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Abstract

In the early days of computer graphics, research was mainly driven by the goal to create
realistic synthetic imagery. By contrast, non-photorealistic computer graphics, established
as its own branch of computer graphics in the early 1990s, is mainly motivated by concepts
and principles found in traditional art forms, such as painting, illustration, and graphic
design, and it investigates concepts and techniques that abstract from reality using expressive,
stylized, or illustrative rendering techniques. This thesis focuses on the artistic stylization of
two-dimensional content and presents several novel automatic techniques for the creation
of simplified stylistic illustrations from color images, video, and 3D renderings. Primary
innovation of these novel techniques is that they utilize the smooth structure tensor as a
simple and efficient way to obtain information about the local structure of an image.

More specifically, this thesis contributes to knowledge in this field in the following ways.
First, a comprehensive review of the structure tensor is provided. In particular, different
methods for integrating the minor eigenvector field of the smoothed structure tensor are
developed, and the superiority of the smoothed structure tensor over the popular edge tan-
gent flow is demonstrated. Second, separable implementations of the popular bilateral and
difference of Gaussians filters that adapt to the local structure are presented. These filters
avoid artifacts while being computationally highly efficient. Taken together, both provide
an effective way to create a cartoon-style effect. Third, a generalization of the Kuwahara
filter is presented that avoids artifacts by adapting the shape, scale, and orientation of the
filter to the local structure. This causes directional image features to be better preserved and
emphasized, resulting in overall sharper edges and a more feature-abiding painterly effect.
In addition to the single-scale variant, a multi-scale variant is presented, which is capable
of performing a highly aggressive abstraction. Fourth, a technique that builds upon the
idea of combining flow-guided smoothing with shock filtering is presented, allowing for an
aggressive exaggeration and an emphasis of directional image features.

All presented techniques are suitable for temporally coherent per-frame filtering of
video or dynamic 3D renderings, without requiring expensive extra processing, such as
optical flow. Moreover, they can be efficiently implemented to process content in real-time
on a GPU.
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Zusammenfassung

In den Anfingen der Computergrafik war die Forschung hauptséichlich von dem Anspruch
getragen, realistisch aussehende synthetische Bilder zu erstellen. Im Gegensatz dazu ist die
nicht-photorealistische Computergraphik, ein Untergebiet der Computergrafik, welches
in den frithen 199oer Jahren gegriindet wurde, vor allem motiviert durch Konzepte und
Prinzipien der traditionellen Kunst wie Malerei, Illustration und Grafikdesign. Diese Arbeit
beschiftigt sich mit der kiinstlerischen Verarbeitung von zweidimensionalen Bildinhalten
und présentiert mehrere neue automatische Verfahren fiir die Erstellung von vereinfachten
kiinstlerischen Darstellungen von Farbbildern, Videos und 3D-Renderings. Wichtigste
Neuerung dieser Techniken ist die Verwendung des Strukturtensors als eine einfache und
effiziente Moglichkeit, Informationen iiber die lokale Struktur eines Bildes zu erhalten.

Konkret werden die folgenden Beitrige gemacht. Erstens wird eine umfassende Uber-
sicht iiber den Strukturtensor gegeben. Insbesondere werden verschiedene Methoden fiir die
Integration des kleineren Eigenvektorfeldes des geglatteten Strukturtensors entwickelt, und
die Uberlegenheit des geglitteten Strukturtensors gegeniiber dem populiren Edge-Tangent-
Flow demonstriert. Zweitens werden separable Implementierungen des bilateralen Filters
und des Difference of Gaussians Filters vorgestellt. Durch die Anpassung der Filter an die
lokale Struktur des Bildes werden Bildfehler vermieden, wobei der Vorgang rechnerisch
effizient bleibt. Zusammengenommen bieten beide Techniken eine effektive Moglichkeit,
um einen Cartoon-dhnlichen Effekt zu erzielen. Drittens wird eine Verallgemeinerung des
Kuwahara-Filters vorgestellt. Durch die Anpassung von Form, Umfang und Orientierung
der Filter an die lokale Struktur werden Bildfehler verhindert. AuBBerdem werden direk-
tionale Bildmerkmale besser beriicksichtigt und betont, was zu scharferen Kanten und
einem malerischen Effekt fiihrt. Neben der single-scale Variante wird auch eine multi-scale
Variante vorgestellt, welche im Stande ist, eine hohere Abstraktion zu erzielen. Viertens wird
eine Technik vorgestellt, die auf der Kombination von flussgesteuerter Glattung und Schock-
Filterung beruht, was zu einer intensiven Verstarkung und Betonung der direktionalen
Bildmerkmale fiihrt.

Alle vorgestellten Techniken erlauben die zeitlich kohdrente Verarbeitung von Ein-
zelbildern eines Videos oder einer dynamischen 3D-Szene, ohne dass andere aufwendige
Verfahren wie zum Beispiel die Berechnung des optischen Flusses, benotigt werden. Dar-
iiberhinaus konnen die Techniken effizient implementiert werden und ermdglichen die
Verarbeitung in Echtzeit auf einem Grafikprozessor (GPU).
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Chapter 1

Introduction

“Style, in its finest sense, is the last acquirement of the educated
mind, it is also the most useful. It pervades the whole being.
The administrator with a sense for style hates waste; the
engineer with a sense for style economises his material; the
artisan with a sense for style prefers good work. Style is the
ultimate morality of mind.”

— Alfred North Whitehead

The invention of the daguerreotype process in 1837 made it possible for the first time, to
capture images permanently, making photography interesting to a wider audience. Until
then, painters were the only ones to receive commissioned work for portraits or to archive
historical events and they tried to reproduce their subjects with the best possible accuracy
in every detail. The camera’s capability to capture clear and accurate images drove painters
to experiment and expand their creative vision, resulting in the development of, for exam-
ple, Impressionism and Expressionism. Similarly, in the early days of computer graphics,
research was mainly driven by the aim to create realistic synthetic imagery. In the beginning,
work focused on the development of plausible models and later on physically accurate simu-
lations, resulting in the development of, for example, radiosity and path tracing. Just as the
invention of photography stimulated artistic diversity in the late 19" century, the successes
of photorealistic computer graphics in the early 1990s motivated alternative techniques for
rendering in non-photorealistic styles, establishing non-photorealistic computer graphics
[GGor; SSo2] as its own branch of computer graphics, which, in contrast to traditional
computer graphics, is mainly motivated by the concepts and principles found in traditional
art forms, such as painting, illustration, and graphics design. Non-photorealistic computer
graphics investigates concepts and techniques that abstract from reality using expressive,
stylized, or illustrative rendering techniques. Today, the field of non-photorealistic render-
ing (NPR) has expanded into a highly active area of research, covering a wide range of
expressive rendering styles, such as artistic rendering of three-dimensional objects [Mei96;
LKLo6; DRo7], exploded diagrams [Li+08], false color [PR11; Rei+o1], and artistic styles,
including painterly [Bou+o07; Zen+o09] and constrained palette rendering [MGo8; XKo§].
While NPR also covers artistic rendering from the object space of a three-dimensional scene,
this thesis focuses on techniques for the artistic stylization of two-dimensional content (i.e.,
photographs and video), which is referred to as image-based artistic rendering (1B-AR). For
a comprehensive survey of this field see [J1]. Moreover, a book [RC12] on the subject is
about to appear, including a chapter [B2] on nonlinear filtering approaches.
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Figure 1.1: Chronology of IB-AR development. From the semi-automated stroke-based rendering systems
of the early 1990s, to increasingly automated systems based upon advanced computer vision and image
processing techniques that enhanced the aesthetic gamut. Later, the availability of massive computing
resources, provided by modern GPU hardware, has spawned the development of techniques operating in
real-time.

The origins of IB-AR reach back to seminal works that explore the emulation of
traditional artistic media and styles [Haego; Cur+97; Litg7; Sal+97; Herg8]. While early IB-
AR approaches only utilized simple low-level image processing operations, such as the image
gradient, modern IB-AR methods build upon the latest methods from computer vision,
perceptual modeling, human computer interaction, and computer graphics (Figure 1.1). For
example, video cartooning [CRHo5; Wan+04] is related to video matting and automated
rotoscoping [Aga+o4], and painterly rendering of video [HEo4; Lit97] requires optical flow
in order to obtain temporally coherent results. While advanced techniques that perform a
higher-level analysis of an image or video provide a wealth of information that may be used
to drive the stylization and rendering process, this information comes at a price. Advanced
techniques are typically computationally demanding and techniques, such as segmentation
and optical flow, do not perform equally well on all footage. Figure 1.2(b) shows an example,
created by an advanced technique, utilizing computer vision and machine learning for the
analysis and stoke-based rendering for synthesizing the final result.

In parallel with the trend toward more sophisticated scene analysis, techniques based
on heuristics have been developed that avoid a higher-level analysis of the image. Most of
these techniques are based on image processing operations, such as the cartoon pipeline by
Winnembdller et al. [WOGo06], which is based on the bilateral and difference of Gaussians
filters. Due to the local nature of image processing decisions, parallelization and GPU
implementations of image filters are straightforward in most cases and often lead to real-
time performance on modern multi-core CPUs and GPUs. Consequently, they are practical
for video processing and are applicable to footage, such as water, smoke, or fur, which
is otherwise challenging to parse using computer vision methods such as segmentation.
This simplicity, however, comes at the expense of the style diversity that is possible when a
higher-level interpretation of the content is applied. Nevertheless, the lack of higher-level
image understanding can, to some extent, be superseded by allowing the user to interactively
experiment with a technique’s parameters. Interestingly enough, a trend toward semi-
automatic systems is also observable for methods based on higher-level analysis. While fully
automatic techniques may be interesting from an academic point of view, tools for artists
require possibilities for intervention that support the achievement of the artist’s intention.

This thesis aims for a compromise between stylization methods driven by higher-level
image analysis and fast and simple image processing operations. To this end, this thesis
advocates for the use of the smoothed structure tensor as a simple and efficient way to obtain



(¢) Cartoon (Chapter 4) (d) Coherence-enhancing filtering (Chapter 6)

Figure 1.2: Comparison of different IB-AR techniques. (a) Original image. (b) Result of an advanced
stroke-based rendering method by Zeng et al. [Zen+09], utilizing computer vision and higher-level
analysis. (c¢) Result obtained using the generalized cartoon rendering pipeline discussed in Section 4.6.
(d) Result obtained by applying coherence-enhancing filtering discussed in Chapter 6.
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information about the local structure of an image. On this basis, two general principles to
utilize the information about the local structure will be investigated. First, the information
may be used to improve and generalize existing techniques (Figure 1.2(c)). Second, the
information may be used to achieve artistic stylization by a reinforcement or exaggeration
of directional image features and flow-like structures (Figure 1.2(d)). These are considered
pleasant, harmonic, or at least interesting by most humans [Weigg]. They are also a highly
sought after property in many of the traditional art forms, such as painting and illustration.
Enhancing directional coherence in an image helps to clarify region boundaries and features.
As exemplified by Expressionism, it also helps to evoke mood or ideas and even elicit
emotional response from the viewer [Wik12]. Particular examples include van Gogh and
Munch, who have emphasized these features in their paintings.

In order to demonstrate the effectiveness of the proposed approach, several classical
filters will be examined and new variants developed that take the local structure intro
account. More specifically, generalizations of the bilateral, difference of Gaussians, and
Kuwabhara filters, as well as a new filter that performs smoothing and sharpening locally in
perpendicular directions will be presented.

1.1 Structure and Contributions

This thesis is organized as follows:

Chapter 2 presents a comprehensive introduction to the smoothed structure tensor and
related techniques. It forms the foundation for the subsequent chapters, which utilize
the structure tensor to guide local neighborhood filters. It presents several different
but equivalent definitions of the structure tensor, each providing a different view
and highlighting specific properties. Moreover, it discusses how to derive confidence
measures and cornerness measures from the structure tensor. The chapter’s main
contribution is an examination of different integration methods to perform line
integral convolution along the integral curves induced by the smoothed structure
tensor. These techniques play a fundamental role in later chapters. Portions of this
chapter are based on the publications [J3; C1; C3].

Chapter 3 presents two variants of the bilateral filter. The first variant is the orientation-
aligned bilateral filter, a fast separable approximation of the bilateral filter that works
by filtering in the direction of the gradient and then filtering the intermediate result in
the perpendicular direction. In contrast to an axis-aligned separable implementation,
this approach does not suffer from horizontal or vertical artifacts and it creates
smooth output at curved boundaries when applied iteratively. Moreover, moderate
stylization can be achieved when stronger smoothing is used in the tangent direction,
making the filter shape elliptic. A stronger stylization effect can be achieved with the
second variant presented in this chapter, the flow-based bilateral filter, which realizes
the filtering in tangent direction as a line integral convolution along the integral curves
induced by the smoothed structure tensor. For both approaches, special sampling
schemes are presented to reduce blurring. Portions of this chapter are based on the
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publications [C3; B4]. The concept of the flow-based bilateral filter was developed
independently from Kang et al. [KLCog], but was not formally published.

Chapter 4 presents a separable implementation of the flow-based difference of Gaussians
filter, and a reparameterization of the extended difference of Gaussians thresholding
scheme, which simplifies artistic control by providing uncoupled parameters. More-
over, this chapter presents a generalization of Winnemoller et al.’s cartoon pipeline
[WOGo6], based on the separable implementations of the flow-based bilateral and
difference of Gaussians filters. This pipeline is highly efficient and its GPU implemen-
tation processes video in real-time, while achieving excellent temporal coherence with
per-frame filtering. Portions of this chapter are based on the publications [C3; B4;
J2]. The separable implementation of the flow-based difference of Gaussians filter has
also been independently proposed in Kang et al. [KLCog].

Chapter 5 presents the anisotropic Kuwahara filter, which is a generalization of the Kuwa-
hara filter that is adapted to the local shape of features derived from the smoothed
structure tensor. Contrary to conventional edge-preserving filters, the new filter gener-
ates a painting-like flattening effect along the local feature directions while preserving
shape boundaries. As opposed to conventional painting algorithms, it produces
temporally coherent video abstraction without extra processing. The GPU implemen-
tation of this method processes video in real-time. The results have the clearness of
cartoon illustrations but also exhibit directional information as found in oil paintings.
Moreover, driven by local image flattening, it achieves a comparatively consistent level
of abstraction across an image. For the smoothing process, the anisotropic Kuwahara
filter uses weighting functions that use convolution in their definition. The chapter
presents two methods that can be used to implement the anisotropic Kuwahara filter.
The first method samples the weighting functions into a texture map. The second
method models the weighting functions as polynomial functions allowing for the
computation to occur directly during the filtering in real-time. Moreover, a multi-scale
computation scheme is presented that simultaneously propagates local orientation
estimates and filtering results up a low-pass filtered pyramid. This allows for a very
strong abstraction effect and avoids artifacts in large low-contrast regions. The propa-
gation is controlled by the local variances and anisotropies that are derived during
the computation without extra overhead, resulting in a highly efficient scheme that is
particularly suitable for real-time processing on a GPU. Portions of this chapter are
based on the publications [J4; B3; C1; C2].

Chapter 6 presents a technique that builds upon the idea of combining diffusion with shock
filtering for image abstraction. The underlying idea behind the approach is to perform
smoothing in the direction where the image is changing the least and sharpening in
the orthogonal direction. Instead of modeling this process by a partial differential
equation (PDE) and solving it, approximations are used that operate as local filters on
a neighborhood of a pixel. This has two major benefits. First, good abstraction results
are already achieved after a few iterations, making it possible to perform processing at
real-time rates on a GPU. Second, since only a few iterations are required, per-frame
processing of videos achieves temporally coherent results. By contrast, PDE-based
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techniques typically require a large number of iterations and per-frame processing is
unstable. Portions of this chapter are based on the publications [J3; B1].

Chapter 7 draws conclusions.

1.2 Areas of Application

Digital consumer imaging devices have seen an explosive growth in recent years. Each
smart-phone or tablet shipped today has a built-in camera, which, in most cases, in addition
to being able to take images, is also capable of capturing video. Moreover, high-quality
digital cameras and camcorders are available at reasonable prices. In addition to the highly
simplified and easily accessible image acquisition process, computing resources of desktop
computers and small devices have greatly increased. In particular, most modern smart
phones and tablets have a GPU and support rendering with OpenGL. The availability of
image content and computing capacities create opportunities for new applications that
utilize these resources. In the following, three primary types of applications that come into
consideration for the algorithms developed in this thesis are discussed.

First, the techniques may be incorporated into tools for skilled artists as part of a
larger toolset or application. Adobe Photoshop, for example, already contains a large set of
built-in image filters. The filters presented in this thesis could be made available through the
Adobe Photoshop SDK or implemented using the Adobe Pixel Bender graphics language. A
specific example is the oil paint filter developed by H. Winnemoller and shipped with Adobe
Photoshop CS5 and CS6. That filter, utilizes the flow-guided smoothing approach presented
in Chapter 2 that was first published in [C3; B4]. Processing starts with the computation of
the smoothed structure tensor. Then, similar to the approach used by Inoue and Urahama
[[Uo4], noise is added to the source image and smoothing, along the integral curves induced
by the minor eigenvectors of the smoothed structure tensor, is performed. As can be seen in
Figure 1.3, this creates a nice effect that is similar to oil paint.

Second, the techniques may be applied directly to images and video using specialized
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Figure 1.3: Screenshot of Adobe Photoshop CS5 executing the oil paint Pixel Bender filter.
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Original image courtesy Mickael Casol

Figure 1.4: ToonPAINT by ToonFX, LLC. (a) Input image. (b) Selection of outlines and shading using
the flow-based extended difference of Gaussians filter. The user can influence the outlines, mid-tones, and
shadows. (c¢) Color regions are manually painted by the user. (d) Final result.

tools and applications, thereby targeting casual users who do not have any specific artistic
training. For these applications, it is of special interest that the algorithms presented in this
thesis are suitable for real-time processing. This enables applications to provide immediate
visual feedback when parameter changes occur, allowing for an iterative exploration of
the technique’s parameter space on a trial-and-error basis. To this end, it is important
to abstract from the underlying technical control parameters and provide a set of meta-
parameters that are intelligible to casual users. However, that topic is beyond the scope of
this work. ToonPAINT by ToonFX LLC is an example of a successful productization of an
application, utilizing the separable implementation of the flow-based difference of Gaussians
filter discussed in Chapter 4. It is available for iOS and Android devices. Figure 1.4 shows
the different steps a user takes to turn a photograph into a cartoon using ToonPAINT.
First, the user selects outlines, mid-tones, and shadows. Second, the user colorizes the
intermediate result using touch gestures similar to a coloring page for kids. This results in an
experience that is more engaging than a fully automatic algorithm would provide. A detailed
discussion of the design decisions behind ToonPAINT can be found in [Win12]. Figure 1.5
shows a screenshot of an application for the creation of caricatures from photographs. It

(a) Caricature app prototype by F. Schlegel (b) Cartoon-style 3D-rendering [DHK12]

Figure 1.5: Screenshots of application prototypes currently under development.
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(a) 3D rendering

(¢) 3D rendering (d) Edges (e) Stylized result [M4]

(h) Blueprint rendering of a circular region of interest [M1]

Figure 1.6: The algorithms presented in this thesis may be used to post-process renderings of 3D scenes.
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utilizes the generalized cartoon pipeline (Section 4.6) for stylization, and touch gestures can
be used to deform the image.

Finally, the techniques may be applied to three-dimensional renderings during the
post-processing stage. In particular, the generalized cartoon pipeline (Section 4.6) has been
shown to be useful for the visualization of three-dimensional city models [Eng+12; M4;
Rico8; M7], due to its simplicity and efficiency. Effective communication of geospatial
information has to take into account perceptional, cognitive, and graphical design issues
in order to ensure a clear and efficient understanding of the information content [Jobo§].
These principles, which are known for two-dimensional depictions, also apply to dynamic
three-dimensional presentations. Compared to well-known straightforward photorealistic
depictions, these principles demand for specific perceptional, cognitive, and graphical de-
signs. Figure 1.5(b) shows a screenshot of the client application of a service-based rendering
system [DHK 12]. This system performs the rendering and stylization on the server side,
enabling the visualization of large models even on low-end devices. Figures 1.6(a) and 1.6(b)
show a 3D model of a temple of Roman Cologne [M7], rendered in both a photorealistic
and a non-photorealistic style, with the latter intending to communicate missing evidence in
the reconstruction. Figures 1.6(c) to 1.6(¢) show an additional example. Figure 1.6(f) shows
a watercolor-style rendering of a three-dimensional city model that utilizes the orientation-
aligned bilateral filter, discussed in Chapter 3, internally. Figure 1.6(g) shows a visualization
of a solar potential analysis mapped to facade textures in the corresponding three-dimen-
sional city model. On the right, the separable implementation of the flow-based difference
of Gaussians filter has been used to emphasize the shape and spatial relations of the objects.
Lastly Figure 1.6(h) shows an example in which the separable implementation of the flow-
based difference of Gaussians filter is utilized to render a blueprint of a region of interest.






Chapter 2
Local Structure Estimation with
the Structure Tensor

Local orientation estimation refers to the task of estimating the dominant orientation in
a local neighborhood of a pixel. It is a well-researched field and examples for popular
approaches are methods based on quadrature filters [Knu89; GK95], steerable filters [FA9g1],
the inertia tensor [BGWgr; Bigo6], principle component analysis [FMoz2], polynomial
expansion [Faroz], the edge tangent flow [KLCo7; KLCog] and the smoothed structure
tensor [For86; Bro+o06]. In this work, the smoothed structured tensor is utilized, since
it provides an excellent trade-off between accuracy and computational cost, making it
particularly suitable for real-time applications. This chapter provides a detailed discussion
of the structure tensor and related techniques and forms the foundation for the subsequent
chapters, which utilize the structure tensor to guide local neighborhood filters.

2.1 Simple Functions and Local Orientation

For arbitrary images it is not possible to define the notion of local orientation intrinsically.
We therefore first consider images with the specific property of having only a single dom-
inant orientation, as exemplified in Figure 2.1. Such images can be formally described
as discretizations of simple functions and we will refer to them in the following as simple
images. A function f:R? — R is called simple (of rank one) if it can be represented as

S(x) =g((n,x)) ) (2.1)

1 1f
057 /\ /\ /\ )

° ° """VAVAV VI\VAVAJ\V
o \/ \/ \/ \/ -

-1 -1

(a) g1(t) = cost ®) fi(x) = gi((n,x)) (c) g2(¢) = sinct (d) fo(x) = g2((n, x))

Figure 2.1: Plots of cosine, sinus cardinalis, and the simple functions induced by them.

11
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[~

Figure 2.2: The local orientation ¢ of a simple function f = g((n, x)) is defined as the angle between

the horizontal coordinate axis and the axis perpendicular to the direction of variation n. Since the
gradient Vf is parallel to the direction of variation, local orientation can be equivalently defined using
the gradient.

where g:R — R is a one-dimensional function, n € R? is a unit vector, and (-,-) denotes
the Euclidean scalar product on R2. For locally non-constant functions g, the isophote
curves (i.e., the level curves of constant gray value) of a simple function are parallel lines.
This is easily seen by considering lines perpendicular to n, which can be described by
L(B) = a + Bn*, where a € R? is a point and n= is the counter-clockwise rotation of n by
90 degrees. The values of a simple function f along such lines is then constant:

f(L(@) = f(a+pnt) = g((n,a + ,BnL))
= g((n.a)+Bn.nt) ) = f(@)
N——

=0

(2.2)

Similarly, a simple function f restricted to lines L = a + Bn parallel to n, corresponds to g
translated by a constant f:

F(LB) = fla+pn) =g((n.a) +Bln.n) ) = g(Bo + ) (2:3)
=80 =1

This shows that simple functions have, indeed, only a single dominant orientation, which
motivates the definition of local orientation as the angle between the axis perpendicular
to the dominant orientation and the horizontal axis (Figure 2.2). It is important to note
that local orientation is a quantity with a periodicity of 180 degrees. This is due to the
fact that f(x) and f(—x), which corresponds to a rotation by 180 degrees, both have the
same dominant orientation and thus give rise to the same perpendicular axis. In order to
better distinguish the two angular quantities, in the following orientation will refer to a
periodicity of 180 degrees and direction to a periodicity of 360 degrees. Instead by an angle,
local orientation will also often be described, for the sake of simplicity, by a unit vector
representing the corresponding axis. In such cases, it is important to remember that the
specific direction is almost always not well-defined.

Let us now consider the case that a simple function f is given and » and g are wanted.
Since the gradient of a scalar field points in the direction of the greatest rate of increase, it
follows that the gradient of a simple function is parallel to n. In order to find an expression
for the gradient, we first calculate the partial derivatives using the chain rule:

= D) = () ) = g () e )

dx;  Ox; B_x,
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Figure 2.3: Visualization of the magnitude of the discrete Fourier transform of the images shown in
Figure 2.1 using a logarithmic scale. In order to avoid boundary artifacts, the functions have been
multiplied with a cosine window function.

This shows us that the gradient

o
v/ dx1 _ (g’((n,x)) -nq
o | T \e/(tnx)) mo

8x2

) =g'({n.x)) -n (2.5)

equals the derivative of g times the vector n. Therefore, if f is not locally constant (i.e., g has
non-vanishing derivative), then n can be derived from the normalized gradient V f/|V f|.
At this point we have to be careful, however, since the normalized gradient only defines n
up to a change of sign. After choosing a particular sign, n is well-defined and g is obtained
as g(1) = f(n).

As in the spatial domain, simple functions exhibit a special structure in the frequency
domain. In order to derive the Fourier transform of a simple function, let as before
f(x) = g({n, x)) and let A be the rotation matrix that rotates the first coordinate vector e;
to n. Then

h(x):= f(ATx) = g({n, ATx))
= g((4n.x)) = g((e1.x)) = g(x1) = g(x1) - 1

is a simple function that varies only along the first coordinate axis. Hence, % is Cartesian

(2.6)

separable, which means that it can be written as a product of two one-dimensional functions.
The two functions are g and the constant unit function. Since the Fourier transform of
Cartesian separable functions is given by the product of the Fourier transforms of the two
one-dimensional functions, the Fourier transform of % is given by

H =% (h)(w) = /R ] h(x)e @' d2x o)
= F(g)(w1) - F()(w2) = G(w1) - §(w2) ,

where G denotes the Fourier transform of g. This shows that the Fourier transform is given
by the product of the Fourier transform of g depending on the first coordinate multiplied
with the Dirac delta function depending on the second coordinate. In other words, the
whole energy is fully concentrated along the first coordinate axis. Since f = h(Ax), the
Fourier transform of f can be derived using the substitution theorem for multiple variables
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Figure 2.4: Plots of the function f(x) = cos(x1)cos(xz). On the left a 3D plot is shown. The contour
plot on the right shows various level sets and illustrates that for regular level sets the gradient is orthogonal
to the tangent of curves locally parameterizing the level set.

and the fact that by construction the columns of A are given by n and n:

F(0) = |detA|™" - H((AT) ')
= H(Aw) (2.8)
= G((n,w)) - §({n* w))

Consequently, all the energy of a simple function is distributed along a line passing through
the origin and oriented parallel to its variation. This observation is experimentally demon-
strated in Figure 2.3 and forms the foundation of the inertia tensor method discussed in
Section 2.4.5.

2.2 Grayscale and Color Image Gradients

In the previous section we saw how to define local orientation for a simple function. An
interesting observation was that the gradient of a simple function is orthogonal to the
isophote curves. A similar result can be shown for regular level sets of smooth functions
and is illustrated in Figure 2.4. Let U C R? be an open subset, let /: U — R be a smooth
function, and let ¢ € R be any value. Then the inverse image

fFloy={xeU:fx)=c} (2.9)

of ¢ under f is called a level set or contour line of f. A point x € U is a regular point of f
if V£(x) # 0. If every point of a level set £ ~!(c) is regular, then c is called a regular value.
In this case f~1(c) is said to be a regular level set.

Let us suppose that ¢ is a regular value. From the regular value theorem [K6nog4;
Leeo3] then follows that the level set £ ~!(c) is a one-dimensional submanifold. Hence,
for every a € f~1(c) there exists a diffeomorphism y: I — f~!(c) from an open interval
I C R to an open neighborhood of @ in f~1(c). In other words, there exists a smooth curve
y that is locally parameterizing the level set at a. Without loss of generality we can assume
that y(0) = a. Since f(y(t)) = c for all ¢ € I, it follows that the differential of f oy must
vanish. Using the chain rule we can thus conclude that

d
0= (foy)0)= (Vf(@).y'0)) . (2.10)

which shows that the gradient of f at a is orthogonal to the tangent vector of y at 0.
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Figure 2.5: On the left, a contour plot of a selection of level sets of the image in the middle is shown.
On the right, the gradient vector field (red), which has been computed using central differences, and the
orientation field (blue), which has been derived from the gradient vectors by a rotation of 9o degrees, are
shown for the marked image region.

This observation generalizes our earlier result for simple functions and motivates to
derive local orientation for arbitrary images from the image gradient. Rotating the gradients
by 9o degrees results in a vector field that represents the axes perpendicular to the gradients.
Since these axes can also be interpreted as tangent spaces of the isophote curves, we will in
the following often refer to them as tangent vectors. Notice that in contrast to the gradient,
which has a well-defined direction, tangent vectors only represent an orientation. Therefore,
their sign is not well-defined and special care is required to handle the sign ambiguity.

Unfortunately, the computation of image gradients is a difficult task. It is well-known
that differentiation is an ill-posed problem [EHNg6], because small perturbations in the
data may result in large errors in the derivative. This can be illustrated by a simple example
[BPT88; EHNg6]. Let f(z) be some one-dimensional function and let

g(t) = f(t) + esin(Q1) (2.11)

be a small perturbation by a sine function. By adjusting ¢, we can make f and g arbitrarily
close. Nevertheless, the differential

g'(t) = f(t) + eQcos(Qr) (2.12)

will be very different from f’(¢) for large 2, which shows that differentiation amplifies
high frequency information such as noise. Due to this, differentiation is typically combined
with some form of regularization [BPT88]. This is an important practical issue, since real
world images often contain noise and other artifacts (e.g., introduced by image compression
codecs), making the computation of differentials challenging. In Figure 2.5, an image of
moderate quality, a selection of its level sets, and an excerpt of the gradient field are shown.
As can be seen, the level sets are very noisy and obviously do not form smooth curves. A
similar situation can be observed for the gradient field. Especially in low contrast regions,
where the signal-to-noise ratio is low, the gradient field is almost random.

There are advanced differentiation techniques available in the research literature (e.g.,
formulated as variational problem). In general, however, these have high computational
complexity. Fortunately, since our main concern is to derive a suitable orientation field, there
is also the option to use a less sophisticated technique for differentiation and to perform a
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Figure 2.6: lllustration of finite difference approximations of the derivative of a function. Shown are the
forward, backward, and central finite differences for the cubic polynomial f(x) = x3 —5x +10at x =2
with step size h = 1.

regularization of the orientation field. To this end the following sections discuss popular
techniques for estimating the image gradient, and their suitability for orientation estimation.
Section 2.4 then discusses techniques to smooth the corresponding orientation field. As we
will see later, this results in a computationally highly effective approach capable of producing
orientation fields at suitable quality.

2.2.1 Finite Differences

Let us assume that f:R? — R is a smooth function (i.e., infinitely differentiable). Along
one of the coordinate axis, we can then approximate f locally at some point a € R? by the
corresponding Taylor series [K6no4]:

232 h3 3
fla+h) = f@) +h f(>+—af<)+— f()+ (2.13)

0 h? 92 h3 93
fla=h =@ -+ L@ - @ e

With & denoting a small step in direction of the i-th coordinate axis. Rearranging we obtain:

0 h) — h32 h? 33
e R T+ (GRS IO (.19

truncation error O(h)

9 —fla—h)y hd? h? 9
8_£(a)=f(a) }{(a ) ag()__ f()+ (2.16)

truncation error O(h)

Truncating after the first term, we get for the first partial derivative two approximations
that are referred to as forward and backward differences, respectively. Moreover, averaging
Equations (2.15) and (2.16), we see that the terms with odd partial derivatives cancel out,
resulting in a third approximation
af fla+h)— fla—h) h? 3*f
——(a) = - , 2.1
ox; (a) 7 3 8x3( a) (2.17)

ﬁ_’
truncation error O(h?)
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(a) Test image

—10°

(b) Central differences (c) Sobel filter (d) Optimized 3 x 3 (e) Optimized 5 x 5

0 —10°

Figure 2.7: Evaluation of the rotation invariance of different derivative operators. In the top row, the
test pattern is shown. (Due to the high frequencies present in the pattern it may not be reproduced
correctly on screen or in print.) Top-left of the test pattern is a standard zone plate pattern approaching
approximately 0.9 of the Nyquist frequency, where curvature decreases with increasing frequency. Top-
right is an inverted zone plate pattern, where curvature increases with increasing frequency. The bottom
part of the test pattern has been corrupted with Gaussian noise of variance v = 0.001. In the bottom
row, the angular errors for different derivative operators applied to the test pattern are shown. Notice the
strong dependence of the error on the angle for central differences and Sobel filter. The optimized filters
perform much better in this respect. However, all approaches are highly sensitive to noise.

with quadratic truncation error that is referred to as central difference. Figure 2.6 illustrates
the different forms of finite differences.

