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Zusammenfassung

Tektonische und geologische Prozesse verursachen häufig eine strukturelle Anisotropie des

Untergrundes, welche von verschiedenen geophysikalischen Methoden beobachtet werden

kann. Zur Erstellung und Interpretation geeigneter, realistischer Modelle der Erde sind Inver-

sionsalgorithmen notwendig, die einen anisotropen Untergrund einbeziehen können. Für die

vorliegende Arbeit habe ich einen magnetotellurischen (MT) Datensatz vom Cape Fold Gürtel

in Südafrika untersucht. Diese Daten weisen auf eine ausgeprägte Anisotropie der Kruste hin,

da z.B. die MT Phasen außerhalb des erwarteten Quadranten liegen und nicht durch stan-

dardisierte isotrope Inversionsalgorithmen angepasst und ausgewertet werden können. Um

dieses Problem zu beheben, habe ich eine zweidimensionale Inversionsmethode entwickelt,

welche eine anisotrope elektrische Leitfähigkeitsverteilungen in den Modellen zulässt.

Die MT Inversion ist im allgemeinen ein nichtlineares, schlecht gestelltes Minimierungsprob-

lem mit einer hohen Anzahl an Freiheitsgraden. Im isotropen Fall wird jeder Gitterzelle

eines Modells ein elektrischer Leitfähigkeitswert zugewiesen um den Erduntergrund nachzu-

bilden. Ein Modell mit beispielsweise 100 x 50 Zellen besitzt 5000 unbekannte Modellpa-

rameter. Im Gegensatz dazu haben wir im anisotropen Fall die sechsfache Anzahl, da hier

aus dem einfachen Zahlenwert der elektrischen Leitfähigkeit ein symmetrischer, reellwertiger

Tensor wird, wobei die Anzahl der Daten gleich bleibt. Für die erfolgreiche Inversion von

anisotropen Leitfähigkeiten und um die Nicht-Eindeutigkeit der Lösung des inversen Problems

zu überwinden, ist eine geeignete Einschränkung der möglichen Modelle absolut notwendig.

Dies wird umso wichtiger, da die Sensitivität von MT Daten nicht für alle Anisotropieparam-

eter gleich ist. In der vorliegenden Arbeit habe ich einen Algorithmus entwickelt, welcher die

Lösung des anisotropen Inversionsproblems unter Minimierung einer globalen Straffunktion

berechnet. Diese besteht aus drei Teilen: der Datenanpassung, den Zusatzbedingungen an die

Glätte des Modells und die Anisotropie. Im Gegensatz dazu werden beim isotropen Fall nur

die ersten zwei Parameter minimiert. Der neu definierte Anisotropieterm wird mit Hilfe der

Summe der quadratischen Abweichung der Hauptleitfähigkeitswerte des Modells gemessen.

Die grundlegende Idee dieser Zusatzbedingung ist einfach. Falls ein isotropes Modell die

Daten ausreichend gut anpassen kann, wird keine elektrische Anisotropie zusätzlich in das

Modell eingefügt.

Der vorgestellte Inversionsalgorithmus verwendet die Finite-Volumen-Methode und ist in das

Modellierungs- und Inversionsprogrammpaket ModEM (Egbert and Kelbert, 2012) eingear-

beitet. Das Grundgerüst hinter ModEM sind allgemein anwendbare Vorwärtsmodellierungs-,

Inversions- und Hilfsroutinen, welche durch spezielle Anwendungen erweitert werden können.
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In meiner Erweiterung des Programmpakets werden die Glätte des Modells und die Nebenbe-

dingungen an die Anisotropie auf den gesamten Modellraum angewendet und die globale

Straffunktion wird mit Hilfe des Levenberg-Marquardt-Verfahrens, welches auf der bekan-

nten Gauss-Newton Methode basiert, minimiert .

Die Sensitivitätsmatrix ist als die erste Ableitung der berechneten Daten nach den Modell-

parametern definiert und beschreibt wie stark sich die berechneten Daten bei kleinen Mod-

ifizierungen der Modellparameter ändern. Die Berechnung dieser Matrix ist der Kernpunkt

fast aller Inversionsalgorithmen. Dies gilt vor allem für Newtonverfahren. Im anisotropen Fall

ist die elektrische Eigenschaft jeder Modellzelle als symmetrischer Tensor zweiter Ordnung

definiert. Aus praktischen Gründen werden anstelle des vollen Tensors stellvertretend die

Hauptwerte und Eulerwinkel für die numerische Berechnung verwendet. Die Berechnung der

Sensitivitätsmatrix ist daher nicht direkt möglich wie im isotropen Fall. Ich stelle im Rahmen

meiner Arbeit einen geeigneten Algorithmus für die Matrixberechnung bei einer anisotropen

Leitfähigkeitsverteilung vor.

Um eine erfolgreiche Inversion zu garantieren müssen geeignete Regularisierungsparameter

für die verschiedenen Nebenbedingungen an das Modell gewählt werden. Für eine Inversion

mit solchen Nebenbedingungen wird die Straffunktion in zwei Schritten minimiert. Im ersten

Schritt hofft man, dass die Datenanpassung anfangs im Vergleich zu den Nebenbedingun-

gen an das Modell die Inversion dominiert und vorrangig großskalige Strukturen im Modell

erzeugt werden. Wenn sich danach die Datenanpassung mit jedem weiteren Inversionsschritt

verbessert, geht der Inversionsprozess im zweiten Schritt dazu über nur kleine Strukturen zu

erzeugen und arbeitet lediglich an der Feinabstimmung des Endmodells. Die Anwendung einer

geeigneten Regularisierung des Problems strebt danach den “optimalen” Übergang zwischen

diesen beiden Stadien der Inversion festzulegen und das “richtige” Inversionsmodell zu finden.

Tests mit synthetischen Modellen zeigen, dass bei festgesetzten Regularisierungsparametern

die Inversion meistens entweder in einem glatten Modell mit hohem RMS Fehler oder einem

groben Modell mit kleinem RMS Fehler endet. Dies weist im ersten Fall auf eine Inversion hin,

bei der der erste Schritt kaum ausgeführt wurde und im zweiten Fall auf eine Inversion, bei der

der erste Schritt dominiert und wenig oder gar keine Feinheiten in das Modell eingearbeitet

wurden. Die Anwendung einer Relaxationsbedingung auf die Regularisierung nach jedem It-

erationsschritt resultiert in glatteren Inversionsmodellen und einer höheren Konvergenz und

scheint ein ausgereifter Weg zur Wahl der Parameter zu sein. Die vorgestellte Inversions-

methode ist im allgemeinen in der Lage die Hauptleitfähigkeiten in der horizontalen Ebene zu

finden. Wenn keine der Hauptrichtungen der Anisotropiestruktur mit der vorgegebenen Stre-

ichrichtung übereinstimmt, können nur die dazugehörigen effektiven Leitfähigkeiten, welche
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die Projektion der Hauptleitfähigkeiten auf die Koordinatenachsen des Modells darstellen,

aufgelöst werden. Allerdings gehen die Informationen über die Rotationswinkel verloren.

Am Ende meiner Arbeit werden die MT Daten des Cape Fold Gürtels in Südafrika analysiert.

Die MT Daten zeigen in einem Abschnitt des Messprofils (> 10 km) Phasen über 90◦. Dieser

Teil der Daten kann nicht mit herkömmlichen isotropen Modellierungsverfahren angepasst

und daher mit diesen auch nicht vollständig ausgewertet werden. Die vorgestellte Inver-

sionsmethode konnte die außergewöhnlich hohen Phasenwerte nicht wie gewünscht im In-

versionsergebnis erreichen, was mit dem erwähnten Informationsverlust der Rotationswinkel

begründet werden kann. MT Phasenaußerhalb des ersten Quadranten können für gewöhnlich

bei Anomalien mit geneigter Streichrichtung der Anisotropie gemessen werden. Um diese

auch in den Inversionsergebnissen zu erreichen ist eine Weiterentwicklung des Algorithmus

notwendig. Vorwärtsmodellierungen des MT Datensatzes haben allerdings gezeigt, dass eine

hohe Leitfähigkeitsheterogenität an der Oberfläche in Kombination mit einer Zone elektrischer

Anisotropie in der mittleren Kruste notwendig sind um die Daten anzupassen. Aufgrund ge-

ologischer und tektonischer Informationen kann diese Zone in der mittleren Kruste als tiefer

Aquifer interpretiert werden, der im Zusammenhang mit den zerrütteten Gesteinen der Table

Mountain Group des Cape Fold Gürtels steht.
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Summary

Tectonic and geological processes on Earth often result in structural anisotropy of the sub-

surface, which can be imaged by various geophysical methods. In order to achieve appro-

priate and realistic Earth models for interpretation, inversion algorithms have to allow for

an anisotropic subsurface. Within the framework of this thesis, I analyzed a magnetotelluric

(MT) data set taken from the Cape Fold Belt in South Africa. This data set exhibited strong

indications for crustal anisotropy, e.g. MT phases out of the expected quadrant, which are

beyond of fitting and interpreting with standard isotropic inversion algorithms. To over-

come this obstacle, I have developed a two-dimensional inversion method for reconstructing

anisotropic electrical conductivity distributions.

The MT inverse problem represents in general a non-linear and ill-posed minimization problem

with many degrees of freedom: In isotropic case, we have to assign an electrical conductivity

value to each cell of a large grid to assimilate the Earth’s subsurface, e.g. a grid with 100×50

cells results in 5000 unknown model parameters in an isotropic case; in contrast, we have the

sixfold in an anisotropic scenario where the single value of electrical conductivity becomes a

symmetric, real-valued tensor while the number of the data remains unchanged. In order to

successfully invert for anisotropic conductivities and to overcome the non-uniqueness of the

solution of the inverse problem it is necessary to use appropriate constraints on the class of

allowed models. This becomes even more important as MT data is not equally sensitive to

all anisotropic parameters. In this thesis, I have developed an algorithm through which the

solution of the anisotropic inversion problem is calculated by minimization of a global penalty

functional consisting of three entries: the data misfit, the model roughness constraint and

the anisotropy constraint. For comparison, in an isotropic approach only the first two entries

are minimized. The newly defined anisotropy term is measured by the sum of the square

difference of the principal conductivity values of the model. The basic idea of this constraint

is straightforward. If an isotropic model is already adequate to explain the data, there is no

need to introduce electrical anisotropy at all.

The proposed inversion method is implemented into a numerical finite volume framework

and embedded in the ModEM modeling and inversion software package (Egbert and Kel-

bert, 2012). The philosophy behind the ModEM is a generally applicable set of forward

modeling, inversion and auxiliary routines which can be extended by more specific appli-

cations. Within my supplement, the model roughness and the anisotropy constraints are

applied for the entire model space and the global penalty functional is minimized by using

the Levenberg-Marquardt method which is based on the well-known Gauss-Newton scheme.
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The sensitivity matrix is defined as the first derivative of predicted data with respect to model

parameters and describes how sensitive the predicted data are towards a small changes in

the model parameters. The calculation of the sensitivity matrix is the key point for almost

all inversion methods, especially for the Newton type method. In the anisotropic case, the

electrical property of each grid cell has to be defined with a symmetric second-order tensor

and for practical reason its representatives (the principal values and the Euler angles) are

used for all numerical calculation instead of the tensor itself. Hence, the calculation of the

sensitivity matrix is not as straightforward as it in isotropic case. In this thesis, I present an

algorithm which is adequate to calculate the sensitivity matrix for an anisotropic conductivity

distribution.

In order to ensure successful inversion, appropriate trade-off parameters, also known as regu-

larization parameters, have to be chosen for the different model constraints. For an inversion

containing of model constraints, the minimization of penalty functional is done in two stages.

In the first step, at early stages we hope that the data misfit is dominant compared to the

model constraints and hence mainly large-scale structures are created. While the data misfit

decreases from iteration to iteration, the inversion process will transit into a later stage,

where only small-scale structures are added. In this stage, the inversion performs a fine-

tuning and only changes the appearance of the resulting model. Application of appropriate

trade-off parameters aims to identify the “optimum” transition of the two stages and achieve

the “best” inversion model. Synthetic tests show that using fixed trade-off parameters usu-

ally causes the inversion to end up by either a smooth model with large RMS error, which

implies a premature inversion in which the early stage is barely executed, or a rough model

with small RMS error, a postmature inversion result, in which the early stage is dominant

for the entire inversion process and less or even no fine-tuning is performed. Using of a

relaxation approach on the regularization parameters after each successful inversion iteration

will result in smoother inversion model and a better convergence. This approach seems to

be a sophisticated way for the selection of trade-off parameters. In general, the proposed

inversion method is adequate for resolving the principal conductivities defined in horizontal

plane. Once none of the principal directions of the anisotropic structure is coincided with

the predefined strike direction, only the corresponding effective conductivities, which is the

projection of the principal conductivities onto the model coordinate axes direction, can be

resolved and the information about the rotation angles is lost.

In the end the MT data from the Cape Fold Belt in South Africa has been analyzed. The

MT data exhibits an area (> 10 km) where MT phases over 90◦ occur. This part of

data cannot be modeled by standard isotropic modeling procedures and hence can not be
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properly interpreted. The proposed inversion method, however, could not reproduce the

anomalous large phases as desired because of losing the information about rotation angles.

MT phases outside the first quadrant are usually obtained by different anisotropic anomalies

with oblique anisotropy strike. In order to achieve this challenge, the algorithm needs further

developments. However, forward modeling studies with the MT data have shown that surface

highly conductive heterogeneities in combination with a mid-crustal electrically anisotropic

zone are required to fit the data. According to known geological and tectonic information

the mid-crustal zone is interpreted as a deep aquifer related to the fractured Table Mountain

Group rocks in the Cape Fold Belt.
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Chapter 1.

Introduction

Magnetotellurics (MT) is an electromagnetic geophysical method. It was introduced by the

French geophysicist Louis Cagniard and Russian geophysicist Andrey Nikolayevich Tikhonov

in the early 1950s (see Tikhonov, 1950, Cagniard, 1953). The MT method involves measuring

variations of the natural electric and magnetic fields in orthogonal directions at the Earth’s

surface. Thereby the electrical conductivity structure of the Earth at depths ranging from a

few tens of meters to several hundreds of kilometers can be determined. With advances in

instrumentation, data processing and modeling, MT has become one of the most important

tools in research of the deep Earth and at shallow and drillable depths in case of exploration,

site characterization and reservoir monitoring. Since a direct investigation of the conductivity

in a great depth is rarely possible, the interpretation of MT measurements always represents

a modeling problem, including forward and inverse modeling. The task is to find a concept

(or model) of the Earth’s structure on the basis of electrical conductivity distribution.

Forward modeling scheme represents the numerical simulation of measurements for a given

parameter distribution which is generally represented by the solution of partial differential

equations and maps the known model (model space) into its responses (predicted data, data

space). Thanks to early developments (e.g. Wait, 1954, Wannamaker et al., 1987, Mackie

and Madden, 1993a, and many others) the MT forward modeling problem can be solved for

any dimensionality model; analytically in simple one-dimensional (1D) cases and numerically

in general. However, they are all based on an assumption of a generally isotropic subsurface.

Unfortunately, the real subsurface structure does not always fulfill this requirement. In some

cases, only anisotropic conductors allow a consistent interpretation of MT data (Weidelt,

1999). Many studies have been done during the past four decades in order to model the

effects of the electrical anisotropy on the magnetotelluric data, e.g. Reddy and Rankin

(1975), Saraf et al. (1986), Osella and Martinelli (1993), Schmucker (1994), Weidelt (1999),
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Chapter 1. Introduction

Pek and Verner (1997), Pek and Santos (2002). Among them the modeling code provided by

Pek and Verner (1997) to simulate MT responses above a two-dimensional subsurface with

anisotropic structures is only one available for scientific community and thus widely used.

Inversion schemes search the relationships between the measured data and model responses,

by modifying the model until an agreement within certain thresholds is yielded. Standard

inversion schemes (e.g. Constable et al., 1987, Mackie and Madden, 1993b, Newman and

Alumbaugh, 2000, Siripunvaraporn et al., 2005, Egbert and Kelbert, 2012) are developed

based on isotropic modeling of different dimensionality. They are widely used to simulate

MT field data. Some inversion tools considering electrical anisotropy are also developed for

investigation of MT data. An algorithm to solve the 1D inversion problem was developed by

Pek and Santos (2002). A pioneering work towards a general anisotropic inversion for 2D MT

case was presented by Li et al. (2003). Another 2D anisotropic inversion algorithm, based

on the isotropic inversion algorithm presented in Rodi and Mackie (2001) and constrains the

anisotropic strike to be parallel to the regional strike, was first used by Baba et al. (2006).

Unfortunately, those approaches are not applied routinely. The first two approaches are in

an experimental stage and still in development, the latter one is unpublished and no public

access exists for scientific community. Recently, Miensopust and Jones (2011) have shown

that isotropic inversions in an anisotropic medium can result in severe artifacts and lead to

erroneous interpretations.

Numerous MT field experiments suggest electrical anisotropy at various levels, shallow crustal

as well as lower crustal and lithospheric mantle depths (e.g. Eisel and Bahr, 1993, Mareschal

et al., 1995, Eisel and Haak, 1999, Bahr et al., 2002, Leibecker et al., 2002, Heise and Pous,

2003, Weckmann et al., 2003, Baba et al., 2006, and more others). For analyzing these data

sets the standard isotropic inversion schemes become inadequate. Nevertheless, anomalous

phases exceeding 90◦ in off-diagonal components have been frequently observed in many

regions. Those anomalous phases can not be modelled using isotropic 1D or 2D approaches

but using anisotropic 2D approach by the presence of two anisotropic structures of oblique

anisotropy strike directions (Pek and Verner, 1997, Heise and Pous, 2003, Weckmann et al.,

2003). Furthermore, Heise and Pous (2003), Weckmann et al. (2003) studied the conditions

necessary to induce anomalous phases in the above model. Using their anisotropic model

they explained real anomalous phase data obtained in the Variscan terrenes and Namibia.

Within the framework of the German - South African geo-scientific research initiative Inkaba

yeAfrica a series of magnetotelluric field experiments were conducted along the Agulhas-

Karoo Transect in South Africa which aims to understand the geodynamic processes along

2



Chapter 1. Introduction

Africa’s southern continental margin. Along the MT profile across the Cape Fold Belt we

can identify areas (> 10 km) where MT sites exhibit phases over 90◦. Due to the dense

site spacing we are able to observe this behaviour consistently at several sites. In order to

satisfy the standard inversion procedure a considerable amount of data, especially those with

phases greater than 90◦, are excluded from the 2D isotropic inversion. The results obtained

by isotropic 2D inversion is adequate to explain most parts along the profile but it is very

unsatisfactory not being able to include phases greater than 90◦ and thus neglect a substantial

amount of data. Furthermore, according to known geological and tectonic information we

believe that the phases greater than 90◦ are caused by some electrically anisotropic structures

in the survey area.

All of this motivates me to accomplish this thesis. The objectives of this thesis are threefold:

1) develop two-dimensional anisotropic inversion procedure for magnetotelluric data. 2) carry

out detailed synthetic tests to demonstrate the capabilities and show the limitations of the

implemented inversion strategy. 3) study the electrical properties of the Cape Fold Belt using

magnetotelluric measurements.

This thesis is organized into four parts. The first part, chapter 2, introduces briefly the theo-

retical background of the magnetotelluric method and the properties of electrical anisotropy.

At the end of this part, the general concepts of magnetotelluric induction is derived into

cases of different dimensionality, e.g. one-, two- and three-dimensional cases. Comparisons

are made between electrical isotropy and anisotropy for each case. The second part of the

thesis, chapter 3, details algorithms for solving the anisotropic forward modeling problem

in one- and two-dimensional structure. Comparisons are also made between isotropic and

anisotropic case. Synthetic 2D model studies are presented at the end of this part in order

to show the different between isotropic and anisotropic modeling and to demonstrate the

necessary conditions for inducing anomalous phases in a 2D model containing anisotropic

structures. The third part of the thesis, chapter 4, details the solution of the 2D MT

anisotropic inversion problem. It begins with a general overview of the inversion methodol-

ogy through which the concept of 2D anisotropic inversion is derived. Synthetic inversion

studies are presented at the end of this part in order to demonstrate the capabilities and

show the limitations of the implemented inversion procedure. The fourth part of the thesis,

chapter 5, is a magnetotelluric study of the Cape Fold Belt. The forward modeling algorithm

introduced in the second part and the inversion algorithm introduced in the third part are

used to explain these data. The results as well as the implications are presented. Conclusions

and suggestions for further work are presented in chapter 6.
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Chapter 2.

Basic concepts of magnetotelluric

(MT) induction

This chapter outlines the basic concepts of the MT method and describes the main formula-

tions of the induction problem. I will start with a theoretical introduction of electromagnetic

induction and show how it is related to the properties of Earth.

2.1. From Maxwell’s equations to electromagnetic

induction in the earth

The behaviour of electromagnetic (EM) fields is described by Maxwell’s equations, which

relate the time varying electric and magnetic fields. The first two Maxwell equations in their

differential form are:

∇× E = −∂B
∂t

(2.1)

∇×H =
∂D

∂t
+ J (2.2)

Here, E is the electric field ( V/m), B is the magnetic flux density ( Vs/m2), H is the

magnetic field ( A/m), D is the electric displacement current ( C/m2), and J is the current

density ( A/m2).

Equation (2.1) is the Faraday’s law and describes how a time varying magnetic field excites an

electric field. The Ampere’s law including Maxwell’s correction in equation (2.2) states that
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magnetic fields can be generated in two ways: by electrical current (the original Ampere’s

law) and by time varying electric fields (Maxwell’s correction).

Two more Maxwell’s equations can be derived from equations (2.1) and (2.2) by applying

the divergence operator (∇·) and making use of the vector identity ∇ · ∇ × A = 0 (A

represents an arbitrary vector field).

Taking the divergence of equation (2.1) yields:

∇ · ∇ × E = −∇ · ∂B
∂t

= − ∂

∂t
(∇ ·B) = 0

=⇒ ∇ ·B = 0 (2.3)

Equation (2.3) is the Gauss’s law for magnetism and states that magnetic monopoles do not

exist. Similarly, taking the divergence of equation (2.2) earn:

∇ · ∇ ×H =
∂

∂t
(∇ ·D) +∇ · J = 0

=⇒ ∇ · J = − ∂

∂t
(∇ ·D) (2.4)

Using the continuity equation ∇ · J = −∂q
∂t

(q is the charge density ( C/m3)), which shows

that the divergence of the current density is equivalent to the rate of accumulation of charge

density , in equation (2.4) yields:

∇ · J = −∂q
∂t

= − ∂

∂t
(∇ ·D) (2.5)

and thus,

∇ ·D = q (2.6)

Equation (2.6) is the Gauss’s law for electricity and shows that the electric field is the result

of the distribution of electric charge.

Homogeneous earth materials mostly exhibit conductivities of 10−4 S/m or greater, so that

free charges qe dissipate in less than 10−6 s. Thus, with frequencies employed in deep geo-

physical sounding usually smaller than 105 Hz, it holds ∂qe/∂t ∼ 0, together with equation

(2.5) we easily obtain:

∇ · J = 0 (2.7)
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However, equation (2.7) does not apply to inhomogeneous regions; at the interface between

two different media a surface charge may accumulate and thus ∂qe/∂t ∼ 0 becomes invalid.

((Ward and Hohmann, 1987)).

Equations (2.1), (2.2), (2.3) and (2.6) are uncoupled differential equations and represent the

fundamental equations in electromagnetism.

Under necessary assumptions (see Appendix A.1) the Maxwell’s equations can be rewritten

as:

∇× E = −∂B
∂t

(2.8)

∇×H = σE (2.9)

∇ ·B = 0 (2.10)

∇ · E =
q

ε0

(2.11)

where σ denotes the electrical conductivity in ( S/m) and ε0 = 8.85 · 10−12 As/Vm is a

universal constant called the dielectric permittivity of free space.

These equations represent the basic equations of electromagnetic induction in a source-free

medium. The fields that satisfy them are time-dependent, but they change sufficiently slow

and behave like static fields. Therefore, these fields are called quasi-static fields.

These equations can be transformed from the time domain into the frequency domain, and

the solution can be simplified by replacing time derivatives with simple multiplications, i.e.,

− ∂B(t)

∂t

F−→ −iωB(ω) (2.12)

for a field at frequency ω.

We can use the fact that ∇ · (∇ × A) = 0 holds for any vector field A. Applying the

divergence (∇·) to equation (2.9) yields

∇ · (σE) = σ∇ · E + E∇σ = 0 (2.13)

From equation (2.11) follows that

q

ε0

= −E∇σ
σ
⇒ q

ε0

= −E∇ lnσ (2.14)
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This results in modified Maxwell’s equations:

∇× E = −iωµ0H (2.15)

∇×H = σE (2.16)

∇ ·H = 0 (2.17)

∇ · E = −E∇ lnσ (2.18)

where µ0 = 4π · 10−7 Vs/Am is also a universal constant called the magnetic permeability

of free space.

These four equations can be combined into two equations by taking the curl (∇×) of equa-

tions (2.15) and (2.16) with concerning of the vector Laplacian operator:

∇2 := ∇(∇·)−∇× (∇×) (2.19)

For quasi-static fields the corresponding differential equation satisfied by E is given by taking

the curl of equations (2.15) and substituting ∇×H from equation (2.16) and ∇ · E from

equation (2.18)

∇×∇× E = ∇(∇ · E)−∇2E = −iωµ0∇×H

⇒ ∇2E = iωµ0σE−∇(E∇ lnσ) (2.20)

Similarly, the corresponding differential equation satisfied by H can be derived by taking the

curl of equation (2.16) and substituting ∇ × E from equation (2.15) with concerning the

fact that ∇× (αA) := α∇×A−A×∇α holds for any vector field A and scalar field α

∇×∇×H = ∇(∇ ·H)−∇2H = σ∇× E− E×∇σ
⇒ ∇2H = iωµ0σH + E×∇σ (2.21)

Equations (2.20) and (2.21) describe the magnetic and electric fields under the above as-

sumptions in their most general form.

The orthogonal components of the horizontal electric and magnetic fields are related through

a quantity called impedance tensor Z:

E(ω) = Z(ω) ·H(ω) (2.22)
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or in a tensor form as: (
Ex

Ey

)
=

(
Zxx Zxy

Zyx Zyy

)
·

(
Hx

Hy

)
(2.23)

The complex-valued impedance tensor Z in equation (2.22) can be converted into a apparent

resistivity ρa and a phase φ , namely:

ρa,ij(ω) =
1

µ0ω
|Zij(ω)|2 (2.24)

φij = tan−1

(
Im{Zij}
Re{Zij}

)
(2.25)

Another linear relationship of the electromagnetic fields is the relation between the vertical

magnetic component Hz and the horizontal magnetic field components Hx,Hy, which is

written as:

Hz = TzxHx + TzyHy (2.26)

where Tzx and Tzy constitute the vertical magnetic transfer functions. They describe to which

extent the horizontal magnetic components are tipped into the vertical components. Tzx and

Tzy are sometimes called “tipper” (Vozoff, 1972). An important quantity derived from the

vertical magnetic transfer functions is the induction vector: Using Wiese-Convention (Wiese,

1962) the amplitude and the angle of the real part of the induction vector are computed

as:

amplitude of Treal =
√
Re{Tzx}2 +Re{Tzy}2 (2.27)

angle of Treal = tan−1

(
Re{Tzy}
Re{Tzx}

)
(2.28)

The amplitude and the angle of the imaginary part of the induction vector can be computed

accordingly. In Wiese-convention the induction vectors tend to point away from the elongated

conductors. Induction vectors are usually used to identify lateral contrasts of the conductivity

in the subsurface.

