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Abstract 
 

Equisetum spp. (horsetail / “Schachtelhalm”) is the only surviving genus of the 
primitive Sphenopsids vascular plants which reached their zenith during the 
Carboniferous era. It is an herbaceous plant and is distinguished by jointed stems with 
fused whorl of nodal leaves. The plant has been used for scouring kitchen utensils and 
polishing wood during the past time due to its high silica encrustations in the epidermis. 
Equisetum hyemale (scouring rush) can accumulate silica up to 16% dry weight in its 
tissue, which makes this plant an interesting candidate as a renewable resource of silica 
for the synthesis of biomorphous ceramics. The thesis comprises a comprehensive 
experimental study of silica accumulations in E.hyemale using different characterisation 
techniques at all hierarchical levels. The obtained results shed light on the local 
distribution, chemical form, crystallinity, and nanostructure of biogenic silica in 
E.hyemale which were quite unclear until now. Furthermore, isolation of biogenic silica 
from E.hyemale to obtain high grade mesoporous silica with high purity is investigated. 
Finally, syntheses of silicon carbide (β-SiC) by a direct thermoconversion process of 
E.hyemale is attempted, which is a promising material for high performance ceramics.  

It is found that silica is deposited continuously on the entire epidermal layer with 
the highest concentration on the knobs. The highest silicon content is at the knob tips (≈ 
33%), followed by epidermal flank (≈ 17%), and inner lower knob (≈ 6%), whereas 
there is almost no silicon found in the interior parts. Raman spectroscopy reveals the 
presence of at least two silica modifications in E.hyemale. The first type is pure 
hydrated amorphous silica restricted to the knob tips. The second type is accumulated 
on the entire continuous outer layer adjacent to the epidermis cell walls. It is lacking 
silanol groups and is intimately associated with polysaccharides (cellulose, 
hemicellulose, pectin) and inorganic compounds. Silica deposited in E.hyemale is found 
to be mostly amorphous with almost negligible amounts of crystalline silica in the form 
of α-quartz (< 7%). The silica primary particles have a plate-like shape with a thickness 
of about 2 nm. Pure mesoporous amorphous silica with an open surface area up to 400 
m2/g can be obtained from E.hyemale after leaching the plant with HCl to remove the 
inorganic impurities followed by a calcination treatment. The optimum calcination 
temperature appears to be around 500°C. Calcination of untreated E.hyemale causes a 
collapse of the biogenic silica structure which is mainly attributed to the detrimental 
action of alkali ions present in the native plant.  Finally, pure β-SiC with a surface area 
of about 12 m2/g is obtained upon direct pyrolysis of HCl-treated E.hyemale samples in 
argon atmosphere. The original structure of native E.hyemale is substantially retained in 
the biomorphous β-SiC. 

The results of this thesis lead to a better understanding of the silicification 
process and allow to draw conclusions about the role of silica in E.hyemale. In 
particular, a templating role of the plant biopolymers for the synthesis of the 
nanostructured silica within the plant body can be deduced. Moreover, the high grade 
ultrafine amorphous silica isolated from E.hyemale promises applications as adsorbent 
and catalyst support and as silica source for the fabrication of silica-based composites. 
The synthesis of biomorphous β-SiC from sustainable and low-cost E.hyemale is still in 
its initial stage. The present thesis demonstrates the principal possibility of carbothermal 
synthesis of SiC from E.hyemale with the prospect of potential applications, for instance 
as refractory materials, catalyst supports, or high performance advanced ceramics.  
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Zusammenfassung 
 
 
Equisetum spp. (Schachtelhalm) ist die einzige überlebende Gattung der 
Schachtelhalmgewächse, die ihren Zenit während der Karbon Ära erreichten. Der 
Schachtelhalm ist eine krautartige Pflanze und wird durch verbundene Stämme mit 
fixiertem Wirtel der Knotenblätter unterschieden. Aufgrund seiner hohen 
Siliciumdioxid Bedeckung in der Epidermis sind Winterschachtelhalmen lange Zeit zur 
Reinigung von Küchegeräten und zum Polieren von Holz verwendet worden. Der 
Winterschachtelhalm (auch Scheuerkraut genannt) kann Siliciumdioxid bis zu 16% 
Trockengewicht in seinem Gewebe ansammeln. Dies macht aus dieser Pflanze einen 
interessanten Kandidaten als erneubare Ressource von Siliciumdioxid für die Synthese 
von biomorphen Keramiken. Die vorliegende Doktorarbeit beinhaltet eine ausführliche 
experimentelle Studie der Siliciumdioxidansammlungen in Winterschachtelhalmen 
mittels unterschiedlicher Charakterisierungstechniken auf allen hierarchischen Ebenen. 
Die Ergebnisse der Arbeit werfen neues Licht auf die lokale Verteilung, die chemischen 
Form, die Kristallinität und die Nanostruktur des biogenen Siliciumdioxids, die bisher 
ziemlich unklar waren. Außerdem werden Möglichkeiten zur Isolierung des biogenen 
Siliciumdioxids aus Winterschachtelhalmen untersucht, um hochgradig reines 
Siliciumdioxid zu erhalten. Auch wird die direkte carbothermale Synthese von 
Siliciumkarbid (β-SiC) aus Schachtelhalmen untersucht, mit dem Ziel einer 
kostengünstigen Herstellung von Hochleistungskeramiken aus nachwachsenden 
Rohstoffen   

Es wird gezeigt, dass das Siliciumdioxid in einer kontinuierlichen Schicht in der 
Epidermis vorliegt, mit der höchsten Siliciumkonzentration in den auffälligen 
knopfartigen Ausbuchtungen. Den höchsten Siliciumgehalt zeigen die Knopfspitzen (≈ 
33%), gefolgt von der epidermalen Flanke (≈ 17%) und inneren unteren Teile der 
Knöpfe (≈ 6%), während es in den inneren Teilen der Pflanze praktisch kein Silicium  
gibt. Ramanspektroskopie beweist eindeutig, dass mindestens zwei Siliciumdioxid 
Modifikationen vorhanden sind. Der erste Typ ist reines hydratisiertes amorphes 
Siliciumdioxid, das auf den Bereich der Knopfspitzen beschränkt ist. Der zweite Typ 
wird in der gesamten kontinuierlichen äußeren Schicht angesammelt, weist keine 
Ramanbanden von Silanolgruppen auf, und ist örtlich eng verknüpft mit Banden von 
Polysacchariden (Zellulose, Hemizellulose, Pektin) sowie anorganischen Verbindungen. 
Der Großteil des Siliciumdioxids in Winterschachtelhalmen ist amorph mit 
unwesentlichen Mengen an kristallinem α-Quarz (< 7%). Die primären 
Siliciumdioxidpartikel haben eine plattenähnliche Form mit einer Dicke von ungefähr 2 
nm. Hochreines mesoporöses amorphes Siliciumdioxid mit offener Porosität und 
innerer Oberfläche bis zu 400 m2/g kann aus Winterschachtelhalmen isoliert werden. 
Dies wird erreicht indem man die Pflanze mit Salzsäure behandelt um die 
anorganischen Verunreinigungen zu entfernen, gefolgt von einer Kalzinierung, wobei 
die optimale Temperatur bei etwa 500°C liegt. Im Gegensatz zu den chemisch 
vorbehandelten Schachtelhalmen, verursacht die Kalzinierung von unbehandelten 
Winterschachtelhalmen einen Kollaps der biogenen Siliciumdioxidstruktur, und es 
werden nur sehr kleine innere Oberflächen erzielt. Dies wird hauptsächlich dem 
Einfluss der Alkaliionen zugeschrieben die in der unbehandelten Pflanze vorhanden 
sind. Es wird schließlich gezeigt, dass durch direkte Pyrolyse der HCl-behandelten 
Winterschachtelhalme in Argonatmosphäre reines β-SiC mit einer Oberfläche von 
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ungefähr 12 m2/g erzeugt werden kann. Die ursprüngliche Struktur von natürlichen 
Winterschachtelhalmen bleibt dabei im Wesentlichen im biomorphen β-SiC erhalten. 

Die Ergebnisse dieser Arbeit führen zu einem besseren Verständnis des 
Silicifizierungsprozesses und erlauben es auch, Aussagen über die mögliche Rolle von 
Siliciumdioxid in E.hyemale zu treffen. Insbesondere kann den Pflanzenpolymeren die 
Rolle eines Templates bei der Synthese des biogenen Siliciumdioxids im 
Pflanzengewebe zugeschrieben werden. Das aus den Pflanzen isolierte ultrafeine 
amorphe Siliciumdioxid mit hoher Reinheit verspricht potentielle Anwendungen, z.B. 
als Adsorbent oder Katalysatorsupport, und auch als Füllmaterial für die Herstellung 
von Komopositmaterialien. Die Synthese von biomorphem β-SiC aus erneubaren und 
preiswerten Winterschachtelhalmen steht zwar erst am Anfang, jedoch konnte die 
vorliegende Arbeit die prinzipielle Machbarkeit aufzeigen. Dieses Material scheint sehr 
vielversprechend für eine Reihe technischer Anwendung, zum Beispiel als 
Refraktärmaterial, Katalysatorsupport oder neuartige Hochleistungskeramik. 
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Chapter 1 

INTRODUCTION 
 

 

Silicon is of special interest in the series of chemical elements. It is the most 

abundant element next to oxygen in the form of silicates in building up the earth’s crust. 

These silicates are not only of geochemical significance as structural components of the 

earth but also are of outstanding practical and cultural value in the form of man-made 

synthetic materials, for instance bricks, earthenware, glass, enamel, white ware, 

porcelain and cement 1. The history of man’s use of natural “stones”, such as flint, the 

most important material for making man’s first implements, which were mined more 

than 5000 years ago and the history of quartz and of semi-precious stones 

(“Halbedelsteine”) which were used as ornaments even in the earliest times, is of 

cultural and archeological significance 1.  

Silica (SiO2) belongs to silicate compounds and is one of the most common 

materials in nature. It is the main constituent of more than 95% of all the earth’s rocks 2. 

Most glasses in our everyday surroundings are made of mainly silica, combined with a 

variety of other substances. In technology, SiO2 is present in most devices containing 

metal-oxide-semiconductor transistors. For these and other reasons SiO2 has been 

studied quite extensively over the years and has always been a focus of attention, from 

both the theoretical and practical viewpoints 2, 3. 

Biomineralisation is related to the accumulation of minerals in living organisms, 

mainly to strengthen or stiffen the organic tissues. Important examples include calcium 

carbonates in invertebrates such as mollusk shells 4 and calcium phosphates in 

vertebrates, e.g. bone 5. Among the biominerals, silica (SiO2) represents the second 

most abundant biogenic mineral after carbonate 6 and it is mostly deposited in living 

organisms in the form of amorphous silica similar to opal or silica gel 7-10. It is often 

referred to as biogenic silica 7, 10 and is ubiquitous in lower organisms, such as diatoms, 

sponges, and radiolarian 7, 11, 12 which extract silica from the water to build up their 

exoskeleton. Among the higher plants, grasses (Poaceae/ Gramineae), for instance rice, 

bamboo, wheat, barley, sorghum, rye, oat, and in particular Equisetum (horsetail/ 
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“Schachtelhalm”) are ranked among Si accumulators that implement high amounts of 

silica mainly in their aerial tissues 8.  

 

1.1 Equisetum hyemale  

 

1.1.1 Biological background  

 

Horsetail (Equisetum spp.) is ranked amongst the most ancient of living vascular plants 
13. Equisetum has occurred in rocks of upper Devonian and Lower Carboniferous age 14. 

They delineate the class Sphenopsida and are the only extant member of this class 15. 

Horsetail is an herbaceous perennial plant without secondary tissues that is found in or 

near watery areas such as marshes, streams, or rivers and particularly grows in 

temperate northern hemisphere areas of Asia, Europe, North America, and North Africa. 

It is distinguished by jointed stems with fused whorl of nodal leaves. They have also a 

peculiar ability to deposit silica in their epidermis. Thus they were used in Europe for 

scouring metal and polishing wood during the past time ("scouring rush" is a common 

name for Equisetum, especially Equisetum hyemale having rough-ridged siliceous 

stems). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 1.1 Equisetum hyemale, “Winterschachtelhalm” 
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The Equisetum genus is commonly divided into two groups and 15 species 16, 17, 

namely subgenus Equisetum and Hippochaete. The first has stomata flush with the 

epidermis and stems branched (e.g. E.arvense), whereas the latter has stomata sunken 

below the surface of the epidermis and stems generally unbranched (e.g. E.hyemale). 

E.hyemale (scouring rush) is a perennial and evergreen plant and can persist over two 

winters 16. E.hyemale has an unbranched, chlorophyllous and upright stem (Fig. 1.1) and 

its anatomy can be seen in Fig. 1.2. The stems have a corrugated structure with 

distinctive ridges and grooves. The ridges are occupied by two parallel rows of silica 

tubercles or knobs which contribute to the stem roughness. On the each flank of the 

grooves a single line of stomata is arranged. The stomatal apparatus of the Equisetum 

consists of a pair of guard cells internal to a pair of subsidiary cells. The epidermis is 

quite thick since it is encrusted by silica and cuticularised. The tissue underlying the 

epidermis is called schlerenchyma/ hypodermal sterome, but sometimes called 

collenchyma since these cells were unlignified and had relatively large pits and stored 

starch (implying that they are living) 16. They function as supporting tissues due to their 

thick cell walls. E.hyemale is very porous and light materials, marked by big hollow 

pith in the middle and several canals (vallecular canals, carinal canals) and cavities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1.2 Anatomy of Equisetum hyemale.  (A) Cross section (70 µm thickness). The scale 
bar equals 1 mm. (B) Detail of the same cross section. The scale bar equals 0.1 mm. HS: 
hypodermal sterome; E: epidermis; SC: silica in the knobs; CE: chlorenchyma; VC: vallecular 
canals; MX: lignified metaxylem tracheids; PP: primary phloem; CC: carinal canals; RP: 
parenchymateous pith; EL: endodermis layer. Figures are taken from Speck et al. 18.  

A  B  
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1.1.2 Silica in Equisetum hyemale  

 

Silica concentrations can reach up to 25% dry weight in Equisetum 19 by 

absorbing the silicic acid from the soil 9 and transport it to its tissue. Silica deposition in 

plants can take place in cell wall, cell lumen and in extracellular sites 10. Discrete plant 

silica bodies (“phytolith”) with various shapes and morphologies depending on plant 

species are mainly deposited in cell lumen or cell wall and are of archeological interest 

to identify the vegetation patterns during the past periods 8, 20, 21. Even though the 

amount of silica in many plants can exceed that of other macrominerals such as calcium, 

magnesium and phosphorus, it is usually not considered to be essential because most 

plants can grow in nutrient solutions lacking of silicon in their formulations 9. In the 

case of horsetail however, silica seems to be crucial for a normal plant growth 22, 23. 

Several functional properties have been attributed to the silica in horsetail such as 23: (i) 

reduction of the transpiration rate which influences its evergreen characteristic; (ii) 

reflection of excessive light together with cuticle; (iii) acting as a protector against 

predators; (iv) yielding a viable spore for reproduction. A mechanical role of silica in 

strengthening and stiffening the tissue has also often been claimed 8, 24, 25, 26. In spite of 

the general agreement of an important functional role of silica as essential element in 

the Equisetum family, there have been only limited experimental studies on the 

structure, local concentration and distribution of silica in these plants. Investigations 

were typically performed using scanning electron microscopy (SEM) in combination 

with EDX elemental analysis 24, 27 , and in some cases they were also complemented by 

transmission electron microscopy (TEM) 25, 26 and SAXS 26. However, the conclusions 

drawn in these papers do not yet provide a satisfactory and conclusive picture about the 

role of silica in Equisetum, thus a comprehensive structural and analytical investigation 

on silica accumulations in E.hyemale at all hierarchical levels is essentially necessary.   
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1.2 Silicon-based biomorphous ceramics 

 

1.2.1 Silica and its polymorphs 

 

Silicon is the second most abundant element after oxygen which makes up 25.7% of the 

earth’s crust 28. It is not found free in the nature, but occurs chiefly as the oxide and as 

silicates. Sand, quartz, rock crystal, amethyst, agate, flint, jasper, and opal are some of 

the forms in which the oxide appears, whereas granite, hornblende, asbestos, feldspar, 

clay, and mica are a few examples of the numerous silicate minerals 28.  

Silicon dioxide is the only compound of Si-O system that is thermodynamically 

stable over a wide range of temperatures and pressures 3. SiO2, whose common name is 

silica, exists in many allotropic forms. Most of them are found in nature in abundant 

quantities, but some have been made only under laboratory conditions. The best known 

are quartz, cristobalite, tridymite, and amorphous vitreous silica. The three crystalline 

forms at atmospheric pressures (quartz, cristobalite, and tridymite) have all high and 

low temperature forms. Additionally to the reconstructive transformation between the 3 

polymorphs they all undergo displacive transformations between these low and high 

temperature forms on heating and cooling (see Fig. 1.3). The polymorphic 

transformations of silica play an important role in ceramic technology owing to the use 

of different crystalline forms (modifications) of silica (in particular, quartz) as the initial 

component for producing numerous silicate materials.  

 

 

 

 

 

 

 

 

 

 

 

α-Quartz 
2.53 g/ cm3 

β-Quartz 
2.65 g/ cm3 

α-Tridymite 
2.19 g/ cm3 

β-Tridymite 
2.23 g/ cm3 

γ-Tridymite 
2.26 g/ cm3 

α-Cristobalite 
2.21 g/ cm3 

β-Cristobalite 
2.32 g/ cm3 

1470°C

870°C>1000°C
163°C 

573°C

200-270°C 

117°C 

Heating 

Cooling 

Figure. 1.3 Phase transformation of silica polymorphs at atmospheric pressure 29. 
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The stability relation for quartz, tridymite, and cristobalite proposed by Fenner 30 

Quartz               Tridymite               Cristobalite         

was further corrected by Stevens et al. 31 who stated that tridymite is not a stable phase 

in the pure silica system. Cristobalite can be produced from pure quartz by heating, 

whereas it is not possible to produce tridymite in this fashion since a flux or mineralizer 

is required and even in this case cristobalite is produced before any tridymite is 

observed. Amorphous silica, which is predominantly found in biological systems can be 

also directly converted into α-cristobalite in the temperature range between 1200-

1400°C 32. 

 

1.2.2 Biogenic silica 

 

At present, sol-gel processing or vapour-phase reaction using silicon alkoxides 

such TEOS (tetraethyl orthosilicate) / TMOS (tetramethyl orthosilicate) as precursors 33-

36 are commonly used to produce ultra-fine silica powders. Nanometer-sized silica 

particles obtained from burning of SiCl4 in an oxygen-hydrogen flame is also reported 
37. These processes produce ultra-fine silica with high purity but their preparation 

including the initial precursors are very expensive, thus limiting their wide applications. 

As an alternative to prepare high purity silica based on high volume and low cost, silica 

rich plant materials are certainly of interest. Silica in plants is found to be mostly 

amorphous and is typically of nanometer size 10, 26, 38. Thus it can be considered as 

cheap, highly reactive silicon source for the production of various silicon-based 

materials with novel properties which may be of technical and industrial importance. 

Amorphous silica has been used extensively for a wide range of commercial 

applications as catalyst supports, as separation media, as filler in polymer and in 

biomedical applications 7. Biogenic silica can be expected to posses reactivity similar to 

the numerous ionic, non-ionic, and covalent interactions that are known to be present in 

commercial silica 7. Biogenic amorphous silica from diatom, diatomaceous earth which 

is also known as “kieselguhr” has been widely used commercially mainly as filter aid 

with “CELITE” as the trade name 39 or filter 40 besides also being used as adsorbent 41 

and insecticides 42. Among higher plants, numerous attempts of silica isolation from rice 

husks containing of about 20% silica 38, 43 to obtain either rice husk ash (RHA) or 

870°C 1470°C 
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biogenic silica after thermal/chemical treatments have been investigated 38, 43-51. Several 

applications of rice husk derived silica as fillers in rubbers and plastics or in cement 

production has been reported 52. Further utilisation of silica in rice husks by different 

transformation processes into many silicon-based materials, for e.g. silicon 53, silicon 

carbide 54-63, silicon nitride 63-65 and zeolite 66 have also been intensively investigated. 

However, unlike rice husks, there are practically no investigations considering 

Equisetum as a potential resource for biogenic silica. There are only very few studies 

reporting some attempts to use Equisetum as precursors for β-SiC synthesis by a direct 

thermoconversion process 67-68. There are also some recent attempts to use Equisetum as 

a biological template for the synthesis of zeolite with hierarchical pores by biomineral-

silica-induced mechanism 69-70. 

Biogenic silica is always present in association with organic tissue, such as 

polysaccharides or proteins 71-72. Therefore, an appropriate strategy to isolate silica from 

plant materials with desired properties (for instance large surface area and high 

porosity) has to be seriously considered. It has been shown that amorphous mesoporous 

silica with very high surface area can be obtained from rice husks, if they are subjected 

to an acidic treatment with hydrochloric acid prior to calcinations 47-48. The low surface 

area of silica obtained from untreated rice husks is mainly due to the strong interaction 

of silica with potassium 47, 73 leading to the surface melting of silica 73. The alkali-silica 

fusion causes coarsening of particles 38, 50. Moreover, Real et al. 74 provided some 

evidence from XAFS measurement that potassium oxide leads to the disruption of SiO4 

network and the formation of chain like structure of non-bridging oxygen atoms. 

Additionally, potassium and sodium also accelerates the crystallisation of amorphous 

silica into cristobalite 73, 75, which is not desirable since it is less reactive than 

amorphous silica. Metallic ingredients have a substantial effect on the quality of silica 
51. Thus, removal of alkaline elements by acid treatment before the calcination is a 

necessary step in the production of biogenic silica with high surface area and high 

purity indicated by the completely white ash colour 46. Acidic treatment of rice husks 

using HCl is proved to be more superior compared to other inorganic acids (HNO3, 

H2SO4, H3PO4), organic acids (acetic acid, oxalic acid, citric acid), or bases (NaOH, 

NH4OH) since it is very effective at substantially removing the metallic ingredients  45, 

46, 50, 59. The silica obtained after the subsequent calcinations is of high purity of at least 
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99% 43, 45. Furthermore, HCl treatment does not affect the amorphousness of the 

biogenic silica in rice husks 46. Moreover, thermal treatment for the organics removal 

should be carried out at a low combustion temperature and a prolonged heating for a 

complete combustion of rice husk to white ash since the burning of fixed carbon in the 

rice husk takes place at a slow rate at low temperature 46. A combustion temperature of 

500°C and above is required to produce white ash within a reasonable time 46. Pure 

form of silica with minimum impurities and amorphous nature is essential for the 

preparation of advance inorganic materials, for instance silicon carbide.  

 

1.2.3 Silicon carbide 

 

Silicon carbide is a non-oxide ceramic material, in contrast to silicon dioxide. Silicon 

carbide is extremely hard, resistant to both thermal shock and high temperatures, quite 

inert chemically under many circumstances. It has a low density and a high thermal 

conductivity, and its mechanical properties are unusual for a non-metallic solid 76. Thus 

the range of applications extends from metallurgical and chemical uses through abrasive 

and abrasion-resistant forms to refractory and mechanical engineering materials to 

protective coatings and application in nuclear technology to electrical and electronic 

equipment 76. SiC consists of several modifications, namely: 

1. β-SiC (low temperature modification), which has a cubic structure and one polytype. 

2. α-SiC (high temperature modification), which has a hexagonal or rhombohedral 

structure and about 250 polytypes. 

Formation of SiC is possible starting already at 600°C (Fig. 1.4) where β-SiC is formed 

below 2000°C. Above this temperature, a phase transformation into α-SiC occurs 77. 

SiC is hardly found in the nature. It can be found only in some volcano ash and 

meteorit both in α- and β-modification. SiC was produced by a technical process called 

“ACHESON process” in 1891 by E.G. Acheson and the product is mainly α-SiC with 

rough grains 77. This process is still applied up to now with some improved 

modifications. High energy (10 kWh/kg) and high quality of raw materials (quartz and 

coke) are required. The mechanisms of SiC formation are described by the carbothermal 

reduction of silica via a gas-solid reaction with SiO gas as an intermediate product as 

follows 77: 
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Initial reaction   SiO2 (s) + C (s) ↔ SiO (g) + CO (g)   (2.1)  

Formation reaction  SiO (g) + 2 C (s) ↔ SiC (s) + CO (g)   (2.2) 

Overall reaction  SiO2 (s) + 3 C (s) ↔ SiC (s) + 2 CO (g),   (2.3) 

ΔHR = +618.5 kJ/mol 

 

Side reactions    SiO (g) + C (s) ↔ Si (s) + CO (g)    (2.4) 

    SiC (s) + 2 SiO2 (s) ↔ 3 SiO (g) + CO (g)   (2.5) 

    SiC (s) + SiO (g) ↔ 2 Si (g) + CO (g)    (2.6) 

    Si (g) + C (s) ↔ SiC (s)      (2.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Phase diagram of silicon-carbon system 77. 



Chapter 1                                                                                                                Introduction 
 
 
                                                                                       
 

Characterisation of silica in Equisetum hyemale and its transformation into biomorphous ceramics   10

In principle, silicon carbide powders can be produced in 4 different ways: (i) 

chemical vapour deposition (CVD) of silane compounds 78, (ii) sol-gel processing of 

silicon alkoxides 79, (iii) direct carbonisation of Si metals 80, 81, (iv) carbothermal 

reduction of silica 59-61, 77. In terms of economy and efficiency, the carbothermal 

reduction is the best choice, even though the purity of SiC powders is not as high as 

those produced by other methods. It involves inexpensive silicon dioxide and carbon (or 

carbon precursors) as the starting materials 82. The industrial manufacture of SiC is 

widely performed by the Acheson process, which includes a carbothermal reduction of 

sand by petrol coke at high temperature ranging from 2000-2500°C 83. However, the 

produced SiC still posses sharp grains after the final grinding process and a mixture of 

different SiC polytypes 67. Besides that, high energy and high quality of raw materials 

(quartz and coke) are also required 77.   

There has been an increasing interest to produce artificial microstructures that 

resemble that of natural materials because biological structures exhibit excellent 

strength, high stiffness and elasticity at low density, as well as high damage tolerance, 

integrated into these structures through the evolutionary process 80. Natural materials 

such as wood, jute, diatom, etc. are widely used as bio-templates to produce 

biomorphous ceramics, for e.g. SiC/C and TiC/C with the cellular structures and the 

final materials exhibit good performance in electric conduction, thermal conduction, 

friction, adsorption properties, and mechanical properties 84-86. Biomorphous SiC has 

been a matter of interest in recent years since it offers several advantages over 

conventional SiC materials such as less energy consumption and retention of 

microstructures of the biological precursors favouring of high specific strength and 

excellent high temperature stability 84, 87-89. The general approach of the biomorphous 

SiC production from wood consists of a rapid and controlled mineralisation of the 

wood, with two steps: first the wood is carbonised, and second it undergoes a gas phase 

infiltration of silicon or a reactive infiltration of molten silicon to produce a SiC 

material that keeps the wood microstructures 84, 86, 87, 90. This low density cellular 

biomorphous SiC has potential applications as high-temperature filters and as catalyst 

carriers 91.  

There have been already numerous investigations on the transformation of silica-

rich and renewable plant materials, such rice husks into SiC 54-63 and very few studies 
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on SiC synthesis using Equisetum as precursors 67, 68. SiC from rice husk was reported 

for the first time by Lee and Cutler 54 and has been intensively investigated until now. 

Rice husk which contains 15-20% silica and cellulosic materials as the carbon source 

can be converted into β-SiC with very fine grain size (0.1 µm) by heat treatment 

between 1290-1600°C using Fe as a catalyst 77. There are four competitive processes 

supposed to take place during the carbothermal reaction of silica from rice husk, i.e.: 

crystallisation of amorphous silica to cristobalite, partial graphitisation of amorphous 

carbon, formation of SiC polycrystals, and formation of SiC whiskers 55, 92. The 

crystallisation of both silica and carbon are barriers to the SiC formation since they are 

less reactive than their amorphous forms. The formation of SiC is via carbothermal 

reduction of silica according to the reaction 2.1 - 2.3. However, the formation of silicon 

would require a large excess of SiO compared to CO which is not fulfilled in the case of 

carbothermal reaction of silica from plant materials 93. Thus, side reactions considered 

to be likely to occur are 56: 

   SiO2 (s) + CO (g) ↔ SiO (g) + CO2 (g)    (2.8) 

   CO2 (g) + C (s) ↔ 2 CO (g)     (2.9) 

Production of SiC from silica-rich plant materials is the most effective way from 

the economic and environmental point of view. It is due to the abundance of low cost 

and high volume raw materials which already consist of the main components for SiC 

synthesis, namely silica and carbon, thus addition of starting materials is not needed. 

