
Benjamin Nehring | Suren Poghosyan | Hans Zessin

On the Construction of Point Processes  
in Statistical Mechanics

U n i v e r s i t ä t  P o t s d a m

Preprints des Instituts für Mathematik der Universität Potsdam
2 (2013) 5



 



Preprints des Instituts für Mathematik der Universität Potsdam 



 



Preprints des Instituts für Mathematik der Universität Potsdam 
2 (2013) 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Benjamin Nehring | Suren Poghosyan | Hans Zessin 
 
 

On the Construction of Point Processes  
in Statistical Mechanics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Universitätsverlag Potsdam 



Bibliografische Information der Deutschen Nationalbibliothek  
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der  
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind  
im Internet über http://dnb.de abrufbar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universitätsverlag Potsdam 2013 
http://info.ub.uni-potsdam.de/verlag.htm 
 
Am Neuen Palais 10, 14469 Potsdam 
Tel.: +49 (0)331 977 2533 / Fax: 2292 
E-Mail: verlag@uni-potsdam.de 
 
Die Schriftenreihe Preprints des Instituts für Mathematik der Universität Potsdam 
wird herausgegeben vom Institut für Mathematik der Universität Potsdam. 
 
ISSN (online) 2193-6943 
 
Kontakt:  
Institut für Mathematik 
Am Neuen Palais 10 
14469 Potsdam 
Tel.: +49 (0)331 977 1028 
WWW: http://www.math.uni-potsdam.de 
 
Titelabbildungen: 
1. Karla Fritze | Institutsgebäude auf dem Campus Neues Palais 
2. Nicolas Curien, Wendelin Werner | Random hyperbolic triangulation 
Published at: http://arxiv.org/abs/1105.5089 
Das Manuskript ist urheberrechtlich geschützt.  
 
Online veröffentlicht auf dem Publikationsserver der Universität Potsdam 
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6408/ 
URN urn:nbn:de:kobv:517-opus-64080 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64080 

mailto:verlag@uni-potsdam.de


On the Construction of Point Processes
in Statistical Mechanics

Benjamin Nehring∗

Suren Poghosyan†

Hans Zessin‡

January 25, 2013

Abstract

By means of the cluster expansion method we show that a recent
result of Suren Poghosyan and Daniel Ueltschi [21] combined with
one of Benjamin Nehring [17] yield a construction of point processes
of classical statistical mechanics as well as processes related to the
Ginibre Bose gas of Brownian loops and to the dissolution in R

d of
Ginibre’s Fermi-Dirac gas of such loops. The latter will be identified
as a Gibbs perturbation of the ideal Fermi gas. By generalizing these
considerations we will obtain the existence of a large class of Gibbs
perturbations of so called KMM-processes as they were introduced in
[17]. Moreover, it is shown that certain ”limiting Gibbs processes” are
Gibbs in the sense of Dobrushin, Lanford and Ruelle if the underlying
potential is positive. And finally, Gibbs modifications of infinitely
divisible point processes are shown to solve a new integration by parts
formula if the underlying potential is positive.
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1 Introductory remarks

We reconsider the problem of construction of interacting point processes
which are of importance in statistical physics. They include Gibbs processes
of classical statistical mechanics; but also processes which are associated to
continuous quantum systems in the sense of Ginibre [4].

Earlier approaches can be found in the work of Kondratiev et al. [8] in
the case of Boltzmann statistics, and in the thesis of Kuna [9] as well as in
Rebenko [22], where one can find some remarks with respect to Bose-Einstein
and Fermi-Dirac statistics. But several questions are left open here.

The method we use is a new version of cluster expansions which had been
developed in [18, 17] and which is summarized in Theorem 1. In a first step
we then construct in Theorem 2, in the context of statistical mechanics, by
means of this method limiting interacting processes by combining a recent
result of Poghosyan and Ueltschi [21] with Theorem 1 . As a first application
we consider the quantum Bose gas of Ginibre. This yields a point process of
interacting winding loops. One of the main assumption of Theorem 2 is the
positivity of the reference measure.

But in Ginibre’s analysis in [4] of the quantum Fermi-Dirac gas there
appears a signed reference measure. Therefore we cannot use our construction
and cannot proceed as we did in case of the Bose gas. But assuming for a
moment, in the case of polygonal loops, the existence of a cluster process
for this gas and dissolving its clusters into its particles, we obtain a point
process in Euclidean space, which we are able to construct by means of our
methods. The resulting process is a Gibbsian modification of a determinantal
point process. In a more general setting such processes are then constructed
in Theorem 3 . As examples we consider Gibbs modifications of the Poisson
respectively determinantal process.

An important question then is what kind of processes are the limiting
processes. In Theorem 4 we can show that under natural regularity condi-
tions they are Gibbs in the sense of Dobrushin/Lanford/Ruelle (DLR) if the
underlying interaction is positive.

Finally, it is shown that Gibbs modifications with positive pair potential
of infinitely divisible point processes solve a new integral equation involving
the Campbell measure of the process. This equation generalizes the integra-
tion by parts formula of Nguyen X.X., Zessin [20] which is equivalent to the
DLR-equation. Examples of such processes are Gibbs modifications of the
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ideal Bose gas.

2 Random measures and point processes

A point process is a random mechanism realizing configurations of particles
in space. Our approach to design such a mechanism uses a generalization of
the cluster expansion method, which, in the words of Dobrushin, traces back
to the deeps of theoretical physics.

We introduce some basic concepts and standard results from the theory
of point processes which we take from the monographs [10, 12, 7]. The basic
underlying phase space is a Polish space (X,B,B0); i.e. a complete separable
metric space (X, d). Our main examples of phase spaces are discrete spaces,
the Euclidean space E = R

d, the space X = M··
f (E) of finite configurations

in E as defined below, which may have multiple points, and the space of
Brownian loops in E. B denotes the corresponding Borel σ−field and B0 the
ring of all bounded sets in X.

By M = M(X) we denote the set of all measures μ on B taking only
finite values on B0. We call them Radon measures here. This set will be
given the following topological and measurable structure: Denote by F the
set of all B−measurable mappings f : X −→ [0,∞], and Fc the subset of all
bounded and continuous f ∈ F with bounded support supp f . We also need
the space Fb of bounded f ∈ F with bounded support.

Denote then by

ζf (μ) = μ(f) =

∫
X

f(x)μ(d x) , μ ∈ M, f ∈ F,

the integral as a function of the underlying measure. The vague topology
on M now is defined as the topology generated by all mappings ζf , f ∈ Fc.
M, provided this topology, is a Polish space; the corresponding σ−algebra
of Borel subsets B(M) is the one generated by all mapping ζB, B ∈ B0.

A random measure on the phase space X is a random element in M(X).
The collection of their distributions P is denoted by PM = PM(X). But
we’ll consider more generally also other measures on M.

