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Summary 

Extreme flooding displaces an average of 12 million people every year. Marginalized 

populations in low-income countries are in particular at high risk, but also industrialized 

countries are susceptible to displacement and its inherent societal impacts. The risk of being 

displaced results from a complex interaction of flood hazard, population exposed in the 

floodplains, and socio-economic vulnerability. Ongoing global warming changes the intensity, 

frequency, and duration of flood hazards, undermining existing protection measures. 

Meanwhile, settlements in attractive yet hazardous flood-prone areas have led to a higher 

degree of population exposure. Finally, the vulnerability to displacement is altered by 

demographic and social change, shifting economic power, urbanization, and technological 

development. These risk components have been investigated intensively in the context of loss 

of life and economic damage, however, only little is known about the risk of displacement 

under global change. 

This thesis aims to improve our understanding of flood-induced displacement risk under 

global climate change and socio-economic change. This objective is tackled by addressing 

the following three research questions. First, by focusing on the choice of input data, how well 

can a global flood modeling chain reproduce flood hazards of historic events that lead to 

displacement? Second, what are the socio-economic characteristics that shape the 

vulnerability to displacement? Finally, to what degree has climate change potentially 

contributed to recent flood-induced displacement events? 

To answer the first question, a global flood modeling chain is evaluated by comparing 

simulated flood extent with satellite-derived inundation information for eight major flood 

events. A focus is set on the sensitivity to different combinations of the underlying climate 

reanalysis datasets and global hydrological models which serve as an input for the global 

hydraulic model. An evaluation scheme of performance scores shows that simulated flood 

extent is mostly overestimated without the consideration of flood protection and only for a few 

events dependent on the choice of global hydrological models. Results are more sensitive to 

the underlying climate forcing, with two datasets differing substantially from a third one. In 

contrast, the incorporation of flood protection standards results in an underestimation of flood 

extent, pointing to potential deficiencies in the protection level estimates or the flood frequency 

distribution within the modeling chain. 

Following the analysis of a physical flood hazard model, the socio-economic drivers of 

vulnerability to displacement are investigated in the next step. For this purpose, a satellite-

based, global collection of flood footprints is linked with two disaster inventories to match 

societal impacts with the corresponding flood hazard. For each event the number of affected 

population, assets, and critical infrastructure, as well as socio-economic indicators are 
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computed. The resulting datasets are made publicly available and contain 335 displacement 

events and 695 mortality/damage events. Based on this new data product, event-specific 

displacement vulnerabilities are determined and multiple (national) dependencies with the 

socio-economic predictors are derived. The results suggest that economic prosperity only 

partially shapes vulnerability to displacement; urbanization, infant mortality rate, the share of 

elderly, population density and critical infrastructure exhibit a stronger functional relationship, 

suggesting that higher levels of development are generally associated with lower vulnerability. 

Besides examining the contextual drivers of vulnerability, the role of climate change in 

the context of human displacement is also being explored. An impact attribution approach is 

applied on the example of Cyclone Idai and associated extreme coastal flooding in 

Mozambique. A combination of coastal flood modeling and satellite imagery is used to 

construct factual and counterfactual flood events. This storyline-type attribution method allows 

investigating the isolated or combined effects of sea level rise and the intensification of cyclone 

wind speeds on coastal flooding. The results suggest that displacement risk has increased by 

3.1 to 3.5% due to the total effects of climate change on coastal flooding, with the effects of 

increasing wind speed being the dominant factor. 

In conclusion, this thesis highlights the potentials and challenges of modeling flood-

induced displacement risk. While this work explores the sensitivity of global flood modeling to 

the choice of input data, new questions arise on how to effectively improve the reproduction 

of flood return periods and the representation of protection levels. It is also demonstrated that 

disentangling displacement vulnerabilities is feasible, with the results providing useful 

information for risk assessments, effective humanitarian aid, and disaster relief. The impact 

attribution study is a first step in assessing the effects of global warming on displacement risk, 

leading to new research challenges, e.g., coupling fluvial and coastal flood models or the 

attribution of other hazard types and displacement events. This thesis is one of the first to 

address flood-induced displacement risk from a global perspective. The findings motivate for 

further development of the global flood modeling chain to improve our understanding of 

displacement vulnerability and the effects of global warming. 
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Kurzfassung 
Durch extreme Überschwemmungen werden jedes Jahr durchschnittlich 12 Millionen 

Menschen vertrieben. Vor allem marginalisierte Bevölkerungsgruppen in Ländern mit 

niedrigem Einkommen sind stark gefährdet, aber auch Industrieländer sind anfällig für 

Vertreibungen und die damit verbundenen gesellschaftlichen Auswirkungen. Das Risiko der 

Vertreibung ergibt sich aus einer komplexen Wechselwirkung zwischen der 

Hochwassergefahr, der Exposition der in den Überschwemmungsgebieten lebenden 

Bevölkerung und der sozioökonomischen Vulnerabilität. Die fortschreitende globale 

Erderwärmung verändert die Intensität, Häufigkeit und Dauer von Hochwassergefahren und 

untergräbt die bestehenden Schutzmaßnahmen. Gleichzeitig hat die Besiedlung attraktiver, 

aber gefährdeter Überschwemmungsgebiete zu einem höheren Maß an Exposition der 

Bevölkerung geführt. Schließlich wird die Vulnerabilität für Vertreibungen durch den 

demografischen und sozialen Wandel, die Verlagerung der Wirtschaftskräfte, die 

Urbanisierung und die technologische Entwicklung verändert. Diese Risikokomponenten 

wurden im Zusammenhang mit dem Verlust von Menschenleben und wirtschaftlichen 

Schäden intensiv untersucht, über das Risiko der Vertreibung im Rahmen des globalen 

Wandels ist jedoch nur wenig bekannt. 

Diese Arbeit zielt darauf ab, unser Verständnis des durch Überschwemmungen 

verursachten Vertreibungsrisikos unter dem Einfluss des globalen Klimawandels und des 

sozioökonomischen Wandels zu verbessern. Dieses Ziel wird durch die Beantwortung der 

folgenden drei Forschungsfragen erreicht. Erstens: Wie gut kann eine globale 

Hochwassermodellierungskette die Hochwassergefahren historischer Ereignisse, die zu 

Vertreibung geführt haben, reproduzieren, wobei ein Fokus auf die Wahl der Eingangsdaten 

gelegt wird? Zweitens: Welches sind die sozioökonomischen Merkmale, die die Vulnerabilität 

für Vertreibung beeinflussen? Und schließlich, inwieweit hat der Klimawandel möglicherweise 

zu den jüngsten hochwasserbedingten Vertreibungsereignissen beigetragen? 

Zur Beantwortung der ersten Frage wird eine globale Hochwassermodellierungskette 

durch den Vergleich der simulierten Überschwemmungsfläche mit satellitengestützten 

Überschwemmungsdaten für acht große Hochwasserereignisse überprüft. Der Schwerpunkt 

liegt dabei auf der Sensitivität gegenüber verschiedenen Kombinationen der zugrunde 

liegenden Klimareanalysedatensätzen und globalen hydrologischen Modellen, die als Input 

für das globale Hydraulikmodell dienen. Ein Bewertungsschema von Leistungsindikatoren 

zeigt, dass die simulierte Überschwemmungsfläche ohne Berücksichtigung des 

Hochwasserschutzes meist überschätzt wird und nur bei wenigen Ereignissen von der Wahl 

der globalen hydrologischen Modelle abhängt. Die Ergebnisse sind empfindlicher gegenüber 

dem zugrunde liegenden Climate Forcing, wobei sich zwei Datensätze erheblich von einem 
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dritten unterscheiden. Im Gegensatz dazu führt die Einbeziehung von 

Hochwasserschutznormen zu einer Unterschätzung der Überschwemmungsfläche, was auf 

mögliche Mängel bei der Schätzung des Schutzniveaus oder der 

Hochwasserhäufigkeitsverteilung innerhalb der Modellierungskette hinweist. 

Nach der Analyse des physikalischen Hochwassergefahrenmodells werden in einem 

nächsten Schritt die sozioökonomischen Triebkräfte für die Vulnerabilität für Vertreibungen 

untersucht. Zu diesem Zweck wird eine satellitengestützte, globale Sammlung von 

Hochwasseüberschwemmungsflächen mit zwei Katastrophendatenbänken verknüpft, um die 

gesellschaftlichen Auswirkungen mit der entsprechenden Hochwassergefahr 

zusammenzuführen. Für jedes Ereignis werden die Anzahl der betroffenen Menschen, 

Vermögenswerte und kritischen Infrastrukturen sowie sozioökonomische Indikatoren 

berechnet. Die daraus resultierenden Datensätze werden öffentlich zugänglich gemacht und 

enthalten 335 Vertreibungsereignisse und 695 Todesopfer-/Schadensereignisse. Auf der 

Grundlage dieses neuen Datenprodukts werden ereignisspezifische 

Vertreibungsvulnerabilitäten bestimmt und vielfältige (nationale) Abhängigkeiten mit den 

sozioökonomischen Prädiktoren abgeleitet. Die Ergebnisse deuten darauf hin, dass 

wirtschaftlicher Wohlstand nur teilweise die Anfälligkeit für Vertreibungen beeinflusst; 

Urbanisierung, Kindersterblichkeitsrate, der Anteil älterer Menschen, Bevölkerungsdichte und 

kritische Infrastrukturen weisen eine stärkere funktionale Beziehung auf, was den Schluss 

zulässt, dass ein höheres Entwicklungsniveau im Allgemeinen mit einer geringeren 

Vulnerabilität verbunden ist. 

Neben der Untersuchung der kontextabhängigen Faktoren der Vulnerabilität wird auch 

die Rolle des Klimawandels im Zusammenhang mit der Vertreibung von Menschen 

untersucht. Am Beispiel des Zyklons Idai und den damit verbundenen extremen 

Küstenüberschwemmungen in Mosambik wird ein Ansatz zur Attribution der Auswirkungen 

angewandt. Eine Kombination aus Küstenüberflutungsmodellierung und Satellitenbildern wird 

verwendet, um faktische und kontrafaktische Überschwemmungsereignisse zu konstruieren. 

Diese Storyline-artige Attributionsmethode ermöglicht die Untersuchung der isolierten oder 

kombinierten Auswirkungen des Meeresspiegelanstiegs und der Intensivierung der 

Windgeschwindigkeiten von Zyklonen auf die Küstenüberflutung. Die Ergebnisse deuten 

darauf hin, dass das Vertreibungsrisiko durch die Gesamtwirkung des Klimawandels auf 

Küstenüberschwemmungen um 3,1 bis 3,5 % gestiegen ist, wobei die Auswirkungen der 

zunehmenden Windgeschwindigkeit der dominierende Faktor sind. 

Zusammenfassend zeigt diese Arbeit die Potentiale und Herausforderungen der 

Modellierung von hochwasserbedingten Vertreibungsrisiken auf. Während diese Arbeit die 

Sensitivität der globalen Hochwassermodellierung in Bezug auf die Wahl der Eingabedaten 
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untersucht, ergeben sich neue Fragen, wie die Reproduktion von Wiederkehrintervallen und 

die Darstellung von Schutzniveaus effektiv verbessert werden kann. Die Ergebnisse liefern 

nützliche Informationen für Risikobewertungen, effektive humanitäre Hilfe und 

Katastrophenhilfe. Die Studie zur Auswirkungs-Attribution ist ein erster Schritt zur Bewertung 

der Effekte der globalen Erwärmung auf das Vertreibungsrisiko und führt zu neuen 

Forschungsherausforderungen, z. B. zur Kopplung von Fluss- und 

Küstenhochwassermodellen oder zur Untersuchung anderer Gefahrenarten. Diese Arbeit ist 

eine der ersten, die das durch Überschwemmungen verursachte Vertreibungsrisiko aus einer 

globalen Perspektive heraus betrachtet. Die Ergebnisse motivieren dazu, die globale 

Hochwassermodellierungskette weiterzuentwickeln, um unser Verständnis der 

Vertreibungsvulnerabilität und der Auswirkungen der globalen Erderwärmung zu vertiefen. 
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Chapter 1 Introduction 

1.1 Motivation 

Over the past millennia, the examples of climate change destabilizing civilizations by causing 

food shortages, housing destruction, infectious diseases, and civil unrest are numerous 

(McMichael, 2012). Human mobility, serving as a response to climate stresses and shocks, is 

considered as an important adaptive strategy within human evolution. (Groth et al., 2020; 

Warner et al., 2010). Recent human-made climate change, however, is heating up the planet 

at an unprecedented pace, leading to drastic changes in magnitude, frequency, and timing of 

weather and climate extremes (Seneviratne et al., 2021, 2012). This process is changing 

human mobility patterns from more proactive and voluntary flows to forced disaster 

displacement (Sedova and Kalkuhl, 2020; Thalheimer et al., 2021b). In the early 1990s, the 

Intergovernmental Panel on Climate Change (IPCC) already warned about the potential 

impacts of global warming on human settlement and stated that “[t]he gravest effects of climate 

change may be those on human migration as millions are displaced by shoreline erosion, 

coastal flooding and severe drought” (IPCC, 1992). 30 years later, the IPCC WGII report states 

with “high confidence” that climate and weather extremes are increasingly driving 

displacement in all regions over the world (Cissé et al., 2022). And United Nations secretary-

general António Guterres states that “[t]he plight of internally displaced persons is more than 

a humanitarian issue. It takes an integrated approach – combining development, 

peacebuilding, human rights, climate action and disaster risk reduction efforts'' (UN, 2022). 

By today, an average of 21.8 million people are internally displaced by weather and 

climate extremes every year, more than two and half times the number of conflict-related 

displacements (Figure 1.1) (IDMC, 2022). Flooding accounts for 54 % of weather-related 

displacements, making it one of the most dangerous hazards along with tropical cyclones 

(TCs) and storms (IDMC, 2022). Climate change is affecting fluvial flooding (Berghuijs et al., 

2017; Blöschl et al., 2019, 2017), coastal flooding due to TCs (Knutson et al., 2019; Woodruff 

et al., 2013), and urban (flash) flooding (Fowler et al., 2021; Ye et al., 2017) in various ways, 

making it of primary concern for displacement risk. Flood risk projected to change within the 

next decades, with many regions experiencing distinctive increases in societal impacts (Alfieri 

et al., 2017; Bates et al., 2021; Hirabayashi et al., 2013; Lin et al., 2012; Willner et al., 2018b; 

Winsemius et al., 2016). Future projections by the World Bank Groundswell Part 2 report 

postulate an estimate of 216 million internal migrants by 2050 (including non-flood hazards), 

with “climate migration hotspots” already emerging by 2030 (Clement et al., 2021). Thus, a 

strong increase in regional flood protection is required to maintain current high-end flood risk 

for the period 2035 to 2044 and beyond (Willner et al., 2018a; Winsemius et al., 2016). 

Otherwise, by the end of the 21st century, relative global fluvial flood displacement risk is 

estimated to increase by 50% (150%) for a strong (weak) climate change mitigation scenario, 
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assuming current flood protection levels and fixed population size as of 2000 (Kam et al., 

2021). 

 

Figure 1.1: Number of internal displacements per year due to all weather-related disasters (black), floods (blue), 

and conflict (red) (IDMC, 2022). 

In the light of these numbers, the broader issue of climate mobility is attracting 

widespread interest from the public, policymakers, practitioners, and academia (Hoffmann et 

al., 2020). However, the connection between climate change, extreme events, and associated 

mobility is often oversimplified, leading to artificially inflated displacement numbers (Gemenne, 

2011). The public and scientific discussion is also hampered by an usage of misleading 

terminologies, such as “climate refugee” or “climate-induced mass migration” (Ayeb-Karlsson 

et al., 2022). As a consequence, alarmist tones further fuel the debate by framing climate-

related mobility as a security threat (Hartmann, 2010). This calls for standardized and 

transparent methodologies of estimates and predictions of people displaced by environmental 

changes (Gemenne, 2011). The usage of more appropriate terminologies, e.g., environmental 

migration or disaster-induced displacement, which depict different motives and destinations of 

migration, is another important aspect (Dun and Gemenne, 2008). In fact, the correct and 

distinctive labeling is difficult, as often multiple drivers lead to a migration process (Boas et al., 

2019). Conflict, economic opportunities, socio-political crises, and other contextual 

characteristics may both enhance or suppress migratory responses, making it difficult to single 

out climate extremes as the primary reason for human mobility (Hoffmann et al., 2020; Schutte 

et al., 2021; Thalheimer et al., 2021a).  

Yet, it would be crucial to understand how climate change may have already contributed 

to recent displacement events, especially those of high-intensity or even unprecedented 

magnitude. In recent years, probabilistic attribution methodologies have been developed to 

assess the impact of global warming in terms of attributable risk (Philip et al., 2020), e.g., for 
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heavy precipitation (Luu et al., 2021; Oldenborgh et al., 2017). However, these approaches 

lack a full applicability on extreme events involving complex dynamical processes of the 

climate system (Shepherd, 2016), e.g., coastal flooding driven by severe TCs. In addition, it is 

also difficult to depict how the effects of global warming on the physical characteristics of 

extreme events might translate to changes in the societal impacts (Trenberth et al., 2015), 

such as human displacement. Access to such information would be particularly important for 

risk awareness, adaptation financing, or even litigation (Marjanac and Patton, 2018; 

Shepherd, 2016; Stuart-Smith et al., 2021; Trenberth et al., 2015). 

Besides shifts in population size and changing flood hazards due to global warming, 

displacement risk is also influenced by changes in vulnerability (Cardona et al., 2012; 

Oppenheimer et al., 2014). In the context of flooding, mortality and the vulnerability of 

economic assets have been decreasing for most income groups over the past decades 

(Formetta and Feyen, 2019; Jongman et al., 2015). However, also increases in vulnerability 

can be found for some world regions and countries (Sauer et al., 2021; Tanoue et al., 2016), 

which could be explained by socio-physical dynamics, e.g., the “levee effect” (Di Baldassarre 

et al., 2015). Very few studies examine vulnerability to displacement at the global level to 

explore its universally applicable mechanisms (Kakinuma et al., 2020); implying that there is 

a clear lack of scientific evidence for international decision makers on how socio-economic 

factors shape the susceptibility of being displaced. A solid understanding of vulnerability, 

however, is necessary to model estimates and projections of displacement risk under current 

or future climate change, respectively. 

Facing these challenging tasks, global flood models (GFMs) are a powerful tool in 

reproducing historic flood-induced displacement events, investigating the role of climate 

change or simulating future risk under different socio-economic pathways (Hirabayashi et al., 

2013; Kakinuma et al., 2020; Kam et al., 2021). Most global-scale river flood models consist 

of a cascade of climate-hydrology-hydraulic models and simulate continental-scale rivers 

(Yamazaki et al., 2011). Coastal flooding due to TCs can be simulated by storm surge models 

which are based on storm tracks, pressure fields, and sea level information (Mandli and 

Dawson, 2014). Global models help to understand the mechanisms of flood risk from a 

broader perspective, as they are not limited to single basins but can be employed to simulate 

flood hazards and associated societal risk in virtually any place on earth (Ward et al., 2015). 

Even though these models have been employed for less than two decades, astonishing 

advancements have been achieved, especially considering the enormous challenges of 

global-scale data assimilation (Bates et al., 2021, 2018; Yamazaki et al., 2014). Yet, high 

uncertainties remain in the modeling framework, e.g., the input models, protection standards, 

or the flood frequency analysis (Ward et al., 2013; Zhou et al., 2021). Alternatively, new 

satellite-based flood products with global coverage offer unexplored opportunities in modeling 

flood risk (Tellman et al., 2021) and hence also investigating the mechanisms of displacement. 

A major challenge that all flood hazard reproduction methods face is the correct representation 

of the physical flood characteristics, such as extent or depth (Hoch and Trigg, 2019). Another 



4  

 

key point is the incorporation of displacement vulnerability within the societal impact 

assessment, e.g., in terms of intensity-impact functions as it exists in the form of depth-

damage functions for economic loss analyses (Ward et al., 2020). Mostly, simplistic 

approaches, such as binary step-functions regarding the flood depth (Kam et al., 2021), are 

assumed, leading to high uncertainties regarding the share of displacements among the 

exposed population.  

In conclusion, flood-induced human displacement is a pressing topic of our time and will 

increase in severity under future global change. Flood events are affected by climate change 

in various ways and the population exposed is experiencing socio-economic changes which 

alter its vulnerability of being displaced. Yet, it is unknown how these processes shape the 

risk of flood-induced displacement. From this lack of knowledge regarding the underlying 

mechanisms of displacement, the following Overarching Research Question of this thesis 

emerges: 

 

What is the effect of global climate change and socio-economic change                               

on flood-induced human displacement risk? 

 

Modeling displacement risk is a promising option to answer this question and fill the 

numerous knowledge gaps, however, a set of challenges is identified. First, existing flood 

model setups need to be evaluated and new flood data products, e.g., derived from remote 

sensing, pose promising extensions or even alternatives which need to be incorporated. The 

assessment and explanation of vulnerability as well as its representation within the modeling 

chain is of crucial importance. Lastly, climate change is one of the main drivers of future risk, 

calling for attribution studies on how global warming affects flooding and associated 

displacement. Advancements on these topics would help to improve our understanding of the 

mechanisms of human mobility in the context of extreme flooding and assess global 

displacement risk under future global change.  

 

1.2 Background 

The lack of knowledge around the effects of climate change and socio-economic change on 

flood-induced displacement risk is identified as the main motivation of this thesis. This section 

provides background information on the topic, methods and datasets used. It also serves as 

an contextualization of the research work, introducing the topics within a broader scope than 

laid out within the manuscripts in the subsequent main chapters. The first section gives an 

insight in the terminology, data sources and associated uncertainties related to flood-induced 

displacement. This is followed by an overview on the concept of vulnerability, in which the 

multiple contextual drivers are introduced and findings are presented that go beyond studies 
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on flooding or displacement. Lastly, it is highlighted how climate change affects flooding in 

various ways and presents techniques to attribute these changes.  

1.2.1 Flood-induced displacement  

International organizations and authorities have placed the issue of climate-related human 

mobility at the core of several legal frameworks, policy initiatives and governance structures,  

such as the Cancun Adaptation Framework, the Task Force on Displacement, the Global 

Compact for Migration, or the Sendai Framework for Disaster Risk Reduction (International 

Organization for Migration, 2019; Oakes et al., 2019; United Nations Office for Disaster Risk 

Reduction, 2015). While these frameworks cover a broad spectrum of people movement, this 

thesis addresses the topic of flood-induced displacement which is more closely defined in the 

following, including reporting uncertainties and data availability. This is an important step in 

the research question conceptualization as the correct terminology and framing are critical in 

the context of human mobility (Dun and Gemenne, 2008; Heslin et al., 2019; Hoffmann et al., 

2021).  

Several definitions of human mobility in the context of climate and environmental change 

exist. The International Organization for Migration (IOM) distinguishes migration according to 

the destination (international or internal); the United Nations (UN) additionally categorizes 

according to the motivation (voluntary or forced) (Heslin et al., 2019). Alternative 

representations of this binary motivation perspective exist, such as a continuum view from 

totally voluntary migration to totally forced migration (Hugo, 1996). Yet, a clear classification 

within this motivation spectrum is difficult due to a complex system of interacting push and pull 

factors  (Obokata et al., 2014; Renaud et al., 2007; Warner et al., 2010). 

The form of migration movements can be categorized into adaptive migration, planned 

relocation, involuntary migration, also described as displacement, and immobility (Cissé et al., 

2022; Oakes et al., 2019). Displacement is a widely interpreted term for which no clear unified 

definition exists; it includes pre-emptive evacuation, temporary displacement or permanent 

displacement, with potential resettlement in new territory (Gemenne, 2011). Extreme events 

often result in internally displaced persons (IDPs) (Black et al., 2013). Displacement is a global 

phenomenon with absolute displacement numbers being particularly high in Asia and sub-

Saharan Africa, while relative numbers are largest in small island states (Cissé et al., 2022). 

Disaster-induced internal displacement is in the focus of this thesis and describes individuals 

and households forced to leave homes or places of habitual residence due to extreme weather 

and climate events (OCHA, 2004); human movements are limited to national borders, 

separating this type from refugees or asylum-seekers (UN, 1951). The term “displacement” 

used throughout this study refers to disaster-induced internal displacement unless otherwise 

noted. Following the migration definition by the UN, the motivation of an IDP is the fear of 

serious harm rather than a voluntary movement (Heslin et al., 2019). In the wake of forced 

displacement, weather extremes may trigger a humanitarian crisis cascade, resulting in loss 
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of life, business disruption, uncontrolled urban settlements, which in turn can lead to violence 

and conflict (Gannon et al., 2018; Ghimire et al., 2015; Trisos et al., 2022). The scope of 

movement is limited by financial resources (Black et al., 2011), which may partially explain 

why disaster-induced displacement is mostly internal and international mobility often extends 

only to neighboring countries (Cardona et al., 2012; Cissé et al., 2022). 

Displacement can be further distinguished by its cause in sudden-onset and slow-onset 

(Dun and Gemenne, 2008). Sea level rise (SLR) and droughts are considered as causes for 

slow-onset displacement, which often overlap with other socio-economic factors that drive the 

decision of moving away (Desai et al., 2018). Sudden-onset displacement is the result of 

livelihood disruption, for example, due to storms, river flooding and wildfires (IDMC and ADB, 

2022), leading to both short-term and long-term displacement (Cissé et al., 2022). A special 

example are TCs that generate coastal flooding, pluvial flooding due to heavy rain, and 

extreme wind speeds, causing displacement either individually or as multi-hazard events 

(IDMC, 2021). Coastal and inland flooding by TCs are considered as flood-induced 

displacement in this work, even though displacement in the context of these hazards may also 

be considered as storm-induced.  

Considering the variety of human mobility and the difficulty to track displaced people, 

e.g., in terms of return flows or repeated displacement, assessing displacement quantitatively 

is a challenging task (Hoffmann et al., 2021, 2020). The Global Internal Displacement 

Database (GIDD), maintained by the Internal Displacement Monitoring Centre (IDMC), is 

considered as one of the most credible displacement inventories on conflict and disaster. The 

GIDD exhibits a global coverage and lists all types of weather and climate extreme events. 

The beginning of data recording dates back to 2008; since then the database has increased 

in information density over the years, such as the tracking of affected administrative units. 

Only in recent years, information has been recorded also on the status of the IDPs, e.g., the 

number of IDPs returned after evacuation or permanently displaced in shelter camps. For most 

entries only one total number of IDPs is stated per event in the GIDD, which covers all types 

of displacement, ranging from precautious evacuations in relatively controlled circumstances 

to severe, multiple and/or long-term displacement (Anzellini et al., 2017). This has far-reaching 

implications for modeling of displacement. For instance, preventive evacuation and only minor 

housing damage may result in the same registered number of IDPs as due to the complete 

destruction of housing. Other disaster databases incorporate even coarser approaches, for 

example, displaying only the “number of homeless” or directly converting the number of 

affected people to the number of IDPs. As no transparent methodology is provided on how 

displacement is defined and IDPs are tracked, in contrast to the GIDD, caution should be taken 

on their usage for displacement analysis. With this introduction to the terminology and 

uncertainties surrounding displacement, the vulnerability to displacement is discussed next. 
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1.2.2 Vulnerability of displacement 

Following the IPCC, risk is determined not only by the physical properties of flooding (hazard) 

or the people living in floodplains (exposure), but also by the susceptibility of being displaced 

(vulnerability) (Cardona et al., 2012; Oppenheimer et al., 2014). Vulnerability, also described 

as predisposition, fragility, or lack of capacities that foster adverse impacts on exposed 

elements (Cardona et al., 2012), is a dynamic component of risk that varies across temporal 

and spatial scales (Cissé et al., 2022). Vulnerability results from a complex set of drivers and 

interacting conditions that describe the social, cultural, environmental, political and economic 

context in which the flood hazard occurs (Cissé et al., 2022). Only when a certain level of 

vulnerability is exceeded, a hazardous flood event can become a disaster for the population 

exposed (Few et al., 2021). Therefore, effective adaptation and disaster risk management 

strategies also depend on a profound understanding of the manifold dimensions of 

vulnerability, as well as a thorough assessment of potential changes of future vulnerability 

levels (Cardona et al., 2012). Yet, due to its complexity, vulnerability remains poorly 

understood and is justifiably considered to be the “missing link” in the risk equation (Jongman 

et al., 2015; Mechler and Bouwer, 2015).  

Only few studies cover flood-induced displacement risk and its drivers at the global 

scale, limiting our understanding of the underlying socio-economic processes and methods to 

represent vulnerability in the modeling frameworks. Drivers of vulnerability can be broadly 

categorized into environmental, social and economic dimensions (Cardona et al., 2012), which 

can be extended with political and demographic dimensions in the context of human migration 

(Black et al., 2011). These and similar categorization attempts are related to social 

vulnerability of the population exposed, differing from the concept of vulnerability of physical 

infrastructure (Flanagan et al., 2011). Focusing only on the latter one, the few existing 

displacement risk studies mostly apply intensity-damage functions to estimate an expected 

level of damage to homes and other structures and thus the associated displacement risk 

(Anzellini et al., 2017; Kam et al., 2021). For example, displacement risk is estimated using a 

simplified 1 m step function related to flooding depth (Kam et al., 2021). One study on global-

scale flood-induced displacement suggests that limited economic resources and adaptive 

capacity influence vulnerability in some world regions (Kakinuma et al., 2020), however, no 

distinctive functional relationship exists yet. 

