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Abstract

Point processes are a common methodology to model sets of events. From earth-
quakes to social media posts, from the arrival times of neuronal spikes to the timing
of crimes, from stock prices to disease spreading – these phenomena can be reduced
to the occurrences of events concentrated in points. Often, these events happen one
after the other defining a time–series.

Models of point processes can be used to deepen our understanding of such events
and for classification and prediction. Such models include an underlying random
process that generates the events. This work uses Bayesian methodology to infer the
underlying generative process from observed data. Our contribution is twofold – we
develop new models and new inference methods for these processes.

We propose a model that extends the family of point processes where the occurrence
of an event depends on the previous events. This family is known as Hawkes
processes. Whereas in most existing models of such processes, past events are
assumed to have only an excitatory effect on future events, we focus on the newly
developed nonlinear Hawkes process, where past events could have excitatory and
inhibitory effects. After defining the model, we present its inference method and
apply it to data from different fields, among others, to neuronal activity.

The second model described in the thesis concerns a specific instance of point
processes — the decision process underlying human gaze control. This process
results in a series of fixated locations in an image. We developed a new model to
describe this process, motivated by the known Exploration–Exploitation dilemma.
Alongside the model, we present a Bayesian inference algorithm to infer the model
parameters.

Remaining in the realm of human scene viewing, we identify the lack of best practices
for Bayesian inference in this field. We survey four popular algorithms and compare
their performances for parameter inference in two scan path models.

The novel models and inference algorithms presented in this dissertation enrich the
understanding of point process data and allow us to uncover meaningful insights.



Zusammenfassung

Punktprozesse sind eine gängige Methode zur Modellierung von Ereignismengen.
Von Erdbeben bis zu Social-Media-Posts, von den neuronalen Spikes bis zum Zeit-
punkt von Verbrechen, von Aktienkursen bis zur Ausbreitung von Krankheiten - diese
Phänomene lassen sich auf das Auftreten von Ereignissen reduzieren, die in Punkten
konzentriert sind. Häufig treten diese Ereignisse nacheinander auf und bilden eine
Zeitreihe.

Modelle von Punktprozessen können verwendet werden, um unser Verständnis
solcher Ereignisse für Klassifizierung und Vorhersage zu vertiefen. Solche Modelle
umfassen einen zugrunde liegenden Zufallsprozess, der die Ereignisse erzeugt. In
dieser Arbeit wird die Bayes’sche Methodik verwendet, um den zugrunde liegenden
generativen Prozess aus den beobachteten Daten abzuleiten. Wir leisten einen
doppelten Beitrag: Wir entwickeln neue Modelle und neue Inferenzmethoden für
diese Prozesse.

Wir schlagen ein Modell vor, das die Familie der Punktprozesse erweitert, bei denen
das Auftreten eines Ereignisses von den vorherigen Ereignissen abhängt. Diese
Familie ist als Hawkes-Prozesse bekannt. Während in den meisten bestehenden
Modellen solcher Prozesse davon ausgegangen wird, dass vergangene Ereignisse
nur eine exzitatorische Wirkung auf zukünftige Ereignisse haben, konzentrieren wir
uns auf den neu entwickelten nichtlinearen Hawkes-Prozess, bei dem vergangene
Ereignisse exzitatorische und hemmende Wirkungen haben können. Nach der
Definition des Modells stellen wir seine Inferenzmethode vor und wenden sie auf
Daten aus verschiedenen Bereichen an, unter anderem auf die neuronale Aktivität.

Das zweite Modell, das in dieser Arbeit beschrieben wird, betrifft einen speziellen
Fall von Punktprozessen - den Entscheidungsprozess, der der menschlichen Blick-
steuerung zugrunde liegt. Dieser Prozess führt zu einer Reihe von fixierten Posi-
tionen in einem Bild. Wir haben ein neues Modell entwickelt, um diesen Prozess
zu beschreiben, motiviert durch das bekannte Exploration-Exploitation-Dilemma.
Neben dem Modell stellen wir einen Bayes’schen Inferenzalgorithmus vor, um die
Modellparameter abzuleiten.

Wir bleiben auf dem Gebiet der menschlichen Szenenbetrachtung und stellen fest,
dass es in diesem Bereich keine bewährten Verfahren für die Bayes’sche Inferenz
gibt. Wir geben einen Überblick über vier gängige Algorithmen und vergleichen ihre
Leistungen bei der Ableitung von Parametern für zwei Scanpfadmodelle.

Die in dieser Dissertation vorgestellten neuen Modelle und Inferenzalgorithmen
bereichern das Verständnis von Punktprozessdaten und ermöglichen es uns, sinnvolle
Erkenntnisse zu gewinnen.
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1Introduction

1.1 Modeling
Most people go through their days without thinking even once about the concept of
modeling. Nevertheless, modeling is a crucial feature of human cognitive processing.
The term mental modeling first appeared in 1943 in a book by the Scottish psychologist
and philosopher Kenneth Craik [33]. The term refers to the hypothesis that the
brain creates "small scale models" of reality. These models are then used to form
predictions about the world, shape behavior and solve problems.

Some people, primarily keen on numbers and computers, spend some of their days
actively thinking about modeling. They look at the world around them and seek to
create an explicit model explaining or predicting it. These models usually take the
form of mathematical equations (mathematical modeling) or computer pseudo–code
(computational modeling). Nowadays, the two are almost synonymous, and we use
the terms interchangeably.

As the world is vast and complex, attempting to model all of it is doomed to fail,
and models are usually created to explain some phenomena in a specific domain.
Lewis Fry Richardson created one of the first mathematical models for weather
forecasting in the 1920s [146]. The model’s results were severely wrong due to the
crude approximations involved in the model. Nowadays, computational models
are executed with ever more computing power, making them more complex and
accurate.

Most computational models can be categorized as either parametric or nonparametric.
Parametric models rely on a set of parameters that characterize the equations behind
the model. Often, these parameters can be traced back to the physical features of
the problem being modeled. Furthermore, parametric models are often used when
we want to introduce to the model some prior knowledge we have. In this sense, the
model’s equations represent certain hypotheses about the phenomenon we wish to
model. These hypotheses could be very exact, making the model usable only for a
specific application.

Nonparametric models do not rely on concrete assumptions about the data we model
but on the statistical features of the data itself. A popular example of nonparametric
modeling is kernel density estimation [150, 76, 45], which is used to approximate
the underlying density function from data. Artificial neural networks are another
popular nonparametric model [151]. Although these models do have a finite set
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of parameters, they have so many of them that they are considered to emulate
non–parametric methods.

In this work, we look at generative models. This class of models differs from other
models used to classify or cluster data. The generative models produce time series
data in our case. More specifically, in this work, we model time series where the
events are characterized as points in time and space. A valuable framework for this
kind of modeling is point processes, and we present it in the next chapter.

The generative models represent our understanding of the process underlying the
observations, and we expect that the synthetic data that the model generates is
similar to the observed data. Setting the model parameters "blindly" or "by hand"
will likely result in synthetic data that is not similar to the observed data we wish
to model. Thus, after setting the model, a crucial step is adapting the model’s
parameters according to the observed data. This is often referred to as learning or
inference.

1.1.1 Probabilistic Modeling

In many cases, we observe different outcomes given the same initial conditions. For
example, following an earthquake of a certain amplitude in a specific location, we
cannot predict precisely when and where the aftershocks will appear. This is due to
inherent noise in the system and our imperfect knowledge about the problem, which
limits our modeling capabilities.

When choosing to address the uncertainty in the data, we use the framework
of probabilistic modeling. Rather than modeling a specific outcome, we model a
distribution. In this framework, the model is defined by the likelihood function,
which is the probability of observed data given the model’s parameter values. Thus,
when generating data from the model, we effectively sample from the likelihood,
and given the same initial conditions, different synthetic data–sets are produced. We
do not expect the data generated from a probabilistic model to be identical to the
observed data, and we use statistical methods to establish the model’s accuracy.

One approach to statistical modeling relies on the view of the probability of an
event as the relative occurrence frequency of the event in repeated experiments. It
is known as frequentist. In this framework, probabilities are associated only with
observed quantities, e.g., the data.

Another approach assumes that uncertainty is also associated with unobserved
quantities, e.g., the model’s parameters. According to this approach, the parameters
of the models also come from a particular distribution, and as we cannot infer their
exact values, we estimate their distribution. This approach is known as Bayesian. In
this work, we use the Bayesian framework and introduce it in the next section.

2 Chapter 1 Introduction



1.2 The Bayesian framework

The origins of Bayesian inference are tracked back to the 18th century and the
influential work by Thomas Bayes, "An Essay towards solving a Problem in the
Doctrine of Chances" [6]. This paper was published two years after the death of
its author, edited by Richard Price. In his essay, Bayes presented a theorem that
calculated the probability of an occurrence of an event given the prior knowledge
that another event took place. However, Bayes’ theorem was not widely accepted
then, and only in the 20th century, it began to be commonly used in statistical
analysis.

Bayesian inference has been utilized in many fields. It can be applied to a broad
range of problems, from "simple" problems such as estimating the probability of a
coin being fair based on the observed frequency of heads and tails, to estimating the
likelihood of a patient having a disease based on their symptoms and tests results
and predicting the stock price of a company based on its financial performance and
market conditions.

As stated before, unlike the frequentist approach, the Bayesian approach assumes
that the model’s parameters also have uncertainty associated with them. This allows
one to incorporate prior knowledge and beliefs into the analysis, which can be helpful
in situations with limited or noisy data. This comes into play as prior distributions
over the model’s parameters.

One of the main challenges when using Bayesian inference is the need to specify the
prior distributions. Bayesian inference is sometimes referred to as subjective. The
priors are considered non–objective knowledge, as they are not directly based on the
observations. This can be addressed using non–informative prior distributions. But
in this work, we remain in the field of subjective Bayes and use informative priors.

Generally, Bayesian inference framework follows three steps:

1. Setting up the full probability model over all the observed (data) and the
unobserved (model’s parameters) quantities in the form of likelihood and prior
distributions.

2. Estimating the probability of the model’s parameters conditioned on the ob-
served data, known as the posterior distribution.

3. Evaluating the model.

The contribution of this dissertation involves all three steps of the Bayesian frame-
work. We introduce novel Bayesian models in different application fields, exploring

1.2 The Bayesian framework 3



both parametric and nonparametric approaches. Moreover, we develop efficient in-
ference algorithms for learning these models’ parameters and evaluate the inference
results.

1.3 Outline

In the next chapter, we aim to cover the fundamental mathematical knowledge
needed for the rest of the dissertation. We elaborate on Bayesian inference, intro-
duced in the previous section, and present some of the most common inference
algorithms. For the use case of models for which the inference is not directly avail-
able, we introduce the concept of model augmentation and go through the details of
one augmentation scheme we use later in our work. Last, we go through the general
details of point processes, which are the type of statistical models that we develop in
this dissertation.

Chapter 3 includes our contribution to modeling and inference in point processes.
We present a novel semi–parametric model named the Nonlinear Hawkes process
with Gaussian Process Self–effects (NHGPS), a nonlinear extension to the known
Hawkes process. We describe the innovative inference approach for the model’s
parameters, which utilizes the augmentation scheme described in Chapter 2. The
augmentation allows us to derive a Gibbs sampler and a Variational Inference
algorithm for our model. We first demonstrate the performance of the inference
on artificially generated data and then use the model in applications in different
domains - from neuroscience to crime prediction.

In Chapter 4, we dive into a specific application domain for point processes, namely
human natural scene viewing. We develop a new hypotheses–based parametric
model to generate human–like scan paths given an image. The idea underlying our
approach is that each saccade can be categorized as "exploratory" or "exploitative,"
and we formalize this assumption in terms of fixation location probability. We name
our model Exploration–Exploitation model for scene viewing. Once we set the new
model, we describe a Bayesian inference approach relying on the PG augmentation
scheme, which is novel in the field. Similarly to the steps in Chapter 3, we first
validate the correctness of the inference scheme using artificial data generated from
the model. Then we investigate the performance of the model on real data.

Chapter 5 addresses the choice of an inference algorithm for a Bayesian model.
We remain in the field of scan path modeling and compare the performances of
different sampling algorithms for models with explicit likelihood functions. We
use the Exploration–Exploitation model presented in the previous chapter and the
known Scenewalk model as test cases.

4 Chapter 1 Introduction



Finally, we conclude the dissertation in Chapter 6. We summarize the main contribu-
tion of our work and suggest further developments and research directions.

1.3 Outline 5





2Fundamentals

2.1 Bayesian Inference
The first building block of the Bayesian framework is the model. In this work, a
model is defined by a likelihood function which is the probability density function
associated with the chance of generating specific data given the model parameters.
We use the notation y for data and θ for model parameters. The likelihood function
of the model is then

p (y|θ) . (2.1)

The likelihood also depends on the choice of the modelM. This is often denoted as
p (y|θ,M) or p (y|θ), but here we keep this dependency implicit and use the notation
in Equation (2.1). The model is further specified with the full probability density of
the model, which also includes the prior over the model parameters

p (y, θ) = p (y|θ) p (θ) . (2.2)

The next step in the Bayesian framework is estimating the posterior distribution over
the model parameters given observed data. This is done using Bayes rule [6]

p (θ|y) = p (y|θ) p (θ)
p (y) . (2.3)

The expression in the denominator on the right–hand side of the equation is known
as the evidence. In practice calculating the evidence analytically is usually impossible
and estimating it is very computationally costly. In practice, when we "estimate" the
posterior, we estimate a quantity that is only proportional to it.

The posterior probability of the model parameters can be estimated directly as
an analytical expression only for a very limited family of distributions. This is
usually the case when the prior and likelihood of the model are conjugated and the
posterior distribution has the same functional form as the prior distribution. Some
common examples of conjugate distributions include: 1. Beta-binomial: If the prior
distribution is a beta distribution and the likelihood is a binomial distribution, then
the posterior distribution is also a beta distribution. 2. Normal-normal: If the prior
distribution is a normal distribution and the likelihood is also a normal distribution,
then the posterior distribution is also a normal distribution. 3. Gamma-Poisson:
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If the prior distribution is a gamma distribution and the likelihood is a Poisson
distribution, then the posterior distribution is also a gamma distribution.

In cases where the posterior distribution cannot be derived analytically, a common
approach is to use sampling methods. By sampling, we refer to the process of
drawing a set of random points that approximate the posterior distribution. With
these points, we can calculate the summary statistics of the posterior, such as the
mean or median, or visualize the distribution using techniques like histograms or
kernel density plots.

A key element of this process is the proposal distribution q (θ), which is simple enough
to sample from it. Different samplers differ from each other by the construction of
q (θ) and the construction of the sequence of samples known as the chain.

Another approach is deterministic approximate inference methods. This approach
also includes a proposal distribution q (θ), but instead of sampling from it, it is tuned
to be as similar as possible to the posterior. Common deterministic approximate
inference methods are expectation propagation [123] and variational inference [15].
The latter is introduced and used in Chapter 3 of this dissertation.

Next, we introduce the sampling algorithms used in several of the following chapters.
We first present a brief history of the development of Monte Carlo methods and then
dive into the mathematical framework of these methods.

2.1.1 Markov Chain Monte Carlo

Background
The origins of Monte Carlo (MC) methods are often tracked back to Metropolis
and Ulam [121], and the method is named after the famous Monte Carlo casino.
Following the rapid development of the electronic computer in the 1940s, statistical
sampling was revisited after being considered too tedious to calculate. MC was
originally developed for estimating the state of a physical particle system, where
the state cannot be evaluated analytically, but the number of particles is not high
enough to apply methods from statistical mechanics. Metropolis and Ulam suggested
randomly choosing a sub–set of particles and propagating them, creating a chain
until the system’s final state is reached. Interestingly, it was reported that the nuclear
physicist Enrico Fermi developed MC independently already in the 1930s, but did
not publish on the subject [156].

In the upcoming years, MC methods remained a tool for physicists to simulate
particle systems. In 1953 Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller
[120] presented the first Markov Chain Monte Carlo (MCMC) algorithm, which
became known as the Metropolis algorithm. While using terminology from statistical
physics, de facto Metropolis et al. presented an algorithm to simulate any given
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distribution of random vectors. The Metropolis algorithm was generalized further
in Hastings [65] and was named the Metropolis–Hastings (MH) algorithm. In this
work, Hastings extended the usage of MCMC methods beyond statistical mechanics
to general high–dimensional statistical problems.

Following the pioneering work of the 1950s and 1970s, the following decades brought
much attention to using MCMC methods for Bayesian inference. New MCMC algo-
rithms were developed [56, 62] and applied to real–world problems in different
fields [9, 12, 58]. Furthermore, MCMC methods were used for different Bayesian
computations, such as calculating marginal densities [53] and exploring and summa-
rizing posterior distributions [159, 173]. Last, a rigorous mathematical framework
was constructed to assess the validity of those methods [10, 11].

MCMC
Here, we are interested in using MCMC methods to estimate a complex posterior
distribution p (·). In MCMC, the distribution we wish to estimate is called the target
distribution. As we cannot sample directly from the posterior, we sample from a
proposal distribution q (·). If the MCMC algorithm is well constructed, the samples
from the proposal distribution converge to the target distribution.

The term Markov Chain refers to methods where the proposal distribution is condi-
tioned on the previous samples. In most MCMC type samplers, the chain is first–order,
which means it only depends on the last sample

q (θn+1|θ1, .., θn) = q (θn+1|θn) .

The conditional probability in a Markov chain is also known as the transition proba-
bility Tn (θn, θn+1) = q (θn+1|θn).

To ensure that the samples generated from the proposal distribution converge to
samples from the target distribution, the Markov chain must be constructed such
that the target distribution is invariant. One way to ensure that is to choose the
transition probabilities such that they satisfy detailed balance

p (θn) T (θn+1, θn) = p (θn+1) T (θn, θn+1) .

In the context of Markov Chains, this is also called reversability of the chain. Further-
more, we wish to achieve the invariant property regardless of the initial distribution
q (θ0). This is called ergodicity, and if satisfied, the invariant distribution is the
equilibrium distribution.

The different MCMC algorithms vary in the construction of the transition probabili-
ties, such that the target distribution is the equilibrium distribution of the Markov
chain. Next, we present the popular Metropolis–Hastings (MH) and two of its
derivatives — Gibbs, and Hamiltonian Monte Carlo (HMC).

2.1 Bayesian Inference 9



MH
In the MH algorithm [65], after drawing a sample θ′ from the distribution q (θ|θn) it
is accepted with probability

α
(
θ′, θn

)
= min

[
1,

p (θ′|y) q (θn|θ′)
p (θn|y) q (θ′|θn)

]
. (2.4)

The Metropolis acceptance probability defines a Markov chain whose invariant
distribution is p (θ|y) as it satisfied the detailed balance condition

p (θn|y) q
(
θ′|θn

)
α
(
θ′, θn

)
= min

[
p (θn|y) q

(
θ′|θn

)
, p
(
θ′|y

)
q
(
θn|θ′)]

= min
[
p
(
θ′|y

)
q
(
θn|θ′) , p (θn|y) q

(
θ′|θn

)]
=

=p
(
θ′|y

)
q
(
θn|θ′)α

(
θn, θ′) .

Hence, every MCMC method that can be written as a special case of the MH algo-
rithm also has the target distribution as its invariant distribution. Nowadays, the
most popular version of MH is random–walk MH. In this algorithm, the proposal
distribution is a Gaussian with mean θn. As this is a symmetrical distribution, the
acceptance probability becomes

α
(
θ′, θn

)
= min

[
1,

p (θ′|y)
p (θn|y)

]
.

Gibbs Sampler
Gibbs Sampler is a special case of the MH algorithm that is applicable for posterior
distribution where we can sample from the conditional posterior of the parameters.
We set θ = {θ1, ..., θK}, and assume that we can sample from each conditional
p
(
θk|y, θ\k

)
. In each step of the Gibbs sampler, we iterate through all the parameters

and sample a new value from the conditional posterior for each. The procedure is
summarized in Algorithm 1.

Algorithm 1: Gibbs Sampler
Initialize {zk; k = 1, ..., K}
for n← 1 to N do

Sample z
(n)
1 ∼ p

(
z1|y, z

(n−1)
2 , ..., z

(n−1)
K

)
...
Sample z

(n)
k ∼ p

(
z1|y, z

(n)
1 , ..., z

(n)
k−1, z

(n−1)
k+1 , ..., zn−1

K

)
...
Sample z

(n)
K ∼ p

(
zK |y, z

(n)
1 , ..., z

(n)
k−1

)

Hamiltonian Monte Carlo
So far, we have introduced two sampling schemes - MH and Gibbs sampler. Indeed,
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the two methods are guaranteed to converge to the correct target distribution when
the number of iterations goes to infinity. In practice, we only have access to a finite
number of iterations. Often, the convergence of the MH algorithm is very slow, as it
tends to zigzag around the target distribution and explores it inefficiently due to the
random walk on which it is based. Although the Gibbs sampler converges faster, we
do not have access to the analytical form of the required conditional distributions in
many cases.

Next, we present the Hamiltonian Monte Carlo (HMC) algorithm, which addresses
these issues and can be applied to any model with a computable likelihood function.
HMC was first used in 1987 [42] under the name Hybrid Monte Carlo. It was termed
hybrid as it combines stochastic MCMC updates and deterministic simulation. The
now accepted name Hamiltonian Monte Carlo was first introduced in 2003 [113],
and it refers directly to the mechanical physics inspiration behind it.

A naive idea for improving the sampling path is to track the gradient of the target
distribution. Implementing this idea, our samples will soon be drawn to the dis-
tribution mode, and we will fail to explore the tails of the distribution, which are
necessary, especially in the case of high dimensional problems.

To counteract the attraction to the mode of the distribution in HMC, we augment the
target distribution with a parameters vector ϕ called the momentum and the joint
distribution of the problem parameters, and the momentum is

p (θ, ϕ|y) = p (ϕ|y, θ) p (θ|y) = p (ϕ|θ) p (θ|y) ,

known also as the canonical distribution. In doing so, we extend the parameter space
of the problem to the associated phase space and sample in this expanded space.

