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Abstract

We investigate properties of quantum mechanical systems in the light of quan-

tum information theory. We put an emphasize on systems with infinite-

dimensional Hilbert spaces, so-called “continuous-variable systems”, which are

needed to describe quantum optics beyond the single photon regime and other

Bosonic quantum systems. We present methods to obtain a description of such

systems from a series of measurements in an efficient manner and demonstrate

the performance in realistic situations by means of numerical simulations. We

consider both unconditional quantum state tomography, which is applicable to

arbitrary systems, and tomography of matrix product states. The latter allows

for the tomography of many-body systems because the necessary number of

measurements scales merely polynomially with the particle number, compared

to an exponential scaling in the generic case. We also present a method to

realize such a tomography scheme for a system of ultra-cold atoms in optical

lattices.

Furthermore, we discuss in detail the possibilities and limitations of using

continuous-variable systems for measurement-based quantum computing. We

will see that the distinction between Gaussian and non-Gaussian quantum

states and measurements plays a crucial role. We also provide an algorithm

to solve the large and interesting class of naturally occurring Hamiltonians,

namely frustration free ones, efficiently and use this insight to obtain a simple

approximation method for slightly frustrated systems. To achieve this goals,

we make use of, among various other techniques, the well developed theory

of matrix product states, tensor networks, semi-definite programming, and

matrix analysis.
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Introduction

The advent of quantum information science brought a new way of looking at

quantum mechanics. A property of particular importance is entanglement. In

a nutshell, a state is entangled if it posses correlations which are not possi-

ble within the rules of classical physics. Entanglement was first viewed as a

strange and rather paradox feature of quantum mechanics [1]. In his seminal

paper, Bell introduced an inequality, later named after him, which sets a limit

to the correlations between two systems possible in local, realistic theories [2].

Quantum mechanics, which is non-local, on the other hand, predicts a viola-

tion of Bell’s inequality. Quantum-optical systems were the first to allow for

an experimental test of this fundamental inequality and to confirm the pre-

diction of quantum mechanics [3]. Even though, over the course of the years,

many loop-holes in the experiments have been closed, Bell’s and related in-

equalities remain of crucial importance in the investigation of the foundations

of quantum mechanics.

Quantum effects as resources for information pro-

cessing

In more recent years, the focus of attention has shifted, and entanglement is

not anymore seen as a mere curiosity but as a resource for protocols of in-

formation processing. One central aim of the field of quantum information

theory is to gain insight into the nature of such resource and to learn how

to use them. One of the most remarkable things made possible by quantum

mechanics is the quantum computer. By making use of the specific features

of quantum mechanics, namely superpositions of states and the already men-

tioned entanglement, it is possible to perform computational tasks efficiently

for which no efficient algorithm running on a classical computer exists. The

most important problem in this class is the task of decomposing numbers into

their prime factors for which Shor provided his famous algorithm [4]. Effi-
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ciency here means that the time required for the computation scales at most

polynomially in the number of digits. The ability to factorize large numbers

would bring oneself into the position of breaking the public-key encryption

ubiquitously used on the internet. However, yet another class of quantum

protocols can be used to perform distribution of secret keys which is secure

even against attackers which have access to a quantum computer. Quantum

cryptography using light as a carrier of information has been demonstrated

over large distances and has been even used in real world applications [5].

Measurement-based quantum computing

In the most common paradigm, often called the circuit model, the working

of a quantum computer is rather similar to the functioning of a classical one:

First, the register, consisting of a number of qubits, is initialized in some stan-

dard state. Second, the computation is performed by applying a section of

single-qubit gates and two-qubit gates, the quantum analogue of gates like

NOT and XOR used in classical computers. Finally, the qubits of the register

are measured. The implementation of the gates requires very precise con-

trol of the qubits and is, therefore, very challenging. However, the technique

of measurement-based quantum computing (MBQC) as pioneered by Briegel

and Raussendorff [6] and further developed by Gross et al. [7,8], allows to cir-

cumvent the necessity of performing gates at all. Instead, the computation is

achieved by first preparing a suitable entangled quantum state, the resource,

followed by a sequence of single-qubit measurements in various bases. The

resource state is universal, i.e., it does not depend on the algorithm one wants

to perform. Only the measurement sequence and bases are determined by the

desired algorithm and input. Therefore, the difficult step, i.e., the preparation

of the resource state can be performed off-line while the actual computation

requires only presumably easier single qubit measurements. In this thesis,

we investigate, among other things, what states are resources for MBQC and

what kind of measurements on those states are needed to perform universal

quantum computing. Not completely unexpectedly, there is a “conservation

of difficulties” at work: If one requires the resource to belong to some class of

states which are easy to prepare, one needs more complicated measurements

while if one allows for more elaborate resource states, simpler measurements

suffice.
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Quantum state tomography

If one wants to use a quantum state to perform some task of information

processing as quantum computing or quantum key distribution, it is highly

desirable to know what state is prepared by the actual experimental apparatus.

To full extend, this question is solved by quantum state tomography which

gives a complete description in the most general setting without any prior

assumption at the expense of needing the measurement of a huge number

of observables and a considerable amount of post-processing. The recently

developed method of compressed sensing (CS) notably reduce the required

number of measurements in the important situations where the state are of low

rank or belong to some particular class like ground states of local Hamiltonians

[9, 10, 12]. We improve those techniques substantially such that they can be

applied in a much larger number situations including quantum optical systems

and ultra-cold atoms in optical lattices.

Physical realizations

Such optical lattices are periodic structures which are produced by superim-

posing counter-propagating laser beams in such a fashion that standing waves

ares formed. Ultra-cold atoms placed in such structures can be used to study

quantum many body physics in a much cleaner and more controllable way

than possible in solid-state systems. They allow to realize quantum phase

transitions and can function as a quantum simulator of other systems which

are inaccessible to direct experimentation [11, 13]. We show how to use ex-

perimentally feasible techniques to perform full quantum state tomography of

ultra-cold Bosons in optical lattices by employing our above mentioned newly

developed theory of compressed sensing. To this aim, we also have a closer

look at the commonly used single band Bose-Hubbard model and investigate

under which conditions it constitutes a valid approximation.

Even though optical lattices have the potential to be used as a scalable

quantum computer, the systems used in most of the experiments demonstrat-

ing quantum information processing so far are optical systems. This is mainly

due to the very weak interaction of photons with the environment keeping

the detrimental effects of decoherence low. Continuous-variable states, i.e.,

quantum states beyond the single photon regime, have desirable features con-

cerning production and detection but their theoretical treatment is slightly

hindered because the respective Hilbert spaces are infinite dimensional. We
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provide methods to perform efficient tomography on such systems, to asses

their applicability as resources for MBQC, and to quantify their non-classical

nature.

The dimension of the Hilbert space of a quantum many-body systems, for

reasons of clarity to be assumed to consist of spins, increases exponentially

with the number of particles which is the reason that their straightforward

treatment by means of exact diagonalization is limited to very small systems.

