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Understanding Cryptic Schemata in
Large Extract-Transform-Load Systems

Alexander Albrecht and Felix Naumann

Hasso Plattner Institute for Software Systems Engineering,
Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany

{alexander.albrecht,felix.naumann}@hpi.uni-potsdam.de

Abstract. Extract-Transform-Load (Etl) tools are used for the cre-
ation, maintenance, and evolution of data warehouses, data marts, and
operational data stores. Etl workflows populate those systems with data
from various data sources by specifying and executing a DAG of trans-
formations. Over time, hundreds of individual workflows evolve as new
sources and new requirements are integrated into the system. The main-
tenance and evolution of large-scale Etl systems requires much time and
manual effort. A key problem is to understand the meaning of unfamiliar
attribute labels in source and target databases and Etl transformations.
Hard-to-understand attribute labels lead to frustration and time spent
to develop and understand Etl workflows.
We present a schema decryption technique to support Etl developers
in understanding cryptic schemata of sources, targets, and Etl trans-
formations. For a given Etl system, our recommender-like approach
leverages the large number of mapped attribute labels in existing Etl
workflows to produce good and meaningful decryptions. In this way we
are able to decrypt attribute labels consisting of a number of unfamiliar
few-letter abbreviations, such as UNP PEN INT, which we can decrypt to
UNPAID PENALTY INTEREST. We evaluate our schema decryption approach
on three real-world repositories of Etl workflows and show that our ap-
proach is able to suggest high-quality decryptions for cryptic attribute
labels in a given schema.

Keywords: Etl, Data Warehouse and Repository, Data Integration

1 Cryptic Schemata

Etl systems are visual programming tools that allow the definition of complex
workflows to extract, transform, and load heterogeneous data from one or more
sources into a target database. Designing and maintaining Etl workflows re-
quires significant manual work; the effort is up to 70% of the development cost
in a typical data warehouse environment [8]. Etl workflows are stored in repos-
itories to be executed periodically, e.g., daily or once a week. In the course of
a complex data warehousing project up to several hundred Etl workflows are
created by different individuals [1] and stored in such repositories. Moreover, the
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created Etl workflows get larger and more complex over time. Cryptic schemata
are a well-known problem in the context of data warehousing. The main reason
for cryptic schemata is the tendency to assign compact attribute labels consisting
of a number of domain-specific abbreviations and acronyms.

Example 1 (Cryptic Attribute Labels). Consider a repository of Etl workflows to
extract, transform, and load data of an Oltp system with attribute labels from
the well-known Tpc-e schema [19]. With the to-be-generated decryption pairs
〈CO ≈ COMPANY〉 and 〈SP ≈ STANDARD, POOR〉, it would be easier for a developer
who is unfamiliar with this schema to identify the semantics of attribute labels,
such as CO SP RATE.

Manually finding decryption pairs is ineffective and time consuming. To illus-
trate this problem, consider the attribute label CO SP RATE from the previous ex-
ample. As this attribute label is too specific to have a directly mapped attribute
label as decryption in the given Etl repository, the developer has to look up all
pairs of mapped attribute labels that give a hint on an appropriate decryption
of tokens CO and SP. With over ten thousand pairs of mapped attribute labels in
the evaluated Etl repositories, manual schema decryption becomes infeasable.
Readers are referred to Sec. 4 for a comprehensive overview of schema and Etl
workflow characteristics in the given real-world Etl repositories.

In this paper, we regard Etl workflows as transformation graphs of the well-
known model introduced by Cui and Widom [7]. This model is generally appli-
cable to Etl workflows from common Etl tools: An Etl workflow is a directed
acyclic transformation graph (DAG) and the topologically ordered graph struc-
ture determines the execution order of the connected transformations. In Etl,
most transformations are a generalization of relational operators supporting mul-
tiple inputs and outputs. Two transformations are connected in the graph if one
transformation is applied to the output obtained by the other transformation.
Accordingly, attributes in the output schema of a transformation are connected
to the corresponding attributes in the input schema of the subsequent trans-
formations. We leverage these connected attribute labels in the existing Etl
workflows as valuable source of information for automated schema decryption.
We have observed that connected attributes with different labels often contain
reasonable decryptions – often not for the entire label but for tokens within the
labels. As cryptic attribute labels are often too specific to have a connected at-
tribute label as decryption in the given Etl repository, the problem is to pair
portions of the cryptic attribute label with portions of more descriptive attribute
labels to produce reasonable decryptions.

Example 2 (Connected Attribute Labels). Consider the Etl repository from Ex-
ample 1. Within some Etl workflows, extracted source attributes were renamed
in the succeeding transformation to provide a better readability. For exam-
ple, the attribute label CP COMP CO ID was renamed to COMPETITOR COMPANY ID

and CO CEO to COMPANY CEO. Thus, labels CO CEO and COMPANY CEO and labels
CP COMP CO ID and COMPETITOR COMPANY ID are connected, respectively.
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As Etl tools allow the developer to drag-and-drop attribute labels from
output to input schemata, there are many connected attributes with identical
labels. But in large Etl repositories there is also a large number of connected
attributes having different labels. There are several reasons for this, such as
(1) source-, lookup-, and target-schemata used in an Etl workflow are often
created independently and thus contain different attribute labels; (2) a data
warehouse schema based on instances of cryptic source schemata uses attributes
consisting of more descriptive tokens to provide a better readability; (3) copy-
and-paste of entire transformations is a common practice in Etl development,
which results in Etl sub-workflows connected to intermediate attributes with
different labels.

In this paper, we focus only on attribute pairs between connected transforma-
tions for schema decryption. We ignore the connections among attribute labels
within a single Etl transformation, because we observed that developers use no
synonyms within a single transformation. Furthermore, our approach overcomes
weaknesses in existing approaches, such as string and schema matching tech-
niques. These methods lead to poor decryption results due to domain-specific
abbreviations, acronyms, and tokens in Etl schemata. Moreover, it is infeasible
to exploit data redundancies between different schemata to find pairs of corre-
sponding attribute labels: The data created in the intermediate Etl processing
steps is not persisted and we lack this helpful information. Re-executing and
storing data from intermediate processing steps is an unrealistic assumption in
a typical data warehouse scenario.