As inspired by classical physics, we can investigate the augmented system in terms
of the Hamiltonian associated with it

H (θ, ϕ) = − log p (θ, ϕ) = − log p (ϕ|θ)− log p (θ|y) ≡ K (ϕ, θ) + V (θ) .

V is the associated potential energy of the system, such that the posterior distribution
can be written as p (θ|y) = exp−V , and K is the associated kinetic energy such that
p (ϕ|θ) = exp−K . Generally, the kinetic energy could also depend on the position
variable θ. Here, we consider the separable case where the kinetic energy depends
only on the momentum variable ϕ and p (ϕ|θ) = p (ϕ).

The definition of the Hamiltonian allows the use of the Hamilton equations to
propagate θ and ϕ in time while preserving the system’s total energy. This translates
to the following steps that make up an iteration in the HMC sampler

(i) Sample momentum ϕ ∼ p (ϕ).
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(ii) Propagate the system in the phase space using Hamilton equations

dθ

dt
= ∂H

∂ϕ
= ∂K

∂ϕ

dϕ

dt
= −∂H

∂θ
= −∂K

∂q
.

(iii) Use the new state and the negative new momentum as a proposed sample
(θ∗, ϕ∗) and accept it with probability

min
[
1,

p (ϕ∗) p (θ∗|y)
p (ϕ) p (θ|y)

]
.

The negation of the momentum in the last step is done to ensure the symmetry of the
Metropolis proposal. Next, we set the kinetic energy so that K (ϕ) = K (−ϕ) so the
negation is not done in practice. If we step into an "illegal" value of the parameters
while propagating the system, we stop the progress in the phase space and reject the
new state we arrived in.

An important design choice when implementing HMC is the kinetic energy associated
with the momentum parameter. The most commonly used is the Euclidean–Gaussian
Kinetic Energy where

p (ϕ) = N (ϕ|0, M) (2.5)

K (θ, ϕ) = 1
2ϕ⊤M−1ϕ + 1

2 log |M |+ const. (2.6)

M is a symmetric, positive–definite mass matrix. Often M is diagonal and set to be
a multiplication of the identity matrix.

Another way to set the mass matrix is

M−1 = 1
n

N∑
n=1

Σ (θn)

where thetan is the value of θ at iteration n of the sampler. M is the inverse of
the average covariance of the first N iterations of the position variable θ. In this
approach, the sampler is run for N burn–in iteration with M = I and then set to the
expression above for the rest of the run. This approach compensates for correlations
between position parameters and is often used in molecular dynamics [7].

Other methods automatically adapt the mass matrix according to the local structure
at each step of the algorithm [2, 60, 97]. These methods require adaptation of the
acceptance probability, and we do not use them in this work.

Even for straightforward problems, we cannot analyze the trajectories defined by
the Hamilton equations but resort to numerical approximations. One of the most
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used methods for discretization and solving a system of differential equations is the
Euler method [87]. This method, and other similar solvers, introduce a "drift" —
as longer and longer trajectories are solved and the integration time increases, the
error introduced by the discretization accumulates [131].

To avoid the accumulation of errors, the Hamilton trajectories are solved using
symplectic integrators [101]. When choosing Euclidean–Gaussian kinetic energy for
the momentum parameter, we can use the leapfrog integrator to solve the Hamilton
equations, which received its name from splitting the momentum step. One step of
the leapfrog integrator is described in Algorithm 2.

Algorithm 2: Leapfrog Algorithm
Data: Initial position θ0 and momenta ϕ0, step size ϵ
Result: Position and momenta at time ϵ
begin

Half-step for momenta:
ϕ 1

2
← ϕ0 − ϵ

2
∂V
∂θ |θ0

Full-step for positions:
θ1 ← θ0 + ϵ∂K

∂ϕ
Half-step for momenta:
ϕ1 ← ϕ 1

2
− ϵ

2
∂V
∂θ |θ1

The performance of the HMC algorithm depends heavily on the choice of the pa-
rameters of the leapfrog algorithm – the step size ϵ and the number of iterations
L = ⌊T/ϵ⌋. Finding the appropriate parameters can be done during the burn–in
period. A useful heuristic is setting ϵL = 1 with ϵ = 0.1 and L = 10 and changing
the step size according to the average acceptance probability. If the acceptance
probability is too high, the step size is increased, and if it is too low, the step size is
reduced [54].

After the burn–in period, during the run of the HMC, the values of ϵ and L can be
changed randomly, and the algorithm will still converge to the correct distribution
[54]. Some more complex algorithms have been developed that change the step
size and the number of steps during the algorithm’s run while keeping the detailed
balance and not damaging the algorithm’s convergence. Such a method is the
no–U–turn sampler [75], which will be presented later in the dissertation.

2.1.2 Augmentation
The HMC sampler described earlier incorporates the useful mechanism of data
augmentation. We discuss it in further detail and introduce a specific augmentation
scheme that appears in several of the following chapters.

Consider again the situation where the posterior distribution we are interested in
p (θ|y) is difficult to compute. It is also often the case that the conditionals required

2.1 Bayesian Inference 13



for the Gibbs sampler are not available in an analytic form. In data augmentation,
another set of parameters ϕ is imputed such that p (θ|y, ϕ) has a convenient form.
These new parameters can also be seen as unobserved data, hence the terminology
of data augmentation.

Suppose p (θ|y, ϕ) is available, and we can sample the augmenting parameters con-
ditioned on the data and the model. In that case, we can implement a two steps
block Gibbs sampler, where we iterate between sampling the model parameters con-
ditioned on the unobserved data and the observed data from p (θ|y, ϕ), and sampling
the unobserved data conditioned on the model parameters and the observed data
from p (ϕ|y, θ). As we can always marginalize over the augmenting parameters, the
samples θ will be sampled from p (θ|y).

Gibbs sampling with data augmentation has been used in many applications from
genetics linkage data [37, 166] to mixture distributions [38, 38] and hierarchical
models [139]. Although we introduce data augmentation in the context of Gibbs
sampling, it can also be used with other inference schemes, such as variational
inference, as demonstrated in later chapters.

Pòlya-Gamma Augmentation
The Pòlya-Gamma (PG) augmentation scheme allows for a full Bayesian inference in
models with binomial likelihoods. It was first presented in [142], and its theoretical
foundations were further explored in [29].

A random variable w is said to be distributed according to PG distribution if

w
D= 1

2π2

∞∑
k=1

gk(
k − 1

2

)2
+ c2

4π2

with parameters b > 0 and c ∈ R and gk ∼ Gamma (b, 1). The moment generating
function of the PG distribution is given by

E (exp (wθ)) =
coshb ( c

2
)

coshb
(√

c2/2−θ
2

) .

Taking the derivative with respect to θ and evaluating at 0 results in an analytical
expression for the mean of the PG variable

E (w) = b

2c
tanh

(
c

2

)
. (2.7)
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The PG distribution was designed to represent the inverse of the hyperbolic cosine
function as an infinite mixture of scaled Gaussians

cosh−b (θ/2) =
∫ ∞

0
exp

(
−θ2

2 w

)
p (w|b, 0) dw. (2.8)

This is particularly useful in problems where the likelihood includes the logistic
function, as it can be rewritten in terms of the hyperbolic cosine

σ (θ) = 1
1 + e−θ

=
exp θ

2

2 cosh
(

θ
2

) . (2.9)

Using the representation from Equation (2.8) in Equation (2.9)

σ (θ) = 1
2

∫ ∞

0
exp

(
−θ2

2 w + θ

2

)
p (w|1, 0) dw (2.10)

We get an expression where θ appears quadratic in the exponent and is conjugated
to a Gaussian prior. Furthermore, using the tilted PG distribution we see that

p (w|1, θ) ∝ exp
(
−θ2

2 w

)
p (w|1, 0) .

The PG augmentation scheme achieves conjugacy in models with binomial likeli-
hoods. It was used successfully in logistic regression models [142, 105] and other
models that include the logistic function [106, 41]. In the next chapters, we continue
this line of research and employ the PG augmentation in point process models that
include the sigmoid function.

2.2 Point process

As mentioned, our research is concerned with modeling phenomena characterized
as sequences of events. The framework of point processes is often used to describe
this type of data, and we next present it in general detail.

Point processes are utilized to describe the random generation of data that are
concentrated in some space. These could be events in time or locations in space, for
example. Generally, point processes are defined in an arbitrarily high dimensional
space S ⊆ Rd [127]. A point process X on S can be characterized in terms of the
associated counting process with the count function

N (B) = n (XB) ,

the number of points falling in B ⊆ S.
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In this work, we focus on one–dimensional point processes and model events in finite
time. This allows us to use other formulations of the point process than the count
function. Two of these formulations are in terms of event times and of inter–arrival
times

N = {τ1, ..., τn}

N = {u1, ..., un} ui = τi − τi−1.

An illustration of the different formulations can be found in Figure 2.1. In the rest of
the dissertation, we use the formulation of a temporal point process as a collection
of event times.

Fig. 2.1.: Above is the representation of a point process as a counting process. Below is the
representation using arrival and inter–arrival times.

Two common and useful assumptions for a temporal point process are that it is
evolutionary and orderly. Evolutionary means that the process evolves in time and
that past events may influence the current event, but future events do not. Orderly
implies that all events occur at distinct times and formally

lim
∆t→0

P {N (t, t + ∆t) > 1} = 0. (2.11)

The evolutionary assumption allows us to examine a temporal point process in terms
of the conditional density

f (t|Htn) dt = P {tn+1 ∈ [t, t + dt)| {t1, ..., tn}} .

The term Htn is called the history of the process. With F (t|Htn) being the corre-
sponding cumulative distribution function, we can consider the conditional intensity
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function, also known as the hazard [122] function or rate function of the point
process

λ (t|Htn) = f (t|Htn)
1− F (t|Htn) . (2.12)

We can write the conditional density function in terms of the intensity λ (t|Htn)
[35]

f (t|Htn) = λ (t|Htn) exp
(
−
∫ t

tn

λ (s|Htn) ds

)
(2.13)

and the joint likelihood function of the events in the process is

L (t1, ...tn) =
n∏

i=1
λ (ti) exp−Λ (t),

where Λ (t) =
∫ t

0 λ (s|Hs−) ds is called the compensator andHs− = {t1, ..., tn; tn < s}.

2.2.1 Poisson Process
For completion, we present the most known type of point process called Poisson pro-
cess. Above, we defined a temporal process where the probability of the occurrence
of an event in a specific time depends on the history of the process. This dependence
may take many forms. The most basic of these forms is the assumption that all event
times are independent, and the process is memoryless. Formally it is expressed as

f (t|Htn) = f (t)

λ (t|Htn) = λ (t) .

Processes following this assumption are called Poisson Processes [84]. If the Poisson
Process is constant with λ (t) = λ, the process is called homogeneous, and otherwise,
it is called nonhomogeneous.

An important extension of the Poisson process is the Cox Process [32] or doubly
stochastic Poisson process, in which the intensity function itself is a stochastic process.
One example is a process where the logarithm of the intensity function is generated
from a Gaussian Process [128].
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3Nonlinear Hawkes Process with
Gaussian Process Self-Effects

We concluded the fundamental theoretical background by introducing point–processes,
and the first original contribution of this dissertation is a new point–process model.
This model belongs to the family of Hawkes processes, which differs from the Poisson
process by being history dependent. Our model is part of the nonlinear Hawkes
process family, where the causal influence between events can be either excitatory or
inhibitory. We use the term self–effects to refer to the influence of the past on future
events.

In a nutshell, the innovation of our model is that we choose a semi-parametric
approach, which avoids the limiting parameterization of the memory kernel and
the background rate. We assume a Gaussian process (GP) before the exogenous
events’ intensity and on the memory kernel, allowing an inhibitory effect between
the events. To ensure that the intensity function is non–negative, we use the sigmoid
link function. This descriptive modeling approach allows us to obtain a fast inference
procedure. The history of self–effects defines an aggregated Gaussian process,
and we perform the inference directly on this aggregation rather than obtaining a
posterior over each self-effect.

We begin this chapter by introducing Hawkes processes and their main application
fields. Next, we introduce some of the latest work in the field that we later use as
a baseline comparison for our model. Then, we present our new model and the
inference method we developed for it. After presenting the model, we include results
from different fields and briefly discuss the main findings.

3.1 Hawkes Processes
Traditionally, sequences of events in continuous time are modeled by point processes,
of which Cox processes [32], or doubly stochastic processes, use a stochastic process
for the intensity function, which depends only on time and is not affected by the
occurrences of the events. In the 1970s, Alan Hawkes developed the Hawkes process
in a series of five papers [70, 68, 69, 66, 71]. The Hawkes process extends the
Cox process to capture phenomena in which past events affect future arrivals by
introducing a memory dependence via a memory kernel, which is also referred to as
the causal influence function. When incorporating the dependence of the process on
its own history, due to the superposition theorem of the point process, new events
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will depend on either an exogenous rate, which is independent of the history, or an
endogenous rate from past arrivals.

3.1.1 Classical and Nonlinear Hawkes Process

In Section 2.2, we presented the general evolutionary point process, its rate function
(Equation (2.12), and its conditional density function (Equation (2.13)). Unlike
in the case of the Poisson process, the Hawkes process considers the effect of the
history on the process on the intensity function. Following the notation in Hawkes
[70], the intensity of the Hawkes process is defined by

λ(t|Ht) = s (t) +
∑
tn<t

g (t− tn) , (3.1)

where s(t) is the base intensity of exogenous arrivals and g (t− tn) is the memory
kernel, or causal influence function, defining the change in the intensity function
following each arrival.

Originally, Hawkes processes were developed for phenomena where the history has
an excitatory effect on the intensity function. Thus, past events may only increase the
intensity function. To avoid an "explosion" of events, exponential decay is introduced,
limiting each event’s effect duration. Under this assumption, the most common form
of the memory kernel is

g(t− tn) = βe−α(t−tn) (3.2)

In the first 30 years after the Hawkes process was presented, its main application
was earthquake modeling. Following an earthquake, the probability of aftershocks
increases for a certain amount. Hawkes processes were first used to model earth-
quakes in Ogata [135]. They were quickly adopted in the field [136, 83, 179], and
extended to model both the time and location of events [130, 137, 126].

Although the seismology community adopted it, Hawkes processes gained only
moderate attention in those years. A big shift happened in the first decade of the
21st century when Hawkes processes were enthusiastically adopted in finance [19,
98, 162, 36]. Since the Hawkes process is time continuous, it proved to be especially
useful for high–frequency price variations where binning time greatly hinders the
prediction abilities of a model. Furthermore, these data are characterized by clusters
of events, which make the Hawkes process especially suitable to model them [4,
67].

After gaining popularity in finance, the usage of Hawkes processes spread into
other fields in social sciences, where data are modeled as point events in time that
influence each other. Some examples are social media analysis [111, 88, 161] and
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crime prediction [124, 194, 138] where an event may trigger other events and cause
a cascade of events.

The applications mentioned above assume only an excitatory relation between the
events. This assumption does not hold for other potential applications of the Hawkes
process. One application where point process models are often used, and events may
have both inhibitory and excitatory influence on each other, is neuronal activity. For
example, inhibitory effects between neurons [114], and even self-inhibition [160],
are crucial for regulating neuronal activity.

When modeling neuronal activity with the Hawkes process, the memory kernel
should also include inhibitory relations between the events, and by doing so, the
intensity may become negative. To ensure that the intensity function is non–negative,
a nonlinear link function is applied on the memory kernel, and the resulting model
is often referred to as a nonlinear Hawkes process [22, 193, 175]. Theoretical results
for nonlinear Hawkes processes have been developed for many years, and they
include stability estimates [22] as well as convergence rates for Bayesian estimators
[164].

In this chapter, we develop a new extension of the nonlinear Hawkes process and a
Bayesian inference framework to estimate its parameters. To put it in the context
of current developments in the field, we briefly introduce Bayesian inference for
methods for the related Cox process and present several recent nonlinear Hawkes
models to which we later compare our model.

3.1.2 Current Nonlinear Hawkes Process Models

Bayesian approaches to Cox processes model the intensity with a Gaussian process
prior, which is then passed through a link function to ensure its positivity. A common
choice of the link function is the exponential or the quadratic functions [74, 110].
Another choice, which is more relevant to our work, is the sigmoid link function,
resulting in the sigmoidal Gaussian Cox process. Inference in this model was first
made empirically in Möller, Syversveen, and Waagepetersen [128], as well as with
moment-based parameters estimators [23]. Markov chain Monte Carlo methods
were also developed [1], as well as variational inference [41].

In this chapter, we use a Bayesian semi-parametric inference approach. Earlier work,
which introduces Bayesian nonparametric approaches to point processes, includes,
among others, Ishwaran and James [77], who define kernel mixtures of Gamma
measures for the intensity, Wolpert and Ickstadt [183], who define inhomogeneous
Gamma random fields, and Taddy and Kottas [165], where joint nonparametric
mixtures are introduced.
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As for the Hawkes process, the first attempts to perform Bayesian inference relied
on the definition in terms of a marked Poisson cluster process and identifying the
branching structure of the self–excitation [144]. One current model that uses this
approach is the mutually regressive point process (MRPP) [3]. MRPP is designed
to model neuronal spike trains, and a probability term augments the classical self-
excitatory Hawkes Process intensity function. This term induces inhibition when it is
close to zero. In a sense, this model includes two memory kernels—one excitatory
only, which appears in the intensity function, and another, which can also induce
inhibition in the augmenting probability term. Unlike the MRPP, we achieve such
flexibility of the self-effects in a simpler fashion by assuming the GP prior on the
self–effects. As mentioned before, this also allows for the type of effect to change
over time, which does not appear in the work of Apostolopoulou et al. [3].

A highly flexible approach to estimating the intensity function of the Hawkes process
relies on GP priors [188, 190, 189]. A recent adaptation of this approach is the model
described in Zhou et al. [191]. The authors avoid the limiting parameterization of
the memory kernel by using GPs. Unlike our model, Zhou et al. [191] remain in the
linear Hawkes process regime and assume that the effects of past events are only
excitatory, whereas our approach allows both excitatory and inhibitory effects.

The last variation we describe is a sigmoid nonlinear multivariate Hawkes process
(SNMHP) [192]. In this work, Zhou et al. describe a multivariate nonlinear HP,
where, similarly to our work, the chosen link function is a sigmoid; however, they
chose to model the causal influence function with a weighted mixture of basis
functions from a certain family. Similar to the MRPP model, SNMHP was designed
to model neuronal activity. A common assumption in this field is that each neuron is
affected only by a subset of the other neurons in the network. Zhou et al. incorporate
this assumption directly into their model by including a sparsity-inducing prior
over the weights. In terms of inference, Zhou et al. proposed an expectation–
maximization algorithm, whereas we propose a fully Bayesian approach.

3.2 Nonlinear Hawkes Process with Gaussian
Process Self–Effects (NH–GPS)

In the classical Hawkes process, the memory kernel g in Equation (3.1) must be
non–negative to prevent the intensity function from being negative. As a result, the
model’s history has only an excitatory effect on future events. We are interested in a
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model that includes inhibition between events, and we release the constraint over g,
so it can be negative and define the following nonlinear intensity function

λ (t) = λ∗σ (ϕ(t)) (3.3)

σ (ϕ(t)) = 1
1 + exp (−ϕ (t)) (3.4)

ϕ(t) = s (t) +
∑
tn<t

g (t− tn) exp (−α (t− tn)) . (3.5)

Here, we choose the sigmoid function to ensure that the intensity function λ (·)
is non–negative. λ∗ is the intensity bound and ϕ (·) is the unmodulated intensity
function, or the linear intensity function. s (·) and g (·) that appear in the equation
above are the modulated versions of the background rate and self–effects functions
that appear in Equation (3.1).

We explicitly add the exponential decay to enforce the forgetting constraint, which is
essential for most realistic processes. Although we choose here a specific parameteri-
zation of memory decay, one can choose other forms of memory decay with minimal
adaptation to the learning procedure of the model parameters.

Besides α and λ∗, the functions s(·) and g(·) are the model’s unknown parameters we
want to infer from the data. We utilize a nonparametric Bayesian inference method
based on defining a prior probability measure over these functions. We use a simple
but still highly flexible approach by modeling the two functions independently as
realizations of Gaussian random processes (GP). For completeness, we now take a
small detour to present GPs shortly.

Equation (3.2) is an example of a parametric approach to modeling. The memory
kernel is a certain function we wish to estimate, and we assume it has a specific
structure. This structure has hyperparameters that can be inferred from the data,
but the shape of the function is fixed. A Bayesian inference approach will include a
prior distribution over the hyperparameters. A nonparametric approach applies a
prior directly over the function rather than assuming a certain parametric form and
then a prior over the parameters.

In the parametric approach, we can use a multivariate Gaussian distribution as a
prior over the model parameters. In a way, Gaussian processes are an extension
of the multivariate Gaussian distribution to infinite dimensional vectors, which are
analogous to functions. For a function f with input x, a Gaussian Process prior
means that for any finite vector of inputs [x1, .., xn], the marginal joint distribution
over the associated function values [f (x1) , ..., f (xn)] is a multivariate Gaussian

p (f |X, θ) = N (f |m, K) (3.6)
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with mean m and covariance matrix K. Here, θ is the vector of hyperparameters
related to the mean and covariance.

As the above hold for any input x, GPs are defined using a mean function m (x)
and covariance function k (x, x′) also called kernel. The covariance matrix in Equa-
tion (3.6) is constructed from the GP kernel in the following way. For a given set of
inputs {x1, ..., xn}, Ki,j = k (xi, xj).

In our model, we define the memory kernel in a semi–parametric approach. While we
include a specific parametrization for the memory decay, we use the nonparametric
approach for s (·) and g (·) using a Gaussian process. We write symbolically:

s ∼ GP (0, Ks) (3.7)

g ∼ GP (0, Kg) (3.8)

Ks/g (t1, t2) = as/g · exp
(
−∥t1 − t2∥2

σ2
s/g

)
. (3.9)

The corresponding Gaussian prior measures are uniquely defined by the mean
functions (which we set to be equal to zero) and the second moments given by the
covariance kernel functions Kg/s. The prior expectations define the latter

Ks(t1, t2) .= E (s (t1) s (t2)) (3.10)

Kg(t1, t2) .= E (g (t1) g (t2)) (3.11)

By a proper choice of kernels, we can encode further prior beliefs on typical realiza-
tions of s (·) and g (·). For this model, we work with the so-called RBF kernels from
Equation (3.9). This kernel corresponds to the prior assumptions that the Gaussian
processes are stationary (the kernels depend on time differences only) and that the
functions s (·) and g (·) are infinitely often differentiable. The kernels depend on two
hyperparameters, a, and σ, which reflect the functions’ typical amplitude and length
scale. The reasonable values of these hyperparameters will also be inferred from the
data.