The quantum states occurring in nature, on the other hand, are often described

by only polynomially many parameters. For example, the ground states of

one-dimensional systems containing only local interactions are, generically,

described by matrix product states with slowly growing bond dimension [14],

a fact we use in Chapter 6 to provide a tomography scheme which requires only

polynomially (in the system size) many measurements. In most situations, this

description even efficient to find. For higher-dimensional systems, the situation

is less clear. However, if a nearest-neighbor Hamiltonian is frustration free, i.e.,

its ground state is also the ground state of all of the contributing interaction

terms, it can be efficiently calculated. In Chapter 7, we provide a method to

do this and show that it can be also used as an approximative method for

systems where the frustration is merely weak.

Structure of the thesis

This cumulative thesis is organized as follows. In the first two chapters, we give

an introduction to the main topics of this work. We explain the experimental

and theoretical aspects of continuous-variable quantum optics and the physics

of ultra-cold atoms in optical lattices. We also provide an introduction to the

paradigm of measurement-based quantum computing (MBQC) including the

derivation of a formalism which allows for the description of almost all MBQC

protocols. After this, we shortly discuss quantum state tomography and give

an overview over various methods while focusing especially on compressed

sensing.

The main part of the thesis is formed by five articles which all are either

already printed in or submitted to peer reviewed journals. We also include two

appendices of unpublished material, one introducing and discussing various

methods to quantify the non-Gaussianity and non-classicality of continuous-

variable quantum states and a second one investigating the validity of the

single-band Bose-Hubbard model which is used to describe ultra-cold Bosons

in optical lattices. We end with a summary and a conclusion of the various
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papers and provide some closing remarks concerning this works as a whole as

well as a short outlook.
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Chapter 1

Quantum systems for

information processing

1.1 Continuous-variable quantum states

The building blocks of classical computers are bits which can be either in the

state “0” or “1”. The most straightforward generalization to the quantum

case are systems with two-dimensional Hilbert space H = C2 which can be

realized, for example, by the polarization degree of freedom of a single photon.

As single photons are difficult to produce, detect, and manipulate, other classes

like Gaussian states have gained interest.

A single light mode is described by a harmonic oscillator with Hilbert

space H = C∞ and energy eigenstates, also called Fock states, |n〉 for n =

0, 1, . . .. The photon creation and annihilation operators â† and â act as

â†|n〉 =
√
n+ 1|n〉 and â|n〉 =

√
n|n− 1〉 while the number operator n̂ = â†â

is diagonal in the Fock basis, i.e., n̂|n〉 = n|n〉. With their help, we can

define the Hermitian position and momentum operators, sometimes also called

quadrature operators,

x̂ =
1√
2

(â+ â†), p̂ =
−i√

2
(â− â†), (1.1)

whose expectation values can be determined by the technique of homodyne

detection which is the quantum optical measurement possessing the highest

achievable accuracy [15].
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1.1.1 Wigner function

A single-mode quantum state ρ ∈ B(H) can be represented by the real Wigner

function depending on two real variables [16]:

Wρ(x, p) =
1

2π

∫ ∞

−∞
dξ exp(−ipξ)〈q +

1

2
ξ|ρ|q − 1

2
ξ〉 (1.2)

which fulfills
∫∞
−∞ dx

∫∞
−∞ dpW (x, p) = 1. The probability densities obtained

when measuring position or momentum operators (1.1) are given by the mar-

ginals of the Wigner function, i.e.,

Px̂(ξ) =

∫ ∞

−∞
dpW (x, p), (1.3)

Pp̂(ξ) =

∫ ∞

−∞
dxW (x, p). (1.4)

Thus, the Wigner function shares features with a probability distribution but

can have regions where it takes negative values. If the Wigner function is

positive everywhere, it constitutes an actual probability distribution and the

measurements of the quadratures are explainable by a classical model. There-

fore, negative Wigner functions are a signature of quantum behavior, and

such states have been produced in experiments which can be certified from

the measurement of x̂ and p̂ [17]. The definition of the Wigner function (1.2)

can be extended to systems consisting of N Bosonic modes yielding a function

depending on the vector q = (x1, p1, , . . . , xN , pN ).

1.1.2 Gaussian states and operations

A class of states of both theoretical and experimental interest is provided by

states for which the corresponding Wigner function is a Gaussian function. For

a state ρ ∈ B(H⊗N ), we define the vector of operators Ô = (x̂1, p̂1, . . . , x̂1, p̂1)

which allows us to get the first moments dj = Tr(Ôjρ) and the covariance

matrix

γj,k = 2<Tr
[
(Ôj − dj)(Ôk − dk)ρ

]
(1.5)

which collects the second moments. Gaussian states are fully determined by

their first and second moments. Gaussian unitary operations, i.e., those map-

ping Gaussian states to Gaussian states are represented on the level of co-

variance matrices as γ 7→ SγST with S ∈ Sp(2N,R), where Sp(2N,R) is

the 2N -dimensional real symplectic group. The corresponding unitary opera-

tions in state space are of the form U = exp(iH(Ô)) where H is a quadratic

polynomial in the quadrature operators or, equivalently, in the creation and
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annihilation operators. As the entanglement properties are independent of the

first moments, we assume all our states to be shifted such that d = 0. The

Gaussian operations fall into two classes: Passive operations do not change the

total mean number of photons and fulfill STS = 1. They can be decomposed

into a number of single mode optical phase shifters with Uφ(−iφâ†â), where

φ is the angle of rotation, and beam splitters which couple two modes by the

operation

Bθ = exp

[
θ

2
(â†1â2 − â†2â1)

]
, (1.6)

where cos(θ/2) is the transmittivity of the beam splitter. In order to be able

to perform any Gaussian unitary, we have to add one active operation, i.e.,

one that changes the mean photon number. This is provided by the single

mode squeezer which can be realized by coupling the mode in question with a

strong laser in a non-linear medium and which transforms the state by

S(ξ) = exp
[r

2
(â2 − â†2)

]
, (1.7)

where r parametrizes the strength of the squeezing. Measurements correspond-

ing to projections on Gaussian states are called Gaussian measurements. Note

that measurements of quadrature operators belong to this class as these states

can be view as displaced, squeezed vacuum states in the limit of infinite squeez-

ing. The covariance matrix of a state after a Gaussian measurement can be

obtained by means of a Schur complement as detailed in Chapter 3.

1.1.3 Limitations of Gaussian states

As N -mode Gaussian states are described by O(N2) parameters, it is intuitive

that they can represent only a tiny fraction of possible states. In Ref. [18],

it has been shown that any protocol which starts with a Gaussian state and

employs only Gaussian unitary operations and Gaussian measurements can be

simulated efficiently, i.e., with polynomial effort in the number of modes N , on

a classical computer. Thus, a quantum computer relying solely on Gaussian

states, operations, and measurements can not allow for an exponential speed-

up.

