AVEers;2.
NS

. Hasso
-z gl Plattner
. 9, Institut

4m
° ° Digital Engineering - Universitdt Potsdam

Combinatorial Problems and
Scalability in Artificial Intelligence

Francesco Quinzan

Publikationsbasierte Universitatsdissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

in der Wissenschaftsdisziplin
Theoretische Informatik

eingereicht an der
Digital-Engineering-Fakultat
der Universitat Potsdam

This work is protected by copyright and/or related rights. You
are free to use this work in any way that is permitted by the
copyright and related rights legislation that applies to your
use. For other uses you need to obtain permission from the
rights-holder(s).
https://rightsstatements.org/page/InC/1.0/?language=en

Betreuer

Prof. Dr. Tobias Friedrich
Hasso Plattner Institute, University of Potsdam

Gutachter

Prof. Dr. Jeff A. Bilmes
University of Washington
Prof. Dr. Amin Karbasi
Yale University

Published online on the

Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-61111
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-611114

Abstract

Modern datasets often exhibit diverse, feature-rich, unstructured
data, and they are massive in size. This is the case of social networks,
human genome, and e-commerce databases. As Artificial Intelligence
(Al) systems are increasingly used to detect pattern in data and predict
future outcome, there are growing concerns on their ability to process
large amounts of data. Motivated by these concerns, we study the
problem of designing Al systems that are scalable to very large and
heterogeneous data-sets.

Many Al systems require to solve combinatorial optimization prob-
lems in their course of action. These optimization problems are
typically NP-hard, and they may exhibit additional side constraints.
However, the underlying objective functions often exhibit additional
properties. These properties can be exploited to design suitable op-
timization algorithms. One of these properties is the well-studied
notion of submodularity, which captures diminishing returns. Sub-
modularity is often found in real-world applications. Furthermore,
many relevant applications exhibit generalizations of this property.

In this thesis, we propose new scalable optimization algorithms for
combinatorial problems with diminishing returns. Specifically, we
focus on three problems, the Maximum Entropy Sampling problem,
Video Summarization, and Feature Selection. For each problem, we
propose new algorithms that work at scale. These algorithms are
based on a variety of techniques, such as forward step-wise selec-
tion and adaptive sampling. Our proposed algorithms yield strong
approximation guarantees, and the perform well experimentally.

We first study the Maximum Entropy Sampling problem. This prob-
lem consists of selecting a subset of random variables from a larger

iii

iv

set, that maximize the entropy. By using diminishing return proper-
ties, we develop a simple forward step-wise selection optimization
algorithm for this problem. Then, we study the problem of selecting
a subset of frames, that represent a given video. Again, this problem
corresponds to a submodular maximization problem. We provide a
new adaptive sampling algorithm for this problem, suitable to han-
dle the complex side constraints imposed by the application. We
conclude by studying Feature Selection. In this case, the underlying
objective functions generalize the notion of submodularity. We pro-
vide a new adaptive sequencing algorithm for this problem, based on
the Orthogonal Matching Pursuit paradigm.

Overall, we study practically relevant combinatorial problems, and
we propose new algorithms to solve them. We demonstrate that
these algorithms are suitable to handle massive datasets. However,
our analysis is not problem-specific, and our results can be applied
to other domains, if diminishing return properties hold. We hope
that the flexibility of our framework inspires further research into
scalability in Al

Zusammenfassung

Moderne Datensitze bestehen oft aus vielfdltigen, funktionsreichen
und unstrukturierten Daten, die zudem sehr groR sind. Dies gilt ins-
besondere fiir soziale Netzwerke, das menschliche Genom und E-
Commerce Datenbanken. Mit dem zunehmenden Einsatz von kiinst-
licher Intelligenz (KI) um Muster in den Daten zu erkennen und
kiinftige Ergebnisse vorherzusagen, steigen auch die Bedenken hin-
sichtlich ihrer Fdhigkeit grole Datenmengen zu verarbeiten. Aus
diesem Grund untersuchen wir das Problem der Entwicklung von
KI-Systemen, die auf gro8e und heterogene Datensétze skalieren.

Viele KI-Systeme miissen wdhrend ihres Einsatzes kombinatorische
Optimierungsprobleme losen. Diese Optimierungsprobleme sind in
der Regel NP-schwer und kénnen zusédtzliche Nebeneinschrankun-
gen aufwiesen. Die Zielfunktionen dieser Probleme weisen jedoch
oft zusitzliche Eigenschaften auf. Diese Eigenschaften konnen ge-
nutzt werden, um geeignete Optimierungsalgorithmen zu entwickeln.
Eine dieser Eigenschaften ist das wohluntersuchte Konzept der Sub-
modularitédt, das das Konzept des abnehmende Ertrdge beschreibt.
Submodularitét findet sich in vielen realen Anwendungen. Dariiber
hinaus weisen viele relevante Anwendungen Verallgemeinerungen
dieser Eigenschaft auf.

In dieser Arbeit schlagen wir neue skalierbare Algorithmen fiir kom-
binatorische Probleme mit abnehmenden Ertrdgen vor. Wir konzen-
trieren uns hierbei insbesondere auf drei Probleme: dem Maximum-
Entropie-Stichproben Problem, der Videozusammenfassung und der
Feature Selection. Fiir jedes dieser Probleme schlagen wir neue Algo-
rithmen vor, die gut skalieren. Diese Algorithmen basieren auf ver-
schiedenen Techniken wie der schrittweisen Vorwartsauswahl und

dem adaptiven sampling. Die von uns vorgeschlagenen Algorithmen
bieten sehr gute Anndherungsgarantien und zeigen auch experimen-
tell gute Leistung.

Zundéchst untersuchen wir das Maximum-Entropy-Sampling Pro-
blem. Dieses Problem besteht darin, zuféllige Variablen aus einer gro-
Beren Menge auszuwihlen, welche die Entropie maximieren. Durch
die Verwendung der Eigenschaften des abnehmenden Ertrags ent-
wickeln wir einen einfachen forward step-wise selection Optimie-
rungsalgorithmus fiir dieses Problem. AnschlieBend untersuchen wir
das Problem der Auswahl einer Teilmenge von Bildern, die ein be-
stimmtes Video reprdsentieren. Dieses Problem entspricht einem
submodularen Maximierungsproblem. Hierfiir stellen wir einen neu-
en adaptiven Sampling-Algorithmus fiir dieses Problem zur Verfii-
gung, das auch komplexe Nebenbedingungen erfiillen kann, welche
durch die Anwendung entstehen. Abschlielend untersuchen wir die
Feature Selection. In diesem Fall verallgemeinern die zugrundelie-
genden Zielfunktionen die Idee der submodularitit. Wir stellen einen
neuen adaptiven Sequenzierungsalgorithmus fiir dieses Problem vor,
der auf dem Orthogonal Matching Pursuit Paradigma basiert.

Insgesamt untersuchen wir praktisch relevante kombinatorische
Probleme und schlagen neue Algorithmen vor, um diese zu l6sen. Wir
zeigen, dass diese Algorithmen fiir die Verarbeitung grolRer Datenséit-
ze geeignet sind. Unsere Auswertung ist jedoch nicht problemspe-
zifisch und unsere Ergebnisse lassen sich auch auf andere Bereiche
anwenden, sofern die Eigenschaften des abnehmenden Ertrags gel-
ten. Wir hoffen, dass die Flexibilitdt unseres Frameworks die weitere
Forschung im Bereich der Skalierbarkeit im Bereich KI anregt.

Acknowledgments

[would like to that Prof. Tobias Friedrich for his support and men-
torship. Tobias was always supportive of my research activities, and
he encouraged me to be creative and follow my intuition. As an em-
ployee of the Algorithm Engineering group, I had the opportunity
to get to know many researchers, and take part in various scientific
activities. I am very grateful to Tobias for his support.

I also would like to thank the many students and researchers that I
had the opportunity to work with during my studies. Many thanks to
Dr. Timo K6tzing and Prof. Andrew Sutton for introducing me to their
field of research. Many thanks to Dr. Aneta Neumann, Dr. Markus
Wagner and Prof. Frank Neumann for working with me, and hosting
me at their institute. I also would like to thank Dr. Andreas Gobel,
for helping me in developing the topic of Submodular Optimization.
Many thanks also to Dr. Rajiv Khanna and Prof. Michael Mahoney for
introducing me to the machine learning community, and for working
with me. I also would like to thank Dr. Sarel Cohen, Moshik Hersh-
covitch, and Dr. Alon Eden for working with me on Feature Selection
and Combinatorial Auctions. Many thanks to Dr. Jia-Jie Zhu and
Prof. Bernard Sholkopf for working with me on machine learning,
and hosting me at their institute.

I would like to thank the many fellow students that I had the op-
portunity to work with, particularly Vanja Doskoc and Christopher
Weyand. Besides them, I am grateful to every member of the Algo-
rithm Engineering group, for their support and fruitful discussions.
Many thanks to Dr. Samuel Baguley, Dr. Katrin Casel, Dr. Agnes
Cseh, Dr. Davis Issac, Dr. Nikhil Kumar, Dr. Pascal Lenzner, Philipp
Fishbeck, Maximilian Katzmann, Simo Krogmann, Gregor Lagodzin-

viii

ski, Anna Melnichenko, Louise Molitor, Stefan Neubert, Aikaterini
Niklanovits, Marcus Pappik, Aishwarya Radhakrishnan, Ralf Rothen-
berger, Martin Schirneck, Karen Seidel, and Ziena Zeif.

Besiders my collaborators and mentors I would like to thank my
parents Maria Laura Almini, Gian Paolo Quinzan, and my brother
Giovanni Quinzan, for their support and affection.

Contents

Abstract i
Zusammenfassung v
Acknowledgments vii
Contents ix
1 Introduction 1
1.1 ScopeofthisThesis. 4

1.2 LiteratureOverview. 5

1.3 Contributionand Outline 8

2 Maximum Entropy Sampling 11
2.1 Submodularity and Maximum Entropy Sampling 12
2.2 Problem Formulation 13
2.2.1 TheCurvature 15

2.3 The Simple Greedy Algorithm 16
2.4 Run Time Analysis for the Greedy 18
2.4.1 PreliminaryResults 18

2.4.2 Proofof the Main Theorem 26

25 Experiments00, 30
2.6 Submodular Maximization under Knapsack Constrains 32
2.6.1 The Greedy for k-Knapsacks 33

2.6.2 Approximation Guarantees 34

3 Video Summarization 41

3.1 Determinantal Point Processes and Video Summarization 42
3.1.1 Determinantal Point Processes 42

3.1.2 Video Summarization 43

3.2 Problem Formulation 44
3.2.1 p-Systems Side Constraints 45
3.2.2 p-Extendable Systems Side Constraints 45
3.2.3 The Adaptivity as a Computational Model 46

33 RelatedWork. 47

3.4 AFast Algorithm for Video Summarization 49

3.5 Run Time Analysis for p-Systems 52
3.5.1 Overview of the MainResults 52
3.5.2 ProofofLemma3.l.................. 54
3.5.3 ProofofTheorem3.2 59
3.54 Proofoflemma3.2.................. 61
3.5.5 ProofoflLemma33.................. 62

3.6 Run Time Analysis for p-Extendable Systems 63
3.6.1 Overview of the MainResults 63
3.6.2 Proof of the Preliminary Lemmas 67

3.7 Complexity and Adaptivity of the Independence Oracle 70

3.8 Experimentsttt 72
3.8.1 Benchmarks 72
382 Results 73

Feature Selection 75

4.1 Feature Selection as an Optimization Problem 76
4.1.1 Technical Overview. 80
4.1.2 MotivatingExample 80

4.2 Preliminaries, 82
421 Setup 83
4.2.2 Relationship to Generalized Submodularity ... 85
4.2.3 Feature Selection for Generalized Linear Models 87
4.2.4 Embedding Fairness via p-Systems 91
425 Adaptivity e 92

4.3 Algorithmic Overview 92

4.4 Approximation Guarantees 97

4.5 ProofofTheorem4.4
4.5.1 PreliminaryResults
4.5.2 If Algorithm 6 Outputs

a Maximum IndependentSet
4.5.3 If Algorithm 6 Terminates after £~ 'terations . .

4.6 Proof of Theorem 4.5

4.7 Experimentso
4.7.1 Datasets,
4.7.2 Benchmarks
4.7.3 Results

5 Conclusion
5.1 Outlook

Bibliography

List of Publications

. 106

112
113
114
117
118

123
124

127
141

Introduction

Several fundamental problems pertaining the development of Arti-
ficial Intelligence systems can be embedded as combinatorial opti-
mization problems. This is the case of Data Summarization, Feature
Selection, and Spread of influence in Social Networks (see Table 1.1-
1.2).

On a high level, we consider combinatorial problems that are de-
scribed as follows. Given a ground set [n] = {1, ..., n} of discrete items,
find a subset S < [n] that maximizes a function f(S), expressing the
goodness of a given solution. In Data Summarization, for instance,
the set set [n] consists of all of the data-points, and the function f
measures how well a set of data-points summarizes the entire data-
set. For these optimization problems, we typically assume oracle
access to the function f. That is, the function f is evaluated in a single
operation, and its implementation and inner workings are not known.
However, oracle valuations are typically time-consuming. Hence, fast
algorithms ought to minimize the total number of oracle calls during
run time. The total number of oracle calls required by an algorithm
largely depends on the underlying properties of f. For example, if f
is a linear function, then there exists an algorithm that converges to
the optimum after polynomial calls to f. However, on general mono-
tone functions there is no algorithm that achieves a constant-factor
approximation guarantee after polynomial calls to f, unless P=NP.

A class of functions of intermediate complexity are submodular
functions. These functions capture the notion of diminishing returns,
i.e. the more we acquire the less our marginal gain will be. Submodu-
lar functions are particularly interesting, because they pertain several
real-world problems. Examples of real-world submodular problems

Chapter 1

Introduction

Problem Description

Create a subset that represents

the most relevant information
within the original content.

Select a subset of big data

to train a classifier, while incurring
minimal performance loss.

Given a smart market in which
participants place bids on
combinations of discrete items,
identify an optimal allocation strategy.

Data Summarization
(Iyer and Bilmes 2015)

Data Subset Selection
(Wei et al. 2015)

Maximum Welfare in
Combinatorial Auctions
(Feige and Vondrék 2010)

Spread of Influence Identify “influencers” in a social
in Social Networks network, i.e., users that are
(Karimi et al. 2017) likely to quickly spread information.

Partition the vertices of a graph
into two disjoint subsets,

such that the number of

edges connecting these
partitions is maximum.

Maximum Cut
(Feige, Mirrokni, et al. 2011)

Table 1.1: Common optimization problems in Al, that consist of maximiz-
ing submodular functions. Maximizing submodular functions is NP-hard.

are presented in Table 1.1. Formally, consider a ground set [n] of
discrete items and a function f expressing the goodness of fit. We say
that f is submodular if for all subsets S, T < [n], it holds

fO+fM=fOGuN+fESnT).

One can easily prove that this property is equivalent to a diminishing
returns property.

Submodular minimization can be embedded as a convex optimiza-
tion problem (Lovasz 1982). However, the problem of maximizing a
submodular function is more complex. We show that submodular
maximization is NP-hard, by considering the following well-known
example (Feige, Mirrokni, et al. 2011). Let ¢ = (V, E) be a (directed)
graph with n vertices and m edges. We consider the problem of find-
ing a subset U € V of nodes such that the sum of the weights on
the outgoing edges of U is maximal. This problem is known as the
Maximum Directed Cut problem, and it is a well-known NP-hard

Introduction

(Das and Kempe 2011)

Problem Description
Given a set of predictor variables {Z;};,
Dictionary Selection select a set of d observation variables

optimizing the average loss for each Z;,
using at most k of the selected vectors.

Feature Selection
(Krause, A. P. Singh, et al. 2008)

Select a subset of relevant variables

or predictors for use in model construction.
This problem is a special case

of Dictionary Selection.

Compressed Sensing
(Das and Kempe 2011)

A signal processing technique
to efficiently acquire
and reconstruct a signal.

LPs with Combinatorial Constraints
(A. A. Bian et al. 2017)

Maximize an LP of the form maxxc o (d, x),
where d is a real-valued vector,

and £ is a polytope representing
continuous cost constraints.

Table 1.2: Common combinatorial optimization problems in Al These
problems can be approached by optimizing functions that generalize the

notion of submodularity.

Figure 1.1: A simple, directed
graph 4. The cut function f(U)
for a sets of U returns the number
of outgoing edges from that set. In
this case f(U) = 3, where U is the
set highlighted in red.

problem. To establish a connec-
tion with submodularity, we first
define the following combinato-
rial function, called the cut func-
tion. For each subset of nodes
U < [n], consider the set C(U) :=
{(e1,e2) € E: e; € Uand e, ¢ U}.
We define the cut function as
fWU) =|C(V)|. For an illustration
of the cut function see Figure 1.1.
The maximum directed cut prob-
lem can be approached by maxi-
mizing the cut function. As noted

by Feige, Mirrokni, et al. 2011, the cut function is a submodular func-
tion. Hence, submodular maximization is NP-hard.

Oftentimes, in real-world applications a solution is subject to side
constraints. Among the most common constraints are matroid and

Chapter 1

Chapter 1

Introduction

knapsack constraints (Iyer and Bilmes 2013; Lee et al. 2009). Other,
more complex constraints include p-matchoids, p-extendable sys-
tems, and p-systems (Chekuri and Quanrud 2019a; Moran Feldman,
Harshaw, et al. 2017; Mestre 2006). Although monotone functions un-
der simple side constraints can be optimized efficiently (Cornuejols
et al. 1977; Nemhauser and Wolsey 1978), it is highly non-trivial to
maximize non-monotone submodular functions under general side
constraints.

1.1 Scope of this Thesis

Motivated by the many applications (see Table 1.1-1.2), we study
combinatorial problems for Al and machine learning, that consists of
maximizing submodular functions. From a technical prospective, we
study submodularity, to design fast approximation algorithms for this
problem. Although the notion of submodularity is widely studied,
there are several problems and challenges that remain open. In fact,
known algorithms to maximize functions that are non-monotone, or
under complex side constraints, do not scale to large data-sets very
well (Lee et al. 2009; Mirzasoleiman, Jegelka, et al. 2018a). Hence, I
am interested in studying the following research question:

How can we efficiently maximize non-monotone submodular
functions under complex side constraints?

Another related question pertain the use of submodularity techniques
to tackle non-submodular problems. In fact, many interesting com-
binatorial optimization problems fulfill axioms that generalize the
notion of submodularity. This is the case of Feature Selection and
Compressed Sensing (see Table 1.2). Hence, we study the following
research question:

Can we generalize results for submodular functions
to non-submodular problems?

Literature Overview

We hope that a systematic study of submodularity and its general-
izations will allow for the development of optimization algorithms,
suitable to handle massive datasets.

1.2 Literature Overview

One of the earliest work on submodular maximization is the work of
Nemhauser and Wolsey 1978. In this paper, Nemhauser and Wolsey
1978 show that no-polynomial time algorithm can achieve a better
approximation ratio than (1 — 1/e). The classical result of Cornuejols
et al. 1977 shows that a greedy algorithm achieves a 1/2 approxi-
mation ratio for the problem of maximizing monotone submodular
functions under partition matroid constraints. Similar bounds on the
approximation guarantee hold for monotone submodular functions
under multiple linear constraints (Kulik et al. 2009).

These bounds do not hold if the optimization function is non-
monotone. Feige, Mirrokni, et al. 2007 prove that a deterministic
local search achieves a 1/3-approximation guarantee for maximizing
a non-monotone submodular function, and that a randomized local
search achieves a 2/5-approximation guarantee. Feige, Mirrokni, et al.
2007 show that there is no polynomial-time (1/2 + €)-approximation
algorithm to maximize a non-negative symmetric submodular func-
tion, unless P = NP. Buchbinder, Moran Feldman, Naor, et al. 2012
propose a randomized algorithm that achieves a 1/2-approximation
on this problem. Similar bounds can also be achieved with a deter-
ministic algorithm (Buchbinder, Moran Feldman, and Garg 2019).

Another important problem is the study of non-monotone sub-
modular maximization under additional side constraints. If side
constraints consist of a simple matroid, then a randomized greedy
algorithm achieves an approximation of 1/e (Calinescu et al. 2011).
This result can be further improved to a 0.5008-approximation ratio
by derandomizing a search heuristic (Buchbinder, Moran Feldman,

Section 1.2

Chapter 1

Introduction

and Garg 2018). It is possible to maximize a non-monotone submod-
ular function under matroid constraints, with an algorithm based
on simulated annealing (Gharan and Vondrék 2011). This algorithm
achieves 0.41-approximation for unconstrained submodular maxi-
mization, and a 0.325-approximation for submodular maximization
subject to a matroid independence constraint. However, it is impossi-
ble to achieve a 0.491-approximation, for submodular maximization
under a simple cardinality constraint (Gharan and Vondréak 2011).
The aforementioned upper bounds can be further improved with
variants of the greedy algorithm (Moran Feldman, Naor, et al. 2011a;
Filmus and Ward 2012), and using multilinear extensions and content
resolution schemes (Calinescu et al. 2007; Vondrak et al. 2011).

The problem of maximizing a non-monotone submodular function
under multiple matroids and knapsacks is studied by Lee et al. 2009.
This problem is significantly more complex than the case of simple
matroid constraints. The problem of maximizing a submodular func-
tion under k-column sparse packing constraints is studied by Bansal
et al. 2010. They propose an approximation algorithm for this prob-
lem, with approximation guarantees parameterized by k. It is possible
to maximize submodular functions under general polytopes con-
straints using multilinear extensions and content-resolution schemes
(Chekuri, Vondrdk, et al. 2010; Vondrak et al. 2011). Ene and Nguyen
2016 proposed an algorithm that achieves a 0.372-approximation for
the problem of maximizing a non-monotone continuous submodular
function under a downward closed polytope.

Submodular maximization problems have also been studied in dis-
tributed settings. Mirzasoleiman, Karbasi, Sarkar, et al. 2013; Mirza-
soleiman, Karbasi, Sarkar, et al. 2016; Mirzasoleiman, Zadimoghad-
dam, et al. 2016 propose a map-reduce style algorithm for this prob-
lem. The solution quality achieved by this algorithm is similar to
that of the centralized approach. Mirrokni and Zadimoghaddam
2015 propose a randomized map-reduce approach for submodular
maximization under cardinality constraints, that achieves a 0.545-

Literature Overview

approximation guarantee. Other map-reduce style algorithms have
been proposed to tackle various problems in Machine Learning, such
as data summarization (Mirzasoleiman, Karbasi, Badanidiyuru, et al.
2015; Ponte Barbosa et al. 2015) and multi-label feature selection
(Ghadiri and Schmidt 2019).

Using an adaptive sampling framework, it is possible to design al-
gorithms to maximize submodular functions that can be efficiently
parallelized (Thompson 1990). These algorithms achieve a constant-
factor approximation of the optimal solution in poly-logarithmic iter-
ations, by performing polynomial independent oracle queries in each
iteration. Specifically, algorithms with poly-logarithmic adaptivity are
known for maximizing monotone submodular functions under cardi-
nality constraints (Balkanski and Singer 2018; Fahrbach et al. 2019b),
or matroid constraints (Balkanski, Rubinstein, et al. 2019). Efficient
algorithms in the adaptive complexity model are also known for non-
monotone submodular maximization under cardinality constraints
(Balkanski, Breuer, et al. 2018; Fahrbach et al. 2019a). Interestingly,
Ene and Nguyen 2019 gives a constant-factor approximation algo-
rithm in the adaptive complexity model, suitable to handle matroid
and packing constraints. Lower-bounds for subodular maximization
in the adaptive-complexity model are also known (Balkanski and
Singer 2018; Li et al. 2020).

Another relevant question that has been studied in recent year is
whether submodular functions can be approximated. A relevant work
in this direction is the paper by Goemans et al. 2009. In this paper,
the authors propose an algorithm that approximates a submodular
function at any point, that achieves an approximation factor of & (v/n).
Goemans et al. 2009 also provide a Q(y/77) approximation on this
problem. Balcan and Harvey 2011 study the problem of “learning
submodular function” in the PMAC model. That is, we are given a set
of polynomial labelled solutions . < 2" according to an unknown
submodular target function f*, and we want to output a hypothesis
function f that approximates f* with high probability. Balcan and

Section 1.2

Chapter 1

Introduction

Harvey 2011 give an algorithm that achieves a @ (y/n) for this problem,
and also a Q(n'/3) lower bound. They conclude that, although it
is possible to learn submodular functions from samples, it is not
possible to find an approximate global maximum of f* by optimizing
f instead. Balkanski, Rubinstein, et al. 2017 study the problem of
optimizing functions from samples. The define a class of functions
that is learnable in the PMAC model, but for which no constant-factor
approximation from samples can be achieved.

Due to the success of submodular optimizers, many authors have
studied the question of generalizing submodular optimization method-
ologies to non-submodular functions. Das and Kempe 2011 propose
the notion of weak-submodularity, to generalize the work of Krause
and Cevher 2010 on the dictionary selection problem. The notion of
weak submodularity has been studied in connection with the inter-
pretability of black-box classifiers, such as neural networks (Elenberg,
Dimakis, et al. 2017), and feature selection (Khanna et al. 2017). A. A.
Bian et al. 2017 extend the forward-stepwise technique to all mono-
tone functions, via the greedy submodularity ratio.

1.3 Contribution and Outline

Our main contribution consists in developing fast algorithms for rele-
vant combinatorial problems in Al and machine learning, that scale
to very large datasets. We focus on three major problems: Maximum
Entropy Sampling, Video Summarization, and Feature Selection. We
consider an axiomatic characterization of each problem based on the
notion of submodularity and its generalizations. We then use these
axioms to study new algorithms for the aforementioned problems.
In doing so, we develop new techniques and algorithms that can be
applied to other domains.

In Chapter 2 we study the Maximum Entropy Sampling problem.
Given a set of random variables, the Maximum Entropy Sampling

Contribution and Outline

problem consists of selecting a subset of these variables that maxi-
mizes the entropy. The Maximum Entropy Sampling problem arises
in connection with sensor placement problems. The Maximum En-
tropy Sampling problem corresponds to a non-monotone submodu-
lar maximization problem. We show that a simple forward step-wise
selection algorithm finds a good approximation of the optimal solu-
tion, if the underlying objective function has bounded curvature.

In Chapter 3 we study Video Summarization. This problem consists
of selecting a subset of frames, that “summarize” a given video. This
problem is an instance of Data Summarization, which consists of
sampling a representative set of points from a large data-set. Video
Summarization is a non-monotone submodular maximization prob-
lem under additional side constraints. We provide a new algorithm,
based on the adaptive sampling paradigm, that finds a good approxi-
mation of the optimal solution in poly-logarithmic rounds of adap-
tivity. This algorithm achieves significant speed-up over previous
known techniques, if parallelized.

In Chapter 4 we study the problem of selecting optimal features for
model construction. This problem corresponds to the maximization
of functions that generalize the notion of submodularity. We provide
a new adaptive sequencing algorithm for this problem, based on the
Orthogonal Matching Pursuit paradigm. This algorithm converges
after poly-logarithmic adaptive rounds, and it outputs a near-optimal
solution.

In Chapter 5, we conclude by discussing the main results, their
implications, and we discuss possible future research activities.

Section 1.3

Maximum En-
tropy Sampling

This chapter is based on a conference paper titled “Greedy Maximiza-
tion of Functions with Bounded Curvature under Partition Matroid
Constraints”, by Francesco Quinzan, and Ralf Rothernberger, Andreas
Gobel, Frank Neumann, Tobias Friedrich (Quinzan, Gobel, et al. 2019).
This chapter is also based on a conference paper titled “Non-Monotone
Submodular Maximization with Multiple Knapsacks in Static and
Dynamic Settings”, by Francesco Quinzan and Vanja Doskoc, Aneta
Neumann, Andreas Gobel, Frank Neumann, Tobias Friedrich (Doskoc
etal. 2019).

