
Hasso Plattner Institute
Information Systems Group

Modeling the Structure of Tabular Files
for Data Preparation

Dissertation
zur Erlangung des akademischen Grades

“Doktor der Naturwissenschaften”
(Dr. rer. nat.)

in der Wissenschaftsdisziplin “Informationssysteme”

eingereicht an der
Fakultät Digital Engineering

der Universität Potsdam

von
Gerardo Vitagliano

Dissertation, Universität Potsdam, 2023

https://hpi.de/naumann/home.html
mailto:gerardo.vitagliano@hpi.de

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Reviewers

Prof. Dr. Felix Naumann
Hasso-Plattner-Institut, Universität Potsdam

Prof. Dr. Sebastian Schelter
University of Amsterdam, Netherlands

Prof. Dr. Paolo Papotti
EURECOM, Campus SophiaTech, France

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-62435
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-624351

Hasso Plattner Institute
Information Systems Group

Modeling the Structure of Tabular Files
for Data Preparation

Gerardo Vitagliano

Hasso Plattner Institute
Information Systems Group

University of Potsdam, Germany

To manage tabular data files and leverage their content in a given downstream task,
practitioners often design and execute complex transformation pipelines to prepare them.
The complexity of such pipelines stems from different factors, including the nature of the
preparation tasks, often exploratory or ad-hoc to specific datasets; the large repertory
of tools, algorithms, and frameworks that practitioners need to master; and the volume,
variety, and velocity of the files to be prepared. Metadata plays a fundamental role in
reducing this complexity: characterizing a file assists end users in the design of data
preprocessing pipelines, and furthermore paves the way for suggestion, automation, and
optimization of data preparation tasks.

Previous research in the areas of data profiling, data integration, and data cleaning, has
focused on extracting and characterizing metadata regarding the content of tabular data
files, i.e., about the records and attributes of tables. Content metadata are useful for
the latter stages of a preprocessing pipeline, e.g., error correction, duplicate detection,
or value normalization, but they require a properly formed tabular input. Therefore,
these metadata are not relevant for the early stages of a preparation pipeline, i.e., to
correctly parse tables out of files. In this dissertation, we turn our focus to what we call
the structure of a tabular data file, i.e., the set of characters within a file that do not
represent data values but are required to parse and understand the content of the file. We
provide three different approaches to represent file structure, an explicit representation
based on context-free grammars; an implicit representation based on file-wise similarity;
and a learned representation based on machine learning.

In our first contribution, we use the grammar-based representation to characterize a set
of over 3000 real-world CSV files and identify multiple structural issues that let files
deviate from the CSV standard, e.g., by having inconsistent delimiters or containing
multiple tables. We leverage our learnings about real-world files and propose Pollock, a
benchmark to test how well systems parse CSV files that have a non-standard structure,
without any previous preparation. We report on our experiments on using Pollock to
evaluate the performance of 16 real-world data management systems.

Following, we characterize the structure of files implicitly, by defining a measure of
structural similarity for file pairs. We design a novel algorithm to compute this measure,
which is based on a graph representation of the files’ content. We leverage this algorithm
and propose Mondrian, a graphical system to assist users in identifying layout templates
in a dataset, classes of files that have the same structure, and therefore can be prepared
by applying the same preparation pipeline.

Finally, we introduce MaGRiTTE, a novel architecture that uses self-supervised learning
to automatically learn structural representations of files in the form of vectorial

https://hpi.de/naumann/home.html
mailto:gerardo.vitagliano@hpi.de
https://hpi.de/naumann/home.html
http://www.uni-potsdam.de

embeddings at three different levels: cell level, row level, and file level. We experiment
with the application of structural embeddings for several tasks, namely dialect detection,
row classification, and data preparation efforts estimation.

Our experimental results show that structural metadata, either identified explicitly on
parsing grammars, derived implicitly as file-wise similarity, or learned with the help of
machine learning architectures, is fundamental to automate several tasks, to scale up
preparation to large quantities of files, and to provide repeatable preparation pipelines.

Hasso Plattner Institute
Information Systems Group

Modellierung der Struktur von Tabellarische Dateien für
die Datenaufbereitung

Gerardo Vitagliano
Hasso Plattner Institut

Universität Potsdam

Anwender müssen häufig komplexe Pipelines zur Aufbereitung von tabellarischen
Dateien entwerfen, um diese verwalten und ihre Inhalte für nachgelagerte Aufgaben
nutzen zu können. Die Komplexität solcher Pipelines ergibt sich aus verschiedenen
Faktoren, u.a. (i) aus der Art der Aufbereitungsaufgaben, die oft explorativ oder ad
hoc für bestimmte Datensätze durchgeführt werden, (ii) aus dem großen Repertoire
an Werkzeugen, Algorithmen und Frameworks, die von den Anwendern beherrscht
werden müssen, sowie (iii) aus der Menge, der Größe und der Verschiedenartigkeit
der aufzubereitenden Dateien. Metadaten spielen eine grundlegende Rolle bei der
Verringerung dieser Komplexität: Die Charakterisierung einer Datei hilft den Nutzern
bei der Gestaltung von Datenaufbereitungs-Pipelines und ebnet darüber hinaus den Weg
für Vorschläge, Automatisierung und Optimierung von Datenaufbereitungsaufgaben.

Bisherige Forschungsarbeiten in den Bereichen Data Profiling, Datenintegration und
Datenbereinigung konzentrierten sich auf die Extraktion und Charakterisierung von
Metadaten über die Inhalte der tabellarischen Dateien, d.h. über die Datensätze
und Attribute von Tabellen. Inhalts-basierte Metadaten sind für die letzten Phasen
einer Aufbereitungspipeline nützlich, z.B. für die Fehlerkorrektur, die Erkennung von
Duplikaten oder die Normalisierung von Werten, aber sie erfordern eine korrekt
geformte tabellarische Eingabe. Daher sind diese Metadaten für die frühen Phasen einer
Aufbereitungspipeline, d.h. für das korrekte Parsen von Tabellen aus Dateien, nicht
relevant. In dieser Dissertation konzentrieren wir uns die Struktur einer tabellarischen
Datei nennen, d.h. die Menge der Zeichen in einer Datei, die keine Datenwerte darstellen,
aber erforderlich sind, um den Inhalt der Datei zu analysieren und zu verstehen. Wir
stellen drei verschiedene Ansätze zur Darstellung der Dateistruktur vor: eine explizite
Darstellung auf der Grundlage kontextfreier Grammatiken, eine implizite Darstellung auf
der Grundlage von Dateiähnlichkeiten und eine erlernte Darstellung auf der Grundlage
von maschinellem Lernen.

In unserem ersten Ansatz verwenden wir die grammatikbasierte Darstellung, um eine
Menge von über 3000 realen CSV-Dateien zu charakterisieren und mehrere strukturelle
Probleme zu identifizieren, die dazu führen, dass Dateien vom CSV-Standard abweichen,
z.B. durch inkonsistente Begrenzungszeichen oder dem Enthalten mehrere Tabellen in
einer einzelnen Datei. Wir nutzen unsere Erkenntnisse aus realen Dateien und schlagen
Pollock vor, einen Benchmark, der testet, wie gut Systeme unaufbereitete CSV-Dateien
parsen. Wir berichten über unsere Experimente zur Verwendung von Pollock, in denen
wir die Leistung von 16 realen Datenverwaltungssystemen bewerten.

Anschließend charakterisieren wir die Struktur von Dateien implizit, indem wir ein
Maß für die strukturelle Ähnlichkeit von Dateipaaren definieren. Wir entwickeln
einen neuartigen Algorithmus zur Berechnung dieses Maßes, der auf einer Graphen-
basierten Darstellung des Dateiinhalts basiert. Wir nutzen diesen Algorithmus und

https://hpi.de/naumann/home.html

schlagen Mondrian vor, ein grafisches System zur Unterstützung der Benutzer bei der
Identifizierung von Layout Vorlagen in einem Datensatz, d.h. von Dateiklassen, die
die gleiche Struktur aufweisen und daher mit der gleichen Pipeline aufbereitet werden
können.

Schließlich stellen wir MaGRiTTE vor, eine neuartige Architektur, die selbst-überwachtes
Lernen verwendet, um automatisch strukturelle Darstellungen von Dateien in Form
von vektoriellen Einbettungen auf drei verschiedenen Ebenen zu lernen: auf Zellebene,
auf Zeilenebene und auf Dateiebene. Wir experimentieren mit der Anwendung von
strukturellen Einbettungen für verschiedene Aufgaben, nämlich Dialekterkennung,
Zeilenklassifizierung und der Schätzung des Aufwands für die Datenaufbereitung.

Unsere experimentellen Ergebnisse zeigen, dass strukturelle Metadaten, die entweder
explizit mit Hilfe von Parsing-Grammatiken identifiziert, implizit als Dateiähnlichkeit
abgeleitet oder mit Machine-Learning Architekturen erlernt werden, von grundlegender
Bedeutung für die Automatisierung verschiedener Aufgaben, die Skalierung der
Aufbereitung auf große Mengen von Dateien und die Bereitstellung wiederholbarer
Aufbereitungspipelines sind.

Abstract

To manage tabular data files and leverage their content in a given downstream
task, practitioners often design and execute complex transformation pipelines
to prepare them. The complexity of such pipelines stems from different
factors, including the nature of the preparation tasks, often exploratory or
ad-hoc to specific datasets; the large repertory of tools, algorithms, and
frameworks that practitioners need to master; and the volume, variety, and
velocity of the files to be prepared. Metadata plays a fundamental role in
reducing this complexity: characterizing a file assists end users in the design
of data preprocessing pipelines, and furthermore paves the way for suggestion,
automation, and optimization of data preparation tasks.

Previous research in the areas of data profiling, data integration, and data
cleaning, has focused on extracting and characterizing metadata regarding
the content of tabular data files, i.e., about the records and attributes of
tables. Content metadata are useful for the latter stages of a preprocessing
pipeline, e.g., error correction, duplicate detection, or value normalization,
but they require a properly formed tabular input. Therefore, these metadata
are not relevant for the early stages of a preparation pipeline, i.e., to correctly
parse tables out of files. In this dissertation, we turn our focus to what we
call the structure of a tabular data file, i.e., the set of characters within
a file that do not represent data values but are required to parse and
understand the content of the file. We provide three different approaches
to represent file structure, an explicit representation based on context-free
grammars; an implicit representation based on file-wise similarity; and a
learned representation based on machine learning.

In our first contribution, we use the grammar-based representation to
characterize a set of over 3000 real-world CSV files and identify multiple
structural issues that let files deviate from the CSV standard, e.g., by
having inconsistent delimiters or containing multiple tables. We leverage
our learnings about real-world files and propose Pollock, a benchmark to test
how well systems parse CSV files that have a non-standard structure, without
any previous preparation. We report on our experiments on using Pollock to
evaluate the performance of 16 real-world data management systems.

Following, we characterize the structure of files implicitly, by defining a
measure of structural similarity for file pairs. We design a novel algorithm
to compute this measure, which is based on a graph representation of the
files’ content. We leverage this algorithm and propose Mondrian, a graphical
system to assist users in identifying layout templates in a dataset, classes of

files that have the same structure, and therefore can be prepared by applying
the same preparation pipeline.

Finally, we introduce MaGRiTTE, a novel architecture that uses self-
supervised learning to automatically learn structural representations of files
in the form of vectorial embeddings at three different levels: cell level,
row level, and file level. We experiment with the application of structural
embeddings for several tasks, namely dialect detection, row classification,
and data preparation efforts estimation.

Our experimental results show that structural metadata, either identified
explicitly on parsing grammars, derived implicitly as file-wise similarity, or
learned with the help of machine learning architectures, is fundamental to
automate several tasks, to scale up preparation to large quantities of files,
and to provide repeatable preparation pipelines.

Zusammenfassung

Anwender müssen häufig komplexe Pipelines zur Aufbereitung von
tabellarischen Dateien entwerfen, um diese verwalten und ihre Inhalte
für nachgelagerte Aufgaben nutzen zu können. Die Komplexität
solcher Pipelines ergibt sich aus verschiedenen Faktoren, u.a. (i) aus
der Art der Aufbereitungsaufgaben, die oft explorativ oder ad hoc
für bestimmte Datensätze durchgeführt werden, (ii) aus dem großen
Repertoire an Werkzeugen, Algorithmen und Frameworks, die von
den Anwendern beherrscht werden müssen, sowie (iii) aus der Menge,
der Größe und der Verschiedenartigkeit der aufzubereitenden Dateien.
Metadaten spielen eine grundlegende Rolle bei der Verringerung dieser
Komplexität: Die Charakterisierung einer Datei hilft den Nutzern bei
der Gestaltung von Datenaufbereitungs-Pipelines und ebnet darüber
hinaus den Weg für Vorschläge, Automatisierung und Optimierung von
Datenaufbereitungsaufgaben.

Bisherige Forschungsarbeiten in den Bereichen Data Profiling,
Datenintegration und Datenbereinigung konzentrierten sich auf die
Extraktion und Charakterisierung von Metadaten über die Inhalte der
tabellarischen Dateien, d.h. über die Datensätze und Attribute von
Tabellen. Inhalts-basierte Metadaten sind für die letzten Phasen einer
Aufbereitungspipeline nützlich, z.B. für die Fehlerkorrektur, die Erkennung
von Duplikaten oder die Normalisierung von Werten, aber sie erfordern
eine korrekt geformte tabellarische Eingabe. Daher sind diese Metadaten
für die frühen Phasen einer Aufbereitungspipeline, d.h. für das korrekte
Parsen von Tabellen aus Dateien, nicht relevant. In dieser Dissertation
konzentrieren wir uns die Struktur einer tabellarischen Datei nennen, d.h.
die Menge der Zeichen in einer Datei, die keine Datenwerte darstellen, aber
erforderlich sind, um den Inhalt der Datei zu analysieren und zu verstehen.
Wir stellen drei verschiedene Ansätze zur Darstellung der Dateistruktur vor:
eine explizite Darstellung auf der Grundlage kontextfreier Grammatiken,
eine implizite Darstellung auf der Grundlage von Dateiähnlichkeiten und
eine erlernte Darstellung auf der Grundlage von maschinellem Lernen.

In unserem ersten Ansatz verwenden wir die grammatikbasierte Darstellung,
um eine Menge von über 3000 realen CSV-Dateien zu charakterisieren und
mehrere strukturelle Probleme zu identifizieren, die dazu führen, dass Dateien
vom CSV-Standard abweichen, z.B. durch inkonsistente Begrenzungszeichen
oder dem Enthalten mehrere Tabellen in einer einzelnen Datei. Wir nutzen
unsere Erkenntnisse aus realen Dateien und schlagen Pollock vor, einen
Benchmark, der testet, wie gut Systeme unaufbereitete CSV-Dateien parsen.

Wir berichten über unsere Experimente zur Verwendung von Pollock, in
denen wir die Leistung von 16 realen Datenverwaltungssystemen bewerten.

Anschließend charakterisieren wir die Struktur von Dateien implizit, indem
wir ein Maß für die strukturelle Ähnlichkeit von Dateipaaren definieren. Wir
entwickeln einen neuartigen Algorithmus zur Berechnung dieses Maßes, der
auf einer Graphen-basierten Darstellung des Dateiinhalts basiert. Wir nutzen
diesen Algorithmus und schlagen Mondrian vor, ein grafisches System zur
Unterstützung der Benutzer bei der Identifizierung von Layout Vorlagen in
einem Datensatz, d.h. von Dateiklassen, die die gleiche Struktur aufweisen
und daher mit der gleichen Pipeline aufbereitet werden können.

Schließlich stellen wir MaGRiTTE vor, eine neuartige Architektur, die selbst-
überwachtes Lernen verwendet, um automatisch strukturelle Darstellungen
von Dateien in Form von vektoriellen Einbettungen auf drei verschiedenen
Ebenen zu lernen: auf Zellebene, auf Zeilenebene und auf Dateiebene. Wir
experimentieren mit der Anwendung von strukturellen Einbettungen für
verschiedene Aufgaben, nämlich Dialekterkennung, Zeilenklassifizierung und
der Schätzung des Aufwands für die Datenaufbereitung.

Unsere experimentellen Ergebnisse zeigen, dass strukturelle Metadaten, die
entweder explizit mit Hilfe von Parsing-Grammatiken identifiziert, implizit als
Dateiähnlichkeit abgeleitet oder mit Machine-Learning Architekturen erlernt
werden, von grundlegender Bedeutung für die Automatisierung verschiedener
Aufgaben, die Skalierung der Aufbereitung auf große Mengen von Dateien
und die Bereitstellung wiederholbarer Aufbereitungspipelines sind.

Acknowledgments

I would like to express my utmost gratitude to my advisor, Felix Naumann,
for all his support and guidance. I learned first-hand from him what it means
to be a passionate researcher and a caring advisor, the best I could have ever
wished for. At all times, he supported me, recognized and valued my work,
shared his knowledge and experience, and guided me with invaluable advice.
He trusted me with the freedom to explore my own ideas, inspired me to
develop as a researcher and as a person, and pushed me to always strive for
greater goals. I hope our paths will keep crossing for many years to come,
never drifting apart.

I am also thankful to Tilmann Rabl: his perspective and advice were always
helpful and insightful, helping me to navigate through my own journey.

I am grateful to Eugene Wu, who hosted me at Columbia University and
brought his unique insights and style to the Pollock project. His influence
was refreshing and thought-provoking, a genuine source of inspiration.

I want to thank all the colleagues and friends at Hasso Plattner Institute
that I had the pleasure to work with, exchange ideas, and share these past
years with. Among them, I want to especially mention Ioannis Koumarelas,
Lan Jiang, Mazhar Hameed, Alejandro Sierra-Múnera, Hazar Harmouch, and
Michael Loster. These people gave me their support and comfort in the
most challenging moments, shared my happiness in the best ones, and made
my Ph.D. a remarkable experience. I would also like to acknowledge Lucas
Reisener for his support on the Mondrian and Pollock projects.

Last but not least, I cannot forget to thank my loved ones and my friends.
I feel grateful for their love, support, and patience that never left me
throughout these years. I learned that research is a long and challenging
journey, but iff one has good company, it is a wonderful one.

“Siempre estoy haciendo cosas que no puedo hacer,
así es como logro hacerlas.” – Pablo Picasso

“I am always doing things that I cannot do,
that is how I achieve them.” – Pablo Picasso

Contents

1 Tabular Data Preparation 1
1.1 Shortcomings of data preparation . 3
1.2 Tabular models for data management . 4
1.3 Dissertation structure and contributions 6

2 Pollock: a Formal Model to Benchmark Data Loading 9
2.1 Challenges of CSV files . 10
2.2 A grammar-based model of file structure 12
2.3 The Pollock benchmark . 16
2.4 Experimental results of real-world systems 27
2.5 Summary . 35

3 Mondrian: Modeling Layout Templates of Multiregion Files 37
3.1 Related work . 38
3.2 Multiregion files, layouts, templates . 39
3.3 The Mondrian approach . 45
3.4 Evaluation . 54
3.5 Data preparation with Mondrian . 65
3.6 Summary . 69

4 MaGRiTTE: a Machine-Learning Model for File Structure 71
4.1 Data preparation with LLMs? . 72
4.2 The MaGRiTTE architecture . 74
4.3 Data preparation with MaGRiTTE . 79
4.4 Experimental results . 85
4.5 Related work . 95
4.6 Conclusions . 96

5 Summary and Outlook 99

i

CONTENTS

ii

Chapter 1

Tabular Data Preparation

Figure 1: An example pipeline from raw tabular files to downstream tasks.

Data preparation commonly refers to a wide range of necessary operations on raw data
to enable a given downstream task in a data-oriented workflow. Data engineers and
practitioners often perform such operations by using different systems, tools, or ad-hoc
scripts to produce desirable outputs. To illustrate a typical data-driven process, consider
the following example: a team of data scientists has to analyze the anomalous behavior of
motor appliances in a factory. The core task is a time-series analysis of the data produced
in the last productive cycle, e.g., the last month, that is found in a set of tabular files
stored in a data lake. An example of the data preprocessing pipeline is illustrated in
Figure 1.

First and foremost, they need to collect and integrate data produced by different sensors
connected to the machines, which in our example happen to correspond to a set of log
files, produced each day, containing multiple tables, one per sensor. First, data engineers
are required to split the individual tables based on the custom format of the files. To do
so, they may use a custom Python script that detects the boundaries for the tables of
each individual sensor, e.g., based on the presence of header or metadata rows.

Then imagine that, due to a software update that happened within the timeframe
of the analysis, the newest files use a different format to store the date and time of
each record. Before integrating the files, the practitioners first are required to resolve
these inconsistencies. This may be done using custom scripts, or by using interactive
data wrangling tools, such as Trifacta [110] or OpenRefine [37]. Once all records
across different files follow the same format, they can integrate all the different files,

1

1. TABULAR DATA PREPARATION

now containing a single table per sensor/day, in a single relational table. If the data
integration process is carried out correctly, they can explore the data with custom
notebooks, e.g., using Jupyter [60], or data analysis tools such as Excel [74]. To better
understand the anomaly, they may have to clean the data, for example by detecting
and/or correcting errors and null values; by transforming some of the attributes into
more appropriate data types for higher precision; or by normalizing attributes to the
range [0,1]. Once this stage is over, they might pivot the table to view average daily
values of measurements across sensors and store this table in a relational database, e.g.,
MySQL [79]. Finally, they might use the refined data to train a machine learning model
to detect or predict anomalies in the future and design an interactive Tableau [103]
dashboard to visualize the data. As highlighted by the example, several preprocessing
steps are required to leverage the information contained in raw data files for downstream
tasks.

While some literature labels all preprocessing steps with the generic term data
preparation [31, 55, 104, 122], regardless of the assumptions and requirements for each
task, we distinguish what is performed before data loading, from what is performed after.

Specifically, all operations required to parse data from files are, by definition, data-
agnostic and structural, since they are based on the format of the file and not on its
content. We refer to these as data preparation. Typically, data preparation operations
are tightly coupled to the systems or frameworks used in the pipeline and have the general
goal of bringing raw data files into a format that can be loaded. In our example, data
preparation steps include extracting multiple tables out of individual files, wrangling
their records to resolve the inconsistencies in the date format, and integrating all the
information into a single tabular file. These steps are typically carried out with ad-hoc
scripts or interactive systems that are time-consuming and require user expertise.

Conversely, we define data cleaning as the preprocessing operations that operate on
parsed data, and therefore require semantic understanding and domain knowledge. Data
cleaning operations usually assume a specific data model, are tightly coupled to the tasks,
and aim at improving the quality of tabular data for downstream applications. In our
example, data cleaning steps are detecting and correcting errors in the sensor data,
assigning the correct data types to the attributes of the integrated table, or normalizing
its attributes to a given range.

Data management research focused on providing algorithmic solutions for structural
tasks, like dialect detection [12], table extraction [63], or row classification [56]; as well
as for semantic tasks, like error detection and repair [90], column type detection [127],
or entity matching [82].

However, even considering state-of-the-art research solutions, preparing data is mostly
an ad-hoc process, reliant on the experience of end users. In the remainder of the
introduction, we motivate the need for principled and general frameworks. Then, we
present a taxonomy of models proposed to represent tabular data from a semantic
perspective, highlighting the value they serve for data management. Finally, employing
such a framework we present the main contributions of this thesis and the structure of
the dissertation.

2

1.1 Shortcomings of data preparation

1.1 Shortcomings of data preparation

The motivating example of the previous section highlights several critical points of data
preparation:

• System dependency: Preparation steps are often tightly coupled to the
systems used in the pipeline, which have diverse and heterogeneous requirements.
Preparation may require user experience with the systems (e.g., with the interactive
tools used for wrangling and analysis), or debugging unexpected errors (e.g., the
sensors’ software changing specification).

• Task dependency: Data pipelines are highly tailored for specific tasks: the
workflow used to wrangle and integrate the sensor data into a single table for
anomaly detection would not be useful for other tasks that require a different
analysis.

• Dataset dependency: Tabular data may be found in a variety of formats with
different accompanying metadata: in the example dataset, sensor files have multiple
tables that have to be split according to specific metadata rows. Not all files follow
specified standards, e.g., the RFC4180 for CSV [94], and custom formats are not
always documented explicitly, forcing users to identify unique formats and design
ad-hoc preparation pipelines.

As it stands, data preprocessing pipelines appear to be more similar to a sequence
of band-aid fixes to specific problems, solved as they occur, rather than a set of
well-engineered steps. We argue that to address the aforementioned challenges it
is useful to frame data preprocessing in terms of file metadata, i.e., identifying the
characteristics of the input data files, how they differ from those that are required,
and what transformation(s) can bridge possible gaps.

Focusing on data preparation, we define as file structure the metadata that describes
syntactical aspects of data files. Representing file structure can overcome the
aforementioned shortcomings:

• System dependency: By making system requirements explicit, it is possible
to proactively design the necessary preparation steps, not only based on previous
end-user experiences or reactively, after discovering loading errors.

• Task dependency: By having clear methods to define and describe alternative
file structures, it is possible to design standard preparation steps and adapt them
to new tasks with minimal effort.

• Dataset dependency: By identifying similarities in the structure of files, data
preparation pipelines can be designed in a more general way and applied to multiple
datasets or files.

As with semantic models for tabular data, we do not believe there is a single, one-size-
fits-all model of file structure that can be used in all scenarios. Our research aims at
providing several models to represent, leverage, and transform file structure to support
data preparation tasks. The next section presents a taxonomy to highlight different
flavors and characteristics of existing semantic models. For each category, we briefly
present recent related work highlighting their relevancy to data management tasks.

3

1. TABULAR DATA PREPARATION

Models for tabular data

Prescriptive

Theoretical
[22]

Serialization
[9, 10, 94]

Descriptive

Explicit

Grammar-based
[2, 14, 69] – [113]

Graph-based
[13, 32, 61]– [116, 117]

Implicit

Similarity-based
[78, 129]– [116, 117]

ML-based
[52, 80, 121, 127]– [114]

Figure 2: Taxonomy of models for data management, thesis contributions outlined.

1.2 Tabular models for data management

As one of the most prominent formats for structured data, tables have been the center
of the attention of data management research for decades [125]. Therefore, numerous
models and frameworks have been proposed to represent tabular data, with different
focuses and goals. In this section, we use the term tabular in the most encompassing
way, to include all data composed of a set of records, each with a set of attributes.
We organize tabular models according to a novel taxonomy of two main groups (see
Figure 2): prescriptive and descriptive.

Prescriptive models can be distinguished in theoretical models, which are based on logic
and formal specifications, and serialization models, which are defined to serialize (or
parse) actual files with a grammar and a set of rules. A prime example of the first category
is the relational model [22], which influenced much of the data management field. A key
motivation for the design of this model was to establish a separation between the logical
and physical organization of data, to abstract applications from the underlying storage
system. Examples of the second category are the standard specifications grammars of
data file formats, such as CSV [94], JSON [9], or XML [10]. Beyond defining the
rules to serialize files, these documents also determine the logical model of the data
contained within files. For example, the CSV grammar prescribes data to be arranged
in tables with a fixed set of attributes (the header), and a set of records with a value
for each attribute. On the contrary, the JSON format models individual records as sets
of attribute-value pairs, without the requirement for each record to have values for all
attributes.

Prescriptive formal models are used a-priori, dictating how information is to be
formalized as data. On the contrary, descriptive models are used a-posteriori, i.e., they
are defined and applied to existing data, e.g., for tabular files, data lakes, or web pages.
We distinguish descriptive models between explicit and implicit. Models from the former
category serve as general frameworks to specify metadata, and they encompass grammar-
based methods and graph-based methods. Examples of grammar-based models are the
ones found in the works of Arenas et al. [2] and Martens et al. [69]. These works propose
languages to describe CSV files that do not (necessarily) comply with the CSV standard,
e.g., because they contain multiple header lines or attributes that span multiple columns.
Inspired by these works, in [113], we propose a grammar-based model to represent the
structure of tabular files described in Chapter 2. A different example of a descriptive
grammar is the one proposed by Cetorelli et al. in [14], which aims at modeling tables
found within HTML documents, with the goal of data extraction.

4

1.2 Tabular models for data management

Graph-based models leverage graph representations to model relationships between
various data elements. For example, in [32] the authors model datasets composed
of many relations as hypergraphs, where nodes are attributes, edges connect related
attributes, and hyperedges connect related nodes at different granularities. They leverage
such representation to highlight relevant connections across datasets to perform data
discovery. Similarly, the work of Cappuzzo et al. [13] proposes a model to represent
relational datasets as tripartite graphs with nodes that represent all the values, records,
and attributes found across the relations of the dataset. Then, these graphs are embedded
as vectors and used to perform data integration. A different example is the work of Koci
et al. [61], which proposes a graph-based model to represent tables within spreadsheet
files, encoding regions of cells as nodes and their spatial relationship as edges. These
graphs are then annotated to classify cell types such as header or data and extract
relational tables. In Chapter 3, we propose a graph-based model to represent the
structure of files that contain multiple tables [116, 117].

The final group of descriptive models are implicit models: they do not define explicit
rules to represent tabular data, but rather build upon statistical methods that derive
a representation from the data itself. We further categorize some implicit models as
similarity-based, as their goal is to measure the similarity between data elements. For
example, the model proposed by Nargesian et al. in [78] defines a similarity function
between different relations based on statistical tests that measure the unionability of
their attributes. This similarity is used to cluster relations and identify plausible join
candidates. Zhang et al. in [129] design a wide set of similarity functions on relations,
attributes, records, as well as provenance information and apply them to address four
different tasks on tabular data: data augmentation, feature extraction, data cleaning,
and data linking. Chapter 3 describes a similarity-based representation for collections of
multiple spreadsheet files to identify reoccurring file layouts [116].

Finally, recent advances in machine learning research have led to several architectures
that create implicit representations by embedding tabular data into vectorial spaces. We
define this category of models as machine learning-based. For example, the work of Xu
et al. [121] proposes the use of conditional generative adversarial networks (GAN) to
learn a latent representation of relational tables. Similarly, the work of Park et al. [80]
leverages GANs to represent tables and synthesize new data with a similar distribution,
but with anonymized data. Other works, such as [52, 127], leverage transformer-
based architectures pre-trained on natural language tasks to learn a representation of
tabular records and attributes and propose their use for various tasks, including data
cleaning, column type inference, or data augmentation. We propose a machine learning-
based model [114] specifically focused on the structure of tabular files to address data
preparation challenges, described in Chapter 4.

As the current state of data management research, a wide range of models have been
proposed for tabular data, each with different characteristics and applications. However,
all of these models focus on semantic aspects of tables, i.e., their data, while no model
is explicitly designed to capture structural aspects, i.e., how they are represented. A
similar taxonomy of models could be thought for representing the structure and syntax
of files, rather than their semantic content. In our research we propose several models,
which can be categorized according to the taxonomy in Figure 2, to highlight the features

5

1. TABULAR DATA PREPARATION

of the files that are at the center of the data preparation efforts. Our efforts are also
towards designing concrete systems to leverage such a representation to support data
preparation tasks.

1.3 Dissertation structure and contributions
Our research is motivated by the observation that most data preparation efforts are
driven by files with non-standard or inconsistent structures. The work presented in
this thesis is focused on the representation of the structure of tabular data files and
its applications to data preparation. We propose three descriptive models to represent
the structure of tabular data files: an explicit grammar-based model [113], an implicit
graph-based model [116], and a machine learning-based model [114, 115]. We apply
each of these models to different datasets to address the challenges related to data
preparation, including data loading, data discovery, table and metadata extraction, and
data preparation effort estimation. Specifically, we make the following contributions:

A grammar-based model to benchmark data loading (Chapter 2)

We introduce a formal, grammar-based model of tabular file structure. Using this model,
we present the results of a large-scale survey of over 3500 CSV files publicly available
on open data portals, which identified multiple structural inconsistencies. Motivated by
our survey, we propose Pollock [113], the first benchmark to evaluate how systems load
tabular files with non-standard structures, if they are not previously prepared.