There are additional tasks which are impossible when restricting oneself

to the Gaussian world with entanglement distillation being one of the most

important ones: Assume two parties, called Alice and Bob, share a number of

weakly entangled two-mode states. A protocol which transforms those states,

not necessary deterministically, to a fewer number of pairs with higher en-

tanglement, is called entanglement distillation. Such protocols are of vital
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importance for distributing entanglement over large distances. Due to the ef-

fect of noise, the entanglement after the transmission of one part of the pair

might be too little for the desired task, e.g. quantum key distribution, and

distillation must be used. Ref. [19–21] showed that this is impossible when

acting with Gaussian operations and measurements on Gaussian states. How-

ever, when the initial states are allowed to be non-Gaussian, the same class of

protocolls indeed allow for distillation [19, 22]. We will see later on in Chap-

ters 3 and 4 that both measurement-based quantum computing with Gaussian

states and arbitrary measurements on one hand and with arbitrary states and

Gaussian measurements is impossible, thus substantially extending the known

no-go results.

1.1.4 Non-Gaussian states

Because quantum information with only Gaussian states and operations suf-

fers from severe limitations, as discussed above, non-Gaussian states recently

became one focus of continuous-variable quantum optics and quantum infor-

mation. One of the easiest way to prepare a non-Gaussian state, though still

quite challenging experimentally, is to subtract a photon from a squeezed vac-

uum [23]. To this aim, one combines a squeezed state with a vacuum mode on

an imbalanced beam splitter and performs a photon counting measurement on

one of the output ports. Success of the protocol is heralded by the detection

of a single photon and the corresponding state reads

|ψθ,ξ〉 ∝ 〈1|1Bθ (S(ξ)|0〉1 ⊗ |0〉2) . (1.8)

In the limit of vanishing reflectivity, i.e., θ → 0, one gets |ψθ,0〉 ∝ â|S(ξ)|0〉.
However, in this limit, also the success probability goes to zero.

Other classes of non-Gaussian states include photon-added thermal states

and squeezed single photons [24,25]. The latter is of particular interest because

it can be used to approximate the Schroedinger cat, or kitten, states which

are a building block of some proposed schemes of quantum computing [26].

1.2 Ultra-cold atoms in optical lattices

The principal drawback of using photons as carriers of quantum information is

their weak interaction with each other. Even though continuous-variable states

allow for the engineering of stronger interaction than states in the single photon

regime, as we see later on, this still motivates to consider systems where the

occurring interactions are stronger. Ultra-cold atoms have this feature. Their
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interaction is short-ranged and by confining the atoms in space, it can be made

considerably strong.

1.2.1 Realization and application of optical lattices

Optical lattices are standing waves created by counter-propagating laser beams.

Due to the Stark effect, ultra-cold atoms, which are brought into this light

field, experience a potential which is proportional to its intensity. Depending

on the sign of the laser’s detuning with respect to the closest transition in the

atom, the potential minimum is either in the minima or the maxima of the

intensity. Assuming the lattice to be translationally invariant and isotropic,

the corresponding effective potential reads

V (r) = V0

D∑

ν=1

sin2(krν), (1.9)

where V0 is called the lattice depth, k the lattice wave number, and D denotes

the number of spatial dimensions. By changing the laser’s intensity, one can

control both the mobility and the effective interaction of the atoms [11], by

using Feshbach resonances, one can also control the atom-atom interaction

strength directly and even change its sign [27]. Those possibilities, unparal-

leled in any condensed matter system, make optical lattices an ideal testbed for

quantum many-body theory for Fermions, Bosons and mixtures of them [28].

In addition to realizing models which are believed to represent systems of

interest occurring in nature, e.g. high-temperature superconductors, optical

lattices are also used to engineer quantum states for information processing

by using super-lattices, i.e., a second laser with a wave-length which is twice as

large, it is possible to periodically vary V0 [29]. This allows to perform quan-

tum gates between neighboring lattice sites and has the potential of preparing

resource states for MBQC.

1.2.2 Bose-Hubbard model

The interaction between spin-polarized, i.e., effectively spinless, ultra-cold

atoms of alkali metals like sodium or potassium, is well approximated by a

contact pseudo-potential. Using the language of second quantization, the to-

tal Hamiltonian can be written as Ĥ = Ĥ0 + ĤI with single particle part

Ĥ0 =

∫
dr Ψ̂†(r)

(
−~2∇2

2m
+ V (r)

)
Ψ̂(r), (1.10)
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and an interaction part

ĤI =
g

2

∫
dr Ψ̂(r)†Ψ̂(r)†Ψ̂(r)Ψ̂(r). (1.11)

where g is the interaction strength which is positive for a repulsive and negative

for an attractive interaction. One can now expand the field operators as

ψ̂(r) =
∑

i

∞∑

n=0

wi,n(r)b̂i,n (1.12)

where [b̂i,n, b̂
†
j,m] = δi,jδn,m and wi,n is the Wannier function of the nth band

(n is an D-dimensional vector) centered around lattice site j. An often made

approximation, whose applicability and accuracy will be discussed in Appendix

B, is to approximate the sum over n in (1.12) by the zeroth term (in this case,

one can omit the band index) and, in addition, neglecting all interactions but

on-site interactions and all hopping processes but those between neighboring

sites. In this limit, one obtains the famous single-band Bose-Hubbard model

[30]

ĤBH = −J
∑

<i,j>

b̂†i b̂j +
∑

i

U

2
n̂i(n̂i − 1) (1.13)

where < i, j > denotes the summation over nearest-neighbor pairs and n̂i =

b̂†i b̂i. The hopping and interaction parameters J and U are determined by

J =−
∫

drw∗i (r)

(
−~2∇2

2m
+ V (r)

)
, (1.14)

U =g

∫
dr |wi|4, (1.15)

where i and j are arbitrary neighboring sites.

Even though the Bose-Hubbard Hamiltonian (1.13) is arguably one of the

simplest non-trivial Bosonic model, its physics is very rich. By changing the

ratio between J and U , which can be done by adjusting the lattice depth V0,

one can realize a quantum phase transition between a delocalized superfluid

(for large J/U) and a localized Mott insulator (for small J/U) which has

been observed in a seminal experiment in 2002 [11]. Due to particle number

conservation, the total atom operator N̂ =
∑

j n̂j commutes with ĤBH and

a super-selection rule present for massive Bosons forbids the superposition

of states belonging to different eigenvalues of N̂ . Therefore, assuming the

Bose-Hubbard model to be a sufficiently accurate description of the system

present in the experiment under question, the Hilbert space for a given total

atom number is finite dimensional, making tomography at least conceivable.
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Furthermore, for a repulsive interaction, there is an energy penalty for too

many atoms being on the same lattice site which allows to truncate the local

Hilbert space at some maximal occupation number nmax while still getting a

good approximation.

The Bose-Hubbard model can be generalized in many directions: Interac-

tions beyond nearest neighbors can result in the formation of exotic phases

like super-solids, using atoms with spin degrees of freedom allows to study

effects of magnetism, and adding Fermions can suppress or enhanced super-

fluidity due to interaction effects [28,31,32]. In Chapter 6, we give a detailed

description how to perform tomography in a, yet to be defined, efficient fash-

ion while in Appendix B, the validity of the single-band approximation in the

Bose-Hubbard model is discussed in detail, especially for the situation where

additional Fermions are present in the system.
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Chapter 2

Important protocols in

quantum information

As already mentioned in the introduction, an important part of quantum infor-

mation theory is to explore how the fundamental effects of quantum mechanics

can be turned into protocols for information processing. One example for such

a protocol, which has the largest practical importance at the present time, is

quantum key distribution where two parties want to agree on a common secret

key without a potential adversary being able to obtain knowledge about this.