For a grayscale image / and step size & = 1, the central differences at some point (x, y)
along the coordinate axes are given by:

I(x‘i‘l,Y)_I(x_l,Y)
2

Ix,y+1)—I(x,y—1)
2

Oxl(x,y) =
(2.18)

Syl(x,y) =

Alternatively, the central differences can also be expressed as discrete convolutions 6/ =
Dyx I and 8,1 = D,y * I, where D, and D5, are the following convolution masks:

+1
1 1
Dy = 5(4—1 0 —1) and D2y = 5 (1) (2‘19)

In Figure 2.7 an evaluation of different popular derivative operators for a test pattern
with varying frequencies and curvatures is shown. As can be seen, central differences
produce comparatively large errors in high frequency regions of the patterns. Also clearly



18 Chapter 2. Local Structure Estimation with the Structure Tensor

noticeable is a strong dependence of the error on the angle. Moreover, it can be observed
that even small amounts of noise lead to large errors in the estimated orientation.

2.2.2 Gaussian Derivatives

If nothing is known about the image and its noise characteristics, using a Gaussian filter for
regularization is a good choice (see [TP84] for a more detailed discussion). Since convolution
commutes with differentiation we have

9 (Gowr) =20

* 1, (2.20)
8)(,' Xi

where I denotes the image and

— M) (2.21)

1
O e

is a bivariate Gaussian with standard deviation o. Thus, instead of using finite differences, a
closed solution of the derivative of the Gaussian can be calculated

3Gy Xi ( X7+ x3 )
exp| — 1—2

— 2.22
0x; 2wo? (2.22)

- 202
and convolved with the image. This operation is known as Gaussian derivative filter and is
also interesting from a computational point of view, since it is separable like the Gaussian
filter. The standard deviation o of the filter must be chosen carefully. If it is too large,
important image features may be removed by the Gaussian smoothing. This happens even
for highly anisotropic image regions. For instance, if the standard deviation is chosen, as
shown in Figure 2.8, such that the frequency of the pattern is outside the passband of the
Gaussian, then the smoothed image will be nearly constant and the estimated orientation
highly inaccurate. Thus, the strength of regularization that can be achieved by regularizing
with a Gaussian filter is limited, since strong regularization is only possible if image detail is
sacrificed. Nevertheless, an interesting observation can be made. The Gaussian derivative
filter with standard deviation o = 0.68 (Figure 2.8(a)) and ¢ = 0.867 (Figure 2.8(b))—the
o were chosen to match a 3 x 3 and 5 x 5 filter, respectively—perform clearly better than
central differences (Figure 2.7(b)). This suggests seeking for specialized derivative operators.
Moreover, notice that in Figure 2.8(c) excellent results are obtained if no noise is present.
Adding just a little noise, however, results in large errors, as shown in the bottom part of the
test pattern.

2.2.3 Optimized Derivative Operators

In the classical image processing literature a number of different derivative operators, such
as the Sobel, Roberts, or Prewitt filter, have been proposed [Prao1]. In particular, the Sobel
filter, given by the convolution masks

+1 0 -1 R
Sc=- +2 0 =2 and §), = 3 0 0 0], (2.23)
+1 0 -1 -1 -2 -1
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(a) 0 = 0.68 (b) 0 = 0.867 ©o=15 do=2

Figure 2.8: The top row shows the angular error produced by a Gaussian derivative filter applied to
the test pattern from Figure 2.7 for different standard deviations. The bottom row shows the result of
smoothing the ring pattern with the corresponding Gaussian filter, illustrating that strong regularization
removes high frequency structures and makes the orientation estimation impossible.

is an often seen choice in image-based artistic rendering and other image processing ap-
plications. From the perspective of orientation estimation, however, the Sobel filter is not
optimal. This can be seen in Figure 2.7(c). Although the Sobel filter performs clearly better
than central differences, it still shows large errors that strongly depend on the angle.

Specialized derivative operators optimized for rotation invariance have been investi-
gated by Simoncelli [Sim94], Farid and Simoncelli [FS97; FSo4] and Scharr et. al. [SKJg7;
JSK99; Schoo]. Basic idea behind these approaches is to compose a multi-dimensional
derivative filter from a one-dimensional derivative filter and additional one-dimensional
filters that perform smoothing perpendicular to the derivative. The parameters of the
filters were found by an optimization process. The best results thereby were achieved by
Scharr et. al., who directly minimized the angular error.

Since a derivative operator should not response to constant signals, the sum of the filter
coefficients must be zero. In addition, a derivative operator with 2R + 1 coefficients must
have odd symmetry with the center coefficient being zero [Jahos]:

(+dR ... +dy 0 —d; ... —dR) (2.24)

Moreover, constraining the slope of the transfer function at the origin to the slope of the
ideal transfer function, as suggested by Jihne et. al. [JSK9g], results in the additional
constraintdy = 1/2— 211::2 kdy. In particular, it follows that for R = 1 the only derivative
operator fulfilling these constraints are the central differences. A smoothing filter should be
even symmetric

(bR b by b ... bR) (2.25)

and normalized, which is equivalent to the constraint by = 1 — Zle b.
Based on these constraints an ansatz for a two-dimensional 3 x 3 derivative filter along
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the horizontal axis is given by the following convolution mask:

by
Di:<+% 0 —%)* bo (2.26)
by

As usual, * refers to the convolution operator and should not be confused with matrix
multiplication. Similarly, the derivative in direction of the vertical axis is defined. In this
model, only b, is a free parameter. Optimizing b; for rotation invariance, Jihne et. al.
[JSK99] obtained:

by = 46.84/256, by =1—2by =162.32/256 (2.27)

Correspondingly, an ansatz for a 5 x 5 derivative filter is given by:
Di=(+d +di 0 —di —do)* | bo (2.28)

In this case by, by, and d, are free parameters for which Jahne et al. [JSK99] obtained by
optimization:

by = 5.91/256, by = 61.77/256, bg = 1—2(b; + bs) = 120.64/256

(2.29)
dy =21.27/256, dy =1/2—2d, = 85.46/256

As can be seen in Figure 2.7, the optimized derivative filters clearly outperform central
differences and Sobel filter. Thereby the optimized 5 x 5 filter achieves the best results, even
in regions where the pattern is close to the Nyquist frequency. However, as a 5 x 5 filter
it is also considerable more expensive from a computational point of view, and therefore
for most applications the 3 x 3 filter is generally the preferable choice. The results of the
optimized 5 x 5 are in line with the results we obtained earlier for the Gaussian derivative
filter (Figure 2.7). It should be noted, however, that the implementation of the Gaussian
derivative filter uses a larger filter size than 5 x 5. Also apparent from Figure 2.7 is that both
optimized filters are highly sensitive to even small amounts of noise. This issue will be later
addressed in Section 2.4.

2.2.4 Multi-lmage Gradient

So far in our treatment of image gradients we have only considered grayscale images. For
color images the situation is more complex. This can be illustrated by a simple example.
Consider an RGB color image, where red, green, and blue color channels are given by linear
gradients along different directions (Figure 2.9). The color image, however, has no obvious
distinguished direction.

An early attempt to define a generalized image gradient for color images goes back to
Di Zenzo [Di 86]. For a real-valued function, the gradient points (if nonzero) in direction
of the largest change, which is the direction where the directional derivative exhibits a
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k4™

(a) RGB (b) Red (d) Blue

(c) Green

Figure 2.9: Example for an RGB image (a), where the individual color channels (b)—(d) have distinct
gradient directions.

maximum. This property can be generalized to real-valued maps. However, since we are
working with vector-valued data, we have to use a metric to compare different function
values. To this end, let us suppose that a color image is given by a smooth map f:R? — R™
with m > 2, and let a € R? be any point. Moreover, let 1 = (cos ¢, sing)” be a unit vector
defined by the angle ¢ and let ¢ > 0. Then

fla+eh)— fa)|?

&

Fe(p) = (2.30)

measures the squared normalized difference between the image values at a and a + &h,
where the squared Euclidean norm is used to avoid the square root and simplify subsequent
computations. Making ¢ infinitesimal small by taking the limit ¢ — 0 we get

'f(a-i-sh) f@|?

F(p) = lim Fy(p) = lim = o f (@],

(2.31)

where

f(a)

Lt h=1@) (),

o fa) = giﬂ% (2.32)

is the directional derivative of f at a in direction A, which can also be expressed as the
Jacobi matrix

WW) e

Iy (@ = ; (233
TTA
Lrw Lo

of f ata multiplied by /. Substituting (cos ¢, sin¢)” for i and introducing the abbrevia-

tions E, F, and G we have:

0w f(@)|” = |Jr(@) h|* =

F(p) =

2
(a) cos ¢ + i(a) sin ¢

i

f [(Vfita).h) [

m m . 2
Z (—(a)) cos’ ¢ + 22 (—( )—(a)) sing cos¢ + Z (%(a)) sin® ¢
i=1 N2

=:F =F

= Ecos?¢ + 2F sing cosg + G sin® ¢

=G

(2.34)
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Substituting the following identities

. 1 —cos2 1 2 . in 2
sin® ¢ = ﬂ, cos? ¢ = M, sing cosg = sm_w’ (2.35)

2 2 2

yields the following simplification
F o) E (14 cos2¢) + 2F sin2¢ + G (1 — cos2¢)
(p =
2 (2.36)
E+G E-G .
= + 5 cos2¢ + Fsin2gp .

In order to find the direction of largest change, we have to find ¢ that maximizes F(¢).
As can be easily seen, F(¢ + kn) = F(¢) for k € Z. Without loss of generality, we can
therefore assume that ¢ lies in the interval (—n/2, 7/2]. If F(¢) is constant, then E = G,
F = 0, and there is no direction ¢ that maximizes F(¢). So let us assume F is non-constant.
A necessary condition for an extremum is that the derivative

2

9o = —(E —G)sin2¢ + 2F cos2¢ (2.37)
®

vanishes. Setting d F/dg to zero and solving for ¢ we get:

2F

tan2¢ = -G

(2.38)

This equation has two solutions. If ¢y € [—7/2,—7m/2) is a solution, then also ¢ + 7
is a solution. F attains a maximum for one of these and a minimum for the other. In
Section 2.3.3 this will be discussed further and it will be shown that the maximum is always
attained at !

Pmax = 5 atan2(2F, E — G), (2.39)

where atan2 denotes the inverse tangent with values in [—7, +7). By combining the squared
maximum rate of change F(¢) and orientation ¢max, we get Di Zenzo’s multi-image gradi-
ent:

VbizZenzo f (@) = v/ F(¢max) <Cf)s §0max) . (2.40)

SIN Pmax

From the geometric perspective, as pointed out by Cumani [Cumg1], a better approach
is to consider the image embedded as a graph in R2*™. We will review this in more detail in
Section 2.4.2.

2.3 Symmetric Positive Semidefinite 2 x 2 Matrices

The structure tensor introduced in the next section is a field of positive semidefinite 2 x
2 matrices. In this section some properties of such matrices will be reviewed. Although most
results are valid in a more general setting [Jino8; Fiso8; Lan87], most of the discussion is
restricted to 2 x 2 matrices for the sake of simplicity. An excellent treatment of advanced
linear algebra topics, such as the notion of definiteness, is given in the book by Horn
and Johnson [HJ85]. A detailed discussion of 2 x 2 matrices can be found in [Blig6] and
complements the topics presented here.
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2.3.1 Eigenanalysis of 2 x 2 Matrices

Let A € R™" be a matrix. A scalar A € R is called an eigenvalue of A if there exists a
non-zero vector v € R” satisfying Av = Av. Every vectors satisfying this equation is called
an eigenvector of A associated to the eigenvalue A. The linear subspace

Eig(A,1) = {v e R" : Av = Av}

={veR": (A—Av =0} = Ker(A—AI) (2.41)

defined by all vectors satisfying Ax = Ax is called the eigenspace of A corresponding to
the scalar A. If A is an eigenvalue of A then Eig(A4, A) is the union of all the eigenvectors
and the null vector. Hence, A is an eigenvalue of A if and only if Eig(4, 1) # {0}, that is,
A — Al has a non-trivial kernel, which is equivalent to A — A/ being singular. Since a matrix
is singular exactly if its determinant is zero, it follows that A is an eigenvalue of A4 if and
only if det(4 — AI) = 0. The determinant det(A — A7) is an n-dimensional polynomial
with variable A and is called the characteristic polynomial of A. The eigenvalues of 4 can
thus be found by finding the roots of the characteristic polynomial. This result is mainly of
theoretical importance. For example, it shows that every n X n matrix has exactly n (possibly
complex and not necessarily distinct) eigenvalues. Moreover, using the properties of the
determinant it can be shown that similar matrices have the same characteristic polynomial.
Hence, A and S~'4S have the same eigenvalues for non-singular matrices S € GL(R, n). In
practice the characteristic polynomial is rarely used for computing the eigenvalues, because
even if the eigenvalue problem itself is well-conditioned finding the roots of the characteristic
polynomial may be ill-conditioned.

For 2 x 2 matrices, fortunately, finding the roots of the characteristic polynomial
leads to a closed form solution that can be implemented in a, for our purposes, sufficiently
numerically stable way, which will be discussed in detail in Section 2.3.4. To this end, let

A= (CCI 2) (2.42)

be a two-dimensional square matrix. Then the characteristic polynomial of A is given by:
a—»A b

d—2A
=@—-ANd—-A)—bc=A*—(a+d)A+ad—bc
= A% —tr(A)A + det(A)

det(A] — A) =

(2.43)

Setting the characteristic polynomial equal to zero and solving for A using the monic form
of the quadratic formula then yields the following eigenvalues:

a+d+/(a+d)?—4(ad — bc)

2
_tr(A) £ V/tr(4)2 —4det(4)  tr(A) £ /A(A)
N 2 N 2 ’

/\1,2 =

(2.44)

Depending on the value of the discriminant A(A) = tr?(A4)—4 det(A), we have to distinguish
three different cases. If A(A) > 0, then there are two distinct real eigenvalues. If A(4) = 0,
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there is a single real eigenvalue with multiplicity two. And finally, if A(A4) < 0, there are
two complex conjugate eigenvalues. Since we are only interested in real eigenvalues, we will
assume A(A) > 0 in the following.

From the last equality of Equation (2.44), we can explicitly derive the relation between
eigenvalues, trace, and determinant of a square matrix:

AM4+A=tr(Ad) =a+d (2.45)
A1 Ay =det(A) = ad — be (2.46)

Since the eigenvalues are similarity invariants, it follows that trace and determinant are also
similarity invariants.

In order to find the eigenvectors of A, we have to compute the eigenspaces Eig(A4, A1)
and Eig(4, A,) by solving the following system of linear equations for A € {A;A,}:

_ — AMvx + bvy =0
Aanw=[*"" 2 }")20 — (@ =A)vx + buy (2.47)
c d—XA)\vy cvx +(d—2A)v, =0

By construction A — A7 is singular and therefore the two equations are linearly dependent.
Hence, a solution of one equation will also be a solution of the other. Apparently,

vi(A) = (}L f a) and vy(A) = (A;d) (2.48)

are solutions for the first and second equation. For b, ¢ # 0, both vectors are non-zero
and indeed differ only by a constant scalar multiple. This can be seen by observing that the
ratios of their coordinates are equal, which directly follows from the assumption that A is an
eigenvalue of A:

b . A—a
A—d ¢
If b =0orc = 0then

s a+d+(a-d)? a+d=x|a—d?
12 = = .
’ 2 2

= (A—a)A—d)—bc=detQl —A) =0  (2.49)

(2.50)

and thus A; = max{a,d} and A, = min{a, d}. Hence, v; or v, might be zero and therefore
no valid eigenvector. For example, if » = 0 and A = a then v1(1) = 0. Assuming A # A5,
a simple strategy to pick valid eigenvectors is to choose vy for » # 0 and v, for ¢ # 0. If
both b and ¢ happen to be zero, then A is a diagonal matrix and the eigenvectors are given
by the corresponding canonical basis vectors. Finally, if 1; = A,, then any two vectors
spanning R? can be chosen.

2.3.2 Symmetric 2 x 2 Matrices

Let A € C™" be a matrix and let A* denote its complex conjugate transpose. A matrix
that commutes with its conjugate transpose, that is A*4 = AA*, is said to be normal. 1f
AA* = I, then A is said to be unitary. Moreover, if A = A*, then A is said to be hermitian.
A unitary matrix in which all entries are real is called orthogonal and an hermitian matrix in
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which all entries are real is called symmetric. Or more specifically, a real matrix is orthogonal
if AAT = I and it is symmetricif 4 = AT.

Since AAT = A% = ATA holds for a symmetric matrix, it follows that a symmetric
matrix is especially a normal matrix. This means the following interesting properties of
normal matrices also apply directly to symmetric matrices. Firstly, eigenvectors associated to
distinct eigenvalues are orthogonal. Secondly, normal matrices are unitarily diagonalizable;
that is, there exists a unitary matrix U and a diagonal matrix A such that A = UAU*. This
means, in particular, that the columns of U form an orthonormal basis.

A property that is specific to hermitian matrices, and which characterizes them among
the normal matrices, is that all the eigenvalues of a hermitian matrix are real. To this end,
suppose that A4 is hermitian and that v is an eigenvector with v*v = 1 associated to the
eigenvalue A. From

A=A v =v*Av = v*4v

_ _ 2.51
=v*A%v = (Av)*v = (Av)*v = W v = A (251

then follows that A is equal to its complex conjugate and thus must be real. The reverse
direction, which shows that a normal matrix with real eigenvalues is hermitian, can be found
in [HJ85].

Subsequently, we will often use the letters E, F, and G to denote the entries of a

A= (i g) (2.52)

This notation is inspired by Gauss [Gauoz2], who used £, F, and G to denote the first fun-
damental form in his seminal work on curved surfaces. Using this notation, the eigenvalue

symmetric 2 X 2 matrix:

computation given by Equation (2.44) simplifies to:

E+G+J(E+G)?—-4EG-F?)

2
E+ G+ /(E—G) +4F?
2

11,2 =
(2.53)

Hence, the discriminant A = (E — G)? + F? is always greater or equal to zero and the
eigenvalues are always real, as expected. The computation of the eigenvectors will be
discussed in more detail in Section 2.3.4. For now, we just note that the eigenvectors v, and
Vs, as given by Equation (2.48), are indeed orthogonal (i, j € {1,2},i # j):

F A -G
(@10, v2(47) = <( )( j )>
' Ai—E F =tr(A4) (2.54)

——
=F(Aj—G)—i-(ki—E)F:F(ki—FAj—(E-i-G)):O

As already mentioned, symmetric matrices are orthogonally diagonalizable. Hence,
if A is a symmetric matrix, then there exists an orthogonal matrix Q € O(2) and a di-
agonal matrix A, such that A = QAQT, which is called the spectral decomposition of A.
Two-dimensional orthogonal matrices are either rotations or reflections. Without loss of
generality we can assume that Q is a rotation, since negating one column of a reflection will
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turn it into a rotation. In order to derive an explicit expression for the decomposition, let us
assume that R, is a rotation by ¢ € (—n/2, 7/2] and that A is the diagonal matrix of the
eigenvalues of A. The decomposition A = RgARq, is then given by:

At 0\ [ cosep sing\fE F\[cosp —sing (2.55)
0 Ay) \—sing cosg)\F G)\sing cosg 33

Hence, we get the following system of three equations:

0 = F(cos?p —sin’p) — (E — G) sing cos ¢ (2.56)
A1 = E cos?¢ 4+ 2Fsing cosg + G sin’g (2.57)
Ay = Esin’¢ — 2Fsing cos ¢ + G cos2g (2.58)

By substituting the identities

. 1 —cos2 1 4+ cos2 . sin2
sin ¢ = —(p, cos? ¢ = U sing cos¢ = ¢ , (2.59)
2 2 2
we obtain the following simplifications:
0= Fcos2¢ — — sin 2¢ (2.60)
E+G E-G
A= 42_ cos2¢ + Fsin2¢ (2.61)
EFE+G E-G .
Ay = ro_ cos2¢ — Fsin2¢ (2.62)
2 2
Equation (2.60) does not depend on the eigenvalues and a simple rearrangement yields:
in 2 2F
tan2¢p = Y (2.63)

cos2¢ E—-G

This equation has multiple solutions. If 2¢ is a solution, then 2¢ + kn, k € Z, are also
solutions. Since Equations (2.61) and (2.62) depend on 2¢ with periodicity 27, it is sufficient
to consider only the solutions 2¢ and 2¢ + 7. Both are valid and affect the order in which
the eigenvalues are placed on the diagonal of A. To ensure that the eigenvalues are sorted in
ascending order A; > A,, the angle ¢ must be chosen such that

cos2¢ + Fsin2¢ > —

cos2¢ — Fsin2¢p . (2.64)

Apparently, this is the case if the signs of E — G and cos2¢ and the signs of F and
sin 2¢ match. This is exactly the purpose of the atan2 function, which is available in most
programming languages:

arctan (%) x>0
arctan(2) + 7 y>0,x <0
arctan(2) -7 y <0,x <0
atan2(y, x) = (%) (2.65)
+3 x=0,y>0
-7 x=0,y<0

undefined x=0,y=0
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Note that atan2 makes an additional differentiation to ensure that the resulting angle is in
the range (—m, 7]. Hence, the solution we are looking for is:

0= %atanz(ZF, E—-G) (2.66)

In the following we will often require ¢ = ¢ — /2, which can also be obtained in the
range (—m/2, /2] by rotating the vector consisting of £ — G and 2F by 180 degrees:

1
ot = 3 atan2(—2F,G — E) (2.67)

In addition, the spectral decomposition A = R‘,,ARg is useful for constructing sym-
metric matrices with prescribed orientation and eigenvalues. For the sake of completeness,
the explicit expression is noted here:

E F\ ([cosp —singp)fA; O cosg sing
E G| \sing cosp )]\ 0O AyJ\—sing cosg
_ [Acos? 4+ Azsin®p (A —A2) sing cosg

(2.68)
N ( (A1 — A2) sing cosg  Apsin® ¢ + A, cos? ¢ )

Since a symmetric matrix has real eigenvalues, the notion of largest or smallest eigen-
value is meaningful. In fact, the largest and smallest eigenvalues of a symmetric matrix can
be characterized as solution of a variational problem [HJ85]. To this end, let A = QAQT
be a spectral decomposition of a symmetric matrix A € R®?*”. Then we get for the induced
quadratic form:

xTax = xTQAQTx = (0Tx)TA(QTx) = Y i [(@Tx)i [ (2.69)
i=1
Since Q is orthogonal, we have Y7, [(Q7Tx); |2 = ||x||? and it follows that
Amin * ”x”2 =< xTAx < Amax ||x||2 . (2.70)

For the eigenvectors associated to the largest and smallest eigenvalues the inequalities are
sharp. Therefore, the largest and smallest eigenvalues are characterized by:

T
x'Ax
Amax = Mmax -—— = max TAx (2.71)
o#£xeR2 [lx[Z lxl=1
T
. x'Ax .
Amin = min > = min xTAx (2.72)
o#£xeR2 || x|| Ixl=1

In the following, we will refer to the largest and smallest eigenvalues as major and minor
eigenvalues, respectively. Correspondingly, the eigenvectors associated to these will be
referred to as major and minor eigenvectors.

2.3.3 Positive Semidefinite 2 x 2 Matrices

A symmetric matrix A € R™*" is said to be positive definite if the induced quadratic form
q(x) = xTAx is positive definite; that is, if xZAx > 0 for all x € R”. If the strict inequality
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// \
1
-

-2 -1 0 1 2

(S}
N

-

(@ {Ax:|Ix| =1} (b) xTAx

Figure 2.10: Geometric illustration of the positive semidefinite matrix A = Ry /g A(2, l)RZ;/s. (a) Plot

showing how the elements of the unit circle are mapped by A. (b) Contour plot showing the level sets of
the induced quadratic function q(x) = xTAx.

is weakened to x”Ax > 0, then a symmetric matrix is said to be positive semidefinite.
Positive definite and semidefinite matrices can be characterized by their eigenvalues, which
are positive and non-negative real numbers, respectively, as follows from the following
computation

viAv = vTAv = wwTv = 4 - o2, (2.73)

where v was assumed to be an eigenvector associated to the eigenvalue A of A. Conversely,
a symmetric matrix with positive or non-negative eigenvalues is positive definite or positive
semidefinite, respectively. This immediately follows from Equation (2.69). A direct conse-
quence of this observation is that trace and determinant are also positive (or non-negative)
real numbers. Positive definite matrices have an interesting geometric interpretation that is
illustrated in Figure 2.10.

Let A and B be positive semidefinite. Then for «, 8 > 0 the linear combination A+ 8B
is also positive semidefinite, because

xT (@A + BB)x = a(xTAx) + B(x"Bx) = 0 (2.74)

for all x € R2. Similarly, it follows that a linear combination with positive coefficients of
positive definite matrices is positive definite.

In the next section, of special interest will be matrices that arise from scalar products of
a set of vectors. Let vy, ..., v, € R” be a set of vectors. Then the matrix G = (g;;) € R™*™
defined by g;; = (v;,v;) is called the Gram matrix of the vectors. A Gram matrix is positive
semidefinite, as the following computation shows:

m m
xTGx = Z (vi,vj) x;x; = Z (xivi, x;v5)
ij=1 i,j=1
m m " 2 (2.75)
= <invi7zxjvj> = invi >0
j=1

i=1 i=1

Finally, let us consider the special case of positive semidefinite 2 x 2 matrices. To this

end, let
E F
A= .
( 7 G) (2.76)
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be positive semidefinite. The induced quadratic form is then given by:

E F
g(x) = xTx = (xl x2> (F G) (2) = Ex} +2Fx1x2 + Gx3 (2.77)

By restricting the vector x along the coordinate axis, it immediately follows that £, G > 0.
Moreover, we can deduce from det(4) = EG — F? > 0 that EG > F2.

If x € R?\ {0}, then the outer product xx is positive semidefinite, since it is the Gram
matrix of {x1, x,}. The eigenvalues are || x||> and 0. Thus, it follows that xxT is of rank 1.
Let A = R(pARg be a spectral decomposition with R, = (E, r;), then A can be written as

A=A EET + AT (2.78)

2.3.4 Numerical Implementation

In this section it will be explained how the eigenvalues and eigenvectors of a symmetric

E F
A=(F G) (2.79)

can be computed in a numerically stable way. Though a straightforward implementation

positive semidefinite 2 x 2 matrix

based on the discussion in the previous sections leads to reasonable results, an implementa-
tion, such as the one shown in Listing 2.1, is able to achieve much better accuracy by taking
care of the numerical subtleties of floating point calculations [Golg1; Higg6].

We already saw that A being positive semidefinite implies £,G > 0 and EG > F?2.
Hence, from E + G = 0 it follows that F = 0, which means that the matrix is zero. Let
us now assume £ + G > 0. Computation of the eigenvalues requires solving a quadratic
equation, which is known [Blios; Pre+o07; Golg1] to have numerical issues if implemented
as in Equation (2.53). Problematic are the two subtractions, which may result in loss of
accuracy due to cancellation. In case of the major eigenvalue, only the subtraction under the
square root is an issue, as £ +G > 0. The subtraction is best implemented as (E —G)?, since
then catastrophic cancellation is avoided and replaced with benign cancellation [Golg1]:

E+G E—-G\
A= ; + R, Rz\/( 5 )+F2 (2.80)

For the computation of the minor eigenvalue, we have to take care of the subtraction in
front of the square root. A common approach [Blios; Pre+07; Golg1] is to use the fact that
the product of the eigenvalues equals its determinant:

_det(4) EG - F?

A
2 P P

(2.81)
Notice that A; > 0, since E + G > 0. Because of rounding errors, EG — F? may become
negative and therefore it is advisable to compute max(0, EG — F?).

Recall that a symmetric matrix has orthogonal eigenvectors. Therefore, it is sufficient
to compute only one of the eigenvectors. The other can be found applying a rotation by go
degrees. Let us first assume that the eigenvalues are distinct, which can be easily verified by
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1 inline __host__ __device__

2 void solve_eig_psd( float E, float F, float G, float& Tambdal,
3 float& lambda2, float2& ev )

e {

s float B = (E + G) / 2;

6 if B > 0) {

7 float D = (E - G) / 2;

8 float FF = FxF;

9 float R = sqrtf(D+«D + FF);

10 lambdal = B + R;

11 lambda2 = fmaxf(0, ExG - FF) / Tambdal;

12

13 if (R > 0) {

14 if (D >= 0) {

15 float nx = D + R;

16 ev = make_float2(nx, F) = rsqrtf(nx+nx + FF);
17 } else {

18 float ny = -D + R;

19 ev = make_float2(F, ny) * rsqrtf(FF + ny=ny);
20 }

21 } else {

22 ev = make_float2(1, 0);

23 }

24 } else {

25 Tambdal = lambda2 = 0;

26 ev = make_float2(1, 0);

27 }

28}

Listing 2.1: Eigenanalysis of a symmetric positive semidefinite 2 X 2 matrix given.

checking that the square root R is nonzero. Then we have a well-defined major eigenvalue
and, as discussed in Section 2.3.1, there are two possible candidates for the computation of
the eigenvector. Substituting the expression for the major eigenvalue A, into Equation (2.48),

F F
Ul(kl)z AI_E = _M_FR
2
M -G ES 4R
wen-(77)- (%7

Hence, by choosing vy if E — G < 0and v, if E — G > 0, we can kill two birds with one

we get:

(2.82)

stone. Firstly, subtractive cancellation is avoided, since the first term in the sum is positive.
Secondly, if F = 0 and correspondingly R = |E — G|/2, then the computed vector is
guaranteed to be nonzero. Finally, if the square root R is zero, we have a single eigenvalue
with multiplicity two and the eigenspace is two-dimensional.

A limitation of the discussed implementation is that computations having the form
Va2 + b2 may underflow or overflow if not computed at higher precision. A common
approach to avoid such issues, which is for example used in LAPACK’s SLEV2 func-
tion [And+99], is to exchange a and b if necessary, such that |a| > |b|, and compute

la|/1+ (b/a)?.
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Figure 2.11: In the neighborhood of local extrema, gradients have opposite signs and cancel out when
averaged, resulting in a loss of accuracy.

2.4 Definition of the Structure Tensor

The gradient vectors gained with a small sized derivative filter are, in general, too noisy for
our purposes. To obtain a smooth vector field, further smoothing is required. However,
smoothing the vectors directly generally fails to produce reasonable results. For instance,
gradients in the neighborhood of a minimum or maximum have opposite signs (Figure 2.11)
and cancel out when averaged. As the right tool to obtain a smooth vector field, the structure
tensor will be introduced in this section. It is a well-known and popular tool in computer
vision and image processing and was introduced by Forster [F6r86]. The major eigenvector
of the structure tensor corresponds to Di Zenzo’s multi-image gradient [Di 86; GWo6], and
also appeared, although not explicitly, in Harris and Stephens’s corner detector [HS88] and
the classical work on texture synthesis by Kass and Witkin [KW87] and texture analysis by
Rao and Schunck [RS89; Raogo].

Let f:Z? — R denote a grayscale image. Then the structure tensor at a point x is
defined as the outer product of the gradient at x:

(L w) L@ Lk

J(x) = Vi(x)Vf(x)T = (2.83)
Yo (L)
The smoothed structure tensor
1
o) == Y Gx = VWV, (2.84)
|Gl YEN (x)

is obtained by convolving the structure tensor with a two-dimensional Gaussian function

1 z
Got2) = 5z exn( - 13 ) (2.85)

with standard deviation p. The set
Nx)={yeZ® : |x—yll<r} (2.86)

thereby refers to a local neighborhood of x with reasonable cut-off (e.g., with radius r = 3p),
and

Gol= Y Guo(y) (2.87)

YEN(0)
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denotes the corresponding normalization term. Notice that both the structure tensor and
the smoothed structure tensor are symmetric and positive semidefinite, since they are an
outer product and a positively weighted sum of outer products (Section 2.3.3). In the
remainder of this section, different ways to define or interpret the structure tensor will
be discussed. Each definition or interpretation will provide a different perspective on the
structure tensor.

2.4.1 Mean Axis and Double Angle

Before approaching the computation of averages of local orientations, we first review how
to compute an average of a set of angles. For a set of data points x; € R”, it is well-known
that the arithmetic mean has the property to minimize the sum of the squared distances

xeR”

X =argmin ) (x; —x)*. (2.88)
i

Means characterized by this property are called Fréchet means. Applying this definition to a
set of angles ¢; € [0, 27) results in the minimization problem

¢ =argmin Y _d*(¢i.¢) . (2.89)
¢€[0,27)

with d being suitable metric. Since an angle in the range [0, 277) can be identified with a

point of the unit circle S!, a possible choice for the metric is the geodesic distance in S!.