2.2. Electrical anisotropy

Assume that all media are linear, homogeneous, and possess electrical properties which are

independent of time, temperature, or pressure. Under these assumptions the current density

J and the electric field E are linearly related through Ohm’s Law, by the electrical conductivity

σ (eq. A.7).
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2.2.1. Electrical conductivity tensor

In homogeneous, isotropic media where current density is independent of the direction of

the electric field, the electrical conductivity is a scalar value. The amount of current flow

is then governed solely by the magnitudes of σ and E, and the direction of the flow is

always parallel to E. However, in many cases, currents are allowed to flow more easily

in one direction than another, e.g., consider geological formations with distinct layers of

sedimentary material, electrical conductivity in direction parallel to the layers is different

from that in direction perpendicular to the layers. On this scale, therefore, exists some

structural anisotropy, also called as macroscopic anisotropy. It is distinguished from the

intrinsic anisotropy or microscopic anisotropy, which is caused by ordered inhomogeneities

and exists already on a very small scale (see Weidelt, 1999).

The anisotropy of electrical conductivity is essentially a scale effect: Even if the conductivity

is isotropic on the microscale, it will become anisotropic on a larger scale if, in the averaging,

preferred orientations (e.g., layering or lamination) exist. An example is given in Fig. 2.1:

J

E

σ1 σ2 = 3σ1

'

J
E

Spatial Average

Figure 2.1.: A simple example for the origin of structural anisotropy from a spatial average

of E (electric field) and J (current density) over isotropic conductors with different con-

ductivities (σ2 = 3×σ1). The averaged current density is deflected toward the preferential

direction of the electric field. Figure redrawn from Weidelt (1999).

In both isotropic lamina, electric field E and current density J are parallel, and the tangential

electric field and the current density normal to the interface are continuous at the surface.

After spatial averaging over both lamina, however, E and J are no longer aligned.
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With electrical anisotropy, current density depends on the direction of the electric field, the

electrical conductivity is considered to be a tensor (e.g., Pek and Verner, 1997, Weidelt,

1999, and many others). Equation (A.7) can be rewritten as:

J = σE (2.29)

where σ is a tensor of rank 3. In right-handed Cartesian coordinates (x, y, z) with z positive

downward, σ has the representation

σ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (2.30)

Equation (2.29) represents the general form of Ohm’s Law. With 9 components of σij (i, j =

x, y, z) the electrical conductivity of an anisotropic medium can be fully described.

The conductivity tensor σ has the following properties:

1. Symmetry: The conductivity tensor is symmetric for purely ohmic conduction (Onsager,

1931).

2. Non-negativity: The conductivity tensor has to be positive semidefinite because the

time-averaged specific energy dissipation, (1
2
E∗ · J = 1

2
E∗ · σ ·E), is non-negative. E∗

denotes complex conjugation.

In the air (half-space z < 0) all tensor elements vanish; in the conductor z > 0 the tensor is

assumed to be positive definite. Necessary and sufficient conditions for this property are the

positivity of the three major determinants. Interpretation of the off-diagonal elements of σ

is obvious: They describe current flow perpendicular to the direction of applied electric field.

For instance, the element σxy describes current flow in the x-direction due to an applied

electric field in the y-direction and it can denote a deviation of the direction of regional

strike from the horizontal axes of anisotropy; Elements σxz and σyz describe current flow in

the x-direction and y-direction, respectively, due to a common electric field applied in the

z-direction and denote dipping anisotropy.

Fig. 2.2 shows two examples of electrical anisotropy, the azimuthal anisotropy and the dipping

anisotropy. Let σmin equals σ1 and σmax equals σ2, the bulk conductivity of the alternating

conductive dykes can be defied as

σ =

 σ1 cos2 α + σ2 sin2 α (σ2 − σ1) sinα cosα 0

(σ2 − σ1) sinα cosα σ1 sin2 α + σ2 cos2 α 0

0 0 σ1

 (2.31)
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ρmi n

y

z ρmi n

x
α
ρmax

Anisotropy
strike α

2D strike
ρmi nx

y

ρmi nz

β

ρmax

2D strike

Anisotropy
dip β

Figure 2.2.: Example representations of anisotropy in earth materials, simulated by conduc-

tive dykes with principal conductivities σmin and σmax. Left: azimuthal anisotropy with

anisotropy strike α with respect to the 2-D structural strike. Right: dipping anisotropy.

Figure modified from Heise and Pous (2001).

for azimuthal anisotropy, and

σ =

 σ1 0 0

0 σ2 cos2 β + σ1 sin2 β (σ1 − σ2) sin β cos β

0 (σ1 − σ2) sin β cos β σ2 sin2 β + σ1 cos2 β

 (2.32)

for dipping anisotropy, respectively. Outside of the dykes, the conductivity may be isotropic.

2.2.2. Euler angles

In previous section we have discussed that for a medium with electrical anisotropy, the

conductivity has to be considered as a tensor, and this tensor is symmetric and positive

semidefinite. From mathematical point of view a real symmetric matrix is diagonalizable by

orthogonal matrices. In other words it is always possible to find a set of new coordinates

(the principal axes) in which the tensor is diagonal with it’s principal values

σ′ =

 σx 0 0

0 σy 0

0 0 σz

 (2.33)

In equation (2.33) the tensor elements σx, σy and σz are the conductivities along the cor-

responding principal axes. Since the original conductivity tensor is positive semidefinite, the

11



Chapter 2. Basic concepts of magnetotelluric (MT) induction

principal values must be all positive. This procedure is called principal axis transformation

in mathematics and it can be expressed as

σ′ = A−1σA = ATσA (2.34)

where σ is the original conductivity tensor with it’s diagonalized form σ′, A is an orthogonal

matrix and builds the new coordinates for σ′, A−1 and AT represent the inverse and transpose

of A. The principal axes and principal values can be obtained by finding eigenvalues and

eigenvectors of σ.

The orthogonal matrix A can be decomposed into three elementary Euler’s spatial rotations,

denoted by Euler angles α, β and γ. In other words A = R(α)R(β)R(γ), where R(α)

represents the rotation matrix with respect to angle α. The euler angles can be defined as

follows: First rotate an angle α about the z-axis (this causes x- and y axes move to new

orientations while z remains unchanged). Then rotate an angle β about its new x-axis (it

causes y and z axes move to new orientations while x-axis remains unchanged). Finally,

rotate an angle γ about its new z-axis. This is so called z − x′ − z′′ convention of Euler

angles. Different authors may use different sets of angles to describe these orientations,

or different names for the same angles, leading to different conventions. Unless otherwise

stated, the z−x′−z′′ convention of Euler angles will be used throughout the entire thesis.

Equation (2.34) can be then rewritten as

σ′ = RT
z (γ)RT

x (β)RT
z (α)σRz(α)Rx(β)Rz(γ) (2.35)

and dually with three principal values and three rotation angles the original conductivity

tensor σ is unique defined

σ = Rz(α)Rx(β)Rz(γ)σ′RT
z (γ)RT

x (β)RT
z (α) (2.36)

The elementary Euler’s rotations are demonstrated in Fig. 2.3 and the corresponding rotation

matrices are
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x

y

z

x'

y'

α
Anisotropy
Strike

y''

z'
z''

β
Anisotropy
Dip

x'''

y'''

z'''

x''
γAnisotropy

Slant

Figure 2.3.: Illustration of the z− x′− z′′ convention of Euler’s rotations: transformation of

conductive dykes into general position by successively rotating three Euler angles α, β and

γ about the z-, x′- and z′′-axis, respectively.

Rz(α) =

 cosα − sinα 0

sinα cosα 0

0 0 1


Rx(β) =

 1 0 0

0 cos β − sin β

0 sin β cos β

 (2.37)

Rz(γ) =

 cos γ − sin γ 0

sin γ cos γ 0

0 0 1


The Euler’s rotations transfer the conductivity tensor into it’s diagonal form and vice versa.

There is an intuitive reason why do we need the Euler’s rotations and introduce it here. All

electrical and electromagnetic methods aims to map the electric properties of the subsurface

from surface measurements. Of course the electric property of a target can be fully described

by using a tensor but it is difficult to image how a tensor looks like spatially. With help of

the Euler’s rotations an arbitrary anisotropy conductivity can be specified by three coordinate

invariants (the principle values) and three angles. The invariants describe the bulk resistivity

of the target and the angles, which depend on the particular representation and coordinate

system chosen, depict the spatial orientation of the target in a predefined coordinate system.

Although it is more difficult to decompose the rotation matrix to Euler angles and the solution

is not necessarily unique, the combination of invariants and angles provides an easy way to

understand the anisotropic properties of Earth’s material.
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Chapter 3.

MT forward problem

The MT forward modeling aims to solve the Maxwell’s equations and simulate the spatial and

temporal distribution of electric and magnetic fields in the subsurface for a given conductivity

distribution and a range of periods (or frequencies). In this chapter I will focus on general

anisotropic Earth model in two-dimensional cases. Beside detailed description of forward

algorithm a model study is curried out and the difference between anisotropic and isotropic

MT forward modeling will be discussed throughout the entire chapter. For completeness, the

forward problem in one-dimensional for generally anisotropic Earth model is also discussed,

the interested reader is referred to appendix A.3.

3.1. Two-dimensional (2D) structure with anisotropic

conductivities

The effect of anisotropy in 2D structures was initially studied by Reddy and Rankin (1975),

who considered just the effect of horizontal anisotropy. More recently, Osella and Martinelli

(1993) calculated the magnetotelluric response of models with smooth irregular boundaries

and with a special orientation of principal axes. Schmucker (1994) presented an algorithm

for the computation of the electromagnetic induction in a non-uniform thin sheet above a

layered half-space, which may contain one or more layers of anisotropic conductivity. General

anisotropic structures in 2D are investigated by Pek and Verner (1997) and Li (2002), with

arbitrary orientation of the principal axes.

Unlike the 1D forward problem, which can be solved analytically, the 2D forward problem is

more complicated and only a few isotropic 2D models are analytically solvable. Hence, in
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practice, the MT 2D forward problem is solved numerically for both isotropic and anisotropic

cases. The solution of the governing second order partial differential equations is obtained

by applying one of the following discretization methods, namely the Finite difference Method

(FDM), the Finite Volume Method (FVM) or the Finite Element Method (FEM).

The FEM involves assumed functional forms for the model and fields in small regions of

specified geometry. The fields are then matched where the elements abut. FEM is generally

thought to be more flexible in terms of model design since the model cells are typically trian-

gular shaped. It is particularly useful if the earth model includes topography or bathymetry.

The FDM based upon the differential form of the partial differential equations to be solved.

Each derivative is replaced with an approximate difference formula. The computational do-

main is usually divided into rectangular cells and the solution will be obtained at each nodal

point. The FDM becomes difficult to use when the coefficients involved in the equation are

discontinuous (e.g. in the case of heterogeneous media). In contrast, the FVM based upon

an integral form of the partial differential equation to be solved (e.g. conservation of mass or

energy). The partial differential equation is written in a form which can be solved for a given

finite volume (e.g. the control volume or cell). The computational domain is discretized into

finite volumes and then for every volume the governing equations are solved. The resulting

system of equations usually involves fluxes of the conserved variable, and thus the calculation

of fluxes is very important in FVM. The basic advantage of this method over FDM is that

the discontinuities of the coefficients will not be any problem if the mesh is chosen such that

the discontinuities of the coefficients occur on the boundaries of the control volumes. Note

that the finite volume scheme is often called “finite difference scheme” or “cell centered

difference scheme”. Indeed, in the finite volume method, the finite difference approach can

be used for the approximation of the fluxes on the boundary of the control volumes. Thus,

the finite volume scheme differs from the finite difference scheme in that the finite difference

approximation is used for the flux rather than for the operator itself. In this paragraph I will

discuss the MT 2D anisotropic forward problem in details based on the finite volume method

and the early work of Pek and Verner (1997) and Li (2002).

I adopted the induction equations for 2D structures with arbitrary anisotropy derived in

appendix A.2 (equations A.42 and A.43).
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∂2Ex
∂y2

+
∂2Ex
∂z2

+ iωµ0(WEx + A
∂Hx

∂y
−B∂Hx

∂z
) = 0 (3.1)

∂

∂y

(
σyy
D

∂Hx

∂y

)
+

∂

∂z

(
σzz
D

∂Hx

∂z

)
+

∂

∂y

(
σyz
D

∂Hx

∂z

)
+ · · ·

+
∂

∂z

(
σyz
D

∂Hx

∂y

)
+ iωµ0Hx −

∂ (AEx)

∂y
+
∂ (BEx)

∂z
= 0 (3.2)

where

D = σzzσyy − σyzσzy, A = (σyxσzy − σyyσzx)/D
B = (σzxσyz − σzzσyx)/D, W = σxx + σxyB + σxzA

and σij represents element of the conductivity tensor σ. Again, equations (3.1) and (3.2)

express a coupled system. The pure TE- and TM-mode which can be usually obtained for

isotropic case do not exist any more. The both equations have to be solved simultaneously.

From now on I will call equation (3.1) the quasi E-polarisation equation and equation (3.2)

the quasi H-polarization equation.

Within MT two-dimensional (2D) forward problem I am considering induction problems,

where both the conductivity structure and inducing field are independent of one horizontal

coordinate, say x. First of all, I define a domain V of 2D anomalous structure with boundaries

Γl, Γr, Γt and Γb at the left, right, top and bottom sides of V , respectively. A cartesian

coordinate system with z-axis positive downwards, x-axis to the north and y-axis to the east

is used. The domain consists of two parts. The uppermost part is an air layer and which is

a perfect insulator. The lower part of the model represents the solid earth with conductivity

σ2 which could also be electrical anisotropy, a conductive block with arbitrary anisotropic

conductivity σ3 is embedded into the lower part of the model (Fig. 3.1,left panel).

3.1.1. Boundary conditions

Within geo-electromagnetic induction we consider fields which change sufficiently slow, so

that their variation in time is negligible compare to the duration of observation. In other

words, we are more interested in their spatial distribution rather than their variation in time.

Hence, this kind of forward problem belongs to the so called ”boundary value problem”, if

the mathematical nomenclature is used.
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Figure 3.1.: A simple example illustrates two-dimensional anisotropic structure. The model

consists of two parts which represent the air layer and the solid earth, respectively. A

conductive block is embedded into the lower part of the model (left panel). A possible

numerical descritization of the model domain is given at the right panel.

To complete the mathematical formulation of the problem we must supply the boundary

conditions for the field components both on the inner and outer boundaries. On the outer

boundaries of the model the Dirichlet boundary condition can be used. The values can be

constructed from the 1D solutions for the corresponding layered structure at the left and

right border of the model. The 1D forward algorithm discussed in appendix A.3 can be used

for calculating the left- and right-hand boundary values. At the top and the bottom of the

model the boundary values can be obtained by linear interpolation of the respective 1D values

at the left- and right-hand margins of the model (Pek and Verner, 1997).

On inner boundaries, where blocks with different electrical properties make contact (include

the Air/Earth interface where z = 0), the following rules must be hold according to the

general continuity conditions:

1. The tangential components of the electric field E are continuous,

2. The normal component of current density J must be continuous across conductivity

discontinuities and zero across z = 0,

3. All components (normal and tangential) of the magnetic field H are continuous since

the vacuum magnetic permeability is assumed throughout the entire domain.

17



Chapter 3. MT forward problem

4. The first derivatives of the normal component of the electric field E and the magnetic

field H are continuous.

3.1.2. Numerical approximation

To approximate the governing equations (3.1 and 3.2) numerically, the domain is projected

onto a numerical grid and, within a finite grid region, subdivided into a system of electrically

homogeneous, but in general anisotropic, rectangular grid cells (Fig. 3.1, right panel). The

grid is in general irregular and it should both fit the geometry of the model under study and

meet general rules accepted for designing numerical grids in induction modeling studies. The

domain is discretized as j = 0, 1, · · · ,m lines in Y direction and k = 0, 1, · · · , n lines in

Z direction. Thus, the lines 0 and m in the horizontal direction correspond to the left and

right boundaries Γl and Γr, lines 0 and n in the vertical direction correspond to the top and

bottom boundaries Γt and Γb, respectively. The conductivity of each cell in the domain V is

denoted as σjk. The solutions of equations (3.1 and 3.2) for Ex and Hx must be found at

each node in the entire domain for a given conductivity distribution. At the same time the

internal and external boundary conditions must be satisfied.

Let us consider a typical nodal point (j, k) located in the inner part of a rectangular, but not

necessarily uniform, grid (Fig. 3.2). Its neighboring nodes are (j, k+ 1); (j, k− 1); (j− 1, k)

and (j + 1, k) which are located to the right, left, down and up from j, k respectively.

The traditional way of the finite volume method would be integrating equation (3.1) and

(3.2) over the rectangular area around j, k, namely Gj,k in Fig. (3.2), for all inner nodes of

the model. This procedure is straightforward but quite tedious. A better way to achieve this

is using immediately the equivalent integral form of Maxwell’s equations, specified for the

integration cell Aj,k. The Maxwell’s equations for 2D anisotropic media are already derived

in section 2.4 (eqs. A.29 to A.34). I repeat these equations only for completeness.

∂Ez
∂y
− ∂Ey

∂z
= −iωµ0Hx (3.3)

∂Ex
∂z

= −iωµ0Hy (3.4)

∂Ex
∂y

= iωµ0Hz (3.5)
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Figure 3.2.: A nine points stencil scheme used in approximating the quasi E-polarization

equation (3.1) and the quasi H-polarization equation (3.2). For the quasi E-polarization

equation only a five points stencil is required and in total 10 field values (5 electric and 5

magnetic) are used. In contrast, a nine points stencil is needed for the quasi H-polarization

equation and in total 14 field values (5 electric and 9 magnetic) are required.

∂Hz

∂y
− ∂Hy

∂z
= σxxEx + σxyEy + σxzEz (3.6)

∂Hx

∂z
= σyxEx + σyyEy + σyzEz (3.7)

−∂Hx

∂y
= σzxEx + σzyEy + σzzEz (3.8)

The corresponding integral form of the quasi E-polarization equation (3.1) is the Ampere’s

Law.

∮
Γ(Gj,k)

H · dl =

∫
Gj,k

σE · dg (3.9)

where Γ(Gj,k) represents the oriented boundary of the integration cell Gj,k and dl is the

element of the integration path along this boundary. dg is an areal element of the integration

19



Chapter 3. MT forward problem

area Gj,k and σE denotes the total current density along x-axis direction.

With consideration of (3.4) and (3.5), equation (3.9) can be rewritten as

(
∂Ex
∂z

)
KL

KL−
(
∂Ex
∂y

)
LM

LM +

(
∂Ex
∂z

)
MN

MN −

−
(
∂Ex
∂y

)
NK

NK − iωµ0S (Gj,k) (Jx)Gj,k
= 0 (3.10)

where (ν)γ represents the mean value of the function ν(y, z) across γ, which denotes a section

of the boundary of the integration cell. P1P2 is the distance between the corresponding

vertices of the integration cell, S (Gj,k) is the area of the integration cell and (Jx)Gj,k
is the

x-component of the total current density.

From the boundary condition follows that the first derivatives of Ex are continuous every-

where. Consequently, we can approximate derivatives normal to the line of integration in

equation (3.10) using central-difference formula. For instance, let us consider the upper

edge of integration cell Ai,j. The gradient of the outward normal from this edge to the top

is approximated by:

(
∂Ex
∂z

)
KL

KL ≈ Eu
x − Eo

x

∆zk
· ∆yj + ∆yj+1

2
(3.11)

The other three terms can be approximated in the same way. According to (3.1) the total

current density Jx can be expressed as

Jx = WEx + A
∂Hx

∂y
+B

∂Hx

∂z
(3.12)

where W , A and B are cumulative conductivities introduced in previous section. Hence the

last term on the left hand side of equation (3.10) can be approximated through

− iωµ0S (Gj,k) (Jx)Gj,k
≈ −iωµ0

∫∫
Gj,k

(
WEx + A

∂Hx

∂y
+B

∂Hx

∂z

)
dydz (3.13)

which implies that the approximation can be done by splitting (3.13) into 3 surface integrals.

The first integral can be approximated as
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− iωµ0

∫∫
Gj,k

(WEx) dydz ≈ −iωµ0W j,kE
o
x (3.14)

where

W j,k =
1

4
(∆yj∆zkWj,k + ∆yj+1∆zkWj+1,k + ∆yj∆zk+1Wj,k+1 + ∆yj+1∆zk+1Wj+1,k+1)

is the total conductance within the integration cell Gj,k and Wj,k denotes the cumulative

conductivity W at the cell (j, k). The electric field component Eo
x represents the mean

Ex value on the integration cell Gj,k. The second integral involves integration of the first

derivatives of Hx component with respect to y, the lateral change of Hx, and the cumulative

conductivity A is defined on the entire integration cell Gj,k. Hence, the second integral may

again split into 4 simple integrals which integrate over subcells G1, G2, G3 and G4 (see also

Fig. 3.2), respectively. For instance, the integral over subcell G1 can be formed as

− iωµ0

∫ yj

y−j

∫ zk

z−k

A
∂Hx

∂y
dydz = −iωµ0Aj,k

∫ zk

z−k

[
Hx(yj, z)−Hx(y

−
j , z)

]
dz

≈ − iωµ0

4
∆zkAj,k

(
Ho
x −H l

x

)
(3.15)

where y−j denotes the middle point between yj−1 and yj (e.g. y−j = (yj + yj−1)/2) and z−k
is the middle point between zk−1 and zk (e.g. z−k = (zk + zk−1)/2), respectively. Hx(yj, z)

represents the mean value of Hx on the line segment (z−k ,zk) at yj and can be approximated

by Ho
x. Hx(y

−
j , z) denotes the mean value of the same field component on the line segment

(z−k ,zk) but at y−j and can be approximated as

Hx(y
−
j , z) ≈

1

2

(
Ho
x +H l

x

)
Repeating the same procedure we can approximate the other three integrals over subcells and

also the third term of the integrand in equation (3.13). Applying the approximation steps

discussed above to all the terms in equation (3.10), an approximate difference equation for

the quasi E-polarization at the (j, k)th mesh node can be obtained.

The corresponding integral form of the quasi H-polarization equation (3.2) is the Faraday’s

Law ∮
∂G

E ds = iωµ0

∫
G

H dG (3.16)
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and which can be rewritten as

(Ey)KLKL+ (Ez)LM LM − (Ey)MN MN − (Ez)NK NK − iωµ0S (Gjk) (Hx)Gjk
= 0

(3.17)

From (3.7) and (3.8) the field components Ey and Ez can be expressed by means of the

basic components Ex and Hx:

Ey =
σzz
D

∂Hx

∂z
+
σyz
D

∂Hx

∂y
+BEx (3.18)

Ez = −σyy
D

∂Hx

∂y
− σyz

D

∂Hx

∂z
+ AEx (3.19)

Applying (3.18) and (3.19) to equation (3.17), the resulting equation will also only contain

the basic field components. For instance, let’s consider the first term in (3.17). Replacing Ey

with the right hand side of (3.18) implies that this term can be approximated by separating

into three individual sub-terms.

(Ey)KLKL =

(
σzz
D

∂Hx

∂z

)
KL

KL+

(
σyz
D

∂Hx

∂y

)
KL

KL+ (BEx)KLKL (3.20)

The first term on the right hand side of (3.20) is easily approximated by substituting the

difference of nodal values for the vertical derivative(
σzz
D

∂Hx

∂z

)
KL

KL ≈ Ho
x −Hu

x

∆zk
·
[

∆yj
2

(σzz
D

)
j,k

+
∆yj+1

2

(σzz
D

)
j+1,k

]
(3.21)

and this kind of approximation is already known in the traditional isotropic ”H-mode” case.

The second term arises due to dipping anisotropy (σyz 6= 0) and can be written as(
σyz
D

∂Hx

∂y

)
KL

KL ≈
Hx(yj, z

−
k )−Hx(y

−
j , z

−
k )

∆yj
2

· ∆yj
2

(σyz
D

)
j,k

+

Hx(y
+
j , z

−
k )−Hx(yj, z

−
k )

∆yj+1

2

· ∆yj+1

2

(σyz
D

)
j+1,k

≈ 1

4

(σyz
D

)
j,k

[
Ho
x +Hu

x −H l
x −Hul

x

]
−

1

4

(σyz
D

)
j+1,k

[Ho
x +Hu

x −Hr
x −Hur

x ] (3.22)
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where X− and X+ represent the minimal and maximal coordinate of the integration region on

the respected axis, in this case X may be either y- or z-axis, and the following approximations

are used

Hx(yj, z
−
k ) ≈ 1

2
[Ho

x +Hu
x ]

Hx(y
−
j , z

−
k ) ≈ 1

4

[
Ho
x +Hu

x +H l
x +Hul

x

]
Hx(y

+
j , z

−
k ) ≈ 1

4
[Ho

x +Hu
x +Hr

x +Hur
x ]

The third term on the right hand side of (3.20) is easily approximated by interpolating of

nodal values onto cell edges:

(BEx)KLKL ≈
(
Bj,k ·

∆yj
2

+Bj+1,k ·
∆yj+1

2

)
· E

o
x + Eu

x

2
(3.23)

Applying the approximation steps discussed above to all the terms in (3.17) and approximating

the last term of (3.17) by

− iωµ0S (Gjk) (Hx)Gjk
≈ −iωµ0

4
(∆yj + ∆yj+1) · (∆zk + ∆zk+1)Ho

x (3.24)

we obtain the linear finite volume equation for the quasi H-polarization at the (j, k)th mesh

node.

To summarize, the quasi E-polarization equation can be approximated with a 5-point FV

scheme and 10 field components (5 electric and 5 magnetic field components, respectively)

are involved in this formulation, while the quasi H-polarization equation requires a 9-point

FV scheme and in total 14 field components (5 electric and 9 magnetic field components)

are involved.

3.1.3. Solution of the equation system

Applying the procedure introduced in previous section for all the nodes inside the model we

reach a linear equation system which characterizes the quasi E-polarization equation (e.g.