This key can then be used to encrypt a message between them. We come back

to the question of key distribution in the appendix and focus on two other

protocols in this chapter: Measurement-based quantum computing which al-

lows for the execution of quantum algorithms without controlled interactions

during the computation and quantum state tomography which deals with the

problem of obtaining an accurate description of a quantum state.

2.1 Measurement-based quantum computing

As already discussed in the introduction, measurement-based quantum com-

puting (MBQC) has the potential to make the construction of a scalable quan-

tum computer notably easier compared to the commonly used circuit model.

The universal resource state discovered first was the cluster state described

by Briegel and Raussendorff [6]. On any graph, such a cluster state can be

prepared by placing a qubit in the state |+〉 = (1/
√

2)(|0〉+ |1〉) on every ver-

tex of the cluster and applying controlled-Z gates, i.e., CZ = diag (1, 1, 1,−1),

to all pairs of vertexes (also called sites), which are connected by an edge

(also called bond). Gross et al. have developed a formalism based on matrix
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product states (MPS), which allows to describe MBQC using this and other

resources. In the present section, we give a very short introduction into the

formalism while in Chapter 4 we provide a way to generalize this formalism

to make it applicable to continuous-variable systems.

We only consider one-dimensional systems, called quantum wires [33],

which are used to process a single qubit and discuss the issue of coupling

those wires to universal resources in later chapters. Consider a system of L

sites with local Hilbert space dimension dp. Assume that to any i = 1, . . . , dp,

a D ×D complex matrix A[i] is associated, and they fulfill the normalization

relation
∑D

i=1A[i]†A[i] = 1. Furthermore, let |L〉, |R〉 ∈ CD be normalized

state vectors describing the boundary conditions. This defines a translation-

ally invariant matrix product state

|Ψ〉 =

dp−1∑

iL,...,i1=0

〈L|A[iL] . . . A[i2]A[i1]|R〉|iLr., . . . , i1〉. (2.1)

We now want to know what happens if we perform a projective measurement

on the first lattice site and obtain a result corresponding to a projection to

the state |ψi〉. Defining B[i] :=
∑dp−1

j=0 〈ψi|j〉A[j], the post-measurement state

reads

|Φ〉 ∝
dp−1∑

iL,...,i2=0

〈L|A[iL] . . . A[i2]B[i1]|R〉|iL, . . . .i2〉, (2.2)

which can be interpreted as an application of B[i1] to the state vector |R〉,
which is often called the correlation system. To turn this insight into a protocol

for single qubit processing, we need three things: First, by a clever choice of

the measurement bases we want to perform, up to arbitrary accuracy, any

single-qubit gate. Second, we need a basis which initializes the correlation

system and third, we need a way to perform some measurement of this, purely

virtual, correlation system.

As the requirements for this to be possible are extensively discussed later

in this thesis, we only give an example for the most transparent case of the

cluster state for which D = dp = 2 and the MPS-matrices read A[0] = |+〉〈0|
and A[1] = |−〉〈1|. Here, we already see that that a measurement in the com-

putational basis leaves the correlation system in the state |+〉 (if the outcome

is “0”) or |−〉 (if the outcome is “1”). Furthermore, if the correlation sys-

tems is, prior to the measurement, in the state |0〉 (|1〉), one always gets the

outcome “0” (“1”). Thus, the second and the third requirement are already

fulfilled. To see that one can perform any single qubit gate, we define for any
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φ ∈ [0, 2π), a basis consisting of

|φ0〉 =
1√
2

(|0〉+ eiφ|1〉), |φ1〉 =
1√
2

(|0〉 − eiφ|1〉). (2.3)

Let H be the Hadamard gate, Z the Z-gate and S(φ) = diag (1, exp(iφ)) be

the phase gate. Then, the matrices corresponding to a measurement in the

basis (2.3) are

Bφ[0] ∝ HS(φ), Bφ[1] ∝ HZS(φ). (2.4)

As H and S(φ) form a universal gate set, any U ∈ U(2) is reachable up to

an irrelevant global phase factor. As one can not control the measurement

outcomes, undesired additional Z-gates, sometimes called by-products, might

occur. However, this can be undone by additional measurements for φ = 0.

The probabilistic nature of quantum measurements results in a varying length

of the computation which is no problem if it is on average still efficient as it

is the case here.

2.2 Quantum state tomography

Quantum state tomography is the task of getting an accurate description of

a quantum state, i.e., the density matrix or, especially when dealing with

continuous-variable systems, the Wigner function. To this aim, one has to

perform measurements, record the frequencies of the various outcomes, and

do some form of post-processing of the obtained data. There are three major

families of tomography protocols: Methods based on direct linear inversion,

maximum likelihood techniques, and ideas based on compressed sensing. We

give a very short introduction while focussing on continuous variable systems

which are most relevant for the present work.

2.2.1 Linear inversion

As discussed above, the Wigner function is a faithful description of the state of

a single harmonic oscillator. Homodyne detection is performed by combining

the mode in question in an interferometer with a strong coherent state, called

the local oscillator, as a phase reference, measure the photon current on both

output ports and subtract them. A parameter θ can be chosen by shifting the

relative phase between the signal mode and the local oscillator. The obtained

probability distribution of the differences is

pθ(x) =

∫ ∞

−∞
dpW (q cos θ − p sin θ, q sin θ + p cos θ). (2.5)
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As detailed in Ref. [15], Eq. (2.5) can be inverted as

W (q, p) =
1

2π2

∫ π

0
dθ

∫ ∞

−∞
dx pθ(x, θ)K(q cos θ + p sin θ − x) (2.6)

where

K(x) =
1

2

∫ ∞

−∞
dξ |ξ| exp(iξx) (2.7)

is the kernel of integration. Unfortunately, K does only exist as a distribution

and not as a proper function. However, it can be regularized and be used to

reconstruct the Wigner function from recorded data.

Any physical quantum state ρ must only posses a finite amount of energy

Emean = Tr(ρn̂). This implies, that the matrix elements of ρ in the Fock basis,

i.e., 〈m|ρ|n〉 must decay to zero for growing m and n. This fact, which is made

quantitative and generalized to the multi-mode case in Chapter 5, allows us

to truncate the Hilbert space at some Fock level N . The matrix elements can

be calculated as

〈m|ρ|n〉 =
1

2π

∫ π

−π
dθ

∫ ∞

−∞
dx pθ(x) = fm,n(x) exp(i(m− n)θ), (2.8)

where fm,n are called pattern functions which are well behaved and can be

calculated by some recursion relation. We also note that, if the Hilbert space

is truncated at N , the integral over the phase angle θ can be replaced by an

average over N + 1 equidistant value of θ.

2.2.2 Maximum likelihood techniques

The probability distributions pθ are never known exactly. First, any exper-

iment suffers from decoherence and other inaccuracies. Second, as one can

only perform a finite number of repetitions of the experiment, there is always

statistical noise present. Therefore, the reconstructed density matrix does, in

general contain negative eigenvalues, rendering it unphysical. Maximum like-

lihood methods, which allow to tackle this problem, are one of the standard

methods of obtaining a probability distribution from samples. The key idea is

to find the probability distribution which maximizes the probability to obtain

the recorded measurement result. We shortly sketch how this idea can be used

to perform continuous-variable quantum state tomography [34].

