not abusing their
trust. Additional pages for the privacy policy, for authentication errors,
for reporting a successful authentication as well as a dashboard have
already been created, but only implemented in parts.
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• Token Collection The authentication of users at Twitter is done by an
OAuth 1.0 flow. In this process, the visitor of our website is redirected
to Twitter and has to confirm the authorization there after successful
login. Twitter then sends the user back to our website together with
the OAuth tokens. These are stored in a JSON file and can be accessed
via the credentials/credentials.json route. Access is thereby secured
with basic auth and SSL.

3.6.2 System Components
The SampledStreamFollower is responsible for extracting the distribution
of ids in live Snowflakes from the sampled stream. The Taskmanager is
responsible for generating Snowflakes and inserting them into a queue, from
where an instance of a Downloadworker takes them. The worker then
attempts to fetch metadata for these ids and saves those tweets that actually
exist into a database. In order to provide a central instance governing the
API tokens and their rate limits, the workers request the token from the
Credentialsmanager. It ensures only valid, non-revoked, non-suspended
tokens reach the workers. Below, we will describe each of our components
in more detail.

• SampledStreamFollower The SampledStreamFollower continuously
listens to the free sampled stream endpoint where Twitter provides
about 1% of all tweets. It counts occurrences of the triplets (server
id, datacenter id, sequence id) and saves them into a key-value store,
Redis in this case. Since the sampled stream endpoint returns very little
information with the tweets, this component buffers the Snowflakes
and pushes packets of 100 ids into a message queue, RabbitMQ in our
case. This will allow us to retrieve the tweets with all the fields later.

• Taskmanager The Taskmanager generates Snowflakes on a best-effort
basis. It takes into account the distribution of server ids in the current
10-minute window in order to maximize the chance for a hit. This
distribution can be seen in Figure 4. As we need to make sure to not
guess more ids than we can probe given our current number of available
tokens, the Taskmanager gets the number of tokens from the Creden-
tialsmanager and sets the rate accordingly. Since the Taskmanager is
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responsible for not overwhelming the workers, every message gets a
time-to-live (TTL) of one hour. In case of workers failing or falling
behind, this ensures that workers can catch up again. Without the TTL,
the worker side could experience a sustained and much higher rate
than intended from the Taskmanager. This would result in workers not
catching up, thus not being live anymore.

• DownloadworkerTheDownloadworker fetches a list of 100 Snowflakes
from a rabbit message queue and uses the LOOKUP endpoint of Twitters
APIv1.1 to download the tweet metadata for them in a JSON format. It
is a scalable component, the number of instances can be adjusted to the
number of available tokens. Using one worker per token is a good rule
of thumb for the start, although on a capable system, one worker is able
to perform more than one fetch per second. Since workers sometimes
need to retry a failed operation, it makes sense to have some spare
workers available.

• Credentialsmanager When workers need API credentials for their
lookup calls, they request them from the Credentialsmanager. This
manager fetches an up-to-date list of credentials from the frontend
and verifies that they (still) work. Upon a workers request, it returns a
valid token and caches the workers id. If this same worker requests a
new token within the 15 minute rate limit window, the former token is
considered to be empty until 15 minutes have passed. Thus, that token
will not be returned to any other worker either.

In order to ensure a complete usage of the available tokens, the Creden-
tialsmanager currently serves multiple workers the same token if it is still
valid. Since following the ids from the sampled stream (6̃0/s) only needs less
than one token, the rest would be wasted if no other worker were to use
the same token during the same window. A similar situation can occur if a
machine is slow: if a worker can process less than one request per second,
it would also leave parts of a token unused. In scenarios where this is not
the case or where tokens clearly outnumber the workers, a different strategy
might be better suited.

28



Conclusion Section 3.7

3.7 Conclusion
In this chapter we studied Twitter’s Snowflake algorithm for generating
unique tweet IDs. The Twitter API is limited to a small sample of tweets.
We show that based on the binary representation of tweet ids and with
access to multiple API keys it is possible to circumvent this limitation. We
showed that massive tweet collection by informed snowflake prediction is
possible and practical. Our documented system is easily deployable, scalable
and runs reliably. You can access the code from our GitHub repository
(https://github.com/saaay71/twitter-firehose-reconstruction). We used the
sampled stream for estimating the distributions instead of sampling the space
as a faster, more consistent and more reliable alternative. Moreover, we
updated the estimation of necessary tokens for given percentages of the
twitter stream for 2022. Actually recreating a 99% Firehose stream will take a
lot of user tokens and will most likely be noticed by Twitter, possibly resulting
in counter-measures to this method. Revoking the app token that was used to
acquire the users OAuth tokens will already make the endeavor much harder.
However, our framework can still be used successfully by researchers from
all fields if a specific event within a certain time should be analyzed. Since
access to a substantial amount of tweets is only possible via Twitter-selected
data dumps or following live APIs, it is very hard to analyze events that
happened more than a week ago. With our method and a fair number of
tokens, a 24h window of tweets can be fetched over a longer course of time,
whereby there are then significantly more tweets available than from the
sampled stream. We know that the sampled stream is not representative of
the Firehose due to bad actors that target this time slice [PMM18]. Because
we use the sampled stream for calculating the most active servers, this leads
to a slight overestimating of the expected hit rate of snowflakes, since there
will be less tweets for sequence id 0 in the rest of the Firehose. However, this
should have no impact on the general distribution of servers.
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4 User Engagement Predic-
tion On Online Social Media

This chapter presents our approach to predicting user engagements for the
ACMRecSys 2020 challenge. The goal of the challenge was to predict whether
a user would engage with an tweet in one of four ways: like, retweet, reply
or qoute. As part of this challenge Twitter released an official dataset. This
dataset is used for the trained model in this and the next chapter. We analyzed
the provided dataset and derived several observations, which were then
implemented in our final model. In this chapter, we approached the challenge
as a binary classification problem, where we trained a gradient boosting
classifier for each engagement type.

4.1 Introduction
Most social media websites make use of recommender systems to show the
content of interest for their users and to keep them engaged with the platform.
On Twitter users can share and engage with the content by tweets. The ACM
RecSys challenge 2020 focuses on predicting tweet engagements by users. In
this chapter, we present our approach for modeling this task. We take a deep
look into the dataset and provide interesting observations from the dataset.
Based on these findings, we construct a set of features and use gradient
boosting trees to classify different types of engagements.
Twitter as a social media and microblogging service has made it possible

for online users to share and engage with their content in the form of tweets.
Users can decide between two different approaches on how these tweets are
presented to them on their timeline. The first way is based on time where the
most recent tweets will be shown and the second method can algorithmically
rank the tweets based on a measure of interest and potential engagement
[Bel+20]. As users are looking for new and interesting content, recommender
systems can play a big role to help users find something interesting and
engage with tweets.

