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Abstract

This thesis studies strong, completely charged polyelectrolyte brushes. Extensive molecular
dynamics simulations are performed on different polyelectrolyte brush systems using local
compute servers and massively parallel supercomputers. The full Coulomb interaction of
charged monomers, counterions, and salt ions is treated explicitly. The polymer chains are
anchored by one of their ends to a uncharged planar surface. The chains are treated under good
solvent conditions. Monovalent salt ions (1:1 type) are modelled same as counterions. The
studies concentrate on three different brush systems at constant temperature and moderate
Coulomb interaction strength (Bjerrum length equal to bond length):

The first system consists of a single polyelectrolyte brush anchored with varying grafting
density to a plane. Results show that chains are extended up to about 2/3 of their contour
length. The brush thickness slightly grows with increasing anchoring density. This slight
dependence of the brush height on grafting density is in contrast to the well known scaling result
for the osmotic brush regime. That is why the result obtained by simulations has stimulated
further development of theory as well as new experimental investigations on polyelectrolyte
brushes. This observation can be understood on a semi-quantitative level using a simple
scaling model that incorporates excluded volume effects in a free-volume formulation where
an effective cross section is assigned to the polymer chain from where couterions are excluded.
The resulting regime is called nonlinear osmotic brush regime. Recently this regime was also
obtained in experiments.

The second system studied consists of polyelectrolyte brushes with added salt in the non-
linear osmotic regime. Varying salt is an important parameter to tune the structure and
properties of polyelectrolytes. Further motivation is due to a theoretical scaling prediction by
Pincus for the salt dependence of brush thickness. In the high salt limit (salt concentration
much larger than counterion concentration) the brush height is predicted to decrease with in-
creasing external salt, but with a relatively weak power law showing an exponent −1/3. There
is some experimental and theoretical work that confirms this prediction, but there are other
results that are in contradiction. In such a situation simulations are performed to validate the
theoretical prediction. The simulation result shows that brush thickness decreases with added
salt, and indeed is in quite good agreement with the scaling prediction by Pincus.

The relation between buffer concentration and the effective ion strength inside the brush
at varying salt concentration is of interest both from theoretical as well as experimental point
of view. The simulation result shows that mobile ions (counterions as well as salt) distribute
nonhomogeneously inside and outside of the brush. To explain the relation between the internal
ion concentration with the buffer concentration a Donnan equilibrium approach is employed.
Modifying the Donnan approach by taking into account the self-volume of polyelectrolyte
chains as indicated above, the simulation result can be explained using the same effective
cross section for the polymer chains. The extended Donnan equilibrium relation represents a
interesting theoretical prediction that should be checked by experimental data.

The third system consist of two interacting polyelectrolyte brushes that are grafted to two
parallel surfaces. The interactions between brushes are important, for instance, in stabilization
of dispersions against flocculation. In the simulations pressure is evaluated as a function of
separation D between the two grafting planes. The pressure behavior shows different regimes
for decreasing separation. This behavior is in qualitative agreement with experimental data.
At relatively weak compression the pressure behavior obtained in the simulation agrees with a
1/D power law predicted by scaling theory. Beyond that the present study could supply new
insight for understanding the interaction between polyelectrolyte brushes.
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Chapter 1

Introduction

Polymers are substances typically of high molar mass consisting of many small repeating sub-

units (called monomers), thus they are known as macromolecules. For example, polyethylene

(CH3−(CH2)N−CH3) is a long chain molecule composed of ethylene molecules (CH2 = CH2),

and DNA is an extremely long molecule made of up to about 107 nucleotides. Polyelectrolytes

(PELs) are polymers that contain subunits having the ability to dissociate charges (forming

charged chains and counterions) in polar solvents such as, e.g., water. This particular feature

makes them environmentally friendly and of high practical relevance, e.g., PELs have com-

pletely replaced the harmful phosphates in detergents. Also biopolymers like proteins and

DNA are PELs. Because of their importance in materials science, soft matter research, and

molecular biology, PELs have received considerable interest in recent years [1].

A natural extension to PELs in solution is to anchor them by one of their end segments

to an interface. Such systems found a lot of applications, e.g., end grafted PELs can help

stabilizing colloid particles in solution against flocculation [52]. If the anchoring density is

sufficiently high the chains are enforced to extent away from the anchoring surface forming

a so-called brush. A schematic representation of a uncharged (or neutral) brush as well as

a PEL brush is shown in Figure 1.1(a) and (b), respectively. The physics of chain extension

can be different for these two systems. Modern scaling concepts introduced by de Gennes [2]

can help the theoretical understanding of these systems. For a neutral brush, the equilibrium

brush height results from a balance between the excluded-volume repulsion tending to swell the

chains against Gaussian polymer elasticity which reduces the chain extension [8]. However,

for a PEL brush in the so-called osmotic brush regime, the brush height is determined by

balancing the counterion osmotic pressure which tries to swell the chains against the entropic

polymer elasticity [9].

Computer simulations are an excellent tool to check theoretical predictions. For a neu-

tral brush, simulation studies give good agreement with the scaling prediction for the brush

extension [77]. However, simulations on charged systems are computationally rather expen-

sive [141, 156] due to the long range nature of Coulomb interaction which is to be handled
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(a) (b) (c) (d)

Figure 1.1: Schematic picture of polymer brushes: (a) neutral polymer brush; (b) PEL brush;
(c) PEL brush with added salt; (d) two interacting PEL brushes.

by using special methods like the Ewald summation method [22]. Nevertheless, simulations

can treat the direct Coulomb sum instead of using approximations as, e.g., the Debye-Hückel

(DH) one, where all mobile ions (counterions as well as salt ions) are smeared out to a ho-

mogeneous background that causes a certain screening of the interaction. However, at least

for strong PELs where the Coulomb energy is often larger than the thermal energy kBT , the

DH approximation is suspected to neglect important physical features like, e.g., counterion

condensation [32, 33]. There are methods to treat the Coulomb summation in the particular

geometry of a PEL brush based on Ewald summation or due to a summation technique pro-

posed by Lekner [146] where the CPU time for evaluating the energy or all the pairwise force,

respectively, grows quadratically with the total number of charges (Ntot) simulated. However

using such O(N 2
tot) methods, within the current computational capabilities one is able to sim-

ulate only up to about 2000 charged particles [104]. For considering larger systems, one has

to pass over to improved methods which give a better time scaling in treating long-ranged

interactions. Here, a new method called MMM2D [145] is employed to calculate the Coulomb

sums in the particular brush geometry and now we are able to simulate up to about 10000 par-

ticles. This makes it possible to study, e.g., addional salt (more charged particles) in the PEL

brush system. We use a simulation technique which allows the investigation of an off-lattice

coarse-grained model of polyelectrolyte chains. Extensive constant temperature molecular dy-

namics simulations on PEL brush systems have been performed using local compute servers as

well as massively parallel supercomputers. We avoid any mean-field treatment or truncation.

Counterions are included explicitly, and we treat the full Coulomb interaction.
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Simulation results on PELs brushes show that in contrast to the well-accepted scaling

prediction in the so-called osmotic brush regime a slight but detectable variation of brush

height on grafting density is obtained. This regime is called the nonlinear osmotic brush

regime. It can be understood within a simple free-volume approximation that takes into

account the finite volume of the polymer chains. Recently it was obtained also in experiments.

Simulation studies with additional salt ions in PEL brush systems (see Figure 1.1(c)) are

important for two reasons: First, varying salt concentration is an important parameter to

tune structure and properties of PELs and second, there are specific predictions found by the

scaling theory that have to be verified [9]. For an osmotic brush in the salted regime where

salt concentration cs is supposed to be much greater than counterion concentration cci a weak

power law dependence of brush height on salt concentration with an exponent −1/3 has been

predicted [9]. There is some experimental and theoretical work that confirms this prediction,

but there are other results that are in contradiction. In such a situation simulations are a

promising tool to validate theoretical predictions. The prediction is based on the assumption

that screening from the added salt reduces the counterion osmotic pressure which stretches

the chains and indeed, for the first time in simulations, we observe the Pincus prediction [9]

for the scaling behavior of brush height on salt concentration.

Another system studied using simulations consists of two PEL brushes grafted on two ap-

posing walls (see Figure 1.1(d)). Interactions between brushes are important, e.g., in prevent-

ing colloids in polar media from flocculation [52] and are of high utility in biolubrication [124].

Experiments done with surface force apparatus (SFA) enable to determine the forces the PEL

brushes exert on the walls as their distance is reduced below a certain value. Scaling theory [9]

suggests that in the case of interacting PEL brushes between two walls, the disjoining pressure

is the osmotic pressure of counterions and therefore the pressure is expected to scale as 1/D,

where D is the distance between the two anchoring surfaces. But neither SFA experiments ob-

serve this scaling prediction [119] nor refined theories exist that would be able to explain these

experimental findings, at least at higher compressions. Simulation studies give new insight

into that problem showing that there are indeed different regimes in the pressure behavior.

We also obtain monomer profiles and counterion distributions of the system which are not

easily accessible to SFA experiments.
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Chapter 2

Theory

This chapter briefly reviews a few theoretical approaches in order to understand the behavior

of polymers in general and polyelectrolytes in particular with the main attention focussed on

the scaling theory for polyelectrolyte brushes.

2.1 Free polymer chains in solution

Theoretical models usually consider single chain modeling an ideal polymer with no inter-chain

interactions. One among the beginners to study polymers by means of standard methods of

statistical physics was Flory [11]. Followed that was a vast amount of interest in polymer

physics [2, 12–16]. Due to that the statistical property of a single polymer chain in the equi-

librium state is rather well understood.

2.1.1 Neutral polymer chains

2.1.1.1 Ideal flexible chains

The simplest model of an ideal polymer one can imagine is the freely jointed chain model

and therefore it is often employed in the simulation model for polymer chains. This model

consists of N + 1 dimensionless monomers represented by the set of position vectors {R i} ≡
(R0, . . . ,RN ) (see Figure 2.1(a)). The bond vectors ri = Ri − Ri−1 connecting any two

neighboring monomers along the polymer backbone is taken from the set {ri} ≡ (r1, . . . , rN )

where each bond vector is of fixed bond length b. Also, there is no correlations between the

directions of different bond vectors i.e. they are able to point in any direction independently

of each other.

The chain size is characterized by the end-to-end vector R defined as

R ≡ RN −R0 =

N∑

i=1

ri. (2.1)
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Figure 2.1: (a) Freely jointed chain model; (b) Gaussian chain model.

Since the average end-to-end vector 〈R〉 = 0, the simplest non-zero average1 is the mean

square end-to-end distance 〈R2〉. Let R be defined by

R2 ≡ 〈R2〉. (2.2)

Substituting for R from eq. (2.1) in eq. (2.2) gives

R2 =

N∑

i=1

〈r2
i 〉+ 2

∑

i>j

〈ri · rj〉 = Nb2, (2.3)

because for i 6= j, 〈ri · rj〉 = 〈ri〉 · 〈rj〉 = 0.

The result R ∼ N 1/2 holds even for more general models (for example, the freely rotating

chain model where all bond lengths and bond angles are fixed and therefore correlation between

bond vectors ri and rj included in eq. (2.3) is non-zero).

In general if the distribution function of ri for the polymer conformation is written in the

form

Ψ({ri}) =
∏

i

ψ(ri, ri+1, . . . , ri+ic), (2.4)

where i+ ic ≤ N , R is written for large N as

R = beff

√
N. (2.5)

where now beff is called the effective bond length and the ratio C∞ ≡ b2eff/b
2 represents the stiff-

ness of the polymer which can be calculated from the local structure of the chains2. However,

1〈· · ·〉 will denote either time averages or averaging over all allowed conformations (ensemble averages). In
other words, the ergodicity of the system is implicitly assumed.

2From now on, for simplicity we will write b for beff .
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stiffness can also be represented by the Kuhn segment length bK defined by

bK ≡ R2/Rmax, (2.6)

where Rmax is the maximum length of the end-to-end vector (contour length).

The statistical distribution of the end-to-end vector for a freely jointed chain model can

be calculated as follows. Since the direction for bond vectors are independent of each other,

the distribution function for the polymer conformation becomes

Ψ({ri}) =

N∏

i=1

ψ(ri), (2.7)

where

ψ(r) =
δ(| r | −b)

4πb2
(2.8)

is the random distribution on the sphere for a vector of constant length b. This distribution

is normalized to ∫
drψ(r) = 1. (2.9)

Given the conformational distribution Ψ({ri}), the probability distribution function that the

end-to-end vector of the chain consisting of N links is R is calculated by

ϕ(R, N) =

∫
dr1

∫
dr2 · · ·

∫
drN δ

(
R−

N∑

i=1

ri

)
Ψ ({ri}) . (2.10)

Using the relation given in eq. (2.7) after some non-trivial steps, the probability distribution

function ϕ(R, N) for a freely jointed chain reads

ϕ(R, N) '
(

3

2πNb2

) 3
2

exp

(
− 3R2

2Nb2

)
. (2.11)

The distribution of the end-to-end vector R is Gaussian. For R2 . Nb2, the corrections in eq.

(2.11) are of order 1/N and can be neglected for N � 1. If R2 � Nb2, the corrections can

be substantial. Note that for R2 > N2b2, ϕ(R, N) is finite which is physically unreasonable

for real chains. Nevertheless, owing to the exponential decrease, the function ϕ(R, N) itself

is so small in this region that the deviations from the Gaussian are quite inessential for most

practical problems. However, e.g., for PELs often R2 � Nb2, and hence the strong stretching

limit should be considered properly (see below).

Although the above derivation is for the freely jointed chain, the result is actually valid

for more general models3 like, e.g., freely rotating chain model. In general, provided the

3The term random flight is used in literature for these general models obeying eq. (2.4) because the evaluation
of eq. (2.10) is formally identical to the calculation of the probability distribution of the end-to-end vector for
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conformational distribution is described by eq. (2.4), the distribution of the end-to-end vector

R of a long chain (N � 1) is given by eq. (2.11). This is a result of the central limit theorem

in statistics.

A more analytically easily tractable model is the Gaussian chain model. This model as-

sumes a chain whose bond length is Gaussian distributed

ψ(r) =

(
3

2πb2

) 3
2

exp

(
−3r2

2b2

)
, (2.12)

so that

〈r2〉 = b2. (2.13)

The conformational distribution function of such a chain is given by

Ψ({ri}) =
N∏

i=1

ψ(ri) =

(
3

2πb2

)3N/2

exp

(
−

N∑

i=1

3r2
i

2b2

)
. (2.14)

This model does not describe correctly the local structure of the polymer, but does correctly

describe the property on large length scales. However, the local structure of the polymer

modifies only beff but does not otherwise appear in the problem.

The Gaussian chain is often represented by a mechanical model (see Fig. 2.1(b)) where

(N + 1) ‘beads’ are considered to be connected by harmonic springs the potential energy of

which is given by

U({Ri}) =
3kBT

2b2

N∑

i=1

r2
i . (2.15)

At equilibrium, the Boltzmann distribution for such a model is exactly the same as eq. (2.14).

An important property of the Gaussian chain is that the distribution of the vector Ri−Rj

between any two units i and j is Gaussian, being given by

ϕ(Ri −Rj , i− j) =

(
3

2πb2 | i− j |

)3/2

exp

(
−3(Ri −Rj)

2

2 | i− j | b2

)
, (2.16)

which follows from the properties of Gaussian integrals. For any i and j it holds that

〈(Ri −Rj)
2〉 =| i− j | b2. (2.17)

The suffix i of the Gaussian chain is often regarded as a continuous variable s. In such cases

a random walk model of N steps, each of whose length is governed by the probability distribution ψ(r).
Therefore eq. (2.10) connects the study of chain statistics to that of random walks and hence to Brownian
motion, diffusion, and heat transfer. Since the diffusion equation is similar to the Schrödinger equation, there
exist analogies between the descriptions of polymer chains and quantum mechanical systems.
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ri = Ri −Ri−1 is replaced by ∂R(s)/∂s and eqn. 2.14 is written as

Ψ[R(s)] = const× exp

(
− 3

2b2

∫ N

0
ds

(
∂R(s)

∂s

)2
)
. (2.18)

This distribution is known as the Wiener distribution [15].

To calculate the free energy for a Gaussian chain, we write down the Boltzmann entropy

S(R, N) ≡ kB lnW (R, N), (2.19)

where W (R, N) is the number of conformations of the Gaussian chain of N monomers with

end-to-end vector R which is related to the probability distribution function ϕ(R, N) as

ϕ(R, N) =
W (R, N)∫
W (R, N)dR

. (2.20)

The Helmholtz free energy of the chain is

F (R, N) = U(R, N)− TS(R, N). (2.21)

Using eqns. 2.16, 2.19, 2.20, and the fact that for a Gaussian chain the interaction energy

U(R, N) is independent of R (see eqn. 2.15), the above free energy can be written as

F (R, N) =
3kBT

2Nb2
R2 + terms independent of R. (2.22)

The entropic stretching force required to keep the chain at the end-to-end separation R is

calculated as

fst = −∂F (R, N)

∂R
= −3kBT

Nb2
R, (2.23)

which follows the Hooke’s law with spring constant

k =
3kBT

Nb2
. (2.24)

Since this force is of purely entropic origin the Gaussian chain is also called an entropic chain.

The free energy in eqn. 2.22 is valid for x = R/Nb smaller than ≈ 0.5. A second condition

for eqn. 2.22 is Nx2 � 1, which (for a given degree of stretching x) requires that N is

sufficiently large. However, for PELs, x can be larger than 0.5, in which case for sufficiently

large N , the free energy can be obtained from integration of the Langevin function

x = coth(bfst)−
1

bfst
, (2.25)

with fst the force exerted on the chain (bfst in units of kBT ). The above equation is expanded



10 Theory

as a Taylor series [12], however, due to the slow convergence this expansion is not very practical

at higher relative extensions x, and always predict a finite free energy at x = 1 (where it should

diverge). The correct limit of the free energy, eqn. 2.22, at high degrees of stretching is (in

units of kBT ) [94]

F = −N(ln(1− x) + const.), (2.26)

which can be derived as follows. The chain partition function reads

Ω =

[∫ 2π

0

dφ

2π

∫ π

0

dθ

2
sinθexp(bfstcosθ)

]N
. (2.27)

where the set of angles {θi, φi} specify the monomer orientations in the freely jointed chain

model. Integrating above eqn. 2.27

Ω =

[
exp(bfst)− exp(−bfst)

2bfst

]N
. (2.28)

The end-to-end distance of the chain R is calculated as

R =
∂lnΩ

∂fst
(2.29)

which results in the above eqn. 2.25. Using Legendre transformation, the isochoric free energy

of the system (in units of kBT ) is calculated as, F = −lnΩ +Rfst, hence

F

N
= −ln

sinh(bfst)

bfst
+ bfstcoth(bfst)− 1, (2.30)

In the weak stretching or Gaussian chain limit bfst � 1, a proper expansion in eqn. 2.25 leads

to x = R/Nb ' bfst/3 which is then substituted in eqn. 2.30 to get the relation eqn. 2.22.

In the opposite limit, bfst � 1 a nonlinear force extension relation is reached from eqn. 2.25,

that is x = R/Nb ' 1− (1/bfst). Substituting this in eqn. 2.30 leads to eqn. 2.26 [94].

The quantity Rg is directly related to scattering experiments (see below), where the mean

square radius of gyration R2
g is defined as

R2
g ≡

1

N + 1

N∑

i=0

〈(Ri −RCM)2〉, (2.31)

with the position vector of the center of mass of the chain

RCM ≡
1

N + 1

N∑

i=0

Ri. (2.32)
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Substituting eq. (2.32) in eq. (2.31) R2
g can be rewritten as

R2
g =

1

2(N + 1)2

N∑

i,j=0

〈(Ri −Rj)
2〉. (2.33)

For a linear Gaussian chain R2
g is easily calculated [14]

R2
g =

1

6
Nb2. (2.34)

Further, the overall shape of a polymer can be described by a unitless number called shape

factor defined as the ratio

rs =
R2

R2
g

. (2.35)

rs is 2 for a spherical globule, 6 for a Gaussian chain, and 12 for a rigid rod.

The size of polymers can be measured by various scattering experiments like, e.g., neutron

scattering [17,18]. Since we model single chains, the quantity of interest is intrachain structure

factor or form factor

S(q) ≡ 1

N + 1

N∑

i,j=0

〈
eiq.(Ri−Rj)

〉
(2.36)

where | q |≡ q ≡| qf −qi | is the difference between the wave vectors of scattered and incident

beam. At N � 1 the sums can be replaced by integrals, and, for the Gaussian chains

S(q) = 1 +
1

N + 1

∑

i6=j
〈eiq·(Ri−Rj)〉

' 1 +
1

N

∫ N

0
dτ

∫ N

0
dτ ′ exp

(
−b

2q2

6
|τ − τ ′|

)

' 1 +ND(q2R2
g), (2.37)

where D(q2R2
g) is the Debye function

D(x) ≡ 2

x2

(
e−x + x− 1

)
. (2.38)

The asymptotic behavior of S(q) is given by

S(q) '





N

(
1−

q2R2
g

3

)
for qRg � 1 (Guinier region),

1 +
2N

q2R2
g

for qRg � 1 (Porod region).

(2.39)
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2.1.1.2 Semiflexible chains

As already mentioned the Gaussian chain model is handicapped in detailing the local structure

of the chain and therefore mostly applicable only to study flexible chains on large length scales

where the local chain correlations are negligible. Therefore, sophisticated models have been

exposed in literature which can more accurately describe the local structure of the chain,

in particular these models offer a way for studying chain stiffness and its relation to the

microscopic (chemical) parameters. The worm-like chain model [20] (sometimes called Kratky-

Porod model) is a special case of the freely rotating chain model for very small values of the

bond angle. This is a good model for stiff polymers, such as double-stranded DNA for which

the flexibility is due to fluctuation of the contour of the chain from a straight line. The energy

associated with the bending for this model is written as

Ubend =
1

2
Y

∫ Rmax

0
ds

(
∂t(s)

∂s

)2

, (2.40)

where Y is a constant (Young’s modulus) and t(s) is the unit tangent vector at the position

R(s) along the contour distance s of the chain

t(s) =
∂R(s)

∂s
. (2.41)

In the limit Rmax→∞, the orientational correlations obey an exponential decay

〈t(s) · t(s′)〉 ' exp

(
−|s− s

′|
Lp

)
, (2.42)

where Lp is the persistence length of the chain (length scale over which correlations between

monomer directions are lost) which describes the chain stiffness,

Lp ≡
Y

kBT
. (2.43)

In the limit of large length scales, where the chain contour length Rmax � Lp, worm-like

chains behave as flexible chains, however in the opposite limit the chain behavior crosses over

to a rigid rod. The double-stranded DNA has a persistence length Lp ≈ 50nm (Kuhn length

= 2Lp ≈ 100nm) and is regarded as a semiflexible chain. Microtubules have persistence

lengths typically in the mm range and therefore can be modeled as a rigid rod. However, a

single-stranded DNA (Lp ≈ 3nm) is a flexible chain.

2.1.1.3 Excluded volume and solvent quality

In the single chain models considered so far, the interaction among the polymer segments is

limited to within a few neighbors along the chain. In reality, however, segments distant along
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the chain do interact if they come close to each other in space. Since each chain segment

possess its own finite volume, an obvious interaction is the steric effect. This is analogous to

the so-called self avoiding walk (SAW) in a random walk model [2].

Earlier discussions from Kuhn and Flory followed by many sophisticated theoretical ap-

proaches pointed out that the excluded volume interaction changes the statistical property of

the chain entirely. For example, 〈R2〉 is no longer proportional to N but to a higher power of

N ,

〈R2〉 ∼ N2ν . (2.44)

According to Flory (see below), the exponent ν is about 3/5, so that the excluded volume

effect is very important for long chains.