This leads to the intrinsic mean [Peno4] that, however, is difficult to compute. An alternative

that leads to reasonable results is to consider the embedding of S! into R? and use the

induced Euclidean metric (Figure 2.12), leading to the extrinsic mean:

¢ = argminz (1 —cos(¢; — ¢)) (2.90)

pelo,2m)

Setting the derivative with respect to ¢ equal to zero yields:

_ 4
=i

= Z(cosgbsinq,’)i —cos ¢ singp) = cosqﬁZsingﬁi —sing Zcos¢,~

0 Z (1 —cos(gi —9)) = Z sin(¢; — @)

i

(2.91)

Thus, solving for ¢ gives

¢ = atanz(Zsin i, Zcos ¢,~) , (2.92)

where atan2 denotes the inverse tangent with values in the range —7 to m. The angle
¢ is called the directional mean, and alternatively could have been derived as maximum-
likelihood estimator of the von Mises distribution [Biso7; MJ99].

Since local orientation is represented by an angle in the range (—x/2, /2], or option-
ally by points on the unit circle with opposite points identified, the directional mean is not
directly applicable. We can, however, consider doubling the angle

cos¢ + ising = '? > ¢2? = cos2¢ + isin2¢, (2.93)
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%i

(@) (b)

Figure 2.12: (a) Intrinsic (geodesic) distance on the unit circle. (b) Extrinsic distance. From the
law of cosines it follows that the squared extrinsic distance between two angles ¢; and ¢ is given by
c? = a® + b% —2abcos(¢; — ) =2 — 2cos(¢p; — ).

as proposed by Granlund [Gra78], which transforms the periodicity from 7 to 2. Applying
the directional mean after the transformation and transforming back then yields what is
called the mean axis [MJ99]:

¢ = %atanz(zi:sin 2¢;, Xi:cos 2¢l-) . (2.94)

The mean axis already creates reasonable smooth vector fields, but we can do better.
Firstly, a spatial weighting term that gives more weight to gradient vectors at spatially closer
positions can be incorporated. Secondly, gradient vectors with low magnitude belong to
almost flat image regions. In these regions, the signal-to-noise ratio is low and, due to this,
the accuracy of the gradient vectors also low. By including a weighting term based on the
magnitude of the gradient vectors, the influence of gradient vectors with large magnitude,
which correspond to strong edges, can be increased. More precisely, let r, = ||[Vf(x)]|
denote the gradient magnitudes and let ¢, = arg Vf(x) be the arguments of the gradient
vectors. The weighted mean axis at a point x is then defined as:

~ 1 1
o(x) = zatanz((}— Z Go(y —x) rf sin 2¢y,
elséas (299)
| .
— > Gp(y—x)ryzcoszqsy)
1Gol Lt

The influence of the magnitudes r, has been chosen to be quadratic. Although other choices
would be possible, this gives vectors with large magnitude strong influence, helps to create
more coherent results, and matches well many historical painting styles [HEo04]. In addition,
this choice matches the definition of the smoothed structure tensor, which can be easily
verified by computing the outer product of the gradient in polar coordinates:

Iy SIN ¢y

Vf(x)Vf(x)T = (rx cosgbx) (rx COS Py, Fx sind)x)T

(2.96)
B r2 cos? ¢y rsingy cos¢x\  (E F
- rZsin gy coS ¢y r2sin® ¢ \F G
Using the identities from Equation (2.59), it then immediately follows that
2F = 2r2 singy cospy = r2 sin2¢y
(2.97)

E—G =r2(cos® ¢, — sin? ¢) = r2 cos2¢y .
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2.4.2 Metric Tensor of a Riemannian Manifold

Let U C R? and let us assume for a moment that the input image is given by a differential
function f: U — R”. Here, the case n = 1 corresponds to gray level images and the case
n = 3 corresponds to color images. Given this function, we can now consider its graph as a
two dimensional submanifold of R2*"*. The map

U — R%n

@v) = (v ). M) (2.98)

then defines a smooth global parameterization of the embedding and the Euclidean metric
g of R?*" induces a Riemannian metric on the graph that is given in chart coordinates by:

g=Fg=F((dx') +... + ("))
—d(x' o F)? 4 ... +d(x*" o F)? (2.99)
= du?® + dv? + Y7, (df7)?

Here, w? denotes the common abbreviation for the symmetric product of a tensor @ with
itself. Now, let us consider a point p € U of the image domain and a tangent vector
X € T,U ~ R2. The Euclidean length of X in local coordinates corresponds to the length
in the image domain and the length given by the induced Riemannian metric

XXy = \Jgp(X. X) (2.100)

corresponds to measuring length on the image embedded as graph in R?*". Hence, for

tangent vectors of fixed Euclidean length, e.g. || X|| = 1, the Riemannian metric g can be
interpreted as measuring the squared local rate of change in direction X .

We are interested in finding the local orientation at p; i.e., the directions where the
rate of change of the image regarded as graph is either minimum or maximum. For unit
length tangent vectors, the term du? + dv? of g is constant and equal to one. To find the
minimum and maximum local rate of change, it is therefore sufficient to consider only the
term Y ¢_,(df?)2. The differential of the i-th component of f is given by

- of! af'!
df' = id i (2.101)
ou 0
and its symmetric product with itself is given by
@)’ =df ® df
i i qfi (2.102)
(Y g +z%%dud (Y a2
ou v v
Thus we get
Y (df7)* = E du +2F dudv + G dv? (2.103)
where
n (Y n OfTAfT
E F Li-1 (W) Li-1 g, u v
J = = (2.104)
F G

n AT af! n (1Y
S T()
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Figure 2.13: Visualization of the minor eigenvector of the structure tensor for a pattern with distinguished
orientation, corrupted by Gaussian noise. On the left the minor eigenvector has been computed from the
structure tensor without smoothing. On the right the minor eigenvector of the smoothed structure tensor
is shown.

is the so called metric tensor. In case of gray level images, the metric tensor is simply given
by the outer product of the gradient

J = vafT (2.105)

and in case of a color image it is given by the sum of the outer products of the gradients of
the different color channels. For example, in case of an RGB color image we have:

J = VRVRT + VvGVGT 4+ VBVBT (2.106)

As discussed in Section 2.3.2, the extremal values of the quadratic form on the unit circle, as
defined by Equation (2.103), correspond to the eigenvalues of the metric tensor J.

2.4.3 Least Squares Optimization

In the previous section we made the assumption that the image is given by a smooth function.
This is obviously wrong for typical natural images. As discussed earlier in Section 2.2.2,
the common practice to smooth the image prior to derivative computation (e.g., with a
Gaussian filter), presents a problem. In this section it will be shown that a better approach
is to smooth the structure tensor (Figure 2.13), which can be best understood from an
optimization point of view [WBos; Bro+06].

Let g(y) denote the gradients of a grayscale image, and let x be any point of the image.
Now, suppose a unit vector v is given. Then the deviation of a single gradient g(y) from v
can be defined as (see also Figure 2.14):

e(r.v) = [0 = (g )| (2.107)

g(»)—(g()v)v (g(),v)v

Figure 2.14: Deviation of a gradient g(y) := V(y) from a given direction v(x). The term
(g(»). v(x))v(x) is the projection of g(y) onto v(x).
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The total squared error at x can then be defined by the convolution of e? with a two-
dimensional Gaussian function G,:

E(x,v) = 1 > Golx—y)e*(y.v) (2.108)
Gl , 56

Using the linearity of the scalar product, e?(y) can be simplified to:

e? = (e,e) = (e,g—(g.v)v) = (e.g) —<\e,£,fv)_v_2
= (g.8) — (g.v)° =0 (2.109)
=gTg—vT(gg")v

By substituting this into equation (2.108) we get:

1
E(x,v) = m( Y Golx =) g2
P\ yeN(x) (2.110)
- > Golx —y)vT(g(y)g(y)T)v)
YEN (x)
The first term of E is constant. Therefore, minimizing E is equivalent to maximizing the
second term. Hence, the vector we are looking for is given by:

v(x) = argmin E(x, v) (2.111)
lvll=1
1
=argmax — Y G,(x =) v (g(Ng»)v (2.112)

=1 1Gpl Ny

Moreover, since v does not depend on y, it follows by linearity that

v(x) = argmax vTJp(x) v, (2.113)
lol=1
with 1
To(¥) = 5 D Golx—y)g(neg” (2.114)
PlyenN(x)

being the smoothed structure tensor at x. From Equation (2.71) we know that maximizing
vTJ,v with the constrained |Jv|| = 1 is equivalent to an eigenanalysis of J, and that
the vector that minimizes E(x, v) is given by the major eigenvector. Hence, we see that
smoothing the structure tensor corresponds to solving a weighted least squares problem.

Up to now, only the case of grayscale images has been considered. The most straightfor-
ward way to extend the previous discussion to color images is by minimizing Equation (2.111)
jointly for all color channels

v(x) = argminZ Ei(x,v), (2.115)

wi=1 5

resulting in the following generalization of Equation (2.84)

1 " .
()= — Y G,(y—x) Y g M m", (2.116)

|Gl yEN (x) i=1
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where n is the number of color channels (i.e., n = 3 for RGB images) and g’ (y) denotes
the gradient of the i-th color channel. Another convenient way to express the sum of outer
products is as the scalar product of the partial derivatives:

i g )T Yrgi)? Y gi()gh ()

i STl () Yo gh(0)?
(2.117)

B ( (g101).810))  (81(»). 82(1) )
(g1(0), 82(»)  (g2(¥), g2(»))

Instead of minimizing the total error E(x, v), an alternative but equivalent approach
[Raogo; RSg1] is to maximize the squared scalar product (g(y), v):

3 Gplx =) ((r).v)° (2.118)

yeN(x)

1
argmax ——
lol=1 |Gyl

2.4.4 Singular Value Decomposition

Let A € R™*" be a matrix. Then A may be written in the form
A=UxsvT (2.119)

with U € R™ and V' € R™" being orthogonal matrices and ¥ € R™*" being a diagonal
matrix. The decomposition in Equation (2.119) is called the singular value decomposition
(SVD) and can be regarded as a generalization of spectral decomposition of symmetric
matrices. The diagonal elements of X are referred to as the singular values. They are
non-negative, the square roots of the eigenvalues of A4”, and usually arranged in order
of decreasing magnitude. The columns of U are eigenvectors of AAT, and the columns
of V are eigenvectors of A7A, arranged in both cases in the order of the corresponding
squared eigenvalues on the diagonal of X, and called the left-singular and right-singular
vectors, respectively. The singular value decomposition is one of the most important tools
in numerical linear algebra. A detailed coverage can be found in the books by Horn and
Johnson [HJ85] and Golub and Van Loan [GVLg6].

To understand how the singular value decomposition relates to the structure tensor,
let xo be any point, let

{xo,...,xN_l}z{xeRz : ||x—x0||<r} (2.120)

be the set of sequentially enumerated points from the local neighborhood of x¢ with distance
smaller than some radius r, and let g(x;) denote the gradient vectors at x;. Moreover, let

g(xo)T

T
G = g(x.l) (2.121)

glxn-1)T
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be the N x 2 matrix having the gradient vectors as columns. Forming the product GTG, we

see that
GTG_<g1(X0) gl(xN—l)) gl(.XO) gz(_XO)
g2(x0) ... £2(iN-1) g1(xn-1)  g2(xn-1)
(2.122)
YN ()2 YV g (xi)ga(xi) N-1
= = glx)gl)”"
SV g1 (kg2 () S ga(xi)? zg(:)

is equivalent to the structure tensor. Moreover, by defining a N x N diagonal matrix W

GP(X() 1
= JGo(xo — x; .
\/Z Gp<xo—xl> Jig, Y Gt =) (123

WG = (woo g(x0), w11 g(x1), ..., wN—l,N—lg(xN—l)) (2.124)

with elements

we have

and we see that
W) TWG = 6¢TwWiwe = GTw?G
N—-1

=Y w? g(x)g(xi)”
i=0

(2.125)
| N
TeN Z Go(xo — x;) g(x)g(x)T = J,(x0)
Pl i=0

is just the smoothed structure tensor. The eigenvalues and eigenvectors of the smoothed
structure tensor may thus be obtained from the singular value decomposition of WG, where
the eigenvalues are given by the squared singular values and the eigenvectors given by the
right-singular vectors.

Feng and Milanfar [FMo2; Feno3] used the singular value decomposition as part of
their multi-scale local orientation estimation approach. A key advantage of the singular
value decomposition is that it is numerically highly stable and “cannot fail” [Pre+o7, p. 795].
For this reason, the singular value decomposition is often recommended as a default choice
for solving least squares problems. The numerical stability, however, comes at a price.
Compared to using the normal equations G’ G, the singular value decomposition requires
more storage and is computationally significantly more expensive, making it in our case
impractical for GPU implementation. Moreover, using the singular value decomposition in
experiments did not provide observable improvements.

2.4.5 Inertia Tensor

In Section 2.1 we saw that patterns with distinguished orientation cluster along a line
in the power spectrum. This observation is the foundation for the approach by Bigiin
et al. [BGWor; Bigo6], who proposed to derive the average local orientation as the axis k of
minimum inertia of the power spectrum:

argmin[a’2(a),k)|F(a))|2 dw (2.126)
lkll=1
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The distance of w to the axis k is thereby given as illustrated in Figure 2.14:

d*(w, k) = ||a) — (w,k)k”

2.12
=l —kT(woT)k = kT(a)Ta)I — wa)T) k (2.127)
Hence, we get
/dz(a), k)| F(w)]? do = kTgk , (2.128)
with
/a)%|F(a))|2 dw —/a)la)le(a))l2 dw
4 (2.129)

—/a)la)z |F(w)]? dw /a)f |F(w)? do

Performing the convolutions in the frequency domain is not practical. Fortunately, by
Parseval’s theorem (Rudin 1987, p. 187) we have:

/a)pa)q |F(w)]? do = /iw,,@F(a))m do = /ia)p F(w)iw, F(w) do

_ /f_l(ia)p F(@)) 71 (iwg F(@)) dx (2.130)
_ [ of of
Hence, we see that
§=tu()I—J, (2.131)

where J is the structure tensor averaged (i.e., box filtered) over the whole image. Thus,
in physical terms ¢ is the inertia tensor, while the structure tensor corresponds to the
covariance of the pointwise density. Introducing appropriate windowing and reconstruction
functions yields the smoothed structure tensor.

Kass and Witkin [KW87] also start the derivation of their approach in frequency
space. However, instead of computing the axis of minimum inertia, they used a specifically
designed directional filter. In the spatial domain this filter turned out to be the derivative of
a difference of Gaussians. Another approach for deriving the structure tensor in frequency
space based on quadrature filters has been developed by Knutsson and Granlund [Knu89;
GKo95; KNog]. In contrast to Gaussian derivative filters, quadrature filters are phase
invariant, a highly desired property for local orientation analysis [Jahos].

2.4.6 Implementation

In the previous sections, several equivalent definitions of the structure tensor were given,
providing motivation and explaining its usefulness. Interestingly enough, besides its theoret-
ical benefits, the structure tensor is also straightforward and simple to use in practice, and it
may be computed as follows: First, for each pixel, the gradient is obtained by computing the
horizontal and vertical partial derivatives, using either the 3 x 3 or 5 x 5 optimized derivative
filter (Section 2.2.3). For best performance, advantage of the separability of the 5 x 5
derivative filter should be taken. Alternatively, Gaussian derivatives may be used. However,
these require a considerable larger filter kernel, and are therefore not recommended. In the
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) Y0 b YO b Y
<

(@)3x3:p=0 (b)3x3:p=1 (©)3x3:p=2 d3x3:p=3

(€)5x5:p=0 f)sx5:p=1 (g)5%x5:p=2 (h)5x5:p=3

0" e— 1 ()’_‘4 - — 1 0" m— - — 10

Figure 2.15: Angular errors of the orientation computed from the smoothed structure for different p are
shown. The test pattern of Figure 2.7 is used.

1 __global__ void st_scharr_3x3( gpu_pIm2<float4> dst ) {

2 const int ix = blockDim.x * blockIdx.x + threadIdx.x;
3 const int iy = blockDim.y = blockIdx.y + threadIdx.y;
4 if (ix >= dst.w || iy >= dst.h) return;

5

6 const float bl = 46.84f / 256;

7 const float b0 = 1 - 2 = bl;

8

9 float3 gl = 0.5f * (

10 -bl * make_fToat3(tex2D(texSRC, ix-1, iy-1)) +
1 -b0 * make_fToat3(tex2D(texSRC, ix-1, iy )) +
12 -b1l * make_fTloat3(tex2D(texSRC, ix-1, iy+1)) +
13 +bl * make_float3(tex2D(texSRC, ix+1, iy-1)) +
14 +b0 = make_float3(tex2D(texSRC, ix+1, iy )) +
15 +b1l * make_float3(tex2D(texSRC, ix+1l, iy+1)));
16

17 float3 g2 = 0.5F = (

18 -bl * make_fToat3(tex2D(texSRC, ix-1, iy-1)) +
19 -b0 * make_fTloat3(tex2D(texSRC, ix, iy-1)) +
20 -bl * make_fTloat3(tex2D(texSRC, ix+1, iy-1)) +
21 +bl * make_float3(tex2D(texSRC, ix-1, iy+1)) +
22 +b0 * make_float3(tex2D(texSRC, 1ix, iy+1)) +
23 +bl » make_float3(tex2D(texSRC, ix+1l, iy+1)));
24

25 dst(ix, iy) = make_float4( dot(gl, gl), dot(gl, g2), dot(g2, g2), 1);
26}

Listing 2.2: Computation of the structure tensor using the optimized derivative operator. The result is
stored in the first three components of a float4.
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Figure 2.16: Correct sampling of the structure requires doubling the sampling rate. In the top and middle,
an oscillating signal and its derivative, respectively, are shown. Both signals are sampled at 0.95 of the
Nyquist rate %, which allows for a perfect reconstruction of the signal. On the bottom, the squared
derivative is shown in blue. Due to its doubled signal frequency, the reconstruction shown in red fails.

next step, the structure tensor is computed, which is most conveniently done by calculating
the scalar products of the partial derivatives (Equation (2.117)), and storing the result in
a floating point texture map. The smoothed structure tensor is obtained by a subsequent
smoothing pass, performing a convolution with the Gaussian function G,. As can be seen in
Figure 2.15, smoothing the structure tensor indeed improves the quality of the orientation
estimate for noisy images. For the sake of completeness, the computation of the structure
tensor using the optimized 3 x 3 derivative filter is shown in Listing 2.2.

A limitation of this approach is that it violates Shannon’s sampling theorem [K6to3b;
Kotoza; Koto8]. To understand why, let us consider the case of grayscale images. Let
f be an image that is properly sampled at the Nyquist rate. Then f is band-limited and
has a cut-off frequency of =, if unit pixel size is assumed. Since the optimized derivative
filters are finite impulse response filters, they are not band-limited, which is also the case
for the Gaussian derivatives. Hence, the partial derivatives obtained by convolution with
some derivative operators f; = Dy * f and f, = D, * f will be band-limited with cut-
off frequency = as well. To compute the structure tensor, the partial derivatives have to be
multiplied. By the convolution theorem, this corresponds to a convolution ¥ ( f;) * ()
in the frequency domain, with the result having doubled support. Thus, to correctly sample
the structure tensor, the sampling rate has to be doubled as well. While this may seem
counter-intuitive at the first glance, it can be illustrated by a simple example that is shown in
Figure 2.16. Let f(¢) = sin(wt + ¢) be an oscillating signal with frequency w and phase ¢.
Then its derivative is given by f'(f) = w cos(wt + ¢). Both f(¢) and f”(¢) can be sampled
properly at sampling rates A < Z. However, the squared derivative

(f’(t))2 = w? cos*(wt + ¢) = %2(1 + cosQwt + 2¢)) (2.132)

has doubled frequency and thus requires a sampling rate A < 5.

There are two approaches to ensure proper sampling. First of all, the high-frequencies
in the image could be removed. This could be achieved, for instance, by increasing the
standard deviation of the Gaussian derivatives. However, to achieve the necessary damping
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Figure 2.17: Angular errors of the orientation obtained from smoothed structure tensors computed
with and without oversampling. (a) Oversampled Gaussian derivative computed for double image size.
Smoothing and downsampling of the structure tensor is performed in a single step using resampling
convolution with Gp. (b)—(c) The structure tensor is computed without oversampling and then smoothed
with the Gp. In all cases, a standard deviation of p = 2 is used for the Gaussian function.

in the frequency domain, a standard deviation of 0 & 2 would be required, resulting in
large errors, as we saw in Figure 2.8(d). The second approach is to oversample the image by
computing the Gaussian derivatives using resampling convolution [Schg92]. The smoothed
structure tensor can then be obtained by downsampling using resampling convolution with
a Gaussian function. As can be seen in Figure 2.17, oversampling indeed leads to improved
results if no noise is present. If noise is present, however, the results gained by oversampling
are similar to those obtained without over-sampling. Consequently, for the computation
of the smoothed structure tensor, the optimized 5 x 5 derivative filter is the best choice in
terms of accuracy.

The discussion so far assumed that the computed structure tensor is stored in a floating
point texture. However, with a few exceptions of modern devices, such as the iPhone 4S and
iPad 2, neither single nor half precision floating point texture are supported on most small
devices. Straightforward quantization and storage in 8-bit textures produces significant
errors, as demonstrated in Figure 2.18(a) and Figure 2.18(b). This is again due to the
computation of the products of the partial derivatives. If we assume that all gradient values
are equally likely to occur, that is, the distribution of the gradients is uniform, then the
product of the gradient values has a non-uniform distribution where smaller values are
more likely to occur (Figure 2.19). This is problematic from the point of quantization, since
the data is not distributed equally into the different quantization bins. The reason for the

0" e— | — 5

(a)3x3 (b) 3 x 3 (normalized) (©)5x%x5 (d) 5 x 5 (normalized)

Figure 2.18: Comparison of the angular errors produced by storing the structure tensor in an 8-bit RGB
texture with and without normalization of the gradient magnitude.
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Figure 2.19: The square of the uniform distribution is non-uniform and given by fy2(x) = —L_ resulting

24/x

in a non-uniform quantization.

quadratic nature of the structure becomes apparent when looking at Equation (2.96): The
structure tensor can be regarded as the outer product of the normalized gradients multiplied
with the squared gradient magnitude:

T
_ T _ 2f V() Vf(x)
J(x) = Vf()Vf(x)" = [V (||Vf(x)||> <||Vf(x)||) (2.133)

A simple and straightforward workaround is to normalize the structure tensor by dividing
by the gradient magnitude. As can be seen in Figure 2.18(c) and Figure 2.18(d) this
indeed provides a significant improvement. This approach can also easily be generalized
to color images by computing for each color channel the normalized structure tensor
independently, and then taking their sum. Notice that smoothing the normalized structure
tensor produces a different result, since the normalization changes the definition of the
residual Equation (2.108).

2.5 Comparison with Edge Tangent Flow

The edge tangent flow filter (ETF) was first proposed by Kang et. al. [KLCo7; KLCog].
Technically, it can be understood as a multilateral filter that has been specifically designed to
operate on orientation vectors. To achieve reasonable results, multiple iterations of the filter
are applied. The processing starts with an initial tangent field #° obtained by rotating the
image gradients 9o degrees. A single iteration of the edge tangent flow filter is then defined
by

"(y)

n+1 =
) = Y welx ) wx y) wa (x.y) Taos

YEN (x)

(2.134)

where N (x) denotes the local neighborhood of x and w;, w,, and wy are functions control-
ling the weight given to a summand.

The term w;(x, y) denotes the spatial weight function. It controls the weight depending
on the spatial relation of x and y. Kang et al. use a radially-symmetric box filter with radius
r that is one for ||x — y|| < r and zero otherwise. Another reasonable choice would be to
use, for example, a Gaussian function. This would give pixels that are farther away from the
filter origin less influence.
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(a) SST (b) Box ETF (¢) Gaussian ETF (d) xy-separable ETF

Figure 2.20: Comparison of the angular errors produced by the smoothed structure tensor and different
variants of the edge tangent flow. The gradients used in this experiment were computed using the optimized
3 x 3 derivative filter. The standard deviation of the Gaussian filter was set to p = 2, and for the cut-off
of the Gaussian and Box filters, r = 3p was used.

The magnitude weight function is defined by

LD = l12° @)
Wm = —( 5 +1). (2.135)
2 lmax
where 10, = max, ||t°(x)|| is the maximum length of the initial tangents. It controls the

weight depending on the relation of the lengths ||2°(x)|| and ||°(»)|. If ||2°(y)|| has greater

magnitude than [|£°(x)||, the weight will be in the range (0.5, 1], and vice-versa in the case

of lower magnitude. Thus, more weight is given to tangents with greater magnitude.
Lastly, the directional weight function is set to the scalar product

[0 )
e <||r"(y)||’ ||z"(x>||> (2.136)

of the normalized tangents. Since scalar product is equivalent to the cosine of the angle
between both tangents, more weight is given to tangents that have similar orientation. If the
angle is greater than 9o degrees, the weight is negative. Thus, wy (x, y) t" (y) always lies in
the half space defined by " (x).

The edge tangent flow creates smooth tangent fields suitable for IB-AR, but it is
computationally expensive due to its quadratic per pixel complexity. Kang et. al. [KLCog]
therefore proposed to implement the filter in a separable way, similar to the xy-separable
bilateral filter that will be discussed later. Figure 2.20 shows an evaluation of the smoothed
structure tensor and the edge tangent flow for the test pattern of Figure 2.7. As can be seen
the structure tensor is not only computationally more efficient, it also clearly outperforms
the edge tangent flow in terms of accuracy of the local orientation estimation. Another
disadvantage of the ETF is that it does not provide a confidence measure for the averaged
orientation. The next section discusses how such a measure can be defined for the structure
tensor.

2.6 Anisotropy and Cornerness Measures

Besides the superior robustness, the smoothed structure tensor has a second advantage
over orientation averaging techniques like for example the mean of angles or the edge
tangent flow. Its eigenvalues allow for defining a measure for the anisotropy of a pixel’s
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neighborhood. Moreover, several corner detectors utilize the eigenvalues of the structure
tensor in their definition.

2.6.1 Anisotropy Measures

The minor eigenvalue A, of the structure tensor measures how much the gradients deviate
from the axis defined by the major eigenvector. It provides a way to measure the quality
of the orientation estimation. If A; > A, there is a clear dominant orientation in the
considered neighborhood. If on the other hand A; & A, there is no particular distinguished
axis among the gradients.

The normalized difference of the eigenvalues thus provides a measure of anisotropy

_di—A V(E-G)2+4F*  \Jur2(J)—4det(])
T+ A E+G - tr(J) ’

(2.137)

which has been adopted by many authors [Yan+96; BVV9gg; Phao6]. The anisotropy
@ ranges from 0 to 1, where 0 corresponds to isotropic, and 1 corresponds to entirely
anisotropic regions.

Since the eigenvalues A; and A, correspond to the squared rate of change and the
squared error of the estimate, respectively, another reasonable definition of anisotropy is
given by [FMo2; Feno3]:

@1 = M (2138)
Va4 Vi,

Probably to avoid the evaluation of the square root in Equation (2.137), Forstner and
Giilch [For86; FG87] as well as Weickert [Weigg] used the squared anisotropy in their works:

@ — @ — (M —lz)z _(E=G)*+4F> _ 4det(J)
2— = = —-—

A1+ Az E+G2  w2d) (2.139)

In order to decide which of the above anisotropy measures to use in this work, an exper-
iment was conducted, where the anisotropy measures for the 300 natural images in the Berke-
ley segmentation dataset (BSDS300) were computed. The resulting histograms are shown
in Figure 2.21. Since the histogram of the anisotropy measure defined by Equation (2.137)
is more uniformly distributed (Figure 2.21(b)) than the others (Figure 2.21(c)—(d)), it is
adopted here for the purpose of image stylization.

2.6.2 Relation of Anisotropy and Condition Number

Let A € R™*" be a matrix with rank(A) = min(m, n), then the condition number of A is
defined as the ratio between the largest and smallest eigenvalue of A:

_ Omax (4)

B Omin(A4) (2.140)

The condition number plays a central role in the numerical analysis of matrix computations
and provides an upper bound on the amplification of relative errors. The definitions of



46 Chapter 2. Local Structure Estimation with the Structure Tensor

v 7 3 .
2 i O (A e o S L - i s I

(a) The Berkeley segmentation dataset (BSDS300) [Mar+01]
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Figure 2.21: Histograms of the different anisotropy variants for the Berkeley segmentation dataset.

anisotropy and condition number are both based on the eigenvalues and are related by:

A

_)Ll—)tz_B_I_K—l (ZII)
_l1+12_l—1+1_lc+1 14
Az
A 1+Q (2.142)
K= —= —— .
o 1-Q 4

2.6.3 Anisotropy of Random Gradients

A real Wishart matrix is a symmetric m x m matrix of the form W = ATA, where A € R™*"
has normally, independent, and identically distributed elements [ER05]. If an image has
normally, independent, and identically distributed random pixels, then also its gradients
are normally, independent, and identically distributed. Thus, by Equation (2.122), the
structure tensor J = GG computed from such random gradients is a Wishart matrix.
This is interesting, since a closed expression of the joint eigenvalue distribution of Wishart
matrices is known [Ede88; Ede89]. In this section it will be shown how this joint eigenvalue
distribution can be used to derive the probability distribution of the anisotropy for structure
tensors that are Wishart matrices. The distribution can then be used to check if it is likely
that a structure tensor has been obtained from a white noise image neighborhood.
The joint eigenvalue distribution of a real Wishart matrix is given by

m—.

Km.n -exp<_% ZM) . 1_[ A; 2= l_[ (Ai =4, (2.143)

i=1 i=1 i<j
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with

K-l — (z)n/z . F(m z+1) (n l+l) (2 144)
m,n . . .

=

—

For n = 2 this simplifies to:
K2 e b (hi+2) (A142) " (A1 —212) (2.145)

Using the recurrence relation I'(z + 1) = zI'(z) and the duplication formula I'(z)I'(z +
1) = 2722 /nT'(2z) of the gamma function yields the following simplification of the
normalization term for n = 2:

- _zz meit1) p(2=it) = 2 p(m mt) (1
S UYL
= Zr(g)r() = ZrrvErm -y = S0

In order to obtain the probability density function of the condition number «, the quotient
distribution is computed. Following the common approach an auxiliary variable ¢ is

introduced:
Kk = ﬁ t=X (2.147)
Az
The inverse and Jacobi determinant of the transformation are then given by:
A M
il - de t(ax 3) = (t K) =t (2.148)
2 =1 8K2 B_tz 0 1

Applying the transformation to Equation (2.145) we obtain
Kz e 26D 612" (6 — 1) 12, (2.149)

and marginalizing out ¢ now yields the probability density function of the condition num-
ber «:

o0
/ Ko e 2@ (642)"3% (¢ — 1) 12 dt
0

— m2K2 (K—l)/ (K+1)tmldt

= Kmpok 2_3 (K 1)m/ e ¥ Mmil du (2.150)
om

—Km2/c (K—l)( +1)m1"(m)

_ _ m—2 K -1 m=3

=m-1)2 —(K+l)mK 2

The probability density function of the anisotropy @ can now easily be derived through
another change of variables @ = (k — 1)/(k + 1). The derivative of the inverse (Equa-

tion (2.142)) is given by
d—K = i 1+&) _ 2 (2.151)
i@ —de\i—e)” a—=ap 15
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Figure 2.22: Probability distribution of the anisotropy of random structure tensors. (a) Box filtered
structure tensor. (b) Smoothed structure tensor obtained with Gaussian filter and cut-off radius 30. In
both cases, plots of the distribution for different neighborhood sizes are shown. Moreover, the histograms
of an experiment are shown, where the anisotropies of 10° randomly generated matrices were computed.

and applying the transform to Equation (2.150) we get:

o maf1re Nf(1+a  \" 1+e)’ 2
p(®) =(m-1)2 (1_@ 1><1_@+1> (1_(%) 1-®)?% (2.152)

m—3
2

=(m—-1e(1-@&?

A similar result for the anisotropy measure defined in Equation (2.138) was obtained by
Feng and Milanfar [FMo2; Feno3]. Figure 2.22 shows an experimental validation of this
result, as well as plots for different n. The cumulative distribution function of the anisotropy
is given by:

a

Pr(@fa):/ p(@) d@:/a (m—l)(i(l—@z)mT da
0

0
(2.153)

a —

m=1 m=1
= [—(1—@2) 2 ] =1-(1-a% ?
0
The cumulative distribution function can now be used to perform a significance test [Dra67;
YGos]. To this end, given some significance level « € [0, 1], we have to solve Pr(®@ < a) =
1 — o and thus obtain as a threshold:

QR = V1 —q2/m-1D (2.154)

For example, if a structure tensor computed on a 13 x 13 neighborhood has anisotropy
@ > V1 —0.052/(13°=1) = (.1872 then the hypothesis that the structure tensor is a random
Gaussian matrix can be rejected with a 95% confidence.