Given a set of random variables, the maximum entropy sampling
problem consists of selecting a subset of these variables that maxi-
mizes the entropy over all sets of the same size. This problem arises
in connection with spatio-temporal dynamics monitoring.

Motivated by this application, we investigate the performance of
a deterministic GREEDY algorithm for the problem of maximizing
non-monotone submodular functions under a partition matroid con-
straint. Even though constrained maximization problems of mono-
tone submodular functions have been extensively studied, little is
known about greedy maximization of non-monotone submodular
functions or monotone subadditive functions.

We give approximation guarantees for GREEDY on these problems,
in terms of the curvature. We find that this simple heuristic yields a
strong approximation guarantee on a broad class of functions. We per-
form experiments on a real-world dataset, to show that our algorithm
works well in practice.

We conclude that GREEDY is well-suited to approach these prob-
lems. Overall, we present evidence to support the idea that, when

11

Chapter 2

12

Maximum Entropy Sampling

dealing with constrained maximization problems with bounded cur-
vature, one needs not search for (approximate) monotonicity to get
good approximate solutions.

2.1 Submodularity and Maximum
Entropy Sampling

We study the problem of maximizing a non-monotone submodular
function, under a partition matroid constraint. Before giving a for-
mal definition of this problem (see Section 2.2), we first discuss an
application that motivates the study of this problem. This application
is the maximum entropy sampling problem. Given set of random
variables {Xj,..., X,;}, we consider the problem of identifying a small
subset of these variables that best explain the model. This problem
finds a broad spectrum of applications, from Bayesian experimental
design (Sebastiani and Henry P. Wynn 2002), to path planning for
robots coordination (A. Singh et al. 2009). A concrete application of
this framework is given by sensor placement tasks. Consider a sub-
set of sensors deployed over a surface. The measurements of these
sensors can be described as sets of random variables {Xj, ..., X,,}, and
searching for an informative subset of the variables corresponds to
identifying a subset of sensors that give the most comprehensive
overview of the overall measurement.

Many criteria have been proposed for characterizing the amount
of information explained by a set of random variables (Cressie 2015;
Shewry and Henry P Wynn 1987; Zhu and Stein 2006; Zimmerman
2006). One of the most significant ones is the Shannon entropy (Shan-
non 1948). The Shannon entropy was first introduced by Claude
Shannon as part of his theory of communication. The problem of
searching for a set of random variables that maximizes the Shannon
entropy is commonly referred to as the maximum entropy sampling
problem.

Problem Formulation

Assuming that the random variables { X, ..., X},} follow a joint Gaus-
sian distribution with mean vector o = 0 and variance X, then the
Shannon entropy is given by the formula

1+In(2 1
entropy(S) = ++(”)ISI + Elndet(zs). 2.1)

Here, S is an indexing set for the random variables, |S| is the size of this
set, and X is the covariance matrix of the random variables {X} jes.
It is well-known that the Shannon entropy is a submodular function.
However, the Shannon entropy needs not be a monotone function.
For instance, consider a set of two random variables {X;7, X>} with
covariance matrix

2+In@2n)+e V1+In@2n)+¢
vV1+In@2n)+e¢ 1

for a constant € > 0. In this case, the entropy attains the following
values:

3=

3 £
entropy({1}) = 3 +In2m + 3
In2n
entropy({2}) =1+ T
3
entropy({1,2}) = 2 +In2m,

and it holds entropy({1}) > entropy({1,2}). Hence, the Shannon en-
tropy is a non-monotone function in general.

2.2 Problem Formulation

We study the problem of maximizing a non-monotone submodular
function, under additional side constraints, typically imposed by the
underlying application. We consider a kind of side constraints called

Section 2.2

13

Chapter 2

14

Maximum Entropy Sampling

partition matroids. Under these side constraints, elements of the
ground set are partitioned into different categories, and only a fixed
amount of items are allowed from each category. Our problem can
be then stated as follows.

Problem 1. Let f: 2" — Ry be a non-negative submodular func-
tion!, let By,...,By be a collection of disjoint subsets of [n], and con-
sider ry,..., ry integers such that 1 < r; < |B;|, for alli € [k]. We con-
sider the maximization problem

argmax{f(S):1SNB;| < r;, Vi € [k]}.
Sc(n]

We denote with OPT < [n] any solution to this problem, and we define
OPT := f(OPT).

Note that the problem of maximizing f under a cardinality con-
straint on the size of the solution is a special case of Problem 1. To
simplify the exposition, throughout our analyses, we always assume
that the following reduction holds.

Reduction 1. For Problem 1 we may assume cr; < |B;| for alli € [k],
for an arbitrary constant c > 0. Moreover, we may assume that there
exists a setD; € B; of sizer; s.t. f(S) = f(S\D;) forallS < [n], for all
i € [kl

Proof. Fix a constant ¢ > 0. We observe that if the condition of the
statement does not hold, then it is sufficient to add aset D of }_; cr;
“‘dummy” elements that do not have any effect on the values attained
by the function f, and remove them from the output of the algorithm,
for all i € [k]. Denote with Dy,...,Dy a partition of D with |D;| =
cr; for all i € [k]. This only increases the size of the instance by a
multiplicative constant factor. We define new subsets B; =B; UD,; for
all i € [k]. Thus, we can maximize the function f on the newly-defined

1 We always assume that f is normalized, thatis f(@) = 0.

Problem Formulation

partition constraint without affecting neither the global optimum,
nor the value of the algorithm’s output. [

2.2.1 The Curvature

In our analysis, we give approximation guarantees in terms of the
curvature. Intuitively, the curvature is a parameter that bounds the
maximum rate with which a function changes. A function f has
curvature « if the value f(Su{s}) — f(S) does not change by a factor
larger than 1 — a when varying S. This parameter was first introduced
by (Conforti and Cornuéjols 1984) to beat the (1—e~!)-approximation
barrier of monotone submodular functions. Formally we use the
following definition of curvature, relaxing the definition of the greedy
curvature proposed by (A. A. Bian et al. 2017).

» Definition 2.1 (Curvature). Consider a non-negative function
f: 2" — Rasin Problem 1. The curvature is the smallest scalar a s.t.

fsumist(8) = (1 — @) fo\(51(5),
forallS, Tc[n]and seS\T. <

The curvature a as define above is always non-negative. We say
that a function f has positive curvature if a < 1. Otherwise, we say
that f has negative curvature. Note that a function is monotone if
and only if it has positive curvature.

We remark that the curvature is invariant under multiplication by a
positive scalar. In other words, if a function f has curvature «, then
any function c f has curvature a, for all ¢ > 0. Moreover, the following
simple result holds.

» Proposition 2.1. Let f,g: 2" — R, be non-negative functions
with curvature a1, a respectively. Then the curvature a of the func-
tion f + g is upper-bounded as a < sup{ay, az}. <

Section 2.2

15

Chapter 2

16

Maximum Entropy Sampling

Algorithm 1: The GREEDY algorithm.

1 5S—@;

2 while|S|= Y% rido

3 let s € [n] maximizing f(SuU{s}) — f(S) and s.t.
I(Su{shnB;l=r;, Vielk];

4 S—Suf{sh

5 return S;

Proof. Fixtwo subsets S, T < [n] of size at most d, and a point se S\ T.
From the definition of curvature we have

FEUT) = fSUD\{sH=A-a)(f(S) - fS\{sh),
glUTM —g(SuUM\{sh) = (- a2)(g(S)— g\ {sh).

Thus, we have that it holds

(f+8Sun-=(f+(Su\{s)
=fSUT) = f(SUT\{sh+g(SuUT)—g((SUT) \{s}
>(1-a)(f(S)— f(S\{sh) +(1—a2)(g(S) —gS\{sh)
> (1-supiay, a2})(f(S) = f(S\{sHh + g(S) — g(S\{s})
= (1 —supfay, a2})((f + &) S) — (f + 8)(S\{s}),

as claimed. []

2.3 The Simple Greedy Algorithm

GREEDY is the simple discrete greedy algorithm that appears in Algo-
rithm 5. Starting with the empty set, GREEDY iteratively adds points
that maximize the marginal values with respect to the already found
solution. This algorithm is a mild generalization of the simple deter-

The Simple Greedy Algorithm

ministic greedy algorithm due to Nemhauser and Wolsey (Nemhauser
and Wolsey 1978).

We give approximation guarantees for GREEDY on Problem 1, when
optimizing a non-monotone submodular function with bounded
curvature a. Our proof technique generalizes the results of (Conforti
and Cornuéjols 1984) to non-monotone functions f by utilizing the
notion of curvature. We have the following theorem.

» Theorem 2.1. Let f be a submodular function with curvature a.
LetS* be the output of Algorithm 5, and let OPT be the optimal f-value
for Problem 1. Then it holds

£ zé(l—exp{—a etk i })’

OPT min;eg i

with ry,...,r; as in Problem 1. <

Note that in the case of a uniform matroid, the bound of Theorem
2.1 becomes
f(s* 1

BT > " (1-expi{-—a}).

Hence, if f is monotone, then our approximation guarantee matches
the approximation guarantee of Conforti and Cornuéjols, which is
known to be nearly optimal (Conforti and Cornuéjols 1984; Von-
drak 2010), in the uniform matroid case. Furthermore, in the non-
monotone case our lower-bound may yield significant improvement
over state-of-the-art known bounds (Buchbinder and Moran Feldman
2018; Buchbinder, Moran Feldman, Naor, et al. 2014). Particularly,
we beat the 1/e-approximation barrier on functions with curvature
a < 2.5 and the 1/2-approximation barrier on functions with curva-
ture a < 1.6 (see Figure 2.1).

Section 2.4

17

Chapter 2

18

Maximum Entropy Sampling

Figure 2.1: Approximation guar- :
antees for a non-monotone sub- osf
modular function under a cardi- o8|
nality constraint for varying cur-
vature, as in Theorem 2.1. We ob-
serve that on functions with suf-

approximation guarantee
o
>

ficiently small curvature we out- osf

perform state-of-the-art bounds 0s|

(Buchbinder and Moran Feldman 02

2018; Buchbinder, Moran Feld- ST e o
man, Naor, et al. 2014) for this

problem.

2.4 Run Time Analysis for the Greedy

In this section, we prove Theorem 2.1. On a high level, this proof
essentially consists of showing that the marginal contributions ob-
tained by the GREEDY are always lower-bounded by the solution of an
LP. We then prove the desired approximation guarantee, by exploit-
ing the properties of this LP. Before proving Theorem 2.1, we discuss
preliminary results pertaining this LPs.

2.4.1 Preliminary Results

In this section, we define and study the LPs that will be used in the
proof of Theorem 2.1. These LPs are defined as follows.

» Definition 2.2. Fix a constant a € R, and let p, r be non-negative
integers with p < r. Fix a set J < [r], and define the sets J; := {j €
J:j<i}forallie€ [r]. Then, we denote with Z(a, p,r,J) the LP is
defined as

r—pmDxi+a Y xj+(1-a)), x;=1,Vee(pl
jelt=1] jede

Run Time Analysis for the Greedy

<

Note that any LP as in Definition 2.2 is completely determined by
a, p,r,and J, and it can be written as

r Cx]
a (r—|JiD) ;
a xz
a 1 3
>
)) Xy
a 1 e (r=]dpaa))’Zl
la 1 @ (r=[pplt 77

We say that an array (y1,...,yp) =y with non-negative coefficients
¥;j = 0 is an optimal solution of %(«, p,,J) if y is a solution of
Z(a,p,1,J), and if it holds

p p
2. 2=) Vi
i=1 j=1

for any solution (zy,..., zp) = z of Z(a, p, r, J) with non-negative co-
efficients z; = 0. Optimal solutions have the following important
property.

» Lemma2.1. Let(y,..., yp) =ybean optimal solution of Z(a, p, 1, J)
with J # @. Then it holds y; < y;+; forall j € J. <

Proof. We proceed ad absurdum, by assuming that there exists a
point i € J such that y; > y;;1, and then proving that this assump-

Section 2.4

19

Chapter 2

20

Maximum Entropy Sampling

tion contradicts the optimality of y. To this end, define the positive

constant
= r_—lJll(Vs)
r_lJl_ll yl yl+1 .

Note that € is non-negative, under the assumption that y; > y;41.
Consider a vector (z3,...,2z;) =z, defined as

zZj=Yj %fl.S]:<i;

Govice i

zZj=Yi+tg Hi<js=p;

To continue with the proof, we use the following claim.

» Claim 2.1. The vector (zy,...,2p) = z is a feasible solution of the
linear program Z(a, p, 1, J). <

Proof of Claim 2.1. To prove this claim, we define the following func-

tion

Lx0)=r—JmiDxi+a) xj+1-a)) xj. (2.2)
jelre-1] jedi-1

This function takes as input a vector (x1,..., X;) = X, an integer ¢, and
it it returns the value obtained by multiplying the ¢-th row of the
constraint matrix of Z(«, p, r, J) with the vector x. Note that, in order
to prove Claim 2.1, it is sufficient to show that it holds

L(z,t)=1, forallte[p]. (2.3)

We show that (2.3) holds, by considering four cases.

Case 1: t <i. This case follows immediately from the definition of
z and the optimality of 'y, since it holds L(z, t) = L(y, t) and L(y, t) = 1.

Run Time Analysis for the Greedy

Case 2: t=i. We have that it holds

Lz i)=(r-UisiDzita Y zj+Q-a)) z;

jeli-1] j€dia
=(r—-UisDyi-e+a Y, yj+1l-a)) yj
Jjeli-1] JjeJi1
r—|Jil

—(r=1J:_ o LSRR
(r—=i-1D|yi r—|Ji_1|(yl Yi+1)

+a Y yi+d-a)) y;

jeli-1] j€di

=(r=Uilyis1+ Ml = Dl y;
+a Y yi+d-a)) y;

jeli-1] Jedia1
=(r-Nilyin+a) yi+(1-a) > Yj
Jelil Jedi

=L(y,i+1)

where the third equation uses the definition of ¢, and the fifth one
uses the fact that i € J. Using the optimality of y, we have that L(z, i) =
L(y,i+1) =1, and (2.3) holds for ¢ = i.

Case 3: t>i. In this case, we prove that it holds L(z, t) = L(y, 1),
for all ¢ > i with an induction argument on t. For the base case with
t=1+1, we have that

Lz i+D)=0—-Uilzin+a) zji+(1-a)) zj

jelil Jjedi
€
:(”—|Ji|)(}’i+1+ ta) zj+(1-a)) z
r—17il jelil jed;
=(r=Uilyin+e+a) yj+(1-a)) yj-¢
jeli] Jjedi

=L(y,i+1),

Section 2.4

21

Chapter 2

22

Maximum Entropy Sampling

and the base step holds. To prove the inductive step, note that by the
definition of the function L, itholds L(x, t+1)—L(x, t) = (r—|J|) (x;4+1—
x), for any vector (xy,..., Xp) = x. Hence it holds

L(z,t+1)—L(z,t)— L(y, t + 1)+ L(y, 1)

= (r—1J)(zre1 =20 = Yre1 + Y1)

E E
—r—1J -
=R\ =~ =

=0.

By rearranging we get L(z, t+ 1) — L(y, t+ 1) = L(z, t) — L(y, t). By using
the inductive hypothesis on ¢, it holds L(z,) — L(y, t) = 0, from which
it follows that L(z, t +1) = L(y, £ + 1). [|

We conclude the proof of Lemma 2.1, by showing that z contradicts
the minimality of y. To this end, we observe that it holds
€ p—1Jil-1

<gl-1+ 2L
[J;l r—1J;l

<0

p
2 (zj-yp=-e+ 2

jelr] j=iv1 T~

where the first inequality follows since |J;| < i, the second one uses
the assumption that p < r, and the last one follows since € > 0. The
claim holds. []

The lemma above is useful, because it allows us to significantly
simplify our setting. In fact, using Lemma 2.1 we can prove that the
sum of the coefficients of any optimal solution of Z(«, p,r,J) can
be lower-bounded using the solutions of a simpler LP. The following
lemma holds.

» Lemma2.2. Let(y,...,yp) = ybean optimal solution of Z(a, p, 1, J).

Run Time Analysis for the Greedy

Let (z1,...,2p) = z be an optimal solution of the following system

[(r 0 ol [x; |
a 1r 0 0 X
a ar 0 0 X3
> (2.4)
a ... a 1 0 Of[xp-2
[+ 2 a 1 Of[xp-1
@ a r Xp
which corresponds to Z(«, p, r,). Then it holds
p p
2 Viz)z
j=1 j=1
<

Proof. Denote with ji,..., jx the points of J sorted in increasing order.
In order to prove the claim, we introduce additional terminology. We
say that j; and j;;; are adjacent if it holds j; + 1 = j;41. The notion of
adjacency is relevant for the proof, because of the following claim.

» Claim 2.2. Suppose that there exists an index i such that j; + 1 #
ji+1, and consider the set J' := {jy,..., ji—1, ji + i, ji+1, ji}. Note that
the set J' consists of changing the element j; in J with the element
ji + 1. Then, yis a solution of Z(a, p, 1, J). <

Proof of Claim 2.2. Consider the function L(x,?) as in (2.2) for the
system Z(a, p, 1, J). This function takes as input a vector (xy,..., Xp) =
X, an integer t, and it it returns the value obtained by multiplying

the ¢-th row of the constraint matrix of Z(a, p, r, J) with the vector x.

Similarly, denote with L'(x, t) the function as in (2.2) for the system
R(a, p,1,)"). We prove the claim by showing that it holds L'(y, 1) > 1,
for all ¢ € [p]. First, observe that by the definition of the sets J and J’

Section 2.4

23

Chapter 2

24

Maximum Entropy Sampling

itholds L'(y, t) = L(y, t) = 1, for all ¢ < j;. For t = j; it holds
L'y, j) = Ly, ji) + ¥i;» (2.5)

since |J;J_| = |Ji;1 -1, and it follows that L'(y,ji)=1. For t = j; +1it
holds

Ly, ji+ D= = | Dy
+a), yj+d-a)) yj-

Jlji \J/ji—l’yfi“

jelil i,
!/
z(r—‘in‘)yji
+a) yi+Q-a)) yj- J,]-i\J,]-l__l)yji+1
Jeljil jedj;
> L'y, j),

where the second inequality uses that yj,+1 = y;;, due to Lemma 2.1.
Hence, using (2.5) it holds L'(y, j; + 1) = L(y, j;) = 1. We conclude by
showing that it holds L'(y,) = 1, for all £ > j; + 1. To this end, we note
that it holds

where we have used again that y;, 11 = y;, due to Lemma 2.1. Hence,
for t > j; + 1itholds L'(y, t) = L(y, t) = 1, as claimed. []

Note that, using Claim 2.2 we may assume that all points of J are
adjacent, i.e., j; + 1 = j;+1 for all j; € J, and that j; = p. Note also that
from Lemma 2.1, for any such set J it holds j; < j» <--- < jx. We can
use this fact to prove the following claim.

» Claim 2.3. Suppose that the points {ji,..., jx} = J are all adjacent
such that ji = p, and let (y1,...,yp) =y be an optimal solution of
R(a, p,1,J)). Then, yis a solution of Z(«, p,r,J") with)/ = J\ {j;}. <«

Run Time Analysis for the Greedy

Proof of Claim 2.3. Denote with L"(x, t) the function as in (2.2) for
the system Z(a, p,r,J"). We prove that it holds L"(x, t) = 1 for all
t € [p). To this end, note that L (y, t) = L(y, t) = 1 for all ¢ < j, by the
definition of J and J”. For ¢ = j; it holds

L'y, jo == \jpyji+a 3 yi+(-a) 3y
jelji-1 jelt
=(r=|J;Dyj+a) yi+l-a) Y y;
jelji-1 jedjin
= L(y, j;),

and it follows that L"(y, j;) = L(y, j;) = 1. To continue with the proof,
since the points of J are all adjacent, thenitholds j; < jo<--- < jr = p,
from which it follows that L (y, t) = L"(y, j;) = 1 for all j; < t < ji. The
claim follows. |

By iteratively applying Claim 2.3 to the set J, we can remove all
points j; € J, while preserving the feasibility of y. Hence, y is a feasible
solution for Z(a, p, 1,). [|

We now use Lemma 2.2 to write a lower-bound on the coefficients
of any solution of Z(a, p, r,J) in closed form. The following lemma
holds.

» Lemma 2.3. Let (y1,...,yp) =y be a solution of Z(a, p,r,J). Then

it holds » »
1 ayt-1
=) —[1-— .
’;J’t ;r(r)
<

Proof. Let (z1,...,zp) = zbe a solution of the system Z(a, p, 1, ®) as
in (2.4). By Lemma 2.2 it is sufficient to prove that it holds

z; = 1(1 —%)H, 2.6)

Section 2.4

25

Chapter 2

26

Maximum Entropy Sampling

forall i € [p]. To prove (2.6), we use an induction argument on ¢. The
base case with ¢ = 1 is trivially true. Suppose now that the claim holds
for z;,...,z;. Then it holds

N
-
+
—
\:Ir—t
—
}—A
Q
N
~.
~———

j=1
1 . | j-1
1= Z(1=-=
i
1 a\t
-(-37)
and (2.6) holds. The lemma follows. []

2.4.2 Proof of the Main Theorem

In this section we give a proof the main theorem.

» Theorem 2.1. Let f be a submodular function with curvature a.
LetS* be the output of Algorithm 5, and let OPT be the optimal f-value
for Problem 1. Then it holds

f(") Zl(l—exp{—a Yielk) Ti }),

OPT « min;e g I'i

with rq,...,r; asin Problem 1. <

To prove this theorem, we first show that the value of the current
solution obtained by Algorithm 5 at each step fulfills an LP as in Defi-
nition (2.2), and then we give a lower-bound on the approximation
guarantee using Lemma 2.3.

Proof of Theorem 2.1. We denote with S; the current solution of Algo-
rithm 5 at time step ¢, and we denote with OPT the optimal solution,
i.e., f(OPT) = OPT. We assume without loss of generality that f is

Run Time Analysis for the Greedy

non-constant. Moreover, due to Reduction 5, we may assume that

Y riza.

ielk]

We perform the analysis until a solution of size min; r; is found. Let D
be a set of dummy elements as in Reduction 1. Let M be a set of size

IM| = Z Ti

i€lk]

such that M\ D = opT. We have that it holds

Y (9= 2O oo

1
268z —— L) =
fSt et |M\St—1| seM\S;_1 |M\St—1|

where we have used that S;_; U {s} is always a feasible solution, since
t < min; t;, together submodularity. To continue, we consider the
following claim.

» Claim 2.4. Consider the set J={t: S;\S;_; € oPT}, and define the
sets J;:={j€J: j<i}. Foxanyset T < [n]. Then, it holds

fooMzfM+0-a@) Y f5,,S)-0-a)) f5,,S),

jelr-1] Jedim1

for all ¢. <

Proof. From the definition of curvature we have that fs;, ,,7(S;)) =

(l—a)fsj_l(St) forall j € [f]\J, and ij_luT(Sj) >0 forall j € J. Hence,

it holds
fooM=fM+ Y fo,utSH- Y. f(S))
Jelt-1] jelt—1]
=fM+0-a)) f5,,S)-0-a) Y fs,,S)— D f(S))
Jelt] jeds jelt-1]

Section 2.4

27

Chapter 2

28

Maximum Entropy Sampling

=fM-a) f5,,S)-10-a)) fs;_,(S)),

jeltl jeJs

where the first inequality uses the telescopic sum, and the second
one follows by the definition of curvature. [

Note that from Claim 2.4 it follows that

fs, (OPT)20PT—a) f5,,(S)-(-a)) f5,,(S),
jelt-1] jEJi1

for all . Combining this inequality with (2.7) and rearranging, it holds

Z(r, e fs So+a), fo, Sp+U-a)) fs5,,(S))

jelt-1] Jj€J1

>fs, (0P ~(1~a)) f5,,Sp+1-a) Y f5,,(S))
jelr-1] jeJio1

= 0PT, (2.8)

where the first inequality follows since }_; r; — [J;—1| = M\ S;_;. Define
the quantities

f5;.65))

= r=>»y r; =minr;. 2.9
Vi OPT ;’ p.= minri (2.9)

Using this notation, we observe that (2.8) can be rewritten as

(r=UeiDyi+a), yj+0-a) Y yj=L
jelre-1] jedi—1

Hence, the vectory = (y1,..., yp) isasolution of the system Z(a, p, 1, J)
as in Definition 2.2. Then, from Lemma 2.3 we get the following claim.

Run Time Analysis for the Greedy

T T Kx Gk X
R N e v B
g

Figure 2.2: A visualization of the solution found by GREEDY for d = 10% in
the case of a uniform constraint (left), and a partition constraint by countries
(right). In both case, a solution is obtained by maximizing the entropy as
given in (2.1). The covariance matrix X for all possible locations is displayed
in Figure 2.4. We observe that in the case of a cardinality constraint, the in-
formative stations tend to be spread out, whereas in the partition constraint
by countries they tend to be grouped in a few areas. We remark that in the
original dataset stations are not distributed uniformly among countries.

» Claim 2.5. Let (y1,...,yp) =Yy, 1, p be asin (2.9). Then it holds
p P 1 ayt-1
ez) —|1—-—)
Yz o1-7)

with a the curvature of f. <

Hence, by substituting quantities as in (2.8) it holds

fsr) M1 (1 a)f-l
OPT — 3 Xifi Xili
> 1(1 - exp{—a—Zie[k] iL })

a min;eg i

where the first inequality holds since the f-values never decrease
during the optimization process. The claim follows. |

Section 2.5

29

Chapter 2

30

Maximum Entropy Sampling

Figure 2.3: (a) A visualization 5

of the monthly temperature vari- g

ations of three time series, with e | \
£

AN station ID = 169801
\ station ID = 177110
20 v station ID = 169725 ||

particularly high variance. Each
series corresponds to a unique sta-
tion ID. We model each variation A IR SopwS Sows v
series as a Gaussian distribution. T
(b) Optimal solution found by
GREEDY for a uniform constraint
and a partition matroid constraint
by countries. The f-value of each
set of stations is the entropy (2.1),
with X the covariance matrix of
variation series as in (a) (see Fig-
ure 2.4).

0 5 10 15 20 25 30 35
time step (a)

100 ’*‘f — -©— - partition by countries | 7|
[¢] — ~— - cardinality constraint

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
size of the constraint [%] (b)

2.5 Experiments

We perform a set of experiments, to test our proposed algorithm on
the Maximum Entropy Sampling problem in a real-world scenario.
We consider a sensor placement task: Select a subset of stations
most suitable to collect new data, based on previous measurements.
To this end, we consider the Berkeley Earth climate dataset 2. This
dataset combines 1.6 billion temperature reports from 16 preexisting
data archives, for over 39.000 unique stations. For each station, we
consider a unique time series for the average monthly temperature.
We always consider time series that span between years 2015-2017.
This gives us a total of 2736 time series, for unique corresponding
stations.

For each time series X' = {X}};e[n) we study the corresponding
variation series X = {X/} ;e[defined as X; = X;—X;_,. Avisualization
of time series X is given in Figure 2.3(a). We compute the covariance

2 http://berkeleyearth.org/data/

Experiments

Figure 2.4: A visualization of the

covariance matrix X of time series e
available in the Berkley Earth cli- :ZZ
mate dataset. We consider sta- "
tions that have full available re- ©
ports between years 2015-2017, °
for a total of 2736 stations. We con- :0
sider the variation between aver- "
age monthly temperatures of each “o

time series. Each entry of this
matrix is computed by taking the
sample covariance as in (2.10).

500 1000 1500 2000 2500

matrix X between series X, Y, the entries of which are defined as

1
covX,Y) = —— > (X, ~E[X]D(Y;~E[Y)), (2.10)

— +telm]

with m = 35 the length of each series. A visualization of the covariance
matrix X is given in Figure 2.4. Assuming that the joint probability dis-
tribution is Gaussian, we proceed by maximizing the corresponding
entropy, as in (2.1).