3.1) and the quasi H-polarization equation (e.g. 3.2) in the entire respected domain. If a

grid point falls on the outer boundary of the grid region, then the field values at this node are

replaced by the appropriate boundary values. The FV scheme simplifies particularly within the

insulating air layer. In the air layer (3.7) and (3.8) become ∂Hx/∂z = 0 and ∂Hx/∂y = 0,

23



Chapter 3. MT forward problem

which implies that the Hx must be constant everywhere in the air. The quasi H-polarization

equation need not be approximated at all and the quasi E-polarization equation reduces to the

Laplace equation. Hence, within the air layer only the reduced quasi E-polarization equation

is FV approximated by a 5-point FV scheme with only five coefficients.

Having the governing equations (3.1) and (3.2) approximated in all grid nodes, the resulting

linear algebraic equations must be properly arranged into a common system for further com-

putation. Because of the coupling of the governing equations through the first derivatives,

a mode decomposition is hence no longer possible. The resulting linear equation system can

be formed as

Sme = b (3.25)

where the vector b is the source vector that depends on the boundary conditions and source

field polarization, e is the N dimensional vector representing the discretized electric and

magnetic fields and Sm is a N ×N coefficient matrix which depends on the M dimensional

model parameter m.

Since the storage of system coefficient matrix is the most memory consuming part of the

forward procedure and the choice of an efficient linear solver is most affected by the geometry

of the system coefficient matrix, it is totally worthwhile to clarify the pros and cons of the

different arrangement strategy. There are obviously two different strategies for arranging the

coefficients into an array, namely (a) separate storage of coefficients related to electric and

magnetic field components (first a block of all coefficients related to electric field components

and after-wards a block of coefficients related to magnetic field components); (b) storage

of coefficients related to different field components in an alternating order. Furthermore,

the coefficient matrix can be organized in column-wise or row-wise order. It leads to four

different arrangements of the coefficient matrix.

Let us consider a small model with horizontal cell number Ny and vertical cell number Nz

both equal 7. The vertical cell number Nz equals cell number in air, Nza = 3, plus cell

number in solid earth, Nze = 4. Figure 3.3 illustrates the model described above.

Based on this simple model I will show you the properties of the system coefficient matrix

due to different arrangement strategies discussed above. Let’s firstly consider the row-wise

arrangement. Within a row-by-row manner the coefficient related to Ex and Hx components

can be organized in (1) separate blocks; and (2) alternating order. In the first variant, all

electric variables are ordered throughout the grid, from the left to the right within each row,

and after-wards a block of magnetic variables inside the earth, ordered in the same way,
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Figure 3.3.: Example model consists of a top part and a bottom part which represent the

air and the solid earth, respectively. The whole model is discretized in 7x7 cells with 3x7

cells in air and 4x7 cells in the earth. The circles denote the field components to be

approximated on the grid nodes. Red circles represent the Ex field components which

have to be approximated on all grid nodes in the entire model and blue circles are the Hx

field components which are only needed on grid nodes inside the earth.

is joined to the electric sub-array. In the second variant, within the air, electric variables

are ordered in succession from the left to the right of the row, and then, inside the earth,

electric and magnetic components are stacked up alternately for each row. Each of these

arrangements of the variables leads to a specific form of the matrix of the system of linear

algebraic equations for the approximate field values. The first variant gives a four-block

matrix which contains the principal mode coefficients in the diagonal blocks, and the coupling

coefficients in the anti-diagonal blocks (Fig. (3.4 left). It is obviously, that for isotropic

structure, the anti-diagonal blocks will vanish and the two field modes, Ex and Hx, can

be easily split into two independent matrices. The second variant mixes the principal mode

coefficients and those arising due to inter-mode coupling together within each row of the

matrix, but leads to a more compact, band-limited matrix (Fig. (3.4 right).

The second strategy of arrangement is the column-by-column organization of the system

coefficient matrix. There are also two possibilities within this strategy, which are: the coef-
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Figure 3.4.: Row-wise arrangement of the coefficients throughout the grid. Left panel: coeffi-

cients related to Ex and Hx are organized in separated blocks. Right panel: the coefficients

are organized mixed in an alternating order. Circles and squares represent the electric and

the magnetic components, respectively. Empty symbols in the matrix patterns are for

coefficients which arise only due to anisotropy.

ficients related to Ex and Hx are organized in (3) separate blocks and (4) alternating order.

In the third variant, all electric variables are ordered throughout the grid, from the top to

the bottom within each column, and after-wards a block of magnetic variables inside the

earth, ordered in the same way, is joined to the electric sub-array (Fig. (3.5 left). In the

forth variant, within a row, electric variables are ordered in succession from the top to the

earth’s surface, and then, inside the earth, electric and magnetic components are stacked up

alternately until the bottom of the column is reached. Then the next column is taken and

processed in the same way, until the whole mesh is employed (Fig. (3.5 right). Similar to

the discussion in the previous paragraph the alternating arrangement provides a compact and

band-limited matrix while the separate arrangement draws a four-blocks matrix with clear

separation of principal coefficient and those arising due to anisotropy. Discussion about the

last two variants of arrangement can also be found in Pek and Verner (1997).

It can easily be shown that, after multiplying all the coefficients of the quasi H-polarization

equations by a constant factor iωµ0, the system coefficient matrix Sm is then also symmetric,

no matter which strategy of arrangement is used. Hence, the alternating arrangement of

26



Chapter 3. MT forward problem

Figure 3.5.: Column-wise arrangement of the coefficients throughout the grid. Left panel:

coefficients related to Ex and Hx are organized in separated blocks. Right panel: the

coefficients are organized mixed in an alternating order. Circles and squares represent the

electric and the magnetic components, respectively. Empty symbols in the matrix patterns

are for coefficients which arise only due to anisotropy.

coefficients related to Ex and Hx components is most adequate for storage of the system

coefficient matrix Sm. Based on this arrangement the resulting matrix Sm is compact, band-

limited and symmetric. One more thing should take into consideration is the difference of

row-by-row and column-by-column arrangement. According to figure 3.4 (right) and figure

3.5 (right) we know that the both methods are equally good, the resulting matrices are both

compact and band-limited. The half band-width of those two matrices can be expressed as

N2
y +1 and 2Nze+Nza+1 for row-by-row and column-by-column arrangement, respectively,

if Ny is the number of horizontal grid steps, Nze and Nza are the numbers of vertical grid

steps within the conducting earth and in the air layer. It is clear that the band-width of the

resulting matrix depends on the dimension of model, if N2
y > 2Nze +Nza holds for a specific

model the column-by-column arrangement should be used because it yields a coefficient

matrix with narrowest band, otherwise the row-by-row arrangement should be used.

The linear equation system (eq. 3.25) can be then solved using either direct methods like LU

factorization, Cholesky factorization and Gaussian elimination, or iterative metods like the

Gauss-Seidel method, the conjugate gradient method (CG) and the quasi-minimum residual
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(QMR) method. Pek and Verner (1997) suggested a modified algorithm of gaussian elimi-

nation to solve the given equation system. Using this algorithm only the upper half-band of

the matrix need to be stored in memory. Let Nstor be the complex numbers which have to

be placed in memory and it can be easily obtained:

Nstor = (Ny − 1)(2Nze +Nza − 2)︸ ︷︷ ︸
number of equations

(2Nze +Nza + 1)︸ ︷︷ ︸
half band-width

Figure (3.3) illustrates the strategy of storage using the modified algorithm of gaussian

elimination.

Figure 3.6.: Illustration of how the system coefficient matrix is stored using modified algo-

rithm of gaussian elimination. Left: system coefficient Matrix Sm, only the red trapezoidal

domain has to be stored. Right: the red trapezoidal subdomain of matrix Sm skewed into

a rectangle for better manipulation.

3.1.4. Magnetotelluric functions on the earth’s surface

Solving the linear equation system (3.25) provides us with approximated values of the field

components Ex and Hx at all grid nodes. The goal of the forward problem is to evaluate all

components of the magnetotelluric fields at the “receivers” located at specific position on the

earth-air interface. From these, various magnetotelluric response functions and parameters

can be computed as practice-oriented modeling outputs. The Ex and Hx field components
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are already known as primary fields at all grid nodes. Once the “receivers” location do not

coincide with the grid nodes, the Ex and Hx field components at the “receiver” location can

be obtained through numeric interpolation of the corresponding field components known at

the surrounding grid nodes.

In order to obtain the secondary field components (Ey, Ez, Hy and Hz) at the “receiver”

location, one should first determine the secondary field components at the grid nodes sur-

rounding the receiver location based on known primary fields. The Maxwell’s equations (3.4)

and (3.5) provide a possibility for computing the field components Hy and Hz. The other

two field components, namely the Ey and Ez, can be obtained through equations (3.18) and

(3.19). To summarize, the desired components of the secondary fields can be computed by

numerical approximating of the first order partial derivatives of the primary fields, namely

∂Ex/∂y, ∂Ex/∂z, ∂Hx/∂y and ∂Hx/∂z contained in the formulae mentioned above. Once

the desired components of secondary fields are obtained on the nodes surrounding the re-

ceiver location, we can approximate the field values at the receiver location through numerical

interpolation. Within this work I use bi-linear interpolation to approximate the field value

at the receiver location, which means that the interpolation process is independent of the

discretized conductivities. The Hy and Hz are calculated through equations (3.4) and (3.5)

which are also independent of the discretized conductivities. In contrast, the calculation of

Ey and Ez are defined by equations (3.18) and (3.19). It is obvious that the accumulative

conductivities are involved in the calculation.

The magnetotelluric transfer functions on the earth’s surface are evaluated using the field

components computed for two independent polarizations of the primary electromagnetic

field. Let us assume two perpendicular polarizations of the normalized magnetic field, say

Hx1 = −1, Hy1 = 0 and Hx2 = 0, Hy2 = 1. For each polarization the both induction

equations defined by equations (3.1) and (3.2) have to be solved simultaneously and we

obtain two different primary fields Ex and Hx defined on all nodes inside the model domain

(Hx is constant inside the air). Based on the known primary fields all related secondary

field components can be derived. This implies that for 2D anisotropic case the electric and

magnetic fields for the two polarizations can be denoted as Ex1, Ey1, Hx1, Hy1 and Ex2,

Ey2, Hx2, Hy2. Hence, the impedance tensor is defined in a general form

Z =

(
Zxx Zxy

Zyx Zyy

)
=

(
Ex1 Ex2

Ey1 Ey2

)
·

(
Hx1 Hx2

Hy1 Hy2

)−1

(3.26)

or in a matrix vector notation

E = ZH (3.27)
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and the elements of impedance tensor can be expressed as

Zxx =
Ex1Hy2 − Ex2Hy1

Hx1Hy2 −Hx2Hy1

(3.28)

Zxy =
Ex2Hx1 − Ex1Hx2

Hx1Hy2 −Hx2Hy1

(3.29)

Zyx =
Ey1Hy2 − Ey2Hy1

Hx1Hy2 −Hx2Hy1

(3.30)

Zyy =
Ey2Hx1 − Ey1Hx2

Hx1Hy2 −Hx2Hy1

(3.31)

Equations (3.26 - 3.31) define the general form of magnetotelluric impedance tensor. From

this definition simplified form can be derived by applying dimensional constraint accordingly.

Within this work only two-dimensional induction problems are considered. It means that both

the conductivity structure and inducing field are independent of one horizontal coordinate

direction, say the x coordinate direction. This assumption ensures that ∂/∂x = 0 holds

in the entire model domain. For the first polarization with Hx1 = −1 and Hy1 = 0, the

governing equations are (3.3), (3.7) and (3.8). Clearly, field components Hx, Ex, Ey, Ez are

involved into these equations, Ey and Ez are induced by time varying Hx field, whereas a Ex

is also required because of the electrical anisotropy and hence, a clear mode decomposition

as it in 2D isotropic case is impossible for the current situation. According to equations (3.4)

and (3.5), two extra field components Hy and Hz can be derived from an existing Ex. In

total, for the first polarization, four secondary field components, namely Ey Ez Hy and Hz,

can be derived by existence of two primary field components, Hx and Ex. In contrast, for

the second polarization with Hx2 = 0 and Hy2 = 1, the governing equations are (3.4), (3.5)

and (3.6). One can easily observe that only Hz, Ex, Ey and Ez can be derived by existence

of primary field component Hy. Ignore the z-component of electrical and magnetic field and

only consider its horizontal components, equation (3.26) is reduced to

Z =

(
Zxx Zxy

Zyx Zyy

)
=

(
Ex1 Ex2

Ey1 Ey2

)
·

(
Hx1 0

Hy1 Hy2

)−1

(3.32)
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with

Zxx =
Ex1Hy2 − Ex2Hy1

Hx1Hy2

(3.33)

Zxy =
Ex2

Hy2

(3.34)

Zyx =
Ey1Hy2 − Ey2Hy1

Hx1Hy2

(3.35)

Zyy =
Ey2

Hy2

(3.36)

Equations (3.32 - 3.36) define the impedance tensor for general 2D structure with anisotropic

conductivity, which is a full and non-diagonalizable tensor. Other magnetotelluric functions,

such as apparent resistivity and phase, can be easily computed based on known impedance

tensor.

If the 2D structure is considered to be isotropic, the Maxwell’s equations can be split into

two distinct modes as described in section A.2.2 on page 137. Only three field components

are involved in each polarization, hence, equation (3.26) can be further reduced to

Z =

(
Zxx Zxy

Zyx Zyy

)
=

(
0 Ex2

Ey1 0

)
·

(
Hx1 0

0 Hy2

)−1

(3.37)

with

Zxx = 0 (3.38)

Zxy =
Ex2

Hy2

(3.39)

Zyx =
Ey1

Hx1

(3.40)

Zyy = 0 (3.41)

which define the impedance tensor for 2D isotropic structure.

3.2. Synthetic 2D model study

3.2.1. Forward response of an anisotropic 2D model

In this section, I use a simple synthetic model to demonstrate the effects of electrical

anisotropy which aims to understand its fundamental properties. The model is shown in
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Figure 3.7.: Simple test model consists of a conductive rectangular block embedded into an

isotropic homogeneous half-space with resistivity of ρ1 = 100 Ωm. The block is chosen

to be anisotropic. The effects of anisotropy are studied by varying the principal resistivity

and rotation angles and comparing the forward responses calculated from the model gen-

erated therefrom. The black triangular denotes a MT site located above the conductive

rectangular block.

figure 3.7. It consists of a conductive rectangular block embedded into an isotropic homo-

geneous half-space with resistivity of ρ1 = 100 Ωm. The conductive block is chosen to be

anisotropic with initial principal resistivity values of ρ1/ρ2/ρ3 = 10/50/10 Ωm and rotation

angles of α/β/γ = 0◦. In the following, the principal resistivity values and the rotation

angles of the conductive square block are varied in a wide range. The forward responses

of the model generated therefrom are calculated in order to study the effects of different

anisotropy types.

In the first attempt, I vary the principal resistivity values ρ1,2,3 one at a time from 10 Ωm

to 100 Ωm with a step length of 20 (except the last step, which is only 10 instead of 20).

The rotation angles remain unchanged, namely α/β/γ = 0◦. A single MT site, located

right above the conductive block (the black triangular in fig. 3.7), is used to demonstrate

the forward response. The xy- and yx-components of apparent resistivity and phase of the

individual variation are displayed in figure 3.8, 3.9 and 3.10. For how the apparent resistivity

and phase are calculated, the reader is referred to eqs. (2.24) and (2.25) on page 8.

If the pricipal resistivity value defined in x-direction, ρ1, is varying, the xy-component of both

the apparent resistivity and the phase change their tracks accordingly while the yx-component

remains unchanged (fig. 3.8). In contrast to that, an opposite situation can be observed if

the principal resistivity value defined in y-direction, ρ2, is varying. The yx-component of both

the apparent resistivity and the phase reconstruct their curvature according to the changes

of ρ2 while the xy-component remains unchanged (fig. 3.9). If ρ1 and ρ2 are fixed and only
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ρ3, the principal resistivity value defined in z-direction, is varying, this kind of change will

not be perceived by both of components (fig. 3.10). Therefore, we may deduce that within

a 2D anisotropic structure the xy-component of MT apparent resistivity and phase is only

sensitive to the resistivity variation in the x coordinate direction, while the yx-component

is only sensitive to the resistivity variation in y-coordinate direction. In addition to this,

a resistivity variation in z-coordinate direction will not be reflected into both component

of the apparent resistivity and the phase (fig. 3.10). The last phenomenon is caused by

the nature of magnetotelluric induction. Within the magnetotelluric induction the incident

electromagnetic wave is considered as plane wave and diffuse into the Earth’s subsurface,

therefore, the horizontal resolution of the MT method is comparably higher than its vertical

resolution.

Figure 3.8.: xy- and yx-components of apparent resistivities and phases of a MT site located

above the conductive block (see fig. 3.7). The block is defined with ρ2/ρ3 = 50/10 Ωm

and α/β/γ = 0◦, while ρ1 varies from 10 Ωm to 100 Ωm with a step length of 20 (the last

step only with 10). The xy-component is sensitive to the resistivity variation in x-direction

while the yx-component remains unchanged.

In the second attempt, the principal resistivity values are fixed with ρ1/ρ2/ρ3 = 10/50/10 Ωm

and we change the rotation angles α, β and γ one at a time from 0◦ to 180◦ with a step length

of 30◦ while the other two angles are fixed with 0◦. The forward responses are represented by

xy- and yx-component of apparent resistivity and phase at a single MT site located above

the conductive block (see fig. 3.7). The xy- and yx-components of apparent resistivity and
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Figure 3.9.: xy- and yx-components of apparent resistivities and phases of a MT site located

above the conductive block (see fig. 3.7). The block is defined with ρ1/ρ3 = 10/10 Ωm

and α/β/γ = 0◦, while ρ2 varies from 10 Ωm to 100 Ωm with a step length of 20 (the last

step only with 10). The yx-component is sensitive to the resistivity variation in y-direction

while the xx-component remains unchanged.

phase of the individual variation are displayed in figure 3.11, 3.12 and 3.13.

If the first rotation angle α is varying while the principal resistivities and other rotation

angles are fixed, its effects are accordingly reflected into both the xy- and yx-component of

apparent resistivity and phase (fig. 3.11). The same phenomena can be observed if we vary γ

instead of α and fix the other parameters (fig. 3.13). This is because the z-x′-z′′ convention

of Euler’s rotations is used to transform between the full occupied conductivity tensor and

its representative with principal resistivity values and rotation angles. The rotation angles

α and γ are defined to be rotations about the axes z and z′′, where z′′ is the new z-axis

if a rotation about the x-axis (denoted by angle β) is involved. Hence, their effects have

to be the same if only individual rotation are considered instead of a series of consecutive

rotations. This kind of anisotropy is called azimuthal anisotropy, also known as horizontal

anisotropy. For the detail about different anisotropy types and the Euler’s rotations, the

reader is referred to section (2.2). varying the second rotation angle β and keeping the

other parameters unchanged will cause the so called dipping anisotropy. For this type of

anisotropy, the yx-component of apparent resistivity and phase is able to reflect the changes
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Figure 3.10.: xy- and yx-components of apparent resistivities and phases of a MT site located

above the conductive block (see fig. 3.7). The block is defined with ρ1/ρ2 = 10/50 Ωm

and α/β/γ = 0◦, while ρ3 varies from 10 Ωm to 100 Ωm with a step length of 20 (the last

step only with 10). Both xy- and yx-components are insensitive to the resistivity variation

in z-direction.

of β while the xy-component remains the same during all the variations (fig. 3.12). One can

summarize that the both xy- and yx-components of MT apparent resistivity and phase are

sensitive to the azimuthal anisotropy but only the yx-component is sensitive to the dipping

anisotropy. Furthermore, a symmetry can be observed from these tests. For instance, no

matter it is azimuthal or dipping anisotropy, a rotation of 30◦ will provide the same responses

as a rotation of 150◦ about the same axis. This is because if a rotation angle φ is measured

about a rotation axis a, then an angle of −φ about axis −a will produce the same rotation

matrix. Since the electrical resistivity is non-negative, the symmetry between φ and −φ
is equivalent to the symmetry between φ and 180◦ − φ. In other words, it is not able to

distinguish an anisotropy rotated φ degrees to the reference axis from other anisotropy with

the same principal resistivity values but rotated 180− φ degrees to the same axis.
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Figure 3.11.: xy- and yx-components of apparent resistivities and phases of a MT site lo-

cated above the conductive block (see fig. 3.7). The block is defined with ρ1/ρ2/ρ3 =

10/50/10 Ωm and β/γ = 0◦, while α varies from 0◦ to 180◦ with a step length of 30◦. As

we can observe, both xy- and yx-components are sensitive to horizontal anisotropy.

3.2.2. MT impedance phase out of quadrant

The impedance phase describes the phase shift between the components of the electrical

field and magnetic field (see equation 2.25). As a result of the principle of causality of the

interaction between electric and magnetic fields induced in the Earth, the phases should lie

in the first or third quadrant [0◦, 90◦] and [−90◦,−180◦] (or [180◦, 270◦], like some author

would prefer to use). This implies that the imaginary and real impedance have the same

sign. However, impedance phase out of expected quadrant are sometimes observed in mag-

netotelluric surveys. Because they are little understood and can not be modeled by standard

1D and 2D methods, they are usually excluded from inversion procedures. Recently, several

attempts have been made to explain and model the large phase anomalies. For instance,

Egbert (1990) shows that the principle of causality can be violated by certain physically real-

izable 3D conductivities. With a model of sharp channelling body he demonstrated that the

large phase could caused by strong current channelling and reproduced large phase anoma-

lies observed at some of the EMSLAB data set (EMSLAB-Group, 1988). Livelybrooks et al.

(1996) explained a large phase anomaly found in a survey across the Trillabelle ore body with

3D induction within the body coupled with current channelling through neighbouring faults.
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Figure 3.12.: xy- and yx-components of apparent resistivities and phases of a MT site lo-

cated above the conductive block (see fig. 3.7). The block is defined with ρ1/ρ2/ρ3 =

10/50/10 Ωm and α/γ = 0◦, while β varies from 0◦ to 180◦ with a step length of 30◦.

Only the yx-component is sensitive to dipping anisotropy.

Lezaeta (2001) explained large phase anomalies observed in the Andes at the Precordillera

and the coast with models of near-surface elongated 3D conductors being electromagnet-

ically coupled with a conductive ocean and conductive mantle, producing strong current

channelling and magnetic distortions. Weckmann (2002) modelled large phase anomalies in

a survey in Namibia with a conductive local ring-structure and Pous et al. (2002) attempted

to model more regional large phase anomalies found in Tenerife island using 3D, highly con-

ductive, channel structures. Ichihara and Mogi (2009) modelled large phase anomalies using

a 3D L-shaped conductor model.

Pek and Verner (1997) have suggested that a combination of two azimuthal anisotropies

with anisotropy strikes perpendicular to each other could produce phases out of quadrant.

Based on this suggestion, Heise and Pous (2003) modified the model suggested by Pek and

Verner (1997) and reproduced large phase anomalies observed in SW Iberia. In this section,

I will follow the same idea and try to reconstruct the phenomenon of phase out of quadrant

through the use of anisotropic modeling based on a few simple 2D synthetic models
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Figure 3.13.: xy- and yx-components of apparent resistivities and phases of a MT site lo-

cated above the conductive block (see fig. 3.7). The block is defined with ρ1/ρ2/ρ3 =

10/50/10 Ωm and α/β = 0◦, while γ varies from 0◦ to 180◦ with a step length of 30◦.

Both xy- and yx-components are sensitive to the variation in rotation angle γ and the

response are coincident with those for horizontal anisotropy.

Lateral extension

I study at first a combination of two different anisotropic blocks. The initial model (fig.

3.14, left) consists of a 300 m isotropic surface layer with a resistivity of 30 Ωm and an

anisotropic block starting at a depth of 300 m embedded in a medium of 100 Ωm. The

principal resistivities of the block are ρ1/ρ2/ρ3 = 50/0.5/50 Ωm and the anisotropy strike

αS is 120◦. The block is underlain by an isotropic layer with a resistivity of 15 Ωm. Beneath

the isotropic layer a second anisotropic block with ρ1/ρ2/ρ3 = 30/0.3/30 Ωm and αS = 30◦

(perpendicular to αS of the first block) is embedded in an isotropic half-space with 100 Ωm.

The second, deeper anisotropic block has a lateral extension of 15 km in the first (fig. 3.14,

left upper panel), and 80 km in the second (fig. 3.14, left lower panel) model, respectively.

The forward responses are displayed in figure 3.14 (right) as apparent resistivities and phases

in xy and yx component, respectively. Comparing the responses of both models we see that

the phases of yx component (Φyx) for the second model (fig. 3.14, left lower panel) at sites

38



Chapter 3. MT forward problem

6640 6660 6680 6700 6720 6740
Horizontal Distance [km]

40

30

20

10

0

D
e
p
th

 [
km

]

15 Ω ·m

100 Ω ·m 50/0.5/50 Ω ·m 120/0/0 deg.

30/0.3/30 Ω ·m
30/0/0 deg.

1

10

100

1000

10000

R
e
si

st
iv

it
y
 [
Ω
.m

]

 

-4
-3
-2
-1
0
1
2
3
4

P
e
ri

o
d
 [
1
0
x
s]

ρa (xy)  

 

ρa (yx)
1

10

100

1000

R
e
si

st
iv

it
y
 [
Ω
.m

]

6640 6660 6680 6700 6720
Distance [km]

-4
-3
-2
-1
0
1
2
3
4

P
e
ri

o
d
 [
1
0
x
s]

φxy
6640 6660 6680 6700 6720

Distance [km]

 

φyx
0

20

40

60

80

100

P
h
a
se

 [
◦
]

6640 6660 6680 6700 6720 6740
Horizontal Distance [km]

40

30

20

10

0

D
e
p
th

 [
km

]

15 Ω ·m

100 Ω ·m 50/0.5/50 Ω ·m 120/0/0 deg.

30/0.3/30 Ω ·m
30/0/0 deg.

1

10

100

1000

10000

R
e
si

st
iv

it
y
 [
Ω
.m

]
 

-4
-3
-2
-1
0
1
2
3
4

P
e
ri

o
d
 [
1
0
x
s]

ρa (xy)  

 

ρa (yx)
1

10

100

1000

R
e
si

st
iv

it
y
 [
Ω
.m

]

6640 6660 6680 6700 6720
Distance [km]

-4
-3
-2
-1
0
1
2
3
4

P
e
ri

o
d
 [
1
0
x
s]

φxy
6640 6660 6680 6700 6720

Distance [km]

 

φyx
0

20

40

60

80

100

P
h
a
se

 [
◦
]

Figure 3.14.: Models (left) and their forward responses (right). The models differ only in

lateral extension of anisotropy block. The lateral extension of the second block is about

15 km in the first model (left upper panel) and 80 km (left lower panel) in the second

model. The major difference in the responses appears in the yx component. Phases over

90◦ occur if the lateral extension of the deeper anisotropy block is greater than it of the

shallower anisotropy block.

above the first anisotropy block leave the quadrant at a period of ≈ 100 s (fig. 3.14, right

lower panel), while they are smaller than 90◦ (fig. 3.14, right upper panel) for the first model

(fig. 3.14, left upper panel) with the narrower deep anisotropic block.

