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A Quasi-Random-Walk to model a biological transport
process

Peter Keller - Sylvie Reelly - Angelo
Valleriani

Abstract Transport Molecules play a crucial role for cell viability. Amongst oth-
ers, linear motors transport cargos along rope-like structures from one location of
the cell to another in a stochastic fashion. Thereby each step of the motor, either
forwards or backwards, bridges a fixed distance. While moving along the rope the
motor can also detach and is lost.

We give here a mathematical formalization of such dynamics as a random pro-
cess which is a extension of Random Walks, to which we add an absorbing state to
model the detachment of the motor from the rope. We derive particular properties
of such processes that have not been available before. Our results include descrip-
tion of the maximal distance reached from the starting point and the position
from which detachment takes place. Finally, we apply our theoretical results to a
concrete established model of the transport molecule Kinesin V.

1 Introduction

Amongst the many complex processes taking place in living cells, transport of car-
gos across the cytosceleton is fundamental to cell viability and activity. To move
cargos between the different cell parts, cells employ Molecular Motors. The motors
are responsible for a huge variety of tasks, ranging from cell division to DNA repli-
cation and chemical transport. A subclass of such motors operate by transporting
cargos along the so called cellular microtubules, namely rope-like structures that
connect, for instance, the cell-nucleus and outer membrane. One example of such
Motors is Kinesin V, common in eukaryotic cells. Due to the periodic molecular
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structure of the microtubules, the steps of Kinesin have all the same length equal
to 8 nanometers, see [CCO05]. Under normal conditions present in living cells, this
motor performs a random walk in one dimension with a drift on the microtubule
possibly stopped by detachment from the tubule. Experimental studies have led to
rather detailed and successful models of the chemical processes in Kinesin V which
control the movement of the motor. These chemical processes are characterized by
a network of internal chemical states usually under the simplifying condition that
no detachment from the microtubule is allowed. In a more realistic setting de-
tachment is allowed. Realistic transition rates for both situations are found in
[LLOS].

It is possible to derive certain values like run length and time — see [LLV09] —
but deriving distributional information about these quantities is much harder and
usually not available.

We introduce a class of Markov Chains that formalizes the model of Kinesin
with detachment. We call this new class killed Quasi Random Walk. 1t is a gen-
eralization of the usual Random Walk on the integers allowing at each position
internal states on which the further movement depends. This could be seen as a so
called Markov Modulated Random Walk or a Random Walk in a Random Environ-
ment. But we like to extend here the very well established Quasi-Birth-and-Death
Process as introduced in [Neu94] (without detachment). It is a formulization of
a Birth-and-Death Process in a Random Environment that uses block matrices.
This perspective is especially useful for treating these processes numerically.

The term “killed” is used also for killed Birth-and-Death Processes, see e.g.
[DZ05]. It reflects the fact that the process can be stopped by arriving at a cemetery
state.

Our generalization enables us to derive detailed results about the spatial be-
haviour of a Molecule Motor, which could be applied to other processes that behave
similar to Kinesin V.

The rest of the article is organized as follows. In section 2 we define the killed
Quasi-Random-Walk and discuss shortly the tail behaviour of the process. Section
3 is devoted to the definition of the step-process which is the fundamental tool to
prove Theorem 1 and thus to derive spatial properties of the process. Finally in
section 4 we apply our theoretical results to an established model of Kinesin V.

2 A Killed Quasi Random Walk
2.1 The continuous time random model

A simple Random Walk (RW) on Z is a (time-homogeneous) continuous time
Markov Chain with values in a space of positions, such that the allowed jumps
(or displacements) are only to direct neighbouring positions. As generalisation, a
Quasi RW is a Markov Chain with values in the product state space Z x M with
M = {1,2,...,m}, where, to the first position component as before, one adds a
second component which specifies in which internal state the process is at each
position.