We consider two types of constraints. In a first set of experiments
we consider the problem of maximizing the entropy under a cardinal
constraint only. Specifically, given a parameter d, the goal is to find a
subset of time series that maximizes the entropy, of size at most d of
all available data. We also consider a more complex set of constraints:
Find a subset of time series that maximizes the entropy, and s.t. it
contains at most d of all available data of each country. The latter
constraint is a partition matroid constraint, where each subset B;
consists of all data series measured by stations in a given country.

A summary of the results is displayed in Figure 2.3(b). We observe
that in both cases the entropy quickly evolves to a stationary local op-
timum, indicating that a relatively small subset of stations is sufficient

Section 2.5

31

Chapter 2

32

Maximum Entropy Sampling

to explain the random variations between monthly observations in
the model. We observe that the GREEDY reaches similar approxima-
tion guarantees in both cases. We remark that the GREEDY finds a
nearly optimal solution under a cardinality constraint, assuming that
the entropy is (approximately) monotone (Krause, A. P. Singh, et al.
2008).

In Figure 2.2 we display solutions found by GREEDY for the cardi-
nality and partition matroid constraint, with d = 10%. We observe
that in the case of a cardinality constraint, the sensors spread across
the map; in the case of a partition matroid constraint sensors tend
to be placed unevenly. We remark that in the original data set, some
countries have a much higher density of stations than others.

2.6 Submodular Maximization under
Knapsack Constrains

So far we studied the Maximum Entropy Sampling problem under
simple cardinality constraints, and partition matroid constraints.
However, practical applications might exhibit other additional cost
constraints. For instance, in the sensor placement application, one
might have to take into account operational costs, when selecting
thermal stations to perform future measurements with.

Motivated by this application, we give approximation guarantees fr
the problem of maximizing a submodular function under knapsack
constraints, as in the following problem.

Problem 2. Let f: 2" — R be a submodular function.’ Consider
linear cost functions c;: 2 L R.o,? and corresponding weights W;,

3 We assume that f(@) =0, and that f is non-constant.
4 We assume that max; cj(e) >0 for all e € [n].

Submodular Maximization under Knapsack Constrains

Algorithm 2: The k- GREEDY algorithm.

X<—{ee[n]:cjle)<=W;lkVjelkl}

v* —argmax,.y f(e);

S—g;

while X # ¢ do
let e € X maximizing fs(e)/ max; cj(e);
X—X\eg;
ifcj(Sue)<W;,Vjelk]thenS—Sueg;

return argmax{f(S), f(v™)};

N o g Wy -

==}

foralli e [k]. We search for a set OPT < [n], such that

oPT € argmax{f(S): ¢;(S) < W;, Vi € [k]}.
Scn]

In this section, we denote with OPT any solution to Problem 2,
and we define OPT = f(OPT). In this setting, one has k knapsacks
and wishes to find an optimal set of items such that its total cost,
expressed by the functions c;, does not violate the capacity of each
knapsack. Note that the same set might have different costs for differ-
ent knapsacks.

We denote with (¢, W) the constraint requirements c;(S) < W; for all
Scn], forallie [k].

2.6.1 The Greedy for k-Knapsacks

We approach Problem 2 with a variant of the GREEDY (Khuller et al.
1999; Zhang and Vorobeychik 2016). We refer to this algorithm as the
k-GREEDY.The k-GREEDY optimizes f over the set X, containing all
singletons e € [n] such that cj(e) < W;/k for all j € [k]. After finding a
greedy approximate solution S over this set, the k- GREEDY finds the

Section 2.6

33

Chapter 2

34

Maximum Entropy Sampling

maximum among the feasible singletons v*. The k-GREEDY outputs
the set with highest f-value among S and v*.

2.6.2 Approximation Guarantees

We prove that Algorithm 2 yields a strong approximation guarantee,
when maximizing a submodular function under k knapsack con-
straints in the static case. This part of the analysis does not consider
dynamic weight updates. We use the notion of curvature as in Defini-
tion 2.1.

» Theorem 2.2. Let f be a submodular function with curvature a.
The k-GREEDY is a (1 — e~ k)/(2max(1, a))-approximation algorithm
for Problem 2. Its run time is @(n?). <

Note that if the function f is monotone, then the approximation
guarantee given in Theorem 2.2 asymptotically matches well-known
results (Khuller et al. 1999). In our analysis we always assume that the
following reduction holds.

Reduction 2. For Problem 2 we may assume that there exists a point
e* € [n] such that f(Sue*) = f(S) forallS < [n], and c;(e*) = W; for
all i € [k]. Furthermore, we may assume that c;(e) < W;, forall e € [n]
and foralli € [m].

If the conditions of Reduction 2 do not hold, one can remove all
points e € [n] that violate one of the constraints and add a point e*
without altering the function f. Intuitively, Reduction 2 ensures that
argmax,.,, f(e) is always feasible in all constraints, and that the set
OPT consists of at least one point. Furthermore, the point e* € [n]
ensures that the solution quality never decreases throughout a greedy
optimization process, until a non-feasible solution is reached.

Proof of Theorem 2.2. For simplicity, without loss of generality we
assume that W) = --- = Wy. We denote with W the weight of each

Submodular Maximization under Knapsack Constrains Section 2.6

knapsack. We first observe that the k- GREEDY has two phases. Dur-
ing the first phase, k- GREEDY iteratively adds points to the current
solution in a greedy fashion. During the second phase, k-GREEDY
finds the optimum among single-element sets. The greedy procedure
requires at most @’(nz) steps, while the second procedure requires at
most O (n) steps. Hence, the resulting run time is & (nz)

We now prove the k-GREEDY yields the desired approximation
guarantee.Let S; be a solution generated during the firs phase of
k-GREEDY, at time step t. Furthermore, define v; =S;\S;_;. Letr =0
be the smallest index, such that

1. ¢j(Sy-1) < Wforall j € [k];
2. there exists j € [k] such that ¢;(S,) > W.

In other words, r is the first point it time such that the new greedy
solution does not fulfill all knapsacks at the same time. We first prove
that either the solution S,_; or the point v* = argmax,.yx f(e) yields
a good approximation guarantee of OPT. We have that it holds

foloprn = 3 f5, (e

ee0PT\S;
s,.,(e)
ecopT\S;_; J max; Cj(e)
(S
< EACHES maxc;j(e)
max; c(vy) ecoPT\S;_;
kw
<—f(Sy
maX] C(Vl

where the first inequality follows from the assumption that f is sub-
modular; the second inequality follows due to the greedy choice of
Algorithm 2; the last inequality uses the fact that c(OPT) < W, together
with the fact that c(e) < kW for all c € X, for all j € [k]. Rearranging

35

Chapter 2

36

Maximum Entropy Sampling

yields

max; cj(
kw

To continue with the proof, we use Claim 2.4.Following Claim 2.4 it

holds

ShHE fst , (OPT). (2.11)

fs (0PD = flOPD +(1-a)) f5,,(S))
Jelt=11\J—1

> flopT) +(1-max(1, @) Y, fs5;,(S))
jelt=11\J;1

= fopm) + (1-max(l,@)) fs,,(S)),
jelt-1

where we have used that fs; | (S;) = 0 due to Reduction 2. Combining
this observation with (2.11) yields

manCj(l)i)
f(St)z—kW f(opT)
(1 -—max(1, @)) max; cj(v;)
fs..65)
kw je[;_l] -

from which it follows that

max(1,a) f(S;) = #(’) f(opT

max(l a)max] c](vl
kw

Z f5]1

Jjelt-1]

Defining x; = f(S;)/ f(OPT) for all ¢ € [r] we can write the inequality
above as
kWmax(1, a)
——————x;+max(l,a) Y x;=1. (2.12)
max; ¢;(vy) ielt-1]

We conclude the proof by showing that any array of solutions
(x1,...,Xx,) with coefficients x; € [0,1] that fulfils the LP as in (2.12)

Submodular Maximization under Knapsack Constrains Section 2.6

yields

max; ¢;(vy) (max Cj(Vi))
= Y T 1 - — L7 2.13)
tez[‘;] tez[‘;] kWmax(1, @) iegl] kw

In order to prove (2.13), since it holds x; € [0,1] for all ¢ € [r], we can
simplify our setting, by studying the system

kWmax(1, @)

Xy +max(1l, a) x;=1. (2.14)
manCj(Ut) ! Z !

ie[t—1]

This is due to the fact that the sum of the coefficients of any solution of
(2.14) are upper-bounded by the sum of the coefficients of a solution
of (2.13). We conclude the proof, by considering the following claim.

» Claim 2.6. Let (x3,..., x;) be a solution of the LP as in (2.14). Then
it holds
max; ¢;(vy) (manCj(Ui))

x = —
! kWmax(1, a) ielt-1] kw

forall £ € [r]. <
Proof. Define c; = max; cj(v;)/(Wmax(l,a)) for all ¢ € [r]. Then the
LP above can be written as

Xt

—=1-max(l,@) Y x
Ct ie[t-1]

By defining y; = x;/c; for all ¢ € [r], we have that
Ye—Ye-1=—max(l,a)x;—y = —max(l, &) cr-1yr-1,

and we obtain the following recurrent relation y; + (max(1,a)c; —
1)y;—1 =0, for all £ > 1. This is a recurrent linear equation with solu-
tions

yi= [] (1-c¢jmax(1,a)).
jelt-1]

37

Chapter 2 Maximum Entropy Sampling

The claim follows, by substituting y; and c; in the equation above. H

Hence, we have that it holds

fS) =foPT)Y X
t

Zf(OPT)Z maxjcj(vt) 1_[(1_maxjcj(v,~))

7 kWmax(1, @) ;- kw
. f(oPT) -] (1_man Cj(Vi))
max(1, a) ielr] kw
f(oprT) max; cj(v;)
> ——|l-exp{—) ————1|,
= max(l,a)(exp{ l-;;] kw

where the first inequality follows from Lemma 2.6; the second in-
equality follows via standard calculations; the last inequality follows
because 1 — x < e™*. Consider an index ¢ such that c,(S;) > kW. We

have that it holds
f(S)>; 1 —exp< —max(1 a)ZM f(opT)
"7 max(1,a) P ’ i kw
1 ce(vi)
> max(l,a)(l exp{ max(1, @) i;;] W })f(OPT)
1

(1 —e‘”k)f(OPT).

2 -
max(1, a)

To conclude, denote with v* the point with maximum f-value among
the singletons, it follows that

argmax{f(S,-1), f(w)} = (f(S,—1) + f(v™))/2
= (fSr-D)+ fw)/2
> f(S;)/2

38

Submodular Maximization under Knapsack Constrains Section 2.6

S
2max(1, a)

(1 —e‘”k)f(OPT),

where we have used submodularity. The claim follows.

39

Video Summarization

This chapter is based on a conference paper titled “‘Adaptive Sam-
pling for Fast Constrained Maximization of Submodular Function”,
by Francesco Quinzan, and Vanja Doskoc, Andreas Gobel, Tobias
Friedrich (Quinzan, Doskoc, et al. 2021).

Video summarization tasks consist of selecting a subset of frames
that are representative of ta given video. These tasks can often be
approached by maximizing submodular functions, under complex
side constraints imposed by the underlying application. We develop
an algorithm with poly-logarithmic adaptivity for non-monotone sub-
modular maximization under general side constraints. The adaptive
complexity of a problem is the minimal number of sequential rounds
required to achieve the objective.

Our algorithm is suitable to maximize a non-monotone submodular
function under a p-system side constraint, and it achieves a (p +
0 (/p))-approximation for this problem, after only poly-logarithmic
adaptive rounds and polynomial queries to the valuation oracle func-
tion. Furthermore, our algorithm achieves a (p+@'(1))-approximation
when the given side constraint is a p-extendible system.

This algorithm yields an exponential speed-up, with respect to the
adaptivity, over any other known constant-factor approximation algo-
rithm for this problem. It also competes with previous known results
in terms of the query complexity. We perform various experiments on
real-world applications. We find that, in comparison with commonly
used heuristics, our algorithm performs better on these instances.

41

Chapter 3

42

Video Summarization

3.1 Determinantal Point Processes and
Video Summarization

3.1.1 Determinantal Point Processes

Determinantal Point Processes are probability distributions, first stud-
ied in classical physics (Macchi 1975). DPPs have received consider-
able attention in recent years, since they are commonly used in Al
and Machine Learning (Elfeki et al. 2019; Gillenwater et al. 2012; Kang
2013; Kathuria et al. 2016; Kulesza and Taskar 2011; Mirzasoleiman,
Jegelka, et al. 2018b; Mirzasoleiman, Karbasi, and Krause 2017). For a
set ofitems V ={1,...,n}, a DPP defines a discrete probability distri-
bution £ over all subsets S € V via the following requirement. Fix a
set A< V. Then, for asetS € V chosen at random, i.e., S ~ &2, it holds

Pr(A<S) =det(Ka). (3.1

Here, K € R"**" is a fixed matrix, called the marginal kernel, and Ka
denotes the sub-matrix indexed by the points of A. Although well-
posed, this definition does not give an explicit characterization of the
probability Pr(S).

If the marginal kernel K is invertible, it is possible to define the
corresponding DPP via L-ensembles. An L-ensemble over subsets S
of V is a probability distribution of the form

det(Ls)

PO = e+

where L € R™*" is a positive semidefinite matrix, Ls denotes the sub-
matrix indexed by the points of S, and I is the n x n-identity matrix.
The relationship between L-ensembles and DPPs is clarified by the
following result.

Determinantal Point Processes and Video Summarization

» Theorem 3.1. An L-ensemble is a DPP, and its marginal kernel is
K=LWL+Dt'=I1-L+DL <

For a proof of this theorem see, i.e., (Kulesza and Taskar 2012).
Note that from Theorem 3.1 it follows that a DPP with an invertible
marginal kernel is an L-ensemble with matrix L = K(I — K)~!. Hence,
the definition of L-ensembles is more restrictive than the definition
of DPP as in (3.1). However, L-ensembles give an explicit characteri-
zation of the underlying probability distribution. In this context, we
always define DPPs via L-ensembles.

3.1.2 Video Summarization

Video summarization consists of the following task: Given a video,
choose a subset of frames that gives a descriptive overview of the
video. DPPs are commonly used for sampling subset of frames for
video summarization, since they maximize diversity (Mirzasoleiman,
Jegelka, et al. 2018b; Mirzasoleiman, Karbasi, and Krause 2017).

When using DPPs for Video Summarization, a key challenge lies
in the definition of a suitable marginal kernel. We follow (Gong et al.
2014) to this end, although other methods have been proposed in
recent years (Kulesza and Taskar 2010). For each frame i, we com-
pute a feature vector f; consisting of visual features, such as color
and SIFT, and qualitative information, such as size, colorfulness and
luminosity (Kulesza and Taskar 2011). We define the matrix L of the
corresponding L-ensemble as

Lij=2z] WWg;,

with z; = tanh(Uf;), and U, W parameter arrays. We learn the param-
eters U and W using a neural network.

In order to create descriptive summaries, several additional side
constraints are imposed on the solution space. A common example
is an upper-bound on the maximum number of frames that can be

Section 3.1

43

Chapter 3

44

Video Summarization

selected to construct a summary. Another example is the use of
partition matroids. Here, each video is divided into segments, and
only /; frames in each segment j are selected. Sometimes, more
complex constraints are employed. For instance, (Moran Feldman,
Karbasi, et al. 2018; Mirzasoleiman, Jegelka, et al. 2018b) use a face-
recognition tool to define side constraints. With this tool, they identify
actors in each frame, and select summaries containing at most k
frames showing each actor.

3.2 Problem Formulation

In this section, we present a high-level description of Video Summa-
rization, which is then used to derive approximation guarantees for
our algorithm. We search for video summaries by selecting subsets
S that maximize diversity. In order to find a diverse set of frames,
we search or a set that has the highest probability of being sampled,
according to a DPP with marginal kernel defined as in Section 3.1.1.
This task than consists of maximizing the function

det(L
£(S) = et(Ls)

Cdet(L+ D)’ (8-2)

under additional side constraints. Here, the matrix L is defined as in
Theorem 3.1. It is well-known that the function f(-) asin (3.2) is log-
submodular (Kulesza and Taskar 2012).°> Hence, Video Summariza-
tion can be formulated as a constrained submodular maximization
problem. We study this problem under two types of side constraints,
to capture several real-world applications.

5 Afunction f:2V — Ry is log-submodular if the function log f () is a submodular
function.

Problem Formulation Section 3.2

3.2.1 p-Systems Side Constraints

We study the problem of maximizing a submodular function under
additional side constraints, defined as a p-system side constraint.
As discussed, i.e., in (A. Gupta et al. 2010; Mirzasoleiman, Badani-
diyuru, and Karbasi 2016), these constraints are very general, and
they commonly arise in Video Summarization.

Given a collection of feasible solutions .# over a ground set V and a
set T <V, we denote with .# |t a collection consisting of all setsS< T
that are feasible in .#. Furthermore, a base for .# is any maximum
feasible set U € .#. We define p-systems as follows.

» Definition 3.1. A p-system .# over a ground set V is a collection of
subsets of V fulfilling the following three axioms:

* ey,

e foranytwosetsS<cQcV,if Qe .# thenSe.¥;

e foranyset T €V and any bases S,U € .# |t it holds |S| < p|U].
<

The second defining axiom is referred to as subset-closure or downward-
closed property. With this notation, we study the following problem.

Problem 3. Given a submodular function f : 2V — Rsq and a p-system
S, find a setS <V maximizing f(S) such thatSe .#.

3.2.2 p-Extendable Systems Side Constraints

We also consider a family of side constraints of intermediate gen-
erality, commonly referred to as p-extendable systems. These side
constraints are strictly less general than p-systems, but they cap-
ture various real-world scenarios. We study p-extendable systems

45

Chapter 3

46

Video Summarization

because they admit algorithms that perform very well in practise.
p-extendable systems were first defined by (Mestre 2006), as follows.

» Definition 3.2. A p-extendable system .# over a ground set V is a
p-system, that fulfills the following additional axiom: for every pair
of sets S,Q € . with S c (), and for every element e ¢ S, there exists a
set U< Q\S of size |U| < psuchthat Q\Uu {e} € .£. <

Although less general than p-systems, side constraints as in Defini-
tion 3.2 generalize many interesting combinatorial structures, such
as matroid intersections and p-matchoids (Mestre 2006). Hence, we
study the following problem.

Problem 4. Given a submodular function f : 2V — Rso and a p-
extendable system .#, find a setS <V maximizing f(S) such thatSe ..

3.2.3 The Adaptivity as a Computational Model

In this work, we assume oracle access to the function f(S) as in (3.2),
and we also assume access to the side constraint structure via an
oracle. Standard oracle models for the side constraints are: the inde-
pendence oracle, which takes as input a set and returns whether that
set is a feasible solution; the rank oracle, that returns the maximum
cardinality of any feasible solution contained in a given input set; and
the span oracle, which for an input set S and a point {e} it returns
whether or not SuU {e} has a higher rank than S (Chekuri and Quanrud
2019b). Here, we assume access to the independence oracle, which is
the most general oracle model of the three.

Oracle valuations via f(S) are typically time consuming, since they
require to compute the determinant of a potentially large matrix, and
evaluate feasibility with respect to complex side constraints. Hence,
a standard approach for the design of optimizers suitable for Video
Summarization consists of minimizing the total number of calls to
f(S). This approach has lead to the design of efficient algorithms

Related Work

in recent years (Moran Feldman, Harshaw, et al. 2017; Moran Feld-
man, Harshaw, et al. 2020; Mirzasoleiman, Badanidiyuru, and Karbasi
2016). A major drawback of these algorithms, however, is that oracle
calls are highly sequential, and they cannot be parallelized efficiently.

In contrast to previous related work, we propose a new algorithm
for Problem 3 and Problem 4, that allows for an efficient prallelization
of the oracle queries. To this end, we consider a different compu-
tational model, and use the adaptivity as a performance measure
(Balkanski and Singer 2018). The adaptivity refers to the number of
sequential rounds, wherein polynomial number of parallel queries
are made in each round. Formally, the adaptivity is defined as follows.

» Definition 3.3 (Adaptivity, (Balkanski and Singer 2018)). Given
an oracle f, an algorithm is r-adaptive if every query g to the oracle
f occurs at around i € [r] such that g is independent of the answers
f(g") to all other queries g’ at round i. <

The adaptivity is closely related to other classic models such as
Parallel Random Access Machines (PRAM). The PRAM model consists
of a set of processors, that communicate via a single shared memory,
and a memory access unit. The adaptivity extend to PRAM via the
notion of depth. The depth is the number of parallel steps in an
algorithm or the longest chain of dependencies. However, the PRAM
model assumes that the input is loaded in memory, whereas the
adaptive complexity model only assumes access to an oracle function.

3.3 Related Work

Several algorithms have been discovered, to maximize a monotone
submodular function under general side constraints such as p-systems
and multiple knapsacks (Badanidiyuru and Vondrdk 2014; Chekuri
and P4l 2005). These algorithms include streaming algorithms (Badani-
diyuru, Mirzasoleiman, et al. 2014; Chakrabarti and Kale 2015; Chekuri,

Section 3.3

47

Chapter 3

48

Video Summarization

S. Gupta, et al. 2015), centralized algorithms (Badanidiyuru and Von-
drdak 2014; Mirzasoleiman, Badanidiyuru, Karbasi, et al. 2015), and
distributed algorithms (Kumar et al. 2015; Mirzasoleiman, Karbasi,
Sarkar, et al. 2013).

Many algorithms have been proposed to maximize non-monotone
submodular functions under a variety of constraints (Buchbinder,
Moran Feldman, Naor, et al. 2015; Chekuri, Vondrak, et al. 2014; Feige,
Mirrokni, et al. 2011; Moran Feldman, Naor, et al. 2011b; A. Gupta et
al. 2010; Lee et al. 2009). These algorithms yield good approximation
guarantees, but their run time is polynomial in the number of sam-
ples, and polynomial in the number of additional side constraints.
Recently, algorithms were discovered to maximize a non-monotone
submodular function under very general side constraints (Moran
Feldman, Harshaw, et al. 2017; Mirzasoleiman, Badanidiyuru, and
Karbasi 2016). These constant-factor approximation algorithms scale
polynomially in the number of data-points, but also in the number of
additional side constraints.

In some cases, approximation algorithms do not exhibit increas-
ingly worse run time in the number of constraints. This is the case
when maximizing a submodular function under p-extendible systems
or p-matchoid side constraints (Chekuri and Quanrud 2019a; Moran
Feldman, Harshaw, et al. 2017). These side constraints are strictly
less general than those studied by Mirzasoleiman, Badanidiyuru, and
Karbasi 2016, but they are general enough to capture a variety of
interesting applications.

Our Contribution. We develop the first algorithm with poly-log
adaptivity suitable to maximize a non-monotone submodular func-
tion under a p-system side constraint and a p-extendable system. In
contrast to all previous algorithms with low adaptivity, our algorithm
only requires access to the independence oracle for the side con-
straints. This algorithm achieves strong approximation guarantees
and run time, competing with known algorithms for this problem

A Fast Algorithm for Video Summarization

Algorithm 3: RAND-SEQUENCE

1 A— @;while X # @ do

2 sort the points {x;}; = X randomly;
3 n<—max{j: SUAU{x;};<j € F};
4
5

A—AU{xy,..., xp};
X—{eeX\(SUA):SUAUeEe ¥};

6 returnA;

(Moran Feldman, Harshaw, et al. 2017; Moran Feldman, Harshaw,
et al. 2020; A. Gupta et al. 2010; Mirzasoleiman, Badanidiyuru, and
Karbasi 2016).°

3.4 A Fast Algorithm for Video
Summarization

Our method consists of three parts (see Algorithms 3-5). We call
these parts the RAND-SEQUENCE, the RAND-SAMPLING, and the REP-
SAMPLING. These algorithms also uses the BINARY-SEARCH and UNIEF-
SAMPLING sub-routines. The following is a description of each algo-
rithm and sub-routine.

The RAND-SEQUENCE sub-routine. This sub-routine is based on
the work of (Karp et al. 1988). Given as input a ground set X, a current
solution S, and a p-system .#, this algorithm finds a random set A
such that SUA is a base for .#.

6 The Parallel Greedy algorithm by Moran Feldman, Harshaw, et al. 2020 requires
access to the rank oracle for the underlying p-matchoid system. This oracle is
strictly less general then the independence oracle required by our algorithm.

Section 3.4

49

Chapter 3

50

Video Summarization

Algorithm 4: RAND-SAMPLING
1 S—@;

2 X—argmax,{f(e): eeVAee€ I}
3 8 — f(X), 80— AL OX;

4 while 6 > 50 do
5
6
7

while X # @ do

{aj}jej — RAND-SEQUENCE(X,S, .#);

1) < BINARY-SEARCH(J, min{j € J: |X;| < (1 - &)|X|}) with
Xj ={eeX: fSU{al,.__,aj_l}(e) >0ASU {al,...,aj_l} Uee

I
8 A < UNIF-SAMPLING({ay, ..., az-1}, ¢1);
9 7X<—X,,;S<—SUA;

10 00— (1-¢)d;
u | X—{eeV: fs(e)=z6ASuee I}

12 returnS;

The RAND-SAMPLING algorithm. This algorithms generalizes a
sampling algorithm proposed in (Balkanski, Rubinstein, et al. 2019)
to non-monotone submodular maximization. This algorithm re-
quires as input an oracle function f, a ground set V, a p-system or
p-extendable system .#, and parameters A, €, ;. The parameter A de-
termines the total number of iterations for the RAND-SAMPLING, the
parameter € determines the rate with which the variable 6 decreases,
whereas ¢, determines the distribution for the UNIF-SAMPLING sub-
routine. For a constant §, points are added to the current solution
yielding a marginal contribution upper-bounded by 6. Note that at
each adaptive step, the RAND-SAMPLING uses the BINARY-SEARCH and
the UNIF-SAMPLING sub-routine. If Algorithm 4 reaches an iteration
with X = @, then it decreases the value of § so that points with lower
marginal contribution can be added to the current solution.

A Fast Algorithm for Video Summarization

Algorithm 5: REP-SAMPLING

1 A—e(p+1)/(r+1);

2 for j < m iterations do

3 Qj < RAND-SAMPLING(f,V, #,A,&,¢1);
Aj < UNIF-SAMPLING(Q, ¢2);

V—V\ Qj;

¢ return argmax;{f(Q;), (A}

[3

The BINARY-SEARCH sub-routine. This sub-routine is just the
standard binary search algorithm. It is used to locate an index n such
that 7 = min{j: |X;| = (1 - €)X]}, with X;, where the index j spans
over the set J. This sub-routine uses the fact that, due to submodular-
ity, it holds |X;| = |Xj1| forall j € J.

The UNIF-SAMPLING sub-routine. Fora given input set and prob-
ability ¢, this algorithm samples points of the input set independently,
with probability ¢.

The REP-SAMPLING algorithm. This algorithm requires as input
an oracle function f a ground set V, a p-system or p-extendable
system .¢ and parameters A, m, € and ¢, @». At each step, the REP-
SAMPLING calls Algorithm 4 to find a partial solution Q ;. Then, Algo-
rithm 5 samples a subset of Q2 ;, where each point is drawn indepen-
dently with probability ¢,. Afterwards, the REP-SAMPLING removes
all points of 2; from the ground set, and it runs the REP-SAMPLING
on the resulting ground set. This procedure is iterated m times.

Section 3.4

51

Chapter 3

52

Video Summarization

3.5 Run Time Analysis for p-Systems

3.5.1 Overview of the Main Results

In this section, we discuss theoretical run time analysis results for
Problem 3. All results concerning the approximation guarantee use
the following pivotal lemma.