Finally, we assume a prior distribution also on the upper intensity bound

λ∗ ∼ Gamma (α0, β0) .

and we identify the hyperparameters of the model as {σg, ag, α, σs, as}.

We propose Bayesian inference for fitting the model to data. Due to the nonlinearity
over ϕ (·), we are no longer able to easily utilize the branching structure of the
Hawkes process, which allowed for the estimation of s (·) and g (·) in prior work
[144, 191]. A natural solution is to perform the inference directly on ϕ (·).

24 Chapter 3 Nonlinear Hawkes Process with Gaussian Process Self-Effects



We can identify the prior over the entire linear intensity p (ϕ). From Equation (3.5),
we see that the linear intensity function ϕ is nothing but the sum of GPs, and as such,
it is also a GP:

ϕ ∼ GP
(
0, K̃

)
(3.12)

K̃lk = Ks
lk +

∑
ti<tl

∑
tj<tk

Kg
tl−ti,tk−tj

exp (−α (tl − ti + tk − tj)) . (3.13)

3.2.1 The Multivariate Model

We can extend the model to multiple dimensions. This is useful in applications where
different events are observed or originate from different processes that affect each
other. We define an R–dimensional point process with intensity in dimension r

λr (t) = λ∗
rσ (ϕr (t))

ϕr (t) = sr (t) +
R∑

m=1

∑
tm
n <t

gr,m (t− tm
n ) exp (−αr,m (t− tm

n ))

where tm
n is the time of event number n of type m. We assume that every dimension

has its own intensity bound λ∗
r and background rate sr (·). The different dimensions

interact with each other via the self–effects term. gr,m (·) defined the effects of the
events of type m on the events of type r. As in the univariate case, this effect may
change over time.

Given the observations, the different dimensions are independent of each other, and
we can learn their parameters separately. Thus, in the following section, we present
the inference for the univariate model, and the extension to the multivariate case is
straightforward.

3.3 Inference for NH–GPS

As presented in Section 2.2, conditioned on the intensity function λ (·), the likelihood
of observations {t1, . . . tN} from a Hawkes process is [35]

ℓ ({t1, . . . tn}|λ (·)) = exp
{
−
∫ T

0
λ
(
t′) dt′

}
N∏

n=1
λ(tn). (3.14)

The inference is made in the Bayesian framework. We wish to combine the priors
defined in the previous section with the likelihood above and estimate the posterior
via sampling or approximate inference methods. The likelihood in Equation (3.14)
includes an integral that we cannot solve analytically. One approach would be
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approximating the integral via discretization. This would result in a biased estimator
of the likelihood and introduce errors to the inference procedure.

Instead, we implement an augmentation procedure, similar to previous work on
Cox and Hawkes processes [41, 3, 191]. We do so via the introduction of auxil-
iary variables, which expand the model to a different likelihood form. Under the
marginalization of the aforementioned auxiliary variables, the new likelihood will
conserve the form of the original model likelihood. The new form of the likelihood
is constructed such that the computations required for the inference procedure are
either tractable, computationally fast, or both.

3.3.1 Augmenting the NH–GPS Model

The full likelihood of the nonlinear Hawkes process we propose poses two challenges.
First, the intractable integral that we discussed before. Second, the sigmoid link
function is not conjugate to the Gaussian prior.

We address the two challenges with two sets of augmenting variables. First, we
augment the model with a set of PG variables using the augmentation scheme
presented in Section 2.1.2. This step results in a Gaussian representation of the set
of parameters ϕ in the product that appears in Equation (3.14).

To overcome the intractable integral, we rewrite the sigmoid function and identify
the integral as the characteristic function of a Poisson process. We use Campbell’s
theorem and augment the model with a Poisson process and a set of realizations
from it. This augmentation does not result in a conjugated representation, and
we augment the model with another set of PG variables that correspond to the
realizations from the augmenting Poisson process.

Pólya–Gamma Augmentation
The first step we take in treating the likelihood function is using the Pólya–Gamma
(PG) augmentation scheme that was introduced in Section 2.1.2. Following Theorem
1 in Polson, Scott, and Windle [142], we can rewrite the nonlinear intensity function
as

σ (ϕ (t)) =
∫ ∞

0
ef(w,ϕ(t))PG (w; 1, 0) dw (3.15)

f (w, ϕ (t)) = −ϕ (t)2 w

2 + ϕ (t)
2 − ln 2. (3.16)
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As we augment each observation with a variable wn from a PG distribution, the joint
likelihood of the observed events {tn} and PG variables {wn} is

p
(
{tn}Nn=1, {wn}Nn=1|ϕ, λ∗

)
= (3.17)

exp
(
−
∫ T

0
λ∗σ (ϕ (t)) dt

)
·

N∏
n=1

λ∗ef(wn,tn)PG (wn; 1, 0)

with

exp
{
−
∫ T

0
λ∗σ (ϕ (t)) dt

}
= (3.18)

exp
(
−
∫ T

0

∫ ∞

0
λ∗PG (w; 1, 0)

(
1− ef(w,−ϕ(t))

)
dwdt

)
.

where we used σ(t) = 1− σ(−t).

Marked Poisson Process Augmentation
Next, we utilize the Campbell’s theorem [84], which states that for a Poisson process
Π with intensity φ

Eφ

∏
x∈Π

exp (h (x))

 =

exp
(
−
∫

(1− exp (h (x))) φ (x) dx

)
.

Looking at Equation (3.18), we identify x = (t, w) and φ (t, w) = λ∗PG (w|1, 0) is
the intensity of a marked Poisson process in T with marks w ∼ PG (0, 1). Further-
more, we determine h (x) = f (w,−ϕ (t)). We can now rewrite the exponential in
Equation (3.17) as

exp
{
−
∫ T

0
λσ (ϕ (t)) dt

}
= Eφ

(
M∏

m=1
ef(ŵm,t̂m)

)
(3.19)

for realizations {t̂m, ŵm}Mm=1.

We substitute Equation (3.19) into Equation (3.17), which results in the full aug-
mented likelihood. Given the prior distributions over ϕ and λ∗, we can now write
the augmented model’s posterior distribution as

p
(
{t̂m, ŵm}, {wn}, ϕ, λ∗|{tn}

)
∝ exp (−λT )× (3.20)

M∏
m=1

λ∗ef(ŵm,−ϕ(t̂m))PG (ŵm; 1, 0)×

N∏
n=1

λ∗ef(wn,ϕ(tn))PG (wn; 1, 0)× p (ϕ) p (λ∗) .
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The augmentation described above results in a representation of the full likelihood
that does not include the intractable integral that appeared in the original likelihood
function in Equation (3.14). With this representation, we could use any Bayesian
sampler to infer the posterior. Here, we choose to utilize the Gibbs sampler and the
mean-field variational inference previously introduced in Donner and Opper [41]
and Donner and Opper [40]. Next, we outline the steps of the algorithms, and we
refer the reader to the two papers mentioned above for further details.

3.3.2 Gibbs sampler for NH–GPS

We use a blocked Gibbs sampler, which groups two or more variables and samples
them at once, for which we need to identify the conditional posterior distribution of
all the relevant groups. We group the parameters in the following way:

1. The PG variables sampled from p
(
{wn} , {ŵm} |

{
t̂m

}
, ϕ, λ∗, {tn}

)

2. The upper intensity bound sampled from p
(
λ∗| {wn} , {ŵm} ,

{
t̂m

}
, ϕ, {tn}

)
3. The linear intensity function estimated at the real and augmenting events

sampled from p
(
ϕ| {wn} , {ŵm} ,

{
t̂m

}
, λ∗, {tn}

)

4. The set of augmenting events sampled from p
({

t̂m

}
| {wn} , {ŵm} , ϕ, λ∗, {tn}

)
.

Next, we derive the expressions for the conditional probability densities listed
above.

Conditional Density of the PG Variables
The conditional posterior distribution of the augmenting PG variables is

p ({wn}, {ŵm})

∝
N∏

n=1
exp

(
−ϕ2

n

2 wn

)

× PG (wn; 1, 0)
M∏

m=1
exp

(
−ϕ2

m

2 ŵm

)
PG (wm; 1, 0) .

Using the definition of the tilted PG distribution [142], the posterior distribution for
these parameters is

wn ∝ PG (1, ϕn)

ŵm ∝ PG (1, ϕm) .
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Conditional Density of the Upper Intensity Bound λ∗

The conditional distribution of the upper intensity bound is

p
(
λ∗|{t̂m, ŵm}, {wn}, ϕ, {tn}

)
∝ e−λ∗T λ∗

N+M p (λ∗)

which we identify as a Gamma distribution

p
(
λ∗|{t̂m, ŵm}, {wn}, ϕ, {tn}

)
∝ Gamma (α, β) (3.21)

α = α0 + N + M

β = β0 + T.

Conditional Density of the Linear Intensity Function
The conditional distribution of the linear intensity function of the observed and
augmenting events is

p
(
ϕN+M |{t̂m, ŵm}, {wn}, ϕ, {tn}, λ∗

)
∝ exp

(
N∑

n=1
f (wn, ϕn) +

M∑
m=1

f (ŵm,−ϕm)
)

p (ϕN+M ) ,

where we use the shortened notation ϕn instead of ϕ (tn) and ϕN+M instead of
{{ϕ (tn)}Nn=1, {ϕ

(
t̂m

)
}Mm=1}}. Given Equation (3.16), the likelihood term in the

posterior is a GP with mean

µ =
( 1

2w1
, . . . ,

1
2wN

,− 1
2ŵ1

,− 1
2ŵM

)⊤

and diagonal covariance matrix

Σ−1 = Diag (w1, . . . , wN , ŵ1, ŵM ) .

Given the GP prior over ϕ the conditional posterior is also a GP

ϕN+M ∼ GP (µM+N , ΣM+N ) (3.22)

µM+N = ΣN+M Σ−1µ

Σ−1
N+M = Σ−1 + K̃−1.

Conditional Density of the Augmenting Events
The conditional posterior of the augmenting events is proportional to

p
(
{t̂m}Mm=1|{tn}Nn=1, {ŵm}Mm=1, {wn}Nn=1, ϕ, λ∗

)
∝

M∏
m=1

λ∗ef(ŵm,−ϕm)PG (ŵm; 1, 0) .
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We identify the posterior as the unnormalized density of a marked inhomogeneous
Poisson process with intensity

Π0
(
ŵ, t̂

)
= λ∗ef(ŵm,−ϕm)PG (ŵm; 1, 0) . (3.23)

The underlying density of the inhomogeneous Poisson process in the realizations
space T is given by ∫

W
Π0
(
ŵ, t̂

)
dŵ = λ∗σ (−ϕm) .

We use the thinning algorithm [135] to sample the augmenting realizations. First,
we sample the expected number of events

J ∼ Poisson (λ∗T ) .

Next, J candidates are sampled uniformly over the realizations space T . To evaluate
the intensity at the candidate points, we need to evaluate the linear intensity ϕ

in these points. Given its values in the real events and the previously sampled
augmenting events. This can be done using results from GP regression [143]

ϕJ |N+M ∼ GP
(
µ, K̃

)
µ = K̃J,N+M K̃−1

N+M ϕN+M

K̃ = K̃J − K̃J,N+M K̃−1
N+M K̃⊤

J,N+M .

Once we have ϕJ , we perform thinning—for each candidate t̂j we generate a random
number rj between 0 and 1. If rj < σ (−ϕj) we accept the candidate t̂j , otherwise
we discard it.

The Gibbs sampler is summarized in algorithm 3.

Algorithm 3: NH–GPS Gibbs Sampler

Input: Observed events {tn}Nn=1, hyperparameters {σg, α, as, σs, α0, β0}
Output: R samples of {t̂m}Mr

m=1, λ, ϕN+Mr

Initialize—M, ϕN+M , {t̂m}Mr
m=1 randomly.

for r ← 0 to R do
Sample w ∼ PG (1, ϕN+M )
Sample λ∗ ∼ Gamma (α, β) as in Equation (3.21)
Sample ϕN+M ∼ GP (µN+M , ΣN+M ) as in Equation (3.22)
Sample {t̂}Mr

m=1 as in Section 3.3.2
end

Hyperparameters Learning for the Gibbs Sampler
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The Gibbs sampler described above samples from the conditional distributions of
the model’s parameters, given fixed hyperparameters. Naturally, the choice of the
hyperparameters effects dramatically the results of the inference process, and we
next discuss how we learn the model’s hyperparameters.

The augmented model is not conditionally conjugated with respect to the kernel
hyperparameters, and we cannot sample them directly as part of the Gibbs sampler.
This is usually solved by using MCMC within the Gibbs sampler approach [59, 117].
This method applies rejection sampling, such as Metropolis–Hastings (MH) [65] and
Hamiltonian Monte Carlo (HMC) [42], to sample the hyperparameters and relies
heavily on the samplers’ design choices. A wrong choice of the proposal distribution
(for MH) or the mass matrix (for HMC) may result in a very slow convergence or
prevent the sampler from converging at all.

Rather than using Bayesian inference for the hyperparameters, we use an optimiza-
tion approach and take a gradient step within the Gibbs sampler. This is implemented
in the following way—after sampling all the model parameters from the conditional
posterior distributions described above, we derive the negative model log posterior
with respect to the hyperparameters and take a step in the direction of the negative
gradient.

This approach can be developed further in the spirit of stochastic gradient descent
(SGD) [149]. Rather than updating the hyperparameters after each iteration of the
Gibbs sampler, we perform several sampling steps, take the gradient of the averaged
posterior, and update the hyperparameters following the averaged gradient.

For the SGD, we need to derive the model’s posterior with respect to the hyperpa-
rameters. Looking in Equation (3.20), we notice that all of the hyperparameters
appear in the prior over the linear intensity

log p (ϕ) ∝ −1
2 log det

(
K̃
)
− 1

2ϕ⊤K̃−1ϕ

and specifically in the prior kernel.
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The derivative of an entry in the kernel with respect to the different hyperparameters
is

∂K̃l,k

∂as
= exp

(
−∥ tl − tk ∥2

σ2
s

)
∂K̃l,k

∂σs
= as exp

(
−∥ tl − tk ∥2

σ2
s

)
∥ tl − tk ∥2

σ3
s

∂K̃l,k

∂α
=
∑
ti<tl

∑
tj<tk

Kg
ti−tl,tj−tk

× exp (−α (ti − tl + tj − tk)) (tl − ti + tk − tj)
∂K̃l,k

∂σg
=
∑
ti<tl

∑
tj<tk

Kg
ti−tl,tj−tk

× exp (−α (ti − tl + tj − tk)) ∥ (tl − ti)− (tk − tj) ∥2

σ3
g

.

We can plug these results into the chain rule, and we get

∇ log p (ϕ) = −1
2 trace

(
K̃−1∇K̃

)
+ 1

2ϕ⊤K̃−1∇K̃K̃−1ϕ.

3.3.3 Variational Inference

In variational inference (VI) [81, 13], we define a tractable distribution family Q and
adapt it to approximate the posterior by maximizing the lower bound L(Q) defined
below. This procedure minimizes the Kullback–Leibler divergence between the
unknown posterior and the proposed approximating distribution. For the NH–GPS
model, we approximate the posterior density by

p
(
{t̂m, ŵm}, {wn}, ϕ, λ∗|{tn}

)
≈ Q1 (ϕ, λ∗) Q2

(
{wn}Nn=1, {t̂m, ŵm}Mm=1

)
.

Subsequently, the lower bound on the evidence (ELBO) is

L(q) = Eq

log

 p
(
{t̂m, ŵm}, {wn}, ϕ, λ|{tn}

)
q1 (ϕ, λ) q2

(
{wn}Nn=1, {t̂m, ŵm}Mm=1

)


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where q ∈ Q. Here, Q refers to the probability measure of the variational posterior.
We maximize the bound by alternating the maximization over each of the factors
[13]. The optimal solution for each factor is

log q∗
1 (ϕ, λ∗) = (3.24)

Eq2({wn}N
n=1,{t̂m,ŵm}M

m=1)[log p({t̂m, ŵm}, {wn}, ϕ, λ∗, {tn})]

log q∗
2

(
{wn}Nn=1, {t̂m, ŵm}Mm=1

)
= (3.25)

Eq1(ϕ,λ∗)[log p({t̂m, ŵm}, {wn}, ϕ, λ, {tn})].

To obtain the optimal distribution of one of the factors, we must calculate the
expectations of the logarithm of the joint distribution over the remaining factors in
the approximation, resulting in an iterative algorithm.

Next, we explicitly express the functional form of the optimal distributions and
obtain the corresponding expectations required for updating the factors.

Optimal Q1

We find that the optimal q1 ∈ Q1 is factorized as

q1 (ϕ, λ∗) = q1 (λ∗) q1 (ϕ)

The first factor is identified as a Gamma distribution

q1 (λ∗) = Gamma (α, β) (3.26)

α = α0 + N +
∫

T xW
λq2 (t, w) dtdw

β = β0 + T

with known expectations.

The optimal distribution for the second factor is of the form

q⋆
1 ∝ e−U(ϕ)+log p(ϕ)

U(ϕ) = 1
2

∫
A(t)ϕ2(t)dt−

∫
b(t)ϕ(t)dt

A(t) =
∑

n

⟨ωn⟩q⋆
2
δ(t− tn) + ⟨ω(t)⟩q⋆

2
λq⋆

2
(t)

b(t) =
∑

n

1
2δ(t− tn)− 1

2λq⋆
2

(t) .
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Generally, the integrals above cannot be evaluated analytically. We resort to an-
other variational approximation, where we approximate the likelihood term by a
distribution that depends only on a finite set of inducing point {c}

q̃ (ϕc, ϕ) = p (ϕ|ϕc) q (ϕc) .

The ELBO is 〈
log e− log⟨U(ϕ)⟩p(ϕ|ϕc)p(ϕc)

q̃(ϕc)

〉
q̃

,

and we use the notation ⟨p⟩q = Eq (p). The optimal q̃ (ϕc) is given by

q̃⋆(ϕc) ∝ e− log⟨U(ϕ)⟩p(ϕ|ϕc)p(ϕc).

Using the known results of conditional GPs and sparse variational GPs [34, 174], we
have

q̃⋆(ϕc) = N (ϕc|µc, Σc) (3.27)

Σc =
[∫

κ(t)⊤A(t)κ(t)dt + K−1
c

]−1

µc = Σc

(∫
b(t)κ(t)dt

)
.

Kc is the covariance kernel between the inducing points, κ(t) = kc(t)⊤K−1
c and

kc(t) is the kernel between the inducing points and another set of points (either the
real data or the integration points), such that kc (t) =

(
K̃ (t, t1) , . . . , K̃ (t, tL)

)
with

t1, . . . , tl, . . . , tL are the inducing points. The mean and the variance of the sparse
approximated GP are

⟨ϕ(t)⟩ =κ(t)µc (3.28)

σ2 (ϕ (t)) =K(t, t)− κ(t)⊤kc(t) + κ(t)⊤Σcκ(t) (3.29)

Optimal Q2

Similarly to the previous section, we find that the optimal q2 ∈ Q2 is factorized as

q2
(
{wn}Nn=1, Π

)
= q2

(
{wn}Nn=1

)
q2
(
{t̂m, ŵm}

)
Given Equation (3.20), we define the first factor as

q⋆
2(wn) ∝ exp

(
−
⟨ϕ2

n⟩q⋆
1

2 wn

)
PG(wn|1, 0),
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which corresponds to a tilted PG distribution

q⋆
2(wn) = PG

(
wn|1,

√
⟨ϕ2

n⟩q⋆
1

)
. (3.30)

with known expectations [142].

The second factor takes the form

q⋆
2({t̂m, ŵm}Mm=1)

∝
M∏

m=1
exp

(
−
⟨ϕm⟩q⋆

1

2 −
⟨ϕ2

m⟩q⋆
1

2 wm

)
· exp

(
⟨ln λ⋆⟩q⋆

1

)
.

It can be shown that this distribution corresponds to a Poisson process with an
intensity function

λq2

(
t̂, ŵ

)
(3.31)

= exp
(
⟨ln λ∗⟩q⋆

1

) exp
(
−

⟨ϕ⟩q⋆
1

2

)
2 cosh

(
⟨ϕ2⟩q⋆

1

)PG
(
wm|1,

√
⟨ϕ2⟩q⋆

1

)
.

To simplify the notation, we write ϕ instead of ϕ
(
t̂
)
.

The VI algorithm is summarized in Algorithm 4.

Algorithm 4: NH–GPS Variational Inference.

Input: Observed Events {tn}Nn=1, hyperparameters{σg, α, as, σs, α0, β0}
Output: Mean and variance of ϕ
Initialize.
while L not converged do

Estimate the mean and covariance of the GP over the inducing points as in
Equation (3.27)

Estimate the mean and variance of the GP over the observations as in
Equations (3.28) and (3.29)

Estimate the mean intensity bound as in Equation (3.26)
Estimate the mean and variance of the augmenting PG variables as in
Equation (3.30)

Estimate the intensity function over the augmenting events as in
Equation (3.31)

end

Hyperparameters Tuning
The Variational Inference does not include tuning the model’s hyperparameters. To
achieve a better model, we wish to tune the model’s hyperparameters and improve
the model’s likelihood. Thus, we perform one step of gradient descent with respect
to the ELBO at each iteration. The derivatives of the ELBO are given in Donner
and Opper [41] (Appendix F). Notice that hyperparameter training, or tuning, is an
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implicit form of model selection in that we are selecting among different models by
evaluating the likelihoods.

3.3.4 Identifying the Background Rate and the Self-Effects
Function

In some applications, we are interested in the specific shape of the background rate
function s (·) and the self-effects function g (·). Next, we describe how to recover
these functions from the results of the VI algorithm.