Moreover, it is known that carbon and silica in plants are closely associated 63, 71, 72, 

therefore mixing process can be eliminated and they can readily contact during the 

pyrolysis. The presence of excess carbon is also beneficial in increasing the rate of 

reaction 59. Plant silica is highly reactive due to its amorphous character 7 allowing the 

reaction to occur at low temperatures, i.e. within the range of 1200-1500°C 61, which is 

far below those used for the reaction between crystalline silica and graphite 55, 59, thus 

energy consumption can be reduced. At low temperature, agglomeration and bonding of 

particles are hindered 61, thus SiC particles in nanometer scale which is in fact 

depending on the size of nanosized  silica and carbon 55, 82 could be obtained. Monotype 

SiC (for instance β-SiC) could be obtained when the pyrolysis is carried out at 

temperature below 2000°C 77. Finally, the SiC particles would substantially retain 

hierarchical structure inherited from the original plant material, thus it may exhibit 
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novel properties, such as better thermal and mechanical properties. However, acid 

leaching of raw plant materials for the inorganic impurities (mainly K and Ca) removal 

is essentially necessary prior to heat treatment for getting pure SiC with high yield due 

to the reduced the crystallisation of silica and carbon 51, 58. Several applications of 

biomorphous SiC derived from rice husks as filler in composites, semiconductor, 

abrasive materials have been reported 52.  

 

1.3 Objective and scope of works 

 

There are three main objectives of the work reported in this thesis: 

• Detailed investigation of silica in the native plant E.hyemale. 

• Isolation of biogenic silica from E.hyemale by chemical and thermal treatments 

and its nanostructural characterisation. 

• Synthesis of biomorphous β-SiC from E.hyemale.  

The main focus within this thesis is to get an overall picture of silica characteristics 

accumulated in E.hyemale. Therefore, the work is divided into several different tasks 

covering the characterisations of silica at all levels of hierarchy: 

o Bulk analysis of E.hyemale shoots by means of chemical analysis to determine 

the accumulation patterns of silica during the growing time as well as 

determination of macroscopic silica distribution within mature E.hyemale stems. 

o An investigation of local silica distribution in E.hyemale internodes. For this 

purpose, microtomography, SEM/EDX mapping of Si, semi quantitative analysis 

using SEM/EDX, SEM/BSE, and Raman microscopy are employed.  

o Raman microscopy and FTIR are used to study the silica form present in 

E.hyemale tissues.  

o Crystallinity of silica in E.hyemale is studied by X-ray diffraction 

(XRD/WAXS), whereas for its nanostructure investigations, Small-angle X-ray 

Scattering (SAXS) and nitrogen sorption are applied.  

The other two objectives are based on the results from the first objective which 

determines the selection of chemical and thermal processes for the plant silica isolation 

as well as synthesis of β-SiC. SAXS/WAXS and nitrogen sorption techniques are 

mainly used for the characterisation of both silica and β-SiC derived from E.hyemale. 
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1.4 Outline of the thesis 

 

This thesis consists of an introductory chapter, the description of the main research 

results in the following three chapters, a conclusion and appendices. The introduction in 

chapter 1 is intended to give a short background on the origin and anatomy of 

Equisetum hyemale including a short literature overview of silica in higher plants, 

followed by a general state of the art description of silicon based ceramics from 

biological precursors. In Chapter 2, a comprehensive structural and analytical study of 

silica accumulated in E.hyemale is presented. Chapter 3 deals with the isolation of silica 

from E.hyemale using chemical and thermal treatments and its nanostructural 

characterisation. Chapter 4 reports several attempts to convert silica from E.hyemale 

into SiC upon pyrolysis at high temperature. Chapter 5 finally draws general 

conclusions and provides an outlook for further research. The theoretical background 

about the different characterisation methods used in this work is described in Appendix 

A. Appendix B contains details of sample preparations and a description of the 

scientific instruments employed during the measurements. SAXS/WAXS data treatment 

and evaluation is finally described in Appendix C.  
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Chapter 2 

Silica in Equisetum hyemale 
 
 

2.1. Study of silica accumulation in E.hyemale during the growth period  

 

The average silica content of dry shoots at different harvesting time within the growth 

period from the beginning of June until November 2005 were determined as depicted in 

Fig. 2.1. New shoots commenced out from the soil at the beginning of spring time, i.e. 

at the end of April and then started to grow at the beginning of May and continued until 

July. In August, the shoots appeared to reach their maturity already, marked by their 

maximum lengths (about 75 cm, based on visual observation). Hauke 16 stated that the 

cones of E.hyemale are mature by end of July and shed spores through August and 

September or the cones are over wintering, releasing the spores in April and May. 

During winter period, the growth is ceased due to the quiescent phase and E.hyemale 

shoots continue growing in the next spring time.  

The silica accumulation increased from around 6% to about 14% as the shoots 

were getting older (Fig. 2.1 (A)). This seems not to be accompanied by a biomass 

increase, since carbon content appeared to be relatively constant at about 37% during 

the growth period (Fig. 2.1 (B)).  
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Figure 2.1 Average silica contents (A) and average carbon contents (B) of E.hyemale shoots 
harvested in June until November 2005. The silica content was determined chemically by means of 
a gravimetric method. Five grams of fresh material was treated chemically with 10% HCl to 
remove the other inorganic impurities, and then oxidised in air (750°C, 2 h) to obtain pure silica. 
The silica content was calculated from the mass loss.  
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The silica content of different segments from top to base within stalks of mature 

shoots harvested in the middle of November 2005 was also determined. Both nodes and 

internodes were dissected into five different segments, i.e. top, upper middle, middle, 

lower middle, and base. Each segment consisted of about 2-3 nodes/internodes 

depending on the stalk lengths, which comprised of normally 10-12 internodes (Fig. 

2.2). The cones were excluded and its average silica content was determined separately. 

The macroscopic silica distribution from top to base within E.hyemale stalks is shown 

in Fig. 2.3. 

The silica contents decreased from about 15% at the top part to about 10% at the 

base part in both mature nodes and internodes (Fig. 2.3 (A)). There were only slight 

differences in silica contents between nodes and internodes. Moreover, the cone where 

the spores are collected comprised of relatively high silica of about 11%. It is known 

that in Equisetum, the way out shoots elongate can be crudely compared to the 

extension of the tapering telescope 92. The older, more extended internodes occur at the 

base of the shoot, while younger, less extended internodes are the last to be exposed and 

are found progressively toward the tip 92. However, there was no gradient in maturity 

anymore from top to the base when the shoots ceased elongating since the whole stalk 

was mature for the investigated E.hyemale stems. It is therefore interesting to note that 

there was a degradation pattern of silica content from top to base even though the stems 

maturity had been reached about 3 months before. Furthermore, carbon contents of 

different segments were relatively constant within nodes as well as internodes, though 

carbon was quite less at the top part of nodes (Fig. 2.3 (B)). This carbon content could 

be attributed either from biopolymer fibers in the cell walls, cuticular fatty acids or the 

nutrients such as polysaccharides and protein. The mature internode shows significant 

denser schlerenchyma cell walls at the hypodermal tissues below epidermis compared to 

the young one (Fig. 2.4). This implies that the cell wall fibers in mature internodes are 

mostly contributing to carbon content rather than nutrients which are supposed to be 

richer in the young internodes.  
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Figure 2.3 Macroscopic silica distribution (A) and carbon distribution (B) in nodes and internodes from 
top to base parts of E.hyemale stalks harvested in the middle of November 2005. E.hyemale stalks were 
dissected into five different segments for both nodes and internodes parts for the average silica content 
determination by means of chemical analysis. Five grams of fresh material was treated chemically with 
10% HCl to remove the other inorganic impurities, and then oxidised in air (750°C, 2 h) to obtain pure 
silica. The silica content was determined by gravimetric method. 
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Figure 2.2 A photograph of a stalk of E.hyemale divided into 5 different segments for the 
macroscopic silica distribution determination in nodes and internodes from top to base parts. 
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Additional to the chemical analysis, a comparative study on silica distribution of 

different internodes (top, middle, base) between young (one-month-old shoot) and 

mature (six-month-old shoot) was performed by using X-ray microtomography. The 

young shoot was still developing and the maturity was going basipetally while the 

mature ceased elongating already. Figure 2.5 (A) shows a 3D rendering from microCT 

of a dry stem, demonstrating the corrugated structure of the native E.hyemale stem outer 

surface. The ribs portions are occupied by two parallel rows of knobs, while the stomata 

row lies on each of the rib’s flanks. The plant has a relatively thick and dense epidermis 

in contrast to its interior tissue parts. Figure 2.5 (B) shows a two dimensional 

reconstructed cross section of a native stalk in a water-filled tube. The colour code 

displays the different X-ray absorption values, being related to the local density and 

composition. The absorption coefficients of water and the polymer tube are very similar 

to those of the biopolymers in the specimen, differing only by typically 10-20%. In 

contrast, the linear absorption coefficient of silica is higher by at least a factor 5-7 at the 

relevant X-ray energies. Therefore, neglecting possible influences from other inorganic 

substances accumulated in the stalks, the contrast in Fig. 2.5 (C-H) can be taken as a 

qualitative measure of the local 3D silica distribution with a voxel size of about 

(10x10x10) µm3. The inner tissue parts of the stalks are not visible anymore, indicating 

very low silica concentrations there. In the epidermal layer, the absorption contrast 

varies considerably, revealing highest silica concentrations in the knob regions, 

followed by the area between the knobs and finally the rest of the epidermis with a 

rather continuous and homogeneous silica layer.  

Figure 2.4. SEM images of cross sections of (A) mature internode and (B) young internode. 
Densification of the schlerenchyma (SCL) cell walls is marked in the mature internode and 
considered as one of the differentiation phase during stem maturation.   
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Figure 2.5 (A) 3D rendering of an X-ray micro-CT reconstructed image of a dry E.hyemale stalk. 
(B) A two dimensional reconstructed cross section of a native stalk in a water-filled tube. (C-H) 
Comparisons of three dimensional visualisations of qualitative silica accumulation in the epidermal 
layer of different internodes parts (top,middle,base) of E.hyemale between a developing stalk 
(C,D,E) and a mature one (F,G,H) in water-filled tubes acquired by X-ray micro-CT.  
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The pseudo-coloured 2D µ-CT image depicted in Fig. 2.5 (B) reflects "greyscale 

values" ranging from 0-256 depending on the different intensity of X-ray measured at 

each pixel. Thus, the 2D image can be reduced into a distribution of greyscale values. 

Since silica absorbs X-ray by far stronger than the plant biopolymers as well as water 

and the polymer tube, the area exclusively occupied by silica within the E.hyemale 

tissues can be analysed quantitatively based on the analysis of the greyscale histograms.  

The reconstructed 2D slices of the E.hyemale stalks were confined within a 

selected region of interest in the form of a circle by assuming the stalks to be circular 

with the outer radius R only slightly larger than the outer radius of the stalk (Fig. 2.6 

(A)) using the CTAn software (Skyscan, Belgium). Only the area restricted within this 

region of interest was taken into account for the analysis of the greyscale histograms. 

The area of 360 two dimensional slices corresponding to their greyscale values of each 

sample were averaged and normalised with respect to the area of the circular region of 

interest due to the variable sizes of the stem diameters of different samples. This leads 

to a parameter α, which allows to compare the greyscale histograms of different 

segments of the samples. Fig. 2.6 (B) shows an example of the greyscale histogram 

analysis of the top internodes of young and mature stems. The threshold of greyscale 

regions between 0-120 and 120-150 as showed by the inset in the histogram (Fig. 2.6 

(B)) were chosen to select the strongly silicified regions in the knobs (Fig. 2.6 (C)) and 

the less silicified regions in the continuous layer (Fig. 2.6 (D)), respectively. The 

greyscale value of 150 was chosen as the maximum cut-off boundary for silica in the 

epidermal layer based on our visual inspection, despite the fact that the contrast might 

be also influenced by the dense association of biopolymers like cellulose, pectin, and 

cuticular compounds in the outer continuous epidermal layer. Above this value, the 

schlerenchyma tissues appeared in the images followed by water with its distinct peak 

lying approximately within 160-210 (Fig. 2.6 (B)). The lower area in the peak from 

water observed in the young stem (red curve in Fig. 2.6 (B)) is due to the formation of 

significant air bubbles (Fig. 2.6 (A)), which is nicely seen in the non-vanishing α-values 

between 210-250 and the rest region which was cut off from the image (Fig. 2.6 (B)).  
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Figure 2.6 Semi-quantitative greyscale value analysis of silica distribution in different internodal 
segments (top, middle, base) of young (one month old) and mature shoots (six months old) of 
E.hyemale acquired by micro-CT (Figure 4.5). This analysis was conducted using the CTAn 
software (Skyscan, Belgium) based on the reconstructed 2D images confined within a circular 
region of interest (A). The plot of the average area from 360 slices relative to the total area of the 
circular region of interest (α) is plotted as a histogram function of greyscale values (0-256) (B). 
The inset indicates the magnification of those greyscale value regions which were used to 
distinguish between silica deposited in the knobs and in the continuous epidermal layer, with 
greyscale values lying within 0-120 (C) and 120-150 (D), respectively. The sum of α (Σ silica) 
within the respective greyscale value regions in different segments of both young and mature stems 
are plotted and compared in (E). 
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The cumulative α values (Σ) within greyscale intervals of 0-120 and 120-150 

were determined to distinguish the amount of silica deposited in the knobs and in the 

continuous layer, respectively in a semi-quantitative way. This semi-quantitative 

analysis allowed getting more meaningful data to differentiate and compare the portions 

of silica deposited in the knobs and the continuous layers within different parts (top, 

middle, base) of young and mature stems (Fig. 2.6 (E)) rather than just estimating their 

values by having a look at the qualitative 3D rendering µ-CT images (Fig. 2.5 (C-H)).  

Fig. 2.5 (C-E) indicates a difference in the silica distribution between the 

internodes from the top compared to the internodes from the middle and base parts 

within the developing E.hyemale stalk. This is consistent with the semi-quantitative 

greyscale analysis (Fig. 2.6 (E)). The top part contained the highest amount of silica 

deposited in the knobs as well as the continuous epidermal layer among the other 

segments within young shoot (Fig. 2.6 (E)). This decreasing pattern of silica distribution 

from the top to the base parts, which is hardly seen in the 3D rendering µ-CT images 

(Fig. 2.5 (F-H)), was also observed in the mature stem based on the greyscale values 

analysis (Fig. 2.6 (E)) and was fully consistent with the chemical analysis (Fig. 2.3 (A)). 

There is quite a difference in silica content of the top internodes (Fig. 2.5 (C) vs. (F) and 

Fig. 2.6 (E)) between the young and mature stems, while the middle and base parts 

show rather small differences (Fig. 2.6 (E)). Interestingly, the silica deposited in the 

continuous epidermal layer became more conspicuous in all segments within the mature 

stems in contrast to the young stems which predominantly deposited silica in the knob 

parts (Fig. 2.6 (E) and Table 2.1), even though the continuous layer of the young stem 

shows a higher contrast qualitatively compared to the mature one within the top part 

(Fig. 2.5 (C) vs. Fig. 2.5 (F)). The silica deposited in the continuous epidermal layer 

Table 2.1 Comparison of silica contents in different internodal segments (top, middle, base) of 
young and mature stems with respect to their deposition pattern within knobs and continuous 
epidermal layer based on the greyscale values analysis (CTAn, Skyscan).  

CL= continuous epidermal layer; K= knobs
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was consistent in the top, middle, and base segments of the mature stem with a factor of 

about 3 higher than those deposited in the knobs (Table 2.1). The more homogeneous 

silica distribution within the continuous “silica layer” over the whole internodes are 

obviously seen in the middle and base internodes of the mature stalk compared to the 

young one (Fig. 2.5 (D-E) vs. Fig. 2.5 (G-H)). In general, silica gradient appeared to be 

diminished from the top to the base parts and the silicification pattern within the 

internodes became more homogeneous over the whole continuous epidermal layer as 

the E.hyemale shoots were getting mature.  

 

 

2.2 Microscopic investigations of silica in E.hyemale  

 

Scanning electron microscopy (SEM) in secondary electron mode and in the 

backscattered electron (BSE) mode as well as energy dispersive X-ray (EDX) analysis 

for the Si mapping and semi-quantitative analysis were performed to study the silica 

distribution and its accumulation pattern at the microscopic level in E.hyemale. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.7 (A) shows a secondary electron image of the embedded and polished E.hyemale 

cross section, and Fig. 2.7 (B) shows the BSE image of the corresponding cross section. 

The BSE image contrast is dependent on the mean atomic number, thus regions 

containing high amount of silica should exhibit higher contrast compared to the low 

silica containing regions. It is obvious that the outer surface of the epidermis, in 

particular the bituberculate knobs lying on the ribbed portions show significantly higher 

contrast and indicate thus a strong silica deposition pattern, which is in agreement with 

B A 

Figure 2.7 Embedded and polished cross section of E.hyemale. (A) Secondary electron 
image; (B) Backscattered electron image. 
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the micro-CT results. Nevertheless, this contrast might also derive from other inorganic 

substances present in the sample, which have similar or even higher mean atomic 

number. Therefore, Si mapping using EDX as well as a semi-quantitative elemental 

analysis with EDX was performed to support this result. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.8 (A) shows a SEM image of a cross section of E.hyemale stalk and Fig. 

2.8 (B) shows the mapping of Si within this specimen. Si is rather homogeneously 

distributed (on a resolution scale of about 3-4 µm) in the epidermal layer with 

particularly high amount in the knobs. There was almost no Si detected in the entire 

interior part of the plant tissue. To quantify the Si distribution pattern on the epidermal 

layer, a semi-quantitative elemental analysis with EDX was performed directly on the 

outer surface (Figure 2.9 (B),(E)). Si reached concentrations up to 33% at the knob tips 

(Fig. 2.9 (A)), whereas the epidermal flank contained about 17% (Fig 2.9 (C)). 

Analysing the cross section (Fig. 2.9 (D),(F)), the Si content was observed to decrease 

from the outermost surface towards the interior. It was found that the Si content at the 

lower inner part of the knob was around a factor of 5 less than that of the knob tips (6%, 

Fig. 2.9 (F)). Si was found only in trace amounts in the walls of schlerenchyma cells 

(Fig. 2.9 (D)) and there was no silica at all in the interior parts (data not shown). These 

results agree with the qualitative Si mapping, BSE image and with the microCT results 

that silica is accumulated exclusively in a thin continuous layer in the outermost 

epidermis and is particularly concentrated on the knob tips with almost pure silica. 

There was practically no carbon and no inorganic elements in the knob tip region (Fig. 

2.9 (A)). In contrast, the epidermal flank showed an increased carbon peak and also 

A B

Figure 2.8 Secondary electron image (A) and EDX map of Si (B) of a cross section of E.hyemale 
showing the Si depositions on the epidermis with the strongest accumulations at the knob tips. 
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some amount of K and Ca (Fig. 2.9 (C)). The inner part of the knob and the 

schlerenchyma cell wall contained significantly higher concentrations of both C as well 

as alkali and alkaline-earth metals, for instance Ca, K, Na, Mg and non metal elements, 

such as P and S (Fig. 2.9 (F),(D)). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.1.3 Molecular Study of Silica in E.hyemale 
 

 

 

2.3 Molecular investigations of silica in E.hyemale 

 

Having obtained a general overview of silica distribution in macroscopic and 

microscopic levels, spectroscopic techniques were employed for the study of silica at 

the molecular level. Confocal Raman microscopy and FTIR were applied to get 

complementary information on the silica characteristics together with the fingerprints of 

other molecules present in the epidermal layer. This enables to identify the specific 

Figure 2.9 Secondary electron images of (B) the outer surface and (E) the cross section of E.hyemale. 
(A,C,D,F) show EDX spectra at different positions indicated by the arrows at the knob tip (A), epidermal 
flank (C), lower inner part of the knob (F), and schlerenchyma cell wall (D). Insets are magnified parts of 
the EDX spectra of the elements found in low concentrations. The Au- and Pd-signals in the spectra 
originate from the sputtering of the samples with a thin Au/Pd film. The silica content in weight percent 
relative to all elements detected within the local illuminated sample volume was calculated for A,C,D,F as 
33%, 17%, 0.1%, and 6% ± 2%, respectively.   
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silica forms, particularly those mostly accumulated in the knobs of the ribbed portions 

and to study the possible interactions of silica with the organic or inorganic compounds. 

 

2.3.1 Confocal Raman Microscopy 

 

Raman microscopy is advantageous compared to FTIR as it allows obtain chemical 

images with very high spatial resolution (< 1 µm). Moreover, it is possible to measure 

the sample in the wet state and thus, information about the unaltered native state of the 

specimen can be obtained. The confocal arrangement allows to perform a depth scan 

within the knob region to image the chemical distributions of amorphous silica, silanol 

groups, and polysaccharides (cellulose, hemicellulose, and pectin) by integrating over 

245-570 cm-1 (Fig. 2.10 (A)), 937-993 cm-1 (Fig. 2.10 (B)) and 1054-1191 cm-1 (Fig. 

2.10 (C)), respectively 95, 96, 97.  

It is obvious that the distribution of the amorphous silica (Fig. 2.10 (A)) is 

highest on the tip of the knob and decreases with distance from the tip. The epidermal 

flank also showed a clearly higher intensity from amorphous silica. The intensity of the 

band attributed to the silanol group (Fig. 2.10 (B)) was restricted to the knob tip and 

hardly detected in the other regions. In contrast, there was nearly no polysaccharides 

detected in the tip of the knobs, whereas the lower inner part of the knob and especially 

the epidermal flank showed a higher signal from polysaccharides (Fig. 2.10 (C)). It is 

also interesting to note that within the knob, polysaccharides are increasing from the 

outermost part to the inner part (Fig. 2.10 (C)), just opposite to the gradient of the 

amorphous silica (Fig. 2.10 (A)). The small layer on the top of the knob in Fig. 2.10 (C) 

represents epicuticular waxes, which have spectral contributions interfering with other 

organics, e.g. polysaccharides.  
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Average spectra from regions which differed considerably in their chemistry in 

the imaging technique were extracted by marking selected areas in the chemical image 

(boxes in Fig. 2.10 (A)). Average spectra of the knob tip (spectrum 1), lower inner part 

of the knob (2), and epidermal flank (3) are shown within the fingerprint region (200-

1700 cm-1) in Fig. 2.10 (D). Raman spectra above 1700 cm-1 were dominated by doublet 

bands of organics at 2921 and 2947 cm-1 and water within 3000-3700 cm-1, which 

appeared in all regions (1-3), thus did not contribute much for the chemical composition 

Figure 2.10 Raman images (A-C), and average spectra (D) of different knob areas calculated after a 
depth scan through a knob of a tangential E.hyemale section in the wet state. The distribution of 
amorphous silica, silanol groups within amorphous silica and cellulose were imaged by integrating over 
245-570 cm-1 (A), 937-993 cm-1 (B), and 1054-1191 cm-1 (C), respectively (grey regions in D). Average 
Raman spectra were extracted from different regions defined in the image (A) and are shown in (D): (1) 
knob tip; (2) lower inner part of the knob; (3) epidermal flank. 
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differentiation. The average spectrum of the knob tip region (1) shows some prominent 

characteristic peaks of amorphous silica in a broad band within the region 250-500 cm-1, 

which is attributed to the in plane Si-O-Si bending 95. A vibrational peak at 800 cm-1 

corresponds to tetrahedral SiO4 moieties 98, and a strong band at 973 cm-1 is typical for 

silanol groups as found for instance in silica gel 95. The other accompanying peaks in 

spectrum (1) are tentatively all attributed to organics, but polysaccharides were barely 

found in this area (compare Fig. 2.10 (C)). For instance, the rather isolated strong peak 

at 1460 cm-1 might be attributed to a special plant wax 99.  

The two spectra of the inner knob (spectrum 2) and epidermal flank (spectrum 3) 

showed spectral similarities. Both demonstrated the presence of amorphous silica from 

the broad band in the region of 250-500 cm-1, but they both lacked the characteristic 

peak of the silanol groups at 973 cm-1 and showed just a small band at 966 cm-1, which 

could derive from the polysaccharides. The tetrahedral SiO4 moiety peak at 800 cm-1 

was very weak in epidermal flank region (3), and was absent on the inner part of the 

knob (2). Both regions showed strong bands around 1100 cm-1 arising from cellulose, 

hemicellulose and pectin  96, 97. Raman bands for cellulose can be seen at 440, 892, 

1118, and 1380 cm-1 96. The glucomannan peak observed at 2918 cm-1 supports the 

presence of hemicellulose 97. The characteristic band for acidic pectin is detected at 859 

cm-1 100 and is clearly seen in the lower part of the knob and as a shoulder in the 

epidermal flank. Furthermore, the contribution at 898 cm-1 is found also just in the 

lower part of the knob and the epidermal flank and may indicate the presence of 

calcium-oxalate 101. Moreover, small amount of calcium phosphate may also present in 

both lower part of the knob and the epidermal flank due to the weak Raman band 

arising at 968 cm-1 102. Some of the remaining, non-identified peaks presumably arise 

from cutin and waxy materials, which may differ in the different plant regions 103. 

Finally, a crystalline silica polymorph in the form of α-quartz was detected in an 

inclusion above a stomatal opening by Raman microscopy (Fig. 2.11 (A)). The Raman 

spectrum shows the characteristic fingerprint of α-quartz with a typical sharp peak at 

472 cm-1 104. Organic substances with their characteristic peaks at around 2900 cm-1 96 

were found neither in this crystal nor in the guard cells, in contrast to the subsidiary 

cells of stomata (Fig. 2.11 (B)).  
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2.3.2 FTIR  

 

FTIR was employed as a complementary technique to Raman microscopy since 

most frequently; IR spectra can be used to differentiate biopolymers, which are 

indistinguishable in the Raman spectra and vice versa besides its ability to give many 

Si-O vibrational modes, thus additional useful information can be obtained. 

Additionally, IR shows no problems with fluorescence radiation in contrast to Raman 

spectroscopy when dealing with biological tissues, leading to an improved signal-to-

noise (S/N) ratio. Local IR measurements where done on the epidermal layer focused on 

the outer surface of the knobs and epidermal flanks by using an ATR objective. IR light 

transmitted by the ATR crystal during contact with the samples was penetrating the 

outer surfaces of the samples for several µm before being reflected back to the system. 

The obtained spectra were compared with the FTIR spectrum of silica powder derived 

from E.hyemale (Fig. 2.12), which was used as a standard material showing the 

characteristic fingerprint of amorphous silica. The purification processes of native 

Figure 2.11 Raman images (A-B) and average spectra (C) of α-quartz detected in 
an inclusion above a stomatal opening. The distribution of crystalline silica, i.e. α-
quartz were imaged by integrating over 420-542 cm-1 (A), while the distribution of 
CH2 groups of organic substances were mapped by integrating over 2770-3037 cm-1 
(B). Average Raman spectra of α-quartz were extracted from the middle region of 
the inclusion with the highest intensity in the image A.  
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E.hyemale shoots to get pure biogenic silica by means of chemical and thermal 

treatment along with their nanostructural characterisation will be discussed in more 

detail in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The region within 1250 and 850 cm-1 is assigned to a complex and strong 

vibration of Si-O 105. There are several absorption bands attributed to hydrated 

amorphous silica within the range of 4000 cm-1 to 600 cm-1: a sharp signal in the region 

1100-1000 cm-1 and a weaker signal at ~ 800 cm-1 due to siloxanes –(SiO)n– and a 

silanol band at 955 – 830 cm-1 106. Furthermore, water associated with hydrated 

amorphous silica is mostly detected at 1630 cm-1 due to a H-O-H bending band, which 

are attributed to the hydrogen-bonded hydroxyl groups and physically adsorbed water 

Figure 2.12 FTIR spectra of silica powder, knob, and epidermal flank taken by using ATR mode. 
The ATR objective was located exactly at the regions of interest by viewing the sample through the 
ocular or monitor under the visible light mode. Silica powder was derived from the calcination of 
HCl-treated E.hyemale at 600°C for 2 hours with a heating rate of 2 K/min. A thin epidermal layer 
was prepared and used for the local IR spectra measurements in the outermost part of knob and 
epidermal flank. The spectral region between 2000 and 2500 cm-1 were cut off due to the high 
absorbance signals derived from CO2 at 2362 and 2341 cm-1. 
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molecules besides a broad peak at the around the centre of 3400 cm-1 due to OH- 

stretching band 107, 108.  

The outer surface of the knob represented almost pure hydrated amorphous 

silica, showing rather broad silica bands at 1045 cm-1 and 793 cm-1, silanol group at 

about 912 cm-1, adsorbed water at 1629 cm-1 and a broad water band within 3700 – 

3000 cm-1. Some organics derived from the epicuticular waxes on the outer surface 

marked by the presence of strong doublet organic bands at 2925 and 2855 cm-1 109 and a 

small peak around 1732 cm-1 was proposed to be attributed to the cuticular related 

organic compound 99. There was no cellulose or other cell wall biopolymers detected in 

the knob tip. In comparison to the silica powder, the siloxanes –(SiO)n– bands of typical 

amorphous silica at around 1050 and 800 cm-1 are slightly shifted to the right within the 

knob tip. Probably, the knob tip also contained some impurities derived from the trace 

inorganic compounds containing Ca and K which could shift the absorption bands of 

amorphous silica to lower wavenumbers.  