» Lemma 3.1. Define the sets Q; and A; as in Algorithm 5, and de-
note with V; the ground set for Algorithm 4, during the j-th iteration
of the for-loop lines 2-5 of Algorithm 5. Furthermore, let §¢, 5, and A
be as in Algorithm 4 and Algorithm 5. Then, for parameters ¢; =1
and ¢, = 1/2 it holds

(p+ DE[£(Q)) | +ArE[£(Q)) | = (1 -&)*E[f(Q;uU(0PTNV))],
for all sets Q. <

On a high level, we prove that the constant § in Algorithm 4 is an
upper-bound for the best possible improvement up to a multiplicative
factor, and that the marginal contribution of any point added to
the current solution does not exceed 6 in expected value, up to a
multiplicative constant. We then combine this fact with the defining
properties of the p-system to prove the claim, which holds for non-
monotone functions. The proof of Lemma 3.1 requires additional
results, and it is deferred to Section 3.5.2.

Using Lemma 3.1, we can prove strong approximation guarantees
for Algorithm 5. These guarantees follow from the following general
theorem.

» Theorem 3.2. Fix constants € € (0,1), m=2, ¢; =1, and ¢, = 1/2.
Denote with Q* the output of Algorithm 5. Then,

(1+&)(p+1) \
OPT<m A= o2m=1) +2|E[F(Q")]

Run Time Analysis for p-Systems

<

A proof of this theorem is given in Section 3.5.3. We estimate the
number of adaptive rounds until Algorithm 5 reaches the desired
approximation guarantee. The following lemma holds.

» Lemma 3.2. Fix constants € € (0,1), ¢1,¢> € [0,1] and m = 0. Then
Algorithm 5 terminates after © (Emz log(#) logrlog n) rounds of adap-

tivity. Furthermore, the query complexity of Algorithm 5 is upper-
bounded as
@(% log(#) logrlog n) <

A proof of this result is given in Section 3.5.4. The following lemma
follows from Theorem 3.2 and Lemma 3.2.

» Lemma 3.3. Fix a constant € € (0, 1), and define parameters m =
1+[y/(p+1)/2], 1 =1, and @2 = 1/2. Denote with Q* the optimal
solution found by Algorithm 5. Then,

(p+2\/2(p+ 1 +5)[E[£Q9].

Furthermore, with this parameter choice Algorithm 5 terminates after
@’(g logn log(#) log r) rounds of adaptivity.

‘/En lognlog(L)log r). =

€ pe

1-¢
(1-¢)?

OPT =

Its query complexity is @’(

A proof is given in Section 3.5.5. We remark that there exists an
algorithm with constant adaptivity for unconstrained non-monotone
submodular maximization that achieves an approximation guarantee
arbitrarily close to 1/2 (Chen et al. 2019). Using this algorithm as
a sub-routine, in line 4 of Algorithm 5, yields a constant-factor im-
provement over the approximation guarantee of Lemma 3.3, without
affecting the upper-bound on the adaptivity. However, this algo-
rithm requires access to a continuous extension of the value oracle f,
whereas Algorithm 5 only requires access to f.

Section 3.5

53

Chapter 3

54

Video Summarization

3.5.2 Proof of Lemma 3.1

In this section, we prove Lemma 3.1, which is useful to prove the
desired approximation guarantee. This lemma is restated here.

» Lemma 3.1. Define the sets (2; and A as in Algorithm 5, and de-
note with V; the ground set for Algorithm 4, during the j-th iteration
of the for-loop lines 2-5 of Algorithm 5. Furthermore, let 6,6, and A
be as in Algorithm 4 and Algorithm 5. Then, for parameters ¢; = 1
and ¢, = 1/2 it holds

(p+DE[f(Q)) |+ ArE[£(Q)) | =2 A -&)’E[f(Qju(oPTNV))],

for all sets Q j- <

Throughout this section, we use the notation introduced in Lemma
3.1. We also always assume that parameters ¢, @, are set as ¢; =1
and ¢, = 1/2. In order to prove Lemma 3.1, we need the following
technical proposition.

» Proposition 3.1 (Proposition 2.2 in (M. Fisher et al. 1978)). Let

{xl) ceey xm}»
{¥1,..., ym} be two sequences of non-negative real numbers. Suppose
that it holds

i
Z Xi < i,
j=1

foralli € [m] and y; = y;4+; forall i € [m—1]. Then

m m
Z Yi= Z XiYi-
j=1 j=1

<

In addition to Proposition 3.1, we prove additional lemma, which
are used in the proof of Lemma 3.1. We first prove the following result,
which follows from Lemma 2 in (Balkanski, Rubinstein, et al. 2019).

Run Time Analysis for p-Systems

» Lemma 3.4. Fix an index j, and let §,Q be as in Algorithm 4, as it
runs over the set V;. Then it holds

0=(1-¢ sup fale).
{eeV;\Q: Quee#}

<

Proof. We prove the claim by induction on the iterations of Algorithm
4. The base case trivially holds, due to the definition of 6. Suppose
that at some point the current solution Q is updated to Qu{ay, ..., a,}.
We have that

sup fovtar,..a (@)
{eEVj\(QU{al,...,a,,,}) : Qu{al,...,an}uee,ﬂ}
= sup fale)

{eer\(Qu{al,...,a,,}): Quiay,...,antuee s}

< sup fale)
feeVij\Q: Quee s}

<94,

where the first inequality uses the submodularity property of f; the
second inequality holds since {e € Vi\(QUiay,...,az}): Quiay,..., aptu
ee Fc{eeV;\Q: Quee ¥} the last inequality follows due to the
inductive hypothesis.

We now show that the claim holds when § is updated to 6’ = (1—¢)4.
At this point, it holds X = @, and each point e* € V i\ Q such that
Qu e* € .# was discarded during a previous iteration. Denote with Q'
the solution at the iteration when e* was discarded, and let {a;, ..., an}
be the next set of points added to Q. Since e* was discarded, then
one of the following two conditions must hold:

1. Q'ulay,...,agjue’ ¢.7;

2. fQ’U{al,...,an} (e*) <é.

Section 3.5

55

Chapter 3

56

Video Summarization

In the first case, due to the downward-closed property of .# it holds
Que* ¢ ¥, which contradicts the definition of e*. In the latter case it
holds

!

fﬂ(e*) < fQ/U{aly_"’an}(e*) <d=

where the first inequality uses the fact that f is submodular. The
claim follows. [

We also need an additional lemma, to prove that Algorithm 5 gives
a constant-factor approximation for Problem 3.

» Lemma 3.5. Fix an index j, and let §, X be as in Algorithm 4, as it
optimizes the function f over the set V;. Denote with {a;}; the points
of Q, sorted as they were added to it. Itholds E, | fia,,..,q; 3 (@i) | =
(1-¢)6. <

Proof. First, suppose that the constant 6 is updated after the point
a;_1 is added to the current solution. In that case, by definition of the
set X, every point e € X\{ay,...,a;_1} such that {ay,...,a;1}Uee ¥
yields fiq,,...a;_,1(e) > 6. Hence, the claim holds.

Suppose now that the constant § is not updated after the point a;_;
is added to the current solution. Define the set
Xf_l ={eeX: {ay,...,a;-1}Ue e #}. We first claim that the point
a; is chosen uniformly at random over the set X‘i]_ 1 In fact, if a; is
added to the current solution, then there exists a set {xy,..., x;} as
in Line 4 of Algorithm 3 such that a; € {x1,...,x;}. Let j <7 be an
index such that a; = x;. Due to the downward-closed property of . it
holds {e: Au{x,...,xj,e} € F} <X\ {x1,...,x;}. Hence, a; is chosen
uniformly at random among all points e such that Au{x;,..., x ji-1,e =
{al,...,aj_l,e} €.9.

Then

IXi-1l - IXi-1l

Prai (ﬁal,...,{llpl}(ai) >6) = Xi1| = |X|

)

Run Time Analysis for p-Systems

where we have used that Xf_ | S X;—1 and that the point e is chosen
uniformly at random over the set X‘f_ 1

We now prove that |[X;_|/|X| = (1 —¢). To this end, we first note
that [X;| = [X;41l, for all indices i. Fix a point e € X;;1. Then, this
pointyields {ay,...,a;}Ua € # and fi4,,... q;(a) = 6. By the downward-
closed property of .# we get {ay,...,a;-1} U a € .#, and by submodu-
larity we get fi4,,.. 4, (@) = 6. Hence, X;;1 € X; and |X;| = [X;41] as
claimed. It follows that the BINARY-SEARCH sub-routine of Algorithm
4 terminates whenever n = min{i: |X;| < (1-¢)|X|}, which implies that
IX;—11> (1—€)|X|. The claim follows since itholds E4, [fia,,..a;11(@i) |
Pra, (f{al a;_11(a;) > 5)5- u

IV

Using Proposition 3.1, Lemma 3.4-3.5, we can prove Lemma 3.1.
This proof uses ideas proposed by (A. Gupta et al. 2010).

Proof of Lemma 3.1. Denote with {a;}; the points of Q; in the order
that they were added to Q ;. Define the set

Ws,:={e€oPTnV;: fQj(e) =>0o}.

Note that this set consists of all points of OPT NV such that their
marginal contribution is above §y, when added to the current solu-
tion. First, fix a set Q}, and suppose that fi4, .. 4;_,3(a;) = 6 for all in-
dices i. Define the sets A; := {e € W5, \ {ay,...,a;}: {a1,...,a;} Ue e F}.
Since the system .# is downward-closed, then A; € A;_;. Define the
sets D; := A;_1 \ A;. Note that these sets consist of all points in W,
that yield a feasible solution when added to {ay,...,a;-1}, but that
violate side constraints when added to {a,..., a;}.

We now claim that the set {a, ..., a;} is a maximal independent set
for

{ar,...,a;}u(D1U---UDy) ={ay,...,a;} U(Ws, \ A;).

To this end, note that the set {ay, ..., a;} is independent by definition,
and that any point e € (W5, \A;) \{ay,..., a;} is such that {ay, ..., a;} U

Section 3.5

57

Chapter 3

58

Video Summarization

e¢ #. Hence {a;,...,a;} is maximal as claimed. Note also that D; u
---UD; €Wy, is an independent set, due to the subset-closure of .#.
Since .# is a p-system, then it holds

IDil+---+IDil =|Dyu---UD;l = pl{as, ..., ai}| = pi. (3.3)
Furthermore, using submodularity and Lemma 3.4 it holds

ID;|6 = (1 -¢€)|D;|sup, fa,....a;_} (€)
= (1 _5)f{al (ll'_l}(Di)

where the last inequality follows from submodularity. Combining this
with (3.3) and Proposition 3.1, we get

p)_fa,.ai (@) =) IDild
i i
2 (1-¢))_ fo;(Di)
i
= fﬂj (W§0);

where the last inequality uses submodularity. Hence, rearranging
yields pf(Q;) = f(Qj UWs,) —f(Qj) = fQj (Ws,). If we unfix the set
Q; and take the expected value, and using Lemma 3.5 we get

PE[F©@))] = (1= 2)%E| fo,; W) |- (3.4)

Using Lemma 3.5 again, we have that E, [fia,.a;iy(ai)] >0, for all
points a; added to Q;. It follows that E[£(Q;) | = E[f(ao) |, with ag
the first point added to Q. Then, from the definition of §, it follows
that AE[f(Q;) | = AE[f(ao) | = E[8o]. Hence, using submodularity

Run Time Analysis for p-Systems

and the linearity of the expected value, we get

Ar[E[f(Qj)]zr[E[cso]z[E[Y fa; (@

eE(OPTﬂVj)\W50

z[E[fo,(OPTAV)\ Wp,)] (3.5)

where we have used submodularity.
Combining (3.4) with (3.5) and using submodularity again we get

PE[F©Q)) |+ ArE[£(2))] = (1 -£)%E| fo,(0PTAV}) |. The claim fol-
lows by rearranging. [

3.5.3 Proof of Theorem 3.2

In this section, we prove the following theorem.

» Theorem 3.2. Fix constants e € (0,1), m=2, ¢; =1, and ¢, =1/2.
Denote with Q* the output of Algorithm 5. Then,

1+8(p+1) .
OPT<m = o2m=1) +2|E[F(Q")]

In our analysis we consider the following well-known result.

» Lemma 3.6 (Theorem 2.1 in (Feige, Mirrokni, et al. 2011)). Let
U <V be a set chosen uniformly at random. Then it holds E[f(U) | =
f(O)/4, with O €V the subset attaining the maximum f-value. <«

Furthermore, we also consider the following properties of submod-
ular functions.

» Lemma 3.7 (Lemma 10 in (Moran Feldman, Harshaw, et al. 2017)).

For any fixed m-tuple of mutually disjoint sets Q ; itholds (m—1)0PT <
Y j<m [(QjUOPT). <

Section 3.5

59

Chapter 3

60

Video Summarization

» Lemma 3.8 (Lemma 11 in (Moran Feldman, Harshaw, et al. 2017)).
Let f: 2V — R>(be a non-negative submodular function. For every
three sets A,B,C<Vitholds f(AUBNQ)+ f(B\C) = f(AUB). =«

Using Lemma 3.6-3.8 together with Lemma 3.1, we can prove Theo-
rem 3.2.

Proof of Theorem 3.2. Fix an m-tuple of sets Q ; for Algorithm 5, and
consider the sets oPT \ Q;, for all j < m. Note that it holds V; =
\YA Uiszi- Hence, f(OPT \ Vl') = f(OPT\ (V \ Uiszi)) = f(UiSj (oPTN
Q) < Xi<j f(OPTNQ;), where the last inequality uses submodular-
ity.

Unfixing the sets 2 ; and taking the expected value yields

E[f(OPT\V;) | =) E[foPTNQ;) |, (3.6)

i<j
for all indices j <= m. We have that it holds

(m—10PT< Y E[f(opPTUQ))]

sjzn[E[f(qu(omeVj))H 2 E[flopT\V))]
j<m j=m
Sm(1_+£)z [f(Q)]+m(1/1 Tt f @]
+ 2, 2 E[florTnQp]
jsmisj
sm(p-i-l)([E[f(Q,)]+]<Zml<ZJ[E forTNQ;) |
Sm(p+1)([E[f(Q)]+4]<Zml;[E[f(A)
< m(p+ D= E[£©@%) | +2mim - DE[@)],

(1-¢)

Run Time Analysis for p-Systems

where the first inequality follows from Lemma 3.7; the second in-
equality follows from Lemma 3.8; the third inequality follows from
(3.6) and Lemma 3.1; the fourth inequality follows from Lemma 3.6;
the last inequality follows since f(Q*) is maximum over f(Q) and
f(A;). The claim follows by rearranging the inequality above. [

3.5.4 Proof of Lemma 3.2

We now prove an upper-bound on the run time for Algorithm 5, which
we restate here.

» Lemma 3.2. Fix constants € € (0,1), ¢1,¢2 € [0,1] and m = 0. Then
Algorithm 5 terminates after @(ng log(#) logrlog n) rounds of adap-
tivity. Furthermore, the query complexity of Algorithm 5 is upper-
bounded as

@’(%log(#)logrlogn). <

Proof. First, note that Algorithm 3 requires no function evaluation,
and it always return a sequence {a;}; of length at most r.

At each step of Algorithm 4, the BINARY-SEARCH sub-routine re-
quires O (log(r)) iterations, sine the set J has size at most r. Each
iteration of this sub-routine requires ¢ (1) rounds of adaptivity, and
© (log(r)) function evaluations. Note also that the while-loop, lines
5-9 of Algorithm 4 terminates after at most @ (¢~ !log n) iterations. In
fact, we have that |X| < n, and that at each iteration the size of the
new set X decreases of a multiplicative factor of (1 — €). Similarly, the
outer while-loop, lines 4-11 of Algorithm 4 terminates after at most
0 (e log(r/pe)) iterations.

Hence, each call of Algorithm 4 requires
0 (mg"zlog(#)log(‘e"1 logr)log n)) rounds of adaptivity. Similarly,
since the BINARY-SEARCH sub-routine requires 0 (nlog(r)) function
evaluations, then the query complexity is as claimed. [

Section 3.5

61

Chapter 3

62

Video Summarization

3.5.5 Proof of Lemma 3.3

We perform the run time analysis for an optimal choice of the param-
eter m. We have that the following lemma holds.

» Lemma 3.3. Fix a constant ¢ € (0, 1), and define parameters m =
1+ [/ (p+1)/2], ¢1 =1, and ¢, = 1/2. Denote with Q* the optimal
solution found by Algorithm 5. Then,

(p+2\/2(p+ D+ 5)[E[FQ9].

Furthermore, with this parameter choice Algorithm 5 terminates after
O (g log nlog(#) log r) rounds of adaptivity.

1-

£
OPT <
(1-¢)?

Its query complexity is O (% log nlog(#) log r). <

Proof. We start with the approximation guarantee. Denote with Q*
an approximate solution found by Algorithm 5, and let OPT be the
optimal solution for Problem 3. Then, from Theorem 3.2 we get

1+&(p+1)
1-e?(m-1

OPTSm()+2)E[f(Q*)]

Substituting m = 1+ [/(p + 1)/2] and rearranging yields
|2 Jet)
< (11_+;)2 (p+2(\/§+ 1))[E[Q9]

1
l1+e¢ p+1 N
+(1_£)2((p+1)(\/ 5) +3)[E[f(Q) |

OPT =

Run Time Analysis for p-Extendable Systems

B 1+8(p+2y/2(p+1)+5)

(1-¢)?

E[f@9].

Hence, the claim on the approximation guarantee follows. The upper-
bounds on the adaptivity, depth, and total number of calls to the
valuation oracle function follow directly from Lemma 3.2. [

3.6 Run Time Analysis for p-Extendable
Systems

3.6.1 Overview of the Main Results

In this section, we perform the theoretical analysis for the REP-SAMPLING,

when maximizing a non-monotone submodular function under a
p-extendable system side constraint, as in Problem 4. We prove that,
with different sets of input parameters, our algorithm has adaptivity
and query complexity that is not dependent on p. Again, all proofs
are deferred to the appendix. The following theorem holds.

» Theorem 3.3. Fix parameters € € (0,1), m=1, ¢; = (p+1)7}, and
@2 € [0,1]. Denote with Q* the output of Algorithm 5. Then,

(1+&)(p+1)>? .
OPTS—p(l_E)Z E[f(Q")].

With this parameter choice, Algorithm 5 terminates after
0 (¢ %log nlog(%)logr) rounds of adaptivity, and it requires

o (E% lognlog(%)log r) function evaluations. <

We give a proof of this theorem later on in this section. Before
discussing the proof of Theorem 3.3, we introduce additional notation
and lemmas. The proof of Theorem 3.3 is based on the work of (Moran
Feldman, Harshaw, et al. 2017), together with the fact that Algorithm 4

Section 3.6

63

Chapter 3

64

Video Summarization

1. Op:=9;

2. ifv; € Q,then O; < orPT\ (T; Uj.;}) O;) is a set of minimum
size such that (OPT \ (u;'.:OOj)) uT; e.;

3. if v; €Q, Xy, =1, and v; € 0PT\ (U[;0;), then O; = {v;};

4. ifv; ¢ Qand v; € OPT\ (Uj.":%)Oj), orif X,; =0, then O; = @.

Figure 3.1: A recursive definition of the sets {O;}, used for the run time
analysis of Algorithm 5, in the case of p-extendable systems (see Theorem
3.3).

yields expected marginal increase lower-bounded by the best possible
greedy improvement, up to a multiplicative constant. We remark
that Lemma 3.3 also holds when side constraints are p-matchoids
and the intersections of matroids, since p-extendable systems are a
generalization of both.

We introduce additional notation, that will be used to prove Theo-
rem 3.3, as well as all preliminary lemmas. First of all, since m =1, we
need not specify the index of the input search space V; and solution
Q; of Algorithm 4, and we simply use the notation V =V; and Q = Q;.
Again we define |V| = n. Furthermore, we define an ordering of the
points {v;}; =V, with v; the i-th point sampled by Algorithm 4 during
run time. All points of V that are not sampled during run time, are
placed at the end of the sequence {v;}; in random order. We also
define the sets T; = {vy,..., v;} N Q, and we define the sequence {vlfk}
as

V] = m fri,).

ax
{veV\T;_1: T;1uved}

Run Time Analysis for p-Extendable Systems

For each point v € V, denote with X, an indicator function such
that X, = 1 if v is sampled as part of any random feasible sequence
{ay,..., ap} during run time, and X, = 0 otherwise. We also consider
asequence {O;}] , of sets O; €V defined recursively as in Figure 3.1.
We define the set O := (oPT\ (U} O0;)) UT, = (OPT\ (U ,0;)) U Q.
It can be proven that the set O as defined above, can be iteratively
defined with a greedy algorithm that outputs a constant-factor ap-
proximation as in Theorem 3.3 (Moran Feldman, Harshaw, et al. 2017).
Hence, the proof of Theorem 3.3 extends an argument based on prop-
erties of a greedy algorithm for Problem 4 to adaptive sampling algo-
rithms.

In order to prove Theorem 3.3, we use the following well-known
result.

» Lemma 3.9 (Lemma 2.2 in (Buchbinder, Moran Feldman, Naor,
etal. 2014)). Let Q €V be a set such that each element appears in Q
with probability at most k. ThenitholdsE[f(U) | = (1 - k) f(®). <=

In order to prove Theorem 3.3 we use three additional lemmas.
These lemmas use the notation introduced earlier in this section.

» Lemma 3.10. Fix all random decisions of Algorithm 4. Then it
holds

n
FQ+10\Ql8o = f(QuorPT) - Y_10;\ Q| fr,_, ().
i=0

» Lemma 3.11. It holds

* p
Ey, [10:\QIfr,, (v])] < (1 —e)zm[Eyi [X, fri ()]

Section 3.6

65

Chapter 3

66

Video Summarization

» Lemma 3.12. It holds

n

Y E[10:\QIfr, ()] < p-e’E[fQ)].

i=1

We prove these lemmas in Section 3.6.2. We now have all necessary
tools to prove the main guarantee for p-extendable systems.

Proof of Theorem 3.3. Combining Lemma 3.10, taking the expected
value, and combining with Lemma 3.12 we get

p+1
(1-¢)?

Denote with {a;}; the points of Q in the order that they were added to
Q. From Lemma 3.5 and submodularity, we have that

Ea, | fiar,..a;_y3(ai) | = 0, for all points a; added to Q. It follows that
E[f(Q)]| =E[f(aop) |, with ay the first point added to Q. Hence, from
the definition of §y, and since |0\ Q| < r due to feasibility, we get
e(p+DE[f(Q) | =E[10\ QI]. Substituting in (3.7) we get

E[f(Q)]+E[I0\QIsp1=E[f(QuUoPT)]. (3.7)

(p+1)(A+e)

(1—¢)2 E[f(Q | =E[f(QuoprT) |.

To conclude the proof, we observe that the function g(S) = f(SUOPT)
is a submodular function. Since each element of V appears in Q w.p.
at most (p+1)"!, then by Lemma 3.9 we get

p

_ p -
E[f(QuoprT) | =E[g(Q) | = p+1g(¢) p+10PT.

The claim follows. []

Run Time Analysis for p-Extendable Systems

3.6.2 Proof of the Preliminary Lemmas

We prove all additional lemmas, that are then used to prove Theorem
3.3. In this section, we use the notation introduced in the previous
section. We first prove the following result.

» Lemma 3.10. Fix all random decisions of Algorithm 4. Then it
holds

n
FQ) +10\Ql8 = fF(QuorT) -) |0\ QI fr, , (7).
i=0

Proof. First, we prove that it holds
FE@)+10\S|6p = f(O). (3.8)

To this end, note that since (OPT \ (U?ZOOL')) uQ € .#, then it holds
{riuQe 7 forall ve O\ Q. Hence, by the termination criterion of
Algorithm 4, we have that fq(v) <. Hence,

FO<f@+ Y, fa) = f(Q)+10\Ql,
reO\Q
where we have used submodularity. Then (3.8) follows.
Next, we prove that it holds

n
f(0) = f(QuUOPT) — ZIO,- \ QI fr, , (9. (3.9)

i=1
Note that the claim of this lemma follows by combining (3.8) and
(3.9).

To prove (3.9), we first observe that the sets O; \ 2 are mutually
disjoint, and we can write O = (QU OPT) \ (U;?:l (0;\Q)). Using this

Section 3.6

67

Chapter 3

68

Video Summarization

equality, we have that
n
fO = fl@Quorn) -}, Fravormwizhoa) @i\ D)
i=1 =

> f(QuoPT) -) fr, ,(0;\Q)
i=1

n

> fQQuorn -y > fr,,),

i=1ve0\Q

where the first equation is the telescopic sum, the second one uses
submodularity, together with the fact that T;_; < Q, and the third one
use submodularity again. Then (3.9) follows from the definition of

*

v;. n
Next, using Lemma 3.10 we prove the following result.

» Lemma 3.11. It holds

E,,[10,\QIfr, ()] = —e)zﬁm [2, fr,, v].

<

Proof. We first observe that if &; = 0, then the claim holds since
|0; \ Q| = @. Hence, we prove the claim by conditioning on the event
{Zy; = 1}. In this case, the point v; is added to Q w.p. (p + DL

If v; is not added to the current solution, then |O;| < 1, and condi-
tioning on the event {v; ¢ Q} we get

[Edi[|Ol \QlfTi_l(l);) | %Ui =1, Vi €'(2']
= [Eai[‘%‘vif-ri—l(v;k) | Zv; =1, v; G:Q]
p

S—p+1Eai[%vifTi_l(U;k)|3{Ui =1],

where we have used that Pr(a; ¢S)=1-(p+ 1)~1. Furthermore, if the

Run Time Analysis for p-Extendable Systems

solution v; is added to Q, then the set O; has size at most |O;| < p,
since .# is a p-extendable system. Hence,

[Eal-[|Ol\Q|le_l(vl*) |‘%'l/i = 17 Ui € Q]
< pEg, | X, fri, W) 1 Xy, =1, v,€Q]

_p *
< p+1Eai[%vifTi_l(vi)|%vi -1].

The claim follows combining the two chains of inequalities above,
together with Lemma 3.4 and Lemma 3.5. u

We also need the following lemma, to prove the main theorem.

» Lemma 3.12. It holds
Y E[10:\QIfr, (D)] < p(l-)E[f(Q)].
i=1

<

Proof. For each v; €V, let 4,, be a random variable whose value is

equal to in the increase in the value of the current solution when

v; is added to it. Note that if v; yields &, = 0, then ¥,, = 0 be-

cause it cannot be added to the current solution. Hence, it holds
" [E[%y, | =E[f(Q)]. Then,

Ey; [G,] =Pr(vi e QE,, [X fr,_, i)]

1
= mEai[%vifTi_l(Vi)].

The claim follows using Lemma 3.11, and using the law of total prob-
ability and linearity of the expected value. [

Section 3.6

69

Chapter 3

70

Video Summarization

3.7 Complexity and Adaptivity of the
Independence Oracle

We conclude our analysis with a general discussion on the perfor-
mance of Algorithm 5 in the number of calls to the independence
oracle for the p-system constraint. As discussed in Section 3.4, at
each adaptive round our algorithm calls Algorithm 3 to build a ran-
dom feasible sequence. This procedure requires to find a maximum
independent set.

Finding a maximum independent set requires calls to the indepen-
dence oracle, which takes as input a set S, and returns as output a
Boolean value, true if the given set is independent in .# and false
otherwise. These oracle evaluations are typically time-consuming,
since they require to evaluate feasibility with respect to complex side
constraints. Hence, a fast algorithm for this problem has good per-
formance in terms of rounds of independence calls to the oracle
function. The following lemma holds.

» Lemma 3.13. Fix parameters € € (0,1), m = 1, and ¢, 92 € [0,1].
Then Algorithm 5 requires expected © (mg‘z/ﬁ log(#) logrlog n) rounds
of independent calls to the oracle for the p-system constraint. Fur-

thermore, the total number of calls to the independence system is
3/2
@’(%log(#)logrlogn). <

In order to prove this Lemma, we use the following well-known
result.