We apply our benchmark on 16 different real-world systems used at all stages of a data
pipeline, scoring them and discussing their performances. On the one hand, these results
can be used to inform the decision of end-users on which system to employ in their
pipelines, possibly with respect to the structural characteristics of their files. On the
other hand, the Pollock benchmark can guide system designers in the development of
more refined data loading solutions. All data collected for the survey, the benchmark
data, and all code to reproduce the analysis are publicly available1.

This chapter is based on the work presented in [113], which is a joint work with Reisener,
Hameed, Jiang, Wu, and Naumann. My own contribution to this work is the collection
and experimental survey of the files, the formalization of the grammar-based model, the
benchmark design and implementation, and the experimental analysis. Together with
Reisener, I also contributed to the implementation of the benchmark on the 16 systems
under test. Wu advised on the grammar-based model and contributed to the writing.
Hameed and Jiang contributed to the design of the benchmark and of the experiments,
and to the analysis of the results. Naumann advised on the design of the survey, the
benchmark, the experiments, and contributed to the writing.

A graph- and similarity-based model to detect layout templates (Chapter 3)

In Chapter 3, we introduce a graph-based file structure model and the concept of file
templates, sets of files with the same structure. We present a computer-vision algorithm
to extract structural graphs and identify graph similarity to identify file templates within
a dataset. We describe Mondrian, our interactive system that employs this algorithm

1https://github.com/HPI-Information-Systems/Pollock

6

https://github.com/HPI-Information-Systems/Pollock

1.3 Dissertation structure and contributions

to assist end-users in visualizing file structure and identifying templates, i.e., clusters
of files with the same structure. Using the detected templates, users can define general
preparation pipelines and apply them to several files at once.

Our approach is composed of three phases: first, each file is rendered as an image and
inspected for elements that could form regions; then, using a clustering algorithm, the
identified elements are grouped to form regions; finally, every file layout is represented
as a graph and compared with others to find layout templates. We compare our method
to state-of-the-art table recognition algorithms on two corpora of real-world enterprise
spreadsheets. We also introduce an interactive web-based interface for Mondrian [117]
for end-users to extract, visualize, and discover similarities in the structure of individual
spreadsheet files within large-scale datasets.

This chapter is based on the work presented in [117] and [116], where I contributed to
the design of the model and the implementation of the algorithm, the collection and
annotations of the datasets, the experimental evaluation of its performances, and the
design of the user-oriented system. In [117], Reisener contributed to the implementation
of the graphical user interface, and Jiang, Hameed, and Naumann advised on system
design and contributed to the writing. In [116], Jiang and Naumann advised on the
design of the automated system, the experiments, and contributed to the writing.

A machine learning-based model to obtain structural embeddings (Chapter 4)

In Chapter 4, we introduce MaGRiTTE, a machine learning model to learn
structural embeddings of tabular files, using an architecture based on transformers and
convolutional networks. The model is pre-trained on a dataset of almost 1M real-world
tabular files, in a self-supervised fashion, to reconstruct the special characters that make
up the structure of the file, and to detect whether pairs of rows belong to the same file.
Then, we present four strategies to employ the pre-trained model on the specialized data
preparation tasks of dialect detection, row type classification, column type annotation,
and data preparation effort estimation. The latter is a novel task, first introduced
in our work, which aims at providing a numerical estimate of the effort required to
prepare a given file. Our experiments show that these tasks can be solved with good
performances, demonstrating the value of structural representations for data preparation.
In our experiments, we also highlight the combined value of complementing structural
and semantic representations by applying MaGRiTTE with other state-of-the-art models
that specialize in semantic features.

This chapter is based on the work presented as an abstract in [114] and described in a full
paper, currently under submission, where I contributed to the design and implementation
of the machine-learning architecture, investigated and formalized the task of preparation
effort estimation, and performed the experimental evaluation for four data preparation
tasks. Hameed, Sierra-Múnera, and Naumann advised on the design of machine learning
architecture, its application to the data preparation tasks, the experimental analysis,
and contributed to the writing.

Finally, in Chapter 5 we conclude the thesis by summarizing our results and discussing
future research directions.

7

1. TABULAR DATA PREPARATION

8

Chapter 2

Pollock: a Formal Model to
Benchmark Data Loading

The ability to load tables from tabular files is a fundamental requirement for many
systems at play in data-driven pipelines. To assess the variety of file formats used to
store tabular data, we analyzed 17 repositories of governmental data portals across six
continents. Overall, these portals contain 784 062 available datasets, whose file type is
reported in Table 1. The full results and the code to reproduce our analysis can be found
in the project repository1.

Excluding visual-oriented documents, such as HTML and PDF, a vast majority of
structured data is found in CSV files. As previous research noted [12, 21, 75], real-world
CSV files are often not following the official RFC standard [94], and are also lacking
appropriate metadata [2, 69], which in turn makes end-user spend time in preparing
these files to ensure a correct loading their content.

To automate data loading from non-standard CSV files, several algorithms have been
proposed to address specific issues, such as dialect parsing [12, 28, 34], CSV line and cell
classification [36, 56], or table extraction [21]. To evaluate to which degree these results
have been transferred into real-world systems, and how much manual data preparation

Format # datasets % of total

HTML 326 446 41.63%
CSV 245 594 31.32%
PDF 151 053 19.26%
XML 128 452 16.38%

ZIP 67 024 8.54%
JSON 65 008 8.29%

Total 784 062 100.00

Table 1: Number of datasets by format in 17 governmental portals. One dataset can
contain files with multiple formats.

1https://github.com/HPI-Information-Systems/Pollock

9

https://github.com/HPI-Information-Systems/Pollock

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

burden is still left to end-users, in this Chapter we propose Pollock2, a data loading
benchmark.

Pollock is based on a formal grammar-based model for the structure of tabular files
that can be used (1) to unambiguously describe non-standard structures in real-world
files; and (2) to systematically generate large-scale datasets of unprepared files with the
corresponding clean ground truth.

To design the benchmark, we analyzed in detail 3 712 real-world CSV files and recorded
the problems we encountered. We demonstrate the applicability of our benchmark by
testing and scoring 16 different systems: popular CSV parsing frameworks, relational
database tools, spreadsheet systems, and a data visualization tool. This chapter is based
on our published work in [113]. Specifically, the contributions of this chapter are:

1. An explicit, grammar-based model to describe the format, content, and structure
of data files.

2. A survey that analyzes the structural inconsistencies of 3 712 real-world CSV files,
manually annotated.

3. A benchmark composed of an input standard CSV file and a set of 2 290 non-
standard files, based on the results of the survey. The benchmark comprises several
metrics and a set of weights that produce an aggregated score.

4. The experimental results of the application of our benchmark to 16 different
systems to evaluate their loading capabilities.

We organize the discussion of the rest of the chapter as follows: In Section 2.1, we
discuss the related research efforts that have been proposed to address the challenges of
non-standard CSV files; in Section 2.2, we describe our framework to characterize data
parsing grammars and introduce the concepts of pollution and structural difference of
grammars; Section 2.3 presents our data loading benchmark, whose design is based on
a survey of real-world CSV files; Section 2.4 reports the results obtained by 16 different
systems on our benchmark and discusses their shortcomings; Section 2.5 concludes the
chapter with a summary.

2.1 Challenges of CSV files
The ambiguous CSV file format is a known source of data loading problems. Previous
work highlighted the challenges of parsing real-world CSV files. For example, Mitlöhner
et al. encountered such problems in their survey of publicly available CSV files [75],
where, out of 141 738 parsed CSV files, 36 912 (26.04%) were parsed with errors. They
report different errors, such as non-standard dialects, incorrect file extensions, and
multiple tables within a file.

Over the years, research has tried to address the unique challenges of CSV files: Döhmen
et al. proposed the robust parser Hypoparsr [28]; van den Burg et al. focused on dialect
detection for “messy” CSV files with CleverCSV [12]; other projects tried to tackle issues
such as table recognition and cell classification in CSV files [21, 56, 116].

2Pollock, inspired by the abstract painter, stands for Polluted CSV benchmarK.

10

2.1 Challenges of CSV files

Although these issues are known to academia, no explicit formal model has been proposed
to characterize syntactical issues and their relationship to the CSV grammar. The
first and best-known document defining a standard is the RFC4180 [94] of 2005. This
document already mentions the widespread use and lack of formal specification for CSV
files and is presented as a consolidation of the most common CSV features encountered
in practice, rather than an unambiguous standard. Ten years later, the W3C consortium
formalized a “non-normative” document to establish a JSON model for tabular data on
the internet [106]. Their model extends RFC4180 with stricter specifications of tabular
structures and, perhaps more importantly, includes metadata to describe the structure
and dialect of the file content itself. Nevertheless, file distributors do not apply the
W3C recommendations and hardly ever distribute CSV file metadata. Most likely, this
is due to the impracticality of distributing a curated data package contrasted to the
ease of plain CSV files. Simultaneously, academia also started formal work on data
serialization grammars: Arenas et al. designed a language focused on the metadata
description of CSV files [2], while Martens et al. proposed SCULPT, a formal language
to describe web tabular data [69]. These work describe “schema” languages to navigate
the content of “CSV-like” files, where the structure of the file is not known in advance.
Even though it is generally applicable to files with different dialects of CSV, it cannot
be used to describe differences in the structure of their grammars. Rather, given the
knowledge of a grammar, it provides a tool to reference and annotate content within a
file. The focus of both frameworks is to annotate the content of a tabular file, rather
than the grammar used to produce it. In contrast, we are interested in how different
grammars may produce files with different syntactical properties (the structure) but the
same content. Therefore, we aim at providing a framework that is not tied to any specific
grammar or file format, but is applicable to any data serialization/parsing grammar.
To leverage such a framework for benchmarking data loading, we are also interested
in “generative” rather than “descriptive” models, that can be used to systematically
generate files with a desired (non-standard) grammar, in a controlled fashion.

Examples of such models have been traditionally used in security testing, commonly
known as grammar fuzzing frameworks [126]. Grammar-based fuzzing comprises a set
of techniques to generate random inputs that are likely to induce bugs in software,
using grammars to ensure the validity of the inputs [48, 98]. Recently, there has
been some interest in applying fuzzing to benchmark the performance of data analytics
workloads [128].

We propose a particular version of grammar-based fuzzing for data files in order to
benchmark data loading. The need for such a benchmark has been recently acknowledged
by researchers in discussing the state of real-world data preparation [66, 96]. In
their survey, Hameed and Naumann compiled a set of common data preparation tasks
and evaluated whether commercial tools for data preparation offered the respective
functionalities [39]. Although the focus of that survey is on systems specifically designed
for data preparation, they identified how significant data preprocessing was required on
non-standard data files to enable loading data into said systems. For some individual
tasks occurring in a data-driven pipeline, researchers have proposed specific benchmarks.

Poess et al. designed TPC-DI, a benchmark for data integration [83]. Its core includes
files in heterogeneous formats containing information to feed a target decision support

11

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

system. The benchmark includes plain-text character delimited files in TXT and CSV
format. Because its focus is on system throughput and performance at scale rather than
robustness, these files follow the RFC4180 standard, and therefore TPC-DI is not fit to
assess a system’s data loading capability in the face of pollution.

Shah et al. focus on benchmarking the type-inference task in AutoML platforms [95].
Their work provides a reference labeled dataset of files usable for machine learning tasks,
with a variety of commonly used data types. The benchmark evaluates the performance
of an AutoML system by running the same machine learning model twice and comparing
the results: once loading data with the correct data types (provided as ground-truth), and
once loading data with automatic type inference. The task covered by that benchmark,
aside from the specific focus on AutoML tools, is fundamentally semantic, while we
are more interested in syntactic/structural loading, as correct structural loading is the
prerequisite for any further operation.

In the next chapter, we introduce a grammar-based model for file structure to fulfill the
characteristics highlighted in this section and bridge the gap towards benchmarking data
loading at the structural level.

2.2 A grammar-based model of file structure

As previously mentioned, one of the fundamental obstacles to automated testing and
benchmarking data loading is the lack of a formal model to describe the structural issues
of CSV files and decouple them from semantic errors. A further challenge is the lack
of annotated datasets of unprepared files with a clean ground truth. Creating such a
dataset is an expensive task that requires a large amount of data, time, and domain
expertise.

To address these challenges, we contribute Pollock, a formal framework to classify file
issues with respect to serialization grammars, and its application to systematically
generate large-scale datasets of unprepared files with the corresponding clean ground
truth. Our framework formally defines the concepts of content, structure, and format of
file grammars, and their dialects. We introduce the concept of file pollution, a systematic
transformation of a file that modifies its parsing grammar into a structurally different
version of it.

In the scope of our work, data files are actual textual files, collections of files, or strings in
memory encoded with given grammars. Regardless of their differences, all grammars used
for file serialization have similar characteristics: they specify what content is allowed,
what rules are used to parse content from the file, and how to format the content in a
given representation.

Our framework is based on context-free grammars, which we use to serialize content into
files and parse content out of files. We note that our framework is not only applicable
to all possible dialects of the CSV grammar, but also to any other data serialization
grammars that are context-free, e.g., JSON or XML.

12

2.2 A grammar-based model of file structure

Figure 3: A sample CSV file f0 and a grammar G0 to parse it. Each node in the
parse tree corresponds to a grammar rule.

2.2.1 Content, Structure, Format

A “data file” is a sequence of characters that expresses content in a given context-free
grammar [18].

Definition 1 (Context-Free Grammar). A context-free grammar G is a set of terminal
symbols T , a set of non-terminal symbols V, a start symbol Vs ∈ V, and a set of rules
R : V × (V ∪ T).

Since data files may also contain metadata, depending on the application, we use the more
general term file and refer to the payload of a file as content. We refer to serialization as
the act of producing a file that encodes a content C using the rules of a specific grammar
G: f = G(C), and parsing as the act of extracting content from a file: C = G−1(f).

Consider the sample CSV file f0 of Figure 3 and its grammar G0 to describe it. G0 is
a simplified version of the standard one defined in the RFC4180 document [94]. The
content of the file is a set of records containing the values (“1,2,3”, “4,5,6”, . . .) for
the attributes with the headers “A,B,C”. Other characters found in the file, e.g., commas
and newlines, constitute the structure of the file: they are used for parsing but do not
belong to file content. Based on this intuition, we classify three types of symbols, and
their corresponding rules: content, structural, and format.

Definition 2 (Content symbols and content rule). In a grammar G, a rule R ∈ R and
terminal symbols Ti, Tj ∈ T , the set of content symbols is C = {C ∈ V | ∃ R : C → Ti |
Tj , Ti ̸= Tj}. We call R a content rule.

The above definition states that a rule is a content rule if it may resolve to multiple
terminal symbols3. Because of this, they describe the objects of serialization, or what is
allowed in a given file. We define the left-hand side symbol of a content rule as a content
symbol. In the example of Figure 3, R4 and R5 are content rules.

Definition 3 (Structural symbols and structural rules). In a grammar G, given a rule
R ∈ R and a terminal symbol T ∈ T , the set of structural symbols is S = {S ∈ V | ∃! R :
S → T}. We call R a structural rule.

3For notational simplicity, we excluded sequences of symbols. Conceptually, sequences of terminal
symbols are equivalent to individual terminal symbols.

13

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

Figure 4: Four different files with equivalent content, serialized with four structurally
different grammars. The grammars G1, G2, and G3 all have the same rules of
grammar G0 (described in Figure 3), except for the rules explicitly reported.

The above definition states that a rule is a structural rule if it may only resolve to a
unique terminal symbol (or sequence). In simple words, they pose as markers to identify
where to find content in a given file. The left-hand side symbol of a structural rule is a
structural symbol. In the example of Figure 3, R6 and R7 are structural rules.

Definition 4 (Format symbols and format rules). In a grammar G, given a rule R ∈ R
and non-terminal symbols V0, . . . , Vn ∈ V, the set of format symbols is F = {F ∈ V |
∃R :→ V0 . . . Vn}. We call R a format rule.

The above definition states that a rule is a format rule if it resolves to a non-terminal
symbol (or sequence). Format rules express how to combine content with structure in a
given format. In the example of Figure 3, R1, R2, and R3 are format rules.

To express format rules with conciseness, we also introduce “symbol cardinality”, a
notation to specify the repetition of symbols.

Definition 5 (Symbol cardinality). In a grammar G, given a rule R ∈ R containing a
symbol V ∈ V, symbol cardinality is the number of times V has to be repeated when
applying rule R. Symbol cardinality is expressed by postfixing V with {m, n}, where
m, n ∈ N ∪ {∞}, signifying a repetition of a minimum of m to a maximum of n times.
Brackets with a single number define a required cardinality of m = n. Lack of notation
implies a cardinality of m = n = 1.

This notation can be used to express any grammar in Chomsky Normal Form (CNF) [19]
(and therefore any CFG grammar) with more conciseness. As proof, suppose a format
rule expressed as R : F → V0V1{1, m}V2 with a given maximum cardinality m ̸= ∞.
In normal form, non-terminal rules need to be in the form A → BC: the rule R has to
be expanded with m + 1 additional rules: R0 : F → FmV2, R1 : Fm → Fm−1V1, . . . ,
Rm : F1 → F0V1, Rm+1 : F0 → V0V1. Formulating rules with symbols having an infinite
cardinality in CNF is possible with the addition of an extra rule: for example, R : F →
R0R1{0,∞} has to be expressed with the two rules R0 : F → R0F1, R1 : F1 → R1|F1R1.

Being equivalent to grammars in CNF format, our framework can be applied to any
grammar used for serialization and parsing data from files.

14

2.2 A grammar-based model of file structure

2.2.2 Grammar dialects

Data serialization grammars are often regulated by standard specifications [9, 94].
However, real-world files often do not comply with standards. For example, one of four
CSV files out of the 3 712 files we sampled in a real-world survey (see Section 2.3.3) uses
a field delimiter different from comma (the prescribed RFC4180 standard). Consider
the four exemplary files shown in Figure 4: they are all obtained by serializing the
same content C, a header row followed by two data rows. The content of the first file
can be parsed with the RFC4180-compliant grammar G0 of Figure 3. All other files
require slightly different grammars G1, G2, G3 to be correctly parsed. Referring to our
framework, all three grammars have the same content and format of G0, but:

1. G1 uses a different separator rule: R7:DEL→';'
2. G2 allows rows with an extra delimiter: R̃3: row→ row DEL
3. G3 allows rows with different separators: R̃7: D̃EL→ ';'

Two context-free grammars are equivalent if they can serialize or parse the same
sequences of tokens [81]. The grammars to parse the different files in Figure 4 are not
strictly equivalent, because they differ in structural tokens or cardinalities. Still, they
parse the same content from the four files. Regardless of their grammars, we define two
files f, f̃ as content equivalent if the content obtained parsing them with their respective
grammars G, G̃ is the same. Formally:

Definition 6 (Content equivalence). Two files f and f̃ parsed with the grammars G
and G̃, respectively, are content equivalent if C = G−1(f) = G̃−1(f̃) = C̃.

In other words, given the parse trees C = G−1(f) and C̃ = G̃−1(f̃), f and f̃ are content
equivalent if there exists a homomorphism between format and content symbols, and for
format rules, all right-hand side symbols are found in the same order.

Definition 7 (Structurally different grammars). A grammar G is structurally different
from a grammar G̃ if, given two content-equivalent files f, f̃ with content C, the following
hold:

1. G ̸= G̃
2. f = G(C) = G(G̃−1G̃(C))
3. f̃ = G̃(C) = G̃(G−1G(C))

Two grammars are (only) structurally different if they parse the same content from two
different, yet content equivalent files.

Definition 8 (Grammar dialects). Given a grammar G, its dialects are all grammars G̃
structurally different from G.

In the example of Figure 4, grammars G1, G2, and G3 are all dialects of G0 (which is,
in turn, a dialect of the RFC4180 CSV grammar).

2.2.3 File pollution

For a given standard grammar G, our goal is to benchmark how real-world systems load
files serialized with different dialects of G. However, the set of dialects of a grammar G
is infinite; and even for a single grammar G there are infinite possible files with different

15

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

contents. Consider the three reasons why a file f̃ can differ from f : 1. f̃ is expressed in
the same grammar as f , but serializes a different content, i.e., f̃ = G(C̃); 2. f̃ serializes
the same content as f but with a different grammar, i.e., f̃ = G̃(C); 3. f̃ serializes a
different content with a different grammar, i.e., f̃ = G̃(C̃).

To design a data loading benchmark, we are primarily interested in files that belong to
(2), i.e., different files serializing the same content with different dialects of a grammar.
However, to account for common issues in the wild (see Section 2.3), we also consider
restricted cases of (3), where the content C of a file f is a strict subset of the content C̃
of a file f̃ (whose grammar may also be structurally different). We call file pollution the
transformation of a file f = G(C) into a content equivalent file f̃ = G̃(C), where G̃ is a
dialect of G.

We describe a simple procedure to construct file pollutions. Given a file f , rather than
modifying its grammar G and then serializing a new file f̃ = G̃(C), we directly modify
the parse tree G−1(f) in two ways: by changing structural symbols and by changing
the cardinalities of symbols in format rules. These changes guarantee that the content
of the file f̃ has been serialized with a structurally different grammar G̃, without the
need to construct G̃ explicitly. Given a file f and its parse tree C = G−1(f), we can
systematically enumerate all the possible file pollutions. A pollution can: 1. change any
of the structural symbols S with a different symbol S̃, or 2. increase or decrease the
cardinality of a symbol V in a format rule.

Our formalization of pollution offers several advantages. First, structural differences that
characterize a resulting dialect are well-defined; second, they can be chosen at design time
as a parameter; third, as the pollution is a controlled transformation, a ground truth
content is available to evaluate the results of loading. Of course, the space of pollutions
is still large, so it is unclear how to sample pollutions to concretely instantiate in a
data loading benchmark. Given our framework, the problem of designing a data loading
benchmark can be formalized with the following problem statement:

Problem Statement: Given a source file f that serializes content C with a grammar
G, find pollutions that generate a set of files f̃0, . . . , f̃k, such that the content Ci of every
file fi is equivalent to C (or a strict superset) and is serialized with a grammar G̃i, dialect
of the original grammar G.

We also aim at sampling relevant pollutions, i.e., pollutions that replicate non-standard
features that are likely to be found in real-world CSV files. We address these challenges
by surveying 3 712 real-world CSV files and analyzing the occurrence of structural
differences between their grammar and the standard CSV grammar.

In the next section, we describe the results of our survey and the pollutions we sampled
from it.

2.3 The Pollock benchmark

In this section, we describe Pollock, a benchmark for CSV data loading that results from
the application of grammar-based pollution as introduced in Section 2.2.3. To formally
define a benchmark using the pollution framework, we need to specify:

16

2.3 The Pollock benchmark

1. A reference grammar G.
2. A source file f that serializes a content C using the grammar G, serving as the

basis for the pollution operations.
3. For each of the format rules and structural rules in G, a set of pollutions to obtain

different dialects G̃.
4. Metrics to measure how well a system loads polluted files.

The core idea of Pollock is to systematically replicate real-world dialects. To do so,
we synthetically generate different polluted versions of a single input file f , denoted
f̃1, f̃2, · · · f̃n, each serialized with a different dialect of the standard grammar G.

We ground the design of pollutions on a survey of 3 712 publicly available real-world files.
With the results of the survey, we sample the space of possible pollutions and design a
representative input file f to be polluted. We deliberately isolate pollutions to precisely
benchmark their effect on data loading. We acknowledge that in practice, real-world
files may deviate from the standard CSV grammar with several pollutions interacting
at once. Moreover, we also observed loading issues in files serialized with the standard
RFC4180 grammar due to system-specific assumptions (e.g., a maximum length for cell
values). To gain insights on loading real-world files, in Section 2.4 we also benchmark
different systems with a random sample of the survey files, guaranteed to contain all
pollutions at least once.

2.3.1 Survey setup

We aim to benchmark CSV data loading. Therefore, the Pollock reference grammar G
is the standard RFC4180 grammar for CSV files [94]. Figure 5 presents a formulation of
this grammar according to our framework. Cardinalities should be treated as constants
for a given file: for example, rules F3 and F4 specify that the header and record rows all
have the same number N of cells.

We surveyed a sample of 3 712 real-world files marked as CSV: 2 274 CSV files randomly
sampled from the Mendeley Data portal [72] and 1 438 randomly sampled files from the
open data portal of the United Kingdom government [24].

The first is a public repository of scientific projects, where researchers can share research
artifacts, such as code, data, and experimental results. We crawled all 2 214 projects
that, at the time of our survey (July 2021), contained at least one file whose MIME type
was “text/*”. Out of more than 34 000 files contained in these projects, we retained all
2 274 files with a “.csv” extension.

The files selected from the UK government open data have been crawled from all datasets
stored in the portal at the time of the experiments, retrieving a total of 17 851 files marked
with the “text/CSV” MIME type, out of which we randomly sampled 1 438 files. For
all 3 712 survey files, we manually annotated whether their grammars follow the RFC
standard and, if not, which rules differ in their dialect. The collected files with their
annotations can be found online4.

4https://github.com/HPI-Information-Systems/Pollock

17

https://github.com/HPI-Information-Systems/Pollock

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

Format rules:
F0: file = table CRLF {0, 1}
F1: table = (header CRLF){0, 1} data
F2: data = record (CRLF record){0, ∞}
F3: header = cell (COMMA cell){N, N} CRLF
F4: record = cell (COMMA cell){N, N}
F5: cell = QUOTE (escaped){0, ∞} QUOTE
F6: cell = text text{0, ∞}
F7: escaped = COMMA | ESCAPE QUOTE | CRLF | text

Content rules:
C0: text = 0x20-21 | 0x23-2B | 0x2D-7E | ε

Structural rules:
S0: CRLF = 0x2C 0x0A
S1: COMMA = 0x2C
S2: QUOTE = 0x22
S3: ESCAPE = 0x22

Figure 5: RFC4180 standard grammar for CSV files.

2.3.2 Input file design

To design the input file for our pollutions, we analyzed the 3 712 survey files regarding
their general characteristics. Out of all files, 15 are empty, i.e., they have no content and
a dimension of 0 bytes: in the following analysis, we exclude these files. The remaining
files contain a total of 46 474 823 rows and 296 602 columns. The minimum number of
rows per file is 1, with the maximum being 9 505 531 rows. The distribution of rows per
file is highly skewed, with an average of 11 981.14 rows per file but a mode of 2 and a
median of 84. Regarding columns, the minimum number of columns is also 1, with the
maximum being 34 804. As for columns, the average is 76.46 columns per file, but the
mode and median are both at 9 columns per file.

To gain further insights into the data types of the columns, we automatically detected
a data type for each one. We use the regular expression-based type detection proposed
in the CleverCSV project [12], which classifies cells into one of twelve data types. To
classify columns, we detect the type of each of the column cells and record the most
frequently occurring type for each column. We further divide the string column type
into three types: “short string” if all values in a column are under 100 characters, “long
string” if any of the cells is longer than 100 characters, and “fixed length” if all values
in a column have the same number of characters, e.g., code identifiers.

Table 2 reports the statistics for each of the column data types. The table reports the
number of columns for which CleverCSV was unable to detect a data type, roughly 2% of
the total. We note the high number of empty columns in the surveyed files: overall, 1 244
files contain at least one empty column. However, the high number of empty columns is
caused by a tiny fraction of files that have an unusually large amount of trailing empty
columns. For example, one of the files contains 19 non-empty columns, and 16 383 empty

18

2.3 The Pollock benchmark

Data type # col. % total Data type # col. % total
Number (digits) 129 531 43.672% Datetime 165 0.056%
Empty 121 992 41.130% Percentage 141 0.048%
String (long) 34 285 11.559% Number (float) 130 0.044%
String (fixed) 1 466 0.494% Email 103 0.035%
Date 730 0.246% Time 94 0.032%
String (short) 694 0.234% Unix path 4 0.001%
URL 261 0.088% Undetected 6 706 2.261%

Table 2: Column data types in survey files.

DATE,TIME,Qty,PRODUCTID,Price,ProductType,"ProductDescription","URL",Comments
28/01/2018 ,00:00 ,2 , RO -1003 ,74.69 , Men 's Waterproof ... ," These water ..." ," http ..." ,
29/01/2018 ,00:15 ,0 , BX -1011 ,29.81 , Light -Up Running ... ," The next le ..." ," http ..." ,
30/01/2018 ,00:30 ,1 , BX -1014 ,80.08 , Men 's Ventilated ... ," Great grip ..." ," http ..." ,
31/01/2018 ,00:45 ,1 , BX -1015 ,25.55 , Switch Fly Rods ,"This lightw ..." ," http ..." ,
01/02/2018 ,01:00 ,9 , CC -1021 ,48.00 ," Throw Pillow , Wo ..." ," Add a pop o..." ," http ..." ,
02/02/2018 ,01:15 ,1 , CC -1022 ,34.22 , Men 's Heavy -Duty ... ," These tough ..." ," http ..." ,
03/02/2018 ,01:30 ,2 , BX -1031 ,89.34 , Organic Textured ... ,"All the sof ..." ," http ..." ,
04/02/2018 ,01:45 ,2 , MB -1032 ,19.34 ," Cycling Jersey , ..." ," Designed wi ..." ," http ..." ,
05/02/2018 ,02:00 ,0 , MB -1034 ,5.39 ,"Men 's Silk Under ..." ," For strong ,..." ," http ..." ,
18/02/2018 ,05:15 ,1 , RO -1001 ,90.99 ," Kids ' Mountain B..." ," An easy -to -..." ," http ..." ,
...

Figure 6: A subset of the content of the source file of our benchmark. For clarity,
columns are visually aligned, and the content of some cells is trimmed.

columns after the last non-empty one. We note that 119 044 columns, 97.58% of all empty
columns, are trailing empty columns in a file. These trailing empty columns affect 954
files (25.54% of the total files).

The survey files contain 111 340 columns (38.40% of the total) with at least one quoted
cell. We analyzed the distribution of quoted cells inside these columns: in 37 833 columns,
only fewer than 10% of their cells are quoted, and 66 275 columns have more than
90% of their cells quoted. This distribution is highly bimodal as the combined two
cases cover 93.50% of the total quoted columns, and it reflects two different styles of
handling quotation: in the former, only cells that require quotation in a column are
quoted (“minimal” style); in the latter, all cells of a column are quoted regardless of
need (“holistic” style).

Considering the results of our survey, we design the source file as a CSV file named
“source.csv”, with 9 columns and 84 lines – one header row and 83 data rows, for a total
of 756 file cells. A sample of the source file can be seen in Figure 6, while the full file is
available in the project repository.

The number of rows and columns is chosen as the median of the survey files. The rows
in the file represent products sold from an online shop at a given time. Overall, the nine
columns represent the most frequent data types we encountered in our survey:

19

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

• DATE expressed as DD/MM/YYYY, with the column containing unambiguous
values wrt. day and month (e.g., 28/01/2018).

• TIME represents a time of the day. The format used is HH:MM and the values
increase the time from 00:00 in steps of 15 minutes.

• PRODUCTID contains a fixed-length alphanumeric code.
• Qty is a non-negative integer number.
• Price contains a currency value, expressed with the US dollar sign and a positive

floating-point number with a full stop as a decimal delimiter and two significant
digits.

• ProductType contains a short string (under 100 characters) in natural language.
This column contains quoted cells and escaped characters and is quoted “minimal”
style.

• ProductDescription contains a long string (above 100 characters) with a natural
language description of the products. This column also contains quoted cells and
escaped characters and is quoted “holistic” style.

• URL contains a sample URL and is quoted “holistic” style.
• Comments is a trailing empty column, simulating optional information regarding a

given product.

Although the results of Table 2 show that numeric columns in the form of digits are
more frequent than other data types and that many files contain numerous trailing
empty columns, we design our file to contain one numeric column and one trailing empty
column - in an effort of sampling a broader spectrum of data types. We also note that,
while we run our experiments of Section 2.4 with this input file, the Pollock pollutions
can be applied to any input file that follows the standard CSV format.