In contrast to the knob tip, the outer surface of the epidermal flank displayed a 

rather complex spectrum of amorphous silica which was associated with organic as well 

as inorganic substances. The characteristic silica peaks centred at about 1045 cm-1 and 

793 cm-1 were obviously seen as in the case of amorphous silica in the knob tip. The 

amorphous silica found in this epidermal flank lacked silanol band. However, it showed 

a much higher water band within 3700 – 3000 cm-1 compared to the knob tip, indicating 

the presence of a greater amount of OH- groups ascribed to alcohol, cellulose, and other 

hydroxyl containing compounds. Moreover, the C-H stretching doublet bands at 2925 

and 2855 cm-1 96 were increased influenced by a greater quantity of organics present in 

the epidermal flank. Cellulose prominent peaks appeared at 1050, 900 and 1328 cm-1 
110. Furthermore, the epidermal flank was incredibly rich in pectin marked by the 

appearance of pectic polysaccharides bands at 1144, 1072, 1050, 1022 and 958 cm-1 100. 

Additionally, strong bands at 1604 and 1422 cm-1 due to the acidic groups of 

polygalacturonic acids were also associated with the pectinic acids 100. Hemicellulose 

may also be present as suggested by the absorption band of carbonyl bonds at 1735 cm-1 
109.  IR bands at 1735, 1462 and 719 cm-1 are possibly due to cutin, wax or other related 

cuticular compounds 99. Furthermore, minerals such as calcium oxalate and calcium 

phosphate - which were detected by Raman - are not easily observable in the FTIR 
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spectra since they are mostly overlapped by the organics spectra. For instance, the IR 

band of calcium oxalate at 1328 cm-1 102 overlapped with the spectra of cellulose. 

Calcium phosphate was not virtually seen at 1035 cm-1 102, being most probably masked 

by either silica or organics bands. Moreover, FTIR measurements were also done on 

several local sites in the guard cells of stomata (data not shown) and their spectra 

exhibited similarities with those derived from the epidermal flanks.  

 The results obtained from the FTIR measurements agreed well with the results 

from Raman spectroscopy. Pure hydrated amorphous silica is confined to the knob tips, 

while silica deposited in the epidermal flanks lacks of silanol groups and is closely 

associated with biopolymers, such as cellulose, hemicellulose, and pectin. E.hyemale is 

strikingly rich in pectin mostly in galacturonic acid residues which is in agreement with 

previous findings 19. Calcium oxalate and calcium phosphate are the most likely calcium 

containing mineral forms found on the entire continuous epidermal layer except the 

knob tips regions, which is consistent with the EDX results. 

 

 

2.4 Crystallinity and nanostructural study of silica in E.hyemale 

 

X-ray scattering was carried out to study the crystallinity by WAXS and to reveal the 

nanostructure of accumulated silica in E.hyemale by SAXS. Six powdered samples, 

namely native E.hyemale, epidermal layer, knob tips, ash, SiO2/C and biogenic silica 

from E.hyemale were investigated. The epidermal layer was peeled off from the outer 

surface using a razor blade while the knob tips were mechanically isolated by scrapping 

off the ribbed portions with a razor blade. The ash was obtained by calcination of 

E.hyemale stalks at 400°C in air. SiO2/C was prepared by applying a chemical treatment 

in 10% HCl to remove mainly all inorganic substances other than silica, prior to 

pyrolysis in Argon atmosphere at 400°C. Finally, biogenic silica was obtained upon 

calcination of the HCl-treated samples at 400°C in air. The chemically and thermally 

treated samples are included in this section under the assumption that the structure of 

the material after purification remains largely intact due to the mild treatments. This 

allows better understanding and interpreting the silica nanostructure within the complex 

native tissues of E.hyemale. The detailed investigations on HCl-treated E.hyemale as 
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well as biogenic silica from HCl-treated E.hyemale and ash obtained after the 

calcination of E.hyemale shoots at different temperatures ranging from 300 to 750°C 

will be described in more detail in Chapter 3. 

The SEM images in Fig. 2.13 show impressively that the ash (Fig. 2.13 (B)) and 

the biogenic silica (Fig. 2.13 (C)) used for the nanostructural studies retained perfectly 

the original structure of native E.hyemale (Fig. 2.13(A)) even though the two rows of 

knobs have almost merged due to shrinkage. This indicates the accumulation of silica 

over the whole outer surface, forming a continuous siliceous layer. This is consistent 

with the results obtained from micro-CT, SEM/EDX, Raman and FTIR.  

   

 

 

 

 

 

 

 

 

  Figure 2.14 (A) shows the WAXS profiles of these six powdered samples. The 

epidermal layer, which contains a high amount of silica, also contains a considerable 

amount of cellulose as evidenced by the broad peak at q ≈ 11 nm-1, corresponding to the  

110/101  doublet from native cellulose 111. This diffraction pattern is very similar to the 

diffraction pattern of native E.hyemale. The second strong reflection from cellulose, i.e. 

the 002 reflection at q = 16.2 nm-1, overlaps with the broad peak from amorphous silica 

at q = 15.5 nm-1. In contrast, no cellulose peaks were observed for the knob tips, which 

agree with the Raman results. It shows a broad peak centred at q = 15 nm-1 which is 

attributed to amorphous silica 112. After ashing, all organic components, including 

cellulose were removed. A broad peak at q = 15.5 nm-1 in the WAXS pattern is 

attributed to amorphous silica, but there are several other, much sharper peaks visible in 

particular at higher q values. No detailed phase analysis could be performed due to the 

missing data at high q. Nonetheless, the detected peaks can be attributed to crystalline 

compounds, such CaCO3, Ca3(PO4)2, and KCl for instance. All elements present within 

B A 

300 µm 

C 

Figure 2.13 Secondary electron images of the outer surfaces of (A) native E.hyemale, (B) ash, (C) 
biogenic silica. Ash and biogenic silica samples were prepared by calcination of E.hyemale and HCl-
treated E.hyemale, respectively at 400°C for 48 hours with a heating rate of 1 K/min. 
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these compounds have also been detected by EDX in E.hyemale (Fig. 2.9). 

Interestingly, these sharp reflections are not visible in the diffraction pattern from the 

epidermal layer, suggesting that these crystals might have been formed only after the 

thermal treatment. The WAXS pattern of the HCl-treated and calcined sample (i.e. the 

profile denoted biogenic silica in Fig. 2.14) showed the fingerprint of pure amorphous 

silica with a broad peak at around q = 15.5 nm-1, identical to that obtained from 

sorghum and very similar to opal 112. No indications of other phases were present in this 

pattern. The WAXS pattern of SiO2/C was very similar to that of biogenic silica. It 

appears slightly more diffuse due to the influence of diffraction from amorphous carbon 

showing a peak at q ≈ 16 nm-1 113. 
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Figure 2.14 WAXS patterns (A) and SAXS patterns (B) from powdered specimens of the native, 
epidermal layer, ash, biogenic silica, SiO2/C, and knob from E.hyemale internodes (see text). The 
lines in (B) indicate the power-law behaviour of the scattering intensity with I ∝ q-4 at large q for the 
ash and the biogenic silica samples (Porod's law), and a q-2 behaviour at low q for the biogenic silica 
sample. For the knob tips, counting statistics is poor, since only a very small amount of sample could 
be u 
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The SAXS profiles for these six samples are shown in Figure 2.14 (B). The ash 

as well as SiO2/C and biogenic silica follow clearly Porod’s law 114 for q > 1 nm-1, 

which means that there are sharp interfaces between spatially separated phases of 

different electron density. Also for the other samples, a q-4 region was present at large q-

values after subtraction of a constant background. Porod's law together with the 

integrated SAXS intensity was used to determine the so called T-parameter (see 

Equation A.26 - A.28), which can be considered to be a measure for the smallest 

dimension of particles or interconnected domains 115. The T-parameters as well as BET 

surface areas from nitrogen sorption for all investigated samples were calculated and 

listed in Table 2.2. The detailed procedure for T-parameter calculation is described in 

Appendix C. 

 

 

 

 

 

 

 

 

 

The numerical values of the T-parameters obtained from the ash and the 

biogenic silica sample are most probably related to a mesoporous silica network, similar 

to many other types of silica gels. For the ash, this network contains also other inorganic 

phases such as calcium carbonates, and the corresponding T-parameter value indicates 

that these particles are considerably larger than the silica particles. No detailed 

nanostructural information about the silica in the native tissues (native E.hyemale, 

epidermal layer) could be deduced from the SAXS profile, since they consist of a 

mixture silica with organics (cellulose microfibrils, other cell wall biopolymers such as 

hemicellulose and pectin, and cuticular compounds). Additionally, also the inorganic 

substances contribute to the SAXS pattern in an unknown manner. Therefore, the values 

of the T-parameter from the native plant and its fragments (epidermis, knobs) cannot be 

interpreted in terms of a single average length scale in the system. It should be noted, 

Samples T parameter (nm) σBET (m2/g) 

Native E.hyemale 

Epidermal layer 

Knob tips 

Ash, 400°C 

SiO2/C, 400°C 

Biogenic silica, 400°C 

1.4 

1.7 

1.9 

4.9 

2.4 

2.1 

- 

- 

- 

33 

265 

375 

Table 2.2 T-parameter calculated from SAXS data and BET surface area 
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however that the T-parameter from the knob tip (1.9 nm) is very close to the one from 

the biogenic silica sample (2.1 nm). This underlines again the fact that the knob tips 

consist of almost pure silica, and indicates that there might be indeed only slight 

structural changes in silica structure during the chemical and thermal treatment. A 

second interesting point to be noted is that the scattering profiles of the biogenic silica 

and the SiO2/C samples show a decrease of the scattering intensity proportional to q-2 at 

low values of q. This suggests planar or sheet-like structures 114, with the T-parameter 

being a measure of the sheet thickness.  

  The picture of a highly porous silica gel for the biogenic silica sample is 

supported by the BET measurement, which shows high surface area of 375 m2/g, 

whereas the ash has only surface area of 33 m2/g (Table 2.2). The surface area of the 

native tissues (native E.hyemale, epidermal layer, and knob tips) were not measurable 

by nitrogen sorption, suggesting neglectable amount of open pores. This points to an 

intimate association of silica with the combination of both, biopolymers and inorganic 

compounds. The nitrogen sorption isotherm of biogenic silica (Fig. 2.15 (A)) shows a 

hysteresis loop type H3, indicating slit-shaped mesopores or plate-like particles 116, 

which is in agreement with the SAXS analysis. The pore size distribution from the BJH 

analysis 117 is shown in Fig. 2.15 (B) with the average pore size of about 8 nm.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.15 Nitrogen sorption isotherms of biogenic silica (A) and pore size distribution from BJH 
analysis of the sorption data from the adsorption branch (B). Biogenic silica used for nitrogen sorption 
study is exactly the same sample used for the nanostructural study by WAXS/SAXS. 
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2.5 H2O2-treated E.hyemale 

 

A chemical treatment of young shoots of E.hyemale with 30% hydrogen peroxide was 

undertaken for the duration of 18 months by considering the use of hydrogen peroxide 

not only as a powerful oxidiser for both, organic and inorganic substances, but also the 

fact that the only by-product is water. A very thin and fully transparent continuous layer 

remained after the treatment, reflecting perfectly the original morphology of the 

epidermal layer (Fig. 2.16).  
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Figure 2.16 Secondary electron images of the outer surfaces of (A-D) mature 
E.hyemale, (E-H) young E.hyemale, (I-L) silica layer derived from young shoots. The 
outer surface of mature E.hyemale was taken from the basal internode of a six-month-
old shoot while the young E.hyemale was taken from the middle internode of a one-
month-old shoot. The silica layer was obtained after the treatment of a one-month-old 
E.hyemale shoot with 30% H2O2 for 18 months and was kept away from light 
exposure to slow down the decomposition of H2O2.  



 
Chapter 2                                                                                           Silica in Equisetum hyemale 
 

Characterisation of silica in Equisetum hyemale and its transformation into biomorphous ceramics   37

The “silica” layer appears to be fully intact by showing a smooth and continuous 

outer surface (Fig. 2.16 (I-L) vs. (A-H)). The knobs on the ridge portions and small 

wart-like protuberances occupying the rib’s flanks and furrow parts become more 

conspicuous compared to the native E.hyemale due to the removal of cuticular layer. 

The native E.hyemale shows a rougher surface predominantly determined by cuticular 

and waxy materials such as the wavelike linings in the ribbed region and opaque waxy 

materials covering the subsidiary cells of stomata and the furrow regions, which obscure 

the small warty protuberances on the grooves. The morphology of the young E.hyemale 

shows close similarities with the mature one (Fig. 2.16 (E-H) vs. (A-D)) but the outer 

surface appears to be coarser and not yet perfectly formed. The knobs look somewhat 

smaller and the waxy cuticles are arranged in a rougher and in more disordered manner 

compared to the outer surface of the mature stem. 

Characterisations of powdered samples of H2O2-treated E.hyemale by using 

FTIR as well as SAXS/WAXS and nitrogen sorption were also performed. The FTIR 

spectrum is depicted in Fig. 2.17 together with the spectrum of silica powder derived 

from HCl-treated E.hyemale calcined at 450°C for comparison. The three typical bands 

of four-coordinated silica at 1102 cm-1, 800 cm-1, and 471 cm-1 are obviously seen in 

both, the H2O2-treated E.hyemale and the silica powder samples and are assigned to the 

amorphous silica 107. The band at 957 cm-1 may be attributed to silanol 107 and peak at 

1636 cm-1 is attributed to adsorbed water 108. The remaining significant sharp peaks at 

1385 cm-1 and 667 cm-1 can most probably be attributed to Ca-oxalate (Spectral 

Database for Organic Compounds 118, SDBS no. 12376). Ca-oxalate may be present in 

E.hyemale since it is ubiquitous in higher plant families and has been observed in most 

plant tissues and organs as an intracellular or extracellular deposit 119. Ca-oxalate 

crystals are also commonly found to be precipitated in high concentration during the 

pulp bleaching with strong oxidising agents including hydrogen peroxide 120. Thus, Ca-

oxalate is most likely formed during the treatment with hydrogen peroxide as by-

product, adding to the amount of Ca-oxalate already present in the system. Since there 

was almost no Ca found on the knob tip based on EDX analysis and Raman 

microscopy, Ca-oxalate may be strongly distributed on the continuous epidermal layer. 

Despite the bands depicted in Fig. 2.17, there was a broad water peak centred at 3405 

cm-1 and a small doublet band at 2932 cm-1 and 2860 cm-1 due to C-H stretching 96 
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indicating the presence of very low amounts of organic materials after the acidic 

treatment of E.hyemale with hydrogen peroxide. In case of E.hyemale derived silica 

powder, neither water nor organics were observed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

WAXS/SAXS measurements were performed on the non-powdered sample as 

depicted in Fig. 2.18 to see whether there is any anisotropic scattering from oriented, 

non-spherical nanostructures. Some Bragg-spots from crystalline inclusions are clearly 

observed from the WAXS pattern (Fig. 2.18 (A)) with sharp peaks at about q = 10.14 

nm-1 and 14.27 nm-1, corresponding to the 001  and 102  reflections from α-Ca-Oxalate 

(calcium oxalate monohydrate), respectively. The presence of Ca-oxalate crystals in the 

system detected by X-ray diffraction is in line with the FTIR analysis. The predominant 

amorphous silica is marked by the broad peak centred at q = 15.5 nm-1. The deposited 

Ca-oxalate crystals seem to be randomly distributed within the E.hyemale shoots by 

showing no preferred orientation with respect to the cell axis (Fig. 2.18 (A), (B)). The 

Figure 2.17 FTIR spectra of silica powder derived from E.hyemale treated by hydrogen peroxide (red 
curve) and HCl followed by calcination (black curve). The chemical treatment of E.hyemale with 
30% H2O2 was performed within 18 months without light penetration. The HCl-treated E.hyemale 
was calcined at 450°C for 48 hours with a heating rate of 1 K/min.  
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spotty appearance of the reflections in the 2D patterns points to the presence of rather 

crystallites at least of several 10 μm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The SAXS profile follows Porod’s law 114 for q > 1 nm-1 (Fig. 2.18 (B)). The 

slope at low q is larger than 2, and the shape of the curve is somehow intermediate 

between the ash and the biogenic silica samples presented in the previous sub-section. 

The calculated T-parameter is about 4.4 nm, which is almost double than that of pure 

amorphous silica obtained from the calcination of HCl-treated E.hyemale at 400°C, but 

still lower than the one of the ash (Table 2.2). This suggests that the silica particles 

obtained after the treatment with H2O2 are considerably larger due to the influence of 

the inclusions of Ca-oxalate crystals, which have larger crystal sizes.  
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Figure 2.18 WAXS pattern (A) and SAXS pattern (B) of “silica” layer derived from E.hyemale 
treated with 30% H2O2 for 18 months without light penetration. The line in (B) indicate the power-
law behaviour of the scattering intensity with I ∝ q-4 at large q. 
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The nitrogen sorption isotherm of H2O2-treated E.hyemale sample (Fig. 2.19 

(A)) showed a hysteresis loop, though rather narrow indicating the characteristic of 

mesoporous silica network. The specific surface area obtained was quite high, i.e. about 

245 m2/g. The pore size distribution is rather broad compared to that of the biogenic 

silica described in the previous sub-section with a considerable larger average pore size 

of about 15 nm (Fig. 2.19 (B) vs. Fig. 2.15 (B)). The summary of nanostructural 

parameters of H2O2-treated E.hyemale sample based on SAXS and nitrogen sorption 

analysis is presented in Table 2.3. The SAXS surface is only slightly larger than the 

BET surface, which means that the sample exhibited significant open porosity after the 

hydrogen peroxide treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 Nitrogen sorption isotherms of H2O2-treated E.hyemale (A) and pore size distribution 
from BJH analysis of the sorption data from the adsorption branch (B). E.hyemale stems were treated 
by 30% H2O2 for 18 months without light penetration. 

Relative Pressure (P/P0)
0.0 0.2 0.4 0.6 0.8 1.0

V
ol

um
e 

A
ds

or
be

d/
 c

m
3 .g

-1

0

100

200

300

400

500

600

700

Adsorption 
Desorption

A 

Pore Diameter/ nm
1 10 100

dV
/d

lo
gD

/ c
m

3 .g
-1

.n
m

-1

0.0

0.2

0.4

0.6

0.8
B 



 
Chapter 2                                                                                           Silica in Equisetum hyemale 
 

Characterisation of silica in Equisetum hyemale and its transformation into biomorphous ceramics   41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters H2O2-treated E.hyemale 
 

T-parameter (nm) 
Porod constant, P  
Integrated Intensity 
BET surface area, σBET (m2/g) 
Total pore volume, Vp (cm3/g) 
Porosity, φ  
Average pore size, Dp (nm) 
SAXS surface area, σSAXS (m2/g) 
Pore chord length, lp (nm) 
Wall chord length, lw (nm) 
Pore thickness, ap (nm) 
Wall thickness, aw (nm) 
σSAXS/σBET 

4.4 
55.55 

181.02 
242.3 
0.997 
0.68 
16.46 

289.95 
13.76 
6.57 
6.88 
3.28 
1.2 

Table 2.3 Nanostructural parameters of H2O2-treated E.hyemale based 
on SAXS and nitrogen sorption analysis.   

P is the Porod constant (see Eq. A.26); ( I~ ) is the integrated intensity (see Eq. A.27); T 
is the mean chord length defined as T= (4/π) ( I~ /P) (see Eq. A.28); φ is the porosity 
calculated from the specific pore volume by (Vp)/( Vp + 1/ρ) with ρ being the true 
density. ρ H2O2-treated E.hyemale sample is assumed to be 2.1 g/cm3, which is the 
density of E.hyemale derived silica powder obtained from the pycnometer measurement 
(Appendix B). σSAXS is calculated by 4φ (1-φ)/(T.ρbulk) (see Eq. A.28); lp and lw are 
mean chord lengths of pore and wall, respectively by applying the equation 1/T = 1/lp 
+1/lw = 1/(φ.lw)= 1/((1-φ).lp); whereas ap and aw are the mean thickness of pores and 
wall, respectively, calculated by using the equation 1/T = /2.(φ.aw)= 1/(2(1-φ).ap) when 
slit/ plate morphology are taken into account (see Eq. A.29). 
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2.6 Discussion 

 

Macroscopic silicification pattern and essentiality of silica for growth 

Within mature E.hyemale stalks, silica content decreases basipetally from about 

15% to 10% without any significant differences between internodes and nodes. This 

acropetal silicification pattern in E.hyemale suggests the requirement of Si as an 

essential nutrient for the normal growth, considering that the younger tissue requires 

more nutrient supplies compared to the older tissue as the maturity goes basipetally 92. 

In addition, this silicification pattern towards the uppermost part of the stems of 

E.hyemale could also be facilitated by the higher transpiration rate on the distal region. 

The apical region undergoes more intensive transpiration because the radiation incident 

on them would be higher, thus water is lost in a greater quantities 121, leaving the silica 

depositions in larger quantities within the upper part compared to the lower internodes. 

The role of Si as an indispensable element for E.hyemale is also supported by the 

presence of a relatively high silica content (about 11%) within the cone. This may 

corroborate the essential requirement of silica to keep the spores viable and to maintain 

its life activity against some abiotic stresses 23. However, the mechanism on how Si is 

involved in the metabolism during the growth of E.hyemale is still very elusive and 

need further investigation. 

 

Local distribution of silica in E.hyemale internodes 

Local distribution of silica within the E.hyemale internodes is on the entire 

epidermal layer with the highest concentration on the knob tips, followed by the area 

between the knobs, and finally the rest of the continuous epidermal layer according to 

micro-CT, SEM/ backscattered electron, SEM/EDX map of Si, Raman microscopy, and 

FTIR investigations. This continuous silicification pattern as a particularity of 

E.hyemale was already recognized by Kaufman et al. 27. This is quite in contrast to other 

plants (e.g. Poaceae/ Gramineae) where silica is mostly deposited in the cell walls and 

cell lumina as silica bodies or phytoliths 21. Kaufmann et al. 27 also claimed that this 

uniform silicification pattern in E.hyemale is unique within the Equisetum family, and 

does not apply for instance to E.arvense, where they found silica primarily in discrete 

knobs and rosettes on the epidermal surface. More recent SEM investigations coupled 
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with EDX mapping of Si demonstrated however a thin continuous silica layer on the 

outer epidermis also in E.arvense 26. Moreover, the accumulation of silica in the knob 

tips appears to be more conspicuous in the developing shoots in contrast to the mature 

shoots where silica seems to be more predominantly deposited on the continuous 

epidermal layer (Fig. 2.6 (E)). This result is contrary to the investigation of Kaufman et 

al. 24, claiming that the deposition of SiO2 in long epidermal cell walls of E.hyemale 

occurs after internodal extension has ceased and should be therefore considered as one 

of the final stages in internodal differentiation that involves strengthening the cellulosic 

framework of the cell wall. He found out that the silicification of the knobs of the ribbed 

portions occurred when the internodes reached maturity and silica was first detected in 

the stomatal apparatus beginning with internode 3 from the apex, then the epidermal 

papillae (internode 8), and finally the in radial cell walls of the long epidermal cells 

(internode 10). Probably, this was because he investigated only very local areas using 

SEM/EDX. Thus, he could not represent the general silicification pattern of the whole 

E.hyemale shoot due to the sample heterogeneity and variations of silica patterns 

present within the local regions.  

 

Forms of silica deposited in E.hyemale 

Raman microscopy and FTIR investigation revealed two different silica 

modifications in E.hyemale. The first type which is restricted exclusively to the knob 

tips is pure hydrated amorphous silica with almost no interaction with polysaccharides. 

The second type, which is deposited in the continuous layer adjacent to the epidermal 

cells, lacks silanol groups and is closely associated with the cell wall biopolymers such 

as pectin, hemicellulose and cellulose in addition to the Ca, K, Na, Mg containing 

inorganic compounds based on the SEM/EDX analysis. The pure hydrated amorphous 

silica deposited particularly in the knob tips of E.hyemale is similar to those deposited 

in the tip of macrohairs of grass Phalaris canariensis L 122 which most probably has a 

colloidal silica network with Si-OH groups at the particle surfaces 10 without being 

associated with other elements in contrast to the silica bodies deposited in other plants, 

which are generally interfered by the presence of other elements, such as Al, K, Ca, P, 

and S 123. In contrast to first silica type, the second type is anhydrous. The lack of 

silanol groups may be influenced by the presence of biopolymers and inorganics which 
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act as catalysts accelerating the condensation process of water contained in the silanol 

groups. Cell wall biopolymers may also act as a polymeric template that regulates the 

silica deposition process and controls the shape and size of the colloidal silica particles 

similar to many other biominerals and mineralised tissues. However, it is still unclear 

whether there are some direct connections between silica with organic or inorganic 

substances. The presence of organic silicon compounds (Si-C- or Si-O-C-) is possible 

based on Raman/FTIR studies but they remain ambiguous since the spectra are mostly 

overlapped with those of polysaccharides. Some papers report that there is no 

experimental evidence of organosilicon complexes (Si-O-C- organic bonds) 124, 125, 126 

nor organic binding via Si-C- 125 in plant or animal tissue under physiological condition. 

There is also no organo-silicon complexes found in E.hyemale sap 127. Thus, it may be 

speculated that siloxane bonds (-Si-O-Si-) are prevailing over the surface silica particle 

(Fig. 2.20) and silica may have strong association with the polysaccharides (cellulose, 

hemicellulose, and/or pectin) for instance via hydrogen bonding between oxygen atoms 

in silica network with the hydroxyl groups from polysaccharides.  

 

 

 

 

 

 

 

 

 

 

 

Nevertheless, it is not impossible that particular organic silicon compounds may 

exist in E.hyemale. Schwarz 128 found a bound form of Si in polyuronides in 456 ppm in 

horsetail kelp. A detailed study of E.hyemale mapping using confocal Raman 

microscopy 129 has revealed a large amount of pectin and relatively high hemicellulose 

content in the epidermal cells below the grooves and perhaps silica has some linkages 

with pectin/hemicellulose which has definitely different chemical structure than silica 
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Figure. 2.20 Illustration of two silica forms present in native E.hyemale. (A) silica in knob tips. (B) 
silica in continuous layer adjacent to epidermal cells. The hydrated silica in (A) is referred to as silica 
type 1, whereas the anhydrous type in (B) is referred to as silica type 2. 
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deposited on the knob tips. Freitas et al. 130 also found two distinct forms of silica in rice 

husk based on NMR study, namely amorphous hydrated silica and organically bound 

silicon species. All of these facts may trigger a more detailed study to reveal all possible 

silica forms found in the nature and particularly in E.hyemale either in the form of 

organically or inorganically (cations) bonded silicon compounds.  

 

Crystallinity and nanostructure of silica deposited in E.hyemale 

Crystalline silica in the form of α-quartz was found above a stomatal opening of 

a mature E.hyemale internode and was detected by Raman even though silica was found 

to be mostly amorphous according to the X-ray diffraction analysis. It might be possible 

that amorphous silica is converted into quartz during the ageing since it is likely to be 

found in the senescent shoots of E.hyemale. However, quartz may also derive from the 

dust contamination which was trapped by the fluid exerted through the stomata and 

precipitated in situ. Such crystalline inclusions are not part of the E.hyemale 

appendages, and due to its rather low quantity (less than 7%) based on analysis of the 

X-ray diffraction patterns), it is neglected. 

Primary silica particles have a sheet-like structure with a thickness in the order 

of 2 nm based on SAXS analysis. SAXS also indicates a network of mesoporous silica 

structure with a relatively high surface area of about 375 m2/g (according to BET). The 

conditions during chemical and thermal treatments were relatively mild, thus it may not 

significantly alter the structure of silica accumulated in the native tissues of E.hyemale. 

It is of no doubt that some biomolecules, such as polysacharrides or proteins or 

inorganic substances play role in regulating size, shape, and crystallinity within the 

plant system 10, besides the genetic control which may also be considerably involved.  

 

Possible biological roles of silica in E.hyemale 

Finally, some possible biological functions of silica in E.hyemale are speculated. 

Since silica is accumulated in the peripheral region, it is very likely to play a role in 

strengthening the cuticle, protecting the plant body, controlling the excessive water loss, 

and serving as a defence against contact-probing insects and fungi 103, 131. Hauke 132 

observed that Equisetum was avoided by insects and largely immune from fungus and 

other diseases perhaps due to the presence of the silica coating. Silica rich containing 
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plant such E.hyemale has been attracting some researchers in order to study the role of 

silica in the enhancement of the mechanical properties of this slender hollow stem plant 
18. No evidence for an essential tensile nor compressive reinforcement by silica was 

found after scrapping off part of the epidermis. There was no drastic change in the 

stress-strain behaviour, except a reduction of the initial Young’s modulus by about 

20%.  However a continuous outer silica layer associated with the polysaccharides 

adjacent to the epidermis cell wall would at least be very beneficial for the enhancement 

of flexural rigidity of the stalk due to the high Young's modulus of silica 133 and silica 

may also act as mechanical reinforcement agents within the cell wall biocomposites. 