» Theorem 3.4 (Theorem 6 in (Karp et al. 1988)). Algorithm 3 ter-
minates after @ (/1) steps. <

Combining Theorem 3.4 with Lemma 3.2, we prove Lemma 3.13 as
follows.

Proof of Lemma 3.13. We first observed that the independence oracle
for the p-system is called by Algorithm 3, and also by Algorithm

Complexity and Adaptivity of the Independence Oracle

4. Since at each iteration of Algorithm 3, queries to the oracle for
the p-system are independent, the from Theorem 3.4 it follows that
Algorithm 3 requires 0/(y/r) rounds of independent calls to the oracle
for the p-system. Furthermore, all calls to the independence oracle
for the p-system in Algorithm 4 are independent. Combining these
observations with Lemma 3.2 it follows that Algorithm 5 requires
@(m\/ﬁ/ g2 log(n)log(r/ 8)) rounds of independent calls to the oracle
for the p-system. The claim follows, since at each round at most € (n)
calls to the oracle for the p-system are executed in parallel. [

Note that the bound on the rounds of independent calls to the
independence oracle, as in Lemma 3.13 is sub-linear, but not poly-
logarithmic in the problem size. The reason is that Algorithm 3 re-
quires @(y/n) rounds of independent calls to the oracle for the p-
system. We are not aware of any algorithm that finds a base in less
than @(y/n) rounds. Furthermore, it is well-known that there is no
algorithm that obtains an approximation guarantee that is constant
in the problem size for Problem 3, than Qnl'3 steps of indepen-
dent calls to the oracle for the p-system constraint (see (Balkanski,
Rubinstein, et al. 2019; Karp et al. 1988)).

For a p-system .#, the rank of a set S is the maximum cardinality of
its intersection with a maximum independent set in .#. Given access
to an oracle that returns the rank of a set in .#, it is possible to design
an algorithm that finds a maximum independent set of a p-system in
0 (log nz) rounds of independent calls to the rank oracle (see (Karp
et al. 1988)). However, this work focuses on general constraints where
the rank of a set is not known.

Section 3.7

71

Chapter 3

72

Video Summarization

B st

e
—

|
{
solution quality

10° e — =
| —F—ranTom xjrzﬁi——'
—F— REPEATEDGREEDY/
FASTSGS =
— T REP-SAMPLING (1) 10!
SAMPLEGREEDY
REP-SAMPLING (2)

=)
|

)
%
|
[
Kk
\
rounds of adaptivity
) B
% >
- N
o o
IN(
|]
l‘\#; .
1 =8
] ="
—H
T
(l
/M
l\n

calls to the oracle function

11 14 17 20 23 27 32 35
parameter p for the p-system

11 14 17 20 23 27 32 35
parameter p for the p-system

11 14 17 20 23 27 32 35
parameter p for the p-system

Figure 3.2: Results for the experiments on Video Summarization on movie
segments taken from FLIC (Sapp and Taskar 2013). Each plot shows the
average performance over segments with fixed p. Error bars correspond to
the best and worst case. Note that the y-axis in the two leftmost plots uses
a logarithmic scale. The FASTSGS uses parameters ¢ = |2+ 1/p+1] and
€ =0.1; the REP-SAMPLING (1) uses parameters € =0.1, m=1+[+/(p+1)/2],
@1 =1, ¢2 = 0.5; the REP-SAMPLING (2) uses parameters € = 0.01, m =1,
p=0+p) =1

3.8 Experiments

3.8.1 Benchmarks

In this section, we demonstrate experimentally that the REP-SAMPLING
has superior performance that several other heuristics, suitable for
Video Summarization. As discussed in Section 3.1, Video Summariza-
tion consists of choosing a sequence of frames that gives a descriptive
overview of a given video. In our set of experiments, we implement
the REP-SAMPLING as describe in Algorithm 5. We always test our
algorithm against these algorithms:

The FANTOM algorithm. This algorithm, which iterates a greedy
algorithm multiple times, is studied in (A. Gupta et al. 2010) and
(Mirzasoleiman, Badanidiyuru, and Karbasi 2016).

Experiments

The REPEATEDGREEDY algorithm. This algorithm consists of it-
erating a greedy algorithm multiple times (Moran Feldman, Harshaw,
etal. 2017). It uses Algorithm 1 in (Buchbinder, Moran Feldman, Naor,
et al. 2015) as a sub-routine.

The FASTSGS algorithm. This algorithm is studied in (Moran
Feldman, Harshaw, et al. 2020), and it is essentially a fast implementa-
tion of the SIMULTANEOUSGREEDYS (Moran Feldman, Harshaw, et al.
2020). This algorithm updates multiple solutions concurrently, and it
picks the best of them.

The sAMPLEGREEDY algorithm. This algorithm is specifically
designed to handle p-extendable systems (see (Moran Feldman, Har-
shaw, et al. 2017)). This algorithm samples points independently at
random, and then it builds a greedy solution over the resulting set.

We test the REP-SAMPLING against these algorithms, since they can
be considered the state-of-the-art for Video Summarization.

3.8.2 Results

We select a representative summary by maximizing the function
logdet; (S), which is non-monotone and submodular. We impose
the following additional side constraints. First, we impose an upper-
bound on the maximum number of frames of each summary. Then,
we partition each video into segments, and define a partition matroid
to select at most ¢; frames in each segment j. Following (Moran
Feldman, Karbasi, et al. 2018; Mirzasoleiman, Jegelka, et al. 2018b),
we also use a face-recognition tool to identify actors in each movie,
and select a summary containing at most k; frames showing face
i. This additional constraint corresponds to a p-system .# = {S <
V: SNVl < k;}, with V; all frames containing face i. The parameter
p is estimated by counting the total number of distinct faces i that
appear in more than k; frames. In our experiments, the parameters

Section 3.8

73

Chapter 3

74

Video Summarization

k; are always set to a fixed constant for all videos. Hence, the only
variable that affects p is the total number of distinct faces in each
movie.

For our experimental investigation, we use movies from the Frames
Labeled In Cinema (FLIC) data-set (Sapp and Taskar 2013). We con-
sider all movies in this data-set with at least 200 frames, as to high-
light performance when dealing with large problem size. We consider
various parameter choices for the REP-SAMPLING. These parameter
choices are as in Lemma 3.3 and Theorem 3.3.

The results are displayed in Figure 3.2, where we describe the pa-
rameter choice for each algorithm. For each non-deterministic al-
gorithm, results are the sample mean of 100 independent runs. We
observe that, for different parameter choice, our algorithm outper-
forms FANTOM and the FASTSGS, and it has better adaptivity than the
greedy algorithms. The solution quality for the SAMPLEGREEDY and
REP-SAMPLING, with parameters as in Lemma 3.3, is worse on these
instances.

Feature Selection

This chapter is based on a conference paper titled “Fast Feature Se-
lection with Fairness Constraints”, by Francesco Quinzan, and Rajiv
Khanna, Sarel Cohen, Moshik Hershcovitch, Daniel G. Waddington,
Tobias Friedrich, Michael W. Mahoney (Quinzan, Khanna, et al. 2022).

We study the fundamental problem of selecting a few features for a
given modeling problem, while satisfying additional side constraints.”
This problem is computationally challenging on large datasets, even
with the use of greedy algorithm variants. To address this challenge,
we extend the adaptive query model, recently proposed for the greedy
forward selection for submodular functions, to the faster paradigm
of Orthogonal Matching Pursuit for non-submodular functions. Our
extension also allows the use of downward-closed constraints, which
can be used to encode certain fairness criteria into the feature se-
lection process. The proposed algorithm achieves exponentially fast
parallel run time in the adaptive query model, scaling much better
than prior work. The proposed algorithm also handles certain fairness
constraints by design. We prove strong approximation guarantees
for the algorithm based on standard assumptions. These guarantees
are applicable to many parametric models, including Generalized
Linear Models. Finally, we demonstrate empirically that the proposed

7 We recognize that ensuring fairness in any machine learning model is a com-
plicated problem. Here, we consider some of the fairness constraints proposed
in the literature. How these and related results fit within applied data science
pipelines is a complicated and open challenge. Our theoretical results are appli-
cable more generally, and there may also be other notions of fairness which do
not fall within our theoretical framework.

75

Chapter 4

76

Feature Selection

algorithm competes favorably with state-of-the-art techniques for
feature selection, on real-world and synthetic datasets.

4.1 Feature Selection as an Optimization
Problem

Feature Selection can be framed as follows. Given a function /: R” —
R expressing the goodness of fit for a given model, we search for a
set of features S maximizing the function

£8):=18") - 10). 4.1)

Here, 0 represents the n-dimensional zero vector, and 3) is a vector
maximizing /(-) with non-zero entries corresponding to the features
in S. If we denote by .# the set of all acceptable solutions that satisfy
the side constraints, then the feature selection optimization problem
with side constraints can be formalized as

argmax f(S) = argmax [(3®)-1(0), 4.2)
Sc(n]: Se.¥# Sc(n]: Se¥

where [n] is the index set of all the features.

Typically, .# corresponds to an r-sparsity constraint, i.e., a solu-
tion S is feasible if it contains at most r features. Several algorithms
have been proposed for feature selection under sparsity constraints.
Examples include the Lasso, algorithms based on the forward step-
wise selection (Elenberg, Khanna, et al. 2018; S. Qian and Singer
2019), algorithms based on the Orthogonal Matching Pursuit (Elen-
berg, Khanna, et al. 2018; Needell and Tropp 2010; Sakaue 2020),
forward-backward methods (Jalali et al. 2011; Liu et al. 2014), Pareto
optimization (C. Qian, C. Bian, et al. 2020; C. Qian, Y. Yu, et al. 2015),
Exponential Screening (Rigollet and Tsybakov 2010), and gradient-
based methods (Jain et al. 2014; Yuan et al. 2017).

Feature Selection as an Optimization Problem

The aforementioned algorithms, however, do not take into account
additional side concerns such as fairness, which is crucial when de-
ploying machine learning systems in the real world. Recently, there
has been a growing effort towards developing fair algorithms for sev-
eral fundamental problems, such as regression and classification
(Agarwal, Beygelzimer, et al. 2018; Michael Feldman et al. 2015; Grgic-
Hlaca, Zafar, K. P Gummadi, et al. 2018; Kim et al. 2018; Zafar, Valera,
Gomez-Rodriguez, and K. P. Gummadi 2017b), matching (Chierichetti
etal. 2019), and summarization (Celis et al. 2018; Halabi et al. 2020).
Motivated by this line of research, we consider the following research
question:

How can we efficiently perform feature selection,
while taking into account additional constraints such as fairness?

We address this question by studying the optimization problem (4.2)
under general side constraints .#, that can be used to enumerate
notions of fairness. Our approach is motivated by the observation
that several definitions of fairness can be incorporated in the learning
process as additional side constraints (Agarwal, Beygelzimer, et al.
2018; Agarwal, Dudik, et al. 2019; Chierichetti et al. 2019; Donini
et al. 2018; Grgic-Hlaca, Redmiles, et al. 2018; Grgic-Hlaca, Zafar,
K. Gummadi, et al. 2016; Grgic-Hlaca, Zafar, K. P. Gummadi, et al.
2018; Halabi et al. 2020; Woodworth et al. 2017; Zafar, Valera, Gomez-
Rodriguez, and K. P. Gummadi 2017b).

To this end, we provide a novel algorithmic result based on the
paradigm of matching pursuit for Problem (4.2), which is much faster
than previously known techniques in the adaptive query model. Our
framework also allows for certain notions of fairness in the learning
process, via a reduction to the p-system side constraints (see Section
4.2.4). We analyze our approach theoretically, and also present con-
vincing empirical evidence in favor of our approach in the sequel.
Our theoretical guarantees are applicable more generally, and we use
the fairness constraints as an illustrative real-world application. At

Section 4.1

77

Chapter4 Feature Selection

the same time, we also recognize that quantifying the full meaning
of the notion of fairness with its societal context as understood by
human beings may be hard to achieve through mathematical for-
malism (Selbst et al. 2019). As such, p-systems may not explicate all
current or future codifications of fairness. Our claim is not to solve the
problem of fairness itself, but rather providing a theoretically sound
algorithm and analysis for some of its current manifestations, with the
hope of serving as a blueprint for encouraging further developments
along similar lines in the future.

Optimization problems as in (4.2) under general side constraints
are computationally challenging in practise. A major bottleneck lies
in the evaluation of 3® for a given set S, since this operation requires
to re-train the model onto every candidate set S. Another challenge
is enforcing the side constraint .# that encodes the selection criteria,
except in certain trivial cases where the protected classes are known a
priori (Beutel et al. 2019; Lahoti et al. 2020). In this work, we propose
an algorithm suitable for Problem (4.2), that is efficient with respect
to these computational challenges. We propose a novel matching
pursuit algorithm for the constrained feature selection problem (4.2).
This algorithm uses oracle access to the gradient VI(3®)), and to an
oracle for the evaluation of the feasibility of an input solution set. This
oracle model is well-aligned with previous related work (Elenberg,
Khanna, et al. 2018; Sakaue 2020). Our algorithm converges after
poly-logarithmic rounds in the recently proposed adaptive query
model. In each round, calls to the oracle functions can be performed
in parallel, resulting into a dramatic speed-up.

Our algorithm is based on a general technique called adaptive se-
quencing, that was recently proposed for submodular functions (Balka-
nski, Rubinstein, et al. 2019; Breuer et al. 2020). However, previous
adaptive sequencing algorithms fail on Problem (4.2).

The main theoretical contributions of this paper are two-fold: (a)
We extend the adaptive query model to a class of non-submodular
objectives using the paradigm of gradient based pursuit algorithms,

78

Feature Selection as an Optimization Problem

(b) we incorporate general downward-closed constraints in the opti-
mization process beyond the standard sparsity constraints. Our main
result can be stated as follows.

» Theorem 4.1 (main result, informal). Denote with OPT the global
maximum of a function I(-) as in (4.2). There exists a randomized
algorithm that outputs a set of features S* such that

ELBE)I-10) 1

e d (1 — 2
BT 1+p(1 exp{-a(l—¢&)}),

forall 0 < € < 1. Here, p is a parameter that depends on .#, and «a is
a parameter that depends on [. For n total number of features, this
algorithm uses 0 (8_2 log n) rounds of calls to VI (ﬂ(S)). Furthermore,
this algorithm uses expected @(¢~2y/rlogn) rounds of calls to the
oracle for the feasibility of an input solution set, where r is the largest
size of a feasible solution. <

In this section, we always denote with OPT the global maximum of
the optimization problem, and with OPT any solution set such that
OPT = E[I(3°")] — 1(0). To the best of our knowledge, our algorithm
is the fastest known algorithm for the general setting of maximizing
non-submodular functions with side constraints, with provable guar-
antees and strong empirical performance (see Section 4.7). (S. Qian
and Singer 2019) propose another algorithm for maximizing non-
submodular functions that converges after poly-logarithmic rounds.
However, their algorithm cannot handle general side constraints .#
by design. Hence, it is unsuitable for settings when notions of fairness
are to be incorporated in the feature selection process. Furthermore,
for the standard r-sparsity constraint, their approximation guarantee
is worse then ours (see Theorem 4.4).

Section 4.1

79

Chapter 4

80

Feature Selection

4.1.1 Technical Overview

In our analysis, we face two major technical challenges. The first chal-
lenge is that of re-purposing the adaptive sequencing for functions
that are not submodular, without a significant loss in the approxi-
mation guarantee. Adaptive sequencing has been so far employed
only for maximizing submodular functions. Interestingly, it is known
that standard adaptive sampling techniques do not guarantee con-
stant factor approximation for weakly or differentially submodular
functions (S. Qian and Singer 2019), which are typically invoked for
feature selection theoretical studies (Elenberg, Khanna, et al. 2018).

The second challenge consists of integrating a constrained selec-
tion process based on orthogonal projections in the above adaptive
sequencing framework. Common objective functions for feature se-
lection do not have certain desirable properties (e.g. an antitone
gradient) and the standard analysis for adaptive sequencing fails in
our setting. To resolve these issues, we prove a new connection be-
tween gradient evaluations of functions that are restricted strong
concave, and their marginal contributions, which may be of inde-
pendent interest. This connection allows us to bound the gradient
evaluations in terms of a discrete function, which is in turn used in
the analysis to obtain the desired approximation guarantees. See
Theorem 4.4 for the formal result.

4.1.2 Motivating Example

In this section, we motivate our analysis by showing that previous
algorithms based on adaptive sequencing do not work for feature
selection.

We illustrate this with an example, showing that adaptive sampling
fails. To this end, we consider the idealized algorithm proposed by
(Breuer et al. 2020), as presented in Algorithm 6. This algorithm is
based on (Balkanski, Rubinstein, et al. 2019). Following (Breuer et

Feature Selection as an Optimization Problem

al. 2020), we refer to this algorithm as the FAST. Starting from the
empty set, the FAST generates at every iteration a uniformly random
sequence {ay, ..., ai} of the elements X not yet discarded. This se-
quence can be sampled uniformly at random, or using the RNDSEQ
sub-routine. Afterwards, the FAST filters elements that have a high
marginal contribution, when added to S, and it determines the pre-
fix of {ay,..., a;} that is added to the current solution S. This prefix
has the property that there is a large fraction of elements in X with
high contribution to the current solution S. To find this prefix, the
FAST uses a standard binary search sub-routine, which we refer to
as B-SEARCH. Note that the B-SEARCH sub-routine only evaluates
contributions with respect to a set R of size m, sampled uniformly at
random from X, using the SAMPLE sub-routine.

Following and example provided by (Elenberg, Khanna, et al. 2018),
we show that the FAST fails on a simple linear regression task with
three features. For a fixed parameter z > 0, consider the following
variables:

y=11,0,017
x1 =1[0,1,0]7

X, = [z,V1-22,01T
X3 = [22,0,V/1—422]T

Note that all variables have unit norm. Our goal is to choose two of
the three variables {x;,X»,x3} that best estimate y, with respect to the
R? objective. To this end, we introduce additional notation. For a
given index set S < [3], we denote with Xs the matrix whose columns
consists of the features indexed by S. For instance, for S = {1,3} it
holds

0 2z
0 V1-4z2

Section 4.1

81

Chapter 4

82

Feature Selection

With this notation, we define the objective function for our problem
as

£(9) = R*(B®) - R*(0) = (y"Xs) X Xs) ' XL y), (4.3)

with R?(-) the R? objective evaluated on the model for an input pa-
rameter vector ﬁ(s). Using this formula, one can easily see that it
holds

f@ =0 faL2h=1
fu2h =2 (1,3 =42°
f3h =47 fU2,3) =(6z"-8zH(1-4zH7"

Clearly, the optimal solution is f({1,2}). However, on this instance
the FAST outputs the solution S = @, attaining an f-value of f(S) = 0.
The following lemma holds.

» Lemma 4.1. Consider the FAST optimizing the function f(S) as in
(4.3), over sets S < [3] of size at most |S| < 2. Then, for any constant
€ > 0 and parameter z > 0 sufficiently small, the FAST outputs the
solution S = @. <

Proof. We first observe that aslong as S = @, the FAST sets t — (1 -
€)/2, since OPT =1 (see Line 4 of Algorithm 6). Assuming that it holds
z?> < (1 —¢€)/2, then each singleton s € [3] yields ¢ > f({s}). Hence,
with that choice of no point s can be added to the current solution,
and the FAST terminates after ¢! iteration, by returning the empty
set.]

4.2 Preliminaries

We denote with n the number of features, i.e., the dimension of the
domain of I(:), and we define [n] := {1,2,...,n}. For any s € [n], we
denote with e the unit vector, with a 1 for the coefficient indexed by
s, and 0 otherwise. Feature sets are represented by sans script fonts,

Preliminaries

i.e., S, T. Vectors are represented by lower-case bold letters as x, y,
and matrices are represented by upper-case bold letters, i.e., X, Y.
Similarly, feature vectors are represented by Greek lower-case bold
letters, and covariance matrices are represented by Greek upper-case
bold letters, as 3 and X respectively. For a feature set S, we denote
with 8® a vector maximizing I(-) with non-zero entries indexed by
the set S. For a feature set T and a parameter vector 3, we define
VI(B)T == (VI(B),) seTe€s). We denote with OPT the optimal value
attained by the function f(-) as in (4.2). We denote with .# the p-
system side constraint, and with r its rank, as defined in Section 4.2.1.
The notation Cond(T) denotes the set {se [n]\T: TuU{s} €.#}.

4.2.1 Setup

We study optimization tasks as in Problem (4.2) under some addi-
tional assumptions on [/(-) which are often satisfied in practical ap-
plications (see Section 4.2.3). These assumptions hold on r-sparse
subdomains.

» Definition 4.1 (Sparse Subdomain). A r-sparse subdomain is a set
ofthe form Q, = {(x,y) e R"xR": |xz|o <71 |lyllo =1 lx—ylo<T1}. <=

Using this definition, we can define the notions of strong concavity
and smoothness, as follows.

» Definition 4.2 (Restricted Strong Concavity, Restricted Smooth-
ness). A function [(-) is said to be restricted strong concave with pa-
rameter m and restricted smooth with parameter M on a subdomain
Q, iff, for all (x,y) € Q, it holds that

m M
—Elly—mllz = (y) - l(x) - (Vi(x),y—x) = —?Ily—mllz.

Section 4.2

83

Chapter 4

84

Feature Selection

We say that [is (M, m)-(Smooth, Restricted Concave), if it fulfills
the conditions as in Definition 4.2 with parameters M and m.

We are specifically interested in the problem of maximizing a func-
tion [(-) that is restricted strong concave and restricted smooth under
additional side constraints, called p-systems. These side constraints
are very general, and they can be used to encode several notions
of fairness (see Section 4.2.4 for details). p-systems are defined in
Section 3.2.1. However, we re-state the definition here. p-systems
are collections of subsets of the ground set [n], that fulfill additional
properties. In order to give an axiomatic definition of these prop-
erties, we introduce additional terminology. Given a collection of
feasible solutions .# over a ground set V and a set T < V, we denote
with . |7 a collection consisting of all sets S < T that are feasible in
. Furthermore, a base for .# is any maximum feasible set U € .#.

» Definition 4.3 (p-Systems). A p-system .# over [n] is a collection
of subsets of [n] such that

* ey

e foranytwosetsS<cTc [n],if Te.# thenSe.g;

e foranyset T < [n] and any bases S,U € .# |t it holds |S| < p|U].
<

The second defining axiom is referred to as subset-closure or
downward-closed property. We define the rank r of a p-system .# as
the maximum cardinality of any feasible solution T € .#. We define
Cond(T) as the set of all points s € [n] \ T such that T u {s} € .#. Note
that a set T is a maximum independent set if it holds Cond(T) = @.

Armed with these definitions, we can re-visit Problem 4.2, where the
set of feasible solutions .# is a p-system, and [(-) is restricted strong
concave and smooth under a r-sparsity constraint, is a special case
of Problem 4.2, by setting .# := {T < [n]: |T| < r}. Hence, our work

Preliminaries

generalizes previous related works (Chierichetti et al. 2019; Elenberg,
Khanna, et al. 2018; Sakaue 2020).

We assume access to an oracle that returns Vl(ﬁm), for a given
input set T, and we assume access to the independence oracle of the
underlying p-system .#. The independence oracle takes as input a
set T, and returns as output a Boolean value, true if T € .# and false
otherwise.

4.2.2 Relationship to Generalized Submodularity

Consider a function [/ that is restricted smooth and restricted strong
concave . It is well known that the corresponding function f as in
(4.1) has weak diminishing return properties. The first of these di-
minishing returns properties is called weak submodularity, and it
was first introduced by (Das and Kempe 2011), to study statistical
subset selection problems. The second property is called differen-
tial submodularity. Differential submodularity was introduced by (S.
Qian and Singer 2019) to study a fast algorithm for statistical subset
selection in the adaptive query model. Differential submodularity
generalizes the notion of submodularity, but it is less general than the
notion of weak submodularity.

Weak submodularity. Functions that exhibit weak submodular-
ity, i.e., weakly submodular functions, are defined in terms of the
submodularity ratio, as follows.

» Definition 4.4 (Weak submodularity, Definition 2.3 of (Das and
Kempe 2011)). LetL,S < [n] be two disjoint set, and consider a func-
tion f: 2" — Rs(. The submodularity ratio of L w.r.t S is defined

as
| TjeslfLUGN - (L)
[TRV R

The submodularity ratio yy of a set U < [n] with respect to k is

Section 4.2

85

Chapter 4

86

Feature Selection

defined as

YU,k = YL,S-

min
{L,S: LnS#@,L<cU,|S|<k}

We say that f is y- weakly submodular if it holds yy x = y for all sets
Ucn]. <

There is a well-known connection between weak submodularity
and Problem 4.2. This connection was discovered by (Elenberg,
Khanna, et al. 2018), and it can be formalized as follows.

» Theorem 4.2 (Theorem 1 by (Elenberg, Khanna, et al. 2018)). De-
fine f asin (4.1), with a function [that is (my|+x, Mju|+«)-(strongly
concave, smooth) on Qy+, and M|U|+1 smooth on Qy+1. Then, the
submodularity ratio yy of f is lower-bounded as

oL = mMl+k _ Mul+k
UL,k = —= = .
Mu+1 Mk

<

Differential submodularity. Differential submodularity is a no-
tion of intermediate generality. That is, all submodular functions are
differentially submodular, but not all weakly submodular functions
are differentially submodular. This definition is useful for studying
algorithms in the adaptive query model. Differential submodularity
is defined as follows.

» Definition 4.5 (Differential submodularity, Definition 1 by (S. Qian
and Singer 2019)). A function f: 2"l — R, is a-differentially sub-
modular, if there exists two submodular functions £, g s.t. for any sub-
sets L,S < [n] it holds gs(L) < fs(L) < hs(L), and gs(L) = ahs(L). <

Essentially, a function f is differentially submodular, if its marginal
contributions can be bounded by submodular functions. It is well-
known that restricted strong concavity and smoothness imply differ-
ential submodularity. The following theorem holds.

Preliminaries

» Theorem 4.3 (Theorem 6 by (S. Qian and Singer 2019)). Define f
asin (4.1), with a function / that is (m, M)-(strongly concave, smooth)
on Qy,. Then, the objective f is differentially submodular, such that

m|s|+1— Msj+1=
(M= fs(T) < (T),
M|5|+kf5 fs m|5|+kfs
with f<(T) = Xget fo(T). <

4.2.3 Feature Selection for Generalized Linear
Models

Given a set of observations and a parametric family of distributions
{p(-;8)| B e Q}with Q < R", we wish to identify a vector of parame-
ters 3 maximizing the goodness of fit for these observation, according
to a chosen measure /. For generalized linear models, common mea-
sures for feature selection are restricted strong concave and restricted
smooth. We study the log-likelihood and the coefficient of determina-
tion, although analogous results hold for other similar statistics (Das
and Kempe 2011; S. Qian and Singer 2019).

Maximizing the log-conditional. We first discuss results con-

cerning the (M, m)-(smotheness, strong concavity) of the log-conditional

for generalized linear models. Consider a feature matrix X € R”*¢ and
response variable y. Assuming that the response follows a distribution
in an exponential family, the log-conditional can be written as

logpy|X;8) =h (1) - ZX,B) + gy, 1) (4.4)

with Z the log-partition function, and 7 the dispersion parameter. We
give approximation guarantees for the objective

1(B) =logp(y|X; 3)—nlBI5, (4.5)

Section 4.2

87

Chapter 4

88

Feature Selection

for some parameter n = 0. We show that the function [is restricted
smooth and restricted strong concave under various assumptions.
We start discussing the simplest case of a logistic regression. We then
study the general case as in (4.4), under the assumption that / has
a non-zero regularization term. We then conclude with the general
case, i.e., no assumptions on the regularization term.