A killed Quasi Random Walk (short kQRW) is a Quasi RW X := (X¢);>0 with an
additional trap or cemetery state, denoted by A. So the state space E of a kQRW
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is of the form:
E={A}U(Zx M)={A}U{(2,4):2€ Z,i€{1,2,...,m}}.
The following definition precises the type of dynamics we are looking at:

Definition 1 Let X := (X¢);>( be a continuous time Markov Chain with values in
the state space E defined as above. If its infinitesimal generator has the following

structure
0 0
o~ )

where S(°) is a block tridiagonal (infinite) matrix of the form

A Ay 0
S5 = A A Ay ,
0 A_ A

with A_, A, AL m X m-matrices, I'. the nonnegative m-dimensional vector I'c :=
~(A-+A+ A 1T and RY := (..., I, Ie, e, ..), then X is called a killed Quasi
Random Walk.

(The notation 1 holds for the vector with all entries equal to 1).

To illustrate this definition we refer to fig.1, where gray circles encode collec-
tions of states and white circles are single states. Analogical arrows between gray
circles denotes a collection of transitions. There it gets clear that the subgenerator
matrix A quantifies the transitions between the internal states at each position
z € Z, independently of z. We refer to this property as spatial homogeneity of the
chain. On the other hand the nonnegative matrices A— and A; determine the
one-step transition rates of a change of position to the left or to the right. For the
sake of simplicity we assume throughout the article that p, the initial distribution
of X, is concentrated on position zero.

It is noteworthy that a distinct object, called Quasi Random Walk too, already
appeared in the very different context of Monte Carlo Methods, see e.g. [HOS00].

2.2 The discrete time random model

Similarly to Definition 1, we define a discrete time killed Quasi Random Walk as a
Markov chain associated to a transition matrix P of the form

7= (n %), W

where S is again an infinite block tridiagonal matrix as below composed by non-
negative matrices A_1, Ao, A1 such that A_; + Ap + A4 is an irreducible sub-
stochastic matrix. The discrete time version of the vector I' is then defined as
(Id — (A_l + Ao+ A+1))1T.

Clearly, the embedded Markov Chain of a continuous time kQRW is a discrete
time kQRW. We will use the embedded chain in the next section to get information
about the spatial motion of a kQRW before killing.
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Ao AO AO
At Ay Ay Ar —
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I,
I, Ie
I. Ie

Fig. 1 Schematic transition graph of a killed Quasi Random Walk.

2.3 The lifetime — or killing time — of the process

We always assume in this article that A is the only absorbing state of the system.
It is reachable, because the vector I'(°) contains at least one non zero entry due
to the fact that A_ + A+ A4 is a subgenerator. Nevertheless, since the state space
E is infinite, it is not immediate that 74, the time to reach A, usually called
killing time or absorption time, is almost surely finite. In fact, because of the
spatial homogeneity of the dynamics, 74 does not depend on the last position the
process visited before killing. Thus, by lumping (see e.g. [KST6]), it is equal to the
killing time of a much simpler reduced model, obtained by ignoring the position
coordinates, as in fig. 2.

A+ A+ Ay

Fig. 2 Reduced killed Quasi Random Walk.



A Quasi-Random-Walk to model a biological transport process 5

The law of 74 is given explicitly in the following

Lemma 1 The distribution of the killing time A of a kQRW with initial law p satisfies
P(ra €dt) = pexp((A_ + A+ A ). dt. 2)

This lemma is simple to prove using the phase type calculus introduced in
[Neu94]. This method also allows to characterize the tail behaviour of 4.

Proposition 1 Let X = (Xt)tzo be a kQRW and let \ be the eigenvalue with biggest
real part of the m x m-matrix A_1 + Ao + A41. Then X is indeed a real number and
the tails of the killing time 7o = inf {t > 0 : Xy = A} satisfy:

IK>0: Plra>t) 2° Kexp(—At) + o(exp(—At)). (3)
Moreover, the constant number K is explicitly given by
K = v,
where v is the right eigenvector of A associated to A.

Proof Perron-Frobenius Theory implies that A is a real number. The remaining
part of the proof can be found in [Neu94], Theorem 2.3.1. It is based on a result
on non negative irreducible matrices, see e.g. [Sen06], chapter 1, Theorem 1.2.

Proposition 1 underlines that it is exponentially unlikely for the process X to
be alive at large time ¢. Indeed, the eigenvalue A dominates the long time behaviour
of the system and is the experimentally most easily measurable time scale.