Depth

In a second step, I used the same anisotropy parameters as described above. The initial

model consists of a 300 m isotropic surface layer and a isotropic half-space with resistivity of

100 Ωm. Two anisotropy blocks are embedded in the half-space. The first block started at

depth of 300 m and shaped as a trapezoid. In this attempt I vary the depth of the second

block. In the first model (fig. 3.15, left upper panel) the second block started at a depth of

1.8 km and in the second model (fig. 3.15, left lower panel) started at a depth of 6.8 km.

In the forward responses (fig. 3.15, right) we see that the phases Φyx for the second model
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Figure 3.15.: Models (left) and their forward responses (right). The models differ by depth

of the second anisotropy block. In the first model (left upper panel) the second block

starts in a depth of 1.8 km and in the second model (left lower panel) the block starts in a

depth of 6.8 km. The phases of yx component for the model with the deeper anisotropic

block become larger than 90◦ at periods > 10 s at sites above the first block. For the

model with the shallower block all phases are smaller than 90◦.

become larger than 90◦ at periods > 10 s at sites above the first block, while those for the

first model are all smaller than 90◦. In this attempt the second anisotropy block has always

sufficiently greater lateral extension than the first anisotropy block, but the phase anomalies

can only be observed by model with anisotropy block in adequate depth. Besides the lateral

extension of the anisotropy block, also the depth is one of those key conditions under which

phase anomalies appear.

Rotation angle

In a third test I use a similar model as described above for step two. The model contains

a 300 m isotropic surface layer and an isotropic half-space with resistivity of 100 Ωm. Two

anisotropic blocks are embedded in the half-space. The first block starts directly beneath the

surface layer and the second block in a depth of 6 km. They have the principal resistivities
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ρ1/ρ2/ρ3 = 50/0.5/50 Ωm and ρ1/ρ2/ρ3 = 30/0.3/30 Ωm, respectively. In this attempt I

vary the anisotropy strike angle αS1 and αS2 for both blocks.

The forward response for the model with αS1 = αS2 = 0◦ is displayed in the right upper

panel of figure 3.16. The phases of the yx component approach 90◦ for long periods. For

αS1 = 60◦ and αS2 = 120◦ (fig. 3.16, left lower panel) the yx component phases become

larger than 90◦ for periods > 10 s, while they stay below 90◦ for αS1 = 90◦ and αS2 = 120◦

(fig. 3.16, right lower panel). Comparing the three examples, we see that model with different

combination of strike angle in both shallow and deep blocks produce forward responses with

pronounced difference. This can be observed not only in yx component (ρa(yx) and Φyx) but

also in xy component (ρa(xy) and Φxy ). A possible explanation is that a change of strike

angle forces the current flow to change its preferred direction from the shallow to the deep

block. According to this fact one may conclude that the anisotropy strike angle influences

forward responses significantly and phase greater than 90◦ will appear if the strike angle of

both blocks differ by an adequate amount.

Conclusions

Phases greater than 90◦ can only be modeled by a combination of a deep and a shallow

anisotropic block. I varied several model parameters to study the changes in forward re-

sponses. For the models used here one can conclude that phases out of the first quadrant

occur when: (i) the anisotropy ratio (ρmax/ρmin) is high (for both blocks); (ii) the deep

anisotropic block has a much larger lateral extension than the shallow block; (iii) the deep

anisotropic block is located in greater depth; (iv) the angles of anisotropy of both blocks

differ by a considerable amount. In our models the difference should be at least 45◦ so that

the preferred direction of current flow changes significantly from the shallow to the deep

block.
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Figure 3.16.: Model (left upper panel) and its forward responses with different anisotropy

strike angles. The model contains the same surface layer, background medium and re-

sistivities for both anisotropic blocks as the models in fig. 3.15. The strike angles αS1

and αS2 for the shallow and the deep block are varied (left upper panel). The forward

responses are displayed as apparent resistivities and phases in xy and yx component.
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Chapter 4.

MT inverse problem

In geophysics a concept of the Earth has to be found based on a limited number of measure-

ments. It represents, in most cases, an inverse problem. Solutions are found by the iterative

minimization of the misfit between the data and the model’s response (also known as forward

response or predicted data). In section 4.1 the reader is introduced to the methodology of

non-linear minimization. In particular, gradient techniques and Newton type methods are

described. Many multi-dimensional inverse problems are known to be non-unique to solve

and numerically unstable, depicted by the term ill-posed. Hence, the inverse problem has

to be regularized by appropriate techniques. One successful way is to introduce a penalty

functional, which is weighted by regularization parameter. In every iteration step, a linear

sub-problem representing a large-scale system of equations has to be solved. To accomplish

this, equation solver on the basis of conjugate gradient methods can be adapted to the spe-

cific formulation. Section 4.2 describes the basic concept of 2D MT inversion with consider

of the electrical anisotropy. The computation of the sensitivity matrix for 2D anisotropic

case differs from which for isotropic 2D and 3D case and is the key step towards a 2D

anisotropic inversion. The implementation of the inversion scheme according to the concept

of Egbert and Kelbert (2012) is explained. In the last section a few synthetic models are

used to test the functionality of the implemented inversion procedure. The tests are focused

on three main points, namely the choice of regularization parameters, resolution ability and

efficiency.
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4.1. Inversion methods

4.1.1. Inversion methodology

The central objective of inversion is to provide a mathematical framework to transform

measured data from the data space to the model space in order to estimate model parameters.

Assume a set of N measurements affected by the physical property m of the subsurface. The

set of all data is represented by the data vector d = (d1, d2, · · · , dN)T , where the superscript

T denotes the transpose of vector or matrix. The N-dimensional data vector resides in the

data space. As we know, all measured data are contaminated with an error vector e. We

are then interested in finding a spatial parameter distribution m(r) that explains our data d

to a certain degree. The model m we are seeking contains M model parameters and can be

presented as m = (m1,m2, · · · ,mM)T . The model vector resides in the model space. The

projection from model space to data space is achieved by the forward modeling operator f,

which is function of m. The operator f(m) generates the predicted data or forward response.

For linear problems there exists a linear relation between m and f, which can be expressed

by a matrix-vector multiplication f(m) = F ·m. Examples for linear relations in geophysics

are gravimetry, magnetics, or vertical seismic profiling. For non-linear problems the forward

operation depends on the model m itself, which holds for all methods that are based on

Maxwell’s equations. The model parameter vector m and the data vector d are related to

each other through:

f(m) = d + e

The inversion process attempts to find a model that reproduces the measured data with their

error. Beginning from a starting model m0 (also known as initial guess model), an iterative

process is applied to update the model until data fit or convergence is achieved. In each

iteration step k a new model is calculated by adding a model update ∆mk

mk+1 = mk + ∆mk (4.1)

A Taylor approximation of first order yields

f(mk + ∆mk) = f(mk) +
∂f(mk)

∂m
∆m(mk) + · · ·

≈ f(mk) + J∆mk (4.2)
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where the partial derivative of the model response with respect to the model parameters is

called Jacobian or sensitivity matrix J ∈ RN×M with the elements

Jij(mk) =
∂fi(mk)

∂mj

(4.3)

Setting the response of the new model f(m + ∆m) equal to the data d we obtain the

non-quadratic equation

J∆m = d− f(m) (4.4)

which has to be solved in some sense to minimize the residual vector d− f(m). Usually, for

each data point di an error ei is known or can be estimated, which is used for weighting the

residual. Using an Lp-norm of the weighted residual, a data functional Φd to be minimized

is defined by

Φd(m) =
N∑
i=1

di − fi(m)

ei

p = ‖D(d− f(m))‖pp (4.5)

with D = diag(1/ei) is a diagonal N ×N matrix.

Generally, different values for p can be used (Farquharson and Oldenburg, 1998) correspond-

ing to the expected noise characteristics. The L1-norm is particularly advantageous, if the

noise has a long-tailed distribution. Since it is less sensitive to outliers in the data, a L1

minimization procedure is often called “robust inversion” (Claerbout and Muir, 1973).

In the following, we assume the noise to be Gaussian corresponding to the use of the L2-norm

measure. The mean value of the data functional χ2 = Φd/N is often considered for linking

to the statistical nature. A value of χ2 = 1 implies the data being fitted within their errors.

Thus, the functional norm can be written as

Φd = [D(d− f(m))]T [D(d− f(m))] = (d− f(m))TDTD(d− f(m)) (4.6)

As we will see later, the functional to be minimized can be expanded by other terms yielding

a combined Φ, which is the so called penalty functional or objective functional. At this stage

we first have Φ = Φd.
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Newton type method

It is obvious that one must seek the minimum of penalty functional Φ. we start with a second

order Taylor series for the functional Φ of an updated model m + ∆m

Φ(m + ∆m) ≈ Φ(m) + (∇mΦ(m))T∆m +
1

2
∆mT (∇2

mΦ(m))T∆m (4.7)

where the first derivative ∇m denotes the gradient operator and can be expressed as

∇m =

(
∂

∂m1

,
∂

∂m2

, · · · , ∂

∂mM

)T

and the second derivative ∇2
mΦ is the Hessian matrix with the elements

(∇2
mΦ)ij =

(
∇m∇T

mΦ
)
ij

=
∂2Φ

∂mi∂mj

= Hij

The second order approximation of Φ(m + ∆m) is minimized by setting its first partial

derivative with respect to ∆m to zero, which results in

∇mΦ(m) +∇2
mΦ(m)∆m = 0

Hence, the model update ∆mk for each iteration can be obtained by solving the equation

(∇2
mΦ)∆mk = −∇mΦ (4.8)

Equation (4.8) represents a linear sub-problem to be solved in every iteration step. For the

functional Φd as defined by (4.6) holds

Hd,k = ∇m∇T
mΦd = ∇m(JTDTD(f(mk)− d))

= JTDTDJ + (∇mJT )DTD(f(mk)− d) (4.9)

for iteration k. The second term at the right hand side is generally difficult to compute.

It can be neglected, if the problem is not strongly non-linear (e.g. ∇T
mJT is small). The

gradient gd,k of the functional Φd can be easily computed from the sensitivity matrix using

the chain rule

gd,k = ∇mΦd(mk) = JTDTD(f(mk)− d) (4.10)
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The linear subproblem (4.8) can be rewritten as

JTDTDJ∆mk = −JTDTD(f(mk)− d)

or H∆m = −g (4.11)

which represents the so called normal equation, also known as the unconstrained least square

equation.

The method using the Hessian approximation Hd,k = JTDTDJ is called Gauss-Newton

method. Besides the easier computation it has the advantage that the Hessian approximation

is positive semi-definite, which guarantees the Gauss-Newton step to be a descent direction.

Due to the second order of the Taylor approximation the Gauss-Newton method, one of

the Newton type methods, has quadratic convergence. Thus, the number of iterations will

be small, if the starting model is not far away from the minimum. If there are several

local minima, the solution is uniquely defined by the starting model. The quest for a global

minimum may be achieved by starting from a set of different starting models m0. The crucial

point of Gauss-Newton method is to recalculate the approximated Hessian matrix in every

iteration, which can be very time consuming.

Gradient based methods

Another way to minimize the functional defined by (4.6) is using of gradient based mini-

mization methods. Since the gradient of a function denotes the steepest ascent direction,

it is easily to see, that the minimum of a function will be found if we follow the opposite

direction of the gradient, which is known as the direction of the steepest descent. Thus, to

minimize Φ, the model update for each iteration can be considered as a proportion of the

negative gradient of Φ, namely −g according to (4.10). A step length τ , the proportional

coefficient, of the descent step has to be estimated such that Φ(mk− τgk) for iteration k is

minimized. A procedure, which tries to search for an optimum solution along the line defined

by varying τ is referred to as line search. Repeating the process described above several

times we will obtain a solution which is close enough to the desired minimum. This is the

method of Steepest Descent. Within this method the forward response and the functional’s

gradient have to be calculated for each iteration. The latter can be achieved by the explicit

use of the Jacobian matrix or by additional forward calculations. The convergence rate for

this method is very slow for ill-posed problems. This results in many forward calculations,

which are generally very time-consuming. Hence, this method is very simple to implement,

but rarely of practical use.
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A more sophisticated technique of non-linear minimization is the conjugate gradient method

(NLCG). The basic idea of this method is to find a set of conjugate directions and to compute

accompanying weights in a manner that every search direction is used only once. As a result,

convergence is generally fast compared to the Steepest Descent Method. NLCG has been

successfully used for the inversion of magnetotelluric (e.g. Rodi and Mackie (2001) for

2D case and Newman and Alumbaugh (2000) for 3D case). In contrast to Gauss-Newton

method and the method of Steepest Descent, NLCG is more efficient and requires the lowest

computer memory for the following reasons. Firstly, as a gradient based method there is

no need to compute the approximated Hessian matrix. Secondly, the convergence rate of

NLCG is slower then Gauss-Newton method but faster than the Steepest Descent method.

Finally, within NLCG the gradient g can be obtained without forming the sensitivity matrix J

explicitly (Egbert, 2006). They make the NLCG method a realistic option to solve large scale

inversion problems. The reader is referred to Nocedal and Wright (1999) for more detailed

discussion about the minimization techniques described above.

4.1.2. Regularization

In inversion problems we usually have more free model parameters than data. It implies that

there will exist a lot of models fitting the same data set equally well. In many cases the model

obtained through the above described minimization scheme contains both well resolved and

poorly resolved model parameters. In other words, minimize equation (4.6) alone would

probably lead to highly oscillating models with huge parameter contrasts. Therefore, it

becomes necessary to eliminate the ambiguity of the problem. Such techniques are denoted

with the term regularization.

There are two types of regularization mainly used for geophysical inverse problem. The first

type involves approximate solutions to the basis equation or the corresponding normal equa-

tions. For instance, Krylov subspace methods have this characteristics, that smooth model

components converge faster than non-smooth model parts (Hansen, 1992). In each itera-

tion the Krylov subspace methods provide a approximated solution and project the original

solution space into a subspace. Thus, they belong to indirect regularization. In contrast,

this type of regularization can also be applied directly to control the model in an explicit

way. An example is the applying of procedure like Singular Value Decomposition (SVD) for

removing the singularity of the left hand side matrix in the normal equation (4.10). This type

of regularization is beyond the scope of this of this work, the interested reader is referred to

(Günther, 2004).
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The second type of regularization attempts to constrain the model space with various ge-

ological and other geophysical information exist which would allow constructing a proper

starting model. Applying constraints on the normal equations implies that the model must

have certain characteristics. Possible constraints are:

1. The model update vector ∆m must have a small norm, namely

Φm = ‖∆m‖2 (4.12)

This condition also ensures that the Taylor expansion is always valid for small values

of ∆m.

2. The model is constraint so that the difference between two adjacent model parameters

will be at its minimum. This can be achieved by using a matrix R, which is a discrete

representation of a gradient or higher order derivative operator.

Φm = ‖Rm‖2 (4.13)

3. The model must consider a priori information in the form of model mapri

Φm = ‖m−mapri‖2 (4.14)

This condition ensures that the final model will be close to the a prior model.

where Φm represents the model penalty functional arising from model constraint.

The goal of inverse problem becomes minimizing the data penalty functional Φd and the

model penalty functional Φm simultaneously. In this case, we can write a new penalty

functional which considers the original minimization problem (4.6) and one of the previous

constraints.

Φ(m) = Φd(m) + λΦm(m) (4.15)

where λ is the so called regularization or trade-off parameter. A suitable value of λ ensures

that neither Φd(m) nor Φm(m) will preponderate in the penalty function Φ(m). Thus, an

optimized value of λ must be sought. The relationship between Φd(m) and Φm(m) for

various values of λ takes the form of an L-curve if we plot Φd(m) against Φm(m) in a log-log

plot. Mathematically, this relationship between these two penalty functions can be described

as follows: λ→ 0 implies that the data penalty functional is mainly minimized and the model

penalty functional is barely considered; in contrast, λ→∞ provides the opposite situation.

This indicates, the original minimization problem turns to minimization and optimization

with regard to the regularization parameter (Meqbel, 2009).
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4.1.3. The normal equation and its solution

Follow (4.15) the inverse problem can be solved in the sense of the Tikhonov regularization

(Tikhonov and Arsenin, 1977), taking a regularized solution to be a model minimizing a

penalty function, Φ, defined by

Φ(m) = (d− f(m))TC−1
d (d− f(m)) + λ(m−m0)TC−1

m (m−m0) (4.16)

where C−1
d = DTD and Cd is the data covariance matrix as used by Tarantola (1978) for the

case of uncorrelated errors with standard deviations, f(m) defines the forward mapping, m0 is

a prior or first guess model, λ is a regularization or trade-off parameter, Cm defines the model

covariance or regularization term and C−1
m = RTR, where R is a discrete representation of a

gradient or higher order derivative operator.

Gauss-Newton iteration

Analogous to section 4.1.1 on page 46, the new penalty function (4.16) can be minimized

through

(∇2
mΦ(m))∆mk = −∇mΦ(m) (4.17)

where ∇2
mΦ(m) and ∇mΦ(m) represent the M -dimensional gradient vector g and M ×M

symmetric Hessian matrix H, respectively.

Given equations (4.16-4.17), g(m) and H(m) can be computed as

g(m) = −2JTC−1
d (d− f(m)) + 2λC−1

m m (4.18)

H(m) = 2JTC−1
d J + 2λC−1

m (4.19)

if the second derivative of f(m) is significantly small and hence negligible.

Essentially, the Gauss-Newton iteration can be described as recursive minimization of Φ(m).

To achieve this the normal equation (4.11) has to be solved within each iteration. If r

describes the misfit between measured and predicted data, e.g. r = (d− f(m)), the normal

equation and the model update ∆m = mk+1 −mk at the kth iteration can be formulated

as

(JTC−1
d J + λC−1

m )∆m = JTC−1
d r− λC−1

m m (4.20)

and hence ∆m = (JTC−1
d J + λC−1

m )−1(JTC−1
d r− λC−1

m m) (4.21)
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Levenberg-Marquardt iteration

One useful modification of the Gauss-Newton method is proposed by Levenberg (1944) and

Marquardt (1963). Instead of equation (4.11) the normal equation is modified to the form:

(Hk + εkI)∆mk = −gk (4.22)

where I is the identity matrix and εk is a positive damping parameter at kth iteration. This

modification has the effect that the model update is damped at each iteration. The additional

term εI restricts the length of the model update ∆mk to a certain length depending on the

choice of εk, which is allowed to vary with iteration step. The goal of this task is to prevent

the solution of the normal equation from divergence caused by the non-quadratic behavior

of penalty functional Φ or poor conditioning of the approximated Hessian matrix Hk. Since

the functional to be minimized includes its own damping in the form of the stabilizing (last

term in equation (4.16)), a large amount of Levenberg-Marquardt damping is not needed in

our problem. Hence, the damping parameter ε is only needed to be quite small after the first

few iteration steps (Rodi and Mackie, 2001). Hence, the modified normal equation can be

written as

(JTC−1
d J + λC−1

m + εI)∆m = JTC−1
d r− λC−1

m m (4.23)

and hence the model update can be obtained through

∆m = (JTC−1
d J + λC−1

m + εI)−1(JTC−1
d r− λC−1

m m) (4.24)

Solution of the normal equation

The normal equation presented above, i.e. equation (4.23), can be rewritten in a general

matrix vector notation as:

Ax = b (4.25)

where,

A = H + εI = JTC−1
d J + λC−1

m + εI, b = JTC−1
d r− λC−1

m m, x = ∆m (4.26)

Solving the normal equation is equivalent to solve a linear equation system with system

coefficient matrix A, right-hand side vector b and unknown vector x. You will probably
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familiar with this type of problem, because we have already faced the same challenge in the

previous chapter (see section 3.1.3 on page 23).

The current linear equation system (eq. 4.25) differs from the one in previous chapter (eq.

3.25) in two ways. Firstly, the dimension of both equation system are different. While the

dimension of the linear equation system for the forward problem is (Ny−1)×(2Nze+Nza−2),

if Ny is the number of horizontal grid steps, Nze and Nza are the numbers of vertical grid steps

within the conducting Earth and in the air layer, the dimension of the linear equation system

for the inverse problem coincide with the number of model parameter, e.g. M = Ny ×Nze.

As we will see later, the number of model parameter will become M = Ny × Nze × 6, if

electrical anisotropy is considered in the model domain. But one thing is clear, that they all

differ from the dimension of the linear equation system for the forward problem. Secondly, the

system coefficient matrix Sm in equation (3.25) for the forward problem is a sparse, complex

valued and symmetric banded matrix. It makes that either only non-zero valued entries or a

half band of the matrix need to be stored. In contrast, the current system coefficient matrix

A is also symmetric but in general a real valued, positive definite dense matrix.

The linear equation system (4.25) can be solved using either direct methods or iterative

methods. Examples for the direct solves are the Cholesky and LU decompositions. The

Cholesky method decomposes the matrix A in a triangular matrix U; and the LU decompo-

sition decomposes A in two triangular matrices L and U. The resulting triangular matrices

satisfy the following condition,

A = UTU and A = LU

By forward substitution,

UTy = b and Uy = b

and backward substitution,

Ux = y and Lx = y

a solution for vector x can be found (Meqbel, 2009). Direct methods are straightforward and

easy to implement, but the system coefficient matrix has to be explicit formed and stored for

each iteration. This is the most memory consuming part for the inverse problem if a direct

method is used. The required memory will increase significantly for a finer discretization of

model domain.
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An example for iterative methods is the conjugate gradient method (CG). This technique

was developed by Hestenes and Stiefel (1952). The underlying principle is to find a set of

orthogonal, strictly speaking a set of A-orthogonal or conjugate, directions and to compute

accompanying weights in a manner that every search direction is used only once. To solve

the equation system (4.25), CG generates a sequence of approximated solutions by iterative

minimization of the quadratic form:

Φ(x) =
1

2
xTAx− bTx (4.27)

along a sequence of conjugate search directions d. Starting from d = b− Ax at x = 0, the

next search direction is obtained using:

dk+1 = rk + βk+1dk (4.28)

where rk is the gradient of eq. (4.27) at the solution xk and given by:

rk =
∂

∂xk
(
1

2
xTk Axk − bTxk) = Axk − b (4.29)

The scalar βk+1 in equation (4.28) ensures that the search direction dk+1 is conjugate, or

A-orthogonal, to all previous search directions and can be calculated as:

βk+1 =
rTk+1rk+1

rTk rk
(4.30)

The solution xk+1 which ensures that Φ(x) approaches its minimum is obtained by:

xk+1 = xk + αkdk (4.31)

where the scalar step size αk is given by:

αk =
rTk rk

dTk Adk
(4.32)

A complete CG procedure is adopted from Shewchuk (n.d.) and presented in Algorithm

1, more details can be found in Golub and Van Loan (1996) and more others. In the CG

scheme the main computation tasks are the matrix vector multiplications. Rodi and Mackie

(2001) showed that this multiplication can be accomplished at the cost of two pseudo forward

modeling computations.
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The Conjugate Gradients method works well on matrices that are either well conditioned or

have just a few distinct eigenvalues. Unfortunately, the system matrix A that we encountered

in MT inversion problem is usually ill-conditioned and hence the use of the CG method could

fail. Many studies have shown that it is necessary to use preconditioned CG method instead of

plain CG method. The idea behind the use of a preconditioner is to compact the eigenvalue

spread of the original system matrix because the smaller the eigenvalue spread, the more

efficient the CG procedure (Hestenes and Stiefel, 1952).

Suppose that matrix M is symmetric, positive-definite and approximates A, but is easy to

invert. We can solve Ax = b indirectly by solving

M−1Ax = M−1b (4.33)

If the condition number of M−1A is smaller than it of A, or if the eigenvalues of M−1A

are better clustered than those of A, we can iteratively solve equation (4.33) more quickly

than the original problem. The matrix M is then called as a preconditioner. The best pre-

conditioners are those which are most closely related to the actual system matrix A but are

easy to invert. For example, if we used the actual system matrix as a preconditioner, the CG

algorithm would reach the solution in just one step. This is because that particular precon-

ditioner reduces the eigenvalue spread of the original system matrix to just one eigenvalue.

This is clearly an exaggerated example because if we could inverse the actual system matrix,

there would be no need to use CG any more. But this example demonstrates the idea behind

the use of a preconditioner.

The effectiveness of a preconditioner M is determined by the condition number of M−1A. So

the problem remains of finding a preconditioner that approximates A well enough to improve

convergence rate. With a good preconditioner, rapid convergence can often be obtained after

only a few iterations. A pseudo code of preconditioned CG is also adopted from Shewchuk

(n.d.) and presented in Algorithm 2.
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4.2. Inversion of MT data with anisotropic

conductivities

4.2.1. Concept of 2D anisotropic inversion

In this subsection, the essential elements for accomplishing of 2D anisotropic inversion are

introduced. First of all, I will define the data vector d and the inversion parameter or model

parameter m. Since the sensitivity matrix J is the most important quantity needed by all

inversion or minimization algorithm (no matter it has to be explicit formed or not), the

calculation of the J matrix is described in details. Finally, an appropriate penalty functional

for anisotropic inversion problem and its minimization are also explained.

Data and inversion parameter

The data vector is the observed data d or predicted data f(m). It can be the apparent

resistivity and phase, the impedance tensor, the rotation invariants of impedance tensor or

the phase tensor. Within this thesis when I talk about data, it means uniquely the impedance

tensor Z. The data vector d can be expressed as

d = (Zxx, Zxy, Zyx, Zyy) (4.34)

for each receiver and each period.

The inversion parameter is the conductivity distribution in an anisotropic medium. It can be

described by a symmetric positive definite 3×3 tensor. The tensor can be represented by three

positive principal conductivities and three rotation angles by using of the Euler’s rotations (see

section 2.2.2). This representation is more descriptive than the fully occupied conductivity

tensor. Once it is defined we know immediately how the electrical property is defined in

a given Cartesian Coordinate System. Hence, the tensor representation with three principal

conductivities and three rotation angels is used as the final inversion parameter. Additionally,

the logarithms of all conductivities are used. It is useful for several reasons. First, it removes

any bias associated with using conductivity as model parameters. Furthermore, it guarantees

the positiveness of the model parameters (i.e. no negative conductivities are allowed). Finally,

logarithmic parametrization allows for larger changes in the model parameters as the inversion

is iterated. For the electrical problem, where the conductivity can vary by several orders of
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magnitude in the Earth, this reduces the total number of iterations needed to reach an

acceptable solution.

