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Preface 

This dissertation is prepared and submitted in accordance with the guidelines for the degree of 
Doctor of Philosophy in Faculty of Science (Discipline Geoecology) at the University of 
Potsdam, Germany. The Ph.D. study was under the supervision of Prof. Dr. Michael Rode 
(Helmholtz Centre for Environmental Research – UFZ) and Prof. Dr. Ralf Merz (Helmholtz 
Centre for Environmental Research – UFZ). The study was carried out at UFZ. 

The study was mainly funded by the Chinese Scholarship Council (CSC) for a period of four 
years (No. 201706710031) and partially supported by the Department of Aquatic Ecosystem 
Analysis and Management (ASAM), UFZ. 

Hydromorphological alteration and diffuse pollution are the main drivers of European water 
bodies fail to achieve the ‘good ecology status’ according to the European Environment 
Agency report (EEA, 2018). In addition, the increase occurrences of extreme weather events 
such as droughts and heat waves has worsened the situation, which are projected to become 
more frequent and severe in the future. This results in a complex situation, perturbing 
remarkably the hydrological cycle and its associated processes including the runoff partitioning 
and nutrient transport to river network. Thus, sustainable management of catchments requires 
scientific understanding of the impacts of drought on nitrate dynamics and the stream 
restoration on nitrate retention at river network scale. A scientifically-based and integrated 
hydrological and water quality decision making tool capable to guide sustainable water 
management considering the increasing extreme climate conditions are needed.  To this end, a 
process-based and distributed hydrological water quality model is required to provide scientific 
evidence of the hydrological and water quality processes under changing climate conditions. 
This model can be used for investigating mitigation measurements (such as spatially-targeted 
mitigation measures) to improve water quality.  

The newly developed grid-based hydrological water quality model (mHM-Nitrate) balancing 
between processes complexity and an accurate representation of catchment heterogeneity, was 
implemented in the well-monitored Bode catchment, in central Germany with heterogeneous 
climate and catchment characteristics. First, we investigate the impact of calibration schemes 
on the spatiotemporal transferability of mHM-Nitrate model parameters by evaluating the 
spatiotemporal performance of nitrate concentration at non-calibrated water quality sampling 
locations. The Bode catchment experienced sequential drought from 2015-2018 and nitrate 
concentrations showed varying trends at different gauging stations. This allows us to evaluate 
the mHM-Nitrate model's ability to simulate discharge and nitrate dynamics in extreme weather 
events, as well as to investigate the mechanism of the impacts of drought on stream nitrate 
dynamics. Finally, we investigate the impact of stream restoration through re-meandering on 
nitrate concentration at river network scale based on the well-calibrated mHM-Nitrate model. 

The dissertation is presented as an accumulation of three peer-reviewed publications, including 
a general Introduction and a general Discussion as Chapter 1 and Chapter 5, respectively. 
Chapters 2 – 4 present the three peer-reviewed manuscripts as detailed below: 
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Chapter 2: Ghaffar S., Zhou, X., Jomaa, S., Yang, X. and Rode, M.  2022.  Improving the 
calibration of a fully distributed hydrological water quality model. Submitted. 

Chapter 3: Zhou, X., Jomaa, S., Yang, X., Merz, R., Wang, Y. and Rode, M.  2022.  Exploring 
the relations between sequential droughts and stream nitrogen dynamics in central Germany 
through catchment-scale mechanistic modelling. Journal of Hydrology 614, 128615. 
https://doi.org/10.1016/j.jhydrol.2022.128615 
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Abstract 
The European Water Framework Directive (WFD) has identified river morphological alteration 
and diffuse pollution as the two main pressures affecting water bodies in Europe at the 
catchment scale. Consequently, river restoration has become a priority to achieve the WFD's 
objective of good ecological status. However, little is known about the effects of stream 
morphological changes, such as re-meandering, on in-stream nitrate retention at the river 
network scale. Therefore, catchment nitrate modeling is necessary to provide guidance for the 
implementation of spatially targeted and cost-effective mitigation measures. Meanwhile, 
Germany, like many other regions in central Europe, has experienced consecutive summer 
droughts from 2015-2018, resulting in significant changes in river nitrate concentrations in 
various catchments. However, the mechanistic exploration of catchment nitrate responses to 
changing weather conditions is still lacking.  

Firstly, a fully distributed, process-based catchment Nitrate model (mHM-Nitrate) was used, 
which was properly calibrated and comprehensively evaluated at numerous spatially 
distributed nitrate sampling locations. Three calibration schemes were designed, taking into 
account land use, stream order, and mean NO3

−  concentrations, and they varied in spatial 
coverage but used data from the same time period (2011–2019). The model performance for 
discharge was similar among the three schemes, with Nash-Sutcliffe Efficiency (NSE) scores 
ranging from 0.88 to 0.92. However, for nitrate concentrations, scheme 2 outperformed 
schemes 1 and 3 when compared to observed data from eight gauging stations. This was likely 
because scheme 2 incorporated a diverse range of data, including low discharge values and 
nitrate concentrations, and thus provided a better representation of within-catchment 
heterogenous. Therefore, the study suggests that strategically selecting gauging stations that 
reflect the full range of within-catchment heterogeneity is more important for calibration than 
simply increasing the number of stations. 

Secondly, the mHM-Nitrate model was used to reveal the causal relations between sequential 
droughts and nitrate concentration in the Bode catchment (3200 km2) in central Germany, 
where stream nitrate concentrations exhibited contrasting trends from upstream to downstream 
reaches. The model was evaluated using data from six gauging stations, reflecting different 
levels of runoff components and their associated nitrate-mixing from upstream to downstream. 
Results indicated that the mHM-Nitrate model reproduced dynamics of daily discharge and 
nitrate concentration well, with Nash-Sutcliffe Efficiency ≥ 0.73 for discharge and Kling-
Gupta Efficiency ≥ 0.50 for nitrate concentration at most stations. Particularly, the spatially 
contrasting trends of nitrate concentration were successfully captured by the model. The 
decrease of nitrate concentration in the lowland area in drought years (2015-2018) was 
presumably due to (1) limited terrestrial export loading (ca. 40% lower than that of normal 
years 2004-2014), and (2) increased in-stream retention efficiency (20% higher in summer 
within the whole river network). From a mechanistic modelling perspective, this study 
provided insights into spatially heterogeneous flow and nitrate dynamics and effects of 
sequential droughts, which shed light on water-quality responses to future climate change, as 
droughts are projected to be more frequent. 
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Thirdly, this study investigated the effects of stream restoration via re-meandering on in-stream 
nitrate retention at network-scale in the well-monitored Bode catchment. The mHM-Nitrate 
model showed good performance in reproducing daily discharge and nitrate concentrations, 
with median Kling-Gupta values of 0.78 and 0.74, respectively. The mean and standard 
deviation of gross nitrate retention efficiency, which accounted for both denitrification and 
assimilatory uptake, were 5.1±0.61% and 74.7±23.2% in winter and summer, respectively, 
within the stream network. The study found that in the summer, denitrification rates were about 
two times higher in lowland sub-catchments dominated by agricultural lands than in 
mountainous sub-catchments dominated by forested areas, with median ± SD of 204±22.6 and 
102±22.1 mg N m-2 d-1, respectively. Similarly, assimilatory uptake rates were approximately 
five times higher in streams surrounded by lowland agricultural areas than in those in higher-
elevation, forested areas, with median ± SD of 200±27.1 and 39.1±8.7 mg N m-2 d-1, 
respectively. Therefore, restoration strategies targeting lowland agricultural areas may have 
greater potential for increasing nitrate retention. The study also found that restoring stream 
sinuosity could increase net nitrate retention efficiency by up to 25.4±5.3%, with greater effects 
seen in small streams. These results suggest that restoration efforts should consider augmenting 
stream sinuosity to increase nitrate retention and decrease nitrate concentrations at the 
catchment scale. 
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Chapter 1: Introduction 

1.1. Problem statement 

In recent decades, eutrophication has become a worldwide aquatic environmental problem due 
to excess nutrients from intensive human activities. Over the 20th century, the global nutrient 
input to surface waters increased from 34 to 64 Tg N y-1, and agriculture was the dominant 
contribution to the nutrient source (19% - 51% of total input) on the global scale (Beusen et 
al., 2016). Streams and rivers are essential parts of surface water ecosystems, they serve as 
water supply, irrigation, transportation and recreation and have great social, economic and 
ecosystem significance to humans. However, many streams and rivers have been polluted by 
excess nitrogen input from agriculture, urban wastewater and other sources. For example, 
around 60% of European surface water bodies failed to achieve good ecological status 
according to the European Environment Agency report (EEA, 2018). Good ecological status is 
introduced by the European Water Framework Directive (WFD), defined as a slight variation 
from undisturbed conditions in terms of the quality of the biological elements, the 
hydromorphological and chemical elements (EU, 2000). Hydromorphological alteration and 
diffuse source pollution are two dominant pressures on Europe’s surface water bodies, which 
affect 40% and 38% of surface water bodies (mainly rivers), respectively (EEA, 2018). In 
addition, 13% of European water bodies have been heavily modified (e.g., straightening and 
channelization, dams and weirs) to facilitate agricultural land use and flood protection (EEA, 
2018). In Germany, more than 37% of rivers are heavily modified by channelization and/or 
straightening (Pander et al., 2017). 

Hydrological water quality models of catchments are required for quantifying nutrient transport 
and transformation and investigating river restoration's effect on nitrate retention in river 
networks. Many parameters are included in the model that cannot be directly measured in the 
field in order to model spatial variability in hydrological and biogeochemical processes at the 
catchment scale (Li, Weller and Jordan, 2010). Model calibration is a prerequisite to apply the 
catchment model by optimizing the model parameters to match the model simulations with 
observations (Engel et al., 2007; Moriasi et al., 2012; Saraswat et al., 2015). This increases the 
reliability of the model to accurately represent the spatiotemporal variability of hydrological 
and biogeochemical processes at the catchment scale (White and Chaubey, 2005). 
Conventionally, the hydrological water quality model was calibrated at a single site usually the 
catchment outlet, which may not give a satisfactory model performance at internal sub-
catchments in spatially heterogeneous catchments because model parameters could not be well 
constrained only using the information at the catchment outlet (Cao et al., 2006; Refsgaard et 
al., 2016). Many studies found that hydrological water quality model calibration at multi-site 
outperforms over calibration only at the catchment outlet (e.g., Ghaffar et al., 2021; Her and 
Chaubey, 2015; Jiang et al., 2015; Zhang, Srinivasan and Van Liew, 2008). In contrast, several 
studies have reported that multi-site calibration did not improve or had almost the same model 
performance as single-site calibration (e.g., Franco, Oliveira and Bonumá, 2020; Lerat et al., 
2012; Wang et al., 2012; Wu et al., 2022a). However, previous studies were mostly restricted 
to semi-distributed hydrological water quality models (e.g, SWAT(Arnold et al., 2012; Leta, 
Griensven and Bauwens, 2017; Zhang, Srinivasan and Van Liew, 2008), HYPE (Ghaffar et al., 
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2021; Jiang et al., 2015; Lindström et al., 2010)), few studies investigated the effect of 
calibrating multi-sites compared to a single-site on the performance of a fully distributed 
hydrological water quality model. 

At the catchment scale nitrate turnover processes are expected to change due to climate change 
(Hesse and Krysanova, 2016; Mosley, 2015; Whitehead et al., 2009), especially due to an 
increase in drought events (Ballard, Sinha and Michalak, 2019; Zwolsman and van Bokhoven, 
2007). In Germany, mean annual temperature increased by 1.5°C from 1881-2018, with ca. 
0.3°C of that increase occurring from 2014-2018 (UBA, 2019). Using an ensemble of climate-
change scenarios, Huang, Krysanova and Hattermann (2015) reported that most rivers in 
Germany will experience more frequent droughts. The influence of drought on nitrate dynamics 
has received increasing attention in recent decades (e.g., Baldwin et al., 2005; Lutz et al., 2016; 
Mosley, 2015; van Vliet and Zwolsman, 2008; Whitehead et al., 2009; Yevenes, Figueroa and 
Parra, 2018; Zwolsman and van Bokhoven, 2007). Numerous studies have reported that 
droughts can have spatiotemporally varying impacts on nitrate transport and transformation 
processes due to the heterogeneous changes in hydrological processes within catchments (e.g., 
Leitner et al., 2020; Lintern et al., 2018b; Lutz et al., 2016). These studies are generally based 
on data-driven and statistical analyses, but conclusions drawn from them are site-specific and 
often do not provide a full understanding of the factors that influence the effects of drought on 
nitrate dynamics and their spatial heterogeneity. Thus, it is crucial to identify the mechanisms 
that underlie water-quality trends under drought conditions to ensure future water quality and 
develop effective management strategies. Furthermore, the scientific understanding gained 
from analyzing deterministic trends can help to predict future trends. However, how sequential 
droughts influence stream nitrate responses has not yet been mechanistically explored. 

To achieve a good ecological status, river restoration has received increasing attention 
(Newcomer Johnson et al., 2016; Wohl et al., 2015). There have been variant measures, for 
example, re-connect streams with their floodplain in agricultural streams (Roley et al., 2012), 
re-meandering of straightened rivers (Lorenz et al., 2009; Pedersen et al., 2014), and 
connecting with ponds (Passy et al., 2012). Several studies have investigated the effects of river 
restoration on stream nitrate retention at reach scale (Bukaveckas, 2007; Craig et al., 2008; 
Kaushal et al., 2008; Klocker et al., 2009; Kunz et al., 2017c; Lin et al., 2021; Veraart et al., 
2014; Wagenschein and Rode, 2008). However, systemic investigation of the effects of stream 
restoration (i.e., re-meandering) on stream nitrate retention at the river network scale is still 
missing. This can be explained by the following challenges of the (i) difficulty in disentangling 
the contribution of geomorphology among other controlling factors to the variability of nutrient 
retention (Lin et al., 2016), (ii) the lack of detailed historical information on river morphology 
(at the natural condition) for the whole river network, and (iii) the uncertainty of disentangling 
terrestrial and in-stream N processes. 

1.2. Background and state-of-art 

1.2.1. Nutrient transport, transformation and retention processes at catchment scale 

The processes of nutrient transport, nutrient transformation, and nutrient retention in a 
watershed rely on complex interactions among hydrologic, biogeochemical, and 
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geomorphologic processes in both terrestrial landscapes and river networks (Grimm et al., 
2003; Rode et al., 2010; Ye et al., 2012). The scheme of nutrient transport, transformation and 
retention within a catchment is shown in Figure 1.1. The interactions between these processes 
occur at a variety of temporal and spatial scales, and these processes are affected by climate 
and catchment characteristics (e.g., geology and soil property, land use and land cover, and 
topography) (Li et al., 2020; Lintern et al., 2018a; Lohse et al., 2009). Climate patterns affect 
nitrate transport and transformation in both terrestrial and in-stream ecosystems through 
changes in hydrological and biogeochemical processes (Baron et al., 2012; Suddick et al., 
2012). For instance, more nutrient is transported to rivers in periods with high precipitation and 
high discharge than in drought periods (Howarth et al., 2012). While higher water temperature 
during drought could result in higher nitrate transformation rates (e.g., denitrification rate and 
assimilatory uptake rate by crop/plant) in soils and streams (Homyak et al., 2017; Mosley, 
2015; Sprague, 2005; Whitehead et al., 2006). Soil properties are closely related to the parent 
geology, and soil properties affect dissolved nutrient transport through influence on the 
infiltration process. For example, Kyllmar et al. (2014) found that more nitrate is leached to 
streams from highly permeable soils (e.g., sandy loam soil) compared to less permeable soil 
(e.g., clay soil) due to higher hydrological conductivity. Land use and land cover not only 
influence nutrient transport but also the nutrient source. There was a positive relationship 
between stream nutrient concentration and the share of agriculture areas in the catchment 
(Djodjic, Bieroza and Bergstrom, 2021; Ladrera et al., 2019). However, some studies reported 
that there was no strong relationship between nitrate concentration in streams and the share of 
agriculture areas (Lintern et al., 2018b; Ruiz et al., 2002). The different findings could be 
explained by different agricultural practices (such as fertilities application). Catchment 
topographic properties (e.g., slope, curvature) can influence nutrient transport and 
transformation though affect the flow path and water residence time (Onderka et al., 2012; 
Wagener et al., 2007). Numerous studies have demonstrated a strong correlation between 
topographic properties and nitrogen flux export from catchments. Topography also affects the 
hydrologic flushing mechanism by affecting the delivery of flushable N (Creed and Beall, 
2009; Lei, Wagner and Fohrer, 2021). For example, more N export can be seen in catchments 
with larger, hydrologically connected variable source areas. 

The river network is an important site where nutrient transformation and retention occur 
(Alexander, Smith and Schwarz, 2000). In-stream retention plays an important role in retaining 
anthropogenic nitrogen and preventing it from reaching downstream waterbodies (Mulholland 
et al., 2008; Mulholland and Webster, 2010). Nutrient retention in the river network includes 
two processes: temporary storage of nutrients in biomass (i.e., assimilatory uptake) and 
permanent removal from the stream ecosystems (i.e., denitrification) (Ye et al., 2012). 
Assimilatory uptake slows downstream transport of dissolved inorganic nitrogen, which may 
be remineralized and removed via coupled nitrification and denitrification, or ultimately be 
exported from the reach in inorganic form (Arango et al., 2008). Denitrification permanently 
removes nitrogen in water by converting nitrate to gaseous 𝑁2 as the final product, following 
the reaction sequence: 𝑁𝑂3

− → 𝑁𝑂2
− → 𝑁𝑂 →  𝑁2𝑂 → 𝑁2, which is performed by particular 

groups of heterotrophic bacteria (Groffman et al., 2006). 
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Figure 1.1 The scheme of nitrate transport, transformation and retention processes in a 
catchment. 

Water quality models have been developed and widely used as scientific tools for quantifying 
the nutrient source, transport and transformation in river ecosystems, as well as examining 
different land management strategies and climate change scenarios across different 
environmental conditions (Arheimer et al., 2005; Engel et al., 2007; Fu et al., 2020; Fu et al., 
2019; Rode et al., 2010). At the river network scale, several models have been developed to 
quantify nitrogen retention during transport in river networks, such as FrAMES (Wollheim et 
al., 2008a; Wollheim et al., 2008b), THREW (Tian et al., 2006; Ye et al., 2012) and NEXSS 
(Gomez-Velez and Harvey, 2014; Kiel and Bayani Cardenas, 2014). These models have 
typically parameterized nutrient transformation and retention processes based on local field 
measurements and extrapolate empirical equations to the whole river network (Ye et al., 2017). 
A common limitation of these river network models is that they assume the lateral water and 
nutrient inflows from land to the stream network are homogenous along the streams. They do 
not account for spatial and temporal distribution of nitrate loading which may contribute to 
large uncertainty to model simulation results (Helton, Hall and Bertuzzo, 2018; Wollheim et 
al., 2008a). Therefore, an integrated hydrological water quality model that consider nitrate 
transport, transformation and retention simultaneously at both terrestrial landscapes and river 
networks within a catchment is essential. 

1.2.2. Hydrological water quality models 

In hydrological science and environmental management research, hydrological water quality 
models have been widely used to quantify nonpoint source pollution inputs to receiving 
waterbodies and determine their source areas as well as to predict the impacts of climate change 
and land-use change on water quality (Wellen, Kamran-Disfani and Arhonditsis, 2015). 
Hydrological water quality models provide a framework for integrating the current 
understandings of the hydrological and biogeochemical processes and scaling them up to a 
wide range of spatial and temporal scales. Over the past decades, many hydrological water 
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quality models have been developed and applied in different environments all over the world 
(Moriasi et al., 2012). There are numerous papers about different aspects of catchment 
hydrological water quality models, such as model use  model purpose, software availability 
and documentation, (Engel et al., 2007; Saraswat et al., 2015; Yuan, Sinshaw and Forshay, 
2020)), model development (e.g., process representation, spatial heterogeneities and scales, 
(Baffaut et al., 2015; Breuer et al., 2008; Horn et al., 2004)) and model performance (e.g., 
calibration, validation and uncertainty analysis, (Daggupati et al., 2015; Efstratiadis and 
Koutsoyiannis, 2010; Moriasi et al., 2015; Moriasi et al., 2012)).  

Wellen, Kamran-Disfani and Arhonditsis (2015) evaluated the current state of distributed 
catchment water quality models and summarized the five models mostly used worldwide. 
These are the Soil Water Assessment Tool (SWAT) (Arnold et al., 1998), the Integrated 
Catchment model (INCA) (Whitehead, Wilson and Butterfield, 1998), the Agricultural 
Nonpoint Source Pollution Model (AGNPS/AnnAGNPS) (Young, 1989), Hydrological 
Simulation Program Fortran (HSPF) (Bicknell, 1997), and HBV-NP (now revised as 
Hydrological Predictions for the Environment (HYPE) (Lindström et al., 2010). The summary 
of the main processes represented in these models was given in Table 1.1. 

SWAT is a semi-distributed, process-based hydrological water quality model that operates on 
a continuous daily time step. It simulates the hydrological processes, nutrient loss and sediment 
yield (Arnold, 1998). In the SWAT model, a watershed is divided into small sub-watersheds 
which are further subdivided into hydrologic response units (HRUs) based on unique land use, 
soil and topographic characteristics. The HRUs represent percentages of the sub-watershed 
area and are not spatially identified within a SWAT simulation (Gassman et al., 2007). The 
hydrological processes are simulated for each HRU, including canopy interception of 
precipitation, snowmelt, tile drainage, surface runoff, infiltration, redistribution of water within 
the soil profile, evapotranspiration, lateral subsurface flow and return flow from shallow 
aquifers.  Once the loadings of water, sediment and nutrients from the land phase to the main 
channel have been determined, the loadings are routed through the streams and reservoirs 
within the watershed (Arnold et al., 2012). 

INCA is a semi-distributed, process-based model that simulates the nitrogen cycle in both the 
land phase and riverine phase (Whitehead, Wilson and Butterfield, 1998). The model simulates 
the nitrogen export from different land-use types within a river system, and the in-stream nitrate 
and ammonium concentrations at a daily time step. INCA represents a catchment as a series of 
sub-catchments consisting of regular grids (Wade et al., 2002). INCA depends on external 
inputs, such as hydrologically effective rainfall (HER; the fraction of precipitation which 
contributes to runoff) and soil moisture deficits (SMD; the difference between the current depth 
of water and the water holding capacity), there are conceptual problems when water storage 
representation differ between INCA and external rainfall-runoff models used to estimate HER 
and SMD (Futter et al., 2014). 

AnnAGNPS is a distributed parameter, continuous simulation watershed model (Bingner, 
Theurer and Yuan, 2003), based originally on the single event model, Agricultural Non-Point 
Source (AGNPS) (Young, 1989). It was developed by the USDA Agriculture Research Service 
and the USDA Natural Resources Conservation Service to evaluate non-point source pollution 
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from watersheds. The AnnAGNPS can simulate surface runoff, sediment and nutrients loading 
on a daily time step. It discretizes a watershed into homogenous, unique land management and 
soil cells. The hydrological processes considered within AnnAGNPS are similar to SWAT 
except the groundwater flow, the nutrient processes consider plant uptake, fertilization, residue 
decomposition, mineralization and transport in the soil while neglecting the in-stream 
processes (Abdelwahab et al., 2016; Parajuli et al., 2009). 

HSPF is a process-based, continuous simulation watershed model that was jointly developed 
by the US Environmental Protection Agency and the US Geological Survey (Bicknell, 1997). 
It can be used to simulate nonpoint source runoff and pollutant loadings from upland areas in 
a watershed and performs flow and water quality routing in streams and well-mixed lakes and 
impoundments (B. Duda et al., 2012; Bicknell, 1997). Within HSPF, the watershed is divided 
into pervious and impervious areas, which are further grouped by land use and subbasin. For 
the pervious land area, the PERLND module estimates the water budget, snow and ice, 
sediment, solute transport, nitrogen and phosphorus cycles. For the impervious land area, the 
IMPLND module estimates fewer processes, including snow and ice, water budget and 
sediment. In-stream processes (routing, transformation) are estimated in the RCHRES module. 

HYPE is a process-based, semi-distributed hydrological water quality model, which was 
developed by the Swedish Meteorological and Hydrological Institute based on the hydrological 
model HBV (Bergström, 1976; Lindstrom et al., 1997) and the water quality model HBV-
NP(Andersson et al., 2005; Arheimer et al., 2005; Lindström, Rosberg and Arheimer, 2005). 
Within HYPE, the watershed is divided into small sub-watersheds which are further subdivided 
into land classes.  

These models usually disaggregate a catchment into sub-catchments based on surface 
topography and further into homogenous classes (e.g., HRUs in SWAT and Soil and Land-use 
Classes in HYPE) within each sub-catchment based on land-use, soil type and topographic 
characteristics combinations. The classes are not coupled to geographic locations but define as 
a fraction of a sub-catchment area (Lindström et al., 2010). Consequently, spatial information 
on class locations is missing. Furthermore, terrestrial processes simulated in a class are 
aggregated and directly routed to the sub-catchment outlet. Therefore, interactions between 
neighboring classes are lost (Gassman et al., 2007; Rathjens et al., 2015). In addition, the river 
length in the sub-catchment is estimated as the total length of each sub-catchment and could 
not reflect the river network structure within the sub-catchment. Detailed spatial information, 
such as nutrient status (e.g., soil moisture concentration) and dynamics (e.g., leaching and 
percolation) in specific locations are missing (Rathjens et al., 2015). Recently, a new 
hydrological grid-based nitrate model (mHM-Nitrate) was developed by Yang et al. (2018) 
based on the advanced implementations of the mesoscale Hydrological Model (mHM) 
(Samaniego, Kumar and Attinger, 2010) and the HYPE model (Lindström et al., 2010). It can 
provide detailed spatial information on nitrate concentrations and fluxes, which offers 
promising opportunities for further evaluation of nutrient transport and removal processes 
spatiotemporally. 

Table 1.1. Comparison of hydrological and water quality processes and fluxes representation of five widely used 
catchment water quality model. 
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Processes SWAT INCA AGNPS/AnnAG
NPS 

HSPF HYPE 

Hydrology surface runoff, 
lateral flow 
(return flow), 
groundwater 
flow 

surface runoff, 
lateral flow 
(return flow), 
groundwater 
flow 

surface runoff, 
lateral flow 
(return flow), 
flow through till 
drainage 

surface runoff, 
lateral flow 
(return flow), 
groundwater 
flow 

surface runoff, 
lateral flow 
(return flow), 
groundwater 
flow, flow 
through till 
drainage 

      

Soil nitrogen 
pools 

NO3, NH4, 
active (stable) 
organic N, plant 
residue 

NO3, NH4, 
groundwater 
NO3 (NH4), 
organic N 

active (stable) 
inorganic N, 

stable 

organic N 

NO3, solution 
(adsorbed) NH4, 
plant 

N above/below 
ground, litter N, 
particulate 
(solution) labile 
organic N, 

particulate  

(solution) 
refractory 
organic N 

 

active (stable) 
organic N, 

dissolved 
inorganic N, 

dissolved 
organic N 

 

Soil nitrogen 
fluxes 

plant uptake, 
denitrification, 
volatilization, 
nitrification, 

decay, residue 
mineralization 

plant uptake, 
denitrification, 

nitrification, 
ammonia 

mineralization 
(decay), 

ammonia 
immobilization 

plant uptake, 
denitrification, 

volatilization, 
nitrification, 

decay, residue 
mineralization, 

immobilization, 
leaching 

plant uptake, 
denitrification, 
mineralization, 
immobilization, 

litterfall, plant N 
return, sorption 

plant uptake, 
denitrification, 
degradation, 
mineralization, 
dissolution 

In-stream 
processes 

transport 
capacity, 
deposition, 
impoundments 

deposition, 
entrainment 

 - deposition, 
scour, 
adsorption, 

advection, decay 
processes 

assimilatory 
uptake, 
denitrification  

1.2.3. Hydrological water quality model calibration and uncertainty 

Model calibration is a prerequisite to apply the catchment hydrological water quality model 
and to increase the reliability of the model in accurately representing the spatiotemporal 
variability of hydrological and biogeochemical processes at the catchment scale (White and 
Chaubey, 2005). Model calibration is a process optimizing the model parameters to match the 
model simulations with observations (Daggupati et al., 2015; Saraswat et al., 2015). The 
schematic representation of calibration is shown in Figure 2. The most common methods for 
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estimating parameter values are manual trial and error and automatic calibration. During 
manual calibration, parameter values were adjusted one by one based on expert knowledge of 
hydrological and water quality processes, which are subjective and labor intensive (Vrugt et 
al., 2003). Automatic calibration has become popular as computing efficiency increases as well 
as the development of optimization algorithms (Efstratiadis and Koutsoyiannis, 2010). As 
Gupta, Sorooshian and Yapo (1998) noted that automatic calibration involves a number of 
important components: (1) selecting appropriate calibration data, (2) defining an objective 
function that measures the difference between model predictions and the calibration data, and 
(3) selecting an optimization algorithm for optimizing the selected objective function. 

 
Figure 2. The schematic represent of model calibration (figure based on ideas from Vrugt et 
al. (2008)). Model parameters are adjusted to match the model simulation (represented by 
dashed lines) as close to observation (represented by dots) as possible. 
Traditionally, only discharge observed at catchment outlet was used for calibration. However, 
the model simulated discharge integrated multiple processes of the catchment and the impacts 
of sub-catchment scale variability are averaged out. Therefore, model calibration becomes an 
ill-posed inverse or one-to-many mapping problem (Gupta, Sorooshian and Yapo, 1998; 
Jakeman and Hornberger, 1993). The ill-posed inverse problem may be resolved by (1) 
including additional observation data from internal stations (Her and Chaubey, 2015; 
Refsgaard, 1997; Wu et al., 2022a), (2) sensitivity analysis to select most sensitive parameters 
before calibration (Pianosi et al., 2016; Song et al., 2015; Yang, Jomaa and Rode, 2019), (3) 
relating model parameters to catchment characteristics to reduce the dimensionality of 
calibrated parameters by regionalization (Götzinger and Bárdossy, 2007; Pokhrel, Gupta and 
Wagener, 2008; Samaniego, Kumar and Attinger, 2010; Samaniego et al., 2017), (4) using 
multi-criteria and multi-objective stepwise or simultaneously calibration (Ahmadi et al., 2014; 
Arnold et al., 2012; Efstratiadis and Koutsoyiannis, 2010; Franco, Oliveira and Bonumá, 2020; 
Moriasi et al., 2012), (5) using multiple fluxes and states (e.g., soil moisture (Gavahi et al., 
2020; Han, Merwade and Heathman, 2012; Rajib, Merwade and Yu, 2016), snow cover/depth 
(Duethmann et al., 2014; Finger et al., 2011; Parajka and Blöschl, 2008), groundwater level 
(Demirel et al., 2018; Refsgaard, 1997)) in addition to discharge to calibrate hydrological water 
quality models, (6) calibration against hydrologic signatures  (Gupta, Wagener and Liu, 2008; 
McMillan, 2021).  