The hydrated amorphous silica accumulated in the knob tips would not much contribute 

to the improved overall mechanical properties of the stalks due their discrete 

distribution and without any interaction with the cell wall biopolymers. This would be 

then in line with the results of Speck et al. 18 supposed they removed only the hydrated 

silica deposited on the knob tips. Final evidence for a definite mechanical function of 

silica in the internodal system of Equisetum needs however still to be proved by 

properly designed micromechanical tests.  

 

 

2.7 Summary 

 

Within this chapter, a comprehensive study of silica accumulations in E.hyemale was 

performed from macroscopic length scales down to the molecular level using several 

sophisticated analytical techniques. 

 The overall silica content within the E.hyemale tissue increased from about 6% 

to 14% during the growing period. The silica content within mature E.hyemale stalks 

decreased basipetally from about 15% to 10% without significant differences between 

internodes and nodes. Silica is mainly deposited on the continuous epidermal layer with 

the highest concentration on the knob tips. The knob, epidermal flank, and inner lower 

knob comprised of about 33%, 17%, and 6%-wt silicon, respectively whereas almost no 

silicon was found in the interior parts. A thin continuous silica layer with an intact 

structure was remaining after the treatment of E.hyemale stems with 30% hydrogen 

peroxide, showing clearly that knobs, stomatal apparatus including the guard cells and 
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subsidiary cells, wart-like protuberances on the furrows, and epidermal cell walls are 

highly silicified. 

Silica is deposited mostly in amorphous form and two different silica 

modifications are found in E.hyemale. The first type is pure hydrated amorphous silica 

which is restricted to the knob tips with almost no interaction with polysaccharides. The 

second type is a non-hydrated amorphous silica which is deposited in the whole 

continuous layer adjacent to the epidermal cells. This type lacks silanol groups and is 

closely associated with the cell wall biopolymers such as pectin, hemicellulose and 

cellulose in addition to the inorganic compounds like Ca-oxalate. Silica primary 

particles have a sheet-like structure with a thickness of about 2 nm.  

It is concluded that silica is not only an essential nutrient for the growth of 

E.hyemale, but it may also strengthen the cuticle, and protect the plant body, in 

preventing the excessive water loss and as a barrier against insects / fungi. Since silica 

is deposited on the continuous outer layer adjacent to the epidermis cell walls, it is 

likely to enhance the overall flexural rigidity of the E.hyemale stalks. 
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Chapter 3 

Isolation of Silica from Equisetum hyemale  
 

 

This chapter describes the results from the attempt to isolate pure biogenic amorphous 

silica from E.hyemale. Biogenic silica from plant sources has a great potential as 

sustainable, low cost bio-resource for value-added new materials production. Examples 

include for instance reactive silica, filler, chromatographic supports, absorbent, and 

catalyst base 7. Based on the results from the previous chapter, silica in E.hyemale is 

present predominantly in close association with organic and other inorganic 

components. Thus, chemical and thermal treatments were applied to remove the 

inorganic impurities and the organic matrix in the raw materials and to obtain the 

remaining residue of pure biogenic amorphous silica. Two sets of samples were 

prepared:  

i) Native, dry  E.hyemale was calcined in air at seven different temperatures (300°C, 

350°C, 400°C, 450°C, 500°C, 600°C, 750°C) and a low heating rate of 1 K/min for 48 

hours. This treatment delivers the biogenic ash, which might for instance be an 

interesting material as filler in polymer industries or for concrete or cement production 

due to its high silica content 38, 49. Based on the present investigation, E.hyemale 

contains a very high amount of minerals, and its ash content can be up 20% of the total 

weight of the dry plant, where around 60% thereof is silica.  

ii) A chemical treatment using 10% HCl was performed to largely remove all inorganic 

compounds except silica, prior to the calcination in air at the same temperatures and 

conditions as applied for the ash production. This treatment intended to produce high 

grade, pure biogenic amorphous silica from E.hyemale.  

The nanostructures of the obtained ashes and biogenic silica samples were then 

characterised by means of powder diffraction (WAXS), SAXS, and nitrogen sorption to 

obtain detailed information about crystallinity, primary particle size, surface area, and 

pore size distribution. The effects of chemical and thermal treatments on the quality of 

the resulting materials were analysed in order to optimise the process for further 
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potential development into the pilot and industrial scales for the mass production of 

high value materials based on low cost and abundant raw materials.   

 

 

3.1 Native and HCl-treated E.hyemale 

 

All of the samples used in this study were harvested in November 2002 and were stored 

for about 4.5 years in contrast to the fresh samples investigated in Chapter 2. Also, the 

native E.hyemale samples were powdered before being subjected to the subsequent 

chemical and thermal treatments.  Thus some structural features may differ from those 

found in the previous section due to the different history.  

 XRF measurement for elemental analysis proved that the acidic treatment of 

E.hyemale using 10% HCl was powerful enough to significantly reduce the total amount 

of alkali and alkaline-earth metals from about 3% in the native tissue down to less than 

0.2% (Table 3.1). The HCl-treated samples were therefore almost free of the inorganic 

compounds that were intermixed with the silica in the native plant mainly in the 

continuous epidermal layer, based on the results from the previous chapter.   

 

   

 

    

 

 

 

 

 

 

Fig. 3.1 shows WAXS and SAXS patterns from the native and HCl-treated 

samples of E.hyemale, which were used as the starting materials for the thermal 

treatments to produce ash and biogenic silica, respectively. Nitrogen sorption was also 

performed on these samples to determine the surface area, pore size distribution, and 

porosity. Similar to the previous chapter, no adsorption data could be obtained from 

Elements Native E.hyemale 
(%-dry weight) 

After HCl Treatment 
(%-dry weight) 

Na 
K 

Mg 
Ca 
Al 
Fe 
P 
S 
Cl 

0.24 
1.3 

0.09 
1.1 

< 0.003 
0.026 
0.13 
0.11 
0.25 

0.10 
0.02 

< 0.0097 
0.005 

< 0.003 
0.002 

< 0.0006 
0.03 
0.02 

Table 3.1 Elemental analysis of E.hyemale after chemical 
treatment with 10% HCl at boiling temperature for 2 hours 
for inorganics removal by using XRF. 
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native E.hyemale, indicating the inaccessibility of the pores for nitrogen gas due to the 

very close association between organic and inorganic compounds and perhaps the pores 

are fully occupied by mainly organic substances. After the HCl treatment, the samples 

became accessible to the nitrogen gas and a surface area of about 60 m2/g was obtained. 

The nitrogen isotherm and the pore size distribution of HCl-treated E.hyemale are 

depicted in Fig. 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diffraction patterns of the native and HCl-treated E.hyemale show 

substantially similarities (Fig. 3.1 (A)). Some minor reflections from crystalline silica 

polymorph such as α-quartz with the main peak at q = 18.9 nm-1 was better visible after 

the removal of inorganic substances and cell wall matrix, namely pectin and 

hemicellulose as the consequence of acidic treatment with HCl. Reflections from 

crystalline cellulose are visible in both samples, i.e. the 110/101  doublet at q ≈ 11 nm-1, 

the 002 reflection at q = 16.2 nm-1 (which was overlapped with the broad peak of 

B 

-4 
HCl treated  

native 
-2

A 

native 

HCl treated  

Figure 3.1 Powder diffractograms (A) and SAXS patterns (B) from powdered specimens of the 
native and HCl-treated E.hyemale.    and     in powder diffraction patterns denote cellulose and quartz, 
respectively. The lines in (B) indicate the power-law behaviour of the scattering intensity with I ∝ q-4 
(Porod's law) at large q and a q-2 behaviour at low q for the HCl treated sample. 
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amorphous silica at q = 15.5 nm-1), and the 040 reflection at q = 24.3 nm-1 111. Ca-

oxalate which was supposed to be present in the native E.hyemale as suggested by 

Raman microscopy and FTIR was not clearly observed in the diffraction pattern. 

Probably, its main peak at q = 10.7 nm-1 was masked by the broad 110/101  cellulose 

peaks. 

 

 

 

 

 

 

 

 

 

 

 

 

The SAXS signal (Fig. 3.1 (B)) from the HCl-treated specimen which looks 

quite different than that of untreated sample is believed to be primarily derived from the 

scattering of a highly porous silica framework due to a change of the respective contrast 

contribution. Replacing the scattering contrast Δρ2 = (ρSiO2 - ρM)2 between silica and 

organic matrix as in the case of native sample by Δρ2 =  (ρSiO2)2 between silica and 

pores as in the case of HCl-treated sample would indeed lead to an increase of the 

scattering contrast by more than an order of magnitude (the electron densities were 

estimated to be ρM ≈ 5.0 1023 e-/cm3 and ρSiO2 ≈ 6.6 1023 e-/cm3). Furthermore, the 

region at low q is proportional to a power law with a slope of -2, which is an indication 

of the presence of plate-like structures (see also previous chapter, Fig. 2.14), which 

appeared only after the HCl treatment. This result is again supported by the BET 

isotherm (Fig. 3.2 (A)) showing a type H3 hysteresis loop. This indicates a mesoporous 

structure with slit-shape pores or plate-like particles 116 that become "visible" after the 

removal of the inorganic compounds and organic matter other than cellulose (e.g. pectin 

and hemicellulose). The summary of nanostructural parameters of native and HCl-

Figure 3.2 Nitrogen sorption isotherms of HCl-treated E.hyemale (A) and pore size distribution 
from BJH analysis of the sorption data from the adsorption branch (B). E.hyemale stems were 
treated by 10% HCl at boiling temperature for 2 hours. 
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treated E.hyemale obtained from the combination of SAXS and nitrogen sorption 

analysis and can be seen in Table 3.2. 

The differences in nanostructural parameters between native and HCl-treated 

E.hyemale are obviously seen in Table 3.2. The inaccessibility of nitrogen in native 

E.hyemale powder indicates an extremely close association among all of organic and 

inorganic compounds present. After the HCl treatment, the porosity of more than 15% 

was created, leading to a surface area of about 60 m2/g according to the BET analysis. 

This is due to the removal of inorganic substances besides also the dissolution of cell 

wall matrix polymers namely pectin and hemicellulose which are easily hydrolysed by 

acid in contrast to cellulose. Interestingly, the surface area determined by SAXS is 

larger by a factor of 2 as compared to the BET value. Since BET only measures the 

open porosity and SAXS is sensitive to both, open and closed pores, it is concluded that 

the area occupied by closed pores is comparable with the area occupied by the open 

pores. The other parameters derived from SAXS analysis listed in Table 3.2 are to be 

interpreted with caution since many cell wall polymer phases are still present and 

influence the SAXS signal.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Native 
E.hyemale 

 

HCl-treated 
E.hyemale 

T-Parameter (nm) 
Porod constant, P   
Integrated intensity  
BET surface area, σBET (m2/g) 
Total pore volume, Vp (cm3/g) 
Porosity, φ  
Average pore size, Dp (nm) 
SAXS surface area, σSAXS (m2/g) 
Pore chord length, lp (nm) 
Wall chord length, lw (nm) 
Pore thickness, ap (nm) 
Wall thickness, aw (nm) 
σSAXS/σBET 

1.56 
53.60 
65.50 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

3.04 
170.68 
407.99 
56.38 
0.117 
0.17 
8.30 

128.31 
3.65 
18.34 
1.82 
9.17 
2.28 

 

Table 3.2 Nanostructural parameters of native and HCl-treated E.hyemale 
based on SAXS and nitrogen sorption analysis.  

E.hyemale derived silica ρ = 2.1 g/cm3 obtained from the pycnometer measurements 
(Appendix B) and  cellulose ρ = 1.5 g/cm3 134. Here it is considered that the HCl-
treated sample is composed of 30% silica and 70% cellulose under the assumption 
that native E.hyemale consisted of 80% organics and 20% minerals and 60% silica 
thereof and during the HCl treatment, there was a mass loss of organics (pectin and 
hemicellulose) of about 65% and total removal of inorganics except silica. 
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3.2 Ash and biogenic silica from E.hyemale 

 

Calcination in air was done for both, native and HCl-treated samples at 7 

different temperatures (300°C, 350°C, 400°C, 450°C, 500°C, 600°C, 750°C) with a 

very slow heating rate of 1 K/min, and were then held for 48 hours. The WAXS and 

SAXS patterns of the ashes (calcined native E.hyemale) and biogenic silica (calcined 

HCl-treated E.hyemale) for the different temperatures are depicted in Fig. 3.3 and Fig. 

3.4, respectively.   

The diffraction patterns of the ashes are very similar, except for the sample 

treated at 750° (A7) as can be seen in Fig. 3.3 (A). The ashes of E.hyemale (A1-A6) 

contained amorphous silica marked by the broad peak at around q = 15.5 nm-1
 and in 

addition several crystalline mineral phases. Reflections from crystalline silica in the 

form of α-quartz are predominantly seen at q = 18.9 nm-1 and q = 14.8 nm-1. The 

conspicuous peak at q = 20 nm-1 can be attributed to KCl, together with 2 further peaks 

at q = 28.3 nm-1 and q = 34.6 nm-1. Another obvious peak at q = 20.8 nm-1 together with 

other reflections indicated in Fig. 3.3 (A) by a filled square can unambiguously be 

attributed to calcite (CaCO3). Sample A7 was calcined at 750°C and shows a clear 

transformation of the amorphous silica into α-cristobalite marked by the pronounced 

peaks at q = 15.7 nm-1 and q = 25.7 nm-1, while the presence of a trace amount of quartz 

is still noted.  

In the calcined HCl-treated samples (Fig. 3.3 (B)), α-quartz reflections were 

observed for all temperatures together with the broad peak from amorphous silica. 

Quartz is the only crystalline component detected in these samples, and comparing 

qualitatively the height of the peaks, the amount is similar in the two types of samples. 

The concentration of α-quartz can roughly be estimated by the integral intensity ratio of 

Bragg-peaks from α-quartz and total integrated intensity from amorphous and 

crystalline silica (see Appendix C). This yields an amount of α-quartz of less than 7%, 

i.e., the major phase is amorphous silica. In contrast to the ash (A7, Fig. 3.3 (A)) which 

showed a structural transformation of amorphous silica into α-cristobalite at the highest 

heat treatment temperature, the corresponding calcined HCl-treated sample (B7, Fig. 3.3 

(B)) did not show the phase transformation at 750°C. The phase transition temperature 

from amorphous silica into α-cristobalite within standard conditions is reported between 



Chapter 3                                                                         Isolation of silica from Equisetum hyemale 
 
 

Characterisation of silica in Equisetum hyemale and its transformation into biomorphous ceramics   54

1200°-1400°C 32. Thus, the presence of inorganic impurities in the ash samples seems to 

account for the much early transformation since they could act as catalysts accelerating 

the transformation between these two silica polymorphs.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 X-ray powder diffractograms of ashes (A) and biogenic silica (B), derived from 
calcination of the native and the HCl-treated samples, respectively.  ,   ,  , , and  in the 
powder diffraction patterns denote calcite, cristobalite, KCl, cellulose, and quartz, respectively.  
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 From the SAXS patterns (Fig. 3.4), quite clear differences are observed between 

the profiles of ash and calcined HCl-treated samples, but the differences were less 

pronounced within the same sample type treated at different temperatures. For the ash 

treated at low temperatures (< 400°C), a shoulder is recognised at q ≈ 1 nm-1 with a q-4 

slope at larger q and a somewhat lower slope (≈ q-3) at smaller q. With increasing 

temperature, this behaviour changes to a q-4 slope over the whole measured range (pure 

Porod scattering). This means that there is no specific length scale of porosity in these 

specimens lower than about 50 nm. In the case of the calcined HCl-treated samples, 

Porod’s law was obviously fulfilled in large q region (q > 1 nm-1), while at low q, the 

Figure 3.4 SAXS patterns of ash (A) and silica-ash (B). The lines indicate the power-law 
behaviour of the scattering intensity with I ∝ q-4 at large q for the ash and silica ash samples 
(Porod's law), and a q-2 behaviour at low q for the silica ash samples.  
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intensities were proportional to q-2 for all specimens with only very little change with 

temperature. This indicates the scattering from sharp interfaces with a typical 

correlation length below 10 nm. At very low q, the intensity always increased strongly, 

suggesting the presence of large structures, such as cracks or large voids. The calculated 

T-parameters and other nanostructural parameters obtained from the SAXS analysis are 

listed in Table 3.3 (A) and Table 3.3 (B) for the ash (A1-A7) and the calcined HCl-

treated (B1-B7) samples, respectively. The nanostructrural data for the native and HCl-

treated sample are also displayed to make the comparison easier. It should be noted that 

due to the shape of the SAXS curves for the ash (increase of intensity towards low q 

with a negative power law exponent > 2), only a lower boundary for the integrated 

intensity is given. This means, that the T-parameters given in Table 3.3 (A) are lower 

estimates. 

 The SAXS data were complemented by nitrogen sorption analysis. The 

corresponding sorption isotherms as well as the pore size distributions determined by a 

BJH analysis 117 are presented in Fig. 3.5. Hysteresis loops are clearly seen for all 

samples at all temperatures, suggesting the typical characteristics of mesoporous 

systems. The hysteresis loops type H3 in the calcined HCl-treated samples were more 

pronounced than those of the ash samples, suggesting slit-shaped mesopores or plate-

like particles 116.  

For the ash samples, there is a decrease of the adsorbed amount and a shift of the 

hysteresis loop to higher relative pressures with increasing temperature. This suggests a 

decrease of the total surface area as well as an increase of the average pore size (Dp) 

with temperature, which is confirmed by the numerical values extracted from the 

nitrogen sorption analysis in Table 3.3 (A). A peculiar behaviour is observed at the 

isotherm at 600°C which shows a slight transition at low relative pressure of about 0.2 

(Fig. 3.5 (A)). This may be related to some additional microporosity in this sample 

which is observed at about 2 nm in the pore size distribution (Fig. 3.5 (C)), even though 

the large pores are clearly shifted to the right as compared to the lower temperatures. 

This peculiarity might be associated with the phase transition of amorphous silica into 

cristobalite which seems to start already at 600°C as supported by XRD (Fig. 3.3). 

However, this effect should not be overinterpreted. It could also be due to an 

experimental artefact since the BJH model does not generally perfectly fit in the 
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micropore regions and there is no clear evidence of such microporosity from SAXS 

(Fig. 3.4 (A)). At 750°C (A7), there was almost no sorption of nitrogen anymore by the 

ash sample, suggesting that the phase transformation of amorphous silica into 

cristobalite has led to a full collapse of the pore structure in this sample. The pore size 

distribution of ash samples is very broad and does not show any clear maximum. The 

average pore sizes tended to increase with increasing temperatures (Fig. 3.5 (C)).  

In contrast to the ash samples, the calcined HCl-treated samples showed much 

higher pore volumes and in particular much higher surface areas (Fig. 3.5 (B), Table 3.3 

(B)). The adsorbed amount first increased with temperature until 500°C and then 

decreased again. The pore size distributions of these samples are quite narrow and look 

very similar for all temperatures with an average pore size of about 7 nm (Fig. 3.5 (D)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Nitrogen sorption isotherms and pore size distributions of ashes and calcined HCl-treated 
samples prepared at different temperatures during calcination. (A) and (B) show the nitrogen sorption 
isotherms of various ashes and biogenic silica respectively, whereas (C) and (D) show the 
corresponding pore size distributions from BJH analysis of the adsorption branches, respectively. 
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The summary of the nanostructural parameters of the ashes (A1-A7) and the 

calcined HCl-treated samples (B1-B7) obtained from SAXS and nitrogen sorption 

investigations are presented in Table 3.3. Additionally, this nanostructural information 

is also represented in several graphs depicted in Fig. 3.6 and Fig. 3.7 for a clearer data 

presentation and to ease data interpretation. 

 

 

 

 

Parameters Native 
E.hyemale 

A1  
(300°C) 

A2 
(350°C) 

A3 
(400°C) 

A4 
(450°C) 
 

 

A5 
(500°C) 
 

 

A6 
(600°C) 
 

 

A7 
(750°C) 

 

Color 
T (nm) 
P  
Integrated Intensity 
σBET (m2/g) 
Vp (cm3/g) 
φ  
Dp (nm) 
σSAXS (m2/g) 
lp (nm) 
lw (nm) 
ap (nm) 
aw (nm) 
σSAXS/σBET 
 

Dark yellow 
1.52 

53.60 
65.50 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

dark grey 
4.08 

78.01 
250.31 
74.04 
0.293 
0.41 

15.85 
168.64 
6.96 
9.88 
3.48 
4.94 
2.28 

grey 
5.34 
50.16 

210.64 
58.01 
0.342 
0.45 
23.59 

140.61 
9.73 
11.85 
4.87 
5.93 
2.42 

grey 
5.91 
38.08 

176.82 
40.97 
0.322 
0.44 
31.42 

122.92 
10.48 
13.56 
5.24 
6.78 
3.00 

grey 
5.71 
29.56 

132.61 
27.23 
0.364 
0.47 
53.43 

136.06 
10.70 
12.25 
5.35 
6.12 
5.00 

grey 
5.39 
31.46 

133.23 
25.50 
0.295 
0.41 
46.21 

128.06 
9.20 
13.02 
4.60 
6.51 
5.02 

grey 
6.07 
17.60 
83.99 
16.51 
0.242 
0.37 
58.55 

100.74 
9.59 
16.54 
4.80 
8.27 
6.10 

pink whitish 
31.94 
0.29 
7.37 
9.21 
0.018 
0.04 
7.87 
2.18 
33.25 

808.48 
16.63 

404.24 
0.24 

Parameters HCl- 
treated 

E.hyemale 

B1  
(300°C) 

B2 
(350°C) 

B3 
(400°C) 

B4 
(450°C) 
 

 

B5 
(500°C) 
 

 

B6 
(600°C) 
 

 

B7 
(750°C) 

 

Color 
T (nm) 
P  
Integrated Intensity 
σBET (m2/g) 
Vp (cm3/g) 
φ  
Dp (nm) 
σSAXS (m2/g) 
lp (nm) 
lw (nm) 
ap (nm) 
aw (nm) 
σSAXS/σBET 
 

dark brown 
3.04 

170.68 
407.99 
56.38 
0.117 
0.17 
4.15 

128.31 
3.65 
18.34 
1.82 
9.17 
2.28 

 

dark brown 
2.84 

304.06 
679.53 
285.50 
0.515 
0.52 
7.22 

348.07 
5.92 
5.47 
2.96 
2.74 
1.22 

brown 
2.48 

417.30 
814.67 
350.80 
0.656 
0.58 
7.48 

444.03 
5.90 
4.29 
2.95 
2.14 
1.27 

light brown 
2.53 

406.84 
810.23 
395.80 
0.764 
0.62 
7.72 

463.01 
6.60 
4.11 
3.30 
2.06 
1.17 

dull white 
2.64 

368.83 
765.48 
408.40 
0.766 
0.62 
7.50 

444.65 
6.89 
4.28 
3.44 
2.14 
1.09 

white 
2.33 

470.68 
859.99 
435.10 
0.773 
0.62 
7.11 

506.83 
6.10 
3.76 
3.05 
1.88 
1.16 

white 
2.38 

455.51 
852.56 
398.00 
0.738 
0.61 
7.42 

486.06 
6.07 
3.92 
3.04 
1.96 
1.22 

white 
2.58 

403.64 
817.18 
332.30 
0.624 
0.57 
7.51 

419.22 
5.95 
4.54 
2.98 
2.27 
1.26 

The true densities of biogenic silica (calcined HCl-treated) and ash samples are 2.1 g/cm3 and 2.4 g/cm3, respectively which 
were obtained from the pycnometer measurements based on the samples treated at 600°C (Appendix B) and were assumed to be 
constant over the whole temperature range; ρ α-cristobalite = 2.21 g/cm3  29.  
 

Table 3.3 (B) Nanostructural parameters of calcined HCl-treated samples from E.hyemale based on SAXS and nitrogen sorption analysis. 

Table 3.3 (A) Nanostructural parameters of ash samples from E.hyemale based on SAXS and nitrogen sorption analysis. 
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Figure 3.6 Comparisons of Porod constant vs. surface area from BET analyses, Integrated Intensity 
vs. pore volume, and surface area obtained from SAXS vs. surface area from BET analysis of ashes 
(A-C) and calcined HCl-treated samples (D-F). Since the Porod constant and Integrated Intensity are 
only known up to a constant factor, they were normalised with respect to the average values of σBET  
and pore volume of the corresponding 3 samples treated at 450°C, 500°C, and 600°C. 
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Figure 3.7 Comparisons of nanostructural parameters obtained from SAXS and nitrogen sorption 
analyses, such as T-parameter (A), average pore size (B), lw (C), lp (D), pore volume (E), porosity (F), 
σSAXS (G), and σBET (H) between ash and calcined HCl-treated samples.  
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Fig. 3.6 (A) and (D) show the comparisons between the Porod constant 

determined from SAXS (which is proportional to the total surface areas) and surface 

area from BET analysis of various ashes and calcined HCl-treated samples, 

respectively. Since the proportionality constant between the Porod constant and the 

SAXS surface area σSAXS (Eq. A.26) is not known, the data were normalized to the 

average values at 450°, 500°, and 600°C where all of the organics were considered to be 

fully burnt-off. The temperature dependence of these parameters obtained from SAXS 

and BET are qualitatively similar, but not identical. In particular for the ashes, there 

seems to be a discrepancy at low temperatures, which suggests a considerable amount of 

closed porosity in the ash samples at low temperatures. The consistency of SAXS and 

BET data was additionally corroborated by the similar patterns of the values of the 

integrated intensity from SAXS analysis (which is proportional to total pore volume 

fraction (Eq. A.27) and pore volumes obtained from BET analysis (Fig. 3.6 (B) and 

(E)). 

Combining the porosity data obtained from nitrogen sorption analysis with Eq. 

A.28, the absolute value of the specific surface area from the SAXS analysis could be 

estimated without any assumption about the proportionality factor. Fig. 3.6 (C) and (F) 

show that the surface areas of the ash and calcined HCl-treated samples obtained from 

BET analysis (σBET) show similar temperature dependence as those calculated from the 

SAXS data (σSAXS). For the ash samples, the surface area decreased more or less 

continuously with temperature to a value close to zero at 750°C. The SAXS surface area 

is however considerably higher (up to a factor of four) as compared to the BET surface 

area. This confirms the speculation that the porosity in the ash sample is mostly not 

accessible. For the calcined HCl-treated samples, the maximum total surface area (500 

m2/g) is reached at 500°C (Fig. 3.6 (F)). There were only insignificant differences 

between σSAXS to σBET for all calcined HCl-treated samples (Fig. 3.6 (F) and Table 3.3 

(B)), thus suggesting a negligible amount of close pores in these samples.  

 Fig. 3.7 shows the comparisons of several nanostructural parameters for the ash 

and calcined HCl-treated samples, such as the mean chord length (T-parameter), the 

chord length of the pore walls (lw) and the pores (lp), the average pore size, the pore 

volume, the porosity, as well as the total surface area (σSAXS) and the BET surface area 

(σBET). The ash samples show higher values of the T-parameter, average pore size, lw, 
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and lp (Fig. 3.7 (A)-(D)) in comparison to the calcined HCl-treated samples. In contrast, 

pore volume, porosity, σSAXS, and σBET of the calcined HCl-treated samples are superior 

compared to the ash samples. The T-parameter, lw, lp, and average pore size of the ash 

samples increase as the temperature increases, whereas those of calcined HCl-treated 

samples appear constant over the whole temperature regions. Furthermore, the pore 

volume, porosity, σSAXS, and σBET of the ash samples are gradually decreased with the 

increasing temperatures, whereas for calcined HCl-treated samples, these parameters 

appear to reach their optimum values within the temperature region between 400°C-

500°C. Several fluctuated data are not only due to the instrument errors during the 

measurements but also due to the sample inhomogenities. 

 

 
3.3 Discussion 

 

Ashes containing of about 60% silica were obtained after thermal processing of 

the native samples in oxidising atmosphere. Amorphous silica was observed for the 

temperature range between 300°C and 600°C which was transformed into crystalline α-

cristobalite during the heat treatment at 750°C. This may be due to the presence of 

inorganic impurities such as sodium and potassium containing compounds which are 

known to accelerate the formation of cristobalite at temperatures as low as 800 °C 75. In 

rice husk, cristobalite was identified upon calcination from 800°C onwards 44. In the 

present work, the removal of organics by calcination in air at 300°C was able to create 

an open porosity with surface area of about 80 m2/g. However, with increasing 

calcination temperature, the surface area decreased continuously to a value close to zero 

at 750°C when the amorphous silica was transformed into cristobalite.  

Treatment of the native E.hyemale with HCl does not only substantially remove 

the inorganic impurities such as K and Ca, but also dissolves pectin 135, and 

hemicelluloses 135, 136  in the organic matrix. Moreover, amorphous cellulose may also 

be dissolved 137 and crystalline cellulose undergoes partial hydrolysis leading to a 

reduction in degree of polymerisation yielding so-called hydrocellulose, which is the 

swelling state of cellulose 138. Due to the HCl action, about 95% inorganic impurities 

and 65% organics are removed leaving cavities and voids. Thus, a highly porous 
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material with BET surface area of about 60 m2/g is obtained, which is comparable to the 

maximum BET surface area of the ash samples at 300°C. Additionally, the siloxane 

bridging (-Si-O-Si-) on the surface of silica type 2 is likely to undergo hydrolysis 

leading to the formation of silanol groups identical to silica type 1 (see Fig. 2.20). 