The recommender system (RecSys) challenge 2020 [20] is organized for the
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task of predicting user engagements on tweets. As part of this competition, a
dataset of 200 million engagements is released which consists of two weeks
of tweets posted on the Twitter timeline and the engagements made by the
users on the tweets. The final goal is to predict the probability of four possible
engagement types with a tweet. The engagements with tweets include liking,
replying, retweeting and quoting (retweeting with comment).

In this chapter, we investigate the different features of the dataset and show
several patterns observed within the data itself. In the next step, we take
a classical machine learning approach by feature engineering and training
models to classify the different types of engagements. We define the set of
features based on the raw features available in the data and our observations.
For each engagement, we model the task as a binary classification problem
using gradient boosted trees. There are two main metrics taken into account
to evaluate the models: the precision-recall curve (PR-AUC) and the relative
cross entropy (RCE). The final ranking score on the leaderboard is calculated
based on the average values of RCE and PR-AUC across the four engagement
types. The generated figures and source code of our method is available
online1.

The rest of this chapter is organized as follows. First, we provide the details
about the released dataset and present the different patterns and observations
in the dataset. In Section 3, we state our overall methodology for extracting
features and training the models. Section 4, describes the evaluation metrics
and the results of our approach. As the dataset provided has data that is not
available from the Twitter API, we discuss the possible future work on this
dataset in Section 5. Finally, we conclude the paper in Section 6.

4.2 The Dataset
As part of the ACM RecSys challenge, Twitter released a dataset of roughly
200 million engagements of users on tweets. The data, spans for two weeks
between 6 February 2020 until 19 February 2020. The first week was released
as the training dataset and the second week was divided equally for the
validation and testing dataset.

This dataset is unique as it contains information that can not be retrieved

1 https://github.com/saaay71/RecSys-Challenge-2020
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from the Twitter API 2. For example, it is possible to collect the public en-
gagements of public user profiles. However the information regarding what
items a user has observed and decided not to show any engagement can
not be retrieved from the API. In this dataset, such data is provided with a
special attention given to privacy. As revealing such data would be a privacy
leak, the dataset is mixed with data that a user might not have seen at all.
Therefore we have pseudo-negative number of tweets that a user was not
interested in [Bel+20].

Each engagement record of the dataset consists of four main parts: Tweet
features, Engager features (features regarding the user who created the tweet),
Engagee features (features regarding the user who engaged with the tweet),
Engagement features (if the user engaged with the tweet, the timestamp of
engagement is provided). For detailed description of the features and their
types see [Bel+20]. Table 5.1 shows a summary of training, validation and
test datasets.

Training Validation Testing
Dataset size 69G 6.9GB 5.8GB
Number of records 121M 12.4M 12.4M
Number of unique tweets 57.7M 8.67M 8.67M
Number of unique users 28.2M 9M 9M

Timestamp of first tweet 2020-02-06
00:00:00

2020-02-13
00:00:00

2020-02-13
00:00:00

Timestamp of last tweet 2020-02-12
23:59:59

2020-02-19
23:59:59

2020-02-19
23:59:59

Top_level
Tweet type distribution Retweet

Quote

57.9%
33.2%
8.9%

57.8%
33%
9.2%

57.8%
33%
9.2%

Table 4.1: The general statistics about the dataset (rounded down)

2 https://developer.twitter.com/en/docs/api-reference-index
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Patterns and Observations in the Dataset

4.2.1 Flow of engagements

Figure 4.1 shows the different types of engagements on a hourly basis. We
can see that tweets are engaged in the following order: like (74.9%), retweet
(19.2%), reply (4.6%) and quote (1.3%). The ratio of engagements is roughly
constant over time. As we will see in the evaluation section, this observation
can help compare any proposed model with this baseline model that solely
predicts based on the flow of engagements.

Figure 4.1: The amount of different types of engagements on all tweets in the first
24 hours.

4.2.2 Follower and following distribution

We take a look at the follower and following distribution of the users. The
follower and following of the engager users in log-log scale shows a power law
distribution (Figure 4.2). However we see a spike in the following distribution
which based on previous work [Ali+19; Jia+14] can be an indication of bot
accounts. On Twitter you can’t choose who follows you but you can choose
who you want to follow. The spike shows that there are some accounts that
in an abnormal way choose to follow lot’s of accounts.

4.2.3 Hashtag duration

Another observation from the dataset is the distribution of hashtags based
on how long they remain alive. This can be defined as the hashtag duration
which can be calculated by taking the difference between the last and first
timestamp of when the hashtag was observed.
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(a) followers (b) followings

Figure 4.2: The spike in the followings shows an abnormality and is an indication
of bot accounts following lots of users.

Figure 4.3 shows the distribution of hashtags based on their duration in
days and note the y-axis (frequency) is in log scale. First, we can see that
a lot of hashtags have a life span of less than half a day. Second, in 24-
hour cycles, there will be hashtags that become trending hence the spikes.
Another conclusion we can make from this chart is part of the rich get richer
phenomenon [DJ10] that hashtags which can make it to the top, will also
remain alive for a longer period of time.

We can also see a similar pattern for the duration of the shared URL links.

4.3 Methodology

In the section we will describe the extracted features and the final model
for predicting engagements. Figure 4.4 shows the overall architecture of our
approach.
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Figure 4.3: Some hashtags become trending each day. The trending hashtags also
last for a longer duration.

4.3.1 Tweet features

The features extracted at the tweet level is considered based on unique
tweets in the dataset. In other words, the features for tweets are considered
regardless of the amount of engagements they received.
The tweet features consists of two main parts: the textual feature (tf_idf

vector) and categorical, numerical or binary features. The final feature vector
for the tweets has 32 elements were the first 16 are the tf_idf vector and
the remaining features are hashed into a vector with 16 elements. Feature
hashing is a method used to map from a high-dimensional space to specified
dimension.
The categorical features regarding the tweet are as follows: tweet_type

(TopLevel, Retweet, Quote), language, hour_of_tweet, number_of_BERT_tokens,
has_hashtags, has_media, has_links, is_in_top_daily_hashtags, is_in_top_daily_links.
The feature is_in_top_daily_hashtags is determined from Figure 4.3. We
create this binary feature based on the hashtag duration and if the hash-
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tag falls in the peak of a 24 hour cycle, we assign a true value to it. The
is_in_top_daily_links feature is created in a similar manner.

4.3.2 User features
Following the same approach for the tweets, the features extracted for ena-
gager and engagee users were filtered on each of the unique user sets.