2.3.3 Pollution design

Not all files of our survey can be parsed correctly using the standard CSV grammar.
Here we report, for each format and structural rule of the RFC grammar (see Figure 3),
all different variations of the rules required to parse the real-world files of the survey.
For the scope of our benchmark, we include a single pollution type to cover each of
these variations individually, even if the dialect of a single survey file might have several.
A single pollution may have different possible parameters wrt. a file, e.g., a single-row
pollution may apply to any row of a file. To generate polluted files, we first identify and
isolate all pollution types affecting real-world files, and then we generate a benchmark file
for each possible parameter, e.g., each row, column, or cell. Covering all combinations
proved necessary from our experiments: in fact, as discussed in Section 2.4.3, we found
certain systems to be sensitive to some pollutions only when they happened in specific
cells.

In sum, our benchmark includes 2 290 polluted files. For every pollution type found in
our survey, we report how many real-world files were affected and how (many) benchmark
files (Pollock files) represent this pollution. The list of pollution types and the number
of benchmark files are summarized in Table 3.

Currently, our framework does only generate files isolating one pollution at a time. While
we acknowledge that combining several pollutions to generate more challenging files
would lead to more realistic testing scenarios, we refrain for several reasons. First,

20

2.3 The Pollock benchmark

Table 3: Overview of pollutions with respect to the RFC4180 standard grammar.

Grammar rule # Generated polluted files

F0: file= table CRLF {0,1} 3
F1: table = (header CRLF){0,1} data 7
F2: data = record (CRLF record){0,∞} 2
F3: header = cell (COMMA cell){N,N} CRLF 17
F4: record = cell (COMMA cell){N,N} 1 411
F5: cell = QUOTE (escaped){0,∞} QUOTE 756
S0: CRLF = 0x2C 0x0A 2
S1: COMMA = 0x2C 88
S2: QUOTE = 0x22 1
S3: ESCAPE = 0x22 2

applying several pollutions on the same file requires a notion of dependency to avoid
interactions where different pollutions cancel (or alter) each other’s effect. Moreover, we
aim at providing end-users and system developers with a clear understanding of the data
loading behavior of a SUT, while combining several pollutions would make it harder to
disentangle the effects of each pollution and analyze the benchmark results. Finally, from
our practical experimental experience, it would be time-consuming to run the benchmark
as the number of files would increase exponentially (see Table 7). Studying the extension
of our framework to create more complex pollutions is an interesting research problem
discussed in Section 2.5.

F0: file format

The rule F0 of the grammar specifies that a file is composed of a table with an optional
newline sequence CRLF. In our survey, we encountered:

• 15 empty files, with no table;
• 184 files with no trailing newline;
• 3 508 files with one trailing newline;
• 5 files with more than one trailing newline. All these files end with two newlines.

In the following analysis, we exclude the 15 empty files but retain one empty file among
the benchmark files.

Pollock files:

• 1 empty file;
• 1 file without a trailing CRLF;
• 1 file with two trailing CRLF.

F1: table format

A table of a standard CSV file is composed of a single optional header line and data.
Our survey found:

21

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

• 2 751 files with one header line;
• 470 files with no header;
• 476 files with multiple header lines.

Of the files with multiple header lines, 94 contain multi-row table headers spanning two
or three lines. The other 282 files contain multiple preamble lines: rows with comments
or metadata separated from the true table header with at least one empty line, i.e., a
line with only separators and no content. Finally, 188 files contain multiple tables. In
these files, there are two (or more) sections with header and data that mark different
sections of the file content, at times with preamble lines or multiple header lines.

Pollock files:

• 1 file without a header;
• 2 files with multiple header lines (2 and 3 lines);
• 1 file with a preamble line;
• 3 files with two tables: one where both have the same number of columns, one

where the second has more columns than the first, and one where the second has
fewer columns than the first.

F2: data format

According to rule F2, CSV files contain data arranged in rows, each row containing a
record. In our survey, we encountered:

• 3 files with no records but only a header row;
• 4 files with only a single record;
• 3 690 files with multiple records.

Pollock files:

• 1 file with only the header row;
• 1 file with a header and a single data row.

F3,F4: header and record format

The RFC4180 grammar requires that header and record rows have the same number of
cells (see Rules F3 and F4 in Figure 3). We did not encounter files where the header does
not terminate with a newline sequence. Regarding the number of cells, in our datasets
we encountered

• 2 657 files with a consistent number of cells;
• 1 040 files with an inconsistent number of cells.

The number of cells can be inconsistent for different reasons: 221 files have preamble
header lines with a different number of separators, some files have multiple tables in
them (see above), with different column counts, others have data records with schema
drift, where missing or extra cells are present in a subset of the records.

Pollock files:

• 17 files with an inconsistent header: one with a missing column separator for each
of the 8 header separators, 9 with an extra separator before each column;

22

2.3 The Pollock benchmark

• 1 411 files with an inconsistent row: 664 with a missing column separator for each
of the 8 column separators in the 83 data rows, 747 with an extra column separator
before each of the 9 columns in all data rows.

F5: Cell format

A cell inside a row can contain any sequence of characters: however, if this sequence
contains any of the tokens of the rules S0,S1,S2 of Figure 5, the cell has to be enclosed in
quotation characters (see Rule F5). The “reserved” tokens correspond to the structural
characters required to separate rows (CRLF), delimit columns inside rows (COMMA),
and the quotation character itself (DQUOTE). The quotation character must be escaped
with an extra quotation character to disambiguate it from the end of the quoted cell.

We encountered seven files with an incorrectly quoted cell where a quotation mark was
not escaped. We note that other pollutions related to quoting and escaping are harder
to identify under this scope without explicit domain knowledge, but they are possible
to identify with respect to other format rules. For example, a cell containing a newline
or extra separator character without a quote would lead to a record having a different
number of columns, a problem we identified in the previous analysis of files under rule F4.

Pollock files:

• 756 files with incorrectly quoted cells, adding one unescaped quotation mark in
each of the cells.

S0: newline sequence

The RFC4180 defines the newline sequence to be the combination of the carriage return
(CR) and line feed (LF) characters. In our survey, we encountered:

• 1 999 files with the sequence of both CR and LF;
• 1 691 files with the only LF character;
• 7 files with only the CR character.

Pollock files:

• 2 files with a non-standard newline sequences in every row, one using CR-only and
one using LF-only.

S1: cell delimiter

The standard character to delimit cells of a record is COMMA (see S1 in Figure 3).
Nonetheless, it is common for CSV files to have a different delimiter, e.g., due to different
locale specifications for floating-point numbers. In the survey dataset:

• 2 754 files use a comma delimiter;
• 834 files use a semicolon delimiter;
• 101 files use a comma plus whitespace or tab character as the delimiter;
• 8 files use a tab or a sequence of white spaces as delimiters.

23

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

Among the files using comma as a delimiter, 12 files have some of their rows delimited
with sequences of white spaces. These inconsistent rows typically contain metadata
regarding the table contained in the file, such as preamble or footnote lines.

Pollock files:

• 4 files with a non-standard delimiter in every row, one using semicolon, one using
tab, one using whitespace, one using comma+whitespace;

• 84 files with an inconsistent delimiter in a single row, one using whitespace for each
file row.

S2: quotation character

The second structural token specified by the RFC4180 grammar is the quotation
character DQUOTE, defined to be the double quotation character (see S2 in Figure 3).
In our survey, we identified only two different characters used for this marker:

• 1 596 files do not have any quoted cell;
• 2 090 files use the double quote character;
• 11 files use the apostrophe character.

We note that in the survey files using a different quotation character, no quote is found
inside a cell and requires escaping. However, a different quotation character should also
be accompanied by a different escaping sequence—following the RFC rules, a doubling
of the quotation character.

Pollock files:

• 1 file with a non-standard quotation character in every row (using apostrophe, also
escaping any apostrophe in the cells with an extra apostrophe).

S3: escape character

The last structural token in the CSV grammar is ESCAPE, the character used to escape
a quotation character when contained in the value of a quoted cell. The RFC standard
defines it to be the same as the DQUOTE character (see S3 in Figure 3). This sequence
rarely occurs and often leads to errors or inconsistencies if files or parsers do not adhere
to the standard. In our experiments, only 2 systems out of 16 can correctly load the
whole content of files with a polluted escape quote, with the others either dropping the
content of the cells following the escape character or of the whole row altogether.

Of the 2101 files with quoted cells,

• 1 849 files do not contain cells with escaped values;
• 250 files contain cells with values escaped according to the RFC standard;
• 2 files contain cells without any escape sequence.

Even if not observed in our survey, we also note that a common non-standard escaping
strategy is to preclude double quotes inside a cell with a backslash symbol (Ux5C).

Pollock files:

• 1 file with a non-standard escape character in every cell (the backslash symbol);

24

2.3 The Pollock benchmark

Figure 7: Summary of the benchmarking process.

• 1 file where quotations are not escaped.

2.3.4 Metrics design

Formally, given an input file f that encodes a content C with a standard grammar G,
a single pollution obtains a different file f̃ = G̃(C), encoding the same content with a
formally equivalent grammar. Once we obtain a polluted file, we aim at benchmarking
how a given system under test (SUT) parses and loads it in memory.

Any SUT parses the content of its input files with a given grammar GSUT , its parsing
algorithm, which is generally not accessible to end-users. Also, every system has different
in-memory representations of a content CSUT = G−1

SUT (f). However, all tested systems
that can load CSV input files are also capable of exporting content in an output file fo

encoded with the standard RFC4180 grammar: fo = GRF C(G−1
SUT (fi)).

At first, it would seem straightforward to compare the content of the input file f with
the content of the output file fo. However, in some pollutions it would not lead to fair
measurement. In fact, a polluted file f̃ , which is the input to the SUT, may contain
slightly different content than the source file f . This behavior is possible with pollutions
that edit format rules by deleting content, e.g., to simulate a file with no header row; or
by adding content in the input file, e.g., to simulate multiple tables in files. Therefore,
it cannot be expected that a system loads content not present in the input file due to
deletions from pollutions. Similarly, a correct loading should also include any extra input
data not in the original source file but which was introduced by pollutions.

To address this, in measuring systems’ performances we cannot use the content of the
original source file. However, the polluted content C̃ can be parsed from the polluted
file f̃ using the polluted grammar G̃, which is known by design at benchmarking time.
Therefore, we compare if the content parsed with the RFC grammar from the output
file of a SUT, Co = G−1RF C(fo), is equivalent to the polluted content parsed from the
input polluted file C̃ = G̃−1(f̃).

Figure 7 summarizes our approach to benchmark a system’s loading of a polluted
file in a general, SUT-independent fashion. We load a polluted file f̃ in a SUT,
which parses it with an unknown grammar GSUT . We then export it back using the
standard RFC grammar and compare the contents parsed from the input files using

25

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

the polluted grammar C̃ = G̃−1(f̃), and the content parsed from the system output
file Co = G−1

RF C(GRF C(G−1
SUT (G̃(C)))). To compare contents independently of a specific

internal system’s representation, we normalize the output of individual cells to compare
their values. The normalization parses dates and numbers and transforms all string
characters to lowercase. For example, two cells containing the same date in two different
formats are considered equivalent. To measure the equivalence of two parsed contents,
we refer to the hierarchy induced by the format rules of the grammars (see Section 2.2.3).
Following the RFC standard grammar (see Figure 5), we identify four content groups:
a file is composed of (1) a table; a table is composed of (2) a header and (3) a set of
records; records are composed of (4) cells. For the first level, we use a binary measure:
success (S). If a file is loaded correctly without any application error, we assign a value
of 1 to this score, otherwise a 0. In case of a data loading with a success of 0, meaning
the system aborted loading due to some error, we assign a value of 0 to all other scores.

However, even if a system successfully loads a polluted file, the resulting content may still
differ from the expected content. A system may either miss some content while loading
a file, e.g., excluding a polluted row, or include “spurious” content, e.g., by padding
a row with unwanted cells. Therefore, we also use precision to evaluate the loading
completeness, and recall to evaluate the loading conciseness, combining them both into
the F1 score.

Given an input set of elements I and an output set of elements O, precision (P), recall (R),
and F1 are defined as usual:

P = |(I ∩ O)|
|I|

R = |(I ∩ O)|
|O|

F1 = 2 · P ·R
P + R

To obtain a well-rounded score, we compute these metrics at the header, record, and cell
level:

1. Header precision (HP), recall (HR), F1 (HF1): These metrics are computed on header
cells and are necessary because systems often have separate assumptions regarding
header and data rows. They measure the effect of pollutions on file headers, e.g., if
an extra header column is added because a single data row contains an extra cell.

2. Record precision (RP), recall (RR), F1 (RF1): These metrics are computed for
each data record, defined as the string hash of its cell values. They capture
whether individual records are loaded coherently, or their content is split, merged,
or rearranged within different records, e.g., if due to a missing escape character two
data rows get merged into one.

3. Cell precision (CP), recall (CR), F1 (CF1): These metrics are computed on individual
data cells and are the most fine-grained. They identify data errors regardless of their
position in the output file, e.g., if a value gets lost due to a missing delimiter.

The range of all scores is [0, 1], with 1 representing a perfect data loading.

The nature of our benchmark is to isolate, whenever possible, different pollutions and
test systems on loading files with each of them separately. As such, every system can be
benchmarked with respect to a single pollution, and a single dimension. However, we also
aim at providing a unified Pollock score for every SUT that measures its data loading
performance across all different pollutions. To do so, we average all scores obtained

26

2.4 Experimental results of real-world systems

across different polluted files, plus the scores obtained on the source file, and then sum
them to obtain a single number per score.

To provide an additional and more realistic score, we weigh the average by the occurrence
of the pollution in the real world, as identified by the survey of Section 2.3.1. The weights
are normalized, to sum up to 1. In the case of pollutions that replicate a single pollution
systematically (e.g., for every row, cell, or column), we scale the weights by the number
of repetitions. For example, considering that in our survey 12 files had inconsistent row
delimiters, and we repeat the pollution for each of the 84 rows of the source file, the
metrics of each polluted file will weight 12/84 in the final average. Considering that
every score has a range of [0, 1] and that there are a total of 10 different scores for each
polluted file, the maximum Pollock score obtainable by a system under test is 10.

2.4 Experimental results of real-world systems

To demonstrate the usage and usefulness of our benchmark, we experimented by applying
it to a set of diverse real-world systems. By evaluating their data loading capabilities,
we highlight their shortcomings and simultaneously assess the usefulness of Pollock.
As listed in Table 4, we selected 16 systems of four tool-categories to highlight our
benchmark’s versatile nature and to analyze possible differences in the handling of file
pollutions at different stages of a data preparation pipeline. We experimented with:

• Eight CSV parsing frameworks for programming languages
• Four relational database management systems
• Three systems designed for spreadsheet data analysis
• One business intelligence/data visualization tool

We chose programming frameworks for three popular programming languages: Python,
R, and Java. For all Python modules, we used Python version 3.10.5. We benchmark the
native “csv” module [111], referred to as PyCsv, which is used to read and write csv files;
the Pandas module [89], designed for data analysis and manipulation; and CleverCSV [12],
a module developed specifically to address loading “messy” CSV files.

For all R modules, we used R version 4.2.1. We benchmark the native “read csv”
function [85], referred to as RCsv; and the specialized Hypoparsr algorithm [28],
introduced in a research paper to perform “advanced” csv parsing.

For Java modules, we used OpenJDK 11. We benchmark the parsing libraries “Apache
CSV Commons”, referred to as CSVCommons [1], OpenCSV [97], and Univocity [4]. For
those that allowed it, we resorted to automated parameter detection. In other cases,
we manually specified suitable parsing parameters, if it was possible to do so. For
database systems, we benchmarked four open-source RDBMS: MySQL [79], MariaDB [68],
PostgreSQL [38], and SQLite [47]. Due to the nature of relational database systems,
loading a file requires creating a table with the correct schema first. To do so, we specify
all data types of such a table to be of TEXT or VARCHAR type, as our benchmark is
concerned with file structure and not with type detection of files. In Section 2.1, we
note how benchmarking type detection relates to data loading. For spreadsheet systems,
we benchmarked LibreOffice Calc [107], an open-source desktop system, referred to as

27

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

Prea
mble

lin
es

Mult
iro

w
he

ad
er

Miss
ing

he
ad

er

New
lin

e seq
ue

nc
e

Deli
mite

r

Quo
tat

ion

Esca
pe

CleverCSV 0.7.4 [12] Auto Auto Auto Auto
CSVCommons 1.9.0 Manual Manual Manual Manual
Hypoparsr 0.1.0 [28] Auto Auto Auto Auto
OpenCSV 5.6 Manual Manual Manual Manual
Pandas 1.4.3 Manual Auto Auto Manual Auto Manual Manual
PyCsv 3.10.5 Auto Auto Auto
RCsv 4.2.1 Manual Manual Auto Auto Auto Auto
Univocity 2.9.1 Auto Auto Auto Auto Auto

MariaDB 10.9.3 Manual Manual Manual Manual Manual Manual
MySQL 8.0.31 Manual Manual Manual Manual Manual Manual
PostgreSQL 15.0 Manual Manual Manual Manual
SQLite 3.39.0 Manual Manual Manual

Calc 7.3.7 Manual Manual
SpreadDesktop Manual Manual Manual Manual
SpreadWeb Manual

DataViz Manual Manual

Table 4: Configurations of the benchmarked systems. “Auto” stands for automatic
detection, “Manual” for manual specification, a missing entry marks the lack of a
configurable option.

Calc, a commercial desktop system referred to as SpreadDesktop5, and an online tool
referred to as SpreadWeb5. Lastly, we benchmarked a commercial data visualization
tool, referred to as DataViz5. We note that we ran “best effort” experiments, using every
applicable configuration option offered by each tool. Table 4 synthetically reports the
loading configurations used for each tool. In the project repository6, we share the results
obtained by all systems and the scripts used to benchmark all non-commercial systems.

In the remainder of this chapter, we present an overview of the most interesting and
surprising findings, based on the results of our benchmark, grouped by the rules of the
grammar affected by the different pollutions we presented in Section 2.3. For simplicity,
in this dissertation we only report F1 scores. For every subsection, we include takeaways
for end-users, highlighting which problems require adequate preparation to correctly
load the benchmark files, and for the developers of the systems under test (or other data
loading systems), to identify opportunities for improvement.

5Anonymized due to licenses that forbid disclosing benchmarking results.
6https://github.com/HPI-Information-Systems/Pollock

28

https://github.com/HPI-Information-Systems/Pollock

2.4 Experimental results of real-world systems

Table 5: Systems with imperfect loading of the source file (RFC4180 compliant):
success and F1-scores.

S HF 1 RF 1 CF 1 Loading time (ms)

Hypoparsr 0.1.0 [28] 1.00 0.00 0.11 0.63 3 277.11 ± 94.66
OpenCSV 5.6 1.00 1.00 0.98 0.99 12.72 ± 0.48
PyCsv 3.10.5 1.00 1.00 0.92 0.99 14.29 ± 3.08
DataViz 1.00 0.77 0.00 0.77 18 569.75 ± 592.11

2.4.1 Source file

Before analyzing the effect of pollutions on data loading, we assessed how systems handle
the original source file. All systems are successful in opening this RFC4180 compliant
file, but unfortunately not all of them load header, rows, and cells correctly. The results
of these systems can be seen in Table 5. Among parsers, Hypoparsr is the only one
unable to detect the header correctly, parsing it as a data row and appending a new
header to the file, and also unable to detect the structure of rows containing cells with
escaped commas and double quotes. PyCsv and OpenCSV both coincidentally fail in
the same row, which contains the special symbol “\” and a delimiter: PyCsv considers
the backslash symbol as an escape for the character that follows and ignores it in the
resulting cell value; OpenCSV splits the cell into two at the delimiter character, even if
the cell itself was properly enclosed in quotation marks.

DataViz loads all records erroneously because all values of the TIME column, which
represents an absolute time in the HH:MM format, are transformed into the values
“30/12/1899 HH:MM:00” (HH:MM standing for the original values in the input file).

User takeaways: When loading otherwise standard files with a programming
framework, be aware of special symbols usually reserved in the programming language,
such as “\”: the framework may require extra escaping on top of what is required for the
RFC standard. When loading files in more advanced systems, such as those developed
for business intelligence, prepare the file such that its data types are compatible with
the system.

Developer takeaways: Parsing content of a CSV file, the RFC4180 standard rules
should take precedence over those of the language: the value of cells should be interpreted
first as a byte string, and then parsed and/or escaped to a more refined data type. Data
type parsing should inform users of its “confidence”, perhaps defaulting to the raw cell
value when confidence is low.

2.4.2 File and table pollution

Our benchmark contains 12 files that are polluted at the file and table level, i.e., serialized
with non-standard file, table, and data rules (see Rules F0, F1, F2 in Table 3). The
left columns of Table 6 report the results on these files: some systems fail to load
them altogether. Notably, the Python parsers PyCsv and Pandas, along with RCsv,
SpreadDesktop, and DataViz abort while loading an empty file, while all other systems

29

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

File and table Inconsistent number Structural character
pollution (12 files) of delimiters (1 428 files) change (850 files)

S HF 1 RF 1 CF 1 S HF 1 RF 1 CF 1 S HF 1 RF 1 CF 1

CleverCSV [12] 1.00 0.75 0.91 0.91 1.00 0.99 1.00 0.99 1.00 0.93 0.57 0.74
CSVCommons 0.75 0.50 0.74 0.74 1.00 0.99 1.00 0.99 0.10 0.10 0.10 0.10
Hypoparsr [28] 1.00 0.35 0.30 0.53 1.00 0.07 0.07 0.44 1.00 0.26 0.16 0.69
OpenCSV 1.00 0.75 0.90 0.91 1.00 0.99 0.98 0.99 0.10 0.10 0.10 0.10
Pandas 0.91 0.67 0.85 0.85 1.00 0.99 0.98 0.99 0.99 0.99 0.97 0.98
PyCsv 0.91 0.66 0.78 0.82 1.00 0.99 0.92 0.99 1.00 0.99 0.92 0.98
RCsv 0.91 0.58 0.44 0.79 1.00 0.99 0.83 0.98 0.95 0.94 0.49 0.61
Univocity 1.00 0.75 0.91 0.91 1.00 0.99 1.00 0.99 0.99 0.99 0.98 0.99

MariaDB 1.00 0.75 0.98 0.90 1.00 1.00 0.98 0.88 1.00 0.99 0.97 0.88
MySQL 1.00 0.75 0.98 0.90 1.00 1.00 0.98 0.88 1.00 0.99 0.97 0.88
PostgreSQL 0.50 0.33 0.49 0.37 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00
SQLite 1.00 0.66 0.99 0.91 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.99

Calc 1.00 0.74 0.91 0.90 1.00 0.99 1.00 0.99 1.00 0.98 0.98 0.98
SpreadDesktop 0.91 0.74 0.83 0.74 1.00 0.99 1.00 0.99 0.99 0.98 0.98 0.98
SpreadWeb 1.00 0.74 0.91 0.86 1.00 0.99 1.00 0.94 0.99 0.97 0.97 0.91

DataViz 1.00 0.46 0.16 0.64 1.00 0.73 0.00 0.73 1.00 0.57 0.00 0.48

Table 6: Results (rounding down) of the 16 SUTs, grouped by pollution type.

correctly load it. Interestingly, when the input file shows two trailing newline sequences,
PostgreSQL halts due to the presence of empty values in the “time” column — although
this error was not thrown while loading the standard source file.

After loading, no system can correctly recognize multiple header rows or preamble rows,
even those that claim to perform automatic header detection. When no header is present,
some systems load data rows with missing cells: e.g., SpreadDesktop, Calc, RCsv, and
DataViz drop the empty column. When multiple tables are present, all systems that
successfully load them either remove the extra column from the second table, if the first
contains more; or add an extra column to the first table if the second contains more.

User takeaways: All systems show high sensitivity to proper “tabular” formatting
of files. No matter the system of choice, and its promised automation level, perform
the following preparations: condense header lines into one; remove preamble lines; split
multiple tables into separate files.

Developer takeaways: Many systems still lack the support for non-standard headers,
preamble lines, and multiple tables. For manual loading, we advise implementing
interfaces to ignore or specify which rows are to be considered the header, and which ones
are to be considered the data rows. The same interface can also be used to load a multi-
table file without the need to split it into separate files. For automated loading, the most
common strategy is to give a higher weight to the first few rows, which then influences how
the remainder of the file is parsed. Apart from integrating existing research algorithms
to detect row classes, multiple tables, and headers [21, 56, 116], we recommend that
developers update the existing algorithms with contextual information.

30

2.4 Experimental results of real-world systems

2.4.3 Structural characters and inconsistent rows

The remaining files of the benchmark are polluted with structural changes and
inconsistent rows. These include file-wise pollutions, and row-wise pollutions. The former
affects all rows, i.e., by changing one of the structural characters across the entire file
(see Rules F0, F1, F2 in Table 3). The latter affects individual rows, making them
inconsistent with the rest of the file, either by having a different number of delimiters,
or by having a different structural character. We apply these pollutions to every cell
in the file. This repetition is necessary for fine-grained evaluation: in fact, while e.g.,
Hypoparsr, incorrectly loads all cells and rows after a misquoted value, other systems,
e.g., OpenCSV or SpreadWeb, are more robust and only err on the affected cell/row.

The system with the worst performance is PostgreSQL: it is successful only in loading
files where the header has an inconsistent number of delimiters, but if any of the
data rows is inconsistent either with an extra or a missing delimiter, it halts the
data loading operation. The other database systems are more robust to rows with
inconsistent delimiters, loading the record but shifting all cells and/or trimming extra
ones. Surprisingly, CSVcommons aborts the loading, but only for the file where the
separator is missing from the last header column. For most systems, the headers are not
affected by extra delimiters in a data row, except for DataViz, which always includes an
extra header cell even if a single data row has an extra separator — leading to an HF 1
score of 0.57.

Observing the results of Table 6, this set of files proves to be the least successful across
many CSV parsing systems for different reasons: CSVcommons and OpenCSV fail to
load any file with an extra quotation mark in one of the rows. As for RCsv, its behavior
changes depending on the row affected by the quotation mark: if it is in one of the cells
of the header row, it appends all the first data row to the cell but parses the other cells
correctly and loads the file. If the extra quotation mark is found in one of the cells of
the first four data rows, it halts loading with an error reporting an inconsistent number
of delimiters. Otherwise, loading is carried out successfully, but several rows are merged
into one, hence the low CF 1 score. Pandas is unsuccessful with a single file: the one
where an extra delimiter is present in the last column of the last row.

Curiously, SpreadWeb’s only unsuccessful loading is with the file containing an extra
quote in row 35. Univocity and SQLite are unable to load a file whose rows terminate
with the only carriage return character — a pollution that does not affect any other
system’s loading capabilities. However, even if their loading does not abort, not all
systems can manage inconsistent delimiters and extra quotation characters — apart
from the aforementioned cell parsing issues of RCsv, OpenCSV, and Hypoparsr also have
a low CF 1. These systems all merge the content of subsequent cells, often from multiple
rows, if an inconsistent quote or delimiter is found in a given cell.

We note that the more robust systems appear to be PyCsv, Pandas, SQLite, and the
spreadsheet systems Calc, SpreadDesktop, and SpreadWeb. As observable by the high
CF 1 and RF 1 scores, the majority of parsing errors are limited to the rows affected by
the pollution, while the remaining rows are parsed correctly.

31

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

Pollock score Average
(2 289 +1) files file-wise time

Simple Weighted (milliseconds)

CleverCSV 0.7.4 [12] 9.19 9.45 69.96 ± 0.13
CSVCommons 1.9.0 6.64 9.25 23.96 ± 7.64
Hypoparsr 0.1.0 [28] 3.88 4.37 6 040.15 ± 8.22
OpenCSV 5.6 6.63 7.74 18.50 ± 2.37
Pandas 1.4.3 9.89 9.43 1.39 ± 0.17
PyCsv 3.10.5 9.72 9.43 13.15 ± 0.13
RCsv 4.2.1 7.79 6.40 8.29 ± 0.61
Univocity 2.9.1 9.93 7.93 3.16 ± 0.19

MariaDB 10.9.3 9.58 7.48 20.96 ± 0.05
MySQL 8.0.31 9.58 7.48 63.96 ± 1.15
PostgreSQL 15.0 0.13 6.96 13.59 ± 0.28
SQLite 3.39.0 9.95 9.37 353.81 ± 22.54

Calc 7.3.7 9.92 7.83 2 646.06 ± 14.28
SpreadDesktop 9.92 9.59 28 776.18 ± 14.28
SpreadWeb 9.72 9.43 2 949.76 ± 16.29

DataViz 5.00 5.15 24 411.52 ± 292.67

Table 7: Pollock scores (rounding down) and average runtime of the 16 SUTs.

2.4.4 Overall Pollock score

Table 7 reports the Pollock score of all systems under test. We report two scores: one as a
simple average, and one weighted by the occurrence of pollutions in our real-world survey,
therefore depicting a more realistic scenario, as explained in Section 2.3.4. Different
scoring schemes may serve different purposes: although end-users may be interested in
the weighted score, to assess real-world performance, parser developers may want to
more easily identify “hard” cases, to correct critical bugs.

As a reminder, the score is obtained by summing up 10 different numbers in the [0, 1]
range. These numbers correspond to success and precision, recall, and f1 scores at the
header, record, and cell levels. Therefore, the maximum score reachable by any system
is 10, in both the unweighted and the weighted case.

The last columns of Table 7 report the average file-wise loading-time of the benchmark
files. The measurements were obtained by repeating our benchmark three times on a
consumer machine equipped with an Intel i7 CPU with 2.20GHz and 16 GB of RAM. We
explicitly warn readers to not compare systems across different categories: for example,
the conditions under which an RDBMS loads files into a table are much more restrictive
and require more specification parameters from end-users (e.g., defining the expected
table format), than, for example, automated frameworks.

User takeaways: Among specialized CSV parsing modules, the ones with the highest
scores, and the fastest are Pandas and Univocity. We attribute this result to these systems’
development maturity: having been in use for a long time and by a large community, they

32

2.4 Experimental results of real-world systems

include safeguards against many pollutions. Comparing different languages, all Python
frameworks have good results, while Java frameworks have an overall worse loading
performance.

Among databases, SQLite has the best benchmark score, but also the highest average
loading time. Interestingly, PostgreSQL shows the highest difference between the simple
and the weighted scoring schemes: for almost all pollutions with an inconsistent row
or cell, its loading failed altogether with a success of 0 (as can be noted by the central
columns of the table). Although these pollutions constitute many files, they are also
infrequent, which causes a higher weighted score.

Spreadsheet systems generally have good performance, probably thanks to their maturity
and long-time use in a variety of scenarios. However, they are also among the ones with
the highest loading times: their user-interfaces make it more cumbersome to load large
datasets composed of several files, due to all the interactions needed to specify a correct
loading. Finally, business intelligence tools, such as DataViz, are tailored towards cleaner,
closer-to-standard data files. Its low score is influenced by an excess of intelligent pre-
processing that fails with data not in line with the tool’s expectations, for example,
incorrectly parsing the “TIME” column of the source file, casting it to a “DATETIME”
type with an arbitrary date (30/12/1899). Therefore, before using such tools we advise
users to prepare their files, not only up to the CSV standard but also regarding their
data types.

Developer takeaways: The lowest scores and the highest loading times among
programming frameworks are obtained by systems whose file loading already proved
unreliable even for the standard source file itself, e.g., for Hypoparsr and OpenCSV. Within
the RDBMS category, the lowest scores are caused by highly restrictive assumptions
regarding file structures. For example, PostgreSQL’s low success rate is due to halting
loading even if a single record is unrecognized by the system. We advise RDBMS
developers to be more flexible when loading csv files, and perhaps offer users the option
to skip polluted records rather than the whole file, as other benchmarked systems do,
e.g., Pandas.

Regarding user-oriented tools, such as spreadsheets and business intelligence systems,
one direction of improvement is the inclusion of more sophisticated automated detection
strategies. This would improve usability as well as loading time for files, without the
need to manually specify parameters through user interfaces.

2.4.5 Real-world loading

To gain further insight into the loading of real-world files, we tested the different systems
with a sample of 100 survey files, which were manually cleaned row by row to provide
ground truth for the measurements. We provide the sample and cleaned versions of
the files on the Pollock page7. The sample was chosen at random, while ensuring that
each pollution was represented in at least one of the sampled files. The results of the
experiment are reported in Table 8.