Numerous studies reported that calibration of hydrological water quality models at multiple 
sites perform over single-site calibration (e.g., Ghaffar et al., 2021; Her and Chaubey, 2015; 
Jiang et al., 2015; Li, Weller and Jordan, 2010; Zhang, Srinivasan and Van Liew, 2008). For 
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example, Leta, van Griensven and Bauwens (2017) calibrated the SWAT model using single-
site calibration at the catchment outlet, sequential calibration from upstream to downstream 
and simultaneous multi-site calibration. They found that the sequential calibration and the 
simultaneous multi-site calibration performed better than single-site calibration, and they 
recommend simultaneous multi-site calibration because several objective functions at multiple 
stations can be used simultaneously and calibration data information can be shared among 
stations simultaneously. Similarly, Ghaffar et al. (2021) compared single-site and multisite 
calibrate at the Selke catchment in central Germany based on the HYPE model. They found 
that multi-site calibration, as opposed to calibration solely at the catchment outlet, enhanced 
model performance of discharge, nitrate, and total phosphorus content at the calibration stations 
as well as at internal, non-calibrated stations. In contrast, several studies have reported that 
multi-site calibration did not improve or had almost the same model performance as single-site 
calibration (e.g., Franco, Oliveira and Bonumá, 2020; Lerat et al., 2012; Wang et al., 2012; Wu 
et al., 2022a). They explained the unimproved model performance with high degree of 
similarity between flow data used to evaluate the model performance (Lerat et al., 2012), errors 
on the boundary conditions  and errors on the model representation of spatial varied hydro-
geologic properties (Wang et al., 2012) and hydrologic processes (Wu et al., 2022a). Shrestha 
et al. (2016) found that the performance of the SWAT model for different variables differed 
between multi-site and single-site calibration. Model performance for discharge and total 
suspended sediment loadings did not improve with multi-site calibration compared to single-
site calibration, while it improved for total nitrogen and total phosphorus loadings.  

The selection of objective functions is crucial for automatic calibration (Muleta, 2012), because 
different objective functions highlight different aspects of the variable for calibration, such as 
the Nash Sutcliffe efficiency (NSE) which depends on the peaks (Krause, Boyle and Bäse, 
2005), and  percent bias (PBIAS) which depends on the relative deviation (Gupta, Sorooshian 
and Yapo, 1999; Moriasi et al., 2015).  When using multiple variables (e.g., discharge and 
different nutrient fractions) and/or multi-site (Ahmadi et al., 2014; Zhang, Srinivasan and Van 
Liew, 2008), it becomes difficult to optimize the objective function. There are two main 
approaches of multi-objective optimization. First, the objective function can be aggregated to 
one objective function and then used to the single objective optimization algorithm (e.g., 
Shuffled Complex Evolution (SCE-UA) algorithm (Duan, Sorooshian and Gupta, 1992), 
Dynamically Dimensioned Search (DDS) (Tolson and Shoemaker, 2007)). This method has 
been criticized for using arbitrary weights (Efstratiadis and Koutsoyiannis, 2010). 
Nevertheless, the single-objective optimization method is easier to analyze statistically and 
computationally less intensive. A second method is to use multi-objective evolutionary 
algorithms to optimize the different objective functions at multiple sites simultaneously and 
find a set of multiple Pareto optimal solutions (Khu, Madsen and di Pierro, 2008; Zhang, 
Srinivasan and Van Liew, 2008).  

Hydrological water quality models are mathematical representation of real systems. Generally, 
they are described based on incomplete scientific knowledge of the study catchment's 
hydrological and biogeochemical processes, thus they are inherent in simplifications and 
assumptions (Beven, 1993; Beven, 2007; Beven and Binley, 1992; Beven and Freer, 2001; 
Gupta, Beven and Wagener, 2005). Uncertainties in measurement of input data (e.g., 
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precipitation and temperature) and output data (e.g., discharge and nitrate concentration data), 
model structure and parameters contribute to model simulation uncertainty (Vrugt et al., 2005; 
Wagener and Gupta, 2005), especially for spatially distributed hydrological water quality 
models which contain more parameters than lumped and semi-distributed hydrological water 
quality models. There also could be multiple parameters sets providing good model 
performance, resulted in equifinality of parameters (Beven, 1993; Beven, 2001; Beven and 
Freer, 2001). Several studies reported that hydrological water quality model calibration using 
multiple variables (such as nitrogen concentration, remotely satellite derived soil moisture, 
evapotranspiration, land surface temperature) in conjunction with discharge data could reduce 
model simulation uncertainty and increase reliability of model internal processes (Bergström, 
Lindström and Pettersson, 2002; Dembélé et al., 2020a; Dembélé et al., 2020b; Immerzeel and 
Droogers, 2008; Rajib et al., 2018; Stisen et al., 2018; Zhang et al., 2021).  

Many uncertainty analysis frameworks have been introduced for hydrological models, such as 
the Generalized Likelihood Uncertainty Estimation (GLUE) methodology (Beven and Binley, 
1992), Bayesian Recursive Estimation (BaRE) (Thiemann et al., 2001), the Shuffled Complex 
Evolution Metropolis algorithm (SCEM-UA) (Vrugt et al., 2003), the dynamic identifiability 
analysis framework (DYNIA) (Wagener et al., 2003), the Simultaneous Optimization and Data 
Assimilation (SODA) method (Vrugt et al., 2005), the Integrated Bayesian Uncertainty 
Estimator (IBUNE) (Ajami, Duan and Sorooshian, 2007), the DiffeRential Evolution Adaptive 
Metropolis algorithm (DREAM) (Vrugt et al., 2008), and the Integrated Parameter Estimation 
and Uncertainty Analysis Tool (IPEAT) (Yen et al., 2014). While considerable efforts have 
been made by the hydrological modelling community to develop uncertainty analysis 
techniques, they are rarely applied to distributed, process-based hydrological water quality 
models maybe due to the model’s complexity (Wellen, Kamran-Disfani and Arhonditsis, 2015). 
Jiang et al. (2015) found that multi-site calibration can reduce model simulation uncertainty 
and improve model simulation on stream inorganic nitrogen concentration compared to single-
site calibration only at catchment outlet based on the HYPE model combined with DREAM(ZS) 

in a nested catchment in Central Germany. In contrast, Her and Chaubey (2015) reported that 
calibration at three stations increased the uncertainty of SWAT model simulations on discharge 
substantially compared to single-site calibration only at the catchment outlet. 

1.2.4. River restoration effects on stream nitrate retention 

Over the past three decades, best agricultural and urban management practices have been 
implemented in the European Union to reduce nitrate loads to streams and rivers (European 
Commission, 1991a; European Commission, 1991b). In spite of this, around 60% of European 
surface water bodies do not meet good ecological standards, as reported by the European 
Environment Agency (2018). According to the European Water Framework Directive (WFD), 
river morphological alteration and diffuse pollution are the two dominant pressures on Europe's 
waters (Carvalho et al., 2019). To achieve a good ecological status targeted by the WFD, river 
restoration have been received increased attention in recent decades (Newcomer Johnson et al., 
2016; Wohl, Lane and Wilcox, 2015).  

The effects of stream restoration on nitrate retention have been studied through both empirical 
field-based measurements (Baker, Bledsoe and Price, 2012; Doyle, Stanley and Harbor, 2003; 
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Gucker and Boechat, 2004; Opdyke, David and Rhoads, 2006; Stanley and Doyle, 2002; 
Tatariw et al., 2013; Wollheim et al., 2001) and model simulations at reach scale (Alexander 
et al., 2009; Alexander, Smith and Schwarz, 2000; Wagenschein and Rode, 2008; Wollheim et 
al., 2006; Ye et al., 2012). The field-based measurements are mainly conducted using isotope 
tracer or nutrient addition experiments in separate stream reaches with distinct channel 
characteristics to calculate the nutrient spiraling metrics: uptake length (Sw), uptake rate 
coefficient (k), uptake velocity (Vf), uptake rate (U). Then these metrics are related to 
geomorphologic parameters to analyze the relationship between channel characteristics and 
nutrient retention (net uptake or denitrification). For instance, Doyle, Stanley and Harbor 
(2003) studied the relative influences of biochemical uptake processes and dynamic hydrology 
and geomorphology (hydrogeomorphology) on molybdate reactive phosphorus (MRP) 
retention within a stream.  They surveyed channel cross sections before and following dam 
removal to quantify changing channel form and used paired upstream and downstream 
measurements of MRP concentration to compute three retention metrics: uptake rate, mass 
transfer coefficient and uptake length. They found that hydrogeomorphology can control 
nutrient retention on the reach scale only when hydrogeomorphic variation is greater than 
uptake rate variability. Gucker and Boechat (2004) evaluated ammonium retention in 
headwater streams by combining a one-dimensional transport model (OTIS) with the nutrient 
spiraling concept. They found that channel morphology determined stream transient storage 
zone sizes and residence times, which in turn, is a strong determinant of ammonium retention 
potential. Opdyke, David and Rhoads (2006) studied the influence of in-stream 
geomorphologic characteristics (riffle, point bar, cut-bank pool, run, or separation zone) 
variability on sediment denitrification in agricultural streams. Sediment denitrification was 
measured at two paired channelized and meandering stream reaches in the headwaters of the 
Embarras River basin in east-central Illinois, between June 2003 and February 2005 using the 
chloramphenicol-amended acetylene inhibition procedure. They found that differences in 
benthic organic matter and the percentage of fine-grained sediments in the streambeds 
controlled much of the spatial variations in sediment denitrification among the 
geomorphological features. Bukaveckas (2007) found that stream restoration through re-
meandering and installing pool-riffle sequences in a channelized stream reduced downstream 
transport of nutrients (nitrate and phosphorus) due to decreased flow velocity in the restored 
channel than the channelized one. It was found that in-stream uptake rate coefficient (k) was 
30-fold higher in the restored channel than in its pre-restoration channel, while change of 
uptake velocity (Vf) was relatively small (Bukaveckas, 2007).  

However, there are few limitations of the field experiment studies: (1) differences between sites 
or reaches are unlikely to be limited to channel morphology alone (Doyle, Stanley and Harbor, 
2003). For instance, other factors such as water temperature, ambient water chemistry and 
community composition varying from site to site, may cause significant among sites difference 
in nutrient dynamics independent of effects of channel morphology, (2) the spiraling metrics 
derived from nutrient addition experiments could not differentiate the nitrate retention 
processes (e.g., assimilatory uptake and denitrification), which need combined with other 
methods such as isotope tracer addition (Mulholland et al., 2009) and N2:Ar method (Groffman 
et al., 2006) (3) these experimental studies mainly are limited to small streams and in short 
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term period (low flow period). This leads to considerable uncertainties which are particularly 
related to estimates of reaction rates covering the total variability of flows and site 
characteristics. In particular, the lack of substantial continuous nitrogen removal data for larger 
rivers results in significant uncertainties in network-scale total nitrogen loss estimates (Tank et 
al., 2008; Wollheim et al., 2017; Ye et al., 2017).  

Recently developed in situ high frequency, high-resolution nitrate sensors provide the 
opportunities to measure in-stream nitrate assimilatory uptake rate at high temporal frequencies 
(Hensley and Cohen, 2020; Hensley, Cohen and Korhnak, 2014; Kunz et al., 2017c; Rode et 
al., 2016b), which allow inferring uptake rates scale across river size. For example, Kunz et al. 
(2017c) combined two stations' high-frequency time series and longitudinal profiling of nitrate 
concentration to assess differences in nitrogen processing dynamics in a natural versus a 
channelized impounded reach in a fourth order river, Germany. They found that net mass 
removal rates of nitrate were markedly higher in the unmodified reach and seasonal variations 
in temperature and insolation affected the relative contribution of assimilatory versus 
dissimilatory uptake processes. Nitrate retention in river networks results from complex 
interactions of hydrological, geomorphological and biogeochemical processes (Ensign and 
Doyle, 2006; Ye et al., 2012). Hydrological processes influence nutrient retention by affecting 
the interaction between available nutrients and biogeochemical active sites (Hall, Bernhardt 
and Likens, 2002). On the other side, river morphology can directly affect nutrient retention 
through physical processes (e.g., water velocity, water residence time) in a river (Bukaveckas, 
2007; Doyle, Stanley and Harbor, 2003), river morphology can also affect nutrient retention 
indirectly by creating spatiotemporal variability of aquatic communities (e.g., macrophytes and 
phytoplankton) and their associated biological processes (Lin et al., 2016). The fully distributed 
hydrological water quality model (mHM-Nitrate) provides the ability to scale up the in-stream 
nitrate retention rate from field measurements to river network scale and to distinguish the 
effects of stream restoration via stream morphological changes from hydrological processes on 
stream nitrate retention at river network scale. 

1.3. Knowledge gaps 

Distributed hydrological water quality models are needed for water quality management in 
order to provide detailed spatial information to identify key nonpoint source pollution source 
areas and implement agricultural mitigating measures at the field scale. Some grid-based water 
quality models have been developed, such as grid-based structure of AGNPS (Liu et al., 2008), 
grid version of SWAT model (Rathjens and Oppelt, 2012; Rathjens et al., 2015), integration of 
grid-based Water Flow and Balance Simulation Model (WaSiM-ETH) and AGNPS (Rode and 
Lindenschmidt, 2001). A common issue with these models is an imbalance between spatial 
representation and model complexity that leads to high computational demand. The recently 
developed fully distributed mHM-Nitrate model can balance the model complexity and 
representation of nitrate transport and in-stream retention processes (Yang et al., 2018). 
However, the mHM-Nitrate model has been not tested in large heterogenous mesoscale 
catchment.   

According to literature review, the model performance was affected by using different 
calibration stations (single-site vs multi-site). However, previous studies based on semi-
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distributed hydrological water quality models, the effects of calibration stations on the spatial 
and spatiotemporal transferability of distributed hydrological water quality parameters is 
unclear. 

Droughts occurred more frequently in recent decades and are projected to be more serve in 
future, it is crucial to identify the mechanisms that underlie water-quality trends under drought 
conditions to ensure future water quality and develop effective management strategies. 
Although there were some studies found that droughts can have spatiotemporally varying 
impacts on nitrate transport and transformation processes, these studies are just based on data-
driven and statistical analysis. No study has examined the mechanisms underlying how 
sequential drought affects the nitrate concentration. 

As review in section 1.2.4, although numerous studies have investigated the impact of stream 
restoration on nitrate retention, these studies were only at reach scale. Systemic investigation 
of the effects of stream restoration (i.e., re-meandering) on stream nitrate retention at the river 
network scale is still missing. 

1.4. Objectives 

Based on the above mentioned problem statement and literature review, three objectives were 
defined to address the knowledge gap in understanding nitrate dynamics and the effects of 
drought and stream restoration on nitrate retention. 

The first objective was to evaluate the effect of calibration schemes on the spatiotemporal 
performance of the mHM-Nitrate model using different calibration schemes and a large number 
of nitrate sampling locations (Chapter 2);  

The second objective was to investigate the effect of sequential drought on stream nitrate 
dynamics in the Bode catchment using the mHM-Nitrate model (Chapter 3);  

The third objective was to investigate the effect of stream restoration (i.e., re-meandering) on 
stream nitrate retention at the river network scale based on the well calibrated mHM-Nitrate 
model in the Bode catchment (Chapter 4). 
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Chapter 2: Improving the calibration of a fully distributed hydrological 

water quality model 

Salman Ghaffara*, Xiangqian Zhoua*, Seifeddine Jomaaa, Xiaoqiang Yanga,b, Michael Rodea,c 
aDepartment of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for 
Environmental Research – UFZ, Magdeburg, Germany 
bYangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, 
China 
cInstitute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, 
Germany 

*Corresponding authors: Salman Ghaffar (salman.ghaffar@ufz.de), Xiangqian Zhou 
(xiangqian.zhou@ufz.de)  

2.1. Abstract 

Distributed hydrological water quality models are increasingly being used to manage natural 
resources at the catchment scale. While the models must be properly calibrated to ensure spatial 
and temporal reliability, there are no guidelines for selecting the most useful gauging stations. 
We investigated the influence of calibration schemes on the spatiotemporal performance of a 
fully distributed process-based hydrological water quality model (mHM-Nitrate). More 
specifically, we examined how calibration schemes affected simulations of discharge (Q) and 
nitrate (NO3

− ) concentrations for the heterogeneous Bode catchment in central Germany. 
Accounting for land use, stream order, and mean NO3

−  concentrations, we designed three 
calibration schemes that varied in spatial coverage but that used data from the same time period 
(2011–2019): scheme 1 used data from the catchment outlet station; scheme 2 used data from 
the catchment outlet station and two upstream stations found in sub-catchments dominated by 
forests and farmland, respectively; and scheme 3 used data from the catchment outlet station 
and seven upstream stations varying in land use and size. Model performance was validated 
using Q and NO3

− observations from the 8 gauging stations (2015–2019) and NO3
− observations 

from 94 spatially distributed sampling locations (1994–2019).  

For Q, model performance was similar among the three schemes (NSE—scheme 1: 0.92, 
scheme 2: 0.88, and scheme 3: 0.90). For NO3

− concentrations, performance was better with 
scheme 2 than with schemes 1 and 3 when simulated values were compared to observed values 
from the eight gauging stations. Similarly, scheme 2 did better than scheme 1 at replicating 
NO3

− concentrations at the spatially distributed sampling locations (PBIAS values < 15.0%: 34 
vs. 9 locations, respectively), while schemes 2 and 3 yielded similar results. This finding may 
be attributable to the fact that scheme 2 incorporated a broader range of data, including low Q 
values and NO3

− concentrations, and thus provided a better representation of within-catchment 
diversity. As a consequence, hydrological and water quality parameters were better 
constrained, which resulted in improved simulations at upstream stations in forested areas and 
at the spatially distributed sampling locations. Conversely, even though scheme 3 included data 
from five more gauging stations than did scheme 2, there were no further improvements in 
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catchment representation. Moreover, simulated NO3
−  concentrations were more accurate when 

the model used scheme 2 versus scheme 3, as seen in the narrower 95% uncertainty boundaries 
for scheme 2. Thus, adding observations that contained similar information on catchment 
characteristics did not seem to improve model performance; instead, it appeared to increase 
levels of uncertainty. Our results suggest that, to optimize parameter calibration, it is necessary 
to strategically select gauging stations that reflect the full range of within-catchment 
heterogeneity rather than simply seeking to maximize station number.   

Keywords: 

Multi-site calibration, Spatiotemporal validation, Hydrological water quality model, 
Uncertainty, Parameter transferability  

Highlights: 

• Single- and multi-site calibration approaches generally led to similar model 
performance for discharge (Q) at the catchment outlet. 

• For accurate simulation of Q and nitrate throughout the watershed, single-site 
calibration only at the catchment outlet is not sufficient. 

• The quality of the nitrate model simulation depends less on the number of calibration 
stations than on their representativeness of the catchment characteristics.  
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2.2. Introduction 

Distributed hydrological water quality models provide crucial support for water management 
decisions. The models include many parameters that represent spatial variability in 
hydrological and biogeochemical processes at the catchment scale that cannot be measured 
directly in the field (Li, Weller and Jordan, 2010). Thus, parameters must be calibrated to 
optimize model performance (Engel et al., 2007; Moriasi et al., 2012; Saraswat et al., 2015).  

Most commonly, hydrological water quality models are calibrated using measurements made 
at the catchment outlet and may thus poorly simulate dynamics at sites within catchments, 
given spatial variability in conditions (Cao et al., 2006; Refsgaard et al., 2016; Refsgaard, 
Stisen and Koch, 2022). As spatially structured discharge and water quality data become 
increasingly available, researchers are calling for multi-objective calibration strategies that 
allow for the inclusion of multiple sites, variables, and criteria (Daggupati et al., 2015; 
Efstratiadis and Koutsoyiannis, 2010; Khu, Madsen and di Pierro, 2008).  

However, to date, findings are mixed regarding the performance of single- versus multi-site 
calibration techniques. Many studies have found that, for catchment outlets, multi-site 
calibration yields more accurate results than does single-site calibration (e.g., Ghaffar et al., 
2021; Her and Chaubey, 2015; Jiang et al., 2015; Zhang, Srinivasan and Van Liew, 2008). For 
example, Shrestha et al. (2016) found such to be the case for a SWAT model (Arnold et al., 
2012; Arnold et al., 1998) simulating total nitrogen (TN) and total phosphorus (TP) loads. 
Ghaffar et al. (2021) reported the same for a HYPE model (Lindström et al., 2010) seeking to 
replicate nitrate (NO3

−) and TP concentrations across a suite of monitoring stations in central 
Germany’s Selke catchment.  

In contrast, several other studies have found that performance was largely equivalent for multi-
site and single-site calibration techniques (e.g., Franco, Oliveira and Bonumá, 2020; Lerat et 
al., 2012; Wu et al., 2022a). They explained the unimproved model performance with high 
degree of similarity between flow data used to evaluate the model performance (Lerat et al., 
2012), errors in boundary conditions as well as in representations of spatially structured 
hydrogeological properties (Wang et al., 2012) and hydrological processes (Wu et al., 2022a). 
However, it is important to note that previous studies have largely utilized semi-distributed 
hydrological and water quality models (e.g., SWAT: (Leta, Griensven and Bauwens, 2017; 
Zhang, Srinivasan and Van Liew, 2008) and HYPE: (Ghaffar et al., 2021; Jiang et al., 2015) 
and that station choice has frequently been driven by availability. Guidance is lacking when it 
comes to selecting the most useful gauging stations when calibrating fully distributed 
hydrological water quality models.  

Compared to their lumped and semi-distributed counterparts, fully distributed hydrological 
water quality models incorporate detailed spatial information for sites within catchments while 
also including a broader range of parameters (Khu, Madsen and di Pierro, 2008; Refsgaard, 
1997). The applicability of parameters across spatial and temporal scales (i.e., parameter 
transferability) presents a major challenge for the construction of distributed hydrological water 
quality models (Beven, 2001; Samaniego, Kumar and Attinger, 2010). Parameters defined 
using information from calibration locations can be applied to other locations using a process 
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called regionalization, as per Bloschl and Sivapalan (1995). Regionalization can be based on 
spatial proximity (Oudin et al., 2008a; Parajka, Merz and Bloschl, 2005), similarity in climatic 
and catchment characteristics (Beck et al., 2016; Merz and Blöschl, 2004; Oudin et al., 2008b; 
Parajka, Merz and Bloschl, 2005), and non-linear transfer functions that relate the parameters 
to catchment characteristics (e.g., land use, soil type, and geological type) (Hundecha and 
Bárdossy, 2004; Pokhrel, Gupta and Wagener, 2008; Wagener and Wheater, 2006). 
Samaniego, Kumar and Attinger (2010) specifically developed a multi-scale parameter 
regionalization (MPR) method, whose appeal stems from the fact that only the coefficients in 
the transfer functions (i.e., the global parameters) need calibration, and not the parameters for 
each grid, substantially reducing the dimensionality of the calibrated parameters (Parajka et al., 
2013; Singh, Archfield and Wagener, 2014). When model parameters are tied to catchment 
characteristics, calibration data drawn from diverse gauging stations are assumed to better 
represent within-catchment heterogeneity and to enhance model performance at spatial scales. 
However, little is known about the impact of different calibration schemes on the spatial and 
temporal performance of fully distributed hydrological water quality models. 

Hydrological water quality models are typically developed using current knowledge about the 
physical and chemical processes taking place in the focal catchment, an endeavor that 
inherently involves simplifications and assumptions (Beven, 2007; Gupta, Beven and 
Wagener, 2005). Uncertainty in model simulations is rooted in uncertainty from the 
measurement data, used as input and for calibration, as well as from model structure and 
parameterization (Vrugt et al., 2005; Wagener and Gupta, 2005). Such is especially true for 
spatially distributed hydrological water quality models, which contain more parameters than 
those of a lumped or semi-distributed model. While the hydrological modelling community has 
spent considerable time and effort designing uncertainty analysis techniques, the latter are 
rarely applied to distributed process-based hydrological water quality models, perhaps due to 
model complexity (Wellen, Kamran-Disfani and Arhonditsis, 2015). In addition, contrasting 
estimates of model simulation uncertainty have been obtained with single- versus multi-site 
calibration techniques. Jiang et al. (2015) found that, compared to single-site calibration, multi-
site calibration reduced the uncertainty around estimates of Q and NO3

− concentrations in the 
HYPE model. In contrast, Her and Chaubey (2015) found the opposite effect for Q estimates 
from a SWAT model: better performance was obtained using single-site than multi-site 
calibration. Finally, Shrestha et al. (2016) reported mixed results: for a SWAT model, single-
site calibration resulted in less uncertainty for simulated Q values, while multi-site calibration 
accomplished the same for simulated TN and TP loading values. Thus, there is a pressing need 
to explore the impact of multi-calibration techniques on the uncertainty associated with fully 
distributed models.   

Recently, Yang et al. (2018) developed a fully distributed hydrological water quality model 
(mHM-Nitrate) that is based on both the mesoscale hydrological model (mHM) (Samaniego, 
Kumar and Attinger, 2010) and the HYPE model (Lindström et al., 2010). The mHM-Nitrate 
model appears to successfully handle different catchment characteristics (Wu et al., 2022b; 
Yang et al., 2019), but it is unknown how well it deals with parameter transferability across 
space. Our study’s overarching aim was to evaluate the effects of different calibration schemes 
on the spatiotemporal performance of the mHM-Nitrate model. The specific objectives were 
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as follows: (i) to evaluate and compare three calibration schemes that differed in gauging 
station number and representation of within-catchment diversity (e.g., land use and stream 
order); (ii) to assess parameter transferability across space under the three calibration schemes 
using NO3

− data from a large number of sampling locations; and (iii) to examine the effects of 
the three calibration schemes on the degree of uncertainty associated with simulated NO3

− 
concentrations. Ideally, the study’s results should help guide the choice of effective calibration 
schemes, depending on the availability of Q and water quality data. 

2.3. Study area and methods 

2.3.1. Study area 

The Bode catchment has a area of 3,200 km2 and is located in central Germany (Figure 2.1). It 
is part of the Harz/Central German Lowland Observatory, within the broader TERENO Earth 
observation network focused on integrated, multi-scale monitoring and intensive research 
(Wollschläger et al., 2016). There is dramatic spatial heterogeneity across the catchment, which 
extends from the Harz Mountains in the southwest to the lowlands of central Germany in the 
northeast. There is also a marked elevational gradient, ranging from 1,142 m above sea level 
(a.s.l.) at Brocken, the highest peak in the Harz Mountains, to 70 m a.s.l. in the central lowlands. 
These extremes are reflected in dramatic differences in mean annual precipitation at these two 
locations, equal to 1,500 mm and 500 mm, respectively (climatic data: 1990–2019). In the 
mountains, mean monthly temperature ranges from -0.4℃ in January to 16.6℃; for the 
lowlands, these figures are 1.3℃ and 18.9℃, respectively. In the mountains, land surfaces are 
dominated by forests, with some pastures (10%), agricultural fields (8%), and urban areas and 
lakes (7%). In the lowlands, land surfaces are largely dedicated to cultivating crops (81%), 
primarily winter wheat, winter barley, rapeseed, and sugar beet. There is much less 
representation of other land use categories: forests (7%), pastures (3%), and urban areas and 
small lakes (9%) (Figure 1a). The predominant soil types in the mountains and lowlands are 
cambisols and chernozems, respectively. 
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Figure 2.1. Maps of the Bode catchment showing (a) land use, the gauging stations, and the spatially distributed 
sampling locations as well as (b) elevation and the meteorological stations and (c) location of 6 internal stations 
presented in section 3.2. 
We gathered observations of daily precipitation, daily temperature (maximum, mean, and 
minimum), and potential evapotranspiration to use as model input. These measurements 
spanned the period between 1993–2019 and were provided by the German Weather Service 
(DWD); they came from 78 rain gauges and 13 climate stations within the study area. To create 
the meteorological forcing dataset for the model, the daily precipitation and temperature data 
were spatially interpolated to 1 km × 1 km grid data using the External Drift Kriging method. 
This interpolation approach uses elevation, an external variable, to predict orographic effects 
on precipitation and temperature (Hundecha and Bárdossy, 2004). The daily potential 
evapotranspiration values were calculated using the Hargreaves and Samani (1985) method 
and interpolated at the same scale of spatial resolution. 
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To set up the mHM-Nitrate model, several sources of geographical data were used. Elevation 
measurements (spatial resolution: 90 m × 90 m) were obtained from the Shuttle Radar 
Topography Mission (SRTM) (Jarvis, 2008). The digitized geological map and the soil map 
(scale: 1:1,000,000) were provided by the German Federal Institute for Geosciences and 
Natural Resources (BGR) (https://produktcenter.bgr.de; last accessed 1 June 2020). The land 
cover data came from CORINE Land Cover 2012, which contains information on land 
cover/land use in the year 2012 (https://gdz.bkg.bund.de/index.php/default/open-data.html; 
last accessed 1 June 2020). These datasets were resampled to generate model input (spatial 
resolution: 100 m × 100 m). 

For model calibration and validation, we used measurements of Q and NO3
− concentrations 

from eight gauging stations. Daily measurements of Q at these stations were provided by the 
State Agency for Flood Protection and Water Management of Saxony-Anhalt (LHW) 
(http://gldweb.dhi-wasy.com/gld-portal/; last accessed 10 April 2020). High-frequency (15 
minutes) NO3

− concentrations for four stations (Meisdorf, Hausneindorf, Hadmersleben, and 
Stassfurt) between 2010 and 2019 were obtained from the Helmholtz Center for Environmental 
Research—UFZ; we aggregated these high-frequency measurements to daily values. For the 
other four stations (Ditfurt, Wegeleben, Nienhagen, and Peseckendorf), the NO3

− data were 
low-frequency measurements collected every two weeks to every two months from 1994 to 
2019 by LHW (http://gldweb.dhi-wasy.com/gld-portal/; last accessed 10 April 2020). Finally, 
we also gathered low-frequency NO3

−  measurements from 94 sampling locations to spatially 
validate the mHM-Nitrate model. The catchment characteristics at these sites are described in 
the Supplementary Materials (Table S2.1). 

2.3.2. mHM-Nitrate model 

The mHM-Nitrate model is a grid-based catchment nitrate model that balances process 
complexity and model representation (Yang et al., 2018). Hydrological processes in the model 
includes the following: canopy interception, snow accumulation and melt, evapotranspiration, 
infiltration, soil moisture dynamics, runoff generation, percolation and flood routing along the 
river network.  Nitrate-process descriptions come mainly from the HYPE model (Lindström et 
al., 2010), with additional considerations of nitrate retention in deep groundwater, spatially 
distributed crop rotations and time-varying point-source inputs. Nitrate processes are fully 
integrated into the hydrological cycling. Major N inputs include wet atmospheric deposition 
via precipitation, fertiliser and manure application and plant/crop residues. In each soil layer, 
four N pools are defined (i.e., active solid organic N, inactive solid organic N, dissolved organic 
N and dissolved inorganic N), along with soil N processes of denitrification, plant/crop uptake 
and transformations among the four N pools. In-stream N transformations include 
denitrification, primary production and mineralization. More detailed descriptions of the 
mHM-Nitrate model can be found in Yang et al. (2018), and source code can be found in Yang 
and Rode (2020). 

2.3.3. Model setup 

The mHM-Nitrate model was setup at a daily time step from 1993-2019 based on the available 
hydrometeorological and geographical data (Table 2.1). The model was calibrated and 
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validated for the period of 2010-2014 and 2015-2019 respectively. Using 94 water quality 
sampling locations with low frequency data, an extensive spatial-temporal validation of the 
mHM-Nitrate model was performed under three different calibration schemes. The frequency 
of the water quality data for water quality sampling locations is given in Table S2.1 in 
Supplement material. To exclude the effect of reservoir on the discharge, the observed daily 
discharge and NO3

− concentration at the gauging station (Thale) were used as input data. 