Insights on vulnerability to non-flood extremes or non-displacement impacts, e.g., 

mortality or economic losses, are to be treated with caution within the context of flood-induced 

displacement. The rate of onset, intensity, duration, spatial extent and damage type varies 

between climate hazards (Seneviratne et al., 2021); the vulnerability to the inherent adverse 

effects and its drivers may hence differ between the hazard types. Nonetheless, insights about 

the causal relationships between different vulnerability and its drivers across different societal 

impact categories and hazard types serves as a starting point for understanding the highly 

complex contexts in which disaster-displacement occurs. For example, TC-related 
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displacements heavily depend on the damage to housing and livelihood assets, however, also 

other factors, such as responsive capacity of the government or level of poverty play a role 

(Cissé et al., 2022).  

More knowledge exists about the vulnerability associated with flood induced mortality 

and economic losses, demonstrating regional differences and for most parts a declining trend 

over time (Formetta and Feyen, 2019; Jongman et al., 2015; Tanoue et al., 2016). Global-

scale studies focus mostly on economic variables to explain vulnerability, e.g., GDP per capita 

or income levels, neglecting the multitude of other drivers that can also substantially influence 

vulnerability (Oppenheimer et al., 2014). A reduction of vulnerability, however, is often also 

associated with development indicators fostering adaptive capacity, such as strong institutions 

or educational quality (Bowen et al., 2012). As for example, TC mortality risk is not only 

depending on poverty, but also on the level of governance (Peduzzi et al., 2012). Widely 

agreed drivers of vulnerability to flooding, such as age cohorts, strongly depend on the context 

and vary not only in magnitude but also in the direction (Rufat et al., 2015). Mortality of various 

hazards is linked with the national development level and environmental quality, for example, 

GDP per capita, urban growth, modified percentage of arable land or forest coverage (Peduzzi 

et al., 2009). These broad measures of development, most of which are available only at the 

national level, do not, however, explain vulnerability comprehensively enough (Noy, 2016). 

For instance, Bangladesh exhibits a high degree of poverty, nonetheless, its vulnerability to 

TC impacts is relatively low due to a set of disaster risk reduction measures (Paul, 2009; 

Peduzzi et al., 2012). Yet, globally consistent, not to mention spatially explicit, information on 

early-warning systems, shelters, reforestation and other measures is not available, making it 

difficult to account for these indicators in global-scale analysis of vulnerability. Global-scale 

models, methods, and datasets are limited, nonetheless, their usage may provide 

internationally consistent insights for decision makers, especially for data-scarce regions 

(Ward et al., 2015). Despite all these difficulties, our understanding of the factors that 

determine vulnerability to flood-induced displacement needs to be enhanced to target 

populations that are most at risk of being displaced and to ensure that adequate preventative 

and disaster risk reduction measures are implemented. Climate change is undermining such 

actions, its role in various types of flooding and ways to attribute events to global warming are 

discussed in the next section. 

1.2.3 Climate change and the attribution question 

It is of primary societal concern to understand if recent flood events can be attributed to climate 

change (van Oldenborgh et al., 2021). Understanding how the probability or intensity of 

extreme flooding has already changed is tremendously important for disaster risk reduction, 

e.g., in the field of adaptation planning (Trenberth et al., 2015). Answering such an attribution 

question, however, depends on the hazard category and the framing (Shepherd, 2016). For 

example, it is relevant what type of flood is being studied or whether the goal is to understand 
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the underlying mechanisms of how global warming affects floods. The following section 

presents the various impacts of climate change on flooding and explains how these impacts 

can be attributed to climate change. 

Flooding can be categorized into pluvial (flash/urban) flooding, fluvial (freshwater/river) 

flooding, and coastal flooding (Seneviratne et al., 2012). Each type is affected by climate 

change differently in terms of frequency, magnitude, duration, and timing (Seneviratne et al., 

2012). Fluvial and pluvial flooding are mostly the result of extremes of processes in the 

hydrological cycle, in particular precipitation, runoff, and streamflow (Kundzewicz et al., 2014; 

Seneviratne et al., 2021). Increased greenhouse gasses in the atmosphere lead to an 

intensification of the global hydrological cycle, resulting in changes in annual-mean 

precipitation and runoff trends (Dai, 2021). This can be partially explained by the Clausius-

Clapeyron (CC) relationship stating that the water-holding capacity of the atmosphere 

increases by 7% per °C of global warming (Seneviratne et al., 2021). This temperature 

sensitivity is similar for the magnitude of extreme precipitation at a global-scale (Fischer and 

Knutti, 2016; Guerreiro et al., 2018; Sun et al., 2021), with short-duration rainfall extremes 

increasing even at twice the rate or more in some regions (Fowler et al., 2021; Ye et al., 2017).  

Despite the intensification of extreme precipitation following the CC relationship, high 

stream discharge is decreasing in many places, e.g., in the United States (Do et al., 2020); 

possible due to decreases in antecedent soil moisture and snowmelt (Sharma et al., 2018).The 

issue is more complex, however, as the rarest floods are more likely to increase, while less 

extreme floods, especially occurring in larger, less-urbanized catchments, tend to decrease 

(Do et al., 2017; Fowler et al., 2021; Sharma et al., 2018). Signals of climate change regarding 

changes in timing (Blöschl et al., 2017), frequency, magnitude (Berghuijs et al., 2017), and 

regional discharges  (Blöschl et al., 2019) of flooding can be detected. Still, some studies find 

a dominance of multidecadal variability, e.g., Atlantic Multidecadal Oscillation, over long-term 

trends (Hodgkins et al., 2017).  

The intensification of coastal flooding due to global warming, on the other hand, is driven 

by SLR and an increase in (extra-)tropical cyclone and storm wind speeds (Walsh et al., 2019). 

Global mean SLR is approximately 0.2 m and will further increase (Gulev et al., 2021), with 

regional SLR varying substantially (Fox-Kemper et al., 2021). Average TC wind speeds and 

precipitation rates are expected to increase with higher SSTs, again with regional differences 

among TC basins (Knutson et al., 2020, 2015). Both SLR and intensified wind speeds amplify 

storm surges and associated coastal flooding, higher rainfall rates pose a more severe risk for 

both coastal and inland flooding (Knutson et al., 2020). 

The rapidly advancing field of event attribution aims to disentangle climate change from 

natural variability sources, such as the El Niño–Southern Oscillation, and assess its 

contribution to individual extreme events (Titley et al., 2016). Generally, two event attribution 

approaches exist: 1) observational data is used to investigate probabilities of occurrence of 

an event, or 2) the manifestation of an event in a world with climate change is compared to a 
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counterfactual world without climate change using model simulations, also called the “storyline 

approach” (Philip et al., 2020; Shepherd, 2016; Titley et al., 2016).  

Depending on the hazard category type, our understanding of climate change effects on 

the extreme event, the choice of attribution approach and consequently the confidence in 

attributing single events varies. The comprehension on how climate change affects 

temperature-related extreme events, such as heats and cold spells, is high, as observation 

series are long and model simulations work well, allowing to draw conclusions from changes 

in long-term mean conditions on extreme events (Titley et al., 2016). Hydrological event 

attribution poses a more challenging task as not only thermodynamic aspects of the climate 

system but also dynamic aspects are involved (Shepherd, 2016). Nonetheless, the CC 

relationship between temperature and atmospheric moisture content demonstrates a relatively 

direct connection between human-induced warming and changes in precipitation (Titley et al., 

2016). 

In contrast, large-scale parameters define the frequency and intensity of TCs; their 

relationship to climate is more complex and less direct than changes in either temperature or 

water vapor alone (Titley et al., 2016). TCs are comparatively rare events with no continuous 

time series (Knutson et al., 2019), making the usage of probabilistic attribution of a single TC 

event, e.g., via extreme value theory, still very challenging (Titley et al., 2016; Trenberth et al., 

2015). Examples of probability-based approaches cover Hurricane Sandy (Lin et al., 2016), 

Hurricane Harvey (Oldenborgh et al., 2017), or Storm Xaver (Dangendorf et al., 2016). The 

storyline approach for TCs, on the other hand, provides a direct physical basis for impact 

attribution (Shepherd, 2016) as coastal flooding starts from a higher baseline water elevation 

due to anthropogenic-induced SLR. The storyline approach allows one to investigate how 

different drivers of extreme events are affected by climate change to answer the attribution 

question deterministically rather than from a probabilistic point of view (Shepherd, 2016). One 

example is the attribution study on economic damages from Hurricane Sandy exacerbated by 

SLR due to climate change (Strauss et al., 2021).  

 

1.3 Objectives and structure 

Our understanding of global flood-induced displacement risk is limited by several factors, such 

as the correct reproduction of flood hazard and the representation of vulnerability within the 

modeling chain. It is unknown what socio-economic factors cause a population that is resilient 

against the adverse impacts of flooding to become a displacement-prone society. Additionally, 

the role of climate change on forced mobility is unclear, which poses potentially high risk in 

the light of rising atmospheric greenhouse gas emissions. This thesis consists of four main 

chapters (Figure 1.2) that elaborate on these topics by addressing the following three 

Research Questions (RQs):  
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RQ 1: How can the modeling of flood events that lead to displacement be improved? 

 

Chapter 2 investigates how well a global-flood modeling chain can reproduce flood 

hazards of historic events that lead to displacement. Global flood models are a relatively new 

tool and little is known on to what extent the choice of input data has an effect on the model 

output. As a consequence, a particular focus is set on determining whether different 

combinations of climate reanalysis data and global hydrological model are interchangeable or 

some setups are to be favored.  

 

RQ 2: What are the underlying processes that shape the vulnerability to displacement?  

 

Chapter 3 describes the development of a new dataset that links flood footprints derived 

from remote sensing with displacement and other societal impacts for hundreds of events. 

First, a displacement database is geocoded, meaning the allocation of affected sub-national 

administrative units to every event based on text information. In the next step, the geocoded 

events are matched in time and space with satellite imagery of 913 floods. For every 

successful match, the corresponding number of IDPs, affected people and a variety of socio-

economic indicators encompassing the events are determined. Based on this new dataset, a 

displacement vulnerability assessment is presented in Chapter 4. Linear and non-linear 

regression models are applied to identify vulnerability drivers of high explanatory power. It is 

investigated to what degree vulnerability is dependent on specific predictors and whether 

trends are positive or negative.  

 

RQ 3: How can displacement events be attributed to climate change? 

 

Chapter 5 explores a new way of attributing the effects of climate change on TCs and 

associated displacement risk. A storyline approach is employed to assess how SLR and an 

increase of extreme wind speed lead to an intensification of coastal flood hazard and the 

corresponding humanitarian crisis. This method allows investigating how the drivers of coastal 

flooding are affected differently by global warming and how these changes are translated into 

changes in the number of estimated displacements. 

 

Chapter 6 comprises a discussion of the main chapters in the light of the Overarching 

Research Question and the three RQs. Recommendations for further advancements and an 

outlook into future challenges are presented in this part as well. Finally, a conclusion that 

distills the main findings of this thesis is given in Chapter 7. 
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Figure 1.2: Overview of the thesis structure 

 

1.4 Author contributions 

The following four chapters contain manuscripts which are intended for publication in 

international and peer-reviewed journals. The manuscript of Chapter 2 is published; the 

manuscripts of Chapter 3 and Chapter 5 are currently under review by the time of the 

submission of this thesis; the manuscript of Chapter 4 is finalized and intended for submission 

to a peer-reviewed journal. The main text and figures of the original manuscripts have been 

retained, while layouts have been adjusted to the formatting of this dissertation. The majority 

of the underlying work was carried out by the author of this dissertation (Benedikt Mester), 

which is reflected by four first-authorships. Nonetheless, the contribution of all other co-authors 
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to various parts of the manuscript preparation, including the study design, numerical modeling, 

results analysis, and writing process, is greatly acknowledged. I wish to express my gratitude 

especially to my co-authors Dr. Jacob Schewe and Dr. Katja Frieler for their thorough support, 

intensive guidance and motivating approach to teamwork. 

 

 

Chapter 2: Mester, B., Willner, S.N., Frieler, K., and Schewe, J., 2021. Evaluation of river 

flood extent simulated with multiple global hydrological models and climate forcings. 

Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac188d 

B.M. and J.S. designed the study, with contributions from K.F. S.N.W. designed and 

performed global flood model simulations. B.M. and J.S. analyzed the results, and K.F. 

contributed to the interpretation. B.M., S.N.W., K.F., and J.S. jointly wrote the paper. 

 

Supplementary material: https://iopscience.iop.org/article/10.1088/1748-9326/ac188d 

 

 

Chapter 3: Mester, B., Frieler, K., and Schewe, J. (submitted). Human displacements, 

fatalities, and economic damages linked to remotely observed floods (FLODIS). Under 

consideration for Scientific Data. 

B.M. and J.S. designed the study, with contributions from K.F. B.M. developed the 

methodology and code to extract the subnational information and merge the datasets. B.M. 

and J.S. conducted the technical validation, and K.F. contributed to the interpretation. B.M. 

and J.S. jointly wrote the paper. 

 

Supplementary material: / 

 

 

Chapter 4: Mester, B., Desai, B., Frieler, K., Korup, O., and Schewe, J. (in progress). A global-

scale vulnerability assessment of flood-induced human displacement. 

B.M., K.F., and J.S. designed the study. B.M. performed the regression analysis, 

computed the feature importance and partial dependence plots. B.M. and J.S. analyzed the 

results, and O.K., B.D. and K.F. contributed to the interpretation. B.M. and J.S. wrote the paper 

with contributions from B.D., K.F. and O.K. 

 

Supplementary material: see Appendix 
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Chapter 5: Mester, B., Vogt, T., Bryant, S., Otto, C., Frieler, K., and Schewe, J. (submitted). 

Human displacements from tropical cyclone Idai attributable to climate change. Under 

consideration for Natural Hazards and Earth System Sciences. EGUsphere [preprint], 

https://doi.org/10.5194/egusphere-2022-1308, 2023. 

B.M. and J.S. designed the study, with contributions from T.V., C.O., and K.F. T.V. 

designed and performed coastal flood model calculations. S.B. estimated flood depths from 

satellite imagery. B.M. computed the number of affected people and displacements. B.M. and 

J.S. analyzed the results, and C.O., and K.F. contributed to the interpretation. B.M., T.V., S.B., 
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Abstract 

 

Global flood models (GFMs) are increasingly being used to estimate global-scale societal and 

economic risks of river flooding. Recent validation studies have highlighted substantial 

differences in performance between GFMs and between validation sites. However, it has not 

been systematically quantified to what extent the choice of the underlying climate forcing and 

global hydrological model (GHM) influence flood model performance. Here, we investigate this 

sensitivity by comparing simulated flood extent to satellite imagery of past flood events, for an 

ensemble of three climate reanalyses and 11 GHMs. We study eight historical flood events  

spread over four continents and various climate zones. For most regions, the simulated 

inundation extent is relatively insensitive to the choice of GHM. For some events, however, 

individual GHMs lead to much lower agreement with observations than the others, mostly 

resulting from an overestimation of inundated areas. Two of the climate forcings show very 

similar results, while with the third, differences between GHMs become more pronounced. We 

further show that when flood protection standards are accounted for, many models 

underestimate flood extent, pointing to deficiencies in their flood frequency distribution. Our 

study guides future applications of these models, and highlights regions and models where 

targeted improvements might yield the largest performance gains. 
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2.1 Introduction 

Of all natural disasters worldwide, fluvial (river) flooding is among the most frequent and 

devastating hazards (Jha et al., 2012). In the recent years of 2010–2018, it caused 115 million 

human displacements (IDMC, 2019), 49 595 fatalities, and US$ 360 billion in economic losses 

(Munich Re, 2020). For example, 11 million displacements (IDMC, 2019), 1985 deaths, and 

US$ 9.5 billion in economic losses (EM-DAT, 2020) were recorded in the aftermath of the 

Pakistan floods in 2010. Flooding killed 6054 people in India in 2013 (EM-DAT, 2020) and 

caused an estimated US$ 33 billion losses in China in 2016, with only 2% of losses insured 

(Floodlist, 2016). Beyond these records, one can expect further losses such as of cultural 

heritage and ecosystem services, which are, however, difficult to assess (Hurlbert, 2018). 

Continental-scale changes in flood discharge have been observed recently, in line with 

theoretical expectations about the effects of global warming on the hydrological cycle (Blöschl 

et al., 2019; IPCC, 2014). This poses the question to what extent the societal impacts of floods 

have already been shaped by anthropogenic climate change. However, displacements, 

damages and losses associated with floods are a function not only of the physical flood 

hazard, but also of socioeconomic factors. The latter, in particular, determine exposure - the 

number of people or the value of assets potentially affected by flooding -, and vulnerability - 

the susceptibility of exposed elements to the hazard (IPCC, 2012; Jongman et al., 2015). 

Together, these controlling risk factors form a dynamic, spatially and temporally variable 

balance used for risk assessment. Since not all three factors are generally known, it is 

challenging to quantify their relative contributions to the ultimate impacts of historical floods. 

Global flood models (GFMs) can be used to estimate historical flood extents based on 

observed weather, and could thereby provide the physical flood hazard component for such 

assessments when direct observations of flood extent are lacking. This approach is 

increasingly being used, for instance, to estimate past changes in vulnerability (Tanoue et al., 

2016) or attribute trends in reported flood-induced damages (Sauer et al., 2021). However, 

the degree to which such studies can explain the observed variations in damages and affected 

population varies substantially, and can be fairly low for many parts of the world. It is unclear 

to what extent this is due to short-comings in the simulated flood hazard, exposure, or 

assumptions about vulnerability. 

This highlights that a thorough understanding of the reliability of global flood hazard 

estimates is important. However, validation and benchmarking studies are rare (Hoch and 

Trigg, 2019), which is mainly due to the scarce availability of reference flood maps outside of 

some high-income countries and regions such as the European Union, North America, or 

Australia (Dottori et al., 2016). A comparison of several GFMs to satellite imagery in three 

African river sections showed considerable differences between models in terms of how 
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accurately they reproduced observed flood extent; most models both missed flooding in some 

areas and falsely simulated flooding in others (Bernhofen et al., 2018). The agreement 

between these models in simulated flood extent was shown to be only 30%–40%, with 

considerable differences in hazard magnitude and spatial patterns (Trigg et al., 2016). 

It is hardly known to what extent such differences between GFM simulations and their 

predictive capacities are related to the GFMs themselves, for instance, due to differences in 

model structure or the underlying digital elevation models; and to what extent they are related 

to the boundary conditions used to force the GFMs. Depending on the modelling framework, 

these boundary conditions consist either of gauged river flow datasets, or - for the majority of 

GFMs - of gridded runoff estimates from global hydrological model (GHM) or land-surface 

models (Trigg et al., 2016). Those runoff simulations in turn need meteorological variables as 

input, which come from global climate reanalyses or climate models. Most global flood hazard 

simulations thus are the result of a cascade of different models and data products, with 

multiple options available at each step in the cascade. The influence of choices in the 

upstream steps of this cascade on the resulting flood extent estimate has hardly been 

systematically investigated (Zhou et al., 2021). 

In this study we address this research gap. We run a state-of-the-art GFM with runoff 

forcing from 11 different GHMs, each in turn forced by three different climate reanalyses. We 

evaluate the resulting simulation ensemble against satellite-derived flood extent observations 

for eight recent large flood events on four continents, covering different climatic and hydraulic 

environments, and assess the influence of the choice of both climate forcing and GHM on the 

performance of the GFM simulations. We do this under different assumptions about flood 

protection, to also assess the realism of simulated return intervals. 

2.2 Data and methodology 

2.2.1 Models 

We use the GFM CaMa-Flood (Yamazaki et al., 2011), driven by an ensemble of 11 GHMs 

and three gridded climate forcing datasets, leading to 33 combinations in total. The climate 

forcing datasets used to drive the GHMs are the Princeton Global Forcing data set version 2 

(PGFv2) (Sheffield et al., 2006), the Global Soil Wetness Project phase 3 forcing data set 

(GSWP3) (Hyungjun, 2014) and the WATCH forcing data methodology applied to ERA-Interim 

reanalysis data (WFDEI) (Weedon et al., 2014, 2011). All three datasets are based on 

reanalysis products (ERA-Interim for WFDEI; 20CR for GSWP3; NCEP/NCAR for PGFv2) that 

assimilate information from local weather stations, and subsequently apply corrections to the 
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precipitation data and other variables using station-based observational data; two datasets 

(WFDEI and GSWP3) also correct for precipitation undercatch by rain gauges. Given these 

methodologies, and the gridded nature of the forcing products, direct comparison with local 

station data is not straightforward, but existing validation exercises show reasonable 

agreement with station data as well as with gridded observational datasets (Essou et al., 2017; 

Weedon et al., 2014). 

The set of GHMs comprises CLM4.0 (Leng et al., 2015), DBH (Tang et al., 2007), H08 

(Hanasaki et al., 2008), JULES-W1 (Best et al., 2011), LPJmL (Sitch et al., 2003), MATSIRO 

(Pokhrel et al., 2014), MPI-HM (Stacke and Hagemann, 2012), ORCHIDEE (Traore et al., 

2014), PCR-GLOBWB (Wada et al., 2014), VIC (Liang et al., 1994) and WaterGAP2 (Müller 

Schmied et al., 2016). An overview of the GHMs’ main characteristics, e.g. evaporation and 

runoff schemes, is available in the supplementary material - table S1. All GHM simulations 

follow a common protocol (ISIMIP2a, www.isimip.org) to ensure a standardized input scheme 

for CaMa-Flood. Simulations are performed under naturalized conditions, i.e. storage in man-

made reservoirs or agricultural water with-drawl are not included. 

The runoff of the respective GHM then constitutes the input for CaMa-Flood v3.6.2 which 

yields discharge as well as flood depth on a 0.25◦ resolution grid. The underlying river network 

in CaMa-Flood has been derived by the model author based on the flow direction maps 

HydroSHEDS (Lehner et al., 2008) and GDBD (Masutomi et al., 2009) as well as the digital 

elevation model SRTM3 (Farr et al., 2007) using their FLOW method (Yamazaki et al., 2009). 

Using these same data, we downscale flood depth to 18 arc sec. i.e. the daily flood volume in 

a low-resolution (0.25°) grid cell is distributed onto the underlying high-resolution (18 arc sec) 

grid cells according to their elevation. We then assign to each high-resolution grid cell the 

annual maximum daily value, resulting in an annual flood depth timeseries. The event duration 

according to the satellite imagery matches with the rising limb or the peak of the flood 

simulations for most regions of interest; and coincides with no second flood event in the year 

of investigation, which legitimizes this approach (Figures S22–S33 in the supplementary 

material (available online at stacks.iop.org/ERL/16/094010/mmedia)). This dataset is used to 

produce Figure 2.2. Finally, we calculate the flooded fraction on an intermediate-resolution 

(2.5 arc min) grid, i.e. the fraction of flooded high-resolution grid cells within each intermediate-

resolution grid cell. This flood fraction dataset is used to calculate the performance scores 

(see below). 

Whereas this constitutes our default simulation setup (‘default’), we also assess setups 

assuming protection against floods with an average recurrence interval (ARI) of 2 years 

(‘protect 2y’ setup), and assuming flood protection standards according to the FLOPROS 

database (Scussolini et al., 2016) (‘protect FLOPROS’ setup). FLOPROS incorporates 
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modelled protection, infrastructure, and policy measures in a best estimate (‘merged’ layer) 

on a sub-national level. Fitting, for each climate forcing and GHM, a generalized extreme value 

(GEV) distribution to the annual maximum discharge for each cell and in the simulation period 

available for all models (1971–2010), we obtain the return period in dependence of discharge. 

We then compare the return period for each studied event to the protection level for the 

respective cell; i.e. either 2 years, or the protection level given by FLOPROS. In the ‘protect’ 

settings, we thereby only account for flood events in cells in which this protection level is 

exceeded and assume no flooding for events with lower return period. 

It should be noted that there are well-established practices used in floodplain planning 

processes internationally (World Meteorological Organization, 2009) that do not rely on GFMs 

but instead use more complex, locally calibrated hydrodynamic models (Raadgever and 

Hegger, 2018). However, these techniques require elaborate calibration for each individual 

catchment (Canning and Walton, 2014), and rely on local observational data that is not 

commonly available in all parts of the world. For instance, in a new, comprehensive global 

streamflow database (Do et al., 2018; Gudmundsson et al., 2018), local gauge records are 

available for only one of the events studied in this paper (the 2010 flood in Dalby, Australia; 

see below), and are entirely unavailable for some of the study regions. Thus, while the global 

models evaluated here are likely inferior to more complex, locally-informed flood prediction 

models where those exist, the global models nonetheless are important tools widely used in 

continental- or global-scale applications (Bates et al., 2021). 

2.2.2 Observational data 

For the comparison of our simulated flood extent we use satellite imagery from the archive of 

the Dartmouth Flood Observatory (DFO), which is based on NASA MODIS satellite sensors 

(https://floodobservatory.colorado.edu/) (Brakenridge, 2006), and from the UNOSAT Flood 

Portal (UFP) providing flood extent maps derived from a variety of satellite sensors 

(http://floods.unosat.org/geoportal/catalog/main/home.page). The number of eligible events is 

limited, because consistent geospatial imagery starts in 2010 for DFO and 2006 for UFP, 

respectively, and most the climate reanalysis products used here extend only until 2010 or (for 

PGFv2) 2012. Only large-scale disasters with a large river size are taken into account to 

ensure that the inundated areas can be adequately captured given the spatial resolution of 

the GFM. It is essential that observational validation data is available, consistent and 

comprehensive for the entire area of interest. Additionally, a spread across different climate 

zones and continents is desirable for a comprehensive global comparison study (Dottori et al., 

2016). We exclude flash flood events, storm surge flooding, as well as floods caused by 
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mismanagement or failure of man-made structures, since these types of floods cannot be 

modelled by the GFM. 

We identify ten regions of particular interest in the context of eight major flood events, 

as shown in Figure 2.1. The following regions, named after the central city or town affected, 

are used for validation: Huainan in China (year of flood event: 2007), Sayaxché in Guatemala 

(2008; the westernmost part is located in Mexico), Trinidad in Bolivia (2008), Alipur and Ghotki 

in Pakistan (2010), Phimai in Thailand (2010), Dalby in Australia (2010), Chemba in 

Mozambique (2007), as well as Lokoja and Idah in Nigeria (2012). Chemba (MOZ; we will 

indicate each location’s ISO3 country code throughout the paper for ease of reference), Lokoja 

(NGA), and Idah (NGA) are studied in a recent GFM intercomparison study, thus facilitating 

comparison of our results with that study (Bernhofen et al 2018). The selected areas are 

located in monsoon climates, tropical savannas and rainforests, subtropical climates, and 

deserts, on four continents (Peel et al., 2007). The selection covers a variety of hydraulic 

characteristics, ranging from confined watercourses of the Niger River and the anabranching 

Condamine River in Queensland to highly braided and slow sections of the Indus River. A 

more detailed description of the chosen events and the river hydraulics can be found in the 

supplementary material - table S2. 

The satellite imagery of flood extents for the regions Alipur (PAK), Ghotki (PAK), Phimai 

(THA), and Dalby (AUS) are taken from the DFO. Satellite imagery for Huainan (CHN), 

Sayaxché (GTM) and Trinidad (BOL) are downloaded from the UFP. For some events, the 

data consists of several days of imagery and is hence merged into one maximum flood extent 

per event.   
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Figure 2.1: Satellite imagery of flood extent (blue) in the study areas (red). Note: the outlines of Chemba (MOZ), 

Lokoja (NGA) and Idah (NGA) follow the flood shape and are not rectangular. Country shapes by www.gadm.org.   
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Rectangular analysis regions are defined for the events above (red rectangles in Figure 

2.1). Flood footprints and outline data for the regions Chemba (MOZ), Lokoja (NGA) and Idah 

(NGA) are derived from Research Data Leeds (http://archive.researchdata.leeds.acuk/411/), 

which is intended for GFM validation (Bernhofen et al., 2018) and also based on the DFO 

archive. In contrast to the other regions, data for these regions is only available inside an 

irregularly shaped polygon roughly outlining the main inundation area, which limits the analysis 

of both observations and simulations to these polygons (we will discuss the implications of this 

below). The satellite imagery for all regions is at a 209 m resolution. Only the simulations of 

eight GHMs forced with PGFv2 extend to the year 2012, which limits the analysis of Lokoja 

(NGA) and Idah (NGA). 

2.2.3 Analysis 

The analysis procedure starts with a visual comparison of the simulated and the 

observed flood extent. For the former, we use the gridded CaMa-Flood flood depth output 

downscaled to 18 arc sec resolution (approx. 550 m at the equator). This yields a binary grid 

with two grid cell states (flooded or not flooded) for each climate forcing and GHM. For each 

climate forcing and grid cell we then count the number of GHMs showing flooding in the 

respective cell, to create a model agreement map. We use the flood outlines for each region 

(red outlines in Figure 2.1) to mask both the model agreement map and the satellite imagery. 