According to equation (2.36) an arbitrary symmetric and positive definite tensor σ can be

diagonalized and hence represented as three principal values (σ1, σ2, σ3) and three rotation

angels (α, β, γ). The final inversion parameter can be expressed as

m = (· · · , lnσj1, lnσ
j
2, lnσ

j
3, α

j, βj, γj︸ ︷︷ ︸
for cell j, where j∈[1,··· ,M ]

, · · · ) (4.35)

Global penalty functional

With a penalty functional we try to find a solution which can fit the data and also meet

our expectation or existed information. An example of how the penalty functional can be

stated is described in section 4.1 (see eq. 4.15). However, the balance between the data

misfit and the model constraint could be destroyed because of the presence of anisotropic

structure. For anisotropic case the number of model parameters will be six times more than it

for the isotropic case with same discretization and number of the data. It gives the inversion

more degrees of freedom which could lead that the inversion converges very slow or even

do not converge at all. Hence, a penalizing of anisotropy is useful both to eliminate some

of the ambiguity associated with inversion and to help the algorithm fall into a better local

minimum. This can be done by introducing an additional term to the penalty functional,

which attempts to make the three principal conductivities equal. The basic idea of this

penalizing is quite simply and intuitive. If an isotropic model is adequate to explain the data,

there is no need to introduce anisotropy at all. The anisotropy penalty functional for the

entire model domain G is defined according to Pain et al. (2003),

Φa(m) =

∫
G

(lnσ1, lnσ2, lnσ3)K

 lnσ1

lnσ2

lnσ3

 dG (4.36)

The positive semi-definite matrix K has the form of a discretized Laplacian and its purpose

is to make the principal conductivities equal. A typical form of K would therefore be

K =

 2 −1 −1

−1 2 −1

−1 −1 2

 (4.37)
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or more generally

K =

 a12 + a13 −a12 −a13

−a12 a12 + a23 −a23

−a13 −a23 a13 + a23

 (4.38)

where the three positive scalars in this matrix can be arbitrarily chosen so that the anisotropy

is aligned with known physics.

Reorganize the matrix K in a proper order it can be applied to the full model parameter

space according to equation (4.35). Equation (4.36) can hence be rewritten as:

Φa(m) = mTKm (4.39)

For technical details about the reorganization the reader is referred to section A.5. Therefore,

the penalty functional to be minimized is defined as

Φ(m) = Φd(m) + λsΦm(m) + λaΦa(m) (4.40)

where the first and the second terms at the right hand side are the data misfit and the

model constraint as described in section 4.1, λs and λa are regularization parameters of the

model structure (also known as model roughness penalty parameter) and anisotropy penalty

parameter, respectively.

Least-squares inversion

Given equation (4.40), the model update can be obtained by using the Levenberg-Marquardt

method with step length damping

∆m = (JTC−1
d J + λsC

−1
m + λaK + εI)−1(JTC−1

d r− λsC−1
m m− λaKm) (4.41)

where J, Cd, Cm, K and I are the N ×M sensitivity matrix, the N × N data covariance

matrix , the M ×M model covariance matrix, the M ×M matrix for anisotropic constraint

and the M × M identity matrix, respectively; r and m are the data residual vector and

the model parameter vector; λs and ε are the trade-off parameter for model structure and

the Levenberg-Marquardt step damping parameter; λa can be either a scalar value or a

spatial function. The selection of λa depends on our expectation or how well the presence

of Anisotropy is known.
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4.2.2. Sensitivity matrix computation

The explicit expression of the J is required to formulate the model update (see equation

4.41). In this section I will discuss how the sensitivity matrix is calculated.

As the name suggests, the sensitivity matrix J describes how sensitive the predicted data

are towards small changes in the model parameters. It is defined as the first derivative of

predicted data f(m) with respect to model parameter m. Consider a set of predicted data

with N elements which is calculated based on a 2D model discretized with M grid cells, the

matrix J is of dimension N ×M and can be expressed as

J =


∂f1(m)
∂m1

∂f1(m)
∂m2

· · · ∂f1(m)
∂mM

∂f2(m)
∂m1

. . .
...

...
. . .

...
∂fN (m)
∂m1

· · · · · · ∂fN (m)
∂mM

 (4.42)

The definition of the sensitivity matrix suggests that the computation of each element of J

can be done in a straightforward manner: simply perturbing each model parameter by ∆m,

solving the forward modeling problem for m + ∆m and approximating the first derivative

with a forward difference.

∂f1(mk)

∂mk

=
fl(mk + ∆m)− fl(mk)

∆m
l = 1, · · · , N and k = 1, · · · ,M (4.43)

This approach implies that the same step must be repeated for all model parameters, which

means the forward problem has to be solved M times to get all elements of J. This is for

multidimensional problem with a fine discretization a tedious and very time-consuming task.

Rodi (1976) and later Rodi and Mackie (2001) suggested an efficient method to compute

all elements of J with only solving the forward problem N times. This method is based on

the reciprocity principle, which states that the model response of a receiver at location j

depending on a transmitter located at the location i is the same as that of a transmitter

located at the location j and a receiver at i.

Recently, Egbert and Kelbert (2012) presented a general approach to derive generic expression

for computing the elements of the sensitivity matrix in 2D and 3D. I will summarize the basic

idea of this approach as following. First, the forward modeling operator can be considered

as a function depending on the model parameters and the primary field components, which

is the solution of the forward problem and also depending on the model parameters.

f(m) = ψ(e(m),m) (4.44)
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Equation (4.44) states the fact that the model responses are derived from the forward solution

(the EM primary fields) e. The function ψ can be considered as a function that extracts (via

interpolation and other mathematical basic functions) the corresponding values of electric and

magnetic fields at the observation location to evaluate the model responses. The definition

of J can be rewritten as

J =
∂f(m)

∂m
=
∂ψ(e(m),m)

∂m
=
∂ψ

∂e

∂e

∂m
+
∂ψ

∂m
(4.45)

Using matrix notation to equation (4.45) yields

J = LF + Q (4.46)

where

L =
∂ψ

∂e
, F =

∂e

m
, Q =

∂ψ

∂m

The matrix L represents the linearized data functional, through which the perturbation in

data, caused by the perturbation in the EM primary fields (the forward solution), is computed.

The matrix Q represents the dependency of function ψ on the model parameter m if the

primary fields are treated as constant and hence independent of m. Matrices L and Q are

in general sparse, because they only depend on a few nodes surrounding the corresponding

MT station, and for some case Q can be zero. Hence, these two matrices can be efficiently

computed. In contrast, computing the elements of F is the most challenging task involved

in equation (4.46).

To derive a general expression for F, first differentiating equation (3.25) with respect to the

model parameters m yields
∂(Sme)

∂m
=

∂b

∂m
(4.47)

Assume that b is constant, independent of m, although some subtle issues related to this

point may arise with specific solution approaches (see Egbert and Kelbert (2012) and also

Newman and Boggs (2004)). Then, letting e be the solution of (3.25) at m, and noting

that forward solution e varies as model parameter m is varied, we obtain

∂(Sme)

∂m
=

[
∂Sm
∂m

e + Sm
∂e

∂m

]
=

∂b

∂m
= 0 (4.48)

and

Sm

(
∂e

∂m

)
= −∂Sm

∂m
e ⇒ SmF = P (4.49)
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Hence, F can be expressed as

F = S−1
m P where P = −∂Sm

∂m
e (4.50)

The operator P depends on details of both the numerical model implementation and the

model parameter. It represents a mapping of forward solution defined on the grid nodes

onto the grid cells where the discretized model parameters are defined. Finally, we obtain an

expression for the numerical sensitivity matrix for general EM problems

J = LS−1
m P + Q (4.51)

In order to derive the sensitivity matrix, we need the predicted data (e.g. the impedance

tensor), where two orthogonal source polarizations are required. Following the discussion in

section 3.1.4 and Mackie and Madden (1993a) and Newman and Alumbaugh (2000), the

electric and magnetic fields for the two polarizations can be denoted by Ex1, Ey1, Hx1, Hy1

and Ex2, Ey2, Hx2, Hy2, which are collected through the impedance tensor Z with

E = ZH (4.52)

and in its explicit matrix notation

Z =

(
Zxx Zxy

Zyx Zyy

)
=

(
Ex1 Ex2

Ey1 Ey2

)
·

(
Hx1 Hx2

Hy1 Hy2

)−1

(4.53)

It is obvious, the i-th row of sensitivity matrix J can be obtained through

Ji =
∂fi(m)

∂m
=
∂ψ(ei(m),m)

∂m
=
∂Zp,q
∂m

(4.54)

where Zp,q denotes an arbitrary element of impedance tensor Z. Repeating this for all periods

and all MT receivers we obtain the full J matrix. The problem becomes how to calculate the

first derivative of Zp,q with respect to model parameter m.

The particular expression of impedance tensor elements is introduced in section 3.1.4. In the

following, I will use the yx-component of the impedance tensor as an example to explain how

its first derivative is calculated. First, I adopt the general expression of Zxy from equation

(3.30):

Zyx =
Ey1Hy2 − Ey2Hy1

Hx1Hy2 −Hx2Hy1
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Taking first derivative of Zyx with respect to m yields

∂Zyx
∂m

=
1

det H

(
Ey1

∂Hy2

∂m
+Hy2

∂Ey1

∂m
− Ey2

∂Hy1

∂m
−Hy1

∂Ey2

∂m

)
− · · ·

− Ey1Hy2 − Ey2Hy1

det H2

(
Hx1

∂Hy2

∂m
+Hy2

∂Hx1

∂m
− · · ·

−Hx2
∂Hy1

∂m
−Hy1

∂Hx2

∂m

)
(4.55)

where det H = Hx1Hy2 −Hx2Hy1.

One can easily observe that the right hand side of equation (4.55) depends on all four

components of the magnetic field and two y-components of electric field. Furthermore, the

calculation of ∂Zyx/∂m involves partial derivatives of the electric and magnetic fields. These

derivatives can be related to the forward solutions, e.g.

∂Hxj

∂mk

=
∂

∂mk

(
gh T
x ej
)

(4.56)

∂Hyj

∂mk

=
∂

∂mk

(
gh T
y ej
)

(4.57)

∂Eyj
∂mk

=
∂

∂mk

(
ge T
y ej
)

(4.58)

where j ∈ (1, 2) denotes the two different polarisations, mk is the k-th element of model

parameter m, ej is the primary fields (the forward solution, see eq. 2.30) of the j-th

polarisation. gh T
x represents an operator through which the x-component of the magnetic

field at receiver location is derived based on known primary fields and analogously, ge T
y is

the operator through which the y-component of the electrical field at receiver location is

derived based on known primary fields, the superscript in these expression denotes the matrix

transpose. This kind of operator is usually a combination of two processes, if it is related to

secondary field components like Hy, Hz, Ey and Ez. The first process is the derivation of

secondary field components on the mesh grid from known primary field components and the

second process is the interpolation of the obtained secondary field components from the first

process to receiver location. If this operator is related to primary field components Ex and

Hx, the first process is not needed and only the second process remains. As already discussed

in section 3.1.4, the interpolation process is independent of discretized conductivities (the

model parameters), since the bi-linear interpolation technique is used in this work. The

derivation of Hy and Hz rely on equation (3.4) and (3.5) which are also independent of the

model parameters. In contrast, the derivation of Ey and Ez are defined by equations (3.18)
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and (3.19) and the accumulative conductivities are involved in the calculation, which means

that within current example only the operator ge T
yj depends on model parameter m.

According to equations (4.45), (4.46) and (4.50), equations (4.56) to (4.58) can be rewritten

as

∂Hxj

∂mk

= − gh T
xS−1

m

∂Sm
∂mk

ej (4.59)

∂Hyj

∂mk

= − gh T
y S−1

m

∂Sm
∂mk

ej (4.60)

∂Eyj
∂mk

=

(
∂

∂mk

(
ge T
y

)
− ge T

y S−1
m

∂Sm
∂mk

)
ej (4.61)

Using the above results, terms involving the electric and magnetic field partial derivatives can

be substituted in equation (4.59). After some algebra, a general expression for the sensitivity

elements related to the yx-component of the impedance tensor is obtained

∂Zyx
∂m

=

[
Hy1

det H
ge T
y +

(
Hx1R

det H2 −
Ey1

det H

)
gh T
y −

Hy1R

det H2 gh T
x

]
S−1
m

∂Sm
∂m

e1

+

[
− Hy2

det H
ge T
y +

(
Ey2

det H
− Hx2R

det H2

)
gh T
y +

Hy2R

det H2 gh T
x

]
S−1
m

∂Sm
∂m

e2

− Hy1

det H

∂

∂m
( ge T

y )e1 +
Hy2

det H

∂

∂m
( ge T

y )e2 (4.62)

where R = Ey1Hy2 − Ey2Hy1 and det H = Hx1Hy2 − Hx2Hy1. e1 and e2 are the forward

solutions related to two orthogonal source polarizations.

Following equations (4.50) and (4.51), we can summarize equation (4.62) to a more generic

form
∂Zyx
∂m

= (L1S−1
m P1 + Q1) + (L2S−1

m P2 + Q2) (4.63)

where

L1 =
Hy1

det H
ge T
y +

(
Hx1R

det H2 −
Ey1

det H

)
gh T
y −

Hy1R

det H2 gh T
x

P1 =
∂Sm
∂m

e1 and Q1 = − Hy1

det H

∂

∂m
( ge T

y )e1

L2 = − Hy2

det H
ge T
y +

(
Ey2

det H
− Hx2R

det H2

)
gh T
y +

Hy2R

det H2 gh T
x

P2 =
∂Sm
∂m

e2 and Q2 =
Hy2

det H

∂

∂m
( ge T

y )e2
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hold for the current example.

Equation (4.63) holds generally for all the sensitivity computation related to impedance

tensor elements. The expression of L, P and Q may different for other impedance tensor

element. For instance, the first derivative of Zxy with respect to model parameter m. Since

Ey and Ez are not involved in the calculation of Zxy, Q will become zero. The expression

of L will also vary accordingly and only the expression of P will remain unchanged. For 2D

anisotropic case, as already discussed in section 3.1.4, the Hx2 component will vanish. Thus,

the expression of L, P and Q will be further simplified.

4.3. Two-dimensional inversion studies

After the previously introduced inversion strategy is implemented into a set of computer code,

it is necessary to check its capabilities and show its limitations. In this section I present

results from synthetically generated two-dimensional inversion problems. A common test

model is used for different inversion purposes. The model consists of a two-dimensional single

conductive and rectangular body embedded in a 100 Ωm homogeneous, isotropic background.

The entire Earth model has dimensions of 260× 100 km and the model parametrization for

inversion divides the Earth model into a grid of blocks numbering 30 in the horizontal y-

direction and 20 in the vertical z-direction, implying a total mesh grid cells of 600 (left

panel of Fig. 4.1). Within an anisotropic inversion algorithm 6 parameters are considered

for every single mesh grid cell, therefore, in total 3600 model parameters are considered for

each inversion test. The anomalous body has dimensions of 2× 12 km and its top is 800 m

below the Earth’s surface (right panel of Fig. 4.1).

Obviously, such a big model as displayed in left panel of figure 4.1 is not appropriate for

demonstration of the inversion results, since the interested area is considerably smaller than

the entire model domain. But, if only an enlarged drawing of the interested area is displayed,

like the view in the right panel of figure 4.1, the changes in model space outside this selected

area will be invisible. Of course, those kind of changes outside of the interested area are not

our main focus, but for test purpose, it is worth to know how the model update varies in the

entire model domain. Thus, a proper way to demonstrate the results is needed, so that the

changes of model parameter in the entire model domain should fairly distinguishable. One

way to achieve this is ignoring the real information about horizontal distance and depth, and

displaying the model with uniform grid cells (fig. 4.2).
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Figure 4.1.: The simple test model consists of a conductive and rectangular block, where its

electrical property varies for the following tests, embedded in a homogeneous isotropic half-

space with resistivity of ρ1 = 100 Ωm. The model is discretized using rectangular mesh

grid (upper panel). The black triangles denote MT sites located above the conductive

square block (see the enlarged part in the lower panel).
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Figure 4.2.: The same model as displayed in figure 4.1. The real information about horizontal

distance and depth are ignored and the model is displayed with uniform rectangular grid.
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In order to demonstrate the reconstructed material properties in the model is whether elec-

trical anisotropic or not, one would need to display at least the three principal resistivity

values separately. However, it is not enough to show the degrees of anisotropy in the studied

model. Furthermore, distinguishing difference between color coded plots could be a tough

task, if the color code extends in a wide range. One way to accomplish this is to display a

section of percentage anisotropy. For this purpose I define the percentage anisotropy as the

ratio of the current anisotropy to the maximal allowed anisotropy. As we already known from

previous sections, with a given resistivity tensor the current anisotropy can be defined as

current anisotropy = (ρ1, ρ2, ρ3)

 2 −1 −1

−1 2 −1

−1 −1 2


 ρ1

ρ2

ρ3

 (4.64)

and similarly, the maximal anisotropy is defined as

maximal anisotropy = (ρmax, ρmin, ρmin)

 2 −1 −1

−1 2 −1

−1 −1 2


 ρmax

ρmin

ρmin

 (4.65)

where ρmax is the maximal value of the given resistivity tensor, e.g. ρmax = max(ρ1, ρ2, ρ3)

and ρmin is defined as the minimal allowed resistivity of the Earth materials. Here I choose

ρmin to be 0.3 Ωm, e.g. a value close to the resistivity of sea water. Hence, the percentage

anisotropy is

percentage anisotropy =
current anisotropy

maximal anisotropy
(4.66)

For all the following inversion tests, the starting model was a uniform half-space with re-

sistivity of 100 Ωm. The stopping criteria is chosen as either the root mean square misfit

(RMS) falls below 1.05 or 25 iterations are finished. The RMS misfit is defined as

RMS =

√√√√∑Nd

i=1

di−fi(m)
ei

2

Nd

(4.67)

4.3.1. Influence of structural and anisotropy penalty parameters on

inversion model

Since two penalty parameters are used in the penalty functional , e.g. equation (4.40) to

balance between data misfit, model roughness and the electrical anisotropy, one should first
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examine their influences on inversion algorithm. In general, the model roughness penalty

parameter λs and the anisotropy penalty parameter λa are both scalar values and act as

scaling factors, for instance, When λs is large, the model roughness term is emphasized

and which leads to a smoother model and if λa is large, the term of anisotropy constraint

is emphasized and which will lead to a model with less anisotropy. In general, it is to

expect that the data fit improves as the magnitudes of λs and λa are decreased, the model

roughness constraint and the anisotropy constraint become relatively less important in the

penalty functional. However, using values that are too small will result in over-fitting of the

data and one may obtain much more equivalent models which are fit the data equally well

but far away from our expectation or known information. The purpose of applying those

constraints is attempting to turn the otherwise ill-posed problem into an over-determined

system of equations that can be solved in a least-squares sense, the nature of the model

roughness penalty determines the appearance of the resolved model and the nature of the

anisotropy penalty ensures that the material properties will stay isotropic, if the data can be

fit in that way, which corresponds the sense of “simple” model. There are numerous ways to

estimate appropriate levels of penalty parameters. Most of these methods require knowledge

of data error and usually assume uncorrelated Gaussian data-error statistics (Hansen, 1998).

In practice, the optimal penalty parameters can only be obtained by doing careful examination

of a suite of solutions calculated using a range of penalty levels (Pratt and Chapman (1992);

and Pain et al. (2003)).

In a first test the conductive rectangular body is defined anisotropic with resistivity of

ρx, ρy, ρz = 50, 10, 50 Ωm and the rotation angles are all zero, which implies that the principal

axes of anisotropy coincide with the coordinate axes of the measurement. The background

of this anomalous conductive body is a homogeneous, isotropic half-space with resistivity

of 100 Ωm. The xy- and yx-components of the impedance tensor at eleven sites and ten

frequencies generated from this model are used for inversion as ”observed” data, which yields

a total number of 440 real-valued data. The frequencies range from 0.01 to 1000 Hz and

are evenly spaced on a logarithmic scale.

To examine the influences of penalty parameters on inversion, I vary the model roughness

penalty parameter λs and the anisotropy penalty parameter λa in a very wide range from

109 to 10−9, with a decreasing factor of 0.1 for each step if the parameters are between

103 and 10−3, and with decreasing factor or 0.01 for each step if the parameters are belong

to interval [109, 103] and interval [10−3, 10−9]. It leads to a total number of 169 different

inversion runs. For each inversion run the penalty level (e.g. the value of λa and λs) are fixed.

All tests are performed with a maximum allowed number of iterations of 25 and the start
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Figure 4.3.: Inversion results for the first test model. The ρx component of 169 inversion runs

are displayed as image arrays and each rectangular represents the result of a single inversion

run with fixed regularization parameters. While regularization parameter λs decreases

(from top to bottom), the resulting model is getting raugher and raugher. Similarly,

while regularization parameter λa decreases (from left to right), the resolved anomaly is

approching its real value.

guess (the initial model) is a homogeneous isotropic half-space with resistivity of 100 Ωm.

The maximal number of CG iteration inside each inversion iteration is set to 50 and the

CG iteration will also terminated if the norm of the residual falls below 1.0 × 10−5. The

Levenberg-Marquardt damping factor is set to 0.001 times the current value of the objective

function, e.g. εl = 0.001Φ(ml).

The inversion results are shown in figures 4.3 to 4.7. Each figure displays one particular

inversion results for all 169 inversion runs, inversion result obtained using fixed penalty level

of λs = 109 and λa = 109 is displayed at the upper left panel and the one using fixed penalty

level of λs = 10−9 and λa = 10−9 is displayed at the lower right panel of each figure. The
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Figure 4.4.: Inversion results for the first test model. The ρy component of 169 inversion runs

are displayed as image arrays and each rectangular represents the result of a single inversion

run with fixed regularization parameters. While regularization parameter λs decreases

(from top to bottom), the resulting model is getting raugher and raugher. Similarly,

while regularization parameter λa decreases (from left to right), the resolved anomaly is

approching its real value.

resolved principal resistivity values ρx, ρy and ρz are displayed in figures 4.3, 4.4 and 4.5,

respectively. Figure 4.6 summarizes the percentage anisotropy according to equations (4.64)

to (4.67) and figure 4.7 displays the over-all Root Mean Square (RMS) error.

Compare figures 4.3, 4.4 and 4.5, the inversion models clearly show the effectiveness of using

appropriate penalty levels. Models resulting from large roughness penalties stay smooth (top

row of images in the three figures) and models resulting from large anisotropy penalties stay

isotropic (the first three columns of images in the figures, and more clear in figure 4.6). As the

roughness penalty decreases (from the top row to the bottom row), the expected structure is

successively developed. For this particular test, the inversion models will stay isotropic, if λs
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Figure 4.5.: Inversion results for the first test model. The ρz component of 169 inversion runs

are displayed as image arrays and each rectangular represents the result of a single inversion

run with fixed regularization parameters. While regularization parameter λa is higher than

105, the resulting model exhibits a great similarity with the true model. Otherwise, no

cognizable anomaly is resolved in ρz component for known reasons explained in 3.2.1.

is below 105 and λa is bigger than 103 (see figure 4.6). In a range of λs > 103, no cognizable

structure can be created due to very large roughness penalty parameter. If λs and λa are both

smaller than 103, the anisotropic anomalous body is successively resolved. However, artificial

structure will be also created if λs and λa are both smaller than 10, which indicates a possible

transition to over-fitting. This phenomenon can be observed even more clear through figure

4.6. As we may observe, in the range of λs and λa smaller than 103 and ignoring artificial

structure caused by very small penalty levels, the ρx and ρy components are well resolved

and resistivity values approximated to the known true value of 50 Ωm and 10 Ωm can be

obtained from almost all the inversion runs. The shape of the anomalous conductive body is

also fully resolved in the both components. In contrast, no cognizable conductive anomaly is

resolved in the ρz component. This is actually not a surprise. As already discussed in section
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Figure 4.6.: Inversion results for the first test model. The percentage anisotropy for 169

inversion runs is displayed as image arrays and each rectangular represents the result of a

single inversion run with fixed regularization parameters. If regularization parameter λa is

high, the resolved models are isotropic. While λa decreases, the resolved model exhibits

more and more anisotropic.

3.2, the MT responses (impedance tensor, apparent resistivities and phases) are insensitive

to the resistivity variation in vertical direction. If only the vertical resistivity varies, identical

responses can be observed at the surface receives (fig. 3.10), no matter how significant the

variation is. In other words, a perturbation of the resistivity in vertical direction will not

cause any perturbation in surface measurement, e.g. the corresponding part of sensitivity

matrix will be very small. As subsequence of that, it is then obvious that this particular part

of model update obtained from each inversion iteration will be also insignificant. Therefore,

we may deduce that the vertical variation of resistivity is unresolvable in the MT 2D inverse

problem. The resolved principal resistivities and percentage anisotropy give us a intuitive

view of how well the anomalous body is resolved and how the material property transits

from isotropic to anisotropic. Besides that, the root mean square (RMS) error gives insight

of how well the inversion converges and the “observed” data is approximated by predicted

data. In figure 4.7 the RMS error for all the 169 inversion runs is displayed. As expected,

small penalty level produces better data fitting. In this particular case, the best data fitting
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appears if the roughness penalty parameter λs is less than 105 and the anisotropy penalty

parameter λa is less than 102. But one should keep in mind that the best data fitting does

not always means the best inversion model, as already discussed, possible over-fitting can be

caused by very small penalty parameters.

4.3.2. Relaxation of penalty parameters

The inversion of MT data is non-linear and therefore an iterative approach is needed. In

this implementation I use a series of Levenberg-Marquardt iterations and at each iteration

appropriate penalty parameters need to be chosen. In the previous examples (figure 4.3 to

4.7) constant levels of penalty parameters of both model roughness and anisotropy were

used. Though good inversion results can be obtained using fixed penalty levels, but there are

also two deficiencies which make the use of fixed penalty levels quite unpractical. Firstly, a

large amount of tests are required in order to find out the “best” penalty level for a particular

inversion. Secondly, the regularization terms could become dominant since the data misfit

will decrease from iteration to iteration. Fixed penalty levels imply that the inversion is

treated as two successive processes, in the first process the data misfit is dominant and
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Figure 4.7.: Inversion results for the first test model. The over-all RMS error for 169 inversion

runs is displayed. When λs and λa are both high, the inversion ends up with a considerably

high RMS level. Lower RMS can only be reached, when λs and λa are both low.
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structure is mainly developed in this stage, the second process starts after a few iterations

when the data misfit is small compare to the roughness penalty and the anisotropy penalty,

in other words, the data misfit becomes insignificant and what the inversion does is a kind

of fine tuning of the appearance of the resolved model.

Some Authors suggest that the use of a relaxation or “cooling” approach for selecting of

regularization parameters is more appropriated compare to the use of fixed penalty level (Pain

et al. (2003) and Newman and Hoversten (2000)). The basic idea is to start with a relatively

large value of λ and then reduce λ from iteration to iteration. This process of reducing λ

continues until an acceptable data misfit is achieved. Experience shows that this approach

stabilizes the inversion process at the outset by guarding against arbitrarily rough models

that are nonphysical (Newman and Hoversten, 2000). In this section I examine the use of

relaxation of the penalty parameters after each iteration and compare the resulting inversion

models with those obtained by using of fixed penalty levels. The motivation for relaxation of

penalty parameters is twofold. Firstly, it is anticipated that by using large penalty parameters

in initial iterations, the large-scale structures and anisotropy information will be recovered.