A measure μ ∈ M is called a counting or point measure if it takes only
integer values on B0. The set of all point measures is denoted by M·· =
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M··(X). It is well known that any μ ∈ M·· is of the form

μ =
∑

x∈supp μ

μ({x}) · δx .

M·· considered as a subspace of M is vaguely closed and thereby a Borel set
in M. Moreover, it is a Polish space; again the corresponding σ−algebra of
Borel subsets is generated by all mapping ζB, B ∈ B0. X = M··

f (X) denotes
the subset of finite counting measures on X. If G is a Borel set in X then
we denote by X(G) the collection of all configurations contained in G.

Now a point process in X is a random element in M··(X). The collection
of their laws P is denoted by PM··(X).

The Laplace transform of a random measure P is defined by

LP (f) =

∫
M

exp(−ζf ) dP , f ∈ F.

It determines the process completely. The first moment measure of P is
defined by

νP (f) =

∫
M··

μ(f)P (dμ) , f ∈ F.

If νP is a Radon measure we say that P is of first order.
A more general notion containing this one is the Campbell measure of P

definied by

CP (h) =
∫
M··

∫
X

h(x, μ)μ(d x)P (dμ) , h ∈ F.

We’ll use these notions also when P is replaced by σ−finite measures L.

3 A general construction

of processes by means of the

cluster expansion method

We consider the construction of point processes by means of the cluster ex-
pansion method on an abstract level first in the finite case within the setting of
[12]. Then we indicate briefly the infinitely extended case. This construction
has been developed in [17, 18].
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Let E denote the set of finite, signed measures L,M on M··(X). Each L
can be represented in a unique way as the difference L = L+−L− of measures
in E+, the subspace of positive measures in E, that are purely singular with
respect to each others. (Jordan decomposition of L) E is a normed space
with respect to ‖L‖ = L+(M··) + L−(M··), the total mass of the variation
|L| = L+ + L− of L. The distance ‖M − L‖ is called variation distance.
Denote by E+ the subspace of positive measures.

With respect to the convolution operation ∗ and ‖.‖, the vector space
E is a commutative real Banach algebra with unit δo, o denoting here the
measure zero on M··(X). Thus in particular

‖L ∗M‖ ≤ ‖L‖ · ‖M‖ .

For all L ∈ E the series

exp L =
∞∑
n=0

1

n!
L∗n

converges absolutely. Here L0 = δo. It has the property

exp(L1 + L2) = exp(L1) ∗ exp(L2) , L1, L2 ∈ E. (1)

Here ∗ denotes convolution. All this can be found in [12].

Lemma 1 If L,M ∈ E have the same Laplace transform then they coincide.

This can be seen immediately using the Jordan decomposition of L, F .

The general scheme of the construction

We start with a finite signed measure L on X = M··
f (X) and consider the

finite signed measure exp L. Set Ξ = exp (L(X)). Ξ is well defined and
strictly positive. Next consider the finite signed measure

�L =
1

Ξ
· exp L . (2)

Assume that
(A′

2) exp L is a positive measure.

This implies that �L is a finite point process in X. This means that the
process realizes finite configurations of particles in X which are produced
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by finitely many independent superpositions of clusters, i.e. configurations
generated by the measure L. For this reason we call L a cluster measure.
And we say that �L has been constructed by means of the method of cluster
expansions.

We’ll see now that this construction of processes is a far reaching gener-
alization of the construction of finite Poisson processes.

Example 1 ([12]) In the case of Poisson processes the cluster measure is
given by the positive measure

L(ϕ) =

∫
X

ϕ(δx) �(d x) , ϕ ∈ F, (3)

for some finite measure � on X. In this case one obtains the Poisson process
P� in X with intensity measure �.

But obviously P� itself can be taken as a cluster measure if � is a Radon
measure. The associated process �P� is infinitely divisible.

Example 2 ([27]) We obtain Pólya sum processes for the positive cluster
measure

L(ϕ) =
∞∑

m=1

zm

m

∫
Xm

ϕ(mδx) �(d x) , ϕ ∈ F, (4)

if we assume that � is a finite measure and 0 < z < 1.

Example 3 ([19]) Pólya difference processes are given by signed cluster
measures of the form

L(ϕ) =
∞∑

m=1

(−1)m−1 z
m

m

∫
Xm

ϕ(mδx) �(d x) , ϕ ∈ F, (5)

if one assumes that 0 < z < 1 and � is a finite point measure on X. It is
not evident that the condition (A′

2) is satisfied. We’ll see this a bit later.

Example 4 The underlying space is now denoted by E, in order to indicate
that below the role of E will be taken by the Euclidean space. Determinan-
tal processes are determined by cluster measures which have the following
structure:

L(ϕ) =
∞∑

m=1

(−1)m−1 z
m

m

∫
Em

ϕ(δa1 + · · ·+ δam) b
a1
m (d a2 . . . d am)λ(d a1). (6)
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Here

bam(d a2 . . . d am) = K(a, a2) · · ·K(am, a) λ(d a2) . . . λ(d am) (7)

for some nice kernel K, e.g. a centered Gaußian kernel if E is a Euclidean
space. λ is some positive finite measure, and K is bounded and satisfies the
boundedness condition

sup
b∈E

∫
E

|K(a, b)|λ(d a) < ∞ .

In this situation L is finite if z ∈ (0,∞) is sufficiently small. Again in this
case the positivity of �L is not easy to see.

We first calculate the Laplace transform of �L and obtain immediately
that for any f ∈ Fb

L�L
(f) =

1

Ξ
· exp LL(f)

= exp
(− L(1− eζf )

)
=: KL(f) .

Thus the Laplace transform of �L is given by the so called modified Laplace
transform KL of L. This terminology is due to Joseph Mecke [13]. We also
say in this case that �L is the KMM-process with Lévy measure L.

A special class of L

From now on we consider finite signed measures L on X defined by means of
signed (finite) symmetric measures Θm on Xm as follows:

L(ϕ) =
∞∑

m=1

1

m

∫
Xm

ϕ(δx1 + · · ·+ δxm) Θm(d x1 . . . d xm) . (8)

We call the Θm cumulant measures in the sequel. Note that L{0} = 0 and
that all examples given above have this representation. In this case the
Laplace transform of L can be written explicitly, on account of the finiteness
of L, as an absolutely convergent series:

LL(f) =
∑
m≥1

1

m
Θm(⊗m e−f ) , f ∈ Fb.
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A well known combinatorial formula, stated explicitly below in (27) and
derived in the book of Stanley [25], corollary 5.1.6 , then shows that

expLL(f) = 1 +
∞∑

m=1

1

m!

∑
J∈π[m]

∏
J∈J

(|J | − 1)! ·Θ|J |(⊗J e
−f ).

Here π[m] denotes the set of all partitions of the set [m] = {1, . . . ,m}. It
follows that

KL(f) =
1

Ξ

∞∑
k=0

1

k!