The masked images are then superimposed onto each other (Figure 2.2). Next, in order to 

quantify model performance, we use two different performance metrics (Aronica et al., 2002; 

Bates and De Roo, 2000; Bernhofen et al., 2018; Werner et al., 2005). First, the critical 

success index (CSI) is defined as: 

 

𝐶𝑆𝐼 =  
𝐹𝑚 ∩ 𝐹𝑜

𝐹𝑚 ∪ 𝐹𝑜
 

 

where Fm is the modelled flooded area by CaMa-Flood and Fo is the observed flooded 

area by the satellite imagery. Fm ∩ Fo is the intersection area between modelled and observed 

flood extent, i.e. the area correctly simulated as flooded by the model; and Fm ∪ Fo is the union 

area between modelled and observed flooded area. The CSI is perceived as the one of the 

most comprehensive scores (Bernhofen et al 2018). It ranges from 0 to 1, where 1 represents 

a perfect model ‘fit’ (Sampson et al., 2015), and penalizes overprediction. The Bias score is 

defined as: 

 



 23 

 

 

𝐵𝑖𝑎𝑠 =  
(𝐹𝑚 ∩ 𝐹𝑜) + 𝐹𝑚

(𝐹𝑚 ∩ 𝐹𝑜) + 𝐹𝑜
− 1 

 

An unbiased model has a Bias score of 0, positive and negative values indicate a 

tendency towards over- or under prediction of flood extents, respectively. The Bias score 

rewards a large intersection area between modelled and observed flood extent.  

At high spatial resolution, mismatches in river geometry between the satellite imagery 

and the digital elevation models used in the GFM could deteriorate the performance scores in 

confined floodplains; e.g. if a river channel in the DEM is offset relative to its real location 

(Yamazaki et al., 2011). Since we want to evaluate simulated flood extent per event, rather 

than DEM accuracy, we therefore calculate performance scores at the coarser resolution of 

2.5 arc min. For that, we downsample both the binary satellite imagery and the CaMa-Flood 

binary flood data to 2.5 arc min using simple linear sampling, yielding the share of flooded 

area per cell. Incorporating absolute cell area we thus compute absolute flooded area per cell 

for both CaMa-Flood output and satellite imagery. Summing over all cells within an analysis 

region yields Fm and Fo respectively. The intersection area Fm ∩ Fo is calculated analogously 

but multiplying, in each cell, the smaller flooded fraction of either CaMa-Flood or satellite data 

with the cell area; for the union area Fm ∪ Fo the larger value of either model or data is used. 

This approach is based on the assumption that the location of flooding at the sub-grid scale 

is, for a given grid-scale flood extent, constrained by topography. For comparison, we also 

show CSI and Bias scores computed directly on 18 arc sec resolution in supplementary 

material Figures S36 and S37.  

In the section 3, along with the performance metrics for individual simulations and 

regions, we also show the median over all regions as well as median, minimum, maximum 

and spread over all hydrological models. Lokoja (NGA) and Idah (NGA) were excluded from 

the computation of the regional median, in order to allow a fair comparison of the median 

values between the three climate forcing datasets. 

2.3 Results 

We first analyse results for the default simulations not accounting for flood protection; and 

subsequently, in section 3.3, discuss the simulations with flood protection. 

2.3.1 Model agreement map 

Figure 2.2 displays the model agreement overview for all three climate forcings and ten 

regions, for the default simulations. Results differ substantially between the regions. The 
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agreement between models is high, and the simulated flood outline in relatively good 

agreement with observations, for Sayaxché (GTM), Trinidad (BOL), Lokoja (NGA), Idah 

(NGA), and Phimai (THA), although the models miss some extended parts of the flood in 

Trinidad (BOL) and Phimai (THA), and somewhat overestimate the flood extent in Idah (NGA). 

Agreement between models is also high (indicated by reddish colours) in Huainan (CHN); 

however, the models overestimate the extent of flooding there, including a large area in the 

north- western part of the region where most models falsely simulate flooding. In Chemba 

(MOZ), as well as in Alipur (PAK) and Ghotki (PAK), most models agree on flooding along the 

main river branches, but partly underestimate the extent of this flooding; while many models 

falsely simulate flooding in an extensive area to the east of the Indus River in Ghotki (PAK), 

and along the Sutlej river estuary in Alipur (PAK). Finally, in Dalby (AUS), only some models 

capture the more extensive parts of the flood; at the same time, several models simulate 

flooding alongside long stretches of the river channel where no flooding is observed. 

The simulation of flooding in large areas where no flooding was observed—found for the 

floods in China, Pakistan, and Australia—could theoretically be induced by contamination of 

our flood extent estimate by a different flood event: i.e. an event occurring in the same year 

which had an even higher flood magnitude in that part of the region, and would thus be picked 

up when taking the annual maximum discharge in every grid cell. However, analysis of daily 

flood data confirms that this is not the case; while there can be a considerable delay of the 

flood peak in CaMa-Flood compared to observations (Zhao et al., 2017), the estimated flood 

extent is largely related to one coherent flood event, except for outliers in marginal grid cells 

(supplementary material, Figures S1–S33).  

Regarding the climate forcing, the GSWP3 and WFDEI reanalysis datasets lead to very 

similar results. The PGFv2 dataset leads to markedly smaller simulated flood extents in Alipur 

(PAK), Ghotki (PAK), and Huainan (CHN), with most or all GHMs. This partly remedies the 

overestimation of flooding outside the main river floodplains, but also leads to a more 

substantial underestimation of flood extent along the main rivers in Alipur (PAK) and Ghotki 

(PAK), compared to the other two forcing datasets. 
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Figure 2.2: Model agreement map indicating the flood extent overlap between the 11 GHMs and the satellite data for 

each study region (row) and climate forcing (column). The cell color represents the number of GHMs that computed the 

corresponding cell to be flooded. The underlying flood extent of the satellite imagery (light grey) is assigned a dark color 

tone if it matches with at least one GHM. For the 2012 flood in Lokoja (NGA) and Idah (NGA) (marked with an asterisk 

*), only eight GHMs, driven with PGFv2, were available. 
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2.3.2 Model performance scores 

In line with the observations from the model agreement maps, the CSI scores vary 

substantially between the different regions (Figure 2.3). A comparatively low CSI is found for 

Alipur (PAK), Ghotki (PAK), Huainan (CHN), with scores between 0.3 and 0.4, and especially 

Dalby (AUS) with scores below 0.3. High CSI scores of around 0.5 and higher are found for 

Sayaxché (GTM), Trinidad (BOL), Chemba (MOZ), Lokoja (NGA), and Idah (NGA). 

Intermediate scores of around 0.45 are found for Phimai (THA). Since the CSI score also 

Figure 2.2: Continued 
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depends on the flood magnitude (Stephens et al., 2014), this numerical comparison between 

regions and events should be interpreted with caution, and in conjunction with the model 

agreement maps. In particular, for a given region with a concave topography (e.g. extensive 

floodplain), the larger the flood magnitude, the more the flood extent will be constrained by 

topography, and the less variation in flood extent will be induced by a given variation in flood 

discharge; potentially leading to more favourable CSI scores than for smaller floods. These 

caveats however do not affect comparison between models and datasets within one region 

and event, which we turn to next.  

We find differences in performance between climate forcings and between GHMs to be 

mutually dependent, and we discuss them together in the following. The spread across GHMs 

(rightmost column in Figure 2.3) is by far largest for Chemba (MOZ). This is primarily because 

there the CSI with the VIC model is zero for all three forcings, and the CSI with the MATSIRO 

model is zero for the PGFv2 forcing; indicating that there is no intersection between simulated 

and observed flood extent. The MATSIRO model with PGFv2 forcing also has very low CSI 

scores in Alipur (PAK) and Ghotki (PAK). However, even if the MATSIRO and VIC models 

were excluded, Chemba (MOZ), Alipur (PAK) and Ghotki (PAK) would still remain the regions 

with the largest differences in CSI scores across GHMs, under the PGFv2 forcing; for instance, 

compare CLM and PCR-GLOBWB for Alipur (PAK) and Ghotki (PAK), or MPI-HM and 

ORCHIDEE for Chemba (MOZ). Using the other two climate forcings, these inter-GHM 

differences are much smaller, mostly with a difference of about 0.1 or less between the scores 

of the best and worst performing model. The median CSI scores over all regions (bottom row 

in each subplot in Figure 2.3) indicate that none of the GHMs performs consistently better or 

worse than the others. Even the VIC model, which fails to capture the flood in Chemba (MOZ), 

achieves reasonable scores in the other regions, and has a region-median CSI only slightly 

below the other GHMs (between 0.36 and 0.39 depending on the climate forcing). The 

MATSIRO model, which shows very low CSI scores in three of the regions under PGFv2 

forcing, is among the best performing GHMs in some of the other regions; in particular, it 

achieves the highest CSI score of all GHMs in Huainan (CHN) for all three forcings, and has 

the highest region-median CSI score under the WFDEI forcing. 

Similarly, the statistics over all GHMs (rightmost four columns in Figure 2.3), and the 

combined statistics across regions and GHMs (bottom right in each sub-plot in Figure 2.3, as 

well as Figure 2.5), show that neither of the three climate forcing datasets is generally superior 

to the others: the GHM-region median CSI is 0.42, 0.43, and 0.44, respectively, for PGFv2, 

GSWP3, and WFDEI. PGFv2 exhibits slightly lower GHM-median CSI scores, and lower 

minimum scores, than the other two forcings in many of the regions; on the other hand, in 
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Huainan (CHN), all GHMs achieve substantially higher scores with PGFv2 than with GSWP3 

or WFDEI.  

There is thus no climate forcing dataset that performs best in all regions; nor is there 

one GHM which consistently performs best in all regions and with all forcings (see black boxes 

in Figure 2.3).  

We now turn to the Bias scores. While a low CSI score generally already implies a high 

bias, the Bias score additionally indicates whether the observed total flood extent is over- or 

under predicted by the model. We find that with WFDEI and GSWP3 forcing, Bias scores are 

generally either small or positive (with the exception of VIC in Chemba (MOZ)) (Figure 2.4). 

This confirms the observation made in the model agreement maps that flood extent is 

generally either matched relatively well, or overestimated, by the model simulations. With the 

PGFv2 climate forcing, the overall result is similar, but substantial negative Bias scores—

indicating an under prediction of flood extent—occur in several cases: for Alipur (PAK), Ghotki 

(PAK), and Chemba (MOZ), with CLM, MATSIRO, and MPI-HM; corresponding to the 

anomalous CSI values for these combinations described above. On the other hand, the PGFv2 

forcing leads to much smaller (positive) biases than the other two forcings in Huainan (CHN).  

Calculating the performance scores on the higher-resolution (18 arc sec) binary flood 

outputs confirms these overall results, though the scores are somewhat lower (supplementary 

material, Figures S36 and S37).  
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Figure 2.3: CSI scores for all combinations of GHMs and PGFv2 (top), GSWP3 (middle), and WFDEI (bottom) 

forcing. The “Median Region” across the even number of regions is calculated as the mean of the two middle 

values. Lokoja (NGA) and Idah (NGA) (marked with *) were excluded from the computation of the “Median Region”.  

“-“ means no input data was available and a black box indicates the best-performing GHM(s) for a given region. 

 

 

PGFv2 CLM DBH H08 
JULES- 

 W1 
LPJmL 

MATSIR
O 

MPI-HM 
ORCHID

EE 

PCR- 
GLOBW

B 
VIC 

WaterGA
P2 

Median  
GHMs 

Min. 
 GHMs 

Max. 
 GHMs 

Spread  
GHMs 

Sayaxché (GTM) 0.52 0.55 0.52 0.53 0.53 0.56 0.52 0.52 0.54 0.53 0.56 0.53 0.52 0.56 0.04 

Trinidad (BOL) 0.47 0.51 0.52 0.50 0.51 0.34 0.52 0.51 0.48 0.43 0.51 0.51 0.34 0.52 0.18 

Chemba (MOZ) 0.43 0.71 0.68 0.67 0.67 0.00 0.40 0.71 0.53 0.00 0.56 0.56 0.00 0.71 0.71 

Alipur (PAK) 0.23 0.37 0.39 0.35 0.40 0.11 0.34 0.36 0.44 0.39 0.38 0.37 0.11 0.44 0.33 

Ghotki (PAK) 0.20 0.34 0.42 0.34 0.35 0.11 0.34 0.32 0.43 0.38 0.41 0.34 0.11 0.43 0.32 

Phimai (THA) 0.44 0.46 0.41 0.50 0.47 0.49 0.45 0.45 0.44 0.43 0.50 0.45 0.41 0.50 0.09 

Huainan (CHN) 0.38 0.34 0.39 0.38 0.39 0.46 0.43 0.42 0.32 0.39 0.40 0.39 0.32 0.46 0.14 

Dalby (AUS) 0.24 0.17 0.22 0.16 0.19 0.24 0.24 0.20 0.21 0.26 0.26 0.22 0.16 0.26 0.10 

Lokoja (NGA)* - - 0.73 0.74 0.74 0.74 0.76 0.68 0.72 - 0.75 0.74 0.68 0.76 0.08 

Idah (NGA)* - - 0.66 0.69 0.69 0.60 0.70 0.60 0.60 - 0.69 0.68 0.60 0.70 0.10 

Median Region 0.40 0.42 0.42 0.44 0.44 0.29 0.42 0.44 0.44 0.39 0.45 0.42 0.24 0.48 0.16 

                

GSWP3 CLM DBH H08 
JULES- 

 W1 
LPJmL 

MATSIR
O 

MPI-HM 
ORCHID

EE 

PCR- 
GLOBW

B 
VIC 

WaterGA
P2 

Median  
GHMs 

Min. 
 GHMs 

Max. 
 GHMs 

Spread  
GHMs 

Sayaxché (GTM) 0.53 0.56 0.54 0.56 0.55 0.58 0.54 0.54 0.56 0.55 0.56 0.55 0.53 0.58 0.05 

Trinidad (BOL) 0.53 0.54 0.54 0.53 0.54 0.49 0.53 0.54 0.53 0.46 0.53 0.53 0.46 0.54 0.08 

Chemba (MOZ) 0.69 0.71 0.70 0.60 0.71 0.53 0.70 0.62 0.71 0.00 0.53 0.69 0.00 0.71 0.71 

Alipur (PAK) 0.32 0.33 0.36 0.33 0.35 0.33 0.35 0.35 0.36 0.35 0.37 0.35 0.32 0.37 0.05 

Ghotki (PAK) 0.34 0.40 0.44 0.35 0.35 0.42 0.43 0.34 0.42 0.40 0.34 0.40 0.34 0.44 0.10 

Phimai (THA) 0.46 0.45 0.42 0.50 0.47 0.41 0.47 0.46 0.45 0.43 0.46 0.46 0.41 0.50 0.09 

Huainan (CHN) 0.28 0.28 0.29 0.33 0.30 0.38 0.31 0.31 0.28 0.31 0.32 0.31 0.28 0.38 0.10 

Dalby (AUS) 0.23 0.18 0.24 0.18 0.20 0.23 0.25 0.22 0.22 0.26 0.25 0.23 0.18 0.26 0.08 

Median Region 0.40 0.43 0.43 0.42 0.41 0.42 0.45 0.40 0.44 0.38 0.42 0.43 0.33 0.47 0.09 

                

WFDEI CLM DBH H08 
JULES- 

 W1 
LPJmL 

MATSIR
O 

MPI-HM 
ORCHID

EE 

PCR- 
GLOBW

B 
VIC 

WaterGA
P2 

Median  
GHMs 

Min. 
 GHMs 

Max. 
 GHMs 

Spread  
GHMs 

Sayaxché (GTM) 0.52 0.53 0.50 0.51 0.51 0.53 0.50 0.51 0.53 0.51 0.52 0.51 0.50 0.53 0.03 

Trinidad (BOL) 0.53 0.53 0.54 0.54 0.54 0.53 0.54 0.54 0.54 0.51 0.53 0.54 0.51 0.54 0.03 

Chemba (MOZ) 0.65 0.71 0.70 0.61 0.71 0.55 0.66 0.71 0.71 0.00 0.49 0.66 0.00 0.71 0.71 

Alipur (PAK) 0.27 0.36 0.37 0.38 0.36 0.30 0.36 0.34 0.37 0.31 0.38 0.36 0.27 0.38 0.11 

Ghotki (PAK) 0.37 0.34 0.48 0.40 0.35 0.47 0.47 0.37 0.44 0.42 0.41 0.41 0.34 0.48 0.14 

Phimai (THA) 0.47 0.46 0.41 0.50 0.47 0.49 0.47 0.47 0.46 0.45 0.49 0.47 0.41 0.50 0.09 

Huainan (CHN) 0.29 0.28 0.30 0.32 0.31 0.37 0.33 0.32 0.27 0.31 0.31 0.31 0.27 0.37 0.10 

Dalby (AUS) 0.25 0.18 0.24 0.20 0.20 0.27 0.25 0.25 0.22 0.26 0.27 0.25 0.18 0.27 0.09 

Median Region 0.42 0.41 0.44 0.45 0.42 0.48 0.47 0.42 0.45 0.36 0.45 0.44 0.31 0.49 0.10 
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Figure 2.4: CSI scores for all combinations of GHMs and WFDEI for “protect 2y” (top) and “protect FLOPROS” 

(bottom). The “Median Region” across the even number of regions is calculated as the mean of the two middle 

values. Lokoja (NGA) and Idah (NGA) were excluded from the computation of the “Median Region”.  A black box 

indicates the best-performing GHM(s) for a given region. 

 

2.3.3 Flood protection 

We now analyse the simulations accounting for flood protection infrastructure, by counting 

only those flooded pixels whose ARI (estimated through fitting a GEV function) is longer than 

either 2 years (‘protect 2y’) or the protection standard indicated in the global database 

FLOPROS (Scussolini et al 2016) (‘protect FLOPROS’).  

Under the WFDEI forcing, CSI scores in the ‘protect 2y’ simulations change only little 

compared to the default simulations. Most notably, there are now two GHMs simulating no  

 

 

 

 

WFDEI 
protect 2y 

CLM DBH H08 
JULES- 

W1 
LPJmL 

MATSIR
O 

MPI-HM 
ORCHID

EE 

PCR- 
GLOBW

B 
VIC 

WaterGA
P2 

Median 
GHMs 

Min. 
GHMs 

Max. 
GHMs 

Spread 
GHMs 

Sayaxché (GTM) 0.52 0.53 0.50 0.51 0.51 0.53 0.50 0.51 0.53 0.51 0.52 0.51 0.50 0.53 0.03 

Trinidad (BOL) 0.53 0.53 0.50 0.54 0.52 0.53 0.52 0.53 0.53 0.51 0.51 0.53 0.50 0.54 0.04 

Chemba (MOZ) 0.65 0.71 0.70 0.61 0.71 0.55 0.66 0.71 0.71 0.00 0.00 0.66 0.00 0.71 0.71 

Alipur (PAK) 0.16 0.35 0.37 0.38 0.36 0.30 0.36 0.34 0.38 0.31 0.38 0.36 0.16 0.38 0.22 

Ghotki (PAK) 0.40 0.34 0.58 0.48 0.35 0.49 0.49 0.40 0.48 0.45 0.46 0.46 0.34 0.58 0.24 

Phimai (THA) 0.47 0.46 0.41 0.50 0.47 0.49 0.47 0.47 0.46 0.45 0.49 0.47 0.41 0.50 0.09 

Huainan (CHN) 0.29 0.28 0.29 0.32 0.31 0.36 0.33 0.31 0.27 0.31 0.31 0.31 0.27 0.36 0.09 

Dalby (AUS) 0.09 0.14 0.24 0.20 0.20 0.27 0.25 0.25 0.22 0.26 0.27 0.24 0.09 0.27 0.18 

Median Region 0.44 0.40 0.45 0.49 0.42 0.49 0.48 0.44 0.47 0.38 0.42 0.46 0.31 0.52 0.14 

                

WFDEI 
protect 

FLOPROS 
CLM DBH H08 

JULES-
W1 

LPJmL 
MATSIR

O 
MPI-HM 

ORCHID
EE 

PCR-
GLOBW

B 
VIC 

WaterGA
P2 

Median 
GHMs 

Min. 
GHMs 

Max. 
GHMs 

Spread 
GHMs 

Sayaxché (GTM) 0.48 0.31 0.48 0.54 0.53 0.53 0.48 0.48 0.55 0.53 0.54 0.53 0.31 0.55 0.24 

Trinidad (BOL) 0.44 0.43 0.47 0.48 0.47 0.45 0.47 0.48 0.48 0.44 0.44 0.47 0.43 0.48 0.05 

Chemba (MOZ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.00 0.00 0.00 0.00 0.71 0.71 

Alipur (PAK) 0.03 0.34 0.13 0.39 0.33 0.05 0.05 0.25 0.34 0.14 0.34 0.25 0.03 0.39 0.36 

Ghotki (PAK) 0.00 0.57 0.58 0.54 0.12 0.00 0.00 0.00 0.54 0.51 0.57 0.51 0.00 0.58 0.58 

Phimai (THA) 0.26 0.05 0.25 0.00 0.33 0.26 0.06 0.26 0.26 0.25 0.00 0.25 0.00 0.33 0.33 

Huainan (CHN) 0.12 0.14 0.12 0.14 0.03 0.05 0.12 0.06 0.18 0.04 0.03 0.12 0.03 0.18 0.15 

Dalby (AUS) 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 

Median Region 0.08 0.22 0.19 0.26 0.22 0.05 0.06 0.16 0.41 0.2 0.18 0.25 0.02 0.44 0.29 
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Figure 2.5: Comparison of CSI and Bias scores between the default setting (“default”), protection against floods 

with an average return interval of 2 years (“protect 2y”) and protection standards according to FLOPROS (“protect 

FLOPROS”) for the climate forcings PGFv2, GSWP3 and WFDEI. (a) and (b) include all GHMs and regions, (c) 

and (d) only account for the best GHM per region. The regions Lokoja (NGA)  Idah (NGA) were excluded from the 

computation. 

 

flooding in Chemba (MOZ): WaterGAP2, in addition to VIC; and the CLM model shows 

lower CSI scores in Alipur (PAK) and Dalby (AUS) (Figure 2.4). More widespread deterioration 

of CSI scores appears under the other two forcings. With GSWP3, there are multiple GHMs 

each in Chemba (MOZ), Alipur and Ghotki (PAK) that show no or almost no flooding 

(supplementary Figure S39). With PGFv2, the CSI drops to zero in Chemba (MOZ) for almost 

all models, with the exception of DBH which still shows a high CSI score there; and CSI scores 

in Huainan (CHN) are seriously degraded for all GHMs. In summary, while for most regions 

the maximum CSI scores achieved are preserved when assuming protection against ARI of 2 

years, the spread among models and among forcings increases notably compared to the 

default simulations (Figure 2.5 (a) and (c)). 

This pattern becomes even more pronounced when assuming flood protection according 

to FLOPROS. CSI scores degrade in the majority of regions and forcing-GHM combinations 

(Figure 2.4, Figure 2.5 and supplementary Figure S41). While all of the ‘protect FLOPROS’ 

simulations still exhibit significant CSI scores in Trinidad (BOL), they all show zero or almost 

zero CSI in Dalby (AUS). In most other regions, we find both: multiple GHM-forcing 

combinations that still achieve relatively high CSI scores, often preserving the maximum CSI 
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for the region found in the ‘default’ setup; as well as many combinations showing zero or very 

low CSI scores. Chemba (MOZ) is an interesting case as here the CSI score drops to zero for 

most of the ‘protect FLOPROS’ simulations, while, with WFDEI forcing, one single GHM (PCR-

GLOBWB) still achieves the same CSI as in the default setup; and the same is true for three 

GHMs (CLM, ORCHIDEE, and PCR-GLOBWB) with GSWP3 forcing.  

While the Bias scores were mostly positive in the ‘default’ simulations, the ‘protect 

FLOPROS’ setup mostly results in negative biases, which are in many parts of substantial 

magnitude (Figure 2.5(b) and supplementary Figure S42). This corresponds to the decreased 

and, often, zero CSI scores found in this setup. Bias scores in the ‘protect 2y’ setup are, as 

expected, closer to those in the ‘default’ setup; with more pronounced overestimation of flood 

extent under WFDEI forcing, and more pronounced underestimation in some regions under 

PGFv2 forcing (supplementary Figure S40).  

Considering the entire simulation ensemble, the lowest median bias in flood extent is 

achieved in the ‘protect 2y’ setup, in particular the simulations forced with PGFv2 and GSWP3 

yielding a lower median bias than in the ‘default’ setup (Figure 2.5(b)). On other hand, the 

spread among simulations is largest for ‘protect 2y’. In the ‘protect FLOPROS’ setup, the 

majority of simulations show a large negative bias, as discussed above. However, when 

considering for each region only the best-performing model, the least biased results are 

achieved with WFDEI forcing in the ‘protect FLOPROS’ setup; the corresponding GSWP3 

simulations being only slightly more biased (Figure 2.5(d)). 

2.4 Discussion and conclusions 

A number of key results emerge from our analysis:  

 

1) The performance of a global river flood modelling chain in reproducing observed flood 

extent for major recent floods differs considerably between events. While CSI scores of 

0.7 and higher are obtained for Chemba (MOZ), Idah (NGA), Lokoja (NGA) (similar as in 

Bernhofen et al. (2018)), scores are much lower for many other events, dropping below 

0.3 for Dalby (AUS).  

 

2) The choice of GHM and climate forcing have mutually dependent effects on flood model 

performance.  

 

3) PGFv2 performs somewhat poorer than the other two climate forcing datasets for many 

regions and GHMs, but better for some. The performance spread between GHMs is largest 

with PGFv2.  



 33 

 

 

 

4) No climate forcing or GHM performs best for all regions. Considering the median over all 

regions, the PCR-GLOBWB model stands out as achieving the best, or among the best, 

results for all forcings and in particular for the ‘protect’ setups.  

 

5) Accounting for flood protection according to the FLOPROS database dramatically 

degrades the average agreement between simulations and observations, by reducing or 

eliminating simulated flood extent in many cases. However, individual forcing-GHM 

combinations remain in almost every region that achieve high CSI and low Bias scores.  

 

Regarding key result no. 1, we reiterate that CSI scores should not be compared 

between regions at face value, because of the varying flood extents. However, it is also evident 

from the maps in Figure 2.2 that both the overall match between models and observations, 

and the level of agreement among models, differ depending on the region and event that is 

analysed. This may be explained by varying topographies among the regions, leading to 

different errors in simulated flood extent due to cross-floodplain slopes. Another important 

caveat is that the shape of the study area is not consistent across regions. While the study 

areas for most regions are rectangular and include large parts where no flooding was 

observed, the study areas for Chemba (MOZ), Lokoja (NGA), and Idah (NGA) are irregularly 

shaped polygons narrowly outlining the observed flood extent along the main river channels. 

This means that potential flooding along tributaries is excluded from the analysis 

(supplementary Figures S45–S48). Considering an example of a model overestimating 

observed flood extent, the overestimation may appear less severe if parts of the flood that are 

further away from the main channel are cut off. With the rectangular study areas, such excess 

simulated flood extent would be more visible and would degrade the CSI score to a larger 

degree. This might go some way in explaining why Chemba (MOZ), and especially Lokoja 

(NGA) and Idah (NGA), exhibit systematically higher CSI scores than other regions. These 

scores are similar to those found for the same three regions by Bernhofen et al (2018), who 

used the same study area outlines. This may indicate that the general level of model 

performance found in our study is comparable to that in Bernhofen et al. (2018), and that the 

lower CSI scores in the additional regions in our study may also be related to the layout of the 

study area, rather than only to a poorer model performance in those regions.  

Regarding key result no. 2, the importance of the choice of GHM is confirmed by a recent 

study that compared different sources of uncertainty in CaMa-Flood estimates: the GHM runoff 

inputs, variables for flood frequency analysis and fitting distributions (Zhou et al., 2021). Of 

these three, the GHMs were found to be by far the largest source of variation in the estimate 
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of flood depth and inundation. That study used a single reanalysis forcing dataset (WFDEI) as 

input to the GHMs and did not evaluate different GHMs’ performance in relation to observed 

flooding; rendering our study a useful complement. It should be pointed out that the 

hydrological modelling approach underlying many of these GHMs is traditionally aimed at 

evaluating water and energy balances at longer timescales (also termed catchment yield-type 

models, in contrast to rainfall-runoff-type models), without specific focus on flood generation; 

which may partly explain their deficiencies in estimating flood magnitudes and timing. 

Disparities between GHM-simulated and actual runoff may thus be a fundamental reason for 

the relatively poor performance of the flood modelling methodology applied here, compared 

to conventional basin-scale flood analysis; also affecting the results summarized in key results 

no. 3 and 4. 