The log-likelihood function for the logistic regression is defined as

1B = Y yi(Xs, B ~ log(1- eXs), (4.6)
i

with Xg the matrix of all features indexed by S and y; the i-th obser-
vation, i.e., the i-th coefficient of the response y. For this class of
log-likelihood functions, the following result holds.

» Proposition 4.1. The log-likelihood function [for the logistic re-
gression as in (4.6), is (m, M)-(restricted smooth, restricted strong
concave) with parameters

m = min Amin (XiXs) and M := msaxAmax(xg Xs).

<

We now study log-conditional functions as in (4.4), under the as-
sumption that the corresponding objective [has a regularization term
with parameter 1 > 0. We introduce additional notation to this end.
For any feature set T < [n], denote with 221 an operator that takes as
input vectors x € R", and it replaces all indices in [n] \ T of x by 0. For
any vector x € R, we define xT := 227 (x). We consider the following
assumption on the distribution of the features (see (Bahmani et al.
2013)).

For fixed constants r, R > 0, we make the following assumption on
the feature matrix X € R"*P. The rows x of X are generated i.i.d., such
that the following additional conditions hold. For any set T < [p] of
size |T|<r,

Preliminaries

* |xTll2=R;

« none of the matrices Z1E | xx! |7t are the zero matrix.

Following this notation, define

Pmax ‘= MaX Amax(P1CHPT) Pmin = MiN Apnax (PTCHP7),
ITI<k [Tk

with Aax(+) the largest eigenvalue. The following corollary holds.

» Proposition 4.2 (Corollary 4 by (Elenberg, Khanna, et al. 2018)).
Consider a function [as in (4.5), and suppose that > 0. Suppose
that the aforementioned assumption holds with parameters r, R, and
suppose that the number of samples s is lower-bounded as

R(logr+r(+ log% —logd))
Gmin(1+&)log(l+e)—¢

$>

Then, with probability at least 1 — 6 the function [is (m, M)-(smooth,
restricted concave), for all § with at most r non-zero coefficients. The
parameters m and M are defined as m = g(1 + €)(ppax +nand M =1,
with g a constant fulfilling g = max; h™ () Z" (8,x;) for h™1(-), Z(-,")
asin (4.4). <

We conclude by studying log-conditional functions as in (4.4), with
no additional assumption on the regularization term. For simplicity,
we consider functions / as in (4.4) with = 0. However, these results
can easily be extended to the general case. The following lemma
holds.

» Lemma 4.2 (Corollary 2 by (Elenberg, Khanna, et al. 2018)). De-
note with r an upper-bound on the sparsity of the feature sets. Follow-
ing the notation introduced above, suppose that the feature matrix
X consists of samples drawn from a sub-Gaussian distribution with
parameter o and covariance matrix X. Then, for 1 = 0 the function [

Section 4.2

89

Chapter 4

90

Feature Selection

as in (4.5) is (M, m)-(smooth, restricted concave) with parameters

2nr c2o? klogn
M =ay Amax(Z) (3 + —) and m=ay— & ,
s ay s

with high probability, for s > 0 sufficiently large. The constant a,
depends on (02,%) and k; the constant a, yields

a, =maxh ' (1) 2" (8,x;),
13
with h=1(), Z(-,-) as in (4.4). <

Maximizing the R? objective. Consider a linear model with a
normalized response variable y. The R? objective is defined as

Ry =1-E[(y- X.00°]. (4.7)

This function is a popular measure for the goodness of fit. The func-
tion R)Zgy(ﬁ) is restricted strong concave and restricted smooth, with
parameters depending on the properties of the matrix X . Specifically,
given a feature matrix consisting of n features and k observations, the
R? objective with regularization can be written as

1
1(B) = Ryy(B) = 1= 21y =g (X, BN (4.8)

The following lemma, similar to Lemma 4.1, holds.

» Proposition 4.3. The R? objective [for the linear regression as in
(4.8), is (m, M)-(restricted smooth, restricted strong concave) with
parameters

m :=min Amin(X¢Xs) and M := mSaX/lmaX(XST Xs).

Preliminaries

This lemma can easily be extended to the case of an R? objective
with regularization term.

4.2.4 Embedding Fairness via p-Systems

In this section, we describe how certain notions of fairness can be
embedded as p-Systems.We consider procedural fairness to this end.
Procedural fairness selects input features that are used in the deci-
sion process based on factors such as volitionality, reliability, privacy,
and relevance (Beahrs 1991; Kilbertus et al. 2017; Kusner et al. 2017;
Trankell 1973). In this work, we consider measures for procedural
fairness studied by (Grgic-Hlaca, Zafar, K. Gummadi, et al. 2016) and
(Grgic-Hlaca, Zafar, K. P Gummadi, et al. 2018). However, our analysis
is not specific to these definitions. For a given model, features are
selected based on the moral judgement of a set of users %.

The moral judgement of these users defines measures of unfairness
as follows. Denote with 2 the set of all users that considers feature
s fair to use, if it increases the accuracy of a model. The feature-
accuracy unfairness is defined as

(4.9)

wad,u
chc = {TE [n]:1- |ﬂseTg|iws 2l S5}

Here, 6 > 0 is a user-defined parameter, which determines the trade-
off between fairness and accuracy, and g(% SA, 9) is a function that
outputs 2 if s increases accuracy, and % otherwise. Note that this
collection of sets is a p-system as in Definition 4.3. Note also that
evaluations of g require to train the model. We remark that there exist
other definitions for procedural fairness in the literature (Grgic-Hlaca,
Zafar, K. Gummadi, et al. 2016; Grgic-Hlaca, Zafar, K. P. Gummadi,
etal. 2018).

Several other quantitative definitions of fairness can be embedded
as p-Systems, via the reduction-based approach proposed by (Agar-

Section 4.2

91

Chapter 4

92

Feature Selection

wal, Beygelzimer, et al. 2018; Agarwal, Dudik, et al. 2019). This is
true, for example, for Statistical Parity (Agarwal, Beygelzimer, et al.
2018), Equalized Odds (Hardt et al. 2016), and Equality of Opportunity
(Hardt et al. 2016; Kleinberg et al. 2017). However, these definitions
can be incorporated into the learning model directly (Donini et al.
2018; Woodworth et al. 2017; Zafar, Valera, Gomez-Rodriguez, and
K. P Gummadi 2017b), or by implementing wrappers around the
classifier (Hardt et al. 2016; Pin Calmon et al. 2017).

4.2.5 Adaptivity

We evaluate performance using the notion of adaptivity. This notion
was defined in Section 3.2.3. However, we discuss this notion again in
this section. Formally, we can define adaptivity as follows.

» Definition 4.6 (Adaptivity (Balkanski and Singer 2018)). Given
an oracle f, an algorithm is r-adaptive if every query ¢ to the oracle
f occurs at around i € [r] such that g is independent of the answers
f(q" to all other queries ¢’ at round i. <

We evaluate empirical speedup by the adaptivity of the oracle to
evaluate VI(3("). We also evaluate the adaptivity of the indepen-
dence oracle for the p-system .#.

4.3 Algorithmic Overview

Our algorithm, which we call FASTowmp, is displayed in Algorithm 6.
This algorithm is based on a technique called adaptive sequencing
(Balkanski, Rubinstein, et al. 2019; Breuer et al. 2020), which was
recently proposed for maximizing submodular functions.

Say X is the complete set of candidate features, and S is the current
solution. Starting from S — @, the FASToMmp iteratively generates a

Algorithmic Overview

Algorithm 6: FASToMPp

1 S—@;

2 while the number of iterations is less than e and Cond(S) # @
do

3 X —{se[n]: {seF};

s | 1= (1-e)FeIVIB®)7I3 with T < X maximizing

IVIBONTIZs.t. [TI=<r;

5 while X # @ and Cond(S) # ¢ do

6 {a1,ay,...,a;} — RNDSEQ(X,S) and define
Sj<Suiay,...,a;};
7 observe
X — {seX: (VI(3®7),e5)? = t and s € Cond(S)};
8 J* = min;{IX;| <1 -&)X[};
9 X—Xj+and S < Sj;
10 return S;

random sequence of features {a;, ay, ..., ax} with the RNDSEQ sub-
routine, such that the set {ay, ay, ..., a;} US is a maximum indepen-
dent set of .#. After a sequence is generated, the FASTo\p identifies
a prefix {a,..., a;+} that is added to the current solution. The index
j* defining this prefix is chosen such that it holds X[= (1= ¢)IX],
for all j < j*. This inequality ensures that any point added to the
current solution yields (VI(3®)), es)? = t in expected value. Finally,
the ground set X is updated as to include only those points that yield
a good improvement to the new solution. The RNDSEQ sub-routine
used to generate {ay, dy, ..., ai} corresponds to Algorithm A by (Karp
et al. 1988), and it is presented in Algorithm 7. Here, k is the size of
the independent set returned in the current iteration.

Given as input a ground set X, a current solution S, and a p-system
¢, this algorithm finds a random set A such that SUA is a maximum

Section 4.3

93

Chapter 4

94

Feature Selection

Algorithm 7: RNDSEQ(X,S)

1 A—g;

2 while X # @ do

3 sort the points {x;}; = X uniformly at random;
4 j*—max{j: SUAU{x;}i<j € I}

5 A—Aufxy,...,xj}

6 X—{eeX\(SUA): SUAUeE ¥};

7 return A;

independent set for .#. This algorithm iteratively shuffles the set X,
and then it identifies the longest prefix of this sequence that can be
added to S, without violating side constraints. This prefix is then
added to A. This algorithm terminates when SUA € .# is a maximal
independent set.

This algorithm uses parallel calls to the independence oracle of .#,
since the evaluations for the feasibility of prefixes of A can be pre-
formed in parallel. Hence, with this algorithm the adaptivity of the
independence oracle corresponds to the number of iterations until
convergence. It is well-known that this algorithm converges after
expected @’(\/7) iterations, with r the rank of .# (see Theorem 6 by
(Karp et al. 1988)). This implies that the adaptivity of the indepen-
dence oracle is @ (/7). Although it is not known if this upper-bound
on the adaptivity is tight, it is known that there is no algorithm that
finds a maximum independent set of .# with less then Q(n'’?) rounds
(see Theorem 7 by (Karp et al. 1988)).

Adaptive sequencing via matching projections. Our proposed
algorithm differs from previous related work on adaptive sequencing,
since it does not use queries to the function f asin (4.1) when select-
ing features. Instead, our algorithm uses oracle access to the function
Vl(,B(S)), and features s € [n] are added to the current solution if it

Algorithmic Overview

holds (VI (ﬁ(sf)), es) = t in expected value, with ¢ a threshold updated
during run time. As such, our approach extends the applicability of
adaptive sequencing to gradient based pursuit methods as opposed
to the standard value-oracle based methods in earlier works. Finding
optimal solutions with this technique requires much less computa-
tion than the previous approach (Balkanski, Rubinstein, et al. 2019),
by which points s are selected if it holds f(S; U {s}) = t. It is usually
much faster to compute an inner product, than the regression score
expressed by the function f(-).

Implicit estimates of OPT. All algorithms based on adaptive sam-
pling techniques require an estimate of OPT, which is typically not
known a priori. To circumvent this problem, usually multiple passes
of the same algorithm are performed for various guesses of OPT
(Breuer et al. 2020), or an additional preprocessing steps are per-
formed (Fahrbach et al. 2019b). Our algorithm has the significant
advantage that OPT is estimated implicitly. Specifically, for a function
[(-) that is (m, M)-(smooth, restricted concave), we have

max [|VI(B®)1l5 = 2m(0PT - £(9)),

(T: Tk} & z ()

with f asin (4.1). A proof of this result is deferred to Appendix 4.5.
Hence, the FASToMmp estimates OPT with a single oracle valuation, and
no multiple runs or preprocessing are required to achieve a good
solution quality.

Finding the set X;:. Although monotone, common optimization
functions [(-) for feature selection do not have certain desirable prop-
erties, such as an antitone gradient, which were helpful in previous
analyses of similar algorithms. Hence, the sequence {|X j |} jasinLine
7 of Algorithm 6 is not monotonic, in general. For this reason, it is
not possible to estimate the optimal index j* with a binary search, as

Section 4.3

95

Chapter 4

96

Feature Selection

other adaptive sequencing algorithms do (Breuer et al. 2020). How-
ever, our algorithm requires O (r) total phases of re-training to esti-
mate j*, whereas the general adaptive sequencing technique would
require €O (rn) oracle queries to evaluate j* (Balkanski, Rubinstein,
et al. 2019). Here, r is the rank of the side constraint for the features,
and n is the problem size.

Sampling random sequences of features. The RAND-SEQUENCE
algorithm correspond to Algorithm A by (Karp et al. 1988). To our
knowledge, no other algorithm is known for this problem, with better
adaptivity than Algorithm 7. Here, k is the size of the independent set
returned in the current iteration.

Parameter tuning. If [is the log-likelihood of a linear model, or
the R? objective of a linear model with normalized response variable,
then m and M can be estimated in terms of the design of the feature
matrix. These estimates need not be tight, and certifying bounds for
m and M is NP-hard (Bandeira et al. 2013). In general, the constant
m/M in Line 4 of Algorithm 6 requires tuning by making multiple runs
of the algorithm. We remark that other known parallel algorithms for
feature selection also require estimates of these parameters (S. Qian
and Singer 2019).

Parallel algorithms that estimate the rank are known for several p-
systems. For instance, the rank of a graphic matroid can be estimated
with parallel algorithms that compute spanning trees. Furthermore,
parallel rank oracles are known for matroids that can be represented
as independent sets of vectors in a given field (Borodin et al. 1982;
Chistov 1985; Ibarra et al. 1980; Mulmuley 1987). These algorithms
can also be used to estimate the rank of more complex constraints,
such as the intersection of matroids or p-matchoids.

Approximation Guarantees

4.4 Approximation Guarantees

In this section, we study the approximation guarantees for Algorithm
6, when solving the Problem (4.2).

» Theorem 4.4. Define the support selection function f(-) asin (4.1),
for the given function [(-) that is (M,m)- (restricted smooth, restricted
strong concave), on the sparse sub-domain Q,,. Consider a p-system
& of rank r over [n], and let S* be the output of Algorithm 6 while OPT
is the optimum solution set for the Problem 4.2. Then,

E[fsH] 1 (_
OPT 1+

forall 0 < € < 1. Furthermore, in the specific case when .# is r-sparsity
constraint over [n], then,

E[£(5)] o
T = (1—exp{—(1 —£) W})

<

A full proof of this theorem is deferred to Section 4.5. We remark
that, if .# is a r-sparsity constraint, then the approximation guarantee
of Theorem 4.4 is asymptotically better than the guarantee attained by
other parallel algorithms for this problem, such as the DASH (S. Qian
and Singer 2019). Specifically, as proven in Theorem 1 by (S. Qian and
Singer 2019), the DASH yields an approximation of 1 —exp{m?*/M*} —¢
on this problem. Furthermore, the DASH cannot handle general side
constrains as in Problem 4.2.

We also provide bounds for the run time of the FASTo\p as follows.

» Theorem 4.5. Algorithm 6 terminates after @(e~*logn) rounds of
calls to the oracle function, and it uses at most (¢ ~?rlogn) oracle
queries. Furthermore, Algorithm 6 requires expected 0 (8‘2\/7 logn)

Section 4.4

97

Chapter 4

98

Feature Selection

independent calls to the oracle for the p-system .#, and the total
expected calls to the oracle for the p-system is @ (e~*nrlogn). <

The proof of Theorem 4.5 is deferred to Appendix 4.6. The esti-
mates on the rounds of adaptivity extends to the PRAM model. If
we denote with d; the depth required to evaluate the oracle func-
tion on a set, then the FASTomp has G (¢72d;logn) depth. Note that
the rounds of independent calls to the oracle are sub-linear, but not
poly-logarithmic in the problem size. The reason is that the RNDSEQ
sub-routine requires expected @ (/n) rounds of independent calls to
the oracle for the p-system.

If . is an r-sparsity constraint, then there exist oblivious algorithms
for Problem 4.2, that require &' (1) sequential oracle calls (Elenberg,
Khanna, et al. 2018; Sakaue 2020). These algorithms select r best
points s € [n] independently, according to the values f({s}), or the
value of the inner product (VI(0), es). However, any extension of these
techniques to general p-system side constraints would require Q(r)
sequential calls to the independence oracle.

4.5 Proof of Theorem 4.4

We prove the following theorem.

» Theorem 4.4. Define the support selection function f(-) asin (4.1),
for the given function [(-) that is (M,m)- (restricted smooth, restricted
strong concave), on the sparse sub-domain Q,,. Consider a p-system
& of rank r over [n], and let S* be the output of Algorithm 6 while OPT
is the optimum solution set for the Problem 4.2. Then,

E[/GD] . 1 (1—exp{—(1—8)2ﬂ3})
OPT 1+p ’

forall 0 < € < 1. Furthermore, in the specific case when .# is r-sparsity

Proof of Theorem 4.4

constraint over [n], then,

E[f(57)] o M’
T = (1—eXp{—(1—€) W})

<

The proof of this theorem is based on a few lemmas and proposi-
tions, which we discuss in Appendix 4.5.1 before proving Theorem
4.4. On a high level, the proof of Theorem 4.4 is split into two sepa-
rate cases. First we prove that Theorem 4.4 holds when Algorithm 6
terminates after e ! iterations of the outer While-loop of Algorithm 6.
Then, we prove Theorem 4.4 under the assumption that Algorithm
6 finds a solution of size k. The first part of the proof is discussed in
Appendix 4.5.3 (see Theorem 4.8), and the second case is discussed
in Appendix 4.5.2 (see Theorem 4.7).

4.5.1 Preliminary Results

Our analysis is based on a few preliminary result, which we discuss in
this section.

» Theorem 4.6. Suppose the [is (M,m)-(smooth, strongly concave)
on Qyr. Then, for each subsets S, T < [p] of size at most k it holds

2M Y. fs(N = IVIBTI5z2m Y f5(j).
JjeT JjeT

<

Proof. We start proving the first inequality. Fix a point j € T. Then,
for any scalar « it holds

fS(]) — I(B(SUU})) _ l(ﬁ(S)) > I(B(S) + aej) _ Z(B(S))
> (VI(B®), ae;) - %/[az, (4.10)

Section 4.5

99

Chapter4 Feature Selection

where the first inequality uses the maximality of 35°UY | and the sec-
ond on uses the restricted smoothness. By substituting @ = ﬁ (VI3 5 e i
in (4.10), we get

2
2M Y. fs()= Y (VIBD),e;) = IVIBI)TI3,
JET JET

ant the first inequality follows. To conclude the proof, note that it
holds

fs(j) = 18P —1(B®)
, m)
< (Vl(,B(S)),,B(SU{]}) _/3(5)) _ ?”,B(SU{]}) —,B(S) ”3

< max (VIBS),v-89) —%uv—ﬁ(s’ 12, (4.11)

V2 V(Suijn=0

where the first inequality uses the restricted strong concavity, and the
second one uses the maximality of v. By setting
v=8%+L(vi(3®),e;)in (4.11) we get

IVI(B®)s- 12

= 1B -1 =).

By taking the sum over all j € T and rearranging we get

IVI(BD)s+ 12 .
IVIB)TI3=Y ——=2=>Y f()),
jeT 2m jeT
and the claim follows. []

In order to perform the analysis, we also use the differential sub-
modularity property of f, which we discussed in Appendix 4.2.2.

» Theorem 4.3 (Theorem 6 by (S. Qian and Singer 2019)). Define f
asin (4.1), with a function [that is (m, M)-(strongly concave, smooth)

100

Proof of Theorem 4.4

on Qy,. Then, the objective f is differentially submodular, such that

m|s|+1— Misj+1=
(M= fs(T) < (M),
M|S|+kfs fs m|s|+kfs
with fo(T) = X ge1 fo(T). <

Using Theorem 4.6 and Theorem 4.3, we get the following corollary.

» Corollary 4.1. Suppose the [is (M, m)-(smooth, strongly con_—cave)
on Qy. Then, there exists a monotone submodular function f such
that

%fs(T) > fs(T) 2 % fs(T,
and
2Mfs(T) = [IVI(B™)715 = 2m fs(T),
for each subsets S, T < [p] of size at most k. <
In our analysis, we use the following technical proposition.

» Proposition 4.4 (Proposition 2.2. by (Nemhauser, Wolsey, and
M. L. Fisher 1978)). Consider two sequences of non-negative real
numbers {xy,..., Xy} and {y1,..., ym}. Suppose that it holds Zj Xj<j
forall j € [m],and y; = y;41 forall j € [m—1]. Then,

m m
2 Viz) XjVj.
j=1 j=1

4.5.2 If Algorithm 6 Outputs
a Maximum Independent Set

We now prove Theorem 4.4, assuming that Algorithm 6 outputs a
solution S of maximum size, before performing £! iterations of the

Section 4.5

101

Chapter 4

102

Feature Selection

outer While-loop of Algorithm 6. Formally, we prove the following
theorem.

» Theorem 4.7. Define the function f asin (4.1), with alog-likelihood
function that is (M, m)-(smooth, strongly concave) on Q,,. Suppose
that Algorithm 6 outputs a solution S* such that Cond(S*) = @. Then,

E[(S] 1 ,m
0PT > 1+p(1—exp{—(1—e) W})’

forall 0 < € < 1. Furthermore, in the specific case when .# is r-sparsity
constraint over [n], then,

E[f(5M)]

>1—ex {—(1—5)222}
OPT P M2 |
<

The proof of Theorem 4.7 is based on the following two additional
lemma.

» Lemma 4.3. At any point during the optimization process it holds
rM
(1-¢&)'—r=2m(0PT - £(S)),
m

with S the current solution. <

Proof. Denote with S a solution of size at most |S| < r maximizing
f(SuS), and let T < [n] be a set maximizing IIVI(B(S))T |2, such that
IT|<randSu{s} e .# forall se T. Note that it holds

M r
1-&) ' —t=—|VIB)7I5 2 IVIB®)TI3, (4.12)

m [Tl
where the first inequality follows by the definition of ¢, and the second
one follows since |T| < r. We first prove the claim when ¢ is updated at

Proof of Theorem 4.4

the beginning of each iteration of the outer While-loop of Algorithm
6. It holds

1(B5Y9) - 1(8)
< (VIB), 86 - g9 - 859 - g3
’ 2

m
< max (VI(B®),v-8%) - —|v-89%, = 4.13)
V’V(SUS)=O 2

where the first inequality uses the restricted strong concavity, and the
second one uses the maximality of v. By setting v=-- 3% + VI(3®)4
in the inequality above we get

fOPT) - £(S)
=1(B (508 _ (B%) (maximality of § and monotonicity)
Sy |12
- IVI(B=)sll5
2m
_ IVl
S

(substituting vin (4.13))

(maximality of T) (4.14)

The claim follows by combining (4.14) and (4.12).

Suppose now that the current solution S is updated to S’ during
the inner While-loop of Algorithm 6. Then, f(S) = f(S) due to mono-
tonicity, and the claim holds. []

» Lemma 4.4. At any given time step, suppose that the current solu-
tion S is updated to Su{ay, ..., a;+}, and define S; = Suiay, ..., a;} for
all je[j*]. Then it holds
, m?
[E[fs; 1 (5))] >(1-¢) e (PT—E[£(Sj-1)])-
<

Proof. Fix all random decisions of Algorithm 6 until the point a; is

Section 4.5

103

Chapter 4

104

Feature Selection

added to the current solution. Define the sets
X‘f ={eeX\{ay,...,aj-1}: {a1,...,aj—1} U {a} € #}. Then, it holds

fs;(aj)]

1
o

<Vl(ﬁ(sf‘1)),eaj>2] (Theorem 4.6)
> LPra.((Vl(ﬂ(sf‘l)),ea.)2 > t) t (Markov’s inequality) (4.15)
2M]]

By design of the RNDSEQ subroutine, each point a; is sampled uni-
formly at random from the set X‘jg e aj~u (X‘j¢). Hence, it holds

Pra; ((VI(BS), €02 = 1] = X4
tion with (4.15) we get

/)X‘f ‘ Combining this observa-

Ea; [fsia(ap)]

1 IXj-1l
= — L,
J
1 IX;-
o L Kyl (X7 eX)
2M |X] J
1
(=)t (IXj-1] = @ =&)IXn
m2
> (1 —£)ZW(OPT—f(Sj_1)), (Lemma 4.3)
The claim follows by taking the expectation on both sides. [

Using this lemma, we can now prove Theorem 4.7.

Proof of Theorem 4.7. Denote with {ay, ..., a;} the first j points added
to the solution S*, sorted in the order that they were added to it,
and define the constant c := (1 — £)°m?/r M?. Using an induction

Proof of Theorem 4.4

argument on j, we prove that it holds

E[f(ar,...,a;}) | .

- (1 —a —c)f). (4.16)

The base case with j = 0 holds, due to the non-negativity of the
function f. For the inductive case, we have that it holds

[E[f({al)“-yaj})]
>E[fday,...,a;-1}) | +¢(OPT - f({ay, ..., aj_1})
> (l—c)(l—(l—c)j_l)DPT+cOPT

> (1—(1—c)f)opT,

where the first inequality follows by Lemma 4.4, and the second one
follows by induction. Then, (4.16) holds. It follows that for j = [S*| we

have
E[(S]
OPT

S| IS™
=21-(1-0~"=1-expy{— i Cr.
In the case of a r-sparsity constraint we have that |S*| = r, and the
claim follows. In the case of a p-system constraint, we have that
IS*| < pr, hence

E[f(5*)] o m
Tzl—exp{—(l—s) pm}
S 1 (1 e { 1 g)zms})
>=——|1-expy—-(1-8)"—=¢|,
1+p P M3
and the claim also holds. [|

Section 4.5

105

Chapter 4

106

Feature Selection

4.5.3 If Algorithm 6 Terminates after £ 'terations

We now prove Theorem 4.4, assuming that the FASTopMp terminates
after ¢! iterations of the outer While-loop of Algorithm 6. Specifically,
we prove the following theorem.

» Theorem 4.8. Define the function f asin (4.1), with alog-likelihood
function that is (M, m)-(smooth, strongly concave) on Q,,. Suppose
that Algorithm 6 terminates after ¢! iterations of the outer-While
loop. Then,

E[/GD] s 1 (1—exp{—(1—6)223})
OPT 1+p ’

forall 0 < € < 1. Furthermore, in the specific case when .# is r-sparsity
constraint over [n], then,

E[f5M]

>1—ex {—(1—5)2ﬂ2}
OPT P M2’

<

In order to prove this theorem, we introduce additional notation.
We denote with S; the current solution at the beginning of the i-
th iteration of the outer While-loop of Algorithm 6. Furthermore,
denote with S a feasible set, such that f (S) = O0PT, and denote with
aj the j-th element added to the solution S. For each element a i
define the set D; := (SnCond({a,...,a;-1}) \ (SN Cond({ay,...,a;}).
Note that these sets consist of all points in S that yield a feasible
solution when added to {ay, ..., a;-1}, but that violate side constraints
when added to {ay,...,aj}. Note also that it holds D; u---uU Dj =
T*\Cond({ay,...,a;}).

The proof of this theorem is based on the following lemma.

Proof of Theorem 4.4

» Lemma 4.5. It holds

M - m _
Efsi(SiH) +efs,(D1u---UD,) = Eﬁfsi(s)‘

Proof. Fix all random decision of Algorithm 6, up to the (i + 1)-th
iteration of the outer While-loop of Algorithm 6. Let T < [n] be a set
maximizing IIVI(B(SI'))TIIZ, such that |T| < r and T € Cond(S;).