∫
Xk

e−f(x1) . . . e−f(xk) �k(d x1 . . . d xk) ,

where �k denotes the signed measure on Xk defined by

�k(⊗k
j=1fj) =

∑
J∈π[k]

∏
J∈J

(|J | − 1)! ·Θ|J |(⊗j∈Jfj) , fj ∈ Fc.

This can be written equivalently as

�k(⊗k
j=1fj) =

∑
σ∈Sk

∏
ω∈σ

Θ�(ω)(⊗j∈ωfj) , fj ∈ Fc. (9)

(�0 is defined by �(X0) = 1.) The sum is taken over all permutations of [k],
the product over all cycles of the cycle decomposition; and 
(ω) is the length
of ω. Following the terminology in [14] we say that the measures �k have a
cluster representation in terms of the cumulant measures Θm. The measures
�k are called here the (process)determining measures.

Thus we have identified KL, the modified Laplace transform of L, as the
Laplace transform of the following finite measure on X

Q(ϕ) =
1

Ξ

∑
k≥0

1

k!

∫
Xk

ϕ(δx1 + · · ·+ δxk
) �k(d x1 . . . d xk) , ϕ ∈ F. (10)

Here the series starts with ϕ(o). Since �L has the same Laplace transform
as Q both processes coincide, and thus Q is the finite point process �L.
Furthermore, since �L is assumed in (A′

2) to be positive, we conclude that
all measures �k satisfy the positivity condition

(A2) all measures �k are positive.

Note that in the context considered here the conditions (A′
2) and (A2) are

even equivalent.
To summarize we have the
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Lemma 2 Given a finite signed measure L on X, represented by means of
finite signed symmetric measures Θm via (8) and satisfying the positivity
condition (A′

2) resp. (A2), then �L = 1
Ξ
exp L is a finite point process in X

with Laplace transform KL, which has the cluster representation (10).

Example 3 (continued) We are now in the position to show the positivity
condition for the Pólya difference process of example 3 . We verify (A2) by
using lemma 4.1.3. of [18]. Given f1, . . . , fk ∈ Fb,

�k(f1 ⊗ · · · ⊗ fk) = zk
∑
σ∈Sk

(−1)k−|σ| ∏
ω∈σ

�(
∏
j∈ω

fj)

= zk
∫

f1(x1) · ·fk(xk) �(d x1)(�− δx1)(d x2) · ·(�− δx1 − · · −δxk−1
)(d xk).

Since � is a point measure this is positive.

Example 4 (continued) The positivity is seen here by the following basic
result which is an application of lemma 2 and already foreshadowed in the
work of Ginibre [4].

Lemma 3 The measure exp L coincides with the following determinantal
measure JK on X, namely, for ϕ ∈ F,

JK(ϕ) =
∞∑
�=0

z�


!

∫
E�

ϕ(δa1 + · · ·+ δa�) det(K(ai, aj)
�
i,j=1)λ(d a1) . . . λ(d a�)

As a consequence of this we see that expL is positive if K is non-negative
definite.

The cle-method in the infinitely extended case

Until now L was assumed to be a finite signed measure. We next present the
cle-method in a locally finite setting as it has been developed in [17, 18].

We are now given a family of positive, symmetric Radon, i.e. locally
finite, measures Θ±

m on Xm, m ≥ 1,. These measures give rise to the cluster
measures L± by means of (8).
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L± are positive measures on the space X with L± {0} = 0; and we assume
the integrability condition

(A1) L±(1− e−ζf ) < +∞ , f ∈ Fb.

It is shown in [17] that the condition (A1) implies that |Θm| are Radon
measures. Then Θm = Θ+

m − Θ−
m are signed Radon measures, the cumulant

measures.

Given G ∈ B0(X) we localize L± by means of L±
G = 1X(G) · L± and set

LG = L+
G − L−

G. Here X(G) = M··(G). LG is a finite signed measure on X
because of the integrability assumption (A1). Assuming also condition (A2)
we are in the situation of lemma 2 . It follows that the local process

QG =
1

ΞG

· exp LG , (11)

ΞG = exp LG(X) , (12)

has Lévy measure LG, i.e. QG = �LG
.

The convergence of the cle-method has been shown in [17] in the following
precise sense: Under the conditions (A1) and (A2) the sequence of processes
QG,G ∈ B0(X), converges weakly, as G ↑ X, to some point process �L

having Lévy-measure L. Recall that this terminology means that the Laplace
transform of �L is of the form KL. The process �L is called here the KMM-
process with Lévy measure L. Moreover, the process �L solves the following
equation:

�L+ = �L− ∗ P ;

This equation says that P is the convolution quotient of the infinitely divisible
processes �L+ and �L− .

The proof of this convergence theorem is based on Mecke’s version of
Lévy’s continuity theorem in [13]. To summarize we have the following con-
struction of point processes by means of the cluster expansion method.

Theorem 1 ([17, 18]) Let L± be measures on X, given in terms of cumu-
lant measures Θm by means of (8), satisfying the integrability condition (A1),
such that the corresponding process determining measures �k are all non neg-
ative. Then there exists a point process �L in X with Laplace transform
KL.
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In the present context we obtain as examples those from above by replac-
ing the finite measure � by some Radon measure.

Another comment is in order here. The cluster expansion construction of
the point process P is based on two assumptions: The integrability condition
(A1) of L and the positivity condition (A2) of the determining measures �k.
We’ll see in the next section that in case, where Θm are defined by means of
the Ursell functions for some underlying pair potential, the verification itself
of condition (A1) is actually an essential part of the cle-method. For this
one has to recall that in this case LG(X) has the meaning of the log-partition
function, so that the finiteness of LG is in fact equivalent to the absolute con-
vergence of the ”traditional” cluster expansion of the log-partition function.

4 Point processes of statistical mechanics

We now consider the case where the cumulant measures Θm are determined
by Ursell functions defined for some underlying pair potential. In this case
Poghosyan and Ueltschi [21] have shown that under natural and fairly general
conditions on the potential the integrability condition (A1) holds true. Condi-
tion (A2) is satisfied on account of Ruelle’s algebraic method if the reference
measure is positive.

Combined with the cle-method from above this yields a construction of a
large class of processes which includes many examples from statistical physics.
As main examples we present the Bose process and some polygonal version
of the Fermi process of Ginibre [4].

In the context considered here, the proof of the main result, i.e. lemma 4
below, is itself an important part of the cle-method.

The basic estimate of Poghosyan and Ueltschi

The theory of Poghosyan/Ueltschi ([21]) provides sufficient conditions on the
underlying potential such that condition (A1) holds true.