Regarding key result no. 3, Müller Schmied et al. (2016) evaluated hydrological 

simulations with a single GHM (WaterGAP2) driven by the same climate forcing datasets as 

in our study, and found substantial differences in long-term average runoff and other 

hydrological indicators. In particular, relatively low precipitation and runoff estimates were 

found with PGFv2, compared to GSWP3 and WFDEI; likely related to the lack of a precipitation 

undercatch correction in this dataset, but potentially also to a different observational product 

that precipitation was corrected against (CRU TS3.21 for PGFv2; GPCC version 6 for GSWP3 

and WFDEI). While runoff extremes were not directly assessed in that study, systematically 

lower precipitation forcing could nonetheless explain the larger negative biases in flood extent 

that we find in our default simulations with PGFv2 for some regions and GHMs; and might 

likewise explain the smaller positive biases and higher CSI scores in Huainan (CHN), where 

flood extent is strongly overestimated with GSWP3 and WFDEI forcing.  

Nevertheless, the differences even between GSWP3- and WFDEI-driven flood 

simulations highlight some remaining uncertainty in the forcing data. To test whether using 

observational datasets directly as input to the GHMs might be beneficial, we performed a set 

of simulations where, for each event and grid cell, the return period simulated by a given GHM-

forcing combination was mapped to the corresponding flood volume given by a benchmark 

simulation of MATSIRO which was driven with station-based (GPCC) rather than reanalysis 

precipitation data (Kim et al., 2009). This adjustment procedure was originally devised to 

correct biases in climate model-derived runoff (Hirabayashi et al., 2013), and has been applied 

in other global flood modelling studies (Dottori et al., 2018; Sauer et al., 2021; Willner et al., 

2018a). However, in our study, the adjustment using the MATSIRO benchmark simulation 

does not systematically improve the agreement between simulated and observed flood extent 

(supplementary material Figures S43 and S44); suggesting that neither a particular GHM nor 
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the observations-based precipitation forcing are generally superior to the GHM ensemble and 

the reanalysis-based forcings studied here, respectively.  

Regarding key result no. 5, one striking finding is that the incorporation of flood 

protection standards according to FLOPROS leads to zero simulated flood extent in some 

regions with many or all GHMs and climate forcings. This can either mean that the protection 

standard indicated in the FLOPROS database is higher than in reality for these regions; or 

that the return period simulated by the models is too short—in other words, that the models 

simulate too frequent flooding; or both. It must be remembered that the FLOPROS protection 

levels are purely model-based estimates for most of the events; except for those in 

Mozambique, China and Australia, where information about the actual design standards or 

about corresponding policy regulations entered the estimates provided in the database. Thus, 

FLOPROS values may not exactly reflect the flood protection standards actually implemented 

in the study regions.  

Reported estimates of the average recurrence interval (ARI) are only available for some 

of the flood events studied here, and available estimates often differ between sources and/or 

come with considerable uncertainties. Nevertheless, the actual ARI appears to be higher than 

the FLOPROS protection standard for most events (supplementary table S3). This suggests 

that the deterioration of model results when applying FLOPROS may not be predominantly 

related to errors in FLOPROS. Instead, it suggests that the ARI in the affected model 

simulations may be too short; i.e. the model too frequently simulates a flood of the given 

magnitude.  

The ‘protect FLOPROS’ simulations thus serve to highlight those GHM-climate forcing 

combinations that correctly simulate an ARI larger than the protection standard, according to 

FLOPROS. For instance, applying FLOPROS, the CSI for Chemba (MOZ) drops to zero for 

almost all simulations except for PCR-GLOBWB with GSWP3 and WFDEI forcing, and for 

CLM and ORCHIDEE with GSWP3 forcing (supplementary Figure S41). Similarly, imposing 

FLOPROS flood protection levels in Sayaxché (GTM), the majority of models still achieve a 

reasonable CSI with GSWP3 and WFDEI forcing but simulate no flooding with PGFv2 forcing. 

In Alipur (PAK) and Ghotki (PAK), only JULES-W1 and PCR-GLOBWB realistically simulate 

a large ARI with all three climate forcings. Interestingly, not a single simulation shows 

substantial flooding in Dalby (AUS) in the ‘protect FLOPROS’ setup; suggesting that here, the 

protection standard of a 100 year ARI assumed in FLOPROS may indeed be too high; which 

is also in line with reports of a 90 year ARI for the 2010/2011 flood event (supplementary table 

S3).  

Generally though, many of the runoff simulations used here may still be in need of 

improvement with respect to the high-end of the runoff distribution. Indeed, a recent evaluation 
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of monthly runoff simulated by six GHMs, including H08, LPJmL, MATSIRO, PCR-GLOBWB, 

and WaterGAP2, found that most models—except MATSIRO and WaterGAP2—tended to 

overestimate high-flow runoff (more precisely, Q5, the magnitude of runoff that is exceeded 

5% of the time) (Zaherpour et al., 2018). GHMs particularly struggle to capture the levels and 

variability of runoff and, consequently, river discharge in more arid environments such as parts 

of the Murray–Darling basin (Haddeland et al., 2011; Hattermann et al., 2017; Zaherpour et 

al., 2018). While the CaMa-Flood river routing model has been shown to improve the 

discharge hydrograph compared to GHMs’ native routing schemes in many basins (Zhao et 

al., 2017), it may not always be able to compensate a systematic overestimation of high-flow 

runoff by the GHMs, which may then result in an overestimation of flood extent. Moreover, 

CaMa-Flood does not account for human water management such as water withdrawals or 

dams, which may in some cases have significant effects on flood volume and timing (Mateo 

et al., 2014; Zhao et al., 2017). Other limitations of the GFM include the accuracy of the 

baseline topography, and the use of a global empirical equation to calculate channel depth as 

function of annual river discharge, without separate calibration for each river (Yamazaki et al., 

2014). 

We can thus derive from our study some recommendations for future applications of 

GFMs to simulate flood extent. One is that the choice of GHM (or more generally, the runoff 

model) and climate forcing should be carefully considered, because it can strongly impact 

performance. The good news is that serious losses in flood extent performance occurred only 

with a limited number of individual climate forcing-GHM combinations. Two of our three climate 

forcings, and the majority of GHMs used, showed very similar levels of performance. The more 

difficult news is that there is no general recommendation on which forcings or runoff models 

not to use; because even those that perform particularly poorly in some regions may actually 

be the best choice in a different region, or in a different GHM-climate forcing combination. A 

multi-model, multi-forcing ensemble approach may be advisable when there is no prior 

knowledge about a certain combination’s performance for the specific type of event and region 

under investigation. That being said, validating the underlying runoff model(s) separately from 

the flood model is a crucial component of robust flood risk analysis; and the performance of 

each part in the modelling chain should be taken into account to determine whether the 

modelling chain is fit for a given purpose.  

Global flood modelling capacities could profit from further development of GHMs, for 

instance, addressing the difficulty to accurately capture runoff extremes in arid and semi-arid 

regions. Weighted ensembles of models may provide a useful method when systematic 

differences in model performance can be identified (Zaherpour et al., 2018). A closer coupling 

of runoff and flood modelling, accounting for human alterations of river flow, could improve 
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flood estimates in highly managed river basins (Boulange et al., 2021; Mateo et al., 2014). Not 

least, improving the availability and fidelity of observational data, e.g. by extending direct 

observations of precipitation, runoff, or flood levels, and by making existing data more 

accessible—including on human-made alterations of the natural river flow—would help with 

both the calibration and validation of the different parts in the flood modelling chain (Müller 

Schmied et al., 2016). 
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Abstract 

 

We present a new open source dataset FLODIS that links estimates of flood-induced human 

displacements, fatalities, and economic damages to flooded areas observed through remote 

sensing. The dataset connects displacement data from the Internal Displacement Monitoring 

Centre (IDMC), as well as data on fatalities and damages from the Emergency Events 

Database (EM-DAT), with the Global Flood Database (GFD), a satellite-based inventory of 

historic flood footprints. It thereby provides a spatially explicit estimate of the flood hazard 

underlying each individual disaster event. FLODIS contains event-specific information for 

335 human displacement events and 695 mortality/damage events that  occurred around 

the world between 2000 and 2018. Additionally, we provide estimates of affected population, 

assets, and critical infrastructure, as well as socio-economic indicators such as the human 

development index (HDI), corresponding to the flooded area; and we provide geocoding 

for displacement events ascribed to other types of disasters, such as tropical cyclones or 

droughts, so that they may be linked to corresponding hazard estimates in future work. 

FLODIS facilitates integrated flood risk analysis, allowing, for example, for detailed 

assessments of local flood-damage and displacement vulnerability.   
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3.1 Background & summary 

Disaster databases record hundreds of flood events every year and gather information on their 

societal impacts, such as displacements (recorded by the Internal Displacement Monitoring 

Centre, IDMC), fatalities and damages (recorded in the Emergency Events Database, EM-

DAT). However, they do not include any estimates of the corresponding physical hazard, e.g. 

inundated area or flood depth. That also means that the exposure to flooding, in terms of 

affected people and assets, associated with each disaster is generally unknown.  

The delineation of flood hazard, and exposure, in space and time, is however a critical 

issue for risk analysis (Formetta and Feyen, 2019). Risk is commonly understood as the 

product of hazard, exposure, and vulnerability (Cardona et al., 2012; Oppenheimer et al., 

2014). Flood impacts reported in disaster databases can serve as empirical realizations of 

risk, and high-resolution estimates of the distribution of population (and partly also assets) are 

available for the calculation of exposure. But to understand flood vulnerability, or changes in 

risk over time, the corresponding hazard must be known. Past studies often used simulated 

hazard information, e.g., based on modeled annual maximum daily flood water depth 

(Jongman et al., 2015; Tanoue et al., 2016) or modeled 100 year return period inundation 

maps (Formetta and Feyen, 2019). This has many advantages such as extensive 

geographical and temporal coverage, but the fidelity of the models also puts limitations on the 

accuracy of flood simulations. Using a single maximum flood value per year can also lead to 

an underestimation in exposure if more than one flood actually occurred in a given year. 

Additionally, yearly numbers of affected people and fatalities/damages were used, all 

neglecting that vulnerability is event-specific (Jonkman, 2005).   

It is therefore desirable to make use of satellite-based observations of flooded areas, to 

overcome the limitations of flood model simulations. Satellite-based remote sensors can 

capture actual flooded areas, implicitly accounting for flood protection (Alfieri et al., 2018) and 

other non-climate related determinants of flood extent such as land use and infrastructure 

(Tellman et al., 2021). Until recently, only a limited number of satellite observations of past 

floods were publicly available, mainly provided by the archive of the Dartmouth Flood 

Observatory (DFO; https://floodobservatory.colorado.edu/), and the United Nations 

Operational Satellite Applications Programme (UNOSAT; http://floods.unosat.org). With the 

release of the Global Flood Database (GFD; http://global-flood-database.cloudtostreet.info/), 

a product based on the DFO, an unprecedented inventory of satellite imagery is now available, 

including 913 large flood events from 2000 to 2018 (Tellman et al., 2021). Here, we connect 

this new data set of observed flood extents to reported flood impacts, enabling large-N global 

studies of flood vulnerability, its socio-economic drivers, and related questions. We link impact 

records from IDMC and EM-DAT with the GFD satellite imagery of historic floods event by 

https://floodobservatory.colorado.edu/
http://floods.unosat.org/
http://global-flood-database.cloudtostreet.info/
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event, to develop the new open source dataset FLODIS which provides observed, spatially 

explicit flood hazard data for hundreds of human displacement and emergency events.  

We first assign an affected area to each entry in the IDMC database, using 

geographic information contained in the database and a tailored geocoding algorithm. 

Affected areas for EM-DAT are provided by the Geocoded Disasters (GDIS) dataset 

(Rosvold and Buhaug, 2021). We then match affected areas of IDMC and EM-DAT with the 

GFD satellite imagery in space and time. The final product FLODIS contains 335 human 

displacement (IDMC) entries and 695 mortality/damage (EM-DAT) entries linked with GFD 

flood information (Figure 3.1). FLODIS allows investigations on cross-country but also within-

country variations in flood risk. In addition, we overlay the flood extent with sub-national, 

rasterized socio-economic data, to estimate the number of affected people, affected 

assets, and critical infrastructure as well as event-specific societal and environmental 

conditions. This extensive set of socio-economic variables associated with each flood-impact 

event further facilitates various types of studies, for example multivariate analyses of the 

drivers of flood vulnerability. 
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1 

Figure 3.1: Location overview of all GFD floods (brown), as well as IDMC events (top), and GDIS events (bottom) 

associated with flooding between 2000 and 2018. Affected disaster areas are displayed (light green), as well as 

the ones successfully matched with the GFD (dark green). Note: Only the centroids of the polygons are shown, 

some polygons are merged to a single FLODIS disaster entry in the final processing steps. 

 

3.2 Methods 

The IDMC database contains 3083 unique displacement events with the cause being 

indicated as “Flood” between 2008 and 2018, each including the number of displaced persons 

and a starting date. For some events, more detailed information is given in the “Event Name” 

variable. This string can vary from being empty to containing additional information describing 

the event, such as flood type, duration and affected locations. In a first step we exploit the 

“Event Name” variable to identify one or several sub-national regions (provinces or districts) 
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where the event occurred (Figure 3.2, step a), using the Global Administrative Areas (GADM) 

database v.3.4 (GADM, 2018). Note that for provinces and districts in Great Britain we used 

the 2nd and 3rd sub-national level GADM data, as England, Wales, Scotland and Northern 

Ireland are listed on the 1st level.  

We perform a transliteration process, which converts diacritics to letters of the alphabet 

for Modern English, e.g., the French accents la cédille “ç” and l'accent aigu “é” become “c” 

and “e”, respectively. An automated script then calculates for every word within the “Event 

Name” string its spelling similarity with the 3610 provinces and 45.962 districts in the GADM 

database, using a similarity score defined as: 

 

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑀

𝑇
 (1) 

 

where M is the sum of sizes of all matched sequences and T is the total number of 

characters in both sequences. It ranges from 0 to 1, where 1 represents a perfect similarity. A 

successful match between a IDMC word and a GADM province or district name requires the 

same ISO3 country code as well as a Similarity Score greater than 0.8. This threshold was 

found to assure a high degree of similarity while allowing for smaller deviations. For example, 

the Algerian province “Tamanghasset” (GADM) is written as “Tamanrasset” in an IDMC entry, 

resulting in a similarity value of 0.87 with M=10 and T=23. We additionally computed similarity 

scores for the “VARNAME_1” and “VARNAME_2” variables in the GADM database, which 

cover spelling variants of the provinces and districts, respectively, and assigned the province 

or district to the event if at least one of the scores exceeded 0.8. Referring to the previous 

example, “Tamanrasset” is also found as a spelling variant in the “VARNAME_1” variable. The 

geometries of all matched GADM provinces or districts are then merged for every event into 

a single area, which represents the smallest identifiable area associated with the displacement 

event (“displacement region”). If no provinces or districts are found, the national area of the 

country within the event occurred is used. For entries between 2008 and 2012 in the IDMC 

database, the “Event Name” column is empty, thus the corresponding national areas are used 

for all those events. Matching displacement events to observed floods, as described below, 

yields accurate location information for many of these early events too.  

For a total of 3083 IDMC entries labeled as “Flood” we geocoded 1702 entries (1157 

entries with at least one province, 1074 entries with at least one district, and 529 entries with 

both at least one province and one district). It should be noted that 688 entries do not contain 

any event information and others only non-location related information, e.g., “March Floods”. 

For information on fatalities and damages, we use the GDIS (Rosvold and Buhaug, 

2021), which provides GIS polygons for each disaster location in the EM-DAT database. We 
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extract 2390 entries with the disaster type “flood” between 2000 and 2018, for which we also 

obtain the corresponding disaster information, e.g., number of fatalities or total damage, from 

the EM-DAT database. 

In the next step, we perform a spatial and temporal event matching procedure between 

the IDMC displacement events and EM-DAT/GDIS disaster events on the one hand, and the 

GFD floods on the other hand (Figure 3.2, step b). The GFD provides surface water extent for 

913 large flood events documented by DFO (Tellman et al., 2021). The data covers the years 

from 2000 to 2018 and is based on MODIS satellite imagery at 250 m resolution. The matching 

procedure needs to consider the fact that some flood events affected multiple countries, and 

could therefore be related to multiple displacement or disaster entries, but are only assigned 

to one country in the GFD inventory. Simply matching the  ISO3 country codes between GFD 

and the IDMC or EM-DAT databases is therefore not sufficient, and we instead consider the 

actual spatial overlap between flooded area and the region associated with the disaster, as 

identified above. A second consideration is that distinct floods may have occurred 

simultaneously in the same country but in different locations, and we use both temporal and 

spatial information to avoid false matches in such cases.  

Two conditions must be hence fulfilled for a successful match: (i) the affected disaster 

area must intersect with the GFD event polygon and (ii) the starting date difference must be 

equal or less than 30 days. We thereby ensure a merging of the databases with high accuracy 

while allowing for minor deviations in time and space due to, e.g., inaccurate or ambiguous 

starting date information (e.g. the displacement database might indicate the first day of the 

month when the exact day is unknown; or the date of satellite observation might not match the 

date of the disaster record during longer events). If two or more GFD entries are matched to 

a single disaster entry, we keep entries with a starting date difference equal or less than 14 

days. In the case no entries meet this criteria, the smallest date difference for this event is 

determined and GFD entries with a higher date difference are discarded (Figure 3.2, step c). 

The resulting GFD flooded areas are merged and cropped to the extent of the IDMC/EM-DAT 

affected disaster area. 

We then compute the number of affected people using the Global Human Settlement 

Layer (GHSL) (Schiavina et al., 2019), and gridded population of the world version 4 (GPW) 

(CIESIN, 2018a), the number of affected assets using gridded Gross Domestic Product counts 

(GDP) (Kummu et al., 2018) and the number of affected critical infrastructure entities/units. As 

the population and asset count data is only available for certain years (GHSL: 2000 and 2015; 

GPW 2000, 2005, 2010, 2015, and 2020; GDP: 2000-2015), we linearly 

interpolate/extrapolate the missing years to create a continuous annual time series for every 

dataset between 2000 and 2018. The critical infrastructure entities are extracted from the 
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Critical Infrastructure (CI) dataset (Nirandjan et al., 2022), which is based on Openstreetmap 

and lists the number of entities per grid cell, e.g., 20 communication masts are located in one 

cell. The information on critical infrastructure is based on the year 2022 and values within 

FLODIS are assumed to be the same for the period of 2000 to 2018. By overlaying the 

(merged) GFD flood extent with each gridded dataset, we compute the sum and mean of 

affected entities, accounting for every grid cell touched by the flood extent (Table 3.1). 

Additionally, we also append FLODIS with a set of gridded socio-economic indicators (Table 

3.2) by computing the mean of all grid cells touched by the flood extent. If several disaster 

entries are assigned to the same GFD flood(s) and the same country, all entries are merged 

to link the GFD flood extent to one combined disaster (Figure 3.2, step d). This procedure 

reduces the number of displacement entries from 524 to 335, and the number of 

mortality/damage entries from 816 to 695. In the last step, the entries are cleaned and merged 

to the final FLODIS disaster dataset (Figure 3.2, step e). 
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Figure 3.2: Flowchart of the database merging process between IDMC and GFD database, including the used 

datasets (light green) and processing steps (brown, a-e). Sub-national information (provinces and districts) is 

extracted for 3083 entries of the IDMC displacement data bank (a). 913 flood events of the Global Flood Database 

serve as a hazard approximation, and are matched with every IDMC entry using location information and time 

stamps (b). If several GFD entries are matched, a multi-criteria scheme is applied to identify and merge flood 

extents belonging to the same displacement event (c). The matched and merged flooded area is used to estimate 

the affected people, assets, critical infrastructure as well as sub-national, socio-economic characteristics of the 

disaster. Next, it is checked whether (sub-)national IDMC entries belong to the same disaster (d) to generate a 

final FLODIS displacement entry (e). Note: for EM-DAT no (sub-)national information is available as no matching 

process as in (a) is performed, hence the duplicate check is simplified in (d). 
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Table 3.1: Overview of affected entity datasets, including their spatial and temporal resolution. Population counts 

and assets datasets are linearly interpolated and extrapolated between 2000 and 2018. “Critical Infrastructure 

Total” is a dimensionless value ranging between 0 and 1. 

Affected entity dataset Category Spatial resolution Temporal resolution Source 

Population count (GHSL) Development 0.5 arcmin 2000, 2015 
(CIESIN, 2018a; 

Schiavina et al., 2019) 

Population count (GPW) Development 0.5 arcmin 
2000, 2005, 2010, 2015, 

2020 
(CIESIN, 2018b) 

Assets (GDP PPP const. 

2011 int. USD) 
Economic 5 arcmin 2000-2015 (Kummu et al., 2018) 

Reservoir (water 

storage) 
Water 6 arcmin 2022 (Nirandjan et al., 2022) 

Electric cable Energy 6 arcmin 2022 “ 

Power line Energy 6 arcmin 2022 “ 

Power plant Energy 6 arcmin 2022 “ 

Power pole Energy 6 arcmin 2022 “ 

Power tower Energy 6 arcmin 2022 “ 

Communication tower Telecommunication 6 arcmin 2022 “ 

Communication mast Telecommunication 6 arcmin 2022 “ 

Doctor Health 6 arcmin 2022 “ 

Hospital Health 6 arcmin 2022 “ 

Pharmacy Health 6 arcmin 2022 “ 

Primary road Transportation 6 arcmin 2022 “ 

Tertiary road Transportation 6 arcmin 2022 “ 

School Education 6 arcmin 2022 “ 

University Education 6 arcmin 2022 “ 

Critical Infrastructure 

Total 
Development 6 arcmin 2022 “ 
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Table 3.2: Overview of gridded socio-economic indicator datasets used to characterize the area affected by the 

flooding, including their spatial and temporal resolution. Population density datasets are linearly interpolated and 

extrapolated between 2000 and 2018. Human development index and GDP per capita datasets are linearly 

extrapolated between 2015 and 2018.  

Socio-economic 

dataset 
Category Spatial resolution Temporal resolution Source 

Population density 

(GHSL) 
Development 0.5 arcmin 2000, 2015 

(CIESIN, 2018a; 

Schiavina et al., 2019) 

Population density 

(GPW) 
Development 0.5 arcmin 

2000, 2005, 2010, 2015, 

2020 
(CIESIN, 2018b) 

Female population (% of 

total population) 
Demographic 0.5 arcmin 2010 (CIESIN, 2018a) 

Population ages 0-14 

years (% of total 

population) 

Demographic 0.5 arcmin 2010 (CIESIN, 2018a) 

Population ages 65+ 

years (% of total 

population) 

Demographic 0.5 arcmin 2010 (CIESIN, 2018a) 

Human development 

index 
Economic / Development 5 arcmin 2000-2015 (Kummu et al., 2018) 

GDP per capita PPP 

const. 2011 int. USD 
Economic 5 arcmin 2000-2015 (Kummu et al., 2018) 

Forest cover Environment 
30 m (resampled to 300 

m) 
2010 (Hansen et al., 2013) 

Land use Environment 30 arcmin 1901-2019 

https://www.isimip.org; 

(Goldewijk, 2016; Hurtt 

et al., 2020; Monfreda et 

al., 2008) 

Urbanization Development 30 arcmin 1901-2019 

https://www.isimip.org; 

(Goldewijk, 2016; Hurtt 

et al., 2020; Monfreda et 

al., 2008) 

Modeled flood protection 
Development / 

Adaptation 

1st subnational layer 

(province) 
approx. 2015 (Scussolini et al., 2016) 

Merged flood protection 
Development / 

Adaptation 

1st subnational layer 

(province) 
approx. 2015 (Scussolini et al., 2016) 
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3.3 Data records 

FLODIS is publicly available from a Zenodo repository (Mester et al., 2022a), and the following 

GitHub repository: https://github.com/BenediktMester/FLODIS (Mester et al., 2022b). Three 

datasets exist: (i) the IDMC displacement dataset appended with the detected provinces and 

districts and the corresponding GADM sub-national codes; this also includes displacement 

events which were not matched with any flood data as well as other hazard types. For a total 

of 11731 IDMC entries we geocoded 7915 entries (5893 entries with at least one province, 

5740 entries with at least one district, and 3718 entries with both at least one province and 

one district. 1202 entries do not contain any event information. The data is available as a CSV 

file. (ii) IDMC displacement events linked with GFD entries, and (iii) EM-DAT fatality and asset 

damage events linked with GFD entries. (ii) and (iii) are available as CSV files, including the 

GFD IDs, GDIS disaster numbers, and GADM codes. The GitHub repository and Zenodo 

repository contain more detailed information on the datasets used. 

 

3.4 Technical validation 

As FLODIS is the first data product of its kind, a direct comparison with existing datasets is 

not possible. Nonetheless, to assess the quality of FLODIS, we analyze the detection rates of 

the geocoding algorithm, and check for temporal and spatial biases within the FLODIS 

datasets. 

First, we assess the geocoding algorithm used to extract subnational information out of 

IDMC entries. The number of entries within the IDMC database continuously increases 

between 2013 and 2021 (Figure 3.3). The share of entries without any detectable subnational 

information is decreasing, which indicates an improved reporting on affected locations over 

time. For almost 20% of all IDMC entries no geocoding is possible, even though event 

information is available (Figure 3.4). This can be mostly explained by missing location 

information, or the geocoding algorithm failing to extract the information, e.g., if it is embedded 

in more complex sentence structures. The number of detected provinces is higher than the 

number of detected districts, which likely reflects that detailed subnational disaster information 

is still often missing. 
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Figure 3.3: Number of detected provinces and districts by the IDMC database geocoding over time . No subnational 

event information is available before 2013. 

 

 

 

Figure 3.4: Share of detected provinces and districts by the IDMC database geocoding (2008-2021). Note: prior to 

2013 no event information is available. 

  

We then determine the number of matches between the GFD and IDMC/EM-DAT over 

time. Starting in 2014, the number of successful matches increases for the IDMC database, 

which can be mostly explained with an increase in event reporting (Figure 3.5). The rate for 

the EM-DAT quickly increases, peaks in 2007, and then continuously decreases. Global 

warming, population growth, and shifting settlement patterns lead to changes in event 

frequency, however, the number of yearly reported EM-DAT entries tends to have stabilized 

since the early 2000s (Rosvold and Buhaug, 2021). Most matches are located in India, China, 

and USA; for IDMC many matches can be also found in Indonesia and Argentina, whereas 

matches for EM-DAT accumulate in Pakistan and the Philippines (Figure 3.1). It is observable 

that a low ratio of matched IDMC events is present in some countries and world regions, e.g., 
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Afghanistan or Central America. Additionally, more events are reported by the GFD than by 

the disaster databases in some regions, e.g., several provinces in Australia. For both 

databases, approximately 85% of all matches are associated with only one GFD entry, while 

matches with two (11-12%) or more GFD entries (3-4%) are relatively rare (Figure 3.6).  

 

 

Figure 3.5: Number of GFD matches with IDMC/EM-DAT per year over time. Note: No subnational event 

information is available for the IDMC database before 2013. 

  

 

Figure 3.6: Number of GFD events matched per IDMC entry (left) and EM-DAT entry (right). 
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3.5 Usage notes  

 

Eight matched IDMC entries and 114 matched EM-DAT entries provide no information on the 

number of displacements, and fatalities/damages, respectively. Nonetheless, it is now 

possible with FLODIS to determine the exposure and estimate the number of displacements, 

fatalities, and damages using, for example, vulnerability functions. In addition, FLODIS 

provides EM-DAT information on the “No Injured”, “No Affected”, ”No Homeless”, and “Total 

Affected”. 

The analysis of FLODIS datasets can be extended by calculating derivatives, e.g., the 

vulnerability by dividing an observed impact with the number of affected entities. The FLODIS 

entries can also be appended with additional affected entities or socio-economic indicators 

using the temporal information, the provided disaster area IDs for gridded datasets, or ISO3 

codes for national information.  

The geocoded IDMC dataset may be linked with other hazard databases using the 

provided start date information, GADM codes, and the matching scripts. The geocoding script 

may also be used to identify locations within other disaster database entries. A 

manual/automatic inspection is recommended to ensure a sufficiently high geocoding rate. 

The Similarity Score threshold can be adjusted for this purpose.  

 

3.6 Code availability 

The source code for this study is publicly available through the following GitHub repository: 

https://github.com/BenediktMester/FLODIS (Mester et al., 2022b). It includes the geocoding 

algorithm to extract subnational information out of the IDMC database, as well as the main 

scripts to match the IDMC/EM-DAT database with the GFD. We also provide code for the 

preprocessing of input datasets, the validation procedure, and the development of the figures. 

The repository includes an extended list of input datasets with download links and additional 

information. 
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Abstract 

 

Floods displace an average of 12 million people every year, being responsible for 54% of all 

disaster-induced displacements. While flood hazard is expected to increase in many regions 

due to climate change, displacement also depends on the specific vulnerability of affected 

populations, which is poorly understood at the global scale. This study aims to identify factors 

that influence vulnerability to flood-induced displacement, and that might help explain 

observed differences in vulnerability between countries and regions, and potentially predict 

changes in vulnerability over time. We combine global databases of flood observations and 

displacement events to calculate vulnerability - the ratio of displacement to exposure - for 311 

historical flood events. We find that between and within continental regions, national average 

displacement vulnerability varies by several orders of magnitude. We apply a machine learning 

framework to identify the most important determinants of displacement vulnerability.  Random 

forest methods explain variance with R2s of up 0.3, however, singling out the best predictors 

remains difficult. We show that in most cases the level of human development, e.g., 

urbanization, is positively related to a reduction in vulnerability. Some predictors which exhibit 

a high correlation with GDP per capita, such as  infant mortality rate or age cohorts, have a 

better explanatory power than economic wealth itself. We therefore recommend that, in 

addition to economic dimensions, a number of contextual indicators be considered in studies 

of vulnerability to displacement. Our study is a first step towards a better understanding of 
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displacement vulnerability which is strongly under-researched compared to vulnerabilities to 

direct economic damages. 