Further calcination of HCl-treated samples leads to the more progressive pore 

development by the removal of the remaining organic tissue with a drastically 

increasing BET surface area by a factor of more than 5 (≈ 300 – 450 m2/g). In 

comparison to the ash specimens, there is no phase transformation of the amorphous 

silica into cristobalite at 750°C. Since inorganic impurities were removed here, the 

transformation is expected to occur at much higher temperature (1200-1400°C, 32). 

What needs to be discussed further is the instability of the porous silica structure 

upon calcination without prior HCl-treatment. The most probable reason is the 

interaction of silica with the inorganic impurities, mainly potassium 47, 73. Real et al. 74 

provided some evidence from XAFS measurement that potassium oxide leads to the 

disruption of SiO4 network into chain like structures of non-bridging oxygen atoms. 

Krishnarao et al. 73 correlated the formation of black (carbon fixed) particles in rice 

husk silica ash due to the surface melting of silica in the presence of potassium 

impurities. As the consequence, the weight loss due to the removal of moisture and 

adsorbed gases was low. This also explained the huge discrepancy between the high 

surface area of calcined HCl-leached rice husk (260 m2/g) and the low surface area of 

calcined untreated rice husk (1 m2/g) described by Real et al. 47. Although slow heating 

may eliminate the tendency of silica for carbon retention since carbon formation and its 

oxidation occurs before the dissociation of K2O (620 K) and surface melting, the silica 

formed from untreated rice husks is not so bright (white) as silica formed from treated 

rice husks 73. Krishnarao et al. 73 also tried to impregnate the acid-leached rice husks 

with 4%-wt K2CO3 followed by calcination at 700°C for 3 hours to study the effect of 

potassium, and found similarities with the untreated samples. It seems plausible that the 

same mechanism is applicable to E.hyemale. Even though the concentration of 

potassium is much higher in rice husk as compared to E.hyemale, potassium is the most 

abundant inorganic elements present in E.hyemale besides calcium. The ash obtained 

from the calcination up to 600°C was grey indicating the remaining of carbon trapped in 

the samples. Only the ash obtained after calcination at 750° is pink whitish since silica 
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was transformed into cristobalite and the light pink color may derive from other 

impurities, such Fe and Mn 49. In contrast, the HCl-treated samples calcined from 500°C 

onwards were perfectly white suggesting highly pure biogenic silica derived from 

E.hyemale. An alternative explanation for the stability of silica structure after HCl-

treatment may be the pore opening. Since about 60% of the total plant mass was 

removed by the chemical treatment, a large accessible surface was present already prior 

to the thermal treatment. This may allow volatile reaction products to leave the solid 

framework without the creation of large internal stresses, which in the case of the ash 

might be partly responsible for the collapse of the pore structure. 

Calcination of HCl-treated samples delivered biogenic silica with mostly open 

porosity. This can be interpreted as the effective removal of all remaining biopolymers 

without changing or destroying the structural integrity of the biogenic silica network. In 

comparison, silica obtained by treating E.hyemale with 30% H2O2 without subsequent 

thermal treatment (see chapter 2) also exhibits mostly open porosity. However, the BET 

surface area is around a factor of 2 lower (≈ 250 m2/g) and the treatment is very time 

consuming. Treatment of E.hyemale with HCl without calcination exhibits a much 

lower surface area, but the SAXS surface area is by more than a factor of two larger 

than the BET surface area. This indicates a considerable amount of closed pores after 

HCl treatment. Crystalline cellulose is still remaining in this case, which may be 

rearranged as a result of drying after chemical treatment, closing some of the pores 

again. For the ash samples, the close porosity relative to open porosity is larger by a 

factor of 2 to 6 as the calcination temperature increases, while the total surface area 

(σBET and σSAXS) decreases. This may occur because the volatile products from organics 

decomposition such CO2 and CO increase as temperature increases. These gases remain 

mostly trapped inside the structure and cannot be easily released due to the surface 

melting of silica by the influence of potassium 73. A coarsening of the silica particles in 

the ash samples due to interaction of silica with potassium is also reflected by the higher 

T parameter value, while the T parameter of the calcined HCl-treated samples is more 

or less constant over the whole calcination temperature range.  The silica derived from 

the H2O2 treated sample has a T parameter lying in between the values of calcined 

native and calcined HCl-treated samples. This may be explained by the presence of Ca-
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oxalates crystals which are additionally formed during the oxidation as proved by XRD 

and FTIR (see chapter 2).  

Therefore it is clear that the inorganic impurities are unfavourable for the 

effective isolation of the biogenic silica from E.hyemale, and need to be removed in 

order to obtain high grade and high purity nano-sized silica. Chemical treatment without 

subsequent thermal treatment is not very useful for an effective and economic silica 

isolation due to the length of the treatment. Chemical treatment using HCl followed by 

calcination is found to be the most effective way to get high grade, amorphous silica 

with nanometer sized open porosity with very high surface area (activated biogenic 

silica). Thermal treatment at a low heating rate appears crucial for the pore development 

not only because of the removal of all organics but water in the silanol groups is also 

evaporated during heating leaving additional pores and cavities, which leads to 

structural rearrangements of silica into a highly mesoporous silica network. The 

optimum calcination temperature for HCl-treated sample was found to be around 500°C 

where pure biogenic silica with the highest surface area was obtained. Above this 

temperature, the surface area decreases, most probably due to the collapse of pores.  
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3.4 Summary  

 

In this chapter, amorphous silica was isolated from E.hyemale by purification via both, 

chemical and thermal treatments. Two sets of samples, namely ash and biogenic silica 

samples were prepared by calcination of native and HCl-treated E.hyemale, 

respectively. Calcination was carried out at 7 different temperatures between 300°C and 

750°C with a very slow heating rate of 1 K/min and holding time of 48 hours. The 

resulting ash and biogenic silica samples were subjected to nanostructural investigations 

using the combination of powder diffraction, SAXS, and nitrogen sorption.  

The ash samples contain roughly 60% silica mostly in the form of amorphous 

silica. The remaining 40% consist of other inorganic compounds such as CaCO3 and 

KCl. The amorphous silica in these ash samples was transformed into α-cristobalite 

during the heat treatment at 750°C. In contrast, this transformation did not take place in 

the corresponding calcined HCl-treated sample. SAXS and nitrogen sorption reveal the 

presence of slit-like pores with a thickness of 6-7 nm in the biogenic silica samples with 

a rather narrow size distribution. The calcined HCl-treated samples show considerably 

higher pore volume, porosity, and total surface area as compared to the corresponding 

ash samples. The optimum calcination temperature appears to be about 500°C, where 

high grade pure amorphous silica with completely white colour and BET surface area of 

≈ 400 m2/g is obtained. This E.hyemale derived biogenic silica may well have potential 

applications as adsorbents or catalyst supports for instance and also as raw materials for 

the synthesis of versatile industrial silicon-based products. 
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Chapter 4 

Silicon Carbide (β-SiC) from Equisetum hyemale  
 

 

In this chapter it was attempted to produce silicon carbide (β-SiC) based on the 

abundant and low-cost naturally growing "material" horsetail. With silica as the source 

of silicon and the organic biomolecules as the source of carbon, one simple thermal 

conversion step is in principle sufficient for this purpose. The highly reactive biogenic 

amorphous silica is expected to react with carbon present in high amount to form silicon 

carbide upon pyrolysis at high temperature (>1300°C) 68. One main advantage of this 

process is that there is no need to add any additional precursor material. The goal of the 

present work was to show the principle feasibility to produce the β type of SiC which 

has a cubic crystal structure. All E.hyemale samples were tempered in inert atmosphere 

at temperatures from 1500°C - 1600°C to prevent the formation of α-SiC which starts at 

about 2000°C  68.  

Several preliminary studies on the formation of β-SiC under different inert 

atmospheres, namely under vacuum (SiC/C 1) and argon (SiC/C 2) were performed 

using a two-step pyrolysis approach. The first step consisted of the pyrolysis of native 

E.hyemale internodes at 1000°C with a heating rate of 2 K/min and a holding time of 2 

hours at the maximum temperature for the transformation of all biopolymers into 

amorphous carbon. In the second step, the samples were transferred to a second furnace 

for the heat treatment at high temperature (1600°C) to allow the reaction between 

amorphous carbon and amorphous silica delivering β-SiC. A fast heating rate of 13 

K/min and a short holding time of 0.5 h were applied during this latter process.  

A second attempt for β-SiC synthesis was conducted in a different furnace by 

applying a single pyrolysis step from room temperature to 1500°C in argon atmosphere 

(SiC/C 3). A longer holding time (2 h) was maintained to allow more contact time 

between carbon and silica with the aim to eventually obtain higher yield of SiC. This 

sample was further purified by calcination at 750°C to remove the remaining carbon and 

finally chemically treated with hydrofluoric acid (HF) to remove all unreacted silica and
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also silica which might have additionally been formed by the oxidation of SiC. With 

this procedure, pure β-silicon carbide was obtained (SiC 1).  

In a third attempt, the HCl-treated E.hyemale samples were used as precursor for 

the β-SiC synthesis. The HCl-treated sample (see previous section) was first pyrolysed 

at 400°C, held for 100 h, followed by further heating to 1500°C, held for 6 h. The final 

material was then subjected to calcination at 750°C and HF treatment, and SiC 2 was 

obtained.  

All samples together with their corresponding treatments are summarised in 

Table 4.1. Several characterisation techniques were applied for the structural 

investigation of the resulting materials. WAXS was used to identify the different phases 

present in each system. Additional structural analysis using SEM, SEM/EDX, 

microtomography, SAXS and nitrogen sorption were performed in some of the samples.  

 

 
Samples Pre-treatment Heat Treatment 1 Heat Treatment 2 Post-treatment 

SiC/C 1 
 
 
 
 

- 
 
 
 
 

Pyrolysis in vacuum 
atmosphere from room 
temperature to 1000°C (2 
K/min, 2 h, furnace 1). 
 

Pyrolysis in vacuum 
atmosphere from room 
temperature to 1600°C 
(13 K/min, 0.5 h, 
furnace 2). 

- 
 
 
 
 

SiC/C 2 
 
 

- 
 
 

The same procedure as 
SiC/C 1. 
 

The same procedure as 
SiC/C 1 but in Ar 
atmosphere. 

- 
 
 

SiC/C 3 
 
 
 
 

- 
 
 
 
 

Pyrolysis in Ar 
atmosphere from room 
temperature to 1500°C 
(12 K/min, 2 h, furnace 
3). 

- 
 
 
 

- 
 
 
 

SiC 1 
 
 
 
 
 
 

- 
 
 
 
 
 
 

The same procedure as 
SiC/C 3. 
 
 
 
 
 

- 
 
 
 
 
 
 

Calcination at 
750°C for 1 h. 
Chemical 
treatment with 
40% HF at 
boiling 
temperature. 

SiC 2 Chemical 
treatment with 
10% HCl (48 h) 
at boiling 
temperature. 

Pyrolysis in Ar 
atmosphere from room 
temperature to 400°C (1 
K/min, 100 h, furnace 3). 
 

Pyrolysis in Ar 
atmosphere from 400°C 
to 1500° (2 K/min, 6 h, 
furnace 3). 

Calcination at 
750°C for 1 h. 
Chemical 
treatment with 
40% HF at 
boiling 
temperature. 

 

Table 4.1 E.hyemale derived SiC samples and their preparation 

See Appendix B for the detailed specifications of furnace 1,2,3 and for the detailed heat treatment 
processes for the SiC production. 
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4.1 Microtomography 

 

Three dimensional visualisation images of SiC/C samples (SiC/C 1, SiC/C 2, and SiC/C 

3) acquired by microtomography are depicted in Fig. 4.1.  SiC/C 1 and SiC/C 2 show 

that the original macroscopic shape of the samples was largely retained after the heat 

treatment, in contrast to SiC/C 3 sample which was mostly collapsed and the original 

stalk structure is only partly retained. 

The "contrast" from blue to red is proportional to the grey-values, and therefore 

a measure of the local X-ray absorption coefficient. Similar to Chapter 2, the outer 

surface and in particular the knobs in SiC/C 1 and SiC/C 2 samples show the highest 

contrast, whereas in the SiC/C 3 sample a rather homogeneous absorption contrast is 

seen on the entire outer surface. These patterns are supposed to reflect the distribution 

of β-SiC formed within the pyrolysed E.hyemale stalks which were more or less similar 

to the distribution of silica in native E.hyemale internodes (see Fig. 2.5 for comparison). 

However, the more homogeneous contrast within the samples treated under argon 

(SiC/C 2 and SiC/C 3) in comparison to SiC/C 1 which was thermally treated in vacuum 

qualitatively suggested the higher yield of β-SiC formation over the outer surface of the 

pyrolysed E.hyemale stalks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 3D rendering of X-ray micro-CT reconstructed images of SiC/C 1 (A), SiC/C 2 (B), and 
SiC/C 3 (C) acquired by Amira software.   

A 

SiC/C 1 

2 mm 

B 

SiC/C 2 

2 mm 

SiC/C 3 

1.5 mmC 
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4.2 SEM/ EDX analysis 

 

The microstructure of β-SiC (SiC 1 and SiC 2) obtained after the post-treatment 

processes was investigated by SEM. Interestingly, the final SiC materials resembled the 

original structure of the outer surface of the native E.hyemale stalks. One can still 

distinguish the furrow region occupied by two parallel rows of stomata separated by the 

ribbed portion (Fig. 4.2 and Fig. 4.3 vs. Fig. 2.16). However, the structure is strongly 

distorted as compared to the biological template marked by the much denser and coarser 

structure due to a strong shrinkage. Furthermore, merging of the two knob rows in the 

ribbed portion is noticed in SiC 1 sample (Fig. 4.2) and even the knobs containing pure 

hydrated amorphous silica (see chapter 2) vanished in SiC 2 sample. The silica in the 

knobs might be converted into silicon monoxide gas which is either diffused into the 

epidermis and react with carbon to form SiC or diffused over the reaction chamber and 

was probably driven away by the flowing argon gas before reacting with carbon to form 

β-SiC within the selected process condition (Fig. 4.3). The morphology of SiC 2 

retained the original silica structure to a larger extent in comparison to SiC 1, even 

though the knobs are missing in this sample. It is seen in Fig. 4.3 (C) that the stomata 

and warty-like protuberances within the furrow region are more pronounced as 

compared to (Fig. 4.2 (B) (compare also with the native tissue Fig. 2.16 (L)).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 SEM images of SiC 1 

B A 
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Fig. 4.4 shows the semi-quantitative SEM/EDX analysis of SiC/C 3 sample. 

Silicon was found at its highest concentration up to 53% in the knob, followed by the 

other regions at epidermal flank, stomata, and small particles in the furrow region of 

which silicon contents are about 24%, 35%, and 42%, respectively. This pattern is 

consistent with the previous SEM/EDX analysis in the native E.hyemale showing the 

highest silicon content in the knob tip of around 33% (see Fig 2.9).  However, the 

silicon content in this sample is by a factor of about 2 larger compared to those detected 

in the native E.hyemale. The decrease of the total illuminated volume due to a 

significant shrinkage during the heat treatment would mostly account for this 

discrepancy. Furthermore, only Ca and Al elements were detected in the pyrolysed 

E.hyemale. Al was most probably derived from the alumina crucible since it is hardly 

Figure 4.3 SEM images of SiC 2 showing the morphology taken on different regions: 
E.hyemale derived SiC body (A), the furrow region (B), the stomatal region (C), and 
the ridge/ knob region (D). 

B A 

C D 
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found in the native E.hyemale (see Table 3.1). K, Mg, and Na which were also found in 

the native E.hyemale were not detected since they probably volatilized after being 

subjected to high temperature above 1400°C 139. Spherical particles lying over the outer 

surface in the furrow region (Fig. 4.4 (B)) were formed during the pyrolysis of 

E.hyemale within the selected condition for SiC/C 3. They are suggested to be mainly β-

SiC particles mixed with a small amount of Ca and Al containing silicate compounds as 

suggested from the SEM/ EDX analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Powder Diffraction/ WAXS 

 

The WAXS patterns of SiC/C 1, SiC/C 2, SiC/C 3, and SiC 1 can be seen in Fig. 

4.5, exhibiting some clear differences. In SiC/C 1 and SiC/C 2 samples, there was still 

large amount of carbon remained after the pyrolysis compared to SiC/C 3 sample. This 

was clearly seen in the WAXS signals from carbon (002) reflection at q = 17 nm-1 

which is anisotropic and reflect a preferred orientation of the carbonaceous graphene 

Figure 4.4 Secondary electron image of SiC/C 3 (A) with several EDX spectra taken at four different 
positions indicated by the arrows at the knob tip (A), epidermal flank (C), small particle (D), and stomata 
(E). The silica content in weight percent relative to all elements detected within the local illuminated 
sample volume was calculated for A,C,D,E as about 53%, 24%, 42%, and 35% ± 2%, respectively.   
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layers with respect to the original cellulose orientation 113. Another carbon peak (10) 

ascribed to in-plane ordering of the aromatic carbonaceous structures is observed at q = 

11 nm-1 113. The other reflections are homogeneous powder rings, i.e. there is no texture 

of the SiC crystals. β-SiC was formed in all samples marked by the main reflection 

(111) at q = 25 nm-1. The other peak at q = 28.9 nm-1 is corresponding to (200) 

reflection of β-SiC. This peak is not seen in SiC/C 1 which was treated in vacuum. 

Additionally, the peak of (111) reflection of β-SiC was rather small and broad in SiC/C 

1 indicating the formation of β-SiC at the initial stage. In contrast to SiC/C 1, which was 

treated in vacuum, the argon treated samples (SiC/C 2, SiC/C 3) showed much sharper 

peak of β-SiC, indicating greater amount of β-SiC with larger grain sizes formed under 

this condition. Furthermore, in comparison to SiC/C 2, the SiC/C 3 sample shows much 

stronger and sharper peak of β-SiC besides the lower carbon peak, revealing that the 

one-step processing approach gives the highest SiC yield. Additionally, the longer 

holding time at high temperature most probably favours a higher conversion of silica 

and carbon into SiC. The shoulder at q = 23.8 nm-1 might be attributed to stacking faults 

in β-SiC 140. 

In the argon treated samples (SiC/C 2 and SiC/C 3), several additional 

reflections are observed that cannot be attributed to carbon or β-SiC. There was no 

cristobalite observed in these samples, which is known to be formed at low temperature 

(< 1250°C) during the thermal treatment 55. This suggests the transformation of 

amorphous silica into silicate compounds containing probably Ca and Al as suggested 

by EDX. The peaks at q = 22.5 nm-1 and 26.5 nm-1 in SiC/C 2 may be attributed 

tentatively to Al2O3.3CaO.2SiO2 (gehlenite) and the prominent peak at q = 18.4 nm-1 in 

SiC/C 3 can be ascribed to Al2SiO5 (sillimanite).  

Further purification of SiC/C 3 samples by calcination followed by HF 

treatments leads to pure β-SiC (SiC 1 sample). Nevertheless, the β-SiC product is again 

accompanied by insoluble inorganic compounds, for instance CaF2 (q = 20 nm-1) as a 

result of the reaction of silicate compounds with HF during the chemical treatment (Fig. 

4.5). Therefore, in a final attempt it was tried to produce pure β-SiC within the 

laboratory scale by using the HCl-treated E.hyemale (see App. B) as precursor (SiC 2). 

With this approach, any silicate compounds formation due to the inorganic impurities 

would be eliminated. The fingerprint of highly crystalline, pure β-SiC was obtained as 
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being proved by the powder diffraction (WAXS) pattern shown in Fig. 4.6. Thus, the 

use of HCl-treated E.hyemale as precursor, i.e. starting material which is free of 

inorganic impurities is very crucial in determining the desired final purity of β-SiC 
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Figure 4.6 Powder diffractogram of SiC 2 showing the fingerprint of pure β-SiC.  
* might indicate stacking faults. 
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Figure 4.5 WAXS patterns of SiC/C 1, SiC/C 2, SiC/C 3, and SiC 1. SiC/C samples were derived 
from the E.hyemale pyrolysed at high temperatures in an inert atmosphere, whereas SiC 1 sample 
was obtained after the post-treatment of pyrolysed E.hyemale by HF treatment and calcination (see 
Table 4.7 for the details).    :β-SiC,   : carbon,    : silicates,     : insoluble inorganic compounds after 
post-treatment, and     might indicate stacking faults in β-SiC crystal. *

Intensity 
[counts/hr] 

*
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4.4 SAXS 

 

SAXS was carried out only in two samples, namely SiC/C 3 and SiC 1 of which 

patterns are displayed in Fig. 4.7. Porod’s law marked by the proportionality of the 

curve to q-4 114 prevailing over almost the whole q range in SiC 1 in contrast to SiC/C 3 

sample. This indicates that the scattering in the SiC/C 3 sample is dominated by the 

amorphous carbon compound which is expected to be highly microporous, supported by 

the clear shoulder at q ≈ 2 nm-1. In contrast, the SiC 1 SAXS profile shows no structure 

over the whole measured q-range, indicating a very broad pore size distribution. The 

mean chord length (T-parameter) of SiC/C 3 and SiC 1 were about 1 nm and 7 nm (see 

Table 4.2), respectively. It should be noted, that in particular for SiC 1, this is a lower 

estimate, since the integrated intensity cannot be reliably estimated for low q-values.                                   
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Figure 4.7 SAXS patterns of SiC/C 3 and SiC 1. The lines indicate the power-law 
behaviour of the scattering intensity with I ∝ q-4 (Porod's law). 
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4.5 Nitrogen sorption 

 

Nitrogen sorption experiments in 3 samples, i.e. SiC/C 3, SiC 1, and SiC 2 were 

performed in order to study their surface area, pore size distribution, and pore structure. 

These parameters will determine the features of E.hyemale derived SiC materials 

whether they fulfil the required standard qualifications for certain technical applications 

or not. 

The nitrogen sorption isotherms of all samples showed hysteresis loops which 

are characteristic for mesoporous structures (Fig. 4.8 (A)-(C)). The BET surface area for 

SiC/C 3, SiC 1, and SiC 2 are 42 m2/g, 17 m2/g, and 12 m2/g, respectively (Table 4.2). 

Pore size distribution of SiC 1 is much broader in comparison with that of SiC/C 3 (Fig. 

4.8 (E) vs. (D)) and qualitatively consistent with SAXS. Other nanostructural 

parameters of these samples are listed in Table 4.2. The SiC/C 3 sample has a very large 

total area according to the SAXS data, which may be mainly attributed to microporosity 

in the carbon phase, which is not accessible to the nitrogen. In case of SiC 2 sample, the 

pore size distribution is narrower compared to SiC 1 by only showing several peaks in 

the mesoporous region in addition to the presence of micropores at pore diameter ≈ 2 

nm (Fig. 4.8 (F)) resulting in a much lower average pore diameter (≈ 11 nm) which is 

around a factor of 2 lower than that of SiC 1 sample (see Table 4.2).  

 

 

 

 

 

 

Parameters SiC/C 3 
 

SiC 1 
 

SiC 2 
 

Mean chord length, T (nm) 
BET surface area, σBET (m2/g) 
Pore Vol., Vp (cm3/g) 
Porosity, φ  
Average pore diameter, Dp (nm) 
SAXS surface area, σSAXS (m2/g) 
Pore chord length, lp (nm) 
Wall chord length, lw (nm) 
σSAXS/σBET 

1.14 
41.73 
0.204 
0.32 
19.52 

483.48 
1.69 
3.51 
11.59 

 

7.11 
17.14 
0.114 
0.27 

26.52 
46.86 
9.71 

26.51 
2.73 

 

 
12.06 
0.034 
0.10 
11.36 

 
 
 
 
 

Table 4.2 Nanostructural parameters of SiC/C 3, SiC 1, and SiC 2 based on SAXS 
and nitrogen sorption analysis.   

SiC 2 sample is only characterised by nitrogen sorption without being coupled with SAXS 
measurement.  
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Figure 4.8 Nitrogen sorption isotherms and pore size distributions of SiC/C 3, SiC 1, and SiC 2. (A), 
(B), and (C) are figures of the nitrogen sorption isotherms of SiC/C 3, SiC 1, and SiC 2, respectively, 
whereas (D), (E), and (F) show their pore size distributions from BJH analysis of the adsorption 
branches, respectively.  
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4.6 Discussion 

 

There are significant differences between β-SiC obtained from thermal treatment 

of HCl-treated E.hyemale and native E.hyemale. SiC derived from HCl-treated 

E.hyemale (SiC 2) shows a more pronounced hysteresis loop compared to the SiC 

derived from native E.hyemale (SiC 1) indicating a more defined mesoporous structure 

with a considerably lower average pore size. The much lower surface area of SiC in 

comparison to that of biogenic silica from calcined-HCl treated E.hyemale (see chapter 

3) may be due to sintering of particles during the heat treatment at high temperature 

(1500°C). Therefore, collapsing of pores is more intense compared to silica obtained 

after calcination at relatively low temperature (< 1000°C).  

The SiC distribution in E.hyemale is restricted to the outermost layer where 

silica and carbon are intimately associated in the continuous layer adjacent to the 

epidermal cell wall (see chapter 2). The micromorphology of pyrolysed HCl-treated 

E.hyemale (SiC 2) by SEM reveals similarity with that of the native E.hyemale. Only 

the knobs are missing since they are most probably converted into silicon monoxide 

gas, and due to the missing carbon source in the knob tibs, SiC formation is not 

possible. It is obvious that SiC will be easily formed when silica and carbon are 

intimately present or if they are getting into close contact during the pyrolysis. This 

study shows the possibility of conversion of sustainable and low-cost E.hyemale into 

biomorphous β-SiC, which is of technical interests, for instance as high performance 

advanced ceramics.  
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4.7 Summary 

 

In this chapter, attempts towards the synthesis of β-SiC from E.hyemale were 

undertaken. Different inert atmospheres (vacuum and argon) and different precursor 

materials (native and HCl-treated E.hyemale) were subjected to selected processing 

conditions. It was found that direct pyrolysis and pyrolysis in argon atmosphere is more 

promising to obtain higher yield of β-SiC. Additionally, HCl-treatment of the native 

E.hyemale prior to pyrolysis is highly recommended to get β-SiC with high purity 

without the formation of undesirable silicates or insoluble inorganic compounds after 

post-treatment using HF. Removal of such silicate compounds after the pyrolysis is not 

only very difficult but also implies additional costs. A mesoporous β-SiC structure with 

a moderate surface area of about 12 m2/g is obtained which may be improved by future 

optimisation. Potential applications include refractory materials, adsorbents, or catalyst 

supports. 
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Chapter 5 

Conclusions and Outlook  
 

 

5.1 Conclusions 

 

The first part of this thesis reports a comprehensive analytical and microstructural 

investigation of silica in the perennial scouring rush, Equisetum hyemale. The scientific 

interest concentrates on the better understanding of the role of silica in higher plants in 

general and in Equisetum, which is one of the strongest silica accumulating plant, in 

particular. 

Silica accumulations within E.hyemale stalks increased from about 6% to 14% during 

the growing period (June – November 2005). Silica contents within mature E.hyemale 

stalks decreased basipetally from about 15% to 10% without any significant differences 

between internodes and nodes and the cone contained about 11% silica. These results 

support the idea already formulated in the literature that silica is an essential nutritional 

element for the development of E.hyemale.  

Within the internodes of E.hyemale, silica is mostly amorphous and is distributed in a 

continuous manner on the entire epidermal layer with the highest silica concentration on 

the knob tips. One of the key results of the present work is that there are two different 

silica modifications present in E.hyemale. The first type is pure hydrated amorphous 

silica without any interactions with polysaccharides, and is restricted to the knob tips. 

The second type is non-hydrated amorphous silica which is deposited in the continuous 

layer adjacent to the epidermal cells. This silica modification appears to be intimately 

associated with polysaccharides (cellulose, hemicellulose, pectin) and inorganic 

compounds. The primary silica particles have generally a sheet-like structure with a 

thickness of only a few nanometers. Taken together, these results demonstrate clearly 

that silica in E.hyemale is definitely not an unwanted by-product which the plant needs 

to get rid of. The strong (chemical) association with the cell wall polymers together with 

its colloidal appearance and plate like shape strongly suggests that the plant 

biopolymers act as a biological template, controlling essentially the silica synthesis in 

the plant. 
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Several possible functional roles of silica in E.hyemale are proposed based on the 

results of this study and in accordance with literature: a) silica is an essential element 

for the plant growth; b) silica supports and strengthens the main functions of the cuticle 

in protecting the plant body, in controlling the excessive water loss, and in serving as a 

defence against contact-probing insects and fungi; c) silica may play a beneficial role in 

improving the biomechanical properties such for instance flexural rigidity of the 

E.hyemale stem. 

 

The second part of the thesis is devoted to the isolation of the biogenic silica from 

E.hyemale while trying to retain its nanostructure and also the whole hierarchical 

structure as far as possible. The goal was to lay the grounds for a cheap and efficient 

synthesis of high grade mesoporous biogenic silica from the renewable plant resource 

E.hyemale. 