In real polymer chains the contributions to the interaction potential u(r) for bringing two

monomers from ∞ to within a distance r of each other in a solvent, are quite complicated:

the interaction will include steric effects, van der Waals attraction, and also may involve other

specific interactions mediated by solvent molecules. A typical example of u(r) is the Lennard-

Jones (LJ) potential given as

u(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(2.45)

where σ and ε are the LJ length and energy, respectively. In this potential the attractive tail

due to −1/r6 is the van der Waals interaction potential. This attractive part can be obtained,

for e.g., from the perturbation theory in quantum mechanics. However to choose the hard-

core repulsive part (chosen to be ∼ 1/r12 in LJ potential) is arbitrary. Usually terms ∼ 1/rn,

where n is a positive integer, or exponential functions are employed. Note, however, that here

we assumed the interaction potential energy u(r) between the two monomers to depend only

on their separation r (pair potential), which is not always true. Therefore u(r) has to be

understood as an effective potential where, for e.g., the interactions of the monomers with the

solvent molecules are implicitly involved.

The excluded volume v2 is defined as the volume integral

v2(T ) ≡
∫
dr

[
1− exp

(
−u(r)

kBT

)]
. (2.46)

v2 has a dimension of volume. The Boltzmann factor exp
(
−u(r)
kBT

)
appears in the above

equation because the relative probability of finding a second monomer at a distance r from a

given monomer in a solvent at temperature T is proportional to this factor.

The excluded volume defined in eq. (2.46) can be understood as the second virial coefficient

for an imperfect gas. For the LJ potential u(r), therefore v2 is given as

v2(T ) = A− B

T
(2.47)
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where A and B are constants independent of temperature (these are the two parameters which

appear in the famous Van der Waals equation of state for an imperfect gas). With LJ potential

as u(r), v2 is positive due to hard core repulsion at low r, but changes its sign at higher distance

due to an effective attraction between monomers.

For a given combination of polymer and solvent, v2 varies with temperature. The tem-

perature at which v2 = 0 is defined as the θ or Flory temperature (for an imperfect gas, the

temperature where the second virial vanishes is called Boyle temperature). Therefore, for the

LJ system using eq. (2.47), θ = B/A. At θ temperature the chains behave ideally, if one

ignore higher order correction terms in the virial expansion of the total interaction energy 4.

Near to θ temperature the following approximation is valid

v2(T ) ∼
(
T − θ
θ

)
. (2.48)

The virial expansion of the free energy with respect to the local concentration of the

segments c(r) =
∫ N

0 di δ(r−Ri) is given as (including many-body interaction terms)

F

kBT
=

∫
dr

(
1

2
v2c(r)2 +

w

6
c(r)3 + . . .

)
' v2

N2

R3
+ w

N3

R6
+ . . . (2.49)

The first term is two-body excluded volume term v2c(r)2 and the three-body interactions

wc(r)3 is the next one in the virial series. Depending on which interaction terms dominate

in eqn. 2.49, in general, three types of solvents can be distinguished: good, poor (also called

bad), and θ, where using a simple prototype of the mean-field theory due to Flory [11] one

can calculate the size of the polymer at different solvent quality.

(i) θ solvent: v2 ≡ 0, therefore the three-body interaction term in eqn. 2.49 is the leading

term and for the flexible chain, the free energy is F/kBT ' R2/Nb2 +N3w/R6, which is

minimized with respect to R giving

Rθ ' bNνθ (2.50)

with the Flory exponent for θ solvent as νθ = 1/2.

(ii) Good solvent: In a good solvent, the leading term in eqn. 2.49 is due to the two-body

interaction, but v2 is positive (excluded volume repulsion) and the free energy for the

entropic chain is F/kBT ' R2/Nb2 +N2v2/R
3, which is minimized with respect to R to

obtain

Rgood ' bNνgood (2.51)

with the Flory exponent for good solvent as νgood = 3/5.

4The effect of three-body collision term is quite weak and gives only a logarithmic correction to 〈R2〉.
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(iii) Poor solvent: v2 is negative now (excluded volume attraction) causing the polymer to

collapse to a globule. Here the balance between attractive two-body and repulsive three-

body interactions determines equilibrium. The free energy is F/kBT ' N2v2/R
3 +

N3w/R6, which is minimized with respect to R giving

Rpoor ' bNνpoor (2.52)

with the Flory exponent for poor solvent as νpoor = 1/3.

The prefactor in eqns. 2.50, 2.51, and 2.52 is nonuniversal, i.e., it depends on chemical details

of the polymer, in particular, on the value of the excluded volume parameter v2 and on the

stiffness of the chain.

Various sophisticated theoretical approaches like perturbation calculations, uniform expan-

sion model, mean-field theory, and renormalization group techniques were employed later to

get an exact result for ν of an excluded volume chain. In particular renormalization group

techniques has proved to be a very powerful tool in treating the excluded volume interactions

and ν for an excluded volume chain is found to be 0.588± 0.001 [15]. One of the most impor-

tant results first suggested by de Gennes [2] and theoretically established by renormalization

group studies is the conclusion that the dependence of many physical quantities on the chain

length N (as well as on several other parameters) can be represented as universal scaling laws.

In general, under the transformation

N −→ N/λ, b −→ bλν , (2.53)

where ν is the exponent in R ∼ N ν , the physical quantity A changes as

A −→ λxA. (2.54)

The parameter x depends on the nature of A and can be inferred by physical argument. As

an example consider the asymptotics of the structure factor for an excluded volume chain.

From dimensional analysis S(q) = f(qb,N). Because S(q) is proportional to the number of

scattering particles N , under the transformation 2.53 it should scale as

f(qbλν , N/λ) =
1

λ
f(qb,N). (2.55)

Since Rg ∼ Nνb and taking into account that eqn. 2.55 must hold for any λ, one obtains

S(q) = Nf(qbN ν) ∼ Nf(qRg). (2.56)

In the region of short wavelength (qRg�1), S(q) has to be independent of N as it was in the
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ideal case (see eqn. 2.39). This is only possible if

S(q) ∼ N(qN ν)−
1
ν ∼ q− 1

ν . (2.57)

Thus, the Flory exponent ν can be deduced from the structure factor of a polymer chain in

the Porod region.

For a polymer solution in a good solvent, the whole concentration region can be divided

into three parts: dilute, semidilute and concentrated. At low concentrations c (dilute region)

polymer coils are well separated and the behavior of the chains is very similar to that of single

chains. With increasing concentration coils come closer and begin to overlap in the semidilute

region above c∗ ' N/R3 ≈ 1/(b3N4/5), where c∗ is the order of the local concentration inside

a single coil. The so-called blob representation suggested by the results of scaling arguments

gives an intuitive physical picture. Inside a sphere of size ξ there are nb segments of a given

chain that do not interact with the segments of other chains. Inside a blob the chains behave

like isolated chains. At very high concentrations above c∗∗ ' nb/ξ
3 ' v2/b

6 (concentrated

region), the monomer concentration in the solution reaches the local monomer concentration

inside a blob, i.e., correlations are screened at monomer size.

2.1.2 Polyelectrolytes

2.1.2.1 Electrostatic interaction

Polyelectrolytes (PELs) are polymers containing ionizable subunits which when dissolved in

a polar solvent dissociates to give charged macroions and counterions. Corresponding to the

nature of the ionic subunits PELs are classified as polyanions (negatively charged subunit), and

polycations (positively charged subunit). Polyampholytes have both negatively and positively

charged subunits placed along the polymer chain.

A classification which is more useful for the purpose of theoretical study of PELs is with re-

spect to their different dissociation behaviors. Strong or quenched PELs dissociate completely

in the total pH range accessible to experiment. The total charge as well as its particular dis-

tribution along the chains is solely imposed by polymer synthesis. On the other hand, weak

or annealed PELs dissociate in a limited pH range only. The total charge of the chain is not

fixed but can be tuned by changing the solution pH. The number of charges as well as their

distribution is a fluctuating thermodynamic variable. The control parameter is the solution

pH which is, up to trivial additive constants, the chemical potential of the charges µ 5. Below

we discuss the case of strong PELs. However, the specific behavior of weak PELs has attracted

considerable interest in experiment [48], theory [21] and simulations [49].

Compared to their neutral counterpart, the present understanding of PELs is rather poor

5Strong and weak PELs, a classification used among chemists, are often referred as quenched and annealed
PELs, respectively, in the physics community [21].
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[1,4]. Treating counterions explicitly is analytically untractable so far. The fundamental model

of a polyelectrolyte chain in solution includes a chain of N monomers with bond length b and

distance between charges a (in case of annealed PELs, a is the distance between the ionizable

subunits). Many analytic calculations for PELs in solution starts from the Poisson equation

in electrostatics

∇2φ(r) = − ρ(r)

ε0ε(r)
, (2.58)

where φ(r) is the potential at point r, ρ(r) is the local charge density, ε0 is the vacuum

permittivity, and ε(r) is the dielectric function of the medium. Provided that ε(r) = ε = const.

eqn. 2.58 can be solved for various particular charge distributions which exhibits some relation

to PELs. For a point charge having a charge density ρ(r) = Q1δ(r − r1), being located at

r = r1 and having a total charge Q1 = z1e, where e is the elementary charge, the potential is

given by

φ(r) =
1

4πε0ε

Q1

| r− r1 |
. (2.59)

However, in a system containing M point charges, as soon as the system is finite or nonhomo-

geneous evaluation of the potential becomes more complex due to the existence of boundary

conditions6. Considering the PEL to be homogeneously charged, infinitely long stiff rod (cylin-

der) solution to eqn. 2.58 is

φ(r) = − q

2πε0ε
ln

(
r

R0

)
, (2.60)

where distance r is measured perpendicular to the cylindrical axis, r0 is the cylindrical radius,

q is the linear charge density along the rod and R0 is an arbitrary cut-off where φ(r) = 0.

Considering a system of several ionic species each of valence zi and with local concentration

ci, the local charge density reads

ρ(r) = e
∑

i

zici(r), (2.61)

where e is the electronic charge. In mean-field description i.e. neglecting fluctuations, ci(r)

obeys the Boltzmann distribution

ci(r) = c
(0)
i exp

(
−zieφ(r)

kBT

)
, (2.62)

where now φ(r) is the time averaged value and c
(0)
i is bulk concentration such that the re-

quirement of electroneutrality gives
∑

i zic
(0)
i = 0. Using eqns. 2.61, 2.62 and 2.58, the

6This problem can be treated correctly using the Ewald summation techniques [22], but still make it rather
computationally expensive in simulating charged systems (see section 3.2.2).
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Poisson-Boltzmann (PB) equation is

∇2φ(r) = − e

ε0ε

∑

i

zic
(0)
i exp

(
−zieφ(r)

kBT

)
. (2.63)

Explicit general solutions of this equation are not available and hence approximations come

into play. The most important contribution was made by Debye and Hückel [23] who suggested

approximating the nonlinear PB equation by a linearized form. Expanding eqn. 2.63 up to

the linear term in φ(r), the linearized PB equation reads

∇2φ(r) =
1

λD
φ(r), (2.64)

where the Debye length is defined as

λD ≡ κ−1 =

√
ε0εkBT

e2
∑

i z
2
i c

(0)
i

. (2.65)

The Debye-Hückel (DH) approximation used above is valid only at weak potentials

φ(r)� kBT/zie. (2.66)

Assuming the charge of all the other ions to be continuously smeared around a test charge,

the spherically symmetric solution to eqn. 2.64 is

φi(r) =
zie

4πε0ε

e−r/λD

r
, (2.67)

and the corresponding pair interaction energy reads

Uij(r) = zizjkBT
λB

r
e−r/λD . (2.68)

with the Bjerrum length defined as the distance at which the Coulomb interaction between

two unscreened elementary charges is equal to the thermal energy

λB ≡
e2

4πε0εkBT
. (2.69)

Hence it is evident from eqn. 2.67 that the charge cloud around a test ion results in a screening

of the Coulomb interaction. The Debye length λD gives the screening range of the resulting

effective potential.

The DH assumptions are questionable for PELs due to many reasons. For a single pair

interaction eqn. 2.66 is equivalent to λB � r, where r is the separation distance between the

particle pair. Thus, this approximation is best valid at very dilute concentrations where the
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mean particle separation is much greater than λB or when the Coulomb interaction energy

is much less than kBT . For short flexible chains, it was demonstrated by Monte Carlo (MC)

simulation that the charge distribution about a chain is exceedingly different from that around

a point charge [24]. On the other hand, counterion distributions about a charged cylinder

obtained by MC simulation [25] agree surprisingly well with the exact solutions of the complete

PB equation without added salt in the limit of point counterions [26].

Despite these serious problems, most of the theoretical studies as well as many simulations

have been done within a jellium type model where all low-molecular ions (counterions as well

as additional salt ions) are assumed to be homogeneously smeared throughout the solution.

The resulting screened interaction can be described by a DH potential eqn. 2.68. Beside that

many of theoretical works start from a rigid rod or at least from a locally rigid chain to model

polyelectrolytes. Obviously the role of entropy is neglected or underestimated in such models.

2.1.2.2 Conformation of PEL chains

The Flory-like mean-field argument can be used to calculate the end-to-end distance R. As-

suming all monomers are charged (monomer charge fraction f = 1, therefore, a = b), the free

energy is written as

F/kBT '
R2

Nb2
+ λB

N2

R
, (2.70)

where the first term is the elastic free energy of the Gaussian chain, eqn. 2.22, and the second

term represents the electrostatic free energy of the charged monomers. Minimizing eqn. 2.70

with respect to R yields [31]

R ' λ1/3
B b2/3N. (2.71)

The linear dependence of R on N make the PEL chain rod-like.

The deviation from completely rod-like structure is described in terms of the persistence

length Lp, and the basis for many theories of PELs is the calculation of the chain persistence

length. This has been done using the DH approximation, eqn. 2.68, when the chain is slightly

perturbed from the rod state [27, 28]. This Odijk-Skolnick-Fixman (OSF) theory treat the

polymer as a wormlike chain with a persistence length Lp = Li + Le, where Li is the intrinsic

persistence length of the uncharged polymer, and Le is the electrostatic persistence length.

Assuming a rigid rod, i.e. neglecting the entropy of the chain, asymptotically (Lp � λD),

Le, OSF ' λ2
DλB/4b

2. (2.72)

That means Le can be much larger than λD, a fact that is well known for intrinsically stiff

polyelectrolytes (Li � b) as, e.g., DNA. However, there exist different predictions on the

relation between persistence length Lp and screening length λD [30,31]. The above expressions

can be modified to include excluded volume effects [29].
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To extend beyond the OSF limit for flexible chains (where entropy cannot be neglected)

Khokhlov and Khachaturian (KK) [44] consider electrostatic blobs as the monomers of a

coarse-grained wormlike chain. Replacing the distance b between neighboring charges by the

blob size ξe the electrostatic persistence length of a blob chain at θ-temperature becomes

Le, KK '
λ2

D

ξe
=
λ2

D

b
(λB/b)

1/3. (2.73)

Recent theoretical [45] as well as simulation studies (see, e.g., reference [46]) strongly support

the KK picture.

Another relevant theoretical work concerns the counterion distribution around the PEL

chain [32–35, 42]. For a single rigid straight PEL chain (assumed to be infinitely long, and

straight cylinder) with a linear charge density τ = f/b larger than a thresh hold

λBτ = 1, (2.74)

counterions condense on to the line polymer. This phenomenon called manning condensation

occurs when λB > b [34,35]. This is an effect which is not captured by the linear DH theory. A

simple heuristic way to incorporate the non-linear Manning condensation is to replace the bare

linear charge density τ by the renormalized one τrenorm = 1/λB for λBτ > 1. However, this

procedure is not totally satisfactory at high salt concentrations [36, 37]. Also, real polymers

have a finite length, and are neither completely straight nor in the infinite dilution limit [38].

Still, Manning condensation has an experimental significance for polymer solutions [39] because

thermodynamic quantities, such as counterion activities [40] and osmotic coefficients [41], show

a pronounced signature of Manning condensation.

Adding salt to a dilute solution of PELs the electrostatic interaction between charged

monomers become short-ranged, eqn. 2.68, with the Debye screening length for a added 1:1

salt reads

λD =
1√

4πλB(2cs + cci)
, (2.75)

where cs and cci are the salt and counterion concentrations, respectively. The so-called Debye-

Hückel potential is used in many theoretical studies of PEL solutions. The introduction of

such an effective pair potential requires, however, two conditions: (i) The ionic solution has

to be dilute. (ii) The perturbation caused by the macroion has to be weak. For strongly

charged PELs, the second condition can be rather critical and nonlinear phenomena like, e.g,

counterion condensation cannot be described within this frame work, but have to be added by

hand as mentioned above. At physiological conditions the salt concentration is cs ≈ 0.1M and

therefore λD ≈ 1nm. Depending on the ionic strength, λD can vary typically from less than

1nm to more than 100nm. While at large λD screening can be neglected, and assuming for

flexible chain the electrostatic repulsion to be the major contribution to second virial coefficient
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one obtains [29]

ve ' L2
eλD, (2.76)

which is called the electrostatic excluded volume. Thus, due to the reduction of the (screened)

long-range Coulomb interaction to an excluded volume interaction charged chains show the

same behavior as an uncharged chain in a good solvent. The only effect is a shift of the θ-

temperature due to the increased effective excluded volume. Upon further increase of salt, the

electrostatic excluded volume is modified as [44]

ve ' f2λBλ
2
D. (2.77)

Thus, varying salt concentration is a simple tool to tune the conformation of PELs. For a

simple but complete scaling picture of the dependence of PEL solutions on salt concentration

see, e.g., reference [43].

2.2 Tethered chains

The study of tethered polymer chains is an area of increasing interest [5]. Tethered polymer

chains refers to macromolecular chains that are attached into micro structures by their ends.

Highly branched polymers, polymer micelles and end-grafted chains on surfaces are few ex-

amples (see Figure 2.2). Tethering can be reversible or irreversible and can be on various

geometries (e.g. flat and curved surfaces) and is frequently sufficiently dense that the chains

are crowded. All structures in Figure 2.2 have chains tethered to some grafting site. In star-

branched polymers, the grafting site is the central point. In graft-polymers, it is the backbone

line. End-functionalized polymers can be adsorbed or bound by those ends to a surface. In

block copolymers, the tethering site is the interface between blocks of different, usually im-

miscible, chemical structure. The later two structures have amphiphilic character. Therefore

they are able to form aggregates or microstructures such as micelles, microemulsions, and

vesicles. Industrial application comes from the fact that tethered polymers can help stabiliz-

ing colloid particles in solution against flocculation [52]. For end-tethered polymer structures,

the stabilization power is greatly enhanced compared to adsorbed polymer layers, where each

monomer has a tendency to attract to the substrate. The main reason is that bridging of

polymers between two approaching surfaces and creation of polymer loops on the same surface

is very frequent in the case of polymer adsorption and eventually leads to attraction between

two particle surfaces and thus destabilization. This does not happen if the polymer is grafted

by one of its ends to the surface and the monomers are chosen such that they do not adsorb

to the surface. Additional interest in tethered polymer chains is due to their technological

applications in lubrication [53]. Experimentally two basic ways of preparing a grafted polymer

layer can be distinguished (see Figure 2.3):
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(a)

(b)

(c)

multi-arm stars

polymers attached

to a backbone

micelles
block copolymers

at fluid-fluid interface

mixed adsorbed layersABC triblocks at 

fluid-fluid interface

Figure 2.2: Tethered polymer chains: (a) bulk homopolymers; (b) block copolymers; (c) mixed
layers.

(i) grafting-from procedure: Polymerization is started from the surface with some suitably

chosen surface-linked initiator. The reaction kinetics is comparatively fast here, because

only monomers have to diffuse through the forming brush layer.

(ii) grafting-to procedure: Here one attaches polymer with special end groups that act as

anchors on the surface. Grafting-to procedure is subject to slow kinetics during the for-

mation stage compared to grafting-from procedure since whole of the polymer molecules

have to diffuse through the natant grafting layer, but benefits from a better control over

the brush constitution and chemical composition.

One distinguishes physical adsorption of end-groups that favor the substrate (binding energy

of order 10kBT ), for example zwitter-ionic end-groups attached to polystyrene chains that

lead to binding to mica in organic solvents such as toulene [68]. Covalently end-grafted chains
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(a)

grafting-from grafting-to

active growing center

(b)

Figure 2.3: General schemes showing grafting processes leading to anchored polymer chains:
(a) grafting-from process; (b) grafting-to process.

(binding energy of order several hundred kBT ) yield much stable and well defined system, for

example, poly-dimethylsiloxane chains which carry hydroxyl end groups undergo condensation

reactions with silanols of a silica surface [69]. Diblock copolymers can be employed to make

tethered layers where, one block adsorbs on the surface and the other is repelled from it. An

example is furnished by polystyrene-poly(vinylpyridine) (PS-PVP) diblocks in the selective

solvent toulene, which is a bad solvent for the PVP block promoting its adsorption on to a

quartz substrate, but acts as a good solvent for the PS block and disfavors its adsorption on

the substrate [70]. This method using diblock copolymers can be extended to study systems

at liquid-air or liquid-liquid interfaces. The main advantage of using diblock copolymers in

such environments is that the grafting density can be varied (for densely anchored polymers)

by lateral compression (like a Langmuir monolayer) and that the lateral surface pressure can

be directly measured which allows comparison with theoretical predictions [71].

Depending on the grafting density ρa, which is the inverse of the area per end-tethered

chains on a surface, two different regimes are distinguished (see Figure 2.4). In the low-density

regime, ρa < ρ∗a, the anchoring distance ρ
−1/2
a is larger compared to the chain size so that the

chains hardly interact each other atleast if there are no long-ranged interactions. The polymers

in this case form well separated mushrooms at the surface. The grafting density at which chains

just start to overlap is determined by ρ∗a ∼ R−2 where R is the typical radius or size of the

chain. For a polymer in good solvent condition where R ' bN 3/5 (see eqn. 2.51), where N is

the polymerization index or monomer number of the chain, and b is the monomer dimension.
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(a)

mushrooms brush

h

ρ

R

a
-1/2

ρ
a

-1/2

(b)

Figure 2.4: Schematic representations of grafted chains: (a) mushroom regime, where the

distance between chains ρ
−1/2
a is larger than the polymer size R; (b) brush regime where ρ

−1/2
a

is smaller than R and chains are stretched away from the surface due to repulsive interactions
between monomers.

Therefore the crossover grafting density for a polymer under good solvent condition becomes

ρ∗a ∼ b−2N−6/5. (2.78)

For large grafting densities ρa > ρ∗a the chains are strongly overlapping. Since we assume the

solvent to be good, monomers repel each other. The lateral separation between the polymer

coils is fixed by the grafting density, so that the polymers extend away from the grafting

surface in order to avoid each other. The resulting structure is called a polymer brush, with

a vertical height h which can greatly exceed the unperturbed coil size R.

In the case of tethered PEL chains the polymer chains also carry ionizable groups. Tethered

PEL chains share many of the features discussed above for tethered polymer chains, but

qualitatively new properties emerge due to the presence of charged monomers and counterions.

From the application point of view tethering PELs to colloid particles in polar media (such

as aqueous solutions) prevents them from flocculating and precipitating out in solutions [52].

Further interest in these systems is due to the fact that tethered structures of PELs are found

in various biological systems, e.g., the protecting envelope of cells (glycocalix).