The discussion so far only applies to box-filtered structure tensors G’ G. Apparently,
if Gaussian weighting is included, then (WG)TWG is not a Wishart matrix. It is therefore
not surprising that the corresponding anisotropy distribution, shown in Figure 2.22(b),
is different. However, as can be seen, the overall shape of the distribution is very similar,
leading to the idea to search for a matching m by fitting Equation (2.152) to the anisotropy
distribution obtained by simulation. To this end, an experiment was conducted in MATLAB.
For different o and cut-off radii po, 10° random Gaussian x matrices were generated, and
their structure tensors and anisotropies computed. The histogram of the anisotropies was
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Figure 2.23: Results of the least squares fit of Equation (2.152) for the cut-off radii pc = 20, 2.50, 30.
Moreover, the area Aso under the Gaussian function, and the areas Apg under the Gaussian filter kernel
are shown.

then used to perform a least squares fit of Equation (2.152), which resulted in an L2-error of
0.1% or less, showing that histogram and distribution indeed match. The resulting 71,4 (0)
for different cut-off radii are shown in Figure 2.23. As can be seen, the results depend on
the cut-off radius. However, it can be observed that the result 171, (o) of the least squares fit
is bounded by

Aps < Mipe(0) < Aoo (2.155)
where
+po +po 5
Apy = f / exp(— ”2);”2 ) dx = 4ro? erfz(g) (2.156)
—po —pa

is the area of the exponential functional under the filter neighborhood, and

+00 +o00

o — x| a2
0 = ] dx = 4no (2.157)

o0 —00

is the area of the exponential functional for all of R?. Consequently, for cut-off radii po
with p > 2.5 a reasonable approximation is given by:

m(o) = 4no? (2.158)

2.6.4 Cornerness Measures

Similar to anisotropy measures, which measure if a neighborhood has a distinguished
orientation, it is also possible to define measures that identify corner regions. One of the
best known corner detectors is probably the Harris corner detector [HS88]. Interestingly,
this detector is based on the smoothed structure tensor, and its corner response function
given by:

R = A1dy — k(A + Az) = det(J,) — k tr(J,)? (2.159)

The response function R is thresholded and non-maximum suppression performed by
checking an 8-neighborhood. The control parameter k is an empirically determined constant
and typically chosen to lie in the range [0.04, 0.06]. Underlying idea of the corner response
function R is that if the major eigenvector is large and the minor eigenvector small, then
R is negative, indicating an edge region. If both eigenvalues are small, then | R| is small,
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Figure 2.24: Illustration of the Harris-Stephens corner response function R = AAs — k(A1 + 12)2.
On the left, a plot of R is shown. On the right, the different regions corresponding to edge regions, flat
regions, and corner regions are shown.

indicating a flat region. If both eigenvalues are comparatively larger, R is positive, and the
larger the eigenvalues are, the larger R is. Figure 2.24 illustrates the relationship between R
and the corresponding region classification.

The Forstner interest operator [For86; FG87], whose inverse is also known as the Plessey
detector [Nob88], is another approach that is based on the structure tensor:

A 1 /\2 _ det(Jp)

A Ay = tr(J ® d —
1+ A2 1(Jp) > an T, w(J,)

= local maximum (2.160)

The Harris corner detector as well as the Forstner interest operator, both avoid using
the eigenvalues of the structure tensor directly and instead use the determinant and trace.
Nevertheless, a large minor eigenvalue is good a indicator for a corner region and proposed
by Tomasi and Kanade [TK91]:

Ay >0® and A, = local maximum (2.161)

As a further approach Rohr [Roh87] has proposed to use the local maxima of the
determinant det(J,(x)) for corner detection. He also provided an analysis of localization
properties of different corner detectors [Rohg4].

2.7 Sampling and Interpolation

In this section, sampling of the structure tensor at arbitrary locations, bilinear sampling,
and the replacement of unreliable structure tensors will be discussed.

2.7.1 Sampling at Arbitrary Locations

In Section 2.4, the smoothed structure tensor was defined as the discrete convolution of the
structure tensor with a Gaussian function. However, instead of regarding the convolution
as smoothing operation, we may alternatively interpret it as reconstruction, yielding a
continuous structure tensor from a set of samples. Or in other words, although the image
gradients are only defined at integer points, the Gaussian function may be evaluated at
arbitrary positions. However, if non-integer values are allowed for x in Equation (2.84),
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Figure 2.25: [llustration of the minor eigenvector of the smoothed structure tensor (blue) for nearest-
neighbor and bilinear sampling (red).

we have to account for that graphics hardware defines the center of a pixel at half-integer
positions. Hence, computation of the smoothed structure tensor at non-integer positions is

given by:
1

Gl > Gp(x -+ (8:2))) gegm’ (2.162)

YEN(x)

with |G, | denoting the corresponding normalization term.

2.7.2 Bilinear Interpolation

The reconstruction at arbitrary positions discussed in the previous section is computationally
expensive when performed for a large amount of samples. An interesting alternative is to
approximate Equation (2.162) by bilinearly sampling the smoothed structure tensor. Let
X = Z?Zl o; x;, where x1, ..., x4 are four neighboring pixels and Z?:l o = 1 witha; > 0.
Moreover, let Jy, ..., J4 denote the smoothed structure tensors at the corresponding pixels.
As already noted in Section 2.3.3, the weighted sum Z?:l a; J; is symmetric and positive
semidefinite. Performing the convolution of the structure tensor with the Gaussian function
for the sake of simplicity over Z2, we have:

4 4
1
Yoaidi =) o G D Golxi —y) g’
i= i= Pl ez2
! 11 y4Z (2.163)
=G YD i Goxi —y) ) gg)”
o

yez? \i=1

Hence, we see that bilinear interpolation of the smoothed structure tensor corresponds
to a reconstruction of the structure, where instead of a Gaussian function, the bilinear
interpolation of four Gaussian functions is used.

2.7.3 Inpainting of Low-contrast Regions

In low-contrast regions, the signal-to-noise ratio is low, making the gradient information
unreliable. Accordingly, the estimated orientation is almost random and of little value. In
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Figure 2.26: Solution of the Laplace equation. (a) Iterative solution using 100, 1,000, 5,000, and 50,000
Jacobi iterations. (b) Multi-scale approach.

this section an approach for replacing unreliable structure tensors will be presented. As
explained earlier, the square root of the major eigenvalue is a generalization of the gradient
magnitude, and can thus be used to identify points with reliable structure tensors

Bﬂz{xeﬁ\\/x>r,}, (2.164)

where 7, is a control parameter. The idea is now to look for a smooth function that
interpolates the structure tensors S defined on d2. Such a function is given by the membrane
that minimizes
argmin/Q |Vs[*>dx  with 5|30 = S|sq - (2.165)
A

This problem is known to be equivalent to solving Laplace’s equation with a corresponding
Dirichlet boundary condition

As =0 with s|30 = Sla, (2.166)
where 52 52
=— 4+ — .16
3x% Bxg (2.167)

denotes the Laplace operator, which is given by the sum of the second order partial deriva-
tives. These can be discretized using finite differences

025 Sit1j — 28+ Sio1,) 025 Sij4+1— 280+ Sij—

o~ i+1,j i,j i—1,j and o~ i,j+1 i,j i,j—1 , (2.168)
0x3 h? 0x5 h?

leading to the following discretization of the Laplace operator:

Siv1,j +Si—1,j + Sij+1+Si -1 — 485,
hZ

Aslij ~

(2.169)

The equations As|; ; form a large sparse linear system of equations, which is best visualized
by concatenating all rows of the image into a large vector. Neglecting boundary conditions
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1 __global__ void jacobi_step( gpu_plm2<floatd> dst ) {

2 const int ix = blockDim.x * blockIdx.x + threadIdx.x;
3 const int iy = blockDim.y * blockIdx.y + threadIdx.y;
4 if (ix >= dst.w || iy >= dst.h) return;

5

6 floatd st = tex2D(texST, ix, 1iy);

7 if (st.w < 1) {

8 st = make_float4((

9 make_float3(tex2D(texST, ix+1l, iy D)) +
10 make_float3(tex2D(texST, ix-1, iy )) +
11 make_fTloat3(tex2D(texST, ix, iy+1)) +
12 make_fTloat3(tex2D(texST, ix, iy-1))) / 4,
13 0);

14 }

15

16 dst(ix, iy) = st;

17}

Listing 2.3: Implementation of a Jacobi relaxation step.

for a moment, this results in the following system of equations

—4 1 e 1 e ee 0 50,0
50,1
50,2

1 ... 1 -4 1 .- | T I =0 (2.170)

SM—1,N-3
1 1 —4 1 SM—1,N-2

0 .- | 1 —4 SM—1.N—-1

with minus four on the diagonal, ones on four secondary diagonals, and zeros elsewhere. In
order to incorporate boundary conditions, rows corresponding to boundary pixels must be
replaced with a one on the diagonal, and zeros elsewhere.

In principle, any technique for solving linear systems can be used. One of the simplest
approaches is to assume that in the i-th equation only the i-th parameter is unknown,
leaving the other parameters fixed. Solving each of these equations independently and
iterating the process converges to the solution, and is known as the Jacobi method. More
specifically, let slk’ j denote the k-th step’s structure tensor at pixel (i, j); then a Jacobi
relaxation step is given by

sk if (i, j) € 99
k+1
gkl — (2.171)
i,j k k k k
Sivr,; TSz tSij1 TS otherwise
4

Since the computation involves a convex combination, the result is again a positive semidefi-
nite matrix and, thus, is well-defined. Unfortunately, a very large number of iterations is



54 Chapter 2. Local Structure Estimation with the Structure Tensor

j /’/:[%][22?1}

[i. /] (]

(a) Restriction (b) Interpolation

Figure 2.27: Illustration of the restriction and interpolation operations. (a) Restriction collapses four
pixels into a single pixel by averaging those that are boundary pixels. (b) Interpolation is performed
using bilinear interpolation.

typically required, which is demonstrated in Figure 2.26(a). Obtaining a sufficient approx-
imation of the solution, takes approximately 50,000 Jacobi iterations. Even on modern
high-end GPUs, this takes several seconds to compute.

Jacobi iterations are effective for removing high-frequency oscillations in the residual,
but perform rather poorly when the residual becomes smooth. Multigrid methods [BHMoo]
address this issue by solving for the residual on a coarser level. A similar approach, which
can be regarded as a simplified variant of a multigrid solver, where computation of the
residual is avoided, is adopted here. As a first step, which structure tensors should be kept
unmodified is determined by using Equation 2.164. To this end, the fourth color channel
is used, with one indicating a boundary pixel and zero used otherwise. The reason why
convergence of the Jacobi method is slow is illustrated in Figure 2.26(a). One Jacobi iteration
computes the average of the neighboring pixels; consequently, it takes a large number of
iterations until values on the boundary diffuse into the inner parts. Apparently, a simple way
to speed up the diffusion is to compute it on a coarser grid. Since the transfer to a coarser
grid can be repeated recursively, this yields a pyramid of images. Moving from a finer to a
coarser level is referred to as restriction. The pixels on a coarser pyramid level are defined

__global__ void restrict( const gpu_pIim2<float4> st, gpu_plm2<float4> dst ) {
const int ix = blockDim.x = blockIdx.x + threadIdx.x;
const int iy = blockDim.y = blockIdx.y + threadIdx.y;
if (ix >= dst.w || iy >= dst.h) return;

float4 sum = make_fTloat4(0);
float4 tmp;

tmp = st(2xix, 2xjy ); if (tmp.
tmp = st(2xix+1, 2xiy ); if (tmp.
10 tmp = st(2*ix, 2xiy+1); if (tmp.

0) { sum += tmp;
0) { sum += tmp;
0) { sum += tmp;

= £ £ =
V V. V V

s

1 tmp = st(2xix+1l, 2xiy+1); if (tmp. 0) { sum += tmp;
12

13 if (sum.w > 0)

14 sum /= sum.w;

15

16 dst(ix, iy) = sum;

17}

Listing 2.4: Implementation of the restriction operation.
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1 __global__ void interpolate( const gpu_plm2<float4> st_fine, gpu_pIm2<float4> dst ) {
2 const int ix = blockDim.x * blockIdx.x + threadIdx.x;
3 const int iy = blockDim.y * blockIdx.y + threadIdx.y;
4 if (ix >= dst.w || iy >= dst.h) return;

5

6 floatd st = st_fine(ix, iy);

7 if (st.w < 1) {

8 st = make_float4(make_float3(

9 tex2D(texST, 0.5f = (ix + 0.5f),

10 0.5f * (iy + 0.5F) )), 0);
11 }

12

13 dst(ix, iy) = st;

14}

Listing 2.5: Implementation of the interpolation operation.

as the average of four pixels on the finer pyramid level, with non-boundary pixels being
excluded (Figure 2.27(a)). The left of Figure 2.26(b) exemplifies the pyramid construction.
Once the finest pyramid level is reached, the pyramid is processed in a coarse-to-fine manner.
On each pyramid level, 1—3 Jacobi iterations are performed. Non-boundary pixels on the
next-finer pyramid level are then replaced by sampling the result using bilinear interpolation.
These operations are repeated until the finest pyramid level has been reached, as shown
on the right of Figure 2.26(b). The implementations of the restriction and interpolation
operations are shown in Listing 2.4 and 2.5.

Nevertheless, performing the relaxation for every computation of the structure tensor
is expensive. Therefore, the relaxation is only performed for the first computation of the
structure tensor. All subsequent computations use the structure tensor of the previous
computation for points not in 2.

2.8 Multi-scale Estimation

The multi-scale local structure estimation is inspired by the multi-scale orientation estima-
tion methods by Wilson et al. [WCBgo] and Feng and Milanfar [FMo2]. Similar to these
approaches, a weighted linear combination is used to propagate the estimates from coarser
to finer pyramid levels (Figure 2.28). However, in contrast to the other techniques that
propagate gradient estimates, in this work the structure tensor is propagated.

The processing starts at the coarsest level of the pyramid, where the smoothed structure

Iterate over all levels of the pyramid in coarse-to-fine order

Upsample -
l’- to next level 1
I
I
I

v

Local orientation ’::—E;t\:g? )
el ?nlsgtropy structure tensor
Estmauon from previous level
Build low-pass filtered pyramid

Figure 2.28: Schematic overview of the multi-scale structure tensor estimation approach.
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(a) Test image (b) Single-scale (¢) Multi-scale

Figure 2.29: Visualization of the minor eigenvector field of the smoothed structure tensor (p = 2) for a
test ring pattern corrupted by Gaussian noise of variance v = 0.25.

tensor is calculated as usual. For the other pyramid levels, the smoothed structure tensor is
calculated and then combined with the upsampled structure tensor from the previous level
using linear interpolation:

TF=ak 7k 4+ (1—ok) TFH! (2.172)
Here, J_pk 1 denotes the upsampled structure tensor from the previous level, that is, fpk“
upsampled to the next level. J pk is the smoothed structure tensor computed from the merged
image data of the current pyramid level. The linear weighting factor is defined per pixel

and based on the anisotropy measure of the current level @ and the upsampled anisotropy
measure of the previous level @¥+1:

X Q@

“ara 173

Hence, more weight is given to the structure tensor that is more anisotropic. This leads to a
more robust estimation as shown in Figure 2.29.

2.9 Integral Curves and Line Integral Convolution

Let v: R? — R2 be a vector field and let (a, b) be an open interval. A curve y: (a,b) — R?
satisfying y'(¢) = v(y(¢)) for all ¢t € (a, b) is called an integral curve or stream line of the
vector field v. Taken together, the minor eigenvectors of the smoothed structure tensors at
each pixel define a vector field, which is smooth up to a change of sign and closely aligned
to image features. The general idea behind flow-guided filtering methods is to perform the
filtering operation by following the minor eigenvectors through tracing the corresponding
stream line. In contrast to the isophote curves of the image, the stream lines defined by
the smoothed structure tensor are much smoother, and smoothing along them results in a
regularization of the geometry of the isophote curves. The next sections discuss different
approaches for the computation of the stream lines. Moreover, filtering along them will be
examined.
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Figure 2.30: Integration of a stream line passing through a point xq is performed iteratively in forward
and backward directions.

2.9.1 Euler Integration

Formally, finding the stream line y: (a, b)) — R passing through a point x, of a vector field
v can be described as solving the system of ordinary differential equations y’(z) = v(y(z))
with initial condition y(ty) = x¢. Approximating y’(fo) by a forward finite difference we
obtain:

y(to + h) — y(to)

h

Rearranging terms yields an approximation for y(z9 + /), depending on y(zy) and v(y(to))
only. Taking the initial condition as a starting point, the underlying idea of Euler’s method

v(y(to)) = v'(to) = + O(h) (2.174)

is to apply this process iteratively. Setting 1'+! = ¢/ 4 h, we get the following approximation
for the stream line y:

y('™ = y(@) + ho(y(e") (2.175)

If the considered vector field is given by the minor eigenvectors, special attention must
be paid to their sign, since the structure tensor defines only orientation, but no particular
direction. This is due to the quadratic nature of the structure tensor. A straightforward
way to define the sign of the minor eigenvectors is to choose the sign that minimizes the
curvature of the stream line. This can be achieved by ensuring that the scalar product
between the minor eigenvectors of the current and the previous step is positive. Since for
filtering operations a stream line passing through the filter origin is required, the integration
is carried out in forward and backward directions, as shown in Figure 2.30. To this end, let
x° be the starting point, and let i & 1 denote the next step in the corresponding direction
(i.e., either forward or backward), then the next minor eigenvector is given by

0 P
kiil _ +E(x )' | | ifi =0 (2.176)
sign (ki,&(x")) - £(x") otherwise

where £(x) denotes the minor eigenvector sampled at a point x and computed using List-
ing 2.1. Correspondingly, a step with step size 4 of Euler’s method is given by

X E = x4 hkE (2.177)

Integral curves also play a central role in stroke-based rendering.Early approaches
used the image gradient [Haego; Lit97] or image moments [TCg7] to place short dabs of
paint, typically, in form of opaque rounded or textured [HEo04] rectangular strokes.However,
such constant-sized rectangular strokes generate an artificial regularity that may degrade
the resulting aesthetic. Hertzmann [Herg8] was the first to address this issue by proposing
curved brush strokes of multiple sizes. In order to derive the path of a brush stroke, he
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Figure 2.31: lllustrations of different stream line integration methods. (a) First-order Euler integration.
(b) Second-order Runge-Kutta. (¢) Cabral-Leedom method.

computed the luminance gradients of the blurred source image.At each seed point of a
stroke, the stroke’s path was then traced using Euler integration following the gradient
field in normal direction. Thereby, the direction minimizing the curvature, as explained
above,was chosen. Tracing stopped when either the maximum curve length was reached
or the color under the path’s current point deviated too much from that of the seed point.
To account for noisy gradients, the traced points where smoothed by applying an infinite
impulse response filter. While this approach would lead to severe artifacts in image filtering,
this is typically not an issue for stroke-based rendering, since later painting passes can
compensate for image errors introduced in previous passes.For this reason the less precise
Euler integration method is usually sufficientfor stroke-based rendering approaches.Because
of its simplicity and effectiveness, Hertzmann’s curve tracing algorithm was adopted by later
work [CHos; Zen+09] and became a common approach for stroke placement.

2.9.2 Second-order Integration

At least for long stream lines, which are typically required by flow-guided smoothing ap-
proaches, the Euler method is comparatively inaccurate. This is illustrated in Figure 2.31(a),
where the stream line generated by the Euler integration method crosses adjacent isophote
curves of the image. When smoothing is performed along the stream line, this corresponds
to a smoothing operation in the direction of the major eigenvector, and a loss of information
(Figure 6.7(a)). Therefore, instead of using the Euler’s method, which is first-order, a more
precise second-order method should be used, which traces stream lines at a higher accuracy
(Figure 2.31(b)) and thereby reduces blurring across edges (Figure 6.7(c)).

Similar to Euler’s method, a second-order method may be derived by approximating a
derivative of y by a finite difference. Instead of the forward difference, however, in this case
y'(to + h/2) is approximated by a central difference:

_y(to +h) — y(to)

v(y(to + %)) = )/(to + %) = + O(h?) (2.178)

Rearranging terms we get the following second-order approximation of y(¢y + h):

y(to + h) ~ y(to) + h v()’(fo + %)) (2.179)
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In this approximation y(zp + //2) is unknown. However, since the last term of the above
equation contains a multiplication with £, it is sufficient to approximate y(¢to + &/2) with
first-order accuracy, for which Euler’s method can be used:

y(to + 2) ~ y(to) + 2 v(y(t0)) (2.180)

Substituting Equation (2.180) into Equation (2.179), we obtain the recursive scheme

Y@+ =y + ho(ya) + Bu(ya). (2.18)

which is known as second-order midpoint method, a specific example of a second-order
Runge-Kutta method [DBoS; Pre+o7]. In case of the structure tensor, again, the sign of the
minor eigenvector must be handled properly. A step with step size /4 is given by:

ik _ )G ifi =0
! sign (ki £(x')) - £(x) otherwise

. S . A : (2.182)
ki = sign <k’2,é(x’ + ’Z—Zkllil)> E(x' + B KIE

xlj:l — y! +hk12i1.

The second-order Runge-Kutta method requires values of the minor eigenvector for
arbitrary positions. One option is to calculate these in one pass, and then use nearest-
neighbor sampling while tracing the stream lines. Bilinear interpolation of the eigenvectors
is complicated, since opposite vectors may cancel each other out. A better approach is to
sample the structure tensor directly using bilinear interpolation as discussed in Section 2.7.2.
This is more expensive, since the minor eigenvector has to be computed for every sample, but
also provides superior results. An implementation of the first- and second-order methods is
shown in Listing 2.6.

2.9.3 Line Integral Convolution

Let y: (a,b) — R? be a smooth curve, and let f:R? — R be a scalar field. Then the /ine
integral of f along y is defined by

b
/ fds = / FoO) 1Y @] dr. (2.183)
y a

The factor ||y’(z)|| adjusts for the velocity of the curve’s parameter and assures that the
line integral is invariant under orientation-preserving reparameterizations. Based on this
definition, the convolution of a scalar field with a one-dimensional function g:R — R
along a curve can be defined as:

b
(¢ N = [ gw=0 7 (:0) Iy @l o (2.184)

a

If g is normalized, that is | ab g(¢)dr = 1, then the convolution above defines a weighted
average of the values of f along the curve.
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1 template <class ST, class F, int order, bool adaptive>

2 dinline _host__ _ device__ void st_int( float2 p0, const ST& st, F& f,
3 unsigned w, unsigned h, float step_size )
e {

5 (0, p0);

6 float2 v0 = st2tangent(st(p0));

7 float sign = -1;

8 float dr = f.radius() / CUDART_PI_F;

9 do {

10 float2 v = vO = sign;

1 float2 p = pO0;

12 float u = 0;

13

14 for (55) {

15 float2 t = st2tangent(st(p));

16 if (order == 2) {

17 if (dot(v, t) < 0) t = -t;

18 t = st2tangent(st(p + 0.5f * step_size * t));
19 }

20 float vt = dot(v, t);

21 if (vt < 0) {

22 t = -t;

23 vt = -vt;

24 }

25

26 v = t;

27 p += step_size * t;

28 u += step_size;

29

30 if ((u >= f.radiusQ) ||

31 (p.x <0 || (p.x>=w || (p.y <0) || (p.y >= h)) break;
32

33 f(copysignf(u, sign), p);

34 }

35 sign = -1;

36 } while (sign > 0);

37}

Listing 2.6: Generic implementation of first- and second-order stream line integration.

Now, let v:R? — R? be a vector field consisting of normalized vectors. Then, for the
vector field’s stream lines, we have ||y’ (¢)|| = [|lv(y(¢z))|| = 1, which is equivalent to an arc
length parameterization. Overlaying the vector field with an image, the convolution along
the stream line passing through the pixel can be computed for each pixel. This operation is
known as line integral convolution, and increases the correlation of the image’s pixel values
along the stream lines. If the vector field is closely aligned with the image features, such as
the minor eigenvector field of the smoothed structure tensor, convolution along stream lines
effectively enhances the coherence of image features, while simplifying the image at the same
time.

In order to implement line integral convolution, Equation (2.184) must be discretized.
Let us suppose that g is given by a one-dimensional Gaussian function

1 12
Go(t) = E exp( — ﬁ) (2.185)

with standard deviation o. Since the stream lines become less accurate the longer they are,
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a comparatively short cut-off for the Gaussian function is used. It is truncated after two
times the standard deviation rounded down to the next integer, L = | 20 |, corresponding
to approximately 95% of the weights. The integral is approximated by a sum of rectangle
functions using the midpoint rule. Sampling of the image is thereby performed using bilinear
filtering. Thus, if x~ L ...,x% ..., xL denote the stream line points obtained with step
size h, as described in the previous section, then the result of the line integral convolution at
x? is given by

1 & .
G > Golkh) f(x'), (2.186)

i=—L

where

L
Gol = Y Golih) (2.187)
i
denotes the corresponding normalization term.

Line integral convolution was first proposed by Cabral and Leedom [CL93] in the
context of flow-visualization. When performed over white noise, line integral convolution
strongly increases the coherence of pixels along the vector field’s stream lines, making the
stream lines easily recognizable and thereby leading to a highly effective visualization of
the vector field. In addition, performing line integral convolution over an image allows for
the creation of a painting-like effect without actually placing brush strokes. Line integral
convolution is a computationally expensive process, since a stream line must be traced for
every pixel. An alternative method based on texture warping and blending, which can
be efficiently implemented using fixed-function graphics hardware, was proposed by Wijk
[Wijoz]. This approach was adopted as rendering technique by Zhang et al. [ZHTo7] to
create painterly renderings guided by interactively designed tensor fields and further refined
by Kagaya et al. [Kag+11], who proposed a new blending method that prevents mixing of
different strokes. A fast implementation, which avoids tracing of every stream line, was
presented by Stalling and Hege [SH95]. Their approach enables an efficient sequential
implementation of line integral convolution, but whether it can be adapted for parallel
processing is unclear. By contrast, tracing every stream line naturally generalizes to a
parallel implementation and is therefore adopted in this work.

2.9.4 Cabral-Leedom Integration

The Euler and Runge-Kutta methods are classical numerical solvers for ordinary differential
equations. A different approach has been presented by Cabral and Leedom [CL93]. Similar
to Euler’s method the integral curve is linearly approximated, but instead of a fixed step
size, the linear curve segment is elongated until intersecting the current pixel’s boundary.
Although originally developed for the visualization of vector fields, their approach can also
be applied to the minor eigenvector field of the structure tensor.

As in case of the Euler and Runge-Kutta methods, the sign of the minor eigenvector
has to be treated with special care:

0 o
JiEl _ +E(x ) | | ifi =0 (2.188)
sign (1', £(x")) - £(x") otherwise



62 Chapter 2. Local Structure Estimation with the Structure Tensor

h'i:tl hil:t1 \\7////// / / /]
fE piE!
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@) Left (b) Right (¢) Resulting path

Figure 2.32: The Cabral-Leedom integration approach. (a)—(b) Illustrate the computation of the
intersection with the pixel’s horizontal limits. (c¢) Example of a stream line generated by the approach.

The computation of the intersections with the pixel’s horizontal and vertical limits is
illustrated in Figure 2.32. The parameter values of the intersections are thus given by

% if 71 < 0and [x] # x!
i
hiE! = ‘+L:iJl—x} if %1 > 0 (=12, (2.189)
J
'S otherwise

with the smaller of both corresponding to the intersection with the pixel’s boundary:
R = min{ h{F! 5EY (2.190)

Since the intersection computation may be affected by rounding errors, a small correction
term ¢ is added to the parameter value to ensure that new points lie strictly inside a pixel:

XE = x4 (B 4 ] (2.191)

An example for a stream line obtained using this method is shown in Figure 2.32(c).
As can be seen, the curves points are not equidistantly distributed. Moreover, the curve’s
points are placed very close to the pixels boundary. Hence, for computing the line integral
convolution with a function g, Equation (2.186) does not apply. Since the stream line is a
polygonal line, it may be expressed as sum y = Y, y; of line segments y;: [u;, u;+1] — R2,
and the convolution of a function g with an image f along y givenby g*, f =", g%y, f.
When excluding the respective end points, the line segments of the curve lie within a pixel.
The image is thus constant on the line segments, if nearest neighbor sampling is used.

uj Uji+1

e fr@) dr = Flru) / g dr (2.192)

i

(g %y, 1)(0) = f

uj

This integral may be computed analytically. For instance, if g is a one-dimensional Gaussian
function G, with standard deviation o we get

Uit1
(G 23y PO = Syt [ Golr)

(2.193)
_ Sy (u;)) [erf(m) —erf( U; )}
2 o2 ov2)]’
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where 5
erf(x) = —/ exp(—t?) dr (2.194)
T Jo

denotes the error function. In case of a general function g, the integral can be approximated
using, for instance, the midpoint rule:

Hit Uil + U
[ e ar x g (2195
U






Chapter 3

Bilateral Filter

The bilateral filter is arguably the simplest and most straightforward edge-preserving fil-
tering method available today. Despite its simplicity, it is highly effective (Figure 3.1) and
has originated a large number of extensions and applications in computer graphics and
computer vision that utilize it. Particular examples include texture editing and relighting
[Oh+o1], tone management [BPDo6; Elaos; EDog4; DDoz2], denoising [Liu+06; BMos;
Aleo6], upsampling [Kop+o07], and optical-flow estimation [STo8; Xia+06]. An excellent
review of the bilateral filter can be found in the survey by Paris et al. [Par+og], which also
discusses the various applications in detail. The ability of the bilateral filter to smooth image
regions while preserving discontinuities makes it also an obvious candidate for carrying
out image abstraction. Classical examples that employ the bilateral filter as part of their

(a) Original image (b) Bilateral filter (c) Flow-based bilateral filter

Figure 3.1: The bilateral filter smoothes an image while preserving its discontinuities. Taking the local
structure into account allows for enhancement and exaggeration of image features, a useful property for
carrying out image stylization.

65
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(a) 2D kernel (b) xy-separable (c) Orientation-aligned (d) Flow-based

Figure 3.2: Different variants of the bilateral filter discussed in this chapter. (a) A classical isotropic
single pass bilateral filter performs a weighted average of a two-dimensional neighborhood. (b) Separable
implementation with the first pass along the x-axis and second pass along the y-axis. (c) Orientation-
aligned separable implementation with the first pass perpendicular and the second pass parallel to a
vector field derived form the local structure, such as edge tangent flow or smoothed structure tensor.
(d) Separable implementation of the flow-based bilateral filter with the first pass perpendicular to the
integral curve and the second pass along the integral curve.

methods are the works by Fischer et al. [FBSeos5] and Winneméoller et al. [WOGo6].

In this chapter two extensions of the traditional bilateral filter will be presented. Both
take the local structure into account, which is derived from the smoothed structure tensor,
making them specifically feasible for image abstraction purposes. The first is the orientation-
aligned bilateral filter (Figure 3.2(c)), which provides a fast separable approximation of the
traditional bilateral filter, including the ability to enhance anisotropic image features. The
second is the flow-based bilateral filter, which enables an even more aggressive enhancement
of anisotropic structures by closely following the image features (Figure 3.2(d)). The
remainder of this chapter is organized as follows. First, anisotropic diffusion, which is
closely related to the bilateral filter, is briefly reviewed. Then, the traditional bilateral is
introduced and its properties reviewed, followed by a detailed discussion of the orientation-
aligned and flow-based bilateral filters and their implementations. The chapter closes with a
short discussion of limitations of the bilateral filter.

3.1 Anisotropic Diffusion

Let / be a grayscale image, then the solution of the heat equation

‘2_1[‘ = Au = div(Vu) (3.1)

at a particular time ¢ with initial condition u(x,0) = I(x) is given by the convolution
with a two-dimensional Gaussian having standard deviation /27 [Weig8]. To overcome
the limitations of linear shift-invariant smoothing, Perona and Malik [PMgo] added the
regularization terms

2 1
g6 =exp(—4z)  and g =—p (K220 (2)
14+ 5
to the heat equation to stop the diffusion at the edges:
ou . 2
- = d1V<g(|Vu| )Vu) (3.3)
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(a) Original image (c) EED (d) CED
Figure 3.3: Examples of different anisotropic diffusion techniques. (a) van Gogh—Road with Cypress
and Star. (b) Anisotropic diffusion [PMogo]. (c) Edge-enhancing diffusion [ Wei98]. (c¢) Coherence-
enhancing diffusion [ Weig8].

This is known as anisotropic diffusion and adding such penalization terms a standard
technique often found in PDE-based approaches (Figure 3.3). For instance, the edge-
enhancing and coherence-enhancing diffusion techniques developed by Weickert [Weigg]
guide the diffusion using a tensor derived from the smoothed structure tensor. The Perona-
Malik and other popular diffusion equations can be written as decomposition in local gauge
coordinates [KDA9g7]

3_? = CgUgg + Cp Uy

where ugg and u,, denote the second derivatives in the directions of the normalized gradient
n = Vu/||Vu| and tangent £ = n*. This can be interpreted as two simultaneous 1D heat
flows, where the amount of smoothing is controlled by the functions c¢ and ¢, that typically
depend on the gradient Vu. This decomposition allows to interpret different approaches.
For example, mean curvature flow (Section 6.1) corresponds to cg = 1 and ¢, = 0. Instead
of obtaining the local gauge coordinates from the gradient, the eigenvectors of the smoothed
structure tensor may be used.

Weickert [Weig8] replaced the scalar diffusivity by a diffusion tensor that depends
on the structure tensor. This approach can be directly extended to color images using
Di Zenzo’s [Di 86] multi-channel image gradient (Section 2.2.4). In particular, Weickert
[Weigg] showed that by adapting the diffusion tensor, coherent image enhancement can be
performed (Figure 3.3). The results created by this technique look very similar to those
generated by line integral convolution (Section 2.9.3). Tschumperlé [Tsco6] later clarified
the connection between line integral convolution and PDEs and proposed tensor-driven
PDE:s that take the integral curves into account. An approximate solution to these curvature
preserving PDEs can be found with an algorithm based on line integral convolution. More
details about anisotropic diffusion and other PDE-based image processing techniques may
be found in the books by Weickert [Weig8] and Aubert and Kornprobst [AKo06].