Table 2.1. Description of spatio-temporal input data for the mHM-Nitrate model setup in the Bode catchment. 
Data type Data description/properties Resolution Source 

Geographical 
data 

Elevation 100 m State Survey Office 

Stream network - State Survey Office 

Soil type 100 m State Survey Office 

Land use 100 m Corrine Land Cover 
2012 

Meteorological 
data 

Daily precipitation and mean 
air temperature 1 km German Weather 

Service-DWD 

Agricultural 
practices 

Manure and inorganic 
fertiliser application, timing 
and amount for fertilisation, 
sowing and harvesting 

Land use dependent Field survey and 
literature 

Soil nitrogen 
content Initial nitrogen storage  Literature review 

Sewage treatment 
plants N load Daily time step Operating reports of 

sewage treatment plants 

2.3.4. Calibration schemes 

The parameters of the mHM-nitrate model were related to catchment characteristics. Based on 
catchment characteristics, land use, mean NO3

−  concentration, and stream order, three 
calibration schemes were designed. In scheme. Scheme 1 used only data from the catchment 
outlet station (Stassfurt). Scheme 2 used data from Stassfurt and two gauging stations upstream 
(Meisdorf and Hausneindorf) (Table 2.1 and Figure 2.2). Scheme 3 used data from Stassfurt 
and seven gauging stations upstream (Figures 2.1a and 2.2).  
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Figure 2.2. Relationship between nitrate concentration and share of arable land use with information on stream 
order of the sub-catchments represented by the eight gauging stations and the 94 spatially distributed sampling 
locations. Station inclusion within the calibration schemes is indicated (with higher-level schemes including the 
stations found in lower-level schemes). 
The eight gauging stations used in scheme 3 reflect different combinations of land use and 
meteorological conditions found in the Bode catchment (Table 2). Compared to scheme 2, 
scheme 3 includes data from five additional gauging stations that are associated with larger 
streams (stream order: 4–6) (Krabbenhoft et al., 2022). There are four main gauging stations 
along the Bode River: Ditfurt (upstream), Wegeleben (intermediate stream), Hadmersleben 
(downstream), and Stassfurt (catchment outlet). Ditfurt and Wegeleben are in a forest-
dominated subcatchment, while Hadmersleben and Stassfurt locate in an area dominated by 
farmlands. The headwaters of the Selke and Holtemme Rivers are located in the mountains, a 
region with extensive forests (71.9%) and low NO3

− concentrations. In contrast, the lowlands 
are covered by agricultural fields, and NO3

− concentrations are high. The Meisdorf station is 
located in the mountainous Upper Selke, while the Hausneindorf station is the Selke’s outlet, 
an area with a mixture of forests and farms. The Nienhagen station is the Holtemme outlet, 
whose upstream and downstream areas are dominated by forest and agricultural surfaces 
(Ehrhardt et al., 2019), respectively. At Nienhagen, Q values are heavily affected by the 
presence of weirs (Kunz et al., 2017b). The Peseckendorf station is the outlet of the Geesgraben 
stream, which merges into the Bode after Hadmersleben; the surrounding area is predominantly 
covered by crops (88.8%).  

Table 2. Subcatchment characteristics for the eight gauging stations. Abbreviations: Subcatch = 
subcatchment; Precip = precipitation; Q = discharge; and NO3

−  = nitrate concentration range (mean). 

Station Subcatch Area  
(km2) 

Elevation 
(m) 

Precip 
(mm y-1) 

% 
Forest 

% 
Farm 
land 

Stream 
order 

Q 
(mm y-1) 

NO3
−  

(mg N L-1) 

Meisdorf Selke 180 199–597 690 73.1 12.8 3 186 0.01–5.14 
(1.57) 
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Hausneind. Selke 458 106–597 590 37.8 48.5 5 99 0.44–8.55 
(2.73) 

Ditfurt Bode 714 107–1072 783 56.4 25.3 4 211 1.30–2.90 
(1.93) 

Wegeleben Bode 1230 94–1072 698 46.9 36.9 5 166 1.10–4.75 
(2.24) 

Nienhagen Holtemm
e 

260 94–931 678 31.6 54.2 4 162 1.22–10.4 
(4.59) 

Peseckend. Geesgrab
en 

137 76–200 546 3.0 88.8 4 58 0.77–17.0 
(8.80) 

Hadmersl. Bode 2620 76–1072 639 29.2 56.6 6 132 0.47–11.0 
(2.51) 

Stassfurt Bode 3179 66–1072 617 24.7 61.6 6 114 0.46–8.10 
(2.68) 

 

2.3.5. Model calibration and validation 

Parameter sensitivity analysis was performed using the Morris method (Morris, 1991). We  
calculated the elementary effect (EE) of each parameter using the Sensitivity Analysis For 
Everybody toolbox (SAFE; Pianosi, Sarrazin and Wagener, 2015). We identified the eight most 
sensitive hydrological parameters and the six most sensitive water quality parameters (Table 
S2.2) based on the ranked values of the sensitivity indices (absolute mean and standard 
deviation of EE). This suite of parameters was then used in mHM-Nitrate model calibration. A 
more detailed description of the parameter sensitivity analysis is available in Zhou et al. (2022).  

Instead of using an optimization algorithm, like a dynamically dimensioned search (DDS) 
(Tolson and Shoemaker, 2007), we opted for a sequential multi-criteria method (Wu et al., 
2021) to filter out sets of behavioral parameters for each calibration scheme. This process 
involved two steps. During the first step, 300,000 parameter sets were created for the eight 
sensitive hydrological parameters. Next, the best 100 parameter sets were selected for each 
calibration scheme, a decision guided by the ranks of both the Nash-Sutcliffe coefficient (NSE) 
and percent bias (PBIAS) values for Q at the relevant gauging stations. During the second step, 
300,000 parameter sets were generated for the six sensitive water quality parameters, which 
were combined with the 100 best Q parameter sets. For each calibration scheme, we selected 
the best 100 parameter sets from this second step based on the ranks of the NSE and PBIAS 
values for Q and NO3

−  concentrations for the relevant gauging stations. The preliminary 
calibration results revealed that 300,000 iterations allowed the objective function values to 
converge upon minimum values. This procedure made it possible to compare the three 
calibration schemes, as this allows each calibration scheme to achieve its own best performance 
from the same parameter space.  

Following the split-sample test, this calibration procedure was applied to the mHM-Nitrate 
model incorporating Q and  NO3

−  concentrations from 2011 to 2014. Each calibration scheme 
was validated (time period: 2015–2019) at all eight gauging stations for both Q and NO3

− 
concentrations (Table 2.3). NSE and PBIAS were used as performance evaluation criteria. 
However, it is difficult to draw conclusions about the relative performance of calibration 
schemes when sample size is small. Therefore, we carried out spatiotemporal validation of the 
model using NO3

− data from the 94 spatially distributed sampling locations (i.e., low-frequency 
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measurements for 1994–2019). In this case, only PBIAS was used to evaluate model 
performance, which is satisfactory when values are less than 35%, according to Moriasi et al. 
(2015). 

2.3.6. The value of added calibration stations on parameter distributions and model 

performance    

To assess the value of additional calibration stations on the identification of the model, the 
cumulative parameter distributions were computed for all calibration schemes utilizing the top 
100 model runs from the second calibration phase of calibration schemes. To the extent that 
additional calibration stations change the cumulative distribution function of the individual 
model parameters due to model calibration, the cumulative distribution function of the realized 
performance measure of the 100 model runs of the different calibration schemes should also 
change (Nijzink et al., 2018). Significant differences in these cumulative distribution functions 
can be tested statistically and should allow an assessment of the added value of a modified data 
set introduced by additional calibration stations for model identification. In this study, we 
determined the statistical significance of the differences in these cumulative distribution 
functions between calibration schemes using the two-sample Kolmogorov-Smirnov (Conover, 
1999) test (𝐷): 

 𝐷 = 𝑚𝑎𝑥|𝐹(𝜃𝑖) − 𝐺(𝜃𝑖)| (1) 

where 𝐹(𝜃𝑖) and 𝐺(𝜃𝑖) are the empirical cumulative distribution functions of the parameter 𝜃𝑖 
for calibration scheme 1(2) and 2(3). The null hypothesis is that the two samples are from the 
same continuous distribution. If 𝐷 is closer to zero, it indicates that the probability of the two 
samples being drawn from the same population is higher. Moreover, the two-sample 
Kolmogorov-Smirnov test generates a p-value that corresponds to the calculated 𝐷 statistic. A 
higher p-value (> 0.05) provides stronger support for the null hypothesis. The relative 
occurrences of certain, significant, KS statistics can be inspected by means of cumulative 
frequency plots. 

2.3.7. Uncertainty analysis 

To compare model uncertainty among the three calibration schemes, 95% uncertainty 
boundaries were calculated based on the 2.5th and 97.5th percentiles of the cumulative 
distributions for the best 100 model runs from the second calibration step. The R-factor 
quantifies differences between observed and simulated data and is calculated by dividing the 
average distance between the upper and lower 95% uncertainty boundaries by the standard 
deviation of the observed data (Abbaspour et al., 2007). The R-factor expresses the width of 
the 95% uncertainty and a value less than 1 is being desirable. The uncertainty analysis was 
performed for both Q and NO3

− concentrations at all the gauging stations included in schemes 
2 and 3. We compared model uncertainty for schemes 2 and 3 by comparing results for the 
stations shared by the schemes (Stassfurt, Hausneindorf, and Meisdorf). 
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2.4. Results 

The mHM-Nitrate model was calibrated under three calibration schemes for discharge and 
NO3

−  parameters. The calibrated parameters are presented in Table S2.1 (Supplementary 
material) with their description, physical meanings, initial and optimized values. 

2.4.1. Model performance at gauging stations 

The model performance of discharge (Q) for at the catchment outlet (Stassfurt station) was 
similar across the three calibration schemes (NSE—scheme 1: 0.82, scheme 2: 0.87, and 
scheme 3: 0.88; PBIAS—scheme 1: 0.30%, scheme 2: 0.0%, and scheme 3: -8.60%; Table 
2.4). During the calibration period, at the Meisdorf and Hausneindorf stations, performance 
was lower for scheme 3 than for scheme 2 (NSE—scheme 2: 0.58 to 0.69 vs. scheme 3: 0.53 
to 0.66; PBIAS—scheme 2: -7.80% to -23.5% vs. scheme 3: -20.2% to -32.0%). During the 
validation period, water balance was well captured across all the calibration schemes and 
gauging stations, with the exception of Nienhagen (PBIAS—scheme 1: -3.7% to 7.1%, scheme 
2: -7.7% to 2.6%, and scheme 3: -12.7% to 1.4%). Performance was lowest at the Peseckendorf 
and Nienhagen stations across the three schemes, albeit lower for scheme 1 than for schemes 
2 and 3 (NSE—scheme 1: -0.34 to 0.13 vs. scheme 2: 0.17 to 0.29 and scheme 3: 0.36 to 0.45; 
Table 2.4). It was also better at the Stassfurt, Meisdorf, and Hausneindorf stations during the 
validation period than during the calibration period across all calibration schemes (NSE—
lower ranges: 0.53–0.88 and upper ranges: 0.71–0.92). 

Model performance of NO3
− concentration at the catchment outlet Stassfurt station decreased 

from Scheme 1 to 2 and 3 during the calibration period (NSE—scheme 1: 0.67, scheme 2: 0.64, 
and scheme 3: 0.62; PBIAS—scheme 1: 0.40%, scheme 2: -6.90%, and scheme 3: 7.10%). 
Also, during the calibration period, model performance at the Meisdorf station was better at 
scheme 2 (PBIAS: -2.60%) than scheme 3 (PBIAS: -23.2%). At Hausneindorf, scheme 3 
yielded better performance than did scheme 2 (PBIAS: -7.90% vs. 1.20%, respectively). During 
the validation period, performance was better at scheme 2 than at scheme 1 for all the gauging 
stations except for Nienhagen station, with PBIAS values in ranges —scheme 2: 1.8–33.9% 
and scheme 1: -10.1–23.3%, respectively. While NO3

−  concentration model performance 
decreased from Scheme 2 to 3 at all gauging stations except Nienhagen station, with larger 
absolute PBAIS values in Scheme 3 than Scheme 2. 

 
Table 2.4. Model performance of discharge and NO3

− concentration at gauging stations under Scheme 1, Scheme 
2 and Scheme 3. 

Schemes Stations 

Discharge NO3
− 

Calibration Validation Calibration Validation 

NSE 

 

PBIAS 

(%) 

NSE 

 

PBIAS 

(%) 

NSE 

 

PBIAS 

(%) 

NSE 

 

PBIAS 

(%) 

Scheme 1 

Stassfurt 0.82 0.30 0.92 4.20 0.67 0.40 0.33 12.5 

Meisdorf - - 0.71 7.10 - - 0.32 33.9 

Hausneindorf - - 0.77 0.70 - - -0.08 8.10 
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Wegeleben - - 0.92 -3.70 - - -1.19 16.4 

Hadmersleben - - 0.93 2.90 - - 0.01 20.9 

Peseckendorf - - -0.34 -3.50 - - -3.84 23.0 

Ditfurt - - 0.97 -0.20 - - -4.36 8.80 

Nienhagen - - 0.13 44.7 - - -0.66 1.80 

Scheme2 

Stassfurt 0.87 0.00 0.88 0.60 0.64 -6.90 0.23 9.30 

Meisdorf 0.58 -23.5 0.72 -1.70 0.66 -2.60 0.67 -10.1 

Hausneindorf 0.69 -7.80 0.76 -3.00 0.27 -7.90 0.31 -4.00 

Wegeleben - - 0.92 -3.10 - - -0.14 4.00 

Hadmersleben - - 0.92 2.60 - - 0.26 14.3 

Peseckendorf - - 0.17 -7.70 - - -2.72 23.3 

Ditfurt - - 0.96 2.20 - - -2.18 1.60 

Nienhagen - - 0.29 38.8 - - -0.17 -9.10 

Scheme 3 

Stassfurt 0.88 -8.60 0.90 1.40 0.62 7.10 -0.33 16.8 

Meisdorf 0.53 -32.0 0.71 -12.0 0.53 -23.2 0.71 -14.0 

Hausneindorf 0.66 -20.2 0.73 -12.7 0.31 1.20 0.20 -7.80 

Wegeleben 0.87 -12.6 0.92 -5.60 0.37 -9.50 -1.39 11.0 

Hadmersleben 0.87 -9.10 0.92 -0.90 0.21 14.0 -0.49 23.8 

Peseckendorf 0.56 -21.6 0.45 -9.80 -0.44 -15.6 -1.70 24.7 

Ditfurt 0.94 -3.40 0.96 1.00 0.35 -9.80 -3.56 9.20 

Nienhagen 0.68 6.00 0.36 29.9 0.59 -14.2 0.39 -3.20 

The seasonal dynamics of Q were captured by scheme 2 at its three gauging stations during 
both the calibration and validation periods as well as during low- and high-flow conditions 
(Figures 2.3a, 2.3c, and 2.3e). The same was true for the seasonal dynamics of NO3

− 
concentrations (i.e., high values during high-flow periods and low values during low-flow 
periods; Figures 2.3b, 2.3d, and 2.3f). In addition, over the period from 2011 to 2019, NO3

− 
concentrations followed a constant seasonal pattern at the Meisdorf station (Figure 2.3b) but 
tended to decline at the Hausneindorf and Stassfurt stations (Figures 2.3d and 2.3f), which were 
well captured by the model. Model performance for NO3

− concentrations was greatest at the 
Meisdorf station (NSE—calibration: 0.66 and validation: 0.67; Table 2.4). It was lowest at the 
Hausneindorf station (NSE—calibration: 0.27 and validation: 0.31; Table 2.4). At Stassfurt, 
Meisdorf, and Hausneindorf, model performance for NO3

−  concentrations were satisfactory 
(PBIAS ranged between -7.9% and 9.3% during calibration and validation). 
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Figure 2.3. Model simulated and observed discharge and 𝐍𝐎𝟑

− concentration at (a-b) Meisdorf, (c-d) Hausneindorf 
and (e-f) Stassfurt stations at Scheme 2. 

2.4.2. Model performance at water quality sampling locations 

We further tested how the calibration schemes affected model performance using NO3
− data 

from the 94 spatially distributed sampling locations. Performance was generally better for 
scheme 2 than for scheme 1 (PBIAS ≤ 15.0%: 34 vs. 9 sampling stations, respectively, and 
PBIAS > 45%: 12 vs. 65 sampling stations, respectively) (Table 2.5). Performance was similar 
for schemes 2 and 3 (PBIAS ≤ 15.0%: 34 vs. 35 sampling locations, respectively).    

Table 2.5. Number of water quality sampling locations under different PBIAS ranges for three calibration 
schemes. 

PBIAS (%) Scheme 1 Scheme 2 Scheme 3 

0.00 – 15.0 9 34 35 

15.1 – 25.0 9 19 16 
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25.1 – 35.0 8 17 20 

35.1 – 45.0 3 12 10 

> 45.1  65 12 13 

We also examined how catchment characteristics might influence model performance by 
looking at the spatial distributions of the PBIAS values for all 94 sampling locations across the 
three calibration schemes (Figure 2.4). The model performance for  NO3

−  concentration at each 
stream order and land use (farmland vs. forest) are shown in Figure S2.1. Overall, more 
locations showed a good level of performance (PBIAS ≤ 15.0%) at scheme 2 versus scheme 
1; no such difference was seen between schemes 2 and 3. More specifically, performance was 
better at scheme 2 than scheme 1 in areas dominated by farmlands for all stream orders (Figure 
S2.1). Additionally, performance was better for scheme 3 than scheme 2 except in the case of 
stream orders 2 and 4 in agricultural areas and stream order 5 in forested areas (Figure S2.1). 
With schemes 2 and 3, a few stations had high PBIAS values (> 45.0%; 12 and 13 stations, 
respectively). For forested areas, scheme 2 led to much better performance than did scheme 1 
but was not significantly better than scheme 3. 
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Figure 2.4. Spatial evaluation of mHM-Nitrate model performance on 𝐍𝐎𝟑

− concentration for all water quality 
sampling locations under three calibration schemes. 
We used the optimized parameter sets for scheme 2 to explore model performance in greater 
detail at six spatially distributed sampling locations that displayed distinct characteristics (map: 
Figure 2.1c; observed and simulated NO3

− concentrations: Figure 2.6; PBIAS: Table 2.6). There 
was variation in the duration and frequency of the validation data for the six sampling locations. 
Seasonal patterns of NO3

− concentrations were well captured by the model over different levels 
of NO3

− (Figure 2.5), with PBIAS values ranging from -17.1% to 14.5% (Table 2.6). This result 
indicates that the mHM-Nitrate model was capable of representing NO3

−  dynamics within 
different subcatchments when scheme 2 was applied. The largest difference between mean 
observed and simulated NO3

−  concentrations occurred at NO3
−  sampling location 2 (Figure 

2.5c) with PBIAS value of -17.1%, which represents an arable dominated sub-catchment. The 
best fit between mean observed and simulated NO3

− concentration was found at NO3
− sampling 

location 4 (Figure 2.5d; PBIAS = -9.3%), which is found in a mountainous sub-catchment that 
contains a mixture of farmland and pasture (Figure 2.1c). 



30 
 

 
Figure 2.5. Observed and simulated nitrate (NO3

−) concentrations (calibration scheme 2) for the six sampling 
locations displaying distinct characteristics. 
Table 2.6. Summary of catchment characteristics represented by the six sampling locations, model performance 
for nitrate (NO3

−) concentrations (PBIAS values), minimum and maximum values of simulated and observed NO3
− 

concentrations at the sampling locations, and range (mean) of NO3
− concentrations. 

Sampling 
location 

Sub-catchment 
area 

(km2) 

Dominant land use PBIAS 

(%) 

Simulated NO3
− 

concentration 

(mg N L-1) 

Observed NO3
− 

concentration 

(mg N L-1) 

1 11.8 Arable (87.2%) 12.8 4.6-12.9 (9.1) 2.9-11.1 (7.4) 

2 12.6 Arable (78.3%) -17.1 2.4-10.8 (7.4) 4.3-14.5 (8.9) 

3 26.4 Arable (53.6%) 

Forest (40.1%) 

-12.6 1.1-4.7 (2.6) 1.4-4.7 (2.9) 

4 37.1 Arable (22.2%) 

Pasture (29.0%) 

-9.3 0.8-10.2 (2.0) 0.3-5.8 (2.2) 

5 6.1 Forest (96.0%) -11.7 0.1-2.0 (0.7) 0.2-3.1 (0.7) 

6 3.9 Forest (100%) 14.5 0.3-2.1 (1.0) 0.1-3.0 (0.8) 

2.4.3. Model parameter distributions 

For the three calibration schemes, we constructed cumulative distribution functions for the 
most sensitive hydrological and water quality parameters using the best 100 model runs (Figure 
2.6). From the results, it is clear that the hydrological parameters—infiltration shape factor 
(infil) and potential evapotranspiration (pet) differ significantly between schemes 1 and 2 as 
well as between schemes 2 and 3 (p < 0.01) (Figure 2.6 and Table 2.7). In the mHM-Nitrate 
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model, soil infiltration is parameterized using the power function of soil saturation, whose 
exponent is determined by the infiltration shape factor (infil). Cuntz et al. (2015) reported that, 
as a parameter, infil is highly related to soil saturation, where higher infiltration occurs in 
mountain soils than in lowland soils. Because the Meisdorf station was included in scheme 2, 
a greater range of soil types were represented, allowing infil to be better defined. In contrast, 
scheme 1 averaged all the soil types present in the catchment, as reflected by the narrower 
ranges of infil for scheme 2 versus 1 (Figure 2.6). The cumulative distributions of four water 
quality parameters, namely in-stream denitrification rate (denitri), primary production rate 
(pprt), primary production coefficient in non-agriculture stream (pprt_na), and primary 
production coefficient in agriculture stream (pprt_agri), showed dissimilarities between 
scheme 1 and schemes 2 and 3. However, there were no differences in the cumulative parameter 
distributions between scheme 2 and scheme 3 (p >0.05) (Figure 2.6 and Table 2.7). The four 
water quality parameters were better constrained for scheme 2 than scheme 1, as reflected by 
their narrower ranges in the former versus the latter (Figure 2.6). Yang, Jomaa and Rode (2019) 
found the control factors for denitri and pprt varied between the Meisdorf and Hausneindorf 
stations. At Meisdorf, both parameters have a strong correlation with stream discharge and 
benthic area, while at Hausneindorf they are highly correlated with terrestrial flows and fluxes. 
In summary, parameter distributions were dramatically affected by the increase in station 
number between scheme 1 and scheme 2. In contrast, the additional stations added in scheme 
3 had little to no effect. 

 
Figure 2.6. Cumulative distributions for the hydrological parameters infil (a) and pet (b) and four the water quality 
parameters, in-stream denitrification rate (denitri) (c), primary production rate (pprt) (d), primary production 
coefficient in non-agriculture stream (pprt_na) (e), and primary production coefficient in agriculture stream 
(pprt_agri) (f) across the three calibration schemes. 
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2.4.4. Uncertainty analysis of 𝑁𝑂3
− concentration 

We calculated the 95% uncertainty boundaries for simulated daily NO3
− concentrations at the 

Meisdorf, Hausneindorf, and Stassfurt stations for schemes 2 and 3 (Figure 2.7). The associated 
R-factors are given in Table 2.8. The 95% uncertainty boundaries for simulated daily Q 
associated with schemes 2 and 3 are available in the Supplementary Materials (Figure S2.3). 
Whether under low- or high-flow conditions, 95% uncertainty boundaries for daily NO3

− 
concentrations were narrower for scheme 2 than for scheme 3 (Figure 2.7). For instance, they 
were nearly twice as wide for scheme 3 than scheme 2 at Hausneindorf (R-factor = 4.13 vs. 
2.18, respectively) and Stassfurt (R-factor = 4.52 vs. 2.79, respectively) (Table 2.8). 
Furthermore, over 60% of the observed NO3

− concentrations lay within the 95% uncertainty 
boundaries for scheme 2. When scheme 2 was used, the Meisdorf station, located in a forested 
subcatchment, displayed lower levels of uncertainty than did the Hausneindorf and Stassfurt 
stations, which are found in a subcatchment dominated by farmland. The same was also true 
for scheme 3. This finding was reflected in the narrower 95% uncertainty boundaries for 
Meisdorf versus Hausneindorf and Stassfurt (Figures 2.7a-b vs. 2.7c-f), as well as in the lower 
R-factor values for Meisdorf (scheme 2 = 0.92; scheme 3 = 1.08; Table 2.8). 

 
Figure 2.7. Comparison of 95% uncertainty boundaries for the simulated nitrate (𝐍𝐎𝟑

−) concentrations obtained 
with schemes 2 and 3 for three gauging stations: Meisdorf (a-b), Hausneindorf (c-d), and Stassfurt (e-f). 
Table 2.8. R-factor values for nitrate (𝐍𝐎𝟑

−) concentrations at three gauging stations for schemes 2 and 3. 
Stations Criterion Scheme 2 Scheme 3 
Meisdorf R-factor 0.92 1.08 
Hausneindorf R-factor 2.18 4.13 
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Stassfurt R-factor 2.79 4.52 

2.5. Discussion 

2.5.1. Evaluation of model performance at calibration schemes 

We evaluated the ability of the mHM-Nitrate model to simulate discharge and nitrate 
concentrations at eight gauging stations. We specifically examined the transferability of 
hydrological and water quality parameters at spatial scales.  

2.5.1.1. Model performance for discharge under three calibration schemes 
During model validation, simulated discharge at the catchment outlet was similar whether the 
calibration data came from a single site (scheme 1: catchment outlet station) or multiple sites 
(scheme 2: 3 stations and scheme 3: 8 stations) (Table 2.4). This result suggests that, for 
discharge, the number of stations used during calibration did not affect model performance at 
the catchment outlet. Our finding is consistent with those of Chiang et al. (2014); Wang et al. 
(2012); Wu et al. (2022a).   

That said, performance was better with scheme 2 than scheme 1 when discharge was simulated 
for all eight gauging stations, except in the case of Hausneindorf (Table 2.4). This result could 
have arisen because multi-site calibration better constrains model parameters by including 
information on catchment characteristics (e.g., land use and soil types) at upstream stations 
(here, Meisdorf and Hausneindorf); these characteristics are frequently heterogeneous in space 
and shape hydrological parameters (e.g., infil and pet, Figures 2.6a and 2.6b). Jiang et al. (2015) 
reported that, compared to single-site calibration, multi-site calibration may better capture 
dynamics in large, diverse catchments because it accounts for the effects of different 
hydrological processes (e.g., slow groundwater dynamics and quick interflows). For example, 
in the Bode catchment, interflow is the primary form of runoff in mountainous areas (Jiang et 
al., 2014), while the share of groundwater increases from the mountains to the lowlands (Zhou 
et al., 2022). 

In contrast, model performance was similar for schemes 2 and 3 (NSE values for the eight 
gauging stations; Table 2.4), which suggests that adding more sites does not always improve 
simulations for upstream stations. This finding is consistent with those of previous studies (Her 
and Chaubey (2015); Wang et al. (2012); Xie et al. (2021)) and could potentially be explained 
by station choice and the failure of scheme 3 to introduce any new catchment characteristics. 
As a result, schemes 2 and 3 displayed similar cumulative distributions for their hydrological 
parameters (Figures 2.6a-b). Therefore, during calibration, it may be challenging to optimize 
model parameters by relying on station number only.   

2.5.1.2. Model performance for NO3
− concentration under three calibration schemes 

Simulated nitrate concentrations were significantly better for all gauging stations (with the 
exception of Nienhagen) when scheme 2 versus scheme 1 was used (Table 2.4). This 
improvement may be attributed to the inclusion of Meisdorf in scheme 2. The station is found 
in a forested subcatchment, which likely led to changes in the values of land-use-dependent 
parameters (e.g., pprt_na, pprt_agri; Figures 6e and 6f). These parameters were optimized in 
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scheme 2 and, additionally, improved model performance at non-calibrated stations, such as 
Wegeleben and Ditfurt. Both stations are located in subcatchments with intermediate levels of 
forest cover (> 30% and > 56.4%, respectively). Similarly, the inclusion of Hausneindorf in 
scheme 2 improved model performance at Hadmersleben, which had not been part of the 
calibration process, because the two stations occur in regions with similar levels of farmlands 
(Table 2.2). This finding indicates that utilizing multi-site calibration schemes that capture 
diverse catchment characteristics can improve simulated nitrate concentrations even at 
locations that were not included in the calibration process. This result concurs with those of 
previous studies (Chiang et al., 2014; Jiang et al., 2015; Shrestha et al., 2016), which found 
that such improvements result from the fact that multi-site calibration schemes can account for 
dramatic variability in observed nitrate concentrations and hydrological regimes across 
catchments. These schemes can thus better constrain parameters associated with nitrate 
transport and transformation.  

In contrast, model performance was slightly lower at all stations (except Nienhagen) for 
scheme 3 than scheme 2 (PBIAS values; Table 2.4), which suggests that adding more gauging 
stations to the calibration process cannot, by itself, result in further improvements to 
simulations of nitrate concentrations. This finding may have two explanations. First, the five 
additional gauging stations (Wegeleben, Hadmersleben, Peseckendorf, Ditfurt, and Nienhagen) 
included in scheme 3 did not introduce additional diversity in catchment characteristics, which 
was the case when Meisdorf and Hausneindorf were included in scheme 2 (Figure 2.2). For 
instance, except for Peseckendorf, four of the five additional stations have farmland surface 
areas and mean nitrate concentrations that are similar to that of Hausneindorf, which led to 
similar model parameter distributions for schemes 2 and 3 (Figures 2.6c-f). Second, three of 
the five additional stations have low-frequency measurements of nitrate concentrations (i.e., 
once or twice per month). Jiang et al. (2019) found that, when the HYPE model was applied to 
the Selke catchment, performance was better when calibration used nitrate concentrations that 
were collected daily versus every two weeks. The slight decline in performance from scheme 
2 to scheme 3 could be affected by the model’s attempt to satisfyingly balance the large number 
of additional observations resulting from site addition (Jiang et al., 2015). In other words, 
multi-site calibration approaches try to identify the parameter set that represents the best 
compromise given the presence of multiple subcatchments, which is a more intensive task than 
simply focusing on a single catchment outlet. 

2.5.1.3. Comparison of hydrological and water quality model performance 
In brief, the model's accuracy for predicting both discharge and NO3

− concentration improved 
when using Scheme 2 compared to Scheme 1. However, while the model's accuracy for 
discharge remained consistent between Scheme 2 and 3, its accuracy for nitrate decreased in 
Scheme 3. On one hand, hydrology is a physical process that is well understood and can be 
easily quantified through measurements and modeling. On the other hand, nitrate dynamics are 
much more complex and can be influenced by a variety of specific factors that are unique to a 
particular location, such as the amount of fertilizer applied and the level of moisture in the soil. 
Nitrogen fertilizer application rates are often uncertain and can vary depending on crop type 
and management practices. Nitrate uptake by plants is also difficult to predict, as it is influenced 
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by a range of factors such as soil moisture, temperature, and nutrient availability. Overall, 
nitrate simulations are likely to be more accurate in mountainous regions where quick flowing 
systems lead to less storage and transformation of nitrate (Table 2.4). In lowland agricultural 
systems, nitrate can persist in soils for several years and in groundwater for even longer time 
scales, leading to legacy effects that can complicate stream nitrate dynamics (Ehrhardt et al., 
2019; Hrachowitz et al., 2015).  

2.5.2. Simulating nitrate concentrations across space 

Scheme 1, which solely utilized data from the catchment outlet, was unable to accurately 
simulate nitrate dynamics at upstream sites within the large, heterogeneous Bode catchment. 
Indeed, PBIAS values were high (> 45%) for many of the 94 spatially distributed sampling 
locations when scheme 1 was used (Figure 2.4a and Table 2.5). The model performed much 
better when scheme 2 was employed. Its addition of two gauging stations to the calibration 
process thus appeared to greatly influence model performance at the catchment scale. 

However, little to no further improvement was seen with scheme 3 and its five additional 
gauging stations. This assertion has two sources of support: schemes 2 and 3 had similar 
numbers of sampling locations within the different PBIAS ranges (Table 2.5) and displayed 
similar cumulative distributions for their parameters (Figure 2.6). Comparing cumulative 
parameter distributions can help identify informative calibration stations.  