We make the following contributions: First, we introduce the concept of de-
cryption pairs, as a practical approach for schema decryption. Second, we identify
desirable characteristics of decryption pairs to efficiently find decryption pairs
leveraging the large number of mapped attribute labels in a given Etl reposi-
tory. Third, experiments on three real-world Etl repositories show the accuracy
and efficacy of our approach. Finally, we introduce a generalized technique for
tokenization of attribute labels.

2 Using Connected Attributes for Decryption

To illustrate our approach upfront we introduce a toy example of an Etl work-
flow in Fig. 1. The Etl workflow loads company data into a dimension table
of a data warehouse. The extracted source data is the input of a lookup trans-
formation. There, a company record is assigned a country from a lookup table
using the company identifier as lookup key. Finally, the data is loaded into the
data warehouse (DWH).

We observe that (1) attributes can be tokenized based on special characters.
We also observe that (2) no two connected attributes have the same label. This
is a typical situation if source, lookup, and target schemata were developed inde-
pendently or for different purposes. Finally, we observe that (3) some attributes
use abbreviations that appear in extended form in connected attribute labels.
These observations were made repeatedly in our analysis of three real-world Etl
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Fig. 1. An exemplary ETL workflow

repositories, each with up to several hundred Etl workflows containing thou-
sands of connected attribute pairs with different labels.

Our decryption approach finds reasonable decryptions within the given Etl
repository by making use of all three observations: For each Etl workflow in
the Etl repository, we first break all labels into tokens, based on case-change or
non-alphabetical separators. In the example, we tokenize using the underscore
as separator. The second observation allows us to identify attribute labels with
same or similar semantics. If data from an attribute in the source or preceding
transformation is used as input for some attribute in the target or subsequent
transformation, it is reasonable to assume that their two labels are semantically
related – in most cases they are semantically equivalent. For instance, CO CTRY

and COUNTRY in Fig. 1 are such connected attribute labels. Finally, using the third
observation, we realize that the tokens CO and COMPANY co-occur in multiple pairs
of connected attribute labels, leading us to believe that they are synonymous
(and not for instance CO and COUNTRY).

With the identified decryptions from the Etl repository, we can suggest
decryptions for cryptic attribute labels of a given schema. For instance, given
a schema with the cryptic attribute label CO ID, it is decrypted to COMPANY ID

using the decryption 〈CO ≈ COMPANY〉 derived from Etl workflow in Fig. 1.

3 Schema Decryption

Our goal is to suggest “decryption pairs” to provide developers with a better
understanding of cryptic schemata and Etl workflows.

Definition 1 (ETL Workflow). An Etl workflow comprises a set of trans-
formations T with input and output schemata, interconnected with each other
forming a directed acyclic graph (DAG). Let W = (V,E) be a DAG represent-
ing an Etl workflow consisting of a set of vertices V representing the involved
transformations. The edges e ∈ E ⊆ V × V connect the output schema of one
transformation with the input schema of another transformation, i.e., an edge e
represents an ordered pair of transformations.
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Input Schema DEBT RT, RESID VAL AT RISK, UNP PEN INT

Top-5 Decryption Pairs
〈UNP ≈ UNPAID〉, 〈INT ≈ INTEREST〉, 〈PEN ≈ PENALTY〉,
〈RT ≈ RATE〉, 〈RESID, VAL ≈ RESIDUAL, VALUE〉

Table 1. Sample results for a Spanish Etl repository from the finance industry domain.

In this section we explain how to find decryptions for cryptic schemata lever-
aging the large number of connections among attribute labels in the given Etl
repository.

Definition 2 (Connected Attribute Labels). Two attribute labels are con-
nected if there exists at least one Etl workflow in which a direct link is estab-
lished between the corresponding attributes in the output and input schemata of
two connected transformations.

3.1 Our Schema Decryption Approach

For a given schema consisting of a set of cryptic attribute labels, our algorithm
returns a ranked list of decryptions in descending order of their frequency of
occurrence in the given Etl repository. We regard an attribute label as a set
of tokens and represent a decryption as a pair of corresponding token sets that
appear to be used synonymously within the Etl repository. The algorithm iter-
ates over all attribute labels l from the given schema and returns the set of all
applicable decryptions to decrypt l. Thus, for each attribute label l, we create all
possible decryptions leveraging the large number of connected attribute labels
in the given Etl repository (see Sec. 3.2). Each decryption is then added to the
result. Finally, the algorithm returns a compact list of decryptions, ranked in
descending order of their frequency of occurrence in the Etl repository.

Let Ti and Tj be disjoint sets of tokens, i.e., Ti ∩ Tj = ∅. We define a de-
cryption pair 〈Ti ≈ Tj〉, where Ti and Tj are synonyms. We regard token sets
and not single tokens, because a decryption often applies to multiple tokens or
even contains multiple tokens. Table 1 shows a sample schema decryption in
which individual tokens but also token sets are decrypted. A decryption pair is
applicable to an attribute label only if either all tokens from Ti, or all tokens
from Tj occur in the (tokenized) attribute label. Tokens from Ti or Tj may occur
in any order in the attribute label.

Definition 3 (Decryption Pair). Let Ti and Tj be disjoint sets of tokens. We
call 〈Ti ≈ Tj〉 a decryption pair if the token set denoted by Ti is synonymous to
the token set denoted by Tj.

Finally, to suggest a compact list of decryption pairs, we remove all subsumed
decryption pairs from the result list, retaining only maximal decryption pairs.