The probability distribution (2.5) can, for some state ρ, also be written as

pρ(θ, x) ∝ Tr(Π̂θ(x)ρ) where the operator Π̂θ(x) reads in the Fock basis

〈m|Π̂θ(x)|n〉 = ei(m−n)θψm(x)ψn(x), (2.9)
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where ψn is the nth energy eigenfunction of the harmonic oscillator. Assume

that we have taken m measurements in total and observed data points (θi, xi)

for i = 1, . . . ,m. Then, the likelihood, i.e., the probability that ρ produces

the given data points is

L =
∏

i

pρ(θ, x). (2.10)

An iterative method to find the state ρ which maximizes L, or, more accurately,

a finite-dimensional truncation of ρ, is the following: Start with an initial

state ρ(0), e.g. the maximally mixed state. Then apply the iteration ρ(k+1) =

NR(ρ)(k)ρ(k)R(ρ(k)), where

R(ρ) =

m∑

i=1

Π̂(θi, xi)

pρ(θ, x)
(2.11)

and N is chosen such that the state stays normalized. Iterating this procedure,

one converges to the desired result.

2.2.3 Compressed sensing

In many situations where quantum state tomography is performed, the state

in question is not completely arbitrary but close to a state with low rank.

Compressed sensing allows to both reduce the number of measurements needed

to reconstruct the state notably and to make the post-processing much more

efficient [9,10,35,36]. Here, we only present the general idea while developing

a theory of compressed sensing applicable to the most general situation in

Chapter 5.

Let H = Cd. The bounded operators (or Hermitian matrices) acting on H,

denoted by B(H), form a d2 dimensional Hilbert space with the scalar product,

sometimes called the Hilbert-Schmidt scalar product, (A,B) = Tr(AB). This

gives a straightforward method to reconstruct an unknown quantum state

ρ ∈ B(H): Just chose observables {w1, . . . , wd2} being an orthonormal basis of

B and measure the expectation values of all of them to obtain ρ in the basis of

the wi. For a fully general state, one has to determine the expectation value

of d2 − 1 observables. If, on the other hand, rank ρ = r, the state is described

by only (2d− 1)r − 1 real parameters, which is a great reduction if r � d.

However, how to find the lowest rank state compatible with the measure-

ment results and to check whether the reconstruction is unique is highly non-

trivial even though the algorithm of compressed sensing is quite simple: Let

‖ ·‖1 denote the trace-norm, i.e., the sum over all singular values. From the d2

observable in the basis chose m = Crκd log2 d ones, wi1 , . . . , wim uniformly at
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random where C is a constant and the purpose of κ is explained below. Then

measure their expectation values and calculate

σ̂ = argminσ∈B‖σ‖1 subject to (wik , σ) = (wik , ρ)∀k = 1, . . . ,m. (2.12)

This optimization problem can be written as a semi-definite program and,

therefore, be solved efficiently in d. If the observables fulfill a certain incoher-

ence property as provided in Chapter 5, the probability that the reconstruction

fails, i.e., that σ̂ 6= ρ is smaller than 2−κ. This is true for any state ρ. Thus,

compressed sensing allows to reduce the number of necessary measurements

from O(d2) to the almost optimal O(d log2 d). Note that for certain classes of

observables, one can even adapt the algorithm in such a way that it becomes

deterministic [36].

If the mentioned condition is not fulfilled, there are quantum states which

will still need on the order of d2 measurement settings to be reconstructed.

However, as we show in Chapter 5, the described algorithm is useful even in

this case as one can certify its success from the obtained data only. Thus, one

can just try to reconstruct the state from few measurements and just perform

additional measurements when the certification fails.
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I. INTRODUCTION

Optical systems offer a highly promising route to quantum
information processing and quantum computing. The seminal
work in Ref. [1] showed that even with linear optical gate
arrays alone and appropriate photon counting measurements,
efficient linear optical computing is possible. The resource
overhead of this proof-of-principle architecture for quantum
computing was reduced, indeed by orders of magnitude, by
directly making use of the idea of measurement-based quantum
computing with cluster states [2–4]. Such an approach is
appealing for many reasons; the reduction of resource overhead
is one, and the clear-cut distinction between the creation of
entanglement as a resource and its consumption in computation
is another. This idea was further developed into the continuous-
variable (CV) version thereof [5–8], which aims at avoiding
limitations related to efficiencies of creation and detection of
single photons. In this context, Gaussian states play a quite
distinguished role, as they can be created by passive optics,
optical squeezers, and coherent states, i.e., the states produced
by a usual laser [9–13]: Indeed, Gaussian cluster states are a
promising resource for instances of quantum computing with
light. Such a CV scheme allows for deterministic preparation
of resource states, while schemes based on linear optics
with single photons require preparation methods which are
intrinsically probabilistic.

In this work, however, we highlight and flesh out some
limitations of such an approach. We do so to clarify the exact
requirements that any scheme for CV quantum computing
based on Gaussian cluster states eventually will have to
fulfill and what quantum error correction and fault-tolerant
approaches eventually have to deliver. Specifically, we show
that Gaussian local measurements alone will not suffice to
transport quantum information across the lattice, even on
complicated lattices described by an arbitrary graph of finite
dimension: Any influence of local measurements is confined

*jense@qipc.org

to a local region, except from exponentially suppressed
corrections. This can be viewed as an impossibility of
Gaussian error correction in the measurement-based setting.
What is more, even under non-Gaussian measurements, this
obstacle cannot be overcome, to transport or process quantum
information along slabs of a finite width: Any influence of
local measurements will again exponentially decay with the
distance. This observation suggests that—although the initial
state is perfectly known and pure—finite squeezing has to
be tackled with a full machinery of quantum error correction
and fault tolerance [14–16], yet developed for this type of
system and, presumably, giving rise to a massive overhead.
No local measurements or suitable sophisticated encodings of
qubits in finite slabs—reminding, e.g. of encodings of the type
of Ref. [16]—can uplift the initial state to an almost perfect
universal resource. To arrive at this conclusion, in some ways,
we explore ideas of measurement-based computing beyond
the one-way model [2] as introduced in Ref. [17] and further
developed in Refs. [18–22]. We highlight the technical results
as “observations” and discuss implications of these results
in the text. While these findings do not constitute a “no-go”
argument for Gaussian cluster states, they do seem to require a
very challenging prescription for quantum error correction and
further highlight the need to identify alternative schemes for
CV quantum computing, specifically schemes based on non-
Gaussian CV states. Small-scale implementations of Gaussian
cluster-state computing, as we will see, are also not affected
by these limitations.