Due to the assumption on the stopping criterion, it holds X = @ at
the end ofiteration i. This means that each point j € (T\S;)nCond(S;)
was discarded at some point during the previous iteration. Denote
with U j the current solution when j was discarded. Then, it holds

2m - m
1-&)~—fs,(T) = (1 —&)— VLB 115 =t 4.17
(1-¢) " fs; (M =(E)I”M” B>7l3 (4.17)
where the first inequality follows by Corollary 4.1, and the second one
follows by the definition of ¢. Since the point j was discarded and
since j € Cond(S;), then it must hold ¢ = (Vl(ﬂ;uj)),ej)z. Combining
this observation with (4.17) we get

2m - .
(1-0="f5, (M= (1B,),e)?
=2mfy;(j) =2mfs,,, (j), (4.18)

where the second inequality follows by Corollary 4.1, and the last one
follows from the submodularity of f. By taking the sum over all points
Jj € (T\S;) nCond(S;) and rearranging, we get

(1-¢)fs,(T)

fs, (M)

r

=>(1-8)|(T\S;)nCond(S;)| (r=|T*)

Section 4.5

107

Chapter 4

108

Feature Selection

> Y four () (by (4.18))
je(ms;)nCond(s;)
> fs. . (T\S;) nCond(S;)). (submodularity) (4.19)

By rearranging (4.19) we get
f5:(Si1) Z s, ((T\S;) N Cond(S;)

= gf_'sl. (SN Cond(S;))
>¢efs,(S) —efs.(S\ Cond(S;))

>efs,(S)—efs,(D1U---UDs,)) (4.20)
Hence, it holds
M -
Efs,-(sm) > fs,(Si+1) (Corollary 4.1)
>efs,(S)—¢efs;(D1U---UDs,) (it follows from (4.20))
= €%fsi(g) —¢efs.(D1uU---UDs,). (Corollary 4.1)
The claim follows by rearranging. [

In order to continue with the proof, we also use the following
lemma.

» Lemma 4.6. It holds

m? -
pfG)zA -8 75 fs(D1u--UDs,).

Proof. Fixanindex j <1S;|, and fix all random decisions of Algorithm
6 until the point a; is added to the current solution. Define the sets

Proof of Theorem 4.4

Xj.f ={feeX\{ai,...,aj-1}: {a1,...,aj—1} U {a} € #}. Then, it holds

Eaj [f{al,...,aj,l}(aj)]

vI(Ble-), eq)? |

SVl

1
(fay,..., i-1}) 2
zmpraj(wuﬁ Wrti-1l) eq;)° 2 t)t (4.21)

where the first inequality uses Lemma 4.6, and the second one uses
Markov’s inequality. Note that the RNDSEQ subroutine samples points
aj uniformly at random a; ~ % (X‘f). Hence,

Xja] _ X1l
TN

Praj((Vl(B(sf‘l)),ea].>2 > t) - (4.22)

where the last inequality holds, since X}.g c X. Combining this obser-
vation with (4.21) we get

[Eaj ﬁ(,ll aj—l}(a])

11Xl .
> M W t (it follows by (4.22))
1-¢
2t (X;jo1] = @=8)IXD
_zﬂnvulg({“l ’’’’’ aj-1D)1 |12 (by the definition of f)
= 2M2 |T| Tl% y the de ono
1-—
ZZ—A;ﬁIIW(ﬁ({“l aj_l}))Dj”g» (T is maximal)
J

By taking the expected value on both sides in the chain of inequalities

Section 4.5

109

Chapter4 Feature Selection

above, we get

.Zl‘rS||D]'|[Eaj[f{a1 ,,,,, ﬂj_l}(aj)]
J=15i
Y B[V, 1. (4.23)

>(1-¢)
2M* ;<)

In order to continue with the proof, we give an upper-bound on the
size of the sum }; | D; | To this end, note that the set S; is a maximum
independent set over the ground set

S;uU (D1 u---u D|5i|) =S5S;U (T* \Cond(Sl—)).

In fact, the set S; is independent by definition, and that any point
s€ (T*\Cond(57)\S; yields S; u {s} ¢ .#. Hence S; is a maximum
independent set as claimed. Note also that Dy U---UDs; € T is
an independent set, due to the subset-closure of .#. Since .# is a
p-system, then it holds

|D1|+“'+|D|Si|| = |D1U"'UD|Si|| < plS;l. (4.24)

Hence, it holds

pZ[Eaj

f{tll aj_l}(aj)]

J=ISi]
> Y |Dj|Eq,| fian,.., aj_l}(aj)] (by (4.24) and Prop. 4.4)
J=ISil
>(-e)= ¥ E[IVIE™)p 13| (tfollows by (4.23))
2M* <R,
m? _
2(1-&775 Y fs:(D)) (Theorem 4.6)
j=ISil
m2 -
2(1-6)75 Y. fs;(D1u---UDs,), (submodularity)
J=1Sil

110

Proof of Theorem 4.4

as claimed [
We now have all necessary tools to prove Theorem 4.8.

Proof of Theorem 4.8. We first prove the claim, assuming that .# is a
general p-system. In this case, by combining Lemma 4.5 with Lemma
4.6 it holds

M M? m _
—E[f5,Sin) | +ep—E[fS) | ze -0 E[5,8] @425

To continue, define the constant ¢ = (1 —&)m3/M3. We prove by
induction on i that it holds

(1 +eip)E[£(S;)] =1~ (1-ec))OPT. (4.26)

The base case with Sy = @ trivially follows, since the function f is
non-negative. For the inductive case, suppose that the claim holds
forE[f(S;-1) | Then,

(L+eip)E[£(S)]
=E[f(Si) | +eipE[f(Si-1)]
>E[f(Si—1) | +€cE[f5(S™) | +e(i —DpE[f(Si-1) |
> (1-€0E[f(Si-1) | +€cOPT +&(i — DpE[f(Si-1) |
>(1-¢ec)(1-(1—-ec) " HOPT +ecOPT
> (1-(1-ec))OPT,
where the first inequality uses monotonicity; the second one follows

by (4.25); the third inequality uses monotonicity again, and the fourth
one follows by induction. Hence, (4.26) holds. It follows that

E[fS™) | =E[fSpse) |

1 3, [1/€]
> — 1—(1—8(1—8)—) OPT
1+ell/elp M3

Section 4.5

111

Chapter 4

112

Feature Selection

> 1 (1 e { (1-¢) m’ })OPT
>——|1l—-expi—(1—-¢€)— ,
1+p P M3

where the first equation follows by the stopping criterion, and the
first inequality follows by (4.26).

We conclude by proving the claim in the special case that .# isa r-
sparsity constraint. Since the algorithm terminates before a solution
of size r is found, we have that Cond(S;) = [n] \ S; for all iterations i.
Hence, D; U---UD; = ¢ and Lemma 4.5 yields

2
E[fs,;(Si+1) | EEW[E[fs,(5M) .

With this inequality, we can use an inductive argument similar to the
proof for the general case, and obtain an improved lower-bound on
the solution quality. [

4.6 Proof of Theorem 4.5

We conclude by giving upper-bounds on the run time and adaptiv-
ity for Algorithm 6. Recall that the notion of adaptivity is given in
Definition 4.6. The following theorem holds.

» Theorem 4.5. Algorithm 6 terminates after @(6‘2 log) rounds of
calls to the oracle function, and it uses at most (¢ ~?rlogn) oracle
queries. Furthermore, Algorithm 6 requires expected @’(8‘2 VTlogn)
independent calls to the oracle for the p-system .#, and the total
expected calls to the oracle for the p-system is @’(s‘znr logn). <

In order to prove this result, we use the following well-known esti-
mate on the number of adaptive rounds of the RNDSEQ sub-routine
(see Algorithm 7).

Experiments

» Theorem 4.9 (Theorem 6 by (Karp et al. 1988)). Algorithm 7 termi-
nates after expected @(1/7) steps, with r the rank of the independent
system .. <

Note that this theorem implies that the number of adaptive rounds
of the independence oracle for Algorithm 7 is @ (y/7) in expected value.
In fact, in each step of Algorithm 7, queries to the independence
oracle can be performed in parallel. Using this result, we can now
prove Theorem 4.5.

of Theorem 4.5. We first give upper-bounds for the oracle function
that accesses VI(-). To this end, observe that there are two While-
loops in Algorithm 6. The outer while-loop terminates after at most
¢! iteration. The inner While-loop terminates after @(8‘1 logn) it-
erations, since at each iteration the size of X decreases at least of a
multiplicative factor of 1 — €. Hence, the rounds of calls to the oracle
function is @(5‘2 log n) Furthermore, at each iteration of the inner
While-loop, at most r parallel calls to VI(:) are preformed. It follows
that the total number of oracle calls is G (¢ ?rlogn).

We now estimate the number of adaptive rounds and run time
for the calls to the independence oracle. To this end, note that
is oracle is called by the RNDSEQ sub-routine,and it is also evalu-
ated nr times in parallel during the inner While-loop of Algorithm
6. From Theorem 4.9 it follows that the number of adaptive rounds
is @’(5‘2\/7 log n), and that the total number of calls to the oracle
function is @ (e~nrlogn) as claimed. |

4.7 Experiments

In this section, we provide extensive experiments on both synthetic
and real world datasets to illustrate the superior performance of the
proposed methods. All experiments are performed on Python 3 on