Definition 4 (Maximal Decryption Pair). Let L = {(lm, ln)} be the set of
pairs of connected attribute labels containing decryption pair 〈Ti ≈ Tj〉. We call
〈Ti ≈ Tj〉 a maximal decryption pair if there is no decryption pair 〈T ′

i ≈ T ′
j〉 for

every {(lm, ln)} ∈ L with Ti ⊆ T ′
i and Tj ⊆ T ′

j.
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Example 3 (Maximal Decryption Pair). Consider the three created decryption
pairs 〈SP ≈ STANDARD〉, 〈SP ≈ POOR〉, 〈SP ≈ STANDARD, POOR〉 derived from the
same pairs of connected attribute labels. We only suggest 〈SP ≈ STANDARD, POOR〉
and remove the other two subsumed decryption pairs from the result list.

3.2 Finding Decryption Pairs

We now describe how we identify decryption pairs 〈Ti ≈ Tj〉: Given an attribute
label and some contained tokens Ti, we want to find all applicable decryption
pairs for Ti. To this end, we search among all connected attribute labels in the
given Etl repository for those that contain Ti. More formally, we consider all
attribute labels l that contain Ti and are connected to some attribute label
containing no subset of Ti. Using these pairs of connected attribute labels, we
choose candidate decryption pairs 〈Ti ≈ Tj〉, where Tj is some subset of tokens
from the other attribute label. For the given real-world Etl repositories, tokens
are delimited by the underscore character. For the general case, it may happen
that tokens of attribute labels are not always delimited with a special character.
We will consider the general problem of attribute label tokenization later in
Sec. 5. A candidate decryption is added to the result if all three of the following
observations hold.

Our first observation is that connected attribute labels often share tokens,
i.e., such tokens appear in both connected attribute labels. In Example 2 in
Sec. 1, connected attribute labels CP COMP CO ID and COMPETITOR COMPANY ID

share token ID and connected attribute labels CO CEO and COMPANY CEO share
token CEO. Considering shared tokens for decryption makes no sense, since their
counterpart is the same token in the other label. Thus, we do not create de-
cryption pairs containing a shared token. In the example we would not create
a decryption pair such as 〈CO ≈ CEO〉; the token CEO is already ‘taken’ by its
counterpart CEO in the other attribute label.

Our second observation (and assumption) is that synonymous token sets are
never used together in a single attribute label, as it would be useless to label
a single attribute with synonyms. That is, if tokens x and y appear together
in one attribute label, there is no decryption pair 〈Ti ≈ Tj〉 with x ∈ Ti and
y ∈ Tj or vice versa. Considering the attribute labels in Example 2 in Sec. 1,
we do not create decryption pair 〈CO ≈ COMP〉 from a corresponding pair of
connected attribute labels, because both tokens appear together in the attribute
label CP COMP CO ID and thus are very unlikely to represent synonyms.

Our last observation is that a decryption is consistently used between two
connected transformations. To determine the consistency of a decryption pair
derived from a pair of connected attribute labels, we determine its correctness
(confidence) and frequency of occurrence (hit-ratio) throughout the correspond-
ing schemata of the two connected transformations: Let LTi

= {(lm, ln)} be the
set of pairs of connected attribute labels in which all tokens of Ti appear either
in lm or ln (but not both, as these are the trivial cases). These pairs represent
the positive class for the decryption of Ti. Further, let LTi,Tj be the set of pairs
of connected attribute labels in which Ti appears in one label and Tj in the other
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label. These pairs represent the true positive class for the decryption. Note that
LTi,Tj

⊆ LTi
. Then we define confidence as

confidenceTi,Tj
=
|LTi,Tj |
|LTi
|

and we define the hit-ratio for decryption pair 〈Ti ≈ Tj〉 as

hit-ratioTi,Tj =
|LTi,Tj

|
|LTj |

.

Note that both confidence and hit-ratio have to be considered. A high hit-
ratio may result in a poor confidence, i.e., the decryption from Ti to Tj may
occur frequently, but Ti also occurs frequently with other tokens in connected
attribute labels. Similarly, a high confidence, e.g., achieved by returning only
correct decryptions producing no false positives, may result in a poor hit-ratio.

Example 4 (Quality of Decryption Pairs). Consider the connected attribute la-
bels from Example 2 in Sec. 1. Decrypting CO to COMPETITOR might have a high
hit-ratio in the corresponding schemata of the two connected transformations,
if COMPETITOR often co-occurs with CO. As CO also occurs frequently with tokens
different from COMPETITOR, such as COMPANY, decrypting CO to COMPETITOR re-
sults in a poor confidence. On the other hand, decrypting COMP to COMPANY might
have a high confidence: labels with the token COMP are almost always connected
to labels containing COMPANY, but labels containing COMPANY might also often
be connected with labels containing CO (but not COMP). Thus the decryption of
COMP to COMPANY has a low hit-ratio.

As the quality of a decryption pair depends on both measures, we choose
the harmonic mean of confidence and hit-ratio to determine the quality of a
decryption pair. The harmonic mean is a typical way to aggregate measures:

harmonicMean =
2 · confidence · hit-ratio

confidence + hit-ratio

As the reverse decryption of Tj to Ti results in the same harmonic mean
value, we can ignore order. In our experiments, we choose a threshold value
of 80% for the harmonic mean to suggest consistent decryptions from pairs of
connected attribute labels.

4 Experimental Study

We evaluated our schema decryption approach on three real-world Etl reposi-
tories. These repositories were created separately by different departments of a
banking organization in Switzerland (CH), Germany (DE), and Spain (ES) using
Informatica PowerCenter1. Informatica provides Etl workflow specifications in

1 www.informatica.com
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Repository CH DE ES

Etl workflows 45 131 167

Schemata 1591 3687 1994

Avg. attributes / schema 14 12 9

Min. attributes / schema 1 1 1

Max. attributes / schema 155 270 143

Pairs of connected attribute labels 11108 23076 10183

Distinct pairs of connected attribute labels 2502 3589 2483

Distinct pairs of connected attribute with different labels 1343 1798 984
Table 2. Characteristics of test ETL repositories

Repository CH DE ES

Distinct attribute labels 2015 3045 2211

Distinct tokens used in attribute labels 1015 1393 1237

Avg. tokens / attribute label 2 3 3

Min. tokens / attribute label 1 1 1

Max. tokens / attribute label 4 10 6
Table 3. Characteristics of attribute labels in test ETL repositories

a proprietary Xml format, which our schema decryption algorithm takes as in-
put. Schemata and connections between attribute labels are pre-indexed offline
and are used to compute schema decryptions in an online fashion. Our algorithm
operates efficiently and typically returns a ranked list of decryption pairs for a
given schema in under 1 second.