The structure of this article is as follows: In Sec. III we
discuss the concept of Gaussian projected entangled pair states
(GPEPSs), forming a family of states including the physical
CV Gaussian cluster state. In Sec. IV we discuss the impact
of Gaussian measurements on GPEPSs and show that under
this restriction the localizable entanglement in every GPEPS
decays exponentially with the distance between any two points
on an arbitrary lattice. This also has implications for Gaussian
quantum repeaters, which we investigate in detail. Then we
leave the strictly Gaussian stage in Sec. V and present our
main result, showing that under more general measurements

1050-2947/2010/82(4)/042336(12) 042336-1 ©2010 The American Physical Society
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of GPEPSs, quantum information processing in finite slabs is
still not possible. We discuss requirements for error correction,
before presenting concluding remarks.

II. PRELIMINARIES

A. Gaussian states

Before we turn to measurement-based quantum computing
(MBQC) on CV states, we briefly review some basic elements
of the theory of Gaussian states and operations which are
needed in this article [9–12]. Readers familiar with these
concepts can safely skip this section. Although the statements
made in this work apply to all physical systems described by
quadratures or canonical coordinates, including, for example,
micromechanical oscillators, we have a quantum optical
system in mind and often use language from this field as
well. Any system of N bosonic degrees of freedom, for
example, N light modes, can be described by canonical
coordinates xn = (an + a

†
n)/21/2 and pn = −i(an − a

†
n)/21/2,

n = 1, . . . ,N , where an (a†
n) annihilates (creates) a photon

in the respective mode. When we collect these 2N canonical
coordinates in a vector O = (x1,p1, . . . ,xN ,pN ), we can write
the commutation relations as [Oj,Ok] = iσj,k , where the
symplectic matrix σ is given by

σ =
N⊕

j=1

[
0 1

−1 0

]
. (1)

Gaussian states are fully characterized by their first and second
moments alone. The first moments form a vector d with entries
dj = tr(Ojρ), while the second moments, which capture the
fluctuations, can be collected in a 2N × 2N matrix γ , the
so-called covariance matrix (CM), with entries

γj,k = 2Re tr [ρ(Oj − dj )(Ok − dk)]. (2)

Hence, Gaussian states are complete characterized by d and γ .
Gaussian unitaries, that is, unitary transformations acting in
Hilbert space preserving the Gaussian character of the state
correspond to symplectic transformations on the CM. They
in turn correspond to maps γ �→ Sγ ST with SσST = σ .
The set of such symplectic transformations forms the group
Sp(2N,R). A set of particularly important example Gaussian
states are the coherent states, for which the state vectors read,
in the photon number basis,

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 (3)

and are described by d = √
2(Re α,Im α) and γ = diag(1,1).

Single-mode squeezed states are characterized by lower
fluctuations in one phase-space coordinate. The CM can, in a
suitable basis, then be written as γ = diag(x,1/x) with x �= 0.

B. MBQC on Gaussian cluster states

The first proposal for MBQC on CV states has been
based on so-called Gaussian cluster states and works in
almost-complete analogy to the qubit case [5–8]. As such,
the formulation is based on “infinitely squeezed” and hence
unphysical states using infinite energy in preparation: It can be

created by initializing every mode in the p = 0 “eigenstate” of
p (formally an improper eigenstate of momentum, a concept
that can be made rigorous, for example, in an algebraic
formulation [23]). This is the CV analog to the state vector
|+〉 = (|0〉 + |1〉)/21/2 in the qubit case. Then the operation
eix⊗x , the analog to the CZ gate, is applied between all adjacent
modes. This state allows universal MBQC to be performed
with Gaussian and one non-Gaussian measurement. The state
as such is not physical and not contained in Hilbert space. The
argument, however, is that it should be expected that a finitely
squeezed version inherits essentially the same properties.
Replacing them by finitely squeezed ones, we obtain a state
which we call a physical Gaussian cluster state.

III. GPEPS

Projected entangled pair states or tensor product states
have been used for qubits to generalize matrix product states
or finitely correlated states [24,25] from one-dimensional
(1D) chains to arbitrary graphs [26–28]. One suitable way
to define them is via a valence-bond construction: One
can create a state by placing entangled pairs—constituting
“virtual systems”—on every bond of the lattice and then
applying a suitable projection to a single mode at every
lattice site. These projections, often taken to be equal, together
with the specification of the initial entangled states, then
serve as a description of the resulting state. Matrix product
states for Gaussian states (MPSGs) have been studied to
obtain correlation functions and entanglement scaling in 1D
chains [29].

In this work we focus on GPEPSs which can be obtained
from non–perfectly entangled pairs. The bonds we consider
are two-mode squeezed states (TMSSs), the state vectors of
which have the photon number representation

|ψλ〉 = (1 − λ2)1/2
∞∑

n=0

λn|n,n〉, (4)

where λ ∈ (0,1) is the squeezing parameter. We denote
the corresponding density matrix ρλ. For λ → 1 the state
becomes “maximally entangled,” but this limit is not physical
because it is not normalizable and has infinite energy as
already mentioned. We, therefore, carefully analyze the effects
stemming from the fact that λ < 1. The CM of this state reads

γλ =

⎡
⎢⎢⎢⎣

cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 −sinh(2r)

sinh(2r) 0 cosh(2r) 0

0 −sinh(2r) 0 cosh(2r)

⎤
⎥⎥⎥⎦, (5)

where tanh(r/2) = λ. This number r is also referred to as the
squeezing parameter when there is no risk of mistaking one for
the other. It is also known that any pure bipartite multimode
Gaussian state can be brought into the tensor product of a
TMSS [10,30] by means of local unitary Gaussian operations,
each having a CM in the form of Eq. (5). Then the largest r in
the vector of the resulting TMSS is referred to as its squeezing
parameter.
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(a) (b)

FIG. 1. (Color online) GPEPS on an arbitrary graph, here one
representing a cubic lattice. (a) Connected dots represent two-mode
squeezed states; circles denote vertices where Gaussian projections
are being performed. (b) The resulting GPEPS after local Gaussian
projections have been performed on the virtual systems. Any Gaussian
cluster state can be prepared in this fashion.

We also discuss GPEPSs on general graphs G = (V,E),
as shown in Fig. 1. Vertices G here correspond to physical
systems, and edges E to connections of neighborhood. In
any such graph, d(.,.) is the natural graph-theoretical distance
between two vertices. As we often consider the system of
bonds before the projection operation is performed, we employ
the following notation: We speak of operations on virtual
systems when referring to collective operations on modes
before the projection is applied and often emphasize this
when speaking of a single physical system with Hilbert space
H = L2(R). Note that we also allow for more than one edge
between two vertices in a graph.

When a particular vertex has N adjacent bonds, the
projection map is a Gaussian operation of the form

V : H⊗N → H. (6)

This operation can always be made trace preserving
[9,12,31,32], in quite sharp contrast to the situation in the
finite-dimensional setting. This operation is also referred to as
GPEPS projection. This operation can always be realized by
mixing single-mode squeezed states on a suitably tuned beam
splitter, which means that inline squeezers are not necessary
[33]. Note that any such state can also be used as a variational
state to describe ground states of many-body systems and, by
construction, satisfies an entanglement area law [34].