7https://github.com/HPI-Information-Systems/Pollock

33

https://github.com/HPI-Information-Systems/Pollock

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

S HF 1 RF 1 CF 1 Pollock score Loading time (ms)

CleverCSV 0.7.4 [12] 1.00 0.70 0.96 0.95 8.89 840.55 ± 2.23
CSVCommons 1.9.0 0.46 0.26 0.43 0.42 3.85 297.81 ± 18.47
Hypoparsr 0.1.0 [28] 1.00 0.51 0.27 0.64 5.43 2 288.23 ± 15.67
OpenCSV 5.6 0.98 0.78 0.94 0.93 9.01 168.65 ± 5.92
Pandas 1.4.3 0.88 0.49 0.63 0.64 6.28 8.70 ± 0.26
PyCsv 3.10.5 0.98 0.67 0.88 0.87 8.33 176.82 ± 13.50
RCsv 4.2.1 0.97 0.24 0.52 0.58 5.05 25.14 ± 22.56
Univocity 2.9.1 0.95 0.40 0.61 0.63 5.92 60.38 ± 1.91

MariaDB 10.9.3 0.70 0.67 0.49 0.61 6.13 40.92 ± 9.96
MySQL 8.0.31 0.68 0.64 0.47 0.59 5.89 200.62 ± 17.90
PostgreSQL 15.0 0.54 0.51 0.53 0.53 5.30 12.00 ± 0.26
SQLite 3.39.0 1.00 0.65 0.73 0.90 7.96 342.02 ± 139.91

Calc 7.3.7 1.00 0.44 0.47 0.60 5.60 3 358.68 ± 460.75
SpreadDesktop 0.98 0.79 0.53 0.80 7.41 28 090.21 ± 51.80
SpreadWeb 0.98 0.68 0.60 0.81 7.31 4 846.62 ± 1265.19

DataViz 0.98 0.48 0.11 0.77 5.15 28 702.13 ± 294.54

Table 8: Results on a sample of 100 files from our survey.

As can be seen from the generally lower scores obtained by all systems, real-world files are
more challenging to load for several reasons. Considering the variety of errors, we refrain
from providing an extensive rundown of all failures, but identify some of the key reasons
that lead to imperfect loading. Automatic detection of parameters does not work well in
files affected by multiple pollutions at once, such as Pandas delimiter detection failing to
recognize a semicolon delimiter for files with inconsistent numbers of delimiters in rows.
In other cases, systems have restricted assumptions regarding otherwise standard CSV
files, such as PostgreSQL failing to load files with duplicate or missing header names.
Finally, some systems fail to scale with file dimensions, for example, Calc fails to load
more than 1M records in a file that contains more than 1.1M records, or MariaDB and
MySQL fail to load files if the header name is above 64 characters.

User takeaways: When loading real-world files, several aspects need to be taken into
consideration aside from strict adherence to the CSV standard. Not every system
is scalable for loading larger files (over 1M records, or 100 columns): programming
frameworks offer the highest loading accuracy, whereas database systems are faster but
require “cleaner” inputs. One possible strategy is to “sanitize” a polluted file by cleaning
it through a programming framework before feeding it into more complicated systems,
e.g., database systems or business intelligence tools.

Developer takeaways: Regarding automatic systems, we observed that the detection
of dialect parameters is often unreliable for files with structural inconsistencies (varying
numbers of row delimiters, multiple tables, etc.). We recommend that automated
approaches take into account structural pollutions, either by addressing them separately

34

2.5 Summary

in a preprocessing step, or by filtering for “outlier” rows during their automatic
detections. Additionally, we urge developers to relax their assumptions regarding
file structure and dimension: as data becomes larger and more ubiquitous, it is not
uncommon to expect files with high record counts and column sizes.

2.5 Summary
In this chapter, we defined a formal framework to distinguish the concepts of content,
structure, and format, and we introduced a definition of grammar dialects based on
context-free grammars. We apply this formal model of file structure to systematically
categorize issues in real-world CSV files, reproduce them with file pollutions, and design
Pollock, a benchmark for data loading. After benchmarking 16 real-world systems, our
results showed that unsuccessful data loading is often caused by a lack of flexibility in
the systems’ configurations. We advocate that with the use of our benchmark, system
designers have an objective metric to assess the data loading capabilities of their tools,
as well as a means to identify unexpected and surprising behaviors, as we did in our
experimental results.

Currently, we focused the Pollock benchmark on single-pollution files. However, as
our experiments in Section 2.4.5 show, systems struggle more with multiple pollutions
at once. The grammar-based framework we presented can be extended to support
multiple pollutions, but the design of such pollutions would require notions of dependency
and more complex strategies to sample the overall search space, which are interesting
directions for future work. Through the formal model used by Pollock, we hope to stir
research efforts in the data preparation area toward a more principled direction.

35

2. POLLOCK: A FORMAL MODEL TO BENCHMARK DATA
LOADING

36

Chapter 3

Mondrian: Modeling Layout
Templates of Multiregion Files

Large amounts of structured data can be found in spreadsheet files, either distributed in
CSV or Excel format [33, 62, 75, 108]. Even if these files are meant for distribution and
analysis, they too are often affected by data quality issues and human-induced errors
that require data preparation [17, 46].

One of the biggest challenges is the fact that they are often used as canvases in which
data is spread out in multiple, independent regions with a custom layout and without
a well-defined tabular format. In many cases, there are multiple tables, but metadata
regions are also common, e.g., spreadsheet titles, comment sections, or notes to data
cells. Moreover, the layout of files often follows a common template, that encompasses
the number, layout, and schema of tables and metadata regions in a file. This may happen
in files with related data from different sources, e.g., the same tables with different data
points, or in files produced from the same source, e.g., different tables produced with the
same export process.

Such multi-region files are found in enterprise data lakes or open data repositories,
often without proper metadata or provenance, and cause these to grow into unordered
collections of heterogeneous data [77]. Data scientists typically must prepare these files
by first recognizing their layout and then splitting the different regions into separate files
to obtain machine-readable content. The aim of this chapter is to propose a structural
representation for these files, which we call layout templates. This representation may
be leveraged for multiple use cases:

• Performing data preparation on files with the same template, users can
automatically target regions across files irrespective of file-specific boundaries.

• Integrating files from multiple sources, users can use templates as metadata
indicating data provenance, and decide to exclude the tables of a template, e.g., if
it contains conflicting or poor-quality data.

• Exploring the content of a data catalog, like a data lake or data market, is typically
done with simple keyword-based queries. Layout templates can be used as more
sophisticated indices for file discovery.

37

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

We propose an automatic and interactive system, named Mondrian, to obtain explicit
(the file layout) as well as implicit (layout templates), file structure representations. The
graphical rendering of file layouts inspired us to name our approach Mondrian, after the
abstract painter Piet Mondrian. This chapter is based on published work in [116, 117].
In detail, its contributions are:

• A novel unsupervised approach that maps spreadsheets in the visual image domain
to detect and match different regions in spreadsheet files.

• A framework to analyze and compare multiregion spreadsheets, using a graph
representation with an associated similarity algorithm to detect layout templates.

• A web-based interactive tool1 that allows users to inspect and correct the results of
the automatic detection, and assists them in performing data preparation of large
spreadsheet datasets.

• A publicly available dataset of structural annotations for 886 spreadsheets2,
classifying the position and purpose of their composing regions, and a set of
template annotations for two datasets, summing up to a total of above 1500 files,
identifying classes of files with the same layout.

• A comprehensive set of experiments to prove the effectiveness of the Mondrian
approach in solving the region detection and template inference problems,
comparing it with state-of-the-art automated methods.

The remainder of this chapter is structured as follows: Section 3.1 provides an overview
of related work and highlights the motivation for our approach; Section 3.2 defines some
background concepts and formally introduces multiregion files; Section 3.3 introduces the
architecture of the Mondrian approach, from parsing spreadsheets as images to detecting
layout templates; Section 3.4 discusses the experimental results; Section 3.5 presents an
exemplary use case of Mondrian, showcasing a data preparation workflow using the web-
based interactive interface. Finally, Section 3.6 concludes the discussion and outlines
possible directions for future work.

3.1 Related work
Detecting layout templates for sets of multiregion files is a novel research problem.
Related research work has proposed methods to discover related tables in data lakes [65,
130, 131]. However, these methods are unsuitable for spreadsheets, because these files
may contain more than just a single table, that often appear in a canvas-like layout in
different positions throughout different files (e.g., due to different metadata regions such
as preambles or footnotes). As our survey in Section 2.3.1 demonstrated, these pollutions
are not rare in real-world files.

A required step before template detection is table extraction from spreadsheet files.
Prominent research mainly leveraged supervised learning to address this task. The two
systems WebSmatch [23] and TableSense [41], analyze spreadsheets applying techniques
from the computer vision domain, leveraging respectively connected component detection
and convolutional neural networks based on Excel-specific features. We compare
experimentally our approach with these two systems in Section 3.4. Pytheas, a system by

1Available at https://hpi.de/naumann/sites/mondrian/demo
2Available at https://github.com/HPI-Information-Systems/Mondrian

38

https://hpi.de/naumann/sites/mondrian/demo
https://github.com/HPI-Information-Systems/Mondrian

3.2 Multiregion files, layouts, templates

Christodoulakis et al. [21], employs a rule-based algorithm with experimentally learned
weights The approach presented by Koci et al. [63] combines supervised machine learning
and genetic-based algorithms. We use the latter for experimental comparison with our
approach in Section 3.4.

However, a fundamental limitation of all these approaches is the generalizability to
unseen datasets, given their reliance on large amounts of training data. Our intuition,
corroborated by our experimental results in Section 3.4, is that unsupervised learning is
more suitable for datasets with unseen file layouts.

Further limitations of some of these approaches, e.g. [41, 61, 63, 64], is their reliance
on Excel-specific features, which may not always be available since in many cases
spreadsheets are distributed in a CSV format. For example, in two of the data portals
whose data distribution we sampled in Chapter 2 (see Table 1), the CSV files are 3–5
times more common than Excel files.

Different from table extraction, to the best of our knowledge, no previous approach aimed
at detecting reoccurring layout templates for multiregion files. Solving this problem may
prove beneficial to assist end-users with data preparation, since it can be used to define
once and reuse the same preparation pipelines to new files following the same layout
template.

Moreover, the layout template information can be leveraged by existing spreadsheet
systems. For example, to perform information extraction, the work of Chen et
al. [16], given table boundaries, leverages active learning to detect interesting spreadsheet
properties, such as aggregation rows or hierarchies. Detecting spreadsheet templates can
reduce the number of files for which user feedback is required, or empower spreadsheet
data management systems, like Senbazuru [15], for indexing or querying purposes.

3.2 Multiregion files, layouts, templates
In this section, we introduce definitions for the concepts of multiregion files, layouts, and
layout templates; formulate a hierarchy of equivalence notions to compare regions and
layouts; and state the research problems addressed by our approach.

Complex layouts with multiple regions are a byproduct of spreadsheet software rendering
data on canvases where users freely lay out different data and metadata alike (see
Figure 8).3 We use the term multiregion rather than multitable files since our approach
can also be applied for files whose layout contains a single table but additional metadata
regions.

Typically, multiregion files can be found in comma-separated values format (CSV) or
Microsoft Excel format (XLS/XLSX). For our purposes, spreadsheets are defined as
value-delimited files that contain data in cells with a grid structure. We assume no
specific row- or column-based structure of the content.

We assign each cell a unique identifier (x, y), where x, y ∈ N0 correspond to the column
and row indices, respectively. These (x, y) coordinates are points in a Euclidean space,

3Some formats and tools allow a spreadsheet to have more than one worksheet. Without loss of
generality, we consider each worksheet as a separate file.

39

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

Figure 8: A multiregion file of the ENRON corpus viewed in a spreadsheet software

40

3.2 Multiregion files, layouts, templates

Figure 9: Different elements (yellow: metadata, purple: data) covering a
spreadsheet table, their coordinates, and their layout graph annotated with
alignment information.

originating in the top-left corner, in analogy to spreadsheet design. Every cell serves
some purpose in the spreadsheet. We consider three fundamental types of cells:

Definition 9 (Cell types). A cell c of a spreadsheet S belongs to one of the following
mutually disjoint cell types:

1. Data, if it carries the data values of a file;
2. Metadata, if its information is related to a set of data cells;
3. Empty, if it does not contain any data or only whitespace characters, e.g., it is

used for visual formatting.

Elements are simple structures, grouping cells of the same type:

Definition 10 (Element). Given a spreadsheet file S, an element e is a rectangular set
of adjacent cells of S of the same type. The element type of e corresponds to the cell
type of its cells.

According to its position in the spreadsheet, an element can be described with the vector
(x0, y0, x1, y1) ∈ {N0}4, where the coordinates (x0, y0) represent an element’s top-left cell
and (x1, y1) its bottom-right cell. Figure 9 shows an exemplary spreadsheet with four
elements and their coordinates.

In a given spreadsheet we can identify several elements and describe their spatial
relationships. It is worthwhile noting that, since elements are groups of adjacent cells,
the areas of any two given elements in a spreadsheet cannot overlap. Considering the
elements’ rectangular nature and the grid-like space of spreadsheets, we encode the
relationship between two elements with three features: alignment direction, alignment
magnitude, and distance.

The alignment direction is based on the overlap of the elements’ projection on the x-axis
and the y-axis:

Definition 11 (Alignment). Two elements a := (ax0 , ay0 , ax1 , ay1), b := (bx0 , by0 , bx1 , by1)
align: 

Vertically (V) if max(ay0 , by0) ≤ min(ay1 , by1)
Horizontally (H) if max(ax0 , bx0) ≤ min(ax1 , bx1)
Not aligned (N) otherwise

41

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

In Figure 9, elements e1 and e2 align horizontally, elements e2 and e3 align vertically,
and elements e3 and e4 are not aligned.

The alignment magnitude is the number of shared points across the axis in the case of
horizontal or vertical alignment:

Definition 12 (Alignment magnitude). The alignment magnitude between elements a, b
is: 

min(ay1 , by1)−max(ay0 , by0) + 1 if a, b align vertically
if a, b align horizontally

0 otherwise

In Figure 9, the alignment magnitude between elements e1 and e2 is 2, as they share two
cells on the x-axis, the alignment magnitude between elements e2 and e3 is 3, as they
share three cells on the y-axis, and the alignment magnitude between elements e3 and
e4 is 0, as they are not aligned.

The distance between the elements is calculated as the distance of their two closest
points. In case the two elements are horizontally or vertically aligned, this resolves to
the distance between their closest boundaries; otherwise, it is calculated as the Euclidean
distance of the two closest corners:

Definition 13 (Distance). The distance d(a, b) between elements is


dv : |min(ax1 , bx1)−max(ax0 , bx0) + 1| if a, b align vertically
dh : |min(ay1 , by1)−max(ay0 , by0) + 1| if a, b align horizontally√

d2
v + d2

h otherwise

In Figure 9, the distance between elements e1 and e2 is 0, as they are adjacent, while
the distance between elements e1 and e4 is 3, as they are three cells apart.

Often, especially in spreadsheets with complex cell layouts, even non-adjacent cells could
be logically grouped. For example, a table may have missing values that result in empty
rows in-between valid data rows (see The top-left-most table in Figure 8). Elements
are therefore not sufficient to completely describe the layout of a spreadsheet, and we
need a higher-order abstraction to group semantically related elements, which are not
necessarily adjacent to each other. Groups of elements can serve different purposes:
examples are tables, preambles, footnotes, or any other domain-specific construct. To
abstract their specific purpose, we identify them as regions:

Definition 14 (Region). A region R is a complete graph having as nodes a set of
semantically related, non-empty elements E , connected with edges labeled with their
pairwise spatial relationships.

The left side of Figure 10 shows two given regions, their composing elements, and their
associated graph layouts: region R1 encompasses the elements of Figure 9; in region R2

the data element e2
3 is horizontally aligned to the header element e2

1 and vertically aligned
to the data element e2

2.

42

3.2 Multiregion files, layouts, templates

Figure 10: Two overlapping regions and their graph layout (R1 from Figure 9).

Considering the definition of regions, a multiregion spreadsheet is trivially defined as
a spreadsheet containing multiple regions. Ultimately, our goal is to find structural
similarity across different, possibly multiregion files. To do so, it is first important to
identify a meaningful set of regions for each file: that is to say, draw the boundaries of
different regions such that they are independent and serve distinct purposes. To describe
the coordinates of a region boundary in the spreadsheet space, we use the bounding box
of its set of elements:

Definition 15 (Region boundary). The boundary of a region R, with its elements E , is
defined as a rectangle (x0, y0, x1, y1), where:

x0 = min
e∈E

ex0 , y0 = min
e∈E

ey0 , x1 = max
e∈E

ex1 , y1 = max
e∈E

ey1

Once regions have been identified, we are concerned with their layout. We extend to
pairs of regions the spatial relationship feature vector defined for pairs of elements,
using the (x0, y0, x1, y1) coordinates of region boundaries to compute alignment direction,
magnitude, and distance. One caveat is that considering their boundaries, two given
regions can, in general, have overlapping bounding boxes, which is not the case for
elements. We extend the spatial relationship feature vector for overlapping regions as:

Definition 16 (Overlapping regions). Given two regions, A := (ax0 , ay0 , ax1 , ay1) and
B := (bx0 , by0 , bx1 , by1), their alignment direction is overlapping (O) if max(ay0 , by0) ≤
min(ay1 , by1) and max(ax0 , bx0) ≤ min(ax1 , bx1). Then, the alignment magnitude is
(min(ay1 , by1)−max(ay0 , by0) + 1) · (min(ax1 , bx1)−max(ax0 , bx0) + 1) and the distance
is 0.

The magnitude corresponds to the area of the overlap, which ultimately equals the
product of the horizontal and vertical alignment magnitudes, considering that two
overlapping regions are both horizontally and vertically aligned. For example, the two
regions R1 and R2 in Figure 10 overlap for one cell, and their spatial relationship vector
is (O, 1, 0). Finally, by describing a set of non-empty regions with a complete graph, we
can define the layout of a spreadsheet:

Definition 17 (Spreadsheet layout). The layout of a spreadsheet file S is a complete
graph having as nodes its set of non-empty regions, connected with edges labeled with
their pairwise spatial relationship.

Often, region and file layouts are not one-off models but stem from a systematic creation
process. For example, the US Census open data portal contains the same data report for

43

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

multiple geographical entities, each downloadable as a separate csv file4. Our goal is to
provide a framework to define and analyze templates, i.e., classes of structural equivalence
across multiple files. We compose a hierarchy of equivalence notions, beginning with the
finest-grained unit of comparison, the cell, and extend it to elements:

Definition 18 (Cell and element equivalence). Two cells c1, c2 are equivalent if their
type is equal. Two elements e1, e2 are equivalent if their cells are equivalent.

To define region equivalence, we must also be able to include regions with equal structure,
but that may have a generally different number of data elements, e.g., two tables with
the same schema but different lengths.

Definition 19 (Region equivalence). Two regions R1, R2 are equivalent if there is a one-
to-one equivalence between their metadata elements and their graphs are isomorphic.

At the spreadsheet level, the definition for layout is similar:

Definition 20 (Layout equivalence). Two layouts L1, L2 are equivalent if there is a
one-to-one equivalence between their regions and their graphs are isomorphic.

In practice, if many files are collected from different sources, we want to be able to
discover entire sets of equivalent spreadsheets:

Definition 21 (Layout template). A layout template L is a class of equivalent layouts.

Recognizing templates is of great value for data preparation, as it potentially saves users
the time to manually inspect and prepare individual files: a pipeline of preparation steps
can be defined once and executed repeatedly on different files from the same template.
As computing exact graph isomorphism is computationally expensive, Mondrian uses
approximate similarity metrics to find templates, which we describe in Sections 3.3.2
and 3.3.3.

Given the definitions stated, the problem of recognizing and matching multiregion
spreadsheet layouts is composed of several distinct sub-problems that have an inherently
visual nature. The first fundamental problem is to find the correct region boundaries. A
human expert would solve this task by understanding the semantics of the data as well
as its spatial distribution. Then, to identify recurring layouts, they would be required to
manually inspect and compare each separate file looking at its data — a cumbersome,
error-prone, and time-consuming task. According to our definitions of equivalence, this
task requires semantic concepts and possibly domain knowledge, e.g., to distinguish table
schemata. However, to design a general and domain-independent approach, we focus only
on structural properties. We present the Mondrian approach to address the following
research problem:

Problem Statement: Given a set of spreadsheet files F , each with its layout Lf :

1. Given a file f , how to determine the correct boundaries of its regions Rf that
determine its layout Lf ?

2. Given two different regions rx, ry, how to approximate their equivalence without
semantic information?

4http://www.census.gov/quickfacts accessed Nov 3, 2021

44

3.3 The Mondrian approach

Figure 11: The Mondrian pipeline.

3. Given pairs of files fx, fy ∈ F , how to measure the similarity of their layouts and
use these similarities to recognize unique layout templates L that occur in F?

3.3 The Mondrian approach

To identify the conceptual entities defined in Section 3.2 in practice, without resorting to
semantic knowledge, the intuition of Mondrian is to transform the domain of spreadsheets
from data content to image. To extract file layouts and detect templates, the Mondrian
approach follows three phases: image parsing, region extraction, and template matching.

Figure 11 shows a graphical overview of its pipeline. The image parsing phase creates a
colored image using the data type of its cells. We convert cells into pixels, encoding their
syntactical types into colors. Using the web-based graphical interface, users of Mondrian
can visualize the file content and the result of the image parsing.

In the region extraction phase, images are segmented with a partitioning step and a
clustering algorithm detects independent region boundaries. In the graphical interface,
the resulting regions can be visually inspected, and their boundaries can be interactively
corrected if needed.

Once regions are identified, the template matching phase encodes each file layout as a
graph, based on its extracted regions. We analyze pairs of file layout graphs using a
similarity measure that is based on the similarity flooding algorithm [71]. Once the
similarity of all relevant file pairs is calculated, templates are defined as classes of file
layouts with a similarity above a given threshold (configurable by end-users, 0.98 by
default). The graphical interface presents the output of the template matching stage as
a list of templates and their associated files, allowing users to interactively edit them and
save the results. The remaining subsections of this chapter describe the three phases of
the Mondrian approach in detail and provide a complexity analysis of the most relevant
steps.

45

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

3.3.1 Image parsing

To cover the most general cases, our approach takes as input comma-separated value
files. Files with different delimiters or formatted with XML markup, such as Microsoft
Excel files, can be easily converted into a CSV file.

Ignoring possible markup information is the trade-off for a method applicable to a wide
spectrum of spreadsheets, independent of their format specifications. For native csv files,
we cannot assume that all rows have the same number of delimiters. Thus, we pad rows
with empty cells up to the length of the longest row. Given a csv file with M rows and
N columns, we create an image with the dimensions M ×N , where each pixel represents
a cell in the csv file. Our definitions of entities and their equivalence build upon the
concept of “cell type”: in practice, we substitute semantic types with syntactic types
and, correspondingly, relax their equivalences into an approximate structural similarity.

We identify four fundamental syntactic types: number, datetime, string, empty. Except
for empty, each of these types can be further refined in subtypes: a number can be integer
or floating-point; a datetime can be a time or a date; a string can be either uppercase,
lowercase, titlecase, or generic. In parsing the spreadsheet as an image, we transform
every cell into a pixel with a different color according to its type (see Figures 8 and 12).
Table 9 shows the color corresponding to each data type and a sample cell from Figure 85

that was parsed according to that type.

Recognizing the syntactic type of cells without semantic knowledge is, in general, a
coarse-grained and error-prone operation: consider the uncertain nature of the value
“1990”, which can be a date or a number. As our experiments in Section 3.4.4
demonstrate, however, coarse-grained parsing is sufficient to approximate region
equivalence for the task of template inference, with the reasonable assumption that any
parsing mistake would be reflected across all similar files.

To segment the file into elements, we first find connected components, which reflect cell
aggregates that could not be so easily recognized in a spreadsheet software view (see
Figure 8). The change in width/height proportion happens because each cell occupies
one square pixel in the image, while in the spreadsheet software cell columns and rows
can have different widths or heights, usually set according to the length of their values.
With this cell normalization, for example, a human observer is more likely to note the
four aligned vertical elements on the left of the image.

5Except for the time and date types, which were not present in the original file.

46

3.3 The Mondrian approach

Type Sub-type Sample cell Color
Empty Empty “ ” White

Number Integer “14” Light Blue
Floating-point “47.74” Dark Blue

Datetime Time “17:00” Light Green
Date “17/9/20” Dark Green

String Uppercase “MWH” Maroon
Lowercase “real/time” Salmon Red
Titlecase “Firm Sales” Tomato Red
Generic “System avg. =” Scarlet Red

Table 9: Data types and their colors.

Figure 12: Image rendering for Figure 8

Figure 13: Detail of Figure 8 highlighting adjacent, independent regions.

Figure 14: Connected
components.

Figure 15:
Partitioning step.

Figure 16: Clustering
results.

47

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

However, considering connected components as elements could lead to incorrect region
boundaries: as highlighted by Figure 13, sometimes regions can be adjacent to each other.
In the example, different rectangular regions compose a single connected component with
irregular edges (Figure 14).

Therefore, to identify a valid set of elements that leads to correct region boundaries,
we need a segmentation strategy for connected components. We cut the connected
components along their non-concave edges (Figure 15). Formally, we partition the
components following a rectilinear cut that is obtained by extending the edges incident
to concave vertices towards the interior of the polygon, until a polygon boundary is met.
Bajuelo et al. show that each given polygon, with v concave vertices, can be split into
O(v2) elements, with 2v + 1 as a minimum [6].

With this method, even coherent elements could be initially decomposed. This is
eventually corrected while searching for regions in the following phase, clustering, where
finer-grained elements can be either merged or not, granting the ability to even discover
regions that appear directly adjacent in the spreadsheet (Figure 16).

3.3.2 Region extraction

The next phase of Mondrian has the objective of clustering together elements that belong
to the same region. For a given spreadsheet, we have no prior knowledge of the number
of regions that it contains. Thus, we cannot use centroid-based clustering approaches,
such as k-means. Instead, we resort to a customized density-based approach, modifying
DBSCAN [29] to operate with a custom distance metric that highlights the structural
properties we seek.

The DBSCAN optimization problem aims at finding points in dense neighborhoods of a
given space: if we consider spreadsheet elements as points, a region corresponds to an
area with a high density of points. Given a distance function and a minimum number of
points m that form a cluster, the algorithm defines as core points of a cluster all those
that have at least m points closer than a threshold ε, also called the radius of the search
space. Then, it groups all points that are within ε from a core point, or within ε from
non-core points belonging to a cluster. The value of ε is a hyperparameter that can
be set globally or for each file, and in our experiments we found that, overall, the best
results are obtained when setting a radius of 1.5 (see Section 3.4).

In the original DBSCAN algorithm, every leftover point is labeled as noise. In our
scenario, we are interested in labeling all non-empty elements of a spreadsheet. Therefore,
we do not consider any element as noise and set the minimum number of elements that
can form a region as m = 1.

The distance function we use to compare elements is a weighted sum of three terms:

1. Distance: The Euclidean distance of their closest cells (Definition 13).
2. Size difference: Considering a0, a1 as the areas of two elements, with the larger

being a1, the ratio 1− a0/a1.
3. Alignment magnitude: The number of shared points across the horizontal or

vertical axis (Definition 12). Defining (xi
TL, yi

TL) as the coordinates of the top-
left corner of an element i and conversely (xi

BR, yi
BR) as those of the bottom-right

48

3.3 The Mondrian approach

corner, the alignment is calculated as the sum of horizontal and vertical alignment,
using the formula:

|y0
TL − y1

TL|+ |y0
BR − y1

BR|+ |x0
TL − x1

TL|+ |x0
BR − x1

BR|

In the first term, distance, we compute the distance between the closest cell of two
elements, to avoid the influence of element size in the calculation. In fact, even if two
elements are adjacent, if their width/height extends much farther than the boundary
they share, any other distance metric (e.g., the distance of their center points) would be
dependent on the width/height of the elements rather than on their visual closeness.

The intuition behind the second term, size difference, which is inversely proportional to
the difference in the size of the two elements, is that on one hand, two elements that are
equally small or large, such as two metadata regions or two tables, are more probable
to be two independent regions; on the other hand, larger elements are more likely to be
grouped with smaller elements, such as tables and footnote regions.

The third term, alignment magnitude, is calculated as the sum of horizontal alignment
and vertical alignment. This is meant to compensate for the effect of empty cells within
regions: if different elements that are separated by visual space have a high alignment,
they are most likely to belong together, e.g., two parts of a table that are separated by
an empty column.

The weights for these terms are α, β, γ, respectively, and can be fine-tuned globally or for
a given spreadsheet as hyperparameters for optimal boundary detection. Additionally,
the value of the radius ε plays an important role in the success of the clustering, as
different files can have different properties regarding the size of regions and the mutual
distances of their elements. We hypothesize that larger spreadsheets have, on average, a
higher number of elements with greater distances, and therefore benefit from larger radii.
As Section 3.3.2 points out, the best performances are obtained when setting a custom
radius for each file. To reflect a scenario with no specific hyperparameter selection, we
also experimented with our approach to find a suitable fixed hyperparameter setting for
all files.

Once their boundaries have been identified, we are interested in equivalent regions. Our
definition for region equivalence (Definition 19) is based on element boundaries and their
types: for example, two footnote regions are equivalent if their entire content is equal,
while two tabular regions are equivalent if their header elements are the same, regardless
of the actual data content.

In Mondrian, we measure approximate equivalence using a similarity score. Moreover,
due to its complexity, we do not compute graph isomorphism for region matching but
rather compute region similarity based on syntactic cell types and their color encoding.
Note from Table 9 how our color encoding assigns one primary color (red, green, blue,
white) to each fundamental data type and then varying shades of the primary color
to each subtype belonging to the same fundamental data type. For example, string is
associated with red, with lowercase being “tomato red” (RGB (255, 75, 75)) and titlecase
being “scarlet red” (RGB (255, 0, 0)).

In this way, cells with the same fundamental data type, but different subtypes are more
similar in the color space than cells from different fundamental types. A given region is

49

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

described with the color histograms of its cells, computed with 64 bins for each channel,
for a total of 192 bins. The color histogram is a global descriptor of each region that acts
as a region “fingerprint”: its values are dependent on the amount and distribution of
cells of different types. The similarity of any two regions is then computed as the cross-
correlation of their color histograms. Furthermore, the color encoding can be easily
extended including more, or further refined, data types. If two highly similar regions
(that is, whose similarity is over a given threshold) are found in two different files, they
are considered equivalent and the file layouts that contain them are candidate instances
of the same template.

3.3.3 Template matching

Each spreadsheet file, once its regions have been detected, has an associated file layout,
represented as a complete graph with regions as nodes and labeled edges that describe
their spatial relationships (Definition 17). As with region equivalence, we do not compute
an exact graph isomorphism for layout equivalence but rather approximate it with a
similarity measure. Our algorithm is based on the similarity flooding approach proposed
by Melnik et al. for graph matching [71]. The core intuition is to first compute an initial
pair-wise similarity of nodes across the two file layout graphs using the region similarity
metric described in Section 3.3.2. If the graph Ga has U nodes and the graph Gb has V
nodes, we obtain a matrix σ0 of U × V values.

Additionally, we build a
(u+1

2
)
×

(v+1
2

)
matrix Φ of edge similarities, where the value in

position Φ(i+j, k+l) with i, j, k, l ∈ N0 corresponds to the edge similarity of edge(ui, uk)
and edge(vj , vl).

The edge similarity is set to 0 if any of the node pairs (ui, uk) ∈ Ga, (vj , vl) ∈ Gb has
no connecting edge (including the case of both being the same node), or if the two edges
have a different alignment direction. Otherwise, the edge similarity is computed as the
Euclidean distance between the vectors composed of the features (alignment magnitude,
distance), normalized by the maximum value to have a similarity score in [0, 1].