 

4.1 Introduction 

In the last decade alone, more than 100 million people worldwide have been displaced due to 

flooding (IDMC, 2022). Displacement is a product of the physical properties of flooding 

(hazard), the exposure of people living in floodplains, and the susceptibility and lack of 

resilience to being displaced (vulnerability) (Cardona et al., 2012; Oppenheimer et al., 2014). 

Flood hazard has been changing (Berghuijs et al., 2017; Blöschl et al., 2020; Fowler et al., 

2021; Gudmundsson et al., 2021) and, in particular with respect to rare, large floods, is 

expected to increase in many regions under continued climate change (Hirabayashi et al., 

2013; Lange et al., 2020; Milly et al., 2002). At the same time, more than 20% of the world’s 

population are currently exposed to high flood risk (Rentschler et al., 2022), and population 

growth and urbanization are set to further increase exposure particularly in lower-income 

countries (Jongman et al., 2012; Winsemius et al., 2016). Against this backdrop, it is important 

to understand and quantify flood displacement vulnerability - the third component of the risk 

equation. Knowing what determines vulnerability is useful for deciphering the relative roles of 

different drivers of past displacement, for instance, the contribution of climate change to recent 

displacement events (Mester et al., 2023b); it is necessary for estimating future changes in 

displacement risk; and it could help identify ways to improve the resilience of affected 

communities, thereby reducing displacement risk.  

However, there is no quantitative framework that explains the vulnerability to flood-

induced displacement at the global scale. It has been shown that the ratio between 

displacement and exposure (the empirical vulnerability) at the national level is generally low 

in countries with gross national income above a certain level, while it can take both low and 

high values in poorer countries (Kakinuma et al., 2020). However, it is not clear how much of 

the variation in observed vulnerabilities can be explained by national income levels, nor 

through what functional relationship. Even less is known about the role of other, non-economic 

and/or more local factors, such as urban development, demographic composition of the 

population, or social disparities. Consequently, the single existing study of future changes in 

global flood-displacement risk only accounts for changes in hazard and exposure, whilst 

assuming constant levels of vulnerability (Kam et al., 2021). Specifically, it assumes that all 

people exposed to inundation larger than a certain threshold (e.g. 1 m) are at risk of being 

displaced. This is based on estimates of expected structural damage to residential buildings 

(Nadal et al., 2010; Custer & Nishijima, 2015). Similarly, an operational model of displacement 
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risk developed by the Internal Displacement Monitoring Center (IDMC) is based on housing 

destruction as a proxy for displacement (Anzellini et al., 2017). Thus, these methods 

incorporate an important aspect of physical vulnerability, namely, the susceptibility of 

residential buildings to be damaged or destroyed by flooding. However, they do not represent 

the potential role of other physical factors, such as local flood protection infrastructure or 

damages to critical infrastructure related to energy, water, or other public services; nor do they 

consider socio-economic factors that might make some populations more vulnerable than 

others to being displaced, even under similar physical circumstances. Related to this, it is 

unknown whether and how displacement vulnerability has changed over time, or how it differs 

between different countries and subnational regions, apart from differences in prevalent 

building types which are implicitly considered in the IDMC model (Anzellini et al., 2017).  

This contrasts with the literature on other types of flood impacts, namely economic 

losses and fatalities. It has been shown that vulnerabilities to losses and mortality from flooding 

have been changing over the last half-century in non-trivial ways, and that these changes can 

at least partly be explained by changes in income levels and improvements in flood protection 

measures (Jongman et al., 2015; Tanoue et al., 2016; Formetta et al., 2019; Sauer et al., 

2021). These global studies also find different trends between different world regions and 

country groups. There is no analogous research with respect to displacement vulnerability, 

which may be due in part to the shortness of displacement records compared to records of 

losses and fatalities: The IDMC provides systematic accounts of displacement events starting 

in 2008, and corresponding subnational location information is available mostly after 2012. 

Nevertheless, even if the record is too short to derive meaningful trends in displacement 

vulnerability, it is of high interest to understand how and why observed vulnerabilities differ 

between individual events and between countries and regions.  

Here we address this research question. We combine reported displacement data with 

remote sensing-derived flood extent data and gridded population estimates in order to 

calculate vulnerability, as the ratio between displacement and flood exposure, for 311 recent 

large flood events around the world. We then employ two multivariate regression techniques 

- simple linear regression and non-linear random forest (Breiman, 2001) - within a machine 

learning framework to examine the ability of a set of potential predictors to explain the 

observed variation in event-specific vulnerabilities. Several aspects set this study apart from 

previous global studies of flood vulnerability (e.g. Jongman et al. (2015); Tanoue et al. (2016); 

Kakinuma et al. (2020)). First, using remotely sensed, rather than modeled, flood hazard data 

eliminates flood modeling uncertainty and allows us to estimate exposure associated with 

each event relatively accurately. Second, utilizing partially geocoded displacement information 

on level-1 or level-2 subnational administrative units (e.g. province or district, respectively), 
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allows the use of the corresponding subnational predictor values in the multivariate regression. 

Thus our analysis addresses not only across-country but also within-country variations in 

displacement vulnerability. Third, multivariate regression has not been applied in any of the 

above-mentioned vulnerability studies, which focused instead on individual predictors of flood 

impacts such as national income or population size. Drawing from a larger set of plausible 

predictors, and employing both linear and non-linear regression techniques, our analysis can 

also account for non-linear effects of individual explanatory factors, as well as for interactions 

between different explanatory factors.  

4.2 Data and methodology 

4.2.1  Flood-induced displacement vulnerability  

Here we go beyond previous national-level studies by analyzing vulnerability for individual 

events, as measured by the ratio of reported displacement to estimated exposure. Estimating 

flood exposure requires spatially resolved flood extent data. Given that comprehensive in-situ 

observational data, such as from water level gauges, are rarely available, global flood models 

or remote sensing products are the only viable options to estimate flood extent for a large 

number of events on a global scale (Alfieri et al., 2018). 

On the one hand, global flood simulations forced by observational weather data clearly 

have the advantage of complete spatial coverage and have already demonstrated to provide 

significant explanatory power when it comes to reported annual damages and mortalities. 

Recent studies of vulnerability related to damages and mortality (Jongman et al., 2015; Sauer 

et al., 2021; Tanoue et al., 2016) and displacement (Kakinuma et al., 2020) are all based on 

global hydrological simulations, and often use the information about flood depth provided by 

the models. However, despite remarkable improvements over the past years (Bates et al., 

2021, 2018; Yamazaki et al., 2014) and extensive model intercomparison projects (Bernhofen 

et al., 2018; Trigg et al., 2016), the realism of global flood model simulations is still limited due 

to a number of factors, such as the flood frequency analysis (Zhou et al., 2021), the 

representation of flood defenses (Bates et al., 2021), or the river channel geometries (Ward 

et al., 2015). The ability of models to reproduce observed flood extents also depends on the 

river runoff data used to force them, and many of the global hydrological models providing this 

runoff data appear to overestimate the frequency of high-runoff events, resulting in a mismatch 

between simulated flood frequency and reported flood protection levels (Mester et al., 2021). 

Thus, estimates of event-level flood exposure using global flood models may carry large 

biases.  
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Remote sensing, on the other hand, can partly overcome these limitations. Satellite 

imagery captures actual observed flooded areas, implicitly accounting for flood protection 

(Alfieri et al., 2018) and other non-climate related determinants of flood extent such as land 

use and infrastructure (Tellman et al., 2021). However, until recently, only a limited number of 

spatially resolved satellite records of past floods was publicly available, mainly provided by 

the archive of the Dartmouth Flood Observatory (DFO) and the United Nations Operational 

Satellite Applications Programme (UNOSAT). With the release of the Global Flood Database 

(GFD; http://global-flood-database.cloudtostreet.info/), a product based on the DFO  

(http://floodobservatory.colorado.edu), an unprecedented inventory of satellite imagery is now 

accessible (Tellman et al., 2021). The GFD includes gridded observations of 913 large flood 

events from 2000 to 2018 on a fine spatial scale of  250 m.  

Here, we utilize this database to estimate flood exposure for several hundred events for 

which we were able to identify associated displacement records. First, we geocode the Global 

Internal Displacement Database (GIDD) to allocate sub-national administrative units 

(provinces and districts) to each displacement event related to flooding. Next, the GFD and 

the geocoded GIDD are merged in space and time using the geographic information and 

timestamps, respectively. This yields the unique dataset FLODIS compromising both flood 

hazard and the associated number of displacement for 311 events that occurred in 72 

countries between 2008 and 2018 (Mester et al., 2023a). Here, we make use of this dataset 

to develop a better understanding of flood-induced displacement vulnerability and its 

contextual indicators, which are provided for each FLODIS entry as well (Figure 4.1). 

For each observed event, we compute the empirical displacement vulnerability by 

dividing the reported number of displaced people by the estimated number of exposed people. 

We also compute for each of the 72 countries the median vulnerability across all events 

observed in the country. This allows us to perform two separate regression analyses  of the 

predictors of flood-induced displacement vulnerability: First, a country-level  analysis with the 

72 national median entries and predictor variables measured at the national level; second, an 

event-level analysis using all 311 events and predictor variables measured at the sub-national 

level. In this second analysis, we account for country-specific random effects on the error 

distribution of the regression model.  

http://global-flood-database.cloudtostreet.info/
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Figure 4.1: Schematic workflow of the data and methods used to derive event-specific vulnerabilities and the 

predictor assessment. 913 flood events of the GFD (a) serve as a hazard approximation; 3083 flood-induced 

displacement events of the GIDD exhibit information on the number of displacements (b). After geocoding the 

GIDD, events of both databases are matched in space and time (c). Dividing the number of reported displacements 

by the number of simulated affected people (d) yields 311 event-specific vulnerabilities (e). Next, country-level and 

subnational predictors are assigned to each event  (f). In the final regression analysis, the most important predictors 

and their influence on vulnerability is assessed (g). 

4.2.2 Vulnerability predictors 

In the next step, the conditioning factors which drive the vulnerability to flood-induced 

displacement are selected. Displacement vulnerability refers to the tendency of exposed 

human beings to be evacuated or lose their homes. Generally, a low or uneven level of 

development is associated with multi-dimensional inequalities which increases vulnerability 

towards disaster-induced displacement (Oppenheimer et al., 2014; The Nansen Initiative, 

2015). Factors that influence vulnerability can be categorized into families of drivers, such as 

socio-economic status, household characteristics, demography, education, or infrastructure 

(Black et al., 2011). Economic drivers, for example, household income or GDP per capita, are 

of primary focus for displacement risk, as poor populations reside disproportionately in 

proximity to exposed riverbanks (Winsemius et al., 2018), have less capacity to adapt and 

prepare in situ (Cissé et al., 2022; Morrow, 1999), and often live in poorly constructed houses 

or mobile homes with less resistance against extreme flooding  (Daley et al., 2005; Flanagan 
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et al., 2011). Other non-economic drivers, such as age, gender, recent migrants, or health 

status, can also influence the vulnerability substantially (Oppenheimer et al., 2014).  

However, drawing conclusions from other studies about the role of conditioning drivers 

of climate mobility should be treated with caution (Cattaneo et al., 2019), as it is unclear how 

these findings translate to vulnerability to flood-induced displacement, given the strong 

dependencies on the characteristics of the flood events and their societal context (Rufat et al., 

2015). We therefore choose a set of the most common vulnerability predictors and assess the 

plausibility in the context of vulnerability to flood-induced displacement. Our selection aims to 

identify the most representative predictor per driver family while incorporating as many societal 

dimensions as possible. In total, the selection comprises 13 subnational predictors for the 

event-level analysis, 11 national predictors for the country-level analysis, and six predictors 

available in both analysis types. The event-level analysis comprises predictors of the FLODIS 

dataset covering the event duration, flood protection, elevation, slope and the density of 

health, education, and overall critical infrastructure. For the national-level analysis we apply 

World Bank’s World Development Indicators (WDI) on infant mortality rate, population growth, 

urbanization growth, stock of international migrants (WDI, 2022). Additionally, we create a 

proxy for national flood experience by computing for every country the number of flood events 

during the last ten years according to DFO, normalized by the World Bank national population 

size. For both analysis types we use information on the population density, share of female 

population, GDP per capita, urbanization, population ages 0-14 and population ages 65+ 

years. An overview of all predictors, the associated driver families and potential causal 

mechanism is presented in Table 4.1. We also introduce a “dummy” variable to control for 

model variability. 
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Table 4.1: Overview of subnational and national predictors, including a description of (plausible) causal 

mechanisms. “/” indicates that the predictor is not available. 

Predictor Category 
Spatial resolution 

sub-national 
Source sub-

national 
Source national 

(Plausible) Causal 
mechanism 

Population density Demographic 0.5 arcmin 
(Schiavina et al., 

2019) 
(WDI, 2022) 

Event-level: 
infrastructure/buildi

ng types; 
national-level: 

development/wealt
h 
 

Female population Demographic 0.5 arcmin (CIESIN, 2018a) “ Gender inequality 

Population ≤ 14 
years 

Demographic 0.5 arcmin “ “ 

Lack of coping 
mechanisms and 

resources; 
development 

Population ≥ 65 
years 

 
Demographic 0.5 arcmin “ “ 

Physical 
limitations; 

development 

GDP per capita 
PPP 

Economic 5 arcmin 
(Kummu et al., 

2018) 
“ 

Development/wealt
h 

Urbanization Demographic 30 arcmin 

https://www.isimip.
org; (Goldewijk, 

2016; Hurtt et al., 
2020; Monfreda et 

al., 2008) 

“ 
Development/wealt

h 

Urbanization 
growth 

Demographic / / “ 
Development/infor
mal settlements 

Population growth Demographic / / “ 
Development/growt
h in flood plains at 

high risk 

Infant mortality rate Social / Health / / “ 
Social 

inequality/health 

International 
migrant stock 

Demographic / / “ 
Closer social 
ties/lack of 

acculturation 

Flood protection 
Adaptation / 
Economic 

1st subnational 
layer (province) 

(Scussolini et al., 
2016) 

/ 
Flood risk 
awareness 

Event duration Flood characteristic per event 
(Tellman et al., 

2021) 
/ Intensified flooding 

Flood experience Adaptation per country 
 
/ 

http://floodobservat
ory.colorado.edu 

Flood risk 
awareness 

Education 
infrastructure 

Infrastructure/ 
Education 

6 arcmin 
(Nirandjan et al., 

2022) 
/ 

Development/flood 
risk awareness 

Health 
infrastructure 

Infrastructure/ 
Health 

6 arcmin “ / 
Development/socia

l inequality 

Total critical 
infrastructure 

Infrastructure 6 arcmin “ / 
Development/wealt

h 

Elevation Flood characteristic 0.54 arcmin 
(Amatulli et al., 

2018) 
/ Intensified flooding 

Slope Flood characteristic 0.54 arcmin “ / Intensified flooding 
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4.2.3 Predictor assessment 

In this section we introduce the regression models, methods to assess the predictor 

importance, and visualization techniques for predictor dependence. First, we establish 

multivariate linear regression and random forest models that predict the level of vulnerability 

based on the diverse set of socio-economic predictors. Next, we rank the predictors by their 

relative contribution in predicting vulnerability. Lastly, we visualize and analyze the interaction 

between vulnerability and individual predictor variables.  

4.2.3.1 Regression models 

We use two types of regression models to estimate the relationship between the vulnerability 

to flood-induced displacement and its predictors: linear regression and random forests. The 

ordinary least squares linear regression predicts the target variables by a linear approximation 

and minimizes the residual sum of squares between the observed and predicted target 

variable (Pedregosa et al., 2011). Random forests are commonly used in flood risk analysis, 

such as flood-susceptibility mapping (Lee et al., 2017; Li et al., 2019), loss and damage 

modeling (Carisi et al., 2018; Schoppa et al., 2020; Wagenaar et al., 2017) or the identification 

of important damage-influencing variables (Sieg et al., 2017).  

Random forests are a tree-based type of supervised machine learning method for 

classification and regression tasks (Breiman, 2001). Random forests consist of a number of 

decision trees that, used individually, have a tendency of overfitting and high variance 

(Pedregosa et al., 2011). Each tree consists of several decision rules that split the data 

(branching) into subsets (nodes) by establishing thresholds for the predictor variables which 

minimize the heterogeneity within subsets and maximize differences between subsets (Sieg 

et al., 2017; Vogel et al., 2019). For new data the decision rules are repeated to find the 

matching subset of the tree (leaf node) and a corresponding mean response value. The 

average prediction of all decision trees forms the final predicted response value by the random 

forest, which exhibits less variance, sometimes accompanied by a slight increase in bias 

(Pedregosa et al., 2011).  

Random forest offers several advantages over linear models, such as the inclusion of 

nonlinearities and predictor interactions (Merz et al., 2013) or a robustness against collinearity 

(Cutler et al., 2007), which are important factors in the light of the complexity of vulnerability 

to displacement. In addition, the capabilities of random forests are not strongly hampered by 

small dataset sizes (Biau and Scornet, 2016), as present in this study. Here, we use the 

random forest regressor of the Python module “Scikit-learn” (Pedregosa et al., 2011) with the 

default settings of 100 trees and without sample bootstrapping due to the limited number of 

observations; no hyperparameter tuning was performed. 
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The global analysis datasets contain clustered data in terms of regional/country biases 

(Figure S 1) which should be controlled for in climate -related mobility studies (Hoffmann et 

al., 2021). To overcome these random effects, we employ a mixed-effects random forest 

(MERF) (Hajjem et al., 2014) and assign the ISO3 country code as random effect covariate 

using the “MERF” Python package (https://github.com/manifoldai/merf). 

4.2.3.2 Predictor ranking 

We employ multiple multivariate linear regression and random forest models using up to three 

predictors. We test all possible predictor combinations, except for a small number of predictors 

which are closely related and depict a high correlation (Figure S 2 and Figure S 3). A maximum 

of one of these three predictors may be present in the regression models. As we are interested 

in which predictors explain vulnerability best, we assess their performance across all models 

per regression type. Random forests are generally referred to as black-box methods (Biau and 

Scornet, 2016), i.e. it is difficult to extract the underlying decision rules and determine which 

predictors are of relevance, in contrast to linear regression.  

For the interpretation of the model regarding its predictive capabilities, we first split the 

data into training sets and test sets that are used to fit the model and predict the vulnerability, 

respectively. As the number of observations is limited, a leave-one-out cross-validation 

(LOOCV) procedure is applied (Davis, 1987). This involves splitting the data n times into a 

single-item test set and using the rest for training the model, whereas n is the total number of 

observations. Thus, n models are constructed to predict the vulnerability of every entry. To 

test the capability in explaining vulnerability variance using the predictor variables, we 

compute R2 (coefficient of determination) values n times and compute the median to gain the 

ultimate model score.  

As the true predictor importance may be obscured by the other predictors present in the 

model, it is disadvantageous to rank the importance of variables simply based on R2 values. 

Random forests exhibit a built-in feature importance ranking, however, this method is not 

model-agnostic and hence cannot be directly compared with linear regression models. 

Therefore, we use a measure of Breiman (2001) which postulates that randomly permuting 

the values of unimportant predictors does not decrease the accuracy. As our test set in 

LOOCV consists of only one item, shuffling is not feasible and we instead assign a randomly 

chosen value between 0 and 1. We repeat the computation of all R2s, this time with a “useless” 

version of the predictor of interest. The difference between the two R2 sets indicates changes 

in model performance and thus the level of importance. A positive decrease in R2 indicates 

that the predictor adds valuable information to the model; the higher the decrease the more 
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important is the predictor. We only consider models with R2 greater or equal than 0.01 to avoid 

that changes of negative values skew this procedure. 

4.2.3.3 Partial dependence plots 

We employ partial dependence plots (PDPs) to visualize and analyze the marginal effect of 

each predictor on the predicted vulnerability (Friedman, 2001). The PDPs are limited to a 

maximum of two variables due to the dimensional representation, however, a collection of 

PDPs can serve as an alternative by showing the partial dependence of each predictor (Hastie 

et al., 2009). We train a linear regression and random forest model with all data entries 

available and the predictors of the model with the highest drop in R2 after randomizing the 

predictor of interest. Next, we duplicate the training set 100 times and assign for all values of 

the predictor of interest one of 100 increments between its minimum and maximum value, as 

similarly done by Vogel et al. (2019). The trained models predict 100 times for every entry an 

estimated vulnerability value, which visualizes the functional relationship between the third 

predictor and the response. The PDPs consist of a median vulnerability value for every 

predictor increment as well as two uncertainty bands (5th/95th percentile and 33th/66th 

percentile).  

4.3 Results  

4.3.1 Global displacement vulnerability 

Vulnerability to displacement varies between countries by several orders of magnitude, also 

within continental regions (Figure 4.2). Modest to high levels of vulnerability are found in sub-

Saharan Africa and Central Asia (Afghanistan and Tajikistan) and Nepal. A low vulnerability is 

present in Europe but also within some African countries, such as Zambia, Egypt, or Namibia. 

A slight decrease in global median vulnerability over time is observable (Figure S 4), however, 

this trend is statistically not significant (Mann-Kendall trend test, see supplementary material 

section 3) and limited by the short observational period of 11 years. Given that observed event-

specific vulnerabilities vary by orders of magnitude, in the following we will be analyzing their 

logarithm; that is, our analysis attempts to understand the determinants of the magnitude of 

vulnerability, rather than its precise value.   
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Figure 4.2: Global flood-induced displacement vulnerability (national median) 

4.3.2 Predictive power 

The best random forest models of the country-level analysis achieve R2s of 0.19 to 0.3, the 

linear regression yields R2 between 0.16 and 0.2 (Table 4.2). All best models consist of only 

two predictors, except for the second best linear regression model which exhibits only one 

predictor. This indicates an overfitting problem if more than two predictors are used, which is 

in turn penalized with lower R2s on the test data. By using less complex models (less 

predictors) overfitting and thus higher variance is avoided at the cost of higher bias on the 

training data, i.e. the model’s ability to generalize and predictive capacity on unseen data 

increases. Urbanization and population ≥ 65 years are the most commonly used predictors in 

this ranking for random forest and linear regression, respectively. Other high ranked models 

involve international migrant stock, infant mortality rate, population ≤ 14 years, population 

density, flood experience, and urbanization growth. Only population ≥ 65 years and 

international migrant stock are present in both model types. 

The MERF of the event-level analysis yields R2 of 0.19 - 0.26, with three out of five 

models using three predictors. As the dataset size is more than four fold in comparison with 

the country-level dataset, more complex models are able to find patterns in the data without 

the risk of overfitting. The most commonly used predictors are population density and event 

duration, followed by elevation. These predictors are combined with indicators on 

infrastructure, elevation, or slope. R2s of other predictor combinations show a high 

dependance on the choice of predictor, with some leading to poor results, similarly to the 

country-level analysis (Figure S 5). 
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Table 4.2: Explanatory power of the five best predictor combinations for random forest (top) and linear regression 

(bottom), ranked by R2.      

RANDOM FOREST    

feature 1 feature 2 feature 3 R2 

International migrant stock Urbanization / 0.30267 

Infant mortality rate 
Urbanization 

 
/ 0.25876 

Population ≥ 65 years 
Urbanization 

 
/ 0.2334 

Population ≤ 14 years Urbanization / 0.18649 

International migrant stock 
Population ≥ 65 years 

 
/ 
 

0.18629 

LINEAR REGRESSION    

feature 1 feature 2 feature 3 R2 

Population density Population ≥ 65 years / 0.19817 

Population ≥ 65 years / / 0.16702 

Population ≥ 65 years Flood Experience / 0.16585 

International migrant stock Population ≥ 65 years / 0.16176 

Population ≥ 65 years Urbanization growth / 0.15798 

MERF    

Elevation Population density / 0.26296 

Event duration Total critical infrastructure Population density 0.25478 

Event duration Education infrastructure Elevation 0.20344 

Event duration Health infrastructure Population density 0.20408 

Slope Population density / 0.19386 
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4.3.3 Feature importance 

Randomizing the predictor of interest yields and comparing it with the benchmark scores yields 

a feature importance ranking, expressed by a decrease in R2 (Figure 4.3). The order differs 

from the predictive power plots, for example, event duration drops from the fourth place (Figure 

S 5) to the last place, demonstrating the necessity of this more elaborated ranking technique. 

The ranking between the regression models of the country-level analysis differs substantially. 

The most important predictors for random forest are the infant mortality rate, urbanization and 

urbanization growth, followed by age cohorts and female population. Only one model 

incorporating urbanization growth yields a R2 greater than 0.01. This predictor appears to be 

not predictive of vulnerability, but it is when intersecting with urbanization, leading to the 

highest median decrease in R2 after randomizing urbanization growth. However, the median 

perspective and thus its ranking is limited in this case as only one model exists. GDP per 

capita is located in the middle section of this ranking. The (median) dummy results can be 

conceived as some sort of threshold of model variability. The median of the population density 

and flood experience fall below this threshold, indicating a low degree of importance. In 

contrast, the linear regression ranks these two predictors in the middle section; age cohorts 

and GDP per capita are the most important predictors. Female population is at the same level 

as the dummy predictor. The MERF applied in the all-event analysis shows a high importance 

of infrastructure predictors and population density, which are also all among the best individual 

models in terms of predictive power. GDP per capita is again only of medium importance. 

Interestingly, some predictors which excelled for the random forest models in the national-

level analysis are only in the middle section of the event-level ranking, with urbanization and 

population ≥ 65 years even in the lower third. Even though some predictors are ranked low by 

the median decrease in R2, a few combinations yield a higher predictive power and decrease 

in R2 if randomized, e.g., slope. Randomizing of some predictors in both analysis types also 

yields an increase in R2, which reflects model variability, potentially due the small sample size. 
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Figure 4.3: Predictive power of vulnerability predictors of the country-level analysis (top) and the event-level 

analysis (bottom), ranked by the drop in R2 after randomizing. Results relate to the test data using leave-one-out 

cross-validation. Each box plot represents all models using the predictor of interest; up to three predictors per 

model are chosen. Only models with R2s greater than 0.01 are displayed. 
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4.3.4 Partial dependence plots  

The direction and magnitude on how predictors influence the displacement vulnerability in the 

linear regression PDPs can be observed for most parts also for the random forest results in 

the country-level analysis (Figure 4.4); the stronger the linear relationship, the more 

pronounced the trend of the random forest model. Generally, trends are more distinctive for 

the linear regression, while the random forest is sensitive to outliers. Despite the low 

importance ranking of some predictors, the PDPs are a helpful tool in visualizing their influence 

on vulnerability.  

Regarding the country-level analysis, GDP per capita shows a negative relation with 

vulnerability, accompanied with a distinctive drop at approximately US$ 28,000 for the random 

forest model. The latter observation can be explained by a lack of data within this range GDP 

per capita values and thus represents model interactions, i.e., overfitting, with the data rather 

than an actual “cap” in vulnerability. Population ≤ 14 years (population ≥ 65 years) indicates a 

clear positive (negative) relationship with vulnerability. A low infant mortality rate suggests a 

low vulnerability, while at some level the displacement vulnerability is independent of this 

predictor for the random forest model. This continuous behavior can also be observed for other 

predictor sections, indicating again a lack of data points for a non-linear analysis. The partial 

dependence of individual predictors shows a moderate increase in vulnerability with higher 

urbanization growth and population growth; a decrease is present for female population, 

population density, and urbanization. A distinctive drop in vulnerability for the latter predictor 

demonstrates again the sensitivity of the model to outliers. A higher percentage of international 

migrants entails a steady decrease in vulnerability. 

In the all-events analysis, a decline of vulnerability by two orders of magnitude is 

associated with total critical infrastructure, the highest ranked predictor in the feature 

importance (Figure 4.5). The other two infrastructure predictors on health and education 

indicate no distinctive trend. The PDP for the third-best predictor, subnational population 

density, as well as female population exhibit for greater parts no relationship with vulnerability. 