Given a Polish phase space (X,B,B0) together with some (signed) Radon
measure � ∈ M(X) on it. Moreover, a measurable, symmetric function (a
pair potential) u : X ×X −→ R ∪ {+∞} is given. Set

ζ(x, y) = exp(−u(x, y))− 1 , x, y ∈ X.
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By convention ζ ≡ −1 on u ≡ +∞. Recall that the corresponding Ursell
function is defined by

Uu(x1, . . . , xm) =
∑
G∈Cm

∏
{i,j}∈G

ζ(xi, xj) ,m ≥ 2,

Uu(x1) = 1, and u ≡ 1 if m = 1. Here Cm denotes the set of connected
unoriented graphs with m vertices without loops.

We consider now the above point process construction for the cumulant
measures of the form

Θ±
m(d x1 . . . d xm) =

1

(m− 1)!
· U±

u (x1, . . . , xm) �(d x1) . . . �(d xm) . (13)

Here U±
u denotes the positive respectively negative part of the Ursell function.

Poghosyan and Ueltschi work under the following conditions:

(B1) (weak stability)

There exists b ∈ F such that for all n∑
1≤i<j≤n

u(xi, xj) ≥ −
n∑

j=1

b(xj) |�|n − a.s.[(x1, . . . , xn)].

(B2) (weak regularity)

There exists a ∈ F such that∫
X

|�|(d y) |ζ(x, y)| · e(a+2 b)(y) ≤ a(x) |�| − a.s.[x].

We remark that for bounded functions a this implies the regularity of u in
the sense of Ruelle [23]. The following condition can replace (B2):
(B2′) There exists a ∈ F satisfying∫

X

|�|(d y) |u(x, y)| · e(a+b)(y) ≤ a(x) |�| − a.s.[x],

where

u(x, y) =

{
u(x, y), u(x, y) < ∞
1, u(x, y) = ∞.

(14)
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(B3) (integrability of a, b)

ea+2b ·|�| ∈ M(X) .

The measure here is |�| having density ea+2b.

Under condition (B2′) we’ll always replace condition (B3) by the inte-
grability condition

(B3′)
ea+b ·|�| ∈ M(X) .

The following basic theorem will serve as a main lemma in our reasoning:

Lemma 4 (Poghosyan/Ueltschi [21])
Assume conditions (B1), (B2) respectively (B1), (B2′). Then the follow-

ing estimate is true: |�| − a.s.[x]

∑
m≥1

1

(m− 1)!

∫
Xm−1

|Uu(x, x1, .., xm−1)| |�|(d x1)...|�|(d xm−1)

≤ ea(x)+2 b(x) .

(Under condition (B2′) this holds true with eb(x) instead of e2 b(x).)

This estimate implies that L satisfies condition (A1). It even implies that
|L| is of first order. Recall that this means that the intensity measure ν1

|L| of
the variation of the cluster measure L is locally finite. To be more precise,
we have for any f ∈ Fc

ν1
|L|(f) :=

=

∫
X

ζf d |L| =

=
∑
m≥1

1

(m− 1)!

∫
Xm

f(x) · |Uu(x, x1, .., xm−1)| |�|(d x)|�|(d x1)..|�|(d xm)

< ∞.

Here one uses (B3) resp. (B3′). This is the main consequence, and we are in
the situation of Nehring’s construction above, if the determining measures
are positive. Thus it remains to show the positivity of these measures.
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Note first that the measures �k can be represented as

�k(d x1 . . . d xk) =
∑

J∈π([k])

∏
J∈J

(|J | − 1
)
! ·Θ|J |(⊗j∈Jfj)

=
∑
J

∏
J∈J

Uu((xj)j∈J) �(d x1) . . . �(d xk) .

This follows from the symmetry of product measures.

On the other hand, the density here is given by Ruelle’s algebraic expo-
nential (cf. [23])∑

J∈π([k])

∏
J∈J

Uu((xj)j∈J) = exp(−Eu(δx1 + · · ·+ δxk
)), (15)

so that

�k(d x1 . . . d xk) = exp(−Eu(δx1 + · · ·+ δxk
)) �(d x1) . . . �(d xk) (16)

is a positive measure if � has this property. Eu(μ) denotes the energy of a
finite configuration μ defined by the pair potential u by means of

Eu(μ) =
∑

1≤i<j≤n

u(xi, xj) , if μ =
n∑

k=1

δxk
. (17)

To summarize we obtain from the main lemma

Theorem 2 If the measure � is positive then, under the above conditions on
the potential, i.e. under (B1), (B2) and (B3) or (B1), (B2′) and (B3′); and
for the cluster measure L defined by means of the Ursell functions in (13),
there exists a unique point process P in X with Lévy measure L.

The Ginibre Bose gas

An important direct application of this theorem is related to the Ginibre’s
Bose gas ([4]). For precise definitions we refer to [21]. Consider the space X
of Brownian loops in E = (Rd, d a). The measure � is defined by means of
some nice pair potential φ in E. Given φ, define a self-potential υ in X and
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a pair potential u in X as it is done in [4, 21]. Then for parameters z, β > 0
let

�(f) =
∑
m≥1

1

m
· zm

∫
E

∫
X

f(x) e−υ(x) P a
mβ(d x) d a , f ∈ F. (18)

Here P a
mβ(d x) is the non-normalized Brownian bridge measure of loops of

length mβ which start and end at a ∈ E. This defines a positive measure
on the loop space X. It is shown in [21] (Section V, B) that for a stable and
integrable pair potential φ the assumptions (B1), (B2′) and (B3′) holds true
for all z from the interval

z ≤ exp
{
−β

[‖φ‖1ζ(d2)
(4πβ)d/2

+ B
]}

. (19)

Hence by Theorem 2 there exists a unique point process P in X with Lévy
measure L. This process P is the limiting Bose gas of interacting Brownian
loops (in the sense of Ginibre). Here, ζ(d

2
) =

∑
n≥1 n

− d
2 is the Riemann

zeta function. When d = 3 and if the potential is repulsive, one can rewrite
(19) in a more transparent way [21]. Let a0 = 1

8π
‖φ‖1 denote the Born

approximation to the scattering length. The condition is then

z ≤ exp
{− ζ( 3

2
)√

π
a0√
β

}
. (20)

In this context we’ll consider below another class of examples with a
modified � which is even signed.

The Groeneveld process

As an aside we first mention an interesting class of point processes which are
even infinitely divisible. Consider a positive pair potential u together with
the cumulant measures

Θm(d x1 . . . d xm) = zm
1

(m− 1)!

[
(−1)m−1·Uu(x1, . . . , xm)

]
�(d x1) . . . �(d xm) .

(21)
Here again � is a positive measure.

It is well known (see Goeneveld [6]) that in case of a positive potential the
Ursell functions have alternating signs, i.e. that the expression in brackets
are non-negative. Thus the associated L is positive, so that the process with
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Lévy measure L exists and is given by the cluster dissolution of the Poisson
process with intensity measure L and as such infinitely divisible. We call
this process Groeneveld process; we do not know what kind of process this is.
Further results in this direction can be found in the interesting paper [26].