The similarity of the nodes in σ0 is then iteratively “flooded” by multiplying the similarity
of each node pair with the similarity of the neighboring node pairs, weighted by the edge
similarity in Φ. In formal terms, the similarity of the i-th node of Ga and the j-th node
of Gb is iteratively updated using the formula from [71]:

σk(i, j) = σ0(i, j) +
∑

m=0···V, n=0···U
σk−1(m, n) · Φ(i + m, j + n)

As we look for a 1:1 node match, we ensure that for every neighboring node pair (ui, uj) ∈
Ga, only the node pair (vj , vl) ∈ Gb with the maximum edge similarity is used. To avoid
imbalance in similarities for node pairs (u,v) where any of u or v has a high number of
neighbors, we normalize the value of Φ dividing Φ(u+v, ui +vj) by 2n−m, where n, m are
the number of neighbors of u and v, respectively. Finally, at each iteration, we normalize
the values of σi. The iterative computation is stopped either when the matrix distance
||σi+1, σi||2 falls below a given threshold, or when a maximum number of iterations is
reached.

50

3.3 The Mondrian approach

During our experimentation, we empirically observed that in most cases the matrix
difference falls quickly (in a handful of iterations) to values in the range [0.01, 0.1]
and then stabilizes, reaching values under 0.01 with a much slower convergence speed
(in thousands of iterations). Therefore, we recommend setting a threshold of 0.1
and a maximum number of iterations to 10, which we deem sufficient considering the
satisfactory results obtained on the template inference task reported in Section 3.4.4.

At the end of the similarity flooding stage, we can consider the matrix σ as the weight
matrix of a fully connected bipartite graph B, with the two partitions composed of the
nodes of Ga and Gb, respectively. To compute the final similarity score of (Ga, Gb), we
find a maximum weighted matching on B and average the corresponding weights found,
including zero values in the computation for every | |G0| — |G1| | node left unmatched. In
formal terms, given the weights w(u, v) for nodes u ∈ Ga, v ∈ Gb, the similarity between
Ga and Gb is computed as:

sim(Ga,Gb) =

∑
u∈Ga,v∈Gb

w(u, v)

max(|Ga|, |Gb|)

As this graph similarity is asymmetrical, because of the matrix normalization included
in the calculations, for every pair of files fa, fb we compute the final file layout similarity
sim(fa, fb) averaging between sim(Ga,Gb) and sim(Gb,Ga). As proven by Melnik et al.,
in the case of fully connected graphs, the layout similarity computation has a complexity
of O(u2 · v2) for two files with u and v regions [70]. In our two experimental datasets,
files contain an average of 4.43 and 2.09 regions (see Table 10).

As we approximate pairwise layout equivalence with our graph-based similarity measure,
we consider two file layouts to be instances of the same template if their pairwise
similarity is above a given threshold τf (subject to evaluation in Section 3.4.4).

3.3.4 Template clustering

To extend template inference beyond pairs of files, we use an inductive approach: given a
set of files, each with its detected regions, we examine the set iteratively. The procedure
for template recognition is described in pseudocode in Algorithm 1.

First, every file is parsed as an image (Lines 6–7) and its regions are detected (Line 8).
Then, its regions are compared with all the regions rt from the templates of the files
previously seen, in R (Lines 10–11). If a region rf is similar to a region rt in R more
than a threshold τr, we add a candidate template pair with the file f and each file ft

whose layout contains rt (Line 15). During our experimentation, we discovered a region
threshold τr = 0.75 to be sufficient to obtain valid similar layout candidates.

If no region in R matches any of the regions in f (Line 17), Mondrian will not add
the file as a candidate for layout similarity, and the file is considered an instance of a
singleton template. Its regions are added to the global index of regions R, along with
the information that these regions are found in the layout of f (Lines 18).

Following, we compute the layout similarity for every candidate pair of files identified
(Lines 23–24), i.e., all pairs (f, ft) for each file ft with at least one region similar to the

51

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

Algorithm 1 Pseudocode for the Mondrian approach
1: Input: set of input files F , clustering parameters α, β, γ, region similarity threshold

τr, layout similarity threshold τf

2: Output: templates T , regions R
3: Global region index R← {}
4: Set of templates T ← {}
5: Candidate file pairs P ← ∅
6: for f in F do
7: img ← parse(f)
8: Rf ← region_detection(img, α, β, γ)
9: for rf in Rf do

10: for rt in R do
11: σr ← region_similarity(rf , rt)
12: if σr ≥ τr then
13: ft ← file that contains rt

14: * the pair (f, ft) is a candidate for a template \
15: P ← P ∪ {(f, ft) for ft ∈ R⟨rt⟩}
16: R⟨rt⟩ ← R⟨rt⟩ ∪ {f}
17: else
18: R⟨rf ⟩ ← {f}
19: if |R| == 0 then
20: * Initialize the region index with the file regions as a singleton template \
21: R← {rf : {f} ∀ rf ∈ Rf}
22: Similarity graph Gs ← {f for f ∈ F}
23: for (f, ft) in P do
24: σf ← layout_similarity(f , ft)
25: if σf ≥ τf then
26: Add an edge connecting (f, ft) in Gs

27: T ← find_connected_components(Gs)
28: return T , R

52

3.3 The Mondrian approach

ones in f . If the layout similarity of the pair (f, ft) is greater than τf we group f , ft, and,
recursively, all files grouped with both f and ft (Lines 25–26). We do so by creating a
graph with a node for each file, and an edge connecting two nodes if the layout similarity
is above the layout threshold τf . Templates are found as the connected components of
such graph (Line 27), transitively closing the set of templates.

We note that the results for a file set are independent of the order the spreadsheets are
processed: at the last iteration, all regions will have been compared against each other,
as well as all pairs of files that contain matching regions. If at any given point a file is
found matching two distinct templates, these are merged.

We choose this iterative approach for different reasons: first, it suits a continuous
development scenario, where the region index and template layouts are persistently stored
and can be reused in later stages as new files are pre-processed. Second, it is significantly
less computationally expensive to pre-compute region similarities and prune the template
search space rather than perform graph similarity for each pair of files, which would
anyway include computing the pairwise region similarity for all pairs of regions found
across all files.

3.3.5 Approach complexity

Formally, the complexity of Mondrian depends on three main procedures: the region
detection, the region similarity calculation and the file layout similarity calculation. The
region detection runs for each of the F files in the dataset: for a file containing E
rectangular elements, DBSCAN has complexity in the average case of O(E · logE), and,
in the worst-case, a complexity of O(E2) [29]. In the worst-case scenario, where all
non-empty cells are non-adjacent (a layout similar to a checkerboard), E is equal to the
number of non-empty cells of a file.

The complexity of region and layout similarity depends on the number of files F , the
number of overall regions across files in the dataset M , as well as the number of unique
regions N . The cost of computing pairwise region similarity is constant, as it is a single
operation on two fixed-length vectors, whereas the cost for pairwise layout similarity for
two files containing N1 and N2 regions is O(N2

1 ·N2
2), as reported by Melnik et al. [70].

If no regions are similar, i.e., M = N , the region similarity stage has a cost of O(M2),
but Mondrian computes no layout similarity. If all files contain the same regions, i.e.,
M = N · F , the region similarity is computed O(N2 · F) = O(M ·N) times.

In this worst-case scenario, no pruning happens, and the complexity for layout similarity
is O(N4 · F 2). Typically, the number of regions in a file is much lower than the
number of files: for example, Deco and Fuste, the two real-world datasets used for
our experiments described in Section 3.4.1, both contain above 800 files with on average
4.43 and 2.09 regions per file, respectively. Therefore, assuming N << F the upper
bound for complexity is given by O(F 2).

Finally, the transitive closure operation to obtain templates has a complexity of O(F ·S),
where S stands for the number of pairwise similar files: in the worst-case scenario,
S = F (F −1)

2 and the complexity is O(F 3).

53

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

In our empirical observations, the average complexity of template recognition for
Mondrian behaves quadratically with the number of files, as reported in Section 3.4.4,
with typical absolute runtimes in the order of [1, 10] minutes.

3.4 Evaluation
Multiregion spreadsheets pose interesting data engineering challenges. In Section 3.2
we described three related research problems: region detection, region matching, and
template inference. We conducted experiments to evaluate whether it is possible to
address these problems using an automated approach that is general with respect to the
spreadsheet format, and with respect to domain knowledge. We compare Mondrian to a
system that uses connected components to discover tables [23], an approach for genetic
algorithm-based table recognition [63], and a CNN-based machine learning model [41].

3.4.1 Evaluation datasets and their properties

To evaluate our approach, we use two datasets of real-world spreadsheets. The first,
Deco [62], is a publicly available annotated file sample of enterprise spreadsheets
extracted from the ENRON corpus [46]. It is composed of 1,165 MS Excel files used
in an energy company and found in email attachments from 2000 to 2001, annotated by
Koci et al. [62]. Of those, roughly 27% are classified by the authors as not containing a
table (e.g., containing only charts). For the remaining 854 files, in the case of multiple
worksheets per file, the authors annotated only one worksheet with regions. We use
these regions as candidates for our region detection task. In addition, we manually
annotated the dataset at the file level to identify files with the same layout, for the
template inference task6.

The second dataset is sampled from FUSE, a large-scale corpus of spreadsheets crawled
from various internet sources [108]. For our evaluation, we annotated the region layout
and the templates of all relevant 886 worksheets from 780 unique, randomly sampled
spreadsheet files. In the remainder of this section, we call this annotated subset Fuste
(FUSE Sample for Template Extraction). The region-level annotations of Fuste have
been obtained with the tools proposed in the original Deco paper [62], to stay consistent
with those from this dataset.

Table 10 reports the main characteristics of the two datasets concerning their files’
layouts. The first consideration is the wide presence, in both sources, of multiregion
files: roughly 72% and 45% of files from Deco and Fuste, respectively, have more than
one region. Fuste has overall a greater number of single region files and on average
much fewer regions per file than Deco (2.09 and 4.43, respectively), with Deco having
more files with a huge number of regions — the maximum being 321. For the rest
of the experiments, we regard as outliers, and therefore exclude, those files with more
regions than the 99.9% of the remaining files in the same dataset. These files, two for
Deco and one for Fuste, were characterized by an unusually large number of regions
sparsely distributed across the spreadsheet. The two datasets also show opposite natures
regarding layout templates. Deco has a low level of layout recurrence, with 750 different

6https://github.com/HPI-Information-Systems/Mondrian accessed Nov 3, 2021

54

https://github.com/HPI-Information-Systems/Mondrian

3.4 Evaluation

Deco Fuste
Total number of files 854 886

Regions across all files 3,785 1,857

Files with one region 233 495
Files with multiple regions 621 391

Average num. of regions per file 4.43±12.19 2.09±1.70
Maximum num. of regions in a file 321 20

Overall layout templates 750 136
Templates with one file 679 105

Templates with more than one file 71 31
Average num. of files per template 1.13±0.59 5.33±32.35

Maximum num. of files per template 12 381

Table 10: A synthetic overview of the evaluation datasets.

layout templates for 854 files, 679 of which are “singletons”, i.e., covering only one file.
Fuste, on the other hand, contains 136 templates for 886 files, with one encompassing
as many as 381 different files and only 105 singleton templates.

Various considerations arise from these fundamental differences. First, both manually
annotated datasets represent a relatively small sample of the entire collection of files
from the original corpora: ENRON, the source of Deco, is composed of 15,770 unique
spreadsheet files with 79,983 sheets [46]; FUSE, the source of Fuste, has 249,376 unique
spreadsheets. Possibly, the templates we discovered may cover many more spreadsheets
than in our sample. Additionally, the origin and thus usage of the two datasets are
different: Deco is a set of enterprise spreadsheets, in which files have possibly a “single-
use” scope, be it for reporting or analysis purposes within the company; Fuste is a
set of documents crawled from various public internet sources, most likely designed for
sharing, with a high homogeneity of files originating from the same source. Finally, as
surfaced during our annotation of Deco templates, this dataset could have shown a
higher percentage of file similarity with a different choice of the worksheets: the choice
of annotating only one worksheet per file excluded various worksheets from the original
files that showed the same layout.

3.4.2 Experimental setup

The experiments conducted to evaluate the performance of our region detection approach
include, for comparison, the results obtained on the same task using the connected
component detection algorithm outlined in the work of Coletta et al. [23], the genetic-
based table recognition approach proposed by Koci et al. [63], and the CNN-based
TableSense [41]. Furthermore, simply selecting the connected component approach from
Coletta et al. can be considered a baseline for our approach: it is the first step from
which we build upon element partitioning and clustering.

Genetic-based approach: The genetic-based approach is a more sophisticated
process, involving two steps that rely on supervised machine learning methods. In the

55

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

first step, a random forest classifier is trained on cell features to label each spreadsheet
cell according to its role (e.g., data, header, aggregate) [64]. Afterward, neighboring cells
with the same label are grouped and a graph is formed, with cell groups as vertices and
their spatial relationship as edges [61]. Different tables are recognized as sets of vertices
obtained by partitioning the graph [63] using a supervised genetic-based algorithm. This
overall approach relies on rich features extracted from Excel files and aims at solving
the more complex task of table recognition. Recall that the region detection task we
solve is slightly different in goal and assumptions: we are interested in detecting region
boundaries in general multiregion spreadsheets, without assuming special formatting
features or any tabular structure.

The comparison was conducted with the help of the original authors, reusing the source
code for the feature extraction, cell classification, and the genetic approach7. For a fair
comparison, we experimented with two versions of the genetic-based approach: one using
the full set of Excel-specific features available, and one restricting the input information
to only cell content and position, excluding style features, thus simulating a .csv file
input. The model, following the setup described by the authors in [63], is trained and
tested on each dataset using 10-fold cross-validation.

TableSense: TableSense, proposed by Dong et al. [41], is based on Mask R-CNN [43], a
convolutional neural network developed for instance segmentation in images. TableSense
extends this architecture for the task of table detection in spreadsheets with two
specialized modules: a feature extraction stage to map spreadsheets into feature maps
that fed as input to the network, and a Precise Bounding Box Regression layer
to refine the coordinates of Mask R-CNN detected regions’ bounding boxes. The
intuition of TableSense, like Mondrian, is to map the region detection task to the visual
domain: using a convolutional architecture, it leverages the 2D distribution of cells on
a spreadsheet to identify “Regions of Interest”, candidate areas of the input file, which
are then classified as tables and whose boundaries are refined by the PBR module.

The authors report experimental results of TableSense training the model on the
WebSheet10K dataset and testing it on the WebSheet400 dataset. As neither the
trained models nor the original source code is publicly available, to compare it with
Mondrian in a similar setup we obtained the results training the model on one dataset
and testing on the other, i.e., the results for Deco are obtained training TableSense
on Fuste and vice-versa. Due to the non-deterministic nature of the approaches that
involve machine learning approaches (Genetic-based and TableSense), we repeated the
experiments involving the full pipeline three times, and report average scores, with
confidence intervals obtained from the standard deviation of the experiment results.

Mondrian: For the region detection stage of Mondrian, we use two setups regarding
the choice of the clustering radius: one using an optimal, “dynamic” choice of the
clustering radius for each file, and one with a “static” radius used across all dataset files.
In the dynamic radius setting, we ran our clustering method on each file, varying the
size of the radius between [0.1,2] in steps of 0.1, between [2,10] in steps of 1; and between
[10,100] in steps of 10. Additionally, we experimented with different configurations of

7https://github.com/ddenron/gen_table_rec accessed Feb 25, 2020

56

https://github.com/ddenron/gen_table_rec

3.4 Evaluation

the distance features’ weights: we kept α = 1 as a fixed reference value and varied
β, γ ∈ {0, 0.5, 1, 5, 10}. The hyperparameter configuration that showed the best results
was α = 1, β = 0.5, γ = 1 for Deco, and α = 1, β = 1, γ = 1 for Fuste. We use
these values for experimenting in the “static” radius setting, in which we tried to find
the single radius that showed the best performances across all files. The search space
for the radii was the same as the one used in the dynamic setting. We report the result
obtained using the radius with the best performance for each dataset, namely 1.5 for
Deco and 1.4 for Fuste.

3.4.3 Region detection accuracy

To evaluate the level of accuracy in region detection, we use the Intersection-over-Union
score (IoU) and the Error-of-Boundary score (EoB), defined in [41]. The first value is the
graphical equivalent of the Jaccard index for sets. If we define P as the set of non-empty
cells of a predicted region, and T as the set of non-empty cells of a target region, the
IoU is calculated as:

IoU(P, T) = |P ∩ T |
|P |+ |T | − |P ∩ T |

= |P ∩ T |
|P ∪ T |

The EoB score is the maximum distance, expressed in number of cells, between any of
the top, bottom, left, or right boundaries of a predicted region and those of the target
region. To calculate the EoB, if we define a region’s top-left coordinates as (x0, y0)
and bottom-right coordinates as (x1, y1), for two regions P and T , we use the following
formula from [41]:

EoB(P, T) = max(|Px0 − Tx0 |, |Py0 , Ty0 |, |Px1 , Tx1 |, |Py1 , Ty1 |)

An IoU score of 1 corresponds to perfectly detected regions and a score of 0 to missed
regions. A perfectly detected region has an EoB of 0, with no upper limit for incorrect
detections. EoB is undefined in the case of no detected region: whenever such a case
arises, we set the EoB as the maximum of the height and width of the file, simulating a
completely out-of-boundary detection. The standard in literature is to consider correctly
detected all true regions for which the score of at least one predicted region exceeds a
given threshold [35, 41, 63]. To provide more accurate results, we measure actual scores
rather than their binarization. In general, any of the true regions RT of a file can be
split into multiple RP predicted regions, or vice-versa, one of the predicted regions can
span multiple true regions. Therefore, for M predicted regions and N true regions IoU
determines M ·N scores: to achieve only one value for a given true region, we assign it
to the predicted region with the highest overlap:

IoU(T) = max
P ∈RP

IoU(P, T)

EoB(T) = min
P ∈RP

EoB(P, T)

Figure 17 shows the performance of the different approaches over varying thresholds: the
y-axis represents the percentage of tables or regions correctly detected in the two datasets,

57

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

Figure 17: Table and region detection performance.

58

3.4 Evaluation

assuming as “correct” a score better than the given reference on the x-axis. We report
the performance for tabular regions only (“table detection”), and the performance across
all types of regions (“region detection”), which include tables but also notes, spreadsheet
titles, etc.

Mondrian’s performance: The best results for all regions are obtained, for both
datasets, with our clustering approach assuming a dynamic, optimal choice of the radius
for each file. It is interesting to note the difference in the behavior of Mondrian on the
two different datasets. Deco, which contains more multiregion files and on average more
regions per file, proves to be the harder of the two with approximately 45% of regions
perfectly detected (100% IoU). On FUSE, instead, with fewer complex multiregion
files, around 75% of the regions are correctly detected. The usage of a static radius
yields lower performance: in the case of tables, the accuracy is comparable to detecting
connected components, while on other region types, it yields slightly worse results. In
our experiments, a smaller radius (≤ 1) made the clustering degenerate into connected
component detection, grouping only adjacent partitioned elements. A larger radius, such
as the one selected for our static approach (namely 1.5), improves table detection, since
a high number of tables is composed of separated connected components, but also brings
together different non-tabular regions, which are usually independent. Because of this,
the static radius variant of our clustering approach shows slightly worse performance in
detecting general regions than tables.

Comparison with the genetic-based approach: It is not surprising that the
genetic-based approach shows better results for tables than for generic regions, as it was
specifically designed for table recognition. When cell classification and table detection are
combined end-to-end, the second step proved to be sensitive to even small errors in the
cell classification, with the results visible for the Deco dataset in Figure 17. On Fuste,
where the classification errors were minimal, the genetic-based approach showed much
better results. We explain this phenomenon by considering the reliance of the genetic-
based search on correctly labeled region boundaries. The incorrect classification of some
cells causes the split of one single region into different vertices, some of them necessarily
erroneous. Moreover, it appears that non-data cells, such as header or aggregation cells,
are crucial for recognizing tabular structure. Such classification errors propagate into
unreliable weight learning for the quality measures of the fitness function and finally
cascade into poor table boundaries. It is worth noting how, for Fuste, the contribution
of Excel-specific features is much more significant than for Deco: the gap between the
two versions of the genetic approach is much wider.

Comparison with TableSense: The results of TableSense show low performance
with a high variance. This behavior can be explained by noting the considerable number
of regions that are completely missed: on average, 48.81% for Deco and 32.92% for
Fuste. Contrary to Mondrian, which by design does not ignore any non-empty input
cell, the CNN architecture of TableSense may completely ignore entire areas of the input
if they are not considered “Regions of Interest” or classified as containing an object. This
behavior is inherited from the original domain of Mask R-CNN, designed for instance
segmentation of images, which may or may not contain relevant objects. Overall, the
poor accuracy of TableSense is most likely due to the high complexity of the model, which

59

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

Figure 18: Performances per region composition.

is composed of more than 85 million trainable parameters, and the limited number of
training files available for our use case.

Comparing the plots across the two datasets, we note an interesting difference: the
Deco plots are much smoother than those of Fuste, which show abrupt drops in the
percentage of tables and regions recognized above a certain threshold. This phenomenon
reflects the different dataset natures, as analyzed in Section 3.4.1. Considering that Deco
has roughly twice the quantity of regions compared to Fuste, it is natural to expect
a more continuous plot. What is more, Fuste contains a greater number of files that
share the same templates: on average, 5.33 files share the same layout compared to the
1.13 in Deco. In particular, one can observe how the percentage of tables (and regions)
detected correctly in Fuste drops from 80% (60%) to 50% (40%) for the Genetic-CSV
approach as soon as the threshold for the IoU is increased from 69% to 70%. Looking
for the causes of this behavior, we found that 323 different regions, coming from just
as many files with the same layout, were detected in the same way. The absence of the
same drop from the Genetic-XLS approach suggests that including style features helped
in recognizing these regions correctly.

Sensitivity to region composition: Considering the graphical nature of the
clustering performed by Mondrian, its performance on region detection is sensitive to
the visual composition of regions. To provide insights into the behavior of the different
region detection strategies, we analyzed the effect of two variables: the density of a
region, i.e., the ratio of non-empty cells to empty cells contained in a region, and the cell
type entropy, i.e., the entropy of a region, which we calculate as −

∑k
i=1 P (ci) · log P (ci),

with P (ci) being the ratio of cells of (syntactic) type i over the total cells of a region.
Figure 18 reports the average IoU scores of the regions of the Deco dataset sorted by
their density and entropy. Both plots show that Mondrian is most successful with visually
heterogeneous regions: its performance increases with increasing cell type entropy and
has a sharp drop for regions with either very low densities, signaling a high number of
empty cells, or a low cell type entropy, where it is unable to perform its partitioning.
We note that the low score for regions with a density of 1, i.e., with no empty cells, is

60

3.4 Evaluation

Figure 19: Performance of Mondrian on template inference.

highly correlated to the score for an entropy of 0, as 1 192 out of the total 3 462 regions
have both a density of 1 and an entropy of 0. This behavior reflects the inefficiency of
visual partitioning for regions with few “visual irregularities”. In fact, these regions are
those where the connected component baseline outperforms Mondrian.

3.4.4 Template inference accuracy

In evaluating the template inference task, we rely on three external measures for
clustering: homogeneity, completeness, and v-measure [92]. The value range of all three
scores is [0,1], with 1 being a perfect result. Using the gold standard, homogeneity
quantifies how many data points in each predicted cluster belong to the same template.
For our problem, in a perfectly homogeneous solution, all files that are grouped
indeed share the same layout. Completeness, conversely, quantifies the percentage of
elements from the same template that are grouped. V-measure is the harmonic mean of
homogeneity and completeness. As described in Section 3.3.3, we group files transitively
based on their layout similarity being above a given threshold. We experimented with
thresholds in the range [0.7,1] and a spacing of 0.01. To save computational time
while repeating the experiments for different thresholds, we did not calculate the layout
similarities of pairs for which we can guarantee a threshold lower than 0.7. This pruning
was possible given the nature of our approach, where the similarity of two graphs is
bound by the absolute difference in their number of nodes, normalized by the maximum
number of nodes across the two graphs.

Effect of layout similarity threshold: Figure 19 shows the influence of the threshold
value on the results of template recognition using the regions automatically detected by
Mondrian in the static radius scenario, for the Deco and Fuste datasets. Considering
how, especially for Deco, there is a significant number of singleton templates, i.e.,
templates that occur in only one file, we report the results of our template recognition
approach for the full dataset as well as for the sub-set of files that constitute non-singleton
templates (175 files for Deco and 781 for Fuste, See Table 10).

61

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

Figure 20: Effect of region detection on template inference.

Increasing the threshold leads to a more selective behavior: for the maximum threshold of
1, homogeneity reaches a perfect value, as the resulting templates are always comprised
of one file and therefore trivially homogeneous. This is compensated by the drop in
completeness for high thresholds, especially noticeable in the Fuste dataset. This effect
is mitigated on the full Deco dataset thanks to the high number of singleton templates.
Overall, the performances of our template inference approach benefit from choosing high
thresholds: across the two datasets, the best v-measures are obtained with thresholds
between 0.95 and 1.00.

Sensitivity to number of regions To assess how the region composition of file
layouts affects the template recognition performance, we partitioned the evaluation
datasets into three groups: single region files, files with few regions (2 to 5), and
files with many regions (more than 5). In Table 11 we report the scores obtained by
Mondrian on the three partitions using a threshold τf of 0.99. Across both datasets,
the best performances are reached on files with many regions. Conversely, the lowest
homogeneity is obtained on single region files, where the layout graphs contain no edges
(or presumably a few, due to errors in region detection). This causes layout similarity to
be mostly influenced by the approximate region similarity, which causes a slight increase
in false positives.

Sensitivity to region detection strategy: The performance of our template
inference algorithm is also dependent on the results of the prior region detection phase.
To analyze the sensitivity of the graph matching to region boundaries, we experimented
with all the region detection strategies considered in Section 3.4.3 plus a configuration
using the manually annotated regions from the gold standard. Figure 20 reports the
v-measure for the different region detection strategies and baselines across datasets
(excluding singleton templates). First, we highlight how approaches with poor region
detection performances lead to low template recognition accuracies, most likely due to
building graphs for files with a high percentage of misclassified regions. As mentioned

62

3.4 Evaluation

Deco (τf = 0.99)
regions #files H C V

1 232 0.92 0.97 0.94
[2, 5] 470 0.97 0.98 0.98
≥ 6 150 0.99 0.98 0.99

Fuste (τf = 0.99)
regions # files H C V

1 495 0.98 0.68 0.80
[2, 5] 372 0.98 0.76 0.86
≥ 6 18 1.00 0.95 0.97

Table 11: Template inference at varying number of regions.

previously, the high v-measures reached by all strategies at a threshold of 1 are distorted
due to perfect homogeneity (all files are clustered individually). Surprisingly, for lower
thresholds, using gold standard regions does not lead to better results. We attribute this
effect to the increased complexity of the graphs produced with suboptimal regions: as
there may be potentially more automatically detected regions than needed, the resulting
graphs contain more (noisy) information and therefore show a greater absolute difference
in the case of different templates.

3.4.5 Scalability of template inference

Different region detection strategies not only influence the effectiveness of Mondrian’s
template inference step but also affect its complexity, measurable on the runtime. We
report the execution times for the template recognition task in Table 12, obtained as
the average run-times of our Python 3.8 scripts across three separate runs on a machine
equipped with an AMD Epyc 9 7702P Xeon 3,35 GHz CPU and 512 GB of RAM. The
results highlight the tradeoff between template inference accuracy and complexity: the
region detection strategies that proved to be better for template inference in Figure 20
are also the ones that need significantly more time to execute while using the region
detection results of the genetic-based and TableSense approaches leads to lower running
times and more imprecise results. When incorrectly detecting regions, Mondrian has a
higher number of graph regions due to its partitioning steps: larger graphs need greater
time for computation but lead to more precise similarity estimates. The slowest runtimes
on Fuste are obtained by Mondrian in the dynamic radius scenario, because of a few files
containing many nodes (above 200) that lead to expensive graph similarity computations.
For this dataset, both the static radius and connected component strategies are faster
because having a fixed radius and no region partitioning leads to fewer detected regions.
Comparing Mondrian across datasets, the runtimes on Deco are lower: as this dataset
is characterized by fewer templates, more file pairs with no similar region are pruned.
The same pruning strategy is less effective for connected components on Deco because
without a clustering stage there are more spuriously similar regions across files.

Figure 21 shows the influence of the number of files and percentage of empty cells in files
on the computational time of template detection using perfectly recognized regions. For

63

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

Figure 21: Effect of the number of files and empty cells.

Strategy Template inference time (s)
Deco Fuste

Gold standard 93.39±0.26 78.87±0.77
Dynamic radius 1 563.51±2.91 8 515.46±194.55

Static radius 343.13±3.81 2 749.20±13.04
Conn. Comp. 15 887.50±127.12 3 529.21±76.67

Genetic (XLS) 102.32±0.51 75.12±0.96
Genetic (CSV) 114.76±1.58 75.13±0.34

TableSense 361.46±47.47 51.54±9.37

Table 12: Time performance of template inference.

the former, we experimented by selecting random file sub-samples, with a step size of 50.
For the latter, the sub-samples corresponded to all files with a number of empty cells
up to a given percentage of the total file area, with a step size of 0.05%. In both cases,
the file sets were sampled without repetition until full coverage of the dataset. The plot
shows that the performances with respect to the number of input files follow a quadratic
behavior, as Mondrian performs layout comparison for each pair of files in the input set.
In turn, increasing the percentage of empty cells leads to a logarithmic behavior.

Therefore, we conclude that the most impactful factor affecting the complexity of
Mondrian is the number of input files, as well as the correctness of the region detection
stage: detecting regions and multiregion file templates automatically with Mondrian
provides a convenient tradeoff between complexity and correctness.

64

3.5 Data preparation with Mondrian

Figure 22: Detailed view of three real-world files sharing the same multiregion layout.

3.5 Data preparation with Mondrian
In this section, we demonstrate the interactive components and the graphical interface
of Mondrian following a demonstration scenario. The Mondrian system with the dataset
we use in this section, plus two additional datasets for exploration, is available online8.

Consider a data practitioner interested in analyzing the historical United States
population data, retrieved from the open data portal of the United States Census
Bureau9. The summary tables for the censuses of several years are available in
spreadsheet format, as a collection of CSV and XLS files. The files that contain the
same tables all share the same layout: they have similar title and footnote cells, and all
their tables (when more than one) have the same schema (see Figure 22).

The goal of the practitioner is to consolidate the information contained in different tables
in a single source of truth, e.g., a relational database, to enable querying, analysis, and
visualization. Because there are slight differences in the files across years, automatic
extraction is not trivial. To isolate the tables, the practitioner needs to inspect each file
individually and split it according to its structure.

Considering the three files in Figure 22, for example:

• in the footnote region, the last cell reflects the year, and sometimes cells have
different content while the semantic meaning is the same (E.g., “Source: Population
Division, U.S. Census Bureau” and “Source: U.S. Census Bureau, Population
division”)

• The tables themselves have a different number of columns across files, and their
headers are updated.

• Because of different table lengths, footnotes appear in lines 41–47 in one of the files
and in lines 43–49 in another.

• The table title also changes from “Table 11” to “Table 18”.

Nonetheless, it is obvious at a glance that the three files come from the same layout
template.

8https://hpi.de/naumann/sites/mondrian/demo
9https://www2.census.gov/programs-surveys/popproj/tables/(accessed Jul. 15, 2023)

65

https://hpi.de/naumann/sites/mondrian/demo
https://www2.census.gov/programs-surveys/popproj/tables/

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

Figure 23: Region detection page with file layout regions.

To automate the preparation of this spreadsheet dataset, the practitioner can exploit
Mondrian’s user-friendly web interface, based on the unsupervised layout and template
detection approach described in the previous sections. At the time of file upload,
Mondrian automatically performs the image parsing and region detection steps. The
results of these processes can be viewed on the Region Detection page (Figure 23), which
displays the content of a single file, both in tabular format and as a Mondrian image
(Section 3.3).