Other predictors suggest some connection with vulnerability, such as elevation, which is in 

fact part of the best MERF model. The age cohort indicators again show a relationship with 

vulnerability, however, to a lower degree than for the country-level analysis. Urbanization 

shows similar to the country-level analysis only a weak trend. Regarding GDP per capita, 

vulnerability is decreasing sharply between approximately US$ 6,000 to US$ 10,000, and then 

further levels out at a lower degree; suggesting more data prevents the distinctive drop present 

in the country-level analysis. 
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Figure 4.4: PDPs of the linear regression (left) and random forest models (right). Each PDP uses the model with 

the highest drop in R2 after randomizing the predictor of interest. The median vulnerability per predictor increment 

is indicated in red, uncertainty bands are displayed in light gray (5th/95th perc.) and dark gray (33th/66th perc.). 
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Figure 4.5: PDPs of the MERF in log-scale. Each PDP uses the model with the highest drop in R2 after randomizing 

the predictor of interest. The median vulnerability per predictor increment is indicated in red, uncertainty bands are 

displayed in light gray (5th/95th perc.) and dark gray (33th/66th perc.). Non-log-scale and count distribution of the 

event-level data are displayed in Figure S 6. 
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4.4 Discussion  

This study takes a crucial step in deciphering the vulnerability to flood-induced displacement 

by providing new insights on the relevance of contextual indicators and their (non-)linear 

relationship with displacement vulnerability. The aim of this study is not only to identify but 

also to explain the predictors in terms of their causality, magnitude, and direction in relation to 

vulnerability. From the results, we synthesize the following four key findings:  

 

1. Displacement vulnerability is varying between and within continental regions by 

several orders of magnitude 

2. Important predictors include population density, population ≥ 65 years, urbanization, 

critical infrastructure, and infant mortality rate 

3. Economic prosperity (GDP per capita) is of medium importance in explaining 

vulnerability 

4. A higher level of development is generally linked with lower vulnerability, however, 

considerable uncertainties regarding the causality and direction of predictors remain 

 

In the following, we discuss these key findings and further lay out how this study 

enhances our understanding of displacement vulnerability. 

Regarding key finding 1): Few studies exist on displacement vulnerability; one compares 

simulated historical flood exposure to reported displacement numbers (Kakinuma et al., 2020). 

The analysis uses temporal average (2008–2013) national exposure and displacement to 

group countries into high, medium, low, exposure and high, medium, low displacement 

categories showing that vulnerability is particularly high in African countries that are often 

grouped into low exposure but medium to high numbers of displacement or medium exposure 

but high displacement categories. In contrast to this, our study based on satellite imagery-

derived exposure depicts a more diverse level of vulnerability across the globe, in particular 

for the African continent. While some of the most vulnerable countries can be found in Africa, 

there are also several examples of medium to low vulnerability countries. Differences between 

the two studies can be partially explained by the hazard computation method, investigated 

time period and clustering of results. Aligned with the findings of Kakinuma and colleagues, 

we find similar vulnerability levels in Central Asia and China; also the USA exhibits a medium 

susceptibility to flood-induced flooding in both studies.  

The identification of relevant predictors for vulnerability to flood-induced displacement is 

at the center of this study. An a priori selection only based on literature results is difficult as 

most findings are not specifically related to this type of vulnerability, e.g., slow-onset drought-
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related displacement (Thalheimer et al., 2021a) or asylum migration (Schutte et al., 2021). As 

vulnerability might differ between extreme events (Cardona et al., 2012), and thus their 

predictors, another goal of this study is to confirm, or disapprove, findings of other studies also 

in the context of displacement vulnerability addressed in this work. The prediction capabilities 

in this study strongly depend on the choice of predictors and the analysis scope (country-level 

vs. event-level). R2s of up to 0.3 are comparable to a global flood risk assessment by (Carozza 

and Boudreault, 2021) who predicted the number of displacements of historic flood events 

listed in the DFO archive. The predictor ranking also varies greatly between the linear 

regression and random forest. This is somewhat anticipated as we deliberately choose a 

random forest model to capture non-linearities and predictor interactions. Synthesizing the 

results into key finding 2), we find that population density, population ≥ 65 years, urbanization, 

infant mortality rate, and critical infrastructure are relevant factors in determining vulnerability; 

followed by population ≤ 14 years, urbanization growth, international migrant stock, health, 

education, and elevation. Female population, GDP per capita, event duration, and flood 

experience show a medium to low contribution; the level of flood protection, population growth 

and the slope exhibit the lowest relevance.  

The measurability, simplicity, and availability of the investigated features limit the 

representation of vulnerability in this work; additional drivers, such as coping capacity (Paul 

and Routray, 2011) or risk perception (Carroll et al., 2010; De Marchi and Scolobig, 2012), are 

difficult to assess globally and to express in national or even sub-national indices (Rufat et al., 

2015). Empirical case studies suggest that the experience with past flood events is of great 

importance (Fielding, 2012; Siegrist and Gutscher, 2008), however, the corresponding 

indicator ranks low in this study, suggesting that our computation method is too simplified. 

Predictors covering governance, democracy levels, or political aspects are also listed in 

several indicator catalogs, e.g., in the WDI inventory or V-Dem Dataset  (Coppedge et al., 

2021). We deliberately did not include these predictors as either no clear indication of causality 

with regard to flood-induced displacement could be established, or the indicators are closely 

related to other predictors, such as GDP per capita. Nonetheless, future studies on 

vulnerability may also consider these predictors, along with ethnicity, class/caste, disability, 

and detailed health status (Oppenheimer et al., 2014; Rufat et al., 2015; The Nansen Initiative, 

2015). 

Regarding key finding 3), a negative relation between the economic status and 

vulnerability was found for a set of hazards in previous works, including flooding Formetta and 

Feyen (2019), Jongman et al. (2015), and Tanoue et al. (2016) find high mortality rates among 

countries with less than US$ 10k per capita, a vulnerability “threshold” for loss rates varies 

between US$ 10k and US$ 15k. Economic measures, such as poverty, income or 
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unemployment, are displayed also as important risk determinants of displacement and other 

forms of human mobility (Cissé et al., 2022; The Nansen Initiative, 2015). Kakinuma et al. 

(2020) showed that gross national income per capita is significantly negative associated with 

flood-induced displacements per 1,000 people and found a breakpoint at US$ 13k per capita. 

We also find a nonlinear negative relationship for GDP per capita, with the country-level 

analysis showing a drop at approximately US$ 28k and the event-level analysis a transit 

between US$ 6k to US$ 10k. Even though numbers are not directly comparable at face value, 

our findings are in line with those previous studies and suggest that vulnerability to 

displacement exhibits parallels mortality.  

Several relevant predictors of this study exhibit a medium to high correlation with GDP 

per capita, which is surprisingly ranked only in the middle section for the random forest and 

MERF models; it is not clear whether these predictors act as complements or substitutes to 

GDP per capita. For instance, urbanization characterizes population shifts, and spatial 

planning and is closely related to the development process of a country; at the same time, it 

is also an indicator of economic prosperity (UN Habitat, 2010). Nonetheless, we come to the 

conclusion that economic drivers only partially explain vulnerability, however, may provide a 

crucial context for other predictors to unfold. This confirms the general expectation of 

vulnerability being dependent on multiple drivers and that non-economic variables also 

determine safety from extreme weather events (Toya and Skidmore, 2007). For example, 

evidence from surveys in several countries show that internal migration, although not 

specifically focused on disaster-induced displacement, is mostly motivated by social factors 

(UK Government Office for Science, 2011). In fact, non-economic  factors, such as flood 

experience and related changes in land tenure, can even counterbalance economic 

deficiencies (UK Government Office for Science, 2011). The ranking of GDP per capita, 

however, is high for the linear regression in this study, suggesting this indicator is nevertheless 

useful for a coarse assessment on displacement vulnerability to flooding.  

The PDPs partially display the connection between individual predictors and 

vulnerability, as already demonstrated for GDP per capita. The age cohort predictors show a 

clear trend that a young population is more prone to displacement than a society with a high 

share of elderly, potentially reflecting the (economic) development rather than social behavior. 

High infant mortality rate, population growth and urbanization growth are positively associated 

with displacement vulnerability, while urbanization and the infrastructure indicators exhibit a 

negative trend. These observations are in line with general theories postulating that a higher 

level of development leads to a decrease in vulnerability (Oppenheimer et al., 2014; The 

Nansen Initiative, 2015), leading to key finding 4). Age, health, infrastructure, and education 

indicators generally indicate the vulnerability to climate extremes for communities and 
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individuals (Cissé et al., 2022). For example, infant mortality rate and the health infrastructure 

indicator reflect the general level of population health (Reidpath and Allotey, 2003), and thus 

serve as proxies for public service delivery in the context of climate extremes (Rubin, 2014), 

e.g., emergency and recovery assistance. High infant mortality rates is also related to the 

marginalization of affected communities (Bishop-Royse et al., 2021), which is associated with 

higher flood risk (Sanders et al., 2023), caused by, for example, a lack of early warning 

systems, physical protection measures, or official emergency and recovery support. The 

hypothesis for the total critical infrastructure indicator is, next to the infrastructure predictors 

on health and education, its additional association with access to electricity, transportation, 

telecommunication, and other important infrastructure services that enable effective in-situ 

disaster response. Children are especially vulnerable during a disaster (Flanagan et al., 2011). 

Our indicator for the youngest age cohort also shows a clear connection with vulnerability to 

flood-induced displacement (see supplementary material section 2). However, it is unclear 

whether our predictor reflects the lack of coping mechanisms and disaster knowledge 

(Jonkman et al., 2009), or rather represents a broader indicator of under-development. 

A major challenge in discussing the impact pathway of predictors lies within the nature 

of the GIDD displacement data, including not only (long-term) displacement but also pre-

emptive evacuations. Regarding the former one, a high vulnerability may reflect inadequate 

housing protection, potentially due to restricted financial capabilities and poor structural 

measures. A high vulnerability associated with evacuations can mean both insufficient 

structural protection against extreme flooding and in fact a well-working early-alert system in 

place, which implies a higher level of preparedness. The latter one is financially costly, 

requiring a functioning infrastructure, and societal trust in a reliable state to follow instructions, 

all of which indicate a comparatively high level of development. In this case, displacement can 

also represent life-saving actions and be actually beneficial (IDMC and ADB, 2022). 

Nonetheless, displacement is generally viewed as a negative outcome of failed protection 

against the physical impacts of extreme flooding, as the (partial) destruction of homes is also 

not avoided in the case of evacuations. 

Many global-scale studies use intensity-damage functions (IDFs) to represent 

vulnerability, for example, depth-damage functions are often used for flood risk assessments 

(Ward et al., 2020). Previous studies have shown that flood depth explains a substantial part 

but not all flood impact; simple models with only flood depth do not perform well (Wagenaar 

et al., 2017). This concept of vulnerability of physical infrastructure differs from social 

vulnerability (Flanagan et al., 2011), which we address in this study. The incorporation of IDFs 

is not possible as no flood depth estimates are available within FLODIS. We account for the 

exposure of critical infrastructure in this study, which represents a simplified infrastructure 
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vulnerability. Nonetheless, future studies on (displacement) vulnerability are encouraged to 

examine the interplay of physical infrastructure vulnerability, using intensity-damage functions 

for displacement risk (Anzellini et al., 2017; Kam et al., 2021), and social vulnerability, as 

outlined, for example, in this work. 

4.5 Conclusion 

Our study is a first step towards a better understanding of vulnerability to flood-induced 

displacement, which is poorly understood in comparison to mortality or vulnerabilities to 

economic losses. In the light of 12 million flood-induced displacements (IDMC, 2022), a better 

understanding of vulnerability is important to leverage risk reduction strategies and adaptation 

planning (Cardona et al., 2012; Jurgilevich et al., 2017). As vulnerability differs between 

regions, even down to the household-level (Cardona et al., 2012), a spatial explicit and event-

specific representation (Jonkman, 2005) is necessary. To this end, we derive event-specific 

vulnerability values for 311 historic flood events, and investigate the importance of predictors 

for national-level and event-level vulnerability. We apply a machine learning framework 

consisting of linear regression and random forest models to investigate the predictive power 

of indicators, rank predictors by their importance and visualize the interactions with 

displacement vulnerability. Vulnerability proves to be a spatially highly variable element of risk, 

with high differences among events, countries, and continental regions. Population density, 

population ≥ 65 years, urbanization, infant mortality rate, and critical infrastructure are found 

to influence vulnerability the most; GDP per capita, a commonly used predictor for flood risk, 

is only of medium relevance. We use PDPs to illuminate the connection between individual 

predictors and vulnerability. Our results demonstrate that singling out the most important 

predictors depends on the context, and determining the magnitude and direction of individual 

predictors is difficult. Yet, our study confirms that generally the level of development is 

positively related with a reduction in vulnerability. We also draw hypotheses on the causality 

of individual predictors, however, large uncertainties remain, calling for more data on 

displacement events as well as a synthesis with findings from empirical case studies (Cardona 

et al., 2012; Rufat et al., 2015). In this study, we use flood hazard information derived from 

remote sensing for a large number of events around the world, which represents an alternative 

to the common approach of global flood modeling. Future work could also incorporate other 

social vulnerability predictors, such as governance, coping capacity, or risk perception, which 

are difficult to assess but have the potential to further close the gaps in understanding 

vulnerability. It is also recommended to pair social vulnerability with physical infrastructure 

vulnerability, represented by IDFs. Our analysis disentangles the vulnerability drivers to flood-

induced displacement using novel approaches and datasets. The findings of this work allow 
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for a better understanding on the contextual drivers of vulnerability, and thus provide more 

insights for policymakers, planners, relief organizations, and other practitioners on how to 

effectively mitigate the risk of flood-induced displacement. 
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Abstract 

 

Extreme weather events often trigger massive population displacement. A compounding factor 

is that the frequency and intensity of such events is affected by anthropogenic climate change. 

However, the effect of historical climate change on displacement risk has so far not been 

quantified. Here, we show how displacement can be partially attributed to climate change, 

using the example of the 2019 tropical cyclone Idai in Mozambique. We estimate the 

population exposed to flooding following Idai’s landfall, using a combination of storm surge 

modeling and flood depth estimation from remote sensing images, for factual (climate change) 

and counterfactual (no climate change) mean sea level and maximum wind speed conditions. 

We find that climate change has increased displacement risk from this event by approximately 

3.1 to 3.5%, corresponding to 16,000 - 17,000 additional displaced persons. Besides 

highlighting the significant effects on humanitarian conditions already imparted by climate 

change, our study provides a blueprint for event-based displacement attribution.   
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5.1 Introduction 

Tropical cyclones (TCs) pose immense risks to coastal communities around the world. 

Between 1980 and 2021, an average of 45 TCs globally have been recorded per year, with 

the Philippines, China, Vietnam, USA and Mexico as the top-five most frequently exposed 

countries (Guha-Sapir et al., 2022). While related monetary losses are high due to the massive 

damages to housing and infrastructure, TCs also displace an average of 9.3 million people 

every year, with this hazard being responsible for 43% of all weather-related displacements 

(IDMC, 2022). Such forced displacements are associated with extensive human suffering, as 

well as substantial costs (e.g., for providing shelter or from loss of economic production) and 

often require international assistance for disaster relief funds and humanitarian response 

(Desai et al., 2021).  

At the same time, global climate change is expected to alter TC characteristics, resulting 

in an increase in overall TC intensity (maximum wind speed and precipitation) and hence in 

the frequency of very intense TCs (category 4-5 on the Saffir-Simpson scale), fundamentally 

because of an increase in potential intensity due to warmer sea surface temperatures (SST) 

(Emanuel, 1987; Knutson et al., 2020). Rising sea levels, also driven by global warming, 

additionally compound coastal flood risk associated with TCs (e.g., Garner Andra J. et al. 

(2017); Lin et al. (2012); Resio and Irish (2016)). Given that global mean surface air 

temperature and sea level have already risen substantially above pre-industrial conditions (by 

about 1.1°C and 0.20 m, respectively (Gulev et al., 2021)), it is likely that recent TC landfalls 

have caused more severe impacts than would be expected without climate change. However, 

the portion of TC-induced human displacements attributable to climate change has so far not 

been quantified.  

In this study, we address this research gap for the particular case of displacement 

triggered by TC Idai in 2019. We examine the floods in central Mozambique associated with 

TC Idai, considered to be “one of the Southern Hemisphere’s most devastating storms on 

record” (Warren, 2019). On the 14th of March, Idai made landfall near the densely populated 

port city of Beira, inhabited by more than 530,000 people (Figure 5.1). Alongside strong winds 

and extensive inland flooding caused by heavy rainfall, the cyclone also created an intense 

storm surge, leading to severe coastal flooding. In Mozambique alone, TC Idai claimed the 

lives of more than 600 people, and caused 478,000 internal displacements, as well as 

widespread structural damage totaling more than US$ 2.1 billion (Guha-Sapir et al., 2022; 

IDMC, 2022).  

Here, we investigate how the coastal flooding would have manifested in a counterfactual 

world without climate change, and consequently, how many of the observed human 

displacements from TC Idai can be linked to climate change. For the attribution of the impacts 
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we follow the storyline approach introduced by Shepherd (Shepherd, 2016). To this end, we 

account for two known mechanisms through which global climate change could have affected 

coastal flood hazard: sea-level rise and amplification of storm intensity. We first estimate the 

influence of climate change on sea level and TC intensity in the South Indian Ocean. We 

employ a high-resolution hydrodynamic flood model to simulate TC Idai’s peak coastal flood 

extent and depth, both under historical conditions and under counterfactual conditions with 

lower sea levels and lower maximum wind speed, corresponding to a world without climate 

change. We additionally use satellite imagery to account for inland (freshwater) flooding, and 

estimate the total number of people affected by flooding. We then model the number of 

displacements based on flood depth-specific vulnerability factors, and estimate the fraction of 

displacements that can be attributed to climate change by comparing results under factual vs. 

counterfactual conditions.  

We use an estimate of sea level rise (SLR) that attempts to separate natural variability 

in ice sheet and glacier mass balance and retain only the long-term trend induced by global 

warming (Strauss et al., 2021). Beyond this, however, our analysis is indifferent to whether 

the trends in sea level and TC intensity are anthropogenic or not. This is in line with the 

definition of impact attribution put forward by the Intergovernmental Panel on Climate Change 

(IPCC), where “changes in natural, human, or managed systems are attributed to [a] change 

in [a] climate-related system” (O’Neill et al., 2022). Such a question can be separated from the 

climate attribution question of whether the change in the climate-related system - here, sea 

level and TCs - is due to anthropogenic forcing. This separation allows us to focus on the link 

between climate change and displacement despite remaining uncertainty about the exact 

anthropogenic contribution. We will return to this issue below.  
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Figure 5.1: Trajectory of tropical cyclone Idai over the South Indian Ocean. Trajectory data is based on the IBTrACS 

database (Knapp et al., 2010). Mozambican administrative boundaries (GADM, 2018) in white; satellite image 

background by © Google Maps (Google Maps (a), 2022). Dates and tropical cyclone status adopted from Reliefweb 

(Reliefweb, 2019). 

5.2 Methods 

5.2.1 Coastal flood modeling 

The storm surge flood simulations are generated using the open-source geophysical flow 

solver GeoClaw (Mandli and Dawson, 2014). GeoClaw uses an efficient adaptive mesh 

refinement to model wind- and pressure-induced wave dynamics in the 2-dimensional depth-

averaged shallow water equations. The detailed model setup used here is described and 

evaluated by Vogt and colleagues (Vogt et al., 2022). 

As the factual input for GeoClaw, the TC track data from IBTrACS (Knapp et al., 2010) 

provided by the WMO Regional Specialised Meteorological Center at La Reunion (operated 

by MeteoFrance) is used. For the counterfactual scenarios with modified TC intensity, we 

multiplied all wind speed values along the track by a scalar factor of 0.9 (for a decrease of 

10% in intensity). The central pressure at each track position is increased by 0.1 times the 

difference between central pressure and environmental pressure. 
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From the wind speed, pressure, and radius information provided along the TC track, 

GeoClaw derives surface wind speeds and air pressure at arbitrary locations in space and 

time using a radially symmetric wind profile (Holland, 1980) combined with the influence from 

the storm’s translational speed. 

GeoClaw does not incorporate any tidal dynamics, nor meteorological forcings apart 

from the TC wind and pressure fields mentioned above. To account for the influence of 

astronomical tides, we configured GeoClaw to use an initial sea level according to gridded 

satellite altimetry for 2019 (CMEMS, 2021), optionally enhanced by the minimum, mean, or 

maximum simulated astronomical tides in the region of landfall according to the FES2014 

global ocean tide atlas (Lyard et al., 2021). For the counterfactual sea level scenarios, the 

amount of sea level rise specified in the scenario description (between 6.5 and 17.0 cm) was 

subtracted from the initial sea level. 

The topographical input for GeoClaw is taken from digital elevation models. We used a 

combination of CoastalDEM 2.1 (Kulp and Strauss, 2021, 2018) in coastal areas, SRTM 15+ 

V2.3 (Tozer et al., 2019) over the open ocean and Multi-Error-Removed Improved-Terrain 

(MERIT) digital elevation model (DEM) (Yamazaki et al., 2019) everywhere else. All datasets 

are converted to the same geoidal vertical datum (EGM96) at a spatial resolution of 9 

arcseconds (approximately 300 m). 

Due to a lack of tide gauges in Mozambique, it was not possible to validate the 

performance of GeoClaw for TC Idai in the factual model runs. However, we compared the 

water levels at a virtual tide gauge station off the coast of Beira, where the highest impacts 

from TC Idai have been reported, with simulated water levels from the Global Tide and Surge 

Model (GTSM) (Dullaart et al., 2021; Muis et al., 2020), and found the best agreement of 

maximum surge heights for the GeoClaw run with the maximum astronomical tide assumption, 

closely followed by the run with no tidal adjustment (Supplementary Figure S1). 

5.2.2 Inland flood depth estimation  

Gridded depth maximums for the flood event  (Supplementary Figure S2) were calculated 

using the Rolling HAND Inundation Corrected Depth Estimator (RICorDE) algorithm (Bryant 

et al., 2022) supplied with terrain data from the MERIT DEM project, permanent surface water 

data from the Joint Research Centre (JRC) Global Surface Water project (Pekel et al., 2016), 

and flood extents from the FloodScan product (Atmospheric and Environmental Research & 

African Risk Capacity, 2022). MERIT DEM provides a roughly 90 m resolution global layer 

derived from multiple space-based sensors to minimize elevation errors. The maximum water 

extent layer from JRC’s Global Surface Water project provides a roughly 30 m resolution 

global layer of locations detected as inundated on Landsat imagery (Wulder et al., 2016) from 
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1984-2019 (Pekel et al., 2016). Observed flood extents for TC Idai were obtained from 

Atmospheric and Environmental Research & African Risk Capacity’s accumulated 2-tier 

standard flood extent depiction FloodScan product from 2019-03-01 to 2019-03-31, which has 

the same resolution as the MERIT DEM. Originally developed for applications in Africa, this 

FloodScan algorithm relies on satellite based low-resolution passive microwave data to 

estimate inundation areas. The algorithm was designed to minimize false-positives at the 

expense of small flood sensitivity (Galantowicz and Picton, 2021). All data layers were re-

projected to 90 m resolution geodetic coordinates prior to the RICorDE computation.  

RICorDE is an algorithm originally developed for post-event analysis of fluvial flood 

events in Canada that produces gridded water depth estimates by incorporating Height Above 

Nearest Drainage (HAND) and cost distancing sub-routines to extrapolate edge values into 

an inundation region. By using the vertical distance above the permanent water surface 

computed in the HAND routine, RICorDE pre-filters egregious flood extent predictions and 

assumes a water surface slope matching the permanent water surface (rather than the flat 

surface assumed by similar methods). The slower, more complex RICorDE algorithm has 

been shown to produce more accurate depths maps when compared to faster, more disaster 

response-focused solutions like the Floodwater Depth Estimation Tool (FwDET) (Bryant et al., 

2022; Cohen et al., 2018). 

While no data was available to validate the performance of the depths estimate, visual 

inspection suggests results are less accurate in areas with higher elevation (>20 m), especially 

where drainageways are of comparable width to the resolution of the JRC water extent layer. 

These false negatives in the JRC layer propagate as positive bias in the HAND routine, which 

leads to higher elevation water surface predictions and similar positive bias in the depth values 

(see white arrow in Figure S3a).  

5.2.3 Combined flood depth product 

The inland flood depth estimates from RICorDE are resampled from 3 arcsec to 9 arcsec, 

using the average resampling method (Rasterio library for Python), to match the resolution of 

the GeoClaw output. All flood depths are rounded to the nearest decimeter, their outline is 

cropped to the area of interest, and the final factual flood depth in each grid cell (shown in 

Figure 5.3a) is determined as the maximum of both products.  This accounts for both 

potentially partly obscured satellite imagery by clouds and potential underestimation by the 

numerical model. 

 

𝑑0 = max (𝑑𝑐,0, 𝑑𝑟)     (1) 
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with d0 referring to the factual flood depth, and indices c and r referring to the coastal 

flood model (GeoClaw) and to the remote sensing data translated into flood depth using 

RICorDE, respectively. To derive the counterfactual flood depth dcf, we subtract the difference 

between modeled factual and counterfactual coastal flood depths from the combined factual 

flood depth: 

 

𝑑𝑐𝑓 =  𝑑0 − (𝑑𝑐,0 − 𝑑𝑐,𝑐𝑓)   (2) 

 

5.2.4 Displacement  

We use displacement data from the openly accessible Global Internal Displacement Database 

(IDMC, 2022). No granular information is available on the type of displacement, e.g., long-

term displacement or temporary evacuation, nor on the proportion of displacement by hazard 

type. We assume that people exposed to flood levels greater or equal than 100 cm are affected 

by the flooding and thus prone to displacement, following previous studies (Custer and 

Nishijima, 2015; Kam et al., 2021). However, we also test the sensitivity of our results to this 

threshold choice by evaluating alternative water level thresholds of 10 cm and 50 cm.  

We first determine the flood extent with depths greater than the selected water level 

threshold and overlay it with population data to estimate the number of people affected. We 

use gridded population data from GHS-POP (Schiavina et al., 2019) for the year 2015, on 9 

arcsec resolution. Population growth in Mozambique was 1.12 % between 2015 and 2019 

(The World Bank, 2022); we hence multiplied all population grid cells with this factor, assuming 

a spatially equal population growth.  

We then calculate the ratio between the number of observed displacements, and the 

number of affected people from the factual flood estimate. This ratio, which may be thought of 

as an event-specific displacement vulnerability factor, is different for every tide assumption, 

reflecting the uncertainty about the actual flood extent and depth. We compute for every 

impact level threshold i and tide assumption h a displacement vulnerability factor vi,h by 

dividing the number of observed displacements Do by the total number of affected people of 

the factual scenario Ai,h,o: 

 

𝑣𝑖,ℎ =  
𝐷0

𝐴𝑖,ℎ,0
    (3) 

 

Multiplying the specific displacement vulnerabilities with the counterfactual numbers of 

affected people, we derive the number of people at risk of displacement in a world without 
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climate change. This means that the difference between factual and counterfactual 

displacement estimates comes only from differences in the flood hazard, while exposure and 

vulnerability factors are held fixed. We achieve this by multiplying vi,t with the number of 

affected people of the counterfactuals Ai,h,cf, and estimate the expected number of 

displacements for each counterfactual scenario Di,h,cf: 

 

𝐷𝑖 ,ℎ,𝑐𝑓 =  𝑣𝑖,ℎ ∗  𝐴𝑖,ℎ,𝑐𝑓    (4) 

 

5.2.5 High wind speed-induced displacements 

Even though disaster reports for TC Idai suggest flooding to be the main driver of 

displacement, high wind speeds may have locally intensified the impact of TC Idai (Figure S4) 

and be partially responsible for the observed displacements. We conduct an additional 

analysis where we assume that people affected by either flooding or wind (or both) were at 

risk of displacement with an equal vulnerability factor. We use a wind speed threshold of 96 

kn (50 m s⁻¹) for population exposure (Geiger et al., 2018), corresponding to the Saffir–

Simpson scale classification 3 (major hurricane). The resulting wind field is overlaid with 

gridded population data to compute the number of affected people, excluding those who are 

already affected by flooding.  

5.3 Results 

5.3.1 Counterfactuals  

Constructing counterfactuals for sea level and TC intensity requires estimating the effect of 

historical climate change on these quantities. Total global mean sea level has risen by 

approximately 23 cm since the turn of the 20th century (Church and White, 2011); at a rate 

that has increased over time (Dangendorf Sönke et al., 2017). According to the IPCC, it is very 

likely that the rate of global mean SLR was 1.5 (1.1 to 1.9) mm yr⁻¹ between 1902 and 2010, 

and 3.6 (3.1 to 4.1) mm yr⁻¹ between 2006 and 2015 (Gulev et al., 2021). Nonetheless, 

regional changes in sea level may differ substantially from the global average due to shifting 

surface winds, the differential expansion of warming ocean water, and the addition of melting 

ice, which can alter the ocean circulation (Fox-Kemper et al., 2021). Additionally, increases in 

the amount of water stored on land (due to construction of dams and reservoirs), as well as 
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land subsidence, have also affected total sea level, with their relative effects varying 

geographically (Church et al., 2004; Strauss et al., 2021).  