Gibbs modifications
of determinantal processes

To motivate the main results in section 5 we now present, in the context of
the Ginibre Bose gas, a heuristic argument which leads to some new class
of interacting non-classical point processes. This argument is based on the
hypotheses that a Fermi-Dirac process on the level of clusters exists.

As above for the Bose gas we consider E = R
d with Lebesgue’s measure

d a. We are given a pair potential on E, i.e. a measurable symmetric function
φ : E × E −→ R ∪ {+∞}.

We now replace in the definition of � in (18) the term zm by (−1)m−1zm

and, to be more modest, P a
mβ by the measure bam from example 4 . The

positive measure � is then replaced by

�(f) =
∑
m≥1

1

m
(−1)m−1zm ·

∫
Em

f(δa1 + ..+ δam) e
−Eφ(δa1+..+δam ) ba1m (d a2.. d am) d a1.

(f ∈ F ) Recall that Eφ is defined in (17). This is in general a signed measure
on the Polish space X of finite configurations in the phase space. Remark that
the energy functional Eφ on the space X is the analog of the self-potential
υ on the space X of Brownian loops. The measure � will be the reference
measure on X.

We finally introduce a pair potential Φ on X, which resembles the pair
potential u between brownian loops. An obvious guess is

Φ(μ, η) =

∫
E

∫
E

φ(a, b) μ(d a)η(d b), for all μ, η ∈ X.

Remark that for any μ1, . . . , μn ∈ X the following identity holds true:

EΦ(δμ1 + . . .+ δμn) + Eφ(μ1) + . . .+ Eφ(μn) = Eφ(μ1 + . . .+ μn). (22)
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The main question is: Does there exist a point process having the Lévy
measure

�(ϕ) =
∞∑
n=1

1

n!

∫
Xn

ϕ(δμ1 + . . .+ δμn)UΦ(μ1, . . . , μn) �(dμ1) . . . �(dμn) . (23)

At first we have to check whether the measures �k, as defined by (16), are
positive. But since the first process determining measure �1 coincides with
�, which is a signed measure, this is certainly not the case. So at least our
construction does not give a point process corresponding to �. In case such
a process would exist one would obtain a Fermi process, which is a process
realizing configurations of interacting polygonal loops δa1 + ..+ δam ∈ X.

Now in the sequel let us assume that such a process exists. How would
the local processes QG = �
G

, G ∈ B0 look like?
Consider

τ(f) =
∑
m≥1

(−1)m−1

m
zm

∫
Em

f(δa1 + ..+ δam) b
a1
m (d a2.. d am) d a1.

Here f ∈ F . This is a signed measure on X. It is the above � without the
density e−Eφ .

Recall that τ is the Lévy measure of the determinantal point process with
interaction kernel K. Using (22) we obtain that

�
G
(ϕ) =

1

Ξ(G)

∞∑
n=0

1

n!

∫
X(G)n

ϕ(δμ1 + ..+ δμn) e
−Eφ(μ1+..+μn) τ(dμ1)..τ(dμn).

Consider then the so called cluster dissolution mapping

ξ : M··
f (X) −→ X, δμ1 + δμ2 + . . . �−→ μ1 + μ2 + . . . .

The image of �
G
under ξ, denoted by ξ�
G

, becomes an ordinary finite
signed measure on the space X(G).

If we recall the definition of the exponential of a finite signed measure
from section 3 we obtain

ξ�
G
(ϕ) =

1

Ξ(G)
exp τG (ϕ e−Eφ).
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We saw in lemma 3 that exp τG coincides with the so called determinantal
measure JKG

on X, where KG(x, y) = 1G(x)K(x, y)1G(y), x, y ∈ E. This
is positive if K is a non negative definite kernel. This then implies that
ξ�
G

is a finite point process in G. By corollary 6.1.2 in [18] we conclude
ξ�
G

= �(ξ
)G . So we have identified not � but ξ� as a Lévy measure of
a point process in E. What remains to be seen, according to Theorem 1, is
that ξ |�| is of first order. This will be established with the help of lemma 4
. Remark that the process determining measures of �ξ
 are given by

e−Eφ(δa1+..+δak ) det(K(ai, aj)i,j) d a1.. d ak .

This is why we call �ξ
 a Gibbs modification of the determinantal process
with interaction kernel K.

From now on we consider a general phase space X.

Definition 1 Let L be a Lévy measure as introduced in section 3, formula
(8), with the corresponding point process �L and the family of local processes
{�LG

}G∈B0. Furthermore let φ : X ×X → R ∪ {∞} be a pair potential such
that

0 < �LG
(e−Eφ) < ∞, G ∈ B0.

Now introduce another family of finite point processes

�φ
LG

(ϕ) :=
1

�LG
(e−Eφ)

�LG
(e−Eφ ϕ), ϕ ∈ F, G ∈ B0.

If a weak limit, denoted �φ
L, of �φ

LG
as G ↑ X does exist we call it the Gibbs

modification of the KMM process �L.

In the next section we will provide sufficient conditions on the pair po-
tential in order for �φ

L to exist. Remark that the above discussion suggests
that the process �φ

L has a Lévy measure given by

�φ
L(ϕ) =

∞∑
n=1

1

n!

∫
Xn

ϕ(μ1+. . .+μn)UΦ(μ1, . . . , μn)L
φ(dμ1) . . . L

φ(dμn), (24)

where
Lφ(dμ) = e−Eφ(μ) L(dμ).
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The method of the proof will be to show that �φ
L satisfies the condition of

Theorem 1. Certainly the first question which arises is what kind of family
of cumulant measures correspond to the above representation of �φ

L? But a
close look at the proof of Theorem 1 yields that we only need to show that
the finite signed measures �
φ

L,G
as defined by (2), where �φ

L,G denotes the

restriction of �φ
L to X(G), are actually finite point processes in X and we

need to establish that |�φ
L| = �φ,+

L + �φ,−
L is of first order.

But what is the positive �φ,+
L respective negative �φ,−

L part of �φ
L? They

are naturally given by the Jordan decomposition of L = L+ − L− so that

|�φ
L|(ϕ) =

∞∑
n=1

1

n!

∫
Xn

ϕ(μ1+ . . .+μn) |UΦ(μ1, . . . , μn)| |Lφ|(dμ1) . . . |Lφ|(dμn),

where |Lφ|(dμ) = e−Eφ(μ) |L|(dμ).

5 Construction of Gibbs modifications

of KMM-processes

In the following X is a general phase space. We start with a family of
cumulant measures {Θm}m≥1 satisfying the positivity condition (A2), i.e.
the corresponding family of process determining measures {�k}k≥1 is non
negative.