The understanding of grafted polymer systems progressed substantially with the advent

of experimental techniques such as surface forces apparatus (SFA) [82, 119], atomic force mi-

croscopy (AFM) [50], neutron reflectivity [111], infrared spectroscopy (IR) [111], X-ray re-

flectivity [113], small angle neutron scattering (SANS) [114], dynamic light scattering (DLS)

[116, 117], ellipsometry [110], Fourier transform infrared (FTIR) [122], and isotherm [109]. In
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particular, these methods are used to characterize tethered polymers and PEL chains. How-

ever, appropriate experimental methods have to be chosen, depending on the sample and, of

course, on the kind of information one would like to obtain. For example, a SFA directly

measures interaction forces between two surfaces (surfaces tethered with polymer chains, for

instance, apposing each other), as a function of surface separation [82]. In contrast to surface

force experiments [119], neutron reflectivity [111] and small angle neutron scattering [114] give

informations on the inner structure of the tethered chains.

In the next sections following, we will focus mainly on densely end grafted polymer systems.

However, a more detailed review on the behavior of adsorbed or tethered neutral and charged

chains at interfaces can be found in reference [51], with a special attention to the case of

charged polymers.

2.2.1 Uncharged polymer brushes

Polymer brushes consist of an assembly of polymer chains which are densely tethered by one

end to a surface or interface [5]. Due to various forces, tethered chains are enforced to take

an elongated brush like conformation (see Figure 2.4 (b)). Polymer brushes have attracted

considerable attention, with many theoretical efforts in studies on the structure and phase

behavior of such polymer chains in contact with a solvent [8, 54–60, 62]. They have found

application in a broad range of fields, including colloid stabilization [74], tailoring surface

properties and chemical gates [75]. Here we focus on polymers that are irreversibly grafted by

one end to the substrate, where the substrate is assumed to be solid, planar and impenetrable

to the polymer monomers. Additional effects include, e.g., polymers that have a tendency

to adsorb to the substrate, brushes at curved interfaces, mixed brushes made of mutually

incompatible grafted chains, grafted polymer layers in contact with a poor or θ solvent, and

polymers end-grafted to fluid membranes. Most of these effects have been well studied, e.g.,

polymers which are attached to a fluid membrane, where essentially tensionless and very

flexible surfaces are provided by membranes such as lipid bilayers in their fluid state [61].

Polymers which are attached to a fluid membrane by a single anchor exhibit a dilute mushroom

regime and a semidilute brush regime, where scaling arguments and explicit calculations for

ideal polymers show that the membrane is bent by the anchored polymer [62]. A rather

nice discussion on additional effects considered in polymer brush systems can be found in

reference [66] and the references therein.

In general, the behavior densely grafted polymer chains at a planar or curved surface is

fundamentally different from that of free chains in solution. However, the theory is today quite

well developed both analytically and numerically.
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2.2.1.1 Scaling behavior of polymer brushes

The thickness of a neutral brush scales linearly with the chain length N , which is in obvious

contrast to the well-known characteristics of free polymer chains in a good solvent, where the

end-to-end distance scales as R ' N 3/5. For neutral brushes the simple scaling laws connecting

grafting density and molecular weight with brush height were first derived by Alexander [8]

and de Gennes [54, 55]. The scaling behavior can be analyzed using a Flory-like mean-field

theory, which is a simplified version of the original Alexander theory [8] for polymer brushes.

The main contribution to the polymer free energy comes from the elastic response due to

stretching of chains, which leads to an entropic free energy7 loss of (see eqn. 2.22)

Fst '
ρah

2

Nb2
, (2.79)

where ρa is the anchoring density, h the brush height, and b being the segment length. Fv2

is the second virial contribution to the free energy, arising from steric repulsion between the

monomers (see eqn. 2.49)

Fv2 ' v2h

(
ρaN

h

)2

, (2.80)

where v2 is the second virial. The total free energy F can be now written down as the sum of

the attractive (eqn. 2.79) and repulsive (eqn. 2.80) contributions to the chain conformation

as

F = Fst + Fv2 (2.81)

Evaluating the partial pressures given by the thermodynamic relation π = −(∂F/∂h)T,N the

two terms in eqn. 2.81 yield

πst ' −
ρah

(Nb2)
, (2.82)

πv2 ' v2

(
ρaN

h

)2

. (2.83)

Minimizing F with respect to h or balancing the corresponding partial pressures (πst = −πv2)

gives

h ' Nb(v2ρa/b)
1/3. (2.84)

The linear relation between the brush height h with the polymerization index N is a clear

signature of the strong stretching of the polymer chains, as was originally obtained by Alexan-

der [8]. At the crossover grafting density, ρ∗a ∼ b−2N−6/5 (see eqn. 2.78) the height scales as

h ∼ N3/5, and thus agrees with the scaling of an unperturbed chain radius in a good solvent,

eqn. 2.51, as expected. The simple scaling calculation above predicts the brush height h cor-

rectly in the asymptotic limit of long chains and strong overlap. This result is consistent with

7From now on we write all free energy expressions per unit area and in units of thermal energy kBT .
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the more sophisticated scaling analysis by de Gennes viewing the brush as a stack of blobs [55].

In general, one finds that for high enough coverage that the chains overlap, h scales as

h ∼ N(ρa)(1−ν)/2ν , (2.85)

where the exponent ν is the usual Flory exponent for the solvent quality.

This general scaling of the brush height have since largely been confirmed by more sophis-

ticated theories [56–60], direct numerical solutions [64, 65], simulations [66, 67], and experi-

ments [68–70, 72, 73].

The above scaling result assumes that all chains are stretched exactly to the same height,

leading to a step-like shape for the density profile. However, Monte-Carlo and numerical mean

field calculations exhibit a density profile which decreases monotonously to zero at the rim [64].

A better understanding of strong-stretching limit of polymer chains was made possible by

Semenov [63], who recognized the importance of classical paths for such systems.

2.2.1.2 Interacting polymer brushes

Two polymer brushes repel each other as they are brought into contact. This repulsion,

which is a result of the steric (entropic) interaction between the polymer segments, is the

basis for colloid stabilization. This created an ample interest for studying these systems in

detail. Experimental studies of such systems have focused on the direct measurements of the

force between two surfaces onto which polymers have been terminally attached [68,78–80,82].

Theoretical treatments have utilized scaling arguments [8, 76] numerical self-consistent-field

(SCF) calculations [64,81], and analytical SCF equations [56] suitable for the limiting case of

high molecular weight. These studies predict the equilibrium configuration of such brushes

as well as the force profiles of two such brushes under compression. The forces obtained

between the surfaces as a function of their separation can be described both by scaling and

SCF theories and agree with the experimental force measurements [79] obtained using surface

force apparatus.

However an important question not addressed by these theories and experiment is the

extent of the interpenetration of the polymers from the two brushes. Both SCF and scaling

theories assume that there is no interpenetration. Such questions, however, was answered by

detailed molecular simulations in reference [66], where the interpenetration in the compressed

brushes is described by a simple scaling form. It was found that for end-grafted polymers

between parallel surfaces, the interaction is purely repulsive and it sets in as soon as the

brushes touch each other before any interpenetration occurs [66].

Additional effects considered for interacting polymer brushes include, e.g., the penetration

of a finite size particle into an end-grafted polymer layer [83], and applying shear forces between

polymer brushes. In particular, neutral polymer brushes may lead to comparatively a massive

reduction in sliding friction between the surfaces to which they are attached [84].
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Figure 2.5: PEL brushes: (a) at air-water interface; (b) colloid particle covered by brush; (c)
free-standing bilayer; (d) anchored to a solid surface.

2.2.2 Polyelectrolyte brushes

Polyelectrolyte brushes consist of charged polymers densely end-grafted to surfaces of various

geometries (see Figure 2.5). PEL brushes are of two kinds. Strong or quenched PEL brushes

and weak or annealed PEL brushes. Here we restrict ourself to the case of quenched PELs end-

tethered to a planar solid. However, weak polyelectrolyte brushes with an annealed charge

distribution exhibit specific features [6, 7, 92]. Polyelectrolyte brushes form the subject of

increasing interest by theory [9, 85–99], simulation [100–105] and experiment [10, 107–121].

Technological applications of PEL brushes includes, e.g., colloid stabilization [52], pH-

controlled gating [126], and surface treatment and modification [127]. The colloid stabilization

arises from steric (entropic) as well as electrostatic repulsion between the tethered chains. A

strongly charged brush is able to trap its own counterions and generates a layer of locally

enhanced salt concentration [9]. It is thus less sensitive to the salinity of the surrounding

aqueous medium than a stabilization mechanism based on pure electrostatics (i.e. without

polymers).

The general methods employed to graft polymer chains can also be employed for PEL

brushes. However, in their preparation as opposite to neutral polymer chains, electrostatic

Table 2.1: A rough guide to experimental methods employed in studying properties of PEL
brushes.

Properties or characteristics Method

Chemical structure information FTIR

Brush layer thickness SFA, AFM, neutron scattering, neutron reflectivity,
X-ray reflectivity, DLS, ellipsometry

Brush density Neutron scattering, neutron reflectivity,
X-ray reflectivity, DLS, isotherm

Surface charge interactions SFA, AFM, isotherm
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repulsions due to charges of the PEL chains are often so strong, especially in pure water, that

they do not allow the chains to build a dense brush. Three major approaches are: (1) Langmuir-

Blodgett method, (2) adsorption method, and (3) covalent bonding method. The Langmuir-

Blodgett method uses amphiphiles bearing PELs as the hydrophilic group and prepares the

brush at the air-water interface, which can be deposited on a solid substrate [109]. The

second method also uses amphiphiles where the hydrophobic part can attach to a hydrophobic

substrate and anchor the PEL chain [116]. The third method consists of grafting a diblock

copolymer to a solid surface via a short, hydrophobic, reactive end group, which forms a

covalent bond (grafting-to method). After grafting, the polyelectrolyte is formed by performing

an ionization reaction on the longer block, which becomes hydrophilic [114].

Experimental methods applied to study tethered polymers can also be used for charac-

terizing PEL brushes. Various experimental techniques employed to study the structure and

properties of PEL brushes is roughly summarized in Table 2.1 together with informations the

measurements provide.

2.2.2.1 Scaling behavior of PEL brushes

Theoretical work on polyelectrolyte brushes was initiated by the works of Miklavic and Marčelja

[85] and Misra et al. [86]. Depending on grafting density ρa, degree of charging f and on the

ionic strength of the medium quenched polyelectrolyte brushes exhibit a wide spectrum of dif-

ferent structures. Beginning in the last decade, the scaling behavior of strong polyelectrolyte

brushes has been studied extensively from a theoretical point of view (see for a brief review,

e.g., reference [19]). In 1991, Pincus [9] and Borisov et al. [87] presented scaling theories for

charged brushes in the so-called osmotic regime, where the brush height results from the bal-

ance between the chain elasticity (which tends to decrease the brush height) and the repulsive

osmotic counterion pressure (which tends to increase the brush height). In later studies, these

works have been generalized to poor solvents [88, 95] and to the regime where excluded vol-

ume effects become important, the so-called quasi-neutral or Alexander regime [97], and the

diagram of states of a polyelectrolyte brush was established [97].

To understand the scaling picture, assume a box model [89], where the charged brush is

characterized by two length scales. The polymer chains are assumed to extend to a distance h

from the grafting surface, the counterions in general form a layer with a thickness of H. Two

different scenarios emerge, as is schematically presented in Figure 2.6. The counterions can

either extend outside the brush, H � h, as shown in Figure 2.6(a), or be confined inside the

brush, H ≈ h as shown in Figure 2.6(b). The case (a) is indicative of weakly charged brushes,

while case (b) is typical for strongly charged brushes, both of which will be discussed below.

Assuming the case of no added salt and for unit counterion valency, the contributions to the

free energy are discussed below.

There are three repulsive contributions to the free energy. The osmotic free energy Fos
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Figure 2.6: Schematic PEL brush structure: (a) weak charging limit where the counterion
cloud has a thickness H larger than the thickness of the brush layer h; (b) opposite case of
strong charging limit, where all counterions are contained inside the brush and a single length
scale h ≈ H exists.

associated with the ideal entropy cost of confining the counterions to a layer of thickness H is

given by

Fos ' Nfρaln
Nfρa

H
. (2.86)

Fv2 is the second virial contribution to the free energy, arising from steric repulsion between

the monomers (contributions due to counter ions are neglected). Polymers are assumed to be

in a good solvent (v2 > 0). The contribution thus reads as given in eqn. 2.80.

Finally, a direct electrostatic contribution Fel occurs if the PE brush is not locally electro-

neutral throughout the system, as for example is depicted in Figure 2.6(a). This is given
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by [93]

Fel ' λB(Nfρa)2 (h−H)2

H
. (2.87)

This situation arises in the limit of low charge, when the counterion density profile extends

beyond the brush layer, i.e., H > h.

The attractive free energy contribution is the the stretching free energy Fst for the poly-

electrlyte chain as given in eqn. 2.79.

In strongly charged brushes with a large effective charge density of grafted PELs, i.e. for

not too small grafting densities and degree of charging, effectively all the counterions are

trapped inside the brush. Roughly speaking, this is the case when the Gouy-Chapman length

λGC =
1

2πλBNfρa
, (2.88)

which is the height at which counterions are effectively bound to a surface of charge density

efNρa [9], is small compared to the brush height h (Here λB = e2/(4πε0εkBT ) is the Bjerrum

length). This assumption can be explained as below. Consider the case where the counterions

leave the brush, i.e., H > h. In this case, minimization of Fos + Fel with respect to the

counterion height H for an infinitely thin brush layer (h = 0) leads to a height

H ' 3λGC, (2.89)

which scales linearly with the Gouy Chapman length , eqn. 2.88. Similarly, minimizing Fos+Fel

with respect to H, but now for a finite brush height h one obtains (to first order in powers of

(H − h)/h) [10]

H ' h+ 3λGC/2. (2.90)

Because for a typical fully charged brush the Gouy-Chapman length λGC is of the order of

0.1 nm or less, the counterion layer basically has the same height as the brush layer. In that

situation, the direct electrostatic contribution Fel vanishes. There are two ways of balancing

the remaining free energy contributions. First, the free energy F can be written as the sum of

Fos and Fst. Minimizing Fos +Fst with respect to the brush height h or, equivalently, balancing

the corresponding partial pressures (as discussed in the case of neutral brushes)

πos '
Nfρa

h
, (2.91)

and eqn. 2.82 one obtains in the so-called osmotic brush regime [9]

h ' Nbf1/2. (2.92)

Note that the predicted brush height is independent of the grafting density ρa. If polyelec-
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trolyte brushes with very high grafting densities are considered the excluded volume interaction

can no longer be neglected. If steric effects dominate over electrostatic effects the elastic pres-

sure is again balanced by a second virial term and the behavior of the neutral brush, discussed

above in eq. (2.84), is recovered. Precisely speaking, the prefactor is increased due to an

electrostatic contribution to the excluded volume. In this case, however, the scaling proper-

ties of the brush depend strongly on the relative strength of the interaction of the polymer

with the aqueous environment compared to the polymer-polymer interactions. The interac-

tions of the polymer with water, however, will be in many systems strongly altered by charge

recombination.

On the other hand, if the grafting density ρa and/or the degree of charging f is reduced

the Gouy Chapman length can become larger than the brush height h. Then the counterion

distribution extends beyond the rim of the brush, and one enters the weak charging limit.

In this case the direct electrostatic forces caused by locally uncompensated charges dominate

chain stretching. Minimization of Fst + Fel with respect to h or balancing the corresponding

partial pressures

πel ' λB(Nfρa)2, (2.93)

and eqn. 2.82, in the so-called charged or Pincus brush regime (PB), the brush height reads [9]

h ' N3(bf)2λBρa, (2.94)

which is dependent on the grafting density. However, as the phase region where such inter-

actions dominate is rather narrow and the absolute changes in brush height are expected to

be quite small, an experimental confirmation of such a polyelectrolyte brush phase remains

extremely difficult.

Molecular simulation studies on PEL brushes were also employed to check theoretical pre-

dictions. Following the self-consistent work in references [85] and [86], polyelectrolyte brush

structure has been studied numerically by a combination of Monte Carlo and mean-field theory,

using the Poisson-Boltzmann equation to handle electrostatic interactions [100]. Within the

Debye-Hückel approximation, an enumeration study [91] and a Monte Carlo and self-consistent

field approach were employed [102]. In reference [101], a Monte Carlo simulation of two inter-

acting polyelectrolyte brushes was performed with a truncated Coulomb potential. Recently,

molecular dynamics simulations of polyelectrolyte brushes in salt-free solution at varying graft-

ing density and charge fraction, at both relatively strong and moderate electrostatic coupling

were performed [104,105]. In these studies, any mean-field treatment or truncation is avoided.

Treating the full Coulomb interaction, counterions are included explicitly. Varying the Bjer-

rum length λB, a non-monotonic behavior of the brush height is obtained [105]. Furthermore,

two novel brush regimes first obtained by simulation and having features not predicted by

previous theories were reported. At relatively strong interaction strength λB ≈ 14b a new
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Figure 2.7: Average height of chain ends 〈ze〉 (squares), rescaled with the contour length Nb
(N = 30), versus Bjerrum length λB at grafting density ρaσ

2 = 0.02. The dot-dashed line
indicates 〈ze〉 of an identical system of uncharged chains.

collapsed regime is observed where the monomer density becomes independent of the grafting

density resulting in a linear scaling of the brush height with ρa [104]. In Figure 2.7 plotted is

the average height of chain ends 〈ze〉 against the Bjerrum length λB for a polyelectrolyte brush

with completely charged chains of length N = 30. Considering Figure 2.7, for λB & 9b it is

observed that the stretching of the chains is indeed smaller than in a corresponding uncharged

brush, indicating the influence of attraction due to electrostatic correlations.

Including electrostatic correlations, which cause an attractive interaction, the nature of the

collapsed regime can be understood within an extended scaling model [93]. In the bulk and in

the low density limit, for H = h, the DH free energy FDH reads

FDH ' −h
(
NfλBρa

h

)3/2

. (2.95)

A novel collapsed brush regime is obtained at strong coupling λ3
B > v2 and strong charging

f > (v2/λ
3
B)1/2 by comparing Fv2 and FDH which give the brush height [93]

h ' Nρa
(1 + f)4v2

2

f3λ3
B

. (2.96)

Note that in the CB regime the DH term induces a scaling where h ∼ Nρa, i.e., the system
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maintains a constant particle density. An additional length scale enters, namely the Bjerrum

length.

Reducing λB, the collapsed brush regime disappears [105] as predicted by the extended

scaling model [93]. This is also evident in Figure 2.7. The maximum brush height occurs at

λB ≈ b. For smaller λB, the Gouy-Chapman length becomes larger than the brush height.

Hence, counterions are expected to leave the brush, and the residual electrostatic repulsion

between charged monomers is rather weak, leading to its relaxation back to the reduced ex-

tension of an quasi-neutral brush. Close to the maximum height a stretching of the chains up

to about 2/3 of their contour length is observed. This is certainly beyond the range where

Gaussian elasticity can be applied. However, contrary to the scaling law of the osmotic regime,

the brush height exhibits still a weak dependence on ρa [105] (also see chapter 4). The cor-

responding brush regime is called nonlinear osmotic. This behavior can be reproduced by

allowing a laterally inhomogeneous distribution of counterions [94] and/or taking into account

the self-volume of polymers (see chapter 4).

2.2.2.2 PEL brushes with added salt

The picture of the polyelectrolyte brush behavior changes if salt is added to the solution.

Varying salt concentration is an important parameter to tune structure and properties of

PELs. Both in experiment [113–121] and in theoretical work [9,95–99], polyelectrolyte brushes

with added salt form an interesting subject, where main attention is focused on the behavior

of brush height and segment density profiles at varying salt concentration. Several models

have been proposed to understand the effect of additional salt on the brush height (for a

brief review see, e.g., references [116,117]). Consider the case when all counterions stay inside

the brush layer. The addition of monovalent salt of concentration cs gives rise to a Debye

screening length λD = κ−1
s = (8πλBcs)

−1/2. With an increase in the salt concentration, the

Debye screening is expected to reduce the counterion osmotic pressure, eqn. 2.91, as

πci ' πosκ
2
0/κ

2 = cmfκ
2
0/κ

2, (2.97)

where polymer concentration cm = Nρa/h, κ−1
0 = (4πλBfcm)−1/2 is the screening length

associated with the counterions alone and κ2 = κ2
0 + κ2

s . In the limit of κs � κ0 the osmotic

pressure, eqn. 2.97, becomes

πci ' c2mf2/cs ' veffc
2
m (2.98)

which is basically the expression of a second virial osmotic pressure. The effective excluded

volume parameter veff , however, now reads veff ' f2/cs. Using eqn. 2.98 for the osmotic

pressure, and balancing this against the polymer entropy loss on expanding, eqn. 2.82, yields
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the scaling result [9]

h ' Nb
(
ρaf

2

bcs

)1/3

, (2.99)

i.e., the brush height h decrease with cs but only as a relatively weak power law. Later on the

prediction has been confirmed and generalized by using refined theoretical approaches [95–98].

However, there is also a different prediction expecting a h ∼ c−2/3
s scaling [99].

Weak polyelectrolyte brushes consist of anchored polymer chains, where an equilibrium

exists between neutral, undissociated and the charged, dissociated moieties. In such systems

the degree of dissociation depends on the local pH value [6]. Examples of such systems are

weak polyacids. At low pH a large abundance of protons will result in a low charge density

due to protonation of the salt moieties. A number of molecular parameters such as the charge

density on the brush, the concentration of free counterions, and the degree of swelling can

therefore be tuned via adjustment of the pH.

Upon the addition of large amounts of salt, weak polyelectrolyte brushes shrink similar to

what is expected for strong polyelectrolyte brushes eq. (2.99) [6, 7, 92]. Theoretical expecta-

tions for the swelling behavior of weak brushes at low salt concentrations are, on the other

hand, somewhat counter-intuitive. If only small amounts of salt are added to the solution

the brush height increases. The reason for such a behavior is that the local concentration

of protons in the brush is governed by the requirement of charge neutrality. However, when

the ambient solvent contains ions other than protons, some of these cations can be exchanged

with the protons without violation of charge neutrality. Hence, the degree of dissociation of

the acid/base moieties on the polymer chains changes. Generally, some of the cations might

also recombine with the acidic groups to yield a salt. The binding constant for this kind of

association, however, is much lower than the binding constant of the pure acid/base equilib-

rium. As a consequence, a net increase of charge therefore remains, resulting in an increase in

osmotic pressure. Thus the height of the weak polyacid brush increases with increasing salt

concentration. This process has been thoroughly studied [6, 7, 92]. The outcome is a weak

power law dependency predicted for the scaling of the brush height on the salt concentration,

h ' Nbc1/3
s ρ−1/3

a . (2.100)

2.2.2.3 Donnan equilibrium for PEL brushes

In the present analysis, consider the polyelectrolyte brush as a system that consists of two

different solutions separated by a semi-permeable membrane, permeable to small ions but

not to macroions. As first pointed out in 1911 by F.G. Donnan [160], the difference of the

electrostatic potential on both sides of the membrane causes a unequal distribution of the

small ions.

Thermodynamic parameters on the polymer-free side will be designated by a single prime
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while doubly primed ones are related to the polymer-containing part. For simplicity, we are

dealing with 1-1 electrolytes and the macroion counterions are assumed to be identical to the

salt counterions. Consider macroions of charge Z = fN while M+ and X− are to refer to the

small ions, both of originally counterions and of an added salt.