Colored rectangles represent the boundaries of the automatically detected regions both
on the tabular and the graphical file view. Clicking on a rectangle prompts an edit mode,
where the user can interactively change the detected regions’ boundaries by performing
drag-and-drop actions. Additionally, entire regions can be added and removed. For ease
of use, all interactive actions can be performed either on the tabular view or on the
compact graphical view. To leverage the results of the region detection phase and assist
users in their further preparation of single multiregion spreadsheets, this page also offers
a split feature to create a separate file for each of the detected regions. Moreover, if the
layout of the file belongs to a template, users can select a given region and extract that
region from all files of the same template, using the procedure described in Section 3.3.

To analyze an entire collection of uploaded files and exploit the automated Mondrian
layout template matching, users can resort to the Template Detection page (Figure 24).
The page shows two panels: the panel on the left contains a list populated with the
various layout templates found in the dataset. Each entry contains the names of the
files sharing the same template. The page allows interactive manipulation of the list:
with drag-and-drop actions, users can move files from one template to another, as well

66

3.5 Data preparation with Mondrian

as create new, empty templates. From the list, each template can be downloaded as a
ZIP file containing all its files.

The panel on the right contains three tabs with additional visualizations for templates
and their files: the details tab, the gallery tab, and the compare tab. The first tab
shows the details of a given template selected from the list. Among other information, it
contains the pairwise layout similarity of the files belonging to a selected template. By
inspecting these scores, users can gain a more in-depth understanding of the reasons that
led Mondrian to its clustering decisions. The second tab, selected in Figure 24, displays
a gallery view of the renderings for all the files belonging to that template. The gallery
shows the Mondrian images for all files that belong to a template. Even from a cursory
glance, it is possible to validate the results of the template detection and spot possible
outliers by visual inspection of the images shown in the gallery.

From the list on the left or from the gallery view, users can select pairs of files for
further inspection. A detailed comparison for the selected pair of files then becomes
available in the third tab of the right panel (Figure 25). Here, users can find information
about the number of detected regions for each of them, as well as their layout similarity.
Additionally, this tab presents a side-by-side comparison of the two files’ data content
and their image rendering.

Finally, to leverage the information about the discovered layout templates, Mondrian
can provide users with a downloadable CSV file that contains the template statistics
for the dataset: a list of files with their corresponding template, and the average layout
similarity to every other file in the same template.

In our US Census Population scenario, out of 99 different spreadsheet files, the system
identified 15 different layout templates. A histogram of the number of files per template
is shown in Figure 26. The median and mode of the distribution are both 5, as most
templates contain 5 files. The dataset contains 4 different singleton templates, and the
template with the highest number of files contains 27 files. All non-singleton templates,
except for one, contain files from different years. Upon further inspection, two pairs of
singleton templates had files with the same structure, but one contained floating-point
numbers and the other integer numbers. After interactively readjusting these templates,
and knowing which files share the same layout, the user can trivially extract the data
tables and consolidate them in a relational database.

67

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

Figure 24: Template detection page: gallery view.

Figure 25: Table detection page: comparison view of two files.

Figure 26: Histogram of the number of files per template.
68

3.6 Summary

3.6 Summary
In this chapter, we proposed Mondrian, a system that leverages (1) an explicit graph-
based representation of file structure to identify the layout of a multiregion file; and
(2), an implicit, similarity-based representation to identify the occurrence of templates
within a collection of files. Thanks to these representations, we assist users in the data
preparation process of multiregion datasets, by automatically detecting the boundaries
of the same regions across different files.

Experiments show that our approach works well in detecting the boundaries of different
regions in a multiregion spreadsheet and in identifying layout templates, even though
further research can be done to improve the accuracy of the results.

Future work may focus on a finer-grained structure similarity computation, e.g.,
having more semantic types for cell contents, to better identify structural patterns
and correlations within templates. Moreover, an interesting direction is providing
explicit representations for layout templates, given their usefulness for a variety of data
preparation tasks.

69

3. MONDRIAN: MODELING LAYOUT TEMPLATES OF
MULTIREGION FILES

70

Chapter 4

MaGRiTTE: a Machine-Learning
Model for File Structure

In this thesis, we argue how all data preparation steps share the over-arching goal of
understanding and transforming the structure of a file so that its payload can be parsed
correctly. As motivated in Section 1, data scientists often address data preparation
problems individually, applying several tools and solutions.

Some examples of tasks addressed with ad-hoc solutions are:

• inferring the dialect characters of a file and parsing its payload [12, 28];
• classifying the row type of file rows according to their structural role (header, data,

footnote, comment, etc.), using row-level embeddings [40, 56, 84];
• extracting multiple tables that span multiple rows or columns [21, 116].

Contrary to specific frameworks for individual problems, in this Section we present
a unique, task-independent model to represent file structure, pre-trained on a large
and structurally diverse set of files. With such a general model, file structure can be
represented in vectorial embeddings that can be used either by the model itself to address
structural preparation, or as external features to enrich other specialized models.

Inspired by the success of representation learning and pre-trained models in fields like
natural language processing [87, 91, 112] and computer vision [42, 44, 102], we propose
Magritte, a framework to encode cell-level, row-level, and file-level structure of tabular
files as vectorial embeddings. The name stands for MAchine Generated Representation
of Tabular files with Transformer Encoders.

The motivation for a specialized architecture stems from the fact that existing approaches
for representation learning, including general-purpose large language models [27, 87]
and specialized tabular data models [52, 101, 104, 120, 123], focus on downstream
tasks operating on the payload of files and therefore assume a correct parsing of file
structure. We experimented with such models (as reported in Section 4.1) but found
them inadequate to address structural preparation tasks.

Magritte is a pretrained model, composed of transformer and convolutional layers,
specialized to represent file structure for data preparation. We train this large model in

71

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

a self-supervised fashion, leveraging almost 1M real-world tabular files from the GitTables
corpus [50]. We presented the initial idea as an abstract in [114]. This chapter is based
on a full paper currently under review. Specifically, the contributions of this chapter are:

1. The Magritte architecture: a large deep neural network model aimed at
representing the structure of CSV data files in high-dimensional vectorial
embeddings, with a novel pattern tokenization strategy and two novel pre-training
tasks, structural masking and same file prediction.

2. Fine-tuning strategies to apply the main Magritte model to four preparation
tasks: dialect detection, table understanding, column type annotation, and
preparation effort estimation, with their experimental analyses. The latter is a
novel problem, identifying the effort required to transform the structure of a source
file into that of a target file.

3. A dataset of 875 real-world files with their annotated column types, a dataset of
manually annotated 100 real-world source-target file pairs with their preparation
scripts, all the trained models with their weights, and their code1.

We organize the discussion of the rest of the chapter as follows: in Section 4.1, we
discuss our initial trials on using LLMs for structural preparation, and motivate the
need for a specialized framework in light of their shortcomings; in Section 4.2, we
discuss the main architecture of Magritte, its components, and training objectives;
Section 4.3 proposes three different fine-tuning strategies to apply Magritte for the
data preparation tasks of dialect detection, table understanding, and data preparation
effort estimation; Section 4.4 presents the results of our experimental evaluation; in
Section 4.5, we discuss how Magritte compares with related work; we conclude the
chapter with a summary and an outlook of future work in Section 4.6.

4.1 Data preparation with LLMs?
With the advent of Large Language Models (LLMs) like those in the GPT family [87],
recent research has experimented with the use of these models for traditional data
wrangling/cleaning tasks, for example in [76]. The intuition of this approach is to use a
pre-existing LLM and perform zero-shot or few-shot inference to solve data management
tasks. We performed an exploratory analysis using the state-of-the-art LLM GPT3.5 (in
its version davinci-003, like in [76]) to explore its capabilities to solve structural tasks
like dialect detection and row classification in a CSV file. To find the best prompt for
the model, we spent at most one hour per task and then ran queries to test dialect
detection on a subsample of 100 files from the ones we use in Section 4.4.2, and to test
row classification on a subsample of 120 files from the ones we use in Section 4.4.3. A
selection of the prompts and responses can be seen in Figure 27. Unfortunately, our
experience dissuaded us from pursuing this approach for several reasons:

Input considerations: The model proved quite sensitive to the prompt and file content.
In the example shown in Figure 27, when asked to detect the “dialect” of a file, it
responded with “CSV (comma separated values)”, which not only does not correspond
to the intended response but may also be considered factually incorrect as the input file

1https://github.com/HPI-Information-Systems/Magritte

72

https://github.com/HPI-Information-Systems/Magritte

4.1 Data preparation with LLMs?

values were separated by semicolon. However, when prompted to return the delimiter,
quotation, and escape characters, it replied with a correct answer.

Figure 27: Sample queries to GPT-3.5 with their output to address structural tasks.

73

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Output considerations: The responses of the model, being in natural language, may
be ambiguous and require parsing rules themselves. For example, in Figure 27, in one
instance the response stated that the file quotation is a double double-quote mark “""”.
It is unclear if this corresponds to an empty value within quotes for formatting because
the delimiter response “","” may suggest so. But the escape response, as well as other
responses, suggests that otherwise null characters are indicated with the string “None”.

Generalizability considerations: Given the highly stochastic nature of LLM, and
the fact that they have been trained on a massive set of data, two considerations hinder
a serious experimental evaluation of their generalizability performances. First, the files
used for experimenting have possibly already been seen by this model, being publicly
available at the time of the training of these models. Second, the seemingly innocuous
content of a file may lead the model to “hallucinate” outside the given prompt [54]. We
stumbled on an example, highlighted in Figure 27, where an input file containing the
text “Ruby” led the model to respond with “Ruby” as its dialect. Finally, large language
models are tools specialized in natural language tasks, and it is unclear how well their
embeddings can apply to unseen numeric data, as examined by [88].

Repeatability considerations Most state-of-the-art LLMs, like GPT [11] and
PaLM [20], are proprietary and closed-source models, accessed through API calls. This
limits any repeatability for experiments since there is no guarantee that, in the future,
the internals of a model will not change (as they already did in the past years), or that
the models themselves will still be available. While some attempts towards open-sourcing
these architectures are underway [109], they still require significant hardware resources
to reproduce their performances.

These considerations make LLMs unreliable and hard to integrate into a data
management pipeline. Therefore, we resolved to pursue the design of a specialized
framework for structural preparation: one that generalizes well with unseen files and
is not sensitive to their content; not designed for natural language input/output but
rather to be integrated with automated data management components; and that can
be run on commonly available hardware. The next section introduces Magritte, our
framework that addresses these challenges and represents tabular file structure.

4.2 The MaGRiTTE architecture

The key intuition of Magritte is to design a model that captures the structural
information of files by abstracting away the details of their payload. To achieve this scope,
we designed a specialized tokenization step for file rows that retains special characters
and shrinks sequences of non-special values, creating row patterns that resemble regular
expressions and abstract away details of the payload. In this way, our model is forcefully
led astray from the semantics of data values and focuses on the structure of rows.

Row patterns are fed as input to a transformer-based encoder, modeled after BERT [27],
which learns a representation for each of the rows of the file. We also introduce two
new training objectives for pre-training: masked structural modeling (MSM) and same-
file prediction (SFP). In the first task, we train the model to correctly predict special
characters in file rows, which mark their structure; in the latter, we train the model

74

4.2 The MaGRiTTE architecture

Figure 28: Three-tiered architecture of Magritte.

to classify whether two rows belong to the same file or not. Once row embeddings are
produced by the transformer layers, a convolutional-based encoder based on ResNet [44]
reduces row-level embeddings into a single, condensed representation to embed the
general file structure. The convolutional encoder is trained together with a twin decoder,
as an autoencoder.

The architecture of Magritte leverages three components, aimed at representing three
levels of a tabular data file: cells with their sequence of characters, rows with their
sequence of cells, and files with their sequences of rows. An overview of the whole
architecture is presented in Figure 28. We briefly introduce the three components in the
following paragraphs and then describe them in detail in the remainder of this section.

The training of our model does not require any previous knowledge about a file’s dialect
to identify tabular cells and rows, but rather uses unsupervised learning to understand its
structure. To make this possible, the first step is what we call pattern tokenization: this
step produces a fixed-length sequence of tokens for every row. In Figure 28, individual
tokens are named t0

0 to tN
M , where N identifies the number of file rows, and M identifies

the length of the token sequences. This step returns, for every row, a sequence of tokens
where special symbols are left unchanged and alphanumeric characters are abstracted
away. Explicitly assigning tokens to special characters and abstracting cell values
promises to highlight the structural elements in the rows. This is syntactically relevant
because cell values are typically surrounded by symbols like delimiters or quotations.

The next component is a transformer architecture to encode the tokenized rows. This
architecture is composed of six attention layers with twelve attention heads each,

75

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Figure 29: Sample pattern tokenization for a raw file - the second line gets truncated
due to token overflow.

encoding the structure of every token, and that of every row in vectors of dimension D (set
to 768 in our experiments, following the BERT architecture). To train the transformer
layers and focus their attention on structural rather than semantic features, we designed
two novel pre-training tasks (described in detail in Section 4.2.2) that operate on file
rows. The pre-training is carried out on millions of rows from real-world CSV, from
scratch.

The final component of Magritte aims at providing a single embedding, of dimension
K (after experimentation, set to 128), to capture file-wise structural features. This
embedding is obtained using a convolutional autoencoder architecture, trained to
reconstruct the row-wise feature maps produced by the structural transformer. The
intuition behind the use of convolutional layers is their capability to capture spatial
features and local structures. The remainder of this section explains in further detail
each of these components.

4.2.1 Pattern Tokenization

The first component aims at abstracting away the semantic information about the
payload of a file and forces the model to focus on its structural properties. This is done
by tokenizing the raw character stream of a file into what we call structural patterns.
Figure 29 presents an example of such tokenization. First, the character stream is split
into rows according to newline characters. We note that, generally, such rows may not
always correspond to whole records of a file’s table, due to possible enclosing quotation
marks that signify the presence of a newline within a cell value.

For every row, we tokenize it according to all the special characters that it contains. Then,
we abstract everything in between two special characters with a pattern. We define a
pattern to encode either a single character or a sequence of alphanumeric characters:

• A single lowercase letter is represented as "l", and contiguous lowercase letters are
represented as "l*".

• A single uppercase letter is represented as "L", and contiguous uppercase letters
are represented as "L*".

• A single digit is represented as "d", and contiguous digits are represented as "d*".
• A single pictogram, ideogram, or other non-syntactic symbols (e.g., emoji or

logogram) is represented as "S". Contiguous symbols are represented as "S*".
• Contiguous strings of lowercase, uppercase, and symbolic letters are represented as

"T" (for text).
• Contiguous strings of numbers and text are encoded as "A" (for alphanumeric).

76

4.2 The MaGRiTTE architecture

Even though we don’t explicitly assume the tokenization of file rows to be consistent
within the same file, we deem it a highly probable occurrence. Related data preparation
research demonstrated the solidity of this assumption, by leveraging row consistency
to detect or repair erroneous rows [40, 84]. For example, tabular columns containing a
number with periods separated with a dot as a decimal delimiter would all be represented
with a "d*.d*" pattern, irrespective of their value. Due to the different lengths of cell
values, however, the resulting tokenization of rows may not always align across different
records. As described in the next section, Magritte compensates for this effect with
the attention mechanism of the row embedding transformer. Overall, the dataset we use
for pre-training [50] contains 409 unique pattern tokens in its vocabulary.

4.2.2 Structural Transformer

Once the content of a file has been tokenized with structural patterns, the goal of
Magritte is to encode structural features into token- and row-level embeddings. The
intuition of Magritte is the use of a transformer neural network architecture, leveraging
the attention mechanism to learn which tokens carry more structural information.
Transformer models were originally developed for language translation tasks [112], with
an encoder-decoder architecture that leverages the concept of attention. With attention,
a model is trained to recognize the context of a word by looking at all other words in an
input sentence [27, 112]. In the natural language domain, the attention mechanism
provides the ability to learn long-range dependencies between words in a sentence.
Encodings obtained with large language models have proved very successful in a wide
variety of NLP tasks [27, 91], have shown to encode numbers with a certain degree
of numeracy [119], and have also been used for learning tabular representations and
performing data-cleaning tasks [26, 52, 124].

Representing the structure of a file can be thought of as a special language modeling
task since the composition of data files also follows grammatical, syntactic, and semantic
rules. The second component of Magritte is composed of a sequence of transformer
encoder layers whose (pre-)training stage is specialized for the structural tokenization of
file rows. Adapting the tasks used in [27], these structural transformers are pre-trained
on pairs of file rows. The two input rows are tokenized using our pattern tokenization and
concatenated with two special tokens: one prepended at the beginning of the sequence,
the classification token [CLS], and one between the first- and the second-row tokens,
the separation token [SEP]. Once pre-trained, the [CLS] token vectors will embed a
row-level representation. The separation token is used to separate the two rows of a
combined input.

Transformer layers require input sequences of a fixed size M . As reported in Section 4.4.1,
we experimentally set this dimension to 128. Since pairs of file rows may have a different
number of input tokens, we reserve (M/2) − 1 tokens for each row: rows with more
tokens are truncated, while shorter ones are padded with the padding token [PAD].
The positions of padding tokens are fed as input to the encoding layers of the model
to exclude them from attention calculation. Using these input sequences, we pre-train
the transformer layers of Magritte on two novel training tasks: Structural Masking
Modeling and Same File Prediction.

77

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Structural Masking Modeling The first objective is inspired by the Masked
Language Modeling task, which is defined for natural language sentences. At training
time, we randomly substitute 15% (the standard rate in literature) of each file row’s
special character tokens with a different token and force the model to predict the
original token. Following state-of-the-art practice, we mask special tokens with the
ad-hoc masking token [MASK] with an 80% probability; with a 10% probability, they are
replaced with another random token from the training dataset, and with the remaining
10% probability they are not replaced at all. Following [27], this setup leads the model
to better generalization rather than simply masking all tokens with the mask token.

Our masked modeling is restricted to special character tokens: we want to push the
encoder to encode structural information rather than file cell content. We believe this
training is robust and general regarding file structure due to the tokenization strategy.
Splitting on special characters regardless of their role within a file means that, in solving
the structural masking task, Magritte has to learn the difference between special
characters that belong within a cell (e.g., a comma delimiting the digits of a number)
and those with a structural role (e.g., a comma as cell delimiter). For this, the attention
mechanism of transformer encoder layers plays a vital role: the context of a token may
help Magritte to recognize, for example, that a comma may occur within two quotation
characters. Moreover, our training set includes a wide variety of files with different
dialects, discouraging Magritte from overfitting on a given dialect.

Same File Prediction In this task, the model is trained to classify whether the
two rows belong to the same file or not. To do so, the model uses a logistic regression
classifier, which takes as input the encoded representation of the [CLS] token of the input
sequence. Rows from different files have different structural properties like the number of
cells, dialect characters, or different data types. Therefore, by learning to solve this task,
Magritte is trained to produce row-level encodings that take into account the context
and occurrence of special tokens. Although the same file prediction task is technically a
supervised learning task, the creation of a suitable dataset of file rows does not require
any manual labeling, since labeled pairs can be obtained trivially by sampling from the
same or different files.

Following the BERT architectural design [27], the structural transformer of Magritte
is composed of 6 transformer encoder layers with 12 attention heads each.

4.2.3 Convolutional Feature Extractor

Although row-level embeddings may capture fine-grained structure, there are structural
features that pertain to the file level and not to individual rows: for example, the presence
of multiple header rows or multiple tables [116]. Moreover, it is useful to condense
multiple row embeddings into a more synthetic representation of the whole file. The
third component of Magritte, the convolutional feature extractor, aims at encoding
file structure.

To capture these features, locality plays an important role: portions of the file that are
close together, such as neighboring cells or subsequent rows, are more likely to possess a
similar structure than those that are farther away. To account for locality, Magritte’s
file embedding component uses a convolutional neural network (CNN) architecture for

78

4.3 Data preparation with MaGRiTTE

feature extraction. The particular characteristic of convolutional layers is the sensitivity
to the spatial distribution of values – a feature that made them particularly successful
for image recognition tasks, but that has also been applied to structured data to perform
tasks such as table recognition on CSV files [41].

The file-embedding component is trained as an autoencoder model [59] inspired by
DCGANs [86], composed of a convolutional-based encoder and an inverse convolutional
decoder. The input to the encoder layers is the feature map obtained by stacking the
row embeddings of the previous stage for all file rows. To fix the input dimensions for
the training of the convolutional layers, we set the number of input file rows to 128. For
files with fewer rows than required for the input, we include padding rows that contain
only the [CLS] and [SEP] tokens (note that [SEP] is used as the end-of-sequence token
during the transformer pre-training stage). For files with more rows than required, we
use truncation.

The Magritte file encoder uses a ResNet-18 [44] architecture adapted with an input
convolutional layer reading feature maps with the depth of the row embeddings (768) and
outputs a single-dimension encoding of size 128. The Magritte file decoder, used for
training the encoding stages, mirrors the encoder: it uses a reverse ResNet-18 architecture
to reconstruct the original feature maps. The file encoder stages are trained using the
reconstruction loss between the input feature map and the output feature map, calculated
as the Mean Squared Error (MSE), but without taking into account the padding values
for uneven rows/files.

The embeddings generated by Magritte can be leveraged to perform individual data
preparation tasks. In the next subsection, we report on the adaptation of Magritte to
address data loading, table understanding, and preparation effort estimation.

4.3 Data preparation with MaGRiTTE

To leverage the payload of tabular data files in a data-driven pipeline, several preparation
steps are often necessary. The first prerequisite to loading tabular files is knowledge
of their dialect. A file’s dialect is composed of the characters used to delimit cells,
quote their values, and escape quotation characters within cells. Although standards
exist for file dialects [94], many real-world files are formatted with different dialects,
e.g., because of international localizations, or data values containing dialect characters.
When metadata about the dialect is not available, dialect detection is required to parse
the file. However, dialect detection is often not sufficient to fully leverage the payload of
a tabular file.

In fact, the representation of a table within a file does not always follow a row-oriented
structure where the first row represents the table header and each following row represents
a data record (see Figure 30). Apart from occasionally empty rows/columns, rows
may serve different purposes, e.g., footnotes, preambles, or group headers [56, 63],
column names may be missing or non-descriptive [101, 127], or files may have several
tables [21, 116]. With automated preparation far from being a reality [66], each of these
potential problems requires user efforts to address, which notably make up most of the
practitioners’ development time.

79

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

In the remainder of this section, we describe three fine-tuning strategies that extend the
Magritte architecture with classification and regression heads to address several data
preparation tasks: dialect detection (in Section 4.3.1), row classification and column
type annotation (in Section 4.3.2), and data preparation user effort estimation (in
Section 4.3.3).

4.3.1 Dialect Detection

Dialect detection is often required to parse tabular files that do not follow the CSV
standard, which is not a rare occurrence [50, 75, 113]. Typically, heuristic or frequency-
based algorithms are applied [12, 28, 49]. The task is still challenging and far from
solved, as demonstrated by the benchmark results of Chapter 2 [113], because of several
reasons:

1. Algorithms fail to detect uncommon dialects because they are not designed to
recognize such cases, e.g., have a restricted vocabulary;

2. Files may have inconsistent rows with different dialects, e.g., due to metadata or
multiple tables;

3. Files may have broken dialects, e.g., with missing escape characters, that leads to
incorrect detections.

To overcome these shortcomings of traditional approaches, we formulate dialect detection
as a syntactic tagging task: given character spans of file rows, the goal is to classify
whether each token corresponds to a cell value ("C"), to a cell delimiter ("D"), to a
quotation mark ("Q"), or an escape character ("E"). Our problem formulation aims to
overcome the aforementioned limitations because classifying individual file characters
according to their dialect role does not restrict the output to a fixed vocabulary and is
more robust to row-level inconsistencies or broken dialects.

To use Magritte for the dialect detection task, we fine-tune the general architecture
using a classification head that takes as input the concatenation of each token-level
embedding with the corresponding row embedding (represented by the [CLS] token),
and with file embedding resulting from the convolutional encoder.

The classification is a logistic regression that outputs the logit probabilities for each of
the input file tokens to be a cell, delimiter, quotation, or escape character. As training
loss, we use the cross-entropy losses calculated on the whole sequence of file tokens. The
final unique dialect characters are chosen as the ones corresponding to the tokens most
frequently tagged as delimiter, quotation, and escape character. If, within a file, no token
is classified as being a delimiter (or quote, or escape) we consider the file as having an
empty delimiter ε (or quote, or escape).

4.3.2 Table Understanding

Much research has been devoted to the general area of table understanding [26, 125],
to automatically extract the metadata necessary to leverage the data contained in a
file. Some examples of tasks in this area are column type annotation [100, 127], entity
linking [67], or schema augmentation with related data [30]. These tasks are even more
challenging for real-world files, such as the one shown in Figure 30, since all proposed

80

4.3 Data preparation with MaGRiTTE

Figure 30: Table understanding results on a real-world file from the SAUS
dataset [36] (excerpt, and visually aligned for clarity). A clean version of this file
would only include the header and data rows, with descriptive column names.

solutions operate on relational tables, which first need to be extracted from unprepared
files [21, 56, 116].

In this section, we apply Magritte to perform the necessary preparation for table
understanding. We use Magritte to classify file rows (e.g., as header, metadata,
or data), and use these results to extract tables on which we perform column type
annotation. Since the representations learned by Magritte are focused on the structural
features of files, while other approaches only take cell content into account, we propose
solutions to combine state-of-the-art approaches [56, 101] with Magritte, in a hybrid
solution. Our experiments in Section 4.4.3 show that using the structural embeddings of
Magritte to prepare these files increases the performances of existing approaches.

Row classification The goal of the task of row classification is to identify the header
and the data records to obtain a relational table, while recognizing and extracting the
useful metadata contained in other rows. This problem has been formulated in slightly
different variations, for example as a binary classification of data/non-data rows in [21],
or as a graph partitioning problem in [63], depending on the assumptions on the input
files. Since the focus of Magritte is on tabular files, and to perform an adequate
comparison, we consider the same conceptual model and problem formulation used in
the state-of-the-art approach Strudel [56], a random forest classifier.

In this formulation, row classification is considered a multi-class classification problem
where a row of a file can belong to one of the following classes, mutually exclusive: header,
data, group, derived, metadata, and note. The header rows contain the column names
of a table; data rows represent the records of a table; group rows organize the table into
sub-tables (groups) and represent the header for a given group; derived rows contain data
that is the result of some operation on data rows, e.g., a total, average, or aggregation;

81

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Figure 31: Fine-tuning architecture of Magritte for the row classification task.

metadata and note rows contain metadata information respectively before and after a
table. For a more detailed description, refer to the original paper [56].

To utilize Magritte for the row classification task, we fine-tune it with a shallow
classification head consisting of two logistic layers, illustrated in Figure 31. The first layer
takes, for every row, all the 128 token-level embeddings, which all have 768 dimensions,
and condenses them into a single dimension. The second layer combines the output of
the first layer with the file-wise embedding computed by the convolutional encoder and
outputs the class probabilities for each row.

We also experimented with the combination of Magritte and the SOTA model,
Strudel. In this scenario, we feed the class probabilities calculated by Magritte
and consider them as additional features of Strudel, both during the training and
inference stages. Section 4.4.3 presents and analyzes the experimental results.

Column type annotation Column type annotation is defined in [26] as the task of
annotating a column c of a relational table T with a semantic type l ∈ L such that
all values in c belong to l. Typically, the semantic types associated with columns are
highly descriptive, for example, “Professional Athlete” for a column of person names,
or “Publication Date” for a column of dates. Successfully addressing the task for
clean, standard relational tables is already challenging and the subject of wide research
interest [26, 51, 100, 101, 127], given its importance for tasks such as data integration
and discovery. In this paper, we focus on solving the task for real-world tabular files that
do not have a standard relational tabular structure (see Figure 30).

Considering the combined structural and semantic nature of the task, we propose an
end-to-end framework that combines Magritte, Strudel, and RECA [101], the state-
of-the-art system for column type detection. RECA is a framework that annotates the
columns of a table by combining a machine-learning architecture based on the pretrained
BERT model [27], with contextual information from different tables with semantically
similar content. Therefore, it assumes a dataset of relational tables and cannot directly
be applied to raw tabular files. We bridge this gap using the structural embeddings
produced by Magritte.

First, for all files in the dataset, we obtain structural embeddings with the specialized
Magritte model for row classification described in the previous paragraph. Then, we

82

4.3 Data preparation with MaGRiTTE

combine these embeddings with the features computed by Strudel and run our Hybrid
row classification model. Using the row classes computed by our Hybrid system, we
define a simple set of heuristics that can be easily automated to extract relational tables
out of a dataset of raw files:

1. We delete empty rows and those classified as metadata, note, and derived.
2. In the case of multiple detected header rows in the file, we merge them together

into a single row, each value being separated by a whitespace character.
3. If there are multiple tables (defined as multiple stretches of header followed by

data rows), we extract the first table.
4. If there is no data row, we exclude the file from our dataset.

Finally, we train and validate RECA on unprepared, automatically cleaned, and manually
cleaned versions of the dataset and compare the results. Our experiments in Section 4.4.3
show the combined value of our framework for the task of column type annotation.

4.3.3 Preparation Effort Estimation

In this section, we introduce a novel data management task, which we call preparation
effort estimation. We believe that accurately estimating how much user effort is required
to prepare a given file is useful for several aspects: for time management in data-driven
projects, for estimating the cost of using a given data source, e.g., in a data market
scenario, or to help choose the most suitable data, trading off cost and benefit.

Given an input file f , we assume that, for a given task, there is a unique target f ′. We
consider the file f ′ to be unknown before data preparation, but to be approximated with
a template file t. The data scientist’s goal is to match the content of f to the structure
of t. We define a template file to be a file with the same structure of f ′ and generally
different payload, for example, another prepared file from the same project, or one with
dummy data easily generated as a specification file by the end-user.

Given the set of all possible preparations P, a target file f ′ can be considered Pt(f), the
preparation of f to the structure of t. Estimating the preparation effort for a given file f
and template t corresponds to finding a distance function δ that measures the structural
difference between two files regardless of their content, such that δ(f, t) = δ(f, f ′)
but δ(t, f ′) = 0. Based on these assumptions, we define the model-based preparation
estimation problem as:

Given a set of tabular files F , a set of preparations P, and a set of target files T , find
a structural distance function δ such that:

δ(f, t) = δ(f, f ′) ∧ δ(t, f ′) = 0 ∀f ∈ F , ∀Pt ∈ P × T

While extensive research has been devoted to the estimation of software development
costs (SDCE) [7, 8, 57, 58], fundamental differences make these methods unfit for
estimating data preparation efforts. For example, frameworks based on mathematical
models like COCOMO II [8] or ESTIMACS [93] define a set of equations that take into
account several factors, such as the number of lines of code, the number of functionalities
offered by the software (function points), or the size of the teams involved in the
development. To estimate preparation effort, such metrics are not relevant: because most

83

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Figure 32: Fine-tuning architecture of Magritte for the data preparation effort
estimation task.

of the user efforts are spent on data exploration, wrangling, or normalization, they are
invisible to metrics purely based on the length of programming language code. Moreover,
traditional SDCE models make use of these features in formulas with parameters tuned
with data from historical projects that were available at the time of the development of
these models.

Presently, we are not aware of any model specifically proposed to estimate these efforts
quantitatively. We also caution on the application of expert-based techniques, such as the
Delphi or Work Breakdown Structure techniques [25, 105], for estimating preparation
efforts: first, because new projects/datasets carry a unique set of potentially unseen
problems [45]; second, because of the relative infancy of the field, reliable expertise may
be hard to come across [66].

With Magritte, we propose a learning-oriented approach that is grounded on pairs
of unprepared/template files and leverages the file embeddings calculated by the
convolutional stage of Magritte and a shallow head composed of two regression layers.
We illustrate the regression head visually in Figure 32.

Given the two files, we compute their row-level and file-level embeddings. For each file,
we sample the embedding of the [CLS] token for each row and use the first fully connected
layer to extract a feature vector of dimension 128 (corresponding to a single value for
each of the maximum file rows). Then, we concatenate the sampled row embedding and
the convolutional file embedding for each of the two input files into a single vector of
dimension 512. The second and final layer is a fully connected regression node taking
the row encodings computed by the previous nodes along with the convolutional file
embeddings of the two files, and computing a single number that estimates the structural
difference between the two files. To normalize the estimate to the range [0, 1], we feed it
through a sigmoid layer. We train Magritte with this regression head using the mean
squared error between the computed estimate and the ground truth.