We introduce a parameter z ∈ (0,∞), called the activity which will be
chosen later small enough. We denote by Lz the Lévy measure correspond-
ing to the family {zmΘm}m≥1 of cumulant measures. Recall definition (8)
here and observe that the process determining measures are now given by
{zk�k}k≥1. So condition (A2) is satisfied for any choice of the activity.

Let φ : X×X → R∪{∞} be a stable pair potential in the classical sense,
that is there is B ≥ 0 such that

Eφ(μ) ≥ −B |μ|, μ ∈ X.

Let us denote by φx for x ∈ X the function y �→ φ(x, y).
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Theorem 3 Let φ be a stable pair potential. Furthermore, assume that there
exists c > 0 and z0 = z0(c) > 0 such that

(1) ν1
|L

z0e
c+B |(f) < ∞, f ∈ Fb,

(2) ν1
|L

z0e
c+B |(|φx|) ≤ c, for all x ∈ X,

where φ is defined as in (14). Then for z ∈ (0, z0] the KMM process �Lz and
its Gibbs modification �φ

Lz
do exist. Furthermore �φ

Lz
is a KMM process with

Lévy measure �φ
Lz
, that is �φ

Lz
= �
φ

Lz

, where �φ
Lz

is defined as in (24).

Proof. Let z ∈ (0, z0]. Due to (i) |Lz| is of first order, which implies con-
dition (A1) of Theorem 1. Since (A2) was already established we obtain the
existence of the KMM process to the Lévy measure Lz. Let us now deduce
the existence of the KMM process with Lévy measure �φ

Lz
.

1. Let us start by showing that
|�φ

Lz
|, z ∈ (0, z0] is of first order. For any f ∈ Fb

ν1

|
φ
Lz

|(f) =
∫
X

|Lφ
z |(dμ) ζf (μ) ·

∞∑
n=1

1

(n− 1)!∫
Xn−1

|Lφ
z |(dμ2) . . . |Lφ

z |(dμn) |UΦ(μ, μ2, . . . , μn)|.

Certainly in order to obtain the finiteness of ν1

|
φ
Lz

|(f) we want to apply the

bound as formulated by lemma 4. So here the underlying space X is now
given by the set X of finite point configurations in X, the signed reference
measure � is given by Lφ

z and the pair potential u by Φ. The aim is now to
show that this triple (X, Lφ

z ,Φ) does satisfy the conditions (B1), (B2′) and
(B3′).
Remark that on account of (22) the pair potential Φ on X is stable in the
weak sense of [21], that is it satisfies assumption (B1) with

b(μ) = B|μ|+ Eφ(μ), μ ∈ X.

Let us now establish (B2′), that is we have to find a ∈ F+(X) such that∫
|Lφ

z |(dμ) |Φ(η, μ)| e(a+b)(μ) ≤ a(η), η ∈ X, (25)
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where Φ is defined with the help of φ as in (14). Let us try the Ansatz
a(μ) = c |μ|, where c > 0 is given as in Theorem 3. Introduce I(x) :=
φ−1
x ({∞}) ∈ B(X) and

I(η) =
⋃
x∈η

I(x), η ∈ X.

Then the integral in (25) can be split up into a hardcore and non-hardcore
part ∫

{ζI(η)>0}

|Lz|(dμ) e(c+B)|μ| +
∫

X(E\I(η))

|Lz|(dμ) |Φ(η, μ)| e(c+B)|μ|.

Let us call these summands T1 and T2. Then

T1 = |Lzec+B |(1{ζI(η)>0}) ≤ |Lzec+B |(ζI(η)) ≤
∑
x∈η

ν1
|L

zec+B |(1I(x)).

Introduce the non - hard core part of the potential by defining

φ′′(x, y) =

{
0, y ∈ I(x)

φ(x, y), else.

Certainly we have

|Φ(η, μ)| ≤
∑
x∈η

μ(|φ′′
x|), μ ∈ X(X \ I(η)), (26)

whence we obtain the following bound

T2 ≤
∑
x∈η

ν1
|L

zec+B |(|φ′′
x|).

This finally yields∫
|Lφ

z |(dμ) |Φ(η, μ)| e(a+b)(μ) ≤
∑
x∈η

ν1
|L

zec+B |(1I(x) + |φ′′
x|).

So due to the uniform bound (2) and |φx| = 1I(x) + |φ′′
x|, we have obtained

condition (B2′). Now we can apply lemma 4, which yields

ν1

|
φ
Lz

|(f) ≤
∫
X

|Lφ
z |(dμ) ζf (μ) e(a+b)(μ) = ν1

|L
zec+B |(f) < ∞,
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due to condition (1).

2. To finish the proof, it remains to be seen that the process correspond-
ing to the restriction �φ

Lz ,G
of �φ

Lz
to X(G),G ∈ B0, is given by the Gibbs

modification of the finite point process �Lz,G
for z ∈ (0, z0]. Since |�φ

Lz
| is

of first order, �φ
Lz ,G

is a finite signed measure. As above in section 3 the
following combinatorial result will be needed now:

exp(
∞∑
k=1

hk

k!
) =

∞∑
n=0

1

n!

∑
J∈π([n])

∏
J∈J

h|J |, (27)

where
∞∑
k=1

hk

k!
is an absolutely convergent series. Using (27) we obtain

K
φ
Lz,G

(f) = exp(−�φ
Lz ,G

(1− e−ζf )) =

1

Ξφ(G)

∞∑
n=0

1

n!

∫
X(G)n

e−(μ1+..+μn)(f)
∑

J∈π([n])

∏
J∈J

UΦ((μj)J)L
φ
z (dμ1)..L

φ
z (dμn),

where Ξφ(G) = exp(�φ
Lz ,G

(1)) and, using Ruelle’s algebraic approach, the
above expression equals

1

Ξφ(G)

∞∑
n=0

1

n!

∫
X(G)n

e−(μ1+...+μn)(f) e−EΦ(δμ1+...+δμn ) Lφ
z (dμ1) . . . L

φ
z (dμn).

Using (22) this can be written as

1

Ξφ(G)

∞∑
n=0

1

n!

∫
X(G)n

e−(μ1+...+μn)(f) e−Eφ(μ1+...+μn) Lz(dμ1) . . . Lz(dμn).

The cle-method then implies that

K
φ
Lz,G

(f) =
1

Ξφ(G)
exp(Lz,G)(e

−Eφ e−ζf ) =
�Lz,G

(e−Eφ e−ζf )

�Lz,G
(e−Eφ)

.

Thus the Laplace transforms of �
φ
Lz,G

and �φ
Lz,G

coincide, whence by lemma

1 they are equal. q.e.d.
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Corollary 1 Let L be a Lévy measure defined by a family of cumulant mea-
sures {Θn}n≥1. Assume there exist α, β ≥ 0 and αf ≥ 0 for f ∈ Fb such
that

(1) |Θn|(f ⊗ E⊗(n−1)) ≤ αf β
n−1, f ∈ Fb, n ≥ 1,

(2) |Θn|(|φx| ⊗ E⊗(n−1)) ≤ αβn−1, x ∈ E, n ≥ 1,

where 00 := 1. Then Theorem 3 holds with c = 1 and z0 =
e−B−1

α+β
.