To study the thermodynamic behavior of electrolytes in solution it is appropriate to express

the composition of the solution not in terms of the ionic species but in terms of neutral

components. A convenient definition uses the following three components: component 1 -

solvent (usually water), component 2 - macroion + Z/2 ions X− - Z/2 ions M+, component 3

- neutral salt, MX. Because we are interested in the equilibrium distribution of the small ions,

here we focus the analysis on component 3. The condition for thermodynamic equilibrium is

given by the equality of the corresponding chemical potentials

µ′3 = µ′′3. (2.101)

For simple 1-1 electrolytes, it is most convenient to transform eq. (2.101) into a relation

between activities ai. On the side free from macroions, we have directly

µ′3 = µ0
3 +RT lna′3. (2.102)

where µ0
3 is the chemical potential at a reference state. Neglecting the effect of the osmotic

pressure, that gives for reasonable parameters a change in a3 of about 0.05% [161], on the

macroion-containing side it holds a similar expression

µ′′3 = µ0
3 +RT lna′′3. (2.103)

Thus, eq. (2.101) becomes simply

a′3 = a′′3. (2.104)

Since the activity of an electrolyte is the product of the constituent ion activities, a3 = a+a−,

eq. (2.104) yields

a′+a
′
− = a′′+a

′′
−. (2.105)

Replacing the activity by the product of ion concentration c± and ion activity coefficient γ±,

a± = c±γ±, and assuming the same activity coefficients on both sides, eq. (2.105) gives

n′+n
′
−

(Lz − h)2
=
n′′+n

′′
−

h2
, (2.106)

where n′+(n′−) and n′′+(n′′−) are the number of positive (negative) ions in the polymer-free and

polymer-containing side, respectively. The demarcation line between the two sides is given

by the brush height h which in our case is determined by the inflection point height z i (see

Sec. 5.1). Lz is the total height of the simulation box. Additionally, we have the condition of
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electroneutrality on both sides, that gives

n′+
Lz − h

=
n′−

Lz − h
≡ c′s
ρa
. (2.107)

and

n′′+ − n′′− = fN, (2.108)

respectively, where cs is the salt concentration. The combination of eqs. (2.106) - (2.108)

yields

n′′+
2 − fNn′′+ = c′s

2
(
h

ρa

)2

,

n′′−
2

+ fNn′′− = c′s
2
(
h

ρa

)2

. (2.109)

Defining the corresponding concentrations of small ions by c′′si = (n′′+ + n′′−)ρa/h and c′si =

(n′+ + n′−)ρa/(Lz − h), finally one obtains for the ratio of small ions on both sides

c′si
c′′si

=

[
1 +

(
fNρa

2hc′s

)2]−1/2

, (2.110)

which represents the classical Donnan equilibrium expression for the particular brush system.

Note the asymptotic behavior at large salt concentration where eq. (2.110) gives c ′si = c′′si,

i.e., a homogeneous distribution at the whole system. However, below we will see that the

assumption of point-like ions made in the derivation of eq. 2.110 disagrees with simulation

results due to high concentration in the brush state (see section 5.4).

2.2.2.4 Interacting PEL brushes

Interactions between two PEL brushes have received lot of attention recently, the main chal-

lenge being to capture and understand structure and forces in such systems under various

conditions [9, 119, 122–125]. PEL brushes attached to surfaces rubbing across an aqueous

medium provide means of efficient lubrication [123]. Inspired by biology, scientist are trying

reduce mechanical wear by using biolubrication [124].

Recently, using surface forces apparatus the forces arising from two opposing PEL layers

of sodium poly(styrenesulfonate) anchored at solid-liquid interface have been measured [119].

In the regions of weaker compression of the brushes, the experimental force-distance profiles

are successfully explained based on equations derived from the scaling theory by Pincus [9].

Differences occur for higher compression where it appears that there is more resistance to com-

pression of the two PEL layers in the high salt regime than at low concentration of additional

salt. In this situation, simulation could provide further insight into the behavior of interacting
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PEL layers and stimulate further development of the theory.

The scaling arguments by Pincus for two PEL brushes compressed between walls is based

on the osmotic pressure of counterions in the brush. The pressure (at or below the region

where the brushes start to overlap) reads (see eqn. 2.91)

π ' fNρa/D, (2.111)

where D is the separation between the two anchoring planes.

At large separations D where the brushes may not overlap, however the counterions can still

interact. For surface force measurements on weakly charged interacting PEL brushes, where

the counterions extent well beyond the brush, the double layer theory (DLVO) can explain

the π − D relation, but the theory is not satisfactory at high compressions [122, 123]. The

situation might be different in the case of strongly charged brushes because the counterions

stay inside the brush and any long range effects might not be obtained in the interaction force

profiles [119].



Chapter 3

Simulation model and method

In recent years computer simulation has became a major tool in polymer science complementing

both analytical theory and experiment. Simulations are able to check theoretical models and

to probe quantities and regimes which are not easily observable experimentally [141]. However,

despite strong efforts in recent years [142], simulations of PELs remain still challenging. First,

long chain molecules relax slowly, and the energy landscape of a dense polymer system is

highly complex containing large regions of metastability. To obtain satisfactory statistics,

one has to resort to long simulation times. Second, the correct treatment of the long-ranged

Coulomb interaction in a periodic system requires special methods which are computationally

expensive (see section 3.2.2). This task is even more demanding in a brush geometry with

planar periodicity in the anchoring plane and a finite slab perpendicular to this plane. Here,

a straightforward application of Ewald sums is not possible [143]. Third, special attention on

finite system size has to be taken due to the long-range nature of Coulomb interactions. For

the reasons outlined above, only a few simulation studies of polyelectrolyte brushes are known

in literature [100–105].

Usually the most time consuming part in the simulation code for PELs is the evaluation

of Coulomb interactions. In principle, each charge qi at position ri interacts with all others,

leading to a computational effort of O(N 2
tot) already within the central simulation box (Ntot

is the total number of charged particles). For many physical investigations one wants to

simulate bulk properties and therefore introduces periodic boundary conditions to avoid surface

effects [156]. The Coulomb energy then has to be computed as a sum over all periodic images

which can be done, for instance, using the Ewald summation method [22]. However, the

computational times have been so long that simulations of PELs have used, e.g., the minimum

image method which only include all Coulomb interaction within the minimum image [135],

and the Debye-Hückel (DH) approximation (eqn. 2.68) for the Coulomb interaction [102,

133, 134]. The advantage of DH approximation is that the potential is finite ranged and

counterions and salt ions are not simulated explicitly. Thus, DH simulations are much faster

than ones which explicitly treat each Coulomb interaction. But the general disadvantage of
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(a) (b) (c)

Figure 3.1: Schematic representation of the simulation model: (a) PEL brush; (b) PEL brushes
with added salt; (c) two interacting PEL brushes.

the DH approximation is that it is not probably realistic for many of the relevant range of

parameters, except at very dilute concentrations, high salt concentrations or for Coulomb

interaction energies less than thermal energy kBT . Hence, DH approximations are typically

suspect for strongly charged polyelectrolytes because the Coulomb interaction energies for

these systems are often greater than kBT . That is why for the simulation of PEL brushes, the

full Coulomb interaction of monomers, counterions, and salt ions is explicitly treated here.

This chapter presents the simulation model and method used to study polyelectrolyte

brushes. The technical task to treat long ranged Coulomb interaction, especially applied to

the brush system, is also discussed.

3.1 Simulation model

In this study an off-lattice model (see Figure 3.1(a)) is used where the brush is represented

by M freely jointed bead-spring chains of length N + 1 which are anchored by one end to an

uncharged planar surface at z = 0. Within the simulation box of size L× L× Lz the grafting

density is given by ρa = M/L2. The uncharged anchor segments are fixed and form a square

lattice with lattice spacing d = ρ
−1/2
a . For completely charged chains, due to electroneutrality

there are M × N monovalent counterions. Additional salt ions of monovalent 1:1 type are

modeled exactly in the same way as counterions (Figure 3.1(b)). For a system of two apposing

planar surfaces with grafted polyelectrolytes, the model is identical to the brush grafted to

a single planar surface except that a second similarly anchored brush is assigned to the top

planar surface.

The chains are assumed to be in a good solvent modeled by a purely repulsive short-range
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Figure 3.2: Potential energy functions for the bead-spring chains. Shown are the FENE
(dotted line), repulsive Lennard-Jones (dashed line), and their sum (solid line). Note that the
maximum bond extension R0 = 1.5σ.

interaction which is described by a shifted Lennard-Jones potential

uLJ(r) =





4ε

{(σ
r
)12 −

(σ
r
)6 −

(
σ
rc

)12
+
(
σ
rc

)6
}
, if r < rc

0 , if r ≥ rc,

(3.1)

where the cutoff radius is rc = 21/6σ and ε, σ are the usual Lennard-Jones parameters. For

simplicity, we assume that monomers, counterions, and the added salt ions have the same

Lennard-Jones diameter σ as well as energy ε. Henceforth, ε and σ are used as basic units of

the model. In addition to the repulsive potential, beads being neighbors along the polymer

chains are coupled by a FENE (finitely extensible nonlinear elastic) bond potential (which is

of an empirical origin) [141]

ubond(r) =





−kR
2
0

2 ln

{
1−
(
r
R0

)2
}
, if r < R0,

∞ , if r ≥ R0,

(3.2)

with bond strength k = 30ε/σ2 and maximum bond length R0 = 1.5σ. These parameters

ensure that a reasonable time step can be employed in simulations but bond crossings are en-
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ergetically infeasible [152]. Figure 3.2 shows the plot of potential energy functions of Lennard-

Jones, FENE and their sum for a pair of bonded monomers. For uncharged chains, this choice

of parameters gives an average bond length of b = 0.97σ [77]. The Coulomb repulsion between

adjacent monomers slightly stretches the bond length compared to uncharged chains, where

b = 0.98σ has been reported, which fluctuates by about 4% [104].

All particles except anchor segments interact repulsively with the grafting surface at short

distances. The exact form of the wall potential is arbitrary. In principle, one can use any

strongly repelling short-range potential. Here we use a potential similar to the shifted Lennard-

Jones potential introduced in eq. (3.1) which vanishes smoothly as z → 0.5σ

uwall(z) =





4ε

[ (
σ

z + ∆z

)12
−
(

σ
z + ∆z

)6
+ 1

4

]
, if z < 0.5σ

0 , if z ≥ 0.5σ,

(3.3)

with ∆z = (21/6 − 0.5)σ.

In addition to the repulsive wall potential at the z = 0 plane, a similar potential is assigned

to the top boundary of the simulation box at z = Lz. This model construction ensure that

divergences at large Gouy-Chapman lengths is prevented. In earlier simulation studies [104,

105], setting Lz = 3Nσ for completely charged chains ensured that the counterions never visit

the z = Lz boundary in the course of the simulations. With additional salt ions, however, the

second wall is necessary to reach a finite salt concentration.

Counterions and salt ions are treated as individual, non-bonded particles and all charged

entities interact with the bare Coulomb interaction

uCoul(r) = kBT qiqj
λB

r
, (3.4)

with qi and qj being the corresponding charges in units of elementary charge e, and λB is the

Bjerrum length (see eqn. 2.69).

The implementation of the long-range Coulomb interaction requires special care. The sim-

ulation box has periodic boundary conditions only in x and y directions while perpendicular to

the grafting surface (z-direction) the system is restricted to one layer. A technique introduced

by Strebel and Sperb [144] and modified by Arnold and Holm [145] for laterally periodic sys-

tems (MMM2D) is applied to account for the long-range nature of Coulomb interactions. This

algorithm’s computation time scales as O(N
5/3
tot log(Ntot)

2), where Ntot is the total number of

charged particles. Although the resulting relation scales only with O(N
5/3
tot log(Ntot)

2), already

for Ntot > 100 the factor becomes larger than unity when compared with O(N 2
tot) methods,

for e.g., the method due to Lekner [146]. Such scaling is essential to perform these calcula-

tions as added salt increases number of charged particles significantly. The implementation of

the long-range Coulomb interaction is further detailed in section 3.2.2 where also the relation
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between the O(N 2
tot) method and the O(N

5/3
tot log(Ntot)

2) method is discussed in detail.

The system is assumed to have a matching ε boundary condition, so that no image charges

appear across the anchoring surface. This assumption is also implicitly made in theoretical

treatments of charged brushes. In experiments however the grafting substrate (e.g., air sub-

phase) will generally have a lower dielectric constant than water. In this case, an estimate of

the image charge energy has been given by Wittmer and Joanny [89]. For highly charged and

densely grafted systems, the lateral charge density is approximately uniform and image charge

effects are expected to be small.

3.2 Simulation method

To study the system in equilibrium, we use stochastic molecular dynamics [152, 156]. The

equation of motion for particle i at position ri(t) is the Langevin equation,

m
d2ri
dt2

= −∇iU −mΓ
dri
dt

+ Wi(t), (3.5)

where all particles carry the same mass m and Γ is a friction constant which couples the

particles to a heat bath. U is the potential energy

U = ULJ + Ubond + Uwall + UCoul. (3.6)

The system is held at thermal equilibrium by a Gaussian random force Wi(t)

〈Wi(t)〉 = 0,

〈Wi(t) ·Wj(t
′)〉 = 6mkBTΓ δijδ(t− t′), (3.7)

where the coupling to Γ is a consequence of the fluctuation-dissipation relation. For free dif-

fusive motion, the Einstein relation leads to an overall diffusion constant [2] Dfree = kBT/mΓ.

3.2.1 Parameters and integration scheme

The simulation parameters chosen for the study of PEL brushes are given in Table 3.1. The

mass m is set to unity. The simulation method described above to be efficient, the value of

friction coefficient Γ cannot be too small, since then the coupling to the heat bath will be too

weak and the system will not sample phase space very well. However, if the coupling is too

strong, then the viscous damping term and the random force term dominate over the inertia

term in eq. 3.5. The motion will be then dominated by Langevin dynamics even for very early

times and there would be very little cooperative motion of monomers, which is important in

particularly dense systems. In this limit the algorithm will also be very ineffective. For a given

bead friction, the motion of a monomer for t < Γ−1 is undamped, subject to only the chain
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constraint, while for t� Γ−1 the motion is Rouse-like1.

For a given preset temperature kBT = 1.2ε, equation (3.5) was integrated by means of the

velocity-Verlet algorithm [156] with a time step δt = 0.008τLJ, where τLJ = (mσ2/ε)1/2. Γ

is chosen to be 0.5τ−1
LJ [155]. For a Newtonian trajectory with a quite similar time step, the

total energy fluctuations have shown to be less than 10−4 [104]. However, to simulate at a

particular temperature but with different solvent qualities can be achieved by, for instance,

choosing different rc in the LJ potential [131].

A Gaussian distributed noise in eqn. 3.7 was used [153]. However, the Gaussian noise term

can also be replaced by equally distributed random numbers, which has the same mean and

second moment as required by eqn. 3.7 [154].

In principle, for not so large Γ so that the inertia term becomes irrelevant, eqn. 3.5 can

be integrated with any standard algorithm, where third- and fifth- order predictor-corrector

[156] and velocity-Verlet algorithms have been tested [155]. For similarly chosen simulation

parameters as above, the velocity-Verlet algorithm was found to be stable for a time step δt

about a factor of two larger than for the predictor-corrector algorithm [155].

The velocity-Verlet algorithm takes the form [156]

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t), (3.8)

v(t+ δt) = v(t) +
1

2
δt [a(t) + a(t+ δt)] . (3.9)

It is implemented as follows. Firstly, the new position at time t+ δt are calculated using eqn.

3.8, and the velocities at mid-step are computed using

v(t+
1

2
δt) = v(t) +

1

2
δta(t). (3.10)

The forces and accelerations at time t+δt are then computed, and the velocity move completed

v(t+ δt) = v(t+
1

2
δt) +

1

2
δta(t+ δt). (3.11)

The whole process is iterated using the newly computed position and velocity. Since we get the

velocities at each time step form eqn. 3.11, the instantaneous temperature can be calculated

as [156] 〈
Ntot∑

i=0

mi|v2
i |
〉

= 3NtotkBT, (3.12)

where Ntot is the total number of particles. However, since the force calculation depends on

positions as well as on velocities, the plain integration velocity scheme, eqns. 3.8, 3.9, 3.10 and

1The Rouse model [136] for the dynamics of a single polymer describes the motion of an ideal chain immersed
in a viscous solvent by a Langevin equation. This model neglects the self-repelling of the chain monomers as
well as any hydrodynamic effects [137].



3.2 Simulation method 45

Table 3.1: Simulation parameters and length scales.

Mass m 1
Temperature kBT 1.2ε

Friction constant Γ 0.5τ−1
LJ

Time step δt 0.008τLJ

Monomer number N 30
Number of chains M 36
Grafting density ρa = M/L2 ≈ (0.02 . . . 0.15)σ−2

Degree of charging f = Nc/N = 1
Bjerrum length 0 < λB/b < 20
Salt concentration 0 < csσ

3 < 0.2
Particle number Ntot ≤ 10000

3.11 needs to be modified [162]. The modified relations reveals that v and a differ from the

above schemes by terms of the order δt2 for the velocity and δt for the acceleration. Since some

test simulations showed no difference between the two implementations, the above mentioned

scheme is chosen for the present work.

Three types of finite size effects may interfere with the simulation results discussed below.

First, the chain length N should be long enough to capture typical polymeric behavior. Second,

because of possible self-interaction of chains, a small lateral system size due to the restricted

number of chains M may also influence the large scale properties such as brush thickness. In

this study we have considered systems with M = 36 polyelectrolyte chains, each consisting of

an uncharged fixed anchor and N = 30 negatively charged free chain monomers. With this

particular choice of system size both types of finite size effects can be kept small [104]. In

previous simulations without additional salt ions there were no limitations of Lz, except argu-

ments of numerical accuracy [104]. Therefore it could be chosen large enough that collisions

of counterions with the top boundary of the simulation box were in fact rare events. For small

Bjerrum lengths, however, the Gouy-Chapman length becomes large and Lz has to be taken

of the order of some multiples of polymer contour length. Obviously with added salt the situ-

ation is drastically changed because in any case a second wall potential at z = Lz is necessary

to maintain the desired finite salt concentration. On the other hand box heights should be

chosen as small as possible because additional salt ions will occupy preferentially the free space

above the brush and one would have to add a rather larger number before succeeding with a

remarkable concentration within the brush. However, reducing Lz a third kind of finite size

effect might become important. To check this problem we studied carefully the influence of a

variation in box height on the structure of the brush.

In Figure 3.3 the monomer density profiles are compared for three different heights Lz
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Figure 3.3: Monomer density ρm(z) as function of the distance from grafting surface at ρa =
0.094σ−2 for three different box heights: Lz = 1.5Nσ (squares), Lz = 2Nσ (circles), Lz = 3Nσ
(triangles). Shown is the outer part of the brush being eventually affected by the finite box
height. a) csσ

3 = 0.016, b) csσ
3 = 0.042.

while all the other simulation parameters were kept constant. The plots are shown for two

different salt concentrations. At the very tails, the profiles obtained with Lz = 1.5Nσ clearly

deviate from those with Lz = 3Nσ, indicating a finite size effect at box height Lz = 1.5Nσ.

The effect is enlarged with increasing salt concentration. On the other hand a fairly good

agreement is found between the profiles obtained for Lz = 3Nσ and Lz = 2Nσ. Therefore, if

not otherwise stated, we use a box height Lz = 2Nσ in the simulations reported here. Note

that the suitability of the particular choice is also supported by the scaling behavior discussed

in chapter 5 where data obtained with both Lz equal to 2Nσ and 3Nσ are included (see

Figure 5.5). The numerical results given in Table 5.1 show that, for different box heights, but

at identical system parameters the average brush height differs by 2% at maximum; in a large

range the difference is less than 1%.

The polymer model used here can be viewed as a coarse-grained representation of a flexible
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Figure 3.4: Schematic picture showing 2D+1 slab geometry. The central box (shaded dark)
repeats to infinity in x and y-directions, respectively, while has a finite length in the z-direction.

polyelectrolyte such as, e.g., poly(styrene sulfonate) (PSS). The length scale of the model is set

by the Bjerrum length λB which is about 0.7 nm for water at room temperature. Therefore,

with the setting λB = σ, the average bond length b becomes approximately 0.7 nm and the

dimensionless manning ratio is λB/b = 1 , same as the Manning condensation limit for a fully

stretched chain. Using for PSS a monomer size of about 0.25 nm, one results with a fraction

of charged monomer f ≈ 1/3. In comparison, Manning theory predicts a charge faction f =

0.25 nm/0.7 nm = 0.35 for a fully stretched PSS chain in water.

3.2.2 Coulomb forces in 2D+1 slab geometry

It is well known that the handling of long-range forces in simulations requires special methods

[156]. To treat them in the particular 2D+1 slab geometry (see Figure 3.4) where the simulation

box is periodic only in x and y directions while perpendicular to the grafting surface the system

is restricted to one layer, previous simulations [93,104,105] used a direct summation technique

proposed by Lekner [146] and modified by Sperb [147, 148]. This approach is, however, a so-

called O(N 2
tot) method where the CPU time scales with square of the total number of charged

particles Ntot. Unfortunately, such a behavior results in drastic restrictions on the maximum

system size being accessible by simulation.

In the new simulation code implemented here, the Lekner method is replaced by the so-

called MMM technique introduced by Strebel and Sperb [144] and modified for laterally pe-

riodic systems (MMM2D) by Arnold and Holm [145]. Although, due to symmetry breaking,

the MMM scaling O(Ntot log(Ntot)) is not maintained in the 2D + 1 case, the remaining

O(N
5/3
tot log(Ntot)

2) behavior enables to increase significantly the total number of charged par-

ticles. Figure 3.5 shows the performance gain defined by the ratio of the corresponding CPU
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Figure 3.5: Performance gain between the MMM2D approach and Lekner’s method measured
by the relation between corresponding CPU times as a function of particle number Ntot.
Different symbols correspond to a different number of layers the simulation box is subdivided
in the MMM method: 8 (triangles), 16 (squares) and 32 (diamonds).

times as a function of particle number. Note that the dip at Ntot ≈ 2000 is related to a

change in the number of layers the simulation box is subdivided in the MMM method. Infact,

already for about 100 particles the MMM2D turns out to be faster than Lekner’s method. The

considerable performance gain allows to increase the maximum number of charges from about

2000 up to more than 7000. Finally, we are indeed able to add a sufficiently large number of

salt ions to reach reasonable concentrations.

In the above mentioned methods, generally one has to do the Coulomb summation for

particles in the central simulation box as well as in the image boxes which is given as (for

2D+1 periodic systems)

UCoul(r) =
e2

4πε0ε

∞∑

k=−∞

∞∑

l=−∞

Ntot−1∑

i=1

Ntot∑

j=i+1

qiqj
|rij + kLex + lLey|

, (3.13)

where rij = ri − rj (ri and rj are the position vectors of particle i and j, respectively), ex

and ey are unit vectors in x- and y-direction respectively, and the indices k and l run over the

periodic images of the simulation box. ε0 and ε are the vacuum permittivity and the dielectric

constant of the solvent, respectively, and qi is the charge of particle i in units of the elementary

charge e. Ntot is the total number of charges, and L is the planar box length.
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This sum is merely conditionally convergent, meaning that its value depends on the sum-

mation order. A typical choice for the order of the summation is a spherical limit, i.e. the

vectors kex and ley are added in the order of increasing length. Then UCoul can be computed,

e.g., via the traditional Ewald summation method [22, 149]. The basic idea of this method is

to split the original sum via a simple transformation involving the splitting parameter α into

two exponentially convergent parts [22],

U(r) = Us(r) + Ul(r), (3.14)

where

Us(r) =
1

r
− erf(αr)

r
=

erfc(αr)

r
, (3.15)

and

Ul(r) =
erf(αr)

r
. (3.16)

erf is the error function defined by [139]

erf(x) =
2√
π

∫ x

0
e−t

2
dt. (3.17)

Us(r) is short-ranged and evaluated in real space, while Ul(r) is long-ranged and can be

analytically Fourier transformed and evaluated in Fourier space. It can be shown that the

potential Ul(r) corresponds to a Gaussian shaped charge distribution [156]. For any choice

of the Ewald parameter α and no truncation in the sums the formula yields the exact result.