The categorical features for the user consists of the account_year, is_verified
and is_bot. We defined the is_bot feature based on the following count. If
the user falls in the abnormal part of the following count distribution (see
figure 4.2.b), we will consider this as a unique feature to give more weight to
it on the final model. As for the numerical features, we compute 50 quantiles
of the following and followers count. The categorical and numerical features
are assembled and passed through a featurehasher with 16 elements.

Figure 4.4: Architecture of the model.

4.3.3 Making Predictions
In the previous sections, we went through the preprocessing and feature en-
gineering steps. In this section we would take the final feature representation
as a feature vector to train four models for each of the four engagement types:
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likes, replies, retweets and quotes. We classified each engagement type by
using the gradient-boosted tree algorithm [Fri02]. We trained the model on a
Spark cluster configured with 28-core 2.00Ghz with 200GB of RAM. With the
default parameters of the GBTClassifier algorithm, each engagement took
one hour to train. Further improvement on the results can be made by tuning
the parameters of the GBTClassifier.

4.4 Evaluation Metrics

Since the final task is to predict whether a user will engage or not, the
evaluation metrics for a classification problem can be used. More specifically
the area under the precision-recall curve (PR-AUC) is a criteria that shows the
tradeoff between the correct number of predictions and the overall amount
of predictions. The PR curve is useful for applications where the focus is
on the positive matches and especially when the positive set is relatively
smaller than the negative set [Sta17]. This holds true for each engagement
type (e.g. the number of tweets that get a quoting engagement compared to
all the tweets).
Another metric is the Relative Cross Entropy (RCE) which evaluates the

model by comparing it to a naive predictor that does not take any features
into account and is based on the flow of engagements that enter the system
(see Figure 4.1). The RCE can be calculated as follows:

𝑅𝐶𝐸 = (1 −
𝐶𝐸𝑝𝑟𝑒𝑑

𝐶𝐸𝑛𝑎𝑖𝑣𝑒
) ∗ 100 (4.1)

where the 𝐶𝐸𝑝𝑟𝑒𝑑 and 𝐶𝐸𝑛𝑎𝑖𝑣𝑒 are the average cross entropy of the model
and the naive predictor respectively.
The final results of our method based on the final leaderboard of the

competition is reported in table 4.2. Based on this table and figure 4.1 we
can see predicting on engagements becomes more challenging as less data is
available in the training dataset.
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Engagement type Area Under Precision-
Recall Curve (PRAUC)

Relative Cross Entropy
(RCE)

Like 0.5879 7.21
Retweet 0.1703 2.67
Reply 0.0593 -6.27
RT with comment 0.0099 -62.98

Table 4.2: Results based on the final leaderboard

4.5 Future work on the dataset

There is been a recent push toward standardizing and benchmarking graph
datasets by the research community [Dwi+20]. The RecSys dataset can be
added as part of the large social datasets for Open Graph Benchmark [Hu+20].
The dataset includes the follower information of the users and the retweet
information of tweets. Therefore studying the user graph and rewteet graph
in a standard format could be a possible future direction.
In section 2, we talked about the uniqueness of the ACM RecSys dataset.

Another information that can be found in the dataset that can not be retrieved
from the API is the retweet graph. From the API, it is not possible to collect
the retweet sequence of users. In other words, we can not find the information
on whom did the user retweet the original tweet. As this information is not
available various approaches like the time-inferred diffusion model has been
used instead of the true retweet graph [VRA18a]. Another future work can
study the diffusion of tweets based on the true retweet graph.

4.6 Conclusion

In this chapter, we proposed our method for predicting user engagements for
the ACM RecSys 2020 challenge. In particular we discussed the observations
derived from the dataset and how they were implemented in the final model.
We modeled the challenge as a binary classification problem and for each
engagement type we trained a gradient boosting classifier. The dataset that
was released as part of this challenge includes information that is not available
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through the Twitter API. As for future work, we will focus on other aspects
of the dataset namely the retweet graph.

40



5 Using GNNs for User
Engagement Prediction

In this chapter, we introduce a novel approach for predicting user engage-
ment on online social media using graph neural networks. While traditional
methods rely solely on user and content features, our method also incorpo-
rates graph structure. We utilize pre-trained GloVe embeddings to generate
features for tweet text and GraphSAGE for user embedding. Our GNN model
combines these features with graph structure to predict user engagement.
We apply our model on the same dataset introduced in the previous chapter
for classifying tweet engagements as like, retweet, reply, or quote.

5.1 Introduction
In today’s world of attention economy, predicting user engagement is a
crucial part for online content generators. Many different approaches have
been applied to predict user engagement. However these methods rely solely
on features based on the user and the content. A new class of deep learning
methods based on graphs captures not only the content features but the graph
structure as well. In this chapter, we design a graph neural network to predict
user engagements with tweets based on the features of the user, the tweet
and the engagement graph of users and tweets. We first create features for
the tweet text using the pre-trained GloVe embeddings and use GraphSAGE
for embedding a user into a vector space. Then our GNN model combines
the features and graph structure to predict the user engagement. Using a
dataset officially released from Twitter, we are able to classify between like,
retweet, reply and quote on a tweet. Our method is able to predict the final
engagements with 94.22% precision score.
Social networks like Twitter, Facebook enable users to generate content

and communicate with each other on their platform. As users tweet or post
ideas and messages on their timelines, others can also interact with the con-
tent by liking, sharing, adding comments and showing their engagement with
the topic. Understating how users decide to engage with various content is
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an important research field in many domains like marketing, user behaviour
analysis, online advertising and etc. Many business models are based on
attracting users’ attention on these social media platforms. Therefore pre-
dicting user engagements allows companies and individuals to increase their
reachability and target their followers in more efficient way.

There are many challenges when it comes to predicting user engagements.
First, collecting social network data has its limitations. Even though most
platforms provide access to their content through APIs, there is a limit on
the amount of data and type of data than one can retrieve. Furthermore
some studies show the collected data can be biased towards the sampling
technique of the API [Mor+21]. Second, previous approaches to the task of
user engagement prediction do not take into account the network structure
between users and the content i.e. tweets. Thus, classical methods which
depend solely on user and tweet features are inefficient. Finally, engineering
features in classical machine learning approaches is challenging because they
require domain knowledge.
In this chapter, we create a graph neural network model to predict the

engagement of users on tweets. We use a rich dataset of tweet engagements
released by the ACM RecSys Challenge and Twitter [20]. We preprocess the
dataset and create a heterogeneous graph of users and tweets. Our model
takes the tweet features from pretrained GloVe embeddings and creates
user embeddings for users. In the final step the GNN model aggregates the
embeddings to predict the engagement of a user on a tweet.

We evaluated our model with different hyperparameters to find the optimal
embedding size for the user and the tweets. Our proposed model shows a
high performance in classifying user engagements.