Proof. We verify condition (2) of Theorem 3

ν1
|L

z0e
1+B |(|φx|) =

∞∑
n=1

(z0e
1+B)n|Θn|(|φx| ⊗ E⊗(n−1))

≤ α

α + β

∞∑
n=1

( β

α + β

)n−1
= 1.

Condition (1) in Theorem 3 is established in the same way. q.e.d.

6 Examples of Gibbs modifications

The underlying general phase space should be thought as a discrete space of
the Euclidean space E, or the collection X of finite configurations of particles
in E or the space of Brownian loops in E.

Definition 2 Let λ be a non negative reference measure on X and h : X ×
X → R ∪ {∞} some measurable function. Then define

Υ(h) = sup
y∈X

∫
λ(d x) |h(x, y)|.
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Poisson and Gibbs Processes

Let λ ∈ M(X). Consider the point process whose cumulant measures vanish
besides the first one Θ1 = λ. It is called the Poisson point process with
intensity measure λ and we denote it by Pλ. Let φ be a stable pair potential
such that Υ(φ) < ∞. As one can easily verify, condition (1) of corollary
1 holds with αf = λ(f), β = 0; and (2) with α = Υ(φ). So corollary 1
respectively Theorem 3 yield that for

z ∈
(
0,

e−B−1

Υ(φ)

]
, (28)

the Gibbs modification of Pzλ, that is the weak limit of the finite point
processes

1

Ξφ(G)

∞∑
n=0

zn

n!

∫
Gn

ϕ(δa1 + . . .+ δan)e
−Eφ(δa1+...+δan ) λ(d a1) . . . λ(d an) ,

as B0(X) � G ↑ X, does exist. It is called classical Gibbs process and its
existence is well known [14]. But instead of the classical regularity condition

sup
y∈X

∫
|1− e−φ(x,y)|λ(d x) < ∞

we require Υ(φ) < ∞. Remark that if φ consists only of a hard core part we
obtain so called Poisson exclusion processes which have been studied in [16].

Permanental and Determinantal Processes
and its modifications

Let λ ∈ M(X) and K : X × X → R be a bounded non negative definite
kernel such that Υ(K) < ∞. Furthermore let φ be a stable pair potential
such that Υ(φ) < ∞. Consider the following two families ε = +1,−1 of
cumulant measures

Θn(ε) = εn−1K(x1, x2)K(x2, x3) . . . K(xn, x1)λ(d x1) . . . λ(d xn).

24



It is well known (see i.e. [17]) that the corresponding process determining
measures are given by

detε(K(ai, aj)i,j)λ(d a1) . . . λ(d an),

where det+1 denotes the permanent and det−1 the determinant, which are
non negative due to the non negative definiteness of K. As one can straight-
forwardly check condition (1) of corollary 1 is satisfied with αf = ‖K‖∞ λ(f)
and β = Υ(K) and condition (2) with α = ‖K‖∞ Υ(φ). Corollary 1 respec-
tively Theorem 3 now says that for a small activity

z ∈
(
0,

e−B−1

‖K‖∞ Υ(φ) + Υ(K)

]
,

the processes �Lz(ε) corresponding to the family of cumulant measures {Θn(ε)}∞n=1

do exist (they can be identified as ε = +1 permanantel and ε = −1 deter-
minantal processes to the interaction kernel K) and also their Gibbs modi-
fications do exist, that is for any sequence B0(X) � G ↑ X the finite point
processes

1

Ξφ(G)

∞∑
n=0

zn

n!

∫
Gn

ϕ(δa1+ . . .+ δan)e
−Eφ(δa1+...+δan )

detε(K(ai, aj)i,j)λ(d a1) . . . λ(d an) ,

do converge weakly to the process �
φ
Lz(ε)

. Again remark that if φ consists

only of a hard core part we obtain the existence of determinantal respectively
permanental exclusion processes.

7 Some integral equations for

point processes of statistical mechanics

It is shown that the processes �L of section 4 are Gibbs in the DLR-sense, if
the potential u is assumed to be non-negative and satisfies (B2′) and (B3′).
As a consequence we obtain a new integration by parts formula for Gibbs
modifications of infinitely divisible point processes whichs seems to be a far
reaching generalization of the equation

(
Σ′

�,φ

)
.
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Point processes of
statistical mechanics revisited

Let us go back for the moment to the general setting given in section 4.
So (X,B,B0) denotes a Polish phase space and � ∈ M(X) is a given pos-
itive Radon measure on it. Furthermore we let u : X × X → [0,∞] be a
non-negative pair potential. In Theorem 2 we have shown that under the
conditions (B1), (B2′) and (B3′) the limiting Gibbs point process �L with
Lévy measure

L(ϕ) =
∞∑
n=1

1

n!

∫
Xn

ϕ(δx1 + . . .+ δxn)Uu(x1, . . . , xn) �(d x1) . . . �(d xn),

does exist.
A more delicate question is whether �L is a Gibbs point process in the

DLR sense, that is whether it is a solution to the equation

(
Σ′) CP (h) =

∫
h(x, μ+ δx) e

−Eu(x,μ) �(d x)P (dμ) , h ∈ F ;

here the conditional energy Eu(x, μ) is given by μ(ux) for any x ∈ X and
μ ∈ M··(X), since u is non negative. CP denotes the Campbell measure of
P . The equivalence of this equation to the DLR-equations in the context of
classical statistical mechanics had been shown in [20].

In [17] we saw that, if one assumes classical stability and regularity of u
as in [23] and with a reference measure given by � = zλ, where z ∈ (0,∞)
and λ ∈ M(X), then �L is a solution to

(
Σ′) for small z. Here we strengthen

the stability condition, that is we consider purely repulsive pair potentials,
and weaken the regularity condition, that is we only require (B2′) and (B3′).

Theorem 4 Let u be a non negative pair potential and � ∈ M(X). Then
under the conditions (B2′) and (B3′) �L solves

(
Σ′).

Proof. We follow the proof in [17]. Due to [27] the finite processes QG =
�LG

, G ∈ B0, satisfy

CQG
(h) =

∫
X

∫
G

h(x, μ+ δx) e
−Eu(x,μ) �(d x)QG(dμ) , h ∈ F.
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Let in the sequel h = f⊗e−ζg , f, g ∈ Fb. In [17] it was shown that CQG
(h) →

C�L
(h) as G ↑ X if |L| is of first order. The right hand side of the above

equation can be written as∫
X

f(x)e−g(x) LQG
(g + ux) �(d x). (29)

The main lemma, which replaces the main lemma in [17] is now given by

Lemma 5 Let Υ = ζg+ux. Then 1 − e−ζg+ux ≤ Υ on X and there is c ≥ 0
such that |L|(Υ) ≤ a(x) + c, where a is given as in (B2′).