In practice one cuts off the infinite sums at some finite values and obtains UCoul to a user

controlled accuracy, which can be possible by using, e.g., error estimates for the cut-offs [138].

However, methods based on Ewald summation are mostly O(N 2
tot) in computation [149, 150].

Another approach is to transform the sum over all periodic images in the plane into a rapidly

convergent expansion in terms of Bessel functions and is evaluated pairwise [146]. Again, the

method has the disadvantage of being an O(N 2
tot) method. An alternative way of computing

eqn. 3.13 is to use an exponential convergence factor [145],

UCoul(r) = lim
β→ 0

e2

4πε0ε

∞∑

nx=−∞

∞∑

ny=−∞

Ntot−1∑

i=1

Ntot∑

j=i+1

qiqje
−β|rij+nxLex+nyLey |

|rij + nxLex + nyLey|
(3.18)

This idea was originally proposed by Strebel and Sperb for 3D periodic systems [144]. For 2D

systems summation using the convergence factor, eqn. 3.18, gives exactly the same results as

the spherical limit, eqn. 3.13 [145]. For particles well separated, a far formula is employed

which can be evaluated in the Fourier space while for Nb neighboring particles a near formula

is used. As already discussed above, particularly for large Ntot, this method is much faster

than usual O(N 2
tot) methods. For details of the MMM2D method see Appendix A.
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There are also other methods, e.g., P3M (paricle-particle particle-mesh) mesh-Ewald method

[151], which gives a better scaling compared to O(N 2
tot) methods [129, 130].

3.2.3 Equilibration and error estimates

Fully stretched chains with a line of counterions were used as initial configuration. The salt ions

were distributed homogeneously in the simulation box. The initial velocity for particles were

drawn from a Maxwell-Boltzmann distribution. The relaxation was monitored by studying

the decay of the endpoint height of the chains. In addition, the convergence of the cumulative

average for various observables (endpoint height, potential energy and density profiles) were

observed. Below a brief survey on the equilibration procedure is discussed, where in general

the route suggested by Csajka and Seidel [104] is applied. The autocorrelation functions can

be estimated as

CX(t) =
〈(X(t) − 〈X〉)(X(0) − 〈X〉)〉

〈X2〉 − 〈X〉2 , (3.19)

where X, e.g., is the average brush thickness 〈zm〉 or the average endpoint height 〈ze〉, defined

in eq. 4.1 (see chapter 4), with notations Cm(t) and Ce(t), respectively. A relaxation time τm

is obtained from Cm(t) using [77]

τm =

∫ T
0 Cm(t)dt

(1− Cm(T ))
. (3.20)

The autocorrelation function Cm(t) of the brush height is shown in Figure 3.6. The decay

of Cm(t) is modulated by oscillations of the brush height. The salient features of relaxation

are: The decay of Cm(t) is approximately exponential at short times. The relaxation time τm

generally increases for increasing chain length [104], although this trend is far less pronounced

than for neutral chains in a good solvent [77]. Also, brushes with higher anchoring densities

lead to longer relaxation time [104] consistent with the power law τm ∝ ρλa , λ ≈ 1, observed

for neutral brushes [77].

As an additional check of equilibration three different initial configurations were considered:

one with salt ions homogeneously distributed (see above), second with all salt ions confined

above the fully stretched chains, and third with all salt ions completely inside the polymer

layer. All simulation runs converged to the same equilibrium values. Typically, the relaxation

of brushes take some hundreds of τLJ. After reaching equilibrium, trajectories between 2000τLJ

and 3000τLJ were calculated depending on the anchoring density. With this trajectory lengths

one can ensure that the relative error of the average height of chain ends is less than 1%.

For the simulation results, errors were estimated by computing block averages [156] and

by monitoring cumulative averages [158]. For τrun number of time steps, the run average (or
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Figure 3.6: Autocorrelation function Cm(t) of the brush height. Shown are chains of length
30 and grafting densities ρaσ

2 = 0.094 (solid line), ρaσ
2 = 0.0625 (dotted line), and ρaσ

2 =
0.042 (dashed line). Inset: Autocorrelation function Cm(t) of the mean brush height on a
semilogarithmic scale, same symbols as in main plot.

mean) of a statistical variable A is defined as

〈A〉run ≡
1

τrun

τrun∑

τ=1

A(τ). (3.21)

If each data point A(τ) is statistically independent of the others, the variance in the mean is

σ2 (〈A〉run) = σ2(A)/τrun, (3.22)

where

σ2(A) =
1

τrun

τrun∑

τ=1

(A(τ)− 〈A〉run)2 . (3.23)

The estimated error in the mean is given by σ (〈A〉run). However, in real simulations this is

not the case, i.e., the data points are usually not independent. To handle this problem the

sequence of measured values of the quantity A is broken up into blocks each of length τb. The
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Figure 3.7: Parallel computing: Speedup vs. number of processors n for a PEL brush system
having M = 36 chains of length N = 30 at grafting density ρaσ

2 = 0.063 and salt concentration
csσ

3 = 0.014 following a Newtonian trajectory (λB = σ, f = 1). The solid line shows the linear
or ideal speedup ( t1tn = n).

number of blocks is nb = τrun/τb. The average A is calculated for each block

〈A〉b =
1

τb

τb∑

τ=1

A(τ), (3.24)

where the sum runs over configurations in block b only. The variance of the block average

values 〈A〉b is estimated by

σ2 (〈A〉b) =
1

nb

nb∑

b=1

(〈A〉b − 〈A〉run)2 . (3.25)

At large τb, when the blocks become large enough to be statistically uncorrelated this quantity

is expected to be inversely proportional to τb. Then, the statistical inefficiency sineff is defined

as

sineff = lim
τb→∞

τbσ
2 (〈A〉b)

σ2 (A)
. (3.26)

It is the limiting ratio of the observed variance of an average to the limit expected on the

assumption of uncorrelated Gaussian statistics. For quantities whose autocorrelation function

shows an exponential decay, it can be shown that after equilibration, for large τrun and δt� τm,
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Figure 3.8: Parallel computing: Flips/user time vs. number of processors n for a PEL brush
system having M = 36 chains of length N = 30 at grafting density ρaσ

2 = 0.063 and salt
concentration csσ

3 = 0.014 following a Newtonian trajectory (λB = σ, f = 1).

the statistical inefficiency is

sineff ≈
2τm

δt
. (3.27)

Therefore the appropriate sampling interval for getting independent samples are approximately

twice the correlation time.

3.2.4 Parallel computing

The sequential version of the molecular dynamics code with MMM2D implementation for eval-

uating the long-range Coulomb interaction ran on local compute servers with Alpha EV67/667

and Intel Xeon/3.06 processors. For using the IBM Regatta supercomputer at Juelich, the

molecular dynamics code was parallelized by means of a self-scheduling (master-slave) algo-

rithm [104, 157] for the force loop.

In order to obtain the efficiency of the parallel code for different processor numbers n,

speedup vs. number of processors is plotted in Figure 3.7. In parallel computing, speedup

defined as t1
tn

refers to how much a parallel algorithm is faster than a corresponding sequential

algorithm, where t1 is the execution time of the sequential algorithm (actually the sequential

algorithm is parallel with 2 processors, one slave processor plus the master processor) and tn

is the execution time of the parallel algorithm with n processors. Also, plotted in Figure 3.8
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is the flips/user time against n. This gives the number of arithmetic operations done by CPU

per user time (time in the user mode). However, this is to be differentiated from flip rate

which gives the number of arithmetic operations done by CPU per wall clock time (time in the

system mode) which include overheads. The Hardware Performance Monitor (HPM) toolkit

is available for performance measurement of applications running on IBM systems supporting

the following processors and operating systems: Power3 and Power4 with AIX 5L and AIX

4.3.3. An utility (hpmcount) from the HPM toolkit, which starts an application and provides

at the end of execution wall clock time, hardware performance counters information, derived

hardware metrics, and resource utilization statistics. The hardware counters on the Power4

considers an arithmetic operation, an float-multiply-add (fma) operation and a floating point

store (fst) as a single floating point operation. Therefore, a flip ≡ fpu0 + fpu1 + fma - fst.

Comparing the two figures, Figure 3.7 and Figure 3.8, we find that the efficiency is optimal

in the range of n = 64 to n = 128 processors, where an efficiency of over 90% is reached (the

speedup for n = 128 processors is 0.90 × 128 = 115). Lower numbers of processors lead to

a loss in efficiency due to the idle master processor, while large processor numbers are less

efficient because communication time becomes a dominant contribution. For larger number

of processors, n > 128, the flip rate is comparatively less, however it remains almost constant

below n = 128.



Chapter 4

Behavior of PEL brushes in the

nonlinear osmotic regime

In this chapter molecular dynamics simulation results [10] on PEL brushes (with no added

salt) in the nonlinear osmotic brush regime are discussed. The Bjerrum length is set λB = σ,

and results are obtained for completely charged brushes (f = 1) with M = 36 chains of length

N = 30, at five different anchoring densities ρaσ
2 = 0.020, 0.042, 0.0625, 0.094, and 0.120

(which are comparable to experimental systems).

4.1 Height of the brush

Figure 4.1 shows snapshots from the equilibrium trajectories of completely charged brushes at

five different anchoring densities considered in the study. In this representation, the connec-

tivity of chains has been preserved, such that chains may extend beyond the simulation box.

Counterions are assigned to the closest chain monomer. Considering the snapshots two points

are addressed: (i) Immediately one can realize that the chains become strongly stretched and

aligned perpendicular to the grafting surface. (ii) As expected from the estimation of the

Gouy-Chapman length (see eqn. 2.88), in the case of completely charged brushes almost all

the counterions remain trapped inside the brush. Both features will be quantitatively discussed

below.

For completely charged brushes, Figure 4.2 gives the monomer density ρm(z) (and counte-

rion density) as a function of the distance from the grafting surface. ρm(z) is normalized such

that
∫∞

0 dzρm(z) = Nρa. As seen, both monomers and counterions follow very similar nearly

steplike profiles. Remember that, for the collapsed regime, obtained in the strong coupling

limit, the monomer density becomes independent of anchoring density (see eqn. 2.96) result-

ing in a linear scaling of brush height with anchoring density [93, 104]. Obviously, at λB = σ

there remain no reminiscences of such a behavior. The extension in brushes is substantially

increased and its dependence on anchoring density becomes much weaker (see below). The
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(a) (b)

(c) (d)

Figure 4.1: Polyelectrolyte brushes with M = 36 chains of length N = 30, completely charged
at grafting density (a) ρaσ

2 = 0.020; (b) ρaσ
2 = 0.042; (c) ρaσ

2 = 0.0625; (d) ρaσ
2 = 0.094.

The Bjerrum length is λB = σ. Counterions are assigned to the closest polyelectrolyte chain;
polyelectrolyte chains are light yellow, counterions are red, and anchor monomers are blue. The
box height perpendicular to the grafting surface has been reduced for the sake of representation.
Snapshots have been represented by using the visualization program VMD [159].

average thickness of the brush and of the counterion layer is measured by taking the first
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Figure 4.2: Simulated density profiles of monomers ρm(z) (open symbols) and counterions
ρci(z) (filled symbols) as a function of the distance from the grafting surface. Shown are
profiles for fully charged brushes of 36 chains of N = 30 monomers with λB = σ at anchoring
densities (from bottom to top) ρaσ

2 = 0.020 (triangles left), 0.042 (circles) 0.0625 (squares),
0.094 (diamonds), and 0.120 (triangles up).

moments of the corresponding density profiles

〈zm〉 =

∫∞
0 z ρm(z)dz∫∞
0 ρm(z)dz

, 〈zci〉 =

∫∞
0 z ρci(z)dz∫∞
0 ρci(z)dz

. (4.1)

Note that a possible logarithmic divergence in the first moment of the counterion density at

large λGC due to the 1/z2 - decay of ρci(z) is canceled by the finite size of the simulation box

in the z-direction. The term neglected by closing the system is of the order of A log(Lz/λGC)

with a pre-factor A � 1. A systematic simulation study of the behavior of counterions at

charged plates in both open and closed systems can be found in reference [163].

The average monomer and counterion heights for all systems studied with λB = σ, are given

in Table 4.1. Figure 4.3 shows the plot of brush height 〈zm〉, counterion height 〈zci〉, and brush
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Table 4.1: Simulation results on completely charged PEL brushes (f = 1) for varying grafting
density ρa: average brush height 〈zm〉, average counterion height 〈zci〉, and average endpoint
height 〈ze〉 for M = 36 chains of length N = 30 at Bjerrum length λB = σ ≈ b.

ρaσ
2 〈zm〉/σ 〈zci〉/σ 〈ze〉/σ

0.020 9.29 ± 0.01 10.42 ± 0.01 17.20 ± 0.03
0.042 9.55 ± 0.01 10.32 ± 0.01 17.85 ± 0.03
0.0625 9.86 ± 0.01 10.51 ± 0.01 18.53 ± 0.03
0.094 10.39 ± 0.01 10.97 ± 0.02 19.67 ± 0.03
0.120 10.79 ± 0.01 11.34 ± 0.02 20.60 ± 0.03
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Figure 4.3: Average brush height 〈zm〉 (filled triangles), average counterion height 〈zci〉 (trian-
gles), and average brush endpoint height 〈ze〉 (squares) of completely charged polyelectrolyte
brushes with M = 36 chains of length N = 30 vs. anchoring density ρa. λB = σ ≈ b. Error
bars are smaller than symbol size.

endpoint height 〈ze〉 for completely charged brushes at varying grafting density. Compared

to the behavior obtained at strong coupling [104] the relation between 〈zm〉 and 〈zci〉 is not

perceptibly changed showing that counterions are mostly confined inside the brush layer and

that electroneutrality condition is satisfied locally. This is also evident in the snapshots shown

in Figure 4.1. Also one may observe looking at endpoint heights given in Table 4.1 that the

polyelectrolyte chains are stretched up to about 60% of their contour length (N = 30), and

thus their elastic behavior is far beyond the linear regime, eqn. 2.23.
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However, contrary to the well-known scaling law for charged brushes in the osmotic regime,

eqn. 2.92, which predicts a thickness independent of the anchoring density, Figure 4.3 shows

a weak, but non-negligible dependence on ρa which will be examined further below. It is

known that a logarithmic dependence of the brush height on grafting density is produced by

inhomogeneities of the counterion profile in the direction normal to the anchoring plane [92]

which may be caused by diffusion of counterions outside the brush. However, from the above

discussions it is clear that the percentage of counterions which diffuse outside is very small for

the systems considered here and can be neglected. This behavior, meanwhile obtained also in

experiments, can be explained using scaling arguments where the self volume of the polymers

is taken into account [10]. Assuming a box model as described in the introduction (see section

2.2.2.1), lets continue here the scaling arguments using a free-volume approximation very much

in the spirit of the van der Waals equation for the liquid-gas transition. The effective hard-core

volume of a single polyelectrolyte chain vself , reduces the free volume that is available for the

counterions. This free volume theory therefore takes the hard-core interactions between the

polymer monomers and the counterions into account in a nonlinear fashion and is valid even at

large densities in the limit of close-packing. Compared to that, the excluded volume interaction

between counterions is small since the monomers are more bulky than the counterions and

therefore it is neglected. The nonlinear entropic free energy contribution of the counterions

read

Fion ' Nfρa

[
ln

(
Nfρa

H − ρavself

)
− 1

]
, (4.2)

where H is the counterion layer thickness (see Figure 2.6). In the limit of vanishing polymer

excluded volume, vself → 0, one recovers the standard ideal entropy expression, eqn. 2.86.

As the volume available for the counterions in the brush, which per polymer is just H/ρa,

approaches the self volume of polymers, vself , the free energy expression eqn. 4.2 diverges,

which means the entropic prize for that scenario becomes infinitely large. The self volume

of the polymers is roughly independent of the polymer brush height, and can be written in

terms of the effective monomer hardcore diameter σeff and the polymer contour length Nb as

vself = Nbσ2
eff , where σeff takes into account the monomer and counterion diameters. This

leads to the final expression [10]

Fion ' Nfρa

[
ln

(
Nfρa

H − ρaσ2
effNb

)
− 1

]
. (4.3)

Recall that the entropy of chain stretching was accounted for by linear elasticity theory, with

a spring constant proportional to 1/R2, where R is the end-to-end distance of the polymer

(see eqn. 2.22). However, from above discussions on chain stretching where it is observed that

chains extend up to about 2/3 of their contour length, it is clear that the chains are in the

strong stretching limit. For a freely jointed chain (our simulation model is supposed to mimic

a freely jointed chain), the strong stretching entropy can be calculated exactly (see eqn. 2.26).
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Writing down the free energy asymptotic expressions for the weak and strong stretching, one

has

Fst '





3ρah
2/(2Nb2), for h� Nb,

−Nρaln(1− h/Nb), for h ≈ Nb,
(4.4)

where h is the brush height (see Figure 2.6). Balancing eqn. 4.3 in the limit σeff = 0 and

H = h, with the weak stretching term of the polymer elasticity (h � Nb) given in eqn. 4.4,

the result is the standard osmotic brush regime [9, 97]

h ' Nb
√
f

3
. (4.5)

The assumption that H = h is verified to a great extent by looking at snapshots, Figure 4.1

or Figure 4.3, which shows that counterions have almost the same average height as chains for

different anchoring densities. It is clear that for highly charged chains (f = 1), the predicted

stretching in eqn. 4.5 goes beyond the assumption of weak stretching.

In the strongly stretched osmotic brush regime, one chooses the strong stretching analogue

of eqn. 4.4 (h ≈ Nb) and balances it with the counterion entropy eqn. 4.3 for vanishing

polymer self volume vself = 0 for the case H = h. The result is,

h ' Nb f

1 + f
, (4.6)

which is the large stretching analogue of eq. (4.5). The maximal stretching predicted from this

equation is 50% (for f = 1), which is considerably smaller than what is observed in simulations

and experiments. Moreover the predicted brush height in eqn. 4.6 does not depend on the

grafting density. This means that something is ”missing” in the above scaling description.

This something is proposed to be the increased entropic pressure, which is growing as the

volume within the brush is progressively more filled up by the polymer self-volume. The fact

that the nonlinear elastic stretching of the chains by itself does not lead to a grafting density

dependence for the brush height has also been noted in previous studies [132].

Combining the high stretching (nonlinear) version of the chain elasticity, eqn. 4.4, with the

nonlinear entropic effects of the counterions due to the finite volume of the polymer chains,

i.e., choosing a finite σeff in eqn. 4.3, in the so-called nonlinear osmotic brush regime the brush

height is

h ' Nb f + σ2
effρa

1 + f
, (4.7)

which in the limit of maximal grafting density, i.e., close packing ρa = 1/σ2
eff , reaches the

maximal value h = Nb, as one would expect (compressing the brush laterally increase the

vertical height and finally leads to a total extended structure). In Figure 4.4, we compare the

prediction given by eqn. 4.7, shown as a solid line, with simulation results for the brush height



4.1 Height of the brush 61

0.02 0.04 0.06 0.08 0.1 0.12

ρaσ
2

0.3

0.4

0.5

0.6

0.7

<z
e>/

N
b

simulation
scaling theories
nonlinear theory

(a)

(b)

Figure 4.4: Brush height 〈ze〉 as a function of grafting density ρa for polyelectrolyte chains of
N = 30 monomers of length N = 30 with charge fraction f = 1. Symbols show simulation
data with the corresponding linear fit (dot-dashed line), the solid line represents the prediction
of the nonlinear scaling theory, eq. (4.7), with σ2

eff = 2σ2. The dashed lines (a) and (b) show
the scaling predictions eq. (4.5) and eq. (4.6), respectively.

as a function of grafting density. Note that we have used

σ2
eff = 2σ2 (4.8)

where σ = σm = σci is the Lennard-Jones diameter of monomers and counterions in the sim-

ulations. This choice corresponds to an approximate 2D square-lattice packing of monomers

and counterions on two interpenetrating sublattices. The scaling prediction, eqn. 4.7, quali-

tatively captures the slow increase of the brush height with grafting density. The deviations

from the simulation data may be explained by considering additional effects, such as lateral

inhomogeneity of counterion distribution around the brush chains (see below) and intermedi-

ate stretching elasticity of the chains. Also, the simulation is not dealing with hard spheres

but with soft potentials, which will modify the ratio σeff/σ.

However, note that the above weak dependence of the brush height on grafting density

can also be reproduced by taking into account both nonlinear elasticity of the chains and

lateral inhomogeneity of the counterion distribution [94]. All the previous theoretical studies

of polyelectrolyte brushes were restricted by two major approximations. First, the counterion

distribution was assumed uniform in lateral direction parallel to the grafting plane. However,

inhomogeneous distributions were obtained both in simulation [104] and experiment [112].
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Figure 4.5: Endpoint distributions of completely charged polyelectrolyte brushes at λB = σ.
Grafting densities are the same as in Figure 4.2.

Secondly, in most of the theories Gaussian elasticity is used for the mechanical stretching of

chains which is hardly true in strongly stretched brush states. In the model used by Naji

et al. [94] the electrostatic free energy is evaluated within the cylinder model by means of

nonlinear Poisson-Boltzmann theory. The elastic free energy of the chains is treated using

a freely jointed chain model (as discussed above) and the short-range volume interaction is

included by imposing a constant volume constraint for the polyelectrolyte. Doing so, reasonable

agreement between simulation data and theoretical predictions has been obtained without any

fitting parameter in the nonlinear osmotic brush regime.

Figure 4.5 gives the endpoint distribution ρe(z) for M = 36 chains of length N = 30,

normalized to unity. One notes that, for all grafting densities ρa, the endpoint distribution

exhibits a pronounced peak at large z and decays strongly inside the brush. These features

reflect the highly ordered brush state due to strong stretching perpendicular to the grafting

surface. The behavior is in contrast to that found in the collapsed brush regime at low

grafting densities [104], where a second peak of the endpoint distribution was obtained at

small z, indicating that the chains are likely to fold back onto the surface. Thus, the average

end point height 〈ze〉 is a good measure of the brush height and the above box model is a

reasonable approximation. The average endpoint height is also given in Table 4.1. Note that

〈ze〉 is less reliable than 〈zm〉 because of the reduced statistical significance (of the order N

per data collection) and because of higher sensitivity to finite size effects [104].
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Figure 4.6: Shape factor rs = 〈R2〉/〈R2
g〉 for systems with M = 36 chains of length N = 30 as

a function of grafting density. Error bars are less than 0.3 unit.
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Figure 4.7: Spherically averaged structure factor S(q) for different grafting densities ρa.The
solid line indicate scaling for ν = 0.9. Symbols as in Figure 4.2.
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Figure 4.8: Structure factor S(qz) perpendicular to the grafting plane for different grafting
densities ρa. Symbols as in Figure 4.2. Region between the arrows indicate small dips at
q∗z = 2π/〈ze〉 for varying anchoring densities from ρaσ

2 = 0.020 (right arrow) to 0.120 (left
arrow).

4.2 Chain Structure

The overall shape of the grafted polyelectrolyte can be described by the stretching ratio rs =

〈R2〉/〈R2
G〉 (see eqn. 2.35), where 〈R2〉 is the average square end-to-end distance and 〈R2

G〉 is

the average radius of gyration squared. For a free Gaussian chain, one finds rs = 6, and a rigid

rod has the stretching ratio rs = 12. For an isolated end-grafted neutral chain, a stretching

ratio rs = 6.94 has been obtained [104]. As shown in Figure 4.6 the ratio rs is sensitive to the

grafting density of the brush, but less compared to the collapsed brush regime [104]. At all

grafting densities, values typical of strongly stretched chains are obtained, in agreement with

the high stretching assumption for the elasticity of chains as discussed in section 4.1. Lowering

the grafting density the chain extension is reduced, however.