Long-term in-situ observational records of SLR are scarce in the Indian Ocean (Han et 

al., 2010), hampering a precise detection of changes in sea level. For example, no active tide 

gauge stations can be found on the coast of Beira (Beal et al., 2019), with the nearest station 

located in Inhambane, Mozambique, 448 km south of Beira. However, regional historical SLR 

rates for Mozambique, derived from satellite imagery or models, are close to global mean 

estimates. IPCC rates of change in sea surface height (geocentric sea level) derived from 

satellite altimetry show regional SLR off the coast of Mozambique at around 4.0 mm yr⁻¹ for 

the period 1993–2012 (Church et al., 2013). Climate-induced SLR at the South-Eastern 

African coastline (1993 - 2015) is estimated at ~3.5 mm yr⁻¹ using a coastal-length weighted 

approach (Nicholls et al., 2021). Reconstructed sea level fields using global tide gauge data 

suggests global-averaged SLR at 1.8 ± 0.3 mm yr⁻¹ over the 1950-2000 period, with regional 

SLR off the coast of Mozambique at around 1.5 mm yr⁻¹  (Church et al., 2004). Han and 

colleagues (Han et al., 2010) estimate regional Mozambican SLR at approximately 1.2 mm 

yr⁻¹ between 1961-2008.  

Given that these regional estimates are close to the global mean estimate by the IPCC, 

we assume that total SLR near Beira is the same as the global mean, a comparable approach 

as by Irish and colleagues (Irish et al., 2014). In order to exclude trends induced by natural 

variability, particularly in sea level contributions from glaciers and ice sheets, we use estimates 

of global mean sea level rise attributable to anthropogenic climate change for 1900–2012 from 

Strauss and colleagues (Strauss et al., 2021).Their ensemble estimate is 6.6 to 17.1 cm, which 

we use to define counterfactual sea level parameters for the coastal flood model. This also 

implies assuming no substantial local effects of land subsidence and human-induced changes 

in land water storage through reservoir construction and groundwater extraction that would 

confound comparison with the global estimates. This is hard to verify, but can be motivated by 

findings that city subsidence occurs only in a small fraction of the world’s coasts (Nicholls et 

al., 2021).  

Tropical cyclones are projected to become more intense with rising temperatures 

(Knutson et al., 2015), which is in line with the theoretical understanding of the potential 

intensity theory by Emanuel (Emanuel, 1987). Observed TC wind speed data in the South 

Indian Ocean basin shows that the maximum 10-minute sustained wind speed has been 

increasing by about 0.3 kn (0.15 m s⁻¹) per year on average, over the period 1973-2019 

(Figure 5.2). Prior to 1973, the rate of increase was likely smaller, though observational data 

is lacking. We make a conservative assumption corresponding to 50 years of increase at a 

rate of 0.2 kn (0.1 m s⁻¹) per year, resulting in a total difference in maximum wind speed of 
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approximately 10 kn (5.1 m s⁻¹). For the case of TC Idai with maximum observed 10-minute 

sustained wind speeds of 105 kn (54 m s⁻¹), this corresponds to a 10% reduction in maximum 

wind speed by removing climate change, which we adopt as a plausible assumption about a 

counterfactual TC de-intensification. This is a larger change than when adopting an earlier 

model-based estimate of 3.7% increase in maximum surface wind speed per 1 °C of sea 

surface temperature (SST) rise (Knutson and Tuleya, 2008). However, a trend analysis of 

global satellite data (1982–2009) finds an observed increase in maximum intensity by 1.7 m 

s⁻¹ per decade (p = 0.06) in the south Indian Ocean (Kossin et al., 2013), yielding an increase 

by about 8.5% when extrapolating this rate of change over the 50 years prior to 2019; which 

is in closer agreement with our analysis. 

 

 

Figure 5.2: Annual means of maximum TC wind speeds in the South Indian Ocean (maximum 10-minute sustained 

wind speeds). Linear trend over the period 1973-2020; data from IBTrACS database (Knapp et al., 2010). 

5.3.2 Simulated flooding 

We calculate storm surge flood extent and depth for the factual (driven with observed wind 

speeds and sea levels) and counterfactual (reduced wind speeds and sea level) scenarios, 

using an open-source geophysical flow solver (see Sect. Methods). The contribution of tides 

to total sea water levels at the time of landfall is an important yet unknown model parameter. 

We test four different assumptions about astronomical tide levels, and find that the maximum 

astronomical tide shows the best agreement with simulated water levels from the Global Tide 

and Surge Model (Dullaart et al., 2021; Muis et al., 2020), followed by the monthly mean sea 

level from satellite altimetry without any tidal adjustment (Supplementary Figure S1). 



 89 

 

 

Both factual and counterfactual coastal flooding are combined with inland flood depth 

estimates derived from satellite imagery in combination with an inundation depth estimation 

algorithm (Bryant et al., 2022), to obtain total inundation levels for Mozambique (Figure 5.3a). 

The difference between factual and counterfactual flooding is illustrated in the densely 

populated area of Beira (Figure 5.3b), the city where TC Idai made landfall and destroyed 90% 

of all houses according to some disaster reports (ReliefWeb, 2019). Differences in both flood 

extent and depth are observable between the factual (Figure 5.3c) and counterfactual scenario 

(Figure 5.3d). Notably, in a world without climate change, the area inundated by 100 cm or 

more is dramatically reduced. 
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Figure 5.3: Simulated flood extent for Mozambique; population distribution and inundation levels  for the greater 

area of Beira.  (a) Combined factual estimate of inland and coastal flooding (binary; flood/no-flood). White dashed 

box shows the area of interest in which flood exposure is computed. (b) Population distribution for the greater area 

of Beira. Flood extent and levels for (c) the factual scenario, and (d) the “counterfactual TC intensity + sea level 

rise (10.5 cm)” scenario. City neighborhoods of Beira (HDX, 2019) are indicated by orange lines and shoreline 

(Wessel and Smith, 1996) is represented by dashed white lines in (b), (c), and (d); satellite image background by 

© Google Maps (Google Maps (b), 2022).  
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5.3.3 Displacement 

In the next step, we investigate how the factual and counterfactual flood estimates translate 

into population at risk of displacement for the whole of Mozambique. Our analysis shows that 

the intensification of TC wind speeds leads to an increase in flood affected people and, 

consequently, in displacements by up to 3.6%, while counterfactuals regarding the sea level 

lead to only small changes (Figure 5.4). A combination of both counterfactuals only slightly 

exceeds the range as in contrast when considering the TC de-intensification alone. Despite 

the large uncertainty regarding SLR since 1900, the difference in the number of people 

affected (or displaced) is rather marginal; being less than 1% between the largest and the 

smallest SLR estimate. Our results highlight that the tide assumption plays a major role. The 

minimum and mean tide lead to marginal changes in affected/displaced people, in contrast to 

the maximum astronomical tide and monthly mean sea level from satellite altimetry, which 

show a median change in 3.1% and 3.5%, respectively. Given the high number of affected 

people, already small changes in the counterfactual scenarios lead to high changes in 

absolute numbers. The coupled effect of higher wind speeds and higher sea level increases 

the number of affected people and displacements by up to 43,300 and 16,500 (maximum tide) 

and 44,300 and 17,100 (monthly mean), respectively. Results regarding impact flood levels of 

10 cm and 50 cm are displayed in the supplementary material (Figure S5 and S6), showing 

even higher changes for the counterfactual scenarios of up to 69,800 displacements (17.1%).  

We assume that high wind speed caused only a marginal fraction of displacements, 

following disaster reports, media coverage and experience from other events; as an extreme 

example, wind by Hurricane Sandy caused less than 0.01% of the overall damage (Strauss et 

al., 2021). Nonetheless, in an additional sensitivity analysis, we also account for the number 

of people affected by high TC wind speeds of 50 m s⁻¹ or above (Sect. Methods). Our analysis 

reveals that the number of people affected not by flooding (maximum tide assumption, 100 cm 

impact threshold) but by high wind speeds ranges between 354,400 to 357,400 in the factual 

simulation. In the counterfactual, even the maximum wind speed attained in any grid cell 

outside the flooded area drops from 51.5 m s⁻¹ to 46.3 m s⁻¹, i.e. below the above-mentioned 

threshold; thus, no people are counted as affected. If the displacement vulnerability factor to 

high wind speed had been the same as to flooding, then the counterfactual would imply 

109,200 to 111,500 displacements, or 22.8 to 23.3% of the total displacement, attributable to 

climate change.   
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Figure 5.4: Simulated affected people (top), displacements (middle) and percentile change (bottom) for the 100 cm 

impact threshold.  Three counterfactual scenarios are shown: lower sea level (“cf SLR”)), de-intensification (“cf 

wind”), and a combination of both (“cf SLR + wind”). Additionally, a variety of counterfactual sea levels as well as 

a set of astronomical tides is presented, covering minimum (“min”), mean (“mean”), and maximum (“max”) as well 

as monthly mean sea level from satellite altimetry (“no”). Bold dashed line in the middle panel shows the number 

of observed displacements. Percentile changes in affected people and displacements are the same. The second 

quartile Q2 (median) of the box plot is shown in orange, “whiskers” are placed at ±1.5 * interquartile range (Q3-

Q1). 



92  

 

5.4 Discussion and conclusions 

With more than one degree of global warming, most, if not all, extreme weather events now 

can be assumed to bear some imprint of climate change. By extension, this is also true for the 

humanitarian crises induced by catastrophic storms, floods, or droughts. However, while 

economic damages from climate change have been attributed both in case studies and global 

studies (Frame et al., 2020b, 2020a; Sauer et al., 2021; Strauss et al., 2021), little is known 

about the extent to which climate change has already exacerbated human displacement. Our 

modeling study of TC Idai suggests that climate change may have induced about 17,000 

additional displacements from this one event. This is primarily due to the intensification of TC 

wind speed inducing a more powerful storm surge; and to a lesser extent due to sea level rise 

providing a higher baseline for the storm surge.  

Our results likely underestimate the full contribution of climate change to displacement 

associated with TC Idai, because we solely addressed the effect of climate change on coastal 

flooding, neglecting changes in inland flooding. Between March 3 and 17, heavy precipitation 

between 200-400 mm was registered for Beira City and the region, with upstream sections of 

the Pungwe river basin exposed to more than 600 mm (Probst and Annunziato, 2019). With 

growing evidence that climate change not only affects precipitation intensity (Fowler et al., 

2021; Guerreiro et al., 2018; Scherrer et al., 2016) but also continental-scale changes in fluvial 

flood discharge (Blöschl et al., 2019; Gudmundsson et al., 2021), it is likely that in a world 

without climate change, the river flood magnitude would have been smaller, and even less 

people would have been exposed than in our coastal-only counterfactual. Quantifying this 

additional effect would require a river flood model capable of reproducing the observed flood 

extent and associated inundation depths, and ideally  coupled with a coastal flood model to 

capture the interaction between river flood and storm surge. Even though globally-applicable 

frameworks for compound flood hazard modeling are under construction, and have recently 

been tested for TC Idai (Eilander et al., 2022), evaluations of fluvial flood models reveal 

important shortcomings in data-scarce regions such as Mozambique (Bernhofen et al., 2018; 

Mester et al., 2021). Quantifying the role of river flooding in TC-induced displacement thus is 

a timely challenge.  

Our main analysis also assumed no direct effect of high wind speeds on displacement, 

lacking clear evidence for substantial displacement due to high winds alone. Our additional 

sensitivity analysis suggests that changing this assumption could increase the number of 

displacements attributable to climate change considerably. Given this potentially large effect, 

and our limited understanding of the relative roles of different drivers of displacement in 

general, the specific vulnerability to displacement from different types of hazard should be the 

subject of future studies. Moreover, assuming that displacement can occur already at 



 93 

 

 

inundation depths of less than 100 cm also leads to higher estimates of climate change-

attributable displacement, according to our sensitivity analysis. Again, a better understanding 

of vulnerability beyond hard thresholds will be critical to refine risk assessments.  

We did not change storm track or size in our counterfactual simulations. While storm 

tracks may be affected by climate change (Knutson et al., 2019), we assume that Beira has 

not become more or less likely as a landfall site. Mean storm size is found to increase 

systematically with the relative sea surface temperature (Chavas et al., 2016), although 

numerical simulations suggest that projected median sizes remain nearly constant globally 

(Knutson et al., 2015). Assuming increases in storm size due to climate change would again 

result in higher estimates of attributable displacements in our analysis. Furthermore, 

uncertainties regarding the population and observatory data, such as the satellite imagery, as 

well as the underlying digital elevation model (DEM), used for both the inland flood depth 

estimation and the coastal flood model, should not be neglected (Hawker et al., 2018). 

By design, in our attribution study, we assumed a fixed population distribution in both 

factual and counterfactual simulations, as well as a fixed, empirically determined displacement 

vulnerability factor, and only investigated changes in displacement risk following from changes 

in the physical characteristics of TC Idai and its impacts. Assessments of future risks - or of 

past impacts - should not only take into account the intensification of physical hazards, but 

also increases in exposure  (Kam et al., 2021); as well as potential changes in vulnerability 

due to social, economic, or technological developments. Changes in vulnerability have been 

studied with respect to economic damages and fatalities (Jongman et al., 2015; Sauer et al., 

2021), but not for displacement.  

Here, we have chosen a storyline approach for the impact attribution instead of a more 

traditional probabilistic attribution approach (Philip et al., 2020; Titley et al., 2016), as for 

instance previously employed to attribute heavy precipitation of Hurricane Harvey 

(Oldenborgh et al., 2017) to climate change. One reason is that for Mozambique neither the 

complete time series of rainfall nor the high station density required by a probabilistic approach 

(van Oldenborgh et al., 2021) are available. Reanalysis products for precipitation could be 

used as an alternative, however, their quality depends on geographic location, so the use of 

multiple reanalysis and/or observation products is recommended (Angélil et al., 2016). 

Further, in contrast to the probabilistic approach, the storyline approach allows us to 

investigate the driving factors involved, as well as their plausibility (Shepherd et al., 2018). 

Finally, framing the risk of tropical cyclones in the context of climate change in an extreme 

event-oriented rather than a probabilistic manner allows us to assign absolute numbers of 

attributable displacements, which raises risk awareness in a more tangible way. 
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Our study expands the scope of extreme event impact attribution to include 

displacement as a societal impact dimension. In general, due to the lack of calibrated regional 

models and gauge stations, only few attribution studies (Luu et al., 2021; Takayabu et al., 

2015) focus on storms - or any extreme weather events, for that matter - in low-income 

countries. This not only limits our understanding of climate change effects on extreme events 

from a global perspective, but also biases geographically the amount of knowledge and 

information available to inform risk management and adaptation strategies (Otto et al., 2020). 

Mozambique, like many countries, is exposed not only to TCs but also other climate-related 

hazards, such as droughts, and at the same time facing socio-economic challenges, making 

it all the more important to understand and anticipate risks in a changing climate. 

5.5 Code availability 

The source code for this study is available from 

https://github.com/BenediktMester/TC_Idai_attribution. 

 

5.6 Data availability 

Satellite imagery is used with the permission of Atmospheric and Environmental Research & 

African Risk Capacity. Output of the flood depth algorithm, GeoClaw results, and TC Idai wind 

speed files can be accessed at https://zenodo.org/record/6907855 (Mester et al., 2022c). GHS 

gridded population data is available at https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-

ghs_pop_gpw4_globe_r2015a#dataaccess. 

National borders of Mozambique were obtained from https://gadm.org/data.html. For the 

trendline analysis of annual means of maximum wind speeds we use IBTraCS Version 4 

database, accessible at https://www.ncei.noaa.gov/data/international-best-track-archive-for-

climate-stewardship-ibtracs/v04r00/access/netcdf/IBTrACS.ALL.v04r00.nc. 

All data used for the figures are publicly available. Maps were generated with QGIS, 

which can be downloaded at https://www.qgis.org/. Satellite imagery background by © Google 

Maps can be accessed via http://mt0.google.com/vt/lyrs=s&hl=en&x={x}&y={y}&z={z}. We 

used IBTrACS Version 4 to extract the trajectory data of tropical cyclone Idai, availabe at 

https://www.ncei.noaa.gov/products/international-best-track-archive?name=ib-v4-access. 

Mozambique admin level 4 shapefiles for Beira are available at 

https://data.humdata.org/dataset/mozambique-admin-level-4-beira-and-dondo-

neighbourhood-boundaries. GSHHG shoreline data can be accessed via 

https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/. 

https://github.com/BenediktMester/TC_Idai_attribution
https://zenodo.org/record/6907855
https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_pop_gpw4_globe_r2015a#dataaccess
https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_pop_gpw4_globe_r2015a#dataaccess
https://gadm.org/data.html
https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/netcdf/IBTrACS.ALL.v04r00.nc
https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/netcdf/IBTrACS.ALL.v04r00.nc
https://www.qgis.org/
http://mt0.google.com/vt/lyrs=s&hl=en&x=%7Bx%7D&y=%7By%7D&z=%7Bz
https://www.ncei.noaa.gov/products/international-best-track-archive?name=ib-v4-access
https://data.humdata.org/dataset/mozambique-admin-level-4-beira-and-dondo-neighbourhood-boundaries
https://data.humdata.org/dataset/mozambique-admin-level-4-beira-and-dondo-neighbourhood-boundaries
https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/
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Chapter 6 Discussion and recommendations 

This thesis is motivated by the question on how flood-induced human displacement risk is 

affected by climate change and socio-economic change. In this chapter, the main findings, 

limitations, and uncertainties of this work are discussed and connected to the three RQs. The 

outcome is also placed in the context of the Overarching Research Question of this thesis. 

Each section is accompanied by an outlook on emerging challenges, expressed in Future 

Research Questions (FRQs). Recommendations are made, if possible, on how to advance 

on these topics. 

6.1 Improving the global flood modeling chain 

Chapter 2 describes the evaluation of the global flood model CaMa-Flood in reproducing flood 

extent of historic flood events. A focus is set on the choice of two cascading data products of 

the global flood modeling chain, i.e., three climate reanalysis datasets and the output of 11 

GHMs. Before this study, the sensitivity towards this choice was unknown. This chapter hence 

contributes to the improvement of global flood simulations (RQ 1) by guiding future 

applications of the input data products. Moreover, this work sheds light on general deficiencies 

in simulating historic flood events, and suggests several root causes for this model behavior. 

These insights are also relevant for overall topic of modeling flood-induced displacement, with 

the key findings of this chapter can be summarized as follows: 

 

1. For most events, the simulated flood extent is rather insensitive to the choice of GHM 

and climate reanalysis dataset 

2. Using a full suite of input products guarantees the robustness of the results as 

individual product combinations may lead to poor results for some events 

3. Simulated flood extent is mostly overestimated (underestimated) when considering 

(neglecting) protection measures; translating most probably to great differences in 

affected people and estimated IDPs  

 

Sensitivity to the choice of input product 

 

Regarding the first key finding, the study addresses the need for investigating the role of 

climate forcing datasets and GHMs in simulating global flood hazard (Hoch and Trigg, 2019; 

Ward et al., 2013; Zhou et al., 2021). The GHM simulations are standardized and follow the 

same ISIMIP protocol. Before this study, it was unclear if the models are interchangeable or if 

some combinations of GHM and reanalysis data are to be favored. Chapter 2 highlights that 

generally no individual product or combination excels in all study regions. Rather, single GHMs 

lead to a poor performance in reproducing past flood extent for some events, while the other 
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GHMs are more or less equally performant. Similarly, differences among the climate 

reanalysis datasets are small in comparison with overall capacity in reproducing the correct 

flood extent. This implies for modeling global displacement risk that the choice of underlying 

input product is of comparatively low importance. Nonetheless, individual GHMs or reanalysis 

datasets or a combination of both lead to poor results; emphasizing the need for an ensemble 

of input products to account for individual deficiencies in some climatic regions or hydrological 

basin types. For example, the GHM MPI-HM in combination with the PGFv2 dataset produces 

one of the best results for a set of events, however, performs rather poorly for others, leading 

to a medium Median Region score. MPI-HM in combination with the GSWP3 reanalysis 

product is never the best GHM for single events, however, yields the best Median Region 

score of all GHMs. The findings of this chapter can be used to identify the most promising 

combination(s) of input products for individual hydrological basins or climatic zones. However, 

as laid out above, for continental- or global-scale analysis, this approach is not recommended. 

Emerging from this, other data products and processes, e.g., DEMs, routing schemes, 

downscaling, or intensity-impact functions, may require a similar sensitivity study to ensure 

robust estimations of affected people and IDPs. This also includes assumptions about flood 

protection measures in place which is discussed next. 

 

Flood protection standards 

 

Chapter 2 underpins the need for a detailed representation of flood protection levels. To this 

date, to the knowledge of the author, FLOPROS is the only existing global-scale river flood 

protection database. “openDELvE” provides global flood-protection levee data for river deltas 

(Nienhuis et al., 2022), however, this product is not used within the global flood modeling chain 

of this work. A comprehensive global overview on the actual standard of protection in place, 

or at least required policy regulations, is still missing. FLOPROS fills these gaps by modeling 

protection standards, mostly based on GDP per capita, for the majority of countries, especially 

the low-income ones (Scussolini et al., 2016). As highlighted in Chapter 2, assuming no flood 

protection leads to an overestimation of flood extent, on the other hand, the incorporation of 

the FLOPROS database produces an underestimation in flood extent. While the former one is 

to be anticipated, the latter one poses a critical challenge to overcome. This observation can 

be explained by potential deficiencies of FLOPROS in estimating the correct flood protection 

level, i.e. the assumptions are too high. Protection levels are on province-level (1st subnational 

administrative unit) and for most countries only derived from simulations mostly based on 

economic wealth (Scussolini et al., 2016), neglecting the high spatial heterogeneity in flood 

protection within countries and the influence of non-economic factors on structural defenses 

(Ward et al., 2017). 
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Flood frequency distribution 

 

Another explanation for the underestimation in flood extent is the runoff and the respective 

return period of the flood simulated by the GHMs (Zhou et al., 2021). This source of error is 

backed by the observation that individual GHMs still reproduce flood extent even with the 

application of FLOPROS. If flooding of a given magnitude is modeled too frequently at a 

certain location, already low protection levels may lead to no inundation in the simulations. 

Contrarily, in some regions, e.g., Huainan in China, almost no flooding remains with any of the 

GHMs once FLOPROS is applied. This points to deficiencies in the river routing scheme by 

CaMa-Flood or the subsequent flood frequency analysis. The latter one was subject of a 

sensitivity study that suggested that the choice of variables for the flood frequency analysis 

and fitting distributions are less important than deviations in the runoff inputs (Zhou et al., 

2021). 

 

Outlook 

 

High uncertainties in the simulated flood extent imply severe consequences for modeling flood 

events and associated risk of displacement. A core method in quantitative displacement 

modeling is to superimpose simulated flood extent and gridded population data to assess the 

number of people at risk of being displaced, as demonstrated in Chapter 4 and Chapter 5. An 

over- or underestimation of flood extent causes large deviations in the number of estimated 

IDPs, as similarly shown for population and economy exposure (Zhou et al., 2021). This error 

propagates down to hotspot identifications, disaster risk reduction measures, and 

management options to mitigate the adverse effects of displacement. To overcome this 

challenge, two new FRQs can be posed: 

 

FRQ 1: How can estimates of global flood protection levels be improved and 

downscaled to more granular spatial units? 

 

Despite the efforts of existing databases, such as FLOPROS, more detailed information on 

actual flood protection standards at a high spatial resolution (gridded; 2nd or 3rd subnational 

administrative unit level) is necessary as risk estimates are highly sensitive to this parameter 

(Ward et al., 2013). Artificial intelligence and machine learning, such as natural language 

processing, could be employed to gather fragments of empirical information on flood protection 

from the numerous scientific publications, government reports and other data sources (Bates 

et al., 2021). Other options cover the inclusion of dams and reservoirs and their respective 

amount of flood storage by the GRanD database (Lehner et al., 2011) or using multivariate 

methods to model flood protection levels (Scussolini et al., 2016). As an alternative to the 

GRanD database, which dates back to 2011, the automatic detection of dams, levees, dikes, 
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and other structural measures on satellite imagery could be used to build an updated inventory 

of mapped locations, dimensions, and possibly even estimates on protection capacities. 

 

FRQ 2: How can the overestimation in simulated flood frequency within the global flood 

modeling chain be corrected? 

 

Biases in the flood frequency distribution could be related to hydrological processes of the 

GHMs or to the river routing scheme of the hydraulic modeling part. Apart from improving the 

models directly, it might also be possible to correct the biases in the post processing phase of 

the modeling pathway. One option involves the comparison of simulated flood extent and 

corresponding return periods (on grid cell level) with observed flood extent for multiple events. 

One promising source for observatory data would be the GFD, as used in Chapter 3 and 

Chapter 4. For some events, it may be possible to determine the model return period that 

separates (observed) flooding from no-flooding. This threshold could be interpreted as a 

measure of bias in simulated flood frequency distribution and consequently be used for bias 

correction. Additionally, the threshold could also be interpreted as a local flood protection 

standard, and be compared with FLOPROS and other sources for plausibility, relating to FRQ 

1. 

 

Additional future work 

 

Apart from answering these research questions, the global flood modeling chain can also be 

improved in several other ways, e.g., elaborating on the fine scale dynamics of floodplain 

inundation processes (Bates et al., 2021). Using the latest CaMa-Flood version 4.0 might 

refine the flow physics as it is based on an updated baseline topography (Yamazaki et al., 

2019). Alternatively, increasing the spatial resolution could improve the accuracy of flood 

hazard modeling and allow for more rigorous comparison with observatory data. The 

evaluation exercise of Chapter 2 could also be repeated for other flood events. The availability 

of observed flood extent from satellite imagery has increased more recently; the GFD, for 

example, provides a set of 913 flood events. Further GFM evaluation and intercomparison 

studies could also include other hazard characteristics, such as inundation duration or flood 

depth, to enhance our understanding on the capabilities and limitations of global flood risk 

modeling. 
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6.2 Socio-economic drivers of vulnerability to displacement 

Following the assessment of flood hazard modeling, Chapter 3 and Chapter 4 describe the 

creation of the new displacement data product FLODIS and its analysis regarding socio-

economic drivers of vulnerability, respectively, which relate to RQ 2. The findings are 

discussed in more detail below and are divided into two sections according to the chapter 

structure, addressing FLODIS and the associated vulnerability analysis. The first part focuses 

on the underlying data and methods to derive FLODIS, including recommendations to increase 

the quality. The second part highlights how this new dataset can be used to investigate the 

socio-economic drivers of vulnerability to displacement. This analysis is a prerequisite in 

understanding how societal changes affect displacement risk both nowadays and in the future, 

referring to the Overarching Research Question of this thesis.  

6.2.1 FLODIS 

Matching satellite-derived flood hazard and spatially explicit displacement events yields the 

new disaster product FLODIS. Its development is motivated by the fact that, on the one hand, 

disaster impact inventories mostly only exhibit ambiguous information on the hazard, e.g., 

expressed by severity classes or disaster magnitude values. On the other hand, societal 

impacts are seldomly allocated to hazard archives or hydro-meteorological time series. 

FLODIS hence represents an unique repository of both detailed hazard and impact information 

for distinctive events. Less entries are available in comparison with other disaster databases 

due to, for example, the limited number of observed floods or failures in the geocoding 

process. FLODIS provides instead coupled hazard-impact information of high detail focusing 

on a rigorous matching process. Disaster entries are also extended with a set of subnational 

socio-economic characteristics of the event, such as demographic composition or GDP per 

capita. Such information is missing in other inventories, yet necessary for understanding the 

contextual drivers of flood vulnerability. Another novelty of this disaster dataset is the 

representation of flood hazard by observed flood footprints derived from satellite imagery 

products instead of GFMs. Despite recent model advancements, GFMs are still facing 

troublesome difficulties in reproducing flood extent in some catchments, as discussed in 

Chapter 2. This motivated to explore remote sensing products as an alternative to simulated 

flood extent. The key findings and achievements of this chapters can be summarized as: 

 

1. Linking displacements, fatalities, and economic damages to remotely observed floods 

yields an unprecedented global inventory of both flood exposure and societal impact 

2. Each FLODIS entry comprises sub-national socio-economic, demographic, 

environmental and other indicators  
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3. Using observed flood hazard from remote sensing poses a trustworthy alternative to 

GFMs; drawbacks include the lack of flood depths and the inability to simulate 

scenarios 

 

Disadvantages of the usage of satellite-derived flood hazard and other limitations as well as 

points of improvements are discussed next. 

 

Matching process 

 

The matching procedure between displacement and flood hazard entries is subject to 

improvement. In the current setup, approximately 15% of all matches include two or more GFD 

floods. It is possible that the matched GIDD entries consist of sub-events, which could be 

allocated to individual GFD floods. However, some events are potentially matched in time and 

space with wrong flood extents. Double-or more matching is aimed to be avoided by using, for 

example, shorter temporal difference thresholds in such cases. However, more elaborated 

approaches could be applied to limit the matched GFD floods as much as possible. For 

example, the degree of spatial overlap in relation to the flood extent or matching all events by 

the shortest time difference are potential options. 

 

Spatial distribution of IDPs 

 

As only one number of IDPs per event is stated by GIDD, FLODIS assumes a spatial 

homogeneous distribution of IDPs. In most cases, this assumption is not correct since locally 

diverging levels of hazard intensity, population exposure, and vulnerability would lead to 

spatial differences in resulting IDPs after a flood event. In recent years, IDMC also records 

spatially more granular displacement information. Dividing a flood into several sub-floods and 

allocating displacement numbers according to their location would yield spatially more explicit 

insights. Another way to increase the quality of FLODIS would be the incorporation of lower 

levels of subnational administrative units, e.g. level 3 that includes municipalities and towns. 

Such information is partially already provided by GIDD and could be used to avoid an 

overestimation in flood exposure.  