The bilateral filter uses a similar principle as anisotropic diffusion to avoid smoothing
across images. However, instead of a diffusion process modeled by a PDE, it is explicitly
designed as a local neighborhood filter. Crucial to the success is thereby the the use of local
gauge coordinates to perform the image filtering. A detailed discussion of the relationship
between anisotropic diffusion and the bilateral filter is beyond the scope of this work, but
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(a) (b)

© (d)

Figure 3.4: lllustration of the working principle of the bilateral filter. (a) Noisy input signal (gray).
(b) Result of the convolution with Gaussian (blue) and bilateral (red) filter. Notice how the Gaussian
kernel blurs the signal, while the bilateral filter keeps the sharp transition. In (c) and (d) the local
filter kernel profiles of the Gaussian filter (blue) and bilateral filter (red) are shown at two different
positions. The local filter kernel of the Gaussian filter does not depend on the signal (shift invariance)
and is the same in both case. The bilateral filter adapts its local filter kernel to the signal and thereby
limits smoothing across the transition.

can be found in [BCo4], where also the connection to mean-shift and adaptive smoothing
is covered. The bilateral filter is also related to W-estimators, local M-smoothers, and
regularization approaches. A detailed discussion of these topics may be found in [MWBo6].

3.2 Isotropic Bilateral Filter

The bilateral filter was first introduced by Aurich and Weule [AW95] as a nonlinear extension
of the Gaussian filter. Independently, the bilateral filter also appeared as part of the SUSAN
corner detector by Smith and Brady [SB97]. However, it got popularized by Tomasi and
Manduchi [TMg8], who provided the general definition that is used today and also coined
the name. For a given image f and position x the bilateral filter is defined by

domain weight range weight

D e T Kally =x0) ke (1) = F0I)
> v kaly =) k(170 = FG)

(3-4)

where N (x) denotes a sufficiently large neighborhood of x, and k4 and &, are two weighting
functions. The domain weight, given by k, is based on the spatial distance from the filter
origin x, whereas the range weight, given by k,, is based on the distance between the image’s
values at the corresponding positions, acting as a stopping function similar to the stopping
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Original image courtesy Philip Greenspun

(a) Original image (b) 4 iterations (c) 25 iterations

Figure 3.5: An iterative application of the bilateral filter smoothes the image while preserving edges,
achieving a strong simplification effect.

function in anisotropic diffusion. Typically, following the proposal by Aurich and Weule
[AW95], a one-dimensional Gaussian

o2 20

Go(r) = ! CXP(—LFZ) (3.5)

is chosen for both weighting functions, but other choices are possible [DDoz2; Par+og]. If k4
is chosen as Gaussian and k, = 1, then the bilateral filter simplifies to the Gaussian filter. If,
vice versa, kg = 1, and k, is chosen as Gaussian, then one gets a filter originally proposed
by Yaroslavsky [Yar85]. The bilateral filter smoothes regions of similar color, while regions
with detail are preserved. For instance, if the local neighborhood of a pixel contains an edge,
then pixels on the opposite side of the edge receive a low and all others a high weight by the
range function, resulting in the preservation of the edge. Figure 3.4 illustrates the principle
using a one-dimensional signal.

By using a suitable metric for the computation of the range weight, the bilateral filter
extends naturally to color images. For instance, a possible choice is to use the Euclidean
metric in RGB color space. Another choice, proposed by Tomasi and Manduchi [TMg8], is
using the Euclidean metric in CIELAB color space [WS82], which is known to correlate
with human perception for short distances. This approach is adopted in the original WOG-
pipeline [WOGo6] and subsequent work.

If domain and range weight are chosen to be Gaussians, increasing the standard
deviation of the domain weight generally does not lead to a stronger abstraction effect.
Moreover, increasing the range weight results, in most cases, in blurred edges. Instead,
to achieve a cartoon-like effect, it is better to apply multiple iterations of the bilateral
filter (Figure 3.5). This was already noted by Tomasi and Manduchi [TMg8], and can be
explained theoretically by the connection of bilateral filtering to anisotropic diffusion.

A limitation of the bilateral filter for practical applications, especially in the case of real-
time processing, is that the direct evaluation of Equation (3.4) is computationally expensive.
For a local neighborhood with radius r the complexity is O(r2) per pixel, which means
that linear growth of the neighborhood leads to quadratic growth in computational costs.
Because of the importance of the bilateral filter for practical applications, several approaches
have been developed to speed up the bilateral filter. Examples are fast implementations
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Original image courtesy Philip Greenspun

(a) Original image (b) 2D-kernel (¢) xy-separable (d) Orientation-aligned

Figure 3.6: Comparison of the full-kernel, xy-separable, and orientation-aligned (with manual sampling)
variants of the bilateral filter (5 iterations, o4 = 3, o = 5%).

based on sliding windows [Weio6; Bro11] and approaches that avoid redundant operations
by using histograms [Poro8; YTAog; CSU11; Guni1], channel smoothing [FFSo6], or
subsampling [Ban+12]. Another class of approaches builds upon the idea to represent the
image data as a two-dimensional manifold in a higher dimensional space [Baro2], making
the bilateral filter become a linear filtering operation. While the bilateral grid [CPDo7]
and its predecessors [PDo6; DDo2] use a voxel to represent the image data, alternative
approaches have been proposed that efficiently store the image data in a sparse data structure,
such as the Gaussian KD-tree [Ada+09] or the permutohedral lattice [ABD10].

3.3 xy-Separable Bilateral Filter

An interesting property of the Gaussian filter is its separability. This means that a convolu-
tion with a two-dimensional Gaussian filter may be decomposed into two convolutions with
a one-dimensional Gaussian filter. From a computational perspective this is highly desirable,
since it reduces the computational complexity from a quadratic dependence (Figure 3.2(a))
on the filter radius to a linear dependence (Figure 3.2(b)). Unfortunately, in contrast to the
Gaussian filter, the bilateral filter is not separable, since it depends on the filter origin’s image
value. Nevertheless, in the context of video compression, [PVos] were able to show that for
small filter sizes a separable implementation of the bilateral filter can provide reasonable
results. Their approach was adopted in the original cartoon pipeline by [WOGo6] and was a
crucial factor for achieving real-time performance on consumer GPUs at that time. However,
the xy-separable bilateral filter [PVos] suffers from horizontal and vertical artifacts. These
artifacts appear particularly when the bilateral filter is applied iteratively (Figure 3.6), which
is the typical way of applying it for the purpose of image stylization and abstraction.

To achieve a closer match to the bilateral filter, Pham [Phao6] proposed to align
the separable bilateral filter with the local image structure. To this end, he derived local
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Original image courtesy PDPhoto.org

(a) Original image (b) Isotropic 2D-kernel (¢) Anisotropic n&-separable

Figure 3.7: Adapting the separable implementation of the bilateral filter to the local structure enables the
enhancement of image structures. (a) Original low quality image. (b) Bilateral filter: 04 = 6, o = 8%.
(c) Orientation-aligned bilateral filter with linear sampling: p = 4, O4,g = 3, or,g = 2%, Od;: = 8,
or,t = 10%. In both cases j iterations were performed.

orientation and curvature information using a method proposed by Ginkel et al. [Gin+99].
Separable filtering was carried out by first filtering perpendicular to the local orientation
and then along an arc curved profile matching the curvature. The next sections discuss two
approaches that are similar in spirit.

3.4 Orientation-aligned Bilateral Filter

As we saw in the previous section, implementing the bilateral filter in a separable way results
in horizontal and vertical artifacts. A simple way to reduce the artifacts is to perform the
filtering along the local gauge coordinates of the image, instead of along the coordinate
axes. In case of an edge, filtering along the gradient direction results in strengthening of the
edge, while filtering along the tangent direction results in a smoothing operation along the
edge, avoiding artifacts and producing more coherent region boundaries, as demonstrated
in Figure 3.6(d). For flat and homogeneous image regions, smoothing is performed in both
directions. Another advantage of this approach is that the filter shape can be adapted to the
local image structure, since the parameters for each pass can be controlled individually on
a per-pixel basis. For instance, by decreasing the size in the direction of the gradient and
increasing it in the direction of the tangent, the overall filter shape becomes elliptic, leading
to an enhancement of anisotropic structures (Figure 3.7). For instance, if the standard
deviations are chosen in a similar way to Weickert’s coherence-enhancing diffusion technique
[Weigg], one gets a macroscopic variant of it on basis of the bilateral filter [Baro2].

For an implementation of the orientation-aligned bilateral filter, as a first step the
local orientation has to be estimated, which is derived from the smoothed structure tensor,
whose major and minor eigenvectors provide the local gauge coordinates to filter along. In
general, it is sufficient to estimate the local orientation once for both passes and all iterations
performed. Not recomputing the orientation also helps to ensure the filtered output does
not deviate too much from the original input. The next step is to carry out the actual
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(a) I* pass (b) 2" pass
Figure 3.8: Orientation-aligned bilateral filter. Yellow points indicate sampling positions that are linearly
interpolated. (a) First pass filters along the direction of the gradient. (b) Second pass filters along the
direction of the tangent.

filtering. As pointed out earlier, the first pass should filter along the gradient (i.e., major
eigenvector) direction, since then the second pass can smooth rough regions boundaries
introduced by the first pass by filtering along the tangent (i.e., minor eigenvector) direction.
Figure 3.8 illustrates the two passes that have to be performed. As can be seen, except for
obvious cases, pixel values have to be evaluated at arbitrary positions. A possible approach
would be to perform nearest-neighbor or bilinear sampling. However, the former may
introduce artifacts, while the latter may result in blurred results. A much better approach is
to use a unit step size in either horizontal or vertical direction. The step size along the axis
can be derived from the intercept theorem as illustrated in Figure 3.9 and is given by

1
t_l if |11] > [t
As=1{" (3.6)

1 .
—t otherwise
2

where ¢ denotes the filtering direction. Notice that the sign of ¢ does not matter, since
the filtering operates in both directions and is symmetric. Hence, we obtain the following
sampling positions

K =x"+kAs, keZ, (3.7)

where x° denotes the filter origin. Sampling can now be performed in three different ways,
with nearest-neighbor and bilinear sampling being the obvious ones. For these two cases,

1
——————
*
131 t2
1
31 i
1

Figure 3.9: Calculation of the step size for the orientation-aligned bilateral filter using the intercept
theorem.
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Original image by Antonio Santella

(a) Manual (b) Linear (¢) Manual (d) Linear

Figure 3.10: Comparison of manual versus linear sampling for different numbers of iterations. Left:
4 iterations. Right: 12 iterations.

Equation (3.4) becomes

S AN Gy (I = 2%1) G (11 — £
S Gyl =21 Go, (17 ) — ()

, (3.8)

where L denotes the cut-off radius, which is typically chosen based on o4, such as, for
instance, L = [304/|¢||]. Because of the unit step size in either horizontal or vertical
direction, bilinear sampling in fact performs a linear interpolation between two pixels,
resulting in less blurring introduced by the sampling. The other option is to manually
perform linear sampling and incorporate weighting with the range function into the linear
interpolation. To this end, the two neighboring pixels are sampled, and for both the range
weights are computed. The pixel values are multiplied by the range weights and the results
linearly weighted depending on the sampling position. In a nutshell, let [x'] and | x|
denote the two sampling positions, then the summands in Equation (3.8) have to be updated
to:

G (1 =) | 1) =22 £ (157D G (| (15 = £ () + .
3.9

11 =22 £ (15D G (17 (15D = £ 69 |

In Figure 3.10, a comparison between manual and bilinear sampling is shown. As can
be seen, manual sampling creates sharp region boundaries similar to the 2D-kernel bilateral
filter, yielding a stronger separation of image regions. Since linear sampling operates on
average values of the image, it creates smoother transitions between image regions, achieving
an effect similar to anti-aliasing (Figure 3.10(b)). While this may be inappropriate for other
applications, for image stylization and abstraction it is a useful feature. Another advantage
of linear sampling is that it may be realized by utilizing the bilinear texture sampling support
available in GPUs. Linear sampling typically works well for a small number of iterations.



74

Chapter 3. Bilateral Filter

14
i3
16
17
18

40
41
42
43
44
45
46
47
48
49

template <bool tangential, bool src_linear>
__global__ void oabf_filter( gpu_pim2<float3> dst, const gpu_pim2<float2> tf,
float sigma_d, float sigma_r, float precision)

{
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix >= dst.w || iy >= dst.h) return;
float2 t = tf(ix, iy);
if ('tangential) t = make_float2(t.y, -t.x);
float twoSigmaD2 = 2 * sigma_d * sigma_d;
float twoSigmaR2 = 2 * sigma_r = sigma_r;
int halfWidth = int(ceilf(precision * sigma_d));
float2 tabs = fabs(t);
float ds = (tabs.x > tabs.y)? 1.0f / tabs.x : 1.0f / tabs.y;
float2 uv = make_float2(0.5f + ix, 0.5F + dy);
float3 c0 = make_fToat3(tex2D(texSRC, uv.x, uv.y));
float3 sum = c0;
float norm = 1;
float sign = -1;
do {
for (float d = ds; d <= halfWidth; d += ds) {
float2 p = uv + d » t * sign;
float kd = __expf( -dot(d,d) / twoSigmaD2 );
if (src_linear) {
float3 c = make_float3(tex2D(texSRC, p.x, p.y));
float kr = _expf( -squared(c - c0) / twoSigmaR2 );
sum += kd * kr = c;
norm += kd = kr;
} else {
p -= make_float2(0.5f, 0.5F);
float3 cl, c2;
float f;
if (tabs.x < tabs.y) {
float2 q = make_float2(floorf(p.x), p.y);
cl = make_float3(tex2D(texSRC, g.x, g.y));
c2 = make_float3(tex2D(texSRC, g.x + 1, qg.y));
f=p.x -q.x;
} else {
float2 q = make_float2(p.x, floorf(p.y));
cl = make_float3(tex2D(texSRC, q.x, g.Y));
c2 = make_float3(tex2D(texSRC, g.x, .y + 1));
f=py-a.y;
}
float krl = (1 - f) * __expf( -squared(cl - c0) / twoSigmaR2
float kr2 = f « _expf( -squared(c2 - c0) / twoSigmaR2 );
sum += kd * (krl * cl + kr2 * c2);
norm += kd * (krl + kr2);
}
}
sign x= -1;
} while (sign > 0);
dst.write(ix, iy, sum / norm);
}

Listing 3.1: Implementation of the orientation-aligned bilateral filter.

H
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1

(a) I*' pass (b) 2" pass (bilinear sampling) (c) 2" pass (linear sampling)

Figure 3.11: Flow-based bilateral filter. (a) First pass filters in direction of the gradient. (b) Second
pass using unit step size and bilinear sampling. (c) Second pass using unit step size in either horizontal
or vertical direction and linear sampling. Yellow points indicate sampling positions.

For a large number of iterations, region boundaries may be smoothed out, as demonstrated
in Figure 3.10(d). An implementation of both sampling approaches is shown in Listing 3.1.
Notice that in the case of linear sampling, the texture unit must be configured to perform
bilinear texture sampling, while for manual sampling the texture unit is expected to be
configured to perform nearest-neighbor sampling.

3.5 Flow-based Bilateral Filter

The orientation-aligned bilateral filter provides good results for circular filter shapes, where
it features a good approximation of the traditional bilateral filter, and for elliptic filter shapes
with moderate eccentricity, where it achieves reasonable enhancement for approximately
linear image features. For curved and irregular image features, however, sampling along
the tangent direction provides a poor approximation to the image if the filter radii are
comparatively large, resulting in image features being smoothed out. Hence, to allow
for a strong enhancement of anisotropic image features without blurring them, the local
approximation must be improved. This can be achieved by modifying the second pass filter
to filter along the integral curves derived from the minor eigenvectors of the smoothed
structure tensor. More precisely, if x® denotes the filter origin and y is the integral curve
passing through x°, then computing a one-dimensional bilateral filter along y corresponds
to computing the following line integral:

[ 769G (3 =) Gou (|10 = 1) (3.10)

When nearest-neighbor or bilinear sampling is used, this line integral can be easily computed
using either the Euler or second-order integration method from Section 2.9. Figure 3.11(b)
exemplifies the corresponding integral curve. Notice the equidistant sampling positions that
require sampling at arbitrary positions.

As can be seen in Figure 3.12(c), the flow-guided filtering indeed preserves directional
image features better, but the introduced blurring is still quite strong, stemming from the use
of bilinear sampling. In order to reduce the amount of blurring, a similar approach as for
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(¢) Flow-based (bilinear)

(d) Flow-based (linear) (e) Flow-based (manual)

Figure 3.12: Comparison of the orientation-aligned bilateral filter with different variants of the flow-
based bilateral filter: § iterations, p =3, 64 4 = 3, 0r,g = 2%, 04, = 8, orr = 14%.

the orientation-aligned bilateral filter can be taken. The underlying idea is again to step with
unit size in either horizontal or vertical direction. To this end, the integral curve is computed
as usual, but sampling points are only emitted where the curve intersects the horizontal or
vertical center of a pixel. For computing the intersection, there are two possible ways. The
first is to seek from the previous point in forward direction, while the second seeks from
the current point in backward direction. The first possibility is numerically unstable. For
instance, consider the center of a pixel and a step vector that is almost horizontal. In this
case, the distance to the intersection is greater than one. However, the sum of the position
and the step vector may, due to rounding errors, lie beyond the intersection point. By
computing the intersection in backward direction this issue is avoided.

The distance to the horizontal or vertical intersection can be computed using the
intercept theorem, in a similar way as already explained for the Cabral-Leedom integration
method (Section 2.9.4). However, since the intersection with horizontal or vertical pixel
centers is intended, a correction factor of Y2 must be considered. Moreover, since the
intersection is computed in backward direction, a sign change occurs. Let p’ = p'~! + ht!
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be the current position with ¢/ denoting the current tangent vector and & being the step size.
The distances to the horizontal and vertical intersections are then given by

p_j-+%—ij—+%J
tl

f iftj’.>0
P S T s
;= 27| P2 ifrl <0 (J =12, (3.11)
3
J
00 otherwise

and the distance to the closest intersection is given by Au’ = min{ Au’, Au}, }. Sampling
must be performed if the distance is smaller than the step size. The corresponding inter-
section point is given by p’ — Au’t!, and the parameter value is given by u’ — Au’. In
Listing 3.2 the implementation is shown, which is identical to Listing 2.6, with the exception
of lines 29—54.

In Figure 3.12 the resulting sampling points are shown. As can be seen, the rectangle
method cannot be used for computing Equation (3.10), since the sampling points are not
equidistantly distributed along the integral curve. Instead, the trapezoidal rule

)f(a)+f(b)

5 (3.12)

b
/ f(x)dx~ (b —a

may be used. An excerpt of the implementation is shown in Listing 3.3, which handles,
similar to the implementation of the orientation-aligned bilateral filter, linear as well as
manual sampling.

3.6 Discussion

The bilateral filter smoothes low-contrast regions while preserving high-contrast edges,
and may, therefore, fail for high-contrast images, where either no abstraction is performed
or relevant information is removed because of the parameters chosen. In addition, the
bilateral filter also often fails for low-contrast images, where typically too much information
is removed. Moreover, iterative application of the bilateral filter may blur edges, resulting in
a washed-out look. To some extent, these limitations can be alleviated by overlaying the
output of the bilateral filter with outlines, such as the output of the difference of Gaussians
filter, which will be discussed in the next chapter. Accordingly, the bilateral filter is rarely
applied independently. Although the difference of Gaussians filter can be used independently,
preprocessing with the bilateral filter can often reduce artifacts caused by noise in the image,
making it a useful tool for preprocessing.
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Listing 3.2: Generic implementation of the stream line integration approach that samples

template <class ST, class F, int order>
inline __host__ __device__ void st_int_ustep( float2 p0, const ST& st, F& f,

{

unsigned w, unsigned h, float step_size )

float2 v0 = st2tangent(st(p0));
float sign = -1;
float dr = f.radius() / CUDART_PI_F;
do {
float2 v = vO = sign;
float2 p = pO0;
float u = 0;
(0, p0);
for (55) {
float2 t = st2tangent(st(p));
if (order == 2) {
if (dot(v, t) < 0) t = -t;
t = st2tangent(st(p + 0.5f * step_size * t));
}
float vt = dot(v, t);
if (vt < 0) {
t = -t;
vVt = -Vt;
} else if (vt == 0) break;

v = t;
p += step_size * t;
u += step_size;

float2 fp = make_float2(fract(p.x + 0.5f), fract(p.y + 0.5F));
float du;
if ((fp.x == 0) || (fp.y == 0)) du = 0;
else {
du = CUDART_NORM_HUGE_F;

if (t.x > 0)
du = fp.x / t.x;
else if (t.x < 0)
du = (fp.x - 1) / t.x;

if (t.y > 0)
du = fminf(du, fp.y / t.y);
else if (t.y < 0)
du = fminf(du, (fp.y - 1) / t.y);

}

if (du < step_size) {
float2 q = p - t * du;
float qu = u - du;

if ((qu >= f.radiusQ) ||
(@.x <0) |l (@.x>=w) || (q.y <0) || (q.y >= h)) break;

f(copysignf(qu, sign), a);
}

sign *= -1;
} while (sign > 0);

horizontal or vertical pixel centers.

at either
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__host__ __device__ void operator()( float u, float2 p ) {
if (u==0) {
u_ = 0;
cp_ = c0_;
wp_ = 1;
} else {
float du = fabsf(u - u_);
u_ = u;

c_ += cp_ * du / 2;
W_ += wp_ * du / 2;

float kd = expf(-u * u / twoSigmaD2_);
if (src_linear) {
T cl =src_(p.x, p.Yy);
float kr = expf(-squared(cl - c0_) / twoSigmaR2_);
cp_ = kd = kr = cl;
wp_ = kd = kr;
} else {
p -= make_float2(0.5f, 0.5F);
float2 ip = floor(p);
float2 fp = p - ip;

T cl, c2;
float f;
if (fp.x > le-4f) {
float2 q = make_float2(ip.x, p.y);
cl = src_(g.x, q.Yy);
c2 = src_(g.x + 1, q.y);
f = fp.x;
} else if (fp.y > le-4f) {
float2 q = make_float2(p.x, ip.y);
cl = src_(q.x, q.y);
c2 = src_(g.x, q.y + 1);
f=fp.y;
} else {
cl = c2 = src_(p);
f=0;

float krl = (1 - f) » __expf( -squared(cl - c0_) / twoSigmaR2_ );
float kr2 = f » __expf( -squared(c2 - c0_) / twoSigmaR2_ );

kd % (krl * cl1 + kr2 = c2);
kd * (krl + kr2);

cp_
wp_

C_ += cp_ * du / 2;
W_ += wp_ * du / 2;

Listing 3.3: Excerpt of the implementation of the functor performing the integration using the trapezoidal
rule for linear and manual sampling.






Chapter 4

Difference of Gaussians

The difference of Gaussians filter has its origin in early work on edge detection by Marr and
Hildreth [MHB80]. More recently, it gained popularity in IB-AR because of its capacity to
create aesthetically pleasing edge lines without post-processing, particularly when synthesiz-
ing line drawings and cartoons (Figure 4.1). For instance, Sykora et al. [SBvos] used the
thresholded output of the Laplacian of Gaussian, which is approximated by the difference
of Gaussians filter, to create outlines for colorizing hand-drawn black-and-white cartoons,
and Gooch et al. [GRGo4] used the difference of Gaussians filter in combination with a
model of brightness perception to create human facial illustrations. Moreover, it was used
in the cartoon pipeline proposed by Winnemoller et al. [WOGo6].

(d) Woodcut (e) Pastel (f) Charcoal

Figure 4.1: The extended flow-based difference of Gaussians filter allows for the generation of a large
variety of styles. See [J2] for a detailed discussion of effects and styles. (c)—(f) Courtesy of H.
Winnemoller.

81
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0.05 0.05
~0.05|- 4 005t
(a) Without noise (b) With noise

Figure 4.2: Differentiation is an ill-posed problem and very sensitive to noise. In (a) a smooth step
Sfunction is shown at the top. In this case, the edges can be easily localized by finding the extrema of the
first derivative (middle) or the zero-crossings of the second derivative (bottom). In (b) it is demonstrated
what happens when just a little noise is added. The first derivative has now a large number of extrema,
and the second derivative almost randomly oscillates, making the identification of the zero-crossings
corresponding to the edges impossible.

In this chapter the flow-based difference of Gaussians filter will be presented, which
achieves significant quality improvements in comparison to the traditional isotropic variant.
In addition, related concepts are reviewed. The chapter is organized as follows. It begins
with remarks on early edge detection and then discusses the Laplacian of Gaussian, which
is closely related to difference of Gaussians. After discussing the classical difference of
Gaussians filter and how it can be derived as approximation to the Laplacian of Gaussian,
the extended difference of Gaussians thresholding scheme (XDoQ) is reviewed and a
reparameterization of it is presented. Then, the flow-based difference of Gaussians filter
and its separable implementation are discussed. The chapter closes with a presentation
of a modern form of the cartoon pipeline using the flow-based bilateral and difference of
Gaussians filters.

4.1 Gradient-based Edge Detection

The first approaches to edge detection focused on identifying pixels associated with high gra-
dient magnitude. To this end, simple approximations of the image gradient were computed
by convolving an image with a small filter kernel, such as the Prewitt or Sobel filter [Praor1].
Then the gradient magnitude was thresholded. A small kernel size allows for an efficient
computation, but also makes these filters highly sensitive to noise (Figure 4.2). In addition,
they fail to reliably detect edges at large scales without further processing.

The Canny edge detector [Can86] provides several improvements over simple thresh-
olding of the gradient magnitude. Smoothing and differentiation are combined into a single
operator (i.e., Gaussian derivatives) and a non-maximum suppression scheme is applied to
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(f) Flow-based DoG (g) Flow-based XDoG (h) Cartoon

Figure 4.3: Example showing the output of different edge detection and stylization methods. (a) The
original image. (b) The globally thresholded gradient magnitude of the Sobel filter. (c¢) The output of
the Canny edge detector [Can86]. (d) Zero-crossing of the Laplacian of Gaussian [ MHS80]. (e) The
thresholded DoG as proposed in Winnemdller et al. [WOG06]. (f) The thresholded output of the
separable implementation of the flow-based DoG. (g) The flow-based DoG with XDoG thresholding. The
image is pre-processed with a bilateral filter to suppress noise. (h) Cartoon-style abstraction generated
with bilateral and flow-based DoG filters using the generalized cartoon pipeline.

detect local maxima and thereby localize edges. Finally, hysteresis thresholding enhances
the coherence of detected edges and reduces false positives. These attributes of the Canny
detector, along with its widespread availability, have made it one of the most popular edge
detectors, particularly for computer vision. However, as demonstrated in Figure 4.3(c),
the single pixel-wide edges it creates are typically not attractive from an artistic point of
view, since edges representing traces or outlines are commonly expected to exhibit a certain
amount of width and width-variability. Therefore, techniques employing it for artistic
purpose typically perform additional processing, such as scale-space analysis [Orz+07] or
curve fitting [DSo2]. By contrast, the difference of Gaussians operator (Figure 4.3(e)—(g))
offers a good compromise between computational efficiency and stylistic versatility.

4.2 lIsotropic Difference of Gaussians

This section reviews the development of Laplacian-based edge detection and how this led to
the difference of Gaussians filter.

4.2.1 Laplacian and Marr-Hildreth Theory

Even before Canny suggested using non-maxima suppression to localize edges, Marr and
Hildreth [MHS8o] investigated the problem from a computational point of view and proposed
an approach to edge detection based on the second derivatives of an image (Figure 4.4). For
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(a) Smooth step edge (b) First derivative (c) Second derivative

Figure 4.4: Edge detection based on the second derivative. In the one-dimensional case, searching for a
maximum in the first derivative is equivalent to finding a zero-crossing in the second derivative.

one-dimensional functions, a maximum of the gradient magnitude is equivalent to a zero-
crossing in the second derivative. This also generalizes to two dimensions, where the second
derivative in perpendicular direction to the zero-crossing has to be considered. However,
this presents a chicken-and-egg problem, as the second derivative must be computed in a
direction that is yet to be determined by the result of the computation (i.e., the edge). Marr
and Hildreth suggested circumventing this problem by using the Laplacian
92 02

V2 = a2 T el (4.1)
which is rotationally invariant. While the Laplacian was known at that time to be useful for
sharpening images [GWo06], it had not been used for edge detection due to its high sensitivity
to noise. Marr and Hildreth’s key insight was to smooth the image before applying the
Laplacian. This has two important effects. First, noise is reduced and the differentiation
regularized. Second, the bandwidth is restricted, which means that the range of possible
scales at which edges can occur is reduced. For the smoothing filter, a two-dimensional
Gaussian function

_ 1 12
G(I('x) - 27_[0_2 exp - 20_2 (42)

with standard deviation o was chosen, since the Gaussian function is known to minimize
uncertainty, which simultaneously measures the spread of a function in the spatial and
frequency domains. Since the Laplacian commutes with convolution, for an image [ it
follows that

V3(Gy 1) = (V?Gq) 1 , (4.3)

where * denotes the convolution operator. Thus, instead of applying smoothing and differ-
entiation in sequence, both operations can be combined into a single operator V2G,, which
is known as the Laplacian of Gaussian (LoG) and which can be symbolically computed.
To extract edges from a Laplacian of Gaussian filtered image, the local neighborhood
of a pixel is typically examined to detect the zero-crossings. This, however, results again in
artistically questionable 1-2 pixel-wide edges (Figure 4.3(d)) similar to those produced by
the Canny edge detector. To achieve an artistically interesting effect, it turns out that simple
thresholding works surprisingly well, and will be discussed in detail in Section 4.3.
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4.2.2 Difference-of-Gaussians (DoG)

When Marr and Hildreth developed their theory of edge detection based on the Laplacian,
they were faced with the fact that the Laplacian is not separable, and computationally
efficient ways to obtain it were not known at that time. While today a number of methods
are available to compute the Laplacian efficiently [Kin82; CHMS87; JG97; PHoz2], Marr
and Hildreth [MHS8o, App. B] proposed to approximate the Laplacian of Gaussian by the
differences of two Gaussian functions, which are themselves separable. This also matched
results in biological vision, which showed that the ganglion cell receptive fields of cats can
be modeled in this way [You87], and provided motivation for their approach and helped to
popularize the technique. This approximation may be verified by looking at the difference
of Gaussians with infinitesimally small change in the standard deviation o, yielding the
differential quotient

lim Gio(x) — Go(x) _ G, — 6 V2G (4.4)
k—>1 ko —o do

Thus, it can be seen that the difference of Gaussians (DoQG) filter
Dok (x) = Go(x) = Gro (x) ~ —(k = 1) 0? VG (4.5)

approximates the negated scale-normalized Laplacian (as defined by Lindeberg [Ling4a])
up to a constant positive factor. The scale-normalization is a useful property of the DoG,
since it ensures that the response does not change when modifying the scale o. Thresholding
values, for instance, can therefore be defined independently of the scale. In this work, the
commonly cited suggestion by Marr and Hildreth [MHS8o0, App. B] to use k = 1.6 as a good
engineering trade-off between small bandwidth and adequate sensitivity will be followed.
However, other choices are possible, for example, when deriving DoG for several levels of
an image pyramid [Lowo4].

There is also an interesting interpretation of the DoG in terms of signal processing
[OS75]. A Gaussian filter is a low-pass filter, that is, it allows low spatial frequencies to pass,
while attenuating or eliminating high spatial frequencies. Accordingly, the subtraction of
two Gaussians creates a band-pass filter that attenuates all frequencies between the cut-off
frequencies of the two Gaussians. A DoG filter can therefore detect edges whose spatial
extent falls within this characteristic frequency band [OS75; Limgo].

4.3 Extended Difference of Gaussians (XDoG)

Comparing the two rows of images in Figure 4.3, it becomes evident that edge “detection”,
useful in computer vision, is qualitatively quite different from edge “enhancement” for
stylistic and artistic applications. While the former is primarily concerned with the exact
localization and extent of an edge, the latter is more appropriately focused on the weight
(i.e., thickness) and structure (i.e., shape) of an edge.

If we wish to generate a two-tone edge image, we essentially have two choices. Either
we start with a white image and make certain image regions darker (i.e., set them to black)
or we start with a black image and perform highlighting (i.e., set those regions to white).
Because DoG is a band-pass filter, the sign of its response describes whether capturing
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Original image by x-ray delta one @ flickr
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w ]

(b) XDoG

Figure 4.5: lllustration of the XDoG thresholding scheme for a step edge (blue). The output of the DoG
and XDoG operator before thresholding is shown in red; the threshold ¢ is indicated by the yellow line.
(a) DoG has no tone mapping effect. Light regions are outlined. (b) XDoG allows for a tone mapping
effect. Light regions get a black outline, dark regions receive a white outline. In both cases the flow-based
variant was used.

the shape and structure of any nearby edges requires making each pixel darker or brighter
than most of its neighbors. This is exactly the information we need to generate an “edge
enhancement image”. Such an image may be formally defined as a thresholding of the DoG
response, T¢(Dgx * 1), where,

1 u>e¢
To(u) = . (4.6)
0 otherwise

The parameter ¢ is used to control the sensitivity to noise. Figure 4.3(e) demonstrates the
effectiveness of the approach. Despite being comparatively simple, the result captures many
important image features and is aesthetically pleasing.