For a more detailed examination of the intra-chain structure of grafted polyelectrolytes at

all length scales, the single chain structure factor is studied. Here we consider the spherically

averaged one (see eqn. 2.36)

S(q) =

〈 〈
1

N + 1

∣∣∣∣∣∣

N∑

j=0

exp(iq · rj)

∣∣∣∣∣∣

2〉

|q|

〉
(4.9)
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Figure 4.9: In-plane averaged structure factor S(qxy) for different grafting densities ρa. The
solid lines indicate scaling for ν = 0.5 and 0.6. Symbols as in Figure 4.2.

as well as the structure factor in transverse direction S(qz) and the in-plane averaged one

S(qxy). In analogy to free chains, in the asymptotic regime 2π/R � q � π/b (Porod region),

the structure factor is expected to obey the scaling relation S(q) ∼ q−1/ν (see eqn. 2.57)

where ν is the exponent of the N dependence of the chain radius R ∼ N ν . Figure 4.7 gives

the spherically averaged structure factor. Within the range of anchoring densities studied in

simulations, the spherically averaged structure factor S(q) is almost not changed, reflecting

strong stretching with a exponent ν ≈ 0.9. This result is consistent with the structure perpen-

dicular to the grafting plane, shown by S(qz) in Figure 4.8. In analogy to the oscillations of

S(qz) of a rigid rod oriented perpendicular to the grafting surface, the structure factor exhibits

strong features of a rigid-rod like behavior amplified with increasing anchoring density. The

small dips in the low q-regime agree well (to within 10%) with the average endpoint position

〈ze〉 (indicated by arrows). Note that a highly ordered layering evolves close to the grafting

surface. The transverse monomer profiles shown in Figure 4.2 indicate short-range ordering in

a stack ranging from three up to seven layers above the grafting surface.

The most interesting additional information gives the in-plane averaged structure factor

S(qxy) shown in Figure 4.9. Note that the in-plane behavior of the grafted polyelectrolyte

chains is determined by the properties of the underlying neutral chains. In agreement with

our model, which is supposed to mimic polyelectrolytes under good-solvent conditions, at low

grafting densities S(qxy) gives an in-plane scaling Rxy ∼ N0.6. At large ρa, however, S(qxy)

indicates Rxy ∼ N0.5, i.e., the scaling behavior of a Gaussian chain well-known for chains in
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Figure 4.10: Local net brush charge 〈ρci〉−〈ρm〉 as a function of the distance from the grafting
surface, z. Shown are systems of 36 chains of length 30 where each zero line (dashed lines) is
shifted by 0.2 units in y-direction for each grafting density. The average endpoint height 〈ze〉
is indicated by an arrow. Monomers carry a negative, counterions a positive unit charge.

melt.

Thus, for varying grafting densities the chain structure of grafted polyelectrolytes remain

almost strongly stretched.

4.3 Local net charge and counterion distribution

The local net charge is shown in Figure 4.10, where we have assigned positive charges to

counterions and negative charges to monomers, respectively. Charge neutrality is not only

satisfied globally (
∫∞

0 dz〈ρci − ρm〉 = 0), but also to a good approximation at the local level
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Figure 4.11: Ion-polyelectrolyte distribution function for completely charged chains at λB = σ.
Grafting densities and symbols are the same as in Figure 4.2.

which is in agreement with the assumptions used in section 4.1. At low grafting density, a

small tail of positive charge develops at the outer edge of the brush which is enhanced as

the grafting density is increased. This can be explained as a consequence of simple packing

effect while the brush is being compressed laterally. These dipoles located at the rim of the

brush might influence interactions between charged brushes. The fluctuations at small z are

a consequence of the layering of the monomers close to the surface. Larger fluctuations at

higher grafting densities are a consequence of the histogram construction because a constant

binning interval for all grafting values was used.

In references [93, 104] it has been shown that the particular behavior of polyelectrolyte

brushes in the strong coupling limit, i.e. the existence of a collapsed regime, is caused by

Coulomb correlations (see also section 2.2.2.1). To discuss the role of correlations and the

degree of counterion condensation, the ion-polyelectrolyte distribution function p(r) is plotted

in Figure 4.11, where r is the separation between counterion center and closest polyelectrolyte

bond. The distribution p(r) is normalized according to 2π
∫∞

0 r p(r) dr = 1. For strong

Coulomb interaction, distribution functions show a pronounced peak at r = σ [104]. As the

coupling is reduced, at λB = σ, the peak is much weaker and the probability remains finite

up to larger distances ( see Figure 4.11). There is still another remarkable difference between

the two situations: At strong interaction strength the lowest anchoring density shows the

highest peak value. This can be understood due to the decreasing effective line charge density
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N/2〈zm〉 with increasing stretching of the chain, i.e. with increasing anchoring density. Thus,

the effective Manning ratio ξeff = NλB/2〈zm〉 exhibits its largest value at the lowest anchoring

density, giving rise for a large fraction of ’condensed’ counterions [104]. On the other hand

at weak interaction, Figure 4.11 shows that the peak becomes monotonously enhanced with

growing anchoring density which is probably a simple packing effect. Note that a simple

estimation of the degree of condensed counterions by assuming them to be condensed if they

are closer than λB yields feff > 0.98 although the fraction of condensed counterions is slightly

growing with increasing grafting density. Thus, for an osmotic brush it is reasonable that the

counterion osmotic pressure has a play in chain stretching.



Chapter 5

PEL brushes with added salt

In this chapter, results of extensive molecular dynamics simulations [106] on PEL brushes with

added salt in the nonlinear osmotic brush regime (Bjerrum length is set, λB = σ) are reported.

The results obtained are for completely charged brushes (f = 1) at two different anchoring

densities ρa = 0.042σ−2 and 0.094σ−2, respectively, with M = 36 chains of length N = 30.

Note that these simulations are computationally rather expensive: Typically depending on

the number of charges treated, one data point on IBM Power4+, 1.7 GHz supercomputer

(massively parallel with 64 CPUs) takes between two to ten days, while on sequential Alpha

EV67/667 or Intel Xeon/3.06 processors it takes roughly from couple of weeks to a month.

Previous simulation studies on PEL brushes in salt-free solution [104,105], have shown that

varying the Bjerrum length λB, a non-monotonic behavior of the brush height is obtained.

Figure 5.1 shows the plot of average height of chain ends 〈ze〉, described in eqn. 4.1, against

the Bjerrum length λB, both in the case with and without added salt, for a polyelectrolyte

brush with completely charged chains of length N = 30. For the salt-less case, Figure 5.1

reproduces the previous result [105] which has been discussed already in section 2.2.2.1. When

a finite concentration of salt is added to the system, there is indeed a reduced brush height

observed in the nonlinear osmotic regime close to maximum stretching at λB/b ≈ 1 which is

consistent with the scaling analysis by Pincus (see section 2.2.2.2) where it is proposed that

the Debye screening from the salt reduces the counterion osmotic pressure, which stretches

the polymers obtaining the expression for the brush height h as

h ' Nb
(
ρaf

2

bcs

)1/3

, (5.1)

where Nb is the contour length. This behavior will be discussed in detail below. In the

collapsed regime at large Bjerrum lengths, added salt is expected to reduce the attractive

interaction that causes chain collapse. Indeed we find that at λB/b & 9 the brush becomes

slightly swollen with additional salt.
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Figure 5.1: Average height of chain ends 〈ze〉 for zero salt (squares) and with salt concentration
csσ

3 = 0.009 (circles), both rescaled with the contour length Nb (N = 30), versus Bjerrum
length λB at grafting density ρaσ

2 = 0.02. The dot-dashed line indicates 〈ze〉 of an identical
system of uncharged chains.

5.1 Height of the brush

Figure 5.2 shows a snapshot from the equilibrium trajectory for brushes at ρa = 0.094σ−2

with salt concentration cs = 0.110σ−3. In contrast to the salt-less case (compare Figure

4.1(d)), now the particle distribution looks rather homogeneous over the total height of the

simulation box. Because in the present model polyelectrolyte counterions and salt counterions

are considered to be identical they are subject to an unrestricted exchange. As one can see from

the snapshot, salt coions are diffusing into the brush layer. Although it can not be seen directly

in snapshots, due to local electroneutrality these coions are escorted by a corresponding number

of counterions. The different aspects of the ion distribution inside and outside the brush layer

will be discussed below in detail. The effect of added salt on the brush structure is shown

in Figure 5.3. The monomer density ρm(z) is plotted as a function of the distance from the

grafting surface for the anchoring densities ρa = 0.042σ−2 and 0.094σ−2. ρm(z) is normalized

such that
∫∞

0 dzρm(z) = Nρa. From Figure 5.3, it is observed (i) that chain stretching is

slightly reduced with growing salt concentration, and (ii) that the monomer density inside the

brush is little increased with reduced stretching. These features are in agreement with the

brush behavior in the nonlinear osmotic regime (see chapter4). Note that the step-like shape

of the density profiles becomes less pronounced with increasing salt, in particular for small
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Figure 5.2: Polyelectrolyte brush with M = 36 chains of length N = 30, completely charged at
grafting density ρaσ

2 = 0.094 with a salt concentration cs = 0.110σ−3 (λB = σ). Counterions
in the brush are assigned to the closest chain monomer; polyelectrolyte chains are yellow,
counterions and salt ions being oppositely charged as monomers are red, likely charged salt
ions are green, and anchor monomers are blue. The box height perpendicular to the grafting
surface is Lz = 2Nσ. The snapshot out of a equilibrium trajectory has been represented by
using the visualization program VMD. [159]

grafting density.

The average thickness of the brush is measured by taking the first moment of the monomer

density profile (see eqn. 4.1). The average monomer height for the systems considered in the
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Figure 5.3: Monomer density profiles ρm(z) of completely charged polyelectrolyte brushes
(N = 30, λB = σ) as a function of the distance from the grafting surface: (a) at grafting
density ρaσ

2 = 0.042 and varying salt concentration (csσ
3 = 0 (circles), 0.007 (diamonds),

0.014 (triangles up), 0.021 (plus), 0.035 (triangles down), 0.049 (squares)); (b) at grafting
density ρaσ

2 = 0.094 (csσ
3 = 0 (circles), 0.016 (diamonds), 0.031 (triangles up), 0.047 (plus),

0.078 (triangles down), 0.110 (squares)). The inset shows schematically the estimation of
inflection point zi.

present study (varying grafting density and salt concentration) are given in Table 5.1. For

highly charged and densely tethered polyelectrolyte brushes, the mean-field scaling theories

distinguish two different regimes depending on the ionic strength in the solution: the osmotic

brush and the salted brush regimes [97]. In the osmotic brush regime, the concentration

of counterions inside the brush is greater than external salt concentration in solution, i.e.,

cci � cs; thus, stretching is produced by the osmotic pressure of the confined counterions. In

this regime, the stretching forces resisted by the elastic force, balances the counterion osmotic

pressure, modeled as an ideal gas of counterions. The resulting brush height is (see scaling

discussions in section 2.2.2.1) [9]

h0 ' Nbf1/2. (5.2)
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Table 5.1: Simulation results on completely charged polyelectrolyte brushes with varying salt
concentration cs (λB = σ ≈ b): average brush height 〈zm〉, average endpoint height 〈ze〉,
position of inflection point zi, ion concentration inside the brush c′′si and buffer concentration
c′si at two different grafting density ρa.

ρaσ
2 csσ

3 〈zm〉/σ 〈ze〉/σ zi/σ c′′siσ
3 c′siσ

3

0.042a 0 9.55 ± 0.01 17.85 ± 0.03 20.5 0.059 0
0.042a 0.007 9.18 ± 0.01 16.98 ± 0.04 19.3 0.064 0.018
0.042a 0.014 8.88 ± 0.01 16.31 ± 0.04 18.4 0.072 0.034
0.042a 0.019 8.65 ± 0.01 15.72 ± 0.05 17.8 0.077 0.045
0.042a 0.028 8.30 ± 0.01 14.94 ± 0.03 16.7 0.088 0.066
0.042a 0.033 8.20 ± 0.01 14.83 ± 0.04 16.2 0.094 0.076
0.042b 0.007 9.15 ± 0.01 16.92 ± 0.04 19.2 0.065 0.021
0.042b 0.014 8.78 ± 0.01 15.97 ± 0.04 18.5 0.073 0.039
0.042b 0.021 8.46 ± 0.01 15.27 ± 0.04 17.8 0.081 0.055
0.042b 0.028 8.27 ± 0.01 14.78 ± 0.03 17.0 0.091 0.072
0.042b 0.035 7.98 ± 0.01 14.20 ± 0.04 16.2 0.101 0.087
0.042b 0.042 7.76 ± 0.01 13.65 ± 0.04 15.8 0.111 0.103
0.042b 0.049 7.63 ± 0.01 13.47 ± 0.05 15.7 0.122 0.118
0.042b 0.063 7.43 ± 0.01 12.91 ± 0.05 14.8 0.142 0.149
0.094a 0 10.40 ± 0.01 19.72 ± 0.02 22.5 0.122 0
0.094a 0.016 10.16 ± 0.01 19.21 ± 0.03 21.5 0.129 0.042
0.094a 0.031 9.88 ± 0.01 18.57 ± 0.03 20.5 0.138 0.081
0.094a 0.042 9.73 ± 0.01 18.25 ± 0.03 20.0 0.147 0.106
0.094a 0.063 9.30 ± 0.01 17.28 ± 0.03 19.0 0.164 0.155
0.094a 0.073 9.13 ± 0.01 16.95 ± 0.03 18.5 0.174 0.179
0.094b 0.016 10.05 ± 0.01 18.96 ± 0.03 21.4 0.131 0.049
0.094b 0.031 9.78 ± 0.01 18.33 ± 0.03 20.3 0.142 0.093
0.094b 0.047 9.44 ± 0.01 17.56 ± 0.03 19.7 0.155 0.135
0.094b 0.063 9.12 ± 0.01 16.90 ± 0.03 18.7 0.170 0.173
0.094b 0.078 8.91 ± 0.01 16.41 ± 0.03 18.3 0.189 0.211
0.094b 0.091 8.73 ± 0.01 16.03 ± 0.03 18.0 0.206 0.239
0.094b 0.110 8.47 ± 0.01 15.38 ± 0.03 17.5 0.231 0.281
0.094b 0.141 7.95 ± 0.01 14.16 ± 0.03 16.5 0.272 0.351
0.094b 0.173 7.62 ± 0.01 13.44 ± 0.03 16.0 0.323 0.417
0.094b 0.188 7.54 ± 0.01 13.04 ± 0.03 15.7 0.346 0.451

aheight of simulation box: Lz = 3Nσ.
bheight of simulation box: Lz = 2Nσ.

When the external salt concentration is greater than the concentration of counterions inside

the brush, i.e., cci � cs the salted brush regime is entered. The electrostatic interaction among

chain segments becomes screened. The brush remains stretched by the excluded volume repul-
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Figure 5.4: Salt concentration dependence of the brush height 〈zm〉 (λB = σ, f = 1) as a
master plot for two different grafting densities: ρa = 0.042σ−2 (circles) and 0.094σ−2 (squares).
Simulation results with Lz = 2Nσ (open symbols) and 3Nσ (filled symbols). For the sake of
representation, the asymptotic value at cs = 0 is shown at log(bcs/ρa) = −3. (σ2

eff = 2σ2, see
text).

sion, where the chains may still be swollen locally (within a Debye length) by electrostatics.

This can be modeled using an effective second virial coefficient (veff ' f2/cs). In this salted

regime, balancing the chain elasticity with the excluded volume repulsion, the resulting brush

height is eqn. 5.1 [9].

According to the predictions of eqns. 5.1 and 5.2, the brush height depends on four

variables: the chain length N , fraction of free counterions f , anchoring density ρa, and salt

concentration cs. It is desirable to plot all the data in a master curve based on the scaling

forms of eqns. 5.1 and 5.2, which takes all four parameters into consideration. Rewriting the

brush height given in eqn. 5.1 in terms of h0 one has

h ' h0

(
ρaf

1/2

bcs

)1/3

. (5.3)

Thus the generic choice is to plot h/h0 vs bcs/ρaf
1/2 [119]. From the study of the salt-less

case one knows, however, that there occurs also a weak dependence of brush height on grafting

density in contrast to eqn. 5.2. Therefore to rescale the brush height with a salt-free value h0

instead of the osmotic brush height given in 5.2 we use that of the nonlinear osmotic brush
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Figure 5.5: The average brush height 〈zm〉 of completely charged polyelectrolyte brushes
(λB = σ) versus the ion concentration inside the brush c′′si (both variables rescaled with the
corresponding salt-free values 〈zm〉0 and c′′0 respectively). Symbols are the same as in Figure
5.4. The solid line shows a power-law fit.

derived in the previous chapter (see eq. 4.7),

hNlOsB ' Nb
f + σ2

effρa

1 + f
, (5.4)

where the effective monomer hard-core diameter σeff takes into account the monomer and

counter-/coion diameters. Figure 5.4 gives the plot for h(cs)/hNlOsB vs bcs/(ρaf
1/2). Here

we used σ2
eff = 2σ2 as with the salt-less case (see eqn. 4.8) [10]. Now, all data points fall

indeed onto a universal curve in a log-log plot, which tends to a slope of zero in the low salt

regime and a slope of −1/3 in the high salt regime. This supports on the one hand the validity

of the asymptotic relation eqn. 5.4, for nonlinear osmotic brush, and on the other hand the

validity of eqn. 5.1, for salted brush. Note that a simple estimation of the degree of condensed

counterions by assuming them to be condensed if they are closer than λB yields feff > 0.98.

That is why the fraction of free counterions is set f = 1 although the fraction of condensed

counterions is slightly growing with increasing grafting density. Figure 5.4 shows, on the other

hand, obviously not much simulation data points in the asymptotic limit of a salted brush,

where the influence of counterions can be neglected. However, a further increase of the total

number of charges would enlarge the CPU time beyond a reasonable limit and a reduced size

of the simulation box would cause serious finite size effects. Therefore, to account properly for

the screening within the brush, the counterion concentration cci cannot be neglected.
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Figure 5.6: Endpoint distributions of completely charged polyelectrolyte brushes at grafting
density ρa = 0.042σ−2 (λB = σ) for varying salt.
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Figure 5.7: Endpoint distributions of completely charged polyelectrolyte brushes at grafting
density ρa = 0.094σ−2 (λB = σ) for varying salt.

To account for the concentration of mobile ions (chain counterions, salt counterions and salt

coions) which causes an effective screening inside the brush, the brush height is measure by the

inflection point zi, occurring in the monomer profile at the rim of the brush (see inset of Figure
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5.3). Thus, the concentration of small ions inside the brush c′′si is obtained by counting the

mobile ions within the layer 0 < z < zi. The corresponding values are also given in Table 5.1.

On a log-log scale, in Figure 5.5, the average brush height 〈zm〉 versus the ion concentration

inside the brush c′′si is plotted. Both 〈zm〉 and c′′si are rescaled with the corresponding salt-

free values 〈zm〉0 and c′′0 respectively. The brush height scales with c′′si showing an exponent

α ≈ −0.31. This result is in good agreement with the scaling law h ∼ c
−1/3
s predicted by

Pincus for the salt dependence of the brush height in the osmotic regime [9]. Moreover, it is

clear from Figure 5.5 that finite size effects due to the setting Lz = 2Nσ do not affect, at least,

the scaling behavior (see the discussion on finite size effects in chapter 3).

Figures 5.6 and 5.7 show the endpoint height distribution ρe(z) as a function of distance

from the grafting surface z and for varying salt at grafting densities ρa = 0.042σ−2 and

0.094σ−2, respectively, for M = 36 chains of length N = 30. The distribution ρe(z) is nor-

malized to unity. The average endpoint heights for systems considered in the present study

(varying grafting density and salt concentration) are also listed in Table 5.1. Considering the

salt free case here, one notes that, for the two grafting densities, the endpoint distribution

exhibits a pronounced peak at large z and decays strongly inside the brush. These features

reflect the highly ordered brush state due to strong stretching perpendicular to the grafting

surface. As the salt concentration cs is increased, the distribution remains qualitatively the

same. In particular the peak that is shifted to lower z-values is still well pronounced. However,

its height is slightly reduced and on the other hand its width becomes a bit larger. This result

is in agreement with monomer density profiles shown in Figure 5.3 where one observes that

the extension of the brush is reduced with added salt. However, note that 〈ze〉 is less reliable

than 〈zm〉 because of the reduced statistical significance and because of higher sensitivity to

finite size effects.

5.2 Chain Structure

The overall shape of the grafted polyelectrolyte can be described by the stretching ratio rs =

〈R2〉/〈R2
G〉 (see eqn. 2.35), where 〈R2〉 is the average square end-to-end distance and 〈R2

G〉
is the average radius of gyration squared. As shown in Figure 5.8 the ratio rs is sensitive to

the ionic strength in solution. As the concentration of salt is increased the ratio decreases

as expected. However, the lower grafting density ρa = 0.042σ−2 show a deeper decrease in

rs from the salt-less value compared to ρa = 0.094σ−2 as the salt concentration is increased.

This behavior is a consequence of high concentration in the brush phase which is growing for

increasing anchoring density and salt concentration (see section 5.4).

For a more detailed examination of the chain structure of grafted polyelectrolytes at all

length scales, the single chain structure factor is considered (see the salt-less case, section 4.2).

We examine the spherically averaged structure factor, eqn. 4.9, as well as the structure factor
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Figure 5.8: Shape factor rs = 〈R2〉/〈R2
g〉 for systems with M = 36 chains of length N = 30 as

a function of salt concentration. Symbols are the same as in Figure 5.4.

in transverse direction S(qz) and the in-plane averaged one S(qxy). Remember that in analogy

to free chains, in the asymptotic regime the structure factor is expected to obey the scaling

relation S(q) ∼ q−1/ν (see eqn. 2.57), where ν is the exponent of the N dependence of the

chain radius R ∼ N ν . Figure 5.9 gives the three different structure factors for the systems

studied. Within the range of added salt for the two different anchoring densities studied, the

spherically averaged structure factor S(q) is almost not changed, reflecting strong stretching

with Flory exponents in the range between 0.88 (no salt) and 0.82 (maximum salt). This

result is consistent with the structure perpendicular to the grafting plane reflected by S(qz)

which exhibits strong features of a rigid-rod-like behavior. However, the oscillations in S(qz)

being related to ordering in z-direction get damped with increasing salt concentration which

is in agreement with the reduction in chain stretching obtained in Figure 5.3. The in-plane

behavior of the grafted polyelectrolyte chains is determined by the properties of the underlying

neutral chains. As expected for our model, which is supposed to mimic polyelectrolytes under

good solvent conditions, at grafting density ρa = 0.042σ−2 and without salt S(qxy) exhibits

an in-plane scaling Rxy ∼ N0.57 close to the good solvent value 0.6. At larger grafting density

ρa = 0.094σ−2, however, the salt free S(qxy) indicates Rxy ∼ N0.52, i.e., a scaling behavior

close to that of a Gaussian chain well-known for chains in melt. Independent on the anchoring

densities, additional salt tends to shift the behavior towards that of a better solvent quality,

i.e., the correlation length is slightly growing and the blobs becomes little more swollen.
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Figure 5.9: Spherically averaged structure factor S(q) (middle set), in-plane averaged struc-
ture factor S(qxy) (upper set), and structure factor perpendicular to the grafting plane S(qz)
(lower set) of completely charged polyelectrolyte brushes (λB = σ): (a) grafting density
ρa = 0.042σ−2; (b) ρa = 0.094σ−2. Symbols in (a) and (b) correspond to the same salt
concentrations as in Figure 5.3(a) and 5.3(b), respectively.