 

Necessity for updates 

 

Between 2008 and 2018, 12.6% of all flood-induced displacement entries contain no event 

information, mostly in the early years of data recording. As information per entry has been 

increasing over time, the share of events that can be geocoded will increase in the future. The 

number, quality and resolution of sub-national socio-economic drivers will increase in the 

future as well. In this regard, FLODIS should also be regularly updated to incorporate the most 

recent events. This process depends also on the data availability of, for example, flood hazard 
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data from the GFD, which to this date ends in 2018. With a growing number of FLODIS entries, 

analysis results are expected to become more robust. Improving the geocoding algorithm 

would also yield more entries. Currently, 19.3 % of analyzed flood-induced displacement 

entries contain event information, yet, no geocoding is possible. This can be partially explained 

by not considering level-3 administrative units or an actual lack of geographical information, 

but also by deficiencies of the geocoding process.  

 

Outlook 

 

A couple of future applications arise from FLODIS. For example, the matching procedure is 

applicable to other disaster catalogs, e.g., Munich Re’s NatCatSERVICE or Swiss Re’s Sigma. 

The major recording work of IDMC started in 2008, making it difficult to reconstruct 

displacement events before. Yet, using vulnerability estimates and satellite imagery, or other 

hazard information, e.g. by GFMs, would allow drawing conclusions about displacement 

events before 2008 and eventually about the temporal evolution of flood-induced displacement 

impacts. 

A major future task is the incorporation of flood depths within FLODIS, which is a 

necessary next step in the context of infrastructure vulnerability to displacement. Despite 

characteristics regarding the density of critical infrastructure, no information on the degree of 

housing and infrastructure exposed to critical flood depths is available in FLODIS. The 

destruction of housing is a major cause for displacement (Anzellini et al., 2017). Determining 

the number of buildings, or alternatively the population, exposed to high flood waters could 

improve displacement risk analysis. Similar to depth-damage functions which are often used 

for global-scale flood risk assessments (Ward et al., 2020), impact functions used in some 

studies on displacement (Anzellini et al., 2017; Kam et al., 2021), e.g. 1 m-step functions, can 

be used to estimate the number of IDPs once flood depth information is available. 

Furthermore, geocoded displacement events of other hazard categories may also be matched 

with hazard estimates. As 43 % of all weather-related displacements are caused by TCs and 

storms (IDMC, 2022), it would be worthwhile to extend FLODIS with this type of hazard 

category. Both challenges lead to the next two FRQs: 

 

FRQ 3: How can flood depth estimations be incorporated into FLODIS? 

 

Deriving flood depths estimates only requires the GFD flood extents and global DEM as input. 

The process itself, however, is not trivial, involving, for example, error correction of the flood 

extent, accounting for drainage network information, or the availability of high-resolution flood 

extent (Bryant et al., 2022). One option would be to automatically derive the flood depth for 

the whole set of GFD floods by employing existing flood depth estimation tools, such as 

FwDET or RICorDE (Bryant et al., 2022; Cohen et al., 2019). The RICorDE approach is 

already successfully applied using global data for the fluvial flooding by TC Idai in Chapter 5. 
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While several global DEM products at high spatial resolutions are available, such as the 

MERIT DEM at 90 m (Yamazaki et al., 2019), the flood depth estimation is limited by the GFD 

flood extent due to the coarser resolution of 250 m. 

 

FRQ 4: How can tropical cyclones be integrated into FLODIS? 

 

The GFD floods are only matched with IDMC entries related to “Flood”, not including “Storm”-

related displacement events. Storms and TCs, as demonstrated with the example of TC Idai, 

may also lead to extensive coastal and inland flooding. The geocoding process of FLODIS 

covers all type of displacement events, including storms and TCs. The flood footprints and 

associated displacement impacts for storms are hence registered in the underlying data 

inventories of FLODIS, which can be used to extend FLODIS with this hazard category. In this 

context, it may be necessary to link high wind speed exposure to storm-induced displacement 

events to capture multivariate compound events (Zscheischler et al., 2020).  

6.2.2 Analysis of vulnerability to displacement 

Based on the new hazard-impact-dataset FLODIS, Chapter 4 exhibits the analysis of 

vulnerability to flood-induced displacement and its socio-economic drivers. Few global-scale 

studies exist that investigate displacement risk and only one of those, to the knowledge of the 

author, addresses the associated vulnerability (Kakinuma et al., 2020). Chapter 4 specifically 

targets the topic of vulnerability to displacement using a large set of observed flood extent 

derived from remote sensing to simulate flood hazard. A diverse set of contextual indicators 

are applied to describe the socio-economic, demographic, and other circumstances of the 

events. A machine learning framework investigates these features to reveal their importance 

in explaining the global variability of vulnerability. The following key findings can be distilled 

out of this work: 

 

1. Displacement vulnerability is varying between and within continental regions by 

several orders of magnitude 

2. The majority of development factors are positively correlated with lower levels of 

vulnerability 

3. Non-economic predictors partially exhibit a higher explanatory power than GDP per 

capita 

4. Important predictors include urbanization (growth), infant mortality rate, density of 

population and critical infrastructure 

 

As the importance rankings and partial dependence plots of this study only depict how 

the model interacts with the provided FLODIS dataset, general conclusions on vulnerability to 
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flood-induced displacement are drawn with caution. Nonetheless, Chapter 4 addresses 

general assumptions, extends preliminary investigations, and provides new insights in the 

underlying processes that shape the vulnerability to displacement (RQ 2). The following 

sections discusses  the vulnerability predictors and limitations in assessing their importance. 

In this context, it is laid out how these insights may be used in modeling global displacement 

risk and which next steps should be taken to refine vulnerability estimates. 

 

Predictors of vulnerability 

 

The common perception that the level of development is linked with (displacement) 

vulnerability is confirmed with this study. The strongest development predictors exhibit positive 

relations with lower vulnerability levels, i.e. the wealthier, more equal, and more secure, the 

less likely to be displaced. Vulnerability varies substantially between countries and by several 

orders of magnitude, which is in line with other modeled vulnerability studies at the global 

scale (Kakinuma et al., 2020). The national median vulnerability values differ somewhat from 

poverty maps and other quantitative approaches to categorize the flood risk of countries into 

“low” and “high”. This is to be anticipated as displacement risk is a complex phenomenon, 

differing from mortality and loss mechanisms, and going beyond societal assessments that 

are often only economically based. In fact, GDP per capita is only a predictor of medium 

relevance for both the national and sub-national analysis in this work. In addition, no distinctive 

two or three “best predictors” can be singled out, rather most predictors explain vulnerability 

to at least some degree. This confirms the demand for broad societal background information 

to characterize flood events, as provided by FLODIS. Nonetheless, urbanization (growth), 

infant mortality rate, density of population and critical infrastructure are identified as the major 

predictors of vulnerability in this study. This information provides evidence for humanitarian 

and disaster relief organizations that a diverse set of indicators is necessary to target groups 

especially vulnerable to displacement (Ward et al., 2020). These elaborated characteristics 

cover not only poverty and other economic shortages but also reflect that the settlement 

composition, societal inequality, or access to infrastructure also shape vulnerability.  

 

Modeling limitations 

 

In this study vulnerability can only be explained to some degree, characterized by, for 

example, missing data for some countries, ambiguous partial dependence plots, or a 

maximum R2 of 0.3. Even though the latter one is only one metric to assess the performance 

of a model, the results call for caution in drawing universal conclusions from this work. First, 

the underlying dataset FLODIS exhibits several deficiencies, e.g., regarding the matching 

process, geocoding, flood hazard data, population count, or the socio-economic indicators. 

Incorporating flood depths and more refined matching techniques would yield vulnerability 

estimates of higher accuracy for the analyzed events. The applied predictors also potentially 
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only represent a fraction of components that determine displacement vulnerability. Flood 

experience, for example, is computed in a simplistic approach for this study, neglecting the 

complex interactions and feedback loops between hydrological and social processes (Di 

Baldassarre et al., 2013). Furthermore, it is difficult, if not impossible, to display levels of early 

warning systems, holistic flood management or proactive governance consistently on a global 

scale. Another factor is the low number of entries in FLODIS, allowing only for limited insights 

into displacement vulnerability. Some countries only consist of one observation, while others 

have no FLODIS entry at all. This means that the findings of this study are predominantly 

based on a set of countries with many FLODIS entries, such as Indonesia, India or China. 

Future analysis should contain more data entries, especially in underrepresented world 

regions, e.g., Europe or the MENA-region, which is in line with the general need for regular 

updates of FLODIS. More data would also allow the usage of more complex models. This 

involves an extended set of predictors without the risk of overfitting or even more elaborated 

regression techniques, e.g., support vector machines or neural networks. 

 

Fields of application 

 

While it is not yet possible to express vulnerability to displacement through a universal formula 

or statistical model, this work provides the basis on how vulnerability should, and should not, 

be handled in future risk analysis studies. The results demonstrate that vulnerability varies by 

several orders of magnitude and a spatial distribution according to economic wealth alone is 

not advisable. The derived national median vulnerability values yield a first approximation, 

posing an alternative to other approaches assuming vulnerability is equally distributed around 

the world and displacement risk is only dependent on flood depth and extent. As vulnerability 

is also not fixed in time, future (sub-)national vulnerability levels may differ from current ones 

due to societal shifts. The constructed models of this work could incorporate such changes 

via changes in the underlying contextual predictors. For some predictors no projections are 

yet available, however, for others projections under the framework of shared socioeconomic 

pathways (SSPs) exist, e.g., urbanization (Chen et al., 2020), GDP (Murakami and Yamagata, 

2019), or population density (Jones and O’Neill, 2016).  

 

Outlook 

 

Most global-scale studies employ GFMs to simulate flood hazard (Bates et al., 2021; 

Hirabayashi et al., 2013; Ward et al., 2013). This study shows that flood extent derived from a 

large set of remote sensing is a valid alternative to flood hazard simulated by GFMs, which is, 

to the knowledge of the author, another novelty in global-scale risk analysis of displacement. 

To test the sensitivity to the choice of hazard data, it is of interest to investigate the vulnerability 

derived from GFM simulations and compare it with the results of this work. Additionally, 

changes in exposure are responsible for major shifts in flood risk (Ceola et al., 2014; Di 
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Baldassarre et al., 2010). It is hence advisable to complement the displacement risk equation 

and address the Overarching Research Question by also investigating the role of exposure. 

This challenge leads to the next FRQ: 

 

FRQ 5: In what ways do changes in exposure affect the flood-induced displacement 

risk? 

 

Increases in historic flood risk can be partially explained by changes in the exposure to 

flooding (Ceola et al., 2014; Di Baldassarre et al., 2010), in particular by intensive and 

unplanned urbanization in hazardous floodplains (Andreadis et al., 2022). Including changes 

in population size will increase flood risk in the future even more (Swain et al., 2020), with 

marginalized communities being disproportionately impacted (Wing et al., 2022). The 

important role of population projections is also demonstrated for displacement risk (Kam et al., 

2021). Future research should hence also focus more in detail on population projection 

trajectories as well as individual data sources for exposure; covering, for example, sensitivity 

tests to the choice of population data, as similarly performed by Bernhofen et al. (2021) and 

Smith et al. (2019). FLODIS provides affected people estimates on two population datasets, 

of which only one was used in the vulnerability analysis. Additionally, as housing quality 

shapes the disaster vulnerability (Flanagan et al., 2011), exposure estimates could also 

differentiate between different types of housing (building code, age, flood-proof, etc.) to 

explore how displacement risk is dependent on settlement characteristics. 
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6.3 Attribution of displacement to climate change  

Following the examination of contextual vulnerability drivers, Chapter 5 addresses the RQ 3 

on how recent climate change has potentially affected the number of flood-induced 

displacements for the example of coastal flooding and high wind speeds by TC Idai. The 

applied storyline approach helps to understand why TC Idai unfolded the way it did, focusing 

on SLR and wind speed intensification due to global warming. The outcome of this study are 

absolute numbers of IDPs attributable to climate change. Even though these estimated 

numbers are based on simulations and should be taken with caution due to several limitations, 

this study conveys the risk of TCs under global warming in a tangible way. The impact 

attribution of TC Idai hence provides a starting position for adaptation planning, raises 

awareness on the immediacy of climate change, and calls for stronger mitigation measures. 

The key findings of this study are: 

 

1. Climate change led a simulated increase in displacement risk by approximately 3.1 to 

3.5%, corresponding to 16,000 - 17,000 additional IDPs 

2. TC intensification causes the major share of additional IDPs in comparison with SLR 

3. The effect of climate change on TC high wind speeds is high, but subject to large 

uncertainties 

4. The effect of climate change on fluvial flooding is not included, which could drive the 

increase in displacement risk even more 

 

Only few attribution studies (e.g., Takayabu et al. (2015)) focus on events taking place 

in low-income countries due to the lack of calibrated regional models and low-density networks 

of gauge stations. This limits not only our understanding of climate change effects on extreme 

events from a global perspective, but also excludes local communities from potentially useful 

information about risk management and adaptation strategies. Additionally, impact attribution 

studies often focus on economic dimensions. Hence, there is a need for impact attribution 

studies focusing on low-income countries and non-economic impacts (Otto et al., 2020; 

Thalheimer et al., 2022). This study on displacement risk in Mozambique ties in with this call, 

yet, the work presented also exhibits several simplifications and assumptions, which are 

discussed more in detail below. A focus is set on the general limitations of attributing TCs to 

climate change, the applied concept of vulnerability and future displacement risk due to TCs. 

 

The effect of climate change on tropical cyclones 

 

In this study, the effect of SLR is assessed to be marginal for coastal flooding induced by TC 

Idai; local SLR varies, however, substantially (Fox-Kemper et al., 2021) which may alter, if 

used instead of global estimates, its role for this event. A lot of debate exists about how climate 
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change has affected the wind-speed intensity of TCs (Knutson et al., 2019). One the one hand, 

changes in intensity have been observed for some basins, including the South Indian Ocean, 

however, these should be treated with high caution as long and consistent data records are 

missing (Knutson et al., 2019; Kossin et al., 2013, 2007; Webster et al., 2005). On the other 

hand, even no increase was detected for individual TCs, e.g., hurricanes Katrina, Irma and 

Maria (Patricola and Wehner, 2018). Additionally, multi-decadal or interannual climate 

variability, such as the Atlantic Multidecadal Oscillation or the El Niño–Southern Oscillation, 

respectively, may obscure the effects of climate change on TCs (Patricola and Wehner, 2018). 

Nonetheless, the presented analysis of the South Indian Ocean basin shows a steady increase 

in extreme wind speeds, indicating that an intensification of TCs is indeed present in this 

region. This hence underpins the need for high quality as well as consistent, long-term 

recording of TCs in all basins around the globe to refine TC-induced displacement risk 

analysis. 

 

Vulnerability 

 

It is very difficult, if not nearly impossible, to exactly reconstruct how TC Idai would have 

evolved in the absence of climate change, as changes in size and trajectory or socio-economic 

shifts, such as those related to vulnerability, would have to be additionally accounted for, to 

name just a few examples. The applied vulnerability to displacement is fixed in this study and 

derived empirically by dividing observed displacements by the number of affected people of 

the factual scenario. In a world without climate change, vulnerability would be probably 

different to what it was for the observed conditions. Economic growth is positively linked with 

the capacity of dealing with climate extremes (Bowen et al., 2012), which in turn affects 

productivity levels and productivity growth (Kalkuhl and Wenz, 2020), with some evidence of 

negative impacts of historic climate change on economic growth for some African countries 

(Abidoye and Odusola, 2015). In addition, vulnerability is also shaped by non-economic 

factors, as outlined in Chapter 4, which may likewise be altered by climate change. Changes 

in vulnerability are likely to be small, however, accounting for socio-economic perturbations, 

compounding with changes in hazard intensity, would potentially accumulate to an even higher 

displacement risk. In this context, the study investigates also the sensitivity of displacement 

risk to the choice of critical flood depth threshold (0.1 m, 0.5 m, and 1.0 m), relating to 

vulnerability to infrastructure. As the number of attributable IDPs varies between these 

simplified thresholds, more refined, empirically derived impact functions for flood-induced 

displacement are required. 

 

Future tropical cyclone risk 

 

The storyline approach targets specific events, thus this study is not allowing for 

generalizations  about climate change, TCs, and related IDPs. Nonetheless, the overall TC 
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intensity is projected to increase under future global warming (Knutson et al., 2020). According 

to the IPCC AR6 projections, an additional global increase in SLR and surface temperature of 

0.39 m / 0.7°C (SSP1-2.6) and 0.72 m / 3.3°C (SSP5-8.5) is estimated by the end of the 

century (Chen et al., 2021). These increases in drivers of coastal flooding could also non-

linearly scale with societal impacts, e.g., due to the underlying bathymetry, low-lying 

settlements or insufficient protection levels. This suggests that TCs of similar magnitude as 

TC Idai would be more devastating under future climate change, resulting in more IDPs and a 

greater need for humanitarian aid.  

 

Outlook 

 

In the light of these uncertainties and an average of 9.1 million TC-induced IDPs every year 

(IDMC, 2022), attributing IDPs to climate change is a challenging, but necessary task. This 

study investigates coastal flooding and, partially, wind extremes by TC Idai, however, inland 

flooding due to heavy rain is not considered. Fluvial flooding is assumed to be constant 

throughout all scenarios, including the counterfactual runs. However, inland flooding due to 

heavy rain associated with TCs is also affected by global warming in various ways (Knutson 

et al., 2019; Seneviratne et al., 2021), posing another driver of displacement risk. The next 

FRQ addresses this gap: 

 

FRQ 6: To what extent was fluvial flooding and associated displacement due to TC Idai 

affected by climate change? 

 

As laid out in section 1.2.3, it is possible to attribute extreme precipitation to climate change 

using the CC relationship. The rate of 7% precipitation increase per 1° of warming is potentially 

even higher for tropical cyclones (Oldenborgh et al., 2017; Patricola and Wehner, 2018). This 

provides a direct physical basis for attributing fluvial flooding and associated impacts by TC 

Idai partially to climate change (Shepherd, 2016). The storyline approach could be used to 

establish factual (climate change) and counterfactual (no climate change) scenarios using 

observed precipitation reanalysis data and, e.g., detrended precipitation data derived by the 

CC relationship, respectively. Similar to the storyline approach on coastal modeling presented 

in Chapter 5, both datasets could be fed into GFMs to generate factual and counterfactual 

inland flooding. Differences between the simulated flood extent and depth together with 

estimated IDPs could be used to assess the role of fluvial flooding on displacement in the light 

of global warming. Despite some challenges regarding, e.g., the coupling of pluvial, fluvial, 

and coastal flooding (Eilander et al., 2023) or on how changes in precipitation translate to 

changes in stream discharge (see section 1.2.3 for further discussion), such an impact 

attribution study would complement our view on how TC Idai was potentially influenced by 

climate change. 
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Additionally future work may encompass a refined analysis of TC high wind speed-

induced IDPs. It would be also of interest to investigate a large set of TCs using the storyline 

approach and counterfactual climate datasets, such as ATTRICI (Mengel et al., 2021), to 

deepen our knowledge on TC-induced displacement attributable to climate change. 
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Chapter 7 Conclusion 

Former UN Secretary-General Kofi Annan once noted that "[i]nternal displacement is the great 

tragedy of our time. The internally displaced people are among the most vulnerable of the 

human family" (OCHA, 2004). Despite millions of displacements every year, global warming 

being on the rise, and societal shifts transforming the resilience of our communities, only little 

is known about the effect of global climate change and socioeconomic change on flood-

induced displacement risk (Hoffmann et al., 2021; IDMC, 2022; Seneviratne et al., 2021). This 

lack of knowledge is facing a growing public interest as well as heated debates around the 

topic of climate-related mobility (Ayeb-Karlsson et al., 2022; Clement et al., 2021). A deeper 

insight is limited by insufficient data on the circumstances of displacement events, such as the 

socio-economic contextualization, or detailed information on the underlying hazard 

characteristics that may be already influenced by climate change (Hoffmann et al., 2021, 

2020). Several severe implications emerge from this, e.g., disaster relief funds cannot be 

directed to regions especially prone to displacement risk or humanitarian aid cannot effectively 

reduce the vulnerability to displacement. This thesis addresses these caveats in a number of 

ways, from improving the flood hazard modeling chain, investigating the socio-economic 

drivers that shape the vulnerability of being displaced, and down to the attribution of 

displacement risk to climate change.  

To gain a better understanding on the ability of GFMs in reproducing flood extent, the 

global hydraulic model CaMa-Flood and its input products are evaluated against satellite 

imagery for eight historic events. Spatial performance metrics reveal that for most events the 

GFM is relatively insensitive to the choice of climate reanalysis dataset and GHM. Some 

reanalysis-GHM combinations, however, lead to poor results, reflecting the need for a full suite 

of input products and ensemble simulations to guarantee the robustness of the flood hazard 

modeling. Furthermore, this study reveals that, regardless of the input products, the simulated 

flood extent is often overestimated; incorporating protection levels according to the FLOPROS 

database yields the tendency of underestimating flood extent. The latter one is especially 

problematic and can be partially explained by deficiencies in reproducing the correct return 

periods within the modeling chain as well as an overestimation of FLOPROS protection levels. 

To overcome this caveat, it is recommended to apply a bias correction scheme on the flood 

frequency distribution using a large set of observed floods from the GFD. Protection level 

estimates could be improved by screening of relevant literature based on advanced machine 

learning techniques, multivariate modeling or the incorporation of satellite imagery to assess 

location and retention capacities of structural protection measures. 

Following the evaluation of the flood hazard modeling chain, this thesis addresses the 

vulnerability to displacement by two studies. The first work comprises the development of the 

new disaster dataset FLODIS that can be used to investigate the contextual characteristics 

that drive the vulnerability of being displaced. FLODIS links human displacements, fatalities, 

and economic damages to remotely observed floods from the GFD, yielding an unprecedented 
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global inventory of both flood exposure and societal impact. This new dataset addresses the 

challenge that displacement entries are often completely missing any information on the 

associated flood magnitude, hampering the comparison of flood exposure or vulnerability 

between events. FLODIS entries encompass a full set of socio-economic, demographic and 

other indicators to characterize the societal and environmental context of each event. A special 

feature is that the flood hazard is estimated from observed flood extent based on satellite 

imagery, avoiding the challenges that GFMs are still facing, as described above. Next versions 

of FLODIS should incorporate flood depth estimates to improve risk assessments as well as 

displacement events related to coastal flooding and extreme wind speeds caused by TCs. 

In the next step, the vulnerability to flood-induced displacement and its underlying 

drivers are investigated using FLODIS and machine learning methods. Multivariate regression 

using a random forest model shows that vulnerability is heterogeneously distributed around 

the world, not following general expectations according to economic prosperity. Other 

development indicators, such as infant mortality rate, urbanization or the density of population 

and critical infrastructure, exhibit a stronger power in explaining vulnerability than GDP per 

capita. While the majority of development indicators are positively and non-linearly correlated 

with lower levels of vulnerability, the role of some predictors is still unclear. This calls for larger 

training data to improve modeling capacities as well as a comparison with vulnerability 

analysis based on GFM hazard simulations. In this context, future research should also 

investigate the uncertainty related to the choice of exposure datasets in displacement risk 

analysis. 

Next to the role of socioeconomic change, this thesis also examines the link between 

historic displacements and climate change. Global warming is one of the greatest intensifiers 

of future displacement risk (Clement et al., 2021; Kam et al., 2021), yet it is unclear to what 

degree increased temperatures have already influenced extreme flooding and associated 

mobility in the past. This interaction is investigated for the example of TC Idai and associated 

coastal flood-induced displacement. Coastal flood modeling in combination with fluvial flood 

hazard derived from satellite imagery allows to simulate TC Idai under observed, factual 

conditions as well as under counterfactual scenarios without the effect of global warming. A 

simulated increase in displacement risk by approximately 3.1 to 3.5%, corresponding to 

16,000 - 17,000 additional IDPs, suggests that climate change has already intensified the 

associated humanitarian crisis. These numbers should not be taken at face value, as it is an 

almost impossible task to reconstruct how TC Idai would have evolved in the absence of 

climate change. Nonetheless, the applied storyline approach improves our process 

understanding on the amplification of coastal flooding and associated displacement risk due 

to climate change, indicating that the intensification of TC wind speeds lead to a stronger storm 

surge than the effect of SLR. Including the effect of climate change on extreme wind-induced 

and fluvial flood-induced displacement in future studies would complement the multivariate 

compound character of TCs and provide a full picture of amplified displacement risk. 
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This thesis contributes to the overall understanding on how global climate change and 

socioeconomic change affect flood-induced displacement risk. Given the IPCC projections of 

global warming, even under a low-emission scenario, the cost of adaptation could push 

especially low-income countries to the brink of financial collapse (Fankhauser, 2010; 

Seneviratne et al., 2021; Willner et al., 2018); forcing unprotected individuals to leave their 

homes due to unprecedented climate and weather extremes (Cissé et al., 2022). In this work, 

the potential of remote sensing in the context of global disaster research is explored; with 

satellite imagery serving as a benchmark for GFMs, an estimate of flood hazard in the absence 

of modeling results or even directly as a source of flood exposure for a large number of events. 

The presented work demonstrates how modeled estimates and projections of displacement 

risk under current and future climate change become more robust by improving our 

understanding of the flood hazard simulations. The newly developed disaster dataset FLODIS 

provides meaningful insights in how the vulnerability to displacement is shaped and offers vast 

possibilities of future research topics. The conducted attribution study is one of the first to 

investigate the role of climate change for a displacement event in a low-income country. The 

outcomes of this work may serve as a scientific basis for identifying regions of high 

displacement risk, improving the targeting of humanitarian aid, or even providing the basis of 

financial funding for flood protection measures. In the light of these advancements, this thesis 

successfully demonstrates that modeling the effects of climate change and socioeconomic 

change on displacement risk enhances our understanding of climate related mobility. 
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1 Number of displacement events in sample 

 

 

Figure S 1: Number of displacement events in sample 

2 Correlation matrix and statistics 

 

 

Figure S 2: Pearson correlation matrix of the predictors of the country-level data. 

Table S 1: Pearson p-values and spearman p-values of country-level predictors for displacement vulnerability 
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predictor pearson p-value spearman p-value 

Population density 0.201742 0.260986 

GDP per capita 0.000406 0.000007 

International migrants 0.042026 0.056390 

Infant mortality rate 0.003044 0.000012 

Population ≤ 14 years 0.000290 0.000005 

Population ≥ 65 years 0.000054 0.000016 

Female population 0.556897 0.125233 

Population growth 0.005363 0.000687 

Urbanization 0.005893 0.000211 

Urbanization growth 0.014054 0.002194 

Flood experience 0.551629 0.936218 

 

 

Only up to one of the following predictors per list may be present in a country-level analysis: 

 

list 1 = Infant mortality rate, Population ≤ 14 years, 'Population ≥ 65 years, Population growth 

list 2 = Population growth, Urbanization growth 
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Figure S 3: Correlation matrix of the predictors of the event-level data. 
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Table S 2: Pearson p-values and spearman p-values of event-level predictors for displacement vulnerability 

predictor pearson p-value spearman p-value 

Education infrastructure 1.122650e-04 4.368879e-10 

Health infrastructure 7.954636e-03 9.099458e-10 

Total critical infrastructure 8.172624e-08 1.420093e-12 

Urbanization 2.262749e-05 2.681697e-11 

Elevation 1.055991e-10 1.893061e-08 

Slope 4.412139e-04 4.985626e-01 

Female population 6.025987e-02 1.539471e-03 

Population ≤ 14 years 1.330337e-03 6.786888e-05 

Population ≥ 65 years 2.057918e-03 1.713942e-03 

FLOPROS 8.958934e-03 1.085546e-04 

GDP per capita 5.123365e-03 2.414305e-05 

Population density 1.956995e-02 9.510912e-09 

Event duration 4.772010e-01 4.968906e-01 

 

Only up to one of the following predictors per list may be present in an event-level analysis: 

 

list 1 = Education infrastructure, Health infrastructure 
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3 Global displacement vulnerability over time 

 

 

Figure S 4: Annual median of national median vulnerability to flood-induced displacement over time. 

 

Mann-Kendall Trend Test:  

 

trend= 'no trend' 

h=False 

p=0.16112494928905186 

z=-1.4012980994907414 

Tau=-0.34545454545454546 

s=-19.0 

var_s=165.0 

slope=-0.004793508625701662 

intercept=0.10517270667101386 
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4 Predictive power  

 

 

 

 

Figure S 5: Predictive power of vulnerability predictors of the country-level analysis (top) and the event-level 

analysis (bottom), ranked by R2s. Results relate to the test data using leave-one-out cross-validation. Each box 

plot represents all models using the predictor of interest; up to three predictors per model are chosen. Only models 

with R2s greater than 0.01 are displayed. 
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5 Partial dependence plots - event-level (non-log) 
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Figure S 6: PDPs of the MERF in non-log-scale. Each plot uses the best model involving the predictor of interest 

to compute the PDPs. The median vulnerability per predictor increment is indicated in red, uncertainty bands are 

displayed in light gray (5th/95th perc.) and dark gray (33th/66th perc.).  
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