At later iterations, when the penalty parameters become smaller, small-scale features will be

created. Secondly, it is difficult to specify “optimum” (by whatever definition) penalty levels

without knowledge of the amount of structure and anisotropy contained in the model. Thus

it is anticipated that by relaxing the penalty levels after each iteration from a large initial

value, “optimum” penalty levels are encountered somewhere along the way and the inversion

process can then be terminated (Pain et al., 2003).

Three inversion runs are carried out and the initial penalty parameters are chosen to be

1.0 × 107, 1.0 × 105 and 1.0, respectively. Other inversion settings remain unchanged as

described in previous subsection . The inversion runs are carried out with 100 maximal

allowed CG iterations for each inversion iteration and a maximal allowed number of inversion

iteration of 25. The initial model is a homogeneous isotropic half-space with resistivity of

100 Ωm and the results are displayed in figures 4.8, 4.9 and 4.10, respectively. Each figure

consists of three panels, in the upper panel the resolved principal resistivities ρx, ρy and

ρz are displayed as image arrays against the inversion iterations, in the middle panel the

percentage anisotropy is shown for all the 25 inversion iterations and in the lower panel the

root mean square (RMS) error is displayed for all inversion iterations. The results show that

all the three inversion runs are able to resolve the anomalous structure in the model and

the resolved principal resistivities (except the z-component for known reason, see previous

subsection) approximate the real resistivity value of 50 Ωm in x-direction and 10 Ωm in y-

direction. The anomalous structure shows distinct anisotropy both in the view of principal
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resistivities and in the percentage anisotropy. Compare the results differences can be observed

and I may conclude as following. Firstly, the use of large initial penalty parameters results

smooth inversion model. The inversion models, obtained by using 1.0 × 107 and 1.0 × 105

as initial value for both of the penalty parameters (figures 4.8 and 4.9), respectively, are

in general smoother than those obtained by using 1.0 as initial penalty parameters (figure

4.10). Secondly, inappropriate initial value of the penalty parameters will cause the creation

of artificial structure. The initial value of 1.0 × 107 is obviously too large. Due to strong

constraint on model roughness the created structure becomes fuzzy even in the early stage

where large-scale structure should be created, which results very smooth model but the

bounds of the anomaly becomes unclear (figure 4.8). In contrast, the initial value of 1.0

is too small. The data misfit is dominant in contrast to the model constraints for the

whole process, because the data misfit and the model constraints decreases from iteration

to iteration. This implies that no control on model appearance is applied and only the data

misfit is minimized. Hence, the model update is rough and artificial structure appears after a

few iterations (figure 4.10). Thirdly, the inversion converges significantly slow if the applied

initial values of the penalty parameters are too large. The inversion run with initial penalty

parameters of 1.0 × 107 shows a very slow convergence and the RMS error ends up by 8.9

after 25 inversion iteration (figure 4.8), while the other two inversion runs converge relatively

quick and the RMS errors are considerably small after only 15 inversion iterations. Finally and

also the most exciting discovery is that starting with relatively large initial penalty parameters

will be able to resolve the resistivity anomaly even in vertical direction. The resistivity defined

on z-direction is resolved by inversion runs using 1.0× 107 and 1.0× 105 as initial value for

both of the penalty parameters (figures 4.8 and 4.9) but not by those with small initial value,

for example 1.0 (figures 4.10).

4.3.3. Anisotropic strike angle

In the previous subsections I have shown that the implemented inversion procedure is capable

to resolve anisotropic resistivities which are defined on the horizontal plane and coincided

with the coordinate axis directions. In the paragraph, I will examine the capability of the

newly implemented method for dealing with anisotropic features, whose principal resistivities

in horizontal plane are oblique to the coordinate axis directions, e.g. horizontal rotation

angles (the strike angle, see figure 2.3) have to be taken into account.

The “true” model is similar to the model introduced at the beginning of section 4.3 on page

64. The conductive anomaly (the conductive block) is defined as anisotropic with principal
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resistivities ρx, ρy, ρz = 50, 10, 50 Ωm, the strike angle α = 45◦ and the dip- and the slant

angles equal zero. Its forward response with a random error of 3−6% of the data, e.g. 3−6%

of corresponding elements of the impedance tensor, is used as “measured” data for inversion

test. Within this test the following settings are used: the initial penalty parameters for both

the model roughness constraint and the anisotropy constraint are chosen to be 1.0 × 105,

each inversion iteration (the outer loop) is executed with a maximal allowed number of 100

CG iterations (the inner loop), otherwise the CG iteration will also terminated if the residual

falls down to predefined tolerance level of 1.0×10−5. In total there are 25 inversion iteration

allowed and the inversion will be also terminated if the RMS error falls down to the predefined

tolerance of 1.05. A homogeneous isotropic half-space with resistivity of 100 Ωm is used as

initial guess (start model).

The results are displayed in figure 4.11. In the first three rows the resolved principal resistiv-

ities ρx,y,z are plotted as image for each inversion iteration. In rows four to six, the resolved

rotation angles α, β and γ are displayed as image arrays. In row seven the percentage

anisotropy (derived from ρx,y,z ) is displayed for each inversion iteration. In row eight, the

RMS error is plotted against the number of inversion iteration. In general, the implemented

method is able to resolve the anomalous structure (the conductive block) in the model. How-

ever, the resolved principal resistivities in horizontal plane, e.g. ρx and ρy, approximate to a

value of 30 Ωm, which differ to the expected “true” value of 50 Ωm and 10 Ωm (see 4.11 row

one to three). The ρz component is not resolved for known reason, see section 4.3.1. In the

resolved rotation angles, as expected, the dip angle β is zero, the strike angle α is resolved

greater than zero but way too small compared to the predefined value of 45◦ and the same

value is also observed by the slant angle γ even only the strike angle is predefined. This

phenomenon reveals the inability of the newly implemented inversion method for resolving

horizontal resistivities which are oblique to the horizontal coordinate axes. For the current

test, the proposed inversion method resolves an effective resistivity value of approximately

30 Ωm defined in the horizontal coordinate axes direction for both horizontal resistivities,

instead of the predefined “true” value which are oblique to the horizontal coordinate axes.

The effective resistivity can be obtained by rotating the predefined anisotropic anomaly with

property of ρx, ρy, ρz = 50, 10, 50 Ωm and α, β, γ = 45◦, 0◦, 0◦ by −45◦ around z-axis, e.g.

the horizontal oblique resistivities are rotated back to the coordinate axes directions, and

taking the diagonal elements of the resulting matrix, which is equivalent to projection of the

oblique resistivities back to the coordinate axes (see equation 4.68 and also section 2.2).
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Figure 4.12.: The sketch demonstrates horizontal anisotropy (left panel) and its relation be-

tween the effective resistivity and the principal resistivities (right panel) and a mathematical

explanation for that can be found in equation 4.68.

ρdiag. =

 σmax 0 0

0 σmin 0

0 0 σmax

 and

 α

0

0

 rotate by−α−−−−−−−→

ρeff. =

 ρmax cos2 α + ρmin sin2 α (ρmin − ρmax) sinα cosα 0

(ρmin − ρmax) sinα cosα ρmax sin2 α + ρmin cos2 α 0

0 0 ρmin


(4.68)

Figure 4.12 demonstrates the horizontal anisotropy (left figure) and the relation between

the principal resistivities and the effective resistivity. The resolved strike angle α is hence

way too small compared to the predefined “true” value. Because the z-x′-z′′ convention

of Euler’s rotations is used to transform between the full occupied conductivity tensor and

its representative with principal resistivity values and rotation angles, the same effect by

the strike angle is also observed by the slant angle which is a known effect and already

demonstrated by forward model studies in section 3.2 (Fig: 3.11 and 3.11). The percentage

anisotropy is also generally small because the resolved effective resistivities are close to each

other.
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4.3.4. Three block model

The next experiment with synthetic data uses a more complicated model. The model consists

of three rectangular bodies A, B and C embedded in a 100 Ωm background D. The anomalous

body A has dimensions (in l × h) of 5 × 14 km and its top is 5 km below the Earth’s

surface, which owns electrically anisotropic properties with ρx, ρy, ρz = 50, 5, 50 Ωm and

α, β, γ = 30◦, 0◦, 0◦; the body B is adjacent to A, it has dimensions of 4× 9 km and its top

is 10 km below the Earth’s surface, which is also anisotropic with ρx, ρy, ρz = 300, 30, 300 Ωm

and α, β, γ = 120◦, 0◦, 0◦, so the principal directions of the body A and B are perpendicular

to each other; the body C has dimensions of 6 × 11 km and its top is 2.5 km below the

Earth’s surface, it is isotropic with resistivity of 1000 Ωm (see figure 4.13). The test uses

synthetic data for both the E- and H-polarizations at nine MT sites and 15 frequencies,

which yields a total of 540 real-valued data. The frequencies range from 0.001 to 100 Hz

and are evenly spaced on a logarithmic scale. The model parameterization for inversion

divides the Earth into a grid of blocks numbering 30 in the horizontal y-direction and 20

in the vertical z-direction, implying a total of 3600 model parameters with consideration of

electrical anisotropy. The initial penalty parameters (λs and λa) are both chosen as 10, which

will be relaxed by a factor of two after each successful inversion iteration (in this context, a

successful inversion iteration means that the current RMS error is smaller than the one of the

previous inversion iteration). The maximal allowed number of CG iterations (the inner loop)

was chosen as 100 and the tolerance level of residual was set as 1.0 × 10−5, which means

that the CG iteration will be terminated if the maximal allowed iteration number is reached

or the residual falls down to the tolerance level. The maximal allowed number of inversion

iteration (the outer loop) was chosen as 25 and the tolerance level of RMS error was set as

1.05, which implies that the inversion will be terminated if the maximal number of inversion

iteration is reached or the RMS error falls down to 1.05. The starting model was a uniform

halfspace with ρ = 100 Ωm.

Figure 4.14 displays the inversion models containing different component of the horizontal

principal resistivities, e.g. the ρx component in the upper panel and the ρy component in

the lower panel, respectively. The images are truncated spatially to display the best resolved

parameters; deeper features and those laterally away from the station array are not shown.

Figure 4.15 shows a wrap-up for all the 25 inversion iteration. In the upmost panel, rows

one to three, the resolved model generated by each component of the principal resistivities

are displayed as image array against the number of the inversion iteration. In the second

panel, rows four to six, the resolved rotation angles are displayed in a same manner. In the
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A B C

Figure 4.13.: “True” model consists of three anomalous blocks embedded in a homogeneous

isotropic half-space with resistivity of 100 Ωm. The model is displayed at the top panel as

a cross section and the properties of three anomalous blocks are displayed at the bottom

panel. The forward responses of this model are used as “real” data for inversion test.

third panel, the percentage anisotropy is shown as image array along the increasing number

of the inversion iteration. In the lower panel, the RMS error is plotted as a function of the

inversion iteration number.

The final models generated by horizontal components of the principal resistivity are clearly

similar (Figure 4.14). The isotropic block C is resolved in both components and the resolved

resistivity approximates the “true” value of 1000 Ωm. However, in the ρx component, the

upper, left and right bounds of block C are precisely resolved, while its lower bound is

reconstructed much shallower than the “true” value. In contrast, in the ρy component, the

upper bound of block C is precisely resolved and its lower bound approximates the “true”

value, but the lateral extension of block C is much larger than its “true” value. If we compute

the percentage anisotropy for the entire model, the area of the block C appears as anisotropic

just because the different discussed above and can be observed clearly in the third panel of

figure (4.15). The anisotropic blocks A and B appear in the resulting models as one block

and cannot be distinguished from each other. As already discussed in previous subsection,
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Figure 4.14.: Resulting inversion models. The ρx component (upper panel) and the ρy com-

ponent (lower panel) with the original locations of three anomalous blocks (masked as

white rectangular) as reference.

only the effective value of resistivity can be resolved for an oblique anisotropic structure, due

to the loss of information about the rotation angles. For this particular case, the inversion

procedure is only able to resolve an average of both effective values related to the block

A and B due to the adjacency of these two blocks. Hence, these two blocks appear even

less anisotropy than the isotropic block C (see third panel of figure 4.15). Nevertheless, the

resolved rotation angles show that only angles are observed at the locations where the blocks

A and B are, which is an evidence for possible anisotropy. As discussed in previous subsection

and also demonstrated by forward studies in section 3.2 (Fig: 3.11 and 3.12), the same value

will be observed for both the strike angle and the slant angle.

4.3.5. MT phases out of quadrant

The last experiment with synthetic data I examine the capability of the newly implemented

inversion procedure for dealing with data containing phases out of the expected quadrant. I

adopted a model from section 3.2.2 which is used for forward modeling and demonstration

of the effect that MT phases out of quadrant can be modeled by 2D anisotropic forward

modeling. The model consists of a 300 m isotropic surface layer and a isotropic half-space
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with resistivity of 100 Ωm. Two anisotropy blocks are embedded in the half-space. The

first block started at depth of 300 m and shaped as a trapezoid, which is anisotropic with

ρx, ρy, ρz = 50, 0.5, 50 Ωm and α, β, γ = 120◦, 0◦, 0◦. The second block is a rectangular

body located beneath the first block and started at depth of 6.8 km (figure 4.16), it is also

anisotropic with ρx, ρy, ρz = 30, 0.3, 30 Ωm and α, β, γ = 30◦, 0◦, 0◦. Its forward response

was demonstrated in section 3.2.2 (figure 3.15, right lower panel) and shown that the MT

phases out of the first quadrant (> 90◦) are produced through the introduced model. The

goal of this inversion test is to check if the anomalous large phases can be fitted by anisotropic

inversion. The test uses synthetic data for both the E- and H-polarizations at 6 MT sites

and 16 frequencies, which yields a total of 384 real-valued data. The frequencies range from

0.001 to 1000 Hz and are evenly spaced on a logarithmic scale. The model parameterization

for inversion divides the Earth into a grid of blocks numbering 120 in the horizontal y-

direction and 55 in the vertical z-direction, implying a total of 39600 model parameters

with consideration of electrical anisotropy. The initial penalty parameters (λs and λa) are

chosen as 1000 and 10, respectively, which will be relaxed by a factor of two after each

successful inversion iteration (in this context, a successful inversion iteration means that the

current RMS error is smaller than the one of the previous inversion iteration). The maximal

allowed number of CG iterations (the inner loop) was chosen as 100 and the tolerance level

of residual was set as 1.0 × 10−5, which means that the CG iteration will be terminated if

the maximal allowed iteration number is reached or the residual falls down to the tolerance

level. The maximal allowed number of inversion iteration (the outer loop) was chosen as 25

and the tolerance level of RMS error was set as 1.05, which implies that the inversion will

be terminated if the maximal number of inversion iteration is reached or the RMS error falls

down to 1.05. The starting model was a uniform halfspace with ρ = 100 Ωm.

Figure 4.17 displays the final inversion models generated after 18 iterations, which are the

ρx component in the upper panel and the ρy component in the lower panel, respectively.

The images are truncated spatially to display the best resolved parameters; deeper features

and those laterally away from the station array are not shown. The inversion results show

that the structures which produce the anomalous phases can not be fully reconstructed by

the proposed inversion method. However, a remarkable degree of similarity can be observed

between the true model and the inversion model. In the resolved ρx component, the upper

panel in figure 4.17, two anomalous structures can be roughly recognized. However, the

inversion tried to fill the inbetween area of these two structures with some intermediate

features. In the resolved ρy component, the lower panel in figure 4.17, the two anomalous

blocks are resolved as one big structure shaped as a trapezoid and extend from the top of

84



Chapter 4. MT inverse problem

6640 6660 6680 6700 6720 6740
Horizontal Distance [km]

14

12

10

8

6

4

2

0

D
e
p
th

 [
km

] 100 Ω ·m

50/0.5/50 Ω ·m 120/0/0 deg.

30/0.3/30 Ω ·m 30/0/0 deg.

1

10

100

1000

10000

R
e
si

st
iv

it
y
 [
Ω
.m

]

Figure 4.16.: “True” model with two anomalous blocks. Its forward responses contain phases

out of quadrant (> 90◦) and are used as “real” data for inversion test.

Figure 4.17.: Resulting inversion models. The ρx component (upper panel) and the ρy com-

ponent (lower panel).

the model, approximately from 300 m beneath the surface, to a depth of 12 km with some

intermediate features created at the shallow range between the sites location. Figure 4.19

displays the data fit of all the six sites located above the anomalies. The data fit reveals a

great agreement in apparent resistivity, while the same effect can also be observed in phase as

long as the phases of “true” data stay inside the first quadrant. When the phases of “true”

data go into the second quadrant, the phases of the predicted data attempt to approximate
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90◦ but will never be greater than it. This indicates that the effect of phases out of quadrant

can not be reproduced using the proposed inversion method. One possible reason for this

is that only the effective resistivities can be resolved if the rotation angles are involved into

inversion. This is equivalent to a projection of different anisotropic properties, defined on

different coordinates, onto the basis coordinate on which the model is defined. After the

projection the information about rotation angles is lost. Since all the effective resistivities are

defined on the same coordinate system, there is no potential to force the current flow changes

its preferred direction and hence no phases out of quadrant can be observed. Nevertheless,

a comparison of the impedance elements between the predicted data and the raw data (the

forward responses of the “true” model for the site 003 shows that for the xy-component is

positive for the entire period range and for both the raw data and the predicted data (left

panel of figure 4.18), which explains why the phases of this component are all in the range

of (0◦, 90◦). In contrast, the yx-component of the raw data is negative in short period range

[0.001 s∼ 200 s] and it becomes positive in period range of (200 s∼ 3000 s), while the same

component of the predicted data is negative for the entire period range (right panel of figure

4.18. This explains nicely why phases out of quadrant occur and where the large phase

anomaly comes from. The zoomed image in the right panel of figure 4.18 demonstrates this

behaviors and we may observe that the differences of the raw data and the predicted data are

not that big, especially for the last 3∼4 data points. However, the change of sign is enough

to cause the transition of phases into another quadrant, because the phases are calculated

by the ratio of the real part and imaginary part of impedance. The change of sign for either

the real part or the imaginary part will not affect the apparent resistivities, because they

are measured by the quadratic values of impedance. This explains the phenomenon that we

observed in figure 4.19 where a good data fit appears in the apparent resistivity but not in

the phase.
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Figure 4.18.: Data fit of impedance tensor elements (the off-diagonal elements) for site 003.

The xy-component (left panel) and the yx-component are displayed. Points represent

the raw data (the forward responses of the “true” model) and the solid lines denote the

inversion results , e.g. the predicted data. Blue indicates the real part of the impedance

element and red denotes the imaginary part.
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Figure 4.19.: Data fit of apparent resistivity and phase for all the six sites. The points

represent the raw data (the forward responses of the “true” model) and the solid lines

denote the inversion results , e.g. the predicted data, at each site. Red color indicates the

E-polarisation component and blue indicates the B-polarisation component.
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Chapter 5.

Magnetotelluric measurements across

the Cape Fold Belt, RSA

5.1. Introduction

The Cape Fold Belt (CFB) in South Africa is a major Phanerozoic African structure that

has been studied for more than a century (Reeves and de Wit, 2000, Milani and de Wit,

2008, de Wit et al., 2008). During the last two decades researchers who have focused on the

structural geology of the Cape Fold Belt, in particular, have provided greater insight into local

characteristics of the fold belt, but a broader understanding of the tectonic development of the

fold belt is not without controversy (e.g. Shone et al., 1990, Newton et al., 2006, Paton, 2006,

Tankard et al., 2009, Booth, 2011). Recent regional refraction- and tele-seismic experiments

reveal only general crustal thickness variations, but poorly define internal structures beneath

the CFB (Paton, 2006, Stankiewicz et al., 2008, Parsiegla et al., 2009).

This hampers further understanding of the structure and evolution of the CFB (Milani and

de Wit, 2008). Within the framework of the German - South African geo-scientific research

initiative Inkaba yeAfrica several magnetotelluric (MT) field experiments were conducted

along the Agulhas-Karoo geoscientific Transect in South Africa. This transect is designed to

cross the CFB with the kango Basin, the Namaqua-Natal Mobile Belt, the Karoo Basin and

the transition into the Kaapvaal Craton. One magnetotelluric (MT) experiment is carried out

across the CFB in November 2005. The location of the MT profile allows the construction

of an upper crustal conductivity section across the CFB from its northern tectonic front to

its southernmost coastal ranges.
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5.2. Geological and tectonic background

The CFB is located at the southernmost tip of the African continent and extends for ap-

proximately 1300 km along the southern part of the South African coastal margin where

predominantly meta-sedimentary rocks of Late Proterozoic (Pre-Cape), Palaeozoic (Cape

Supergroup) and Mesozoic (Karoo Supergroup) age crop out and define two tectonic do-

mains (Figure 5.1), separated by the Cape Syntaxis. The main southern domain has an

east-west trend, and the north-northwesterly trending domain forms the western part of the

fold belt. The syntaxis is the region approximately 100 kilometers east of Cape Town where

the two domains of the fold belt meet, and interference fold structures are present (De Beer,

1992, Booth, 2011).

Figure 5.1.: Location map of the Cape Fold Belt (CFB). The study area across the CFB from

its northern tectonic front to its southernmost coastal ranges and marked by red rectangle

(pers. comm. Weckmann).

The CFB formed in response to subduction-related compression during Paleozoic-Mesozoic

convergence along the southwestern margin of Gondwana resulted in a coupled CFB-Karoo

Foreland Basin (Hälbich, 1983, Milani and de Wit, 2008, Tankard et al., 2009, Lindeque

et al., 2011). The main deformation took place at ca. 250 Ma. This tectonism affected

Proterozoic metasediments and an unconformably overlying Palaeozoic cover. Crystalline
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Proterozoic basement is not exposed anywhere in the CFB. The MT experiment is carried

out across the southern domain of the CFB, masked through red rectangle in figure 5.1,

in this area the Proterozoic metasediments are exposed in tectonic windows known as the

Kango and Kaaimans Inliers that range in age between ca. 520 and 1050 Ma (Barnett et al.,

1997). Lower Cambrian granite intrudes the Kaaimans Group (figure 5.2).

Figure 5.2.: Location map of the study area with geological map as reference. The MT

profile is denoted as a set of red crosses in the left panel, where each cross represents a

single MT site, and a red line in the right panel (Weckmann et al., 2012).

Unconformably overlying these rocks and making up the highest mountain ranges of the CFB

are predominantly thick dense quartzite units of the lower Paleozoic Cape Supergroup (Table

Mountain and Witteberg Groups). These prominent ranges, which outcrop for hundreds

of kilometers along the strike of the CFB, are separated by softer Silurian-Devonian shales

(Bokkeveld Group) exposed mostly in the adjacent valleys. Permo-Carboniferous tillites

(Dwyka Group) and finer siliciclastic rocks of the Permo-Triassic Karoo Supergroup make up

the uppermost sequences, but these are preserved predominantly only in the Karoo foreland

basin (Johnson et al., 1997, Fildani et al., 2009).

The MT profile across the CFB runs close to an amphibian seismic refraction profile (Stankiewicz

et al., 2008, Parsiegla et al., 2009) that reveals a steep decrease in crustal thickness from ca.
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42 km below the tectonic front of the CFB (at the Swartberg Mountains) to ca. 30 km be-

low the coastal ranges. A high-velocity mid-lower crust probably comprises Meso-Proterozoic

crystalline basement (Stankiewicz et al., 2008). The Swartberg and the Outeniqua Moun-

tains display slow p-wave velocities down to about 2 km depth, similar to the Kango and

Kaaimans metasediments within the uppermost 1 km of the crust.

Cretaceous basins, located along strike of the CFB at the east coast, are known to project

westward into the intermontaine basins of the CFB (Dingle et al., 1983, Brown et al., 1995,

Paton, 2006). The correlations reveal that the normal south-dipping listric fault systems

separate the onshore Cretaceous basins from the Proterozoic inliers with displacements of

2∼6 km (e.g. the Worcester and Kango Faults). Paton (2006) speculated that these faults

are linked at mid-crustal depths to a mega-extensional detachment fault underlying the entire

CFB and increasing in depth from ∼10 km beneath the CFB tectonic front to about 30 km

near the coast (i.e. close to Moho depths). Paton further speculated that above these

Cretaceous normal faults systems exploited earlier Paleozoic thrusts systems and that the

CFB changed from being a “thick-skinned” belt beneath the coastal ranges to a “thin-

skinned” belt closer to its tectonic front. Farther north, the thrusts apparently extend into

the adjacent Karoo Basin (Paton, 2006) where shallow (2− 3 km depth) decollements have

been mapped using a seismic reflection profile across the Karoo Basin (Lindeque et al.,

2011). Other authors have suggested instead that the junction between the CFB and the

Karoo Basin is a steeply dipping crustal transform fault that effectively decoupled these two

tectonic domains (Johnston, 2000, Tankard et al., 2009). Tankard et al. (2009) further

suggest that intermontaine listric Kango and Worchester Faults are part of transpressional

flower structures, including the Kango and the Kaaimans inliers and their bounding mountain

ranges. Such a model requires a depth extent of 8 km for the inliers, and 6-11 km for

the Outeniqua and Swartberg Mountains respectively (Tankard et al., 2009). These widely

different models serve as examples to emphasize the lack of consensus about even the simplest

geometry of the upper crustal structures that underlie the CFB, and therefore its tectonic

evolution. Hence, the MT data obtained along a profile across the CFB can be used to test

some of these controversies.
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5.3. Interpretation of the Cape-Fold-Belt MT data

5.3.1. Magnetotelluric data and regional strike direction analyses

Magnetotelluric data were recorded at 52 MT stations spaced at 2 km intervals along a 100

km long profile across the CFB (figure 5.2). Such a dense spacing facilitates high-resolution

MT modeling compared with the typical spacing of ∼10 km for regional surveys (e.g. Jones

et al., 2009), which is a proxy for spatial resolution. Electric and magnetic field variations

(1 kHz− 1 mHz) were measured using S.P.A.M. MkIII and CASTLE instruments, Metronix

induction coils and Ag/AgCl electrodes and processed according to Ritter et al. (1998) and

Weckmann (2005). Figure 5.3 shows the data displayed in pseudo-sections.

Figure 5.3.: Results of data processing, MT data displayed in pseudo-sections. Note that

MT phases greater than 90◦ occur in the middle of the profile for periods > 0.1s in both

TE and TM component (marked with black ellipses in the lower panel).

The apparent resistivities measured inside the frequency range for all the sites are displayed

in the upper panel of both E-polarization and H-Polarization. As common features we can

observe that a big conductive zone located in the middle of the profile and it is neighbored

by two resistive features. The resistive features start at the Earth’s surface and extend to a

great depth, while the conductive zone begins at a relatively long period of approximately

10 s. The phases which are displayed in the lower panel of both polarizations exhibit an area

(> 10 km) where MT phases greater than 90◦ occur (marked with black ellipses in figure

93



Chapter 5. Magnetotelluric measurements across the Cape Fold Belt, RSA

5.3). From the pseudo-sections we are already able to recognize some features and it is clear

that different period indicates resolution in different depth, but they are still in a stage of

“raw” data and hence cannot be interpreted directly. In order to resolve the “true” locations

of these features, appropriate modeling and inversion procedures are needed.