5.3 Local net charge and ion distribution close to PEL chains

Results from the previous chapter shows that local electroneutrality for charged brushes in

the nonlinear osmotic brush regime is fulfilled in perpendicular direction over almost the total
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Figure 5.10: Local net charge 〈ρ+〉 − 〈ρ−〉 as a function of the distance from grafting surface
z (rescaled with the inflection point height zi): (a) grafting density ρa = 0.042σ−2; (b) ρa =
0.094σ−2. Each curve corresponds to a certain salt concentration that is growing from top
to down with the values given in Figure 5.3(a) and 5.3(b), respectively. In both subplots the
topmost curve shows the salt-less case and each zero line (dashed lines) is shifted by 0.02 in
y-direction.

brush height except (i) in a rather thin layer close to the interface, and (ii) at the rim of the

brush [10]. The local charge at small z is a consequence of the layering of monomers close to

the grafting surface. The local net charge is compensated, however, over a length of the order

of bond length. In Figure 5.10 the local net charge in layers parallel to the grafting plane

as a function of their distance from that plane is plotted. For the sake of representation the

region close to the anchoring points is omitted. Two features are evident: Except at the rim

region z ≈ zi one obtains only weak fluctuations around net charge zero. On the other hand,

at the rim of the brush there appears a typical dipole with a depletion of counterions at z . z i

and a corresponding enrichment beyond zi. The strength of the dipole grows with grafting

density while additional salt damps both the amplitude of local charges and its range in z-
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Figure 5.11: Ion-polyelectrolyte distribution function for completely charged chains (λB = σ):
(a) grafting density ρa = 0.042σ−2; (b) ρa = 0.094σ−2. Symbols in (a) and (b) correspond to
the same salt concentrations as in Figure 5.3(a) and 5.3(b), respectively. Note the different
scale in y-direction in (a) and (b).

direction. Note that this dipole charge might have some influence on the interaction between

two polyelectrolyte brushes (see chapter6).

In the osmotic regime, the overall structure of the brush is determined by the balance

between the polymer elasticity and the counterion osmotic pressure. Debye screening caused by

additional salt ions reduces the counterion osmotic pressure. To discuss the role of correlations

and the degree of counterion condensation, the ion-polyelectrolyte distribution function p(r) is
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calculated and shown in Figure 5.11, where r is the separation between the center of a positive

ion and the closest polyelectrolyte bond. The distribution p(r) is normalized according to

2π
∫∞

0 r p(r) dr = 1. Figure 5.11 shows that the strength of correlations is monotonically

growing both with grafting density and salt concentration. Comparing this behavior with

previous results at strong [104] and moderate (see chapter 4) [105] electrostatic coupling, it

can be concluded that this is a fingerprint of simple packing effects. Although the chain

stretching is slightly reduced with increasing salt concentration, giving rise to an increased

effective line charge density of the polyelectrolytes, both the range of the distribution function

and its amplitude indicate that counterion condensation does not give a significant contribution

to the enhanced correlations.

5.4 Transverse ion distribution and Donnan equilibrium

The relation between buffer concentration and the effective ion strength inside the brush is of

interest both from theoretical as well as experimental point of view. To get the relationship

between the ion concentration inside the brush c′′si and the buffer concentration c′si which is

obtained by counting all the small ions above the inflection point zi (see inset of Figure 5.3),

the ratio c′si/c
′′
si versus the salt concentration c′s is plotted in Figure 5.12. From the point of

view of the ion distribution perpendicular to the grafting plane a polyelectrolyte brush is very

similar to the membrane equilibria problem where the membrane is impermeable to macroions

but permeable to small ions. Hence one can divide the simulation box into two compartments

with the membrane “boundary” located at the rim of the brush that is defined in our model

by zi. Due to the presence of the macroions in one compartment similarly charged ions are

expelled from this compartment, giving rise to a somewhat nonhomogeneous distribution of

the small ions as already pointed out by Donnan in 1911 [160, 161]. Applying the Donnan

approach to the brush system the ratio of the small ions in both compartments becomes (see

eqn. 2.110)

c′si
c′′si

=

[
1 +

(
fNρa

2zic′s

)2]−1/2

, (5.5)

with fN = Qp being the total charge of a polyelectrolyte chain and ρa/zi = cp is the polymer

concentration within the brush.

Because systems considered here are characterized by very small Gouy-Chapman lengths

λGC � h, all the counterions are basically trapped inside the brush. Therefore the free ion

concentration in the polymer-free volume can be set c′si = 2c′s. Although there occurs ion

exchange between ’original’ counterions and salt counterions, due to electroneutrality such an

approximation remains reasonable. Note, however, that because of the finite volumes consid-

ered in the simulations the salt concentration in the polymer free volume c ′s is larger than the

bare salt concentration cs (see Table 5.1). Equation (5.5) shows clearly the nonhomogeneous
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Figure 5.12: Relation between the ion concentration inside the brush c′′si and buffer concentra-
tion c′si for different salt concentration c′s. Simulation results (symbols as in Figure 5.4) and
predictions of original (eqn. 5.5, dashed lines) and modified (eqn. 5.10, solid lines) Donnan
approach. (σ2

eff = 2σ2, see text).

distribution of small ions. However, with increasing salt concentration the difference between

the two compartments is compensated and at cs � Qpcp one should obtain a uniform ion

concentration c′si = c′′si. In Figure 5.12, the predictions following from eq. (5.5) are given by

dashed lines. Obviously the behavior disagrees with the simulation data that do not give a uni-

form ion concentration in the high-salt limit. But a surplus of small ions on the polymer-free

side is obtained that is growing with increasing grafting density, i.e., with enhanced polymer

concentration.

Note that the Donnan effect has been evaluated for a system of point-like constituents.

While such an approximation is appropriate for dilute solutions obviously it fails for rather

dense phases like polymer brushes. In chapter 4 it was shown that hard-core interactions

between polymer monomers and counterions can be effectively taken into account within a

free-volume approximation [10]. Here, the same approximation can be used to extend the

Donnan equilibrium for dense solutions. Within that approach lets concentrate on the effec-

tive hard-core volume of a single polyelectrolyte chain vself , which reduces the free volume

that is available for the small ions. This free-volume theory therefore takes the hard-core

interaction between the polymer monomers and the small ions into account in a nonlinear

fashion. Compared to that the excluded-volume interaction between small ions is weak and

will be neglected. Note that this approximation might fail at very high salt concentrations
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where the short-ranged ion-ion interaction is expected to give a noticeable contribution. Due

to the self-volume vself the effective concentration of small ions on the polymer-containing side

is growing as

c′′i =
n′′i
V ′′

=⇒ n′′i
V ′′ − vself

, (5.6)

with the bare volume in the brush available for a chain V ′′ = h/ρa. The self-volume of a

polymer chain is roughly independent of the brush height and can be expressed in terms of the

polymer contour length Nb and an effective monomer hard-core diameter σeff as vself = Nbσ2
eff ,

where σeff takes into account both the monomer and counterion diameters. Thus, the effective

concentration can be written

c′′i =
n′′i

V ′′(1− η)
, (5.7)

with η = vself/V
′′ = ρaσ

2
effNb/h being the ratio of the polymer self-volume and the volume in

the brush available for a chain and thus is the degree of close packing in the brush where the

brush height h now being measured by the inflection point height zi.

Using eq. (5.7) the condition of equilibrium given in eq. (2.106) becomes

n′+n
′
−

(Lz − h)2
=

n′′+n
′′
−

h2(1− η)2
, (5.8)

which yields together with the conditions of electroneutrality, eqs. (2.107) and (2.108),

n′′+
2 − fNn′′+ = c′s

2
(
h(1 − η)

ρa

)2

,

n′′−
2

+ fNn′′− = c′s
2
(
h(1 − η)

ρa

)2

. (5.9)

Finally the ratio of small ions on both sides reads

c′si
c′′si

=
1

1− η

[
1 +

1

(1− η)2

(
fNρa

2hc′s

)2]−1/2

. (5.10)

Hence, at a finite packing fraction η the distribution of the small ions at large cs is never

homogeneous, but it exhibits the asymptotic limit

c′si
c′′si

=
1

1− η . (5.11)

Now both the asymptotic value of the ratio of the small ions at cs � Qpcp as well as

the particular shape of the function on cs depend on η, i.e., on anchoring density and chain

stretching. Applying the same effective polymer thickness σ2
eff = 2σ2 [10] (eqn. 4.8) used in

the previous chapter for the salt-less case to verify the weak dependence of brush height on

grafting density (in the nonlinear osmotic brush regime), in Figure 5.12 the behavior following
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from eq. (5.10) is given by solid lines. To obtain a continuous function the inflection point z i is

identified with the salt-free value z0
i although the brush height varies with salt concentration

but, as discussed above, with a relatively weak power law c
−1/3
s . With these settings, one

obtain packing fractions η = 0.10 and 0.32 for ρa = 0.042σ−2 and 0.094σ−2, respectively, and

the modified Donnan approach gives an almost perfect agreement with the simulation data.
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Chapter 6

Interactions between two PEL

brushes

Interactions between two PEL brushes that are grafted to two parallel surfaces are impor-

tant, e.g., in preventing colloids in polar media from flocculation [52]. Scaling theory [9]

suggests that in the case of compressed PEL brushes between walls, the disjoining pressure is

the osmotic pressure of counterions and therefore the pressure scales as 1/D, where D is the

distance between the two anchoring surfaces. However, surface force apparatus experiments

on interacting PEL brushes [119] neither observe this scaling prediction nor a refined theory

exist to explain these experimantal findings, atleast at higher compressions. In such a sit-

uation simulations are a promising tool to validate theoretical predictions and experimental

observations.

In this chapter, molecular dynamics simulation results on two interacting PEL brushes

grafted between two parallel planes for decreasing separation between grafting planes D are

discussed. The Bjerrum length is set, λB = σ. The results obtained are for completely

charged brushes (f = 1) at two different anchoring densities ρa = 0.042σ−2 and 0.094σ−2,

respectively, with each brush having M = 36 chains of length N = 30. Note that these

simulations are computationally rather expensive: Typically, depending on separation between

the two grafting surfaces or on anchoring density one data point on IBM Power4+, 1.7 GHz

supercomputer (massively parallel with 64 CPUs) takes between two to five days, while on

sequential Alpha EV67/667 or Intel Xeon/3.06 processors it takes roughly from couple of weeks

to a month.

6.1 Profile and interpenetration of two interacting brushes

Figure 6.1 shows snapshots from the equilibrium trajectories of two interacting brushes com-

pletely charged at grafting density ρaσ
2 = 0.094 for decreasing separation between grafting

planes D. While chains with straight conformations would overlap at D = 2Nb, two brushes
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(a)

(b)

(c)

(d)

(e)

Figure 6.1: Two interacting polyelectrolyte brushes with each brush having M = 36 chains of
length N = 30, completely charged at grafting density ρaσ

2 = 0.094 for decreasing separation
between grafting planesD: (a) D = 60σ; (b)D = 44σ; (c)D = 32σ; (d)D = 20σ; (e)D = 12σ.
The Bjerrum length is λB = σ. Counterions are assigned to the closest polyelectrolyte chain;
polyelectrolyte chains are light yellow (or green), counterions are red (or blue), and anchor
monomers are brown. The red and blue counterions were assigned to the proximity of yellow
and green chains, respectively in the initial configuration. Snapshots have been represented
by using the visualization program VMD [159].

come into contact only at smaller distances. At large separations D chains are far apart

from overlap. In this case, immediately one realize that chains become strongly stretched

and aligned perpendicular to the grafting surface similar to what is observed for PEL brushes
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Figure 6.2: Simulated density profiles of monomers ρm(z) (circles) and counterions ρci(z) (solid
lines) for chains of length N = 30 at anchoring density ρaσ

2 = 0.042 for (from top to down)
D = 12σ, D = 20σ, D = 32σ, D = 44σ, and D = 60σ. See the different values in y-direction
for different D.
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Figure 6.3: Same as Figure 6.2, but at anchoring density ρaσ
2 = 0.094. See the different values

in y-direction for different D.

grafted to a single wall (Figure 4.1(d) and compare it with Figure 6.1(a)). As the separation

between grafting planes is decreased, chains start overlapping for D . (4Nb)/3 (see Figure

6.1(b)). Again, this is in agreement with the previous finding (see chapter 4) for single grafted
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Table 6.1: Simulation results on completely charged polyelectrolyte brushes with varying sep-
aration D between the two anchoring surfaces: average brush height 〈zm〉, average endpoint
height 〈ze〉, and pressure π at two different grafting density ρa. (λB = σ).

ρaσ
2 D/σ 〈zm〉/σ 〈ze〉/σ πσ3/ε

0.042 90 9.51 ± 0.01 17.89 ± 0.04 0.023
0.042 65 9.56 ± 0.01 17.77 ± 0.04 0.033
0.042 60 9.51 ± 0.01 17.73 ± 0.04 0.035
0.042 56 9.48 ± 0.01 17.59 ± 0.04 0.037
0.042 52 9.42 ± 0.01 17.52 ± 0.04 0.041
0.042 48 9.33 ± 0.01 17.30 ± 0.04 0.045
0.042 44 9.23 ± 0.01 17.10 ± 0.04 0.053
0.042 40 8.89 ± 0.01 16.31 ± 0.04 0.063
0.042 36 8.35 ± 0.01 15.00 ± 0.04 0.079
0.042 32 7.67 ± 0.01 13.37 ± 0.04 0.098
0.042 28 6.91 ± 0.01 11.66 ± 0.04 0.129
0.042 24 6.11 ± 0.01 9.91 ± 0.04 0.172
0.042 20 5.24 ± 0.01 8.17 ± 0.04 0.248
0.042 16 4.42 ± 0.01 6.60 ± 0.04 0.400
0.042 12 3.91 ± 0.01 5.82 ± 0.05 0.800
0.042 10 3.59 ± 0.01 5.12 ± 0.06 1.306
0.042 8 3.24 ± 0.01 4.43 ± 0.05 2.526
0.094 90 10.41 ± 0.01 19.80 ± 0.04 0.085
0.094 65 10.36 ± 0.01 19.66 ± 0.04 0.121

0.094 60 10.35 ± 0.01 19.67 ± 0.04 0.133
0.094 56 10.38 ± 0.01 19.72 ± 0.04 0.144
0.094 52 10.35 ± 0.01 19.69 ± 0.04 0.155
0.094 48 10.20 ± 0.01 19.22 ± 0.04 0.177
0.094 44 9.91 ± 0.01 18.60 ± 0.04 0.213
0.094 40 9.37 ± 0.01 17.40 ± 0.04 0.276
0.094 36 8.63 ± 0.01 15.67 ± 0.04 0.369
0.094 32 7.82 ± 0.01 13.80 ± 0.04 0.498
0.094 28 6.93 ± 0.01 11.72 ± 0.04 0.701
0.094 24 6.00 ± 0.01 9.75 ± 0.04 1.055
0.094 20 5.09 ± 0.01 8.03 ± 0.04 1.793
0.094 16 4.16 ± 0.01 6.33 ± 0.04 3.73
0.094 12 3.33 ± 0.01 5.10 ± 0.05 11.01
0.094 10 2.72 ± 0.01 5.37 ± 0.06 24.32
0.094 8 2.19 ± 0.01 4.27 ± 0.05 77.43

PEL brushes, that chains are extended up to about 2/3 of their contour length. Another point

to note is that at all separations D, almost all counterions remain trapped inside the two

brushes.
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Figure 6.4: Endpoint distributions of two interacting brushes completely charged at grafting
density ρa = 0.042σ−2 (λB = σ) for varying D (values as given in Figure 6.2).

For completely charged brushes, Figures 6.2 and 6.3 give the monomer density ρm(z) (and

counterion density ρci(z)) as a function of the distance from one of the anchoring planes z,

and for decreasing separation D between grafting planes at anchoring densities ρaσ
2 = 0.042

and 0.094, respectively. To place all the curves on the same scale z is scaled by D. ρm(z)

is normalized such that
∫ D

0 dzρm(z) = 2Nρa. Considering Figure 6.2, both monomers and

counterions follow very similar nearly steplike profiles at large separations where the brushes

are do not overlap. The fluctuations near grafting planes are a consequence of layering of

monomers and counterions close to the walls. This result is consistent with the profiles obtained

for PEL brushes anchored to a single wall (see Figure 4.2). As D is decreased, monomer

and counterion densities increase every where and becomes almost uniform for D . Nb. In

this case, counterion layering close to walls grow well above the monomer density. For high

compressions layering due to the restricted motion of particles starts to appear in the density

profiles with its range increasing with increasing compression. Such packing effects or short-

range ordering is typical in liquids [82]. At large separations there is almost no qualitative

difference in the profiles when the anchoring density is increased to ρaσ
2 = 0.094 (Figure 6.3).

However, for denser grafting the layering is more clear at high compressions.

The average thickness of the brush is measured by taking the first moment of the monomer

density profile (see eqn. 4.1). The average monomer height for the systems considered in the

present study (varying separation D between grafting surfaces for the two different grafting
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Figure 6.5: Endpoint distributions of two interacting brushes completely charged at grafting
density ρa = 0.094σ−2 (λB = σ) for varying D (values as given in Figure 6.2).
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Figure 6.6: Shape factor rs = 〈R2〉/〈R2
g〉 for systems with M = 36 chains of length N = 30

as a function of separation D. The data given are for grafting density ρa = 0.042σ−2 (circles)
and ρa = 0.094σ−2 (squares).

densities) are given in Table 6.1. As the separation D decreases, the chains overlap and the

brush height decreases.
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Figure 6.7: Spherically averaged structure factor S(q) of completely charged polyelectrolyte
brushes (λB = σ): (a) grafting density ρa = 0.042σ−2; (b) ρa = 0.094σ−2. Symbols in (a)
and (b) correspond to D = 60 (diamonds), D = 44 (triangles up), D = 32 (plus), D = 20
(triangles down), and D = 12 (squares).

Figures 6.4 and 6.5 show the endpoint height distribution ρe(z) at grafting densities ρaσ
2 =

0.042 and 0.094, respectively, for M = 36 chains of length N = 30. The distribution ρe(z)

is normalized to unity. The average endpoint heights for systems considered in the present

study (varying separation D between grafting surfaces for the two different grafting densities)

are also listed in Table 6.1. When the separation between the grafting surfaces is well above

D ≈ (4Nb)/3, the endpoint density profile is very similar to the case of the single brush

(see Figure 4.5). As D is decreased the corresponding two maximum at large z-values in the

endpoint distribution for the two brushes start to overlap. For higher compressions the density

profile broadens and consequently the amplitude of the coalesced maxima decreases, i.e., the

probability of finding the ends in the region z > D/2 significantly increases. The increased
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Figure 6.8: Structure factor perpendicular to grafting planes S(qz) of completely charged
polyelectrolyte brushes (λB = σ): (a) grafting density ρa = 0.042σ−2; (b) ρa = 0.094σ−2.
Symbols as in Figure 6.7.

noise at the minimum D given in the figures is mainly due to averaging over comparatively

less statistical realizations due to a smaller trajectory length obtained in simulations.

6.2 Chain Structure

The overall shape of the grafted polyelectrolyte can be described by the stretching ratio rs =

〈R2〉/〈R2
G〉 (see eqn. 2.35), where 〈R2〉 is the average square end-to-end distance and 〈R2

G〉 is

the average radius of gyration squared. As shown in Figure 6.6 the ratio rs is sensitive to the

separation D. At large separations D & (4Nb)/3 the ratio saturates to the value observed for

PEL brushes grafted to a single wall. As D is decreased the ratio also decreases, i.e. chains are

being reduced in their extensions as the two brushes are compressed against each other and
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Figure 6.9: In-plane averaged structure factor S(qxy) of completely charged polyelectrolyte
brushes (λB = σ): (a) grafting density ρa = 0.042σ−2; (b) ρa = 0.094σ−2. Symbols as in
Figure 6.7.

at the maximum compression shown in the figure one obtains a value close to Gaussian chain,

rs = 6, well-known for chains in melt. The deviation observed in the figure due to D = 12σ at

anchoring density ρaσ
2 = 0.042 is probably because of increased statistical error in this data

point (see also Figure 6.4).

For a more detailed examination of the chain structure of grafted polyelectrolytes at all

length scales, the single chain structure factor is considered. We examine the spherically

averaged structure factor, eqn. 4.9, as well as the structure factor in transverse direction

S(qz) and the in-plane averaged one S(qxy). Remember that in analogy to free chains, in the

asymptotic regime the structure factor is expected to obey the scaling relation S(q) ∼ q−1/ν ,

where ν is the exponent of the N dependence of the chain radius R ∼ N ν . Figure 6.7 gives the

spherically averaged structure factor S(q). The Flory exponents are in the range between 0.87
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(lower compression) and 0.60 (higher compression) for the two anchoring densities studied.

This means that the chain extension is considerably reduced for decreasing separation D as

expected. This result is consistent with the structure perpendicular to the grafting plane

reflected by S(qz) in Figure 6.8 which exhibits strong features of a rigid-rod-like behavior at

large separation D. For both the anchoring densities oscillations in S(qz) being related to

ordering in z-direction get damped with decreasing separation.

As mentioned before, the in-plane behavior (see Figure 6.9) of the grafted polyelectrolyte

chains is determined by the properties of the underlying neutral chains. At large separations

D, the values of the exponent ν are consistent with the single brush studies: As expected

for our model, which is supposed to mimic polyelectrolytes under good solvent conditions, at

grafting density ρa = 0.042σ−2, S(qxy) exhibits an in-plane scaling Rxy ∼ N0.57 close to the

good solvent value 0.6. For ρa = 0.094σ−2, we find Rxy ∼ N0.52 which is in agreement with the

shift towards melt behavior earlier obtained at high grafting densities for single brush studies.

Due to the compression in z-direction, independently on the anchoring density chains tend to

swell in lateral directions giving a growing exponent with decreasing wall separation D. Note

that at high compressions there seems to be another scaling exponent in the high q-regime

for both anchoring densities considered here. The differing behavior at lower D indicates a

relatively decreasing brush behavior which is in agreement with the brush profiles discussed

above.

6.3 Local net charge and ion distribution close to PEL chains

In Figure 6.10 the local net charge in layers parallel to the grafting planes is plotted as a

function of distance z from one of the planes. At large separations D > (4Nb)/3, there is a

dipole emerging at the rim of the brush, as seen previously in the case of single grafted brush.

However, as the separation D is decreased, the dipoles at the rim of the brush overlap and

finally vanishes for higher compressions. For all D except near to the anchoring planes the

net charge is almost zero over the whole range of the box. At higher compressions, charge

compensation near the anchoring planes is less pronounced which is probably due to the

restricted freedom for the particles. To discuss the role of correlations and the degree of

counterion condensation, the ion-polyelectrolyte distribution function p(r) is calculated and

shown in Figure 6.11, where r is the separation between the center of a positive ion and the

closest polyelectrolyte bond. The distribution p(r) is normalized according to 2π
∫∞

0 r p(r) dr =

1. Figure 6.11 shows that at large separations the distribution for both grafting densities is

comparable to the one obtained for single brush studies. However, the strength of correlations

is monotonically growing with decreasing separation D. Again this seems to be an simple

packing effect, although at very high compressions the amplitude is comparable to that found

for PEL brushes in the collapsed regime at high Coulomb strength [104].
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Figure 6.10: Local net charge 〈ρ+〉 − 〈ρ−〉 as a function of the distance z from one of the
grafting surfaces (rescaled with the separation between anchoring planes D): (a) grafting
density ρa = 0.042σ−2; (b) ρa = 0.094σ−2. Each curve corresponds to a certain separation
distance D which is increasing from top to down with the values given in Figure 6.2. The zero
line (dashed lines) is shifted by 0.2 units in y-direction for ρa = 0.042σ−2 and 0.4 units for
ρa = 0.094σ−2.