3 Spatial behaviour of the kQRW

In this section, we analyse spatial characteristic structure of the paths of a kKQRW.
For this reason it will be enough to consider its embedded Markov Chain, denoted
by X = (Xn)n>0, which is — as already remarked — a discrete time kQRW.

3.1 The step process associated to a discrete time kQRW

Though we are especially interested in properties of the position coordinate we
would like to factor out some irrelevant internal states of M. But one can not
drastically reduce the state space of the kQRW by considering only its first coor-
dinate, because the image of the process after projection would not be Markovian
anymore. One then constructs a new process on a smaller state space having the
nice property that every transition encodes a step from one position to another
of the original kQRW (before killing). To restrict the state space accurately, we
introduce structurally important (not necessarily disjoint) subsets of the set M:

Definition 2 Let (X»),>0 be a discrete time kQRW on E = (Z x M) U{A} with
transition matrix P = (pg ;)i 1c - We define two (sub)sets of internal states in the
following way:
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1. Arrival from the left:
M ={ieM:3j€M:p_i; 04 >0}
2. Arrival from the right:
M":={ieM:3j€ M :pq ;o >0}
Any subset of E of the form {z} x M! or {z} x M" is called an arrival set and its
elements arrival states.

Whenever the original kQRW changes position it arrives at an arrival set. The
next position change leads to an arrival state of a neighbouring position and so
on. Thus each trajectory of a kQRW can be decomposed into transitions between
arrival states of neighbouring positions, see fig. 3.

Fig. 3 The step process associated to the original kQRW. (The absorbing state A appears
here twice only for graphical reasons).

Let us now describe the dynamic of the new process called step process which
describes the jumps between the positions via arrival states.

Definition 3 Let X = (Xn),>0 be a discrete time kQRW on E = (Z x M) U{A}
defined by three matrices A_1, Ag and Ayq as in (1). We define a new kQRW
called step process and denoted by Z = (Zn), >0 on the restricted state space

E:=(ZxMuM"))u{A}lCE

via three new matrices A_;, Ay and A, as follows.
The internal transition matrix vanishes: A, := 0.
Fori,j e M\ UM"
(A—l)ij = P(Tl,j < OO|X() = (O,Z))
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and
(A4 1)ij = P(7r; < 00| Xo = (0,4))
where

m;=inf{n >0: X, = (=1,5)} and 7 ; :=inf{n > 0: Xy, = (+1,5)}.

The associated block tridiagonal matrix is denoted by S.
The transition vector to the absorbing state A is given by:

(I)i = P(ra < 7. for all j € M'UM"|Xo = (0,4)).

The random time 7; ; (resp. 7, ;) is the first time of position change to the left
(resp. to the right) from the position 0 to the arrival state j. Therefore the step
process has the property that with every transition the position is changed. In
the application to molecular motors, it reflects the position change behaviour as
it would be observed in an experiment.

Let us now compute explicitly the transition probabilities of the step process.

Proposition 2 Let X = (Xn),>0 be a discrete time kQRW on E = (Z x M) U {A}
defined by three matrices A_1, Ao and Ay1 as in (1). The passage times 1) ; (resp.
Tr.j) from the position 0 to the left (resp. to the right) arrival state j € M (resp.
j € UM" satisfies:

P(7,; < 00| Xo = (0,1)) = e;(Id — Ao)flR;r, (4)

where e; is the i-th unit vector and R; is the vector of transition rates between the
arrival states at position 0 and the state j at position —1 (resp. +1).

Proof We have that
P(n,; =n|Xo = (0,4))

n—1
=P < M Xm € {0} x (M'UM"), Xn = (~1,j)|X0 = (0,¢)>

m=1
= 6¢A871R;.

The matrix Ag is substochastic, thus its spectral radius is strictly less than one
and the von Neumann series can be applied, i.e.

P(rj < +o0|Xo = (0,i)) = Y e;Af 'R} =e;(ld— Ag) 'R} .
n>1

O

Remark 1 It is important to note that the same procedure to construct a discrete
time step process can be carried out in continuous time. But then the transition
times between position changes are no more exponential. Thus the resulting con-
tinuous time step process is no more Markov but Semi-Markov and the above
defined step process is its embedded Markov Chain.