4.1 Real-world ETL repositories

Table 2 shows the characteristics of the three Etl repositories to emphasize
that Etl development results in many and complex Etl workflows. Each Etl
workflow consists of many source, target, and transformation schemata, some of
which contain several hundred attributes. There are many connected attribute
labels, but for schema decryption we are only interested in pairs of connected
attributes with different labels. The number of distinct pairs is shown in the last
line of Table 2 and confirms our observation from the beginning that there is
indeed a large number of connected attributes with different labels.

Table 3 gives an overview of the characteristics of the attribute labels in the
Etl repositories. It is apparent that in all three Etl repositories there is a large
number of distinct tokens used for the large number of distinct attribute labels.
Figure 2 shows the distribution of the number of tokens used in distinct attribute
labels. In the DE and ES repository for more than fifty percent of all distinct
labels more than two tokens were used by the developers. The attribute labels
in the CH repository contain almost always fewer than three tokens. Figure 3
gives an overview on the average number of tokens used to label attributes in a
schema.
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4.2 Evaluation Technique

We have successfully tested our schema decryption approach on all Etl work-
flows from the three given Etl repositories. To evaluate the accuracy of our
schema decryption, we randomly selected from each repository three schemata
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Rank Decryption Pair rel(i) Precision

1 〈UNP ≈ UNPAID〉 1 1

2 〈INT ≈ OUTPUT〉 0 1/2

3 〈PEN ≈ PENALTY〉 1 2/3
Table 4. Calculating average precision for top-3 decryption pairs

consisting of at least 20 attribute labels and use schema decryption to generate
ranked lists of decryption pairs for the selected nine schemata.

In our evaluation we consider the top-k decryption pairs pi in the ranked
list. Let i be the position of pi in the ranked list, i.e., i ≤ k. Then, we manually
determine whether pi is relevant/correct or not for the given schema, i.e., we
set rel(i) to 0 or 1, respectively. We consider a decryption pair to be accurate if
it helps to understand the underlying semantic domain of the original attribute
label. Then, we calculate the average precision for the top-k decryption pairs.
The average precision is the average of the precision values for the seen accurate
decryption pairs [3]:

Definition 5 (Average Precision). Let P (i) be the precision of the first i
suggested decryption pairs. Then, the average precision at position k is

AvPk =

∑k
i=1 P (i) · rel(i)∑k

i=1 rel(i)

where precision is defined as P (i) =
∑i

j=1 rel(j)

i

Example 5 (Average Precision). Table 4 shows an illustrative top-3 example of
ranked decryption pairs. The examples are from the Etl repository from Spain
(ES). The precision values after each new accurate decryption is observed are 1
and 2

3 . Thus, the average precision of the top 3 results (with two seen accurate
decryptions) is given by (1 + 2

3 ) / 2 = 83%.

4.3 Results

Figure 4 shows the accuracy of our schema decryption approach. We measure the
mean average precision for each of the experiments and show the top-5, top-10,
top-15, and top-20 results. For all three repositories the algorithm achieves an
accuracy of above 90%. For the CH repository the algorithm provides the best
accuracy. This is expected, because if there is a pair of connected attributes with
different labels in the CH repository, it often contains an accurate decryption.
The experiments demonstrate the advantages of identifying decryption pairs
based on tokens and based on their characteristics. Additional experiments con-
firmed that our approach results in a significantly lower number of incorrect,
conflicting, and redundant decrpytion pairs compared to other approaches. We
compared our approach to a straightforward alternative of choosing entire labels
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of two connected attributes as decryption pair. In addition, we compared our
approach against different string-similarity measures, such as Levenshtein dis-
tance [10]. Figure 5 shows the accuracy of the simple strategy of choosing entire
labels of two connected attributes as decryption. This simple approach often
leads to a large number of incorrect and conflicting suggestions. Furthermore,
a large number of correct suggestions contain redunant decryptions, as frequent
pairs of connected attributes with different labels often contain the same correct
decryption for the same portion of tokens.

5 A Generalized Technique for Tokenization

For our given real-world Etl repositories, the tokens are delimited by the un-
derscore character. The experiments have shown that the simple tokenization
strategy based on special characters already yields good results. For the general
case, it may happen that tokens of attribute labels are not always delimited with
a special character. Our schema decryption solution needs a set of tokens that
belong to some standard vocabulary to perform effectively. Therefore, we con-
sider in this section the general problem of attribute label tokenization, apart
from the simple tokenization strategy.

Our tokenization approach segments attribute labels of a given schema into
a set of “meaningful” tokens. A meaningful token has a semantics of its own
or it modifies the semantics of another token. For instance, the attribute label
ORDERSTATUS from the well-known Tpc-h schema [20] should be tokenized to
the meaningful tokens ORDER and STATUS. We supply a more formal definition of
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a good tokenization later. Our tokenization approach is based on the discovery
of token patterns for attribute labels making use of any pre-existing separators
and tokens in only some of the attributes of the given schemata.

5.1 Discovery of Token Patterns

Attribute labels almost always contain tokens that belong to some standard vo-
cabulary. When choosing an attribute label for a relational schema, often several
tokens from this standard vocabulary are chosen, describing the underlying at-
tribute domain. We call these tokens frequent tokens. These tokens frequently
occur in different attribute labels, which means that the same token, or more
generally the same pattern containing this token (and potentially more tokens),
is used in several different contexts. For instance, ORDER, STATUS, and PRICE are
frequent tokens often used for labeling attributes of transactional data records.