Upon the convergence of the VI algorithm, we obtained an expression for the
posterior mean and variance of the linear intensity function ϕ, as described in
Equations (3.28) and (3.29). It is useful to define

g̃ (t) = g (t) exp (−αt) (3.32)

and we similarly define

K̃g (t, t′) = Kg (t, t′) exp
(
−α

(
t− t′)). (3.33)

We can rewrite the posterior mean in Equation (3.28) as

⟨ϕ (t)⟩ = ks
c (t)⊤ µ̃c +

∑
l

∑
ti<t

∑
tj<tl

K̃g (t− ti, tl − tj) µ̃l
c (3.34)

where we defined µ̃c = K−1
c µc and used the fact that kc (t) can be written explicitly

as

ks
c (t) +

∑
ti<t

∑
tj<tl

K̃g (t− ti, tl − tj)

with ks
c (t) being the kernel Ks between data point t and all the inducing points.

From Equation (3.34) we identify the posterior mean of s and g as

⟨s (t)⟩ = ks
c (t)⊤ µ̃c (3.35)

⟨g (t)⟩ =
∑

l

∑
tj<tl

K̃g (t, tl − tj) µ̃l
c. (3.36)

To identify the covariance of s and g we start with the posterior covariance of ϕ

cov
(
ϕ (t) , ϕ

(
t′)) = Σ

(
t, t′) = K̃

(
t, t′)− kc(t)⊤Bkc(t′) (3.37)

B = K−1
c −K−1

c ΣcK
−1
c .
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Using again the explicit form of kc(t) we rewrite the equation above as

Σ
(
t, t′) =Ks

t + K̂g
t −Ks

tc
⊤BKs

tc − 2Ks
tc

⊤BK̂g
tc − K̂g⊤

tc BK̂g
tc (3.38)

where K
s/g
t is the kernel matrix between the data points, K

s/g
tc is the kernel between

the data points and the set of inducing points, and we defined

K̂g
(
t, t′) =

∑
ti<t

∑
tj<t′

K̃g
(
t− ti, t′ − tj

)
.

From the expression above, we can identify the marginal covariances of s and
g separately and their joint covariance. To sample s and g̃ from their posterior
distribution, we would need the full expression of the covariance, including both the
marginal and cross covariances. For analyzing the model’s ability to recover s and g̃,
we are interested in the marginal covariances, which can be expressed as

cov
(
s (t) , s

(
t′)) = Ks

t −Ks
tc

⊤BKs
t′c (3.39)

cov
(
g̃ (t) , g̃

(
t′)) = K̃g

t −
∑
l,m

∑
tj<tl
ti<tm

K̃g (t, tl − tj) Bl,mK̃g
(
t′, tm − ti

)
.

3.4 Inference Analysis for NH–GPS
All the algorithms and experiments presented in this section and the next section are
implemented in Python and available online under https://github.com/noashin/NHGPS.
We used the JAX package [20] to parallelize the computation over the available
computing resources. The PG variables were sampled using the PyPólyaGamma
package [104] in the Gibbs sampler.

To assess the performance of the inference algorithms presented in the previous
section, we learn the parameters of the data generated by the model, namely the
intensity function and the intensity bound, and compare them to the known ground
truth. To generate data, we start by sampling the memory and background GP, based
on Equations (3.7) and (3.8). We generate events from the model using Poisson
thinning [103]. First, we sample the number of candidates J ∼ Poisson (λT ), and
sample candidate events {t1, . . . tJ} uniformly. Next, we chronologically iterate
through the candidates and accept them with probability λ(tj |{t1,...tj−1})

λ .

3.4.1 Inference for Data Generated by the Model

The results for the synthetic data are included in Figure 3.1. The time window
was one second, and the dataset includes 91 events. In panel (a), the comparison
between the ground truth predictive intensity and the one inferred by the learning
algorithms demonstrates the accuracy of the inference methods. We compare the
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ground truth to the mean of the Gibbs samples and the mean of the approximating
distribution of the VI.

Panel (b) compares the ground truth value of the linear intensity and the one
inferred by the two learning algorithms. In this example, the linear intensity is
negative at some of the time points. Unlike the predictive density in panel (a), the
Gibbs sampler is more accurate than the VI when estimating the linear intensity.
Panel (c) presents the inference results for the intensity bound. As expected, the
approximated distribution by the VI is much more narrow than the distribution of
the Gibbs samples. Nevertheless, the peak of the distribution of Gibbs samples is
close to the ground truth.

Panels (d) and (e) show the autocorrelation of the intensity bound and the ELBO
through the Gibbs samples and VI iterations. In this example, the convergence of the
ELBO is very fast, and the autocorrelation of the Gibbs sample vanishes only after
a few thousand iterations. We use the test log–likelihood per data point, averaged
over ten datasets, to quantify the performance of the two inference algorithms. The
Gibbs sampler and the VI achieve very similar results.

3.4.2 Inference for Data Generated with Different Background
Rate and Self–Effects

In the experiment presented above, the data were generated from the model, where
s and g were sampled from a GP. When dealing with real data, we cannot expect
that the data follow the model exactly. To demonstrate that our model can fit data
that were not sampled from it directly, we infer the intensity when the data is
generated from a slightly different model. In this case we take s(t) = β1 cos (θ1t)
and g(t) = β2 cos (θ2t). The results can be found in Figure 3.2. We perform the
same analysis presented in Figure 3.1. Similarly, the Gibbs sampler and the VI
algorithm accurately recover the underlying intensity. Both inference methods
achieve comparable results in terms of log–likelihood averaged over 10 test datasets.
As the VI algorithm achieves similar results to the Gibbs sampler in a much faster
computation time, we present the results only for the VI algorithm in the next
sections.

38 Chapter 3 Nonlinear Hawkes Process with Gaussian Process Self-Effects



0 0.2 0.4 0.6 0.8 1
Time 
 (a)

0

50

100

150

200

250

Pre
dic

tiv
e I

nt
en

sit
y

GT
VI
Gibbs
Observations

0 0.2 0.4 0.6 0.8 1
Time 
 (b)

2

1

0

1

2

Lin
ea

r I
nt

en
sit

y 

0 100 200 300 400 500 600
Intensity Bound *

 (c)

0

0.01

0.02

De
ns

ity

Prior
Gibbs
GT
VI

0 1,000 2,000 3,000 4,000
Lag 
 (d)

0

0.5

1

Au
to

co
rre

lat
ion

1 3 5 7 9
Iteration 

 (e)

320.0

320.5

321.0

321.5

322.0

EL
BO

Gibbs VI

 (f) 

1

1.5

2

te
st

Fig. 3.1.: Inference results for data generated from the model. (a) Comparison of the
ground truth predictive intensity and the one sampled from the VI and Gibbs
inference. (b) Comparison of the ground truth linear intensity ϕ (·) and the
one learned by the VI and Gibbs sampler. (c) Comparison of the ground truth
intensity bound and the one learned by the inference and the prior distribution.
(d) The autocorrelation of the intensity bound Gibbs samples. (e) The variational
lower bound as a function of the algorithm iteration. (f) Comparison of the test
log-likelihood of the Gibbs sampler and the VI.
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Fig. 3.2.: Inference results for data generated from a modified model. (a) Comparison
of the ground truth predictive intensity and the one sampled from the VI and
Gibbs inference. (b) Comparison of the ground truth linear intensity ϕ (·) and the
one learned by the VI and Gibbs sampler. (c) Comparison of the ground truth
intensity bound and the one learned by the inference and the prior distribution.
(d) The autocorrelation of the intensity bound Gibbs samples. (e) The variational
lower bound as a function of the algorithm iteration. (f) Comparison of the test
log-likelihood of the Gibbs sampler and the VI.
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Fig. 3.3.: (a) Comparison of the ground truth linear intensity and the one inferred by the

VI algorithm. (b) Comparison of the ground truth background rate function s
and the one inferred by the VI algorithm. (c) Comparison of the ground truth
self-effects function g and the one inferred by the VI algorithm.

3.4.3 Recovering the Background Rate and Self–Effects

In Section 3.3.4, we discussed the identifiability of the background rate function
and the self-effects function from the inferred linear intensity. In Figure 3.3, we
present the results of inferring these functions from synthetic data. Both functions
are recovered from the inference results of the linear intensity. In panel c, we can
see that g̃ goes to zero for longer time differences, as expected from the integration
of the exponential decay into the self-effects kernel.

3.5 NH–GPS Model for Real World Data

Next, we apply the model and the inference algorithm to real-world datasets in
the field of neuroscience and crime prediction. In these examples, the data are
time series of events. We feed these events to the model and perform inference to
estimate the underlying intensity function. The inferred intensity function can be
used in different ways. For one, we use it to estimate the model’s performance (by
calculating the log-likelihood or other metrics) and compare it to competing models.
We also use it to simulate data from the model, which helps us assess whether the
model is a reasonable candidate to describe the data (see Section 3.5.2). In the case
of multivariate data, we use the inferred intensity function to assess the interaction
between the different data components (see Section 3.5.3).
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3.5.1 Crime Report Data

Our model assumes both inhibitory and excitatory self–effects, but it should also be
able to capture phenomena where only one of the two types of effects exists. To test
this, we fit our model to crime report data, where it is assumed that past events have
an excitatory effect on future events [125].

In criminology, crimes are often viewed as clustered events. For example, burglars
will repeatedly attack nearby targets to take advantage of known vulnerabilities,
and gang-conflict shootings may incite or encourage retaliatory violence from the
opposing gang in the local territory of the rivals. The nature of such retaliatory
events and the exploitation of resources by burglars are highly random, and context-
based phenomena since this will depend on the criminals, location, or gang at hand.
Hence, a highly flexible approach is required, and our methodology can express the
inhomogeneity of each crime pattern through the unknown background rate and
self–effects functions.

We use the two datasets described in Zhou, Li, Fan, Wang, Sowmya, and Chen [191]
and follow their data processing procedure. Each dataset contains one type of crime,
and we use the univariate version of the model. An example of the results of the
inference process is presented in Figure 3.4. It includes the inferred linear intensity
of the fitted model over the first 80 events in the Vancouver crime dataset.
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Fig. 3.4.: Inferred linear intensity ϕ for the first 80 events in the Vancouver crime dataset.
The linear intensity is estimated only for the observed events, and the dashed line
between the dots is merely linear interpolation.

Table 3.1 compares the test log-likelihood of our NH–GPS model to the one reported
in Zhou et al. [191]. The work of Zhou et al. [191] includes several inference meth-
ods. We compare our results to the results of their reported mean-field variational
inference approach as it is the closest to our inference procedure. We perform the
experiment five times and report the mean and variance of the test log-likelihood.
As expected, our model performs similarly to the semi-parametric Hawkes process
presented by Zhou et al. [191].
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Tab. 3.1.: Crime report data test log-likelihood.

Datasets Zhou et al. (2020) [191] NH–GPS

Vancouver 453.11± 8.94 453.8± 12.2
NYPD −200.7± 3.32 −202.8± 7.54

3.5.2 Neuronal Activity Data
One of the motivating real-world phenomena behind our model is the spiking activity
of neurons, where it is known that the process has both self–excitatory and self–
inhibitory effects. A reliable model that accurately captures the data helps identify
and analyze different physiological mechanisms that drive neuronal activity.

As an example of our model’s ability to capture neuronal activity, we use the datasets
first presented in Gerhard et al. [57] (Figure 2b,c). One dataset includes ten
recordings from a single neuron in a monkey cortex, with a duration of one second
each. The other consists of ten recordings from a single neuron in a human cortex
for ten seconds each. This chapter used point process generalized linear models to
fit the data, and the generated data yielded unrealistic spiking patterns. This hints
at the need for a nonlinear model to describe the data.

The dataset described above was further analyzed in Apostolopoulou et al. [3]
(Figure 5), where the mutually regressive point process (MR–PP) is introduced. The
fitted MR–PP model produced realistic spike trains, which we use as a comparison
for our model.

We fit the model to the multitrial single neuron datasets and infer the intensity of
the assumed underlying point process. Figure 3.5 presents each dataset’s results for
one trial. In both cases, the inferred linear intensity obtains positive and negative
values, implying excitatory and inhibitory spiking patterns.

In Figure 3.6, we assess the ability of the model to capture the data. The left
column includes the raster plot of the real data, and the middle plot is the raster
plot generated from the fitted model. Similarly to the real data, the generated data
displays excitation as clustered events and inhibition.

To quantify how suitable the model’s suitability to the data, we apply the random
time change theorem [35] to the inferred intensity and the experimental data. The
theorem states that realizations from a general point process can be transformed
into realizations from a homogeneous Poisson process with a unit rate. Similarly
to the work of Apostolopoulou et al. [3], we further transform the exponential
realizations to those from a uniform distribution, following Brown et al. Brown,
Barbieri, Ventura, Kass, and Frank [25]. We then use the Kolmogorov–Smirnov test
to compare the quantiles of the transformed realizations’ distribution to the uniform
distribution quantiles. The results of this test are displayed in Figure 3.6 in the right
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Fig. 3.5.: Inferred intensity for single neuron data. Upper panel—results for trial number
9 from the dataset recorded from monkey cortex. Lower panel—results for trial
number 7 from the dataset recorded from the human cortex. The linear intensity
is estimated only for the observed events, and the dashed line between the dots is
merely linear interpolation.
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Fig. 3.6.: Upper row— single neuron recordings from monkey cortex. Lower row—single
neuron recordings from the human cortex. Left column—recorded data. Middle
column—data generated from the learned models. Right column— results of
the Kolmogorov–Smirnov test. The NH–GPS generates data that resembles the
real data and passes the goodness of fit test.
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column. The comparison relies on 95% confidence bounds, which the dashed lines
indicate. The model passes the goodness-of-fit test (p-value > 0.05). We present the
reported p-value achieved by the MR–PP model for the two datasets in Table 3.2.

Tab. 3.2.: p-Value of the KS Test on neuronal activity data.

Datasets MR–PP NH–GPS

Monkey Cortex 0.103 0.23
Human Cortex 0.096 0.175

3.5.3 Multi-Neurons Data

Last, we demonstrate the performance of the multivariate version of the model. We
use the data presented in Zhou et al. [192]. This dataset includes spike trains simul-
taneously recorded from 25 neurons in the primary visual cortex of an anesthetized
cat.

One application of our model for the use case of multi–neuron recording use is the
analysis of the interactions between the different neurons. As presented in Section
3.3.4, after fitting the model to the data, we can recover the function g, which
describes the effects of past events on future events. In the case of a multivariate
model, this function is defined for every pair of dimensions and the interaction
between them. Figure 3.7 shows an example of this. On the left is the recorded data,
and on the right are the interactions between two neurons from the dataset.
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Fig. 3.7.: Left—the recorded activity of 25 neurons. Right—example of the recovery of
the influence function g between neuron number 5 and neuron number 7. Both
excitatory and inhibitory influence is observed.

Next, we compare the performance of our model to the model described in Zhou
et al. [192] by looking at the test log-likelihood. We follow the same train–test split
as Zhou et al. [192], where the first 30 seconds of the recording are used as the
training set and the last 30 seconds are used as the test set.
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The test log–likelihood can be found in Table 3.3. We compare our model with the
one from Apostolopoulou et al. [3] (MR–PP) and the model presented in Zhou et
al. [192] (SNMHP). Our model achieves a higher test log–likelihood score than the
competing models. This demonstrates the power of the flexibility of our model and
showcases its applicability to multivariate data.

Tab. 3.3.: Test log–likelihood for the multi-neurons datasets for different models.

SNMHP MR–PP NH–GPS

−6.13× 103 −5.9× 103 −5.29× 103

3.6 Discussion

This chapter presents the nonlinear Hawkes model with Gaussian process self-effects
(NH–GPS) and a Bayesian variational inference scheme to infer its parameters. We
motivated the development of the new model with the need for a flexible model
that can capture both exciting and inhibiting interactions between events while
maintaining the ability to learn when data are scarce. The model includes both a
univariate and a multivariate version.

Due to the structure of the model, we derive an inference algorithm without the
branching structure commonly used for Bayesian inference in Hawkes processes. We
propose a mean-field variational inference algorithm, which relies on an augmenting
data scheme. We show that the results of the variational inference are comparable
with those of a Gibbs sampler.

The augmenting data scheme used here triples the number of the model’s parameters
to be inferred. Another approach to the inference is discretizing the integral that
appears in the likelihood and using another MH sampler, such as HMC. On the one
hand, discretization results in a biased estimator of the likelihood and introduces an
error to the inference. On the other hand, the VI algorithm presented in this work
also includes a discretization, and it performs as well as the Gibbs sampler. Thus we
believe that an HMC sampler could be successfully applied to our model and leave
its implementation for future work.

In this chapter, we demonstrate the performance of our model in four different
real-world applications. Due to the flexibility of our model, it achieves good results
on data where events have only excitatory effects and on data where events have
both excitatory and inhibitory effects.

Unlike recent work on nonlinear Hawkes process inference [192], our model presents
a two-fold advantage. The introduction of the Gaussian Process allows for a broader
range of applications and the Bayesian perspective, which lends itself to uncertainty
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quantification, model selection, and regularization. Furthermore, previous works are
tailored with specific applications in mind, whereas our methodology is general.

More importantly, the introduction of priors as well as GP allows the practitioner
to quickly introduce expert knowledge, as one can modify the behavior of the
self–effects by introducing different kernels.

In this chapter, we did not include results regarding the prediction abilities of
the model, as we leave it for future work. We believe it is relatively simple to
acquire in our model, and we briefly describe how to do so. The inference over the
aggregated history function ϕ, which includes both the sum of the Gaussian process
associated with the exogenous arrival rate and the endogenous event rate, allows us
to generate estimates for predictions. Once we sample the value of ϕ conditioned on
the previously observed events, we can estimate the mean arrival time of the next
event by estimating the integral E (tn+1) =

∫∞
0 tP (t|H) via numerical methods, such

as Monte Carlo integration.
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4Bayesian Model of Exploration
and Exploitation in Natural Scene
Viewing

In the previous chapter, we presented a general point process. It can be applied
to data from different domains as long as they follow the assumption that events
in the past affect the occurrence rate of future events. This model only includes
one hypothesis regarding the nature of the data — that the effect of the past events
decays with time.

In this chapter, we develop a model following a different approach. We begin with a
specific domain we would like to contribute to. Then, we assemble hypotheses that
we believe could explain the data in this domain and that we would like to put to
test. Next, we develop a model that captures these assumptions and an inference
process to fit it to real–world data. Last, we compare different versions of the model,
which corresponds to the hypotheses we wish to test.

The domain we choose is natural scene viewing by human observers. Similar to the
work done in the previous chapters, the datasets that characterize scene viewing are
series of point events, both in time and space. Each data point is a fixated location
in an image known as a fixation.

We develop a generative model for a series of fixations (scan path). The hypotheses
we wish to test with this model concern the decision process underlying the genera-
tion of scan paths. In a nutshell, the innovation of our model is the assumption that
the next fixation location is the result of two competing processes: 1. exploitation of
the information in the area close to the current fixation. 2. exploration of other areas
in the image. Furthermore, we contribute to the small family of Bayesian scan paths
models and use inference methods that are not common in the field.

We begin this chapter with a short introduction to human vision and its modeling.
Then, we present our new model and the innovative inference algorithm. Next, we
present the results of the inference process on both generated and real data and
compare different versions of the model. We conclude this chapter with a short
discussion of our main findings.
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4.1 Modeling Human Vision

The human visual system acquires high–acuity information from a rather small
region (the fovea) surrounding the center of gaze [28]. The foveal organization
of the visual system has two immediate consequences. First, visual perception of
natural scenes depends critically on controlling precise and fast eye movements
(saccades) that move regions of interest into the fovea for high–acuity processing.
During a typical visual task (e.g., scene viewing or reading), saccades occur at a rate
of 3 to 4 per second [48]. Second, the decision process for an upcoming saccade
target poses a dilemma: should the observer further exploit the information near
the fovea or continue exploring other patches within the given scene? The latter
problem is critical for scene viewing [50, 43] and relevant to the broader field of
cognitive processes in knowledge acquisition [8].

Observers select saccade targets from a priority map [14] that represents objects
and regions within a given scene according to their attentional weight. Over the
last decades, computational modeling of visual attention for natural scenes [78]
resulted in a broad range of successful models [17] of priority maps. These models
use feature maps to combine low-level saliency and top-down control. Recently, deep
neural network (DNN) models achieved state–of–the–art performances in predicting
saliency maps from images [91, 92]. From these advances, the problem of modeling
priority maps seems basically solved [44, 93]: for an arbitrary natural image,
computational models can generate a prediction of fixation density in experiments
with human observers.

The next step in modeling human visual behavior is fundamentally related to eye
movements introducing sequential steps in information processing. Since access to
visual information is effectively limited to the fovea, the full sequence of saccadic
gaze shifts, called scan path, needs to be modeled to understand the underlying
principles. Understanding how human observers shift their attention while looking
at an image requires quantifying the scan paths (Fig 4.1).

So far, few models for scan path generation and prediction have been proposed.
These models can be generally classified into two groups, where one group of models
is hypothesis–based and the other is hypothesis–free. The second group includes
models using state of the art deep learning techniques [157, 94]. While these models
capture the structure present in the data, they provide only very limited insights
into the underlying principles of scan path generation. Another critical point for
experimental research is that deep learning models require a lot of training data,
which are typically unavailable for single observers. Thus, current deep learning
approaches do not capture inter–individual differences in the statistical properties of
scan paths.
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Fig. 4.1.: Left. An image and a scan path. Each dot is a fixation, and the dashed line
illustrates the saccade. Right. The empirical fixation density map is generated by
aggregating the fixations from all subjects for a given image.

Hypothesis–based models rely on cognitive and neural assumptions of human per-
ception and oculomotor control that were derived from the known biological mecha-
nisms and well-established experimental effects [170, 187, 100, 46, 168]. Thus, the
key goals of the hypothesis–based models are (i) to implement these assumptions in
a fully quantitative way and build a generative model, (ii) to fit the model to experi-
mental data for hypothesis testing (statistical inference), and finally, (iii) to provide
explanations for interindividual differences in experimental data sets [152].