84

4.4 Experimental results

To quantify user effort, we use as a proxy the length of the preparation scripts defined to
clean dirty files, acknowledging that this is a simple, coarse-grained measurement. Other
measures, such as computational or I/O time, or number of performed instructions, would
not necessarily reflect the user effort in specifying the operations. For example, filtering
all values in a column of a very large file with a specified regular expression may take
only a short time to specify, but a rather long processing time. Even if limited in scope,
we believe that our contributions in this paper may lay the foundation for an unexplored
area of data engineering research.

4.4 Experimental results

In this section, we present the results of our experimental analysis of Magritte. First,
we report on the pre-training procedure and the hyperparameter selection. Then, we
present experiments to assess the application of Magritte for several real-world data
preparation tasks: dialect detection, row classification, column type annotation, and
preparation user effort estimation. Each of these tasks is evaluated using real-world,
publicly available datasets, and compared with relevant state-of-the-art approaches;
details are reported in individual subsections. All experiments were conducted on a
machine with an AMD Epyc 7720P@2.00 GHz CPU and an NVIDIA RTX A6000 GPU
with 48 GB of dedicated memory.

4.4.1 Pre-training

To pre-train the overall Magritte architecture towards structural embedding, we use
the raw files from the GitTables dataset [50], which consists of over 850 000 publicly
available tabular files from GitHub. We note that, although these files are marked with
the CSV extension, they do not necessarily conform to the RFC standard [94], and may
generally have metadata lines along with tables, non-standard dialects, or inconsistencies
between rows. We believe these features make the pre-training of Magritte more robust
towards different types of tabular files. From each of the GitTables files, we sample 2 500
rows from each file (sampling with repetition for files having fewer rows than that). Then,
we create a balanced dataset of 10 million row pairs, half of which are pairs extracted
from the same file and the other half from two different randomly chosen files. The same
dataset of pairs is used for the Structural Masking Modeling task and the Same File
Prediction task since the transformer layers are trained on both tasks at the same time.
To simplify pre-training complexity, as suggested in [27], we first pre-train the structural
transformer for 15 epochs using a sequence length of 32 and complete the pre-training
with 3 epochs using a sequence length of 128. In both cases, we used a batch size of
64, as it was the highest dimension fitting in memory while performing the full model
training.

The model hyperparameters for the transformer layers, except for the input length and
training batch size, are set according to the original BERT-base model [27], including
an encoding dimension of 768. Regarding the maximum length of the input file rows,
after exploratory analysis of our training data, we set the number of input tokens for
every row to 128, to balance complexity as coverage, as this length covers over 90% of
the 10M input rows, with the rest having a significantly higher number of tokens. The

85

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Rank Delimiter Quotation Escape # Files
1 , ε ε 2323
2 , " ε 2056
3 ; " ε 358
4 ; ε ε 353
5 , " " 285

· · · · · · · · · · · ·
28 , ` ε 1
29 & ε ε 1
30 % " ε 1
31 # ε ε 1
32 | ` ε 1

Table 13: The 5 most and least common dialects in the imbalanced dataset. The
character ε denotes an empty character.

latent dimension of the convolutional autoencoder was the subject of hyperparameter
tuning. We considered dimensions in the range [32, 64, 128, 256, 512], and trained the
encoder/decoder layers for 1000 steps using a batch size of 64. To perform this training,
we froze the structural transformer layers.

After setting the encoding dimension to 128, which performed the best in our
hyperparameter tuning stage, we trained the full model for 10 epochs using the entire set
of 871 349 CSV files of GitTables [50], reserving 10% of the files for validation purposes.
We used a batch size of 64, consistent with pre-training.

4.4.2 Dialect detection

To perform fine-tuning of Magritte for dialect detection, we train with a set of 18 300
files, obtained with augmentation from an original set of 5 689 CSV files manually labeled
with dialect annotations, from [12]. We checked and corrected some annotation errors,
and share an updated version of the annotations on the project page of Magritte2.
These files were never seen by Magritte during pre-training. For development purposes,
we used a validation set of 3 660 files (amounting to 20% of the training files), composed
of 3 503 augmented files and 157 original files, sampled from the same distribution as
the training files. We also report the results obtained on 1 543 files, never seen by
Magritte during both the pre-training and the fine-tuning phases. Some of these files
show properties that make them non-compliant with the regular CSV standard (apart
from the dialect characters), such as having multiple tables, or preamble and comment
rows that do not correspond to table headers or records. As systems struggle with non-
standard CSV files, we refer to these as the difficult set, as opposed to the test files
which are compliant with the CSV standard, which we refer to as the test set. The test
set contains 1 087 files, and the difficult set 456 files.

Dataset augmentation The distribution of dialects in the original training set is
heavily imbalanced towards the most common dialects. Table 13 shows the 5 most

2https://github.com/HPI-Information-Systems/Magritte

86

https://github.com/HPI-Information-Systems/Magritte

4.4 Experimental results

common and the 5 least common dialects found in the files of the training dataset,
together with their frequency. Overall, in the training set, we identified 11 unique
delimiters, 5 unique quotation characters, and 4 unique escape characters. The dataset
has a long tail of different dialects, with 32 unique dialects, but most of the files have
cells delimited by a comma and no quotation or escape characters. To compensate for
this bias, we augment the files to obtain a balanced training set.

Each file of the dataset is augmented by taking its original cell values, and replacing the
delimiter, quotation, and escape character with all valid combinations (183 in total) of
the distinct dialect characters found in the original dataset. A valid dialect is one where
the delimiter is different from the quotation character, and there is no escape character
if file cells are not enclosed in quotation marks. We only augment files that do not
contain any target dialect character in their content, to avoid generating invalid CSV
files. Augmenting a file to have the empty delimiter ε corresponds to generating single-
column files. To do so for otherwise multi-column files, we remove all columns except
for the first. To augment files towards dialects with a quotation or escape character, we
include at least one delimiter or escaped quotation character within random cells of the
files (with a probability of 5%), and quote cell values if needed, accordingly.

Experimental setup Considering all possible and valid combinations of dialect
characters in the training set, we obtained a total of 183 augmentation dialects. After
augmenting all the original files with all valid and applicable augmentation dialects,
we sample 100 files per dialect class, randomly chosen from the set of augmented and
original files. The final set of augmented files is therefore composed of 18 300 files. We
split this set into two folds of 80%/20%, as the training and validation folds, composed
respectively of 14 640 and 3 660 files. Overall, the benefit of this augmentation scheme is
not only that it counters class imbalance, but it also provides the model with files having
the same cell contents but with different dialects. We believe this helps the generalization
power of the model and prevents the model from overfitting on file content rather than
on structure. We trained Magritte for 10 epochs using a batch size of 6.

Results Following the experimental approach of [12], we evaluate the results of dialect
detection using precision, recall, and F1 score for each of the three dialect classes, as well
as dialect accuracy, which is computed for each file by assigning a score of 1 if all three
classes (delimiter, quotation character, and escape character) are correctly detected. The
F1 scores are averaged across the different classes, weighting the average based on the
number of samples for each class. All four scores range between 0 and 1, with 1 being a
perfect performance.

We compare Magritte with CleverCSV, the state-of-the-art system for dialect
detection [12]. CleverCSV is a rule-based algorithm to perform dialect detection that
uses a pattern score and a type score. The best dialect is identified as the one that
leads to files with rows having the same number of columns (measured by the pattern
score) and, within a column, which shows a high homogeneity of data type (measured
by the type score). The hyperparameters to tune these scores have been identified by
the authors on a set of validation files and then evaluated on a separate test of files.

87

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Figure 33: Results of dialect detection on validation and test sets (scaled to
[0, 100]%).

Figure 33 reports the results of our experimental evaluation, rescaling the scores to the
range [0, 100] for ease of comparison. As can be noted, Magritte, having been trained
on files with a balanced set of dialects, outperforms CleverCSV on the validation set,
which is composed of files with the same balanced distribution. However, its accuracy
on the test folds, while still relatively high, does not match the one of CleverCSV.
While analyzing the errors of Magritte on such files, we noted how in its classification,
it tended to weigh the occurrence of unusual characters within the file, such as the pipe
symbol "|" or the colon symbol ":", as being part of the dialect. Therefore, in the
test and difficult sets, which contain a higher percentage of files with common dialects,
Magritte can be characterized as having a high precision but lower recall, i.e., once it
detects a standard dialect it has high confidence, but it may have false negatives due to
overestimating the probability of unusual dialects.

In contrast, the performances of CleverCSV are specular: as it was developed using
an imbalanced set of files with more standard dialects, it tends to overestimate the
probability of a file having a standard dialect, therefore, it has a lower precision on
standard files than on non-standard files. This can be noted, for example, by observing
how its performances differ from the validation set to the test set. To obtain an effective
dialect detection system, we propose a Hybrid solution. If Magritte recognizes the
dialect of the file as having a comma as a delimiter, a double quote character for
quotation, and no escape, i.e., the most common dialect, we consider this prediction
as having high confidence. Otherwise, we resort to the results of CleverCSV. As seen
in Figure 33, this Hybrid approach improves on the shortcomings of both systems. In
this approach, Magritte acts as a filtering stage, that only leverages CleverCSV for
validation in files suspected of having a non-standard dialect.

88

4.4 Experimental results

Finally, we note how all three approaches struggle more for files belonging to the difficult
set: these files are often characterized by having multiple tables, many comment rows
that do not follow CSV formatting, or rows with an inconsistent number of delimiters
(see Figure 34 for an example from this set). These files often confound the dialect
detectors, and require more sophisticated approaches that can detect and prune their
metadata rows. In the following section, we discuss how Magritte can be successfully
employed to solve this task.

1 # LimeSurvey Group Dump
2 # DBVersion 130
3 # This is a dumped group from the LimeSurvey Script
4 # http :// www. limesurvey .org/
5 # Do not change this header !
6
7 #
8 # GROUPS TABLE
9 #

10 "gid "," sid "," group_name "," group_order "," description "," language "
11 "43" ,"10" ," Student BIO " ,"6" ," Fragebogen für Biologistudenten
","de"
12
13 #
14 # QUESTIONS TABLE
15 #
16 "qid "," sid "," gid "," type "," title "," question "," preg "," help "," other

"," mandatory "," lid "," lid1 "," question_order "," language "
17 "211" ,"10" ,"43" ,"L" ,"1" ," Tragen Sie Biolatschen ?<br / >" ,"" ,"" ,"N

","N" ,"0" ,"0" ,"1" ," de"
18
19 #
20 # ANSWERS TABLE
21 #
22 "qid "," code "," answer "," default_value "," sortorder "," language "
23 "211" ,"1" ," ja","N" ,"1" ," de"
24 "211" ,"2" ," nein ","N" ,"2" ," de"
25 "211" ,"3" ," geht dich nix an!","Y" ,"3" ," de"
26
27 #
28 # CONDITIONS TABLE
29 #
30
31 #
32 # LABELSETS TABLE
33 #
34
35 #
36 # LABELS TABLE
37 #
38
39 #
40 # QUESTION_ATTRIBUTES TABLE
41 #

Figure 34: A file from the difficult set (lines 11 and 16-17 are wrapped for display
reasons).

89

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

4.4.3 Table understanding

To perform table understanding experiments, we leverage six publicly available datasets,
introduced in [56] (see Table 14), that are composed of generally unprepared real-world
tabular files, i.e., files do not adhere to the CSV standard because they may contain
non-data rows, multiline headers, or multiple tables.

For the column type annotation task, we provide column annotations for all six datasets
following the same strategy used in [101, 127]: we annotate columns with a semantic
type from DBpedia [3] if their headers (disambiguated with respect to spaces) match
with the name of a DBpedia ontology or property. We annotate one column for each file
and discard files for which no column can be matched with a DBpedia attribute. Overall,
our dataset contains a total of 865 files with 116 unique column type annotations. We
distribute the files and annotations on our project page3.

Because of the architectural limitation of Magritte regarding the dimension of file
inputs, and also due to the high imbalance of the datasets towards data rows, we limit
our experiments to up to 128 rows per file. To not exclude metadata rows that might
occur towards the end of a file (e.g., note or group), we cannot resort to simple truncation
and sample the first 128 rows of each file. Therefore, for files with more than 128 rows,
we use the following scheme: we prioritize non-data rows, and, if there are less than
128 non-data rows (which is the case in all but 5 of the files), we fill the rest with data
rows. We note that rows are always sampled respecting the original order of the file. We
pad files of fewer than 128 rows with rows containing only the [CLS] and [SEP] tokens,
consistently with the padding strategy during the convolutional pre-training stage.

Row classification For the row classification task, we train our models on the four
datasets GovUk, Saus, Cius, and DeEx that contain a total of 1 162 files and 221 218
rows. Following the original experiments in [56], we train using 10 cross-validation folds
on these four datasets. We also include two separate datasets, Mendeley and Troy,
for out-of-domain testing, containing 262 files and 199 946 rows. When testing on these
two datasets, we used all files in the previous four datasets for training. We note that all
files from the training or test sets have not been seen by Magritte during pre-training.
We train Magritte for 40 epochs with a batch size of 8.

Figure 35 reports the results of our experimental evaluation, rescaling the scores into the
range [0, 100] for ease of comparison. The results highlight the competitive performances
of Magritte especially when classifying the four row classes note, metadata, and group.
Rows from these classes are often recognizable from their structure alone: group and
note typically only have content in the first cells and therefore are characterized by
long sequences of delimiter characters. Furthermore, together with metadata rows, they
are more likely to contain letter characters and fewer digits or numeric symbols. These
structural features can be picked up by Magritte thanks to its pattern tokenization
strategy. Rows belonging to these four classes are often outliers compared with the rest
of the file rows, as typically data and derived rows have a very regular structure.

From our analysis of the results, the low scores of Magritte for data and derived rows
are due to the model frequently misclassifying one class as the other. This behavior

3https://github.com/HPI-Information-Systems/Magritte

90

https://github.com/HPI-Information-Systems/Magritte

4.4 Experimental results

GovUk Saus Cius DeEx Mendeley Troy
files (row class) 226 223 269 444 62 200

files (column type) 110 153 164 260 12 66
rows 97 212 11 598 34 556 77 852 195 598 4 348
cols 3482 3955 3656 6390 797 2282

header 519 576 435 1 222 86 280
data 93 584 9 469 31 845 74 245 194 786 2 898

group 850 283 119 302 27 42
derived 665 280 449 664 9 239

metadata 878 472 1 034 713 604 315
note 716 667 674 706 86 575

column types 32 26 21 66 11 19

Table 14: Table understanding dataset overview, with instances of row classes and
column types. The annotated datasets for column type annotations are a subset of
those with annotated row classes.

Dataset Weighted-mean F1 Macro-mean F1

unprepared 77.96% 66.55%
autocleaned with Magritte 80.50 % 67.51 %

standard 82.29 % 71.06%

Table 15: Column type performances of RECA [101] with unprepared, automatically
prepared, and standard files.

is to be expected, considering that often the difference between data and derived rows
lies within the content of their cells, a semantic detail that is abstracted away from
Magritte in favor of a structural perspective. While on the one hand, Magritte
often outperforms Strudel in the detection of classes such as group and metadata, on
the other hand, Strudel always outperforms Magritte on data, header, and derived
rows thanks to its more semantic-oriented features.

As for the previous task, we propose a Hybrid approach that can leverage the strengths
of both models: we first run Magritte to detect the class probabilities for the rows
of a file, and then use these probabilities, one for each class, as extra features in
Strudel. This approach outperforms both Strudel and Magritte with very good
success for every class in all the cross-validation datasets. However, as can be noted from
the performances on the out-of-domain datasets, Mendeley and Troy, the Hybrid
approach does not lead to an improvement when any of the two base models have poor
performances, or when the datasets have a very skewed distribution of data vs. non-data
rows (see Table 14). This behavior is particularly evident, for example, for the group
and note classes for Mendeley.

Column Type Annotation To assess the impact of Magritte on downstream tasks
on the six datasets of real-world files of Table 14, we experimented with the column type
annotation task and used the SOTA system RECA [101]. Since this system is reported

91

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Figure 35: Results of row classification on the experimental datasets (normalized in
0-100%).

to outperform all previously proposed models [51, 100, 127], which are also based on
column-level embeddings, we expect our findings to hold for the whole family of models.

We experiment with three versions of the dataset: an unprepared version, corresponding
to the raw file input; an autocleaned version, corresponding to automatically cleaning of
the files based on the row classes obtained with Magritte as described in Section 4.3.2;
and a standard version, corresponding to a CSV-standard version of the files, cleaned
with the same procedure but with the ground truth row classes. Following the original
implementation and experimental setup publicly available in the code repository of
RECA, we split our datasets into a train/validation fold and a test fold, respectively
composed of 90% and 10% of the original files. We trained the RECA model on the
train/validation folds using 10-fold cross-validation for 20 epochs and tested on the test
fold, repeating the test 3 times.

Table 15 reports the weighted- and macro- mean F1 score for all column type classes
averaged across the three runs (standard deviations were zero). As it can be noted,

92

4.4 Experimental results

OpenRefine Preparation steps
Remove a row Mass transformation of rows
Fill-down values in subsequent rows Deleting cells in subsequent rows
Split row into separate records Merge subsequent rows into one
Column rename Column shift to different position
Column removal Add a column
Column split on character Merge two columns with character
Trim whitespace Add leading and trailing spaces
Detect numeric strings as numbers Add quotes to numeric columns
Transform strings to upper/lowercase Make strings titlecase

Table 16: A subset of preparation steps we consider, sampled from those offered by
the OpenRefine framework.

using unprepared versions of the input files leads to the lowest performance. This is not
surprising, considering that to annotate the column type for tables, RECA encodes all
the values that belong to a table column. If columns are parsed out of the unprepared file,
they may contain (1) unrelated values (see “See Notes” appearing in the “State” column
of Figure 30), (2) values with heterogeneous types, e.g., if multiple tables or derived rows
are contained in the file (see “(X)” in the “ANSI code” column of Figure 30), or (3) be
spuriously filled with empty (see all the empty values in the metadata, empty, or note
rows of Figure 30). On the contrary, automatically preprocessing the files with the
row types detected with the help of Magritte in the Hybrid scenario, improves the
weighted F1 to 80.50%. To put in perspective the contribution of preparing the files with
Magritte, performing column type annotation on the standard files, prepared using
manually annotated ground truth, leads to a further improved F1 of 82.29%.

To summarize, our experiments proved how, thanks to Magritte, it is possible to
improve downstream table understanding tasks with automated preparation and minimal
user effort. The next and final experiments aim at assessing how well can Magritte
provide an estimate for how much user effort is needed to manually prepare files.

4.4.4 Preparation Effort Estimation

One of the greatest challenges in developing a model that estimates preparation effort is
the lack of a standard measure to design, compare, and evaluate the structural distance.
To address this issue, we propose a reference measure: given a set of possible preparation
operations, determine the minimum number of preparation steps necessary to transform
a file f into f ′. As a concrete implementation of this measure, we use a subset of
the preparation operators of OpenRefine, a widely used data wrangling tool [37]. This
subset can be seen in Table 16. Assuming that for a pair of files f, f ′ there is a minimal
sequence of preparation steps with a minimum length4, the problem we want to address
is to estimate the length of this sequence, without knowing the exact steps and the
resulting f ′, but with the knowledge of a template file t.

4Or multiple equivalent sequences of the same length.

93

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

Dataset To train and test our model, we used a random sample of 100 pairs of
real-world source-target CSV files with corresponding transformation scripts using
OpenRefine [37]. We obtained these files from a sample of 180 public GitHub repositories,
crawled as the ones containing at least one preparation script. However, not all
repositories contain the files associated with a given script, and even for many that
do, it may be undocumented which of the files corresponds to the source, and which
to the target. First, we excluded repositories that did not contain at least a CSV file,
leaving 83 remaining repositories. For repositories containing only the source file, we ran
the scripts and generated the target version. For repositories containing only the target
file, we retrieved the source file, if it was documented to be from a publicly available
dataset.

We sampled 10 scripts for each length in the range [1,10] to create a balanced dataset,
manually checking the script to retrieve the corresponding source and target files.
We split the dataset in half, using 50 files for training and validation, during the
hyperparameter optimization, and 50 files for testing purposes. To evaluate our approach,
we normalize the script lengths to the interval [0, 1], and compare the estimates with the
ground truth. To create a large training set, we use the following consideration: if two
different unprepared files fi, fj go through a preparation script towards their respective
targets f ′

i , f ′
j , we can consider both of the target files as the structural “template” for

each other’s unprepared version, i.e., f ′
i = tj for fj . In this way, we obtain pairs of

unprepared files and their templates to train the Magritte regression. As a ground
truth to evaluate the source-template distance between fi and tj , we use the length of
the scripts to transform fi to f ′

i . Considering N unprepared files fi and their prepared
versions f ′

i , we obtain a total of N · (N − 1) source-template pairs for training (in our
case, 2 450 pairs). We use the remaining N pairs, 50 in our dataset, as source-target pairs
for validation. We trained Magritte for 10 epochs using a batch size of 6. For testing
purposes, we use a separate set of 50 pairs of source-target files from our OpenRefine
dataset. None of these file pairs has been seen by the model during the training or
validation stages.

Results The scatter plot of Figure 36 illustrates the results of estimating the length
of the script (normalized to the range [0, 1]) to transform a source file into a target
file. As can be noted, the performances of Magritte do follow an approximately linear
trend, with the estimated efforts being generally higher for source-target pairs whose
preparation effort is closer to 1.

However, the effort for files that do not require significant preparation appears to be
overestimated. To understand the reason, we analyzed some file pairs for which the
preparation effort was overestimated. In three files with a true preparation effort of
0.1, whose single preparation operation was to remove empty rows, Magritte assigned
an estimated preparation effort of 0.44, 0.62, and 0.69, which correspond to the three
topmost dots in the plot at the 0.1 mark on the x-axis.

Interestingly, we identified a correlation between the number of empty rows in a file and
the preparation effort estimated: the file with the most empty rows, 103, was estimated
at 0.69, followed by the one with 65 empty rows estimated at 0.62, and lastly, the file with
a single empty row was estimated at 0.42. For two other file pairs, which have the same

94

4.5 Related work

Figure 36: The preparation effort estimated by Magritte on the test files.

source file but different targets, with a target effort of 0.2 and 0.3, Magritte estimated
the preparation effort to be 0.87 in both cases. In this case, the two scripts change the
formatting of strings in every row from lowercase to titlecase and numeric, with the only
difference of an extra preparation step that brings some values to uppercase. While the
two target files are indeed very similar, justifying a similar or the same score, they differ
from the source for the values in every row. Seemingly, even in this case, Magritte
learned to assign high preparation effort for file pairs that differ for many rows.

We acknowledge that the results of our data preparation effort estimation experiments
are very much preliminary, and there is room for further experimentation with larger
datasets or more sophisticated measures for preparation effort estimation. However, we
believe there is promising value to be exploited by applying regression-based methods to
the novel task of preparation estimation.

4.5 Related work
The goal of our work is to provide a general representation of the structure of data files.
To do so, we employ a neural network architecture that learns such a representation in a
self-supervised fashion. Therefore, our work lies at the intersection of data management
and representation learning, a research space that has seen a recent surge of interest [5].
To position our research, we briefly discuss related works in the areas of structural
preparation and representation learning for data management purposes.

Structural preparation Many of the approaches proposed in the literature to solve
file preparation steps automatically or semi-automatically rely on the structural features
of the file. For example, a common strategy for the algorithms to detect the dialect of

95

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

CSV files, among which are [12, 28, 34, 99], is to generate a set of hypotheses based on
the character set of the file, and then rank them based on measures like the consistency
of row length, or the presence of empty cells in the parsing results. The main limitation
of these approaches, compared to Magritte, is that they generally look for dialect
characters that apply to entire files. As found in our experiments (see Figure 30) some
files, due to metadata lines or different tables within the same files, do not have consistent
dialects across all the lines in their content. Our experimental evaluation highlights how
the approach of Magritte, based on local (character-level) and not global classification,
proves especially effective in dealing with such difficult cases.

Other approaches for metadata extraction, for example [21, 56, 127], use manually
engineered features such as row length, percentage of digit characters, etc., to train
machine learning models on tasks such as table extraction, row and cell classification,
or column type inference. The main limitation of this feature engineering approach
is the lack of generality, as it requires manually defining and possibly tuning the set
of features during development with a given corpus of labeled data at hand. The
approach we propose in this paper, instead, aims at learning a general representation
of the structure of a file, which is task-independent and trained in a self-supervised
fashion, therefore leveraging large sets of files. The benefits of this approach can be seen
from the experimental results of Section 4.4, where the use of the Magritte structural
embeddings proves competitive with various state-of-the-art models.

Transformer models for data management Recently, several works leveraged
representation learning using transformer architectures or pre-trained language models
on tabular data. Some of the tasks that have been successfully addressed include column
type annotation [100, 101, 120], table population [26, 52, 124], error detection and data
cleaning [73, 104, 118], entity matching [67, 82, 104], data discovery [30], and table
question answering [123]. An extensive review of the unique features of these models is
beyond the scope of this work, and we refer readers to a recent survey [5]. One common
aspect of all the aforementioned approaches, that differentiates them from Magritte, is
that they leverage representations learned from the payload of files, i.e., the cell content
of their tables. Therefore, they do not apply to messy files where the payload table(s)
cannot be directly parsed.

The representations learned by Magritte are orthogonal to the ones learned by the
aforementioned tabular models. As demonstrated by the experiments in Section 4.4.3,
structural embeddings can be used in conjunction with semantic embeddings, to enable
given downstream tasks, such as row classification column type annotation, on large
unprepared datasets and improve their performances.

4.6 Conclusions

In this chapter, we presented Magritte, a novel neural network architecture to represent
the structure of tabular files with cell-level, row-level, and file-level embeddings. We
demonstrated how the embeddings generated by Magritte can be used to solve a
variety of preparation tasks, not only as the sole features to solve them automatically,
but more importantly in conjunction with other approaches, potentially more geared

96

4.6 Conclusions

towards semantic features. Thanks to their exposure to large amounts of data, and their
synthetic coverage of a wide number of features, we believe that structural embeddings
may be leveraged in even more steps of a data preparation pipeline.

In a preliminary study, we also show how structural embeddings can be used to estimate
the user effort required to prepare a file. We hope that future research picks up on our
efforts to develop more refined models to estimate the preparation effort for more and
more types of file or preparation operations, possibly extending or leveraging our publicly
available, manually labeled dataset.

We envision that foundational models, such as Magritte, can and will be used to assist
users at all stages of the preparation pipeline, either to automate cumbersome operations
or to empower software engineering and decision-making.

97

4. MAGRITTE: A MACHINE-LEARNING MODEL FOR FILE
STRUCTURE

98

Chapter 5

Summary and Outlook

Plain text tabular formats are amongst the most popular way to create, store, distribute,
and consume data files. This thesis introduced the notion of file structure, the set of
characters within a file that do not carry information per se, but are necessary to parse
the payload of the file correctly and leverage its data. While existing research uses the
term data preparation as a broad term for all preprocessing operations [31, 104, 122],
we formally define it as the pipeline of heterogeneous steps that are required to wrangle
the structure of a file and correctly parse its payload. Presently, data preparation is
challenging because it often resorts to an ad-hoc, manual, time-consuming, and error-
prone process [31, 53, 66]. We claim that these challenges can be addressed by providing
principled models to represent file structure, that can advance data preparation towards
a more engineered process.

In Chapter 2, we presented a formal, grammar-based model to represent file structure
based on context-free grammars used to serialize and parse tabular files. Our application
of this model to survey over 3 000 real-world files showcased how commonly the structure
of tabular files differs from the standards supported by existing systems. Drawing on
these findings, we leverage our framework to design file pollutions and present Pollock,
a benchmark to assess a system’s robustness in loading data from non-standard CSV
files. We experimented with our benchmark on 16 real-world systems, highlighting their
shortcomings. We publicly release the code and artifacts to reproduce our benchmark1,
hoping to guide the development of existing and future systems.

In Chapter 3, we proposed a framework to represent the structure of multiregion files,
i.e., spreadsheet files that contain multiple regions arranged with custom layouts. Our
system, Mondrian, is based on a graph-based model of file layouts, and on a similarity-
based model to recognize layout templates. The intuition behind our approach is that, by
identifying recurring layout templates, users can automatically extract and prepare tables
that contain information spread across different files. We demonstrate the applicability
of our system for end-users thanks to a web-based graphical interface, publicly available
online2.

1https://github.com/HPI-Information-Systems/Pollock
2https://hpi.de/naumann/sites/mondrian/demo

99

https://github.com/HPI-Information-Systems/Pollock
https://hpi.de/naumann/sites/mondrian/demo

5. SUMMARY AND OUTLOOK

In Chapter 4, we introduced Magritte, a machine-learning model to embed a
representation of file structure into vectorial embeddings. The architecture of our
model is based on transformers and convolutional networks, which learn to represent the
structure of a file by leveraging contextual information from the special characters present
in a file’s character stream. The base Magritte model, pre-trained on almost 1M real-
world tabular files, can be used to obtain general, task-independent embeddings, and
fine-tuned to address specific data preparation tasks. We experimentally demonstrate
the effectiveness of our model on four such tasks: dialect detection, row classification,
column type annotation, and data preparation user effort estimation. We publicly release
the code, datasets, and weights of the model as a resource for the community3.

The contributions of this thesis can be considered the first step towards a more principled
approach to data preparation. Following the research directions of our work, we outline
interesting questions open for future work.

Extensions for the pollution model Currently, we leveraged our grammar-based
model to generate files whose dialect is affected by a single pollution. Our experimental
results of Section 2.4.5 demonstrate that real-world files may contain multiple pollutions
at once and that the performances of SUTs may be impacted more significantly in these
cases. In the future, we envision extending our framework to reproduce the presence of
multiple pollutions at once, possibly learning from the distribution of pollutions within
files of a given dataset and reproducing it synthetically. To do so, a notion of pollution
dependency must be explicitly modeled, to understand the interaction of the pollution of
different rules of a grammar at once. For example, if we consider applying a pollution to
change the cell delimiter in the whole file, together with a pollution to include footnote
rows to a table, the application of these two is order-sensitive, resulting in different files
leading to potentially different system behavior. Moreover, applying multiple pollutions
together would also lead to a combinatorial increase of their parameter space. This would
require the design of more sophisticated strategies to sample the parameter search space
effectively and obtain an applicable benchmark.

Extending Pollock with interacting pollutions would make the benchmark dataset more
realistic and open the door to a dynamic benchmark, where the datasets can be adapted
to fit specific use cases or scenarios. Following the overarching goal of Pollock, we
encourage the developers of data loading systems to leverage our benchmark to improve
their systems, relieving users of their data preparation burden.

An end-to-end data preparation system In Chapter 3, we showcased how a specific
structural model can be integrated within a user-friendly system to assist practitioners
during data preparation. One of the significant challenges of data preparation is the wide
variety of solutions and systems, each with its own assumptions on the input data, and
the lack of a unified system that can serve end-to-end, from raw tabular files to relational
tables. The challenges to design such a system are not only of an engineering nature,
but also require research efforts on the integration of different tabular models, structural
and semantic, as well as regarding the user interaction with files, datasets, and pipelines.
Moreover, as highlighted by the practical limitations of Mondrian, several challenges arise

3https://github.com/HPI-Information-Systems/Magritte

100

https://github.com/HPI-Information-Systems/Magritte

with the complexity of running data preparation operations on large datasets. Addressing
these issues requires the design of parallel or distributed algorithms, perhaps trading off
accuracy with scalability.

Applications of Structural Embeddings We believe that tabular file embeddings
are a promising research direction to advance state-of-the-art data preparation. First,
we envision that structural embeddings can prove useful for more tasks than those we
experimented with in Chapter 4, for example, table extraction, value normalization,
or data transformation from one format to another (e.g., CSV to JSON). Moreover,
an interesting direction to explore is the use of file-level embeddings to index datasets
of tabular files before relational tables are extracted, e.g., in scenarios like data lakes,
or data markets. Finally, we envision the design of more complex models, based on
structural as well as semantic embeddings, which can automatically infer and execute
whole preparation pipelines given a source file and a target downstream task.