A chemical treatment with 30% hydrogen peroxide for 18 months resulted in pure silica 

that perfectly resembled the original outer shape of the original plant stalk, showing all 

ornamental surface features such as knobs, stomatal apparatus including the guard cells 

and subsidiary cells and wart-like protuberances on the grooves. Moreover, the 

nanostructure is characterized by small pores, an open porosity and quite large surface 

area. This demonstrates and supports impressively the results of the first chapter about 

the continuous silica "jacket" with a pronounced nanostructure. This H2O2 treatment is 

however not of practical use due to its extremely long duration. Heat treated E.hyemale 

also retain largely the original structure, even though not as perfect since shrinkage 

leads to distortions in the original hierarchical structure. 

Silica isolation by thermal treatment of native E.hyemale in air leads to ash with only 

moderate surface area, which decreases with increasing calcination temperature and 

vanishes at 750°C. Moreover, at 750°C crystalline cristobalite replaces the amorphous 

silica found at the lower temperatures. In contrast, when native E.hyemale is subjected 

to a treatment with hydrochloric acid, high purity mesoporous silica with high surface 

area (up to 400 m2/g) is obtained, with only little temperature dependence up to 750°C. 

Also no phase transformation to cristobalite takes place for the HCl treated silica. These 

differences between HCl treated and native precursor are attributed to two beneficial 
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effects of the chemical pre-treatment: a) HCl removes all the inorganic alkali ions that 

are known to strongly interact with silica during the thermal treatment, and thus may 

destroy the unique nanostructure of the biogenic silica framework. b) The removal of 

inorganic compounds together with a considerable part of the organic polymers (except 

crystalline cellulose) opens up the porous structure already before the thermal treatment. 

In the subsequent calcination process, reaction gases can escape, which in turn avoids 

the collapse of the pore structure due to internal stresses. Additionally, during the HCl 

treatment, hydrolysis of siloxane bridging (-Si-O-Si-) on the surface of silica type 2 into 

silanol groups identical to silica type 1 takes place.  

Therefore, a main conclusion of this study is that an HCl treatment prior to calcination 

is very advantageous in order to produce highly porous biogenic silica with high purity. 

The optimum calcination temperature lies around 500°C for this process. E.hyemale 

derived biosilica with its high specific surface area may well have potential industrial 

applications, e.g. as adsorbents or catalyst supports. 

 

The third part of this thesis finally attempted to synthesise biomorphous SiC from the 

sustainable and low-cost raw material E.hyemale by simple pyrolysis using silica as the 

silicon source and the biopolymers as carbon source. 

It could be shown that β-SiC can indeed be produced by simple pyrolitic decomposition 

of E.hyemale while at least partially retaining the original stalk structure. Direct (single 

step) pyrolysis and in particular pyrolysis in argon atmosphere promote higher 

conversion rates of silica into β-SiC as compared to treatment in vacuum. HCl-treated 

E.hyemale turns out to be a suitable precursor to get high grade β-SiC with high purity 

and low pore size. Similar to the case of the silica isolation in chapter 2, this better 

performance of the HCl treated samples as compared to the native tissue is explained by 

the negative influence of the additional alkali ions present in native E.hyemale, leading 

to the formation of undesirable silicates or insoluble inorganic compounds after the 

post-treatment with HF. The mesoporous SiC with a moderate surface area of about 12 

m2/g derived from pyrolysed HCl-treated E.hyemale may find applications as refractory 

material, catalyst support, or advanced ceramics.  
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5.2 Outlook 

 

1. A comprehensive study of silica in E.hyemale using different techniques at all 

hierarchical levels was performed in the present thesis in order to characterise and  

understand local silica distribution, silica type, crystallinity, and nanostructure. 

Some conclusions about the possible role of silica could be drawn, however, many  

issues related to the detailed biological function of silica remain unanswered. For 

instance the question why Equisetum tends to accumulate the largest amount of 

silica on their tissues among all higher plant and how silica is taken up by the roots 

into E.hyemale stalks are still elusive and further studies would be required. Also 

many physiological aspects such as more detailed investigations of silica in the 

different locations (e.g. nodes, leaves) and at different age (e.g. during the 

overwintering and over several seasons) would have to be investigated in more 

detail. Also the detailed mechanism of the Si involvement in the plant metabolism 

during the growth of E.hyemale needs definitely further investigations. Finally, the 

specific biological roles of silica in particular as a protective layer against excessive 

water loss, against insects and fungi, and its role in improving biomechanical 

properties are still rather speculative and therefore more specifically designed 

experiments would have to be performed. 

 

2. An important aspect to be further investigated is the interaction of organic matter 

with silica in the living plant, and the possibility of the existence of organosilicon or 

other chemical forms of silicon compounds in E.hyemale. Particularly, it would be 

very interesting to understand how silica formation is controlled by the different 

biomolecules. This may enable new ways to tailor bioinspired inorganic materials 

such as nanostructured silica with novel properties in vitro.  

 

3. Process optimisation and/or modification for a low-cost mass production of high 

yield and high purity biomorphous ceramics (SiO2, SiC) from E.hyemale need 

certainly further work. Basic investigation of the chemical and physical properties of 

these biomorphous ceramics (SiO2, SiC) are needed to verify, for instance, their 

superior mechanical and thermal properties. This would enable one to evaluate the 
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specific requirements for diverse industrial applications, such as for instance 

medicine, cosmetics, catalysts, chromatography columns, foods, paints, adhesives, 

fillers, refractory materials, and semiconductors. 
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Appendix A 

CHARACTERISATION METHODS 

 

 

Biological materials, such as plant tissues or bone, have a hierarchical structure, which 

is optimized at all levels 141, 142. Therefore, it is essential to characterise the structure of 

such biological tissues at all levels to understand their complex behaviour. The structure 

of such plant tissues is dispersed over at least eight orders of magnitude, thus many 

different techniques are necessary to be applied as there is no single technique cover 

such a large scale 141. Characterisation techniques used for the structure investigations at 

different levels within this research work are represented in Figure A.1.  

 
 

 

The methods such X-ray microtomography, Raman, FTIR, SAXS/WAXS are in 

principle based on the interaction of electromagnetic waves with matter, whereas 

scanning electron microscopy (SEM) is based on the interaction of electrons with 

matter. According to quantum theory, electromagnetic radiation can also be considered 

as a stream of particles called quanta or photons. Electrons also exhibit wave-particle 

STRUCTURE 
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Density 
Chemical analysis 

Surface area 

Macroscopic scale 
 

Microtomography 
SEM/ BSE 

Microscopic scale 
 

SEM 
SEM/ EDX 

Molecular scale 
 

Raman Microscopy 
FTIR 

Crystallinity 
 

XRD/ WAXS 

Nanostructural analysis 
 

SAXS 
Nitrogen sorption 

Figure A.1 Schematic view of a characterisation methodology at different hierarchical 
levels used for the study of amorphous silica in E.hyemale. 
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duality after the experiment of Louis de Broglie in 1924. The electromagnetic spectrum 

covers wavelengths from thousands of kilometres down to fractions of the size of an 

atom. The shorter the wavelength is the higher is the frequency and energy of the 

electromagnetic wave. They are related according to the Equation A.1.                      

 

 

Where E  is energy, h  is Planck’s constant ( h ≈ 6.63.10-34 J.s), v  is frequency, c  is 

speed of light ( c ≈ 3.108 m/s) and λ is wavelength. 

X-rays, unlike ordinary light, are invisible. They travel in straight lines and 

affect photographic film in the same way as light, much more penetrating than light, and 

can easily pass through the human body, wood, quite thick pieces of metal, and other 

“opaque” objects 143. Thus, X-rays are a powerful tool in material science for 

investigating the internal structure of the objects without any destruction.                           

 

 

A.1 X-ray Microtomography 
 

Tomography refers to the cross-sectional imaging of an object from either transmission 

or reflection data collected from many different directions, rendering a non-destructive 

three dimensional visualisation of the internal structures of objects 144. X-ray computed 

tomography (CT) is a relatively new technique developed in the late 1970’s. 

Tomography is widely used for medical applications. Micro-CT instruments are based 

on the same principles as medical CT, but they have the advantage of an enhanced 

resolution down to 5 µm by the use of a microfocus 145.  

The technique is based on the interaction of X-rays with matter where X-rays are 

attenuated as passing through an object. For monoenergetic X-rays, the attenuation in 

matter is given by Lambert-Beer’s law of absorption, which states that each layer of 

equal thickness absorbs an equal fraction of radiation that traverses it and is expressed 

mathematically as follows: 

ds
I

dI .μ−=  

(Equation A.1) 
λ
chhvE ==

(Equation A.2) 
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Where I  is the intensity of the incident radiation, IdI  is the fraction of radiation 

removed from the beam as it traverses a small thickness of material, ds  and μ  is the 

linear attenuation coefficient. After integration, the more familiar form of Equation A.2 

is obtained: 

                                        ( )∫= − dsseII .
0 . μ  or ( )

0

ln.
I
Idss∫ −=μ  

Where the 0I  is the intensity of the unattenuated radiation and I  is the intensity of the 

transmitted beam after it has passed a layer of material of thickness s  and the linear 

attenuation coefficient μ . The linear attenuation coefficient is a measure for the 

attenuation per unit distance. It is specific for the used X-ray energy and for the type of 

absorber. This attenuation is dependent on the density and atomic number of the object 

as well as the X-ray energy used, according to Eq. A.4 since the photoelectric 

absorption and Compton scattering processes are predominantly involved in the energy 

ranges used 146.  

A
ZEb

A
Z

E
EaE

m

n ρρμ )(1)()( +=  

 

Where E  is the X-ray energy, ρ  is the density of the absorber, Z  is the atomic 

number, A  is the atomic weight, and m  and n  values that depend on the energy and 

atomic number, respectively. At low energy (< 100 KeV), the first term is dominant, 

whereas at high energy (> 100 KeV) the second term is dominant.  

Tomography uses the radiographic images (two dimensional projections) of the 

object obtained from different angles. After the detection of the transmitted X-rays at 

different sample rotation angles, one can reconstruct the full 3D image from the 

projection data. The simplest case for reconstructing this image from the projection data 

is when the beam of X-rays is parallel. In this situation, each point on the projection 

image contains the information of the attenuation inside the 3D object integrated along 

the path of the corresponding partial X-ray beam. In other words, for a parallel 

geometry it is possible to divide the problem of a three-dimensional reconstruction from 

two-dimensional projections into the serial reconstruction of two-dimensional object 

slices from one-dimensional projection lines. Reconstruction of the virtual slice through 

(Equation A.3) 

(Equation A.4) 
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the object is possible using an algorithm based on the filtered back projection algorithm. 

The two-dimensional Fourier transform of the object is defined as 

( ) ( ) dydxeyxfvuF vyuxj )(2,, +−∞

∞−

∞

∞−∫ ∫= π  

The projection along lines of constant x for a parallel projection is described as 

∫
∞

∞−= = dyyxfxP ),()(0θ  

The Fourier transform of the projection defined in Equation A.6 is equal to the two-

dimensional Fourier transform of the object along a line rotated by θ . This is the 

Fourier slice theorem, which is stated in Kak and Slaney 144 : The Fourier transform of a 

parallel projection of an image ),( yxf  taken at angle θ  gives a slice of the two-

dimensional transform, ),( vuF , subtending an angle θ  with the u -axis. In other words, 

the Fourier transforms of )(tPθ  gives the values of ),( vuF  along the line BB in Figure 

A.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2 The Fourier Slice Theorem relates the Fourier transform of a projection to the Fourier 
transform of the object along a radial line 144. 

(Equation A.5) 

(Equation A.6) 
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 The filtered back-projection algorithm derived by using the Fourier Slice 

Theorem has been shown to be extremely accurate and amenable to fast implementation 

and used currently in almost all applications of straight ray tomography 144. Recalling 

the formula for the inverse Fourier transform, the object function, ),( yxf , can be 

expressed as 

( ) ( ) dvduevuFyxf vyuxj )(2,, +∞

∞−

∞

∞−∫ ∫= π  

This equation leads to the filtered back-projection equation: 

( ) θθθ
θ

π
dyxQyxf )sincos(,

0
+= ∫  

Where 

dwewwStQ wtj π

θθ
2)()( ∫

∞

∞−
=  

)(wQθ  is called a “filtered projection”, where the frequency response of the filter is 

given by w  towards the projection data transform )(wSθ . The resulting projections for 

different angles θ  are then added to form the estimate ),( yxf , thus Equation A.8 

represents the back-projection of each filtered projection in the reconstruction area. By 

increasing the number of projections from different views, this localisation becomes 

more and more defined. This is illustrated in Figure A.3.  

 

 

 

 

 

 

 

A 3D visualisation is then obtained through the reconstruction of the whole consecutive 

two dimensional slices. The whole imaging and reconstructions processes using micro-

CT is summarised in Figure A.4.  

 

 

 

 

(Equation A.7) 

(Equation A.8) 

(Equation A.9) 

Figure A.3 The dependence of quality of the reconstruction image of a point object 
on the available projection data from different views 147. 
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Most X-ray sources in the laboratory scale are not able to generate parallel 

beams. In a real case, a point source which produces a cone X-ray beam in the object 

area is used. In a fan beam geometry, the reconstructed slices will show some 

distortions far from the optical axis. Thus, a 3D cone beam reconstruction algorithm 

(such as Feldkamp) is used to reduce the errors. 

One of the first and most difficult artefacts one meets while working with µ-CT 

is beam hardening due to the polychromaticity of X-rays. There is no possibility to use 

monochromatic X-rays source for the tomography device in laboratory scale since the 

intensity is not brilliant enough to illuminate the sample in order to get reconstructed 

images with sufficient quality. The polychromatic X-rays consist of X-rays with a 

spectrum of different energies. Consequently, when the X-ray bundle passes the object, 

the lowest X-ray energies will be preferentially absorbed, leaving the rest portion of X-

ray with higher energies, which are less likely to be attenuated. The beam hardening 

artefacts can be corrected by many methods but this will lead to either increased noises 

or lowered image quality. Besides, the beam hardening will be just lowered to some 

extents without being completely removed out of the system. A quantitative analysis of 

µ-CT data seems to be not possible by the presence of significant beam hardening. One 

can go to synchrotron tomography, where monochromatic X-ray can be easily 

produced, thus avoid the beam hardening artefacts. However, some other problems, 

such as beam stability and background noises may rise during the measurements. 

 The resolution values in micrometer decreases with increasing magnification and 

will saturate towards a resolution limit, which is the focal spot size of the source. The 

Figure A.4 Schematic illustration of the basic principle of non-destructive reconstruction 3D object with 
X-ray Microtomography.  
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resolution of the microtomograph is a function of the size of the focal spot of the source, 

the pixel size of the detector system, and the position of the object. Furthermore the 

resolution of the imaging system is found to be independent of the sample materials 148. 

 

 

A.2 Scanning Electron Microscopy 
 

Scanning electron microscopy (SEM) is the most widely used form of electron 

microscopy in the field of materials sciences 149. The large depth of focus, the excellent 

contrast and the straightforward preparation of solid specimens are the reasons for the 

considerable success and widespread use of scanning electron microscopy in the 

imaging of surfaces over the past decades 150. It has become an ideal tool to examine 

and interpret the microstructure of materials because of its high spatial resolution, high 

depth of field, and its analytical power 149. The SEM is much simpler and easier in the 

sample preparation in comparison to the transmission electron microscope (TEM) for 

which sample preparation is quite difficult since very thin specimen of several nm is 

required. Therefore, TEM is not used in this study due to its complexity, especially 

when being applied to a highly porous and heterogeneous systems such biological 

tissues.   

The principle of scanning electron microscopy (SEM) is shown in Figure A.5. 

Electrons from a thermionic or field emission cathode are accelerated by a potential of 

1-50 kV between cathode and anode. Using a set-up of a number of lenses, the electron 

beam is focused on to the sample in a single spot of cross section 1-10 nm carrying an 

electron probe current of 10-10 – 10-12 A  151. A deflection coil system in front of the last 

lens scans the electron probe in a raster across the specimen and in synchronism with 

the electron beam of a separate cathode-ray tube (CRT). The intensity of the CRT is 

modulated by one of the signals recorded to form an image. The magnification can be 

increased simply by decreasing the scan-coil current. The bombarding of the sample 

with electrons leads to generation of X-rays and emission of secondary electrons or 

backscattered electrons. These effects can be used in probing the sample surface. 

Secondary electrons (SE) can be used to reveal surface topography, backscattered 

electrons (BSE) provide composition or orientation information, and emitted X-rays 
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may be collected for chemical analysis. Energy dispersive X-ray (EDX) analysis using 

electrons for excitation, and X-ray fluorescence (XRF) using X-rays for excitation, are 

both used in this study for chemical analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Elastic and inelastic scattering are the elementary atomic interaction processes, 

though the final signal used for image formation is not a result of a single scattering 

processes but of the complete electron diffusion caused by the gradual loss of the 

electron energy and by lateral spreading due to multiple elastic large-angle scattering 
151. Thus electrons have a finite penetration depth R of the order of 0.1-10 µm 

depending on electron energy and target density as the consequence of the gradual 

diminution of electron energy. However, the information depth and the lateral extension 

of the information volume that contributes to each of the possible signals depend on 

Figure A.5 Principle of the scanning electron microscope (SE= secondary electron, 
BSE= backscattered electrons, X= X-rays, CRT= Cathode-ray Tube 151.   
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where the corresponding interaction takes place. Figure A.6 shows the most important 

interaction processes and their information volumes. Secondary electron (SE) shows a 

peak at low energies with a most probable energy of 2-5 eV (ESE ≤ 50 eV). The broad 

spectrum of BSE between 50 eV and the primary electron energy is caused by the 

deceleration of electrons that have suffered multiple energy losses and undergone 

multiple scattering through large angles (EBSE > 50 eV). Auger electrons (AE) are one 

of the by-products, along with X-rays, which result from the inner-shell ionizations of 

the atoms in the sample caused by primary beam electrons. Considering the fact that 

electrons can get scattered by any particle in their way, including air, electron 

microscopes must be operated in vacuum.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Secondary electrons (SE), which are loosely-bound outer-shell electrons from 

the atoms in the sample, are the primary electron signal collected for imaging in the 

SEM and to provide topographical information about the top surface of the sample. 

They can be collected easily by means of a positively biased collector grid placed on 

one side of specimen. Behind the collector grid, the secondary electrons are accelerated 

onto a scintillator and the light quanta generated are recorded by a photomultiplier. Such 

an Everhart-Thornley detector is generally used as an amplifier. The dependence of SE 

image on the tilt of angle of a surface element, the enhanced emission at edges and 

small area and the shadow contrast makes it useful for the imaging of the surface 

Figure A.6 Interactions of electron-specimen in an 
electron microscopy. Origin and information depth 
of secondary electron (SE), backscattered electron 
(BSE), Auger Electrons (AE) and X-ray quanta (X) 
in the diffusion cloud of electron range R for normal 
incidence of the primary electrons (PE) 151.   
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topography. The secondary electrons are retarded by a positive bias and repelled by a 

negative bias of the specimen surface and are influenced by the electrostatic field 

between regions at different biases. These effects result in voltage contrast, negatively 

biased areas appearing bright and positively biased regions, dark 151. This contrast leads 

to evaluation of the detailed morphology of the sample surface. Due to the low exit 

energy, the secondary electrons trajectories are also affected by the magnetic fields, 

creating magnetic contrast. Additionally, a typical backscattered electrons contrast is 

superimposed on every secondary electron micrograph since some fractions of the 

secondary electrons emitted is excited by the backscattered electrons.  

Unlike secondary electrons, backscattered electrons (BSE) move on straight 

trajectories and are not affected by electrostatic collection fields, thus the detectors have 

to be mounted with a large solid angle of collection. Since the backscattered electrons 

emission also depends on the surface tilt, the surface topography can be imaged at lower 

magnifications with a better shadow effect than secondary electrons and at high 

magnification with a worse resolution, due to the larger information volume and exit 

area. The most important contrast is the dependence of the backscattering coefficient on 

the mean atomic number, Z  which allows phases with differences in Z  to be 

recognised. In addition, the backscattering coefficient also depends on the relative 

orientation of the incident electron beam and the lattice planes. 

Many SEMs are equipped with an energy-dispersive lithium-drifted silicon 

detector, which allows characteristic X-ray lines to be recorded with a resolution ΔE ≈ 

150-200 eV of the X-ray quantum energy 151. Energy-dispersive spectrometers are 

advantageous since all quantum energies within 1-20 keV can be recorded 

simultaneously and the spectrum, which contains information about composition of the 

internal constituents of the area, is displayed directly by means of a multichannel 

analyser. The quantitative analysis can be done by comparing the number of counts 

from an element in the specimen with the number of counts from a pure-element 

standard. However, the analysis is valid only if the specimen is flat and homogeneous 

within the diameter of the electron diffusion cloud. Thus, quantitative analysis of 

inhomogeneous specimens, such as biological tissues becomes more problematic. 

Nevertheless, energy dispersive X-ray (EDX) analysis is one the most widely-used and 

most powerful of the analytical capabilities available in electron microscopy.   
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 As the sample is bombarded with electrons, charge is built on the surface and if 

the sample is non-conducting it is not dissipated. As a result, charging effect will occur 

and the sample appears bright everywhere. To stop the charge from building up, the 

sample needs to be conducting. For these reasons the samples are generally coated with 

a very thin layer of metal such as gold or palladium or subjected to carbon sputtering 

prior to analysis. Furthermore, the emergence of Environmental SEM (ESEM) in the 

mid eighties has opened wider SEM investigations that were previously impossible 152. 

This is because ESEM removes the high vacuum constraint on the sample environment 

while still retaining all of the performance advantages of a conventional SEM. The 

investigation of wet, oily, dirty, non-conductive samples in their natural state without 

modification or preparation becomes possible. The ESEM offers high resolution 

secondary electron imaging in a gaseous environment of practically any composition, at 

pressures as high as 50 Torr, and temperatures as high as 1500°C  152.    

  

 

A.3 Vibrational Spectroscopy 
 

Vibrational spectroscopy is a powerful tool to investigate materials at the molecular 

levels. In this study, chemical analysis is performed by using the vibration spectra as 

“fingerprint”. Other information such symmetry of molecules, the nature of bonding and 

interactions of atoms within the molecules may also be obtained. Vibrational 

spectroscopy is useful for qualitative as well as quantitative investigations 153. Two 

important methods are infrared (IR) and Raman spectroscopy, which are 

complementary to each other. Vibrations which modulate the molecular dipole moment 

are visible in the infrared spectrum while those which modulate the polarizability appear 

in the Raman spectrum. 

 The simplest model of an atom bound in a molecule is given as a mass m  bound 

to neighbours a weightless spring. The force F  that is necessary to move the atom by a 

certain distance x  from an equilibrium position is proportional to the force constant f , 

a measure of the strength of bond by Hooke’s law given in Equation A.10. 

xfF .−=  (Equation A.10) 
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By Newton’s law                       2

2

dt
xdmF =   

xf
dt

xdm .2

2

−=⇒  

One of solutions of this second order differential equation is given as 

)2cos(.0 ϕπ += vtxx  

describing the motion of the atom as a harmonic oscillation. Here v  is the vibrational 

frequency and ϕ  the phase angle. The second derivative of x  by the time is found to 

be: 

 

xvvtxv
dt

xd 22
0

22
2

2

4)2cos(4 πϕππ −=+−=  

 

Combining Equation A.17 with Equation A.15 yields 

fmv =224π     or     
m
fv

π2
1

=  

If we consider a diatomic molecule, the mass m is called reduced mass of diatomic 

molecule with the masses 1m  and 2m : 

21

111
mmm

+=  

Thus the frequency of vibration of a diatomic molecule is given as 

⎟⎟
⎠

⎞
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⎝

⎛
+=

21

11
2
1

mm
fv

π
 

A diatomic molecule is said to have one vibrational degree of freedom as it can have 

only one mode of vibration. Similarly, a molecule containing n atoms will have 3n-6 

degree of vibrational modes and a molecule can be excited from one vibrational energy 

level to the other by getting radiation of certain frequency. Thus every molecule shows 

characteristic vibrational spectra depending on the mode of vibration and the frequency 

of radiation used for excitation. In general, the vibrational frequency is given in wave 

number units  v~   (waves per unit length), which is reciprocal to the wavelength λ.  

 

 

(Equation A.11) 

(Equation A.12) 

(Equation A.13) 

(Equation A.14) 

(Equation A.15) 

(Equation A.16) 

(Equation A.17) 
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A.3.1 Confocal Raman Microscopy  

 

Confocal Raman microscopy is simply combining Raman spectroscopy with non-

destructive and high-resolution imaging methods like confocal microscopy. This 

technique provides chemical and structural information in situ without any staining or 

complicated sample preparation, thus allowing to understand structure-function 

relationships of plant cells for instance, to learn from nature 154. 

 The Raman effect is most simply described as the inelastic scattering of light by 

matter. The incident light causes the molecules to vibrate, and the result is an energy 

shift between the excitation and the Raman-scattered photon. The energy shift is a 

function of the mass of the involved atoms and the binding strength and coordination, so 

every chemical species shows its own, distinct fingerprint 155. When light is scattered by 

a molecule there can be one of three outcomes (Figure A.7): 

1. Elastic (Rayleigh) scattering, where there is no net energy loss or gain to the 

incident light beam.  

2. Inelastic (Stokes) scattering, where the light is scattered to lower energy and 

frequency corresponding to the excitation of a molecular vibration.  

3. Inelastic (anti-Stokes) scattering, where the light is scattered to higher energy and 

frequency corresponding to the annihilation of a molecular vibration.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure A.7 Schematic representation of various modes of scattering processes. 
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Elastic (Rayleigh) scattering is the dominant process, whereas inelastic (Raman) 

scattering is inherently a very weak process where only one in every 106-108 photons 

shows the Raman effect 156. Besides this disadvantage, fluorescence is also likely to 

occur in Raman spectroscopy. This fluorescence is caused by the excitation of atoms in 

a material during the sample irradiation, thus electromagnetic radiation in the form of 

visible light is emitted. Fluorescence is not desirable since it can exceed the quantum 

yield of the Raman effect by a factor of about one million 153 and obscure the Raman 

spectra. The term fluorescence here should not be interchanged with the X-ray 

fluorescence which is intentionally generated and widely used for the chemical analysis 

of trace elements within a material and will be discussed in the following section. 

However, Raman spectroscopy shows its superiority on FTIR due to its little 

interference from water and its better spatial resolution than that achievable by IR 

spectroscopy, making it advantageous for the study of many biological specimens 157. 

On many modern Raman spectometers, a microscope is already an integral part 

of the spectrometer. The microscope has many advantages enabling to look at extremely 

small samples and detect very small amounts of materials despite Raman scattering is 

weak. The theoretical spatial resolution is ∼1 µm 156. Raman microscopy is very useful 

in the analysis of inhomogeneous biological samples, since the imaging of specific 

chemical contituents with high resolution becomes possible. The application of confocal 

arrangement allows segmenting a specimen along the optical axis and a depth profile or 

a 3D image can be generated. Additionally, in this setup, light from the sample is 

detected through the pinhole placed in the back focal plane of the microscope. Thus, the 

out-of-focus Raman light will be excluded and fluorescence background is greatly 

reduced. 

As the Raman effect is very weak, a medium-power laser for excitation and a 

sensitive detector to obtain a good signal-to-noise ratio within a reasonably short time 

are required.  The schematic operating system of confocal Raman microscopy is shown 

in Figure A.8. The laser beam is delivered through a single-mode optical fiber and then 

through a series of mirrors and the objective on to the sample. The reflected (Raman 

scattered) light is collected with the same objective and is focused into a multi-mode 

fiber, which directs the beam to the spectrometer equipped with a CCD camera and a 

photon counting APD. Holographic notch filters are used as beam splitter and to 
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selectively filter out the Rayleigh scattered light from the scattered radiation. During the 

scan, the data acquisition electronics creates a trigger signal for every image pixel. The 

CCD camera is read out at every pixel trigger and the resulting spectrum is stored in the 

computer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.3.2 FTIR Spectroscopy 

 

The advantages of using infrared spectroscopy for the study of biological specimens are 

evident. IR spectroscopy has higher intensity, a larger spot size and fast acquisition 

times since a broadband light source is used in contrast to Raman which uses a 

monochromatic beam. Thus, a higher signal-to-noise ratio is obtained and it is very 

useful for studies in which spatial averaging is acceptable or desirable. IR spectroscopy 

also has the advantage that using it on biological specimens entails no problems with 

fluorescence 157. However, the large background absorption of water has become a 

major problem of infrared spectroscopy.   

The IR regions are subdivided into three, namely near-IR, mid-IR, and far-IR, of 

which the mid-IR region of radiation with the vibrational frequency range of 4000 cm-1 

to 400 cm-1 corresponds to the changes in fundamental vibrational levels of most of the 

molecules. Thus, the radiation in this region is generally used to probe the vibrational 

Figure A.8 Schematic representation of a confocal raman microscope system 158.  
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behaviour of the sample molecules and to obtain the characteristic fingerprint of certain 

chemical substances. 