Definition 6 (Frequent token). Given a set A of attribute labels and a min-
imum support s ∈ N, a token t is frequent if there exists a subset A′ ⊆ A, such
that t is a token in all attribute labels ai ∈ A′ and |A′| ≥ s.

Definition 7 (Standard vocabulary). Given a set A of attribute labels and
a minimum support s ∈ N, the standard vocabulary Vs is the set of all frequent
tokens for A and s.

There are also tokens that do not have the minimum-support. These tokens
are used during schema creation when no combination of standard tokens is



Understanding Cryptic Schemata in Large ETL Systems 13

suitable or known to unambiguously describe an attribute label. We call these
tokens non-standard tokens; an example is the attribute label MFGR from the well-
known Tpc-h schema. MFGR is an abbreviation for manufacturer and appears in
only one attribute label of the Tpc-h schema.

It should be noted that, in analogy to tables in relational databases, pro-
cessed data records in Etl workflows may contain only distinct attribute labels.
Thus, multiple tokens are possibly concatenated with a delimiter character to
create the final attribute label, such as C AREA 1, C AREA 2, and C AREA 3 from
the Tpc-e schema. In other cases tokens are concatenated without a delimiter,
such as EXTENDEDPRICE in the Tpc-h schema. The simple form of tokenizing
attribute labels is to parse them into tokens based on known delimiter charac-
ters. The experiments have shown that this simple tokenization strategy already
yields good results. In general, however, this näıve strategy may result in an
inappropriate standard vocabulary: The delimiter character may be used incon-
sistently in a schema, i.e., the delimiter character is omitted when tokenization
is intuitively clear.

Example 6 (Tokenization). Given a schema with attribute set A. Assume that
the set A of given attribute labels consists of only the three Tpc-h attributes
ORDERKEY, ORDER STATUS, and LINESTATUS. With a minimum support s > 1,
by Definition 7 the standard vocabulary is empty. Therefore, all four tokens are
regarded as non-standard tokens.

For tokenization, we can regard ORDER STATUS as a reliable source of informa-
tion, since this tokenization is meaningful to some human. The whole attribute
label is of no use for tokenization in this example, but the tokens {ORDER, STATUS}
are applicable in different contexts, i.e., the adjacent substrings or tokens might
differ. The idea of using these two tokens as token patterns allows us to deduce a
meaningful tokenization using the underscore as separator character: ORDER KEY,
ORDER STATUS, and LINE STATUS.

Given a schema with attribute set A, we want to iteratively populate an
attribute set AT , which contains tokenized attribute labels. We initialize AT

with the set of attribute labels that contain at least one separator character.
Additionally, AT contains all frequent tokens that also appear as an individual
attribute label.

To derive meaningful tokenizations, we use so-called token patterns, which
consist of frequent tokens and their well-defined matching positions in an at-
tribute label, defined below. We derive these patterns from the set AT of al-
ready tokenized attribute labels and attribute labels representing a standard
token. Whenever a pattern match is found in a non-standard token of an at-
tribute label, the attribute label is tokenized accordingly. In the example above,
the patterns [(ORDER)F ] and [(STATUS)L] are derived from the tokenized attribute
label ORDER STATUS. To indicate the position of the matched tokens in the at-
tribute label, we use superscripts: F , I, or L represent the matched token pattern
to be prefix, infix, or suffix respectively. Tokens that are neither first nor last
are defined as being in-between. In our example, the pattern matching results in
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the tokenized attribute labels ORDER KEY and LINE STATUS. With the following
definition, we formalize how to obtain candidate token patterns in general:

Definition 8 (Candidate Token Pattern). We obtain the set of candidate
token patterns [pl] from all possible token sequences in an attribute label a ∈ AT

and we set l = F , l = I or l = L, if p occurs as prefix, as infix, or as suffix
in AT , respectively. Note that up to 4 token patterns can be produced from one
token sequence, i.e., [pF ], [pI ], [pL] and [pF,L].

We take into account that some Etl workflows already contain a number of
tokenized attribute labels. So we incorporate this valuable source of information
into our approach to obtain candidate patterns. To obtain all possible candidate
patterns [pl] from a given attribute label consisting of k tokens, we generate all
possible 2k − 1 token sequences and create candidate patterns comparable to a
regular expressions.

Example 7 (Candidate Token Pattern). Consider the attribute label for the start
date of a quarter from the Tpc-e schema, FI QTR START DATE. From this at-
tribute label we create candidate token patterns, such as [(FI)F ], [(DATE)L],
[(QTR)(START)I ], and [(FI)(.+)(DATE)F,L]. Among these candidates the next step
is to choose the most meaningful ones.

5.2 Choosing Token Patterns

To reduce the very large number of candidate patterns to a set of meaningful
token patterns, we require a token pattern to occur in different contexts. We
search for matches of a token pattern p in all non-standard tokens. For each
match we collect the token pattern-context, i.e., all substrings adjacent to the
tokens specified in the token pattern. For a given pattern p all these contexts
form a set Np of neighborhood strings.

Additionally, there are already neighborhood tokens for a′ ∈ AT , if a′ con-
tains token pattern p. From the set of candidate token patterns, we consider
only those token patterns p with no neighborhood t that frequently occurs in
Np. All candidate token patterns with at least one frequent neighborhood are
regarded as incomplete. We model this property with the conditional probability
of t given p. We favor patterns with a low probability, i.e., they occur in many
different contexts. We discard all candidates with a probability higher than a
50% threshold. All other are regarded as meaningful token patterns.