In the context of computer vision, the word “edges” is used to refer to the thin lines
formed by locally maximal gradient points, such as the DoG zero-crossings shown in
Figure 4.3(d). However, in the context of image stylization, it is more natural to use the
word “edges” to refer to an image like the thresholded DoG shown in Figure 4.3(e). As this
work focuses on stylization applications, the term “edge image” will be used when referring
to results like those in Figure 4.3(e)—(g), though it should be noted that in the computer
vision community, such images would not typically be said to contain “edges”.

The edge images generated by simple thresholding of the DoG are closely related to
the biological models proposed by Young and others [You87]. Inspired by those models,
Winnemoller et al. [WOGo06] generated edge images using a DoG variant in which the
strength of the inhibitory effect of the larger Gaussian is allowed to vary, resulting in the
following equation:

Do,k,r(x) =Gy (x) — 7 Gio(x) (4.7)

That modification makes it possible to achieve a much wider range of stylistic effects,
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particularly after replacing the binary thresholding function 7, with a continuous ramp:

u=>e

1
Tep(u) = (4-8)
“¢ 1+ tanh(¢ - (u —¢&)) otherwise.

Taken together, Ty ,(Dgk,r * I) is referred to as the XDoG filter for a given image /.
Figure 4.5(b) demonstrates how the base thresholded DoG is extended as a result of the
soft thresholding and variable inhibition strength.

4.4 Reparameterization of the XDoG

The XDoG thresholding scheme is difficult to control. Increasing the sensitivity of the filter
to edges typically requires adjusting z, ¢, and ¢ in concert. We can see the reason for this by
decomposing Dy k - (x) as follows:

Do (%) = Go(x) = 7 Gio (x)

= (l — 7,’) . GU(X) +7- Do,k(x) (49)

Hence, we see that Equation (4.7) is equivalent to a weighted average of the blurred image
and the standard DoG. Notice that the average response of the standard DoG is zero, while
the blurred image will have the same average brightness as the input image. Thus, the average
brightness of Dy x . * I will decrease as t increases. However, increasing t is the only way
to increase the weight of the edge emphasis lines. Thus, in order to create XDoG outputs
having different edge emphasis strengths but the same average brightness, any adjustment to
7 must be coupled with compensating changes to the soft thresholding parameters ¢ and «.

In order to simplify artistic control of the XDoG filter, a reparameterization having the
following properties would be desirable:

1. Removal of the tight parameter-interdependency of the previous parameterization;

2. More intuitive parameters by mapping to known image processing operations, such
as blurring or sharpening;

3. Invertibility, that is, it should be possible to convert back-and-forth between the old
and new parameter spaces.

Fortunately, a parameterization that fulfills these requirements can be found by simply
dividing Equation (4.9) by t — 1, resulting in a representation of the XDoG filter as an
adjusted image sharpening operator:

Dok.pX) _ Go(x) + p- Do i(x)
— (4.10)

=14 p) Gs(x) = p-Grs(x)

Obviously, the range of images that can be generated using T, (Sqk,p * I ) is identical to

Sa,k,p (x) =

the range of images that can be generated using the original formulation. However, replacing
T with p makes it possible to control the strength of the edge sharpening effect without
influencing any other aspects of the filter. In addition, ¢ is now measured proportionally to
image intensity, leading to an effective decoupling of the parameters.
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The sharpened image generated by Sy k., can be understood as a digital approximation
of the classical darkroom technique of unsharp masking. To perform an unsharp mask,
a photographer uses a negative duplication technique to create a blurred version of the
original negative. Using the blurred negative as a mask when creating a print has the effect
of sharpening the original edges [Lan74]. The same effect is present in Equation (4.10),
which can be understood as an unsharp mask of the blurred image G, * I, in which the
brightness has been increased in order to compensate for any darkening due to the mask.

A wide range of different stylistic effects can be achieved by applying the soft thresh-
olding function T , to the sharpened image S, , * I. Larger or smaller ¢ control the
sharpness of the black/white transitions in the image, while ¢ controls the level above which
the adjusted luminance values will become white. However, T} , is only one of many lumi-
nance adjustments that can be applied to the sharpened image. While the images in this
work are created using the soft thresholding function, additional effects may be achieved by
replacing T¢ , with a more general luminance adjustment function (e.g., see [J2]).

The XDoG filter is still rather sensitive to noise. To some extent ¢ can be used to
reduce sensitivity, but a simple and highly effective approach is to apply 12 iterations of
the bilateral filter (Chapter 3) before applying the XDoG filter. The next section discusses
another approach to make the DoG less sensitive to noise.

4.5 Flow-based Difference of Gaussians (FDoG)

An explanation for the high sensitivity to noise of the DoG can be given by looking at
the decomposition of the Laplacian of Gaussian operator in the directions of the local
gradient and tangent. The second derivative in direction of the gradient contributes to
the edge localization, while the one in the direction of the tangent merely increases the
sensitivity to noise. This observation motivates to consider detecting zero-crossings in the
second derivative in direction of the gradient. Such an edge detector was first proposed by
Haralick [Har84], and also the maximum suppression of the Canny edge detector [Can86] is
essentially equivalent to looking for a zero-crossing in the second directional derivative. A
detailed discussion of the relationship between the Laplacian and directional derivatives
can be found in the work by Torre and Poggio [TP&6)].

The success of second derivative methods for edge detection suggests changing the
XDoG filter from an isotropic to a directional operator. However, simply replacing the two-
dimensional XDoG with its one-dimensional equivalent in the direction of the gradient
does not lead to better results. To the contrary, the results are typically even worse, due
to a missing regularization along the edge. The reason for this is twofold. First, a one-
dimensional XDoG is very sensitive to an accurate estimation of the gradient direction,
which is typically performed using first order Gaussian derivative operators along the
coordinate axes. The scale of these derivatives must be similar to the scale of the XDoG. For
instance, if their scale is too large, the estimated gradient direction will generally not match
the underlying image structure, which limits opportunities for noise suppression. Second,
the missing regularization in the tangent direction further increases the sensitivity to noise.

The first work that addressed these issues and provided significantly improved quality
over the isotropic DoG is the flow-based difference of Gaussians (FDoG) filter by Kang et al.
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(a) 2D-kernel FDoG (b) Separable FDoG (c) Separable FDoG
[KLCO07] (I pass) (2" pass)

Figure 4.6: Different variants of the flow-based difference of Gaussians filter. (a) The originally proposed
2D-kernel is computationally expensive. (b)—(c) The separable implementation first computes a one-
dimensional DoG in perpendicular to the tangent vectors and then smoothes along the integral curves.

[KLCo7]. In order to derive a smooth orientation field from the image, they introduced the
edge tangent flow (Section 2.5). It provided Kang et al. with a vector field that is closely
aligned to the underlying image structure and allowed them to derive an average gradient
orientation that is less affected by noise. The originally proposed FDoG performs steps
along the integral curves of the edge tangent flow by using an Euler integration scheme. At
each step, a one-dimensional DoG filter in the direction perpendicular to the integral curve
is applied and all these filter responses are accumulated by weighting them, using a one-
dimensional Gaussian filter (Figure 4.6(a)). This accumulation performs a regularization in
the tangent direction and shares similarity with the hysteresis thresholding of the Canny edge
detector. This results in a better noise suppression and a significantly increased coherence
of image features (i.e., longer, connected edges).

The flow-based difference of Gaussians filter as it was proposed by Kang et al. in
[KLCo7] has two fundamental limitations. First, since a one-dimensional DoG has to
be computed for each sampling position on the integral curve, it is from perspective of
computationally complexity equivalent to a 2D-kernel and, thus, comparatively expensive.
Fortunately, there is a simple alternative!. The tangents of an integral curve match, by
definition, the corresponding vectors of the vector field the integral curve was derived from.
Hence, instead of computing a one-dimensional DoG filter for each sampling point on the
integral curve, these may be computed for each pixel and stored as an intermediate result
(Figure 4.6(b)). In a second pass, the responses of the one-dimensional DoG filters are
then accumulated along the integral curve, by line integral convolution with a Gaussian
kernel (Figure 4.6(c)). Assuming nearest-neighbor sampling along the integral curve, this
approach is equivalent to Kang et al.’s method. In case of subsampling (e.g., bilinear)
the proposed approach is an approximation, which, however, produces results that are
indistinguishable from the original method. The second limitation is that the edge tangent
flow is used to obtain a smooth vector field that is aligned to the image features. As pointed

I The separable FDoG implementation was first proposed in Kyprianidis and Déllner [C3] and
independently later in Kang et al. [KLCO09] as well.
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1 __global__ void fdog( gpu_pIim2<float> dst, const gpu_plm2<float2> tf,

2 float sigma_e, float sigma_r, float tau, float precision)
3 {

4 const int ix = blockDim.x * blockIdx.x + threadIdx.x;

5 const int iy = blockDim.y * blockIdx.y + threadIdx.y;

6 if (ix >= dst.w || iy >= dst.h) return;

7

8

9

float2 t = tf(ix, iy);
float2 n = make_float2(t.y, -t.x);
10 float2 nabs = fabs(n);
11 float ds = 1.0f / ((nabs.x > nabs.y)? nabs.x : nabs.y);
12
13 float twoSigmaE2 = 2 * sigma_e * sigma_e;
14 float twoSigmaR2 = 2 * sigma_r * sigma_r;
15 float halfWidth = precision * sigma_r;
16
17 float sumE = tex2D(texSRC, ix + 0.5f, iy + 0.5f);
18 float sumR = sumE;
19 float2 norm = make_float2(1, 1);
20
21 for( float d = ds; d <= halfWidth; d += ds ) {
22 float kE = _expf( -d = d / twoSigmaE2 );
23 float kR = _expf( -d = d / twoSigmaR2 );
24
25 float2 o = d=n;
26 float c = tex2D(texSRC, 0.5f + ix - o.x, 0.5f + iy - o.y) +
27 tex2D(texSRC, 0.5f + ix + o0.x, 0.5f + iy + 0.y);
28 sumE += kE = c;
29 sumR += kR = c;
30
31 norm += 2 * make_float2(kE, kR);
32 }
33 sumE /= norm.x;
34 sumR /= norm.y;
35
36 dst.write(ix, iy, sumE - tau * sumR);
37}

Listing 4.1: Implementation of the first pass of the separable FDoG.

out in Section 2.5, the edge tangent flow is comparable to a specialized bilateral filter. Since
multiple iterations of the edge tangent flow have to be performed, this has a significant
impact on the overall performance. As made evident in Section 2.5, the smoothed structure
tensor is a better alternative.

The XDoG thresholding scheme and the flow-alignment (FDoG) are mutually inde-
pendent extensions of the DoG operator and may therefore be combined, as desired. For
the images in this work, Equation (4.8) is employed to produce stylistic variations, while
on the separable FDoG implementation and the smoothed structure tensor is relied for
noise suppression and increased coherence. The implementation of the separable FDoG
follows the principles developed for the orientation-aligned bilateral filter (Section 3.4).
The first pass uses unit step size in either horizontal or vertical direction. The second pass
performs line integral convolution as discussed in Section 2.9. In contrast to the bilateral
filter, blurring is not an issue, and therefore bilinear sampling is used for both passes. For
the sake of completeness, the implementation of the first pass is shown in Listing 4.1.



4.6. Application: Enhanced Cartoon Filter 91

]
1
Pr RN ‘ :
I N
Local orientation | ] 1 Pass Pass Wary
L i e P Edge
*“ and anisotropy Ao # # sharp smoothing
estimation | J
,,,,,,,, J

I Difference of Gaussians

‘ 0 CIELAB
Pass o L to

> e
#2 quantization RGB

Bilateral filter

RGB
to
CIELAB

Figure 4.7: The pipeline for the creation of a cartoon-like effect in modern generalized form. Processing
starts with the conversion of the input to CIELAB color space. Then, the input is iteratively abstracted
by using a variant of the bilateral filter. After one or two iterations of the bilateral filter to suppress
noise, outlines are extracted from the intermediate result using a variant of the DoG filter. Then more
iterations of the bilateral filter are performed, typically up to four, with luminance quantization applied
afterwards. The DoG edges and the output of the luminance quantization are then composited, followed
by an optional sharpening by warping and smoothing of the edges.

4.6 Application: Enhanced Cartoon Filter

Taken together, the bilateral and DoG filters provide an effective way to create a cartoon-
like effect. In Section 3.2 we saw that multiple iterations of the bilateral filter lead to a
cartoon-like effect. Motivated by this, Fischer et al. [FBSeos] applied the bilateral filter in
the context of augmented reality to make virtual objects less distinct from the camera stream
by applying stylization to the virtual and camera inputs. However, at that time evaluating
the bilateral filter at full resolution was computationally too expensive. Due to this, Fischer
et al. applied the bilateral filter at reduced resolution followed by upsampling, resulting in an
inferior result. Winnemoller et al. [WOGo6] were faced with the same problem, but applied
iteratively the xy-separable implementation of the bilateral filter discussed in Section 3.3.
Although this brute force separation is prone to horizontal and vertical artifacts, it provides
a reasonable trade-off in terms of quality and speed, and enabled real-time processing on
consumer GPUs of that time. In addition to the bilateral filter, Winnemoller et al. added
another processing step performing smooth luminance quantization. The quantization
is applied in CIELAB space, with only the luminance channel being modified, creating a
strong cartoon-like effect. The quantization is performed using a smooth step function,
whose steepness is chosen depending on the luminance gradient. This makes the output
of the quantization less sensible to small changes in the input, and increases temporal
coherence when processing video frame by frame. Outlines at edges are obtained with the
DoG filter.

A schematic overview of a modern generalized version of the cartoon pipeline is shown
in Figure 4.7. Input is typically an image, a frame of a video, or the output of a three-
dimensional rendering. In the original pipeline by Winnemoller et al. [WOGo6], the local
orientation estimation step was not present; this step was added later in [C3] to adapt the
bilateral and DoG filters to the local image structure as discussed in this thesis. Also not
present were the iterative application of the DoG filter, which was first proposed in [KLCo7],
and the final smoothing pass to further reduce aliasing of edges. The introduction of the
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flow-based DoG filter significantly increased the quality of the produced outlines, and made
the warp-based sharpening step of the original pipeline less important. Therefore, this step
is typically not present in later work. Figure 4.8 shows a few examples created with the
generalized cartoon pipeline.

Original images courtesy Philip Greenspun and Antonio Santella

Figure 4.8: Examples generated with the generalized cartoon pipeline. Separable orientation-aligned
bilateral filter: ng = 4, 04 = 3.0, 0, = 4.25%. Separable flow-based DoG: ne = 1, t = 0.99, o, = 1.0,
om = 3.0, ¢ = 2.0. Color quantization: q = 8, g = 3.4.



Chapter 5

Anisotropic Kuwahara Filtering

An interesting class of edge-preserving filters performing comparatively well on high-con-
trast images are variants of the Kuwahara filter [Kuw+76; TT77; NM79; Lee80; Lee81].
Based on local area flattening, these filters properly remove detail in high-contrast regions
and protect shape boundaries in low-contrast regions, resulting in a roughly uniform level
of abstraction across the image. The original Kuwahara filter was initially proposed in
the mid-seventies as a noise reduction approach in the context of biological image pro-
cessing, and belongs to the broader class of value-and-criterion filters [SP94], with value
corresponding to the mean and the criterion being least variance. However, it is unstable
in the presence of noise and suffers from block artifacts. Therefore, several extensions and
modifications have been proposed to improve the original filter. Most notably, the work by
Papari et al. [PPCo7] introduced new weighting windows and replaced the selection criterion
by a new combination rule. Even though this improved the output quality significantly,
clustering artifacts proportional to the used filter radius remain noticeable.

In this chapter, the anisotropic Kuwahara filter is presented (Figure 5.1), a further
generalization that removes clustering artifacts by adapting shape, scale, and orientation
of the filter to the local structure of the input. In addition, directional image features are
better preserved and emphasized, resulting in overall sharper edges and the enhancement

Original images courtesy Philip Greenspun

(@) (b)

Figure 5.1: Examples created by the anisotropic Kuwahara filter.
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of anisotropic image features. Before introducing the anisotropic Kuwahara filter, a brief
review of morphological filtering approaches in IB-AR is provided. Then, the classical
Kuwahara filter and the generalized Kuwahara filter, as proposed by Papari et al. [PPCo7],
are discussed in detail. In particular, the implementation of the generalized Kuwahara filter
in the frequency and spatial domains will be explained. For the anisotropic Kuwahara filter
two alternative implementations are presented: Texture-based weighting functions and an
approximation of the weighting functions by polynomials that can be evaluated on the fly
at computation time. Furthermore, a multi-scale processing scheme for the anisotropic
Kuwahara filter will be discussed. The chapter closes with a discussion of results and
comparisons.

5.1 Morphological Filtering

Mathematical morphology provides a set-theoretic approach to image analysis and pro-
cessing. Besides being useful the for extraction of object boundaries, skeletons, and convex
hulls, it also has been applied successfully to many pre- and post-processing tasks. A good
introduction to the subject, covering aspects of image processing and computer vision, is the
tutorial by Haralick et al. [HSZ87]. Fundamental operations in mathematical morphology
are dilation and erosion. From these, a large number of other operators can be derived, most
notably opening, defined as erosion followed by dilation, and closing, defined as dilation
followed by erosion. For grayscale images, dilation is equivalent to a maximum filter and
erosion corresponds to a minimum filter. Therefore, opening removes light image features
by removing peaks, while closing removes dark features by filling holes. Applying open-
ing and closing in sequence results in a smoothing operation that is often referred to as
morphological smoothing, which, similar to a median filter, quite effectively suppresses salt-
and-pepper noise, while being computationally less expensive. In fact, openings and closings
are closely related to order-statistics filters. A further in-depth discussion of morphological
filters and their relations to other image processing operators can be found in Maragos and
Schafer [MS87a; MS87b].

Morphological smoothing is applied in Bousseau et. al.’s [Bou+o06; Bou+o7] work
on watercolor rendering and in Bangham et al. [BGHo3] oil paintings to simplify input
images and videos before rendering. In the case of video, Bousseau et al. [Bou+o7] use a
spatio-temporal kernel aligned to the motion trajectory derived from optical flow. Applying
opening and then closing generally results in a darkened result. Since watercolor paintings
typically have light colors Bousseau et al. [Bou+o7] proposed to swap the order of the
morphological operators and apply closing followed by opening. Because opening and
closing are dual, this is equivalent to inverting the output of morphological smoothing
applied to the inverted image (Figure 5.2). Papari and Petkov [PPog] described another
technique that applied morphological filtering in the context of IB-AR. Motivated by glass
patterns and similar to line integral convolution (Section 2.9.3), they performed a one-
dimensional dilation in form of a maximum filter over noise along the integral curves
defined by a vector field. In contrast to line integral convolution, this technique is more
capable of producing thick piecewise constant coherent lines with sharp edges, resulting in
a stronger brush-like effect. Moreover, it can also be applied to color images by using the
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Original image courtesy PDPhoto.org

(@) (e

Figure 5.2: Mathematical morphology operators. (a) Original image. (b) Opening. (c) Closing. (d)
Opening followed by closing. (e) Closing followed by opening: The morphological operator chosen by
Bousseau et al. [ Bou+o6; Bou+o7].

location of the first maximum noise value along the integral curve as a look-up position.

Morphological operators can be efficiently implemented by using distance trans-
forms [Fab+08]. Criminisi et al. [Cri+10] recently demonstrated that edge-sensitive smooth-
ing based on the generalized geodesic distance transform can be used for the creation of
cartoon-style abstractions. The image is first clustered into a fixed number of colors. Then,
for every pixel, the probability of the pixel’s value belonging to a certain cluster is defined.
These probabilities form a soft mask to which the generalized geodesic distance transform is
applied. The output is then defined as the weighted sum of the cluster’s mean values where
the weights are defined based on the corresponding distances.

As pointed out by Schulze and Pearce [SP93; SP94],the value-and-criterion structure
allows the use of different linear and nonlinear elements in a single filter but also provides
the shape control of morphological filters, which is of central importance for the anisotropic
Kuwahara filter.

5.2 Kuwahara Filter
In this section the classical Kuwahara filter will be reviewed. Two perspectives on the subject

are provided. First, the Kuwahara filter will be defined, in the traditional way, based on
subregions. Second, the definition will be reformulated as convolution with appropriate
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(@) Wo (b) W © W2 @) ws

Figure 5.3: Subregions used by the classical Kuwahara filter forr = 7.

weighting functions, which serves as the foundation for further generalizations discussed
later in the other sections of this chapter.

5.2.1 Classical Approach based on Regions

The general idea behind the classical Kuwahara filter [Kuw+76] is to divide the local filter
neighborhood into four rectangular subregions that all contain the filter origin and overlap
by one pixel (Figure 5.3). For all subregions the variance is computed, and the response of
the filter defined as the mean of a subregion with minimum variance. More precisely, let
f:7Z? — R denote an grayscale image, let > 0 be the radius of the filter, and let x € Z? be
any point. The rectangular subregions are then given by:

Wo = [x1 —r, x1] X [x2,x2 + 7]

[

= [x1,x1 + 1] X [x2,x2 + 7]
(5.1)
Wy = [x1,x1 + 1] X [x2 — 1, X2]
=

X1 —r,x1] X [x2 —r, x2]

Let [Wi| = (r + 1)? be the number of pixels in each subregion. The mean (average) of a
subregion W; is then given by:

mi(x) = |W| PIWACY (52)

yeWy

The variance is defined as the average of the square of the distance of each pixel to the
mean, which is equivalent to subtracting the squared mean from the averaged squared image
values:

HOE |W| > () —me)?

yeW

|W| > ) —mpx)

yeWy

(5-3)

Now, the output of the Kuwahara filter is defined as the mean of a subregion with minimum
variance

F(x) =m(x) with Kk = argmin sg(x). (5.4)
k€{0,...,3}
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(a) Edge (b) Corner (¢) Flat region

Figure 5.4: The Kuwahara filter defines an edge-preserving smoothing approach. Subregions containing
pixels from both sides of an edge have high variance. By contrast, subregions completely lying inside a
color region have low variance.

For color images, the mean and variance are computed for each color channel indepen-
dently. Assuming that the variances of the color channels do not correlate, the variance of
the subregion Wy is defined as the sum of the squared variances of the color channels:

S(x) = 57, () + 57 o (0) + 5 (%) (55)

As can be seen in Figure 5.4, this avoids averaging between differently colored regions
for corners and edges. However, for flat or homogeneous regions the variances of the
different subregions are similar or even the same. Therefore, a subregion with minimum
variance is generally not well-defined, and the selection highly unstable, especially in the
presence of noise. For small filter sizes, the Kuwahara filter produces reasonable results.
However, for image-based artistic rendering, comparatively large filter sizes are necessary
to achieve an interesting abstraction or stylization effect, resulting in clearly noticeable
artifacts, as demonstrated in Figure 5.5. These are due to the unstable subregion selection
process and the use of rectangular subregions.

5.2.2 Variant based on Weighting Functions

In order to avoid the Gibbs ringing artifacts resulting from box filtering, alternative shapes
for the subregions have been proposed. For instance, Nagao and Matsuyama [NM79]
used pentagons and hexagons as subregions and Bakker et al. [BVV99] considered circular

Original image by Keven Law @ flickr

Figure 5.5: Output of the classical Kuwahara filter.
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Figure 5.6: Characteristic functions of the subregions used by the Kuwahara filter.

subregions. A more general approach due to Boomgaard [Booo2] is to compute the means
and variances by convolving the image with a set of suitable weighting functions. More
specifically, given a weighting function wg:R? — R, the weighted mean of a function
f:R? — R with respect to wy is given by

1
mi(x) = @ (f * wr)(x)
1 (5:6)
— [ o) ue = dy
|w|
and weighted variance with respect to wy is given by
1
s (x) = — ((f —mp)® * wi)(x)
[wi|
= [ PO u =) dy o).
[wi|
with
il = [ wn) dy (59)
denoting the corresponding normalization term. Choosing the characteristic functions
1 ifxe Wi
AW (x) = . k=0,....3, (5-9)

0 otherwise

of the subregions W (Figure 5.6) as weighting functions, yields the classical Kuwahara
filter. Using overlapping two-dimensional Gaussian functions for the weighting functions
is known as the Gaussian Kuwahara filter, which enabled Boomgaard [Booo2] to link the
Kuwahara filter to modern PDE-based edge-preserving and edge-enhancing smoothing
techniques. He showed that the Gaussian Kuwahara filter can be interpreted as a PDE with
linear diffusion and shock filter terms. Since shock filters are related to a morphological
sharpening operator originally proposed by Kramer and Bruckner [KB75], this also provides
a link to morphological filtering. Shock filter will be discussed in more detail later in
Section 6.4.1.

5.3 Generalized Kuwahara Filter

In this section, the generalized Kuwahara filter [PPCo7] is examined. It replaces the
rectangular subregions by smooth weighting functions over sectors of a disc (Figure 5.7).
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(a) Edge (b) Corner (¢) Flat region

Figure 5.7: The generalized Kuwahara filter uses weighting functions defined over sectors of a disc. The
filter response is defined as a weighted sum of the local averages, where more weight is given to those
averages with low variance.

Moreover, to overcome the limitations of the unstable subregion selection process, a new
criterion is defined. Instead of selecting a single subregion, the result is defined as the
weighted sum of the means of the subregions. The weights are defined based on the
variances of the subregions. This results in smoother region boundaries and fewer artifacts.
As can be seen in Figure 5.8, this significantly improves the quality of the output. The next
section reviews the construction of the weighting functions and the new combination rule.
Then, the implementation of the generalized Kuwahara filter in the frequency and spatial
domains are discussed.

5.3.1 Definition of the Generalized Kuwahara Filter

To construct a set of smooth weighting functions over the sectors of a disc, the plane is
divided into N equal sectors by defining characteristic functions which are 1 over the sector
and 0 otherwise

1 lf (Zk]—vl)ﬂ < arg(x) 5 (2k1-‘1\;1)7'[

xe(x) = i=0,...,N—1, (5.10)

0 otherwise

where the arg function is assumed to return values in the range [0, 277). The characteristic
functions of the different sectors y; are first convolved and then multiplied with a two-

Original image by Keven Law @ flickr

Figure 5.8: Output of the generalized Kuwahara filter.
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Figure 5.9: Construction of the weighting function hg for N = 8: (a) Characteristic function xg.
(b) Characteristic function yo convolved with Gaussian function Ges,. (c¢) Finally, multiplication with

Gaussian function Gg,..

dimensional Gaussian:

hy = (Xi * Gos)'Gar (5.11)

The convolution smoothes the characteristic functions such that they slightly overlap,

and the multiplication achieves a decay with increasing radius. The construction of /g is

illustrated in Figure 5.9. In Figure 5.10, plots of the weighting functions for eight sectors

are shown. Notice that the sum of the weighting functions is equivalent to a Gaussian filter,
since Y g (x) = Go, (x), for x € Z?. Let f denote the input image, then the weighted
mean at any point x € Z? is given by

) = T 3 ) =), (5.12)

yeZ?

and the weighted variance is given by

1

Sp) = —— Y L2 hi(x — y) —mi., (5.13)

h
| kly€Z2

where || = Zy€Z2 hi () denotes the corresponding normalization term.

Instead of selecting the weighted mean of a single subregion, the result of the filter is

defined as the weighted sum of the weighted means, where the weights are based on the

.
oz
Py
srres
ey

Figure 5.10: Plots of the weighting functions hy = ho o R_pz/n for N =8and k =0,...,N — L.
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weighted variances, with sectors of low variance receiving a high weight and sectors of high
variance receiving a low weight:

N—-1 N—-1
F(x) = ) o me(x) / > (5.14)
k=0 k=0

This is achieved by taking the inverted weighted variance to the power of a user-provided
parameter ¢. In flat and smooth regions, the variances are very small and sensitive to noise,
resulting in a poorly approximated Gaussian. To avoid this, a simple solution is to threshold
the variances using a control parameter t;, which also avoids the indetermination when
some of the variances s,f are zero. More precisely, the weights o are defined by:

. = max (5 (x), 75) (5.15)

The parameter ¢ controls the sharpness of the output. A good choice is ¢ = 8 and used for
all examples. In Figure 5.7, the behavior of the generalized Kuwahara filter for different
local neighborhoods is illustrated. As can be seen, for corners and edges the filter adapts
itself to the local neighborhood by averaging one or more sectors, thus avoiding blurring
across region boundaries. In case of homogeneous or flat image regions, the filter acts as a
smoothing filter. From a symmetry point of view, obvious choices for the number of sectors
are N = 4 and N = 8. In this chapter, we will mainly focus on N = 8, since it provides the
best results.

5.3.2 FFT-based Implementation

The implementation of Equations (5.12) and (5.13) requires the computation of a large
number of convolutions. For an RGB color image and N = 8 sectors, 6N = 48 convolutions
have to be computed. A standard way to speed up the convolution operations is to use the
convolution theorem, which states that convolution in the spatial domain is equivalent to a
multiplication in the frequency domain:

mi = fxhg=F N F(f)-F () (5.16)
sk =[P xhe =FHF(f?)-F (hp)) (5.17)

This approach was used for the MATLAB reference implementation by Papari et al. [PPCo7].
Since the Fourier transforms of the filter kernels ¥ (%;) may be computed in a preprocessing
stage, a total of 26 Fourier transforms have to be computed. In order to avoid artifacts
at the boundary, it is important to add proper padding (e.g., 2.50,) to the border for
a clamp-to-edge behavior [Podo7]. On the GPU, Fourier transforms can be efficiently
implemented using NVidia’s CUFFT library, which ships as part of the CUDA toolkit.
Figure 5.11 compares the running times of an unoptimized FFT-based implementation
against an implementation in the spatial domain that has been optimized as discussed later in
Section 5.4.2. As expected, the FFT-based implementation outperforms the implementation
in the spatial domain for large filter radii. Unfortunately, the FFT approach only works for
linear shift-invariant filters. Adaptively per-pixel controlled filtering operations, therefore,
have to be implemented in the spatial domain, which is discussed in the next section.
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Figure 5.11: Benchmark comparing a CUFFT-based implementation of the generalized Kuwahara filter
against a texture-based implementation in the spatial domain.

5.3.3 Implementation in the Spatial Domain

The weighting functions /4y, as defined in Equation (5.11), are difficult to compute on the fly,
since their computation requires convolution, and a closed form solution is currently not
known. Therefore, the most straightforward way to implement the generalized Kuwahara
filter in the spatial domain is by defining a cut-off and sampling each of the weighting
functions Ay into a texture map. Nevertheless, a slightly different approach that directly
generalizes to anisotropic filtering will be presented in this section.

Let
cosg —sing
R, = ( . ) (5-18)
sin ¢ Cos @

be the rotation matrix that performs a rotation by the angle ¢ in counter-clockwise order.
Since y; = xo © R—2xi/n, and because Gaussian functions are rotationally symmetric, we
have

hi = (xk * Goy) - Go,, = ((XO * Ggy) - GUr) o R snk/N

.1

— o0 Roami (5.19)
where o denotes composition of functions (i.e., (f o g)(x) = f(g(x))). Thus, all weighting
functions & can be derived from /¢ by an appropriate rotation. The weighting function /¢
is sampled into a texture map Hy of fixed size Hyj,e X Hgjze = 32 x 32 and accessed using
bilinear interpolation, corresponding to a linear reconstruction of the sampled function.
Assuming Hgj,e = 2R + 1 for the diameter and R = 2.50, for the cut-off radius, yields for
the standard deviation of the Gaussian function Gy, :

| Hgpe—1 31

or =+

2 .
2 2.5 5 6 (5-20)

The standard deviation of the Gaussian G, responsible for the inter-sector smoothing is
set to oy = 0,/3, and the origin is moved to the center of the texture map as shown in
Figure 5.12. Now suppose that r > 0 denotes the desired filter radius, then the weighting
functions can be approximated by:

hi(x) ~ Ho( %R—an/N(x)) (5.21)
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static texture<float4, 2> texSRC; // filter=Point, address=Clamp, normalized=false
static texture<float, 2> texHO; // filter=Linear, address=Wrap, normalized=true

template <int N>
__global__ void gkf_filter( gpu_plm2<float3> dst, float radius,
float g, float threshold )

{
int ix = blockDim.x * blockIdx.x + threadIdx.x;
int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix >= dst.w || iy >= dst.h) return;
float3 m[N];
float3 s[N];
float w[N];
for (int k = 0; k < N; ++k) {
m[k] = s[k] = make_float3(0);
wlk] = 0;
}
float piN = -2 % CUDART_PI_F / N;
float4 RpiN = make_float4( cosf(piN), sinf(piN), -sinf(piN), cosf(piN) );
int r = (int)ceilf(radius);
for (int j = -r; j <= r; ++j) {
for (int i =-r; i <=r; ++i) {
float2 v = make_float2( 0.5f % i / radius,
0.5f * j / radius);
if (dot(v,v) <= 0.25F) {
float3 c = make_float3(tex2D(texSRC, ix + i, iy + j));
float3 cc = ¢ * c;
for (int k = 0; k < N; ++k) {
float wx = tex2D(texHO, v.x, v.y);
m[k] += c * wx;
s[k] += cc * wx;
wlk] += wx;
v = make_float2( RpiN.x * v.x + RpiN.z = v.y,
RpiN.y * v.x + RpiN.w * v.y );
}
}
}
}
float3 o = make_float3(0);
float ow = 0;
for (int k = 0; k < N; ++k) {
m[k] /= wlk];
s[k] = fabs(s[k]l / w[k]l - m[k] = m[k]);
float sigma2 = fmaxf(threshold, sqrtf(s[k].x + s[kl.y + s[k].z));
float alpha_k = __powf(sigma2, -q);
o += m[k] * alpha_k;
ow += alpha_k;
}
dst.write(ix, iy, o / ow);
}

Listing 5.1: Implementation of the generalized Kuwahara filter.
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(@ (b) © (CY)

Figure 5.12: Construction of the texture map Ho with size 32 x 32. (a) Characteristic function.
(b) Smoothed characteristic function. (c) Smoothed characteristic function multiplied with Gaus-
sian function. To avoid artifacts during bilinear sampling, the last column is set to zero. (d) The last step
shifts the center to the origin.