4.2 Exploration Exploitation Model for Scene
Viewing

In this chapter, we introduce a new model which belongs to the class of hypothesis–
based models. As stated above, we do not model the construction of a priority
map. Rather, we address the question of how saccades are generated given a
specific static priority map and use the experimental priority map as input to our
model. Our central hypothesis is that the generation of scan paths is based on
switching between two internal states of local versus global attention. In this view,
the generation of each saccade is a decision process, where the observer has to
choose between following the local attention map and performing a short saccade
for staying in the immediate surrounding of the current fixation and the global
attention map and performing a long saccade to explore a new region of the visual
environment. We assume that the decision is based on the available information to
the observer. Specifically, this assumption creates a higher probability of following
the local attention map if the ratio of priority values of the current and previously
fixed locations is high. This hypothesis follows an assumption that the area next to a
location with high priority also has high priority. This assumption is valid for natural
images used in this work.
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In implementing a model which changes between local and global attention mode,
we continue the line of work that started already in 1976 with the work of Frost and
Pöppel [49]. In Unema, Pannasch, Joos, and Velichkovsky [176] and Helmert, Joos,
Pannasch, and Velichkovsky [72], it was argued that global attention mode is limited
to the beginning of the scan path. Later work by Tatler and Vincent [170] showed
that this is not the case. Thus our model allows the choice between a local or global
attention policy throughout the entire viewing period.

Our model might also be interpreted in the context of the Exploration–Exploitation
dilemma [30, 8]. In this framework, a decision for choosing an upcoming saccade
target is based on two alternatives: Should the observer further exploit the informa-
tion near the current gaze position or continue exploring other patches within the
given scene? Hence, a saccade generated by the local attention map may correspond
to an exploitation step, and a saccade generated by the global attention map may
correspond to an exploration step. This approach does not consider saccades that
return to a previously visited location and could be interpreted as an exploitation
step, which is in line with our model of this phenomenon.

The idea of exploration and exploitation intentions in visual behavior was studied
previously in Gameiro, Kaspar, König, Nordholt, and König [50]. Their work demon-
strated experimentally that the tendency for exploration or exploitation, measured by
saccade amplitude and fixation duration, depends on the size and spatial properties
of the stimulus. The exploratory or exploitative tendencies were characterized using
the statistics of the entire scan paths.

Unlike the approach taken by Gameiro, Kaspar, König, Nordholt, and König [50],
we analyze the individual saccades rather than entire scan paths. Our generative
model tags each saccade as either a step that follows the local attention map or a
step that follows the global map.

We model natural scene viewing, which cannot be directly associated with a reward.
Thus our model does not have the notion of value when choosing which policy
to follow. As the terminology of Exploration and Exploitation is often associated
with the notion of the value of the decision, we avoid this terminology and use
the terminology of Local and Global Attention policies rather than Exploration and
Exploitation policies.

Next, we describe the details of our basic model and explain the computation of the
likelihood function as a fundamental tool for statistical inference. We construct the
model modularly and relate each part to one of the assumptions we would like to
investigate. Next, we describe the model parameters’ fitting to experimental data. In
the next chapter, we compare several statistics of simulated data to the statistics of
the experimental data. We also analyze different variants of the basic model and
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quantify how well each one of them describes the data using the model’s likelihood
function.

4.2.1 The Local and Global Attention Model for Scan Path
Generation

Our theoretical investigation of local and global attention in saccadic behavior is
based on implementing a probabilistic generative model. The static viewer inde-
pendent priority map for saccadic selection Bisley and Mirpour [14] is thought to
be the combined result of early visual processing or saliency [78] and top–down
cognitive control. While various models for the computation of static priority maps
exist, we extend the modeling approach to generating scan paths for a given static
saliency map. For simplicity, we use the time-averaged fixation density [46] as an
approximation of the saliency of a given image.

The static saliency map is a function s(z) : R2 7→ R+ with z = (x, y) being a
location in an image and s(z) being the probability of an average viewer to fixate
this location (its saliency). As mentioned above, we approximate the saliency map
by the experimentally–observed fixation density, and we use s(z) or sz to refer to
the saliency map or the fixation density of the image at location z.

Generally, scan paths are sequences of fixation locations and fixation duration. In
this chapter, we model only the spatial properties of gaze control. We account only
for the temporal ordering of the fixations and do not model the fixation duration.
In these settings, a scan path is written down as Z = {z1, z2, ..., zt, ..., zT } with T

being the number of fixations in the scan path and zt being the location of the tth
fixation. We discuss some aspects of spatiotemporal models for scene viewing in the
concluding chapter of this dissertation in Section 6.2.2.

We begin constructing our model by assuming that the saccade generation process is
a second–order Markov process. This means that the probability p(z = zt) of fixating
on a specific location zt at time step t depends only on the location of the fixation at
time t− 1 and the fixation at time t− 2. The probability of a full scan path is written
as

p(Z) = p (z1) p (z2)
t=T∏
t=3

p (zt|zt−1, zt−2) . (4.1)

The choice of the second–order Markov process reflects our hypothesis regarding
the scan path generation and will become clear in the upcoming paragraphs. In
principle, it is possible to construct a simpler model corresponding to first–order
Markov process. This would correspond to slightly different assumptions regarding
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the scan path generation, and we refer to such a model in the section discussing
simplified models.

We describe the probability of the next fixation being zt given that the previous two
fixation location were zt−1 and zt−2 in terms of competing local and global attention
policies:

Local Attention The next fixation location is chosen close to the current fixation
location following a Gaussian distribution around the current fixation location with
covariance ϵ, normalized over the entire image. This can be written as

plocal (zt|zt−1) = n (zt; zt−1, ϵ)∑
z′ n (z′; zt−1, ϵ) (4.2)

where n (zt; zt−1, ϵ) is a Gaussian density with mean zt−1 and covariance ϵ =( ϵx 0
0 ϵy

)
.

Global Attention A potential implementation is that the next fixation location is
chosen randomly from the static saliency map of the image. This policy leads to very
large saccade amplitudes, which are known to be less probable [167]. To integrate
this prior regarding the saccade amplitudes knowledge into the model – instead of
choosing the next fixation location from the saliency map, we modulate the saliency
map by a Gaussian distribution, which gives a higher weight to areas of high saliency
that are closer to the current location.

This approach results in the following expression for the global attention strategy

p (zt|zt−1) = s (zt) n (zt; zt−1, ξ)∑
z′ s (z′) n (z′; zt−1, ξ) (4.3)

with ξ a diagonal covariance matrix similarly to ϵ, ξx > ϵx and ξy > ϵy.

Having Equation (4.3) as the global attention policy may result in short saccades
similar to the ones generated by the local attention policy when the current fixation
is in a high–priority area. A solution is to create a repulsion mechanism that forces
the saccades generated by this policy to be of at least a certain length. The following
expression achieves this

pglobal (zt|zt−1) = max (s (zt) n (zt; zt−1, ξ)− n (zt; zt−1, ϵ) , 0)∑
z′ max (s (z′) n (z′; zt−1, ξ)− n (z′; zt−1, ϵ) , 0) . (4.4)

To avoid negative values for the likelihood, we take the maximum between the
subtraction and 0. Figure 4.2 visualizes the two distributions formulated in Equa-
tion (4.2) and Equation (4.3).
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Local Attention

Global Attention

Fig. 4.2.: On the left is an example of an empirical saliency map. The dot indicates a
fixation location. On the right are the probability maps generated by either the
local attention (upper panel) or the global attention policy (lower panel). The
arrow indicates a saccade.

Our assumption is that each fixation is chosen either from the local attention map
described in Eq (4.2) or the global attention map described in Eq (4.4). This can be
represented as a mixture model

p (zt|zt−1, ρ) = ρ plocal (zt|zt−1) + (1− ρ) pglobal (zt|zt−1) . (4.5)

The model parameter ρ describes the tendency to perform a step following either the
local or global attention map. It can be fixed based on prior knowledge or inferred
from the experimental data. If ρ > 0.5, then the probability for a local step is larger
than for a global step for every saccade.

Next, we include in our model the assumption that ρ changes depending on the
fixation location. We use the notation ρt to indicate that the fixation zt was generated
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based on ρt. Importantly, this notation does not imply that ρt is necessarily a function
of zt.

We assume that the decision on the local or global attention maps depends on the
ratio between the priority values of the current and previous fixated locations. The
result is that the viewer is likelier to make a local step if the saliency value of the
currently fixated location is higher than that of the previously fixated location. We
include this in the model with the following expression for ρt

ρt = σ (f (s)) = 1
1 + exp (−f (s)) (4.6)

with

f (s) = b

(
st−1
st−2

− so
)

(4.7)

with st−1 = s (zt−1) and b and so being scalar variables.

Combining Equation (4.1) and Equation (4.5), the model likelihood is written as

p (Z|Θ) = p (z1) p (z2)
t=T∏
t=3

(
ρt plocal (zt|zt−1) + (1− ρt) pglobal (zt|zt−1)

)
(4.8)

with model variables Θ = {ϵ, ξ, b, so}. Here, we chose to sample the first and second
fixation from the empirical static saliency map such that p (z) = s (z).

Fig 4.3 presents a scan path generated by our model given a particular saliency map,
alongside a scan path recorded experimentally from a viewer viewing the image
corresponding to the saliency map.

4.2.2 Simplified Models

To test the different assumptions behind our full model described above, we construct
three simpler models and compare their performances to the performance of the
full model in the Results. We remove some of the assumptions on which the model
is based to construct the simpler models. This results in the following competing
models:

Local Choice Model: Equation (4.6) describes the assumption that the decision
between two attention maps depends on the ratio between the priority value of the
current fixation location and the priority value of the previous fixation location. A
competing assumption would be that the decision depends only on the priority value
of the current fixation location. In this case, we change f (s)

f (s) = b (st−1 − so) . (4.9)
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Fig. 4.3.: Left An image and a scan path recorded from a human observer. Right. The
experimental static saliency map and a scan path are generated by the Local and
Global Attention Model. The right green arrow represents the second randomly
selected fixation location z2. The green arrow pointing left represents the last
fixation in the scan path. The blue dots are fixations that were generated from a
global attention step, and the pink dots are fixations that were generated from
a local attention step. The experimental data shows clearly the phenomenon of
saccadic momentum, which the model does not capture. This is further discussed
in the Results and Discussion.

Fixed Choice Model: We test the assumption that the decision between the modes
does not depend on the saliency value of the previous fixation. In this simplification
of the model, rather than having ρt = f (zt−1, zt−2) we have a fixed probability to
chose each policy with ρt = ρ.

Local Saliency Model: Last, we challenge the approach of two competing modes.
In this variation of the model, each fixation is generated from a modulation of the
empirical saliency map with a Gaussian around the current fixation location. This
corresponds to the following fixation location likelihood

p (zt|zt−1) = s (zt) n (zt|zt−1, ξ)∑
s (z′) n (z′|zt−1, ξ) (4.10)

In this dissertation, we are concerned with Bayesian modeling in different fields.
Hence, we also developed a Bayesian model and inference scheme for the use case of
modeling scan paths. In the next section, we describe the Bayesian inference process
of the full Model. As the three models described above are simplified versions of the
full model, we do not describe their corresponding inference processes as they can
be easily derived from the inference of the full model.

4.2.3 Bayesian Inference for the Exploration Exploitation
Model

Our approach is based on known experimental results, and we derive the model
parameters from observed data in a Bayesian framework. This approach allows us to

4.2 Exploration Exploitation Model for Scene Viewing 57



include prior knowledge regarding the different model parameters based on known
spatial features of scan paths. It also allows us to obtain distributions over the model
parameters, rather than point estimates, and to compare different variations of the
model via the respective test–data likelihoods.

Model Augmentation
We implement a Gibbs sampler for our model. It is not possible to apply it directly to
the model as it was written in the previous section and we use two augmentation
procedures as preparation for the inference. First, we use the standard approach
and augment the Local and Global likelihood by

p(Z, Γ|Θ) = p(z1)p(z2)
T∏

t=3
plocal (zt|zt−1)γt pglobal (zt|zt−1)1−γt (4.11)

with

γt ∼ Bern (ρt) = Bern (σ (f (s))) (4.12)

and marginalizing over Γ results in Eq (4.8).

The augmentation defines a modified generative process for the model. At each
time step, a variable γt is drawn from a Bernoulli distribution with bias ρt. If the
result is 1, then the next saccade is generated following the local attention mode.
If the result is 0, the saccade is generated from the global attention mode. This
construction reflects our assumption regarding the cognitive process underlying scan
path generation, where each saccade follows either local or global attention mode.

For a simple two–component mixture model with normal distribution, the augmen-
tation described above would have been sufficient for deriving a Gibbs sampler
[54]. As the model we constructed is more complex, we need to handle the sigmoid
link–function in Eq (4.6) and the nontrivial form of the Global Attention distribution
in Eq (4.3).

Next, we augment the model with another set of latent variables wt following
the Pólya-Gamma augmentation scheme described in Section 2.1.2. The resulting
likelihood is

p (Z|W, Γ, Θ) =p (z1) p (z2)
T∏

t=3
plocal (zt|zt−1)γt pglobal (zt|zt−1)1−γt ×

exp
(
−f (s)2

2 wt +
(

γt −
1
2

)
f (s)

)
p (w; 1, 0) . (4.13)
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After the augmentation with two sets of latent variables, we can define conjugate
priors for the parameters:

ϵx/y ∼ IG
(
ϵx/y; αϵx/y

, βϵx/y

)
(4.14)

ξx/y ∼ IG
(
ξx/y; αξx/y

, βξx/y

)
(4.15)

b ∼ N (b; µb, σb) (4.16)

so ∼ N (so; µso , σso) (4.17)

where IG is the Inverse Gamma distribution, and N is the Gaussian distribution.

The prior distributions described above include hyperparameters. These parameters
were chosen and not inferred from the data. The hyperparameters related to the
prior distributions over ϵx/y and ξx/y were chosen based on known characteristics of
human saccades, such as that typical saccade amplitudes range from 0.5 and up to
40 visual degrees [5]. The hyperparameters related to b and so were chosen to be on
the same scale of the average st−1

st−2
from the data. Further, all of the hyperparameters

were chosen to induce wide prior distributions.

The posterior distribution over the model parameters and the latent parameters is
given by

p (Θ, Γ, W |Z) ∝ p (Z|Θ, Γ, W ) p (Γ|Θ) p (W |Θ) p (Θ) (4.18)

with

p (Θ) = p (ϵ) p (ξ) p (b) p (so) .

Marginal Conditional Posteriors
For the Gibbs sampler, we derive the explicit marginal conditional distributions for
each model parameter given the data and the other model parameters. First, for the
set of augmenting Pólya-Gamma parameters. Following the augmentation scheme,
the conditional posterior of wt is

p (ωt|Z, Γ, Θ) = PG (wt; 1, f (s)) . (4.19)

Next, the conditional posterior of γt is a Bernouli distribution Bern(γt; ρt) with:

ρt = σ (f (s))
σ (f (s)) + BF (1− σ (f (s))) (4.20)

and BF defined as:

BF = p (zt|γt = 0)
p (zt|γt = 1) =

pglobal (zt|zt−1)
plocal (zt|zt−1) (4.21)
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Taking into account the definition of f (s), we see that the parameters b and so appear
in linear and quadratic forms in the arguments of the exponents in Equations (4.13).
Given the Gaussian prior distributions we chose, the conditional distributions of
these parameters are also Gaussian

p(b|Z, W, Γ, so, ϵ, ξ) = n (b; mb, sb) (4.22)

with mean and variance

mb =
T∑

t=1

(
γt −

1
2

)(
st−1
st−2

− so
)

+ µb

σb
sb (4.23)

sb = σb

1 + σb
∑T

t=1 wt

(
st−1
st−2
− so

)2 . (4.24)

Similarly

p(so|Z, W, Γ, b, ϵ, ξ) = n (so; mso , sso) (4.25)

with mean and variance

mso =
(

T∑
t=1

(
b2wt

st−1
st−2

− b

(
γt −

1
2

))
+ µso

σso

)
sso (4.26)

sso = σso

1 + σsob2∑T
t=1 wt

. (4.27)

Due to the complex form of pglobal, we do not have a closed form for the conditional
distributions of ϵ and ξ from which we can sample. Thus, we resort to a technique
known as MCMC within Gibbs [59, 117]. Instead of using the explicit marginal
conditional, we draw a sample using HMC. The HMC algorithm requires an energy
function and its derivative. In our case, we use the negative log of the model
likelihood as the energy function. Rather than calculating the derivative of the
log–likelihood analytically, we use automatic differentiation [63]. Specifically, we
use the Python JAX package [20]. We further tuned the step size and number of
steps parameters of the leapfrog algorithm to achieve an acceptance rate of 100%.
Specifically, we used a step size of 0.03 for ϵ and 0.5 for ξ with eight leapfrog
iterations for both.

The implementation of the models and inference can be found at
https://github.com/noashin/local_global_attention_model .
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4.3 Inference Analysis for the Exploration
Exploitation Model

We derived the model equations from the basic two modes approach in the pre-
vious section. We described the inference process of our model when applied to
experimental data. In this Section, we present the results of the inference process.
We analyzed the reliability of our procedures by fitting the model to artificial data
generated from the model with known parameter values. In the next section, we fit
the model to the experimental data and test the statistics of the data generated from
the model against the experimental data, and we quantitatively compare different
versions of the model.

The inference process includes using an MCMC approach to evaluate the posterior
function over the model parameters. This approach is exact in the limit of an infinite
number of samples. Still, as we can only use a finite number of samples, the result
approximates the actual posterior. The distribution of the inferred parameters should
concentrate on their real values.

When fitting the model to experimental data, it is impossible to know the real values
of the model parameters as they do not relate directly to any measurable data
features. Thus, to assess the inference’s performance, we use data simulated by
the model, in which case we know the exact values used to generate the data. If
the inference process is correct, we expect the resulting posterior distribution to be
concentrated around the ground truth values.

We generated data from our model with the parameter values that were inferred
from the experimental data. In order to see whether the inference process will have
reasonable results when fitting the experimental data, the size of the generated data
set is comparable to the size of the experimental data for one subject.

Fig 4.4 presents the distribution over model parameters after the inference process
over data generated by the model. Each of the ten colored curves represents a
different inference process started at a different point. As expected, all the curves
from different runs are similar in shape. The black dashed curves present the prior
distribution over the parameters. As expected, the mode of the inferred parameter
distribution is close to the real values used in the data generation, which are noted
by the vertical solid line.

We tested the model on generated data with similar properties to the experimental
data. Generated scan paths had lengths similar to the lengths of scan paths recorded
experimentally. As a result, the generated data may not have sufficient information
regarding the underlying model parameters, which explains the deviation of the
distribution mode from the true parameter values.
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Fig. 4.4.: Model parameter recovery. To test the inference algorithm, we fit the model to
simulated data with known parameter values. Each panel includes the inferred
posterior distribution of each parameter after the inference process. The ten
curves present 10 different inference processes starting from different values. The
vertical lines are the values with which the data was generated. The black dashed
curve is the prior distribution. The plotted densities are not normalized.

4.4 Model Performance on Experimental Data

Our model was derived from a set of hypotheses regarding the cognitive process of
saccade generation. In order to test the validity of the model and of the correspond-
ing hypotheses, we fit the model to the data, simulate new data using the model, and
check whether the simulated data features correspond to the experimental data’s
features.

The data set here includes the scan paths of thirty–five human observers performing
a memorization task over thirty natural images. The same data set was used before
to evaluate other scan path models [46, 152]. The participants were presented with
an image for 10 seconds and were instructed to explore the scene for a later memory
test. The data acquisition was carried out in accordance with the Declaration of
Helsinki, and informed consent was obtained for experimentation by all participants.
Data from three subjects were excluded as the inference process did not converge.
The data can be found at https://osf.io/me2sh/.
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We fit a separate model for each subject while using the same prior hyperparameters
for all models. We want to test whether the model captures subjects’ tendencies
that generalize over images. We use the k-fold cross-validation method with k = 5.
All the reported quantitative results in this section are obtained from the test data
averaged over the different folds.

4.4.1 Saliency Map Recovery
Since our model aims to produce a scan path for a given saliency map, the model
needs to recover the empirical saliency map from experimental data. Fig 4.5 com-
pares empirical saliency maps and the fixation locations density of data generated
by the model. We used three different empirical saliency maps from the test set
to simulate the full Local and Global Attention model and generated data from all
the models fitted to the different subjects. The contour plot includes the density of
the aggregated data, and the density is the empirical saliency map. Qualitatively,
as expected, the fixation density of the data generated by the model matches the
empirical saliency maps.

Fig. 4.5.: The empirical saliency is represented by the shading, and the contour lines
represent the density of the data generated by the model. The generated data
recovers the original empirical saliency map.

4.4.2 Modeling Saccade Amplitude
The Local and Global Attention Model was designed to capture the different saccade
amplitudes generated by subjects while observing an image in a free viewing task.
To estimate the model’s performance, we compare the amplitudes of the empirical
saccades with those of the saccades generated by the model. The comparison is
made at a population level and for each subject separately.

Fig 4.6 compares the empirical saccade amplitude density with the saccade amplitude
density of the scan paths that were generated by the full Local and Global Attention
Model and the simplified versions presented previously. The density presented is over
the entire population of subjects. The black curve presents the empirical data. The
orange curve corresponds to data generated by the full Local and Global Attention
Model, and the other curves correspond to the different simplified models.
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Fig. 4.6.: Saccade amplitude density, aggregated over the data from all participants, of
the experimental data and data generated by the full model and the simplified
competitor models. Top. Comparison of all models. Bottom. Comparison
between the full model and the Local Saliency Model. The shading corresponds
to confidence bounds regarding the estimate of the model parameters. The full
model captures the different kinds of saccade lengths, whereas the simpler models
fail to do so.

As a baseline, we include the Saliency Baseline Model, where the scan path is
sampled from the saliency map. As this model does not have any constraints on the
saccade amplitude other than the distance between high saliency areas in the image,
the generated saccades have a much higher amplitude than the experimental data.
Limiting the saccade amplitude, as in the Local Saliency model by assuming a local
attentional focus, results in saccades with much more realistic amplitudes. Fig 4.6
shows that the full model performs better than the simplified models. The three
simplified models tend to capture the mean saccade amplitude rather than the full
variety of saccade amplitudes displayed in scan paths. This behavior is expected from
the Local Saliency Model, which includes only one type of characteristic saccade
amplitude, whereas the full Local and Global Attention Model has two characteristic
saccade amplitudes that correspond either to the local or global attention mode.