5.2 Dataset

The 2020 and 2021 ACM Recsys challenges focused on predicting tweet
engagement. As part of these challenges, Twitter released a unique dataset
of public tweets and their engagements. The dataset not only provides the
engagements (like, retweet, reply, quote) a user had with tweets but also the
non-engagements. The non-engagements include tweets a user observed
in his timeline but showed no interest in engagement. This is an important
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part of the dataset and makes the dataset unique because such data is not
available from the Twitter API. In other words, it is possible to collect tweets
and engagements with tweet via Twitter API. However, the data of a user
who has seen a tweet and implicitly opted out of an engagement cannot be
retrieved from the Twitter API.

The ACM Recsys Challenge 2020 dataset consist of 160 million tweets over
a span of 2 weeks. Figure 5.1 shows the flow of engagements in the first week
of the dataset. In this paper, we have used a subsample from the first day of
this dataset.

Count

Unique users (engager and engagee) 1,140,443

Unique tweets 422,475

Engagements 858,140
Table 5.1: The sampled dataset statistics

Table 5.1 shows the summary of the number of unique users and tweet
we use in this work. We have more than 1 million users engaging with more
than 400 thousand tweets. If a user engages with one tweet, there will be an
edge between the user and tweet. We will randomly split the dataset based
on the number of edges for training and testing.
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Figure 5.1: Engagements over time
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5.2.1 Preprocessing the data

In order to prepare the data as an input for our model, we apply three main
preprocessing steps on the tweet text and the engagement labels and create
a grpah of users and tweet accordingly. First, we decode the text_tokens
field from BERT embeddings [Dev+18] into text and transform it to GloVe
embeddings [PSM14]. We use two of the pretrained GloVE models on 27
billion tweets to transform the text field of the tweets into tweet features.
More specifically we use the 25 and 50 dimensions pretrained models. The
GloVe model creates word embeddings based on the co-occurrence of words
within text data. The tweet features is represented based on the average
GloVe embeddings of each word in the tweet. We chose GloVe over BERT
embeddings because we wanted a fixed size of vectors for all tweets.
In the second preprocessing step, we created new labels based on the

combinations of the possible engagements with a tweet. There are four types
of engagements (like, retweet, reply and quote) available with a tweet on
Twitter. In order to create one model for predicting the final engagements,
we create the engagement labels as follows:

As we can see in Table 5.2, we have 12 labels based on the four main
engagements types. The distribution of the labels are imbalanced with al-
most half of the tweets showing no engagements. We will use a weighting
mechanism to tackle the imbalance nature of the data.
As the final step in the preprocessing phase, we create a heterogeneous

graph of users and tweets as nodes and engagements as edges. Each edge
has a label based on Table 5.2.

5.3 Methodology

5.3.1 Problem definition

Given a user 𝑢𝑖 ∈ 𝑈 and a tweet 𝑡 𝑗 ∈ 𝑇 , predict the type of engagement label
𝑦𝑖 𝑗 of user 𝑢𝑖 on tweet 𝑡 𝑗 . Since we create a graph of engagements between
users and tweets. We formulate this classification task as a link prediction
problem where the engagement label will be the weight on the edge between
the user and tweet to be predicted.
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Engagement type Label Distribution. (in percent)

no-engagement "0" 48.91

like "1" 37.28

like & retweet "2" 5.29

retweet "3" 5.03

reply "4" 1.62

like & reply "5" 0.88

retweet & quote "6" 0.44

like & retweet & quote "7" 0.3

like & retweet & reply "8" 0.15

retweet & reply "9" 0.06

retweet & reply & quote "10" 0.02

like & retweet & reply & quote "11" 0.02
Table 5.2:Modeling the labels with different engagements types

5.3.2 Graph Neural Networks (GNN)

Graph Neural Networks are the new class of neural networks which are able
to take graph structures into their learning architecture. These networks
can learn embeddings based on the nodes’ features and the features of their
neighborhoods. Kipf et al. [KW16] proposed graph convolutional network
(GCN). Their approach requires the full graph Laplacian to be calculated
and the output embeddings of a node in each layer is dependent on all it’s
neighbors at the previous layer. Most recently Hamilton et al. [HYL17b]
introduced GraphSage. In their method, they tackle the problem of having
to deal with the entire graph Laplacian and show how to aggregate infor-
mation from a node’s neighborhood. The main idea of aggregating features
and passing it through a non-linearity has been applied in many different
problems[Ali+19; HYL17b].
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5.3.3 Proposed Model

Our model uses GraphSAGE [HYL17b] as the graph convolutional layer. First,
we pass the user through an embedding layer to get its embedding vector.
We concatenate the user embedding vector with the tweet vector and then
pass it through the SAGEConv layer based on the graph structure. Finally,
the output of the convolutional layers is passed through a linear layer to
predict the final engagement based on the edge label types.

Each user 𝑢𝑖 has an embedding vector ℎ𝑢𝑖 which can be accessed through
the embedding layer weights:

ℎ𝑢𝑖 = 𝑍𝑇 · 𝑢𝑖 . (5.1)

Where 𝑍 ∈ 𝑅 |𝑈 |×𝑑 is embedding layer. The dimension of the embedding
layer is based on the number of all users and embedding size 𝑑 which can be
configured as a hyperparameter.
As explained in the preprocessing phase, for each tweet, we have a fixed

size of the GloVe embeddings ℎ𝑡 𝑗 .
The output of the SAGEConv layerℎ𝑘𝑣 at each depth is calculated as follows:

ℎ𝑘
𝑁 (𝑣) =𝑚𝑒𝑎𝑛({ℎ𝑘−1𝑢 ,∀𝑢 ∈ 𝑁 (𝑣)}) . (5.2)

ℎ𝑘𝑣 = 𝜎 (𝑊 𝑘 · 𝑔(ℎ𝑘−1𝑣 , ℎ𝑘
𝑁 (𝑣))). (5.3)

Where ℎ𝑘
𝑁 (𝑣) is the average of the embedding vectors from 𝑣’s neighbors. ℎ𝑘𝑣

is the output which is concatenated with 𝑣’s previous embedding. 𝜎 is the
non-linearity function which in this case we use the ReLU function. The
function 𝑔(.) is the aggregation function collecting embeddings from the
nodes neighborhood. We use the mean function for the aggregation function.

In the final step our model makes predictions 𝑦𝑖 by passing the outputs of
the SAGEConv layer to a linear layer for the engagement labels. Our model
learns the weight of the links based on the training data. We define the loss
function as the weighted mean square error of the prediction and actual
numerical value of the engagement type.