An unoptimized implementation of the discussed approach is shown in Listing 5.1.
The outer loop of the implementation iterates over a rectangular neighborhood of size
2r + 1. To avoid a bias in direction of the coordinate axes, pixels farther away than the
filter radius r are ignored. Inside the inner loop, the implementation iterates over all sectors
and computes the corresponding weighting function A by sampling the texture map Hy.
This implementation serves as the foundation for further generalization and optimizations,
which will be discussed in the next section.

5.4 Anisotropic Kuwahara Filter

A limitation of the generalized Kuwahara filter is that it fails to capture directional features,
resulting in clustering artifacts proportional to the filter radius (Figure 5.8). This issue is
addressed by the anisotropic Kuwahara filter, which adapts the filter to the local structure of
the input. The underlying idea is that in homogeneous regions the shape of the filter should
be a circle while in anisotropic regions the filter should become an ellipse whose major axis
is aligned with the principal direction of image features (Figure 5.13). As demonstrated
in Figure 5.14, this avoids clustering and moreover creates a painterly look for directional
image features.

The next section examines the definition of the elliptic filter shape. Then, two alternative

(a) Edge (b) Corner (¢) Flat region

Figure 5.13: The anisotropic Kuwahara filter uses weighting functions defined over an ellipse, whose shape
is based on the local orientation and anisotropy. The filter response is defined as a weighted sum of the
local averages, where more weight is given to those averages with low standard deviation.
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Original image by Keven Law @ flickr

Figure 5.14: Output of the anisotropic Kuwahara filter.

approaches for defining weighting functions over the elliptic filter shape will be discussed.
The first approach is a generalization of the texture-based weighting function. The second
approach uses a polynomial approximation that can be evaluated on the fly.

5.4.1 Elliptical Filter Shape

Let r > 0 be the desired filter radius, let 1 = (cos ¢, sing) be the normalized minor
eigenvector of the smoothed structure tensor computed using Listing 2.1, and let 4 be the
anisotropy as defined in Section 2.6.1. To define the elliptical filter shape the approach
in [PVSo06; Phao6] is adopted. The eccentricity of the ellipse is defined by specifying the
lengths of its major and minor axes depending on the amount of anisotropy:
a+ A o
a =

d b=
, [ oan oz+Ar

(5.22)

The parameter « > 0 is a tuning parameter. For « — oo the major axis ¢ and the minor
axis b converge to 1. In all examples, @ = 1 is used, which results in a maximum eccentricity
of 4. The ellipse defined by a, b and ¢ has its major axis aligned to the local image
orientation. It has high eccentricity in anisotropic regions and becomes a circle in isotropic
regions.

For the implementation it will be important to know which pixels overlap the ellipse. In
the remainder of this section it is therefore explained how to compute the ellipse’s bounding
box. An axis-aligned ellipse with major axis a and minor axis b may be defined as an
implicit function by:

x2 X2
a—; + b—; =1 (5.23)

Rotating x by the angle ¢, yields the equation for a rotated ellipse:

(x1cosp — xasing)?  (x1sing 4 x; cos@)?
2 + 2 =
a b

1 (5.24)

This is a quadratic polynomial in two variables, and by expanding and collecting terms it
can be rewritten in normalized form as

P(x) = Ax? + Bx? + Cx; + Dxa + Ex;xa + F =0 (5.25)
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Figure 5.15: The mapping SR—y, defines a linear coordinate transform that maps an ellipse defined by
major axis a, minor axis b and angle ¢ to a disc with radius 0.5.

with
A =a%sin’ ¢ + b%cos? ¢ |
B = a®cos? ¢ + b*sin® ¢ ,
€=0 (5.26)
D=0,
E =2(a®* —b?*)sinpcosg ,
F =—a’bh*.

The horizontal extrema are located where the partial derivative in x,-direction vanishes:

8 Byt Ex=0 —En (5.27)
— =2Bx X1 = Xy = .
02 2 En 2= 723 327
Substituting x, into Equation (5.25) we obtain:
E2
(A — E)x% +F=0 (5.28)

The horizontal extrema of the ellipse are therefore given by:

F .
X1 ==+ EZ_ 47 :i:\/a2 cos2 ¢ + b2sin® ¢ = £,/a2t? + 212 (5.29)

4B

A similar calculation gives the vertical extrema:

Xy = :i:\/a2 sin® ¢ + b2 cos? ¢ = :t\/aztz2 + b2} (5.30)

5.4.2 Convolution-based Weighting Functions

After defining the elliptical filter shape, the next step is to define weighting functions over the
ellipse. As in the previous section, let t = (cos ¢, sin ¢) be the normalized minor eigenvector
of the smoothed structure tensor, and let ¢ and b the major and minor axes of the ellipse.

Moreover, let
1 0
2a
S = ( ) ) (5-31)
0 3

?) (5.32)

then the linear mapping

R = 0 cosg sing 1
¢ 0 55/ \—sing cose 2

—
| o
s
s
8 2.
S a|:s
s Is
\-/
I
N =
|
-~
e Q=
= S
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Figure 5.16: Filter kernel used by the anisotropic Kuwahara filter (N = 8). The shape and orientation

of the filter kernel is adjusted to the local structure of the input.

maps points from the ellipse to a disc of radius 0.5, as illustrated in Figure 5.15. This
mapping allows us to define a set of weighting function

wie (x) = hi (SR—(x))

~ Ho(R-27k/NSR—¢(x)) (539

over the ellipse by pulling back the weighting functions A defined over the circle. In
Figure 5.16, an ellipse and the corresponding weighting functions wy are shown. As in
the case of the generalized Kuwahara filter, the weighting functions are used to compute
the weighted means and weighted variances of the sectors, and the filter response of the
anisotropic Kuwahara filter is defined by Equation (5.14).

An implementation of the anisotropic Kuwahara filter may be obtained by a straight-
forward modification of the implementation of the generalized Kuwahara filter shown in
Listing 5.1. All that must be done is replacing Equation (5.21) by Equation (5.33), or more
specifically, the computation of the variable v has to be updated. Moreover, the outer loop
must be changed to iterate over all pixels contained in the bounding box of the ellipse.
Figure 5.17 shows the results of a benchmark comparing different implementations of
the anisotropic Kuwahara filter. As can be seen, the straightforward implementation has
comparatively poor performance for N = 4 (tex4) as well as N = 8 (tex8) sectors. In fact,
this is not surprising, since for every processed pixels in the filter neighborhood, N texture
fetches have to be performed. The number of texture fetches can be reduced by packing
four consecutive weighting functions g, ..., k3 into an RGBA texture map. In this case,
for N = 4 only a single texture fetch and for N = 8 only two texture fetches are necessary.
This texture map, Hyi23, is constructed by sampling the weighting functions hy,...,/13, as ex-
plained in Section 5.3.3, and storing the result in the corresponding color channel. Let x be
the current relative pixel position, and let v = SR_,(x), then Equation (5.33) generalizes to

(wo(x), ..., w3(x)) & Hor23(v) (5.34)

and
(wa(x), ..., w7(x)) ~ Hor23(R-x(v)) = Ho123(— ), (5-35)
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Figure 5.17: Benchmark comparing different implementations of the anisotropic Kuwahara filter for
different generations of NVidia GPUs. tex4,tex8: Unoptimized texture-based implementation using a
grayscale image as texture. tex4/4,tex8/4: Texture-based implementation using an RGBA image as
texture. tex8/x2 Optimized texture-based implementation using two passes over the neighborhood.

wi(i,J)

wo (i, /)
wa (i, /)
w3 (—i,—J)

w3 (i, j) o
wa (—i,—J)
wo(—i,—J)

wy (—i,—J)
(@ (b)

Figure 5.18: (a) For N = 8 the values of the weighting functions can be fetched using two RGBA texture
lookups. (b) Symmetry about the origin of an ellipse.
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1 for (int j = 0; j <= max_y; ++3j) {

2 for (int i = -max_x; i <= max_x; ++i) {

3 if (G '=0) [I G >0)) {

4 float2 v = make_float2( SR.x * i + SR.y * j, SR.z * i + SR.w = j );
5

6 float dot_v = dot(v,Vv);

7 if (dot_v <= 0.25f) {

8 float3 c0 = make_float3(tex2D(texSRC, ix + i, iy + j));
9 float3 cl = make_float3(tex2D(texSRC, ix - i, iy - j));
10

11 float3 ccO = c0 * cO0;

12 float3 ccl = cl * cl;

13

14 float4 tmp0 = tex2D(texH0123, v.x, Vv.y);

15 float4 tmpl = tex2D(texH0123, -v.x, -v.y);

16 float const wx[8] = { tmp0.x, tmpO.y, tmp0.z, tmpO.w,
17 tmpl.x, tmpl.y, tmpl.z, tmpl.w };
18

19 for (int k = 0; k < 8; ++k) {

20 m[k]l += wx[k] * c0 + wx[(k+4)&7] = cl;

21 s[k] += wx[k] * ccO + wx[(k+4)&7] * ccl;

22 wlk] += wx[k] + wx[(k+4)&7];

23 }

24 }

25 }

26 }

27}

Listing 5.2: Excerpt of the optimized implementation of the anisotropic Kuwahara filter for N = 8, using
an RGBA texture map and exploiting the point symmetry of the elliptic filter shape.

since a rotation of v by —180 degrees is equivalent to negating v (Figure 5.18(a)). The
number of texture fetches can be further reduced by exploiting the point symmetry of
the elliptic filter shape as illustrated in Figure 5.18(b). This allows for processing two
pixels for each fetch of weights. Notice that the filter origin must be handled explicitly.
Listing 5.2 shows the implementation of the optimizations discussed so far. As can be seen
in Figure 5.17, the optimizations, denoted as tex4/4 (N = 4) and tex8/4 (N = 8), result
in a significant performance improvement in case of the GTX 285.

In case of the GTX 580 and GTX 680, performance improvements are achieved as
well, but for these two cards based on the Fermi and Kepler GPU architectures, respectively,
the performance for N = 8 sectors is still comparatively poor. The reason for the poor

wi (i, /)

wo (i, /)
wa(i,j)
w7(i,j)

w3 (i, /)
we (i, /)
wa(i,j)

ws(i,j)

(@ (b)

Figure 5.19: (a) Even sectors. (b) Odd sectors.
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14
i3
16
17
18

40
41
42
43
44
45
46

float4 SR = 0.5f * make_float4(t.x/a, t.y/a, -t.y/b, t.x/b);

float3 o = make_float3(0);
float ow = 0;
for (int rr = 0; rr < 2; ++rr) {
float3 m[4];
float3 s[4];
float w[4];
{

float3 ¢ = make_float3(tex2D(texSRC, 1ix, iy));

float wx = tex2D(texH0246, 0, 0).x;
for (int k = 0; k < 4; ++k) {

m[k] = c * wx;
s[k] = ¢ = c * wx;
wlk] = wx;

}
for (int j = 0; j <= max_y; ++j) {

for (int 1 = -max_x; i <= max_x; ++i) {

if (G 1=0) || G >0)) {
float2 v = make_float2( SR.

x * i + SR.y * j, SR.z * i + SR.w = j );

const float dot_v = dot(v,v);

if (dot_v <= 0.25f) {

const float4 tmp = tex2D(texH0246, v.Xx, V.y);
float const wx[4] = { tmp.x, tmp.y, tmp.z, tmp.w };

float3 ¢ = make_float3(tex2D(texSRC, ix + i, iy + j));

float3 cc = ¢ * c;

for (int k = 0; k < 4; ++k) {
const float wk = wx[k];

mlk] += wk * c;
s[k]l += wk * cc;
wlk] += wk;

c = make_float3(tex2D(texSRC, ix - i, iy - j));

ccC =cC * C;

for (int k = 0; k < 4; ++k) {
const float wk = wx[(k + 2) & 3];

m[k] += wk * c;
s[k] += wk * cc;

wlk] += wk;
}
}
}
}
}
for (int k = 0; k < 4; ++k ) {
m[k] /= wlk];
s[k] = fabs(s[k]l / w[k]l - m[k] = m[k]l);
float sigma2 = fmaxf(threshold, sqrtf(sum(s[k])));
float alpha_k = __powf(sigma2, -q);
o += m[k] = alpha_k;
ow += alpha_k;
}

SR = CUDART_SQRT_HALF_F = make_fTloat4(

3

dst.write(ix, iy, o / ow);

SR.x - SR.z, SR.y - SR.w,
SR.x + SR.z, SR.y + SR.w );

Listing 5.3: Excerpt of the optimized implementation of the anisotropic Kuwahara filter for N = 8.
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performance becomes apparent when inspecting the verbose output of CUDA’s NVCC
compiler, which reports a large amount of registers spilled to local memory. The Fermi
and Kepler GPU architectures restrict the maximum number of registers available to a
thread to 63. While the kernel for N = 4 sectors meets these restrictions, the kernel for
N = 8 does not, resulting in registers temporarily spilled to local memory. The reason
for the large number of used registers can be observed in Listing 5.1 line 12-14. The
storage for accumulating the means, variances, and weights of the different sectors requires
8 x (34 3 + 1) = 56 floats. Fortunately, the filter result defined by Equation (5.14) may
be computed incrementally, since the sector weights « can be computed independently
for each sector. This strategy is used in the implementation shown in Listing 5.3, where
two passes are made over the local neighborhood. In order to exploit the point symmetry
property of the ellipse, the sectors are not processed consecutively. Instead, the first pass
processes the even sectors and the second pass processes the odd sectors (Figure 5.19). To
this end, the even weighting functions kg, A5, h4, and he are sampled into an RGBA texture
map. The even weighting functions are obtained through a rotation by —45 degrees. As
demonstrated in Figure 5.17, this implementation, denoted by tex8/x2, achieves not only
significant performance improvements for the Fermi and Kepler architectures, but also
performs best for the GTX 285.

5.4.3 Polynomial Weighting Functions

Since the weighting functions wy are adapted to the local image structure, they are generally
different per pixel. Therefore, the calculation has to be carried out in the spatial domain.
Hence, an efficient implementation depends on the possibility to quickly evaluate K;. The
direct computation of K; would be absurd, since the computation requires convolution. In
the previous section kg, i1, h, and h3 were sampled into an RGBA texture map.

In this section, instead of discretizing or approximating the A, we aim for replacing
them with other functions that are simpler to compute. By construction, the sum ) ; i
is equal to the Gaussian function G,,. Hence, the h; define a smooth partition of the
Gaussian function G4,. The new weighting functions also have this property and their
construction is illustrated in Figure 5.20. Basis for the construction is the polynomial
(x1 + &) — nx3 that is shown in Figure 5.20(a). The red parabola shows the zero-crossing of
this polynomial. By clamping negative values to zero, one gets a function that is non-zero
inside and zero outside the parabola. By taking the square, it is ensured that the transition
at the zero-crossing is smooth (Figure 5.20(c)):

[Gcr+ 0 —nx2]” ifxy > a2 —¢

po(x) = ) (5-36)
otherwise
The functions for the other sectors are defined as corresponding rotations of py:

Pk = Po© R_ank/n (5-37)

By normalizing p and multiplying with G, , we get weighting functions defined over the
unit disc: )
e Pr(X

he(0) = =5 Gy, (x) (5.38)

Yico Pi(x)
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@ @
Figure 5.20: Construction of the proposed weighting functions: (a) Polynomial (x1 + ¢) — nx%.
(b) Squared polynomial [(xy + ) — nx%]z. (¢) Clamped polynomial pg. (d) Normalized po. (e) New
weighting function hy.

As desired, the sum ), h x is equal to G4, by construction, and the new weighting functions
Wy are now defined as in the previous section by:

W = hy o SR_y, (5.39)

The definition of /¢ includes two parameters ¢ and 1. The parameter ¢ controls how
much the different weighting functions overlap at the filter origin. For the anisotropic
Kuwahara filter to work as expected, it is required that all weighting functions overlap at
their boundaries, especially at the filter origin. Since the anisotropy A4 lies in the interval [0, 1],
it follows from Equation (5.22) that, for « = 1, the minor radius of the ellipse will not be

(@N=4 (b) N =8

Figure 5.21: Zero-crossings of the polynomial (x1 + ¢) — nx% for¢ = % and n = n(¢, %) (green),
n=n(. 2—17(,) (red), and n = (¢, ZW”) (blue).
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1 for (int j = 0; j <= max_y; ++3j) {

2 for (int i = -max_x; i <= max_x; ++i) {

3 if (G '=0) [I G >0)) {

4 float2 v = make_float2(SR.x * i + SR.z * j, SR.y = i + SR.w = j);
5

6 float dot_v = dot(v,Vv);

7 if (dot_v <= 1.0f) {

8 float3 c0 = src_(ix + i, iy + 3);

9 float3 cl1 = src_(ix - i, iy - 3);

10

11 float3 ccO = cO0 * cO0;

12 float3 ccl = cl * cl;

13

14 float sum = 0;

15 float wx[8];

16 float z, xx, yy;

17

18 XX = zeta - eta * V.X * V.X;

19 yy = zeta - eta * v.y * V.y;

20 z = fmaxf(0, v.y + xx); sum += wx[0] = z = z;
21 z = fmaxf(0, -v.x + yy); sum += wx[2] = z * z;
22 z = fmaxf(0, -v.y + xx); sum += wx[4] = z * Zz;
23 z = fmaxf(0, v.x + yy); sum += wx[6] = z * z;
24

25 v = HALF_SQRT2 * make_float2( v.x - V.y, V.X + V.y );
26

27 XX = zeta - eta * V.X * V.X;

28 yy = zeta - eta * V.y * V.y;

29 z = fmaxf(0, v.y + xx); sum += wx[1l] = z = z;
30 z = fmaxf(0, -v.x + yy); sum += wx[3] = z = z;
31 z = fmaxf(0, -v.y + xx); sum += wx[5] = z * z;
32 z = fmaxf(0, v.x + yy); sum += wx[7] = z =

33

34 const float g = _expf(-3.125f * dot_v) / sum;
35

36 for (int kO = 0; kO < 8; ++k0) {

37 const float wk = wx[k0] * g;

38 const int k1 = (kO + 4) & 7;

39

40 m[kO] += cO0 =* wk;

el s[k0] += ccO * wk;

42 w[k0] += wk;

43

44 m[kl] += cl * wk;

45 s[kl] += ccl = wk;

16 wlkl] += wk;

47 }

48 }

49 }

50 }

510}

Listing 5.4: Excerpt of the implementation of the anisotropic Kuwahara filter based on polynomial
weighting functions for N = 8 sectors.
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(a) (b)

Figure 5.22: (a) Weighting function (xo * Gp) - Go based on convolution. (b) New weighting function
based on the polynomial [(x + ¢) — ny?]2.

smaller than half of the radius. Hence

2

{=- (5-40)

r
is a reasonable choice that ensures that all sectors overlap at the filter origin. The parameter
n controls how much the sectors overlap at their sides. Different choices for n are shown
in Figure 5.21. A convenient way to parameterize 7 is by the intersection of the unit circle
with the zero-crossing of the polynomial (x; + ¢) — nx2, where the intersection point is
represented in polar coordinates (cos y, sin y). Solving

(x1 + ) —nx3 = (cosy +¢) —psin® y* = 0 (5.41)
for n then yields:
¢+ cosy
n¢,y)=-——— (5-42)
sin” y

In order for the Zk to be well-defined on the unit disc, it is necessary that the sum ) ﬁk is
non-zero for every point of the unit disc. This can be achieved by requiring y > % (blue
plot of Figure 5.21). Conversely, it is undesirable that more than two sectors overlap on
one side. An approximate bound for this is y < ZW” (green plot of Figure 5.21). Hence,

reasonable choices for 1 are in the range:
Main@) = 1(8.3F) = 0 = (6 F) = mmar© (5.43)

In this work, all examples use { = % and

n(l 37,)% 0.84 ifN =4

3 5N : (5-44)
312N 377 if N =8

Figure 5.22 demonstrates that the polynomial weighting functions closely approximate
the convolution-based weighting functions. Listing 5.4 shows how the polynomial weighting
functions may be implemented efficiently for N = 8. Here, it is important to use the max
function. On GPUs this function is generally available as intrinsic function and much
faster, since no branching is performed. For N = 8 the vector v has to be rotated by
/4. Since a rotation by multiple of /2 can be performed by swapping and negating
coordinates, the computation is performed in two stages. First, the weights are calculated
for 0, 7/2, = and 3/2x. Second, a rotation by 7 /4 is performed and the weights calculated
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Figure 5.23: Benchmark comparing different implementations of the anisotropic Kuwahara filter for
different generations of NVidia GPUs. poly4, poly8: Polynomial weighting functions with 4 or 8 sectors
implemented as in Listing 5.4. poly8/x2: Optimized polynomial weighting function implementation,
similar to Listing 5.3. tex4/4, tex8/4, tex8/x2 as in Figure 5.17.

for w/4,3/4m,5/4w and 7/47x. For the sake of simplicity, the implementation in Listing 5.4
performs a single pass over the filter neighborhood, resulting in registers being spilled to
local memory as in case of the texture-based implementation. Again, better results are
achieved by an implementation similar to those in Listing 5.3. Figure 5.23 compares the
execution times of different implementations of the new approach with the texture-based
implementation. For all GPU architectures, the optimized texture-based implementation
outperforms the optimized implementation based on the polynomial weighting functions.
Nonetheless, the polynomial weighting functions remain interesting for platforms where no
high-performance texture hardware is available (e.g., texture support is optional in OpenCL),
or where auxiliary textures are difficult or inconvenient to use, such as the Adobe Pixel
Bender language.
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(a) Original image (b) Anisotropic Kuwahara filter (¢) Proposed method

Figure 5.24: Example comparing the multi-scale approach with the single-scale approach.

5.5 Multi-scale Processing

The level of abstraction achievable with the generalized and the anisotropic Kuwahara
filter is limited by the filter radius. Simply increasing the filter radius is typically not a
solution, as it often results in artifacts. Another possibility would be to control the radius
adaptively per pixel depending on the local neighborhood, but the computational cost
would be very high, as the filter depends quadratically on the radius. In this section, a multi-
scale approach, where the anisotropic Kuwahara filter is applied at multiple scales, will
be presented. The computations are carried out on an image pyramid, and processing is
performed in a coarse-to-fine manner, with intermediate results being propagated up the
pyramid. Figure 5.24 shows an example image processed with single-scale and multi-scale
approaches.

A schematic overview of the multi-scale technique is shown in Figure 5.25. Processing
starts with building an image pyramid of the input image. Next, the pyramid is processed
from the coarsest to the finest level. On the coarsest level, the smoothed structure tensor
and anisotropic Kuwahara filter are computed, and their results then upsampled to the next
finer level. Based on an approximation of the local variances, the upsampled result of the
anisotropic Kuwahara filter is then merged with the image data of the current pyramid level.
From this merged result, the smoothed structure tensor is calculated, and based on their
anisotropy measure, the smoothed structure tensor and the upsampled structure tensor
from the previous level are merged. Using the merged structure tensor, the anisotropic
Kuwabhara filter is applied to the merged image data. Until the finest level of the pyramid is
reached, the result of the anisotropic Kuwahara filter and the merged structure tensor are
upsampled and the process is repeated for the next finer level. The next sections discuss the
different parts of the algorithm in detail.

5.5.1 Pyramid Construction

The pyramid construction is performed using resampling convolution [Schg2]. A downsam-
pling factor of 2 has been used for all experiments. Motivated by scale-space theory [Ling4b]
and the classical approach by Burt and Adelson [BA83] for building a pyramid, initially a
windowed Gaussian was used as resampling filter. But the Gaussian filter tends to remove
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Figure 5.25: Schematic overview of the multi-scale anisotropic Kuwahara filter.

Build low-pass filtered pyramid

too much low frequencies, creating a less sharp looking result. Therefore, several popular
resampling filters, including bilinear, cubic, Catmull-Rom, Mitchell-Netravali and Lanczos,
were considered. Among these, the Lanczos3 filter [Bli8g] was found to give the best result
for most examples. As pointed out by Blinn, the Lanczos3 filter keeps low frequencies and
rejects high-frequencies better than most other well-known filter. This makes it well-suited
for the multi-scale approach presented here. However, notice that using the Lanczos3 filter
might create or enhance local extrema and violates the causality axiom of scale-space theory
[Ling4b]. Nonetheless, it works very well in this particular case.

5.5.2 Filtering and Propagation

The multi-scale filtering is performed similar to the multi-scale local structure estimation
(2.8). The pyramid is processed in coarse-to-fine order. For the coarsest level, the anisotropic
Kuwahara filter is computed as usual. For the other levels, the upsampled filtering result
from the previous level and the image data of the current level are merged using a linear
combination:
k= gk k4 (1 _IBk)JTk+1
Here, f k denotes the merged result, f* is the original image data of the current level and
f*+1is the upsampled filtering result from the previous level. The merged result is now used
to calculate the structure tensor of the current level, which is merged with the upsampled
structure tensor from the previous level. Finally, the merged result is processed using the
single-scale anisotropic Kuwahara filter. This process is then repeated until the finest level of
the pyramid is reached. The weighting factor B is defined based on the standard deviation
sk by:
B* = clamp(s* - p, (pa)* — 7. 0.1)

Additional user control is provided through the parameters ps; and p;. The parameter p;
applies to all level in a uniform way, while the parameter p,; takes the scale into account. In
order to account for small standard deviations due to noise, the threshold parameter , is
provided. Typical values for these parameters are p; = 0.5, pgy = 1.25 and 7, = 0.1.

The calculation of the standard deviation is computationally expensive and therefore
an approximation is used. During the computation of the anisotropic Kuwahara filter,
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standard deviation level

Figure 5.26: Original image, approximation to standard deviation and output of the anisotropic Kuwahara
filter for the different pyramid levels.

the standard deviations s; for each sector are computed. Since the sum of all weighting
functions w; is equivalent to a Gaussian, the sum of the thresholded standard deviations

N-1

Smax = Z max(rw, [Isi ”)

i=0

is an approximate for the local standard deviation that can be easily computed during the
filtering at negligible computational cost. Since the standard deviation is required for the
merging process before the actual computation of the anisotropic filter, the approximate
standard deviation spyax 1s stored during the filtering as an additional result. This can be
done, for example, by storing it in the alpha channel of the filter result. At each level of the
pyramid, the approximate standard deviation from the previous level is then upsampled and
used to calculate the weighting factor By (Figure 5.26).

Upsampling is performed with bilinear interpolation. Typically, there is no benefit
from using more sophisticated upsampling techniques. This might be surprising on the first
glance. Especially, since one might expect that usage of a better upsampling filter should
result in sharper color boundaries. However, for pixels close to edges, the approximate
standard deviation is high, and therefore, the weight B¥ is one. Thus, pixels close to edges
will be overridden during the merging process.

5.6 Results

Figure 5.27 shows a comparison with the generalized Kuwahara filter by Papari et al.
[PPCo7]. Since this approach uses an isotropic static set of filter kernels, it fails to capture
small directional image features. Moreover, shape boundaries are less preserved, because
the filter kernels have predefined primary orientations. Due to the fixed isotropic filter
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Original image by ko the Jaguar @ flickr

(¢) Generalized Kuwahara filter (d) Single-scale anisotropic Kuwahara filter

(e) Difference of (d) to polynomial weighting functions (f) Multi-scale anisotropic Kuwahara filter
(single-scale)

Figure 5.27: The anisotropic Kuwahara filter achieves a painterly look by preserving and enhancing
directional image features.
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Original image by Keven Law @ flickr

(a) Original image (b) AKF (3 iterations) (¢c) GKF (3 iterations)

Figure 5.28: The anisotropic Kuwahara filter creates, in contrast to the generalized Kuwahara filter,
consistent color regions without showing clustering artifacts when applied iteratively.

(¢) Bilateral filter [TM98] (d) Mean shift segmentation [CM02]

Figure 5.29: Comparison with bilateral filter and mean shift segmentation.
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Original image by pasma @ flickr

(c) Single-scale (d) Multi-scale

Figure 5.30: Comparison of anisotropic Kuwahara filter with the bilateral filter.

kernels, Papari et al.’s approach is prone to group pixels into clusters of circular shape.
This becomes more problematic when the filter is applied iteratively to achieve further
abstraction, as shown in Figure 5.28. By contrast, the anisotropic Kuwahara filter avoids
this and creates feature-preserving color regions even after multiple applications. The
results created by the implementation based on polynomial weighting functions are visually
indistinguishable from the output of the anisotropic Kuwahara filter using the texture-
based weighting functions. The same feature-preserving direction-enhancing look is created.
Minor differences (Figure 5.27(e)) appear in high-contrast areas. This is not surprising,
since both filters do not match exactly. As the primary aim of the filter is abstraction, these
minor differences are irrelevant.

Figure 5.29 demonstrates the ability of the anisotropic Kuwahara filter to abstract high-
contrast images. The bilateral filter is typically not effective in abstracting high-contrast
details, and thus leaves many small and noisy regions untouched (see the ground). In
case of mean shift segmentation, its density estimation in the multidimensional space
results in rough region boundaries. The anisotropic Kuwahara filter, on the other hand,
produces a clean and consistent look of abstraction across the image, without noisy pixels
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Original image courtesy Philip Greenspun

(a) Original image (b) Flow-based bilateral filter (c) Proposed method

Figure 5.31: Application to an image with 2% Gaussian noise and 5% impulse noise.

or rough boundaries. Figure 5.30 shows an example, where the bilateral filter smoothes
away most of the interesting low-contrast information (the cat’s fur) and leaves only high-
contrast details (even the black spots around mouth and nose), whereas a consistent and
feature-enhancing abstraction all over is provided by the anisotropic Kuwahara filter. The
single-scale anisotropic Kuwahara filter, on the other hand, provides a very consistent level
of abstraction over the whole image. The multi-scale version provides a much stronger
abstraction. Above the nose, there is slightly less abstraction, but the overall look is also
consistent. However, some of the cat’s whiskers are lost. Moreover, the outputs of the
single-scale and multi-scale method look a little bit washed out. Figure 5.31 shows the
vulnerability of the bilateral filter to high-contrast noise even more clearly. The input
image here is artificially corrupted with Gaussian and impulse noise. While the anisotropic
Kuwahara filter successfully restores the image and creates a visually pleasing output,
the flow-based bilateral filter, which is known to perform better on noisy input than the
full-kernel bilateral filter, clearly fails to remove high-contrast impulse noise.

Two problematic cases, where the multi-scale anisotropic Kuwahara filter fails to
produce good looking results for the default parameters are shown in Figures 5.32 and 5.33.
In the first case, parts of the image look blurred. Also, the abstraction of the rocks in the
background is inconsistent. Moreover, parts above the plant are smoothed with the ground.
By adjusting the parameters p; and p,, the blurring can be removed. But in this case the

Original image courtesy Philip Greenspun

(a) Original image (b) Single-scale (¢) Multi-scale

Figure 5.32: Example showing a problematic case, where the multi-scale approach creates an inconsistent
level of abstraction.
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(a) Original image (b) Multi-scale

Figure 5.33: The multi-scale anisotropic Kuwahara filter applied to an image with high-frequency texture.

abstraction is also less strong. In the second case, the image is very difficult to abstract, due
to its high-frequency texture. The multi-scale method performs decent. However, there are
clearly noticeable artifacts near to color region boundaries, for example around the eyes
and where the nose meets the face.

The single-scale and multi-scale anisotropic Kuwahara filter has been also applied to
video abstraction and it was found that per-frame filtering alone provides excellent temporal
coherence. Thus, no extra processing, such as motion estimation [Litg7; HEo04] or adaptive
color quantization is required. Providing a painterly look, it is an interesting alternative
to video abstraction frameworks based on the bilateral filter, such as the ones discussed in
Chapters 3 and 4. A limitation of the technique is that it is not suitable for creating a "rough
and brushy" look as found in some oil paintings (e.g., "Starry Night" by Vincent van Gogh).
To create such strong textured brush effects, a background paper texture or a directional
cumulative alpha map [Hero2] could be incorporated into the approach.