Further results of the model performance of NO3
− concentration at Scheme 2 shows varying 

performances among NO3
− sampling locations that represent different catchment characteristics 

(e.g., precipitation, land use, and fertilizer inputs) (Figure 2.5). At sampling location 4, NO3
−  

concentration was overestimated in summer, but the PBIAS value of the whole period was 
negative, it means that the model underestimated NO3

−  concentrations during other times of the 
year. This could be due to errors in the representation of hydrological processes, such as 
groundwater recharge, which can affect nitrate transport and concentration in the groundwater. 
This suggests that spatial representation of groundwater processes (such as groundwater NO3

− 
concentration) are needed to be refined to obtain better model performance for small sub-
catchments. Faramarzi et al. (2015) and Gao et al. (2016) concluded that the hydrological water 
quality models that only rely on calibration without refining internal process representation 
(e.g., groundwater NO3

−  concentration) will often not result in further improvement. 
Nevertheless, the above analysis indicates that Scheme 2 is sufficient to ensure the satisfactory 
model performance at NO3

−  sampling locations, since 75% of the NO3
−  sampling locations 

showed absolute PBIAS ≤35% (Figure 2.4b and Table 2.5) and the mHM-Nitrate model was 
capable to present different magnitudes of NO3

−  levels for different sub-catchments which 
differ in their catchment characteristics (Figure 2.5). These findings are in line with Ghaffar et 
al. (2021), where they found that considering archetypal gauging stations in the calibration 
process leads better spatial validation of the model at internal locations that were not originally 
considered in calibration. These stations represent the maximum catchment characteristics in 
heterogeneous catchments in terms of dominant land-use and meteorological features. This 
highlights the need for multiple internal stations/locations to validate the model's capacity to 
accurately capture the complexity of natural processes and identify which process needs to be 
improved (Beven, 2001; Daggupati et al., 2015). 
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2.5.3. Impact of calibration approaches on model uncertainty 

For the three gauging stations, there was more uncertainty around simulated nitrate 
concentrations for scheme 3 than for scheme 2 (Figure 2.7), likely because scheme 3 included 
stations with low-frequency measurements. This result highlights the effect of measurement 
frequency on simulation uncertainty. Indeed, low-frequency measurements may not capture 
the full range of variability in nitrate dynamics. Furthermore, multi-site calibration approaches 
that rely on low-frequency data may give rise to spatial representation issues, given that water 
quality can vary widely across heterogenous catchments and be influenced by local factors, 
such as land use and soil type. This finding is in line with those of previous studies (Jiang et 
al., 2019; Khorashadi Zadeh et al., 2019; Ullrich and Volk, 2010). For example, Jiang et al. 
(2019) found that, for the HYPE model, uncertainty was reduced when the calibration process 
used nitrate concentrations that had been collected daily versus every two weeks. Our work 
also highlights the urgent need to establish suitable sampling procedures for gathering long-
term, high-frequency water quality data to build reliable databases for model calibration and 
evaluation. 

2.5.4. Implication of spatial evaluation of distributed hydrological water quality model 

As hydrological water quality models become increasingly complex and monitoring data 
becomes more available, the question of how to improve their performance has become a 
crucial issue (Beven, 2001; Refsgaard et al., 2016; Refsgaard, Stisen and Koch, 2022). One 
crucial aspect is the increased attention on evaluating the spatial pattern performance of 
distributed process-based hydrological water quality models. Spatial evaluation of distributed 
hydrological water quality models allows us to better understand the spatial variability of 
hydrological and water processes and to gain insights into the underlying processes that govern 
the behavior of the system. This is important for identification of areas that require intervention 
to improve water quality. 

It is possible to use remote sensing data such as soil moisture to evaluate  spatial pattern 
performance of models for water quantity (Rajib, Merwade and Yu, 2016), but this approach 
cannot be applied to spatially evaluate models for nitrate and other chemicals. Water quality 
monitoring or sampling is always required for this purpose. However, spatially distributed 
models can greatly benefit from using long-term monitoring data that is available from 
authorities. This data is more densely available than discharge data and is readily accessible in 
many European communities and other regions. In our study, we demonstrated the usefulness 
of this type of data for evaluating the spatial performance of the distributed model, even when 
discharge measurements were not available. 

2.6. Conclusion 

Using three different approaches, we calibrated a fully distributed process-based mHM-Nitrate 
model that was then validated spatially and temporally at 8 gauging stations (discharge and 
nitrate concentrations) and 94 spatially distributed sampling locations (nitrate concentrations) 
within the heterogeneous Bode catchment in central Germany. Scheme 1 used only data from 
the catchment outlet; scheme 2 used data from the catchment outlet and two upstream stations; 
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and scheme 3 used data from the catchment outlet and seven additional upstream stations. Our 
study found that, for simulated discharge, model performance was similar at the catchment 
outlet for the three calibration schemes. Furthermore, model performance did not improve 
consistently across the upstream gauging stations.  

In contrast, for nitrate concentrations, scheme 2 was better than scheme 1 when it came to 
simulating dynamics at sampling locations that had not been part of the calibration process. 
That said, model performance across the sampling locations was similar for schemes 2 and 3. 
Our results indicate that increasing the number of stations used in calibration does not 
necessarily improve simulations of nitrate concentrations. Additionally, we found that the use 
of low-frequency calibration data may increase the degree of model uncertainty.  

In conclusion, this study offers valuable insights into the selection of gauging stations for model 
calibration. It suggests that differences in cumulative parameter distributions can serve as an 
indicator of which stations can provide useful additional representation. Furthermore, our work 
highlights that this selection process must account for diversity in catchment characteristics, 
such as land use, meteorological patterns, and elevation. In this way, the calibration data will 
better represent spatial patterns, and the model will yield more accurate predictions. Overall, 
this study provides valuable insights into calibration-related decision-making when carrying 
out fully distributed hydrological water quality models to simulate dynamics within spatially 
heterogeneous catchments.  
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2.8. Supplementary materials 

Table S2.1. Description of calibrated parameters with their physical meaning, initial ranges and optimal values. 
Process Parameter Description Initial range Optimal 

value 

PET pet1 (Shevenell, 
1999) 

Parameter for aspect correction of input 
potential evapotranspiration data 

[6.99E-1, 1.30E+0] 1.093 

Soil moisture 

 

sm10 (Cosby et al., 
1984) 

Transfer function parameter used to 
calculate soil saturated hydraulic 
conductivity 

[-1.20E+0, -2.85E-
1] 

-8.49E-1 

sm17 (Brooks and 
Corey, 1964) 

Parameter that determines the relative 
contribution of precipitation or snowmelt 
to runoff 

[1.00E+0, 4.00E+0] 1.71E+0 

sm4 (Cosby et al., 
1984) 

Pedotransfer function parameter used to 
calculate maximum soil moisture content 

[6.46E-1, 9.51E-1] 9.12E-1 

Percolation pc1 Parameter used to calculate the 
percolation coefficient 

[0.00E+0, 5.00E+1] 2.94E+1 

Interflow intfl1 Slow interflow storage capacity factor [7.50E+1, 2.00E+2] 7.50E+1 

intfl4 Slow interflow recession coefficient [1.00E+0, 3.00E+1] 2.99E+1 

intfl5 Slow interflow exponent coefficient [5.00E-2, 2.99E-1] 5.01E-2 

In-stream 
denitrification 

deni_w General parameter of in-stream 
denitrification rate (kg m-2 d-1) 

[1.00E-8, 5.00E-2] 3.05E-4 

Soil 
denitrification 

deni_as Soil denitrification rate on agricultural 
land (d-1) 

[1.00E-8, 9.10E-3] 4.86E-3 

deni_s Soil denitrification rate on non-
agricultural land (d-1) 

[1.00E-8, 1.10E-3] 1.09E-3 

In-stream 
assimilation 

pprt_aw Primary production rate in agricultural 
streams (kg m-3 d-1) 

[1.00E-8, 1.00E+0] 1.49E-1 

pprt_w Primary production rate in non-
agricultural streams (kg m-3 d-1) 

[1.00E-8, 1.00E+0] 4.74E-3 
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Table S2.2. Catchment characteristics represented by 94 NO3
− sampling locations. 

Station ID Area 
(km2) 

Number NO3
− 

(mg N L-1) 

Precipitation 

(mm year-1) 

401005 80 15 2.8 538.6 

410100 16.9 314 1.4 740.4 

410101 119.78 99 0.8 1122.7 

410102 7.19 141 1.5 810.7 

410103 8.13 129 0.9 855.9 

410106 19.2 97 1.3 866.3 

410107 48.05 47 1.2 822.7 

410108 1.36 23 1.2 868.9 

410110 170.5 30 1.6 545.6 

410120 105.67 210 1.7 628.2 

410130 230.3 225 2 544.2 

410145 131.52 53 2.3 514.6 

410150 49.44 250 2.6 541.1 

410160 59.15 333 3.5 512.3 

410185 382.86 457 3.1 505.1 

411059 14.74 12 1 1183.3 

411060 1.58 190 0.6 849.3 

411061 33.67 12 1.6 882.2 

411062 0.7 30 1.3 667.2 

411063 0.53 24 1.3 640 

411070 28.19 65 2 652.2 

411071 14.01 18 2.5 603.1 

411080 29.99 194 3.3 630.9 

411090 65.65 52 4 553.9 

411091 1.05 52 3.6 522.8 

411095 13.87 54 8.9 573.6 

411096 26.51 23 10.7 563 

411100 27.03 406 4.6 516.8 

411104 7.3 10 1.3 814.6 

411105 8.47 46 1 799.3 

411106 0.37 39 2.4 757.4 

411107 4.36 27 2.9 766.2 

411108 6.9 16 1.9 813.6 
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411109 20.77 90 2 725 

411111 0.83 16 1.3 725.1 

411113 20.71 16 1.7 730.2 

411114 2.2 22 1.7 677.2 

411116 16.21 10 1.5 666.1 

411120 2.81 16 2.5 649.5 

411121 0.79 17 2.2 638.1 

411130 11.29 185 1.5 677.2 

411134 20.08 58 1.6 654.2 

411145 43.42 34 1.7 601.6 

411146 40.2 30 1.5 602.3 

411153 22.6 10 2.6 545.31 

411154 3.36 116 3.3 492 

411156 5.69 16 2.8 494.1 

411158 16.4 28 2.4 552.9 

411160 58.08 72 3.8 538.1 

411165 17.52 34 2.9 495.6 

411169 146.2 14 3.1 510.4 

411170 153.41 340 3.3 513.3 

411171 3.13 90 2.6 499.4 

411172 3.71 23 3.2 495.1 

411186 9.54 20 4.7 567.4 

411199 241.85 18 9.3 582.7 

411200 284.55 138 5.8 582.5 

411205 25.76 31 9.4 591.6 

411210 150.84 83 5.4 559.7 

411215 68.08 54 5.8 546.1 

411220 24.93 155 4.5 542.7 

411223 27.87 12 5.3 522.5 

411225 1.66 37 4.7 547.3 

411226 6.03 29 5.5 538 

411240 0.61 11 4.4 524.4 

411241 0.96 11 5 533.1 

411261 24.4 46 1.6 763.8 

411270 72.27 81 5.7 537.1 

411300 37.4 138 2.3 836.5 
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411321 18.61 76 0.8 1209.9 

411322 13.82 12 1.2 1401.9 

411350 6.15 40 0.7 1228.6 

411360 40.1 129 0.8 977.4 

411370 11.56 36 2.7 771.7 

411371 21.09 59 1.6 741.8 

411809 7.28 47 2 727.7 

411812 3.46 109 0.8 998.1 

411813 10.95 64 1.4 896 

411814 0.65 71 2.9 950.4 

411870 4.77 33 2.8 719.4 

411917 20.18 27 1.3 693.6 

411925 9.89 22 2.4 644.1 

413537 13.08 6 4.8 564.3 

413539 17.5 20 17.2 536.3 

413635 0.16 16 8.7 550.1 

413636 8.35 23 10.6 554.4 

414512 2.78 35 6.7 542.2 

414513 50.39 103 7.9 544.4 

414514 1.22 89 6.7 538.6 

414515 16.7 118 7.2 558.5 

414516 12.28 11 6.7 534 

414535 6.24 133 8 518.7 

414539 19.51 19 19.2 537.5 

414545 5.96 17 7.9 548.2 
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Figure S2.1. Model performance for NO3

−  concentration at each stream order at (a) arable- and (b) forest- 
dominated NO3

− sampling locations at three calibration schemes. 
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Figure S2.2. The 95% uncertainty boundaries of NO3

−  concentration at Scheme 3 at calibration station (a) 
Wegeleben, (b) Ditfurt, (c) Nienhagen, (d) Hadmersleben and (e) Peseckendorf. 
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3.1. Abstract 

Like many other regions in central Europe, Germany experienced sequential summer droughts 
from 2015-2018. As one of the environmental consequences, river nitrate concentrations have 
exhibited significant changes in many catchments. However, catchment nitrate responses to the 
changing weather conditions have not yet been mechanistically explored. Thus, a fully 
distributed, process-based catchment Nitrate model (mHM-Nitrate) was used to reveal the 
causal relations in the Bode catchment, of which river nitrate concentrations have experienced 
contrasting trends from upstream to downstream reaches. The model was evaluated using data 
from six gauging stations, reflecting different levels of runoff components and their associated 
nitrate-mixing from upstream to downstream. Results indicated that the mHM-Nitrate model 
reproduced dynamics of daily discharge and nitrate concentration well, with Nash-Sutcliffe 
Efficiency ≥ 0.73 for discharge and Kling-Gupta Efficiency ≥ 0.50 for nitrate concentration 
at most stations. Particularly, the spatially contrasting trends of nitrate concentration were 
successfully captured by the model. The decrease of nitrate concentration in the lowland area 
in drought years (2015-2018) was presumably due to (1) limited terrestrial export loading (ca. 
40% lower than that of normal years 2004-2014), and (2) increased in-stream retention 
efficiency (20% higher in summer within the whole river network). From a mechanistic 
modelling perspective, this study provided insights into spatially heterogeneous flow and 
nitrate dynamics and effects of sequential droughts, which shed light on water-quality 
responses to future climate change, as droughts are projected to be more frequent. 

Keywords: 

Drought; Nitrate mixing; Catchment hydrology; Water quality model 

Highlights:  

• The model reproduces nitrate dynamics and trends under changing weather conditions. 

• Nitrate dynamics show spatiotemporally varying responses to the sequential droughts.  

mailto:xiangqian.zhou@ufz.de
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• Soil export decreases while in-stream retention efficiency increases in droughts.  
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3.2. Introduction 

Central Europe recently experienced sequential droughts in 2013, 2015, 2018 and 2019 (Hanel 
et al., 2018; Hari et al., 2020), and droughts are projected to become more frequent and severe 
in the future (Hari et al., 2020; Spinoni et al., 2018). In Germany, mean annual temperature 
increased by 1.5°C from 1881-2018, with ca. 0.3°C of that increase occurring from 2014-2018 
(UBA, 2019). Using an ensemble of climate-change scenarios, Huang, Krysanova and 
Hattermann (2015) reported that most rivers in Germany will experience more frequent 
droughts. 

Excess nitrogen (N) input to surface water due to intensive anthropogenic activities (e.g., 
fertiliser application from arable land, wastewater from urban and industrial areas) has caused 
widespread environmental problems in recent decades. Nitrate turnover processes at the 
catchment scale are expected to change due to climate change (Hesse and Krysanova, 2016; 
Mosley, 2015; Whitehead et al., 2009), especially due to an increase in drought events (Ballard, 
Sinha and Michalak, 2019; Zwolsman and van Bokhoven, 2007).  

The influence of drought on N dynamics has received increasing attention in recent decades 
(e.g., Baldwin et al., 2005; Lutz et al., 2016; Mosley, 2015; van Vliet and Zwolsman, 2008; 
Whitehead et al., 2009; Yevenes, Figueroa and Parra, 2018; Zwolsman and van Bokhoven, 
2007). Previous studies have reported decreasing nitrate concentration in response to drought, 
for example, in the Meuse River in western Europe (van Vliet and Zwolsman, 2008), which 
was attributed to less diffuse input during drought periods. During a drought in Chile from 
2010-2015, Yevenes et al. (2018) found that nitrate concentration did not change in the 
upstream part of a study catchment but decreased downstream due to differences in discharge 
regime and nitrate sources from upstream to downstream. In line with these findings, numerous 
studies have reported that droughts can have spatiotemporally varying impacts on nitrate 
transport and transformation processes due to the heterogeneous changes in hydrological 
processes within catchments (e.g., Leitner et al., 2020; Lintern et al., 2018b; Lutz et al., 2016). 
These studies are generally based on data-driven and statistical analyses, but conclusions drawn 
from them are site-specific and often do not provide a full understanding of the factors that 
influence the effects of drought on nitrate dynamics and their spatial heterogeneity. Thus, it is 
crucial to identify the mechanisms that underlie water-quality trends under drought conditions 
to ensure future water quality and develop effective management strategies. Furthermore, the 
scientific understanding gained from analysing deterministic trends can help to predict future 
trends. However, how sequential droughts influence stream nitrate responses has not yet been 
mechanistically explored. Catchment-scale hydrological water-quality models are an 
alternative solution to identify the relations between changing weather conditions and changes 
in nitrate dynamics. These models can reproduce catchment nitrate dynamics and stream water 
concentrations well based on hydrological understanding, which can be transferred across 
catchments or climate conditions (Jiang, Jomaa and Rode, 2014; Wellen, Kamran-Disfani and 
Arhonditsis, 2015). 

Process-based water-quality models are rarely used to investigate spatiotemporal effects of 
historical droughts on N concentrations at the catchment scale. One of the challenges is to 
adequately represent the catchment spatial heterogeneity and the complexity of nitrate dynamic 
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processes, which can become more important during droughts (Rode et al., 2010; Wellen, 
Kamran-Disfani and Arhonditsis, 2015). The fully distributed hydrological model mHM 
(Samaniego, Kumar and Attinger, 2010) introduces flexible multiscale catchment 
discretization and parameterization techniques. The mHM-Nitrate model was recently 
developed based on the hydrological mHM platform, including advanced descriptions of 
terrestrial and in-stream nitrate processes and consideration of agricultural management (Yang 
et al., 2018). The model has shown a robust ability to provide reliable, detailed information 
about terrestrial and in-stream nitrate dynamics (Yang et al., 2019; Yang et al., 2018; Yang, 
Jomaa and Rode, 2019). Thus, the model acts as a promising tool for mechanistic investigation 
of the impacts of drought on stream nitrate dynamics. In this study, we applied mHM-Nitrate 
to the Bode catchment (3200 km2, central Germany; part of the German TERENO 
observatories). The catchment has large hydroclimatic, geophysical and landscape gradients 
and has experienced sequential droughts in recent years (2015-2018). The objectives of the 
study were to (i) simulate spatiotemporal nitrate dynamics in a mesoscale catchment with 
widely differing meteorological and land-use characteristics using the mHM-Nitrate model, (ii) 
evaluate mHM-Nitrate’s ability to represent recent drought-induced trends in nitrate 
concentration and (iii) analyse mechanisms that influence spatiotemporally varying river 
nitrate concentrations under sequential droughts.  

3.3. Materials and Methods 

3.3.1. Study area 

The Bode catchment is an intensively monitored and investigated mesoscale catchment in 
central Germany (Wollschläger et al., 2016) (Figure 3.1). The catchment includes the Harz 
Mountains in the southwest and lowland plains in the northeast. Elevation of the catchment 
ranges from 1142 m.a.s.l. at the Brocken (the highest peak of the Harz Mountains) to 70 m.a.s.l. 
in the lowland area. Along the elevation gradient, the catchment has large gradients of 
meteorological, land use, soil type and geological characteristics. Annual mean precipitation 
varies from more than 1500 mm at the Brocken to ca. 500 mm in the lowland (Wollschläger et 
al., 2016). Mean annual temperature is 9.5℃, with a minimum of -3.4℃ in January and a 
maximum of 19.6℃ in July (Wollschläger et al., 2016). The Bode catchment experienced 
sequential summer droughts from 2015-2018 according to the 3-month standardized 
precipitation evapotranspiration index (Vicente-Serrano, Begueria and Lopez-Moreno, 2010) 
(Figure S1). Land use in the mountain area is dominated by forest, with 10% pasture, 8% 
agriculture and 7% urban areas and lakes. The soil type in the Harz Mountains is dominated by 
Cambisols. Land use in the lowland area is dominated by agriculture (81%), whose main crops 
are winter wheat, winter barley, rapeseed and sugar beet; forest and pasture cover 7% and 3%, 
respectively; and urban areas and small lakes cover the remaining 9% (Figure 3.1b). 
Chernozems are the main soil type in the lowland area.  

To classify typical landscape nitrate-leaching behaviour, five dominant soil classes were 
identified (Figure 3.1c) according to the United States Department of Agriculture classification 
by combining soil properties and land-use types: sandy, silt loam, silty clay loam and loam. 
Then, these classes on the soil texture map were intersected with the land-use map, and the 
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cells in which the area of the dominant soil-land-use class exceeded 80% of the cell’s area were 
selected. Consequently, the lowland area was classified into Classes I-III, which represented 
the dominant loess area (silt loam soils), riverine area (loam soils) and highly sandy area (sandy 
soils), respectively. Two representative classes in the mountain area were selected: Class IV, 
which represented the mountain pasture area (silty clay loam soils), and Class V, which 
represented the mountain arable area (sandy soils).  

 
Figure 3.1. The Bode catchment: (a) geographical location of the gauging stations and wastewater treatment 
plants, (b) land use types and (c) five dominant soil-land-use classes. 

3.3.2. Data availability  

Meteorological data were derived from the German Weather Service (DWD), including daily 
precipitation and daily mean temperature from 2000-2018. To create the meteorological 
forcing inputs for the model, the DWD observations were spatially interpolated into 1 km × 1 
km grid data, using the kriging method drifted by terrain elevation. This method considers the 
orographic effect on precipitation and temperature by using the elevation as an external variable 
for the interpolation (Hundecha and Bárdossy, 2004). Daily potential evapotranspiration data 
were calculated using the Hargreaves and Sammi (1985) method at the same spatial resolution. 

A terrain elevation model was obtained from the Shuttle Radar Topography Mission (SRTM) 
sensor (Jarvis, 2008). The digitized geological map and soil map, both at a scale of 1:1,000,000, 
were obtained from the Federal Institute for Geosciences and Natural Resources (BGR) 
(https://produktcenter.bgr.de, last accessed 1 June 2020). Land-cover data were derived from 
CORINE Land Cover 10 ha (https://gdz.bkg.bund.de/index.php/default/open-data.html, last 

https://produktcenter.bgr.de/
https://gdz.bkg.bund.de/index.php/default/open-data.html
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accessed 1 June 2020). These datasets were resampled to a spatial resolution of 100 m × 100 
m for model simulations. 

Data on mineral fertiliser and manure application rates and times, as well as crop rotations on 
arable land, were obtained from the model configuration of Yang et al. (2018) and agricultural 
authorities (https://llg.sachsen-anhalt.de/llg/, last accessed 10 April 2020). The total amount of 
fertiliser (mineral fertiliser and manure) applied depended on crop type and was assumed to be 
applied evenly throughout the fertilisation period. The resolution of the crop-rotation map was 
set to that of the land-use map for technical simplification and due to the lack of detailed 
information. Point-source data were collected from Urban Wastewater Treatment Directive 
(UWWTD) sites for Germany (https://uwwtd.eu/Germany/uwwtps/treatment, last accessed 10 
April 2020). Overall, 29 wastewater treatment plants (WWTPs) were considered (Figure 3.1a). 
The original point-source data were available only as of annual total N load, and thus daily 
mean values were used as model input. The percentage of point-source N load, which was 
calculated by dividing the annual total N load of the 29 WWTPs by the observed annual nitrate-
N load at the catchment outlet station, equalled only 12% of the total N load in the Bode 
catchment during the study period. 

Daily discharge at six gauging stations (Meisdorf, Hausneindorf, Wegeleben, Nienhagen, 
Hadmersleben and Stassfurt) was provided by the State Agency for Flood Protection and Water 
Management of Saxony-Anhalt (LHW) (http://gldweb.dhi-wasy.com/gld-portal/, last accessed 
10 April 2020). Nitrate concentration was measured twice weekly to twice monthly from 2000-
2009 by LHW (http://gldweb.dhi-wasy.com/gld-portal/, last accessed 10 April 2020) and daily 
from 2010-2018 by the Helmholtz Centre for Environmental Research – UFZ. Nitrate 
concentration observations were missing for 2015 and 2017-2018 at the Wegeleben station, 
and discharge observations were missing for 2017-2018 at the Nienhagen station (Figure 3.1a). 

3.3.3. mHM-Nitrate model description 

The mHM-Nitrate model is a grid-based catchment nitrate model that balances process 
complexity and model representation (Yang et al., 2018). Nitrate-process descriptions come 
mainly from the HYPE model (Lindström et al., 2010), with additional considerations of nitrate 
retention in deep groundwater, spatially distributed crop rotations and time-varying point-
source inputs. The model includes the following hydrological processes: canopy interception, 
snow accumulation and melt, evapotranspiration, infiltration, soil moisture dynamics, runoff 
generation, percolation and flood routing along the river network. Nitrate processes are fully 
integrated into the hydrological cycling. Major N inputs include wet atmospheric deposition 
via precipitation, fertiliser and manure application and plant/crop residues. In each soil layer, 
four N pools are defined (i.e., active solid organic N, inactive solid organic N, dissolved organic 
N and dissolved inorganic N), along with soil N processes of denitrification, plant/crop uptake 
and transformations among the four N pools. In-stream N transformations include 
denitrification, primary production and mineralization. Governing equations of N 
transformations in the soil and the stream can be found in Supplementary material (Text S1).  
More detailed descriptions of the mHM-Nitrate model can be found in Yang et al. (2018), and 
source code can be found in Yang and Rode (2020). 

https://llg.sachsen-anhalt.de/llg/
https://uwwtd.eu/Germany/uwwtps/treatment
http://gldweb.dhi-wasy.com/gld-portal/
http://gldweb.dhi-wasy.com/gld-portal/
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3.3.4. Model calibration and performance measurements  

The mHM-Nitrate model was set at a daily time step from 2000-2018 (2000-2003 was 
considered a warm-up period). We used daily discharge and nitrate concentration data from 
2010-2014 as calibration data. The nitrate concentration data used to validate model predictions 
included twice weekly to twice monthly grab sampling data for 2004-2009 and daily data for 
2015-2018. To minimize the influence of the Rappbode reservoir in the upper Bode River, 
observed reservoir outflow was used as the input flow when setting up the model. 

Before calibrating the model, sensitivity analysis was performed to identify the most influential 
parameters using the Morris method (Morris, 1991). Parameter samples were generated using 
radial-based Latin-Hypercube sampling, and 200 trajectories were set to ensure convergence 
of the sensitivity analysis. Sensitivity indices (absolute mean (µ) and standard deviation (σ) of 
each parameter’s elementary effect) were calculated using the SAFE tool (Sensitivity Analysis 
For Everybody, (Pianosi, Sarrazin and Wagener, 2015)). The sensitivity ranking was obtained 
by plotting µ vs. σ for all parameters; the more to the right and top of the plot a point is located, 
the more the parameter is influential and interrelated with other parameters, respectively. The 
Dynamically Dimensioned Search (DDS) method (Tolson and Shoemaker, 2007) was used to 
calibrate the most influential parameters, with 50,000 iterations as the terminal criterion. The 
detailed procedure of parameter sensitivity analysis and calibration can be found in Yang et al. 
(2018). 

The multi-objective function for calibration consisted of multi-criteria, multi-site and multi-
variable functions. We selected the Nash-Sutcliffe Efficiency (NSE) and the logarithm-
transformed NSE (lnNSE) as objective criteria, in which the latter gives more weight to low 
values. The combined NSE and lnNSE as objective criteria increase the potential to find a 
robust parameter set for both high flow and low flow. In addition, six internal gauging stations 
were considered to calibrate discharge and nitrate concentrations simultaneously, with a 
weight-aggregated multi-variable function, as follows: 

𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑣 = 𝑚𝑖𝑛{𝑤𝑞𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑠
𝑞

+ 𝑤𝑛𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑠
𝑛 } (1) 

where 𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑠
𝑞  and 𝑂𝐹𝑚𝑢𝑡𝑖𝑙−𝑠

𝑛  denote multi-site objective functions for discharge and nitrate 
concentration, respectively; and 𝑤𝑞= 0.9 and 𝑤𝑛= 0.1 denote weights for discharge and nitrate 
concentration objectives, respectively. Three goodness-of-fit metrics were used to evaluate 
model performance: NSE, Kling-Gupta Efficiency (KGE) and Percentage BIAS (PBIAS) (e.g., 
Gupta et al., 2009; Moriasi et al., 2015).  

3.3.5. Trend analysis 

Observed discharge and nitrate concentration time series at the six gauging stations were first 
aggregated into a monthly time step to minimize effects of different observation frequencies. 
Missing values in the observed nitrate time series were interpolated using the Kalman 
smoothing method in the R package imputeTS (version 4.0.2) (R Core Team., 2020). Each time 
series, 𝑌𝑡 (i.e., monthly nitrate or discharge) was analysed by using Mann-Kendall trend test, 
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which was performed using the mk.test function in the R package trend (version 1.1.4), then 
broken down into trend, seasonality and random components using the following equation: 

 𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡 (2) 

where 𝑇𝑡 is the trend component, 𝑆𝑡 is the seasonal component and 𝑒𝑡 is a random component, 
which represents residuals. 

The trend component was determined from a moving average with a symmetric 
window(Cleveland, 1990) using the STL function in the R package stats (version 4.0.2), which 
has been successfully used to analyse seasonal and long-term nitrate trends (Stow et al., 2014, 
2015). The trends of monthly discharge and nitrate concentration were then normalized using 
min-max normalization. 

3.4. Results 

3.4.1. Sensitivity results 

In this study, the mHM-Nitrate model included 72 parameters (61 for hydrological processes 
and 11 for nitrate processes). Simultaneous parameter sensitivity analysis showed that 
hydrological predictions were the most sensitive (Figure 3.2). Predictions of runoff were most 
sensitive to pet1 (the terrain-aspect correction of potential evapotranspiration), sm10 (the 
transfer function used to calculate soil saturated hydraulic conductivity) and sm17 (used to 
calculate the fraction of water that infiltrates through soil layers). 
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Figure 3.2. Simultaneous parameter sensitivity ranking of the 60 most influential parameters of the mHM-Nitrate 
model. The 16 labelled parameters (the top 10 hydrological and 6 nitrate parameters, respectively) are related to 
soil moisture (sm), evapotranspiration (pet), interflow generation (intfl), soil denitrification rates in the arable area 
(deni_as) and non-arable area (deni_s), mineralization rate in the arable area (miner_a), in-stream denitrification 
rates (deni_w) and in-stream primary production rate in the arable area (pprt_aw) and non-arable area (pprt_w). 
See Table 3.1 for additional definitions. The more a point is near the right and top of the plot, the more the 
parameter is influential and interrelated with other parameters, respectively. Note the log-log scales. 
For nitrate submodel, the most sensitive parameters were the in-stream denitrification rate 
(deni_w) (for the entire Bode stream network) and two land-use parameters (deni_as and 
deni_s) (soil denitrification rate in the agricultural and non-agricultural areas, respectively) 
(Table 3.1). In line with the results of Yang et al. (2018) and Cuntz et al. (2015), the two most 
influential parameters for hydrological predictions were pet1 and sm10. Generally, the larger 
the associated flux, the more influential the parameter became (Cuntz et al., 2015). Because 
pet1 is directly related to evapotranspiration, which is the largest flux after precipitation in the 
water-balance equation, it was more influential in summer. Parameter sm10, a multiplier for 
saturated hydraulic conductivity, which influences the infiltration rate, became more influential 
during precipitation and snowmelt. The soil-moisture-related parameter sm17 was influential, 
but it was not for Yang et al. (2018), which indicates a larger influence of infiltration in the 
lowland part of the Bode catchment than in the Selke sub-catchment. Based on the sensitivity 
analysis, the top ten hydrological parameters and top five nitrate parameters were selected for 
model calibration. 