As we have formulated this problem into a link prediction task, our model
learns the weight of the links based on the training data. We define the loss
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function as the weighted mean square error of the prediction and actual
numerical value of the engagement type.
The output of our model will be the numerical value representing the

engagement label. We convert the predicted numerical value to the closet
integer as a string to represent the engagement label. We are now able to
evaluate our model in terms of the precision, recall, and F1-score metrics.

As we have formulated this problem into a link prediction task, our model
learns the weight of the links based on the training data. We define the loss
function as the weighted mean squared error of the prediction and actual
numerical value of the engagement type:

𝐿𝑜𝑠𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑦𝑖 ∗ (𝑦𝑖 − 𝑦𝑖)2. (5.4)

where𝑤𝑦𝑖 is the weight assigned to engagement type label and is calculated
as follows:

𝑤𝑦𝑖 =𝑚𝑎𝑥 (𝑤𝑦)/𝑐𝑜𝑢𝑛𝑡 (𝑦𝑖). (5.5)

This simple weighting mechanism, penalises the model based on the im-
balanced distributions of the labels.

5.3.4 Implementation

We implemented our model using the Pytorch Geometric library [22a]. We
choose the Adam [KB15] optimizer with a learning rate of 0.01 and trained
the model with 600 epochs in each run. We split the dataset into 90% training
and 10% testing data.

5.4 Evaluation

As we mentioned in the preprocssing step, we used GloVe embeddings to
represent the tweets. Our model also creates embeddings for the users. In
this section we evalute the different embeddings size we experimented with
our model.
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Figure 5.2: Training loss

Figure 5.2 shows the training loss over the 600 epochs. We see the conver-
gence after 200 epochs.

In Table 5.3 we see the final loss values for different embedding sizes. The
best trained model is the when the embedding sizes for users and tweets are
both 25. As we increase the embedding sizes, we are adding more parameters
to the model and therefore training the model becomes more difficult. As we
mentioned in the previous section we use a weighted loss function. Here we
report the weighted and non-weighted loss on training data. We can see that
training based on the weighted loss, helps achieve a better loss score for the
final model. We can also see that considering a bigger embedding size for
the users is more beneficial for the model than using a bigger embedding
size for the tweets.

User-GloVE Weighted train Train Test

embedding size MSE

25-25 6.635 0.441 2.748

25-50 44.131 3.029 491.432

50-25 654.904 15.992 20.317

50-50 967.832 25.274 806.919
Table 5.3:MSE Results with different embedding sizes
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We use Precision, Recall and the F1 score for the final evaluation of the
model. These metrics make sense since we are classifying the engagements.
The Precision shows the fraction of engagements that where classified cor-
rectly while Recall calculates the classified engagements over all the relevant
engagements of tweets and users. The F1 score is the harmonic mean of the
Precision and Recall scores. Table 5.4 shows the results of the classification
metrics. We can see by using an embedding size of 25 for both users and
tweets we can reach a 94.22% Precision and 92.16% Recall with F1 score of
94.16%.

User-GloVE embedding size Precision Recall F1

25-25 94.22% 94.16% 94.16%

25-50 89.27% 88.70% 88.41%

50-25 90.35% 90.12% 89.79%

50-50 90.41% 90.15% 89.60%
Table 5.4: The Precision, Recall and F1 score on different embedding sizes

5.5 Related work

There has been many studies focusing on user engagement in online social
networks [20; ABM20; Bel+20]. As their final solution for perdicting user
engagements, Schifferer et al. [Sch+20] proposed three independent XGBoost
models trained on different features and different subset of the dataset. They
created a data pipeline that runs completely on GPU. This allowed experi-
menting various combinations of features and tuning the hyperparameters
in a fast and efficient way. Alhosseini et al. [ABM20] created separate binary
classifiers for each engagement type using gradient boosting.
Ma et al. [Ma+21] use GNNs on Heterogeneous Information Networks

(HINs) to predict customer engagements on Facebook posts for company
brands. Their model makes use of two interesting techniques. They traverse
through specific paths on the graphs creating meta-paths to capture the
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interactions between users and posts. They also add a attention mechanism
to help interpret on the final results of the their model.

5.6 Conclusion
In this chapter, we used graph neural networks to predict user engagements
on Twitter. We created a graph of user-tweet engagements with the user
and tweets as the nodes and the engagement type as the edges. Using GNNs
enabled us to make predictions based on the user, tweet and the engagement
graph. Our model used the pretrained GloVe embeddings for the tweet
features and created user embeddings to predict the final engagement type
for a user and tweet.
In future work, we would investigate expanding on the heterogeneous

graph of users and tweets by adding other entities like hashtags, tweet hour
and etc. This could be achieved by defining a GCN layer to work on multiple
edge types. Another avenue of investigation is to train the model based the
negative log likelihood of the label classes. This could give more detail on
how far each engagements is from one another.
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6 A GNN Approach
for Bot Detection

In this chapter, we take a look at another application of graph neural networks
on classifying accounts on social media based on the spam bot behavior.
GNNs can be applied for spam bot detection since they can incorporate both
the feature vector of accounts and the graph structure between the accounts.

6.1 Introduction
Spam Bots have become a threat to online social networks with their ma-
licious behavior, posting misinformation messages and influencing online
platforms to fulfill their motives. As spam bots have become more advanced
over time, creating algorithms to identify bots remains an open challenge.
In this paper, we propose a model based on graph convolutional neural net-
works (GCNN) for spam bot detection. Our hypothesis is that to better detect
spam bots, in addition to defining a features set, the social graph must also
be taken into consideration. GCNNs are able to leverage both the features of
a node and aggregate the features of a node’s neighborhood. We compared
our approach, with two methods that work solely on a feature set and on the
structure of the graph. To our knowledge, this work is the first attempt of
using graph convolutional neural networks in spam bot detection.
With the advent of Online Social Networks (OSN), the way people share

and receive information has changed. Today, users tweet and retweet on
Twitter, post and share messages on Facebook and upload videos on YouTube
in the scale ofmillions. Most of these actions are carried out by users Vosoughi
et al. [VRA18b], however automated computer programs named Bots are
influencing users in the content their sharing.
Social media websites like Twitter were created on the premise of users