Example 8 (Choosing Token Patterns). Consider the pattern p1 = [(L)I ] ex-
tracted from attribute label C L NAME from the Tpc-e schema in Fig. 6. The
neighborhood tokens of p1 are {AP, C, NAME}, because the pattern occurs not
only in C L NAME, but also in AP L NAME. As the conditional probability P (NAME|p1)
= 1, the candidate pattern p1 is discarded: Apparently, the token L always oc-
curs together with a token NAME and is thus not meaningful on its own. But
p2 = [(NAME)L] is considered a meaningful token pattern, because the pattern
occurs next to 14 different tokens (CO, IN, TX, etc.) in the Tpc-e schema, and
thus no conditional probability exceeds the value of 12.5%.
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TPC-E

Meaningful token patterns

[(1)L], [(2)L]

AD CTRY, AD ID, AD LINE 1 , AD LINE 2 ,
AD ZC CODE, AP ACL, AP CA ID, AP F NAME, AP L NAME,
AP TAX ID, B COMM TOTAL, B ID, B NAME, B NUM TRADES,
B ST ID, CA BAL, CA B ID, CA C ID, CA ID, CA NAME,
CA TAX ST, CH CHRG, CH C TIER, CH TT ID, CO AD ID,
CO CEO, CO DESC, CO ID, CO IN ID, CO NAME,
CO OPEN DATE, CO SP RATE, CO ST ID, CP COMP CO ID,
CP CO ID, CP IN ID, CR C TIER, CR EX ID, CR FROM QTY,
CR RATE, CR TO QTY, CR TT ID, CT AMT, CT DTS, CT NAME,
CT T ID, CX C ID, CX TX ID, C AD ID, C AREA 1,
C AREA 2, C AREA 3, C CTRY 1, C CTRY 2, C CTRY 3,
C DOB, C EMAIL 1, C EMAIL 2, C EXT 1, C EXT 2,

C EXT 3, C F NAME, C GNDR, C ID, C LOCAL 1, C LOCAL 2,
C LOCAL 3, C L NAME, C M NAME, C ST ID, C TAX ID,
C TIER, DM CLOSE, DM DATE, DM HIGH, DM LOW, DM S SYMB,
DM VOL, EX AD ID, EX CLOSE, EX DESC, EX ID, EX NAME,
EX NUM SYMB, EX OPEN, FI ASSETS, FI BASIC EPS,
FI CO ID, FI DILUT EPS, FI INVENTORY, FI LIABILITY,
FI MARGIN, FI NET EARN, FI OUT BASIC, FI OUT DILUT,
FI QTR, FI QTR START DATE, FI REVENUE, FI YEAR,
HH AFTER QTY, HH BEFORE QTY, HH H T ID, HH T ID,
HS CA ID, HS QTY, HS S SYMB, H CA ID, H DTS, H PRICE,
H QTY, H S SYMB, H T ID, IN ID, IN NAME, IN SC ID,
LT DTS, LT OPEN PRICE, LT PRICE, LT S SYMB, LT VOL,
NI AUTHOR, NI DTS, NI HEADLINE, NI ID, NI ITEM,
NI SOURCE, NI SUMMARY, NX CO ID, NX NI ID, SC ID,
SC NAME, SE AMT, SE CASH DUE DATE, SE CASH TYPE,
SE T ID, S 52WK HIGH, S 52WK HIGH DATE, S 52WK LOW,
S 52WK LOW DATE, S CO ID, S DIVIDEND, S EXCH DATE,
S EX ID, S ISSUE, S NAME, S NUM OUT, S PE,
S START DATE, S ST ID, S SYMB, S YIELD, TH DTS,
TH ST ID, TH T ID, TR BID PRICE, TR B ID, TR QTY,
TR S SYMB, TR TT ID, TR T ID, TT ID, TT IS MRKT,
TT IS SELL, TT NAME, TX ID, TX NAME, TX RATE,
T BID PRICE, T CA ID, T CHRG, T COMM, T DTS,
T EXEC NAME, T ID, T IS CASH, T LIFO, T QTY, T ST ID,
T S SYMB, T TAX, T TRADE PRICE, T TT ID, WI S SYMB,
WI WL ID, WL C ID, WL ID, ZC CODE, ZC DIV, ZC TOWN

TPC-H

Meaningful token
patterns

[(DATE)L], [(KEY)L],
[(LINE)F ], [(ORDER)F ],
[(PRICE)L],
[(PRIORITY)L], [(SHIP)F ],
[(STATUS)L], [(SUPP)F ]

ACCTBAL, ADDRESS,
AVAILQTY, BRAND, CLERK,

COMMENT, COMMIT DATE ,

CONTAINER, CUST KEY ,

DISCOUNT,
EXTENDED PRICE,

LINE NUMBER ,
LINE STATUS,
MFGR, MKTSEGMENT, NAME,

NATION KEY ,

ORDER DATE ,

ORDER KEY ,

ORDER PRIORITY ,

ORDER STATUS ,

PART KEY ,

PHONE, QUANTITY,

RECEIPT DATE ,

REGION KEY ,

RETAIL PRICE ,
RETURNFLAG,

SHIP DATE ,

SHIP INSTRUCT ,

SHIP MODE ,

SHIP PRIORITY ,

SIZE, SUPP KEY ,

SUPP LYCOST , TAX,

TOTAL PRICE , TYPE

Fig. 6. Boxes highlight new deduced tokenizations using a minimum-support greater
than 1 for standard tokens. Tpc-e is already well-tokenized to begin with, but Tpc-h
is greatly improved.



16 Alexander Albrecht and Felix Naumann

Given a candidate token pattern p and its set Np of neighborhood substrings
and tokens, we more formally define its choice as token pattern as follows:

Definition 9 (Meaningful Patterns). Let P (p) be the fraction of attribute
labels containing the pattern p, and let P (p‖t) be the fraction of attribute labels
containing the pattern p adjacent to string t ∈ Np. Token pattern p is meaningful
if and only if

arg max
t∈Np

P (t|p) = arg max
t∈Np

P (p‖t)
P (p)

≤ 50% (1)

To summarize, given the initial set of tokenized attribute labels AT , we are
able to use it as a bootstrap corpus for iteratively deriving token patterns. At
every iteration new meaningful token patterns are created considering attribute
labels in AT . Then, meaningful token patterns are used for tokenizing non-
standard tokens. The resulting tokenizations are added to AT . We stop the
iteration when no new tokenization is added to AT . At the end, AT contains all
meaningful tokenization of the given schema.