Table 3.1. Description of parameters calibrated in the mHM-Nitrate model, their initial ranges and optimal values. 

Process Parameter Description Initial range Optimal 
value 

PET pet1 (Shevenell, 1999) 
Parameter for aspect correction of 
input potential evapotranspiration 
data 

[6.99E-1, 1.30E+0] 9.80E-1 

Soil moisture 
 

sm10 (Cosby et al., 
1984) 

Transfer function parameter used to 
calculate soil saturated hydraulic 
conductivity 

[-1.20E+0, -2.85E-1] -8.42E-1 

sm17 (Brooks and 
Corey, 1964) 

Parameter that determines the 
relative contribution of precipitation 
or snowmelt to runoff  

[1.00E+0, 4.00E+0] 3.83E+0 

sm14 (Brooks and 
Corey, 1964) 

Fraction of roots used to calculate 
actual evapotranspiration in forest 
areas 

[9.00E-1, 9.99E-1] 9.73E-1 

sm16 (Brooks and 
Corey, 1964) 

Fraction of roots used to calculate 
actual evapotranspiration in 
permeable areas 

[1.00E-3, 8.99E-2] 5.63E-3 

sm4 (Cosby et al., 
1984) 

Pedotransfer function parameter used 
to calculate maximum soil moisture 
content 

[6.46E-1, 9.51E-1] 9.44E-1 

sm11 (Cosby et al., 
1984) 

Pedotransfer function parameter used 
to calculate soil saturated hydraulic 
conductivity 

[6.01E-3, 2.59E-2] 6.23E-3 

Percolation pc1 Parameter used to calculate the 
percolation coefficient [0.00E+0, 5.00E+1] 1.44E+1 

Interflow  intfl4 Slow interflow recession coefficient [1.00E+0, 3.00E+1] 2.38E+1 
 Intfl5 Slow interflow exponent coefficient [5.00E-2, 2.99E-1] 5.55E-2 

In-stream 
denitrification deni_w General parameter of in-stream 

denitrification rate (kg m-2 d-1) [1.00E-8, 5.00E-2] 2.99E-4 

Soil 
denitrification deni_as Soil denitrification rate on 

agricultural land (d-1) [1.00E-8, 1.10E-1] 3.35E-3 
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deni_s Soil denitrification rate on non-
agricultural land (d-1) [1.00E-8, 1.10E-1] 5.50E-8 

In-stream 
assimilation 

pprt_aw Primary production rate in 
agricultural streams (kg m-3 d-1) [1.00E-8, 1.00E+0] 1.68E-1 

pprt_w Primary production rate in non-
agricultural streams (kg m-3 d-1) [1.00E-8, 1.00E+0] 1.11E-1 

3.4.2. Model performance 

The mHM-Nitrate model reproduced the observed discharge and nitrate concentration at the 
six gauging stations reasonably well. Results for three typical gauging stations (Meisdorf, 
Hausneindorf and Stassfurt) are shown in this article, while those for other stations can be 
found in the Supplementary material. These three stations reflect different combinations of 
dominant land use and weather conditions from the upstream to downstream parts of the Bode 
catchment. Meisdorf represents a forest-dominated area, while Hausneindorf represents a 
mixture of forest and agricultural areas ranging from mountains to lowlands. In contrast, 
Stassfurt represents a lowland catchment with a mixture of forest and agricultural areas. 

Daily discharge predictions (Figure 3.3) and goodness-of-fit metrics (Table 3.2) showed that 
mHM-Nitrate captured discharge dynamics well during both calibration (2010-2014) and 
validation (2004-2009 and 2015-2018) periods (lowest NSE of 0.76 and 0.73, respectively). 
The model performed worse for the forest area than for the mixture of forest and agricultural 
areas. For example, the Meisdorf station had the lowest performance during the calibration 
period (KGE and PBIAS of 0.64 and -14.1%, respectively) and the first validation period 
(2004-2009) (KGE and PBIAS of 0.66 and -17%, respectively). The model performed best for 
all stations during the second validation period (2015-2018) (lowest NSE and KGE of 0.83 and 
0.91, respectively; largest PBIAS of 1.6%) (Figure 3.3, Table 3.2). 

The model represented seasonal dynamics in observed nitrate concentrations well (Figure 3.3). 
Nitrate concentrations had similar seasonal patterns as discharge during the study period, which 
reflects their control by hydrological processes. In the forest area (Meisdorf station), the model 
captured long-term nitrate concentration dynamics (2004-2018) reasonably well (lowest KGE 
of 0.66 and largest PBIAS of 23.70%) (Table 3.2). Model performance decreased for mixed 
forest and agricultural areas, as indicated by the lowest KGE values for nitrate concentrations 
at the Hausneindorf and Nienhagen stations (0.21 and 0.59, respectively).  
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Figure 3.3. Observed and simulated daily discharge and nitrate concentration time series during the calibration 
(2010-2014) (shaded area) and validation period (2004-2009 and 2015-2018) at the three gauging stations: (a) 
Meisdorf, (b) Hausneindorf and (c) Stassfurt. 
The model reproduced observed daily nitrate loads well for the Meisdorf, Hausneindorf and 
Stassfurt gauging stations, with the lowest coefficient of determination (R2) of 0.73 (Figure 
S3.2). The model reproduced observed daily loads better for mixed forest and agricultural 
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areas, represented by the Hausneindorf and Stassfurt stations (R2 of 0.83 and 0.85, 
respectively). The lower performance for simulated daily loads in the forest area (i.e., Meisdorf 
station) can be explained by underestimating discharge during high flow periods (Figure 3.3a), 
which resulted in underestimating daily nitrate loads (Figure S3.2a). Like simulated discharge, 
the daily load was reproduced best during the second validation period (2015-2018) (NSE 
ranged from 0.81-0.92 and PBIAS ranged from -2 to 9.6 among the six gauging stations (Table 
3.2). 

Table 3.2. Model evaluation metrics (Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE) and 
Percentage BIAS (PBIAS) for daily discharge (Q), nitrate concentration (Nitrate) and nitrate load (Load = Nitrate 
× Q) at the Meisdorf, Hausneindorf, Wegeleben, Nienhagen, Hadmersleben and Stassfurt gauging stations during 
the calibration (2010-2014) and validation periods (2004-2009 and 2015-2018). 

Station Criterion 
Calibration Validation 
2010-2014 2004-2009  2015-2018 
Q Nitrate Load Q Nitrate Load  Q Nitrate Load 

Meisdorf 
NSE 0.77 0.59 0.66 0.73 0.35 0.88  0.83 0.40 0.81 
KGE 0.64 0.72 0.56 0.66 0.68 0.66  0.91 0.66 0.81 
PBIAS -14.10 12.30 -12.60 -17.00 -10.20 -20.30  1.60 23.70 9.60 

Hausneindorf 
NSE 0.85 -0.35 0.80 0.74 -0.84 0.82  0.86 -0.70 0.84 
KGE 0.85 0.42 0.89 0.76 0.21 0.82  0.91 0.27 0.87 
PBIAS -8.10 -0.10 -1.30 15.50 -8.70 15.70  -5.10 9.00 1.00 

Wegeleben 
NSE 0.91 -0.39 0.74 0.94 0.08 0.89  0.93 - - 
KGE 0.90 0.48 0.74 0.92 0.40 0.91  0.91 - - 
PBIAS -7.90 -12.00 -16.00 -4.60 -4.90 -4.10  -3.40 - - 

Nienhagen 
NSE 0.76 0.15 0.90 0.76 -0.34 0.81  - -1.59 - 
KGE 0.85 0.72 0.83 0.78 0.50 0.82  - 0.11 - 
PBIAS 2.90 -19.60 -13.30 19.90 -10.50 13.20  - -9.20 - 

Hadmersleben 
NSE 0.87 0.67 0.88 0.93 0.65 0.93  0.94 0.25 0.92 
KGE 0.90 0.74 0.92 0.94 0.76 0.81  0.95 0.61 0.93 
PBIAS -7.40 3.00 -5.50 1.90 19.10 17.30  -4.30 11.10 4.60 

Stassfurt 
NSE 0.86 0.65 0.80 0.90 0.23 0.81  0.94 0.44 0.92 
KGE 0.89 0.77 0.73 0.91 0.61 0.67  0.95 0.59 0.96 
PBIAS -8.50 1.70 -14.20 4.00 22.10 25.00  -3.50 1.60 -2.00 

3.4.3. Discharge and nitrate concentration trends  

To evaluate further the ability of mHM-Nitrate to simulate spatiotemporal nitrate dynamics in 
the Bode catchment, the trends of monthly mean observed and simulated nitrate concentrations 
at the three gauging stations were examined. The three components of monthly mean observed 
nitrate concentration showed the influence of trend, seasonal and random effects (Figure S3.3). 
The model captured the observed normalized monthly trends of nitrate concentration well 
(Figure 3.4) (Spearman’s correlation coefficient of 0.54, 0.83 and 0.82 for Meisdorf, 
Hausneindorf and Stassfurt, respectively (p < 0.01)), indicating that the model successfully 
represented temporal dynamics of nitrate concentration trends at the three gauging stations. In 
addition, during 2004-2018, nitrate concentration decreased significantly (p<0.05) at 
Hausneindorf but non-significant at the Meisdorf and Stassfurt stations (Table S3.1). 
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Figure 3.4. Normalized trends of monthly mean observed (aggregated from daily and monthly grab sampling data) 
nitrate concentration (black lines) and simulated (aggregated from daily mHM-Nitrate model results) nitrate 
concentration (red lines) from 2004-2018 at the gauging stations (a) Meisdorf, (b) Hausneindorf and (c) Stassfurt. 
The trends of monthly mean observed discharge and nitrate concentration were normalized at 
the Meisdorf, Hausneindorf and Stassfurt gauging stations from 2004-2018. Normalized trends 
of the monthly mean observed discharge and nitrate concentration were strongly correlated at 
Meisdorf and Stassfurt from 2004-2018 (Spearman’s correlation coefficient of 0.65 and 0.59, 
respectively (p < 0.01)) (Figure 3.5), which indicates that hydrology influenced nitrate 
concentration strongly.  



61 
 

 

Figure 3.5. Normalized trends of monthly mean observed discharge (blue lines) and nitrate concentration (red 
lines) from 2004-2018 at the gauging stations (a) Meisdorf, (b) Hausneindorf and (c) Stassfurt. 

3.4.4. Spatial heterogenous effects of drought on terrestrial nitrate export 

The heterogeneous spatial changes in runoff components and thus nitrate concentrations 
(Figure S3.6) resulted in high spatial variability in nitrate load exported from the terrestrial 
compartment (Figure 3.6). The mean annual nitrate load in total runoff showed a spatial pattern 
that clearly depended on land use (Figure 3.6c), with the largest nitrate export from lowland 
agricultural area (Class I) and mountain pasture area (Class IV) (ca. 7 and 19 kg N ha-1 year-1, 
respectively). The mean annual nitrate load in baseflow showed a similar spatial pattern 
(Figures 3.6b vs. 3.7c), with a mean of 5 and 6 kg N ha-1 year-1 in Classes I and IV, respectively. 
In the 2015-2018 drought period, the nitrate load in total runoff decreased by a mean of 40% 
(Figure 3.6f), mainly due to the decreased nitrate export loads from interflow and baseflow in 
the lowland area (Figures 3.7d-e). For example, nitrate loads in interflow and baseflow 
decreased by 72% and 77%, respectively, in Class II, but they increased in baseflow by 16% 
in Class IV. The increased nitrate load of interflow, baseflow and total runoff in mountain area 
during the drought period were due to higher nitrate concentration in interflow, baseflow and 
total runoff in these areas (Figures S3.6n-p). 
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Figure 3.6. Spatial distribution of simulated (a-c) annual mean load of interflow, baseflow and total runoff from 
2004-2014 and (d-f) the corresponding change from 2015-2018 compared to 2004-2014. 

3.4.5. Drought effects on nitrate surplus among soil-land-use classes 

To identify the internal processes that influence nitrate dynamics in the Bode catchment better, 
soil nitrate sources and sinks for the five soil-land-use classes were examined. For the 
agriculture-dominated lowland Classes I-III, the nitrate source was mainly fertiliser (including 
mineral fertiliser and mineralized organic manure), which decreased slightly (by 5%) during 
the drought period compared to the pre-drought period (Table 3.3). It is noteworthy that the 
decreased fertiliser is due to different crop rotations during the drought period compared to 
pre-drought period.  Crop uptake was the main nitrate sink (83-90% of the total fertiliser 
amount) in Classes I-III, and it decreased slightly (ca. 10%) during the drought period 
compared to the pre-drought period. Soil denitrification, which can include denitrification in 
the upper groundwater when the water table is high, decreased considerably in Classes II and 
III (by 28% and 43%, respectively). This was likely due to lower soil moisture induced by 
drought in the lowland, which decreased crop uptake and soil denitrification during the drought 
period. Terrestrial export also decreased greatly in Classes I-III. Therefore, soil N surplus, 
which equals input (total fertiliser amount and precipitation deposition) minus output 
(crop/plant uptake) was higher in Classes I-II (4.4 and 3.1 kg N ha-1 y-1, respectively) during 
the drought period than the pre-drought period, indicating that more nitrate was stored in the 
soil in the lowland area during the drought period. 

In the mountain area, nitrate sources and sinks in Classes IV and V responded differently to 
drought than these of Classes I-III (Table 3.3). The total amount of fertiliser in Classes IV and 
V remained relatively constant during the drought period. Class IV had the lowest soil 
denitrification among the five classes, perhaps due to lower total fertiliser amount and lower 
temperature in mountain pastures. In addition, soil denitrification and terrestrial export in 
Classes IV and V did not change during the 2015-2018 drought period compared to the 2004-
2014 period, which indicates that drought had less effect in the mountain area.  
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Table 3.3. Nitrate balances (mean ± standard deviation) in the five soil-land-use classes during the 2004-2014 
pre-drought period and, in parentheses, their corresponding values in the 2015-2018 drought period. 

Nitrate balances 

(kg N ha-1 y-1) 

Soil-land-use classes 

I II III IV V* Catchment mean 

Total fertiliser 
amount 

172.5 ± 8.2 

(163.1 ± 7.7) 

168.8 ± 10.0 

(159.6 ± 9.4) 

170.5 ± 9.2 

(161.3 ± 8.7) 

63.8 ± 16.4 

(64.2 ± 16.9) 

158.3 

(163.5) 

113.0 ± 69.8 

(107.4 ± 65.6) 

Precipitation 
deposition 

11.7 ± 0.6 

(9.9 ± 1.1) 

11.2 ± 0.5 

(9.2 ± 0.9) 

11.0 ± 0.2 

(8.7 ± 0.3) 

17.7 ± 0.4 

(16.7 ± 0.4) 

14.7  

(13.7) 

13.2 ± 3.3 

(11.5 ± 3.4) 

Crop/plant uptake 
142.8 ± 6.8 

(127.2 ± 6.9) 

142.6 ± 8.0 

(128.3 ± 8.0) 

154.1 ± 6.6 

(143.6 ± 7.6) 

39.8 ± 17.6 

(37.3 ± 15.8) 

121.2 

(106.4) 

96.4 ± 55.2 

(86.7 ± 49.0) 

Soil denitrification 
34.2 ± 3.3 

(28.1 ± 5.6) 

32.5 ± 4.5 

(23.4 ± 5.3) 

21.0 ± 4.4 

(12.8 ± 2.0) 

2.5 ± 3.5 

(2.6 ± 3.7) 

24.0 

(25.0) 

20.3 ± 15.2 

(16.7 ± 13.0) 

Terrestrial export 
7.2 ± 3.6 

(3.2 ± 3.2) 

4.0 ± 2.6 

(1.2 ± 1.8) 

0.3 ± 0.2 

(0.02 ± 0.02) 

19.4 ± 3.5 

(20.3 ± 2.3) 

12.1 

(13.5) 

6.0 ± 4.1 
(3.7 ± 3.7) 

*Note that for Class V only one grid was selected. 

3.4.6. Drought effects on in-stream nitrate retention  

Annual and seasonal mean lateral nitrate loading from terrestrial to streams decreased during 
the drought period compared to the pre-drought period, except for the streams upstream of 
Meisdorf (Table 3.4). Lateral nitrate loading reduced by 41% and 44% in summer and autumn 
within the whole river network; meanwhile, in-stream retention amount decreased by 20% and 
16%, respectively, plausibly due to smaller stream benthic area and lower nitrate 
concentrations during the drought period. Lateral nitrate loading reduced more than that of in-
stream retention during the drought period, and this likely resulted in a higher in-stream 
retention efficiency (Table 3.4). 
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3.5. Discussion 

3.5.1. Model performance evaluation 

The mHM-Nitrate model reproduced the observed discharge throughout the Bode catchment 
well (mean NSE of 0.85 and PBIAS  ±20%), according to guidelines for evaluating the 
performance of catchment simulations (Moriasi et al., 2015). This accuracy is similar to those 
of previous simulations of the study area (e.g., Mueller et al., 2016; Nguyen et al., 2021; Yang 
et al., 2018). Comparing the three representative gauging stations, the performance at the 
Meisdorf station was relatively low, as indicated by lower NSE and KGE (Table 3.1), perhaps 
due to underestimating peak flow events and the high sensitivity of NSE to extreme values 
(e.g., Krause, Boyle and Bäse, 2005). Similarly, the low KGE was likely due to underestimating 
high flow values in 2010, 2013 and 2014 (Figure 3.3a). The model may have underestimated 
peak flow events because of the inaccurately measured precipitation and the lower density of 
meteorological stations. Specifically, daily precipitation is not sufficiently precise to represent 
a detailed discharge response, especially in the headwater of the Bode catchment (due to high 
heterogeneity in precipitation), where many storm events last only a few hours. Moreover, the 
spatial coverage of the meteorological stations decreased significantly during the recent period, 
especially in the mountain area of the catchment. For example, the number of precipitation 
gauging stations in the Selke sub-catchment decreased from 16 to only 8 after 2004 (Yang et 
al., 2018). Generally, the decrease in detailed precipitation records decreased performance in 
predicting discharge in the headwater area, which is known for its high spatiotemporal 
variability in precipitation due to the varying elevation. Therefore, the less accurate 
precipitation inputs from the lower station density could explain the slight underestimate of 
water balance at Meisdorf (PBIAS of -14% and -17% for the calibration and first validation 
period, respectively). However, the model slightly overestimated the water balance for the 
Hausneindorf station during the first validation period (Table 3.2). Jiang, Jomaa and Rode 
(2014) and Winter et al. (2021) stated that water from the lower Selke River was abstracted to 
fill pit lakes from 1998-2009 at a rate of 3.1 million m3 year-1, which was ca. 8% of the mean 
annual stream flow from 2004-2009. Although the water balance remained overestimated after 
considering this abstraction, these overestimates occurred mainly during the low-flow period 
and were acceptable when the corresponding runoff depth was considered (i.e., the largest 
PBIAS of 15.5% at Hausneindorf corresponded to a runoff depth of only 12.8 mm/year). 

The model can represent observed nitrate concentrations well for several reasons. First, its 
flexible structure ensures sufficient spatial representation of catchment heterogeneity as well 
as of spatiotemporal variability in meteorological inputs (Kumar, Samaniego and Attinger, 
2010; Samaniego, Kumar and Attinger, 2010; Yang et al., 2018). In addition, it can adequately 
represent the diffuse source inputs and turnover (i.e., agricultural practices, crop rotation and 
plant uptake) and point-source contributions (input time series can be added at the real stream 
locations) at the resolution of the input data, which increases the model’s ability to represent 
spatial variability in nitrate sources (Yang et al., 2018). Selecting an appropriate calibration 
period under varying conditions (i.e., not at steady-state equilibrium) is crucial for model 
training and refinement of internal processes. For example, during the calibration period, 2011 
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was a wetter year, while 2012 was a drier year. Thus, selecting a calibration period that 
encompasses varying hydrological conditions helps activate all model components. This 
approach agrees with Engel et al. (2007), who suggested that both calibration and validation 
periods should have high and low flows to increase a model’s robustness. Together, these 
characteristics helped to identify model parameters better and reliably estimate nitrate 
contributions from different runoff components, which is crucial for representing nitrate 
concentrations spatiotemporally in the entire Bode catchment.  

The most influential nitrate sub-model parameter was related to in-stream denitrification, while 
in the study of Yang et al. (2018), which focused more on upstream catchments, the most 
influential parameter was related to soil denitrification. This is presumably due to the larger 
total stream benthic areas for the Bode catchment, which is in line with Yang et al. (2019) who 
found that there is a significant relationship between stream benthic area and in-stream 
denitrification rate, reflecting the relative importance of in-stream processes increases with 
increasing catchment size. The slightly lower performance of mHM-Nitrate at the 
Hausneindorf station than at the other stations was likely due to the lack of detailed time series 
of point sources from urban areas during the low-flow period, especially in the initial period of 
operation of the WWTPs, as they started to function properly only in 2007 (Yang et al., 2018). 
The high nitrate concentrations during summers before 2007 (Figure 3.3b) were likely due to 
the untreated point sources, as discussed by Yang et al. (2018). After 2007, the model captured 
dynamics of nitrate concentration well at Hausneindorf. In addition, some houses (mainly 
summer houses) in the Selke sub-catchment are not connected to the sewage system, which 
generates additional unknown point sources and decreases model performance under low-flow 
conditions. The lack of detailed spatial cropping information for the entire Bode catchment and 
the need to rely on only rough survey information might introduce uncertainty. Based on the 
uncertainty analysis at the Selke sub-catchment by Yang et al. (2018) using the MCMC-based 
DREAM tool (ter Braak and Vrugt, 2008; Vrugt, 2016), the simulations uncertainty of 
discharge and nitrate concentration were well constrained and in line with the DDS calibration 
results. Nevertheless, mHM-Nitrate successfully identified decreasing trends in observed 
nitrate concentrations at the Hausneindorf and Stassfurt lowland stations (Figures 3 and 4).  

3.5.2. Explaining changes in nitrate concentration during drought years 

Recent droughts (2015-2018) in the Bode catchment provided an opportunity to investigate the 
internal processes that influence nitrate dynamics under changing weather conditions at the 
catchment scale. Observed nitrate concentration showed a decreasing trend in lowland 
agricultural areas (i.e., Hausneindorf and Stassfurt stations) but not significant in the mountain 
forest area (i.e., Meisdorf station) (Figure 3.4). Results suggested that the influence of drought 
on nitrate concentration could be explained by (i) spatiotemporal differences in hydrological 
response and (ii) its associated effects on soil and in-stream nitrate processes during the 2015-
2018 drought period compared to the 2004-2014 pre-drought period.  

Seasonal total runoff decreased in the entire Bode catchment during the drought period (Figures 
S7m-p). The decrease was larger in the lowland area, due to the combined effects of 
meteorology and soil properties. Annual precipitation in the 2015-2018 drought period did not 
differ greatly from that in long-term historical records (1971-2000) from DWD. When 
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considering the temporal distribution of precipitation, however, precipitation decreased greatly 
in winter and spring in the lowland agricultural area during the drought period, especially in 
Class II (by 25% and 30%, respectively) (Figures S7a-b). Soil moisture decreased continuously 
in all seasons and was not replenished during the rewetting seasons due to reduced precipitation 
in the lowland area (Figures S7i-l). In addition, the modeled soil moisture of the third layer in 
Classes (I-III) showed a significant decline during the drought period (Figure S3.8). 

Consequently, this process could decrease unsaturated zone storage and groundwater recharge 
during the drought period. This further explains the decrease in mean annual interflow, 
baseflow and total runoff in the lowland area during the 2015-2018 drought period compared 
to 2004-2014. Furthermore, the decrease in soil moisture content may have decreased 
hydrological connectivity between hillslope and streams during the drought period (Figures 
S6f-h), thus increasing the potential for soil profiles to become disconnected from the stream 
channel and shallow groundwater (Davis et al., 2014; Outram et al., 2016). In contrast, total 
runoff in the mountain area decreased only slightly during the drought period, perhaps due to 
seasonal precipitation and slightly decreased soil moisture content there (Figure S3.7). This 
result agrees with other studies that reported that flatter and less forested catchments are more 
vulnerable to long-term drought (Saft et al., 2015). 

The large decrease in nitrate concentration in the lowland area during the drought period, 
represented by the Hausneindorf and Stassfurt stations (Figures 4b-c), was plausible because 
the decrease in total runoff in Classes I-III greatly reduced soil nitrate export to surface water 
(Figures 3.7d-f, Table 3.3). This indicates that nitrate became transport-limited in the lowland 
area during the drought period. In addition, upstream discharge with low nitrate concentration 
could dilute downstream nitrate concentration during the drought period. Furthermore, drought 
increased water temperatures, and longer water residence time in summer could have 
stimulated in-stream uptake and denitrification efficiency (Table 3.4) (Hosen et al., 2019). 
Therefore, the combined effects of terrestrial export load and in-stream processes could explain 
the decrease of in-stream nitrate concentrations in lowland areas (e.g., at the Hausneindorf and 
Stassfurt stations in Figures 3.4b-c). In contrast, nitrate concentration in the mountain forest-
dominated area showed a constant pattern during the drought period compared to the pre-
drought period, as reflected by the Meisdorf station (Figures 3a and 4a). This pattern could 
have occurred because the nitrate source in the mountain forest-dominated area comes mainly 
from patches of agricultural area, which decreased slightly during the drought period in Class 
IV (Table 3.3). Although total runoff increased in the mountain area in winter during the 
drought period, in-stream nitrate concentrations were similar to those during the pre-drought 
period (Figures S3.7m vs. 3.3a). In addition, in-stream retention in winter was low and did not 
influence nitrate concentration, which indicated that nitrate could be supply-limited in the 
mountain area.  

Previous studies have reported a decrease in stream nitrate concentrations during droughts (e.g.,  
van Vliet and Zwolsman, 2008; Yevenes, Figueroa and Parra, 2018). They also explained the 
decrease in nitrate concentration by less diffuse supply based on empirical relations between 
nitrate concentration and discharge. Our study confirmed this explanation by simulating a large 
decrease in soil nitrate export in the lowland area during the drought period (Figure 3.6). 
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3.6. Conclusion 

Varying spatial trends in nitrate concentration under drought conditions were observed in the 
Bode catchment in central Germany. To explain the mechanisms that influence the changes in 
trends, calibrated mHM-Nitrate model outputs and internal processes were compared between 
a drought period (2015-2018) and a pre-drought period (2004-2014). Results indicated that 
nitrate export from the terrestrial compartment greatly decreased while in-stream retention 
efficiency increased during the drought periods, which could result in the decrease of in-stream 
nitrate concentration in the lowland area of the Bode catchment. In contrast, nitrate export and 
in-stream retention efficiency in the upper mountain area of the catchment changed little. 
Therefore, nitrate concentrations remained relatively constant in the drought and pre-drought 
periods. Results suggested that during the drought periods, nitrate was mainly stored in the soil 
rather than mobilized or transported, especially in the lowland area of the catchment. This study 
assessed the model’s ability to represent nitrate concentrations under varying weather 
conditions, which could be used to study the effects of climate change. The Bode catchment is 
a typical mesoscale catchment in central Europe, in which the headwater is a mountain area 
with high precipitation, and the lowland is an agricultural area with relatively low precipitation. 
We expect that catchments with landscape and climate conditions similar to those of the Bode 
catchment (i.e., wet mountain areas and dry lowland areas) are highly vulnerable to changing 
weather conditions. This study showed that droughts have heterogeneous spatial effects on 
hydrology and water-quality responses. Therefore, water managers should specifically 
consider this spatial heterogeneity when managing future droughts. 
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3.8. Supplementary materials 

Text S3.1.: governing equations of nitrogen processes in the mHM-Nitrate modelS3.1.1. In the 
terrestrial phase 

(1) Degradation from inactive soild organic nitrogen pool (humus_N) to active soild organic 
nitrogen pool (fast_N) 

degradN =   pardegradN * fct_temp * fct_sm * humus_N/ DT 

humus_N =  humus_N - degradN 

fast_N =  fast_N +  degradN 

(2) Mineralization from fast_N and dissolved organic nitrogen pool (diss_ON), respectively, 
to dissolved inorganic nitrogen pool (diss_IN) 

mineraN =   parmineraN * fct_temp * fct_sm * fast_N / DT 

mineraN2 =   parmineraN * fct_temp * fct_sm * diss_ON / DT 

fast_N  =  fast_N –  mineraN 

diss_ON =  diss_ON- mineraN2 

diss_IN =  diss_IN +  mineraN +  mineraN2 

(3) Dissolution from fast_N to diss_ON 
dissolN =  pardissolN* fct_temp * fct_sm * fast_N / DT 

fast_N =  fast_N –  dissolN  

diss_ON =  diss_ON +  dissolN 

where degradN is degradation amount (mg N m-2), mineraN and mineraN2 are mineralization 
amount (mg N m-2), dissolN is dissolution amount (mg N m-2), pardegradN, parmineraN and 
pardissolN is landuse dependent degradation rate, mineralization rate and dissolution rate, 
respectively (d-1); fct_temp and fct_sm is common function that represent impacts of soil 
temperature and soil moisture, respectively, DT = model timestep (h)/24. 

(4) Soil denitrification 
denitri_s =  deni_s * fct_temp* fct_sm*fct_conc * diss_IN / DT 

diss_IN =   diss_IN- denitri_s 

where denitri_s is denitrified nitrate amount (mg N m-2), deni_s is soil denitrification rate (d-

1); fct_temp, fct_sm and fct_conc represent functions of impacts of soil temperature, soil 
moisture and nitrate concentration, respectively. 

 

(5) Plant/crop uptake 
Potential uptake (uptk_max) is based on the logistic plant/crop growth function from SOILN 
model in HYPE. 

uptk = min(uptk_max, (1-
wp

SM
)*diss_IN) 

 diss_IN =   diss_IN-uptk 
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where uptk is uptake amount (mg N m-2), wp is wilting point, SM is soil moisture. 

S3.1.2. In-stream phase 

(1) In-stream denitrification (denitri_w) 
denitri_w = deni_w*ftemp*fconc*A/DT 

DIN = DIN-denitri_w 

where DIN is dissolved inorganic nitrogen pool in water; deniw is in-stream denitrification rate 
(mg N m-2 d-1); ftemp  and fconc  represent function of stream water temperature and nitrate 
concentration impacts, respectively, on in-stream denitrification; A is stream benthic area (m-

2).  

(2) Instream primary uptake (assim) and mineralization are inverse transformation between 
DIN and dissolved inorganic nitrogen pool (DON) in water 

assim = pprt*ftemp1*ftemp2*flight*d*A/DT 

DON = DON + assim 

where DON is dissolved organic nitrogen pool in water; pprt is in-stream primary production 
rate (mg N m-3 d-1); ftemp1 , ftemp2 and flight represent function of water temperature and light 
effects, respectively,  on primary production (Yang et al., 2019); d is the water depth 
(m). ftemp1 is only depend on the water temperature, ftemp2 determines which one is dominate 
between primary production and mineralization (Lindström et al., 2010). 
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Figure S3.1. The SPEI values on a 3-month time scale during 2000-2018 at the gauging station Stassfurt. 
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Figure S3.2. Observed and simulated daily discharge and nitrate concentration time series during calibration 
(2010-2014) and validation periods (2004-2009 and 2015-2018) for the (a) Wegeleben, (b) Nienhagen and (c) 
Hadmersleben gauging stations. 
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Figure S3.3. Observed and simulated daily nitrate loads during the model simulation period (2004-2018) for the 
(a) Meisdorf, (b) Hausneindorf, (c) Wegeleben, (d) Nienhagen, (e) Hadmersleben and (f) Stassfurt gauging 
stations. 
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Figure S3.4. Monthly observed nitrate concentration and its three components (random, seasonal and trend) from 
2004-2018 for the (a) Meisdorf, (b) Hausneindorf and (c) Stassfurt gauging stations. 
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Figure S3.5. Normalized trends of monthly observed (red lines) and simulated nitrate load (blue lines) during 
2004-2018 at the gauging stations (a) Meisdorf, (b) Hausneindorf and (c) Stassfurt. 
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Figure S3.6. Spatial distribution of simulated (a-d) annual mean total runoff and its three components from 2004-
2014 and (e-h) the corresponding change from 2015-2018 compared to 2004-2014. Spatial distribution of 
simulated (i-l) annual mean nitrate concentrations in total runoff and its components from 2004-2014 and (m-p) 
the corresponding change from 2015-2018 compared to 2004-2014. SD represents the standard deviation. 
 