6.4 Pressure of two interacting brush systems

To have a better understanding of the interactions between the two brushes which are com-

pressed against each other, we estimated the pressure which can be directly obtained in sim-

ulations. At each separation D, the pressure is calculated as

π =
Ntot

V
(kBT + 〈v2〉), (6.1)
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Figure 6.11: Ion-polyelectrolyte distribution function for two interacting PEL brushes com-
pletely charged at λB = σ: (a) grafting density ρa = 0.042σ−2; (b) ρa = 0.094σ−2. Symbols
as in Figure 6.7.

with

〈v2〉 = −1/(3Ntot)



Ntot−1∑

i=1

Ntot∑

j=i+1

〈∇U ′ij · rij〉 − 〈UCoul〉


 , (6.2)

where the first term in eq. 6.1 is the ideal gas contribution and the second term is the pressure

virial [156] per particle. The virial in eq. 6.2 is subdivided into contributions from the short-

range part of the potential (U ′ = U − UCoul) and the electrostatic part [164] to properly
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Figure 6.12: Pressure vs. separation distance D between the two anchoring planes for com-
pletely charged PEL brushes at λB = σ. Symbols as in Figure 6.6.

10 100 1000
D/σ

0.001

0.01

0.1

1

10

100

Pr
es

su
re

  (
ε/

σ3 )

α = −1

α = −2

α = −2.6

Figure 6.13: Log-log plot showing pressure vs. separation distance D between the two anchor-
ing planes for completely charged PEL brushes at λB = σ. Symbols as in Figure 6.6.

account for the long-range nature of the Coulomb interaction [125]. Ntot is the total number

of particles, V = Lx×Ly×D is the volume of the simulation box and −∇U ′ij is the short-range
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force on particle i due to j, along rij = ri − rj .

The evaluated pressure π(D) is plotted against the separation between the two anchoring

surfaces in Figure 6.12 (also listed in Table 6.1). As it is evident from the figure, increasing

anchoring density increases the pressure. A very weak increase in pressure at large separations

followed by a rapid increase at low D value is observed. To find whether there exist any

scaling regimes, we plot the data in a log-log representation in Figure 6.13. There seems to be

atleast two regimes for both anchoring densities studied. At large separation distances D the

virial in eqn. 6.2 remains constant, consequently the pressure scales with D with exponent -1.

However at separations D . (4Nb)/3 the behavior changes to an exponent ≈ −2 for anchoring

density ρa = 0.042σ−2, and ≈ −2.6 for ρa = 0.042σ−2. This crossovers might be due to the

repulsive interactions between chains, because the relative change in the slope occurs when

the two brushes just start to overlap at D ≈ (4Nb)/3 (see snapshot Figure 6.1, and density

profiles Figures 6.2 and 6.3).

Note that the theoretical prediction for the scaling dependence of pressure on compressions

D is π ∼ D−1 (see eqn. 2.111) [9]. This relation is purely based on the osmotic pressure of

counterions (counterions assumed as an ideal gas) and completelty neglects the role of polymer.

At very large compressions D . Nb/2 a third regime is seen. This could be an effect

of a crossover from brush behavior to an layered structure which is visible in the monomer

density profiles, Figures 6.2, and 6.3. The behavior seen in the simulation is in qualitative

agreement with experimental data [119]. Doubtless the simulation data provide a basis for

a better theoretical understanding of the interaction between PEL brushes. Nevertheless the

simulation results have to be confirmed for a wider parameter range.
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Chapter 7

Conclusions

Polyelectrolytes (PELs) or charged polymers anchored on surfaces are fascinating for their

wide spectrum of applications, but they also form a challenging topic for pure science. Due

to various interactions, tethered chains are enforced to take an elongated conformation giving

rise to a brush-like structure. Modern scaling concepts introduced by de Gennes [2] can help

the theoretical understanding of these systems. Computer simulations are a promising tool to

check theoretical predictions and to study regimes that are not easily accessible in experiments.

We perform extensive molecular dynamics simulations of polyelectrolyte brushes using local

compute servers as well as massively parallel supercomputers. The full Coulomb interaction of

monomers, counterions, and salt ions is treated explicitly. Our model also includes excluded

volume interaction between monomers, counterions, and salt ions.

It is well known that simulations on charged systems are computationally rather expensive

[141, 156] due to the long range nature of Coulomb interaction which is to be handled by

using special methods like the Ewald summation method [22]. Using O(N 2
tot) methods (Ntot

is the total number of charged particles), e.g., Ewald summation or due to a summation

technique proposed by Lekner [146] applied to the particular brush geometry, within the

current computational capabilities one is able to simulate only up to about 2000 charged

particles [104]. For considering larger systems, one has to pass over to improved methods

which give a better time scaling in treating long-ranged interactions. Here, a new method called

MMM2D [145] is employed to calculate the Coulomb sum in the particular brush geometry.

This method has got an O(N
5/3
tot log(Ntot)

2) scaling (already for Ntot > 100 the factor becomes

larger than unity when compared with the O(N 2
tot) method due to Lekner [146]) and now we

are able to simulate up to about 10000 charged particles. This allows studying the effect of,

e.g., additional salt ions in the PEL brush system.

The following conclusions are reached from the simulation studies on strong PEL brushes

at constant temperature:

(1) For PEL brushes in the nonlinear osmotic brush regime (see chapter 4) the brush

height h slightly increase with increasing grafting density ρa which is in contrast to the well
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known scaling prediction for the osmotic brush regime. Also, brushes extent up to about

2/3 of their contour length which is certainly beyond the range where linear elasticity theory

can be applied. A simple scaling approach is applied that incorporates the excluded volume

effects in a free-volume formulation, similar to the classical derivation of the van der Waals

equation of state. Within this theory one can understand the findings obtained in simulations

and later also in experiment on a semi-quantitative level. The self-volume is expressed in

terms of an effective monomer hard-core diameter σeff and the polymer contour length Nb

as vself = Nbσ2
eff , where σeff takes into account both the monomer and counterion diameters.

The volume available for counterions V ′′0 = h/ρa is reduced by vself , thus the free-volume

is given by V ′′ = V ′′0 (1 − η), where η is the packing fraction of the polymer chain in the

brush. Balancing the resulting nonlinear entropy of counterions (see eqn. 4.2) against the

high-stretching elasticity (see eqn. 4.4: h ≈ Nb case) of the chain, the equilibrium brush

height depends on ρa indeed. The nonlinear theory evaluated with σ2
eff = 2σ2 agrees with

the simulation results (see Figure 4.4) [10]. However, note that these findings meanwhile also

obtained in experiments [10] could also be explained by considering lateral inhomogeneity of

counterion distribution [94].

(2) For PEL brushes with added salt (see chapter 5), in the nonlinear osmotic brush regime

the brush thickness is found to shrink with increasing electrolyte concentration. The scaling

behavior of brush height (see Figure 5.4) is in almost perfect agreement with the prediction by

Pincus for the salt dependence in the osmotic brush regime h ∼ c
−1/3
s [106]. The prediction

is based on the assumption that screening from the added salt reduces the counterion osmotic

pressure which stretches the chains. In the high salt limit cs � cci, balancing the resulting

osmotic pressure (see eqn. 2.98) against the Gaussian elasticity of the polymer chain yields

a weak dependence of the brush height on salt concentration [9]. Note, however, that in the

simulations we could not obtain many data points in the asymptotic limit of the so-called

salted brush where cs � cci. Therefore the contribution by the natural counterions cannot

be neglected, but all mobile ions (counterions as well as salt ions) within the brush have

to be taken into account. That is why we consider the brush stretching as a function of the

concentration of mobile ions within the brush c′′si and not as a function of the salt concentration

cs only. Thus, finally we observe an almost perfect agreement with the scaling prediction (see

Figure 5.5).

The relation between buffer concentration c′si and the effective ion strength inside the brush

c′′si at varying salt concentration cs is of interest both from theoretical as well as experimental

point of view. Due to the polymer layer close to the anchoring surface, a priori there is a

nonhomogeneous particle distribution perpendicular to the interface. The first attempt to

understand the relation between the concentrations of small ions in the brush and outside

the polymer layer at varying salt concentration is by a Donnan equilibrium approach. But

this fails because of the high concentration in the brush state (see Figure 5.12). At high
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densities, as it is forced in polyelectrolyte brushes, the approximation of point-like ions in the

Donnan approach is not justified, but excluded volume effects become relevant. However, the

relation between the total ion concentration within the brush and the buffer concentration

can be understood on the basis of an extended Donnan equilibrium approach. Within that

approach the self-volume of PEL chains is taken into account as indicated above. Using the

same parameter σeff as in the case of the dependence of brush height on grafting density we

observe an almost perfect agreement with the simulation results [106]. The extended Donnan

equilibrium relation represents a interesting theoretical prediction that should be checked by

experimental data.

(3) For two interacting PEL brushes grafted to two parallel surfaces (see chapter 6) the

monomer density profiles obtained in the simulation shows that the chains start to overlap

only at D ≈ (4Nb)/3, where D is the separation between the two grafting planes (see Figures

6.2 and 6.3). This result is the expected one considering the above simulation studies on single

grafted brush which showed that chains are extended up to about 2/3 of their contour length.

Further decreasing D, the profiles look almost homogeneous over the whole range of the box

for D . Nb, except at higher compressions, where layering close to the two planes appear more

pronounced. Its amplitude as well as range are growing with decreasing D. This is expected

to be due to the restricted motion of particles near the two anchored surfaces. Such a density

distribution is also observed in liquids [82]. Comparing the monomer density profiles with the

counterion density profiles or looking at the local net charge density in direction perpendicular

to the anchoring planes, for all D the net charge is almost zero over the whole range of the

box except near to the two anchoring planes.

The pressure curve shows mainly three different regimes as the separation between the

two grafting planes is decreased (see Figure 6.12). At large separations where the chains do

not overlap, the pressure virial remains almost constant. Therefore we obtain the behavior

π ∼ 1/D for D & (4Nb)/3 independent of anchoring density. As D is decreased a new regime

appears which has different exponent for the pressure dependence on D depending on the

anchoring density. However, here we do not observe the scaling prediction π ∼ 1/D [9] for

interacting chains. This might be due to the fact that in the scaling analysis the excluded

volume effects are neglected, but could be important for dense systems which are considered

here. At very large compressions a third regime is seen. This could be an effect of a crossover

from brush behavior to an layered structure. However, these findings have to be studied in

more detail in future simulations.
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Appendix A

The MMM2D method

This appendix gives a short overview on the MMM2D method [145]. The Coulomb summation

for the particles in the central simulation box as well as in the image boxes is given as (in

reduced units)

UCoul(r) =
∞∑

k=−∞

∞∑

l=−∞

Ntot−1∑

i=1

Ntot∑

j=i+1

qiqj
|rij + kL+ lL| , (1.1)

where rij = (xij , yij, zij) = ri − rj (ri and rj are the position coordinates of particles i and j,

respectively), and the indices k and l run over the periodic images of the simulation box. Ntot

is the total number of charges, and L is the planar box length.

Similar to MMM [144], MMM2D uses an exponential convergence factor, i.e. eqn. 1.1 can

be now written for the interaction energies of particle i with all other charges, defined as

Ui(r) = lim
β→ 0

∞∑

k=−∞

∞∑

l=−∞

Ntot∑

j=1

′ qiqje−β|rij+kL+lL|

|rij + kL+ lL|

= lim
β→ 0

Ntot∑

j=1

qiqjφβ(xij , yij, zij), (1.2)

(prime ′ on the inner sum in the above equation indicates that the term j = i for k = l = 0 is

omitted) where

φβ(xij , yij, zij) = φ̃β(xij , yij , zij) +





e−βr
r (xij , yij , zij) 6= (0, 0, 0),

0 (xij , yij , zij) = (0, 0, 0)

(1.3)

and

φ̃β(xij , yij, zij) =
∑

(k,l)6=(0,0)

e−βrkl

rkl
, (1.4)
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where the distance

rkl =
√

(xij + kL)2 + (yij + lL)2 + (zij)2, rk = rk0, r = r0. (1.5)

Transformation of φβ for zij 6= 0 - the far formula

For zij 6= 0 and β > 0 the sum in φβ is an absolutely convergent sum of Schwartz class

functions. Therefore for δ > 0, and r ∈ R, where R is the set of real numbers one could apply

the Poisson formula ∑

k

f(r + δk) =
1

|δ|
∑

p

F(f)
(p
δ

)
e2πi p

δ
r (1.6)

(F denotes the Fourier transformation) on eqn. 1.3 and the summation can now be done in

the Fourier space

φβ(xij , yij, zij) =
∑

k,l

e−βrkl

rkl
=

2π

L2

∞∑

p=−∞

∞∑

q=−∞

e−βpq |zij |

βpq
e2πipxij/Le2πiqyij/L, (1.7)

where βpq =
√
β2 + (2πp/L)2 + (2πq/L)2, and p and q indices are the frequencies in the

Fourier space along the transformed coordinates x and y, respectively. Finally after applying

the limit β → 0, the far formula reads

φ(xij , yij, zij) =
4

L2

∑

p,q>0

e−2πfpq |zij |

fpq
cos(ωpxij)cos(ωqyij)

+
2

L2


∑

p>0

e−2πfp|zij |

fp
cos(ωpxij) +

∑

q>0

e−2πfq |zij |

fq
cos(ωqyij)




− 2π|zij |
L2

, (1.8)

where

fpq =
√

(p/L)2 + (q/L)2, fp = p/L, fq = q/L,

ωp = 2πp/L, ωq = 2πq/L. (1.9)

The forces are obtained as fi = −OriUi,

fxij (xij , yij , zij) =
8π

L3

∑

p,q>0

p
e−2πfpq |zij |

fpq
sin(ωpxij)cos(ωqyij)

+
4π

L2

∑

p>0

e−2πfp|zij |sin(ωpxij),
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fyij (xij , yij, zij) =
8π

L3

∑

p,q>0

q
e−2πfpq |zij |

fpq
sin(ωpxij)cos(ωqyij)

+
4π

L2

∑

q>0

e−2πfq |zij |sin(ωqxij),

fzij (xij , yij, zij) =
8π sign(zij)

L2

∑

p,q>0

p
e−2πfpq |zij |

fpq
cos(ωpxij)cos(ωqyij)

+
4π sign(zij)

L2

∑

p>0

e−2πfp|zij |cos(ωpxij)

+
4π sign(zij)

L2

∑

q>0

e−2πfq |zij |cos(ωqxij)

+
2π sign(zij)

L2
.

The singularity in β in the far formula vanishes once the sum of φβ is taken over all particles

via the charge neutrality condition. Therefore such a formula is applicable only to charge

neutral systems. The final sum converges well as the summands decay exponentially, but for

small zij the convergence becomes poor and for zij = 0 the sum is not defined. Thus an

alternative method is used for small zij (see below).

Transformation of φ̃β for zij ≈ 0 - the near formula

For small particle distances, the terms in eqn. 1.3 is split into two to efficiently sum over the

area which has a hole due to the omission of the self energy term k = l = 0. Taking the limit

β → 0 for |zi − zj | ≤ L/2 the near formula reads

φ̃(xij , yij , zij) =
4

L

∑

p,l>0

(K0(ωpρl) +K0(ωpρ−l))cos(ωpxij)

− 2

L

∑

n>1

b2n
2n(2n)!

Re((2π(zij + iyij)/L)2n) +

Nψ−1∑

k=1

(
1

rk
+

1

r−k

)

− 1

L

∑

n>0

(−1/2

n

)
(ψ(2n)(Nψ + xij/L) + ψ(2n)(Nψ − xij/L)

(2n)!
(ρ/L)2n

− 2

L
log(4π), (1.10)

where K0 is called the modified Bessel function of order 0 [139], ρl =
√

(yij + (l/L))2 + z2
ij , ρ =

ρ0, bn are the Bernoulli numbers, ψ(n) are polygamma functions and Nψ such that Nψ >
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(ρ/L) + 1. The forces are obtained as fi = −OriUi,

f(xij , yij, zij) = f̃(xij , yij, zij) +





1
(x2
ij+y

2
ij+z

2
ij)

3/2




xij

yij

zij


 (xij, yij , zij) 6= (0, 0, 0),

0 (xij, yij , zij) = (0, 0, 0),

(1.11)

where

f̃xij (xij , yij, zij) =
8π

L2

∑

p,l>0

p(K0(ωpρl) +K0(ωpρ−l))sin(ωpxij)

+

Nψ−1∑

k=1

(
xij + (k/L)

r3
k

+
xij − (k/L)

r3
−k

)

+
1

L2

∑

n>0

(−1/2

n

)
(ψ(2n+1)(Nψ + (xij/L)) − ψ(2n+1)(Nψ − (xij/L))

(2n)!
(ρ/L)2n,

f̃yij (xij , yij , zij) =
8π

L2

∑

p,l>0

p

(
(yij + (l/L))K1(ωpρl)

ρl
+

(yij − (l/L))K1(ωpρ−l)
ρ−l

)
cos(ωpxij)

− 4π

L2

∑

n>1

b2n
(2n)!

Im((2π(zij + iyij)/L)2n−1) +

Nψ−1∑

k=1

(
yij
r3
k

+
yij
r3
−k

)

+
yij
L3

∑

n>1

(−1/2

n

)
(ψ(2n)(Nψ + (xij/L)) + ψ(2n)(Nψ − (xij/L))

(2n− 1)!
(ρ/L)2(n−1),

f̃zij (xij , yij , zij) =
8π

L2

∑

p,l>0

p

(
zijK1(ωpρl)

ρl
+
zijK1(ωpρ−l)

ρ−l

)
cos(ωpxij)

+
4π

L2

∑

n>1

b2n
(2n)!

Re((2π(zij + iyij)/L)2n−1) +

Nψ−1∑

k=1

(
zij
r3
k

+
zij
r3
−k

)

+
zij
L3

∑

n>1

(−1/2

n

)
(ψ(2n)(Nψ + (xij/L)) + ψ(2n)(Nψ − (xij/L))

(2n− 1)!
(ρ/L)2(n−1),

where K1 is the modified Bessel function of order one. However, this sum also leads to the

same singularity in β as far formula and the charge neutrality argument also holds for any

combination of the two formulas as long as the sum is performed over all particles.
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Computation time

The far and near formulas can be efficiently implemented to achieve the time scaling of

O(N5/3 log(N)2) [145]. The method is to split the simulation box into B equally sized slices

along the z- axis. For all particles in slice S the interaction with the particles in the slices

S − 1, S and S + 1 (if existent) is calculated using the near formula. For the other slices the

far formula is used. However, for the near formula to be valid, |zi − zj| ≤ L/2 for particles i

and j located in adjacent slices. This gives the constraint

2Lz
B
≤ L

2
, (1.12)

where Lz is the simulation box height. Therefore one could tune the parameter B (normally

chosen large enough) to yield a minimal computation time. The above particle sorting pro-

cedure can be done in time O(N) [145]. The time for calculation of the near sum can be

obtained as O(N(2N/B)). The calculation of the far formula consists of summing terms in

the Fourier space. An efficient implementation of this sum can lead to a computational time

of the order O(R2N) +O(R2B2) for homogeneously distributed particles in the system [145],

where R is the cutoff used in the far formula. Choosing the minimal distance of two particles

that are treated by the far formula as Lz/B, finally the asymptotic scaling O(N 5/3 log(N)2)

is reached.
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List of symbols

a distance between charged subunits on a chain

ai activity coefficient of species i

b bond length or monomer size

bk Kuhn segment length

cci counterion concentration

cm monomer concentration

cp polymer concentration

cs salt concentration in solution

c′s salt concentration in solution outside the brush (buffer salt)

c′si concentration of small ions (chain counterions and salt ions) outside the brush

c′′si concentration of small ions inside the brush

CX(t) autocorrelation function

D distance between two planar parallel surfaces grafted with charged chains

e electron charge

f force

f fractional charge of the chain 0 ≤ f ≤ 1

F free energy

h brush height

H counterion layer thickness

k spring constant

kBT thermal energy

L simulation box height in x or y-direction

Le electrostatic persistence length of the chain

Li intrinsic persistence length of the chain

Lp persistence length of the chain

Lz simulation box height in z-direction

m mass

M number of polymer chains

N number of monomers in a chain

Ntot total number of (charged) particles
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P (r) ion-polyelectrolyte distribution function

qi charge on particle i in units of elementary charge e

q wave vector

{ri} set of bond vectors

rs shape factor

{Ri} set of position vectors

R end-to-end vector

R root mean square end-to-end distance

Rg radius of gyration

RCM center of mass of the chain

Rmax maximum length of the end-to-end vector (contour length)

sineff statistical inefficiency

S entropy

S(q) spherically averaged structure structure factor of a single chain

S(qxy) in-plane averaged structure factor of a single chain

S(qz) structure factor of a single chain perpendicular to the grafting plane

δt time step

u(r) interaction potential as a function of separation r

U potential energy

v excluded volume

ve electrostatic excluded volume

v2 second virial coefficient

w third virial coefficient

Wi Gaussian random force on particle i

W (R) number of chain conformations with end-to-end vector R for fixed N

Y Young’s modulus

〈zci〉 average counterion height

〈ze〉 average brush end point height

〈zm〉 average brush mid-height

α splitting parameter in the Ewald sum

ε Lennard-Jones energy

ε dielectric constant of solvent

ε0 vacuum permittivity

Γ friction constant

λB Bjerrum length (e2/4πε0εkBT )

λD = κ−1 Debye length

λGC Gouy-Chapman length

µi chemical potential of species i
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ν exponent of N dependence of chain radius R (R ∼ N ν)

Ω partition function

π pressure

φ(r) potential at point r

ϕ probability distribution

Ψ({ri}) conformational distribution of chain

ψ(ri, . . . , ri+ic) bond distribution

ρa anchoring density of polymer chains

ρe(z) endpoint distribution as a function of distance z from anchoring surface

ρci(z) counterion density profile as a function of distance z from anchoring surface

ρm(z) monomer density profile as a function of distance z from anchoring surface

σ Lennard-Jones length

σeff effective monomer hard-core diameter

τ linear charge density

τLJ Lennard-Jones time

τm relaxation time for average brush thickness

τrun number of measurements

ξ blob size
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[101] Sjöström, L.; Åkesson, T.; Jönsson, B. J. J. Chem. Phys. 1993, 99, 4739-4747.

[102] Chen, H.; Zajac, R.; Chakrabarti, A. J. Chem. Phys. 1996, 104, 1579-1588.

[103] Csajka, F. S.; van der Linden, C. C.; Seidel, C. Macromol. Symp. 1999, 146, 243-249.

[104] Csajka, F. S.; Seidel, C. Macromolecules 2000, 33, 2728-2739.

[105] Seidel, C. Macromolecules 2003, 36, 2536-2543.

[106] Kumar, N.A.; Seidel, C. Macromolecules 2005, 38, 9341.



122 BIBLIOGRAPHY

[107] Watanabe, H.; Patel, S. S.; Argillier, J. F.; Parsonnage, E. E.; Mays, J. W.; Dan-

Brandon, N.; Tirrell, M.; Mater. Res. Soc. Symp. Proc. 1992, 249, 255-265.

[108] Amiel, C.; Sikka, M.; Schneider, J. W.; Tsao, Y. H.; Tirrell, M.; Mays, J. W. Macro-

molecules 1995, 28, 3125-3134.

[109] Ahrens, H.; Förster, S.; Helm, C. A. Macromolecules 1997, 30, 8447-8452.
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