IV. GAUSSIAN OPERATIONS ON A GPEPS

In this section, we discuss Gaussian operations on a GPEPS
and derive some statements on entanglement swapping, the
localizable entanglement, and the usefulness as a resource for
MBQC. Since all measurements are assumed to be Gaussian
as well, this is, as such, not yet a full statement on universality,
but already shows that the natural operation for transport of
logical information in such a Gaussian cluster state does not
work with such local measurements.

A. Localizable entanglement

The localizable entanglement between two sites A and B in
the graph G = (V,E) is defined by the maximal entanglement
obtainable on average when performing projective measure-
ments at all sites but A and B [35]. When we require both the

initial state and the measurements to be Gaussian [36,37], the
situation is simplified, as the entanglement properties do not
depend on the measurement outcomes [9,12,31,32]. Thus, we
do not need to average, but only to find the best measurement
strategy. To be specific, we measure the entanglement in terms
of the logarithmic negativity, which can be defined as [38–40]

E(ρ) = log2‖ρTA‖1, (7)

where TA denotes the partial transpose with respect to
subsystem A and ‖ · ‖1 the trace-norm, and we use the natural
logarithm. For a TMSS, E coincides with the squeezing
parameter as E(ρλ) = r . It is important to note, however, that
this choice has only been made for notational convenience:
In our statements on asymptotic degradation of entanglement,
any other measure of entanglement would also do, specifically
the entropy of entanglement for pure Gaussian states and the
distillable entanglement or the entanglement cost for mixed
states.

We mostly focus on two variants of the concept of local-
izable entanglement: Whenever we allow only for Gaussian
local measurements, we refer to this quantity as Gaussian
localizable entanglement, abbreviated EG. Then we consider
the situation where we ask for fixed subspaces SA and SB in
the Hilbert spaces associated with sites A and B to become
entangled by means of local measurements. We then refer to
subspace localizable entanglement ES. Both concepts directly
relate to transport in MBQC.

B. Entanglement swapping

The task of localizing entanglement in a PEPS is closely
related to that of entanglement swapping [41]. In this situation
we have three parties, A, B, and C, where both A and B and B

and C share an entangled pair each. Then B, consisting of B1

and B2, is allowed to perform an arbitrary Gaussian operation
on its parts of the two pairs, followed by a measurement. The
task is to choose the operation in such a way that the resulting
entanglement between A and B is maximum.

Lemma 1. Optimality of Gaussian Bell measurement for
entanglement swapping of TMSSs. For two pairs of entangled
TMSSs shared between A and B1 and between B1 and C, the
supremum of maximum achievable negativity between A and
C by a local Gaussian measurement in B1,B2 is approximated
by the measurement that best approximates a Gaussian Bell
measurement.

We consider the situation of having a TMSS (5)

|ψ〉A,B1 = ∣∣ψλ1

〉
A,B1

, |ψ〉B2,C = ∣∣ψλ2

〉
B2,C

(8)

with some λ1,λ2 > 0 and restricting the operation on B to
be Gaussian. Furthermore, we allow for operations which
do not succeed with unit probability. We have to allow for
general local Gaussian operations and, also, for arbitrary local
additional Gaussian resources, with CM γB on mode B3, on
an arbitrary number of modes. The initial CM of the system
hence reads

γ = γλ1 ⊕ γλ2 ⊕ γB3 . (9)

Without loss of generality, one can assume that one performs
a single projection onto a pure Gaussian state on all modes
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referring to B. Ordering modes to A,C,B1,B2,B3, one can
write the CM in block form as

γ =

⎡
⎢⎣

U V 0

V T W 0

0 0 γB3

⎤
⎥⎦, (10)

with U referring to A, C and V referring to B1,B2. When
we project the modes B1, B2, and B3 onto a pure Gaussian
state with CM �, the CM of the resulting state of A and
C, postselected for that outcome, is given by the Schur
complement [9,31,32],

γA,C =
[
U 0

0 0

]
− [V 0]

([
W 0

0 γB3

]
+ �

)−1 [
V T

0

]
.

(11)

Any symplectic operation S applied to B before the measure-
ment can, of course, also just be absorbed into the choice of
the CM �. Writing[

W 0

0 γB3

]
+ � =

[
X Y

YT Z

]
, (12)

one finds that the upper-left principal submatrix of the inverse
can be written as[

X Y

YT Z

]−1 ∣∣∣∣
B1,B2

= (X − YZ−1Y T )−1, (13)

again, in terms of a Schur complement expression. Since γB3 +
iσ � 0 and the same holds for the subblock on B3 of �, these
matrices are clearly positive. Using operator monotonicity of
the inverse function, one finds that

(X − YZ−1Y T )−1 � 0 (14)

holds, since YZ−1Y T � 0. Therefore,

γA,C = γ ′
A,C + P, (15)

with a matrix P � 0. Here γ ′
A,C is the CM following the same

protocol, but where � is replaced by an identical CM, but with
Y = 0. To arrive at such a CM is always possible and still
gives rise to a valid CM by virtue of the pinching inequality.
This is still merely the CM of the Gaussian state, subjected
to additional classically correlated Gaussian noise. In other
words, it is always optimal to treat B3 as an innocent bystander
and not to perform an entangling measurement between B1 and
B2, on the one hand, and B3, on the other hand: quite consistent
with what one could have intuitively assumed. We can hence
focus on the situation where B3 is absent and we merely project
onto a pure Gaussian state in B1 and B2.

It is then easy to see that there is no optimal choice,
but the supremum can be better and better approximated by
considering more and more squeezed TMSSs (or “infinitely
squeezed states” in the first place), that is, on |ψλ〉 in the limit of
λ → 1, which is the CV analog to the Bell state for qudits. This
measurement can be realized by mixing B1 and B2 on a beam
splitter with reflectivity R = 1/2 and performing homodyne
measurement on both modes afterward (i.e., a projection on
an infinitely squeezed single-mode state being an improper
eigenstate of the position operator). From Eqs. (5) and (11)

with � = γλ and performing the limit λ → 1, we can calculate
the CM of the resulting state. It has the form of (5), with

r = f (r1,r2) = 1

2
arcosh

1 + cosh2r1cosh2r2

cosh2r1 + cosh2r2
. (16)

We note that f is symmetric in its arguments and fulfills
f (r1,r2) < min{r1,r2} and limr1→∞ f (r1,r2) = r2. This means
that arbitrarily faithful entanglement swapping is possible
exactly in the limit of infinite entanglement. Otherwise, the
entanglement necessarily deteriorates [41].

To show that this measurement is indeed optimal, we set

� = SγλS
T , (17)

where S ∈ Sp(4,R). Calculating the resulting degree of entan-
glement, a direct and straightforward inspection reveals that
E(ρA,C) can only decrease whenever we choose S �= 1.

C. 1D chain

We now turn to a one-dimensional GPEPS, not allowing
multiple bonds in the valence-bond construction, and are in
the position to show the following observation.

Observation 1. Exponential decay of Gaussian localizable
entanglement in a 1D chain. Let G be a 1D GPEPS, and A

and B two sites. Then

EG(A,B) � c1e
−d(A,B)/ξ1 , (18)

where c1,ξ1 > 0 are constants. The best performance is
reachable by passive optics and homodyning only.