 



91 
 

 
Figure S3.7. Mean annual terrestrial nitrate export load in four soil-land-use classes during the pre-drought period 
(2004-2014) and the drought period (2015-2018). 
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Figure S3.8. Spatial distributions of the difference in mean seasonal precipitation, actual evapotranspiration, soil 
moisture content and total runoff in the drought period (2015-2018) compared to the reference period (2004-
2014). 
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Figure S3.9. Dynamics of modeled soil moisture (%) of the third layer in the five soil-land-use classes (I-V) 
during 2004-2018. 
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Table S3.1. Mann-Kendall test of nitrate concentration at three gauging stations in 2004-2018. 
Station MK test Winter  Spring Summer  Autumn 

Meisdorf τ -0.1282 -0.2564 -0.3590 -0.1026 
p-value 0.5830 0.2464 0.0995 0.6693 

Hausneindorf τ -0.5897** -0.5385* -0.6667** -0.8462** 
p-value 0.0060 0.0124 0.0019 0.0001 

Stassfurt τ -0.2381 -0.1810 -0.0476 -0.2381 
p-value 0.2350 0.3731 0.8431 0.2350 

 * indicates significant trend at 0.05 level, ** indicates significant trend at 0.01 level. 
 
Table S3.2. Crop data for different crop types at the Bode catchment. Fertiliser amount (frtn, kg ha-1 y-1), day 
number of fertiliser application (frtday), fraction of fertiliser that is tilled down to second soil layer (frtdown), 
fertiliser period (frtperiod), plants residue amount (resn, kg ha-1 y-1) added to the soil N pool, day number of plants 
residue application (resday), fraction of plants residue that is tilled down to second soil layer (resdown), fraction 
of plants residue that are added to active solid organic soil N pool. 

Crop_id  crop_name frtn frtday frtdown frtperiod resn resday resdown resfast 

1  winter_wheat_lw 173 110 0.08 60 19.6 260 0.2 0.8 

2  winter_barley 133 97 0.1 60 13 262 0.2 0.6 

3  sugarbeets 89 123 0.1 60 15.2 270 0.2 0.6 

4  rapeseed 181 97 0.1 60 20 262 0.2 0.6 

5  inte_grass 54 120 0.2 60 0 290 0.3 0.8 

6  exte_grass 20 100 0.1 60 0 300 0.2 0.6 

7  forest 0 130 0 60 15 290 0.3 0.1 

8  winter_wheat_up 158 110 0.08 60 19.6 260 0.2 0.8 

9  triticale 105 104 0.1 60 19.5 87 0.2 0.6 
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4.1. Abstract  

The EU Water Framework Directive (WFD) has emphasized that altered stream/river 
morphology and diffuse pollution are the two major pressures faced by European water bodies 
at catchment scales. Increasing efforts have been directed toward restoration to meet WFD 
standards for ecological health, but this work has achieved limited success. One challenge is 
that little is known about how morphological changes (i.e., re-meandering) may affect nitrate 
retention within whole stream networks. We investigated this issue in the well-monitored Bode 
catchment (3,200 km2) in central Germany. First, we implemented a fully distributed process-
based mHM-Nitrate model, exploring its performance over the period from 2015 to 2018. 
Second, we simulated the effects of restoring more natural stream morphology (i.e., increasing 
sinuosity) on nitrate retention. The mHM-Nitrate model performed well in replicating daily 
discharge and nitrate concentrations (median Kling-Gupta values of 0.78 and 0.74, 
respectively). Within the stream network, mean and standard deviation (SD) of gross nitrate 
retention efficiency was 5.1±0.61% and 74.7±23.2% in the winter and summer, respectively; 
this measure took into account both denitrification and assimilatory uptake. In the summer, the 
denitrification rate was about two times higher in a lowland sub-catchment dominated by 
agricultural lands than in a mountainous sub-catchment dominated by forested areas (median 
± SD of 204±22.6 and 102±22.1 mg N m-2 d-1, respectively). Similarly, in the same season, the 
assimilatory uptake rate was approximately five times higher in streams surrounded by lowland 
agricultural areas than in streams in higher-elevation, forested areas (median ± SD of 200±27.1 
and 39.1±8.7 mg N m-2 d-1, respectively). This suggests that restoration strategies targeted at 
lowland agricultural areas may have a greater potential for increasing nitrate retention. In our 
simulation, restoring stream sinuosity was found to increase net nitrate retention efficiency by 
up to 25.4±5.3%; greater effects were seen in small streams. Taken together, our results indicate 
that restoration efforts should consider augmenting stream sinuosity to increase nitrate 
retention and decrease nitrate concentrations at the catchment scale. 
Keywords: 

River restoration; sinuosity; mHM-Nitrate model; stream denitrification; assimilatory uptake 

Highlights:  

• The simulated denitrification rate and assimilatory uptake rate are higher in agricultural 
than in forest areas. 
• Increasing stream sinuosity due to stream restauration improves net nitrate retention 
efficiency more in small streams than in large streams. 
• Small streams in agricultural areas should be given priority in restoration efforts.  
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4.2. Introduction 

Excess nitrogen in surface waters represents a major threat to aquatic ecosystems (Birgand et 

al., 2007). In streams, inorganic nitrogen largely occurs in the form of nitrate (NO3-), a highly 

water soluble ion that can easily enter streams and rivers from both diffuse and point sources. 

To reduce NO3- levels in Europe’s streams and rivers, extensive management strategies have 

been deployed over the past three decades (European Commission, 1991a; European 

Commission, 1991b). Their success remains limited, as around 60% of Europe’s surface water 

bodies still have not achieved good ecological status (European Environment Agency,2018). 

The EU Water Framework Directive (WFD) has emphasized that, in Europe, altered 

stream/river morphology and diffuse pollution are two key pressures acting on water bodies at 

the catchment scale (Carvalho et al., 2019). For example, more than 37% of Germany’s rivers 

are classified as heavily modified, as a result of channelization or straightening (Pander et al., 

2017). The loss of stream bottoms has shortened water residence times and limited hyporheic 

exchanges, resulting in lower levels of nutrient retention and greater rates of downstream 

transport (Baker, Bledsoe and Price, 2012; Doyle, Stanley and Harbor, 2003; Gucker and 

Boechat, 2004; Opdyke, David and Rhoads, 2006). Attention has turned to stream restoration 

as a management tool for increasing nitrate retention (Craig et al., 2008; Newcomer Johnson 

et al., 2016; Wohl, Lane and Wilcox, 2015). Multiple techniques have been tested out in 

headwater streams and large lowland rivers (Flávio et al., 2017), such as re-meandering 

(Lorenz, Jahnig and Hering, 2009; Pedersen, Kristensen and Friberg, 2014) and reconnecting 

streams with floodplains (Roley, Tank and Williams, 2012) and ponds (Passy et al., 2012) in 

agricultural zones. 

Within streams, nitrate retention is the result of temporary retention by plants (i.e., assimilatory 

uptake) and permanent removal by bacteria (i.e., denitrification) (Groffman et al., 2009; Ye et 

al., 2012). In general, stream restoration is thought to promote both processes (assimilatory 
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uptake: Huang et al. 2022; denitrification: Craig et al., 2008). To date, research has largely 

focused on the effects of re-meandering at the reach scale and has found contrasting results 

(Bukaveckas, 2007; Craig et al., 2008; Kaushal et al., 2008; Klocker et al., 2009; Lin et al., 

2021; Veraart et al., 2014; Wagenschein and Rode, 2008). For example, denitrification was 

seen to be higher in restored streams (i.e., after reconnection with floodplains) than in 

unrestored streams (Kaushal et al., 2008; Roley, Tank and Williams, 2012). Furthermore, 

restored reaches may display higher levels of gross primary productivity and ecosystem 

respiration (Kupilas et al., 2017). In contrast, Klocker et al. (2009) found no difference in 

denitrification rates between restored and unrestored streams, and Veraart et al. (2014) 

observed that denitrification rates were highly variable: for some streams, rates were 

significantly higher in unrestored versus restored sections, while, in other streams, rates did not 

vary among sections. The researchers attributed these results to differences in hydrological 

conditions and levels of sedimentary organic matter. Thus, we presently have a limited 

understanding of how restoration could affect nitrate retention at broader scales. 

Within stream networks, nitrate retention is shaped by complex interactions between 

hydrological, geomorphological, and biogeochemical processes (Ensign and Doyle, 2006; 

Yang et al., 2019; Ye et al., 2012). While the effects of hydrological and biogeochemical 

processes have been explored to some degree (Alexander et al., 2009; Covino, McGlynn and 

Baker, 2010; Marcé et al., 2018), there has been no systemic research on networks with 

contrasting morphologies and, more notably, on the effects of restoration efforts (i.e., re-

meandering). This gap in knowledge likely results from three key challenges. First, it is difficult 

to disentangle how nitrate retention is affected by geomorphology versus other factors (e.g., 

discharge, NO3- concentration) (Lin et al., 2016). Second, we lack detailed historical 

information on stream morphology (i.e., natural conditions) within catchments (Guzelj, Hauer 

and Egger, 2020). Third, uncertainty arises when attempts are made to parse out the influences 
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of lateral terrestrial flows versus in-stream processes (Helton, Hall and Bertuzzo, 2018; Helton 

et al., 2011).  

Scenario analysis holds promise for addressing these challenges because it can be implemented 

by combining fully distributed catchment modeling with detailed spatiotemporal data from 

monitoring programs. In particular, simulations can explore how re-meandering could affect 

nitrate retention at the network scale. Recently, Yang et al. (2018) developed a fully distributed 

grid-based hydrological nitrate model (mHM-Nitrate) that can provide detailed spatial 

information on terrestrial nitrate inputs within stream networks. This model has successfully 

described terrestrial and aquatic processes (i.e., assimilatory uptake) (Yang et al., 2019) across 

different catchments (Wu et al., 2022b; Yang et al., 2018; Zhou et al., 2022). In addition, 

researchers have been extensively characterizing the denitrification rates associated with 

different land-use types (Böhlke et al., 2009; Mulholland et al., 2009). This has yielded 

abundant opportunities for evaluating how morphological changes in streams can spatially and 

temporally impact nitrate transport and retention. 

Here, we looked at how stream morphology affects spatiotemporal nitrate retention dynamics 

within a stream network—the Bode catchment in central Germany. To this end, we used the 

mHM-nitrate model, which can handle large gradients in catchment characteristics. More 

specifically, we aimed to i) evaluate the reliability of the model simulation by assessing 

assimilatory uptake and denitrification throughout the entire catchment before evaluating 

stream restoration scenarios ; ii) characterize spatiotemporal variability in retention dynamics 

and identify the key factors at play in two sub-catchments to inform stream restoration 

measures; and iii) simulate the effects of re-meandering on nitrate concentrations and retention 

efficiency for a stream network.  



100 
 

4.3. Study area and methods 

4.3.1. Study area  

Covering around 3,200 km2 in central Germany, the Bode catchment is closely monitored and 

thus serves as a rich source of hydrological and hydrochemical data (Mueller et al., 2016; 

Wollschläger et al., 2016). The catchment extends from the Harz Mountains, a low, rocky 

mountain range, to the northeastern lowlands of central Germany. Annual precipitation follows 

an elevational gradient within the catchment, ranging from more than 1,500 mm in the upper 

Harz Mountains to less than 500 mm in the vast lowland plains (Figure 4.1a). Mean annual air 

temperature ranges from 5 °C at Brocken, the mountain’s highest peak, to 9.5 °C in eastern 

Magdeburg Börde (Wollschläger et al., 2016). The Harz Mountains have steep slopes with 

shallow, less fertile soils that are predominantly covered by forests. All agricultural activity is 

associated with the region’s plateaus and lower-elevation areas. Within the catchment, 66% of 

the land is arable; 26% is forested or composed of semi-natural habitat; 7% is urban or 

dedicated to open-cast mining; and 1% is covered by water bodies and wetlands (CORINE 

2012 land cover map, https://gdz.bkg.bund.de/index.php/default/open-data.html, last accessed 

1 June 2020; Figure 4.1b).  
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Figure 4.1. Bode catchment: (a) elevational map showing the gauging stations, (b) land use map and two sub-
catchments, and (c) stream order obtained from the mHM-Nitrate model (1-km routing grid) with a stream mask 
derived from the observed network. 
We chose two sub-catchments with different representative landscapes to investigate retention 

processes in greater detail. Upper Selke is a sub-catchment located in the Harz Mountains 

(Meisdorf outlet; Figure 4.1); it is dominated by forests (73% of 177.7 km2) and contains 

natural streams. Großer Graben is a sub-catchment in the intensively farmed lowlands 

(Oschersleben outlet; Figure 4.1); it is dominated by arable land (87.4% of 435.4 km2) and 

contains heavily modified streams (Figure 4.1b).  

About 80% of the lowland stream network is heavily modified or completely changed (State 

Agency for Flood Protection and Water Management of Saxony-Anhalt, LHW; 

http://gldweb.dhi-wasy.com/gld-portal/, last accessed 10 April 2020; Figure S4.1). Stream 

order analysis showed that there were two times more streams in Großer Graben than in Upper 

Selke (Table S4.1), the result of artificial drainage in the former. Additionally, the total stream 

http://gldweb.dhi-wasy.com/gld-portal/
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length in Großer Graben was twice that in Upper Selke, except in the case of 1st-order streams 

(Table S4.1). Small streams (1st–3rd order) accounted for a high percentage of total stream 

length: 81% and 88% in Großer Graben and Upper Selke, respectively. 

Mean daily nitrate concentrations (data collected at 15-min intervals) were available for the 

Meisdorf, Hausneindorf, Hadmersleben, and Stassfurt stations (Helmholtz Centre for 

Environmental Research – UFZ; Rode et al., 2016a). Monthly and biweekly nitrate data 

(obtained via grab samples) were available for the Wegeleben, Nienhagen, and Oschersleben 

stations (LHW, http://gldweb.dhi-wasy.com/gld-portal/, last accessed 10 April 2020). Daily 

discharge data were available for all seven stations (LHW, http://gldweb.dhi-wasy.com/gld-

portal/, last accessed 10 April 2020). Monthly nitrate concentrations were available for the 

Wegeleben and Nienhagen stations between 2007 and 2014.  For the Wegeleben station, nitrate 

concentrations were unavailable in 2015 and between 2017 and 2018. However, they were 

available at two-month intervals at the Nienhagen station from 2015 to 2018 and at monthly 

intervals at the Oschersleben station from 2010 to 2018.  

4.3.2. mHM-Nitrate model 

The mHM-Nitrate model is a fully distributed process-based model of nitrate dynamics at the 

catchment scale (Yang et al., 2018). It was developed from the mesoscale Hydrological Model 

(Samaniego, Kumar and Attinger, 2010) and the Hydrological Predictions for the Environment 

model (Lindström et al., 2010). The mHM-Nitrate model simultaneously characterizes the 

hydrological and nitrate processes associated with terrestrial and stream environments for 

individual grid cells using a daily time step. For the terrestrial environment, the model 

considers the following key hydrological processes: interception, snow accumulation, snow 

melting, evapotranspiration, infiltration, groundwater recharge, and runoff generation. The 

nitrate processes considered are the sources of nitrate (i.e., wet atmospheric deposition, 

application of fertilizer and manure, and presence of plant/crop residues),  transports (i.e., 

http://gldweb.dhi-wasy.com/gld-portal/
http://gldweb.dhi-wasy.com/gld-portal/
http://gldweb.dhi-wasy.com/gld-portal/
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infiltration through multiple soil layers and percolation to the deep groundwater layer), sinks 

(i.e., denitrification and uptake by plants/crops), and transformation among the four nitrogen 

pools (i.e., dissolved inorganic nitrogen, dissolved organic nitrogen, active solid organic 

nitrogen, and inactive solid organic nitrogen) for each soil layer. The quantity of mineral and 

manure fertilizers applied was dependent on the crop type, and it was assumed that they were 

applied uniformly throughout the fertilization period. The State agricultural authority provided 

information on the rates and dates of fertilization. The fertiliser amount at 1 km resolution was 

calculated by adding the amount of fertiliser for each crop type in the 1 km grid. The wet 

atmospheric deposition amount was determined by multiplying the amount of rainfall by the 

concentration of nitrate in the rainfall. Wet deposition is considered as total nitrogen including 

NO3, NH4 as well as NO2. Dry deposition is a minor contributor to total N deposition, which 

was measured at less than 10% of total atmospheric N deposition. For the stream environment, 

the model considered nitrate transformation (i.e., denitrification, assimilatory uptake, and 

remineralization) for each reach. More detailed descriptions of the mHM-Nitrate model can be 

found in Yang et al. (2018) and Yang et al. (2019); the source code can be found in Yang and 

Rode (2020).  

Gross nitrate assimilatory uptake within streams (𝐹𝑎𝑠𝑠𝑖𝑚; kg N d-1) was calculated using the 

new regionalization approach proposed by Yang et al. (2019): 

 𝐹𝑎𝑠𝑠𝑖𝑚 = 𝑈𝑎𝑠𝑠𝑖𝑚 × 𝑓𝐿 × 𝑊 × 𝐿 × 𝐻 × ∆𝑡  (1) 

where 𝑈𝑎𝑠𝑠𝑖𝑚 is the assimilatory uptake rate (mg N 𝑚−3 𝑑−1); 𝑓𝐿 ∈  [0,1] is a light availability 

coefficient that reflects the combined impact of global radiation and riparian shading on 

assimilatory uptake; and 𝑊, 𝐿, 𝐻 are stream width (m), length (m), and depth (m), respectively. 
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Net assimilatory uptake within streams ( 𝐹𝑛𝑒𝑡; kg N d-1) was calculated by subtracting 

remineralization from gross assimilatory uptake (Yang et al., 2019), which was determined by 

multiplying gross assimilatory uptake and a temperature factor (𝑓𝑇), 

 𝐹𝑛𝑒𝑡 = 𝐹𝑎𝑠𝑠𝑖𝑚 × 𝑓𝑇 × 𝑓𝑛𝑒𝑡   (2) 

 𝑓𝑇 =
𝑇

20
 ×

𝑇10−𝑇20

5
  (3) 

where 𝑓𝑛𝑒𝑡 ∈  [0,1] is a land-use coefficient that reflects the fraction of gross assimilatory 

uptake; 𝑇 is water temperature (°C); and 𝑇10 and 𝑇20 are mean water temperature at 10 and 20 

days, respectively. 

The amount of denitrification within streams (𝐹𝑑𝑒𝑛; kg N d-1) was calculated based on the 

relationship between the denitrification rate and nitrate concentrations: 

 𝐹𝑑𝑒𝑛 = 𝑈𝑑𝑒𝑛 ∗ 𝑊 ∗ 𝐿 (4) 

 𝑈𝑑𝑒𝑛 = 𝑈𝑚𝑎𝑥 ∗
𝐶𝑁𝑂3

−

𝐶𝑁𝑂3
−+𝑘𝑠

∗ 𝑓𝑡𝑒𝑚𝑝 (5) 

 𝑓𝑡𝑒𝑚𝑝 = {

0          ,          𝑇 < 0
𝑇

5
× 2

𝑇−20

10 , 0 < 𝑇 < 5

2
𝑇−20

10  , 𝑇 > 5

 (6) 

where  𝑈𝑚𝑎𝑥  is the maximum potential denitrification rate (mg N m-2 d-1) and  𝑈𝑑𝑒𝑛  is the 
denitrification rate (mg N m-2 d-1) adjusted for 𝐶𝑁𝑂3

− (nitrate concentration; mg N L-1) and 𝑘𝑠 
(nitrate concentration at half saturation; mg N L-1). The latter has a default value of 1.5 mg N 
L-1 in the mHM-Nitrate model (Yang et al., 2018). 

The net nitrate retention efficiency (𝐸𝑓𝑓𝑛𝑒𝑡) of a stream is the amount of nitrate retained by 

net assimilatory uptake and denitrification (sum of 𝐹𝑑𝑒𝑛 and 𝐹𝑛𝑒𝑡) divided by the total nitrate 

input load (𝐿𝑖𝑛𝑝𝑢𝑡; the sum of lateral terrestrial imports and upstream loads). The gross nitrate 

retention efficiency  (𝐸𝑓𝑓𝑔𝑟𝑜𝑠𝑠)  for a stream is the amount of nitrate retained by gross 
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assimilatory uptake and denitrification (sum of 𝐹𝑑𝑒𝑛 and 𝐹𝑎𝑠𝑠𝑖𝑚) divided by the total nitrate 

input load (𝐿𝑖𝑛𝑝𝑢𝑡) (Wollheim et al., 2008a). 

In previous studies using the mHM-Nitrate model, stream networks were generated using the 

digital elevation model (DEM), and nitrate retention processes within streams (both 

assimilatory uptake and denitrification) were considered for all reaches (i.e., grid cells). This 

approach may generate a high degree of uncertainty around retention levels because of the 

uncertainty around the quantity of benthic surface area within the stream network. Thus, we 

employed a high-resolution digital elevation model (DEM; 25×25 m) in combination with the 

observed stream network (LHW, http://gldweb.dhi-wasy.com/gld-portal/, last accessed 10 

April 2020) (Figure 4.1c) to generate a more representative model stream network.  

To this end, we first created a fishnet grid polygon with a routing resolution of 1×1 km using 

the Create Fishnet tool in the Data Management Toolbox in ArcMap 10.8. Second, the fishnet 

polygon was transposed onto the observed stream network (Figure 4.1c). If the real stream 

occurred within a grid cell of the fishnet polygon, the grid cell was assigned a value of 1; if 

not, the grid cell was assigned a value of 0. Third, the fishnet was converted to raster using the 

Polygon to Raster tool in the Conversion Toolbox and exported into an ASCII file using the 

Raster to ASCII tool, also in the Conversion Toolbox. Fourth, the ASCII file was imported into 

the mHM-Nitrate model, where the routing source code was modified to consider an additional 

routing mask—representing the observed stream network. Stream retention processes were 

only activated within the routing mask (Figure 4.1c).  

4.4.3. Model setup  

We only briefly summarize the setup of the mHM-Nitrate model for the Bode catchment 

because it is described in detail elsewhere (Zhou et al., 2022). The data used for setup are listed 

in Table 4.1. The model was run using daily time steps over the period from 2006 to 2018. It 

was calibrated using data from 2010 to 2014. The results were validated using data from 2015 

http://gldweb.dhi-wasy.com/gld-portal/
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to 2018, namely discharge and nitrate concentrations at seven gauging stations that reflected 

key features of the Bode catchment (e.g., land use, stream order, and nitrate concentration). To 

model processes within terrestrial and stream environments, the grid resolution was set to 1 

km. To calibrate the model, we used sensitivity analysis to identify the 15 most sensitive 

parameters—the top 10 hydrological parameters and the top 5 nitrate parameters (Table 4.2). 

The latter were the stream denitrification rate, the soil denitrification rate in arable and non-

arable areas, and the assimilatory uptake rate within streams in arable and non-arable areas. 

The range for the assimilatory uptake rate (100–500 mg N m-2 d-1) was defined using high-

frequency sensor measurements from previous research (Rode et al., 2016a; Yang et al., 2019). 

The range for the stream denitrification rate (10–700 mg N m-2 d-1) was defined using studies 

on lowland streams in central Germany (Huang, Borchardt and Rode, 2022; Kunz et al., 2017a; 

Kunz et al., 2017c; Zhang et al., 2023).  

Table 4.1. Data used to set up the model in the Bode catchment. 
Data Type Resolution Time Period Source 

Meteorological Data (Precipitation, 
mean, minimum and maximum 
temperature) 

1 km × 1 km, daily 2006-2018 

German Weather Service 
(https://opendata.dwd.de/climate_environment/ 
CDC/observations_germany/climate/daily/, last 
accessed 1 June 2020) 

Digital Elevation Model (DEM) 25 m × 25 m - 
Shuttle Radar Topography Mission (SRTM) DEM 
(https://earthexplorer.usgs.gov/, last accessed 1 
June 2020) 

Geological Map 1:1,000,000 - 
Federal Institute for Geosciences and Natural 
Resources (https://produktcenter.bgr.de, last 
accessed 1 June 2020) 

Soil Map 1:1,000,000 - 
Federal Institute for Geosciences and Natural 
Resources (https://produktcenter.bgr.de, last 
accessed 1 June 2020) 

Land use/ land cover Data 25 m × 25 m - 
CORINE Land Cover 10 ha 
(https://gdz.bkg.bund.de/index.php/default/open-
data.html, last accessed 1 June 2020) 

Mineral Fertilizer and Manure 
Application Rates - - State agricultural authority (https://llg.sachsen-

anhalt.de/llg/, last accessed 10 April 2020) 

Crop Rotations 25 m × 25 m - State agricultural authority (https://llg.sachsen-
anhalt.de/llg/, last accessed 10 April 2020) 

Point-source Data - - 
Urban Wastewater Treatment Directive 
(https://uwwtd.eu/Germany/uwwtps/treatment, 
last accessed 10 April 2020) 

Discharge Data daily 2006-2018 

State Agency for Flood Protection and Water 
Management of Saxony-Anhalt (LHW) 
(http://gldweb.dhi-wasy.com/gld-portal/, last 
accessed 10 April 2020) 

https://opendata.dwd.de/climate_environment/
https://llg.sachsen-anhalt.de/llg/
https://llg.sachsen-anhalt.de/llg/
https://llg.sachsen-anhalt.de/llg/
https://llg.sachsen-anhalt.de/llg/
https://uwwtd.eu/Germany/uwwtps/treatment
http://gldweb.dhi-wasy.com/gld-portal/
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Data Type Resolution Time Period Source 

Nitrate Concentration Data monthly to twice 
monthly, daily 2006-2018 

LHW (http://gldweb.dhi-wasy.com/gld-portal/, 
last accessed 10 April 2020) and the Helmholtz 
Centre for Environmental Research – UFZ 

 

Table 4.2. Description of parameters calibrated in the mHM-Nitrate model, their initial ranges and optimal values. 

Process Parameter Description Initial range Optimal 
value 

PET 
pet1 (Shevenell, 
1999) 

Parameter for aspect correction of input 
potential evapotranspiration data [6.99E-1, 1.30E+0] 9.91E-1 

Soil moisture 

 

sm10 (Cosby et al., 
1984) 

Transfer function parameter used to calculate 
soil saturated hydraulic conductivity 

[-1.20E+0, -2.85E-
1] 

-5.76E-1 

sm17 (Brooks and 
Corey, 1964) 

Parameter that determines the relative 
contribution of precipitation or snowmelt to 
runoff  

[1.00E+0, 4.00E+0] 2.45E+0 

sm14 (Brooks and 
Corey, 1964) 

Fraction of roots used to calculate actual 
evapotranspiration in forest areas 

[9.00E-1, 9.99E-1] 9.69E-1 

sm16 (Brooks and 
Corey, 1964) 

Fraction of roots used to calculate actual 
evapotranspiration in permeable areas [1.00E-3, 8.99E-2] 1.33E-2 

sm4 (Cosby et al., 
1984) 

Pedotransfer function parameter used to 
calculate maximum soil moisture content [6.46E-1, 9.51E-1] 9.47E-1 

sm11 (Cosby et al., 
1984) 

Pedotransfer function parameter used to 
calculate soil saturated hydraulic conductivity [6.01E-3, 2.59E-2] 6.23E-3 

Percolation pc1 
Parameter used to calculate the percolation 
coefficient [0.00E+0, 5.00E+1] 4.99E+1 

Interflow 
 intfl4 Slow interflow recession coefficient [1.00E+0, 3.00E+1] 2.87E+1 

 Intfl5 Slow interflow exponent coefficient [5.00E-2, 2.99E-1] 5.40E-2 

In-stream 
denitrification deni_w General parameter of in-stream denitrification 

rate (kg m-2 d-1) [1.00E-8, 5.00E-2] 3.28E-4 

Soil 
denitrification 

deni_as Soil denitrification rate on agricultural land (d-

1) [1.00E-8, 1.10E+1] 6.57E-3 

deni_s 
Soil denitrification rate on non-agricultural 
land (d-1) [1.00E-8, 1.10E+1] 1.09E-8 

In-stream 
assimilation 

pprt_aw Primary production rate in agricultural streams 
(kg m-3 d-1) 

[1.00E-8, 1.00E+0] 1.46E-2 

pprt_w Primary production rate in non-agricultural 
streams (kg m-3 d-1) [1.00E-8, 1.00E+0] 1.02E-1 

4.3.4. Simulating stream restoration  

We designed a model scenario to explore the effects of stream sinuosity on nitrate retention. It 

simulated a situation in which the current stream network had been restored, such that its 

http://gldweb.dhi-wasy.com/gld-portal/
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sinuosity was greater than that seen in networks of channelized streams. Stream sinuosity (𝑆𝑛) 

in each grid cell was calculated by dividing stream length (determined from LHW data) by 

thalweg length (determined using the DEM). We estimated the sinuosity of natural streams 

using a series of equations. First, we calculated stream power (𝑆𝑃; kg m s−3) in each grid cell 

as follows (Rhoads, 2010): 

 𝑆𝑃 =  𝜌𝑔𝑄𝑆                                 (7) 

where 𝜌 is water density (1,000 kg m-3), 𝑔 is the gravitational acceleration (9.8 m s-2), 𝑄 is the 

discharge rate (m3 s-1), and 𝑆 is the channel slope.  

Second, we calculated natural stream sinuosity for the grid cells in which stream power was 

greater than 10 kg m s−3. We drew on the work of Harnischmacher (2007), which showed that 

the sinuosity of lowland streams was correlated with stream power when stream power was 

between 10 and 100 kg m s−3 (correlation coefficient = 0.946, p=0.001). This analysis used data 

for 11 undisturbed stream sections that served as references; these streams displayed similar 

geological conditions to natural streams in the lower Bode catchment (Harnischmacher, 2007). 

Sinuosity (𝑆𝑛) was calculated as follows: 

 𝑆𝑛 = 0.043 + 𝑙𝑜𝑔10
𝑆𝑃                                                            (8) 

For grid cells in which stream power was less than 10 kg m s−3, we calculated natural stream 

sinuosity by estimating mean potential sinuosity based on stream type (Briem, Spitzer and 

Schrenk, 2003; Ministerium für Umwelt und Naturschutz Landwirtschaft und 

Verbraucherschutz des Landes Nordrhein-Westfalen, 2010).  The lowlands of the Bode 

catchment are largely characterized by small loess and loam-dominated rivers (Type 18) 

(Figure S4.2), and potential natural sinuosity within the entire stream network ranges from 1.01 

to 2.0, depending on stream type (Table S4.2). To simplify our calculations, we used the mean 

potential natural sinuosity for each stream type. Finally, we only focused on simulating the 
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restoration of streams in arable areas, since the streams in forested areas were less affected by 

human activity (Figure S4.1). The riparian zone was sufficiently large in the lowland arable 

areas to allow for increases in stream sinuosity. 

In the baseline scenario (i.e., the actual state of the Bode stream network), stream sinuosity was 

low (mean = 1.04 for 1st–3rd order streams and mean = 1.07 for 4th–6th order streams; Table 

4.3). However, there was a certain degree of variability (range: 1.00–2.73), with high levels of 

sinuosity seen exclusively in very short stream sections (Figure S4.3a). In the restoration 

scenario, mean sinuosity increased by 0.35 relative to the baseline, with the biggest 

augmentation seen in 6th-order streams (Table 4.3 and Figure S4.3b).   