Estimating Data Preparation User Effort In Section 4.3.3, we presented a novel
research problem: the estimation of the user effort required to prepare a file. This
problem is particularly challenging because it involves not only understanding the
preparation required for a given file/task pair but also modeling user behavior and
expertise. We believe that this problem is worth investigating further, as it can be useful
for several purposes: assessing the time and cost estimation of data-driven projects,
guiding the design of more user-friendly systems, and providing a principled framework
to evaluate them. Research efforts should be devoted to collect large and representative
datasets of unprepared and prepared files and to conduct extensive user studies to obtain
ground truth measurements against which to design and evaluate new models.

We end this dissertation certain that data preparation will reach the maturity of
other data management tasks and become a well-defined discipline, with its grounding
principles, methods, and tools. We envision that the research field of data preparation
will continue to grow and attract the attention of several communities for which it is
fundamental, e.g., the data management community, the machine learning community,
the data visualization and human-computer interaction communities, and potentially
extend to data-driven scientific communities outside traditional computer sciences.

101

Selbstständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Doktorarbeit mit dem Thema:

Modeling the Structure of Tabular Files for Data Preparation

selbstständig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe.

Potsdam, den 03.08.2023

References

[1] Apache Software Foundation. Apache Commons CSV. July 2022. url: https:
//commons.apache.org/proper/commons-csv/ (visited on 05/10/2023).

[2] Marcelo Arenas, Francisco Maturana, Cristian Riveros, Domagoj Vrgoč. “A
Framework for Annotating CSV-like Data”. PVLDB 9.11 (2016), pp. 876–887.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
Zachary G. Ives. “DBpedia: A Nucleus for a Web of Open Data”. ISWC/ASWC.
Vol. 4825. Lecture Notes in Computer Science. Springer, 2007, pp. 722–735.

[4] Jeronimo Backes. Univocity CSV Parser. 2022. url: https : / / github . com /
uniVocity/univocity-parsers (visited on 05/10/2023).

[5] Gilbert Badaro, Mohammed Saeed, Paolo Papotti. “Transformers for Tabular
Data Representation: A Survey of Models and Applications”. Transactions of the
Association for Computational Linguistics (TACL) 11 (2023), pp. 227–249. issn:
2307-387X.

[6] António Leslie Bajuelos, Ana Paula Tomás, Fábio Marques. “Partitioning
Orthogonal Polygons by Extension of All Edges Incident to Reflex Vertices:
Lower and Upper Bounds on the Number of Pieces”. International Conference
on Computational Science and Its Applications (ICCSA). 2004, pp. 127–136.

[7] Barry W. Boehm, Chris Abts, Sunita Chulani. “Software development cost
estimation approaches - A survey”. Annals of Software Engineering 10 (2000),
pp. 177–205.

[8] Barry W. Boehm, Bradford K. Clark, Ellis Horowitz, J. Christopher Westland,
Raymond J. Madachy, Richard W. Selby. “Cost Models for Future Software
Life Cycle Processes: COCOMO 2.0”. Annals of Software Engineering 1 (1995),
pp. 57–94.

[9] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259. RFC Editor, Dec. 2017. url: https://www.rfc-editor.org/rfc/
rfc8259.txt.

103

https://commons.apache.org/proper/commons-csv/
https://commons.apache.org/proper/commons-csv/
https://github.com/uniVocity/univocity-parsers
https://github.com/uniVocity/univocity-parsers
https://www.rfc-editor.org/rfc/rfc8259.txt
https://www.rfc-editor.org/rfc/rfc8259.txt

REFERENCES

[10] Tim Bray, Jean Paoli, Michael C. Sperberg-McQueen, Eve Maler, François
Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
Recommendation REC-xml-20081126. World Wide Web Consortium, Nov. 2008.
url: https://www.w3.org/TR/2008/REC-xml-20081126/.

[11] Tom B. Brown et al. “Language Models are Few-Shot Learners”. Proceedings of
the International Conference on Conference on Neural Information Processing
Systems (NeurIPS). 2020.

[12] Gerrit J. J. van den Burg, Alfredo Nazábal, Charles Sutton. “Wrangling Messy
CSV Files by Detecting Row and Type Patterns”. Data Mining and Knowledge
Discovery 33.6 (2019), pp. 1799–1820. issn: 1573-756X.

[13] Riccardo Cappuzzo, Paolo Papotti, Saravanan Thirumuruganathan. “Creating
Embeddings of Heterogeneous Relational Datasets for Data Integration Tasks”.
Proceedings of the International Conference on Management of Data (SIGMOD).
ACM, 2020, pp. 1335–1349.

[14] Valerio Cetorelli, Paolo Atzeni, Valter Crescenzi, Franco Milicchio. “The Smallest
Extraction Problem”. PVLDB 14.11 (2021), pp. 2445–2458.

[15] Zhe Chen, Michael Cafarella, Jun Chen, Daniel Prevo, Junfeng Zhuang.
“Senbazuru: A Prototype Spreadsheet Database Management System”. PVLDB
6.12 (2013), pp. 1202–1205.

[16] Zhe Chen, Sasha Dadiomov, Richard Wesley, Gang Xiao, Daniel Cory,
Michael J. Cafarella, Jock D. Mackinlay. “Spreadsheet Property Detection with
Rule-Assisted Active Learning”. Proceedings of the International Conference on
Information and Knowledge Management (CIKM). 2017, pp. 999–1008.

[17] Laura Chiticariu, Yunyao Li, Sriram Raghavan, Frederick R. Reiss. “Enterprise
Information Extraction: Recent Developments and Open Challenges”. Proceedings
of the International Conference on Management of Data (SIGMOD). 2010,
pp. 1257–1258.

[18] Noam Chomsky. “Three models for the description of language”. IRE
Transactions on Information Theory 2.3 (1956), pp. 113–124.

[19] Noam Chomsky, Marcel P Schützenberger. “The algebraic theory of context-
free languages”. Studies in Logic and the Foundations of Mathematics. Vol. 26.
Elsevier, 1959, pp. 118–161.

[20] Aakanksha Chowdhery et al. “PaLM: Scaling Language Modeling with
Pathways”. CoRR abs/2204.02311 (2022).

104

https://www.w3.org/TR/2008/REC-xml-20081126/

REFERENCES

[21] Christina Christodoulakis, Eric Munson, Moshe Gabel, Angela Demke Brown,
Renée J. Miller. “Pytheas: Pattern-based Table Discovery in CSV Files”. PVLDB
13.11 (2020), pp. 2075–2089.

[22] Edgar F Codd. “A relational model of data for large shared data banks”.
Communications of the ACM 13.6 (1970), pp. 377–387.

[23] Remi Coletta, Emmanuel Castanier, Patrick Valduriez, Christian Frisch, DuyHoa
Ngo, Zohra Bellahsene. “Public Data Integration with WebSmatch”. Proceedings
of the International Workshop on Open Data (WOD). 2012, pp. 5–12.

[24] Crown, UK. UK Open Data Portal. data.gov.uk. 2021.

[25] Norman Dalkey, Olaf Helmer. “An experimental application of the Delphi method
to the use of experts”. Management science 9.3 (1963), pp. 458–467.

[26] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, Cong Yu. “TURL: Table
Understanding through Representation Learning”. PVLDB 14.3 (2020),
pp. 307–319.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”.
Proceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, (NAACL-HLT).
Vol. 1. Association for Computational Linguistics, 2019, pp. 4171–4186.

[28] Till Döhmen, Hannes Mühleisen, Peter Boncz. “Multi-Hypothesis CSV Parsing”.
Proceedings of the International Conference on Scientific and Statistical Database
Management (SSDBM). ACM, 2017, pp. 1–12.

[29] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu. “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise”.
Proceedings of the International Conference on Knowledge Discovery and Data
Mining (SIGKDD). 1996, pp. 226–231.

[30] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, Renée J. Miller. “Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning”. PVLDB 16.7 (2023), pp. 1726–1739.

[31] Alvaro A. A. Fernandes, Martin Koehler, Nikolaos Konstantinou, Pavel Pankin,
Norman W. Paton, Rizos Sakellariou. “Data Preparation: A Technological
Perspective and Review”. SN Computer Science 4.4 (2023), p. 425.

[32] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, Michael Stonebraker. “Aurum: A Data Discovery System”. Proceedings
of the International Conference on Data Engineering (ICDE). IEEE Computer
Society, 2018, pp. 1001–1012.

105

REFERENCES

[33] Marc Fisher, Gregg Rothermel. “The EUSES Spreadsheet Corpus: A Shared
Resource for Supporting Experimentation with Spreadsheet Dependability
Mechanisms”. ACM SIGSOFT Software Engineering Notes 30.4 (2005), pp. 1–5.
issn: 0163-5948.

[34] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, Donald Kossmann.
“Speculative Distributed CSV Data Parsing for Big Data Analytics”. Proceedings
of the International Conference on Management of Data (SIGMOD). 2019,
pp. 883–899.

[35] Azka Gilani, Shah Rukh Qasim, Imran Malik, Faisal Shafait. “Table Detection
Using Deep Learning”. Proceedings of the IAPR International Conference on
Document Analysis and Recognition (ICDAR). 2017, pp. 771–776.

[36] Majid Ghasemi Gol, Jay Pujara, Pedro Szekely. “Tabular cell classification using
pre-trained cell embeddings”. Proceedings of the International Conference on Data
Mining (ICDM). IEEE. 2019, pp. 230–239.

[37] Google, Inc. OpenRefine. 2021. url: www . openrefine . org (visited on
05/10/2023).

[38] The PostgreSQL Global Development Group. PostgreSQL. 2022. url: https:
//www.postgresql.org (visited on 05/10/2023).

[39] Mazhar Hameed, Felix Naumann. “Data Preparation: A Survey of Commercial
Tools”. SIGMOD Record 49.3 (2020), pp. 18–29. issn: 0163-5808.

[40] Mazhar Hameed, Gerardo Vitagliano, Lan Jiang, Felix Naumann. “SURAGH:
Syntactic Pattern Matching to Identify Ill-Formed Records”. Proceedings of
the International Conference on Extending Database Technology (EDBT).
OpenProceedings.org, 2022.

[41] Dong Haoyu, Liu Shijie, Han Shi, Fu Zhouyu, Zhang Dongmei. “TableSense:
Spreadsheet Table Detection with Convolutional Neural Networks”. Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI). 2019, pp. 69–76.

[42] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick. “Mask r-cnn”.
Proceedings of the International Conference on Computer Vision (ICCV). 2017,
pp. 2961–2969.

[43] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross B. Girshick. “Mask R-CNN”.
Proceedings of the IEEE International Conference on Computer Vision (ICCV).
2017, pp. 2980–2988.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Deep Residual Learning
for Image Recognition”. Proceedings of the International Conference on Computer

106

www.openrefine.org
https://www.postgresql.org
https://www.postgresql.org

REFERENCES

Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2016,
pp. 770–778.

[45] Joseph M. Hellerstein, Jeffrey Heer, Sean Kandel. “Self-Service Data Preparation:
Research to Practice.” IEEE Data Engineering Bulletin. IEEE Computer Society,
2018.

[46] Felienne Hermans, Emerson Murphy-Hill. “Enron’s Spreadsheets and Related
Emails: A Dataset and Analysis”. Proceedings of the International Conference
on Software Engineering (ICSE). 2015, pp. 7–16.

[47] Richard D Hipp. SQLite. Version 3.39.0. 2022. url: https://www.sqlite.org/
index.html.

[48] Renáta Hodován, Ákos Kiss, Tibor Gyimóthy. “Grammarinator: A Grammar-
Based Open Source Fuzzer”. A-TEST@ESEC/SIGSOFT FSE. ACM, 2018,
pp. 45–48.

[49] Leonardo Hübscher, Lan Jiang, Felix Naumann. “ExtracTable: Extracting Tables
from Raw Data Files”. Proceedings of the Conference Datenbanksysteme in Büro,
Technik und Wissenschaft (BTW). Vol. P-331. LNI. Gesellschaft für Informatik
e.V., 2023, pp. 417–438.

[50] Madelon Hulsebos, Paul Groth, Çagatay Demiralp. “GitTables: A Large-Scale
Corpus of Relational Tables”. Proceedings of the International Conference on
Management of Data (SIGMOD). ACM, 2023, pp. 49–64.

[51] Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen, Arvind
Satyanarayan, Tim Kraska, Çagatay Demiralp, César A. Hidalgo. “Sherlock: A
Deep Learning Approach to Semantic Data Type Detection”. Proceedings of the
International Conference on Knowledge Discovery and Data Mining (SIGKDD).
ACM, 2019, pp. 1500–1508.

[52] Hiroshi Iida, Dung Thai, Varun Manjunatha, Mohit Iyyer. “TABBIE: Pretrained
Representations of Tabular Data”. Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguistics, 2021,
pp. 3446–3456.

[53] Ihab F Ilyas, Theodoros Rekatsinas. “Machine Learning and Data Cleaning:
Which Serves the Other?” Journal on Data and Information Quality 14.3 (2022),
pp. 1–11.

[54] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, Pascale Fung. “Survey of hallucination in natural
language generation”. ACM Computing Surveys 55.12 (2023), pp. 1–38.

107

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html

REFERENCES

[55] Lan Jiang, Gerardo Vitagliano, Felix Naumann. “A Scoring-based Approach for
Data Preparator Suggestion”. Proceedings of the Conference on “Lernen, Wissen,
Daten, Analysen” (LWDA). Vol. 2454. CEUR Workshop Proceedings. CEUR-
WS.org, 2019, pp. 6–9.

[56] Lan Jiang, Gerardo Vitagliano, Felix Naumann. “Structure Detection in Verbose
CSV Files”. Proceedings of the International Conference on Extending Database
Technology (EDBT). OpenProceedings.org, 2021, pp. 193–204.

[57] Magne Jørgensen. “A review of studies on expert estimation of software
development effort”. Journal of Systems and Software (JSS) 70.1-2 (2004),
pp. 37–60.

[58] Magne Jørgensen, Martin J. Shepperd. “A Systematic Review of Software
Development Cost Estimation Studies”. IEEE Transactions of Software
Engineering (TSE) 33.1 (2007), pp. 33–53.

[59] Diederik P. Kingma, Max Welling. “Auto-Encoding Variational Bayes”.
Proceddings of the International Conference on Learning Representations (ICLR).
2014.

[60] Thomas Kluyver et al. “Jupyter Notebooks - a publishing format for reproducible
computational workflows”. International Conference on Electronic Publishing
(ELPUB). IOS Press, 2016, pp. 87–90.

[61] Elvis Koci, Maik Thiele, Wolfgang Lehner, Oscar Romero. “Table Recognition in
Spreadsheets via a Graph Representation”. Proceedings of the IAPR International
Workshop on Document Analysis Systems (DAS). 2018, pp. 139–144.

[62] Elvis Koci, Maik Thiele, Josephine Rehak, Oscar Romero, Wolfgang Lehner.
“DECO: A Dataset of Annotated Spreadsheets for Layout and Table
Recognition”. Proceedings of the IAPR International Conference on Document
Analysis and Recognition (ICDAR). 2019, pp. 1280–1285.

[63] Elvis Koci, Maik Thiele, Oscar Romero, Wolfgang Lehner. “A Genetic-Based
Search for Adaptive Table Recognition in Spreadsheets”. Proceedings of the IAPR
International Conference on Document Analysis and Recognition (ICDAR). 2019,
pp. 1274–1279.

[64] Elvis Koci, Maik Thiele, Oscar Romero, Wolfgang Lehner. “A Machine
Learning Approach for Layout Inference in Spreadsheets”. Proceedings of the
International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management (IC3K). 2016, pp. 77–88.

[65] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, Asterios Katsifodimos.

108

REFERENCES

“Valentine: Evaluating Matching Techniques for Dataset Discovery”. Proceedings
of the International Conference on Data Engineering (ICDE). 2021, pp. 468–479.

[66] Arun Kumar. “Automation of Data Prep, ML, and Data Science: New Cure or
Snake Oil?” Proceedings of the International Conference on Management of Data
(SIGMOD). ACM, 2021, pp. 2878–2880.

[67] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, Wang-Chiew Tan. “Deep
Entity Matching with Pre-Trained Language Models”. PVLDB 14.1 (2020),
pp. 50–60.

[68] MariaDB Foundation. MariaDB. 2022. url: www . mariadb . org (visited on
05/10/2023).

[69] Wim Martens, Frank Neven, Stijn Vansummeren. “SCULPT: A Schema Language
for Tabular Data on the Web”. en. Proceedings of the International World
Wide Web Conference (WWW). Florence Italy: International World Wide Web
Conferences Steering Committee, 2015, pp. 702–720.

[70] Sergey Melnik, Hector Garcia-Molina, Erhard Rahm. Similarity Flooding: A
Versatile Graph Matching Algorithm (Extended Technical Report). Technical
Report 2001-25. Stanford / Stanford InfoLab, 2001.

[71] Sergey Melnik, Hector Garcia-Molina, Erhard Rahm. “Similarity Flooding: A
Versatile Graph Matching Algorithm and Its Application to Schema Matching”.
Proceedings of the International Conference on Data Engineering (ICDE). 2002,
pp. 117–128.

[72] Mendeley Ltd. Mendeley Data. data.mendeley.com. 2021.

[73] Zhengjie Miao, Yuliang Li, Xiaolan Wang. “Rotom: A Meta-Learned
Data Augmentation Framework for Entity Matching, Data Cleaning, Text
Classification, and Beyond”. Proceedings of the International Conference
on Management of Data (SIGMOD). New York, NY, USA: ACM, 2021,
pp. 1303–1316. isbn: 9781450383431. doi: 10 . 1145 / 3448016 . 3457258. url:
https://doi.org/10.1145/3448016.3457258.

[74] Microsoft Corporation. Microsoft Excel. 2022. url: www.microsoft.com/excel
(visited on 05/10/2023).

[75] Johann Mitlöhner, Sebastian Neumaier, Jürgen Umbrich, Axel Polleres.
“Characteristics of open data CSV files”. Proceedings of the Image Analysis and
Processing Conference (ICIAP). 2016, pp. 72–79.

[76] Avanika Narayan, Ines Chami, Laurel J. Orr, Christopher Ré. “Can Foundation
Models Wrangle Your Data?” PVLDB 16.4 (2022), pp. 738–746.

109

www.mariadb.org
https://doi.org/10.1145/3448016.3457258
https://doi.org/10.1145/3448016.3457258
www.microsoft.com/excel

REFERENCES

[77] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller Miller, Ken Q. Pu,
Patricia C. Arocena. “Data Lake Management: Challenges and Opportunities”.
PVLDB. Vol. 11. 2019, pp. 813–825.

[78] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, Renée J Miller. “Table Union Search
on Open Data”. PVLDB 11.7 (2018), pp. 813–825.

[79] Oracle Corporation. MySQL. 2022. url: www.mysql.com (visited on 05/10/2023).

[80] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu
Park, Youngmin Kim. “Data Synthesis based on Generative Adversarial
Networks”. PVLDB 11.10 (2018), pp. 1071–1083.

[81] Marvin C. Paull, Stephen H. Unger. “Structural Equivalence of Context-Free
Grammars”. Journal of Computer and System Science (JCSS) 2.4 (1968),
pp. 427–463.

[82] Ralph Peeters, Christian Bizer. “Dual-Objective Fine-Tuning of BERT for Entity
Matching”. PVLDB 14.10 (2021), pp. 1913–1921. issn: 2150-8097.

[83] Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, Brian Caufield. “TPC-DI:
The First Industry Benchmark for Data Integration”. PVLDB 7.13 (2014),
pp. 1367–1378. issn: 2150-8097.

[84] Abdulhakim Ali Qahtan, Ahmed K. Elmagarmid, Mourad Ouzzani, Nan Tang.
“FAHES: Detecting Disguised Missing Values”. Proceedings of the International
Conference on Data Engineering (ICDE). IEEE Computer Society, 2018,
pp. 1609–1612.

[85] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria, 2022. url: https://
www.R-project.org/ (visited on 05/10/2023).

[86] Alec Radford, Luke Metz, Soumith Chintala. “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks”. Proceedings
of the International Conference on Learning Representations (ICLR). 2016.

[87] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever. Improving
Language Understanding by Generative Pre-Training. Tech. rep. 2018.

[88] Yasaman Razeghi, Robert L Logan IV, Matt Gardner, Sameer Singh. “Impact of
Pretraining Term Frequencies on Few-Shot Numerical Reasoning”. Findings of the
Association for Computational Linguistics (EMNLP). Abu Dhabi, United Arab
Emirates: Association for Computational Linguistics, Dec. 2022, pp. 840–854.
url: https://aclanthology.org/2022.findings-emnlp.59.

110

www.mysql.com
https://www.R-project.org/
https://www.R-project.org/
https://aclanthology.org/2022.findings-emnlp.59

REFERENCES

[89] Jeff Reback et al. pandas-dev/pandas: Pandas 1.4.3. Version v1.4.3. June 2022.
doi: 10.5281/zenodo.6702671. url: https://doi.org/10.5281/zenodo.
6702671.

[90] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, Christopher Ré. “HoloClean:
holistic data repairs with probabilistic inference”. PVLDB 10.11 (2017),
pp. 1190–1201.

[91] Anna Rogers, Olga Kovaleva, Anna Rumshisky. “A Primer in BERTology:
What We Know About How BERT Works”. Transactions of the Association for
Computational Linguistics (TACL) 8 (2020), pp. 842–866.

[92] Andrew Rosenberg, Julia Hirschberg. “V-Measure: A Conditional Entropy-Based
External Cluster Evaluation Measure”. Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL). 2007, pp. 410–420.

[93] Howard A Rubin. “Macro-estimation of software development parameters: The
ESTIMACS system”. SOFTFAIR Conference on Software Development Tools,
Techniques and Alternatives. IEEE Press. 1983, pp. 109–118.

[94] Y. Shafranovich. Common Format and MIME Type for Comma-Separated Values
(CSV) Files. RFC 4180. RFC Editor, Nov. 2005, pp. 1–8. url: http://www.rfc-
editor.org/rfc/rfc4180.txt.

[95] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, Arun Kumar.
“Towards Benchmarking Feature Type Inference for AutoML Platforms”.
Proceedings of the International Conference on Management of Data (SIGMOD).
ACM, 2021, pp. 1584–1596.

[96] Lisa Singh et al. “NSF BIGDATA PI Meeting - Domain-Specific Research
Directions and Data Sets”. SIGMOD Record 47.3 (2019), pp. 32–35. issn: 0163-
5808.

[97] Glen Smith, Scott Conway, Andrew Rucker Jones, Sean Sullivan, Kyle Miller,
Tom Squires, Kyle Miller, Maciek Opala, J.C. Romanda. OpenCSV - Project page.
July 2022. url: http://opencsv.sourceforge.net (visited on 05/10/2023).

[98] Ezekiel O. Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske,
Andreas Zeller. “Inputs from Hell”. IEEE Transaction on Software Engineering
48.4 (2022), pp. 1138–1153.

[99] Elias Stehle, Hans-Arno Jacobsen. “ParPaRaw: Massively Parallel Parsing of
Delimiter-Separated Raw Data”. PVLDB 13.5 (2020), pp. 616–628.

[100] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çagatay Demiralp,
Chen Chen, Wang-Chiew Tan. “Annotating Columns with Pre-trained Language

111

https://doi.org/10.5281/zenodo.6702671
https://doi.org/10.5281/zenodo.6702671
https://doi.org/10.5281/zenodo.6702671
http://www.rfc-editor.org/rfc/rfc4180.txt
http://www.rfc-editor.org/rfc/rfc4180.txt
http://opencsv.sourceforge.net

REFERENCES

Models”. Proceedings of the International Conference on Management of Data
(SIGMOD). ACM, 2022, pp. 1493–1503.

[101] Yushi Sun, Hao Xin, Lei Chen. “RECA: Related Tables Enhanced Column
Semantic Type Annotation Framework”. PVLDB 16.6 (2023), pp. 1319–1331.

[102] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna.
“Rethinking the inception architecture for computer vision”. Proceedings of the
International Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 2818–2826.

[103] Tableau Software, LLC. Tableau. 2022. url: www . tableau . com (visited on
05/10/2023).

[104] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel
Madden, Mourad Ouzzani. “RPT: Relational Pre-trained Transformer Is Almost
All You Need towards Democratizing Data Preparation”. PVLDB 14.8 (2021),
pp. 1254–1261.

[105] Robert C. Tausworthe. “The work breakdown structure in software project
management”. Journal of Systems and Software 1 (1979), pp. 181–186.

[106] Jeni Tennison, Gregg Kellogg, Ivan Herman. Model for Tabular
Data and Metadata on the Web. W3C Recommendation.
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/. W3C,
Dec. 2015.

[107] The Document Foundation. LibreOffice Calc 7.3.4. 2022. url: https://www.
libreoffice.org/discover/calc/ (visited on 05/10/2023).

[108] Barik Titus, Lubick Kevin, Smith Justin, Slankas John, Murphy-Hill Emerson R.
“Fuse: A Reproducible, Extendable, Internet-Scale Corpus of Spreadsheets”.
IEEE/ACM Working Conference on Mining Software Repositories, MSR. 2015,
pp. 486–489.

[109] Hugo Touvron et al. “LLaMA: Open and Efficient Foundation Language Models”.
CoRR abs/2302.13971 (2023).

[110] Trifacta Inc. Trifacta Data Engineering Cloud. 2021. url: www.trifacta.com
(visited on 05/10/2023).

[111] Guido Van Rossum, Fred L. Drake. Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009. isbn: 1441412697.

[112] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. “Attention is All you Need”.
Advances in Neural Information Processing Systems (NIPS). 2017, pp. 5998–6008.

112

www.tableau.com
https://www.libreoffice.org/discover/calc/
https://www.libreoffice.org/discover/calc/
www.trifacta.com

REFERENCES

[113] Gerardo Vitagliano, Mazhar Hameed, Lan Jiang, Lucas Reisener, Eugene Wu,
Felix Naumann. “Pollock: A Data Loading Benchmark”. PVLDB 16.8 (2023),
pp. 1870–1882. doi: 10.14778/3594512.3594518.

[114] Gerardo Vitagliano, Mazhar Hameed, Felix Naumann. “Structural Embedding of
Data Files with MaGRiTTE”. Table Representation Workshop at NeurIPS. 2022.

[115] Gerardo Vitagliano, Mazhar Hameed, Alejandro Sierra-Múnera, Felix Naumann.
“Structural Embeddings for Tabular File Preparation”. Under review ().

[116] Gerardo Vitagliano, Lan Jiang, Felix Naumann. “Detecting Layout Templates in
Complex Multiregion Files”. PVLDB 15.3 (2022), pp. 646–658.

[117] Gerardo Vitagliano, Lucas Reisener, Lan Jiang, Mazhar Hameed, Felix Naumann.
“Mondrian: Spreadsheet Layout Detection”. Proceedings of the International
Conference on Management of Data (SIGMOD). ACM, 2022, pp. 2361–2364.

[118] David Vos, Till Döhmen, Sebastian Schelter. “Towards Parameter-Efficient
Automation of Data Wrangling Tasks with Prefix-Tuning”. Table Representation
Workshop (TRL) at NeurIPS. 2022.

[119] Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, Matt Gardner. “Do NLP
Models Know Numbers? Probing Numeracy in Embeddings”. Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, 2019,
pp. 5306–5314.

[120] Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang, Xin Luna
Dong, Meng Jiang. “TCN: Table Convolutional Network for Web Table
Interpretation”. Proceedings of the International World Wide Web Conference
(WWW). ACM / IW3C2, 2021, pp. 4020–4032.

[121] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, Kalyan Veeramachaneni.
“Modeling Tabular data using Conditional GAN”. NeurIPS. 2019, pp. 7333–7343.

[122] Cong Yan, Yeye He. “Auto-Suggest: Learning-to-Recommend Data Preparation
Steps Using Data Science Notebooks”. Proceedings of the International
Conference on Management of Data (SIGMOD). ACM, 2020, pp. 1539–1554.

[123] Jingfeng Yang, Aditya Gupta, Shyam Upadhyay, Luheng He, Rahul Goel, Shachi
Paul. “TableFormer: Robust Transformer Modeling for Table-Text Encoding”.
ACL (1). Association for Computational Linguistics, 2022, pp. 528–537.

[124] Pengcheng Yin, Graham Neubig, Wen-tau Yih, Sebastian Riedel. “TaBERT:
Pretraining for Joint Understanding of Textual and Tabular Data”. ACL.
Association for Computational Linguistics, 2020, pp. 8413–8426.

113

https://doi.org/10.14778/3594512.3594518

REFERENCES

[125] Richard Zanibbi, Dorothea Blostein, James R Cordy. “A survey of table
recognition”. Document Analysis and Recognition 7.1 (2004), pp. 1–16.

[126] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, Christian Holler.
The Fuzzing Book. Saarbrücken: CISPA + Saarland University, 2019.

[127] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demiralp,
Wang-Chiew Tan. “Sato: Contextual Semantic Type Detection in Tables”.
PVLDB 13.11 (2020), pp. 1835–1848.

[128] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, Miryung Kim.
“BigFuzz: Efficient Fuzz Testing for Data Analytics Using Framework
Abstraction”. ASE. IEEE, 2020, pp. 722–733.

[129] Yi Zhang, Zachary G. Ives. “Finding Related Tables in Data Lakes for Interactive
Data Science”. Proceedings of the International Conference on Management of
Data (SIGMOD). ACM, 2020, pp. 1951–1966.

[130] Yi Zhang, Zachary G. Ives. “Finding Related Tables in Data Lakes for Interactive
Data Science”. Proceedings of the International Conference on Management of
Data (SIGMOD). 2020, pp. 1951–1966.

[131] Erkang Zhu, Dong Deng, Fatemeh Nargesian, Renée J. Miller. “JOSIE: Overlap
Set Similarity Search for Finding Joinable Tables in Data Lakes”. Proceedings
of the International Conference on Management of Data (SIGMOD). 2019,
pp. 847–864.

114

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Tabular Data Preparation
	1.1 Shortcomings of data preparation
	1.2 Tabular models for data management
	1.3 Dissertation structure and contributions

	2 Pollock: a Formal Model to Benchmark Data Loading
	2.1 Challenges of CSV files
	2.2 A grammar-based model of file structure
	2.2.1 Content, Structure, Format
	2.2.2 Grammar dialects
	2.2.3 File pollution

	2.3 The Pollock benchmark
	2.3.1 Survey setup
	2.3.2 Input file design
	2.3.3 Pollution design
	2.3.4 Metrics design

	2.4 Experimental results of real-world systems
	2.4.1 Source file
	2.4.2 File and table pollution
	2.4.3 Structural characters and inconsistent rows
	2.4.4 Overall Pollock score
	2.4.5 Real-world loading

	2.5 Summary

	3 Mondrian: Modeling Layout Templates of Multiregion Files
	3.1 Related work
	3.2 Multiregion files, layouts, templates
	3.3 The Mondrian approach
	3.3.1 Image parsing
	3.3.2 Region extraction
	3.3.3 Template matching
	3.3.4 Template clustering
	3.3.5 Approach complexity

	3.4 Evaluation
	3.4.1 Evaluation datasets and their properties
	3.4.2 Experimental setup
	3.4.3 Region detection accuracy
	3.4.4 Template inference accuracy
	3.4.5 Scalability of template inference

	3.5 Data preparation with Mondrian
	3.6 Summary

	4 MaGRiTTE: a Machine-Learning Model for File Structure
	4.1 Data preparation with LLMs?
	4.2 The MaGRiTTE architecture
	4.2.1 Pattern Tokenization
	4.2.2 Structural Transformer
	4.2.3 Convolutional Feature Extractor

	4.3 Data preparation with MaGRiTTE
	4.3.1 Dialect Detection
	4.3.2 Table Understanding
	4.3.3 Preparation Effort Estimation

	4.4 Experimental results
	4.4.1 Pre-training
	4.4.2 Dialect detection
	4.4.3 Table understanding
	4.4.4 Preparation Effort Estimation

	4.5 Related work
	4.6 Conclusions

	5 Summary and Outlook
	References