Figure 5.4.: The calculated strike directions using data from all sites and over the entire

period range are displayed in form of a rose diagram. A general strike direction of N76◦W

can be recognized and which represents the regional geologic structure of the east-west

trending CFB, the perpendicular sector in the rose diagram show the 90◦ ambiguity in the

calculated strike direction (Tietze et al., 2007).

Regional strike direction is calculated using the method described by Becken and Burkhardt

(2004) including data from all sites and over the entire period range and displayed in a rose

diagram (figure 5.4). Although the strike direction varies, a general strike direction of N76◦W

can be still recognized and which represents the regional geologic structure of the east-west

trending CFB, the perpendicular sector of N14◦E in the rose diagram show the 90◦ ambiguity

in the calculated strike direction. The distribution of single site strike direction scatters around

the average value and thus indicates the complexity of the underlying structures, e.g. not

purely two-dimensional.
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5.3.2. Isotropic 2D inversion and interpretation

Although a isotropic 2D inversion may not appropriate for the observed effects in the data,

in a first approach we would like to get an idea what can be explained by a 2D isotropic

model. In the process of doing so, I have observed that the standard 2D isotropic inversion

procedure failed to deal with the data, mainly because a considerable amount of data can

not be fitted, especially those with phases greater than 90◦. In order to satisfy the standard

2D isotropic inversion procedure I have to discard this part of data. Figure 5.5 shows the

final data set used for 2D isotropic inversion. Note that data with phases greater than 90◦

are excluded.

Figure 5.5.: Final data set used for 2D isotropic inversion. Data with phases greater than

90◦ are excluded in order to satisfy the standard 2D isotropic inversion procedure.

Isotropic 2D inversion is carried out using the RLM2DI algorithm (Rodi and Mackie, 2001).

Inversion was started from a homogeneous half-space of 100 Ωm with a mesh of 235 horizontal

and 174 vertical cells and using E- and H-polarization data. The regularization parameter τ ,

which controls the trade-off between data misfit and model roughness, was chosen to be 10

after computing a trade-off for different τ values. Error bounds were set to 0.6◦ for the phases

and to 10% for the H-polarization and 100% for the E-polarization apparent resistivities.

The inversion finished by a overall RMS error of 2.24 and the results yield several prominent

conductive and resistive features (figure 5.6, labeled by c1−c5 and r1−r4, respectively).

Resistor r1 is located beneath the Swartberg Mountains and extends to a depth of ∼10 km,
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Figure 5.6.: Results of 2D isotropic inversion: Data fit at individual sites (a) for 2D inversion

model (b). Several very prominent conductivity anomalies, labeled c1−c5 and r1−r4

(Weckmann et al., 2012).

enclosing a thin shallow conductive feature (c5). Flanking the Swartberg Mountains to the

south, a shallow, south-dipping wedge (r2) with resistivities of 5000 Ωm and a thickness of

∼2 km can be observed. A third resistive structure (r3) extends to ∼4 km depth beneath

the Outeniqua Mountains. The most prominent feature in the model section is the high-

conductivity body c1 centered beneath the Oudtshoorn Basin, with resistivity values of less

than 1 Ωm. The well-resolved top of c1 (figure 5.6) lies between 3 km and 4 km below

surface and can be traced along a horizontal distance of ∼40 km. The conductor requires

a minimum thickness of 4∼5 km to fit the data, but the bottoms of conductive structures

are poorly resolved because the corresponding part of data is excluded (see figure 5.5).

Laterally, c1 clearly reaches far beyond the surface expression of the Oudtshoorn Basin,

deepening slightly beneath the Kango inlier to the north. It also extends towards the south

beneath the surface outcrops of open-folded Bokkeveld shales, where it appears to terminate

along a sub-vertical surface that apparently reaches close to Earth’s surface along an inferred

steep fault. Several isolated shallow conductive features (c3, c4) are located in the upper 2

km of the crust. These may represent conductive layers in the Cretaceous sediments of the

Oudtshoorn Basin. Farther south, a conductive feature (c2, ∼10 Ωm) located beneath the

resistive roots of the Outeniqua Mountains at ∼10 km depth appears to connect to shallower

levels at profile kilometer 35.
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Figure 5.7.: Comparison of (a) the geological map from figure 5.2 with the upper 10 km of the

MT resistivity section. Black arrows indicate surface traces of known faults and/or distinct

lithological boundaries that correlate with the location of distinct electrical conductivity

changes (Weckmann et al., 2012).

Visual comparison between the surface geology and the resistivity image reveals some striking

coincidence between lateral variations in electrical conductivity and abrupt changes in the

geology (e.g. black arrows in figure 5.7). The Swartberg Mountains, for example, appear in

the resistivity section as a sub-vertical resistive zone extending to a depth of 10 km with a

shallower wedge of high conductivities (c5 in figure 5.6) that at surface has been mapped as

a syncline of Bokkefeld shales. At surface, the geology of this range comprises almost entirely

a sub-vertical to steeply overturned section of Table Mountain Group (TMG) quartzites. The

Kango inlier appears as a resistive wedge that continues southward to ∼3 km depth beneath

the sediments of the Oudtshoorn Basin that has a stratigraphic thickness of 2∼3 km (Dingle

et al., 1983). The Kango rocks are separated from the Oudtshoorn Basin by the Kango

Fault. The conductivity model images the Kango fault indirectly as an exchange of different

lithologies, and the fault appears to follow a shallow southward dip (< 20◦) that can be

traced down to 2∼3 km. This does not support the Kango Fault being a high angle fault as

part of a transpressional flower structure presented by Tankard et al. (2009), or penetrating

as deep as 10 km (Stankiewicz et al., 2008). The MT data are also not consistent with

a depth extent of the Kango inlier to 8 km as proposed by Tankard et al. (2009). The
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Kango Fault clearly dips less steeply than suggested by Paton (2006). The Oudtshoorn

Basin is imaged with intermediate (∼40 Ωm) resistivities to a depth of 2∼3 km in its center.

This is in excellent agreement with geological observations (Dingle et al., 1983). Both the

Oudtshoorn Basin and the Kango inlier are underlain by a massive zone of high conductivity,

with an upper boundary at 3∼4 km below surface and from there extending down to at least

7 km depth. To explain the high electrical conductivities, electrically conducting material

must be interconnected over large distances. Possible candidates include mineralized phases

such as disseminated sulphides or ore deposits. These are common in the Meso-proterozoic

crystalline basement Namaqualand (Ryan et al., 1986). However, as the depth to crystalline

basement beneath the Oudtshoorn Basin occurs at about 8∼10 km (Stankiewicz et al., 2008),

it remains unlikely that the anomaly occurs in the basement. Alternatively, a thickness of up

to 1 km of Bokkeveld shales and ca. 2 km of Peninsula quartzites can be inferred to exist

directly beneath the Oudtshoorn Basin, calculated from the anticline/syncline structures in

the adjacent Cape Supergroup rock south and east of the basin. The intermediate resistivities

in the section are consistent with those of the Bokkeveld shales at the surface, although these

are likely to be thin (< 1 km) or even absent beneath the Outdshoorn Basin (Dingle et al.,

1983). The observed high-conductivity anomaly therefore most likely lies within the TMG

quartzites, which are known to be fractured and to host major aquifers in the vicinity of

Oudtshoorn (Umvoto Africa, 2005). In that case, highly fractured TMG and possibly Kango

Group quartzites filled with saline fluids could also explain this large, prominent conductive

anomaly. Towards the southern end of this anomaly, a sub-vertical conductor reaching close

to the surface can be observed. Hot springs exist near the village of Warmbad (i.e. warm-

bath, figure 5.7). The shallow patch of high conductivity near the surface could be related

to fluids originating at a depth of ∼1 km, and may be an expression of a fluid pathway

along a sub-vertical fault zone connecting to a larger fluid reservoir at greater depth. The

Outeniqua Mountains appear as a resistive zone reaching a depth of approximately 5 km.

This is in general agreement with structural analyses of Hälbich (1983) that predicts a

regional synform, but not with a proposed flower structure (Tankard et al., 2009). Beneath

the Outeniqua Mountains, a deep (> 8 km) zone of high electrical conductivity (c2) bound

on the north by a sub-vertical structure can be observed that reaches to shallower levels of

approximately 5 km depth. To the south, the Kaaimans Group is expressed by intermediate

conductivities (∼400 Ωm) in the upper 1 km of the crust, underlain by a thin layer of high

electrical conductivities.
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5.3.3. Implication of geo-electrical anisotropy

In previous subsection, it is discovered that a considerable amount of the CFB data can not

be fitted using standard 2D inversion procedure, mainly because their phases are greater

than 90◦. There are two evidence which imply that the large phase anomaly measured in

CFB could caused by electrical anisotropy. First of all, as already discussed in section 3.2.2,

some authors suggest that MT phases out of quadrant can be modeled using a combination

of two oblique anisotropic structures. Based on that I have also successfully reproduced

this phenomenon with similar combination of structures. Secondly, as discussed in previous

section, the prominent conductive feature observed beneath the Oudtshoorn basin in Cape

Fold Belt is most likely related to the highly fractured Table Mountain Group quartzites.

Fractured rocks usually exhibit direction dependency in terms of physical properties due to

their fractured nature. According to that, I will examine the possibility of using electrical

anisotropy to explain the large phase anomaly observed in CFB.

Isotropic 2D inversion results, as displayed in figure 5.6, are used as background models.

For this particular test, I divided the smooth resistivity range into 18 evenly spaced levels

and excluded the topography from the model (see figure 5.8). For a first test, the forward

responses of the background model are calculated for two purposes: 1) to ensure that such

a simplification, e.g. dividing resistivity range into 18 levels, does not change the main

property of the model. 2) to examine that the anisotropic forward procedure is correctly

implemented with a reliable accuracy. The forward responses are highly comparable with

the observed data. As expected, the forward responses do not contain phases greater than

90◦. In the second test, three anisotropic zones are embedded into the background model.

Two of them are located in the sediment basin (the Oudtshoorn basin). The one in the

left has its top at 800 m beneath the surface and extends to a depth of 2 km and it is

anisotropic with ρx, ρy, ρz = 15, 1, 15 Ωm and α, β, γ = 120◦, 0◦, 0◦. The other one in the

right has its top at 500 m beneath the surface and extends to a depth with 1.5 km, it is also

anisotropic with ρx, ρy, ρz = 50, 0.5, 50 Ωm and α, β, γ = 120◦, 0◦, 0◦. For the third zone I

have chosen the prominent conductive feature itself. It is defined also as anisotropic with

ρx, ρy, ρz = 30, 0.3, 30 Ωm and α, β, γ = 30◦, 0◦, 0◦. The model is also displayed as figure

5.10. Its forward responses are displayed in figure 5.11. Compare to the observed data shown

in figure 5.3, one can see a remarkable agreement, especially in H-polarization. Besides

all the features we can also observe phases greater than 90◦ occur in the H-polarization

component, which confirms that the large phases observed in CFB can be explained with

electrical anisotropy.
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Applying the proposed anisotropic inversion method to the CFB data set, I have to face

several serious problems. Firstly, a real world (large scale) problem usually requires a fine

discretization of model domain. This will dramatically increase the number of model pa-

rameters. Currently, the proposed inversion method is based on the Levenberg-Marquardt

scheme, which is a Newton-type method and as a requirement, the sensitivity matrix has

to be explicitly formed and stored for each inversion iteration. For the CFB data set with

a discretized mesh of 235 horizontal and 174 vertical cells, it will produce 245340 model

parameters. If we invert 20 periods for all 52 sites will produce 4160 data points. It means,

for such a problem 15.2 GB memory is required only for storing the sensitivity matrix. It is

impossible to perform such a calculation on a PC. Secondly, as known from previous section,

the proposed inversion method is not able to resolve rotation angles. If any angle is involved

into inversion, only the effective resisitivies can be resolved (see section 4.3.3). This is equiv-

alent to project different anisotropic properties, defined on different coordinates, onto the

basis coordinate on which the model is defined. Since all the effective resistivities are defined

on the same coordinate system after projection, the current flow is not forced to change its

preferred direction and hence no phases out of quadrant can be observed (see section 4.3.5).

However, forward modeling studies with the CFB data have shown that surface electrically

anisotropic zones, or highly conductive heterogeneity in near surface range, in combination

with a mid-crustal electrically anisotropic zone are required to fit the data. In combination

with previous subsection, I may deduce that the current test confirms that the mid-crustal

conductive zone is most likely electrically anisotropy and can be interpreted as deep aquifer

related to the fractured Table Mountain Group rocks in the Cape Fold Belt.

100



Chapter 5. Magnetotelluric measurements across the Cape Fold Belt, RSA

2340 2360 2380 2400 2420 2440 2460
Horizontal Distance [km]

25

20

15

10

5

0

D
e
p
th

 [
km

]

1

10

100

1000

10000

R
e
si

st
iv

it
y
 [
Ω
.m

]

Figure 5.8.: Isotropic 2D inversion results without topography used for anisotropic forward

modeling. The resistivity range is divided into 18 levels, which leads to a rougher model

than the one displayed in figure 5.6, however, its main features remain.
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Figure 5.9.: Forward responses calculated using model described in figure 5.8, which are

comparable to the pseudo-sections displayed in figure 5.3. No phases greater than 90◦

occur.
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Figure 5.10.: Shallow and deep anisotropic zones are embedded into isotropic 2D inversion

results displayed in figure 5.8.
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Figure 5.11.: Forward responses calculated using model described in figure 5.10, which are

comparable to the pseudo-sections displayed in figure 5.3. Phases greater than 90◦ are

observed in H-polarization.
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Discussion and conclusions

The proposed inversion method is applied to the interpretation of magnetotelluric (MT) data

with consideration of electrical anisotropy. The inverse problem in MT represents in general

a non-linear and ill-posed minimization problem with a large number of degrees of freedom

even under the assumption of electrical isotropy. Due to electrical anisotropy a tensorial

conductivity (or resistivity) distribution in Earth model has to be taken into consideration,

which significantly increases the number of degrees of freedom of the inverse problem. In

order to successfully invert for anisotropic conductivities, e.g. be able to identify the direction

dependency of the conductivities, and also to deal with the non-uniqueness of the solution

of the inverse problem it is necessary to use appropriate constraints on the class of allowed

models. To accomplish this task I include constraints on the allowed structure, which is

measured by the gradient or discretized Laplacian of the model, as well as the allowed

anisotropy, measured by the sum of the square difference of the principal conductivity values,

of the model (Pain et al., 2003).

The feasibility of anisotropic electrical inversion is demonstrated using simple two-dimensional

models. Based on the two-dimensional anisotropic MT forward procedures, forward modeling

tests are carried out in order to investigate the limitations of the proposed inversion method.

The reason for doing so is straightforward: features which cannot be discerned by forward

modeling would be unresolved by inversion. The results show that the forward responses

are sensitive to the variations of the principal conductivities defined in horizontal plane while

any changes of principal conductivity defined in vertical direction can not be perceived by

the forward procedure. This is caused by the assumption of a plane wave diffusion required

by magnetotelluric induction and the difficulties to measure the vertical component of the

electric field at the Earth’s surface. Hence, the vertical component of the principal conduc-

tivity is inherently unresolvable. Furthermore, inversion tests are also carried out in order
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to examine performance characteristics of the proposed inversion method. The results show

that the successful inversion for anisotropic conductivity distributions relies heavily on the

application of appropriate constraints. In this thesis I have applied smoothness constraints

and anisotropy constraints to the entire model space. Using this approach well resolved

model parameters and model parameters that are in the null-space of the inverse problem

are both forced to comply with the constraints.

After the objective functional to be minimized is established the major task to ensure a

successful anisotropic inversion is to choose appropriate penalty level (or regularization level),

e.g. the values of different trade-off parameters, at each iteration of the inversion. For classic

2D isotropic inversion, only one trade-off parameter is needed and the task for gauging of

appropriate penalty level becomes searching for the “best” point along a so-called “L-curve”,

defined by a wide range of trade-off parameter and the resulting RMS error, at which a

geologically “reasonable” inversion model is given as well as a relatively low level of the

RMS error is reached. For anisotropic inversion two real valued regularization parameters

are used as trade-off between data misfit, model roughness and anisotropy, evaluation of

appropriate penalty level becomes searching for the “best” point or area on a two-dimensional

curved surface, defined by these two regularization parameters and the resulting RMS error.

Inversion studies with fixed penalty level are carried out for a wide range of each regularization

parameter. The results show that in general the data fit improves while the values of both

regularization parameters decrease (Fig. 4.7). A small value of regularization parameter

means that the corresponding constraint term has less weight in the objective functional

and thus has less influence to the resulting model. Hence, if the values of both trade-off

parameters are chosen to be small, the model roughness and the anisotropy constraints

become less important, the data misfit is dominant and mainly minimized which will lead

to a better data fit. However, using values that are too small for both trade-off parameters

will result in over-fitting of the data and back-projection of data errors into the inversion

model. This phenomenon can be observed as the artificial features created in the resulting

models (Fig. 4.3 to 4.5). When the regularization parameters lie in a range where they are

comparable to the initial data misfit, the behavior of the inversion iterations can be described

in two phases. In the first phase, which includes the first few iterations, large structure are

created and the inversion converges well, while the data misfit falls down to some level where

it is smaller than the constraint terms, the inversion goes into the second phase where the

regularizations are dominant and in this phase only small scale structure is created. This is

an expected behavior. However, using a fixed penalty level usually causes the premature or

the post-mature of the inversion, in other words, the inversion usually finishes with either
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a smooth inversion model and relatively high RMS error or a rough inversion model and

small RMS error. For the first case, the inversion transits too early into the second phase

and for the latter case, the transition happens too later or even there is no second phase

exists. To overcome this problem, I included a relaxation approach on the penalty level.

The basic idea is to start with relatively large values of both regularization parameters, after

each successful inversion iteration the parameters relaxes by a factor of two (see Pain et al.,

2003, Newman and Hoversten, 2000). The use of the relaxation on the penalty level aims to

identify the “optimum” transition of the two phases and achieve the “best” inversion model.

It is anticipated that the “optimum” penalty level are encountered somewhere along the way

of the relaxation and the inversion process can then be terminated. The results indicate that

the inversion with relaxation of penalty parameters produces smooth images and effectively

controls the possible premature or post-mature in the inversion process. However, I would

like to print out that the initial values of the trade-off parameters still have to be chosen with

care. Values that are too small will cause artificial structure in the inversion model, which is

the same effect as observed by using a small but fixed penalty level. In contrast, if the initial

values are chosen too large, the resulting model is smooth but the inversion will converge

significantly slow (Fig. 4.8 to 4.10).

In general, the proposed inversion method is adequate for resolving the principal conductivities

defined in horizontal plane. If the rotation angles (e.g. the Euler angles) are involved in the

inversion, e.g. the anisotropic coordinate axes on which the principal conductivities are

defined do not coincide with the model coordinate axes, only the effective conductivities,

e.g. the values projected from the anisotropic coordinate to the coordinate on which the

model is defined, can be resolved and hence the inverted rotation angles are insignificantly

small (Fig. 4.11 and 4.12). Synthetic inversion tests are also carried out in order to examine

the capability to deal with data set containing phases out of quadrant which is typically

indicative of electrical anisotropy. My tests are based on the forward response of a model

with two anisotropic structures of oblique anisotropy strike directions (see Pek and Verner,

1997, Heise and Pous, 2003, Weckmann et al., 2003). The inversion results show that

the structures which produce the anomalous phases can not be fully reconstructed by the

proposed inversion method. However, a remarkable degree of similarity can be observed from

the true model and the inversion model. The data fit reveals a great agreement in apparent

resistivity, while the same effect can also be observed in phase as long as the phases of “real”

data stay inside the first quadrant. When the phases of “real” data go into the second

quadrant, the phases of the predicted data approximate 90◦ but will never be greater than

it. A possible explanation for this is that the proposed inversion method can only resolve the
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effective conductivities defined on the coordinate on which the model is defined and hence

lose the information about the rotation angles. This is equivalent to a projection of different

anisotropic properties, defined on different coordinates, onto the basis coordinate on which

the model is defined. Since all the effective resistivities are defined on the same coordinate

system after projection, the current flow is not forced to change its preferred direction and

hence no phases out of quadrant can be observed.

Currently, the proposed inversion method is implemented into a numerical finite volume

framework and embedded in the ModEM modeling and inversion software package (Egbert

and Kelbert, 2012). The philosophy behind the ModEM is a generally applicable set of

forward modeling, inversion and auxiliary routines which can be extended by more specific

applications. For minimization I use the Levenberg-Marquardt method and which is based

on the well-known Gauss-Newton method. The sensitivity matrix is defined as the first

derivative of predicted data with respect to model parameters and describes how sensitive

the predicted data are towards a small changes in the model parameters. The calculation

of the sensitivity matrix is the key point for almost all inversion methods, especially for the

Newton type method. In the anisotropic case, the electrical property of each grid cell has to

be defined with a symmetric second-order tensor and for practical reason its representatives

(the principal values and the Euler angles) are used for all numerical calculation instead of

the tensor itself. Hence, the calculation of the sensitivity matrix is not as straightforward as

it in isotropic case. In this thesis, I present an algorithm which is adequate to calculate the

sensitivity matrix for an anisotropic conductivity distribution. As a requirement of Newton

based methods, the sensitivity matrix for each inversion iteration has to be explicit formed

and stored. The storage of the approximated Hessian matrix can be avoided by implementing

of a matrix-vector multiplication procedure. This results in a remarkable memory savings over

the traditional Gauss-Newton approach. Even so the storage of the sensitivity matrix already

makes the implemented procedure inadequate for large-scale problems.

The MT data set taken in the Cape Fold Belt in South Africa exhibits an area (> 10 km)

where MT phases over 90◦. This part of data can not be modeled by standard isotropic

modeling procedure and hence can not be properly interpreted. The proposed inversion

method, however, could not reproduce the anomalous large phases as desired because of

losing the information about rotation angles. MT phases outside the first quadrant are usually

obtained by different anisotropic anomalies with oblique anisotropy strike. In order to achieve

this challenge, the algorithm needs further developments. However, forward modeling studies

with the MT data have shown that surface highly conductive heterogeneities in combination

with a mid-crustal electrically anisotropic zone are required to fit the data. According to
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known geological and tectonic information the mid-crustal zone is interpreted as a deep

aquifer related to the fractured Table Mountain Group rocks in the Cape Fold Belt.

Much works remain to be done to make the procedure practical for realistic data and Earth

models. The improvement of anisotropic inversion algorithm, especially for magnetotelluric

data, should involve the following tasks:

1. Extending the procedure so that the diagonal elements of the impedance tensor and/or

the apparent resistivity and the phase can be fit.

2. Defining and applying “appropriate” constraints to ensure successful inversion.

3. Exploring the range of equivalent results for electrical anisotropy.

4. Developing of the algorithm which is adequate to resolve the Euler angles required by

the diagonalization of the second order conductivity/resistivity tensor.

5. Reducing of computational cost without loss of computational accuracy, e.g. accelera-

tion of computational algorithm (Approximate from of sensitivity, data space inversion)

or parallel computing.

6. 3D anisotropic inversion using appropriate constraints.
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Appendix A.

A.1. Theoretical assumptions for magnetotellurics

In order to derive and solve the induction equation that forms the theoretical basis of mag-

netotellurics, following assumptions are made:

1. All electromagnetic sources are outside the Earth. The natural electromagnetic source

field used in magnetotellurics is generated by large-scale ionospheric current systems.

The origin of these current systems is far away from the Earth’s surface so that the

electromagnetic fields can be treated as uniform, plane-polarized waves impinging on

the Earth at near-vertical incidence. This assumption is the most important one for

magnetotellurics and has first been used by Tikhonov (1950) and Cagniard (1953), its

validity has been discussed by Price (1962) and Madden and Nelson (1963). For elec-

tromagnetic plane waves, the electric field E and the magnetic field B with amplitude

E0 and B0 at the origin and the angular frequency ω have the mathematical form:

E = E0e
iωt (A.1)

B = B0e
iωt (A.2)

2. For Earth materials we can assume the conventional linear relationships between the

electric displacement D and the electric field E, the magnetic induction B and the

magnetic field strength H:

D = ε0εrE (A.3)

B = µ0µrH (A.4)

where ε0 = 8.85·10−12 As/Vm and µ0 = 4π ·10−7 Vs/Am are two universal constants,

called the dielectric permittivity of free space and magnetic permeability of free space,
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εr and µr are the relative dielectric permittivity and the relative magnetic permeability,

respectively. For magnetotellurics, changes in dielectric permittivities and magnetic

permeabilities can be neglected, so equations (A.3) and (A.4) can be simplified to:

D = ε0E (A.5)

B = µ0H (A.6)

3. The Earth acts as an ohmic conductor so that current density J and electric field E

are linearly related through Ohm’s Law by the electrical conductivity σ (in S/m):

J = σE (A.7)

4. Displacement currents ∂D/∂t are assumed to be negligible. Most magnetotelluric

surveys use frequencies between 10, 000 − 0.0001 Hz. Given typical resistivities of the

Earth of 106 − 10−2 Ωm we can compare the terms in equation (2.2),

∂D/∂t

J
=
iωε0

σ
≈ 0.1 − 10−19 (A.8)

For the highest frequencies in extremely resistive areas displacement currents are an

order of magnitude smaller than the current density and we would start to see some

effects from these currents. Typically both the measurement frequencies and the re-

sistivities will be much smaller and we will not see any effect.

A.2. Induction equation in different dimensionalities

A.2.1. Layered half-space: one-dimensional structures

Consider a structure consisting of a number of layers overlying a homogeneous half-space.