Proof. The inequality 1− e−ζg+ux ≤ Υ is clear. Now we have

|L|(Υ) ≤
∫
X

(g(y) + u(x, y)) ea(y)�(d y) ≤
∫
X

g(y) ea(y)�(d y) + a(x).

The first inequality follows by lemma 4 and the second by definition of (B2′).
So we can choose c := �(g ea), which is finite due to (B3′). q.e.d.

To finish the proof one can show as in [17] that L�L
(g+ux) = KL(g+ux),

LQG
(g+ux) = KLG

(g+ux) and so LQG
(g+ux) → L�L

(g+ux) as G ↑ X for any
x ∈ X. Moreover the bound as given by lemma 5 yields LQG

(g+ux) ≤ ea(x)+c,
G ∈ B0, x ∈ X. If we replace LQG

(g+ ux) by ea(x)+c we obtain the finiteness
of the integral (29) due to condition (B3′). So by Lebesgue’s dominated
convergence theorem we are allowed to take the limit G ↑ X inside the
integral of (29) and obtain the assertion as in [17]. q.e.d.

The Ginibre Bose gas revisited

Let us again consider the Bose process of Ginibre. If the underlying pair
potential φ is stable and integrable, then the corresponding pair potential u
on the loop space satisfies the conditions (B1), (B2′) and (B3′) for a small
value of activity, see (19), and thereby we obtain the existence of the limiting
Bose gas by means of Theorem 2. Now if we additionally impose that φ is a
purely repulsive potential we are able to describe Ginibre’s Bose process as
a Gibbs process by means of Theorem 4. Formulated a bit more generally
we have the
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Theorem 5 Let Lz be a non negative Lévy measure and φ be a non negative
potential. Then under the conditions of Theorem 3 we have that the Gibbs
modification �φ

Lz
of the infinitely divisible point process �Lz is a solution to

(
Σφ

Lz

)
CP (h) =

∫
h(x, ν + μ) e−(Φ(ν,μ)+Eφ(ν))CLz(d x d ν)P (dμ).

Proof. In the proof to Theorem 3 we have shown that Lφ
z and Φ satisfy

the condition (B2′). The stability condition is satisfied since Φ ≥ 0. In the
first step we will show that there exists a Gibbs point process in the space
X to the pair potential Φ with reference measure Lφ

z . According to Theorem
2 it remains to show that condition (B3′) is valid, but it is well known that
the bounded sets in X are given by {ζG > 0}, G ∈ B0 and all measurable
subsets of those sets.

Recall that a(μ) = c |μ|, μ ∈ X, so that∫
{ζG>0}

ea(μ) Lφ
z (dμ) ≤ Lφ

zec(ζG) = ν1

Lφ
zec

(G) < ∞.

Whence we conclude that ea Lφ
z is a locally finite measure on X. So we

obtain that the Gibbs point process �
 in X corresponding to the signed
Lévy measure

�(ϕ) =
∞∑
n=1

1

n!

∫
Xn

ϕ(δμ1 + . . .+ δμn)UΦ(μ1, . . . , μn)L
φ
z (dμ1) . . . L

φ
z (dμn) .

does exist and satisfies
(
Σ′) by Theorem 4, that is

C��(h) =

∫
h(ν, μ+ δν) e

−μ(Φν) Lφ
z (d ν)�
(dμ), h ∈ F (X×M··(X)).

Corollary 6.1.2 in [18] now gives ξ�
 = �φ
Lz
, that is if we dissolve the clusters

realized by the Gibbs process �
 we obtain the Gibbs modification of the
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infinitely divisible process �Lz . Therefore

C�φ
Lz

(h) =

∫
h(x, ξ(μ)) ξ(μ)(d x)�
(dμ)

=

∫
h(x, ξ(μ)) ν(d x)μ(d ν)�
(dμ)

=

∫
h(x, ξ(μ+ δν)) ν(d x) e

−μ(Φν) Lφ
z (d ν)�
(dμ)

=

∫
h(x, ξ(μ) + ν) e−(μ(Φν)+Eφ(ν)) CLz(d x d ν)�
(dμ).

Now observe that for μ = δη1 + δη2 + . . . ∈ M··(X) and ν ∈ X we have

μ(Φν) =
∞∑
j=1

Φ(ν, ηj) =
∞∑
j=1

∑
x∈ν

∑
y∈ηj

φ(x, y) = Φ(ν, ξ(μ)).

Whence we obtain the assertion. q.e.d.

Equation
(
Σφ

Lz

)
contains equation

(
Σ′) for the Lévy measure of the Pois-

son process. But it contains also, for the case φ ≡ 0, the equation which
characterizes infinitely divisible processes. (c.f. [12])

The ideal Bose gas

Here we consider a particular permanental point process the ideal Bose gas.
Let E = R

d, where d ≥ 1, λ the Lebesgue measure on E and let

g(x) =
1

(2πβ)d/2
exp

(
− ‖ x ‖2

2β

)
, x ∈ E,

be the Gaussian density where β > 0 is a parameter called the inverse temper-
ature. Consider the following interaction kernel G(x, y) = g(x−y), x, y ∈ E.
CertainlyG is bounded ‖G‖∞ = (2πβ)−d/2, non negative definite and satisfies
Υ(G) = 1. Moreover let φ be a non negative potential such that Υ(φ) < ∞.
So if we recall the above section on permanental processes we obtain for

z ∈
(
0,

(2πβ)d/2

(2πβ)d/2 +Υ(φ)
e−1

]
the existence of the permanental process �Lz(+1), which is called the ideal

Bose gas and its Gibbs modification �φ
Lz(+1), which is a solution to

(
Σφ

Lz

)
due to Theorem 5.
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Shchepanuk, G.V., Euclidean Gibbs states for quantum continuous sys-
tems with Boltzmann statistics via cluster expansion. Methods of func-
tional analysis and topology 3, 62 - 81 (1997).

[9] Kuna, T., Studies in configuration space analysis and applications. The-
sis. University of Bonn (1999).

[10] Liemant, A., Matthes, K., Wakolbinger, A., Equilibrium distributions
of branching processes, Akademie-Verlag Berlin (1988).

[11] Matheron,G., Random sets and integral geometry, Wiley (1975).

[12] Matthes, K., Kerstan, J., Mecke, J., Infinitely divisible point processes.
Wiley (1978).

[13] Mecke, J.: Random measures, Classical lectures, Walter Warmuth Ver-
lag (2011).

30



[14] Malyshev, V., Minlos, R.A., Gibbs random fields, Cluster expansions,
Kluwer Academic Publishers (1991).
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