generating content on their platform. In 2018, the amount of tweets and
posts shared every day is reported to be in the scale of hundreds of millions
Chu et al. [Chu+10]. However, with every technology comes abuse and
those who would want to take advantage of it. Users are not the only ones
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Figure 6.1: Bot and User in graph structure. Red nodes indicate bot accounts while
the blue nodes show the user accounts
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using social media platforms. In fact, Varol et al. [Var+17] reported around
15% of tweets on Twitter are published by automated accounts named bots.
Bots have influenced social networks by promoting campaigns, spreading
misinformation and selling accounts when they get popular. Twitter has
tried to suspend such accounts but there are more bot accounts created
than suspended Chavoshi et al. [CHM17]. Various research groups have
investigated the problem of bot detection using different techniques and
approaches. The difference in these work varies depending on the definition
of a bot account, the selected feature set representing accounts and the
machine-learning algorithm used for classifying bot accounts from normal
user accounts. Despite the detection algorithms introduced by the research
community, the problem of bot detection remains an open problem. As
reported by Chavoshi et al. [CHM17], Cresci et al. [Cre+17], and Yang et
al. [YHG13], bots have become more advanced and sophisticated in avoiding
the existing proposed detection methods. In fact, bots have been evolving
over time. For instance, early bots were detected by posting similar tweets.
Soon bots started using alternative words and synonyms to avoid posting
similar content. Ferrara et al. [Fer+16] has given attention to the rise of
social bots that are designed to emulate human-like behavior. The social bots
are able to interact with other accounts, post tweets in different topics, and
display a similar activity like humans Cresci et al. [Cre+17]. Therefore it is
essential for bot detection methods to consider the characteristics of groups
of accounts, rather than merely focus on each account individually.
The main contributions of this chapter are summarized as follows:

1. This is the first attempt to use the graph structure of Twitter accounts
in the learning phase for detecting spambots.

2. We deploy graph convolutional neural networks on a well-known
dataset previously used in the literature.

3. We show that using the graph structure in our method gains better
performance in spambot detection.

The remainder of this chapter is structured as follows. First we cover the
previous related work in spam bot detection and graph convolutional neural
networks. Section 6.2 describes in detail the dataset used. In section 6.4, we
provide an overview of our methodology. We illustrate are results in section
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6.5 and discuss the limitations of our work and suggestions for future work.
Finally, we conclude this chapter in section 6.6.

6.2 Related Work

In this section, we first review the literature on spambot detection and
compare each work by their definition for spambots, the features used and the
classification algorithm they employed. Next, we look at graph convolutional
networks.

Lee and et al. [LEC11] proposed a method working as a honeypot trap for
bot accounts. They created 60 twitter accounts and started posting mean-
ingless tweets that would have no interest for humans. Despite this fact,
they were able to draw some accounts’ attention to follow the accounts they
made. Analyzing these accounts in detail showed that they were in fact bot
accounts trying to increase their following list.
Yang and et al. [Yan+12; YHG13] used a conservative definition for bot

accounts considering only accounts who post URLs linking to malicious
content. They also introduced and considered several robust features on the
BayesNet classifier to predict spam accounts. Yang and et al investigated
the different approaches bots take for avoiding detection by Twitter. Their
findings show that bots tend to increase the reputation of the their accounts
by purchasing followers and posting more tweets.

In [Cre+16] the authors introduced a DNA-inspired technique that models
each account as a sequence of behavioral information and detects spambots
based on similar sequences. They categorized each users’ tweets into different
types and based on whether a tweet contains URLs, hashtags, pictures, etc.
it will be assigned a different character. The similarity of the accounts is
measured by the longest common substring in their DNA sequences.
BotOrNot [Dav+16] used the random forest classifier algorithm on more

than 1000 features to detect bots. The features are categories in 6 groups:
network (degree distribution, clustering coefficient, . . . ), users’ account in-
formation, friends (number of follower, followings, . . . ), temporal (tweet
rate, . . . ), content (natural language processing, . . . ) and sentiment features.
The downside of BotOrNot is that it was trained on English tweets so its
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performance declines on bots which are tweeting in another language than
English.

DeBot [CHM17] developed by Chavoshi and et al. is an unsupervised bot
detection system. The idea behind their work is that accounts with a high
correlation in their activities (tweet, retweet, . . . ) have a high chance of being
bots. DeBot monitors the activities of accounts over a specific period and
creates a time series for each account. It then clusters accounts based on the
similarity of their time series using a lag-sensitive hashing method. Finally,
DeBot reports the accounts with a high correlation as bots.
[Nas+18] defined spam bots as content polluters that try to takeover a

discussion for political or advertising reasons. Their approach considers
individual tweets for detecting bots. Instead of focusing on the friend and
follower network, they created the event network where the nodes are the
users and the edges are based on users having tweeted on the same event.
They also compute the diversity of a tweet based on the URLs and hashtags
it has mentioned. Results of their work indicate that spam bots operate as a
group often tweeting at the same time.

6.2.1 Graph convolutional networks
Graph structures are used in many domains and applications such as social
networks, recommender systems etc. The challenging task for graph struc-
tures is how to use them in machine learning algorithms. The initial works
in this area considered the statistical data of the graph like the degree of the
nodes, the centrality and betweeness coefficients as features for training mod-
els. In other words, they considered the graph structure as a pre-processing
step to extract structural information. Therefore, these approaches do not
use the graph structure in the learning phase. Another downgrade for these
approaches is that computing the graph statistics has a high complexity and
the output of it cannot be used on unseen data.
Kipf and Welling [KW16] proposed graph convolutional network (GCN);

a convolutional neural network approach on graph structures. The term
convolutional is used since a node’s neighborhood is considered as its rep-
resentation. Their method can be considered as the initial steps for graph
semi-supervised classification tasks. However, the drawbacks of their ap-
proach is that it requires the full graph Laplacian to be calculated and the
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output embeddings of a node in each layer is dependent on all it’s neighbors
at the previous layer.
Most recently [HYL17a] introduced GraphSage; a node embedding al-

gorithm that uses neural networks to learn embeddings for nodes in the
graph structure. Their main contribution is that they solve the limitations
mentioned above and show how to aggregate information from a node’s
neighborhood. Their method consists of two main phases:

1. Defining the computation graph and training the neural nets

The structure of a node’s neighborhood will define the computation
graph for training the neural networks. In this phase, the objective is to
build neural networks that will ensure nodes close to each other have
similar embeddings while nodes far from one another have different
embeddings.

2. Propagation For each node the information of its neighbors is ag-
gregated and passed through the neural networks trained in the first
phase.

6.3 Dataset
There are several well-known datasets collected by different research groups
specifically for bot detection on Twitter. Lee et al. [LEC11] provide a social
honeypot dataset that contains approximately 22000 content polluters. They
have gathered the accounts’ metadata and tweets of each account. How-
ever in their released dataset they have anonymized the Twitter account ids.
Therefore collecting further information is not possible. Cresci et al. have
worked on different Twitter datasets in [Cre+17] and by using a crowdsourc-
ing platform they labeled the different types of accounts. [Var+17] released
the twitter ids of the accounts they detected as spambots.

Yang et al. [YHG13] collected Twitter spammers and their dataset contains
each account’s followers and followings. To the best of our knowledge, this
is the dataset we found which has gathered this information for the Twitter
accounts. The authors of that work have kindly shared their dataset and we
have used the dataset in this work. The dataset contains 11000 nodes and
2342816 edges between them.