In all the considerations we left out the initial condition. There is no reason that
the initial condition of the original kQRW should be concentrated on the arrival
sets only. It is therefore necessary to transform it in a new initial condition for
the step process. This can be simply done in the same way as for the computation
of the transition probabilities of the step process, by setting the arrival states of
position zero absorbing and calculating the probabilities to arrive at any such state
before the first position change.
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3.2 Run length and maximal position of the kQRW

The step process is a tool to compute some spatial properties of the original kKQRW
process.

Theorem 1 Let X be a discrete time kQRW and Z its associated step process accord-
ing to Definition 3 with initial distribution p (concentrated on position zero).

(i) The run length of X, equal to the total number of position changes before killing
and denoted by L, is equal to oo — 1 where o is the killing time of Z. Therefore
its distribution satisfies

kT
P(L=k) = w(A_, + A, L.
(i) The last position of X before killing, xt.= Z1,, admits the distribution
P(xV=2)=p(ld—8)"'r,

where I’y := (...,0,I,0,...) has vanishing entries except at the position z where
it is equal to I.

(#i) The mazimal position ever attained before killing, denoted by X, is distributed
like

1-— >1
P(x* = k)= L PerPE K2
1—p1 k=20

with py, = p((Id — ST)rO)k 1T where ST is equal to S with all entries set to
zero for positions greater than zero and C' is the block matriz with vanishing blocks
except Ag at the position z = 1.

Proof (i) The distribution of o4 can be computed in a similar way as (2).

(ii) To prove this statement we replace the unique absorbing state A of the step
process by a countable collection (A.),cz of absorbing states, one for each
position, reachable only from position z with the probability encoded in I
Therefore, defining oa_ :=inf{n >0: Z, = A.} one gets

P(Zp, =z)=P(oa, < )

which leads to the desired expression.

(iii) If the process were a simple Random Walk, i.e. M'UM" reduced to a single
element, the result would be simple to compute. At time 0 the maximal position
is 0. Then, after some excursion to the negative positions, the process eventually
reaches the position one or is being killed. But by spatial homogeneity this has
the same probability as starting in some position z and waiting for the first
transition to the position z+ 1. Thus the time to reach a new maximum forms
a terminating renewal process. It is terminating since absorption can occur
— in finite time — while no new maximum is attained. This ensures that the
maximum is almost surely finite.

For the step process we have to take u into consideration. Starting at time zero
with a distribution pu concentrated on position 0, delivers a new distribution on
position one, once this position is attained. Once again we could set the states
at position one absorbing and calculate the absorption probabilities under the
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condition that A will not be reached. These probabilities deliver a new “initial”
distribution. This distribution is given by:

p(id—Ss~)~'c

by the same arguments as below. By spatial homogeneity we can repeat this
procedure for every position, i.e. we get for position z > 0

p((Id—S7)70).

Finally we just need to sum up the probabilities of being in a specific state at
position z to obtain the desired result.
d

Remark that Statement (i77) can be easily adapted to the minimal position of
the kQRW by simply exchanging the role of A_; and A4;.

4 Application to Kinesin V

We want to apply our theoretical results to a model of Kinesin V. Kinesin has two
identical motor heads and walks in a “hand-over-hand” fashion, i.e., by alternating
steps in which one head moves forward while the other one remains bound to the
microtubule. Each step leads to a motor displacement of 8 nm corresponding to
the lattice constant of the microtubule. These mechanical steps are rather fast and
completed within 15 microseconds, see [CCO05].

Kinesin exhibits tight coupling, i.e., it hydrolyzes one Adenosine triphosphate
(ATP) molecule per mechanical step. After ATP has been hydrolyzed by one of the
catalytic motor domains, the inorganic phosphate is released rather fast. Adenosine
diphosphate (ADP) is subsequently released from the catalytic domain. When the
catalytic domain of one motor head is occupied by ADP, this head is only loosely
bound to the microtubule and most likely to unbind from it.

Various motor properties such as motor velocity [VSB99, CC05], bound state
diffusion coeflicient (or randomness parameter) [VSB99], ratio of forward to back-
ward steps [CC05], and average run length [SVB00] were measured as a function
of ATP concentration and load force. Furthermore, the motor velocity was also
determined as a function of P and ADP concentration [?].