 IR radiation of a certain vibrational frequency is observed only if a change in the 

dipole moment of the molecule occurs. The vibrations accompanying dipole moment 

changes are thus termed as IR active, whereas those without any changes in dipole 

moment are IR inactive. Infrared spectra are usually recorded by measuring the 

transmittance of light quanta with a continuous distribution of the sample. The 

fundamental equation which governs the relation between the intensities of the incident 

and the transmitted radiation ( 0I  and I ) and the concentration c  is referred to as the 

Lambert-Beer law, which is basically the same principle applied for X-rays absorption 

(see Eq. A.2), expressed as 

dcaA
I
I

..1loglog 0 ===
τ

 

I  = intensity of transmitted radiation 

0I = initial intensity 

τ = transmittance 

A = absorbance 

a = absorption coefficient  

c = concentration of the sample 

d = cell thickness 

 

Fourier Transform Infrared Spectroscopy (FTIR), based on a Michelson Interferometer 

has replaced the conventional dispersive IR spectroscopy because it offer two 

advantages 153 : 1) multiplex and 2) Jaquinot advantage. The multiplex advantage allows 

a drastic reduction of the measuring time, whereas the Jaquinot advantage is related to 

the increment of light intensity, which can lead to a quadratic increase in the signal-to-

noise ratio. FTIR is very reliable in detecting small absorption changes with a time 

resolution of a few nanoseconds.   

 In principle, an FTIR instrument consists of a Michelson interferometric 

arrangement as is shown in Figure A.9. A parallel, polychromatic beam of radiation 

from a light source G (globar) is directed to a beam splitter BS, made from an infrared 

transparent material, such as KBr. The beam splitter reflects approximately half of the 

(Equation A.18) 
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light to a mirror, known as the fixed mirror FM, which in turn reflects the light back to 

the beam splitter. The rest of the light passes through to a movable mirror MM, moving 

continuously, at a known velocity, back and forth along the direction of the incoming 

light. Upon reflection from the moving mirror, radiation is then directed back to the 

beam splitter. At the beam splitter some of the light that has been reflected from the 

fixed mirror combines with light reflected from the moving mirror and is directed 

towards the sample. After passing through the sample, the radiation is focused onto the 

detector. The very sensitive MCT detectors generally operate best in the mid-IR region. 

The complex pattern of overlaid sinusoidal waves of light (in the time domain) is 

known as an interferogram, which is a function of the intensity versus the distance x of 

the movable mirror. The interferogram can be converted back to the original frequency 

distribution (spectrum) by means of a discrete Fourier transform (DFT), which can be 

done very rapidly using a computer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Attenuation Total Reflection (ATR) FTIR is a spectrophotometric analytical 

technique using optical interface energy reflection of two media having different 

refractive indices. Reflection spectroscopy technique has advantages in many aspects, 

X
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Figure A.9 Schematic representation of an FTIR apparatus 153.  
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such as easy sample preparation, study of complete optical properties, area selectivity 

and sensitivity for the study of surface or monolayer on a substrate 153.  

 

 

 

 

 

 

 

 

 

 

 

The infrared light is passed through the ATR crystal in such a way and reflected 

internally at the interface of the sample, thus this technique is also referred to as internal 

reflection (Figure A.12). This reflection will then form the evanescent wave which 

travels across the sample, typically by a few microns, before being collected to the 

detector as it exits the crystal. In case of a solid sample, it should be firmly clamped 

since it pressed into direct contact with the crystal during the measurement. The 

penetration depth, pd  for the evanescent field can be calculated using the following 

equation: 

( )[ ]2/12
1

2
21

2
1 /sin2/ nnd p −= ϕπλ  

Where 11 / nλλ =  denotes the effective wavelength in the denser medium (medium 1) or 

ATR crystal, 1ϕ  is the incident beam angle in medium 1, 1n  and 2n  are the refractive 

index of medium 1 and 2, respectively. The ATR crystal must be infrared transparent 

and of high refractive index 153. Typical materials for ATR crystals include germanium, 

KRS-5 and zinc selenide, while silicon is ideal for use in the Far-IR region of the 

electromagnetic spectrum. Diamond is an ideal material for ATR, particularly when 

studying very hard solids, but it is less widely used due to its high cost.  

 

 

Figure A.10 Attenuated Total Reflection. (A) ATR crystal in contact with the sample surface during 
the measurement; (B) Schematic of the internal reflection in FTIR-ATR mode, n1 and n2 are the 
refractive index of medium 1 (ATR crystal) and medium 2 (sample), respectively. 
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A 
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(Equation A.19) 
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A.4 X-ray Fluorescence (XRF) 
 

X-rays interact in different ways with matter. The chief effects associated with the 

passage of X-rays through matter are summarised schematically in Figure A.11. The 

incident X-rays are assumed to be of high enough energy, i.e., of short enough 

wavelength, to cause the emission of photoelectrons and characteristic fluorescent 

radiation 143. 

 

 

 

 

 

 

 

 

 

 

 

 

X-ray fluorescence spectrometry has become a powerful tool for the elemental analysis 

and its use becomes more increasing in the field of materials characterisation in terms of 

chemical compositions, particularly in the investigation of metals, glass, ceramics and 

building materials, and for research in geochemistry, forensic science and archeology.  

Fluorescence occurs when the primary X-ray photons are energetic enough to 

create core electron vacancies in the specimen, which leads in turn to the generation of 

the secondary radiation (fluorescence) as the outer electrons fill the electron vacancies 

of the inner shell. This radiation is characteristic of the elements making up the 

specimen, thus the technique is useful for elemental identification and quantifications of 

elemental concentrations estimated from the characteristic line intensities. This 

technique has the same principle as SEM coupled with Energy dispersive X-ray (EDX) 

analysis. They just differ in the excitation source of the inner electrons, i.e. the X-ray 

fluorescence use X-ray as the excitations sources rather than electron excitation. 

Figure A.11 Effects produced by the passage of X-rays through matter 143. 
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Electron excited X-ray fluorescence is relatively inefficient since about 99% of the 

electron energy is converted to heat energy. On the other hand, the use of X-rays to 

excite characteristic X-ray radiation avoids the problem of the heating of the specimen 

since X-ray photons can be produced inside a sealed X-ray tube under high vacuum and 

efficient cooling conditions, which means the specimen itself need not be subject to heat 

dissipation problems or the high vacuum requirements of the electron beam system 149. 

XRF has rather poor sensitivity for the very low atomic number elements (Z < 9), for 

instance the detection limits for carbon (Z = 6) and Oxygen (Z = 8) are typically of the 

order of 3-5% 149. However, X-ray fluorescence techniques offers good overall 

performance characteristics, particularly in the high speed, accuracy, and versatility. 

Laboratory based X-ray fluorescence spectrometry typically uses a 

polychromatic beam of short wavelength X-ray radiation to excite longer wavelength 

characteristic lines from the sample for analysis, but modern X-ray spectrometers use 

either the diffracting power of a single crystal to isolate narrow wavelength (wavelength 

dispersive spectrometry/ WDX) and, or a proportional detector to isolate narrow energy 

bands, from the polychromatic radiation (including characteristic radiation) excited in 

the sample (energy dispersive spectrometry/ EDX). There are also special spectrometers 

category, including total reflection spectrometers (TRXRF), synchrotron source 

spectrometers (SSXRF), and proton induced X-ray emission spectrometers (PIXE) 149.  

The schematic arrangements of these two types’ spectrometers can be seen in 

Figure A.12 and Figure A.13, respectively. In EDX spectrometer, the emitted 

fluorescent X-rays from the sample are directed typically to a Si(Li) detector, which is a 

proportional detector of high intrinsic resolution and a continuous distribution of pulses 

are produced. These pulses are voltages which are proportional to the incoming photon 

energies and then processed by a multichannel analyser (MCA). The output is a digital 

spectrum that can be processed to obtain analytical data. In WDX analysis, the emitted 

fluorescent X-rays are directed at first into a diffraction grating monochromator, which 

is usually a single crystal. A single X-ray wavelength can be selected by varying the 

angle of the incidence according to the Bragg’s law ( θλ sin..2. dn = ), which will be 

further discussed in the next section. The collimators or slits are generally used to 

determine the width of the diffracted lines.  
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The WDX system is roughly one to two orders of magnitude more sensitive than 

the EDX system. However, the EDX spectrometer measures all elements within its 

range at essentially the same time, whereas the WDX spectrometer identifies only those 

elements for which it is programmed. To this extent, the energy dispersive system is 

more useful in recognizing unexpected elements 149.  
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Figure A.12 Schematic arrangement of EDX Spectometer 

Figure A.13 Schematic arrangement of WDX Spectrometer 
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A.5 X-ray Scattering 
 

X-ray scattering is very useful for the material characterisation down to the nanometer 

scale and has become an indispensable tool both in research and industrial fields. It is a 

high-tech, non-destructive technique for analysing a wide range of materials, including 

fluids, metals, minerals, polymers, catalysts, plastics, pharmaceuticals, thin-film 

coating, ceramics, and semiconductor. Structure properties such as crystal structure, 

crystallinity, texture, particle size, particle shape, orientation as well as porosity and 

pore structure can be obtained. X-ray scattering is also very powerful in investigating 

biological tissues which have a hierarchical structure since it requires only a minimum 

of sample preparations and produces structural parameters averaged over a large 

irradiated sample volume. However, one needs to create models for the evaluation of 

the scattering patterns to extract the indirect information from the reciprocal space.  

 An electron in the path of X-rays is excited to periodic vibrations and it becomes 

a source of electromagnetic waves of the same frequency and wavelength. From this 

interaction, a new spherical wave front of X-rays arises, with the electron as its origin, 

deriving its energy from the impinging beam. This means the electron scatters the 

original beam 159. In an atom, the scattered waves from the several electrons combine 

and the resulting scattering intensity is dependent on the atomic number and direction. 

X-rays are scattered mainly by the loosely bound outer electrons of an atom 149. 

Scattering of X-rays may be coherent or incoherent (Figure A.11). Coherently scattered 

photons may undergo subsequent mutual interference, leading in turn to the generation 

of X-ray diffraction. The X-ray scattering phenomenon can be simply described by 

Figure A.14. If the wavelength of the scattered wave is the same as that of the incident 

one, the scattering is elastic 160. This elastic scattering is the main process that is 

exploited in investigations of the structure of materials. 

 

 

 

 

 
Figure A.14 The elastic X-ray scattering phenomenon. 
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In Figure A.14, k
r

and 'k
r

 are the incident X-ray wave vector and the wave vector of X-

rays scattered at an scattering angle θ2 , respectively. The scattering vector qr  defined as 

qr  = kk
rr

−'  determines the geometry of the experiment. In case of elastic scattering, 

kk =' , thus θλπθ sin)/4(sin2 == kq . 

The measured scattering intensity )(qI r is proportional to the square of the 

scattering amplitude which is related to the square of the Fourier transform of the 

scattering length density distribution. Scattering length density denotes the variation in 

the inhomogeneities of the electron density. 

( ) ( ) ( )
2

3.exp)( ∫=
Ω
Σ

=
V

rdrqir
V
Kq

d
dKqI rrrrr ρ  

Where )(q
d
d r

Ω
Σ corresponds to the macroscopic differential scattering cross-section of 

the sample, V is the sample volume, K is an instrumental constant and ρ is the scattering 

length density. 

 

A.5.1 Wide-angle X-ray Scattering (WAXS) 

 

Wide angle X-ray scattering is most powerful when applied to crystalline materials, but 

it can yield fundamental and important data when applied to liquids and amorphous 

solids 159. Crystalline materials, such as metals, rocks and soil, concrete, wood, and 

textile fibers consist of a periodic arrangement of repeating units of atoms in space. On 

the other hand, amorphous solids, such as glasses, gels, and opal show the absence of 

the long-range order. There is no translational periodicity, however, a degree of short-

range order remains. This fundamental difference can be seen in Figure A.15. An 

elementary knowledge in crystallography is essentially required for an understanding 

the simple geometry of X-ray diffraction by crystals.  

 

 

 

 

 

(Equation A.20) 

Figure A.15 Schematic sketches of the atomic arrangement 
in: A. Crystalline solid, B. Amorphous solid 161. 

A B 
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A.5.1.1 Crystal Systems and Reciprocal Lattice  

 

A crystal is represented by a lattice, that is, a three-dimensional array of points in a 

space (lattice points). The six scalar lattice parameters (the lengths of the three lattice 

translation vectors a, b, c and the three inter-axial angles α, β, γ) define the unit cell, 

which is the smallest portion or building block making up the whole crystal structure by 

translation as depicted in Figure A.16.  

 

 

 

 

 

 

There are seven crystal systems based on the variations of the length and orientation of 

the vectors as listed in Table A.1. Many elements crystallize in a cubic or hexagonal 

structure. For this reason, and also because of their high symmetry, the cubic and 

hexagonal coordinate systems are particularly important 162.  

 
Axial Lengths Angles System 

a = b = c α = β = γ = 90° cubic 

a = b ≠ c α = β = γ = 90° tetragonal 

a ≠ b ≠ c α = β = γ = 90° orthorhombic 

a = b = c α = β = γ ≠ 90° rhombohedral/ trigonal 

a = b ≠ c α = β = 90°, γ = 120° hexagonal 

a ≠ b ≠ c α = γ = 90° ≠ β monoclinic 

a ≠ b ≠ c α ≠ β ≠ γ ≠ 90° triclinic 

 

The orientation of a plane of lattice points is denoted by Miller indices (hkl), which are 

defined as the reciprocals of the fractional intercepts which the plane makes with the 

crystallographic axis. Planes whose indices are negative are parallel and lie on opposite 

sides of the origin. The spacing between two crystallographic planes hkl is denoted by 

dhkl. The use of a reciprocal lattice is more convenient to visualise the crystal planes, 

their slopes and their spacing in much easier way 159, and the reciprocal lattice 

a 
b

c

αβ 
γ

Figure A.16 Schematic of a unit cell.

Table A.1 Seven Crystal Systems. 
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representation of a crystal is a powerful tool for understanding diffraction 143. A 

reciprocal lattice vector ib
r

(i.e. a lattice vector in reciprocal space) can be defined for 

every direct space lattice vector iar  in real space by 

 

 

 

 

 

 

The length hklH of a reciprocal lattice vector 321 blbkbhH hkl

rrrr
++= equals the reciprocal 

of the periodicity of (hkl), i.e., Hhkl= 2π/dhkl 143. The length Hhkl is equal to the modulus 

of scattering vector, q. Furthermore, the intensity scattered from atoms on a regular 

lattice is different from zero if and only if the scattering vector, qr  coincides with a 

reciprocal lattice vector H
r

. 

Hq
rr

=  

This is the condition for the observation of diffraction from a crystalline lattice which 

satisfies also Bragg’s law discussed in the following section. 

 

A.5.1.2 Bragg’s Law  

 

Laue’s hypothesis 143 stated that “if crystals were composed of regularly spaces atoms 

which might act as scattering centres for X-rays and if X-rays were electromagnetic 

waves of wavelength about equal to the interatomic distance in crystals, then it should 

be possible to diffract X-rays by means of crystals”, was successfully analysed by W.L. 

Bragg. The diffraction maxima occur only during the constructive interferences when 

the incident beam encounters the lattices at certain angles and the phase shift is 

proportional to 2π according to the Bragg’s law: 

θλ sin2 hkldn =  

where n  is an integer (the order of reflection or diffraction), λ is the wavelength, hkld  is 

the interplanar spacing.  
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(Equation A.21) 

(Equation A.23) 

(Equation A.22) 
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A.5.1.3 Powder Diffraction 

 

In the powder method, the solid to be examined is crushed into powder of many crystals 

so that the individual crystals are randomly oriented with respect to the incident 

monochromatic beam. Thus, every set of lattice planes will be capable of diffraction. 

The mass of powder is equivalent, in fact, to a single crystal rotated, not about one axis, 

but about all possible axes 143. The presence of a large number of crystal particles 

having all possible orientations is equivalent to the sample rotation, since among these 

particles there will be a certain fraction whose (hkl) planes make the correct Bragg angle 

with the incident beam and which at the same time lie in all possible rotational positions 

about the axis of the incident beam. Therefore the hkl reflection from a stationary mass 

of powder has the form of a conical sheet of diffracted radiation, and a separate cone is 

formed for each set of differently spaced lattice planes. The common powder diffraction 

method, i.e. Hull/Debye-Scherer method is depicted in Figure A.18. The powder 

patterns (d-spacing pattern) contain the crystallographic information of certain chemical 

species present in the solid which is a “finger-print” for that solid. 
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θ θ
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Figure A.17 Diffraction of X-rays by a crystal. AB=BC= dhkl sin θ. For constructive 
interference (AB+BC), 2 dhkl sin θ = n λ. 



  
 Appendix  A                                                                                           Characterisation Methods 
 

Characterisation of silica in Equisetum hyemale and its transformation into biomorphous ceramics       xxxii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.5.1.4 Crystallite Size 

 

The crystallite size of the solid particle can be calculated using the Scherrer equation: 

w
KL π2

=  

where w  is the width of a certain diffraction peak in q-space, K is a constant depending 

on the shape and dimensionality of the crystallite and L is the crystallite size (Scherrer 

size). It is seen that the crystallite size is inversely proportional to the peak width. This 

highlights an important property of direct and reciprocal spaces. If a feature’s dimension 

along a certain direct space direction is large, the feature’s size along the corresponding 

direction in reciprocal space is small, and vice versa.  

 

 

 

 

 

Figure A.18 Hull/Debye-Scherrer powder method: (A) relation of film to specimen and 
incident beam; (B) appearance of film when laid flat 143. 

 

A 

B 

(Equation A.24) 
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A.5.2 Small-angle X-ray Scattering (SAXS) 

 

Small-angle scattering of X-rays allows the study of structures with sizes from ≈ 1 nm 

to ≈ 100 nm, and the applications range from biology to materials science 163. This 

technique has been widely applied for the structural analysis of materials in two 

different ways. The first is crystallographic small-angle diffraction, which is used to 

study the periodic arrangement of atoms, molecules, or groups of molecules with large 

unit cells. The second is associated with diffuse small-angle scattering giving 

information on size, shape, and orientation of inhomogeneities (like precipitates, pores, 

macromolecules in solution, etc.) 163. In small-angle scattering experiments, the two-

phase model is frequently used as an approximation 114, 164. The sample is considered to 

be made of two phases (a matrix and inclusions) with homogeneous, average scattering 

length densities (at the q scale investigated) and separated by sharp interfaces. In this 

case, the diffuse intensity at small angles can be written as: 

( ) ( ) ( )
2

3.2
0 ∫ Ξ−=

V

rqi rderIqI
rrrr

βα ρρ  

 

 

 

where 0I  is instrument constant, ρ  is scattering length densities, ( ) =Ξ rr 0 for α phase 

and 1 for β phase or vice versa (Babinet’s principle).  

 

A.5.2.1 Porod’s Law 

 

Porod’s law is generally valid for two-phase systems with sharp interfaces. The 

spherically averaged intensity is: 

( ) 44

2
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q
P

q
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Δ
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where σ  is the total interface per unit volume, P is Porod’s constant which is 

proportional to the total interfaces between the two phases. Thus Porod’s analysis is 

quite useful for the analysis of micro- and mesoporous materials.  

 

(Equation A.25) 

Scattering 
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Structure  
function 

2)( ρΔ

(Equation A.26) 
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A.5.2.2 Integrated Intensity and Porod Length 

 

For two-phase systems with sharp interfaces, the integrated intensity (“invariant”) can 

be written as: 

)1(2)(~ 22
0

2

0
0 φφρπ −Δ== ∫

∞

IdqqqIII S  

where φ  is volume fraction. By the combination with Porod’s law (Equation A.26), the 

Porod length (average chord-length) can be obtained as follows: 

σ
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π
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~4 −
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This T parameter has been introduced by Porod 165 and can be related to the mean chord 

lengths of the inclusions σφ /4=Il  and of the matrix σφ /)1(4 −=Ml  by 

MI llT 111 += . Mean chord lengths have been used frequently to analyse small-angle 

scattering data 165. The advantage of T is that it is independent of the shape and 

arrangement of the particles 166. 

 For particle of known shape, e.g. plate-like particle, T can be written as: 

)1(
)(2

4)1(4 φφ
−

++
=

−
=

acbcab
abc

S
VT

IM

I  

or 

( )φ−≅ 12aT ,  if a << b,c 

 

 

 

A.6 Nitrogen Sorption 
 

It has already been known for long time that a porous solid can take up relatively large 

volume of condensable gas. Gas adsorption is widely used for the characterisation of 

porous materials of which pore sizes lie within nanometer range to get information on 

the specific surface area, pore sizes and pore distribution of the solid 167. The pores are 

classified on the basis of their diameter (or width) as micropores (below 2 nm), 

mesopores (between 2 and 50 nm), and macropores (above 50 nm) 168. The gas 

(Equation A.27) 

(Equation A.28) 

(Equation A.29) 

a 
b 

c 
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(adsorbate) used for the measurement should have certain characteristics. It should be 

chemically inert towards the solid sample (adsorbent), it should have saturation vapour 

pressure large enough to carry out the measurements accurately at working 

temperatures, and the shape of adsorbate molecule should be close to spherical 

symmetry. In this regards, nitrogen is by far most widely used as adsorbate gas. Other 

gases, such as argon, krypton, benzene, and carbon dioxide are sometimes used for the 

measurement. 

The nitrogen sorption measurement is performed at constant temperature of 

77.35 K, which is the boiling point of liquid nitrogen. Firstly, the sample is outgassed 

by exposure of the surface to high vacuum to remove all physisorbed material from the 

surface of the adsorbent. Afterwards, small amounts of gaseous adsorbate are fed 

gradually and adsorbed on to the sample. The volume of gas adsorbed AV  is taken as 

volume of the same amount of gas at standard temperature and pressure condition 

(STP). The partial pressure of gas P  above the sample surface is measured relative to 

the saturation vapour pressure 0P  at a constant temperature. The plot of the volume 

adsorbed AV  versus relative pressure 0PP  gives the so-called adsorption isotherm, 

which is defined as the relationship between the amounts of gas adsorbed and the 

pressure or relative pressure at constant temperature.   

There are five different types of adsorption isotherms according to Brunauer 

classification 167 and the relatively rare stepped isotherm, designated as type VI as can 

be seen in Figure A.19. 

Type I isotherms is usually considered to be indicative of adsorption in 

micropores by exhibiting prominent adsorption at low relative pressures and then level 

off. In case of macropores, there is multilayer formation in such a manner that the 

amount adsorbed increases gradually as the relative pressure increases, although the 

multilayer build-up close to the saturation vapour pressure may be quite abrupt 169. This 

unrestricted multilayer formation process gives rise to type II and type III isotherms. 

Depending on the surface properties of a given solid, there may be a pronounced stage 

of the monolayer formation (type II) or the adsorption isotherm may be convex in the 

whole pressure range (type III). The latter behaviour can be observed when lateral 

interactions between adsorbed molecules are strong in comparison to interactions 

between the adsorbent surface and adsorbate 169. There is no adsorption-desorption 
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hysteresis since the adsorption and desorption branches of the isotherm coincide. Type 

IV and V isotherms are characteristics of mesoporous solid indicated by the appearance 

of adsorption-desorption hysteresis loops. The adsorption process is initially similar to 

that on macroporous solids, but at higher pressures the amount adsorbed rises very 

abruptly due to the capillary condensation in mesopores. The adsorption isotherm levels 

off after these pores are filled. The distinction between types IV and V is analogous to 

that between types II and III. The stepped isotherm, appropriately designated type VI is 

relatively rare and is particularly of theoretical interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 There are 4 different types of hysteresis loops as shown in Fig. A.20 based on 

different hysteresis shapes which are related to the specific pore structures 116. Type H1 

is often associated with porous materials consisting of agglomerates (assemblages of 

rigidly joint particles) or compacts of approximately uniform spheres in fairly regular 

array, and hence having narrow distribution of pore size. Type H2 loop which is 

exhibited by many porous adsorbents (e.g. inorganic oxide gels and porous glasses) is 

indeed quite difficult to interpret. In the past, it is often referred to as ‘ink bottle’ pores 

which provides an over-simplified picture since the role of network effect must be taken 

into account. Type H3 loop is observed in materials comprising of aggregates (loose 

assemblages) of plate-like particles forming slit-like pores. Type H4 loop is often 
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Figure A.19 The five types of adsorption isotherm, I to V according to Brunauer 
classification, together with type VI, the stepped isotherm 167.
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associated with narrow slit-like pores and may also arise from the presence of large 

mesopores embedded in a matrix with pores of much smaller size 169. In many systems, 

especially those containing micropores, the extending hysteresis at low pressure 

(indicated by the dashed lines in Fig. A.20) may be associated with the swelling of non-

rigid porous structure or chemisorption phenomenon 116. 

 

 

 

 

 

 

 

 

 

 

 

 

For the evaluation of specific surface area from gas adsorption data, the 

Brunauer-Emmett-Teller (BET) method has been widely used as the standard methode 
167, 170. The evaluation of the specific surface area using the BET method is based on the 

evaluation of the monolayer capacity, which is the number of adsorbed molecules in the 

monolayer on the surface of a material, by fitting experimental gas adsorption data to 

the BET equation (Equation A.30). The obtained monolayer capacity is then multiplied 

by the cross-sectional area of the nitrogen molecule in the monolayer formed on a given 

surface. 
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Where 

0PP = relative pressure 

   AV  = Volume of gas adsorbed on the adsorbent 

   mV  = Volume of gas needed to form a monolayer on the entire sample surface 

(Equation A.30) 

Figure A.20 Types of hysteresis loops 116. 
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    C  = Constant related to enthalpies of adsorption, AH  and condensation CH  given  

            as ( )[ ]RTHHC CA −≈ exp  

The adsorption data gives the values for the terms on the left hand side of Eq. A.30, 

from which the parameters C  and mV  on the right hand side of the equation can be 

easily calculated. One can then calculate the specific surface area of the sample using 

Equation A.31. 

mV
NV

SA Am
BET

0

σ
=  

Where 

BETSA  = Specific surface area evaluated using BET method 

    AN  = Avogadro’s number 

     σ  = Area per molecule of the adsobate gas, i.e. 16.2 Å2 for nitrogen 116 

     0V  = Molar volume of the adsorbate 

      m = Mass of sample 

 

 Study of the capillary condensation marked by the hysteresis loop occurrence in 

generally Type IV isotherm will provide us the information on pore volume, leading to 

pore size and pore morphology analysis. Capillary condensation is intimately bound up 

with the curvature of a liquid meniscus. In case of mesopores, condensation occurs at 

lower relative pressures. The monolayer of nitrogen molecules form a curved interface 

which acts as nucleation site for condensation of gaseous nitrogen. From the Kelvin 

equation (Eq. A.32) it follows that the vapour pressure at which the adsorbate condenses 

muss be less than the saturation vapour pressure 0P . Consequently, “capillary 

condensation” of vapour to a liquid should occur within a pore at some pressure *P  

determined by the value of mr  of the pore. The smaller the mr , the lower will be the 

critical condensation pressure. 
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Where  

*P = Critical condensation pressure or vapour pressure 

(Equation A.31) 

(Equation A.32) 
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0P  = Saturation vapour pressure 

γ  = Surface tension of the liquid adsorbate 

0V = Molar volume of the liquid adsorbate 

θ  = Contact angle of the condensed adsorbate with the sample surface 

R = Gas constant 

T = Absolute test temperature 

mr = Mean radius of curvature 

 

The mean radius of curvature mr  is related to pore size by considering the thickness of 

an adsorbed film deposited on the pore walls prior to the capillary condensation. Thus, 

capillary condensation occurs not directly in the pore itself but rather in the inner core 

as can be seen in Figure A.21. 

 

 

 

 

 

 

 

 

 

 

It is obvious that mr is correlated to kr  by the contact angle according to the Eq. A.33. 

θcosm
k rr =  

For the simplicity, in case of nitrogen, the contact angle is taken as θ = 0°, which gives 

θcos = 1, hence the mean radius of curvature mr  thus becomes equal to the radius of the 

pore less the thickness of the adsorbed film on the walls. The pore radius can be 

calculated by modification of Kelvin equation (Eq. A.34) giving: 
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Figure A.21 Cross-section, parallel to the axis of a cylindrical 
pore of radius pr , showing the “inner core” of radius kr and 
the adsorbed film of thickness determined by the value of the 
relative pressure 

0PPt together with the relationship between 

mr of the Kelvin equation and the core radius kr for a 

cylindrical pore with a hemispherical meniscus; θ  is the angle 
of contact 167. 
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θ

θ

(Equation A.33) 

(Equation A.34) 
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Appendix B 

EXPERIMENTAL DETAILS 
 

 

B.1 Samples and Preparations  

 
B.1.1 Silica in Equisetum hyemale 

 

B.1.1.1 Sample preparation 

 

Shoots of scouring rush (Equisetum hyemale) were collected from the Botanical Garten 

Drachenberg at the University of Potsdam, Germany. E.hyemale starts to grow in spring 

time and can persist for three seasons or more (perennial plant). E.hyemale shoots were 

harvested in autumn 2004 for the first measurement and new shoots commenced in 

2005 were harvested from May until March the following year for the silica contents 

and silica distribution investigations. Fresh samples were kept in a refrigerator with the 

temperature of -20°C to preserve the biological tissues for quite a long time without any 

decay.  