56



Methodology Section 6.4

Table 6.1 shows the statistics of dataset used in this paper. The age, tweets
and neighbors columns indicates the average amount in each group. The age
column is the average age of the accounts reported in days. The majory of
edges between nodes are user to user connections. However around 5.4% of
the edge relations include bot accounts.

Accounts Age Tweets Neighbors

bots 1000 3023.80 220.90 1963.84
users 10000 3174.28 4658.52 21579.76

relation bot-bot bot-user user-bot user-user

2673 73363 50153 2216627
0.11% 3.13% 2.14% 94.61%

Table 6.1: Dataset statistics

Figure 6.2 shows the degree distribution of the accounts in the dataset.
Most accounts have a small number of followers and followings and there are
a few accounts which have more than 1000 accounts in their neighborhood.
Figure 6.3.a shows the age and the length of user account name for both

bots and users accounts. As shown in figure 6.3.b and reported in previous
work [Fer+16] bot accounts have smaller age meaning they were created
more recently compared to user accounts. Also as [Nas+18] indicated there
is no significant difference in length of the accounts name.

6.4 Methodology
We used an inductive representation learning approach similar to [HYL17a;
HYL17c] for detecting twitter bot accounts.

Problem definition. Let 𝐺 = (𝑉 , 𝐸) be a graph where for each 𝑣 ∈ 𝑉 exists
a feature vector𝑋𝑣 and a binary label𝑦 ∈ {0, 1} associated with it. The goal is
to find an embedding vector ℎ𝑣 for each node 𝑣 ∈ 𝑉 such that 𝑓 (ℎ𝑣) predicts
the label of the node in the graph.
Similar to convolution filters in image processing, graph convolutional

networks consider the attributes of a node’s neighbors as a representation
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Figure 6.2: The degree distribution of the nodes in graph. The figure is drawn in
log-log scale.

Age (a) Account Length Name (b)

Figure 6.3: Bots(red) and Users(blue) attributes
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for that node. Let us define 𝑘 as the depth of the neighbors of a node from
which information is aggregated. If 𝑘=1 only the information from its own
neighbors will be considered. For 𝑘=2 the information is gathered also from
the neighbors of its neighbors and so on. The output ℎ𝑘𝑣 at each depth is
calculated as follows:

ℎ𝑘
𝑁 (𝑣) =𝑚𝑒𝑎𝑛({ℎ𝑘−1𝑢 ,∀𝑢 ∈ 𝑁 (𝑣)}) (6.1)

ℎ𝑘𝑣 = 𝑓 𝑘 (ℎ𝑘−1𝑣 , ℎ𝑘
𝑁 (𝑣)) = 𝜎 (𝑊 𝑘 · 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑘−1𝑣 , ℎ𝑘

𝑁 (𝑣))) (6.2)

Where ℎ𝑘
𝑁 (𝑣) is the average of the embedding vectors from 𝑣’s neighbors. ℎ𝑘𝑣

is the output which is concatenated with 𝑣’s previous embedding.
The neural networks are optimized based on the cross-entropy loss func-

tion:

𝐽 (𝑓 𝑘 (ℎ𝑘−1𝑣 , ℎ𝑘
𝑁 (𝑣)), 𝑦) = −

∑︁
𝑣∈𝑉

𝑦 log(𝑓 (𝑋𝑣)) + (1 − 𝑦) log(1 − 𝑓 (𝑋𝑣)) (6.3)

6.4.1 Features

The initial vector (𝑋𝑣) for each user consists of the features that can be re-
trieved directly from the Twitter API (Table 6.2). The feature vector consists
of the created date of the account, the number of favourites, followers, follow-
ings and statuses of the account. We considered the length of an account’s
name and computed the created_at in days as features.

6.5 Evaluation

We conducted a 5-fold cross-validation on the dataset to evaluate the accuracy
of the model. Figure 6.4 shows the area under curve for each fold. On average
the GCNN has 0.94 accuracy measured by the area under curve.

We used the precision, recall and f1 metrics as shown in Table 6.3 for the
evaluation. Choosing a meaningful evaluation metric for the classification
task is important. For example, it is possible to use the precision measure
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Feature Name Description

Age The created_at attribute returns
the datetime that an account was
created on Twitter. The age fea-
ture is computed by the number
of days from the created_at date.

favourites_count This feature indicates the num-
ber of tweets a user has liked.

followers_count followers_count shows the num-
ber of follower an accounts has.

friends_count The friends_count attribute
shows the number of accounts
the user is following.

statuses_count The number of tweets including
the retweets a user has posted.

Account length name The length of an account’s name
Table 6.2: Features

Figure 6.4: ROC curve over 5-fold cross-validation
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defined in equation 6.4 to evaluate the performance of a model.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 =

∑
𝑐 𝑇𝑃∑

𝑐 𝑇𝑃 +∑
𝑐 𝐹𝑃

(6.4)

However, by this definition for a dataset where the majority of labels
belong to one class, the precision score remains high even if the model has
not detected the labels of the other class correctly. Therefore, for a better
evaluation of the model we compute the precision, recall, f1 score for each
class separately and report the average score on the two classes. This is also
known as f1 macro score in the scikit-learn python library.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
1
|𝑐 |

∑︁
𝑐

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6.5)

We plotted the Receiver Operating Characteristic (ROC) for the different
models as shown in figure 6.5. We observe that the area under the ROC curve
is 94% for the GCNN approach which is 8% and 16% percent higher than the
MLP and BP approach respectively.

Since the Twitter API has a limit of 15 requests every 15 minutes, building
the Twitter graph structure based on the follower and friend relation of
the accounts is not an easy task. We are aware this may be considered as
a limitation to our approach. It can thus be suggested to build the graph
structure based on retweet graph of user accounts.

6.5.1 Comparsion with MLP and Belief Propagation
We further evaluated our approach by comparing it with two other methods.
As graph convolutional neural networks take both the feature set and the
graph structure into consideration, we demonstrate the performance of
this method by comparing it with multi layer perceptron (MLP) and belief
propagation (BP). The MLP method is trained based on the feature set defined
in section 6.4.1. On the other hand, the belief propagation algorithm runs
solely on the graph structure.
The belief propagation algorithm [Pea14] labels each node in the graph

based on the local observation of that node and the messages passed to it
from other nodes. The message sent from one node to another indicates
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𝑓 1𝑚𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜

MLP 0.77 0.81 0.73
BP 0.55 0.56 0.54
GCNN 0.79 0.87 0.73

Table 6.3: Comparison of different algorithms on the dataset

its belief about the state of the other node. In other words, the algorithm
works solely on the graph structure and propagating the labels of the nodes
throughout the graph.