Chapter 6

Coherence-Enhancing Filtering

This chapter presents an image and video abstraction technique that places emphasis
on enhancing the directional coherence of features. The most notable related work in
this category is image abstraction and stylization based on PDEs, in particular, shape-
simplifying image abstraction by Kang and Lee [KLo8] and Weickert’s coherence-enhancing
shock filter [Weio3]. However, such PDE-based techniques may require a large number of
iterations and tend to be unstable when used for video processing [Paro8]. The technique
presented in this chapter builds upon the idea of combining diffusion with shock filtering
for image abstraction, but is, in a sense, contrary to that of Kang and Lee [KLo8], which is
outperformed in terms of speed, temporal coherence, and stability. Instead of simplifying the
shape of the image features, the aim is to preserve the shape by using a curvature-preserving
smoothing method that enhances coherence. More specifically, smoothing is performed in
the direction of the smallest change, and sharpening in the orthogonal direction. Instead of
modeling this process by a PDE and solving it, approximations that operate as local filters
in a neighborhood of a pixel are used. Therefore, good abstraction results can be achieved
in just a few iterations, making it possible to process images and video at real-time rates on
a GPU. Moreover, the proposed method results in a much more stable algorithm, enabling
temporally-coherent video processing. Compared to conventional abstraction approaches

Original images courtesy Tambako the Jaguar @ flickr and Philip Greenspun

Figure 6.1: Examples created by the technique described in this chapter.

125
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Original image by Ivan Mlinaric @ flickr

(a) Original image (b) Anisotropic Kuwahara filter (¢) Anisotropic Kuwahara filter
(single-scale) (multi-scale)

(d) Bilateral filter [TM98] (e) Shape-simplifying image (f) Coherence-enhancing shock
abstraction [KL0S8] Sfilter [Wei03]

(g) Proposed method (N = 2) (h) Proposed method (N = 5) (i) Proposed method (N = 10)

Figure 6.2: Comparison of the presented approach with other popular image abstraction techniques. The
bottom row shows results of the algorithm for different number of iterations (N = 2,5, 10).

(Figure 6.2), such as the bilateral filter, the method provides a good balance between the
enhancement of directional features and the smoothing of isotropic regions. As shown
in Figure 6.1, the technique preserves and enhances directional features while increasing
contrast, which helps to clarify boundaries and features.

A schematic overview of the presented technique is shown in Figure 6.3. Input is given
by a grayscale or color image (RGB color space is used for all examples). The algorithm
runs iteratively and stops after a user-defined number of iterations, controlling the strength
of the abstraction. For each iteration, adaptive flow-guided smoothing (Figure 6.4(a)) and
sharpening (Figure 6.4(b)) are performed. Both techniques require information about the
local structure, which is obtained by an eigenvalue analysis of the smoothed structure tensor
and computed twice for every iteration, once before the smoothing and again before the
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Figure 6.3: Schematic overview of the proposed method.

sharpening. With every iteration, the result becomes closer to a piecewise constant image,
with large smooth or even flat image regions where no distinguished orientation is defined.
Since having valid orientations defined for these regions is important for the stability of the
algorithm, the structure tensor from the previous calculation is used. For the first iteration,
where no result from a previous computation is available, a relaxation of the smoothed
structure tensor is performed. As a final step, edges are smoothed by flow-guided smoothing
with a small filter kernel (Figure 6.4(c)). The next section briefly reviews shape-simplifying
image abstraction. The following sections then examine the different stages of the algorithm
in detail.

6.1 Shape-simplifying Image Abstraction

Previously, Osher and Rudin [ORgo], as well as Weickert [Weio3], made comments about
the artistic look of shock filtered images, but the work of Kang and Lee [KLo8] was the first
to apply diffusion in combination with shock filtering for targeting IB-AR. They choosed
mean curvature flow (MCF) as the diffusion method, which evolves isophote curves under
curvature speed in normal direction, resulting in simplified isophote curves with regularized
geometry. In contrast to other popular edge-preserving smoothing techniques, such as
the bilateral or the Kuwahara filter, MCF smoothes not only irrelevant color variations
while protecting region boundaries, but also simplifies the shape of those boundaries. The
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Figure 6.4: Illustration of the different key techniques employed in the presented algorithm. (a) Adaptive
flow-guided smoothing for simplification and abstraction. (b) Shock filtering to preserve and enhance
sharp edge transitions. (c¢) Edge smoothing for anti-aliasing.
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(a) Original image (b) MCF (15 / 45 / 75 iterations)

(¢c) CMCF (15 / 45 / 75 iterations)

(d) CMCF + Shock (15 / 45 / 75 iterations)

Figure 6.5: Comparison of mean curvature flow withlwithout shock filtering and constraint. (a) Original
image. (b) Mean curvature flow. (c¢) Mean curvature flow with shock filtering after 15 iterations.
(d) Constrained mean curvature flow with shock filtering after 15 iterations. In all cases, a time step of
0.25 was used.

evolution equation of MCF is given by

2 2
ou . Uilxx — 2UxUylyy + ujuyy
— =«|Vu| with « = 5 32
(ux + uy)

5 (6.1)

denoting the curvature. Equation (6.1) can be implemented using central differences. A
better approach, however, is to use a finite difference scheme with harmonic averaging
[DWo7].

MCF performs strong simplification of an image but also creates blurred edges (Fig-
ure 6.5(b)). Therefore, Kang and Lee [KLo8] performed deblurring with a shock filter
(Section 6.4.1) after some MCEF iterations, which helps to keep important edges during the
evolution. From an artistic point of view, however, shock filtered MCF is typically still too
aggressive and does not properly protect directional image features (Figure 6.5(c)). Similar
to Equation (3.3), Kang and Lee therefore constrained the mean curvature flow by using
the ETF to penalize diffusion that deviates from the local image structure (Figure 6.5(d)).



6.2. Local Structure Estimation 129

Original image by Ivan Mlinaric @ flickr

(a) None (b) Relaxation (¢) Gaussian smoothing (d) Both

Figure 6.6: Demonstration how relaxation and Gaussian smoothing of the structure influence the final
result. In all cases, 10 iterations were performed. For the Gaussian smoothing p = 1 was used.

More concretely, the evolution equation is given by

Ju E  Vut
= (0= g o) ) - )

where (-, -) denotes the per-pixel scalar product of the ETF vectors and vectors perpendicular
to the image gradients. The control parameter r € [0, 1] allows for blending between the
unconstrained and the constrained MCF. Alternatively, instead of the ETF, the minor
eigenvector field of the SST can be used.

MCEF and its constrained variant contract isophote curves to points [Gra87]. For this
reason, important image features must be protected by a user-defined mask. A further
limitation is that the technique is not stable against small changes in the input and therefore
not suitable for per-frame video processing.

6.2 Local Structure Estimation

In low-contrast regions, the signal-to-noise ratio is low, making the gradient information
unreliable. Accordingly, the estimated orientation is almost random and of little value.
Since appropriate orientation information is critical for the presented algorithm, unreliable
structure tensors are replaced using the approach discussed in Section 2.7.3. However,
performing the relaxation for every computation of the structure tensor is expensive. There-
fore, the relaxation is only performed for the first computation of the structure tensor. All
subsequent computations use the structure tensor of the previous computation for points
where the smoothed structure tensor’s major eigenvalue is below a given threshold.

Figure 6.6 compares how relaxation and smoothing of the structure tensor influence
the final result. As can be seen, without smoothing, the proposed algorithm performs rather
poorly. Relaxation and smoothing perform much better, but even better results are obtained
by combining both. When used in combination with the relaxation the standard deviation
of the Gaussian smoothing can be kept comparatively small, while still achieving a strong
stylization effect. This helps to preserve circular image features such as eyes.
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Original image by Ivan Mlinaric @ flickr

(a) (b) © (d)

Figure 6.7: Comparison of flow-guided smoothing using first-order Euler vs. second-order Runge-Kutta
integration with and without shock filtering. (a) Euler. (b) Euler + shock filtering. (c) Runge-Kutta.
(d) Runge-Kutta + shock filtering.

6.3 Adaptive Smoothing

To simplify the image, line integral convolution along the integral curves defined by the
minor eigenvector field of the smoothed structure tensor is performed (Section 2.9.3). In
contrast to the isophote curves of the image, the integral curves defined by the smoothed
structure tensor are much smoother. This has the effect that smoothing along them results
in a regularization of the geometry of the isophote curves. To achieve high-quality results,
the stream line integration must be performed using second-order Runge-Kutta method,
since comparatively long integral curves are required to achieve a strong simplification effect.
For such long curves, the Euler method is too imprecise (Figure 2.31). In Figure 6.7, it is
demonstrated how the choice of the integration method influences the final result.

In Section 2.9.3, the length of the integral curves used for line integral convolution
was expected to be globally defined; for instance, in case of a Gaussian filter kernel, to be
proportional to its standard deviation. However, this may lead to issues in high curvature
regions, as illustrated in Figure 6.8. If the stream lines are too long, they may wrap around,
resulting in some pixels being sampled more often than others. Moreover, due to rounding
errors and inaccuracies in the integral curve computation, adjacent isophotes may be
sampled, which introduces additional blurring. To avoid these issues, the length of the
stream lines and, correspondingly, the size of the Gaussian filter kernel must be controlled
adaptively on a per-pixel basis. The next two sections discuss two approaches.

6.3.1 Anisotropy-based Length

To adaptively control the amount of smoothing, the anisotropy measure of the smoothed
structure tensor discussed in Section 2.6.1 may be used. The anisotropy A ranges from zero
to one, with zero corresponding to isotropic and one corresponding to entirely anisotropic
regions. To control the length of the integral curve, the standard deviation of the one-
dimensional Gaussian function is defined by

1
6'5 = ZO'S(I +A)2
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Figure 6.8: (a) In high curvature regions, long integral curves may wrap around, resulting in blurring
perpendicular to the integral curve. (b) Adaptively controlling the length of the integral curve avoids this
problem.

The global parameter oy thereby enables to fine tune the smoothing, and a typical choice is
os = 6, which is used for all examples. By definition, the adapted parameter o lies in the
range 05/4 < 65 < 0. Thus, in regions of high curvature, the anisotropy will be low and,
therefore, oy small. In regions of low curvature, o, will be large, resulting in an enhancement
and regularization of directional image features.

6.3.2 Adaptive Length

The approach discussed in the previous section works reasonably well in practice but
is purely heuristic and its exact behavior difficult to analyze. Instead of adjusting the
integral curve’s length in advance, an alternative and more intuitive approach is to adjust its
parameterization by slowing down the parameter’s velocity if necessary. To this end, the
angle between the minor eigenvectors of the previous step and the current step is computed:

0, = arccos <tk_1(xk_1), tk(xk)>

Taking the sum © = Zf;l 0; of the angles measures the cumulated angular change of the
stream line. If ® > 7, the integral curve is likely to wrap around or to be comparatively
noisy. In both cases, extending it further in the current direction is undesirable. However,
simply stopping the tracing process corresponds to truncating the filtering operation and
may introduce sampling artifacts. Instead, a better approach is to modify the parameter of
the integral curve. To this end, the fraction traveled on a half-circle with arc length L can be

considered for 6 :
6
Aq_nﬁL
If ALy is larger than the step size &, this indicates that the parameter of the arc length
parameterized integral curve moves too fast, such that a larger step size is required, for
which ALy is used:

uk®t =k 4 max(h, ALg)
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The implementation is straightforward. In Listing 2.6, line 28 has to be replaced by:

1 float Lk = acosf(fminf(vt,1)) / CUDART_PI_F * f.radius();
2 u += fmaxf(step_size, Lk);

6.4 Sharpening

The adaptive flow-guided smoothing discussed in the previous section is very aggressive.
As can been seen in Figures 6.7(a) and 6.7(c), the overall shape of the image features is
well-preserved, but transitions between color regions are smoothed as well. In this section,
deblurring by shock filtering to obtain sharp transitions at edges will be discussed.

6.4.1 Classical Shock Filter

In image processing, shock filters were first studied by [OR9go]. The classical shock filter
evolution equation is given by

ou .
W = —s]gn(£(u))|Vu| s (6.3)
with initial condition u(x,0) = I(x), and where £ is a suitable detector, such as the

Laplacian Au or the second derivative in direction of the gradient. In the influence zone
of a maximum, £(u) is negative, and therefore a local dilation with a disc as structuring
element is performed. Similarly, in the influence zone of a minimum, £(u) is positive, which
results in a local erosion. This sharpens the edges at the zero-crossings of Au, as shown
in Figure 6.9. Shock filters have the attractive property of satisfying a maximum principle,
and, in contrast to unsharp masking, therefore, do not suffer from ringing artifacts. Alvarez
and Mazorra [AMo4] later studied shock filter in conjunction with anisotropic diffusion.

Shock filters are also closely related to local neighborhood filters. As was shown by
Guichard and Morel [GMo3], the classical Osher-Rudin shock filter corresponds asymp-
totically to a filter that is similar to a filter originally proposed by Kramer and Bruckner
[KB75]. This filter replaces the current gray level value by either the minimum or maximum
of the filter region, depending on which is closer to the current value. This results in either
an erosion or a dilation and thus sharpens the image. A systematic treatment of minimum
and maximum filters was presented in [VVV8E].

—
(@) (b) © (@)

Figure 6.9: Illustration of shock filtering. (a) A smooth step edge. (b) First derivative of the edge.
(¢) Second derivative of the edge. (d) A shock filter applies a dilation where the second derivative is
positive, and an erosion where it is negative, resulting in a sharpening effect.
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(a) Original image (b) Coherence-enhancing shock filter (¢) Gradient-directed shock filter

Figure 6.10: Demonstration showing how the choice of the employed shock filter variant influences the
final result of the proposed method.

6.4.2 Coherence-Enhancing Shock Filter

A further modification is the coherence-enhancing shock filter by Weickert [Weio3]. The
sign of the Laplacian is replaced by the sign of the second derivative in the direction of the
major eigenvector of the smoothed structure tensor

u; = —sign(vyy)|Vul,

where v = G, * u denotes a smoothed version of the evolving image and 7 is the major
eigenvector derived from the structure tensor. To achieve higher robustness against small-
scale image details, the input image may be regularized with a Gaussian filter prior to the
second derivative or structure tensor computation.

In Figure 6.11(b) the coherence-enhancing shock filter applied to the popular mandrill
image is shown. Clearly noticeable is the typical high-contrast of the output. Figure 6.11(c)
shows the output of the proposed method, where the gradient-directed shock filter has been
replaced by the coherence-enhancing shock filter. The color contrast is much more balanced
and color regions have a consistent diffuse color variation. Weickert’s shock filter achieves
excellent results in combination with the proposed adaptive smoothing, but one limitation is
its performance. The filter is typically implemented using the explicit Osher-Sethian [OS88]
upwind scheme. In order to guarantee stability, the time step size has to be chosen < 0.5 and,
therefore, multiple iterations have to be performed. We use a time step size of 0.4 and three
iterations. For each iteration, first and second order derivatives and the smoothed structure
tensor have to be calculated. Another limitation is shown in Figure 6.10(b). Weickert’s
shock filter will introduce shocks in almost smooth regions, resulting in maze-like artifacts.
The next section discusses an alternative approach.

6.4.3 Gradient-directed Shock Filter

The idea in obtaining a fast shock filter implementation is to approximate the general
working principle discussed earlier and illustrated in Figure 6.9. First, whether a pixel is in
the neighborhood of a minimum or maximum is detected. Then, correspondingly, either
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Original image courtesy USC-SIPI Image Database

(a) Original image (b) Coherence-enhancing (¢) Proposed method with (d) Proposed method with

shock filter [Wei03] coherence-enhancing gradient-directed
shock filter shock filter

Figure 6.11: Comparison of the proposed method ( 10 iterations), using different shock filter variants,
with the coherence-enhancing shock filter (20 iterations, p = 5,0 =3, 71 =0.4).

an erosion or dilation is performed. Both operations are guided by the structure tensor, as
illustrated in Figure 6.12.

Derivative operators are highly sensitive to noise, and sensitivity increases with order.
Therefore, the second derivative operator used for the sign computation must be regularized
to avoid artifacts. In addition, the regularization allows for artistic control over the resulting
line thickness. Two strategies are at hand. First, the image can be isotropically smoothed
prior to derivative computation, using a Gaussian filter with standard deviation o;. This
helps to remove noise and allows for aggressive image simplification. Secondly, the smooth-
ing and derivative operators can be consolidated into a single operator, since convolution
and differentiation commute. Inspired by the flow-based difference of Gaussians filter and
its separable implementation (Section 4.5), the second-order derivative in direction of the

(@) (b)

Figure 6.12: Approximation of a shock filter by a flow-guided local neighborhood filter. (a) Visualization
of the sign of the FLoG filter. Negative values are red, positive values are green, and zero is shown black.
(b) For a negative FLoG sign, the maximum of the marked pixels is computed. (c) For a positive FLoG
sign, the minimum is computed.
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1 __global__ void flog( const gpu_pim2<float4> st, float sigma, gpu_pim2<float> dst )
2 {

3 const int ix = blockDim.x * blockIdx.x + threadIdx.x;

4 const int iy = blockDim.y = blockIdx.y + threadIdx.y;

5 if (ix >= dst.w || iy >= dst.h) return;

6

7 float2 n = st_major_ev(st(ix, iy));

8 float2 nabs = fabs(n);

9 float ds = 1.0f / ((nabs.x > nabs.y)? nabs.x : nabs.y);
10 float2 uv = make_float2(ix + 0.5f, iy + 0.5F);

11

12 float halfWidth = 5 = sigma;

13 float sigma2 = sigma * sigma;

14 float twoSigma2 = 2 » sigma2;

15

16 float sum = -sigma2 * tex2D(texL, ix + 0.5f, iy + 0.5f);
17 for( float d = ds; d <= halfWidth; d += ds ) {

18 float k = (d«d - sigma2) * __expf( -d«d / twoSigma2 );
19 float2 o = dxn;

20 float c = tex2D(texL, uv.x - 0.X, UV.y - 0.Yy) +

21 tex2D(texL, uv.x + 0.X, uv.y + 0.Yy);

22 sum += k * C;

23 }

24

25 sum = sum / (sqrtf(2=CUDART_PI_F) * sigma2 * sigma);

26 dst(ix, iy) = sum;

27}

Listing 6.1: Implementation of the flow-guided LoG filter.

major eigenvector is implemented by convolving the image locally with a one-dimensional
(scale-normalized) second-order Gaussian derivative,

d?Gy, (1 x? —o?2 t?
07Gy (1) =0 0;'() = ‘iex (— —2)
dr V2no} 207

in the direction of the minor eigenvector. This operation will be referred to as flow-based
Laplacian of Gaussian (FLoG). More specifically, let L be the input image converted to
grayscale, let v = G, * L, and let xo be the current pixel; then the convolution is computed
by

z(x9) = 0'; / Gy, (1) v(xo + 1 1(x0)) dt

where 1n(x¢) denotes the major eigenvector. The implementation is shown in Listing 6.1. As
in case of the orientation-aligned bilateral filter (Section 3.4), the evaluation of the integral is
performed using a constant step size with unit size along either the horizontal or the vertical
axis (Figure 3.9), and using bilinear interpolation. Due to the unit step size, this results in a
linear interpolation of two neighboring pixels, and allows for efficient implementation on
GPUs using texturing hardware.

The erosion and dilation operations are implemented as directional neighborhood
filter as well. Let f denote the input image and let xo be the current point, then the
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40

41

42

43

44

45

enum minmax_t { MIN_FLT, MAX_FLT };

struct minmax_impl_t {
float2 uv_, p_;
float v_;

__device__ minmax_impl_t(float2 uv) {
uv_ = p_= uv;
v_ = tex2D(texL, uv.x, uv.y);

template <minmax_t T> __device__ void add(float2 p) {
float L = tex2D(texL, p.x, p.y);
if ((T == MAX_FLT) && (L > v_.)) {

pP— = p;
v_ = L;
}
if ((T == MIN_FLT) && (L < v_)) {
p— = p;
v_ = L;
}
}
template <minmax_t T> __device__ void run( float2 n, float radius ) {
float ds;
float2 dp;
float2 nabs = fabs(n);
if (nabs.x > nabs.y) {
ds = 1.0f / nabs.x;
dp = make_float2(0, 0.5f - le-3);
} else {
ds = 1.0f / nabs.y;
dp = make_float2(0.5f - le-3, 0);
}
for( float d = ds; d <= radius; d += ds ) {
float2 o = d=n;
add<T>(uv_ + o + dp); add<T>(uv_ + o - dp);
add<T>(uv_ - o + dp); add<T>(uv_ - o - dp);
}
}

13

__global__ void grad_shock( const gpu_pim2<float4> st, const gpu_plm2<float> sign,
float radius, gpu_plm2<floatd> dst ) {
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix >= dst.w || iy >= dst.h) return;

minmax_imp1_t mm(make_float2(ix + 0.5f, iy + 0.5f));
float2 n = st_major_ev(st(ix, iy));
float s = sign(ix, iy);
if (s < 0) {
mm. run<MAX_FLT>(n, radius);
} else if (s > 0) {
mm. run<MIN_FLT>(n, radius);
}
dst(ix, iy) = tex2D(texSRC, mm.p_.x, mm.p_.y);

Listing 6.2: Implementation of the gradient directed minimax filter.
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Original im courtesy U 'PI Image Database
) X Ak - :

|

(a) Original image (b)o;, =0,0,=1 (€)o;i=0,0,=2 (d)o;=0,0,=4

(©oi=10,=1 f)o;=2,0,=1 (g)oi =3,0,=1 (h)yo, =4,0,=1

Figure 6.13: Different combinations of the isotropic and gradient directed smoothing parameters o; and
og, respectively, are shown for the proposed method.

gradient-directed shock filter is defined as:

min  f(x) ifz(xg) > 475
x€Ar(xg)

max f(x) ifz(xp) < —1s
X€Ar(x0)

f(x0) otherwise

Determination of the minimum and maximum is performed based on the corresponding
gray values. The filter neighborhood A, is defined as the set of pixels with a distance less
than r from x¢ intersecting the line, {x¢ + A n(xo)}, defined by the major eigenvector. The
implementation is shown in Listing 6.2. Again, a constant step size with unit size in either
horizontal or vertical direction is used. Bilinear interpolation, however, is not appropriate
for the computation of the minimum or maximum; therefore, the two neighboring pixels
are sampled explicitly, using nearest-neighbor sampling. Through a small correction of the
sampling offset, the correct sampling of horizontal, vertical, and diagonal lines is assured.
For the radius, typically r = 2 is used. The parameter t; controls the sensitivity to noise and
is typically set to 7, € [0, 0.01]. Since a scale-normalized second-derivative is used, 75 does
not depend upon o. The threshold effectively prevents the creation of shocks in almost
smooth regions, as can be seen in Figure 6.10(c).

The quality of the output is comparable to that of the coherence-enhancing shock
filter, but computationally the gradient-directed shock filter is much more efficient. It only
requires the smoothed structure tensor and the input image converted to grayscale. For the
sake of simplicity, the FLoG and the minimum and maximum filters have been implemented
independently, but obviously they could be implemented in a single pass as well. Moreover,
the gradient-directed shock filter provides finer artistic control. The parameter o, restricts
smoothing to the major eigenvector direction. This is especially useful for preserving small
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(a) Original image (b) Result (c) Anti-aliased result

Figure 6.14: The final step of the proposed method anti-aliases sharp transitions created by the shock
filter by performing flow-guided smoothing with a small kernel.

image features. To achieve a stronger abstraction, the isotropic smoothing parameter o; is
useful. For examples in this work, typically o, = 1.5 and o; = 0 were used. Figure 6.13
shows how the abstraction can be controlled using o, and o;.

6.5 Edge Smoothing

The shock filter creates very sharp transitions at region boundaries. To anti-alias the region
boundaries, as demonstrated in Figure 6.14, a possible solution is to apply the adaptive
smoothing with a small standard deviation o, € [1,1.5] as a final pass. In this case no
adaption of the standard deviation is performed. To this end, the structure tensor is not
recomputed. Instead, the structure tensor that computed for the shock filter is used.

6.6 Results

Figure 6.15 demonstrates the ability of the proposed approach to preserve circular features
like eyes. As shown in Figure 6.15(b), constrained mean curvature flow does not preserve
curvature and contracts circular image features to points. By contrast, the proposed adaptive
smoothing preserves the curvature of image features and, therefore, does not require manual
assistance, such as masking, to protect important image features. In addition to preserving

(a) Original image (b) SS14 (¢) Proposed method

Figure 6.15: In contrast to shape-simplifying image abstraction [KLo8], the proposed approach does not
require manual masking to protect small image features such as eyes.
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Original image courtesy Philip Greenspun

(a) Original image (b) Bilateral filter (4 iterations)

ey |

(¢) Anisotropic Kuwahara filter (d) Proposed method

Figure 6.16: In contrast to other techniques, the proposed approach emphasizes and enhances highly
anisotropic image features.

curvature, the adaptive smoothing effectively enhances small highly anisotropic image
features. This is demonstrated in Figure 6.16. By contrast, the anisotropic Kuwahara filter
either erodes or blurs thin image features.

Further examples are shown in Figure 6.17. In contrast to the bilateral filter (Fig-
ure 6.17(b)), the proposed approach creates a consistent abstraction across the entire image.
The anisotropic Kuwahara filter (Figure 6.17(c)) also creates a consistent abstraction, but
the result looks somewhat washed out because of missing contrast. For images with strong
directional features, shape-simplifying image abstraction typically achieves very good results
(Figure 6.17(d)). The proposed approach also performs excellently for these types of images
and, by increasing the number of iterations, a strong abstraction effect can be obtained as
well (Figure 6.17(f)). Figures 6.17(e) and 6.17(f) demonstrate the feasibility of the proposed
approach to control the strength of abstraction by changing the number of iterations. This is
also claimed for shape-simplifying image abstraction, but only given from a certain number
of iterations. For a small number of iterations, shape-simplifying image abstraction typically
shows artifacts, which makes a light abstraction effect impossible. The anisotropic Kuwa-
hara filter is limited to a light abstraction effect, since the amount of abstraction depends
upon the filter radius. Using larger filter radii will also increase the amount of blurring and
may destroy important image features.

Figure 6.18 demonstrates the stability of the proposed approach. Different methods
are applied to an image that has been artificially corrupted with Gaussian and impulse
noise. Shape-simplifying image abstraction delivers the least satisfactory performance. The
proposed approach performs decently, but is not able to remove the impulse noise. This
is not surprising. Both filters are based on anisotropic smoothing, which will remove the
Gaussian noise but also blur the impulse noise. Both techniques also use shock filtering,
which enhances noise. The anisotropic Kuwahara filter successfully restores the image,
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Original image by pasma @ flickr

(a) Original image (b) Bilateral filter (4 iterations)

(e) Proposed method (N = 2) (f) Proposed method (N = 10)

Figure 6.17: Comparison with anisotropic Kuwahara filter, shape-simplifying image abstraction, and

bilateral filter.

but the region boundaries are distorted. When the number of iterations is increased, the
proposed approach performs well. It converges to a nearly steady state that looks a little
odd (Figure 6.19(a)), but it does not blow up like shape-simplifying image abstraction
(Figure 6.19(b)).

In Figure 6.20, the proposed approach is compared with GradientShop by Bhat et al.
[Bha+10], a technique based on gradient domain image processing. In contrast to this
technique, the proposed approach also performs a regularization of the image that results in
smooth color boundaries. However, regions of the same color are not as smooth as the ones
created by GradientShop. This is because the adaptive smoothing only performs smoothing
in the tangential direction. On the other hand, this retains important visual detail, as for
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Original image courtesy Philip Greenspun

(b) Proposed method (c) Image corrupted with noise
applied to original image

(d) Shape-simplifying image (e) Proposed method applied (f) Anisotropic Kuwahara filter +
abstraction [KLO08] applied to noisy image proposed method applied
to noisy image to noisy image

Figure 6.18: Anisotropic Kuwahara filter, shape-simplifying image abstraction, and proposed method
applied to an image corrupted with 2% Gaussian noise and 5% impulse noise.

example, the specular reflection on the nose. Also notice that, unlike the proposed technique,
GradientShop currently does not perform processing in real-time.

In Figure 6.21 a comparison with the single-scale and multi-scale anisotropic Kuwahara
filters is shown. The level of abstraction is quite similar to the single-scale anisotropic
Kuwahara filter, but the proposed approach creates output with stronger contrast. This is

Original image courtesy Philip Greenspun

>

(a) CESF (b) SSI14 (c) CEF

Figure 6.19: Limit cases. (a) Coherence-enhancing shock filter [ Weio3 ] with 50 iterations. (b) Shape-
simplifying image abstraction [ KLo8] with 50 CMCF iterations. (c) Proposed method with 50 iterations.



142 Chapter 6. Coherence-Enhancing Filtering

(a) Original image (b) GradientShop [Bha+10] (c) Proposed method (N = 10)

Figure 6.20: Comparison with GradientShop by Bhat et al. [Bha+10].

(a) Original image

(¢c) AKF (single-scale) (d) AKF (multi-scale)

Figure 6.21: Comparison with single-scale and multi-scale anisotropic Kuwahara filter.
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Original image courtesy Philip Greenspun

(a) Original image (b) Proposed method

(c) Original image (d) Proposed method (e) Proposed method
(N =10,0; =0,0, =1.5) (N =30,0, =5,0, =1.5)

Figure 6.22: Examples of images that are difficult to handle for the proposed approach.

probably due to the shock filter. The output of the multi-scale approach looks very similar,
but more detail has been removed from, for example, the jackets and the background.

An image that is difficult to handle for the proposed approach is shown in Figure 6.22(a).
Here, two prevailing orientations exist. One of the water, which is almost horizontal, and
one of the contour of the rock. Since the gradient magnitude is high at the rock’s contour,
the orientation of the contour will dominate in a small neighborhood of the contour, during
the structure tensor smoothing. Therefore, the adaptive smoothing will perform smoothing
on both sides of the contour. This results in a halo-like effect, as shown in Figure 6.22(b). In
Figure 6.22(c), an image with high contrast texture is shown. If processed by the proposed
method with typical parameters, the texture will be emphasized (Figure 6.22(d)). To obtain
the result in Figure 6.22(e), a large number of iterations and o; = 5 had to be used to
prevent the shock filter from regarding the texture as edges. However, flow-like structures
are still clearly observable and are, again, due to the directional smoothing.

The proposed approach can also be applied to video using per-frame filtering without
extra processing. Very good temporal coherence is provided for 1—3 iterations. Applying
more iterations typically results in temporal artifacts becoming noticeable. However, com-
pared to shape-simplifying image abstraction or segmentation based approaches these are
rather minor.






Chapter 7

Conclusions

Measuring the success and evaluating the quality of an NPR technique is a difficult challenge.
In fact, it is one of the challenges identified by David Salesin in his famous keynote at
NPAR 2002. While some works have approached this subject—see the discussion on
evaluation in [J1]—authors of IB-AR paper typically either innovate on new styles or
demonstrate improvements over prior work; for instance, by an subjective evaluation using
side-by-side comparisons of results, as was also done in this work, or by demonstrating
performance improvements of the algorithm.

The orientation-bilateral filter improves over the xy-separable bilateral filter by avoid-
ing horizontal and vertical artifacts. This comes at the price of additional computational
overhead in form of the computation of the smoothed structure tensor. This has only a small
influence on the overall performance of the generalized cartoon pipeline, since the structure
tensor computation has to be performed only once and also may be shared with the flow-
based DoG. The flow-based bilateral filter further improves on the ability to enhance direc-
tional image features but is also computationally more demanding. Moreover, it was shown
that flow-based DoG filtering may be implemented in a separable way without sacrificing
quality, thus yielding a significant performance improvement. The anisotropic Kuwahara
filter generates a feature-preserving, direction-enhancing painterly look, without having to
deal with individual brush strokes. Unlike existing nonlinear smoothing filters, such as the
bilateral filter, it is robust against high-contrast noise and avoids overblurring in low-contrast
areas, providing a consistent level of abstraction across the image. However, the anisotropic
Kuwahara filter is also computationally expensive, since for every sector a full 2D kernel
has to be computed. Coherence-enhancing filtering aggressively smoothes out unimportant
regions but protects important features by enhancing contrast and directional coherence,
providing a good balance between content abstraction and feature enhancement consistently
across the image. Especially, for input with strong anisotropic structures it provides excellent
results. However, the shock filter may introduce undesired edges in flat and homogeneous
regions, due to the missing smoothing in the gradient direction. Moreover, highly textured
image regions and region boundaries with contrary flow orientations on both sides are
difficult to handle. For all the developed filters, the local orientation, and for some also the
local anisotropy, obtained from the smoothed structure tensor were significant. Moreover,
the experiment in Section 2.5 showed that the smoothed structure tensor constitutes not
only an improvement over the edge tangent flow in terms of computationally efficiency, but
also in terms of the quality of the orientation estimate.

145



146 Chapter 7. Conclusions

There has been little discussion on video processing in this work, although the term
video explicitly appeared in the title. This is because the techniques described in this work
achieve good temporal coherent output off the shelf by simply processing each frame
individually. This is significant, since temporal coherence is a long-standing challenge in
video IB-AR.
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