The Bayesian inference process presented in the Methods Section results in a dis-
tribution over the possible values of the model parameters. This corresponds to
uncertainty regarding the values of the model parameters. The shading around the
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generated data curves in Fig 4.6 corresponds to this uncertainty. We sampled 50
different values from the posterior distribution of each one of the model parameters
and used this configuration to generate one data set. We split the experimental data
into training and test sets three times and repeated the fitting of the models on each
training set separately, resulting in 5–fold cross–validation. This process applies to
all the results presented unless stated otherwise. Fig 4.6 presents the result of one
such training and test split. The shading represents the 95% intervals around the
mean density over the different data sets.

The confidence bounds are rather narrow, and the density distributions of the two
models are highly separable. This is a good indication that the Bayesian parameter
inference is reasonable—the saccade amplitude density does not change dramatically
with the parameter configurations sampled from the posterior distributions. The
confidence bounds for the Local and Fixed Choice Models behave in a similar way
and are not included in the figure for clarity purposes.

The model presented in this work generates scan paths rather than independent
saccades. Thus, we would expect to see some correlation between the generated
saccades. Fig 4.7 presents the mean autocorrelations of the saccade amplitude
along a scan path. The experimental data shows a clear anti-correlation between
the amplitude of subsequent saccades at lag 1. Thus, a short saccade is likely to
be followed by a long saccade and vice-versa. Although not as strong as in the
experimental data, this effect is captured by the Local and Global Attention Model.
This result is expected from our modeling assumptions since when generating fixation
zt the full model has information regarding the saliency of fixation zt−2, whereas the
competing models do not have access to this information. In addition to this lag–1
effect, it is important to note that our model also approximates the autocorrelation
function for lags up to 20.

As described above, we fit a model for each subject individually. Thus, we can
investigate how well the Local and Global Attention Model captures the difference
between the subjects. In the left panel in Fig 4.8, we compare the mean saccade
length of the empirical data and data generated from the full model for each subject.
Each data point is one subject, and the diagonal curve is the identity line. The
presented data is from one fold of the k–fold cross–validation.

Overall, the model captures the different mean saccade lengths of the different
subjects. Not only does the model capture the different mean saccade amplitudes of
the subjects, but it also captures the difference in the variability of saccade amplitudes
of the subjects (see the right panel of Fig 4.8, where the standard deviations of the
saccade amplitudes are plotted per participant.)

In Table 4.1, we report the coefficient of determination between the mean and
standard deviation of the subjects’ data and of the data generated by the full Local
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Fig. 4.7.: Saccade amplitude autocorrelation averaged over experimental data from all
participants and overall simulations generated by the full model (and the various
competitor models). The full Local and Global Attention Model approximates
the autocorrelation in the amplitude of successive saccades, whereas the simpler
models fail to reproduce the lag-1 anti-correlation.

Local and
Global Attention

Local
Choice

Fixed
Choice

Local
Saliency

R2 Saccade
amplitude mean

0.93 0.93 0.93 0.47

R2 Saccade
amplitude mean

0.85 0.847 0.85 0.3

Tab. 4.1.: Comparison of the coefficient of determination between the mean (or std) of the
subjects’ saccade amplitudes and the saccade amplitudes of the data generated
by the different models. Other than the local saliency model, all models capture
both the mean and the standard deviation of the saccade amplitudes of the
different subjects.

and Global Attention Model and the competing simplified model. The coefficient
of determination was averaged across the different train-test splits in the cross–
validation. Other than the Local Saliency model, all models perform similarly well
and capture the different subjects’ mean and standard deviation of the saccade
amplitudes. This result indicates that the assumption of two length scales generated
by local and global attention states represents a major improvement in the model
fit.

4.4.3 Modeling Saccade Direction

Saccades represent the eye movement from one fixated location to another. Hence,
they are characterized not only by amplitude but also by direction. After analyzing
the model performance with regard to the saccade amplitude, we turn to analyze
the model performance with respect to the saccade direction.
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Fig. 4.8.: Left. Participants’ mean saccade amplitudes compared with the mean saccade
lengths of data generated by the Local and Global Attention model. Right. The
standard deviation of the subjects’ saccade amplitude compared to the standard
deviation of the data generated by the Local and Global Attention model. Overall
the model captures both the mean and the standard deviation of the saccade
amplitude of the different subjects.

There are two important aspects regarding saccade direction, i.e., absolute saccade
direction and the direction relative to the previous saccade. In the left panel in Fig
4.9, we compare the saccade direction density, over the entire population of subjects,
of the empirical data and of data generated by the fitted full model and its variations.
The empirical data demonstrate a clear preference for horizontal saccades and a
weaker tendency towards vertical upward saccades. The different variations of the
model generate similar distributions of saccade directions. The data generated by the
models correspond to a tendency to perform horizontal saccades, but this tendency
is not as strong as in the empirical data. The generated data also shows a tendency
towards vertical saccades.

Interestingly, the subjects seem to perform upwards saccades much more than
downward saccades. In contrast, the models do not differentiate between "up"
and "down," and the two vertical directions are equally likely. This could imply a
cognitive bias of human observers resulting from their prior knowledge of the world,
which our model does not capture.

The right panel in Fig 4.9 presents the frequency of the values of the change in the
saccade direction. The experimental data is characterized by a large peak around 0,
which indicates the persistence of the current saccade direction [148, 21, 182], also
known as saccadic momentum. Additionally, a weaker peak around 180 and −180
degrees indicates a tendency to return to the previously fixated location. All models
discussed here fail to reproduce this effect. The peak in the saccade direction change
is only around 180 and −180 degrees which are due to the hard constraints given by
the image boundaries.
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Fig. 4.9.: Left. Absolute saccade direction. The empirical data demonstrate a strong
tendency to saccades towards the left and right directions and a weaker tendency
to perform saccades directed upwards. The generated data captures the tendency
to perform horizontal and vertical saccades. Right. Change in saccade direction.
The generated data demonstrates the tendency to persist in the same direction.
The models fail to capture this persistence.

4.4.4 Model Comparison

Last, we would like to compare the performance of the full Local and Global Atten-
tion Model to the simplified variants of the model presented in Section 4.2.2. As
measurements of the model performance, we use the Receiver Operating Charac-
teristic (ROC), the respective Area Under the Curve (AUC), the Normalized Scan
path Saliency (NSS), and the Information Gain (IG). The first two methods are
widely used in the field of attention modeling, and have been successfully adapted
to scan path modeling [141, 181, 18, 147, 93, 94]. The IG for saliency and scan path
modeling analysis was first suggested by Kümmerer et al. in [95] and is becoming
more common ever since [152, 155].

The AUC measure is a very common tool to analyze the performance of a probabilistic
classifier by looking at the trade-off between True Positive and False Positive Rates
(TPR and FPR) when using different thresholds for classification. In the context of
attention modeling, the fixation locations are used as samples with positive labels.
As samples with negative labels, we used image coordinates that were sampled
uniformly in the image space. This method is denoted as AUC-Borji [27]. In our
analysis, the likelihood of the model at each time step is used as the probabilistic
classifier. Fig 4.10 presents the ROC curves for the different models.
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Fig. 4.10.: The full model performs slightly better than the Local and Fixed Choice models.
The Local Saliency Model performs significantly worse than the other model
variants.

The NSS is the average normalized saliency (with mean zero and standard deviation
of one over the image) along the scan path of fixated locations. In this work, we used
the likelihood value of each fixation in the scan path and normalized the likelihood
over the entire image, as one would do with a saliency map.

Here, we use the same definition of IG as in [95] - as the average difference of the
log-likelihood between a model and some baseline model. As a baseline, we take a
uniform distribution over the image, where the log-likelihood for each fixation is
constant and equal to log2 (number of pixels). The unit of this measure is bit per
fixation (bit/fix) and is interpreted as the amount of information gained compared
to the baseline model per fixation.

As done in the previous analysis, the scores are reported on the test data set, which
was not used in fitting data, and averaged over the different samples from the
posterior distributions and the folds of the cross–validation process. Due to the
data split into training and test sets, the discussed measures are sensitive to the
model complexity. If a model is too complex (usually manifested by having a lot of
parameters), the model will achieve high AUC, NSS, or IG, over the training set but
may suffer from overfitting and perform poorly on the test set.

The results in Table 4.2 show that the full model performs better than the other
variants and achieves higher scores. Although the scores of the full model are the
highest, they are only slightly better than the ones of the Local and Fixed Choice
models. The Local Saliency model performs poorly, emphasizing the importance of
the two characteristic length scales present in all of the model variants other than
the Local Saliency Model.
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Local and Global
Attention

Local
Choice

Fixed
Choice

Local
Saliency

AUC 0.843 0.835 0.838 0.804
NSS 1.48 1.44 1.41 1.05

IG [bit/fix] 2.1 1.99 1.97 1.92

Tab. 4.2.: The full model performs better than the Local and Fixed Choice models. The
Local Saliency Model performs significantly worse than the other model variants.

4.5 Discussion
We proposed and analyzed a mathematical model of fixation selection, motivated by
the Local and Global Attention modes suggested previously as a mechanism driving
eye movements in natural scene-viewing tasks Frost and Pöppel [49], Unema,
Pannasch, Joos, and Velichkovsky [176], Helmert, Joos, Pannasch, and Velichkovsky
[72], and Tatler and Vincent [170]. We constructed a generative scan path model
based on a small set of assumptions. Using Bayesian inference, we fit the model to
experimental data. By doing so, we continue the line of work of using generative
likelihood–based models for scan path generation [152, 154]. Importantly, we use
recent developments in Bayesian statistics to construct more efficient parameter
inference algorithms.

A different approach uses deep neural networks for scan path modeling [157, 94].
One of the downsides of this approach is its reliance on large amounts of data, which
precludes the study of interindividual differences. Thus, by using a hypothesis–
based model, which requires only a relatively small number of parameters, we
can fit individual models for each experimental subject and capture inter–subject
variability.

We demonstrate how our model captures the saccade amplitude at the population
and individual levels. Whereas two of the competing models perform equally
well in terms of the coefficient of determination fitted to the mean and standard
deviation of the individual subjects’ saccade lengths, the advantage of the full model
is demonstrated when looking at the autocorrelation of the saccade length. This
analysis considers the individual saccades and the dynamics of the entire scan path.
These results emphasize the importance of the information about the saliency of
the previously fixated location when deciding on the following fixation location, as
described in Equation (4.7). Our model generates the typical behavior of a short
saccade after a long one, or vice versa, which results in the observed anti-correlation
of the length of subsequent saccades.

To further quantify the model performance, we calculated the AUC, NSS, and IG
scores of the different variants of the model. The complete model and the Local
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and Fixed Choice variants performed similarly well, and the full model achieved
slightly higher scores than the other two. This result indicates that these quantitative
scores may not be enough to evaluate how well a scan path model fits the data.
Rather than relying only on likelihood–based measures such as AUC, NSS, and IG,
a more careful investigation of the whole body of results suggests that the saccade
behavior is characterized explicitly by its autocorrelation function of the saccade
amplitudes.

The Local and Global Attention Model captures the experimental saccade amplitudes
at the population and subject levels. Another spatial aspect of saccades is saccade
direction. Our model captures only the tendency to perform horizontal saccades but
not the tendency to perform vertical saccades. This is expected from the construction
of the model.

As the full model has information regarding the saliency of the previous fixation
location but not of the location itself, in its current form, the model does not
capture the change in the saccade direction (i.e., the saccade direction relative to the
previous saccade). The relative saccade direction is essential for modeling known
phenomena such as visual persistence or saccadic momentum [148, 21, 182, 112].
The model’s inability to capture the relative saccade direction stems from the choice
of Gaussian functions in the local and global attentional states. Our model could
be extended to account for these tendencies by a Gaussian mixture. Each Gaussian
component would be designed to capture different directional tendencies rather than
capturing only one tendency, as in the current version of the model. For example,
one Gaussian can be aligned in the direction of the previous saccade, accounting for
visual persistence.

Other limitations of the model stem from the choice of a second–order Markov
process. Due to this choice, the model is almost memory-less and cannot capture
known phenomena in scene viewing, which span multiple saccades. Incorporating
more extended history is not straightforward in our model. A heuristic approach
could be including dynamics in the saliency map.

Finally, our mathematical model does not account for fixation durations in scene
viewing, which play an essential role in eye-movement control [73, 134, 99, 168].
So far, most of the modeling attempts of scene viewing addressed either the spatial or
the temporal aspects of scene viewing. Indeed, some models use temporal dynamics
but do not attempt to learn them from the data and use a heuristic–based approach.
We propose new approaches to spatiotemporal modeling of scan paths later in this
dissertation in Section 6.2.2.
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5Evaluating Sampling Algorithms
for Bayesian Models in Human
Scene Viewing

5.1 Introduction
In the previous chapters, we presented models with a tailored inference algorithm.
Our innovation and contribution were not only the models themselves but also the
algorithm used to infer the parameters of the models from real data. This approach
poses limitations on the models. We cannot develop a Gibbs sampler or a variational
inference scheme for most models. In such cases, we can resort to using inference
methods that can be applied to many models. Specifically to methods that only
require a model with a computable likelihood function and do not impose any
restrictions on the shape of the likelihood.

This raises a new question - which method should we use? In this chapter, we explore
this question. We chose the word "explore" very carefully, as we do not believe this
question can have a definite answer. That said, we are interested in shedding light
on using different sampling algorithms and their performances.

The question presented in the previous paragraph is very general, and for the sake
of remaining in the scope of this dissertation, we must narrow it. First, as our work’s
main interest in this dissertation, we will examine Bayesian inference methods.
Hence, methods to estimate the posterior of the model. Second, we will limit the
field of applications. As a use case, we stay in the same field as the previous chapter
- Bayesian models of natural scene viewing.

We chose this field as it seems to lack "best practices" when inferring model parame-
ters. Earlier statistical models put very little emphasis, and often non, on describing
rigorously the model parameters and how they were estimated. For example, the
seminal work of Itti and Koch [80] includes the values of the model parameters
but does not describe how these values were found. Similarly, the CLE model [16],
which models saccades with Levy flights [102], reports the values with which the
experiments were conducted but not how these values were chosen.

In other models, some parameters can be calculated explicitly from the experimental
data. For example, in Tavakoli et al. [171], the parameter P0 describes the "fixation
probability." It is estimated by dividing the number of data points containing fixations
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by the total number of data points. This value is generated from a specific data–
set, which can be thought of as training data, whereas other data–sets are used to
evaluate the model performance.

In other models, the parameters are estimated by optimizing the model performance
concerning some metric. For example, Zanca et al. present a model which relies
on mechanical physics and includes four parameters. To estimate these parameters,
they maximize in [186] the AUC, which we described in 4.4.4. Another variation of
this model is described in [185], where the authors maximize the NSS, which we
also described in 4.4.4, to estimate the model parameters.

The above models do not define an explicit likelihood function over the data. One
of the first models to use an explicit likelihood function is the model of Liu et
al. described in [108]. This model includes modules describing low–level feature
saliency, semantic content, and spatial position. The second module is modeled as a
hidden Markov model (HMM), and its parameters are estimated using a maximum
likelihood scheme.

Another model that defined an explicit likelihood function is the one from Penttinen
et al. [140]. In this work, the authors define an inhomogeneous self-interacting
random walk that accounts for the different saliency levels in the image, saccade
lengths, and history–dependent effects. An explicit likelihood function is derived,
and the model parameters are estimated by optimizing the likelihood.

The models described above are defined with a likelihood function but do not include
a Bayesian approach. No prior probability is associated with the model parameters,
and they are estimated based on the likelihood alone. This approach may result in
undesirable artifacts that can be avoided using a Bayesian approach.

An early example of using Bayesian inference for inference of saccadic eye movement
is the work of Welke et al. from 2009. In this work, the authors describe a Bayesian
network to model saccadic eye movement and use particle filter [129] to infer the
hidden states of the system. A further example of the usage of Bayesian inference for
natural scene viewing models is the work of Courtrot et al. [31], where the number
of states in their hidden Markov model is determined with variational inference
[118]. In this case, the authors chose a Bayesian approach, as maximum likelihood
estimation tends to favor complicated models which include many hidden states.
Here, the prior is used as a regularizer, balancing the tendency of the likelihood of
overly complicated models.

Another model that uses a Bayesian approach is the Scenewalk model. The earlier
version of the model used an MH sampler to estimate the model’s parameters [153].
In contrast, the updated version of the model [155] uses the more sophisticated
DREAM [96] algorithm. In this chapter, we test the different sampling methods on
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the exploration–exploitation model presented in the previous chapter and on the
earlier version of the Scenewalk model described in [153].

We will next introduce in general detail the Scenewalk model. Then, we will present
the different inference algorithms whose performances we want to analyze, followed
by the two metrics we will use to compare the inference algorithms. After that, we
will demonstrate the performance of the inference algorithms on the two models
and conclude with a discussion of their performances.

5.2 Scenewalk Model
The second model for which we report the results of the different samplers is the
Scenewalk model. It was first introduced in [46]. A Bayesian inference framework
was integrated into it in [153]. The Scenewalk model was further extended in [155],
but here we use the simpler version of the model that was included in [153].

Similarly to the saccade generation mechanism presented in 4, the Scenewalk model
takes as an input a static saliency map S and returns a scan path - a series of
fixations location and fixations duration. For a given time t, the model estimates
a dynamic saliency map from which the next fixation location is selected. The
dynamic saliency map is created by combining two separate processing streams that
evolve in parallel. These processing streams represent the inhibitory and excitatory
mechanisms identified as the driving forces underlying saccadic eye movement.
The excitatory process is associated with attention [80, 79] and is balanced by the
competing process, which models the concept of inhibition of return [86, 85].

As mentioned, the Scenewalk model generates fixation locations and fixation du-
rations, but it treats the spatial and temporal aspects separately. First, a series of
fixation durations ∆t1, ∆t2, ..., ∆tn are drawn i.i.d. from a Gamma distribution.
Then, the fixation locations are generated sequentially for each fixation duration.
The fixation locations are drawn from a dynamic saliency map that is the product of
the inhibitory and excitatory processing streams. We next describe the calculation of
the dynamic saliency map.

The excitatory process A is represented by an attention map and the inhibitory
process F by an inhibition map. These maps are defined for each location z in
the image space and are calculated given a fixation duration ∆tf and fixation
location zf

A∆tf ,zf
(z) = GA (z) S∑

GA (z) S
+ e−ωA∆tf

(
A0 (z)− GA (z) S∑

GA (z) S

)
(5.1)

F∆tf ,zf
(z) = GF (z)∑

GF (z) + e−ωF ∆tf

(
F0 (z)− GF (z)∑

GF (z)

)
. (5.2)
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GA and GF are Gaussian functions centered around the current fixation location
zf = (xf , yf ), with a diagonal covariance matrix σA/F I. A0 and F0 are the previously
calculated attention and inhibition maps. The summing in the denominator is done
over the discretized image space. Last, the Gaussian attention map GA is multiplied
by the static saliency map of the image S.

In the next steps of the Scenewalk model, Equations (5.1) and (5.2) are combined
and normalized to produce a valid distribution function over the image space from
which the next fixation location is selected. First, the inhibitory map is subtracted
from the excitatory map, and the result is passed through a ReLu function where the
negative values are zeroed

u (z) = A (z)γ∑
A (z)γ − CF

F (z)γ∑
F (z)γ (5.3)

u∗ (z) = ReLu (u (z)) (5.4)

and we omitted the notation A∆f ,zf
. Finally, the priority map u∗ is normalized and

noise is added to produce the final probability map over the image space

p (z) = (1− ζ) u∗ (z)∑
z u∗ (z) + ζ

1∑
z 1 . (5.5)

The model parameters to be infered are {σA, σF , ωA, ωF , γ, CF , ζ}. In [153], an
MH algorithm was used to infer those parameters. When developing the extended
version of the Scenewalk model [155], the authors chose to use the DREAM [96]
algorithm to infer the model parameters. We next present the inference algorithms
that we compare in this work.

5.3 Inference algorithms
In this chapter, we chose to focus on sampling algorithms. As discussed in Chapter
2, sampling is fundamental for Bayesian inference, and sampling algorithms have
been developed and used successfully for many years. Furthermore, as we showed
in Section 5.1, samplers have been used successfully for parameter inference in scan
path models.

In developing a novel model for scan path generations, see Chapter 4, we developed
a Gibbs sampler to infer the model parameters. This sampler was tailored to our
model and cannot be used "out of the box" for any likelihood–based model.

This chapter focuses only on samplers that can be applied to any model with a
computational likelihood function. One is the HMC sampler, whose details were
presented in Chapter 2. This section presents the other samplers that have not yet
been presented. The first is an auto–tuned variation of HMC.
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5.3.1 No–U–Turns Sampler

The HMC sampler used in different parts of this dissertation relies only on a com-
putable likelihood function, but it contains several tuning parameters. A wrong
choice of these parameters may lead to very slow convergence, and sometimes
the sampler may not converge at all. The no–U–turns (NUTS) sampler [75] is an
extension of HMC, which automatically tunes the sampler parameters.

The HMC sampler requires setting the covariance matrix of the prior over the
augmenting parameter ϕ and choosing the number of steps L and steps size ϵ for
the leapfrog integration algorithm. The NUTS algorithm heuristically sets the mass
matrix of the momentum parameter and automatically tunes L and ϵ.

Mass Matrix
NUTS algorithm uses the common Euclidean–Gaussian kinetic energy and sets the
mass matrix to be the identity matrix, which results in the following Hamiltonian

H (θ, ϕ) = − log (p (θ|y)) + 1
2ϕ⊤ϕ.

Number of Leapfrog Steps L

The number of leapfrog steps taken by the integrator is an important parameter of
HMC. If L is too small, the proposed new position will be close to the initial position,
and the sampler will explore the target distribution slowly. If L is too large, the path
may begin to retrace itself, performing a U–turn, and the resulting proposed position
will be very close to the initial position.