Figure 6.5: Comparison of the area under curve of different algorithms
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6.6 Conclusion and Future Work
In this chapter, we have examined a new approach for detecting malicious
accounts and social bots on Twitter by using graph convolutional networks.
The main idea of our method is to employ the graph structure and rela-
tionships of Twitter accounts for classifying the accounts. Each account
aggregates the feature information from its neighborhood. To demonstrate
the efficacy of our proposal, we have worked on a previous well-known
dataset in bot detection. Results show that our approach outperforms the
state of the art classification algorithms with 8% improvement in the area un-
der curve accuracy. Finally, a specific extension for future work is to deploy
this method in real time on Twitter’s streaming API for spambot detection.
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In this thesis, we apply graph neural networks (GNNs) on different classifica-
tion, prediction tasks and evaluate our methods using online social media
data. In particular, we develop a system for data collection from the Twitter
API based on the tweet ID. In order to predict user engagements with tweets
we use GNNs to create a graph of user-tweet engagements, where users and
tweets are the nodes and engagement types are the edges. We also propose a
new approach for detecting malicious accounts and social bots on Twitter
by using GNNs, taking into account the graph structure and relationships of
Twitter accounts. The system we develop for data collection from the Twitter
API is based on the tweet ID and enables us to collect data for our different
classification and prediction tasks. Our evaluations using online social media
data show promising results for both user engagement prediction and bot
detection.
In chapter 3, we studied the Snowflake algorithm of Twitter which is

responsible for generating unique tweet IDs. The study revealed that the
Twitter API is only capable of providing a limited sample of tweets. However,
we demonstrated that by using the binary representation of tweet IDs, com-
bined with access to multiple API keys, this limitation can be circumvented.
The study also showed that it is feasible and practical to collect massive
numbers of tweets through informed Snowflake prediction. The system
developed for this purpose is not only easily deployable and scalable but also
operates reliably. Instead of sampling the space, the sampled stream was used
to estimate the distributions which proved to be a faster, more consistent, and
more reliable alternative. Additionally, the estimation of necessary tokens
for particular percentages of the Twitter stream for 2022 was updated.
Although a 99% Firehose stream recreation requires a large number of

user tokens, and is likely to be noticed by Twitter, the framework developed
in this study can still be used effectively by researchers from all fields to
analyze a specific event within a certain time. It is difficult to analyze events
that occurred more than a week ago due to the limited access to substantial
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numbers of tweets which are only available through Twitter-selected data
dumps or live APIs. However, with the proposed method and an adequate
number of tokens, a 24-hour window of tweets can be collected over a longer
period of time, providingmore tweets than the sampled stream. It is important
to note that the sampled stream is not representative of the Firehose due to
bad actors that target this time slice, leading to a slight overestimation of
the expected hit rate of Snowflakes. Nevertheless, this should not affect the
general distribution of servers.

Chapter 4 of this thesis presents a novel approach to predicting user
engagement for the ACM RecSys 2020 challenge. In this chapter, a detailed
account of the observations derived from the dataset and their corresponding
implementation in the final model is provided. The challenge was posed
as a binary classification task, and a classifier with gradient boosting was
trained for each interaction type. It is worth noting that the dataset provided
in the above challenge contains information that cannot be retrieved via the
Twitter API. The developed algorithm leverages the information available in
the provided dataset and uses a binary classification framework to distinguish
between different types of user interactions. Specifically, the approach used
trains separate classifiers to predict four types of user interactions, including
retweets, replies, quotes, and likes. We evaluated the proposed model by the
area under precision-recall curve (PRAUC) and relative cross entropy (RCE)
metrics.

In Chapter 5, we presented our use of graph neural networks (GNNs) to
predict user engagements on Twitter. Specifically, we constructed a graph
of user-tweet engagements, where the nodes corresponded to users and
tweets, and the edges represented the engagement type. Through the use
of GNNs, we were able to perform predictions based on the characteristics
of the user, tweet, and engagement graph. Our model utilized pre-trained
GloVe embeddings for tweet features and learned user embeddings to predict
the final engagement type for a user and tweet. As part of future work, we
propose investigating the extension of the heterogeneous graph of users and
tweets by the inclusion of other entities, such as hashtags and tweet hour.
This extension could be achieved by defining a graph convolutional network
(GCN) layer to handle multiple edge types. Additionally, one can explore the
training of the model based on the negative log likelihood of the label classes,
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as this approach may provide further insight into the degree of separation
between different engagement types.
Chapter 6 of our work proposes a novel approach for identifying social

bots and malicious accounts on Twitter by leveraging graph convolutional
networks. Our method aims to take advantage of the graph structure and
the relationships between accounts for classifying accounts. Specifically,
each account accumulates feature information from its neighbors to make
a classification decision. To demonstrate the effectiveness of our approach,
we conduct experiments on a widely used dataset in bot detection. Our
results demonstrate that our proposed method outperforms the state-of-the-
art classification algorithms, achieving an 8% improvement in the area under
the curve accuracy.

7.1 Future work

Graph Neural Networks (GNNs) have emerged as a leading machine learning
architecture for supervised learning with graph and relational input. GNNs
have been shown to be effective in predicting user engagements on Twitter.
However, as social media platforms continue to evolve and generate large
amounts of heterogeneous data, the performance of GNNs in predicting user
engagements needs to be further improved. To this end, exploring the use
of attention mechanisms and meta-path based Heterogeneous Information
Networks (HINs) to better exploit large-scale content consumption informa-
tion. By designing a GNN model that incorporates attention mechanisms
and meta-path based HINs, it is possible to learn more accurate structural
feature representations of users and better predict likes, retweets, replies,
and quotes on Twitter. As the field of GNNs continues to advance, there is
significant potential for these models to make even more accurate predictions
and improve our understanding of user behavior on social media platforms.

Detecting spam bot accounts on Twitter remains a challenging task as new
forms of social spam bots emerge that closely mimic the characteristics of real
users. As a result, the use of Graph Neural Networks has shown promising
results in detecting these sophisticated spambots. However, there is still room
for improvement in GNN-based methods to better detect social spambots.
With the exponential increase of graph data, the scalability of GNNs remains
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a crucial issue. However, current research proposes tackling this obstacle
by implementing sampling paradigms, such as node-wise, layer-wise, and
graph-wise sampling. As GNNs improve, they can better detect spam bot
accounts on Twitter by learning the structural feature representations of
users and identifying anomalous behaviors. By analyzing collective behaviors
and groups as a whole, novel analytic tools can be developed to turn the tide
in the arms race against such sophisticated spambots. Future work in this
field could focus on implementing and improving these sampling techniques
to allow GNNs to better scale to larger graphs and more accurately detect
spam bot accounts on social media.
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