The basal internodes (3-4 cm in height and 3-5 mm in diameter) were preferably 

used for all subsequent microstructural and analytical investigations because they were 

considered to be more mature than the upper internodes, thus supposed to be 

homogeneously silicified along the whole internodes. They were washed in desalinated 

water to remove accompanying dust and soil prior to the investigations. Different 

samples for different techniques were prepared as follows: 

a) Native E.hyemale 

Samples in their original forms without being subjected to any treatments were 

prepared for the investigations at all hierarchical levels using novel techniques in 

order to shed light on the silica characteristics and properties found in its native 

state. 
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• Internodes 

Internodes were prepared for microtomography investigations. Internodes of three 

different parts (top, middle and base) of young (1-month-old) as well as mature 

(six-month-old) stalks were examined for their patterns of silica distribution by 

cutting each internode above the intercalary meristems of about 0.5-1 cm 

depending on the internodal lengths. The measurements were conducted in dry 

and wet condition. Samples in fully wet condition were prepared by placing fresh 

internodes (about 1 cm long) in water filled Eppendorf tubes to partly match the 

contrast between the soft tissues and the (water filled) hollow spaces and to avoid 

the shrinkages during the measurement, which could influence the absorption 

patterns due to changes in tissues thickness.   

• Cross sections 

Cross sections were prepared by axially cutting the fresh materials using razor 

blades with a thickness of approximately 200 µm for the semi-quantitative 

analysis of Si using SEM/EDX and Si mapping with EDX. 

• Outer surface and tangential sections 

Outer surface were also prepared for SEM/EDX investigations. The hollow stems 

were dissected into half parts and put onto the aluminium stubs. Furthermore, 

tangential sections (epidermal layers) were made by carefully scrapping the outer 

surface by razor blades to isolate the epidermal layers where silica was mostly 

accumulated. Epidermal layers were characterised by extensive methods, i.e. 

Raman microscopy, FTIR microscopy, and X-ray scattering. In addition, the 

samples were kept wet in a Petri dish during the measurement with Raman due to 

its insensitivity towards water, thus preserving the samples in their native state.   

 

b) Embedded E.hyemale 

For backscattered electron imaging, a completely flat sample surface was highly 

required to reduce the disturbing contrast coming from the morphological effects. 

Therefore, samples were needed to be embedded, ground, and polished. Samples 

were subjected to a successive water removal by soaking into different alcohol 

solution grades, i.e. 70%, 80% and 90% for about half a day for each treatment and 

finally immersed in 100% alcohol for three times within 2 days. The samples were 
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then transferred to MMA (methylmethacrylat) solutions and replaced for 2 times 

within a day to remove the remaining alcohols. Vacuum pumping was applied to 

remove the air bubbles trapped within the samples. Afterwards, the samples were 

put into a mould and filled with the polymer mixtures containing 10 grams MMA 

and 30 mg AIBN (azodiisobutyronitril) and placed into the oven. The 

polymerisation started gradually until the temperature reached 45°C for 1 day 

holding time. The temperature was then increased to about 55°C and samples were 

held for another 1 day for a complete curing process. Cross sections with thickness 

of about 0.5 cm were obtained by cutting the embedded samples by using a low 

speed saw (ISOMET, Buehler, Germany), which were then ground and polished 

using a polishing machine, type 1PM57 (Logitech, UK) for getting a flat surface. 

Different SiC papers grades (1200, 2400 and 4000) were consecutively used for 

several minutes, followed by polishing with 3 µm and 1 µm diamond papers for 

about 10 minutes for each treatment.  

 

c) Chemically/thermally treated E.hyemale 

Several chemical/thermal treatments of E.hyemale were exclusively carried out 

either to remove the accompanying organic matrix, such as cellulose or other 

inorganic substances, such as Ca, K, Na, etc, thus increasing the signal for silica 

detections and improving the accuracy of data analysis since the system was greatly 

simplified. Chemical treatments and thermal treatments were also combined to get 

“pure silica” from E.hyemale. Some treatments conducted within this research were 

described as following: 

• Calcinated E.hyemale 

One-year-old E.hyemale internodes were calcinated in air at 400° for 48 hours 

with a heating rate of 1 K/min in a furnace type L5/12/06 (Nabertherm, Germany) 

for the organics removal. The intact ash was investigated for its morphological 

structure by SEM, while powdered ash was prepared for SAXS/WAXS analysis. 

Calcinations were carried out at low temperature in order to not change the silica 

polymorph and to only insignificantly alter the structure of the original silica 

accumulated in the native tissue.  
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• H2O2-treated E.hyemale 

One-month-old E.hyemale was soaked in 50 ml of 30% H2O2 for about 18 months 

without being penetrated by light to slow down the H2O2 oxidation process into 

water and oxygen. The oxygen would gradually oxidize the organic as well as 

inorganic compounds, leaving very thin epidermal layers which were considered 

to contain pure silica. H2O2-treated E.hyemale samples were characterised by 

SEM, FTIR, SAXS/WAXS, and nitrogen sorption.  

• HCl-treated E.hyemale followed by calcination 

E.hyemale stalks were dried at 105°C for 48 hours before being subjected to an 

acid treatment using 10%-HCl for 2 hours at boiling temperature to remove all 

inorganic substances except of silica and followed by the calcination process to 

completely remove the organic components. The calcination was carried out in air 

atmosphere with a heating rate of 1 K/min and 2 hour holding time at 400°C. The 

obtained biogenic silica was powdered and investigated by SAXS/WAXS and 

nitrogen sorption analysis. Additionally, biogenic silica powder obtained by 

calcinating HCl treated sample at 600°C for 2 hours with a heating rate of 2 

K/min in a tube furnace type RE 1.1 (Heraeus Thermicon, Germany) was 

analysed by using FTIR microscopy and could be used as a reference. 

 

d) Powdered E.hyemale  

Powdered samples of both native and chemically/thermally treated E.hyemale were 

needed for particular investigations using SAXS/WAXS and nitrogen sorption 

techniques. For the element analysis using XRF method, dried E.hyemale stalks 

(105°C, 2 hours) were milled and 0.5 mm particles were collected after sieving. 

Lithium tetraborat (Li2B4O7) was added to the sample powders and then they were 

heated up in the furnace until melting down. The liquid was poured into a form and 

tablets with a diameter of 32 mm and with plane surfaces were obtained after 

cooling. In addition, the powder of H2O2 treated E.hyemale sample was used for the 

investigation using FTIR spectroscopy in transmission mode. 
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B.1.1.2 Silica content determination by gravimetric method 

 

Silica contents during aging were determined for the study of silica accumulations in 

E.hyemale stalks as the time increased and also for the macroscopic silica distribution of 

different segments within E.hyemale stalks. The stalks were dried at 105°C for 2 hours, 

and powdered. Five grams of powdered samples were required for the silica content 

analysis. At first, they were purified by 10% HCl to remove the other inorganic 

substances except of silica, followed by oxidation in air at 750°C for 2 hours for the 

organics removal and finally, the silica content was determined by gravimetric method. 

For the determination of silica distribution of different segments in E.hyemale stalks, 

the nodes and internodes were dissected into five different segments, i.e.: top, upper 

middle, middle, lower middle, and base. Each segment consisted of about 2-3 

nodes/internodes depending on the stalk lengths, which comprised of normally 10-12 

internodes. They were collected in different containers and silica contents were 

determined for each segment according to the procedure as mentioned above. The cones 

were excluded and its average silica content was determined separately.  

 

B.1.1.3 Carbon content determination by gravimetric method 

 

Carbon contents in different segments within E.hyemale stalks were also determined as 

a complement to its corresponding silica contents. Carbon as well as other light 

elements, for instance H, N and S were classically determined using a gravimetric 

method in a light element analyser (LECO, Switzerland).  

 

 

B.1.2 Isolation of Silica from Equisetum hyemale  

 

B.1.2.1 Sample preparation 

 

For this experiment, dry and powdered E.hyemale shoots harvested in November 2002 

and stored for about 4.5 years at room temperatures were used. In an attempt to isolate 

pure biogenic amorphous silica from E.hyemale, some thermal and chemical treatments 
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were performed to get rid of the organic matrix (cellulose, hemicellulose, pectin) as well 

as the inorganic substances. Two sets of samples were prepared:  

i) Calcination of native, dry  E.hyemale in air at seven different temperatures 

(300°C, 350°C, 400°C, 450°C, 500°C, 600°C, 750°C) in a furnace type L5/12/06 

(Nabertherm, Germany). A low heating rate of 1 K/min and holding time of 48 hours 

were applied. Ash of E.hyemale of which silica content is about 60% was delivered after 

this process.  

ii) To produce pure biogenic amorphous silica (calcined HCl-treated sample) 

from E.hyemale, a chemical treatment using 10% HCl (see section B.1.1) was 

performed to largely remove all inorganic compounds except silica, prior to the 

calcination in air at the same temperatures and conditions as applied to the ash 

production. The obtained ash and silica ash samples were then pressed into pellets with 

0.2 mm thickness in order to have a well defined powder volume in the X-ray beam for 

SAXS measurement.  

 

B.1.2.2 Density determination 

 

Densities of both ash and silica ash samples calcined at 600°C were determined using a 

pycnometer, which is a flask with a definite volume. The weight of empty pycnometer 

and weight of pycnometer filled by water were measured using an analytical balance, 

thus density of water was obtained. The powder was added to the pycnometer filled by 

water, and then was subjected to ultrasonic impuls and vacuum for a short time to 

remove the gas bubbles trapped between the particles. The mass of the sample was 

determined based on the amount of water displaced by the powder and thence the 

specific gravity of the powder and its density.  
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B.1.3 Silicon Carbide (β-SiC) from Equisetum hyemale  

 

B.1.3.1 Sample preparation and pyrolysis of E.hyemale 

 

β-SiC can be simply produced from E.hyemale by heat treatment at high temperature 

(1500-1600°C) under inert atmosphere. Several attempts for β-SiC synthesis from the 

native E.hyemale stalks under different reductive atmospheres and different process 

parameters during the heat treatments (SiC/C 1, SiC/C 2, SiC/C 3) were performed. The 

multistep heat treatments were carried out for both SiC/C 1 and SiC/C 2 samples. The 

first step is the pyrolysis under vacuum up to 1000°C with a heating rate of 2 K/min and 

holding time of 2 hours in a tube furnace type RE 1.1 (Heraeus Thermicon, Germany). 

Afterwards, the samples were transferred into a vacuum inert gas graphite furnace 

(HTM Reetz, Germany) for the pyrolysis at high temperature in vacuum (SiC/C 1) and 

in Argon atmospheres (SiC/C 2). Prior to pyrolysis, the furnace chamber was flushed by 

nitrogen or argon for at least twice to ensure a non-oxidising atmosphere. The 

temperatures were increased from room temperatures to 1500°C by using a heating rate 

of about 13 K/min. The maximum temperatures were held for 0.5 h to allow silica to be 

in contact with carbon for the silicon carbide synthesis. The gauge pressure within 

furnace chamber was about 10 mBar during the pyrolysis process. 

 SiC/C 3 sample was produced after the pyrolysis process in a high temperature 

furnace, type FRH 50/300/1600 (Linn High Therm, Germany). Argon was flowed into 

the furnace chamber for 24 hours with a volumetric flow rate of 3.6 L/h to remove the 

air out of the system. Pyrolysis was then started by increasing the temperature from 

room temperature to 1500°C with an increment rate of 12 K/min. The maximum 

temperature was maintained for 2 hours. Argon gas flow was maintained at about 3.6 

L/h and the pressure within furnace chamber was about 15 mBar during the pyrolysis 

process. The SiC/C 3 sample was further purified by subsequent oxidative thermal 

treatment and chemical treatment with hydrofluoric acid to obtain pure β-SiC 

compounds (SiC 1). The detail of the purification process was described in the 

following sub-section. 

 Finally, HCl-treated E.hyemale sample (see Section B.1.1) was used as the 

precursor for the synthesis of SiC with high grade and high purity. Pyrolysis was carried 
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out under vacuum in a high temperature furnace, type FRH 50/300/1600 (Linn High 

Therm, Germany). The temperature was increased from room temperature to 400°C 

with a heating rate of 1 K/min and maintained for 100 hours, and was then further 

heated up to 1500°C (2 K/min, 6 hours). The pyrolysed E.hyemale was then post-treated 

(see the following sub-section) to get pure β-SiC (SiC 2).  

 

B.1.3.2 Purification of SiC/C into SiC 

 

After the pyrolysis, SiC/C composite was produced accompanied by the remaining 

unreacted silica, degraded organics, and other minor metal compounds. Therefore, 

purification by means of thermal or chemical treatments had to be performed. At first 

the pyrolysed E.hyemale was calcinated at 750°C for 1 hour in a muffle furnace, type 

LM 312 (Linn High Therm, Germany) to remove the remaining organic degraded 

products. The furnace was heated up to 750° without any sample and held for 1 hour for 

the system stabilization at the maximum temperature prior to the calcinations. During 

the calcinations, some fractions of SiC were oxidized into SiO2 silica. Therefore, the 

subsequent chemical treatments using 40% HF was conducted to remove the remaining 

silica derived from the unreacted native silica as well as silica from the oxidations of 

SiC. Finally, they were washed by dilute HCl (5%) to remove the trace metallic 

impurities and were rinsed by water and dried. Several characterisation techniques such 

as microtomography, SEM/EDX, SAXS/WAXS, and nitrogen sorption were used for 

the structural investigations of the resulting E.hyemale derived SiC/C as well as SiC 

compounds. 

 

 

B.2 Analytical Methods 
 

B.2.1 X-ray Microtomography 

 

Microtomography was performed with a laboratory instrument (SkyScan-1072, 

Belgium), operated at 100 KV and 100 µA. An air-cooled X-ray point source with a 

spot size of 10 µm was used to illuminate the samples with a polychromatic X-ray cone 
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beam. X-ray projections were collected for sample rotation of 180° with a rotation step 

of 0.9° and an exposure time 1.7 s, at a geometrical magnification of 30 X. Data 

reconstruction was performed using a filtered backprojection algorithm for cone beam 

tomography including corrections for beam hardening (NRecon, Skyscan). The 

AmiraTM program (Zuse Institute Berlin) was used for the final 3D rendering and 

visualisation.  

 

B.2.2 Scanning Electron Microscopy (SEM) 

 

An Environmental Scanning Electron Microscopy (ESEM), The Quanta FEG 600 (FEI, 

Netherland) was used for the sample topography imaging and backscattered electron 

analysis. SEM mode in low vacuum was chosen for the biological tissues imaging, thus 

sputtering was not necessary. Large field detector (LFD), which captured signals 

coming from the secondary electrons as well as backscattered electron for the image 

formation, was usually used in low vacuum mode.  A voltage of 10 kV and pressure of 

about 100 Pa was generally used.  For backscattered analysis, high vacuum was 

absolutely needed, thus sputtering of sample with carbon was necessary. The voltage of 

about 20 kV was applied. Solid-state detector (SSD) detector was used to record the 

backscattered electron signal from the sample, while Everhard-Thornley detector (ETD) 

was used for the corresponding SEM image.  

For the energy dispersive X-ray analysis (EDXA), a DSM 940A SEM (Zeiss, 

Germany), equipped with an EDXA link ISIS-System (Oxford Instruments) and 

operated at 20 KV and 1.3 x 10-4 Pa was used. SEM was employed for the 

morphological observation of the cross sectional or the longitudinal (surface) anatomy 

and EDXA was utilized for semi-quantitatively elemental analysis of the samples. The 

energy resolution of EDXA was 133 eV, which corresponds to a penetration depth of 

the electron beam of roughly 3 µm for the Si analysis. Si was quantified in weight 

percent with respect to all elements detected within the local illuminated areas. The 

error of the semi quantitative analysis due to the limitation of the instrument used was 

approximately 1-2%.  
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B.2.3 Raman Microscopy 

 

A Confocal Raman Microscope (CRM200, WITEC, Germany) equipped with a water 

immersion objective (Nikon, 60x, numerical aperture (NA) = 1) and a piezo scanner (P-

500, Physik Instrumente) were used for spectroscopic imaging. A linear polarised laser 

(diode pumped green laser, λ = 532 nm, CrystaLaser) was focused with a diffraction 

limited spot size (0.61λ/NA) and the Raman light was detected by an air-cooled, back 

illuminated spectroscopic CCD (ANDOR) behind a grating (600 g mm-1) spectrograph 

(ACTON) with a resolution of 6 cm-1. For the mapping through a silica knob, an 

integration time of 2.5 s in 0.5 µm steps was chosen and every pixel corresponded to 

one scan. The ScanCtrlSpectroscopyPlus software (WITEC, Germany) was used for 

measurement setup and image processing. Chemical images were achieved by using a 

sum filter, integrating over defined wavenumber areas in the spectrum. The filter 

calculated the intensities within the chosen borders and the background was subtracted 

by taking the baseline from the first to the second border. Images of amorphous silica, 

silanol groups, and cellulose were achieved by integrating over 245-570 cm-1, 937-993 

cm-1, and 1054-1191 cm-1, respectively. On the chemical images, selected areas 

differing in composition were marked to calculate average spectra from those areas.  

 
B.2.4 FTIR  

 

FTIR microscopy was carried out as a complementary technique to Raman microscopy. 

A FTIR spectrometer (Vertex 70, Bruker, Germany) equipped with a microscope 

(Hyperion 2000, Germany) and a 20x attenuated total reflection (ATR) objective was 

used for the measurement on the outer sample surfaces. The epidermal layer of 

E.hyemale was mounted on a glass slide, whereas silica powder was spread on a KBr 

window using a spatula. The visible light mode enabled to view the sample and to 

locate the ATR objective exactly at the regions of interest. The sample stage was then 

lifted up to be in contact with the ATR crystal, whose tip diameter was about 100 µm. 

The IR beam was going through the ATR crystal; the evanescent IR wave was reflected 

from the sample surface and transferred back to the system to a liquid nitrogen-cooled 

MCT detector. The spectra were collected with a spectral resolution of 4 cm-1 within the 
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4000-600 cm-1 region by averaging 128 scans for the E.hyemale samples and 64 scans 

for the silica powder. The resulted interferograms were converted back to the frequency 

domains (FTIR spectra) by means of Blackman-Harris 3-Term function, power 

spectrum as the phase correction mode and a zero filling factor of 2. The OPUS 

software (Bruker, Germany) was used for the measurement operation as well as for 

spectral treatment and analysis. Baseline correction was performed using concave 

rubberband correction method with iterations number of 10 and 300 baseline points. 

 Furthermore, the H2O2-treated sample was characterised in transmission mode 

by using a FTIR spectroscopy (Perkin Elmer, 16 PC, Germany). Five scans were taken 

with a spectral resolution of 2 cm-1 within the region range of 400 to 4000 cm-1. The 

Spectrum v.2 Software (Perkin Elmer, Germany) was used for the spectral treatment 

and analysis. 

 

B.2.5 X-ray Fluorescence 

 

X-ray Fluorescence was carried out for the elemental analysis. An energy dispersive 

spectrometer X-LAB2000 (Spectro, Germany) equipped by BRAGG and BARKLA 

polarisators was employed. X-ray photons were collected with a Si(Li) detector. The 

instrument was operated by using special software integrated in a PC. The spectra 

analysis and evaluation was fully automatically executed.  

 

B.2.6 X-ray Scattering 

 

The SAXS/WAXS measurements were carried out on a Nanostar instrument (Bruker 

AXS, Germany) with a sealed tube X-ray generator operated at 40 KV and 35 mA. A 

parallel, monochromatic X-ray beam, with wavelength λ = 0.154 nm (Cu Kα) was 

provided by a parabolically bent, graded multilayer (Göbel mirror). Data were collected 

with a single photon counting area detector (HiStar, Bruker AXS). The sample-detector 

distance was set to 80 mm and 1050 mm for WAXS and SAXS, respectively. This 

allowed covering overlapping ranges of scattering vectors q from 0.1 nm-1 < q < 2 nm-1 

for SAXS and 1.5 nm-1 < q < 23 nm-1 for WAXS, where q = 4πsin(θ)/λ with 2θ being 

the scattering angle. The two-dimensional SAXS and WAXS patterns were azimuthally 
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averaged to obtain one-dimensional scattering profiles of the intensity versus the length 

of the scattering vector q, and the instrument related background was subtracted. 

 

B.2.7 Powder Diffraction  

 

A powder diffractometer (D8, Bruker AXS, Germany) with a sealed tube X-ray 

generator in θ-θ geometry operated at 40 KV and 40 mA was used to get the XRD 

patterns of the measured samples. A parabolically bent, graded multilayer (Göbel 

mirror) was used for beam parallelisation and for monochromatisation (Cu-Kα radiation 

with a wavelength of 0.154 nm). Data were collected with a solid state detector (Sol-X, 

Bruker AXS) in steps of Δ(2θ) =  0.05° and a step time of 6 s. The scattering angle 2θ 

was then converted into the modulus of scattering vector q (q = 4πsin(θ)/λ).  

 

B.2.8 Nitrogen Sorption 

 

Nitrogen sorption studies were carried out using an AUTOSORB-1 MP (Quantachrome, 

USA) instrument. For the analysis the samples were transferred into sample cells and 

evacuated at different temperature from 100°C for at least 6 hours depending on the 

characteristics of samples. The measurements were performed at -196°C, which was the 

boiling point of liquid nitrogen. AUTOSORB Software, AS1Win was used for the data 

analysis. The specific surface area was calculated using BET methods, whereas pore 

size and pore size distribution was determined using the methods proposed by Barrett, 

Joyner and Halenda (BJH) and by Dollimore and Heal (DH). 
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Appendix C 

SAXS/WAXS DATA EVALUATION 
 

The measured SAXS/WAXS raw data have to be corrected by the transmission factor 

according to the equation below, whereas the additional intensity correction due to dark 

current (electronic noise) can be neglected since the effect is not significant for the 

instrument used. 

  

                          or 

 

 

 

Where  

I        = corrected intensity 
M
SI     = measured intensity of sample 

Sτ      = transmission of sample 

ECS +τ = transmission of sample and empty cell 

M
EBI    = measured intensity of empty beam  
M

ECI    = measured intensity of empty cell 

 

The one-dimensional scattering profile of the intensity (corrected) versus the length of 

the scattering vector, q obtained after the azimuthal integration is then further evaluated. 

 

 

C.1 Analysis of Powder Diffraction/WAXS Data 

 
C.1.1 Phase identification  

 

Powder diffraction/ WAXS pattern of an unknown material can be used to identify 

chemical compounds contained within the materials by matching the WAXS pattern 

(Equation C.1) 

, for free standing sample (no sample cell) 

, for sample with cell 

M
EBS

M
S III .τ−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= + M

EC
EC

ECSM
S III .

τ
τ
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with the WAXS pattern / fingerprint of known compound from the reference pattern 

database. For this purpose, the MATCH software (CrystalImpact, Germany) embedded 

with PDF-2 as database was used. Figure C.1 is an example showing the phase 

identification of SiC derived from HCl-treated E.hyemale (SiC 2) using MATCH 

software which fits well with β-SiC compound from the reference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.1.2 Determination of the fraction of crystalline silica  

 

Silica isolated from E.hyemale after HCl treatment followed by calcination shows 

several crystalline peaks attributed to α-quartz besides a prominent broad peak of 

amorphous silica based on the powder diffraction pattern. The fraction of crystalline 

silica was determined by calculating the ratio of the integral intensity in the profiles of 

the crystalline peaks to the total scattering intensity. Amorphous silica peak and all of 

quartz peaks were separated from the total integral intensity profile (Fig. C.2 (A)), and 

then fitted using a Gaussian function (Fig. C.2 (B), (D)), corrected by background 

subtraction and finally the areas below the integrated intensity profile were determined 

(see Eq. A.27). 

Figure C.1 Phase identification of SiC derived from HCl-treated E.hyemale 
(SiC 2) using MATCH Software. 
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Figure C.2 Plot of Integral intensity versus scattering vector: (A) Silica obtained from 
calcination of HCl-treated E.hyemale at 450°C; (B) Amorphous silica; (C) Amorphous silica 
with background subtraction; (D) Quartz 1; (E) Quartz 1 with background subtraction. 
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Area of amorphous silica = 55,657,699.5771 

Area of crystalline silica = ∑
=

5

1i
iquartzofArea   

        = 2,763,191.4602 + 103,551.3825 + 130,664.0473  

                                           + 316,672.202 + 419,330.6891 

                   = 3,733,409.7811 

Total Area = 55,657,699.5771 + 3,733,409.7811 = 59,391,109.3582 

Fraction of crystalline silica (α-quartz) = (3,733,409.7811/59,391,109.3582) x 100% 

         = 6.3% 

 

 

C.2 Analysis of SAXS Data 
 

C.1.1 Porod’s law and integrated SAXS intensity 

 

Since the scattering intensities at large q obtained from biogenic silica and ash samples 

are proportional to q-4 (Fig. C.3 (A), (D)), Porod’s law prevails (Glatter and Kratky, 

1982). This means that there are sharp interfaces between spatially separated phases of 

different electron density. Porod’s plot can be drawn by plotting I.q4 vs. q4 and then 

linear regression was applied over a certain linear range, which was determined 

arbitrarily (Fig. C.3 (B), (E)). The slope is the background which was subtracted from 

the scattering intensity, whereas the intercept is the Porod constant which is 

proportional to the specific interfacial area between the two phases (see Eq. A.26). The 

Kratky plot, which is the scattering intensity after background subtraction multiplied by 

the square of q as the function of the scattering vector q can be seen in Fig. C.3 (C), (F). 

The area below the curve is proportional to the integrated SAXS intensity (see Eq. 

A.27) related to the volume fraction. The T-parameter, which is a measure for the 

smallest dimension of particles or interconnected domains (Fratzl, 1997) can be then 

determined from the combination of Porod’s law and integrated SAXS intensity (see 

Eq. A.28). Since the integrated scattering intensity of ash sample at very low q tends to 

increase with an unknown manner, in contrast to that of biogenic silica showing a 
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maxima (Fig. C.3 (C) vs. (F)), the T-parameter calculated for the ash sample gives a 

lower boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3 Scattering profile, Porod plot, and Kratky plot. (A-C) HCl-treated E.hyemale 
calcined at 450°C. (D-E) Ash obtained after calcination of native E.hyemale at 450°C. 
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C.1.2 Normalisation of Porod constant and integrated SAXS intensity 

 

Porod constants and integrated SAXS intensities of different silica ash and ash samples 

have to be normalised before being compared with other corresponding values obtained 

from other samples. Intensity normalisation was taken with respect to a factor K as 

defined below which contains some parameters that are not always constant during 

different measurement courses due to the X-ray beam intensity variation, noises, and 

different sample characteristics. 

K = I0. d. τ. t 

Where  

I0 = primary intensity 

d = sample thickness 

τ = transmission 

t = time 

Thus 
K

II measured
corrected = . Since Porod constant (P) and integrated intensity ( )~I  are 

proportional to intensity, they must be also corrected in a similar way. 

Time (t) is the same for all measurements, I0 is relatively stable during the 

measurements, and the powder volume illuminated by X-ray beam is constant for all 

samples. Since τ = exp (-µd) ⇔ d = -ln τ/μ (see Eq. A.3) with µ is linear absorption 

coefficient which is specific for each elements. If µ’s are considered to be constant, thus 

a correction factor of τ (-ln τ) has to be taken into account since the each sample has 

different transmission value. Thus, both Porod constant (P) and Integrated intensity ( )~I  

can be corrected as follows: 

)ln( ττ −
=

PPcorrected  

)ln(

~~
ττ −

=
IIcorrected  

  

It is considered that there are no significant differences in linear absorption 

coefficients (µ) within different biogenic silica and ash samples treated at different 

calcination temperatures (300°-750°C). Furthermore, the difference between µ of 

(Equation C.2) 

(Equation C.3) 

(Equation C.4) 
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biogenic silica and ash sample is less than 5%, according to a rough estimate described 

below. Thus, µ is assumed to be constant for all samples. 

 

Ash sample was assumed to be composed of 60% Si, 15% Ca, 15% K, 5% Na, and 5% 

Mg, whereas biogenic silica sample was assumed to be composed of 100% Si.  For the 

used X-ray energy 8.05 keV, µ of those elements are defined as depicted in Table C.1.  

 

 
c Element µ (1/cm) 

0.6 Si 151.72 

0.15 Ca 264.98 

0.15 K 127.60 

0.05 Na 29.27 

0.05 Mg 70.86 

 

∑= iiash c.μμ = 151.72(0.6)+264.98(0.15)+127.6(0.15)+29.27(0.05)+(0.05)70.86 

=ashμ  154.93 

 

%2%100
93.154

72.15193.154
=

−
=

−
x

ash

silicabiogenicash

μ
μμ

 

 

 

 

 

 

 

 

 

Table C.1 Specific absorption coefficient 171 for 
several elements at X-ray energy 8.05 keV 
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