As shown in [LLO7a, LLO7b], all of these experimentally observed motor proper-
ties can be described quantitatively within the recently introduced network model.
Aim of this section is to compute the distribution of total number of steps before
detachment and the maximal distance from zero for the specific case of Kinesin V.

The model of Kinesin V, as proposed in [LLV09], is a kQRW in continuous time
with M = {1,2,...,7}, start in (0,7) and comes with very simple arrival states,
namely

zeZ: M"={5}, M ={2}.

The resulting step process is therefore a kQRW on Z x {1,2} U {A}. For the
transition graph, see fig. 4.

Naturally we want to use Theorem 1, but the properties in (i) and (i73) contain
infinite matrices. Therefore we need an approximation.
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— 200 = AATP] — 995 *
W56 = Tiexp(0.15E%)’ W12 = T exp(0.25F%) was = 2.9% exp(—0.65F™)
= - [ADP] = S P R =200
wes = 0.06 TFexp(0.15F%)> W16 = 0.02 TTep(0.15F%) W21 = Texp(0.25F%)
= * — _3.08x10 19 —9g_ [ADP]
wsz = 0.36exp(0.35F7),  wsa = 1+exp(0.25F)" w17 = 2.8 00 15
— 100 = _L2x1077[P] - *
W71 = {Lexp(0.15F%) WT5 = [ exp(0.15F%)° w7 = 3exp(0.1F*)
w57 = WL, we1 = W56, w3 = Wse
w34 = We1, Wy = W12, w32 = Wes
W43 = W16, w7 = W57, wr2 = wrs
w4 = W71, wa7 = W17

Fig. 4 A transition from ¢ to j exists if an arrow connects them in the graph. The transition
rate is denoted by w;; and given below the graph. The exact values of the various parameters
are given in [VLL08,LLO8].

As already mentioned after Proposition 1, the probability to reach a position far
away from zero shrinks exponentially fast. Thus an immediate idea to approximate
is to cut the original process symmetrically and reduce the state space to

E,:={-n-n+1,...,-1,0,1,...,n—1,n} x MU{A}.

We also need to modify the behaviour at the boundary. Instead of moving
from position —n to A with I we define for this transition ' :=I'4+ A_;1' and
accordingly I't := I + A_HlT for position n. Therefore it is impossible for this
new process to reach a position greater n or lower than —n. Indeed, the results
of Theorem 1 apply also for finite number of positions and can be easily adapted.
Naturally we gain the original process back, if we take the limit n — oco.

We choose for the parameters appearing in the transition rates, see fig. 4,

F* =10, [ATP] = 10uM, [ADP] = 0.5uM, [P] = 0.5uM.
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It is assumed, that these parameters are constant throughout the lifetime of the
kQRW, such that the Markov Chain is time homogenous.

The associated step process as introduced Definition 3 has the following nu-
merical values (numbers are rounded):

0 0.2190 0.6986 0
A= (0 0_0193) VA = (0.9644 0) , [ = (0.0825,0.0163)

and initial distribution

0.402471 i=(0,2)
0402471 i=(0,5)
= 0.195058 i= A

0 else.

Note that p is defective in the sense that it is possible that the process gets
killed before any change of position can occur and thus has a weight on A.

The run length — the total number of steps before killing — is given by Theorem
1, (¢) and shown in fig. 5.

For the approximation of the last position immediately before killing we used
different “cutting heights”, displayed in fig. 6, to investigate the convergence be-
haviour. Indeed there is no qualitative change of the plot for n > 50, which is still
small for a computer.

Finally we used the same approximation procedure for the maximal position
ever attained before killing and gain the plot in fig. 7. The plot is also based on
n = 50 positions.

Fig. 5 Distribution function of the number of steps prior to killing.
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Fig. 6 Plot of the approximation of the distribution of the last position visited cutted at n
for n € {1,2,...,9,10,20,50} (from red to blue). The convergence is good, for n > 50 does
the resulting curve not differ significantly from the blue one. The approximation introduces
an error at the n and —n which is not shown here.
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0.04

0.03

0.02

0.01

Fig. 7 Distribution of the maximal position attained prior to killing.
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