NUTS aims to dynamically set L at each step of the algorithm. In a nutshell, the
main differences between NUTS and HMC are:

1. The leapfrog integrator simulates the path in the Hamiltonian space both
forward and backward in time until a U–turn is detected.

2. Rather than having an accept–reject step on the last state of the leapfrog
integrator, NUTS samples a point from the simulated states.

The first point includes two important details of NUTS: the extension of the path
in both directions and the termination condition. The dynamic path extension is
performed in the following way. At step j of the leapfrog integrator, the direction
(forward or backward) is chosen randomly. Then, 2j−1 leapfrog steps are performed
in this direction. The concurrent extension forward and backward is essential for
the process reversibility.
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To determine whether the simulated path performs a U–turn, NUTS uses as a criterion
the derivative in time of the size of the change in position

d

dt

(
θ̃ − θ

)⊤ (
θ̃ − θ

)
2 =

(
θ̃ − θ

)⊤ d

dt

(
θ̃ − θ

)
=
(
θ̃ − θ

)⊤
ϕ̃ (5.6)

where the tilde sign indicates the current position and momentum. When the
quantity above becomes negative indicates a U–turn. The doubling process of the
leapfrog steps is then stopped when a sub–trajectory fulfills the U–turn condition.

As NUTS does not include an accept–reject step, the selection process from the
simulated states needs to be constructed such that it preserves detailed balance. We
next describe this construction in general detail and refer the reader to [75] for an
in–depth description of the algorithm.

To preserve the detailed balance, NUTS uses slice sampling [132]. At each step of
NUTS, after sampling the momentum variable, the model is further augmented with
a slice variable u which is sampled from

p (u|θ, ϕ) = Uniform (u; [0, exp (−H (θ, ϕ))]) .

Then, after the doubling process of the leapfrog trajectory terminates, we have the
set B of all visited states. A sub–set of states C ∈ B is deterministically selected such
that (θ′, ϕ′) ∈ C ⇒ exp (−H (θ′, ϕ′)) > u.

The slice sampling is equivalent to the accept–reject step in HMC. In HMC the
proposal (θ′, ϕ′) is accepted if

v ∼ Uniform (0, 1)

log v < H (θ, ϕ)−H
(
θ′, ϕ′) .

Taking the exponent and rearranging, we get the condition

v exp (−H (θ, ϕ)) < exp
(
−H

(
θ′, ϕ′))

and the left hand side is equivalent to u. This means that (θ′, ϕ′) will be accepted
when

u < exp
(
−H

(
θ′, ϕ′)).

In NUTS, using slice sampling, rather than checking if the final state passes the
acceptance threshold in HMC, all the states along the trajectory are checked, and
the new state is chosen randomly from the ones that pass the threshold.
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Step Size ϵ

To determine ϵ, NUTS implements a version of stochastic optimization via vanishing
adaptation [149], which is an adaptation of the primal–dual algorithm [133]. The
optimization process is done during the burn–in period, and the resulting ϵ is fixed
for the rest of the sampling process.

The optimization is done with respect to the desired acceptance rate δ, and we
define Ht = δ − αt, where αt is the acceptance probability at iteration t. The goal of
the optimization is to set the sampler parameters, in our case, the step size of the
leapfrog, such that Et (Ht|x) converges to 0, where x is the tunable parameter. The
update step of the dual–averaging algorithm is

xt+1 ← µ−
√

t

γ

1
t + t0

t∑
i=1

Hi (5.7)

x̄t+1 ← t−κxt+1 +
(
1− t−κ)xt+1. (5.8)

µ, γ, t0 and κ are freely chosen parameter, and the authors of [75] recommend the
following default values γ = 0.05, t0 = 10 and κ = 0.75.

Unlike HMC, NUTS iteration does not include an accept/reject step, and we need
to define an alternative to the Metropolis acceptance probability αt. NUTS uses the
following statistics

HNUT S
t = 1

|Bt|
∑

θ′,ϕ′∈Bt

min

{
1,

p (θ′, ϕ′)
p (θt−1, ϕt,0)

}
,

where Bt is the set of all the states visited in the simulated trajectory. HNUT S
t is

comparable to the acceptance rate in HMC, averaged over all the states encountered
during the leapfrog integration, rather than only evaluated in the last state in the
simulation. Following this definition, the desired quantity to be optimized is set to
be Ht ≡ δ −HNUT S

T , and x ≡ log ϵ.

5.3.2 Affine Invariant Interacting Langevin Dynamics
Sampler

Another sampling method we put to the test is the novel ALDI algorithm [51]. Simi-
larly to HMC, this sampling method only requires the model to have a differentiable
likelihood function. The sampling is based on first–order Langevign dynamics and
it is invariant under an affine change of coordinates (affine invariance [61]). We
describe the sampler only in the general terms that are relevant to the application of
the scene–viewing models considered here. Further details can be found in [51].
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The ALDI sampler consists of a stochastic process of M interacting particles. The
stochastic process is characterized by a gradient-based evolution equation of the
following form

dθi
t = −C (Θt)∇θiΦ

(
θi

t

)
dt + D + 1

M

(
θi

t −m (Θt)
)

dt +
√

2C
1
2 (Θt) dW i

t (5.9)

with

• θ being the vector of the model parameters

• θi
t referring to the value of particle i at time t

• Θt being a matrix containing all particles at time t

• C (Θt) the particles’ empirical covariance matrix

• m (Θt) the particles’ empirical mean

• Φ
(
θi

t

)
the potential function which is associated with the model

• D the dimension of the particles which corresponds to the number of model
parameters we infer

• M number of particles

• W i
t denoting a standard M–dimensional Brownian motion.

We solve the SDE in Equation (5.9) with the following update rule, according to the
Euler–Maruyama method [87]

θi
n+1 = θn +

(
−C (Θn)∇θiΦ

(
θi

n

)
+ D + 1

M

(
θi

n −m (Θn)
))

∆t +
√

2C
1
2 (Θt) ∆W i

n

∆W i ∼ N (0, ∆t) .

In the experiments in this section, we take M = D + 1 as it is demonstrated to be
sufficient in [51].

5.3.3 Multi–Trial Differential Evolution Adaptive Metropolis
Sampler

The fourth algorithm we consider in this chapter is a multi–chain MCMC–type
sampler that requires only a computable target distribution, the posterior distribution
of the model parameters in our case. This algorithm is the multi–trial differential
evolution adaptive Metropolis (MT-DREAM) algorithm [96]. We will first present
the different ideas the sampler builds on and then describe it in detail.

The first building point behind the MT-DREAM algorithm is the Adaptive Metropolis.
One of the main challenges in MCMC algorithms is the choice of an appropriate
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proposal. A well–chosen proposal will result in fast convergence to the target
distribution. In contrast, a badly chosen one may require a very long simulation
and have a very low acceptance rate. Overcoming this is could be done by tuning
the proposal based on the history of the samples [47, 52, 24]. Probably the most
well-known implementation of this idea is the Adaptive Metropolis (AM) algorithm
from Haario et al. [64]. In this AM algorithm, the proposal is still a Gaussian
distribution with mean in the current point θt−1, like in MH, but the covariance of
the proposal is taken to be the covariance of the past accepted samples.

Another approach used in MT–DREAM is the multiple trial Metropolis (MT–MC)
[109]. Like the AM sampler, it should result in faster convergence and a higher
acceptance rate than the regular MH sampler. In multiple trial Metropolis, at each
step k candidates {z1, ..., zk} are sampled from the proposal distribution q (θt−1).
Then, one of the candidates is chosen with probability p (zi), with p (·) being the
target distribution. The selected candidate is then accepted with a probability

α = min
{

p (z1) + ... + p (zk)
p (θ∗

1) + ... + p
(
θ∗

k

) , 1
}

(5.10)

where θ∗
1, ..., θ∗

k−1 are reference points drawn from the proposal distribution q (zi, ·)
and θ∗

j−1 = θt−1.

The last tool MT– DREAM uses is differential evolution (DE). This algorithm was first
introduced in [163] and is part of the family of genetic or evolutionary algorithms
used in optimization problems. Ter Braak first used it in the context of MCMC in
[172] in an algorithm he named differential evolution Markov chain (DE–MC). In
this algorithm, M chains are evolved in parallel and are viewed as the population in
evolutionary algorithms terms. At each time step, a proposal is generated for chain i

from the difference between the current state of two randomly selected chains

zi = θi
t−1 + γ

(
θr1

t−1 − θr2
t−1
)

+ e r1 ̸= r2 ̸= i

where r1, r2 ∈ {1, ..., M} randomly selected indices of two other chains. The proposal

is accepted with probability
p(zi)

p(θi
t−1)

.

DE–MC applies the crossover mechanism [163] to improve the sampling process
further, and each iteration updates only some of the dimensions in θ. Before deciding
whether to accept or reject the proposal z, it is adjusted by crossover. In DE–MC, the
crossover is implemented with a binomial scheme. Each element in zi is replaced
with the corresponding element in θi

t−1, with probability 1− CR, where CR is the
crossover probability.

The MT–DREAM algorithm combines and extends the three approaches presented
above. Similarly to MT–MC, it generates at each iteration, and for each chain, k

candidates, and similarly to DE–MC, it uses the differences between previously
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accepted samples as a proposal. At each time step and for each chain, the k proposal
is generated in the following way

zl,i = θi
t−1 + (1 + e) γ

(
δ, d′) δ∑

j=1
Θr1(j) −

δ∑
n=1

Θr2(n)

+ ϵ

where l ∈ {1, ..., k} is the proposal index and i ∈ {1, ..., M} is the chain index. Θ is
the archive matrix containing all accepted samples from the previous t− 1 iterations.
r1 (j) , r2 (n) ∈ {1, ..., t1} and Θr1(j) and Θr2(n) are two accepted samples. e is
sampled from U (−b, b), ϵ is sampled from N (0, b∗) and they are both vectors with
the same dimensions as θt−1. δ is the number of pairs of chains used to generate the
proposal. [180] states that a good choice for γ is γ (δ, d′) = 2.38/

√
2δd′. Differently

to DE–MC, MT–DREAM uses multiple pairs of samples from the archive to generate
the proposal.

Next, MT–DREAM applies the same crossover scheme as DE–MC, and sets d′ to
be the number of dimensions that are actually updated in zl,i. Namely, in the
crossover process, the number of dimensions that were not replaced by an element
in θi

t−1. Lastly, as in MT–MC, for each chain, one of the k candidates is selected
with probability p

(
zl,i
)
, and is accepted with the probability that is described in

Equation (5.10).

We presented the MT–DREAM algorithm in general terms. Further details, such as
the values of the crossover probability and other model parameters, can be found in
[96]. In all the experiments described in the following sections of this chapter, we
used the algorithm parameters’ default values suggested in [96].

5.3.4 Performance metrics
Once the sampling process is done, we are interested in the quality of the samples.
As we will see later, a poorly tuned sampler may produce samples that are not
usable, as they were not sampled from the target distribution. One way to analyze
the quality of the sampler is through visual inspection. We can plot the samples
and inspect whether they have converged and if the different chains have mixed,
as in Figure 5.3, for example. This is a reasonable step, but it is not feasible for
high–dimensional models. Hence, we are interested in a quantitative metric of the
sampler’s performance.

This chapter will use the following two standard quantitative metrics, following the
Gelman-Rubin (GR) framework [55]. This framework is designed to analyze the
performance of a sampler with M parallel MCMC chains and N samples in each
chain. In the context of ALDI, M corresponds to the number of particles being
propagated in parallel. The same goes for DREAM where we have M interacting
chains, which is set to D+1, with D being the number of model parameters. For HMC
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and NUTS, we run each chain separately and use M chains to keep compatibility
with ALDI and DREAM.

The first metric is used for convergence diagnostic and is known as potential scale
reduction factor (PSRF) and is denoted as R̂. This diagnostic uses the variability
between multiple chains to determine whether the sampler has converged. It consists
of the ratio between two quantities that estimate the marginal posterior variance
of the parameter, but one overestimates it and the other underestimates it. Each
estimate should converge to the actual variance of the target distribution, as the
number of samples n increases R̂ approaches 1.

For a scalar estimated model parameter θ, and its corresponding samples θi,j , i ∈
{1, ..., n} and j ∈ {1, ..., m} the within chain variance is defined as

W = 1
m

m∑
j=1

s2
j (5.11)

s2
j = 1

n− 1

n∑
i=1

(
θi,j − θ̄·,j

)2

θ̄·,j = 1
n

n∑
i=1

θi,j .

Similarly, the between chains variance is defined as

B = n

m− 1

m∑
j=1

(
θ̄·,j − θ̄·,·

)2
(5.12)

θ̄·,· = 1
m

m∑
j=1

θ·,j .

The variance of the target distribution is estimated as a weighted average of B and
W

V = n− 1
n

W + 1
n

B. (5.13)

This quantity overestimates the marginal posterior variance, whereas the within–
chain variance W underestimates it. After a finite number of time steps, the chains
have not explored the entire target distribution and will have less variability.

The PSRF is defined as

R̂ =

√
V

W
. (5.14)

This convergence diagnostic is performed on split chains. Each chain is split into two
halves and treated as two independent chains. This approach checks mixing and
stationarity. If the chains are well mixed, then the two parts of the chains should also
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mix. If the chains have reached stationarity, their two halves should have reached
stationarity.

Usually, the metric described above is used to determine when to stop the sampling
process. A threshold δ > 1 is chosen, and the sampling is stopped when R̂ < δ. In
[54], Gelman et al. recommend setting δ = 1.1, but in practice, a wide range of
values is used from 1.003 to 1.3.

The second metric we use to measure the performance of the different sampling
algorithms is the effective sample size (ESS), which quantifies the number of in-
dependent draws generated in the sampling process. If the draws in each chain
were independent, we would have had mn independent samples at the end of the
sampling process, but in practice, the chains are autocorrelated, and the samples
are not independent. Whereas for R̂, the lower the better; in the case of the ESS, a
higher value indicates that the sampler performs better.

The ESS can be estimated in different ways, and here we follow the one described in
[54]. Asymptotically, the ESS is defined as

neff = mn

1 + 2
∑∞

t=1 ρt
(5.15)

where ρt is the autocorrelation of the samples in a chain with lag t. In practice,
we have a finite number of samples and must estimate the infinite sum of the
autocorrelations.

To estimate ρt, we first define the variogram at lag t

Wt = 1
m (n− t)

m∑
j=1

n∑
i=1

(θi,j − θi−t,j)2 (5.16)

and the autocorrelations are estimated with

ρ̂t = 1− Wt

2V
. (5.17)

For large t, the sample correlations become too noisy. Thus, we need to use a partial
sum and find a T until we perform the summing. T is defined as the time at which
the sum of two successive autocorrelations ρ̂2t + ρ̂2t+1 is negative. Putting it back in
Equation (5.15), we have the definition for the ESS

n̂eff = mn

1 + 2
∑T

t=1 ρ̂t

. (5.18)
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In our analysis in this chapter, we use a recommended modification to calculate
the ESS and R̂ described in [178]. The metrics are not directly computed on the
parameters’ values but rather on their rank normalization. This is defined as

zi,j = Φ−1
(

ri,j − 3/8
mn + 1/4

)
(5.19)

with Φ being the cdf of the normal distribution and ri,j the rank of θi,j .

We use the code implementation from the Python package ArviZ [89].

5.4 Hyperparameters Tuning
We compare the performances of the sampling algorithms in a setting where we
know the ground–truth values of the model parameters. Thus, we generate data
from the two models and perform the inference on the generated data sets.

As with most inference algorithms, all four samplers compared in this chapter include
tunable hyperparameters. Two samplers, NUTS and DREAM, are often used out of
the box with default hyperparameters, and we follow this recommendation and use
these default values. Next, we describe the effect of the hyperparameters on the
remaining two algorithms, ALDI and HMC. We demonstrate it on the inference in
the EE model.

5.4.1 ALDI hyperparameters

ALDI does not require many design choices and includes only two hyperparameters.
These are the step size and the number of particles in the ensemble. Another hyper-
parameter that is referenced in [51] is the time interval for the Euler–Maruyama
algorithm. Still, it is equivalent to the number of samples and can be determined
using the metrics described in the previous section.

In [51], the authors suggest setting N = D + 1, which we follow in our experiments.
Regarding the step size, the authors report setting ∆t = 0.01. For the EE model, the
recommended step size led to instabilities in the inference process as the parameters
stepped out of range which caused an error. Thus, we had to set the step size much
smaller to ∆t = 0.0003. Figure 5.1 presents the ensemble path with this step size.
The chains mix well around the ground truth value, but the samples are correlated.

Our solution is adapting the step size during the sampling iterations. We set the
initial step size to 0.5 and followed the subsequent heuristic. After performing an
iteration, we check whether all the particles are within reasonable values, and if not,
we decrease the step size. After 10 such iterations, we increase the step size again.
The results of this approach are shown in Figure 5.2. Compared to Figure 5.1, the
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mixing is much better, and the samples are less correlated. Thus, when we compare
the different samplers, we use the version of ALDI with the adaptive step size.
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Fig. 5.1.: Samples path of the ALDI sampler with ∆t = 0.0003. The horizontal line indicates
the parameter ground–truth value. The chains mix well but contain noticeable
autocorrelations.
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Fig. 5.2.: Samples path of the ALDI sampler with an adaptive step size. The horizontal line
indicates the parameter ground–truth value. The chains mix well and contain
fewer autocorrelations than with the constant step size.
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5.4.2 HMC hyperparameters

HMC includes several hyperparameters. The most important one, which is more of a
design choice, is the kinetic energy. Other hyperparameters are the step size ϵ and
the number of leapfrog iterations L. We follow the heuristic presented in Chapter 2
and set ϵL = 1.

Our experiments use the standard Gaussian kinetic energy described in 2.5. We
chose the simple case where the mass matrix M is diagonal. A naive choice is the
identity matrix. We compare the inference results with the identity and tuned mass
matrix.

The results of the HMC sampler with an identity mass matrix are presented in Figure
5.3. It includes 7 chains and the first 10, 000 samples, including the burn–in period
and without thinning. We use ϵ = 0.01 and L = 100.

Qualitatively, the chains seem to be mixing very well. The chains for all parameters
achieve stationarity around the ground–truth value of the model parameters. The
samples for xix and xiy are still correlated after 10, 000 iterations. This could be
solved by thinning, which will result in fewer samples.

The results of the HMC sampler with a non–identity diagonal mass matrix are
presented in Figure 5.4. It includes 7 chains and the first 10, 000 samples, including
the burn–in period and without thinning. We use ϵ = 0.1 and L = 10.

Qualitatively, the chains mix well in this case and achieve stationarity around the
ground–truth value of the model parameters. Unlike in the case of the identity
mass matrix, the samples for all parameters are uniformly correlated and converge
faster.

Using the customized mass matrix results in a much faster algorithm. When setting
ϵ = 0.1 and L = 10 with the identity mass matrix, the parameters wander off regimes
where they are poorly defined, and the inference fails. To customize the mass matrix,
we used our prior knowledge of the model parameters, which are expected to have
quite different scales.

The tuning process includes running the HMC sampler a few times, but it is done
only once and is then used for the model, assuming all data arrives from similar
sources. As the return on investment, we have a sampler that requires 10 times less
estimation of the energy and its gradient, with the highest computational cost when
generating a sample. Thus, in the following sections, we use HMC with a custom
diagonal mass matrix for each model.
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Fig. 5.3.: Samples paths for seven chains using HMC with identity mass matrix and 100
leapfrog steps. The horizontal line indicates the parameter ground–truth value.
Overall the chains mix well, but the samples of two of the parameters, ξx and xiy,
are heavily autocorrelated.
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Fig. 5.4.: Samples paths for seven chains using HMC with a customized mass matrix and 10
leapfrog steps. The horizontal line indicates the parameter ground–truth value.
The chains are uniformly correlated and converge faster in comparison to using
the identity matrix.
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5.5 Results

All the results were generated using a Python implementation of the inference
algorithms. For the DREAM algorithm, we used the PyDREAM package available
under https://github.com/LoLab-VU/PyDREAM [158]. For NUTS, we relied on
the Python package available under https://github.com/mfouesneau/NUTS. HMC
and ALDI were implemented by the authors of this work using Python. The implemen-
tation for HMC is available under https://github.com/noashin/pyhmc_minimal.
The implementation for ALDI is available under https://github.com/noashin/
PyALDI.

All the samplers were run with the same number of M chains. M was set to be D + 1
with D the number of model parameters, as required by ALDI. As mentioned before,
ALDI and DREAM include interactions between the different chains, whereas, in the
case of NUTS and HMC, the chains are independent of each other.

Figures of the sample paths for all the samplers can be found in Appendix A.1. We
inspect the performances of the different sampling algorithms in terms of the metrics
defined in Section 5.3.4. We start with the potential scale reduction factor R̂.

5.5.1 Potential Scale Reduction Factor

As an example, figure 5.6 illustrates the evolution of R̂ as a function of the total
number of draws for the ALDI sampler and the EE model. The corresponding figures
for the rest of the samplers can be found in Appendix A.5. In the case of the ALDI
sampler, the convergence of R̂ is relatively uniform across the parameters. The initial
values of R̂ are similar for all the parameters, and it converges to 1 after a similar
number of draws.

As mentioned in Section 5.3.4, R̂ is used as a stopping criterion. Once it reaches
1.1, the sampling process is stopped. In Table 5.1, we compare the different samples
based on the number of draws required to achieve R̂ < 1.1.

Tab. 5.1.: Number of draws from each sampler that are needed to achieve R̂ < 1.1 for each
parameter of the EE model.

Parameter ALDI DREAM HMC NUTS

µ0 13.63× 103 3.72× 103 0.3× 103 6.8× 103

b 13.63× 103 3.3× 103 0.27× 103 3.75× 103

ϵx 23.57× 103 3.3× 103 1.4× 103 6.87× 103

ϵy 23.57× 103 2.45× 103 1.05× 103 55.26× 103

ξx 23.57× 103 1.61× 103 0.21× 103 161.1× 103

ξy 16.94× 103 2× 103 3.61× 103 866× 103
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Fig. 5.5.: PSRF evolution for the ALDI sampler for the EE model. All the parameters require
a similar amount of draws for the R̂ to converge to 1.