The effects of stream restoration were simulated over the validation period because the years 

between 2015 and 2022 were relatively dry and warm (Zhou et al., 2022), which likely 

represents future conditions under climate change (Huang, Krysanova and Hattermann, 2015).   

Table 4.3. Stream sinuosity range (and mean) for each stream order in the baseline and restoration scenarios. 
Stream order Sinuosity 

 Baseline Restoration 

1st  1.00–2.53 (1.03) 1.00–2.53 (1.30) 

2nd  1.00–2.60 (1.04) 1.00–2.60 (1.34) 

3rd  1.00–2.28 (1.04) 1.00–2.53 (1.44) 

4th  1.00–2.73 (1.06) 1.00–3.11 (1.50) 

5th  1.00–2.09 (1.08) 1.00–2.54 (1.29) 

6th  1.00–2.65 (1.07) 1.00–3.62 (1.55) 

4.4. Results 

4.4.1. Model performance 

The mHM-Nitrate model generally performed well when simulating discharge, nitrate 

concentrations, and nitrate loads at the seven gauging stations (Figures 4.2 and S4.4-S4.5 and 

Table 4.4). Nash-Sutcliffe efficiency (NSE) values of discharge exceeded 0.75 and 0.78 for the 
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calibration and validation periods, respectively, except for Nienhagen station (Table 4.4). The 

lowest model performance for discharge occurred at Nienhagen station with the NSE values of 

0.72 and 0.37 for the calibration and validation periods, respectively. The seasonal dynamics 

of nitrate concentrations were relatively well represented at all seven gauging stations (Figures 

2 and S4). The NSE values for nitrate concentration ranged from -0.56 to 0.54 and from -0.46 

to 0.63 for the calibration and validation periods, respectively (Table 4.4). For the validation 

period, the ranges of Kling-Gupta efficiency (KGE) were 0.52–0.93, 0.22–0.80, and 0.60–0.91 

for discharge, nitrate concentrations, and nitrate loads, respectively (Table 4.4). The model did 

overestimate nitrate concentrations at the Oschersleben station (Figure 4.2d) for the whole 

modeling period (2010–2018); percent bias (PBIAS) was 11.0% and 28.8% for the calibration 

and validation periods, respectively. In contrast, in the calibration periods, the model 

underestimated nitrate concentrations at other six gauging stations with the PBIAS values 

ranging from -23.2% to -6.4%. Despite these discrepancies, nitrate loads were accurately 

estimated at all seven stations during both the calibration and validation periods (PBIAS range 

= -18.7–23.2%). 
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Figure 4.2. Performance of the mHM-Nitrate model: discharge and nitrate concentrations at (a-b) Meisdorf, (c-
d) Oschersleben, and (e-f) Stassfurt during the calibration period (2010–2014) and validation period (2015–2018).  
Table 4.4. Model evaluation metrics for daily discharge (Q; m³ s-1), nitrate concentrations (mg N L-1), and nitrate 
loads (kg N d-1) at the seven gauging stations during the calibration and validation periods. Metric abbreviations: 
NSE = Nash-Sutcliffe efficiency, KGE = Kling-Gupta efficiency, and PBIAS = percent bias. 

Station 
  

Metric 
  

Calibration (2010–2014) Validation (2015–2018) 
Q NO3

- Load Q NO3
- Load 

Meisdorf  NSE 0.84 0.48 0.67 0.78 0.60 0.72 

KGE 0.77 0.70 0.74 0.71 0.76 0.82 

PBIAS 4.10 -6.40 -3.60 23.8 4.10 11.8 

Hausneindorf  NSE 0.85 -0.56 0.68 0.82 0.42 0.77 

KGE 0.87 0.44 0.75 0.78 0.72 0.83 

PBIAS 11.1 -21.4 4.40 16.2 3.30 12.4 

Wegeleben  NSE 0.93 -0.36 0.79 0.93 - - 

KGE 0.96 0.58 0.72 0.88 - - 

PBIAS -0.50 -17.0 -16.2 3.30 - - 

Nienhagen  NSE 0.72 -0.08 0.75 0.37 -0.46 0.77 

KGE 0.80 0.50 0.78 0.52 0.22 0.70 
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Station 
  

Metric 
  

Calibration (2010–2014) Validation (2015–2018) 
Q NO3

- Load Q NO3
- Load 

PBIAS 13.3 -23.2 -15.5 36.1 -2.40 23.2 

Oschersleben NSE 0.75 0.54 0.65 0.80 0.41 0.78 

KGE 0.85 0.60 0.61 0.71 0.61 0.60 

PBIAS -8.70 11.0 -13.3 -8.30 28.8 -10.7 

Hadmersleben  NSE 0.87 0.52 0.85 0.93 0.61 0.93 

KGE 0.89 0.66 0.79 0.93 0.80 0.91 

PBIAS 0.80 -8.30 -8.50 4.80 6.30 5.80 

Stassfurt NSE 0.85 0.50 0.82 0.92 0.63 0.91 
 KGE 0.87 0.71 0.72 0.91 0.80 0.91 
 PBIAS 0.50 -13.7 -18.7 6.20 2.60 3.10 

4.4.2. Spatiotemporal dynamics of nitrate retention 

4.4.2.1. Annual and seasonal nitrate retention in the Bode catchment 
The mHM-Nitrate model suggested that the Bode stream network experienced the highest total 

nitrate input loads (𝐿𝑖𝑛𝑝𝑢𝑡) in the winter from 2015 to 2018 (annual mean ± standard deviation 

(SD) = 3.68±0.12 kg N ha-1 y-1; Table 4.5). For this same period, annual net and gross nitrate 

retention efficiency (𝐸𝑓𝑓𝑛𝑒𝑡  and 𝐸𝑓𝑓𝑔𝑟𝑜𝑠𝑠) were 12.9±0.64% and 24.6±1.56%, respectively 

(Table 4.5). Both peaked in the summer (37.3±11.4% and 74.7±23.2%, respectively), which is 

when input loads were lowest and assimilatory uptake and denitrification were highest. In 

contrast, the two types of efficiency had lower values in the winter and spring (Table 4.5). 

Within the stream network, the assimilatory uptake rate (𝑈𝑎𝑠𝑠𝑖𝑚) reached its greatest value in 

the spring and summer (105±62.4 and 134 79.4 mg N m-2 d-1, respectively), while the 

denitrification rate (𝑈𝑑𝑒𝑛) was highest in the summer and autumn (158±64.6 and 117±56.0 mg 

N m-2 d-1, respectively; Table 4.5). 

Table 4.5. Variables describing mean±SD annual and seasonal nitrate input loads and retention for the entire 
stream network from 2015–2018. Variable values were estimated using the mHM-Nitrate model; the only 
exception was 𝐿𝑜𝑏𝑠, which was calculated from the observed data. Abbreviations: 𝐿𝑖𝑛𝑝𝑢𝑡 = total nitrate input load; 
𝐿𝑜𝑏𝑠  = observed exported nitrate load; 𝐿𝑜𝑢𝑡  = estimated exported nitrate load; 𝐹𝑎𝑠𝑠𝑖𝑚  = amount of gross 
assimilatory uptake; 𝑈𝑎𝑠𝑠𝑖𝑚 = assimilatory uptake rate; 𝐹𝑑𝑒𝑛 = amount of denitrification; 𝑈𝑑𝑒𝑛 = denitrification 
rate; 𝐸𝑓𝑓𝑛𝑒𝑡 = net nitrate retention efficiency; and 𝐸𝑓𝑓𝑔𝑟𝑜𝑠𝑠 = gross nitrate retention efficiency. 

Variable Winter   Spring Summer Autumn Annual 
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𝐿𝑖𝑛𝑝𝑢𝑡  (kg N ha-1 

season-1/ kg N ha-1 y-1) 

1.49±1.05 1.06±0.49 0.52±0.31 0.56±0.49 3.68±0.12 

𝐿𝑜𝑏𝑠 (kg N ha-1 y-1) 1.47±0.27 0.97±0.30 0.32±0.17 0.38±0.20 3.14±0.23 

𝐿𝑜𝑢𝑡 (kg N ha-1 y-1) 1.44±0.26 1.09±0.30 0.34±0.14 0.40±0.21 3.27±0.26 

𝐹𝑎𝑠𝑠𝑖𝑚 (kg N d-1) 58.1±55.4 502±185 553±111 164±102 321±243 

𝑈𝑎𝑠𝑠𝑖𝑚 (mg N m-2 d-1) 12.7±13.8 105±62.4 134±79.4 45.9±39.3 74.7±72.5 

𝐹𝑑𝑒𝑛 (kg N d-1) 170±96.2 321±147.0 537±61.3 362±96.7 348±166 

𝑈𝑑𝑒𝑛 (mg N m-2 d-1) 45.4±34.2 77.1±46.7 158±64.6 117±56.0 99.5±66.6 

𝐸𝑓𝑓𝑛𝑒𝑡 (%) 3.8±0.39 10.3±1.25 37.3±11.4 26.6±13.9 12.9±0.64 

𝐸𝑓𝑓𝑔𝑟𝑜𝑠𝑠 (%) 5.1±0.61 26.2±3.34 74.7±23.2 38.9±20.9 24.6±1.56 

4.4.2.2. Nitrate retention within two representative sub-catchments  
For the period from 2015 to 2018, we investigated nitrate retention within two sub-

catchments—Upper Selke and Großer Graben. They were chosen because they represented 

certain landscape profiles within the Bode catchment (Figure 4.1). To characterize daily rates 

of denitrification (𝑈𝑑𝑒𝑛) and assimilatory uptake (𝑈𝑎𝑠𝑠𝑖𝑚), we determined the median values 

for all the streams in the network. Both rates were highly variable among seasons and years in 

the two sub-catchments (Figure 4.3).  

At the annual scale, the denitrification rate (𝑈𝑑𝑒𝑛) was nearly two times higher in Großer 

Graben than in Upper Selke (126±61.6 vs. 69.1±36.5 mg N m-2 d-1, respectively; Table 4.6). 

Seasonally, 𝑈𝑑𝑒𝑛 was high in the summer and autumn and low in the spring and winter in both 

sub-catchments (Figure 4.3 and Table 4.6). Furthermore, there was seemingly an influence of 

land-use type. In the summer, 𝑈𝑑𝑒𝑛 was two-fold greater in Großer Graben (median±SD = 

204±22.6 mg N m-2 d-1), which is dominated by arable land, than in Upper Selke, which is 

dominated by forests (median±SD = 102±22.1 mg N m-2 d-1). 
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At the annual scale, the assimilatory uptake rate (𝑈𝑎𝑠𝑠𝑖𝑚) was more than three times higher in 

Großer Graben than in Upper Selke (102±77.5 vs. 27.6±24.3 mg N m-2 d-1, respectively; Table 

4.6). This rate was also high in the spring and summer and low in the autumn and winter in 

both sub-catchments (Figure 4.3 and Table 4.6). In the summer, the 𝑈𝑎𝑠𝑠𝑖𝑚 was five times 

greater in Großer Graben than in Upper Selke (median ± SD = 200 ± 27.1 vs. 39.1 ± 8.7 mg N 

m-2 d-1, respectively). In Upper Selke, it always peaked in April and then rapidly decreased 

(Figure 4.3a).  

Compared to assimilatory uptake, denitrification accounted for a higher proportion of gross 

nitrate uptake in Upper Selke than in Großer Graben across all seasons, except for the spring 

(range in Upper Selke: 72–88% vs. Großer Graben: 51–87%; Table 4.6). A similar pattern was 

seen at the annual scale (Upper Selke: 71% vs. Großer Graben: 55%; Table 4.6). 

Gross nitrate retention efficiency (𝐸𝑓𝑓𝑔𝑟𝑜𝑠𝑠) demonstrated clear annual and seasonal patterns 

in both sub-catchments (Figure 4.4); high values of  𝐸𝑓𝑓𝑔𝑟𝑜𝑠𝑠  were seen during low-flow 

periods in the summer and autumn (Table 4.6). It decreased rapidly in July 2017 at Großer 

Graben and Upper Selke, the result of peak flow events causing high nitrate loads in streams 

(Figures 4.2a and 4.2c). At the annual scale, gross efficiency displayed a similar median value 

in both sub-catchments (Upper Selke: 26.0±22.4% and Großer Graben: 35.2±31.7%). In the 

summer, the median was higher for Großer Graben than for Upper Selke (82.2±23.3% vs. 

58.8±17.4%, respectively). It is worth noting that the sub-catchments had similar median 

benthic surface areas in the summer (Großer Graben: 0.28 km2 and Upper Selke: 0.24 km2). 
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Figure 4.3.  Daily median± SD denitrification rates, gross assimilation rates, and gross nitrate retention 
efficiencies in the sub-catchments of (a) Upper Selke and (b) Großer Graben from 2015 to 2018.  
Table 4.6. Median ± SD daily denitrification rates, assimilatory uptake rates, and gross nitrate retention efficiency 
at seasonal and annual scales in the Upper Selke and Großer Graben sub-catchments from 2015 to 2018. 
Abbreviations: 𝑈𝑑𝑒𝑛  = denitrification rate; 𝑈𝑎𝑠𝑠𝑖𝑚  = assimilatory uptake rate; and 𝐸𝑓𝑓𝑔𝑟𝑜𝑠𝑠  = gross nitrate 
retention efficiency. 

Variable Sub-catchment Winter Spring Summer Autumn Annual 

𝑈𝑑𝑒𝑛  

(mg N m-2 d-1) 

Upper Selke 25.9 ± 22.8 61.8 ± 28.1 102 ± 22.1 81.1 ± 25.6 69.1 ± 36.5 

Großer Graben 70.3 ± 33.3 111 ± 41.3 204 ± 22.6 149 ± 34.8 126 ± 61.6 

𝑈𝑎𝑠𝑠𝑖𝑚  

(mg N m-2 d-1) 

Upper Selke 5.0 ± 8.4 63.9 ± 22.7 39.1 ± 8.7 18.3 ± 6.1 27.6 ± 24.3 

Großer Graben 9.9 ± 14.7 149 ± 51.1 200 ± 27.1 56.8 ± 40.6 102 ± 77.5 

𝐸𝑓𝑓𝑔𝑟𝑜𝑠𝑠 (%) Upper Selke 2.0 ± 3.7 22.7 ± 14.0 58.8 ± 17.4 29.3 ± 17.2 26.0 ± 22.4 

Großer Graben 5.4 ± 7.0 22.0 ± 17.2 82.2 ± 23.3 42.6 ± 30.4 35.2 ± 31.7 

 4.4.2.3. Spatiotemporal patterns in nitrate retention efficiency  
We plotted accumulated net retention efficiency (ANRE) along an upstream to downstream 

gradient for the two main stems of the Upper Selke and Großer Graben sub-catchments (Figure 
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4.4: heatmap; Figure S4.6: stream networks). ANRE is the ratio between total nitrate retention 

within streams and the total nitrate input load attributable to terrestrial sources. Spatiotemporal 

patterns in ANRE varied with catchment size, which increased from headwater to outlet. 

Dynamics were similar across seasons and years in both sub-catchments: ANRE was higher in 

the summer and autumn but lower in the winter and spring (Figure 4.4). ANRE remained high 

(>60%) between late June and late November of 2018 in Upper Selke and between late July 

and early December of 2018 in Großer Graben, periods of drought in the sub-catchments. 

Between 2015 and 2018, ANRE hit its minimum value in the summer of 2017, due to peak 

flows in July 2017 (Figure 4.4 and Figures 4.2a and 4.2c).  

However, some differences were apparent between the two sub-catchments for the period 

between 2015 and 2018. In Upper Selke, which is dominated by forests, ANRE was lowest in 

headwater streams, as a result of their low assimilatory uptake rates (𝑈𝑎𝑠𝑠𝑖𝑚) and denitrification 

rates (𝑈𝑑𝑒𝑛) (Figure 4.4a). In contrast, in streams near the outlet (<36 km away), ANRE reached 

high values (>60%) during the summer and autumn (Figure 4.4a). In Großer Graben, which is 

dominated by arable land, ANRE was highest in headwater streams, which experienced lower 

total nitrate input loads (𝐿𝑖𝑛𝑝𝑢𝑡) than higher order streams (Figure 4.4b). In this sub-catchment, 

high ANRE values (>60%) only occurred in headwater streams that were about 40 km upstream 

from the outlet (Figure 4.4b). 

In Upper Selke, there was a correlation between ANRE values in the summer and catchment 

size (Figure 4.4a). This pattern could have two explanations: 1) the relative surface area 

covered by forest increased from upstream to downstream and 2) there is a positive correlation 

between nitrate retention and benthic surface area. In the summer of 2018, ANRE was lower 

in the sub-catchment’s middle region, namely in streams located 24.8 and 18.0 km from the 

outlet (Meisdorf station, Figure 4.4). Such was due to the large nitrate input loads (𝐿𝑖𝑛𝑝𝑢𝑡) from 

nearby arable land (Figure S4.6a). Similarly, ANRE was dramatically lower in intermediate 
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sections of Großer Graben (Figure 4.4b) because of the large nitrate input loads (𝐿𝑖𝑛𝑝𝑢𝑡) from 

tributaries that joined the main network stem around 38.9 and 25.5 km from the outlet. 

 

Figure 4.4. Patterns of accumulated net retention efficiency (ANRE) in the (a) Upper Selke and (b) Großer Graben 
sub-catchments. The y-axis depicts the direction of flow (headwater to outlet = top to bottom), while the x-axis 
depicts changes over time.   

4.4.3. Simulated effects of stream restoration  

In the baseline scenario, summer net nitrate retention efficiency (𝐸𝑓𝑓𝑛𝑒𝑡) was slightly higher 

in streams in forested areas versus agricultural areas (median ± SD = 6.2 ± 13.9% vs. 3.9 ± 

10.3%, respectively). Within areas with similar land use, this variable had larger values in small 
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streams than in large streams. For example, in the summer in Großer Graben, the values of 

𝐸𝑓𝑓𝑛𝑒𝑡 ranged from 0.1 to 34.0% for 1st–3rd order streams and from 0.1 to 2.0% for 4th–5th 

order streams (Figure 4.5a). The 𝐸𝑓𝑓𝑛𝑒𝑡 values of small streams varied more than that of large 

streams, as demonstrated by the standard deviation values of 𝐸𝑓𝑓𝑛𝑒𝑡  of 3.3-9.1% for 1st–3rd 

order streams and 0.3-0.5% for 4th–5th order streams in Großer Graben (Figure S4.7a).In the 

restoration scenario, in the summer, greater improvements in net retention efficiency were seen 

for small streams in Großer Graben (1st–3rd order streams: increase of 0.1–16.8%, 4th–5th order 

streams: increase of 0–11.8%) (Figure 4.5b). The most dramatic increase (median ± SD = 

25.4±5.3%) was seen for a 1st-order stream (Figure 4.5b).  

 

Figure 4.5. Spatial patterns of median net nitrate retention efficiency in the summer in the (a) baseline scenario 
and (b) in the restoration scenario (% increase over baseline). 
 
In the baseline scenario, within areas with similar land use, mean summer nitrate concentrations 

were higher in small streams (1st–3rd order) than in large streams (4th–6th order) (Figure 4.6a). 

For instance, in Großer Graben, the range for small streams was 3.3–4.8 mg N L-1, while the 

range for large streams was 2.3–2.6 mg N L-1. Additionally, these concentrations were also 

higher in small streams found in lowland agricultural areas (range = 0.9–17.0 mg N L-1) than 

in small streams in mountainous areas (range = 0.6–5.2 mg N L-1) (Figure 4.6a). In the 

restoration scenario, nitrate concentrations declined more sharply in the former than in the latter 
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areas; the largest decrease occurred in the tributaries of the lower Bode river (-1.3 mg N L-1; 

Figure 4.6b). In lowland areas, summer nitrate concentrations dropped more for large streams 

(4th–6th order) than for small streams (1st–3rd order) (Figures 4.6b and S4.7b). For example, in 

Großer Graben, these concentrations declined by 0.1–0.3 mg N L-1 and 0.3-0.5 mg N L-1 for 

small and large streams, respectively. 

 

Figure 4.6. Spatial patterns of mean summer nitrate concentrations in the a) baseline scenario and (b) in the 
restoration scenario (absolute decrease from baseline). 
 

4.5. Discussion 

4.5.1. Model performance evaluation 

In this study, we investigated the potential effects of stream restoration on nitrate retention 

dynamics via a combined approach. We utilized the detailed monitoring data available for the 

Bode catchment in a well-calibrated, process-based mHM-Nitrate model to explore network-

scale patterns. According to established criteria for evaluating watershed model performance 

(Moriasi et al., 2015; Moriasi et al., 2012), the mHM-Nitrate model generally performed well 

in capturing the dynamics of both discharge and nitrate concentrations. Although the model 

struggled somewhat with discharge at the Meisdorf and Nienhagen stations (PBIAS: 23.8% 

and 36.1%, respectively; Table 4.4), the absolute differences between the observed and 
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estimated values were small (Meisdorf: 36.1 mm year-1 and Nienhagen: 23.5 mm year-1). 

Nitrate concentrations were overestimated at the Oschersleben station for the entire modeling 

period (2010–2018) because discharge and nitrate concentrations were overestimated (PBIAS: 

26.8% and 18.4%, respectively) in the summer during the validation period. The differences 

corresponded to 3.34 mm year-1 and 0.31 mg N L-1, respectively. Conversely, nitrate 

concentrations at other six gauging stations were underestimated in the calibration period, 

particularly during 2011 and 2012. This discrepancy may be attributed to the underestimation 

of interflow, leading to a reduced amount of nitrate being carried to the river during the 

aforementioned years (Figures S4.4b, S4.4d, S4.4f and S4.4k). The variability in model 

performance across different sub-catchments can be attributed to various factors. These include 

the sub-catchment characteristics such as soil type, topography and precipitation patterns, 

which can influence the hydrological and water quality processes. For instance, Jiang et al. 

(2014) found that the contribution of interflow decreases from mountainous areas to lowland 

areas due to variations in topography and soil type. In hilly areas with rapid hydrological 

processes and shallow nitrate storage, nitrate is rapidly transported to streams, whereas in 

lowland areas, it is less rapidly transported to streams as baseflow contribution increases. In 

addition, the high percentage of urban areas with a low number of precipitation stations at the 

Holtemme sub-catchment (Nienhagen as the outlet) can impact the accuracy of the model. The 

discharge at the Nienhagen station is also heavily affected by weirs (Kunz et al., 2017b). 

According to Yang et al. (2018), who conducted an uncertainty analysis in the Selke sub-

catchment using the MCMC-based DREAM tool (ter Braak and Vrugt, 2008; Vrugt, 2016), the 

uncertainty in simulations regarding discharge and nitrate concentration was effectively 

limited. A detailed discussion of model performance for the Bode catchment is provided by 

Zhou et al. (2022). 
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4.5.2. Modeling nitrate retention processes in stream networks  

The mHM-Nitrate model estimated that, in the summer, daily denitrification rates (𝑈𝑑𝑒𝑛 ) 

ranged from 100.9 to 198.5 mg N m-2 d-1 (mean ± SD = 151.1 ± 19.1 mg N m-2 d-1 for the entire 

stream network). These figures fit with those obtained by Mulholland et al. (2009), who used 

15N isotope analysis to estimate daily denitrification rates (𝑈𝑑𝑒𝑛) at the reach scale. They found 

that values ranged from 0 to 220.1 mg N m-2 d-1 for small streams in areas with different land 

uses and climatic conditions. Using a reach-scale N2 method on N-enriched streams, Böhlke et 

al. (2009) estimated that daily denitrification rates (𝑈𝑑𝑒𝑛) in the Iroquois River basin (USA) 

ranged from 48.4 to 677.0 mg N m-2 d-1; stream nitrate concentrations were similar between 

their study and ours. In addition, Zhang et al. (2023) used high-frequency measurements to 

quantify daily denitrification rates (𝑈𝑑𝑒𝑛 ) in the summer in the lower Bode River. These 

observed values fell between 72.3 and 253.0 mg N m-2 d-1 and were thus reasonably similar to 

our model’s estimated values of 81.8 to 188.2 mg N m-2 d-1 for the same reaches.  

The model estimated that daily assimilatory uptake rates ( 𝑈𝑎𝑠𝑠𝑖𝑚 ) were 27.6 ± 24.3  and 

102.0 ± 77.5  mg N m-2 d-1 for streams in forested and agricultural areas, respectively (Table 

4.6). Using high-frequency measurements, Rode et al. (2016a) found maximum daily 

assimilatory uptake rates in a Selke sub-catchment (streams in forested areas: 97.5 mg N m-2 

d-1 and streams in agricultural areas: 270 mg N m-2 d-1) that are consistent with our results 

(Figure 4.3 and Table 4.6). Applying the same model to the Selke catchment, Yang et al. (2019) 

reported values (𝑚𝑒𝑎𝑛 ± 𝑆𝐷) of 86.4 ± 1.9 mg N m-2 d-1 for streams in forested areas and 18.8 ±

6.2 mg N m-2 d-1 for streams in agricultural areas. Kunz et al. (2017c) determined that mean 

daily assimilatory uptake rates (𝑈𝑎𝑠𝑠𝑖𝑚) were 120 mg N m-2 d-1 and 239 mg N m-2 d-1 for 

channelized and natural streams, respectively. This work took place in the lowlands associated 

with the Weiße Elster River, which is near to our study area and thus provides additional 

support for the reliability of our model’s estimates.  
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4.5.3. Relationships between catchment characteristics and nitrate retention   

Nitrate retention is determined by both denitrification and assimilatory uptake (𝑈𝑑𝑒𝑛  and 

𝑈𝑎𝑠𝑠𝑖𝑚). These variables displayed pronounced seasonal variability among different land-use 

categories (Figure 4.3). Denitrification (𝑈𝑑𝑒𝑛) was higher in the summer and autumn and lower 

in the spring and winter for both sub-catchments. This pattern matches those seen in previous 

studies (Alexander et al., 2009; Wollheim et al., 2008a), where retention dynamics were 

correlated with nitrate concentrations and temperature. This seasonality could also be related 

to levels of sediment and dissolved oxygen (Christensen et al., 1990; Inwood, Tank and Bernot, 

2005; Uusheimo et al., 2018) and to levels of organic carbon (Arango et al., 2007; Comer-

Warner et al., 2020; Tatariw et al., 2013). However, we were unable to include these variables 

in our mHM-Nitrate model because the lack of observed data made it impossible to construct 

empirical equations that would have allowed us to scale up to the entire stream network.  

From 2015 to 2018, denitrification rates (𝑈𝑑𝑒𝑛) were higher in Großer Graben than in Upper 

Selke across all seasons (Figure 4.3 and Table 4.6). This pattern likely resulted from the higher 

nitrate- concentrations and water temperatures in Großer Graben, a sub-catchment dominated 

by agricultural activity. Our findings concur with those of past studies (Böhlke et al. (2009); 

Inwood, Tank and Bernot (2007); Mulholland et al. (2008)), which observed that denitrification 

rates (𝑈𝑑𝑒𝑛) were positively correlated with nitrate concentrations across land use types.  

Assimilatory uptake rates (𝑈𝑎𝑠𝑠𝑖𝑚) were similarly higher in Großer Graben than in Upper Selke 

across all seasons (Figure 4.3 and Table 4.6). These results align with those of previous research 

that utilized high-frequency measurements (Rode et al. 2016) and that applied the mHM-

Nitrate model to the Selke catchment (Yang et al., 2019a). The latter two studies reported that 

assimilatory uptake (𝑈𝑎𝑠𝑠𝑖𝑚) occurred at a higher rate in streams in open-canopy environments 

(i.e., agricultural areas) versus closed-canopy environments (i.e., forests). Arango et al. (2008) 

found similar results. The assimilatory uptake of nitrate is mainly controlled by primary 
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productivity (Heffernan and Cohen, 2010; Roberts and Mulholland, 2007), which is affected 

by light, a resource whose availability is higher in agricultural versus forested areas (Yang et 

al., 2019). The standard deviation of 𝑈𝑎𝑠𝑠𝑖𝑚  is higher in Upper Selke compared to Großer 

Graben (Figure 4.3a vs 4.3b), which could be attributed to the diverse shading effects. This 

diversity in shading effects is likely due to the more heterogeneous land use in Upper Selke 

compared to Großer Graben (Figure S4.6). Denitrification always peaked after assimilatory 

uptake, in the second half of July and August. This pattern likely arises because denitrification 

is more sensitive to water temperature, while assimilatory uptake is more sensitive to light 

availability (Heffernan and Cohen, 2010, Kunz et al. 2017b). Dynamics were consistent across 

streams and years. 

Although the rates of both processes varied in space and time for the two sub-catchments, 

denitrification surpassed assimilatory uptake across all seasons, except for spring. Our 

observation fits with the work by Böhlke, Harvey and Voytek (2004), who noted that 

denitrification accounted for more than 50% of gross nitrate uptake in a stream with high nitrate 

concentrations (i.e., occurring in an agricultural area). Similarly, Potter et al. (2010) reported 

that denitrification accounted for 1–97% of gross nitrate uptake and that this figure exceeded 

35% for five out of the nine streams studied. Kunz et al. (2017c) found that, in July, the 

denitrification rate was about five times higher than the assimilatory uptake rate in a natural 

reach of the Weiße Elster River. In contrast, Mulholland et al. (2008) indicated that 

denitrification made a relatively limited contribution (16%) to gross nitrate uptake (mainly in 

low-nitrate streams); Ribot, von Schiller and Martí (2017) arrived at a figure of 0.15%. These 

low values may have resulted from specific site conditions. They were obtained using 15NO3- 

tracers that were added to streams with low nitrate concentrations. It appears that denitrification 

makes a greater contribution to total nitrate uptake when nitrate concentrations are higher. 
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Upper Selke and Großer Graben likely had similar temporal patterns of gross nitrate retention 

efficiency and ANRE (Figures 4.3 and 4.4) because of similarities in interactions among land 

use, nitrate concentrations, temperature, and discharge. Both variables had low values in the 

winter and spring due to elevated terrestrial inputs during high flow periods, and seasonally 

low water temperatures resulted in reduced rates of assimilatory uptake and denitrification 

(Alexander et al., 2009). Terrestrial inputs likely had more influence on the above temporal 

dynamics because they were an order of magnitude larger. While terrestrial inputs were higher 

in Großer Graben than Upper Selke, median gross nitrate retention efficiency in the summer 

was higher in Großer Graben than Upper Selke (Table 4.6), a pattern that can be explained by 

the former’s higher rates of assimilatory uptake and denitrification. The sub-catchments 

displayed significantly different spatial patterns of ANRE (Figure 4.4). ANRE was low in 

Upper Selke headwaters because assimilatory uptake and denitrification were low (Figure 

4.4a); it was higher in Großer Graben headwaters than downstream reaches (Figure 4.4b) 

because the elevated nitrate levels caused by terrestrial inputs in the downstream reaches far 

exceeded the amounts of nitrate removed by assimilatory uptake and denitrification. This 

suggests that the stream has a greater capacity to remove nitrate in headwaters in Großer 

Graben. This information can be used to prioritize restoration efforts in areas where the ARNE 

is high. Furthermore, this result indicates that land use around the nitrate source (e.g., arable 

land) can strongly influence retention efficiency at the network scale. Previous research arrived 

at a similar conclusion: land use, and notably the location of arable lands within catchments, 

can strongly affect the nitrate removal and export from the catchment (Casquin et al., 2021; 

Dupas et al., 2019; Mineau, Wollheim and Stewart, 2015).  