We choose a system of orthogonal right-handed Cartesian coordinates (x, y, z) with z pos-

itive downward and the xy-plane with z = 0 coincides with the Earth-Air interface. The

components of the conductivity tensor depend upon depth z in all the layers and are con-

stant in the half-space. In this case the EM-fields in the horizontal xy-plane can be treated

as homogenous which means the partial derivatives of the electric and magnetic fields with

respect to x and y are significantly small and hence negligible comparing with the partial

derivative of the fields with respect to z, i.e., ∂/∂x = ∂/∂y = 0.
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Assuming a part of the structure (one or more of the layers) is anisotropic. The Maxwell’s

equations (2.15) and (2.16) in each of the layers for a frequency ω reduce to:

∂Ex
∂z

= −iωµ0Hy (A.9)

∂Ey
∂z

= iωµ0Hx (A.10)

∂Hy

∂z
= −σxxEx − σxyEy − σxzEz (A.11)

∂Hx

∂z
= σyxEx + σyyEy + σyzEz (A.12)

0 = σzxEx + σzyEy + σzzEz (A.13)

Hz = 0 (A.14)

Equations (A.13) and (A.14) express simply the absence of the vertical magnetic field and

of vertical electric currents anywhere in the anisotropic layered medium. In contrast to that

equation (A.13) also implies the existence of a vertical component of electric field:

Ez = −σzx
σzz

Ex −
σzy
σzz

Ey (A.15)

From equations (A.9) and (A.10) the horizontal magnetic field components can be expressed

as:

Hy = − 1

iωµ0

∂Ex
∂z

(A.16)

Hx =
1

iωµ0

∂Ey
∂z

(A.17)

which implies that the x-component of the magnetic field only depends on the y-component

of the electric field and Hy only depends on the Ex. Unfortunately, this statement is non-

reversible. In fact each of the horizontal components of electric field are dependent on the

both horizontal components of magnetic field and this can be proved as follows:

Substituting (A.15) into (A.11) and (A.12) yields

∂Hy

∂z
= −

(
σxx −

σxzσzx
σzz

)
Ex −

(
σxy −

σxzσzy
σzz

)
Ey

= −AxxEx − AxyEy (A.18)
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and

∂Hx

∂z
=

(
σyx −

σyzσzx
σzz

)
Ex +

(
σyy −

σyzσzy
σzz

)
Ey

= AyxEx + AyyEy (A.19)

in which

Axx = σxx −
σxzσzx
σzz

, Axy = σxy −
σxzσzy
σzz

Ayx = σyx −
σyzσzx
σzz

, Ayy = σyy −
σyzσzy
σzz

with clearly Axy = Ayx for a symmetric conductivity tensor σ. Following (A.18) and (A.19)

the horizontal components of electric field can be expressed as

Ex =
−1

AxxAyy − AxyAyx

(
Axy

∂Hx

∂z
+ Ayy

∂Hy

∂z

)
(A.20)

Ey =
1

AxxAyy − AxyAyx

(
Axx

∂Hx

∂z
+ Ayx

∂Hy

∂z

)
(A.21)

The induction equations in one-dimensional anisotropic structure can be easily derived through

substituting (A.16) into (A.18) and (A.17) into (A.19):

∂2Ex
∂z2

+ iωµ0AxxEx + iωµ0AxyEy = 0 (A.22)

∂2Ey
∂z2

+ iωµ0AyxEx + iωµ0AyyEy = 0 (A.23)

These two equations express the fact that the horizontal components of electric field are

dependent on each other because the existence of electric anisotropy and the induction equa-

tions build a coupled system. Therefore, to solve the forward problem of one-dimensional

structures with electric anisotropy the both induction equations have to be solved simultane-

ously. Furthermore, the MT field in a layered anisotropic medium depends on the elements

of the conductivity tensor solely through the cumulative conductivities Aij, i, j ∈ (x, y).

Whatever the particular form of the conductivity tensor σ, the electromagnetic field does not

change if the elements of the 2 × 2 matrix A remain unchanged. This means the MT field

of a plane wave does not allow us to resolve the full conductivity tensor in a one-dimensional

medium without any additional information (see Pek and Santos, 2002).

133



Appendix A. Appendix

If all the layers including the underlying half-space are isotropic, the conductivity becomes a

scalar value instead of a tensor and the equations (A.11), (A.12) and (A.13) can be further

simplified to:

∂Hy

∂z
= −σEx (A.24)

∂Hx

∂z
= σEy (A.25)

Ez = 0 (A.26)

These equations together with (A.9), (A.10) and (A.14) show that only horizontal field

components exist in one-dimensional isotropic medium and each component of electric field

depends only on the perpendicular component of magnetic field and vice versa. The induction

equations in one-dimensional isotropic structure can be formulated as

∂2Ex
∂z2

+ iωµ0σEx = 0 (A.27)

∂2Ey
∂z2

+ iωµ0σEy = 0 (A.28)

and they are no longer coupled, hence can be solved separately.

A.2.2. Two-dimensional structures

In two-dimensional (2D) structures we consider the conductivity varying in two directions.

Let’s say the y- and z-direction, if the same coordinate system as discussed in previous section

is used. This means the location dependency of EM fields in x-direction is negligible, i.e.,

∂/∂x = 0.

Assuming a 2D structure which contains some anisotropic features. The Maxwell’s equations
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(2.15) and (2.16) for a frequency ω can be reduced to:

∂Ez
∂y
− ∂Ey

∂z
= −iωµ0Hx (A.29)

∂Ex
∂z

= −iωµ0Hy (A.30)

∂Ex
∂y

= iωµ0Hz (A.31)

∂Hz

∂y
− ∂Hy

∂z
= σxxEx + σxyEy + σxzEz (A.32)

∂Hx

∂z
= σyxEx + σyyEy + σyzEz (A.33)

−∂Hx

∂y
= σzxEx + σzyEy + σzzEz (A.34)

These equations show that all components of the EM fields exist and they are coupled with

each other. The y- and z-components of magnetic field can be expressed by use of the

x-component of the electric field. Equation (A.30) and (A.31) yield

Hy = − 1

iωµ0

∂Ex
∂z

(A.35)

Hz =
1

iωµ0

∂Ex
∂y

(A.36)

From equation (A.33) the z-component of the electric field can be stated as:

Ez =
1

σyz

(
∂Hx

∂z
− σyxEx − σyyEy

)
(A.37)

Substituting (A.37) into (A.34) gives

Ey =
σyz
D

∂Hx

∂y
+
σzz
D

∂Hx

∂z
+BEx (A.38)

where

D = σzzσyy − σyzσzy, B = (σzxσyz − σzzσyx)/D (A.39)

Substituting (A.38) into (A.37) yields

Ez = −σyy
D

∂Hx

∂y
− σzy

D

∂Hx

∂z
+ AEx (A.40)
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where

A = (σyxσzy − σyyσzx)/D (A.41)

The induction equations in 2D anisotropic structure can be derived through substituting

(A.35), (A.36), (A.38) and (A.40) into (A.32) and (A.38), (A.40) into (A.29):

∂2Ex
∂y2

+
∂2Ex
∂z2

+ iωµ0(WEx + A
∂Hx

∂y
−B∂Hx

∂z
) = 0 (A.42)

∂

∂y

(
σyy
D

∂Hx

∂y

)
+

∂

∂z

(
σzz
D

∂Hx

∂z

)
+

∂

∂y

(
σyz
D

∂Hx

∂z

)
+ · · ·

+
∂

∂z

(
σyz
D

∂Hx

∂y

)
+ iωµ0Hx −

∂ (AEx)

∂y
+
∂ (BEx)

∂z
= 0 (A.43)

where

W = σxx + σxyB + σxzA (A.44)

A,B and D are defined in equations (A.39) and (A.41).

They express that the x-component of the electric and magnetic field are coupled through

the first partial derivative because the existence of electric anisotropy. Therefore, equations

(A.42) and (A.43) have to be solved simultaneously. The MT field in a two-dimensional

anisotropic medium depends on the elements of the conductivity tensor through 6 cumulative

conductivities, namely σyy/D, σzz/D, σyz/D,A,B and W . Equations (A.39), (A.41) and

(A.44) provide a unique linear transformation between the cumulative conductivities and the

real conductivity tensor elements. In other words the full conductivity tensor is resolvable in

a two- dimensional medium.

If the two-dimensional structure is isotropic, the conductivity becomes a scalar value and the

equations (A.32), (A.33) and (A.34) can be further simplified to:

∂Hz

∂y
− ∂Hy

∂z
= σEx (A.45)

∂Hx

∂z
= σEy (A.46)

−∂Hx

∂y
= σEz (A.47)

The MT problem hence breaks down into two distinct modes, the Transverse Electric (TE)

mode (or E-polarization) and the Transverse Magnetic (TM) mode (or B-polarization).
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E-Polarization

∂Hz

∂y
− ∂Hy

∂z
= σEx

∂Ex
∂z

= −iωµ0Hy

∂Ex
∂y

= iωµ0Hz

B-Polarization

∂Ez
∂y
− ∂Ey

∂z
= −iωµ0Hx

∂Hx

∂z
= σEy

−∂Hx

∂y
= σEz

The equations on the left contain only one horizontal electric field component (Ex) which

oscillates parallel to the conductivity contrast and induced by a magnetic field (Hy) perpen-

dicular to it. This is known as E-polarization and in this mode there does exist a vertical

magnetic field (Hz). On the right hand side the case of B-polarization is described: a

horizontal magnetic field (Hx) oscillates parallel to the conductivity contrast and induces a

electric field (Ey) across the conductivity contrast and a vertical electric field (Ez).

The induction equations in two-dimensional isotropic structure can be formulated as

∂2Ex
∂y2

+
∂2Ex
∂z2

+ iωµ0σEx = 0 (A.48)

∂

∂y

(
1

σ

∂Hx

∂y

)
+

∂

∂z

(
1

σ

∂Hx

∂z

)
+ iωµ0Hx = 0 (A.49)

and can be solved separately.

A.2.3. Three-dimensional structures

In three-dimensional (3D) structures we consider the conductivity varying in all the three

spatial directions. In this case the general form of the Maxwell’s equations, namely the

equations (2.15) and (2.16), has to be considered. The induction equation for general 3D

anisotropic structures is given by taking the curl of equations (2.15) and substituting ∇×H

from equation (2.16):

∇×∇× E− iωµ0σE = 0 (A.50)

If the electrical conductivity is independent of the spatial direction, the conductivity tensor

σ is reduced to scalar value σ.
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A.3. One-dimensional (1D) structure with anisotropic

conductivities

For horizontally layered isotropic media the 1-D magnetotelluric (MT) forward problem can

be solved analytically. The electromagnetic fields and hence the impedances can be calculated

at the boundaries between layers and consequently on the surface. An analytical solution of

this problem is firstly derived by Wait (1954) and discussed in many publications, e.g.Weaver

(1994), Simpson and Bahr (2005) and others. In this work I will not go into detail through

this topic, the interested reader is referred to the publications cited above.

The 1-D MT forward problem for anisotropic layered media is a classical problem that has

been considered in a series of studies, e.g. O’Brien and Morrison (1967), Reddy and Rankin

(1970), Loewenthal and Landisman (1973), Abramovici (1974) and others. Recently, Pek

and Santos (2002) presented a new algorithm, based on early work of Loewenthal et al and

Abramovici, for jointly evaluating the MT impedances and their parametric sensitivities for

1-D layered media with generally anisotropic layers. This algorithm is further discussed by

Li (2000). In the following paragraph, I will briefly summarize the definition of a 1-D MT

model with anisotropic layers, as well as the key steps of the forward problem solution for

that model. For details on particular aspects of the electromagnetic theory for anisotropic

layered media and more detailed mathematical derivation the reader is referred to the previous

chapter and of course the papers mentioned above.

A simple one-dimensional anisotropic layered model consists of N homogeneous horizontal

layers with thicknesses hl, l = 1, . . . , N . The stack of layers is underlain by a homogeneous

conductive halfspace (Fig. A.1). The electrical conductivity in each of the layers, as well as

in the basement, is given by a conductivity tensor σl, l = 1, . . . , N,N + 1.

I adopt the induction equations for 1-D anisotropic structure derived in previous chapter

(Eqs.: A.22 and A.23) as a starting point.

∂2Ex
∂z2

+ iωµ0AxxEx + iωµ0AxyEy = 0 (A.51)

∂2Ey
∂z2

+ iωµ0AyxEx + iωµ0AyyEy = 0 (A.52)

where
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Figure A.1.: Cross-section of a simple one-dimensional anisotropic layered model. Electric

anisotropy is characterized through conductivity tensor σl.

Axx = σxx −
σxzσzx
σzz

, Axy = σxy −
σxzσzy
σzz

Ayx = σyx −
σyzσzx
σzz

, Ayy = σyy −
σyzσzy
σzz

and σij represents an element of conductivity tensor σ.

Equations (A.51) and (A.52) are second-order linear differential equations. To solve both

equations simultaneously two basic solutions can be considered.

Ex = Ce±kz, Ey = De±kz (A.53)

Substituting (A.53) into (A.51) and (A.52) yields:(
k2 + iωµ0Axx

)
C + iωµ0AxyD = 0

iωµ0AyxC +
(
k2 + iωµ0Ayy

)
D = 0

In order to ensure this homogeneous linear equation system has non-trivial solution (in other

words, solution with C,D 6= 0), the determinant of the system coefficient matrix must equal

zero, e.g. ∣∣∣∣∣ k2 + iωµ0Axx iωµ0Axy

iωµ0Ayx k2 + iωµ0Ayy

∣∣∣∣∣ = 0
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which is equivalent to:

k4 + iωµ0 (Axx + Ayy) k
2 − ω2µ2

0 (AxxAyy + AxyAyx) = 0 (A.54)

Equation (A.54) has two solutions and they represent two different wave numbers in quadratic

form

k2
1,2 = −iωµ0

2

[
Axx + Ayy ±

√
(Axx − Ayy)2 + 4AxyAyx

]
(A.55)

Consequently, the horizontal electric field component Ex can be formulated as a sum of 4

particular solutions which related to the wave numbers ±k1 and ±k2, respectively.

Ex = C+ek1z + C−e−k1z +D+ek2z +D−e−k2z (A.56)

where vector C and D contain unspecified constants that scale the amplitudes of two upwards

(C+ and D+) and downwards (C− and D−) diffusing wave modes.

Substituting (A.56) into (A.51) a general solution of Ey can be obtained

Ey = −Q1C
+ek1z −Q1C

−e−k1z −Q2D
+ek2z −Q2D

−e−k2z (A.57)

where

Q1 =
iωµ0Ayx

k2
1 + iωµ0Ayy

, Q2 =
iωµ0Ayx

k2
2 + iωµ0Ayy

Combine (A.9) and (A.10) with (A.55) and (A.56) general solutions of Hx and Hy can also

be obtained

Hx =
1

iωµ0

∂Ey
∂z

= Q1ξ1C
+ek1z −Q1ξ1C

−e−k1z +Q2ξ2D
+ek2z −Q2ξ2D

−e−k2z (A.58)

Hy = − 1

iωµ0

∂Ex
∂z

= ξ1C
+ek1z − ξ1C

−e−k1z + ξ2D
+ek2z − ξ2D

−e−k2z (A.59)

where
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ξ1 = − k1

iωµ0

, ξ2 = − k2

iωµ0

Equations (A.55) to (A.59) form a linear equation system and can be expressed in matrix

format as
Ex

Ey

Hx

Hy


︸ ︷︷ ︸
F (z,ω)

=


ek1z e−k1z ek2z e−k2z

−Q1e
k1z −Q1e

−k1z −Q2e
k2z −Q2e

−k2z

Q1ξ1e
k1z −Q1ξ1e

−k1z Q2ξ2e
k2z −Q2ξ2e

−k2z

ξ1e
k1z −ξ1e

−k1z ξ2e
k2z −ξ2e

−k2z


︸ ︷︷ ︸

M(z,ω)


C+

C−

D+

D−


︸ ︷︷ ︸

X

(A.60)

The vector X contains arbitrary multiplicative constants. Since all the horizontal field com-

ponents are continuous on the layer boundaries, which is ensured by the general continuity

conditions, a connection of two neighboring layers can be hence established,

Fl(zl, ω) = Fl+1(zl, ω) or Ml(zl, ω)Xl = Ml+1(zl, ω)Xl+1 (A.61)

where l = 1, . . . , N . Consequently, the field within the l−th layer can be written in the

form

Fl(zl, ω) = Ml(zl, ω)Xl =
N∏

j=l+1

Mj(zj−1, ω)M−1
j (zj, ω)MN+1(zN , ω)XN+1 (A.62)

Equation (A.62) defines the horizontal field components on arbitrary layer boundaries. Within

one particular layer the vector X remains unchanged and the field distribution hence sorely

depends on the depth z ∈ [zl−1, zl]. Summarize (A.61) and (A.62) the field inside a particular

layer can be computed through

Fl(z, ω) = Ml(z, ω)Xl (A.63)

= Ml(z, ω)M−1
l (zl, ω)

N∏
j=l+1

Mj(zj−1, ω)M−1
j (zj, ω)MN+1(zN , ω)XN+1

The only unknown in equation (A.63 is the vector X related to the homogenous basement

(where z > N + 1). The upwards diffusing wave modes must vanish in homogeneous

basement (where z > N + 1) for energetic reasons, i.e., C+ = D+ = 0, otherwise they

would increase to infinity for z → ∞. Only downwards diffusing wave modes exist in the

basement. Since no electric field exists in Air above the layered Earth model the remained

constants C− and D− can be obtained by using of normalized magnetic field defined on the

Earth/Air interface.
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A.4. Conjugate Gradient (CG) method and the

preconditioned Conjuagte Gradient (PCG)

method

Algorithm 1 A example of Conjugate Gradients algorithm. Given the inputs A,b and a

starting value of x, a maximum number of iterations imax and an error tolerance ε < 1. In

each iteration a conjugate direction d and a approximated solution x are computed.
i = 0

r = b− Ax

d = r

δnew = rT r

δ0 = δnew

while i < imax and δnew > ε2δ0 do

q = Ad

α = δnew

dT q

x = x + αd

r = r− αq

δold = δnew

δnew = rT r

β = δnew

δold

d = r + βd

i = i+ 1

end while
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Algorithm 2 A example of preconditioned Conjugate Gradients algorithm. Given the inputs

A,b and a starting value of x, a preconditioner M (perhaps implicitly defined), a maximum

number of iterations imax and an error tolerance ε < 1. In each iteration a conjugate direction

d and a approximated solution x are computed.
i = 0

r = b− Ax

d = M−1r

δnew = rTd

δ0 = δnew

while i < imax and δnew > ε2δ0 do

q = Ad

α = δnew

dT q

x = x + αd

r = r− αq

s = M−1r

δold = δnew

δnew = rT s

β = δnew

δold

d = s + βd

i = i+ 1

end while
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A.5. Implementation details

A.5.1. Transformations of model parameter

In an anisotropic material the conductivity is represented by a second rank, tensor σ, which is

symmetric and positive definite (for detailed discussion the reader is referred to section 2.2).

At a point (x, y, z) in a Cartesian coordinate system the second-rank conductivity tensor can

be denoted as

σ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (A.64)

The induction equation for 2D anisotropic structure can be derived from Maxwell’s equation

with considering of the conductivity tensor (see also section A.2.2) σ.

∂2Ex
∂y2

+
∂2Ex
∂z2

+ iωµ0

(
π1Ex + π2

∂Hx

∂y
+ π3

∂Hx

∂z

)
= 0 (A.65)

∂

∂y

(
π4
∂Hx

∂y

)
+

∂

∂z

(
π5
∂Hx

∂z

)
+

∂

∂y

(
π6
∂Hx

∂z

)
+

∂

∂z

(
π6
∂Hx

∂y

)
+ iωµ0Hx −

∂ (π2Ex)

∂y
+

∂ (π3Ex)

∂z
= 0 (A.66)

where π = (π1, π2, π3, π4, π5, π6) and denotes cumulative conductivities πj (j ∈ [1, 6]), which

is an algebraic combination of several elements of σ. The explicit expression of each element

of π can be obtained by following equations (A.39) to (A.44). Hence, one can define a

function π = f(σ).

A symmetric and positive definite tensor can always be diagonalised and expressed as three

principal values and three rotation angles (see section 2.2 for detailed discussion). In other

words, the tensor σ can be transformed to

η = (σ1, σ2, σ3, α, β, γ) (A.67)

where σ1,2,3 are the three principal values of the diagonalised tensor and α, β and γ are the

three rotation angles. The transformation can also be defined as a function, which yields

σ = f(η).
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It is obvious that the expression with three principal values and three rotation angles (eq.

A.67) gives an intuitive description of the spatial orientation of the different conductivity

values. The full tensor form (eq. A.64) is the mathematical definition of the anisotropic

conductivity based on a predefined coordinate system and serves as a transition between η

and π. The cumulative conductivity π has no direct physical meaning but it is very convenient

from the numerical point of view to formulate the induction equation in terms of π.

The parametric sensitivity of any MT response function F is defined as its first derivative

with respect to model parameter m. Thus, the i-th element of the sensitivity matrix can be

then derived through

∂F

∂mi

=
∂F

∂ηi
=

6∑
j=1

∂F

∂πj

(
6∑

k=1

∂πj
∂σk

∂σk
∂ηi

)
(A.68)

For the right hand side of equation (A.68), the term left of the brackets depends on physical

nature and numerical discretization and can be computed following the discussion in previous

section. In contrast, the term in brackets is a pure mathematical operator and easy to

calculate. Thus, it is convenient to implement the term in brackets as an independent

subroutine which only need to be invoked once for each inversion iteration after the calculation

of the term left of the brackets is finished.

A.5.2. Model roughness matrix R and the anisotropy matrix K

The matrix R represents the so-called roughness matrix and the product RTR builds the

inverse of model covariance matrix C−1 which is required by the penalty functional to be

minimized and for calculating the model update. Within a discretized model space, the

product of roughness matrix R and model parameter m can be considered as the first deriva-

tive between the adjacent model parameters. For 2D case, the roughness matrix R consists

of two roughening matrices in horizontal y- and vertical z-directions (DeGroot-Hedlin and

Constable, 1990).

R = WRy + Rz = W


1 −1 · · · 0

0 1 −1
...

... · · · . . .
...

0 · · · 0 1

+


−1 · · · 0 1 0 0 · · ·
0 −1 · · · 0 1 0 · · ·

. . . . . .

−1 · · · 1

0

(A.69)
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Suppose the grid consist of a total of N elements, with Ny elements in the horizontal direction

and Nz elements in the vertical direction. Ry, Rz and W are the N × N matrices, where

W containing the ratio of cell dimension in vertical and horizontal direction, e.g. ∆z/∆y,

and 0 is a Ny ×N matrix of zeros. There are Ny − 1 zeros between the entries in the rows

of Rz. Thus, Ry and Rz difference the model parameters between horizontally and vertically

adjacent blocks, respectively.

The matrix K defines the degree of anisotropy in the studied model domain. As already

discussed in previous section, the positive semi-definite matrix K has the form of a discretized

Laplacian and its purpose is to make the principal conductivities equal. A typical form of K

would be

K =

 2 −1 −1

−1 2 −1

−1 −1 2


Therefore, the anisotropy of a particular grid cell k can be expressed as

anisotropy of cell k = (σk1, σk2, σk3)

 2 −1 −1

−1 2 −1

−1 −1 2


 σk1

σk2

σk3


If the grid consists of a total of N elements, the model parameter m is then a vector of

length 6N

m = (· · ·σk1 · · ·︸ ︷︷ ︸
length ofN

, · · ·σk2 · · · , · · ·σk3 · · · , · · ·αk · · · , · · · βk · · · , · · · γk · · · )

Hence, the anisotropy matrix K for all grid cells can be organized in a matrix with dimension

of 6N × 6N

K =



2 0 · · · −1 0 · · · −1 0 · · ·
0 2 0 −1 0 −1
...

. . . . . . . . .

−1 0 2 0 −1

0 −1 0 2 0 −1 0
...

. . . . . . . . .

−1 0 −1 0 2 0

0 −1 0 −1 0 2
...

. . . . . . . . .

0 0
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where 0 is a 3N×3N matrix of zeros. Hence, the anisotropy penalty Φ(m) can be expressed

as mTKm.

A.6. Influence of CG iteration number on inversion

model

When the conjugate gradient method is used to solve the least-squares equation (4.41), the

inversion procedure will involve two levels of iteration, e.g there will be two loops in the

inversion procedure. The outer loop is the iteration of the least-squares equation, while

the inner loop is the iteration of the conjugate gradient procedure that is used to solve for

the approximate model update at each iteration of inversion. The question, how many CG

iterations are required in order to ensure a reliable accuracy of model update at each inversion

iteration, is an issue of contention. Some authors suggest that only few CG iterations are

necessary at each inversion iteration since one must update the model and begin the whole

process again (e.g. Mackie and Madden, 1993b). In this particular test, I found that the

number of desired CG iteration for each inversion iteration is a factor which affects the

appearance of the inversion model and the rate of convergence of the inversion, hence should

be treated with care.

To examine how the maximal allowed CG iteration number will affect the inversion model, I

reuse one of the inversion runs performed in previous subsection. For this inversion test the

structural and the anisotropy penalty parameters are fixed to 1000.0 and 1.0, respectively.

Other inversion settings remain unchanged as described in previous subsection except the

number of CG iteration for each inversion iteration. Three test inversion runs are carried

out with 20, 100 and 200 as the maximal allowed CG iteration number for each inversion

iteration. All three tests are performed with a maximal allowed number of inversion iteration

of 25 and the initial model is a homogeneous isotropic half-space with resistivity of 100 Ωm

and the results are displayed in figures A.2, A.3 and A.4, respectively. Each figure consists of

three panels, in the upper panel the resolved principal resistivities ρx, ρy and ρz are displayed

as image arrays against the inversion iterations, in the middle panel the percentage anisotropy

is shown for all the 25 inversion iterations, in the lower panel the root mean square (RMS)

error is displayed as a function of the number of the inversion iteration. In general, all

the three inversion tests are able to resolve the anomalous structure in the model and the

resolved principal resistivities are all (except the z-component for known reason, see previous

subsection) approximate the real resistivity values of 50 Ωm in x-direction and 10 Ωm in
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y-direction. The anomalous structure shows distinct anisotropy both in the view of principal

resistivities and in the percentage anisotropy. All three inversions converge well, after 25

inversion iterations the RMS error for all three tests are below 5. But one can observe

clear differences if we compare the inversion results. For the first test, where only 20 CG

iterations are allowed for each inversion iteration, the predefined norm of residual with value

of 1.0× 10−5 is never reached and the CG iteration is always terminated when the maximal

allowed number of CG iterations is executed. One can observe that artificial structure started

to create at an early stage (after only 5 inversion iterations) due to rough accuracy of the

solution at each inversion iteration (see figure A.2). In contrast, with a maximal allowed

CG iteration number of 100 and 200 the solutions (the model update) computed at each

inversion iteration are more accurate. No artificial structure is created until the inversion

reached a relatively stable stage, where large-scale structure has been created and the RMS

error falls down to a significantly small level (e.g. 15 inversion iteration; see figures A.3 and

A.4). After 15 inversion iterations only small-scale structure is created and the inversion

procedure starts a “fine tuning”. In this later stage we observe that for the test with 100

CG iterations for each inversion iteration few slight structures are created above the “true”

anomalous structure. For the test with 200 CG iterations for each inversion iteration, more

artificial structures are created both above and below the “true” anomalous structure. This

phenomenon can be explained as following: at the early stage, where the large-scale structure

is created, the round-off error of each inversion iteration is insignificant compares to the model

update, while at the later stage, where only small-scale structure is created, the model update

becomes small and the round-off error becomes comparable to the model update. Since the

CG method is an iterative method and because the solution is small, it will hold that the

more the procedure iterates, the bigger the accumulated round-off error will be. Hence I may

deduce that applying different number of CG iteration does change the inversion model and

set the CG iteration number to 100 seems to be the best choice for this particular test.
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