Fig. 6 shows the result using the whole Tpc-e schema as AT and the sample
set of already tokenized attribute labels AT = {LINE STATUS, EXTENDED PRICE}
for the Tpc-h schema. For the Tpc-e schema, tokenization stops after two
iteration steps. Tokenization of the Tpc-h schema requires five iteration steps.
In Fig. 6, boxes highlight all created tokenizations and the first line shows all
meaningful token patterns that were applied to at least one attribute label during
iterations.

6 Related work

Although the practical importance of Etl in data integration is significant [22],
only little research on Etl at a meta-level has been performed. Most related
research results improve Etl workflow modeling [13, 14, 21], and there are only
a few implementations that support further processing on Etl workflows. Ex-
amples include the optimization of Etl workflows [16, 17] and the generation of
Etl workflow reports [15].

Our work is mainly related to research on schema normalization in the field
of data integration [18] and attribute-synonym finding for relational tables and
spreadsheet data in web pages [6]. There is also some work on schema normaliza-
tion in the area of schema matching [4]. The authors of [11] introduced schema
normalization as an important pre-processing step in schema matching to im-
prove the discovery of semantically similar schema elements. Therefore, labels
of schemata are tokenized based on case-change or non alphabetical characters.
For tokens, an approximate lookup in a global dictionary, such as WordNet [12],
is performed to find a common representation. String matching techniques, such
as Levenshtein distance [10], are used to perform the approximate lookups.

The authors of [6] point out that distance metrics and global dictionaries, as
used in schema matching, are not appropriate to automatically find synonyms
for arbitrary attribute labels. This observation is supported by our experimental



Understanding Cryptic Schemata in Large ETL Systems 17

results: Common distance metrics result in poor decryptions and global dic-
tionaries lead to a relatively poor coverage of domain-specific abbreviations,
acronyms, and tokens. Furthermore, we propose a generalized technique for to-
kenization. In contrast, schema matching approaches perform tokenization only
with the simple strategy of tokenizing attribute labels based on case-change or
known delimiters.

The authors of [6] propose a large-scale discovery method to automatically
find synonyms for attribute labels. The source of information is a corpus of
125 million independently created relational tables extracted from 14.1 billion
Html tables. Their approach is based on pairs of attribute labels co-occurring
with same context attributes. As already pointed out in the introduction, this
type of web-scale analysis is infeasible for Etl systems: With our approach we
can identify accurate decryptions from a substantially smaller corpus of examples
compared to approaches that rely on a large set of web-scale example data. In
addition, we regard tokens and not entire attribute labels in order to achive a
high quality for schema decryption.

Sorrentino et al. present a semi-automatic technique for schema normaliza-
tion and motivate the importance of incorporating individual examples in the
process of schema normalization [18]. This work describes the importance of us-
ing labels from corresponding attribute labels in schema normalization. Pairs of
corresponding attribute labels are extracted from complementary schemata con-
nected by primary key to foreign key relationships. In contrast, ours is the first
work that incorporates corresponding attribute labels as source of information
for fully-automated, token-based schema decryption.

The methods in [2] use the Minimum Description Length (MDL) principle [9]
to capture regularities between two matching strings. In particular, the authors
address the related scenario of matching textual dissimilar strings motivated
by the fact that common distance metrics, such as Levenshtein distance, are
inappropriate in such a scenario. Similar to [6], the introduced techniques rely
on a large set of web-scale example data. Hence, these techniques to identify
synonyms cannot be applied to the schema decryption problem we consider in
this paper. There is also MDL based work on word segmentation [5] that is
related to our tokenization approach. In general, we consider a comparison of
our approach with MDL based approaches to be very promising for further work.

7 Conclusion

With this paper we presented a fully-automated schema decryption method
leveraging the large number of mapped attribute labels in a given Etl repository.
Our work is motivated by observing the need of easy-to-understand schemata
during Etl development and maintenance. Cryptic schemata significantly in-
crease the amount of time to understand unfamiliar data, as many readers might
have experienced themselves.

We introduced a novel approach for schema decryption to find high-quality
decryptions for cryptic attribute labels. Our suggested approach is intended to
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support and improve manual Etl workflow development and maintencance: An
Etl developer is now able to quickly grasp the underlying semantics of data
records in cryptic schemata.

We demonstrated that our schema decryption approach provides helpful sug-
gestions for three different real world Etl repositories. An experimental study
shows the high average precision of our schema decryption approach.
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2. Arasu, A., Chaudhuri, S., Kaushik, R.: Learning String Transformations from Ex-
amples. In: Proceedings of the International Conference on Very Large Databases
(VLDB). Lyon, France (2009)

3. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley, Boston, MA, USA (1999)

4. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic Schema Matching, Ten Years
Later. VLDB Journal 4 (2011)

5. Brent, M.R., Cartwright, T.A.: Distributional Regularity and Phonotactic Con-
straints are Useful for Segmentation. In: Cognition, vol. 61, pp. 93–125. Elsevier
Science Publishers (1996)

6. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: Exploring
the Power of Tables on the Web. In: Proceedings of the International Conference
on Very Large Databases (VLDB). Auckland, New Zealand (2008)

7. Cui, Y., Widom, J.: Lineage Tracing for General Data Warehouse Transformations.
VLDB Journal 12(1) (2003)

8. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data Integration Flows for
Business Intelligence. In: Proceedings of the International Conference on Extending
Database Technology (EDBT). Saint Petersburg, Russia (2009)

9. Grünwald, P.: A Minimum Description Length Approach to Grammar Inference.
In: Connectionist, Statistical and Symbolic Approaches to Learning for Natural
Language Processing, Lecture Notes in Computer Science, vol. 1040, pp. 203–216.
Springer Verlag (1996)

10. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady. 10(8), 707–710 (1966)

11. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid.
In: Proceedings of the International Conference on Very Large Databases (VLDB).
Rome, Italy (2001)

12. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

13. Poole, J., Chang, D., Tolbert, D.: Common Warehouse Metamodel, Developer’s
Guide (OMG). Wiley & Sons, Indianapolis, IN, USA (2003)