Section 4.7

113

Chapter 4

114

Feature Selection

~~~~~~

time [seconds]

0 50 100 150 0 10 20 30 40 50 60 0 50 100 150
number of features selected time [seconds] number of features selected

@ (b) (0

time [hours]
R

0 50 100 150 200 250 300 0 1 2 3 o 50 100 150 200 250 300
number of features selected time [hours] number of features selected

(d) (e) (f)

Figure 4.1: Results on the Synthetic Unconstrained Dataset (top row), and
the Synthetic Dataset with Constraints (bottom row), as described in Section
4.7. We observe that the FASToMp is faster in selecting features and is better
in selecting the correct in terms of R?.

a server that runs Linux with Intel Xeon E5-2630 v4 with 40 CPUs at
2.2GHz.

4.7.1 Datasets

Unconstrained Synthetic Dataset. We use an artificially gener-
ated data-set consisting of 500 features, 1000 observations, and it
has size approximately 10MB. We generated the dataset using a joint
Gaussian distribution with mean vector g = 0, and covariance matrix
2. We define X such that 10% of the features are highly correlated
with the response, and the remaining features have low correlation
with the response variable. We then add posterior uniform noise, and
normalize the observations.



Experiments

9
8
S

6000

0
@
g
S
2
]
8

ihood
@
g
8

= FaSTou o
5000 - g //‘./ -
@ 4000 | —F Random .
2 .
: /
3 3000 A
@ J ‘ |
€ 2000 8 pl £ Fasr, 3 .
U | o : — Sbsour
K )I/} o /’/ " i £ Random

0 2000 4000 6000 8000 10000 [ 5 10 15 o 200 400 600 800 1000
number of features selected time [seconds]

=
1
3
IS
&
8

n

8

S
@
g
8

‘malized log-likelihood
n
5]
8

malized log-like
s
8
S

or
of

number of features selected

(a) (b) ()

Figure 4.2: Results on the Pan-Cancer Data-Set, as described in Section
4.7. The FASTomp outperforms baselines in selecting the useful features
much faster.

Synthetic Dataset with Constraints. This data-set consists of
1 x 10° features, 1 x 10* observations, and with size approximately
19GB. We generated this dataset method described for the Uncon-
strained Synthetic Data-set. We randomly generate a p-system side
constraints, that determines the feasibility of a set of features.

CGARN Pan-Cancer Data-set. We use a bio-medical dataset of
approximately 2 x 10* features and 804 observation, with size approx-
imately 201MB (Cancer Genome Atlas Research Network et al. 2013).
In this dataset, features embed information on the genome sequences
of 802 patients affected with cancer, and the observations consists
of a pseudo-Boolean array, with 1 if the corresponding patient has
PRAD cancer and 0 otherwise. We randomly generate a p-system side
constraints, that determines the feasibility of a set of features.

ProPublica COMPAS Data-Set. We consider the well-known

ProPublica COMPAS dataset, and perform feature selection with pro-
cedural fairness constraints on this dataset (Grgic-Hlaca, Redmiles, et
al. 2018; Grgic-Hlaca, Zafar, K. P. Gummadi, et al. 2018). The ProPub-
lica COMPAS dataset is a pretrial risk assessment instrument (Larson
et al. 2016). The ProPublica COMPAS dataset was constructed in

Section 4.7

115



Chapter 4

116

Feature Selection

2016, using data of defendants from Broward County, FL, who had
been arrested in 2013 or 2014 and assessed with the COMPAS risk
screening system. ProPublica then collected data on future arrests for
these defendants through the end of March 2016, in order to study
how the COMPAS score predicted recidivism (Angwin et al. 2016).
Based on its analysis, ProPublica concluded that the COMPAS risk
score was racially biased (Berk et al. 2021). The ProPublica COMPAS
data has become one of the key bench-marking datasets for testing
algorithmic fairness definitions and procedures (Chouldechova 2017;
Corbett-Davies et al. 2017a; Corbett-Davies et al. 2017b; Cowgill and
Tucker 2019; Rudin et al. 2018; Zafar, Valera, Gomez-Rodriguez, and
K. P Gummadi 2017a; Zafar, Valera, Gomez-Rodriguez, K. P. Gum-
madi, and Weller 2017). However, (Bao et al. 2021) notes that there
are inaccuracies in the COMPAS dataset. For instance, COMPAS race
categories lack Native Hawaiian or Other Pacific Islander, and it rede-
fines Hispanic as race instead of ethnicity.

The ProPublica COMPAS dataset consists of the following features:

” o«

“number of prior criminal offenses”, “arrest charge description”,

” o« AN {84

“charge degree”, “number of juvenile felony offenses”, “juvenile mis-
demeanor offenses”, “other juvenile offenses”, “age” of the defendant,
“sex” of the defendant and “race” of the defendant. The dataset also

contains information on whether the defendant recidivated or not.

Following (Grgic-Hlaca, Redmiles, et al. 2018; Grgic-Hlaca, Zafar,
K. P. Gummadi, et al. 2018), we use the COMPAS dataset to predict
if a defendant faces risks of recidivism, and study the trade-off be-
tween fairness and accuracy achieved by some of the benchmarks on
this instance. The measures of unfairness for the constraints follow
the definitions of Section 4.2.4. Consensus is based on a survey per-
formed in 2018 with the Amazon Mechanical Turk (AMT) platform
(Grgic-Hlaca, Redmiles, et al. 2018). In this survey, each user was
asked to assess if a feature is fair to use for model construction. This
survey gathered responses to the above questions from 200 differ-
ent AMT master workers. Although the results of the survey were



Experiments

qualitative similar for all the AMT workers, “very liberal” and “very
conservative” workers responded differently (Grgic-Hlaca, Redmiles,
et al. 2018). We remark that the (Grgic-Hlaca, Redmiles, et al. 2018;
Grgic-Hlaca, Zafar, K. P Gummadi, et al. 2018) do not claim that AMT
users are the right group to obtain consensus for estimating fairness.

4.7.2 Benchmarks

GREEDY. Starting from the empty set, this algorithm adds feasible
points to the current solution in a greedy fashion (Elenberg, Khanna,
et al. 2018; Krause and Cevher 2010). This algorithm uses oracle
access to the function f asin (4.1). In our experiments, we implement
a version of GREEDY with parallel queries to the oracles for a fair
comparison.

SDSomp- Starting from the empty set, this algorithm iteratively add
features s to the current solution S if they maximize the dot prod-
uct (VI (,B(S)), e;) (Elenberg, Khanna, et al. 2018; Krause and Cevher
2010). Our implementation of SDSoMmp handles side constrains, by
adding a new feature s to the current solution S if it holds s € Cond(S).
We implement calls to the independence oracle in parallel, for fair
comparison.

DASH. This algorithm achieves strong approximation guarantees
on the subset selection problem, under the RSC/RSM assumption (S.
Qian and Singer 2019). The DASH uses oracle access to the function f
asin (4.1). Calls to the function f can be paralleilzed efficiently. This
algorithm can only handle r-sparsity constraints.

ISK. This algorithm is the iterated submodular-cost knapsack algo-
rithm proposed by (Iyer and Bilmes 2013). This algorithm can be used
to solve the submodular cost submodular knapsack (SCSK) problem.

Section 4.7

117



Chapter 4

118

Feature Selection

This algorithm was used by (Grgic-Hlaca, Zafar, K. P. Gummadi, et al.
2018) on to perform feature selection on the ProPublica COMPAS
dataset. However, the ISK can only handle r-sparsity constraints, and
it has no known guarantees on Problem (4.2).

LASSO. Lasso is a popular algorithm useful for regression, and
classification. The LASSO optimizes the ¢;-objective with regulariza-
tion. Finding a regularizer to obtain a solution of size k is intractable
(Mairal and B. Yu 2012). In our experiments we vary the regularizer
manually and benchmark against the resulting solution size. Note
that the LASSOT can only handle r-sparsity constraints.

RANDOM. This simple algorithm outputs a maximum independent
set of .# chosen uniformly at random. We use the RAND-SEQUENCE
sub-routine to generate this set. This sub-routine corresponds to
Algorithm A by (Karp et al. 1988).

4.7.3 Results

Unconstrained Synthetic Dataset. We consider a linear regres-
sion task on this dataset, and we search for a set of features maximiz-
ing the R? objective. The results are presented in Figure 4.1. Figure
4.1(a) showcases the run time of each algorithm for a fixed num-
ber of features selected. We observe that our algorithm significantly
outperforms baselines in performance. In Figure 4.1(b), we fix an
upper-bound of k = 150 on the number of features selected, and we
compare the solution accuracy of each algorithm, for a given time
budget. We observe that the FASTopp outperforms the other algo-
rithms. Furthermore, we observe that the GREEDY yields significantly
worse performance than baselines. In Figure 4.1(c) we display the
solution quality vs. the number of features selected. We observe
that the FASToMmp, the SDSoMmPp, the DASH, the LASSO achieve similar



Experiments

solution quality. The GREEDY yields best performance, but it is much
slower than the other algorithms.

Synthetic Dataset with Constraints We search for a set of fea-
tures maximizing the R? objective, for the Synthetic Dataset with
Constraints. The results for this set of experiments are presented in
Figure 4.1. We do not report on the results for the GREEDY, due to its
bad performance. We do not test the DASH, the ISK, and the LASSO
since they cannot handle p-system side constraints by design.

In Figure 4.1(d), we observe that our algorithm significantly outper-
forms the SDSonmp and GREEDY in performance. In Figure 4.1(e), we
compare the solution accuracy of each algorithm, for a given time
budget, and k = 350 features selected. We observe that the FASTonmp
outperforms both the SDSgonmp and the RANDOM. In Figure 4.1(f) we
observe that the FASTonmp and the SDSoMmp achieve similar solution
quality, and that they both outperform the RANDOM.

CGARN Pan-Cancer Dataset We use the logistic regression to
predict if patients have PRAD cancer, or other types of cancer. To this
end, we search for features maximizing the normalized log-likelihood.
We do not report on the results for the GREEDY, due to its bad perfor-
mance. We do not test the DASH, the 1SK, and the LASSO since they
cannot handle p-system side constraints by design.

In Figure 4.2(a), we observe the run time of each algorithm for a
fixed number of features selected. Our algorithm significantly out-
performs the baselines in performance. In Figure 4.2(b), we compare
the solution accuracy, expressed by the normalized log-likelihood, as
a function of time, until each algorithm reaches a solution of k = 50
features. We observe that the FASTonp outperforms the SDSoMp and
the RANDOM. In Figure 4.2(c) we display the solution quality achieved
by each algorithms for increasing number of features selected. We ob-
serve that all algorithms achieve similar performance. However, our

Section 4.7

119



Chapter4  Feature Selection

algorithm mildly outproeforms the other algorothms, with respect to
the “otcome fairness” indicator.

ProPublica COMPAS Dataset.
- Following (Grgic-Hlaca, Redmiles, et
al. 2018), we use a logistic regression
02 o4 o5 o8 1 to predict recidivism risk. We train the
model using the log-likelihood with
regularization, and considering fair-

o
N

o
o
o
q
q

log-likelihood
o
(=]

a4
o
o

o

o

o

o
o

outcome fairness

o e ness constraints as in (4.9). We re-
"o 02 04 06 08 1 .

process unfaimess consiraint port on the outcome fairness of each

[ 3 Faston 15K —a—Optimum output feature set, by estimating the

racial bias of the corresponding clas-

Figure 4.3: Experiments on sifier. Followmg (Grgic-Hlaca, Zafar,

) . K. P Gummadi, et al. 2018; Klein-
fairness on the ProPublica

COMPAS Dataset. berg et al. 2017; Zafar, Valera, Gomez-

Rodriguez, and K. P Gummadi 2017b),

we examine the false positive (FPR)

and false negative (FNR) rates for whites (w) and non-whites (nw) as

—|FPRy, = FPR, | = IFNRy, — ENR;; . (4.27)

This measure of fairness varies between —2 and 0, with —2 corre-
sponding to maximum unfairness and 0 to maximum fairness.

The results for this set of experiments are displayed in Figure 4.3.
We compare the solution quality and fairness of the FASToMmp, against
the 18K, and the solution with best possible accuracy (optimum). The
optimum is obtained by training classifiers with all possible combina-
tions of the features of the dataset dataset. In Figure 4.3, we display
the results for process unfairness constraints defined as in (4.9). We
observe that the FASToMmp achieves nearly optimal solution. Although
the outcome fairness inevitably decreases for increasing process un-

120



Experiments  Section 4.7

fairness, the FASTonp maintains better outcome fairness than the
other algorithms.

121






Conclusion

We studied the problem of achieving scalability in Al. We identified
three relevant optimization problems, and we propose new algo-
rithms for these problems, that can handle very large datasets. Our
proposed algorithms, however, can be used to tackle other combi-
natorial problems, as long as the underlying axioms characterizing
these are fulfilled.

Specifically, we showed that non-monotone submodular maximiza-
tion under a partition matroid and knapsack constraints can be ap-
proached with a simple greedy algorithm. This algorithm finds a near-
optimal solution, if the underlying optimization function exhibits
bounded curvature. This algorithmic result is particularly useful to
solve the Maximum Entropy Sampling problem. Furthermore, we
showed that adaptive sampling techniques can be used to maximize
a non-monotone submodular function under p-system side con-
straints. This is practically relevant, since Video Summarization, and
other data summarization tasks, can be framed as constrained sub-
modular problems. We conclude by showing that adaptive sampling
techniques can be extended to non-submodular problems. As a con-
sequence, we show that adaptive sampling can be used to tackle the
central problem of selecting optimal features for model construction.

We provide tools to optimize non-monotone submodular functions
under complex side constraints. Furthermore, we show that adaptive
sampling techniques can be generalized to non-monotone submodu-
lar functions. These tools can be incorporated in the workflow of Al
systems, to improve the ability of these systems to handle massive
datasets.

123



Chapter 5

124

Conclusion

5.1 Outlook

As Al systems increasingly be-
come part of our lives, there are S

growing concerns on potential Tansparency
anomalies and harmful behavior

in their course of action. Hence,
it is important to study “how
to build trustworthy Al systems”.

There are several characteristics
that make Al systems trustworthy
(see Figure 5.1). Relevant future
work consists of studying robust-  Figure 5.1: Relevant features of
ness and fairness, with the use of  trustworthy Al systems. I am inter-
optimization and machine learn- ~ ested in studying robustness and
ing (ML) techniques. Jairness.

Fairness

Trustworthy Al systems ought to

be robust to errors and changing environments. It is possible to for-
tify Al systems with the aid of machine learning techniques, such
as distributional robustness. These techniques mitigate the varia-
tion in accuracy of the output, in the presence of input and system
anomalies. Incorporating these techniques into existing systems typi-
cally results in additional computational challenges. I am interested
in studying robust learning, to make Al systems more reliable. An-
other important related problem consists of studying fairness. Smart
machines can make ethically questionable decisions. For instance,
machine learning models could make predictions that are racially
or gender-biased. It is crucial to take into account these problems,
when building Al systems. For future work, it would be interesting to
study new techniques that incorporate notions of fairness into the
learning processes. Studying fairness is challenging, since fairness
criteria should always take into account the societal context, and the
pipeline of the system operating within.



A common problem in ML models is the presence of a bias in the
training samples. Distributional robustness provides an effective

framework to fortify optimization techniques for Machine Learning.

In this setting, the optimization is performed over an entire family
of functions, with the goal of optimizing the worst-case over all of
these functions. Interestingly, Staib et al. 2019 study distributional
robustness in the context of submodular optimization. For future
work, it would be interesting to further study this framework, possibly
in connection with fairness and privacy concerns.

Fairness in Al and machine learning has been receiving increasing
attention in recent years. A common way to address fairness con-
cerns is to incorporate quantitative notions of fairness in the learning
process, via additional side constraints. Hence, fairness in Al and
machine learning motivates further research in the problem of opti-
mizing combinatorial functions with side constraints.

125






Bibliography

Agarwal, Alekh, Alina Beygelzimer, et al. (2018). A Reductions Ap-
proach to Fair Classification. In: Proc. of ICML. Vol. 80, 60-69.

Agarwal, Alekh, Miroslav Dudik, and Zhiwei Steven Wu (2019). Fair
Regression: Quantitative Definitions and Reduction-Based Algo-
rithms. In: Proc. of ICML. Vol. 97, 120-129.

Angwin, J. et al. (2016). There’s software used across the country to
predict future criminals. And it’s biased against blacks.

Badanidiyuru, Ashwinkumar, Baharan Mirzasoleiman, et al. (2014).
Streaming submodular maximization: massive data summariza-
tion on the fly. In: Proc. of KDD, 671-680.

Badanidiyuru, Ashwinkumar and Jan Vondrék (2014). Fast algorithms
for maximizing submodular functions. In: proc. of SODA, 1497-
1514.

Bahmani, Sohail, Bhiksha Raj, and Petros T. Boufounos (2013). Greedy
sparsity-constrained optimization. Journal of Machine Learning
Research 14:1, 807-841.

Balcan, Maria-Florina and Nicholas J. A. Harvey (2011). Learning
submodular functions. In: proc. of STOC, 793-802.

Balkanski, Eric, Adam Breuer, and Yaron Singer (2018). Non-monotone
Submodular Maximization in Exponentially Fewer Iterations. In:
Proc. of NeurIPS, 2359-2370.

Balkanski, Eric, Aviad Rubinstein, and Yaron Singer (2017). The lim-
itations of optimization from samples. In: Proc. of STOC, 1016-
1027.

— (2019). An optimal approximation for submodular maximization
under a matroid constraint in the adaptive complexity model. In:
proc. of STOC, 66-77.

127



Balkanski, Eric and Yaron Singer (2018). The adaptive complexity of
maximizing a submodular function. In: proc. of STOC, 1138-1151.

Bandeira, Afonso S. et al. (2013). Certifying the Restricted Isometry
Property is Hard. IEEE Transactions of Information Theory 59:6,
3448-3450.

Bansal, Nikhil et al. (2010). On k-Column Sparse Packing Programs.
In: Proc. of IPCO, 369-382.

Bao, Michelle et al. (2021). It’s COMPASIlicated: The Messy Relation-
ship between RAI Datasets and Algorithmic Fairness Benchmarks.
CoRR abs/2106.05498.

Beahrs, John O. (1991). Volition, Deception, and the Evolution of
Justice. Journal of the American Academy of Psychiatry and the Law
Online19:1, 81-93.

Berk, Richard et al. (2021). Fairness in Criminal Justice Risk Assess-
ments: The State of the Art. Sociological Methods & Research 50:1,
3-44.

Beutel, Alex et al. (2019). Fairness in Recommendation Ranking through
Pairwise Comparisons. In: Proc. of SIGKDD, 2212-2220.

Bian, Andrew An et al. (2017). Guarantees for Greedy Maximiza-
tion of Non-submodular Functions with Applications. In: Proc.
of ICML, 498-507.

Borodin, Allan, Joachim von zur Gathen, and John E. Hopcroft (1982).
Fast Parallel Matrix and GCD Computations. Information and
Control 52:3, 241-256.

Breuer, Adam, Eric Balkanski, and Yaron Singer (2020). The FAST
Algorithm for Submodular Maximization. In: Proc. of ICML, 1134-
1143.

Buchbinder, Niv and Moran Feldman (2018). Deterministic Algo-
rithms for Submodular Maximization Problems. ACM Transac-
tions on Algorithms 14:3, 32:1-32:20.

Buchbinder, Niv, Moran Feldman, and Mohit Garg (2018). Deter-
ministic (1/2 + €)-Approximation for Submodular Maximization
over a Matroid. CoRR abs/1807.05532.

128



— (2019). Deterministic (V2 + €)-Approximation for Submodular Max-
imization over a Matroid. In: Proc. of SODA, 241-254.

Buchbinder, Niv, Moran Feldman, Joseph Naor, et al. (2012). A Tight
Linear Time (1/2)-Approximation for Unconstrained Submodu-
lar Maximization. In: Proc. of FOCS, 649-658.

— (2014). Submodular Maximization with Cardinality Constraints.
In: proc. of SODA, 1433-1452.

— (2015). ATight Linear Time (1/2)-Approximation for Unconstrained

Submodular Maximization. SIAM Journal of Computing 44:5, 1384—
1402.

Calinescu, Gruia et al. (2007). Maximizing a Submodular Set Func-
tion Subject to a Matroid Constraint. In: Proc. of IPCO, 182-196.

- (2011). Maximizing a Monotone Submodular Function Subject
to a Matroid Constraint. SIAM Journal of Computing 40:6, 1740—
1766.

Cancer Genome Atlas Research Network et al. (2013). The Cancer
Genome Atlas Pan-Cancer analysis project. Nature Genetics 45:10,
1113-20.

Celis, L. Elisa et al. (2018). Fair and Diverse DPP-Based Data Sum-
marization. In: Proc. of ICML, 715-724.

Chakrabarti, Amit and Sagar Kale (2015). Submodular maximization
meets streaming: matchings, matroids, and more. Mathematical
Programming 154:1-2, 225-247.

Chekuri, Chandra, Shalmoli Gupta, and Kent Quanrud (2015). Stream-
ing Algorithms for Submodular Function Maximization. In: Proc.
of ICALP, 318-330.

Chekuri, Chandra and Martin Pal (2005). A Recursive Greedy Algo-
rithm for Walks in Directed Graphs. In: Proc. of FOCS, 245-253.
Chekuri, Chandra and Kent Quanrud (2019a). Parallelizing greedy
for submodular set function maximization in matroids and be-

yond. In: Proc. of STOC, 78-89.

— (2019b). Submodular Function Maximization in Parallel via the

Multilinear Relaxation. In: proc. of SODA, 303-322.

129



130

Chekuri, Chandra, Jan Vondrék, and Rico Zenklusen (2010). Depen-
dent Randomized Rounding via Exchange Properties of Combi-
natorial Structures. In: Proc. of FOCS, 575-584.

— (2014). Submodular Function Maximization via the Multilinear
Relaxation and Contention Resolution Schemes. SIAM Journal of
Computing 43:6, 1831-1879.

Chen, Lin, Moran Feldman, and Amin Karbasi (2019). Unconstrained
submodular maximization with constant adaptive complexity.
In: proc. of STOC, 102-113.

Chierichetti, Flavio et al. (2019). Matroids, Matchings, and Fairness.
In: Proc. of AISTATS, 2212-2220.

Chistov, Alexander L. (1985). Fast parallel calculation of the rank of
matrices over a field of arbitrary characteristic. In: Proc. of FCT,
63—-69.

Chouldechova, Alexandra (2017). Fair prediction with disparate im-
pact: A study of bias in recidivism prediction instruments. Big
data5:2, 153-163.

Conforti, Michele and Gérard Cornuéjols (1984). Submodular set
functions, matroids and the greedy algorithm: Tight worst-case
bounds and some generalizations of the Rado-Edmonds theo-
rem. Discrete Applied Mathematics 7:3, 251-274.

Corbett-Davies, Sam et al. (2017a). Algorithmic Decision Making
and the Cost of Fairness. In: Proc. of KDD, 797-806.

— (2017b). Algorithmic decision making and the cost of fairness. In:
Proc. of KDD, 797-806.

Cornuejols, Gerard, Marshall L. Fisher, and George L. Nemhauser
(1977). Location of Bank Accounts to Optimize Float: An Analytic
Study of Exact and Approximate Algorithms. Management Sci-
ence 23:8, 789-810.

Cowgill, Bo and Catherine E Tucker (2019). Economics, fairness and
algorithmic bias. preparation for: Journal of Economic Perspectives.

Cressie, Noel (2015). Statistics for spatial data. John Wiley & Sons.



Das, Abhimanyu and David Kempe (2011). Submodular meets Spec-
tral: Greedy Algorithms for Subset Selection, Sparse Approxima-
tion and Dictionary Selection. In: Proc. of ICML, 1057-1064.

Donini, Michele et al. (2018). Empirical Risk Minimization Under
Fairness Constraints. In: Proc. of NeurlPS, 2796-2806.

Doskoc, Vanja et al. (2019). Non-Monotone Submodular Maximiza-

tion with Multiple Knapsacks in Static and Dynamic Settings. CoRR

abs/1911.06791.

Elenberg, Ethan R., Alexandros G. Dimakis, et al. (2017). Streaming
Weak Submodularity: Interpreting Neural Networks on the Fly.
In: Proc. of NeurIPS, 4044-4054.

Elenberg, Ethan R., Rajiv Khanna, et al. (2018). Restricted Strong
Convexity Implies Weak Submodularity. The Annals of Statistics
46:6B, 3539-3568.

Elfeki, Mohamed et al. (2019). GDPP: Learning Diverse Generations
using Determinantal Point Processes. In: Proc. of ICML. Vol. 97,
1774-1783.

Ene, Alina and Huy L. Nguyen (2016). Constrained Submodular Max-
imization: Beyond 1/e. In: Proc. of FOCS, 248-257.

- (2019). Submodular Maximization with Nearly-optimal Approx-
imation and Adaptivity in Nearly-linear Time. In: Proc. of SODA,
274-282.

Fahrbach, Matthew, Vahab S. Mirrokni, and Morteza Zadimoghad-

dam (2019a). Non-monotone Submodular Maximization with Nearly

Optimal Adaptivity and Query Complexity. In: Proc. of ICML, 1833~
1842.

— (2019b). Submodular Maximization with Nearly Optimal Approx-
imation, Adaptivity and Query Complexity. In: Proc. of SODA, 255-
273.

Feige, Uriel, Vahab S. Mirrokni, and Jan Vondrdk (2007). Maximizing
Non-Monotone Submodular Functions. In: Proc. of FOCS, 461-
471.

131



Feige, Uriel, Vahab S. Mirrokni, and Jan Vondrédk (2011). Maximizing
Non-monotone Submodular Functions. SIAM Journal of Comput-
ing 40:4, 1133-1153.

Feige, Uriel and Jan Vondrék (2010). The Submodular Welfare Prob-
lem with Demand Queries. Theory of Computing 6:1, 247-290.

Feldman, Michael et al. (2015). Certifying and Removing Disparate
Impact. In: Proc. of SIGKDD, 259-268.

Feldman, Moran, Christopher Harshaw, and Amin Karbasi (2017).
Greed Is Good: Near-Optimal Submodular Maximization via Greedy
Optimization. In: Proc. of COLT, 758-784.

— (2020). Simultaneous Greedys: A Swiss Army Knife for Constrained
Submodular Maximization. CoRR abs/2009.13998.

Feldman, Moran, Amin Karbasi, and Ehsan Kazemi (2018). Do Less,
Get More: Streaming Submodular Maximization with Subsam-
pling. In: Proc. of NeurIPS, 730-740.

Feldman, Moran, Joseph Naor, and Roy Schwartz (2011a). A Uni-
fied Continuous Greedy Algorithm for Submodular Maximiza-
tion. In: Proc. of FOCS, 570-579.

— (2011b). Nonmonotone Submodular Maximization via a Struc-
tural Continuous Greedy Algorithm - (Extended Abstract). In: Proc.
of ICALP, 342-353.

Filmus, Yuval and Justin Ward (2012). A Tight Combinatorial Algo-
rithm for Submodular Maximization Subject to a Matroid Con-
straint. In: Proc. of FOCS, 659-668.

Fisher, M., George Nemhauser, and Laurence Wolsey (Mar. 1978).
An analysis of approximations for maximizing submodular set
functions - II. Mathematical Programming 14, 73-87.

Ghadiri, Mehrdad and Mark Schmidt (2019). Distributed Maximiza-
tion of "Submodular plus Diversity" Functions for Multi-label
Feature Selection on Huge Datasets. In: Proc. of AISTATS, 2077-
2086.

Gharan, Shayan Oveis and Jan Vondrdk (2011). Submodular Maxi-
mization by Simulated Annealing. In: Proc. of SODA, 1098-1116.

132



Gillenwater, Jennifer, Alex Kulesza, and Ben Taskar (2012). Near-Optimal

MAP Inference for Determinantal Point Processes. In: Proc. of
NIPS, 2744-2752.

Goemans, Michel X. et al. (2009). Approximating submodular func-
tions everywhere. In: Proc. of SODA, 535-544.

Gong, Boqging et al. (2014). Diverse Sequential Subset Selection for
Supervised Video Summarization. In: Proc. of NIPS, 2069-2077.
Grgic-Hlaca, Nina, Elissa M. Redmiles, et al. (2018). Human Percep-
tions of Fairness in Algorithmic Decision Making: A Case Study

of Criminal Risk Prediction. In: Proc. of WWW, 903-912.

Grgic-Hlaca, Nina, Muhammad Bilal Zafar, K. Gummadi, et al. (2016).
The Case for Process Fairness in Learning: Feature Selection for
Fair Decision Making. In: NeurIPS Symposium on Machine Learn-
ing and the Law.

Grgic-Hlaca, Nina, Muhammad Bilal Zafar, Krishna P. Gummadi,
et al. (2018). Beyond Distributive Fairness in Algorithmic Deci-
sion Making: Feature Selection for Procedurally Fair Learning.
In: Proc. of AAAI 51-60.

Gupta, Anupam et al. (2010). Constrained Non-monotone Submod-
ular Maximization: Offline and Secretary Algorithms. In: proc. of
WINE, 246-257.

Halabi, Marwa El et al. (2020). Fairness in Streaming Submodular
Maximization: Algorithms and Hardness. In: Proc. of NeurIPS.

Hardt, Moritz, Eric Price, and Nati Srebro (2016). Equality of Oppor-
tunity in Supervised Learning. In: Proc. of NIPS, 3315-3323.

Ibarra, Oscar H., Shlomo Moran, and Louis E. Rosier (1980). A Note
on the Parallel Complexity of Computing the Rank of Order n
Matrices. Information Processing Letters 11:4/5, 162.

Iyer, Rishabh K. and Jeff A. Bilmes (2013). Submodular Optimization
with Submodular Cover and Submodular Knapsack Constraints.
In: Proc. of NIPS, 2436-2444.

133



134

Iyer, Rishabh K. and Jeff A. Bilmes (2015). Submodular Point Pro-
cesses with Applications to Machine learning. In: Proc. of AIS-
TATS.

Jain, Prateek, Ambuj Tewari, and Purushottam Kar (2014). On Itera-
tive Hard Thresholding Methods for High-dimensional M-Estimation.
In: Proc. of NIPS, 685-693.

Jalali, Ali, Christopher C. Johnson, and Pradeep Ravikumar (2011).
On Learning Discrete Graphical Models using Greedy Methods.
In: Proc. of NIPS, 1935-1943.

Kang, Byungkon (2013). Fast determinantal point process sampling
with application to clustering. In: Proc. of NIPS, 2319-2327.

Karimi, Mohammad Reza et al. (2017). Stochastic Submodular Maxi-
mization: The Case of Coverage Functions. In: proc. of NIPS, 6853—
6863.

Karp, Richard M., Eli Upfal, and Avi Wigderson (1988). The Complex-
ity of Parallel Search. Journal of Computer and System Science 36:2,
225-253.

Kathuria, Tarun, Amit Deshpande, and Pushmeet Kohli (2016). Batched
Gaussian Process Bandit Optimization via Determinantal Point
Processes. In: Proc. of NIPS, 4206-4214.

Khanna, Rajiv et al. (2017). Scalable Greedy Feature Selection via
Weak Submodularity. In: Proc. of AISTATS, 1560-1568.

Khuller, Samir, Anna Moss, and Joseph Naor (1999). The Budgeted
Maximum Coverage Problem. Information Processing Letters 70:1,
39-45.

Kilbertus, Niki et al. (2017). Avoiding Discrimination through Causal
Reasoning. In: Proc. of NIPS, 656-666.

Kim, Michael P, Omer Reingold, and Guy N. Rothblum (2018). Fair-
ness Through Computationally-Bounded Awareness. In: Proc. of
NeurlIPS, 4847-4857.

Kleinberg, Jon M., Sendhil Mullainathan, and Manish Raghavan (2017).
Inherent Trade-Offs in the Fair Determination of Risk Scores. In:
Proc. of ITCS. Vol. 67, 43:1-43:23.



Krause, Andreas and Volkan Cevher (2010). Submodular Dictionary
Selection for Sparse Representation. In: Proc.of ICML, 567-574.
Krause, Andreas, Ajit Paul Singh, and Carlos Guestrin (2008). Near-
Optimal Sensor Placements in Gaussian Processes: Theory, Effi-
cient Algorithms and Empirical Studies. Journal of Machine Learn-
ing Research 9, 235-284.

Kulesza, Alex and Ben Taskar (2010). Structured Determinantal Point
Processes. In: Proc. of NIPS, 1171-1179.

— (2011). k-DPPs: Fixed-Size Determinantal Point Processes. In: Proc.

of ICML, 1193-1200.

— (2012). Determinantal Point Processes for Machine Learning. Now
Publishers.

Kulik, Ariel, Hadas Shachnai, and Tami Tamir (2009). Maximizing
submodular set functions subject to multiple linear constraints.
In: Proc. of SODA, 545-554.

Kumar, Ravi et al. (2015). Fast Greedy Algorithms in MapReduce and
Streaming. ACM Transactions on Parallel Computing 2:3, 14:1-
14:22.

Kusner, Matt J. et al. (2017). Counterfactual Fairness. In: Proc. of
NIPS, 4066-4076.

Lahoti, Preethi et al. (2020). Fairness without Demographics through
Adversarially Reweighted Learning. In: Proc. of NeurIPS.

Larson, Jeff, Marjorie Roswell, and Vaggelis Atlidakis (2016). Data and
Analysis for ‘How We Analyzed the COMPAS Recidivism Algorithm.
https://github.com/propublica/compas-analysis.

Lee, Jon et al. (2009). Non-monotone submodular maximization un-
der matroid and knapsack constraints. In: Proc. of STOC. Ed. by
Michael Mitzenmacher, 323-332.

Li, Wenzheng, Paul Liu, and Jan Vondrék (2020). A polynomial lower

bound on adaptive complexity of submodular maximization. CoRR

abs/2002.09130.

135


https://github.com/propublica/compas-analysis

136

Liu, Ji, Jieping Ye, and Ryohei Fujimaki (2014). Forward-Backward
Greedy Algorithms for General Convex Smooth Functions over A
Cardinality Constraint. In: Proc. of ICML. Vol. 32, 503-511.

Lovasz, Laszl6 (1982). Submodular functions and convexity. In: Proc.
of ISMP. Ed. by Achim Bachem, Bernhard Korte, and Martin Grotschel,
235-257.

Macchi, Odile (1975). The coincidence approach to stochastic point
processes. Advances in Applied Probability 7:1, 83-122. DOTI: 10.
2307/1425855.

Mairal, Julien and Bin Yu (2012). Complexity Analysis of the Lasso
Regularization Path. In: Proc. of ICML.

Mestre, Julidn (2006). Greedy in Approximation Algorithms. In: Proc.
of ESA. Vol. 4168. Lecture Notes in Computer Science, 528-539.

Mirrokni, Vahab S. and Morteza Zadimoghaddam (2015). Random-
ized Composable Core-sets for Distributed Submodular Maximiza-
tion. In: Proc. of STOC, 153-162.

Mirzasoleiman, Baharan, Ashwinkumar Badanidiyuru, and Amin
Karbasi (2016). Fast Constrained Submodular Maximization: Per-
sonalized Data Summarization. In: Proc. of ICML. Vol. 48, 1358-
1367.

Mirzasoleiman, Baharan, Ashwinkumar Badanidiyuru, Amin Karbasi,
etal. (2015). Lazier Than Lazy Greedy. In: Proc. of AAAI, 1812-1818.

Mirzasoleiman, Baharan, Stefanie Jegelka, and Andreas Krause (2018a).
Streaming Non-Monotone Submodular Maximization: Personal-
ized Video Summarization on the Fly. In: Proc. of AAAI, 1379-
1386.

— (2018b). Streaming Non-Monotone Submodular Maximization:
Personalized Video Summarization on the Fly. In: proc. of AAA]
1379-1386.

Mirzasoleiman, Baharan, Amin Karbasi, Ashwinkumar Badanidiyuru,
et al. (2015). Distributed Submodular Cover: Succinctly Summa-
rizing Massive Data. In: Proc. of NeurIPS, 2881-2889.


https://doi.org/10.2307/1425855
https://doi.org/10.2307/1425855

Mirzasoleiman, Baharan, Amin Karbasi, and Andreas Krause (2017).
Deletion-Robust Submodular Maximization: Data Summariza-
tion with "the Right to be Forgotten". In: Proc. of ICML. Vol. 70,
2449-2458.

Mirzasoleiman, Baharan, Amin Karbasi, Rik Sarkar, et al. (2013). Dis-
tributed Submodular Maximization: Identifying Representative
Elements in Massive Data. In: Proc. of NIPS, 2049-2057.

- (2016). Distributed Submodular Maximization. Journal of Machine
Learning Research 17, 238:1-238:44.

Mirzasoleiman, Baharan, Morteza Zadimoghaddam, and Amin Kar-
basi (2016). Fast Distributed Submodular Cover: Public-Private
Data Summarization. In: Proc. of NeurIPS, 3594-3602.

Mulmuley, Ketan (1987). A fast parallel algorithm to compute the
rank of a matrix over an arbitrary field. Combinatorica7:1, 101-
104.

Needell, Deanna and Joel A. Tropp (2010). CoSaMP: iterative signal
recovery from incomplete and inaccurate samples. Communica-
tion of the ACM 53:12, 93-100.

Nemhauser, George L. and Laurence A. Wolsey (1978). Best Algo-
rithms for Approximating the Maximum of a Submodular Set
Function. Mathematics of Operation Research 3:3, 177-188.

Nembhauser, George L., Laurence A. Wolsey, and Marshall L. Fisher
(1978). An analysis of approximations for maximizing submodu-
lar set functions - I. Mathematical Programming 14:1, 265-294.

Pin Calmon, Flavio du et al. (2017). Optimized Pre-Processing for
Discrimination Prevention. In: Proc. of NIPS, 3992-4001.

Ponte Barbosa, Rafael da et al. (2015). The Power of Randomization:
Distributed Submodular Maximization on Massive Datasets. In:
Proc. of ICML, 1236-1244.

Qian, Chao, Chao Bian, and Chao Feng (2020). Subset Selection by
Pareto Optimization with Recombination. In: Proc. of AAAI 2408-
2415.

137



Qian, Chao, Yang Yu, and Zhi-Hua Zhou (2015). Subset Selection by
Pareto Optimization. In: Proc. of NIPS, 1774-1782.

Qian, Sharon and Yaron Singer (2019). Fast Parallel Algorithms for
Statistical Subset Selection Problems. In: Proc. of NeurIPS, 5073—
5082.

Quinzan, Francesco, Vanja Doskoc, et al. (2021). Adaptive Sampling
for Fast Constrained Maximization of Submodular Functions. In:
Proc. of AISTATS, 964-972.

Quinzan, Francesco, Andreas Gobel, et al. (2019). Greedy Maximiza-
tion of Functions with Bounded Curvature under Partition Ma-
troid Constraints. In: Proc. of AAAIL 2272-2279.

Quinzan, Francesco, Rajiv Khanna, et al. (2022). Fast Feature Selec-
tion with Fairness Constraints. CoRR abs/2202.13718.

Rigollet, Philippe and Alexandre Tsybakov (2010). Exponential Screen-
ing and optimal rates of sparse estimation. The Annals of Statis-
tics 39, 731-771.

Rudin, Cynthia, Caroline Wang, and Beau Coker (2018). The age of se-
crecy and unfairness in recidivism prediction. arXiv:1811.00731.

Sakaue, Shinsaku (2020). On Maximization of Weakly Modular Func-
tions: Guarantees of Multi-stage Algorithms, Tractability, and Hard-
ness. In: Proc. of AISTATS, 22-33.

Sapp, Benjamin and Ben Taskar (2013). MODEC: Multimodal Decom-
posable Models for Human Pose Estimation. In: Proc. of CVPR.
Sebastiani, Paolo and Henry P. Wynn (2002). Maximum entropy sam-
pling and optimal Bayesian experimental design. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 62:1, 145~

157.

Selbst, Andrew D. et al. (2019). Fairness and Abstraction in Sociotech-
nical Systems. Proc. of FAccT.

Shannon, Claude E (1948). A mathematical theory of communica-
tion. The Bell system technical journal 27:3, 379-423.

Shewry, Michael C and Henry P Wynn (1987). Maximum entropy
sampling. Journal of applied statistics 14:2, 165-170.

138



Singh, Amarjeet et al. (2009). Efficient Informative Sensing using
Multiple Robots. Journal of Artificial Intelligence Research 34, 707—
755.

Staib, Matthew, Bryan Wilder, and Stefanie Jegelka (2019). Distribu-
tionally Robust Submodular Maximization. In: Proc. of AISTATS,
506-516.

Thompson, Steven K. (1990). Adaptive Cluster Sampling. Journal of
the American Statistical Association 85:412, 1050-1059.

Trankell, Arne (1973). Review: Reliability of Evidence. Methods for
Analysing and Assessing Witness Statements. The Journal of Crim-
inal Law 37:2, 152-152. DOI: 10.1177/002201837303700214.

Vondrdk, Jan (2010). Submodularity and curvature: the optimal al-
gorithm. RIMS Kokyuroku Bessatsu B23, 253-266.

Vondrak, Jan, Chandra Chekuri, and Rico Zenklusen (2011). Submod-
ular function maximization via the multilinear relaxation and
contention resolution schemes. In: Proc. of STOC, 783-792.

Wei, Kai, Rishabh K. Iyer, and Jeff A. Bilmes (2015). Submodularity
in Data Subset Selection and Active Learning. In: Proc. of ICML.
Vol. 37, 1954-1963.

Woodworth, Blake E. et al. (2017). Learning Non-Discriminatory Pre-
dictors. In: Proc. of COLT. Vol. 65, 1920-1953.

Yuan, Xiao-Tong, Ping Li, and Tong Zhang (2017). Gradient Hard
Thresholding Pursuit. Journal of Machine Learning Research 18,
166:1-166:43.

Zafar, Muhammad Bilal, Isabel Valera, Manuel Gomez-Rodriguez, and
Krishna P Gummadi (2017a). Fairness Beyond Disparate Treat-
ment & Disparate Impact: Learning Classification without Dis-
parate Mistreatment. In: Proc. of WWW, 1171-1180.

— (2017Db). Fairness Constraints: Mechanisms for Fair Classification.

In: Proc. of AISTATS. Vol. 54, 962-970.
Zafar, Muhammad Bilal, Isabel Valera, Manuel Gomez-Rodriguez,
Krishna P. Gummadi, and Adrian Weller (2017). From Parity to

139


https://doi.org/10.1177/002201837303700214

140

Preference-based Notions of Fairness in Classification. In: Proc.
of NIPS, 229-239.

Zhang, Haifeng and Yevgeniy Vorobeychik (2016). Submodular Opti-
mization with Routing Constraints. In: Proc. of AAAIL Ed. by Dale
Schuurmans and Michael P Wellman, 819-826.

Zhu, Zhengyuan and Michael L Stein (2006). Spatial sampling design
for prediction with estimated parameters. Journal of agricultural,
biological, and environmental statistics 11:1, 24.

Zimmerman, Dale L (2006). Optimal network design for spatial pre-
diction, covariance parameter estimation, and empirical predic-
tion. Environmetrics: The official journal of the International Envi-
ronmetrics Society 17:6, 635-652.



List of Publications

Articles in Refereed Journals

Evolutionary algorithms and submodular functions: benefits
of heavy-tailed mutations. Natural Computing 20:3, 561-575.
Quinzan, Francesco, Andreas Gobel, Markus Wagner, et al.

Articles in Refereed Conference
Proceedings

Adaptive Sampling for Fast Constrained Maximization of Sub-
modular Functions. In: Proc. of AISTATS, 964-972. Quinzan, Francesco,
Vanja Doskoc, et al.

Non-Monotone Submodular Maximization with Multiple Knap-
sacks in Static and Dynamic Settings. In: Proc. of ECAI, 435-442.
Quinzan, Francesco, Vanja Dostoc, et al.

Greedy Maximization of Functions with Bounded Curvature
under Partition Matroid Constraints. In: Proc. of AAAI 2272—
2279. Quinzan, Francesco, Andreas Gobel, Ralf Rothenberger,

et al.

141



	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Scope of this Thesis
	1.2 Literature Overview
	1.3 Contribution and Outline

	2 Maximum Entropy Sampling
	2.1 Submodularity and Maximum Entropy Sampling
	2.2 Problem Formulation
	2.2.1 The Curvature

	2.3 The Simple Greedy Algorithm
	2.4 Run Time Analysis for the Greedy
	2.4.1 Preliminary Results
	2.4.2 Proof of the Main Theorem

	2.5 Experiments
	2.6 Submodular Maximization under Knapsack Constrains
	2.6.1 The Greedy for k-Knapsacks
	2.6.2 Approximation Guarantees


	3 Video Summarization
	3.1 Determinantal Point Processes and Video Summarization
	3.1.1 Determinantal Point Processes
	3.1.2 Video Summarization

	3.2 Problem Formulation
	3.2.1 p-Systems Side Constraints
	3.2.2 p-Extendable Systems Side Constraints
	3.2.3 The Adaptivity as a Computational Model

	3.3 Related Work
	3.4 A Fast Algorithm for Video Summarization
	3.5 Run Time Analysis for p-Systems
	3.5.1 Overview of the Main Results
	3.5.2 Proof of Lemma 3.1
	3.5.3 Proof of Theorem 3.2
	3.5.4 Proof of Lemma 3.2
	3.5.5 Proof of Lemma 3.3

	3.6 Run Time Analysis for p-Extendable Systems
	3.6.1 Overview of the Main Results
	3.6.2 Proof of the Preliminary Lemmas

	3.7 Complexity and Adaptivity of the Independence Oracle
	3.8 Experiments
	3.8.1 Benchmarks
	3.8.2 Results


	4 Feature Selection
	4.1 Feature Selection as an Optimization Problem
	4.1.1 Technical Overview
	4.1.2 Motivating Example

	4.2 Preliminaries
	4.2.1 Setup
	4.2.2 Relationship to Generalized Submodularity
	4.2.3 Feature Selection for Generalized Linear Models
	4.2.4 Embedding Fairness via p-Systems
	4.2.5 Adaptivity

	4.3 Algorithmic Overview
	4.4 Approximation Guarantees
	4.5 Proof of Theorem 4.4
	4.5.1 Preliminary Results
	4.5.2 If Algorithm 6 Outputsa Maximum Independent Set
	4.5.3 If Algorithm 6 Terminates after Iterations

	4.6 Proof of Theorem 4.5
	4.7 Experiments
	4.7.1 Datasets
	4.7.2 Benchmarks
	4.7.3 Results


	5 Conclusion
	5.1 Outlook

	Bibliography
	List of Publications