The samplers present pretty different performances. Overall, the DREAM parameter
requires the least amount of draws to reach the goal of R̂ < 1.1. Interestingly, in the
case of HMC and NUTS, some parameters reach R̂ < 1.1 much faster than others. In
both cases, the parameter that converges the slowest requires more than a hundred
times more draws than the parameter that converges the fastest.

In contrast, in the case of ALDI and DREAM, all parameters require similar draws
to reach the goal. Comparing the different algorithms, ALDI and DREAM exchange
more information between the parameters than HMC and NUTS. The update step of
ALDI includes the empirical covariance matrix of the samples, such that the different
dimensions influence each other. In the case of HMC and NUTS, the information
between the various parameters is exchanged only via the likelihood calculation. In
both cases, the mass matrix was set to be diagonal. We expect that if the mass matrix
were non–diagonal, the R̂ would have converged equally fast along the different
dimensions.

We repeat the same analysis for the Scenewalk model. Table 5.2 presents the number
of draws required to reach R̂ < 1.1 for each parameter. The results show the same
trends as the analysis of the inference of the EE model. Whereas ALDI and DREAM
require similar draws for each parameter, in the case of HMC and NUTS, some
parameters converge much slower than others. Furthermore, DREAM requires the
least amount of draws on average across parameters.
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Tab. 5.2.: Number of draws from each sampler that are needed to achieve R̂ < 1.1 for each
parameter of the SW model.

Parameter ALDI DREAM HMC NUTS

ωA 10.84× 103 6.2× 103 144.76× 103 1, 125.6× 103

ωA/ωF 9.68× 103 7.36× 103 167.62× 103 2, 462.4× 103

σA 9.68× 103 7.36× 103 152.38× 103 1, 130.4× 103

σF 6.2× 103 9.68× 103 144.76× 103 967.2× 103

γ 8.52× 103 5.04× 103 53.6× 103 696× 103

CF 7.36× 103 5.04× 103 6.56× 103 9.6× 103

ζ 5.04× 103 6.2× 103 0.25× 103 0.25× 103

5.5.2 Effective Sample Size

The second metric we look at is the Effective Sample Size. As an example, figure
5.6 illustrates the evolution of the ESS as the number of samples increases for the
ALDI sampler. All parameters reach the 400 ESS limit around 100, 000 samples. The
evolution of the ESS for the other samplers can be found in Appendix A.3.
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Fig. 5.6.: ESS as a function of the number of samples drawn by the ALDI algorithm for the
EE model. The horizontal line indicates 400 ESS.

In Section 5.3.4, we mentioned that a threshold for ESS is 400. Table 5.3 presents
the number of draws required to reach an ESS of 400 for each sampler for each
parameter. Similarly to the case of R̂, ALDI and DREAM require a similar amount
of draws to reach an ESS of 400, whereas HMC and NUTS display a large variety
between the parameters.
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Tab. 5.3.: Number of draws from each sampler needed to achieve 400 ESS for each parame-
ter of the EE model.

Parameter ALDI DREAM HMC NUTS

µ0 81.4× 103 14.25× 103 2.8× 103 62.8× 103

b 85.7× 103 14.7× 103 1.96× 103 49.6× 103

ϵx 114.28× 103 14.4× 103 0.4× 103 21.18× 103

ϵy 124.28× 103 11.3× 103 4.48× 103 280× 103

ξx 90× 103 8.7× 103 1.8× 103 752× 103

ξy 112.85× 103 9.6× 103 22.3× 103 5.6× 106

For practical uses, we are interested in a sampler that achieves the ESS quickly with
fewer draws and in a sampler that generates a draw fast. Next, we look into the
computations required to generate a draw from each sampler.

For most models, the most demanding computation is evaluating the likelihood. For
ALDI and DREAM, the number of draws is identical to the number of likelihood
evaluations. In contrast, NUTS and HMC require multiples of the likelihood per
draw.

Here, HMC includes 10 leapfrog steps, each estimating both the likelihood and its
derivative. The number of leapfrog iterations in the NUTS sampler is not constant.
In our experiments, NUTS included 4 leapfrog steps on average. Each leapfrog step
involves evaluating both the likelihood and its derivative, which can be assumed to
be similar.

Tab. 5.4.: Number of likelihood evaluations from each sampler needed to achieve 400 ESS
for each parameter of the EE model.

Parameter ALDI DREAM HMC NUTS

µ0 81.4× 103 14.25× 103 56× 103 351.44× 103

b 85.7× 103 14.7× 103 39.2× 103 90.72× 103

ϵx 114.28× 103 14.4× 103 8× 103 125.52× 103

ϵy 124.28× 103 11.3× 103 89.6× 103 1.326× 106

ξx 90× 103 8.7× 103 36× 103 4.22× 106

ξy 112.85× 103 9.6× 103 446× 103 31.2× 106

Table 5.4 presents the likelihood estimations required to reach the ESS goal. The
DREAM algorithm outperforms the other samplers. We repeat the same analysis
for the SW model. Table 5.5 presents the likelihood estimations required for each
parameter to reach ESS of 400. The results show the same trends as the analysis of
the inference of the EE model. Whereas ALDI and DREAM require similar estimations
for each parameter, in the case of HMC and NUTS, some parameters converge much
slower than others. Furthermore, DREAM requires the least amount of estimations
on average across parameters.
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Tab. 5.5.: Number of likelihood evaluations from each sampler needed to achieve 400 ESS
for each parameter of the SW model.

Parameter ALDI DREAM HMC NUTS

ωA 39.6× 103 28.8× 103 81, 600× 103 17, 628× 103

ωA/ωF 48.8× 103 37.6× 103 9, 600× 103 24, 549× 103

σA 46.4× 103 39.2× 103 7, 360× 103 18, 480× 103

σF 53.6× 103 38.4× 103 7, 040× 103 16, 968× 103

γ 38.8× 103 33.6× 103 4, 800× 103 16, 506× 103

CF 36.8× 103 23.2× 103 448× 103 378× 103

ζ 39.6× 103 23.2× 103 8× 103 2.62× 103

5.5.3 Discussion

In this chapter, we compared different samplers for posterior inference in human
scene–viewing models. We chose four samplers – ALDI, DREAM, HMC, and NUTS.
All the samplers require a model with a computable likelihood function and prior
functions over the model’s parameters. Other than DREAM, the samplers also require
a computable derivative of the likelihood. Other than that, there is no restriction
over the likelihood structure.

We chose the field of modeling human scene–viewing as Bayesian modeling gains
popularity in the area, but there are no best practices for performing inference. We
completed the analysis on two contemporary models, the Scenewalk model and
the Exploration–Exploitation model. Both models suit the chosen samplers as their
likelihood functions and their derivatives are computable. Both models also have
a similar number of parameters. The SW model has seven parameters, and the EE
model has six.

Using data sets generated from the models, we first showed that all samplers concen-
trate around the ground–truth values of the parameters after sufficient samples and
that multiple chains mix well. Then we compared the performance of the samplers
using the Gelman–Rubin framework. This framework estimates the potential scale
reduction factor and the effective sample size and is considered the standard in the
field.

The samplers performed similarly on both models. The ALDI and DREAM demon-
strated consistent results over the different model parameters, whereas HMC and
NUTS had mixed results. The algorithms themselves explain this. In each DREAM
iteration, only some dimensions are updated using the crossover scheme. In ALDI,
the update step of the sampler includes the empirical covariance matrix of the past
samples.

HMC can be adapted to encourage uniformity over the different parameters. In
our experiments, the mass matrix was set to be diagonal. Using a well–designed
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non–diagonal mass matrix could result in more consistent results over the different
parameters. Creating a non–diagonal mass matrix is much more complex than a
diagonal matrix. One approach could be using the empirical covariance matrix of a
different sampler. In the case of the NUTS algorithm, the mass matrix is set to be the
identity. This sampler is encouraged to be used as an out of the box solution; hence,
we did not temper it.

Overall, the NUTS algorithm performed the worst. This shows the importance of
a well–designed mass matrix for efficient inference in the HMC framework. In our
case, it was beneficial to have several iterations of adapting the mass matrix of HMC
over using the NUTS algorithm, which does not require such adaptation. Here, we
used the prior knowledge that the parameters of the models had different scales
and set the mass matrix accordingly. Without this intimate knowledge of the model,
designing the mass matrix would have been much more complicated. If the model
has many more parameters with unknown scales using NUTS may be easier and
faster than attempting to fiddle with the mass matrix of HMC.

In the case of the EE model, looking just at the number of draws necessary to reach
the desired R̂ or ESS, HMC performs the best. As mentioned in the previous chapter,
we are interested in a computationally efficient sampler. HMC involves estimating
the likelihood and its derivative ten times. Although it is a constant factor, it is
noteworthy, which makes HMC significantly slower than DREAM. In the SW model,
the difference in the number of draws between the parameters is higher than in the
EE model. This makes the DREAM sampler the most efficient regarding the number
of draws and not only the number of likelihood estimations.

Overall, all the inference algorithms resulted in a very low ESS compared to the
number of draws, even in the case of DREAM. This could indicate several problems
in the data and the inference process. One issue could be correlations between
the model parameters, which could affect the posterior inference even when the
inference is made with data that the model generated.

Another issue could be the small sample size. It could be that more data is required
for efficient inference of the model parameters for the discussed models. The sample
size used here was not random. We used generated data sets with a similar size
to experimental data sets. Hence, although many draws are required to achieve
sufficient ESS, it is possible under the constraints of experimental settings.
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6Conclusions and Outlook

6.1 Summary and Discussion
In this dissertation, we contributed to the line of work on Bayesian point processes
modeling. We introduced new models and inference algorithms. We also discussed
the advantages and disadvantages of different inference algorithms in the context of
computational cognitive neuroscience, specifically human gaze modeling.

6.1.1 Models and Inference Methods
In Chapter 3, we presented a new nonlinear Hawkes model. We chose to work
on the nonlinear Hawkes process since it allows us to model phenomena where
the interactions between events are excitatory and inhibitory. The nonlinearity is
achieved by applying the sigmoid function to the linear intensity function. The
innovation of our model is modeling the background rate and inter–events effects
with Gaussian Processes and explicitly assuming exponential decay of the self–effects.
This flexible framework allows the functional form of the effects to change over time.
The effect of an event may start as excitatory but become inhibitory after some time.
Last, including the GP priors, results in a simple structure of the linear intensity
function, characterized by a kernel function.

In Chapter 4, we contributed to the field of human gaze modeling. We presented
a model for exploration and exploitation in natural scene viewing. Our model
hypothesizes that the saccades generated during scene viewing can be characterized
as either "exploitative" or "exploratory." The saccade is relatively short in the first
case, and the viewer accumulates more information in the same region of interest.
In the latter, the saccade length is longer, and the viewer shifts their attention to
another area in the image.

We used the PG augmentation scheme for both models to achieve a model for which
we can derive a Gibbs sampler. For the case of the EE model, it was enough to
augment the model with the set of PG variables. The NH–GPS model needed two
sets of augmenting variables. First, we augmented the observations with a set of
PG variables. Then, we identified the auxiliary marked Poisson process and its
realizations and associated marks.

For The EE model, we could not sample from all the conditional posteriors of the
model’s parameters. For these parameters, we used an HMC step within the Gibbs
sampler. In the case of the NH–GPS model, we could derive an efficient VI algorithm.
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We showed that despite the inherent approximations, the VI algorithm converged
fast and achieved similar results to the Gibbs sampler.

In Chapter 5, we attempted to provide practitioners with tools to choose the appro-
priate inference method for their problem. We chose human scan path modeling as a
use case, specifically our EE model and the known Sceneviewing model. In Chapters
3 and 4, we derived custom inference algorithms; in this chapter, we compared four
samplers that can be applied to any model given a computable likelihood function.
These samplers were HMC, NUTS, ALDI, and DREAM.

6.1.2 Evaluation and Applications

In Chapters 3 and 5, we first established the correctness of the inference algorithms.
We demonstrated this by performing inference on data generated from the model
with known ground truth. For both algorithms, the inference recovered the values of
the model’s parameters.

In Chapter 3, we applied the NH–GPS model to data from different domains. We
chose domains where prior work existed to compare our model to others. First, we
showed that our model performs better than existing models in the field of modeling
crime report data. Then we used three datasets of neuronal activity. We showed that
our model achieved comparable or better results than existing models, also in the
case of multivariate data. The performance of the models was measured using the
test log–likelihood and the p–value of the KS test.

In Chapter 4, we used the test log–likelihood to measure the model’s performance.
In this case, we did not compare our model to existing models but compared
different versions of it. These versions represented different hypotheses regarding
the mechanism underlying scan path generation. Using this metric, we showed that
the full model we suggested is the most likely out of the tested versions.

In this chapter, we also used another approach to measure the model’s performance.
We expected that data generated from the fitted resembled the observed data. First,
we showed that the data generated by the model recovered the empirical saliency
map. Then, we showed that the model captured the distribution of saccade lengths
of the observed data. Furthermore, as we fitted our model to data from individual
subjects, we could capture inter–individual differences. Last, we showed that the
model could capture the distribution of saccade directions but failed to model the
saccade direction change. The latter was expected due to the structure of the model,
which did not consider the direction of the previous saccade.

To compare the different sampling algorithms in Chapter 5, we used the standard
metrics of effective sample size (ESS) and the potential scale reduction factor (R̂).
As some of the algorithms need multiple estimations of the likelihood function or its
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gradient to generate one sample, we compared the different samplers in terms of the
number of likelihood estimations required to reach the target ESS and R̂. For both
models considered, the DREAM samplers achieved the best results. Furthermore, we
could easily apply the algorithm’s existing code implementation to our model.

6.2 Outlook
The scientific process involves developing questions and figuring out how to answer
them. As the doctorate research period is limited, not all of these questions can be
answered in the given time frame. This means that the research presented in this
dissertation is only a subset of many ideas conceptualized during the last five years.
We hope that our work is exciting and relevant enough to be continued, and we next
present some of the ideas we had to leave behind to complete this dissertation on
schedule.

6.2.1 Efficient inference for the NH–GPS model

Whereas theoretical mathematics is constrained only by the researcher’s imagina-
tion and maybe some axioms, numerical analysis suffers from much more prosaic
limitations. All the models and algorithms presented in the previous chapters were
eventually translated to machine–readable code, and the experiments were executed
on computers. Thus, we were limited by space and time—the computation resources
that were available to us.

The most demanding computation we executed was calculating the memory kernel
of the NH–GPS model, presented in Equation (3.13). This involves a double sum-
mation of all the data and is quadratic in the number of events. Furthermore, this
computation is also done with respect to the set of induced points and the integration
points. In most cases, the number of integration points is larger than the number of
events in the data, and it becomes the limiting factor.

In the research presented here, we only included temporal data, which is one–
dimensional. Theoretically, the NH–GPS model can be easily extended to higher
dimensional data. This includes, of course, spatiotemporal data, which are three-
dimensional. Hawkes processes were already successfully applied to spatiotemporal
data in different fields from earthquakes [137, 126] to social media and crime
prediction [184, 194].

When applying our model to spatiotemporal data, we encountered difficulties com-
puting the memory kernels. In cases where the memory kernel was computed
successfully, its inversion proved too demanding for the computational resources
available to us. We hope that this can be solved with future research.
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One direction is developing a more efficient calculation of the memory kernel. A
possible modification is considering the decay of the process when computing the
memory kernel. Due to the explicit decay of the memory kernel, if two events are
far enough from each other, effectively, their effect on each other is 0. It may be
beneficial to incorporate domain–specific knowledge and explicitly assume that if
t − tn > c, then g (t− tn) exp (−α (t− tn)) = 0. This will reduce the number of
computations needed for the memory kernel.

The process described above results in a sparse covariance kernel, which is helpful
for GP estimation. For example, one could use sparse Cholesky factor methods [177,
39]. The main challenge of this approach is constructing a valid compactly supported
covariance and building a positive semidefinite matrix. Potential solutions can be
found in Buhmann [26] and Melkumyan and Ramos [119]. A thorough review of
approximate methods for efficient GP computation can be found in Liu, Ong, Shen,
and Cai [107].

6.2.2 Spatiotemporal Hawkes process Models for Scene
Viewing

In Chapter 4, we presented a new model for scene viewing. This model assumes
that a fixation depends only on the previous two fixations. In Sections 4.4 and 4.5,
we discussed the limitations of this assumption. We believe that the experimental
effects that our model did not capture may be better modeled with a spatiotemporal
Hawkes process.

Furthermore, most approaches designed for scan path modeling currently focus on
the spatial features of the fixations and ignore the temporal aspect. Almost all the
models covered in the thorough comparison of Kümmerer and Bethge [90] model
only the location of the fixations. Two notable exceptions are the LATEST model
[169] and the version of the Scenewalk model described in Schwetlick, Backhaus,
and Engbert [154].

We suggest that a spatiotemporal implementation of the NH–GPS model described in
Chapter 3 could join the slowly growing family of models for both saccade locations
and durations. We next present some ideas and thoughts regarding applying the
NH–GPS model to scene viewing.

In Chapter 3 we defined the linear intensity function

ϕ (t) = s (t) +
∑
tn<t

g (t− tn) exp (−α (t− tn)) .
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A spatiotemporal variation of it could take the following form

ϕ (t, z) = s (t, z) +
∑

tn<t,zn<z

g (t− tn, z − zn) exp (−α (t− tn)− β (z − zn)) ,

and it is left to design the background rate and self–effects functions.

For the spatiotemporal Hawkes process, it is common to separate the effects of the
past events in time and space [137, 145, 184, 82]. This means that we can write the
self–effects function as

g (t− tn, z − zn) = f (t− tn) exp (−α (t− tn)) h (z − zn) exp (−β (z − zn)) .

The NH–GPS model takes as input only the events. This is insufficient to model scan
paths, as they are coupled to a specific image. Thus, if we wish to model scan paths
using a Hawkes process, we must integrate the image into the intensity function.
Similarly to what we did in Chapter 4, we suggest including information about the
image via the static saliency function sal (z).

First, the saliency could be integrated into the background rate function. One
approach is to assume that the spatial aspect of the background rate is proportional
to the saliency

s (t, z) = s (t) µ∗sal (z) .

Next, the saliency should be integrated into the self–effects function. One can as-
sume that the self–effects depend only on the saliency value at location z and
write the self–effects as sal (z) g (t− tn, z − zn). Another assumption could be
that the impact of the previous event depends on the difference between the
saliency at the past fixation and the current fixation z and write the self–effects as
(sal (z)− sal (zn))) g (t− tn, z − zn). Instead of the difference between the salien-
cies, one can also use the ratio.

The usage of the Hawkes process model for scene viewing has excellent potential. As
mentioned in the previous section extending the model to three dimensions comes
at a high computational cost. We hope the suggestions in the last section prove
helpful and enable the implementation of our model’s spatiotemporal extension and
applying it to scan path modeling.
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AAppendix Related to Chapte 5

A.1 Samples Paths for the Exploration Exploitation
Model
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Fig. A.1.: Samples path for the ALDI sampler for the EE model. All the chains mix well and
converge to the ground truth value. Autocorrelations can be seen in the sample
paths of all the parameters.
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Fig. A.2.: Samples path for the DREAM sampler for the EE model. All the chains mix well
and converge to the ground truth value.
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Fig. A.3.: Samples path for the HMC sampler for the EE model. All the chains mix well and
converge to the ground truth value. Autocorrelations can be seen in the samples
path of the parameter ξy.
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Fig. A.4.: Samples path for the NUTS sampler for the EE model. Eventually, all the chains
mix and concentrate around the ground truth value. In comparison to the other
samplers, the sampler requires more samples to reach stationarity. Autocorrela-
tions can be seen in the sample paths of all the parameters.
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Fig. A.5.: Samples path for the ALDI sampler for the SW model. All the chains mix well and
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Fig. A.6.: Samples path for the DREAM sampler for the SW model. Autocorrelations can be
seen in the sample paths of all the parameters.
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Fig. A.7.: Samples path for the HMC sampler for the SW model. All the chains mix well
and converge to the ground truth value. The chains for some of the parameters
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Fig. A.8.: Samples path for the NUTS sampler for the SW model. The chains for some of
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A.3 ESS Plots for the Exploration Exploitation
Model

200

400

600

800

1000

ES
S

0

200

400

600

800

1000
b

200

400

600

800

x

10000 20000

Total number of draws

200

400

600

800

1000

ES
S

y

10000 20000

Total number of draws

200

400

600

800

1000
x

10000 20000

Total number of draws

200

400

600

800

1000

y

Fig. A.9.: ESS evolution for the DREAM sampler for the EE model. The horizontal dashed
line indicates the goal of 400 ESS. All the parameters reach the ESS goal after a
similar amount of iterations.
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Fig. A.10.: ESS evolution for the HMC sampler for the EE model. The horizontal dashed
line indicates the goal of 400 ESS. The parameter ξy reaches the ESS goal much
later than the other parameters.
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Fig. A.11.: ESS evolution for the NUTS sampler for the EE model. The horizontal dashed
line indicates the goal of 400 ESS. The parameter ξy reaches the ESS goal much
later than the other parameters.
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Fig. A.14.: ESS evolution for the SW sampler for the EE model. The horizontal dashed line
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example), whereas others require longer simulation (ωA, for example).
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A.5 PSRF Plots for the Exploration Exploitation
Model
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Fig. A.16.: PSRF evolution for the DREAM sampler for the EE model. All the parameters
require a similar amount of draws for the R̂ to converge to 1.
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Fig. A.17.: PSRF evolution for the HMC sampler for the EE model. Some of the parameters
(µ0 and b, for example) converge to 1 faster than the others.
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Fig. A.18.: PSRF evolution for the NUTS sampler for the EE model. Some of the parameters
(µ0 and b, for example) converge to 1 faster than the others.
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Fig. A.19.: PSRF evolution for the ALDI sampler for the SW model. All the parameters
require a similar amount of draws for the R̂ to converge to 1.
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Fig. A.20.: PSRF evolution for the DREAM sampler for the SW model. All the parameters
require a similar amount of draws for the R̂ to converge to 1.
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Fig. A.21.: PSRF evolution for the SW sampler for the EE model. Some of the parameters
(ζ, for example) converge to 1 faster than the others.
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