Understanding Cryptic Schemata in Large ETL Systems 19

14. Simitsis, A.: Mapping Conceptual to Logical Models for ETL Processes. In:
Proceedings of the International Workshop on Data Warehousing and OLAP
(DOLAP). Bremen, Germany (2005)

15. Simitsis, A., Skoutas, D., Castellanos, M.: Natural Language Reporting for ETL
Processes. In: Proceeding of the International Workshop on Data Warehousing and
OLAP (DOLAP). Napa Valley, CA, USA (2008)

16. Simitsis, A., Vassiliadis, P., Sellis, T.: Optimizing ETL Processes in Data Ware-
houses. In: Proceedings of the International Conference on Data Engineering
(ICDE). Tokyo, Japan (2005)

17. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL work-
flows for Fault-Tolerance. In: Proceedings of the International Conference on Data
Engineering (ICDE). Long Beach, CA, USA (2010)

18. Sorrentino, S., Bergamaschi, S., Gawinecki, M., Po, L.: Schema Normalization for
Improving Schema Matching. In: Proceedings of the International Conference on
Conceptual Modeling (ER). Gramado, Brazil (2009)

19. TPC Benchmark E. TP Council. (2010), http://www.tpc.org/tpce/
20. TPC Benchmark H. TP Council. (2012), http://www.tpc.org/tpch/
21. Trujillo, J., Luján-Mora, S.: A UML Based Approach for Modeling ETL Processes

in Data Warehouses. In: Proceedings of the International Conference on Concep-
tual Modeling (ER). Chicago, IL, USA (2003)

22. Vassiliadis, P., Karagiannis, A., Tziovara, V., Simitsis, A.: Towards a Benchmark
for ETL Workflows. In: Proceedings of the International Workshop on Quality in
Databases (QDB). Vienna, Austria (2007)



 



Aktuelle Technische Berichte  
des Hasso-Plattner-Instituts 

 
 
Band ISBN Titel Autoren / Redaktion 

    
59 978-3-86956-

193-6 
The JCop Language Specification 
 

Malte Appeltauer, Robert 
Hirschfeld 
 

58 978-3-86956-
192-9 

MDE Settings in SAP: A Descriptive Field 
Study 
 

Regina Hebig, Holger Giese 

57 978-3-86956-
191-2 

Industrial Case Study on the Integration of 
SysML and AUTOSAR with Triple Graph 
Grammars 
 

Holger Giese, Stephan 
Hildebrandt, Stefan Neumann, 
Sebastian Wätzoldt 

56 978-3-86956-
171-4 

Quantitative Modeling and Analysis of 
Service-Oriented Real-Time Systems 
using Interval Probabilistic Timed 
Automata 
 

Christian Krause, Holger Giese 

55 978-3-86956-
169-1 

Proceedings of the 4th Many-core 
Applications Research Community 
(MARC) Symposium 
 

Peter Tröger,  
Andreas Polze (Eds.) 

54 978-3-86956-
158-5 

An Abstraction for Version Control 
Systems 
 

Matthias Kleine,  
Robert Hirschfeld, Gilad Bracha 

53 978-3-86956-
160-8 

Web-based Development in the Lively 
Kernel 
 

Jens Lincke, Robert Hirschfeld 
(Eds.) 

52 978-3-86956-
156-1 

Einführung von IPv6 in 
Unternehmensnetzen: Ein Leitfaden 
 

Wilhelm Boeddinghaus,  
Christoph Meinel, Harald Sack 

51 978-3-86956-
148-6 

Advancing the Discovery of Unique 
Column Combinations 
 

Ziawasch Abedjan,  
Felix Naumann 

50 978-3-86956-
144-8 

Data in Business Processes Andreas Meyer, Sergey Smirnov, 
Mathias Weske 
 

49 978-3-86956-
143-1 

Adaptive Windows for Duplicate Detection Uwe Draisbach, Felix Naumann, 
Sascha Szott, Oliver Wonneberg 
 

48 978-3-86956-
134-9 

CSOM/PL: A Virtual Machine Product Line 
 

Michael Haupt, Stefan Marr, 
Robert Hirschfeld 
 

47 978-3-86956-
130-1 

State Propagation in Abstracted Business 
Processes 
 

Sergey Smirnov, Armin Zamani 
Farahani, Mathias Weske 

46 978-3-86956-
129-5 

Proceedings of the 5th Ph.D. Retreat of 
the HPI Research School on Service-
oriented Systems Engineering 
 

Hrsg. von den Professoren  
des HPI 

45 978-3-86956-
128-8 

Survey on Healthcare IT systems: 
Standards, Regulations and Security 

Christian Neuhaus,  
Andreas Polze,  
Mohammad M. R. Chowdhuryy 
 

44 978-3-86956-
113-4 

Virtualisierung und Cloud Computing: 
Konzepte, Technologiestudie, 
Marktübersicht 

Christoph Meinel, Christian 
Willems, Sebastian Roschke, 
Maxim Schnjakin 
 

43 978-3-86956-
110-3 

SOA-Security 2010 : Symposium für 
Sicherheit in Service-orientierten 
Architekturen ; 28. / 29. Oktober 2010 am 
Hasso-Plattner-Institut 
 

Christoph Meinel,  
Ivonne Thomas,  
Robert Warschofsky et al. 

 



ISBN 978-3-86956-201-8
ISSN 1613-5652


	Titelblatt
	Impressum

	Abstract
	1 Cryptic Schemata
	2 Using Connected Attributes for Decryption
	3 Schema Decryption
	3.1 Our Schema Decryption Approach
	3.2 Finding Decryption Pairs

	4 Experimental Study
	4.1 Real-world ETL repositories
	4.2 Evaluation Technique
	4.3 Results

	5 A Generalized Technique for Tokenization
	5.1 Discovery of Token Patterns
	5.2 Choosing Token Patterns

	6 Related work
	7 Conclusion
	Acknowledgment
	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