4.5.4. Potential effects of restoring sinuosity on nitrate retention 

In our baseline scenario, summer net nitrate retention efficiency was higher in streams in 

forested versus agricultural areas (Figure 4.5a). Indeed, in the latter, retention capacity was 
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overwhelmed by large nitrate inputs from terrestrial sources. Adjusting for stream length, net 

nitrate retention efficiency per km was lower for large than small streams (Figure 4.5a), as seen 

in previous studies (Wollheim et al., 2008a; Wollheim et al., 2006). This suggests that 

restoration efforts aimed at reducing nitrate concentrations in large streams may need to focus 

on other strategies beyond increasing stream length. These strategies could include creating 

wetlands or other riparian buffer zones, or reducing nutrient inputs from upstream and 

terrestrial sources. 

Our restoration scenario specifically explored the effects of increasing stream sinuosity. It 

found that in areas with arable land, the changes to stream morphology increased net nitrate 

retention efficiency more in the lowlands than in the mountains (Figure 4.5b); in the latter area, 

small streams already display pronounced meandering (Figure S4.3). As stream length 

increased, so did the benthic surface areas, also augmenting retention. These gains have also 

been observed at the reach scale in prior research (Wagenschein and Rode, 2008). While the 

study found greater improvements in net retention efficiency for small streams in the summer, 

the magnitude of the improvements varied widely between different stream orders and even 

within the same stream order (Figure 4.5b).  Restoration efforts should be designed and 

implemented with caution, considering the uncertainties in the accuracy of the model 

simulation. The effectiveness of restoration efforts can be influenced by a range of factors, 

including the specific characteristics of the stream and surrounding landscape, the type and 

intensity of land use in the watershed, and the timing and duration of restoration activities. It 

is important to acknowledge and account for uncertainties when designing and implementing 

stream restoration projects. This can be done by conducting thorough assessments of the site, 

monitoring the effectiveness of restoration efforts over time, and using adaptive management 

strategies to adjust restoration approaches as needed (Convertino et al., 2013). 
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Furthermore, in our restoration scenario, net nitrate retention efficiency improved more for 

small streams (1st–3rd order) than for large streams (4th–6th order), as seen in Großer Graben 

(Figure 5b). This pattern emerges because terrestrial nitrate input greatly exceeds nitrate 

retention in larger streams, which suggests that increasing sinuosity could have a greater impact 

on retention efficiency in small streams. This indicates that small streams may play a more 

significant role in reducing nitrate pollution in downstream watersheds. This is because small 

streams are typically more reactive and have higher surface area to volume ratios (Ensign and 

Doyle, 2006; Wollheim et al., 2006), which allows for greater contact between water and 

sediment, promoting denitrification and other processes that remove nitrate from the water. 

Across the entire stream network, increased sinuosity more dramatically reduced nitrate 

concentrations in large streams than in small streams (Figure 4.6b), likely because large streams 

have experienced cumulative downstream retention and harbor larger benthic surface areas 

(Alexander et al., 2009). Consequently, restoration regimes that increase sinuosity could be 

powerfully deployed in small streams in agricultural areas, acting to increase nitrate retention 

efficiency and decrease nitrate transport downstream. 

Our study adds to research looking at how alterations in stream morphology could affect nitrate 

retention dynamics. Past work has shown that re-meandering can induce transient storage, 

which impacts the denitrification rate (Baker, Bledsoe and Price, 2012; Opdyke, David and 

Rhoads, 2006). Such may result mechanistically from lower flow velocities and higher water 

residence times in the hyporheic zone (Bukaveckas, 2007; Gomez, Wilson and Cardenas, 2012; 

Pinay et al., 2009; Zarnetske et al., 2011). Additionally, denitrification could experience greater 

increase in vertical hyporheic zones compared to meanders because vertical exchanges beneath 

stream bedforms are considerably more pronounced than are lateral exchanges through stream 

bars and meander banks (Gomez-Velez and Harvey, 2014; Gomez-Velez et al., 2015). 

Modifications to stream morphology can directly or indirectly affect nutrient dynamics by 
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increasing spatiotemporal variability in the composition and activity of aquatic communities 

(Lin et al., 2016). However, it is hard to arrive at any generalizations because we continue to 

lack field studies comparing denitrification rates in modified versus natural streams—data that 

are essential for model parameterization. We have interpreted our results conservatively 

because we did not explicitly establish any links between these processes and natural stream 

morphology, which shapes rates of nitrate uptake in the stream bed.  

4.5.5. Implications for stream restoration 

Although stream restoration projects are abundant, they often focus on the reach scale 

(Newcomer Johnson et al., 2016). This study highlights the need for developing methods that 

act at the network scale, such as increasing stream sinuosity. In our simulation, increasing 

stream sinuosity improved nitrate retention efficiency more in streams in agricultural areas 

(Großer Graben) than in streams in forested areas (Upper Selke). Moreover, this strategy more 

dramatically reduced nitrate concentrations in large streams than in small streams because of 

the accumulative retention in the upper streams. This finding indicates that restoration efforts 

should prioritize small streams in highly polluted, agricultural areas, such as our study area in 

the lowlands of central Germany.  

Encouraging investment in stream restoration (e.g., re-meandering) can be challenging for two 

key reasons: first, it is costly and technically difficult and, second, the benefits are only 

significant during periods of low flow and low terrestrial inputs. Realistically, stream 

restoration alone cannot reduce nitrate concentrations to desired levels. Instead, systems 

exploiting a combination of terrestrial and stream-targeted measurements could be used to 

effectively and sustainably manage river basins (Lammers and Bledsoe, 2017). However, we 

must first conduct further research on how such combined measurements can affect nitrate 

retention at the stream network scale. 
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4.6. Conclusion 

In this study, we used observed data from Germany’s Bode catchment in combination with a 

fully distributed process-based mHM-Nitrate model to investigate how re-meandering could 

affect nitrate retention dynamics within a heavily modified stream network. There was 

pronounced spatiotemporal variability in rates of assimilatory uptake and denitrification within 

stream networks with different land-use types and morphological characteristics. Both rates 

were higher in streams in more agricultural versus more forested areas. At the network scale, 

increased stream sinuosity had a greater positive impact on nitrate retention efficiency in small 

streams. However, nitrate concentrations decreased more dramatically in large streams due to 

accumulative retention in upper streams. Our findings underscore that major benefits could 

arise from re-meandering small streams in agricultural areas. It is important to acknowledge 

that our stream restoration regime was somewhat simplified—we increased sinuosity without 

considering the resulting effects on rates of nitrate denitrification and assimilatory uptake. 

Thus, this work is a conservative first step along a lengthy research pathway. For example, 

future research should explore whether nitrate retention efficiency could be enhanced even 

more by combining stream-based strategies (e.g., re-meandering, improved floodplain 

connectivity) with land-based strategies (e.g., buffer strips, construction of wetlands).  

Our results highlight the dominant role of denitrification in gross nitrate uptake across all 

seasons (excluding the spring). They also showed that, regardless of stream size or nearby land 

use, the denitrification rate always peaked after the assimilatory uptake rate, in the second half 

of July and August.  

Taken together, our findings suggest that stream restoration efforts should prioritize small 

streams in highly polluted, agricultural areas. To optimally design restoration strategies, we 

must characterize denitrification and assimilatory uptake rates in stream networks in the field 

before and after restoration; these data could then be used in distributed hydrological water 
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quality models (such as an mHM-Nitrate model) to further improve understanding of these 

dynamics.  
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4.8. Supplementary materials 

 
Figure S4.1. Classification of quality of the (a) longitudinal profile, (b) bank structure and (c) overall water body 
structure of the Bode river network.  
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Figure S4.2. Stream types of the Bode river network according to the WFD classification river typology 
(Pottgiesser and Sommerhäuser, 2004). The description of stream types in are given in Table S2. 

 
Figure S4.3. Spatial distribution of (a) river sinuosity at baseline and (b) the increase of sinuosity under scenario 
compared to baseline.  
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Figure S4.4. The mHM-Nitrate model performances of discharge and nitrate concentration at (a-b) Hausneindorf, 
(c-d) Wegeleben, (e-f) Nienhagen and (g-k) Hadmersleben in the calibration period (2010-2014) and validation 
period (2015-2018). 
  



151 
 

 
Figure S4.5. The mHM-Nitrate model simulated nitrate load compared to observed nitrate load during 2010-2018 
at gauging stations (a) Meisdorf, (b) Hausneindorf, (c) Wegeleben, (d) Nienhagen, (e) Oschersleben, (f) 
Hadmersleben and (g) Stassfurt. 
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Figure S4.6. Main stems and model river network of (a) Upper Selke and (b) Großer Graben sub-catchments. The 
backgrounds are the land use type and the real river network from the LHW. 
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Figure S4.7. Spatial distribution of (a) the standard deviation (SD) of net nitrate retention efficiency in the baseline 
scenario and (b) the standard deviation (SD) of the percentage increase over baseline in the restoration scenario. 
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Figure S4.8. Spatial distribution of (a) summer mean nitrate concentration at baseline and (b) the relative change 
of summer mean nitrate concentration under scenario compared to baseline. 
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Table S4.1.  The characteristics of the mHM-Nitrate model generated stream network of two representative sub-
catchments (upper Selke and Großer Graben) at 1 km grid resolution. Values reflect the upper Selke, the values 
given in the parentheses stand for characteristics of the Großer Graben stream network.  

Stream 
Order Numbers 

(-) 
Bifurcation 
ratio (-) 

Total river 
length  

(km) 

Drainage area 

(% of total area) 

1st  47 (78) 2.9 (2.8) 75.5 (156.4) 46.6 (41.5) 

2nd  16 (28) 5.3 (2.8) 44.0 (100.5) 23.3 (29.3) 

3rd  3 (10) 3.0 (5.0) 15.4 (47.5) 11.8 (16.0) 

4th  1 (2) - (2.0) 26.4 (21.9) 18.3 (7.8) 

5th - (1) - (-) - (14.3) - (5.4) 

Note: Bifurcation ratio is defined as the ratio of the number of the streams of given order 'Nr' 
to the number of streams in the next higher order (Nr+1). 

 

Table S4.2. River types and the potential natural sinuosity ranges of the Bode river network (Ministerium für 
Umwelt und Naturschutz Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, 2010). 

River type Description 
Potential 
natural 
sinuosity 

Type 5 Small coarse substrate-dominated siliceous highland rivers 1.25-2.0 

Type 6 Small fine substrate-dominated calcareous highland rivers 1.25-2.0 

Type 7 Small coarse substrate-dominated calcareous highland rivers 1.01-1.5 

Type 9.1 Mid-sized fine to coarse substrate-dominated calcareous highland rivers 1.25-2.0 

Type 9.2 Large highland rivers 1.06-1.5 

Type 16 Small gravel-dominated lowland rivers 1.25-2.0 

Type 17 Mid-sized and large gravel-dominated lowland rivers 1.25-2.0 

Type 18 Small loess and loam-dominated lowland rivers 1.5-2.0 

Type 19 Small streams in riverine floodplains 1.25-1.5 
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Chapter 5: Discussion 

The objective of this study was to investigate the effects of drought and river restoration on 
nitrate concentration in a heterogeneous catchment (Bode) by utilizing a fully distributed 
catchment hydrological water quality model (mHM-Nitrate). The catchment experienced 
sequential drought from 2015-2018, and different nitrate concentration trends were observed 
in the forest- and arable-dominated parts of the catchment. The study began by examining the 
model's spatial transferability by comparing three calibration schemes. The results showed that 
multi-site calibration improved the mHM-Nitrate model's nitrate concentration performance at 
both calibration and validation stations and nitrate sampling locations compared to single-site 
calibration only at the catchment outlet. However, adding more calibration stations did not 
improve the model's nitrate concentration performance. The study concluded that it's vital to 
select gauging stations that represent all variations within the catchment area rather than just 
aiming for a higher number of stations for better model performance (Chapter 2). The well-
calibrated and validated mHM-Nitrate model simulation results showed that the decline of 
nitrate concentration in the arable-dominated lowland area was due to the combined effect of 
less nitrate input to the river network and increased nitrate retention efficiency in the river 
network during the drought period (Chapter 3). Moreover, the study investigated the effects of 
stream restoration via stream re-meandering on nitrate retention in the Bode catchment, which 
is characterized by heavily modified stream network in the lowland arable area. The fully 
distributed process-based mHM-Nitrate model results indicated that small streams retained 
nitrate more efficiently than large streams as stream sinuosity at the stream network scale 
increased, and nitrate concentration decreased more in large streams than in small streams due 
to accumulative retention in the upper streams (Chapter 4).  

5.1. Matching the model complexity with catchment heterogeneity  

Catchment hydrological water quality models play an important role in supporting water 
quality management and investigating climate change and land use change scenarios. 
Catchments exhibit considerable spatiotemporal variation of climate conditions and spatial 
heterogenous characteristics, such as topography, land use, geology and soil type (Gao et al., 
2018). The hydrological and biogeochemical processes, therefore, showed large heterogeneity 
at the catchment scale (Dupas et al., 2016; Rode et al., 2010). Due to the increased interest in 
land-use change and human activities, spatially distributed representations of water fluxes and 
state variables are required. 

The model complexity in terms of hydrological and biogeochemical processes representation 
and associated parameterization increases from lumped to semi-distributed and fully 
distributed model. This is done to account for the heterogeneity of these processes at the 
catchment scale (Beven, 2001; McDonnell et al., 2007; Singh and Woolhiser, 2002). The 
hydrological modeling literature is still debating the advantages and disadvantages of two 
approaches: (a) increase model complexity under the presumption of facilitating a high degree 
of process heterogeneity, or (b) reduce model complexity and use simple models of complex 
systems (Beven, 2000; Orth et al., 2015; Schoups, van de Giesen and Savenije, 2008). Some 
researchers argued that as long as the analysis and interpretation appropriately account for 
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model structural and input data uncertainties, more complex hydrological water quality models 
have the advantage of increasing understanding of probable cause-effect relationships and 
system behavior at the cost of overparameterization (Birkel, Soulsby and Tetzlaff, 2014; Wade, 
Jackson and Butterfield, 2008). Another advantage of spatially distributed models is that they 
allow for a more accurate assessment of the effects of spatial changes in land use and specific-
target mitigation (such as river restoration or pond implementation) (Tran, De Niel and 
Willems, 2018; Wagner and Waske, 2016). The critical processes must be adequately 
represented and parameterized within the model structure when models are parameterized at a 
smaller scale and then scaled up to a larger scale (Rode et al., 2010). For example, surface and 
subsurface runoff predominates nitrate transport and transformation at the small scale, while 
stream transport and transformation predominate at the catchment scale (Baffaut et al., 2015).  

While others argue that increasing complexity in the model structure or in the spatial scale) 
does not guarantee improved simulations (Orth et al., 2015; Perrin, Michel and Andréassian, 
2001). Another major problem is that some process representations in complex models have 
more conceptual than physical establishments, which can lead to inherent transferability issues 
that can only be effectively fixed through calibration (Lute and Luce, 2017). Additional 
parameters will be introduced when the model includes more processes. As a result, the main 
criticisms of fully distributed approaches are the equifinality problem and overparameterization 
(Beven, 1993; Beven, 2006). However, there are two opposing viewpoints on over-
parameterization in the hydrological field. On the one hand, over-parameterization is seen as a 
flaw that raises questions about the model's reliability and robustness by introducing 
uncertainty in parameter determination (e.g.(Perrin, Michel and Andréassian, 2001; Seibert, 
Staudinger and van Meerveld, 2019)). On the other hand, the fact that a single natural process 
might have a number of alternative valid representations is thought to be a consequence of 
over-parameterization (Beven, 2006; Savenije, 2001).  

Regionalization in catchment hydrological water quality models has been pursued to balance 
the model complexity and characterization of landscape heterogeneity in order to reduce 
overparameterization in models (Götzinger and Bárdossy, 2007; Hundecha and Bárdossy, 
2004; Pokhrel, Gupta and Wagener, 2008). A multiscale parameter regionalization method 
(MPR) in the mHM model consists of two steps to estimate effective model parameters: first 
regionalizing the model parameters by transfer function based on catchment physical 
characteristics at finest resolution (the same as model input morphological data resolution), and 
then the regionalized model parameters are upscaled to model simulation resolution using 
appropriate upscale operators (Samaniego, Kumar and Attinger, 2010). This method preserves 
the sub-grid variability in the model parameters and reduces considerably the model 
complexity due to only the global parameters (coefficients of transfer functions) needing to be 
calibrated instead of model parameters in each grid. In addition to balancing the model 
complexity, such multi-resolution(level) implementation also reserves discharge and nitrate 
spatial information at specific locations. Moreover, the mHM-Nitrate model offers detailed 
spatial information that might serve as the basis for river restoration and land-based mitigation 
investigation. Due to the inadequate understanding of in-stream processes and the absence of 
observed data at river network scales, the regionalization technique for the nitrate submodule 
was only taken into account for the stream assimilatory uptake process in the mHM-Nitrate 
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model (Yang et al., 2019a). Further studies are needed to improve our understanding of stream 
retention processes (e.g., denitrification) at river network scale. The mHM-Nitrate model 
provides a promising framework to upscale stream denitrification rate with its controlling 
factors (e.g., nitrate concentration and temperature) at river network scale. 

5.2. Implication of distributed hydrological water quality model calibration 

Before relying too heavily on such scenario results, it is crucial to carefully validate internal 
variables and explicit process descriptions of the mHM-Nitrate model when interpreting the 
impact of stream restoration scenarios on nitrate concentration, especially as equifinality may 
cause scenario analyses to draw the incorrect conclusions about the behavior of the system. 
Calibration and validation of distributed hydrological water quality models are often performed 
using discharge measurements at the catchment outlet, which only provide integral information 
concerning the investigated catchment. In this study, the mHM-Nitrate model performance was 
temporally validated at eight gauging stations for both discharge and nitrate concentration for 
the period 2015-2019 and further spatially evaluated at an additional 94 nitrate sampling 
locations for the period 1994-2019 (Chapter 2). Results revealed that as the number of internal 
stations for calibrating the mHM-Nitrate model increased, the model performance of discharge 
at the catchment outlet in the validation period was similar as in calibration period among three 
calibration schemes. While the model performance for nitrate concentration decreased slightly 
at the catchment outlet from calibration to validation period among three calibration schemes. 
Overall, these results suggest that transferability of nitrate parameters is more likely affected 
by the multi-site calibration than hydrological parameters. This could be explained by different 
calibration stations that reflected different dominant meteorological and catchment 
characteristics, may activate distinct dominant hydrological processes at different sub-
catchments (Cao et al., 2006; Dal Molin et al., 2020; Shrestha et al., 2016; Zhang, Srinivasan 
and Van Liew, 2008). In addition to affected by hydrological processes, nitrate processes are 
influenced by temporal variation of fertilizer application due to crop rotation and in-stream 
retention processes (Baffaut et al., 2015; Yang, Jomaa and Rode, 2019). 

When changing from Scheme 1 (calibrated only at the catchment outlet) to Scheme 2 
(calibration based on catchment outlet and two additional internal gauging stations) nitrate 
concentration modeling performance significantly improved at nitrate sampling locations. By 
including two additional internal calibration stations, the cumulative probability distribution of 
sensitive nitrate parameters (soil denitrification rate, in-stream denitrification rate and 
assimilatory uptake rate) were significantly different between Scheme 1 and 2. This is due to 
the various parameters are dominated by different catchment characteristics contained in the 
calibration stations. For example, in the Selke sub-catchment, soil denitrification rate was 
positively correlated to the area proportion of arable land in the upper Selke (outlet at 
Meisdorf), whereas there was no relationship for the entire Selke (outlet at Hausneindorf) 
(Yang, Jomaa and Rode, 2019). This demonstrates that the spatiotemporal transferability of 
model parameters is significantly impacted by the selection of calibration stations that represent 
different catchment characteristics. This finding suggests that distributed hydrological water 
quality models should be calibrated using multi-sites that contain more information of 
catchment characteristics in order to better constrain model parameters and assure accurate 
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representation of hydrological and water quality processes at internal locations (Chiang et al., 
2014; Li, Weller and Jordan, 2010).  

For the training and refinement of internal processes of the hydrological water quality model, 
choosing an appropriate calibration period with varying conditions is essential (Chuan-zhe, 
2010; Singh and Bárdossy, 2012). For example, periods of heavy rain may result in soil 
saturation and enhanced soil denitrification, whereas droughts may result in soil cracking and 
the formation of preferential flow paths. Conventional calibration and validation periods are 
just a few events or years long, and they might not always involve rare or extreme events. In 
this study, the calibration period includes wet and dry years, thus drought-induced declines in 
nitrate concertation were well captured by mHM-Nitrate model (Chapter 3), demonstrating the 
transferability of model parameters under changing climate conditions. 

Several studies also suggested that the calibration period should contain both high and low flow 
periods to increase the robustness of the model (Engel et al., 2007; Singh and Bárdossy, 2012). 
This could activate different internal processes (e.g., evapotranspiration, infiltration and runoff 
partition during high flow and low flow periods) and increase the confidence to apply the model 
in climate change scenarios. The assumption that model parameters are time-invariant may not 
be applicable when the meteorological and land use conditions have altered between the 
calibration and validation periods (Heuvelmans, Muys and Feyen, 2004; Merz, Parajka and 
Blöschl, 2011). Further studies are needed to investigate the temporal transferability of mHM-
Nitrate model parameters under climate and land use change conditions.  

5.3. The importance of high frequency and spatial monitoring for model calibration and 

validation 

Benefitting from high-frequency (15 mins) water quality stations (Meisdorf, Hausneindorf, 
Stassfurt), the mHM-Nitrate model calibration under Scheme 2 compared to Scheme 1 
improved model performance of nitrate concentration more in small streams (1st-3rd) than large 
streams (4th-6th stream order) in both forest and lowland arable area. This was probably caused 
by including the Meisdorf station in the calibration, which resulted in the parameter 
distributions considerably differing between Scheme 1 and Scheme 2. Furthermore, as stream 
order increased, the compensate for errors in the smaller upper streams may lead to good 
simulation performance at large streams. While the mHM-Nitrate model calibration using five 
additional stations (four of which had low frequency nitrate concentration observations) in 
Scheme 3 produced similar model performance of nitrate concentration compared to Scheme 
2, this was due to the similar information content of discharge and nitrate concentration 
contained in calibration stations led to similar model parameters distribution between Scheme 
3 and Scheme 2. This suggests that representative stations with high frequency monitoring 
might produce good model performance at interior sites in the watershed. It is recommended 
that choosing the representative stations which contain comprehensive information for 
calibration rather than the amount of stations, and that representative catchment characteristics 
should be taken into consideration while designing monitoring plans (Chen et al., 2012). 

Several studies have shown that collection and interpretation of high-frequency nitrate data can 
be used to better understand and predict nitrate loads to receiving waters (Kirchner et al., 2004; 
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Neal et al., 2012; Outram et al., 2014; Rode et al., 2016a; Rode et al., 2016b; Rusjan, Brilly 
and Mikoš, 2008). For example, high-frequency measurements can capture high flow events 
that traditional grab sampling might miss, and they can increase the accuracy of model 
prediction by minimizing sample bias and data uncertainty (Hensley and Cohen, 2020; 
Hensley, Cohen and Korhnak, 2014; Rode, Osenbrück and Shrestha, 2013). The derived in-
stream retention rates (e.g., assimilatory uptake rate, denitrification rate) from high-frequency 
measurements could be also used to validate the model simulated in-stream retention rates 
(Kunz et al., 2017c; Zhang et al., 2023). 

The multi-site calibration of the mHM-Nitrate model in the Bode catchment showed the critical 
values of spatial observations of discharge and nitrate concentration (Chapter 2). Spatial 
observation of discharge and nitrate concentration at multi-site is essential to constrain model 
parameters since fewer parameter sets satisfy all the calibration criteria for all stations 
(Daggupati et al., 2015). As ground-based measurements are spatially limited or even 
completely lacking in developing and underdeveloped countries, remote sensing data that may 
provide continuous, high-resolution measurements of water balance components (e.g. 
evapotranspiration, soil moisture and groundwater storage) across time and space are an 
essential option for assessing the internal fluxes and states of the mHM-Nitrate model (Demirel 
et al., 2018; Immerzeel and Droogers, 2008; Karimi and Bastiaanssen, 2015; Xu, Li and 
Tolson, 2014). Further research could use both ground-based measurements and remote 
sensing data to comprehensively evaluate the spatial capabilities of the mHM-Nitrate model. 

The mHM-Nitrate model underestimated the peak flow events in the mountain area (Chapter 
3), which was due to the low density of precipitation observation stations. The number of 
climate stations increased before 1990s, afterwards, it declined due to optimization of 
observation stations. In addition, precipitation in mountainous areas is often underestimated 
due to topographic heterogeneity and wind-induced effects (Guidicelli et al., 2021; 
Kochendorfer et al., 2017). Since extreme events like floods that occur quickly cannot be 
recorded by a sparsely populated network of observation stations, spatial measurements are 
required to capture spatiotemporal changing weather conditions. Several studies showed that 
ground-based observation scarce mountainous areas may benefit from satellite-based 
precipitation observation (Lettenmaier et al., 2015; Michaelides et al., 2009). Therefore, further 
study might investigate at how remotely sensing precipitation affects the performance of the 
mHM-Nitrate model. 

5.4. Limitations and future work 

Although the mHM-Nitrate model showed good spatial and temporal performance for 
discharge and nitrate concentration in the study, there are some limitations: the groundwater 
representation in the mHM-Nitrate model was simplified, nitrate concentration of groundwater 
was initialed based on the land use type and geology type to differ the arable in the mountainous 
area and lowland area. A possible solution is based on the transit time distribution of water or 
storage selection functions to implicitly represent nitrate transport in groundwater (Nguyen et 
al., 2021). The mHM-Nitrate model might benefit from more regional and temporal 
measurements of groundwater nitrate concentration to better understand and refine the nitrate 
processes in groundwater.  
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Current stream restoration scenario considering sinuosity change according to the empirical 
equation between stream sinuosity and stream power, it is also worth to examine the effects of 
other stream morphological features (e.g., bedforms, pools) on stream nitrate retention at 
catchment scale coupling mHM-Nitrate model with physically based river network models 
(e.g., Networks with EXchange and Subsurface Storage, (Gomez-Velez and Harvey, 2014)) in 
future. Due to inadequate measurement at the river network, the river morphology represented 
in the mHM-Nitrate model is dependent on downstream hydraulic equations (stream width and 
depth related to discharge). More accurate river width and depth data in the river network may 
help to minimize the model uncertainty in stream retention as inexpensive unmanned aerial 
vehicles with photogrammetrically calibrated sensors become more widely available (Bandini 
et al., 2018; Kasvi et al., 2019). 

• Nitrate processes representation at stream network could be improved in the mHM-
Nitrate model. The existing mHM-Nitrate model's in-stream denitrification process did 
not distinguish between the water column and the hyporheic zone, but it might be 
developed in future to explicitly consider the various denitrification rates in the water 
column and hyporheic zone (e.g.,Cardenas, 2009; Gomez-Velez et al., 2015; Gomez-
Velez et al., 2017; Gomez, Wilson and Cardenas, 2012; Kiel and Bayani Cardenas, 
2014; Reisinger et al., 2016; Reisinger et al., 2015; Ye et al., 2012). 

• The current stream denitrification process described in the mHM-Nitrate model was 
based on the relationship between denitrification rate and stream nitrate concentration 
and temperature. It may be possible to construct a new equation between the 
denitrification rate and other controlling factors (e.g., oxygen concentration, organic 
carbon concentration) as the high-frequency measurements increases (Jarvie et al., 
2018; Jones et al., 2018). 

• The impacts of climate and land use change on nitrate retention could be investigated 
based on the mHM-Nitrate model. As droughts are projected to become more frequent 
and server in the future (Hari et al., 2020; Spinoni et al., 2018), it is worthwhile to assess 
the effects of drought and land use change on hydrological processes and nitrate 
dynamics at the catchment scale. For example, Kong et al. (2022) reported that 
increasing nutrient flux due to deforestation can result the mesotrophic reservoir into a 
eutrophic state based on coupled catchment nutrient exports (HYPE) and reservoir 
ecosystem dynamics (GOTM-WET) models. 

• Remote sensing observation data could be used to calibrate the mHM-Nitrate model 
and validate its internal fluxes and states. It would be possible to use the spatial data 
derived from remote sensing observations (e.g., evapotranspiration, soil moisture and 
total water storage) to calibrate the mHM-Nitrate model with more and easier access to 
remote sensing data. For example, Demirel et al. (2018) showed that including the 
spatial pattern of actual evapotranspiration derived based on MODIS into calibration 
objective function improved considerably the mHM model simulations. 
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Chapter 6: Summary 

This study investigates the impact of multi-site and single-site calibration on the parameters’ 
transferability of a new developed process-based catchment hydrological water quality model 
(mHM-Nitrate model) in the heterogeneous mesoscale catchment Bode (3200 km2), Central 
Germany (Chapter 2). The mHM-Nitrate model was calibrated using three calibration schemes: 
(i) only calibrated at the catchment outlet (Scheme 1), (ii) calibrated at both the catchment 
outlet and two internal stations (Scheme 2), and (iii) calibrated at both the catchment outlet and 
seven internal stations (Scheme 3). The model performance for discharge was similar at the 
catchment outlet for the three calibration schemes. While for NO3- concentration, Scheme 2 
performs better than Schemes 1 and 3 at the gauging stations. The spatial transferability of the 
model was further evaluated at 94 spatially distributed NO3- sampling locations, scheme 2 did 
better than scheme 1 and model performance across the sampling locations was similar for 
schemes 2 and 3. The findings indicate that in order to achieve optimal parameter calibration, 
it is essential to strategically choose gauging stations that include the entire range of catchment 
characteristics heterogeneity, rather than solely focusing on increasing the number of stations. 
In addition, this study provides practical recommendations for the selection of gauging stations 
during model calibration. It suggests that the presence of differences in cumulative parameter 
distributions can serve as an indication of which stations can offer additional and beneficial 
representation. 

To explore the mechanism of sequential drought introduced nitrate heterogenous trends, model 
outputs and internal processes were compared between the drought period (2015–2018) and 
pre–drought period (2004–2014) (Chapter 3). Results showed that decline in stream nitrate 
concentration in the lowland area of the Bode watershed could be explained by less nitrogen 
export from the terrestrial and an increased in in-stream retention efficiency during the drought 
period. Nitrate concentration was relatively stable in the upper mountainous area of the 
catchment due to limited change in nitrate export and in-stream retention efficiency. The study 
found that, especially in the lowland region of the watershed, nitrate was mainly retained in the 
soil during the drought periods as opposed to being mobilized or transported. The Bode 
watershed is a typical mesoscale catchment in central Europe, having a mountainous headwater 
and an agricultural plain that experiences very little precipitation. We anticipate that 
catchments with geographical and climatic conditions comparable to those of the Bode 
catchment (i.e., wet mountain regions and dry lowland regions) would be particularly sensitive 
to changing weather conditions. In addition, the model is capable of accurately representing 
nitrate concentration in changing weather conditions, which might be used to study the effects 
of climate change. 

Stream rehabilitation has received more attention recently in order to increase nitrate retention 
and reduce transport to downstream. Based on well calibrated mHM-Nitrate model, we 
examined the impacts of stream restoration via stream re-meandering on NO3- retention in the 
Bode catchment with a heavily modified stream network in lowland arable area (Chapter 4). 
Stream networks with various land uses and morphological characteristics exhibited significant 
spatiotemporal variation in stream NO3- retention rates, which were higher in agricultural 
streams than in forest streams. Small streams retained NO3- more effectively than large streams 
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as stream sinuosity increased at the stream network scale, while NO3- concentrations declined 
in large streams more than small streams due to accumulative retention in the upper streams. 
This study highlights the importance of stream re-meandering as a promising mitigation 
strategy to promote in-stream retention and decrease nitrate export at the stream network scale 
during the vegetative period, particularly at small streams in agricultural areas. 
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