To prove this, we interpret the preparation projection (6) and
the following measurements of the localizable entanglement
protocol as a sequence of instances of entanglement swapping.
Clearly, to allow for general Gaussian projections is more
general than using (i) the specific Gaussian projection of the
PEPS, followed by a (ii) suitable Gaussian projection onto a
single mode; hence every bound shown for this setting will also
give rise to a bound to the actual 1D Gaussian chain. If d(A,B)
is again the graph-theoretical distance between A and B, we
have to swap k = d(A,B) − 1 times. Defining g(r) = f (r,rI ),
where rI is the initial strength of all bonds, and iterating the
argument, we obtain

rA,B = (g◦k)(rI ) = F (k). (19)

As the negativity is up to a simple rescaling equal to this two-
mode squeezing parameter, the only task left is to show that
F (k) decays exponentially. To do this, we need arcosh(x) =
log2[x + (x2 − 1)1/2] and the following relations which hold
for x � 0: cosh(x) � ex/2 and cosh(x) � ex . With the help of
these, we can conclude that

F (k + 1)/F (k) < Q < 1 (20)

for a Q depending only on rI . Thus, F (k) decays exponentially,
which proves Observation 1. Note that to maximize the
entanglement between A and B, we have chosen the supremum
of the maps better and better approximating the projection onto
an infinitely entangled TMSS. Thus, for a specific GPEPS
which is characterized by a fixed map V , the EG is generally
lower.
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FIG. 2. (Color online) The situation referred to in Lemma 2.
The strongest bonds before the projection are r1 and r2. The most
significantly entangled bond has the strength f (r1,r2).

This result has a remarkable consequence for Gaussian
quantum repeater lines: It is not possible to build a 1D quantum
repeater relying on Gaussian states, if only local measurements
and no distillation steps are being used. We show in Sec. V
that even non-Gaussian measurements cannot improve the
performance. If one sticks to the Gaussian setting, also relying
on complex networks does not remedy the exponential decay,
as we see. Of course, non-Gaussian distillation schemes can
be used to realize CV quantum repeater networks.

D. General graphs in arbitrary dimensions

One should suspect that the exponential decay of EG is a
special feature of the 1D situation and that higher dimensional
graphs would eventually allow localization of a constant
amount of entanglement. In this section we show that this
is not the case. We first need a lemma which follows directly
from our discussion of entanglement swapping.

Lemma 2. Collective operations on pure Gaussian states.
Let ρA,B1 be a pure Gaussian state on H⊗2n of n modes, and
ρB2,C a pure Gaussian H⊗2m state, where one part of each
is held by A, B, and C, respectively (see Fig. 2). Let the
maximum two-mode squeezing parameter be r1 between A

and B and r2 between B and C. Then the maximum two-mode
squeezing parameter achievable with a Gaussian projection in
B between A and C is f (r1,r2).

To prove this, we again use the fact that any two-party
multimode pure Gaussian state can be transformed by local
unitary Gaussian operations on both parties into a product of
the TMSS [10,30]. This is nothing but the Gaussian version of
the Schmidt decomposition. It hence does not restrict generality
to start from this situation. As already noted, the best strategy
for entanglement swapping between two pairs is a Gaussian
Bell measurement, where the squeezing parameter changes
according to f .

We now allow for global Gaussian operations on all
subsystems belonging to B. We relax this situation to the
following, where we allow for even more general operations:
namely, a local Gaussian operation onto all modes of B, as
well as onto all modes of A and C that are not the two modes
that share the largest r . Clearly, this is a more general map than
is actually considered in the physical situation. This, however,
is exactly the situation already considered: an entanglement
swapping scheme with an unentangled bystander. Hence, we
again find that to project each pair onto a two-mode pure
Gaussian state is optimal. For that, the sequence of projections
better and better approximating an infinitely squeezed TMSS
gives rise to the supremum. Hence, we have shown the

FIG. 3. (Color online) Partitioning of the graph according to the
shortest path as described in the text. Sites drawn as squares are the
those which lie on the shortest path connecting A and B.

preceding result. Now we can prove a central result of this
work.

Observation 2. Exponential decay of Gaussian localizable
entanglement of a GPEPS in a general graph. Consider a
GPEPS in a general graph with finite dimension and let A and
B be two vertices of this graph. Then there exist constants
c2,ξ2 > 0 such that

EG(A,B) � c2e
−d(A,B)/ξ2 . (21)

We take the shortest path between A and B—achieving
the graph-theoretical distance d(A,B)—and denote its vertices
A,v1, . . . ,vd(A,B)−1,B. We partition the graph in such a way
that the boundaries do not intersect or touch each other and
every vertex on the shortest path from A and B is contained
in one region, which is called Rv (see Fig. 3). Again, we
consider the situation of having TMSSs distributed in the graph
between vertices sharing an edge—a general local Gaussian
measurement on a GPEPS—so the GPEPS projection, now on
several modes, followed by a specific single-mode Gaussian
measurement, can only be less general than a general collective
Gaussian measurement; thus, we again arrive at a bound to the
localizable entanglement in the GPEPS.

Now we face exactly the situation to which Lemma 2
applies. In fact, in each step in each of the parts A, B, and
C, we will have a collection of TMSSs, shared across the cut
of the three regions. If rAv1 is the strongest bond, in terms of the
two-mode squeezing parameter, between RA and Rv1 , and rv1v2

is the strongest bond between Rv1 and Rv2 , then the strongest
bond between RA and Rv2 is given according to Lemma 2
by f (rAv1 ,rAv2 ). Now we can proceed exactly as in the proof
of Theorem 1—and again, any uncorrelated bystanders will
not help to improve the degree of entanglement—and thus
show Theorem 2. This again has a consequence for quantum
repeaters: Even when an arbitrary number of parties can share
arbitrary many Gaussian entangled bonds, it is not possible
to teleport quantum information over an arbitrary distance, as
shown here.

In fact, using this statement, one can show that any impact
of measurements in terms of a measurable signal is confined
to a finite region in the graph, with I now being a subset
of the graph, except from exponentially suppressed correc-
tions. This region could be a poly-sized region in which
the input to the computation is encoded. The readout of the
quantum computation is then estimated from measurements
in some region O, giving rise to a bit that is the result of
the original decision problem to be solved by the quantum
computation. From the decay of localizable entanglement,
it is not difficult to show that the probability distribution
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FIG. 4. (Color online) Exponential decay of any influence of any
measurements in region I on statistics of measurement outcomes
in region O in the graph-theoretical distance d(I,O) between the
regions.

of this bit is unchanged by measurements in I , except
from corrections that are exponentially decaying with d(I,O)
(see Fig. 4).

Note that concerning small-scale “proof-of-principle” ap-
plications, the arguments presented do not impose a funda-
mental restriction, as they apply only to the situation where
entanglement distribution over an arbitrary number of modes
(or repeater stations) is required. For any finite distance
d(A,B) and required entanglement E(A,B), there exists a
finite minimal squeezing λmin which allows performance of the
task. Only asymptotically will one necessarily encounter this
situation. The result can equally be viewed as the impossibility
of Gaussian quantum error correction in a measurement-based
setting, complementing the results in Ref. [42].

E. Remarks on Gaussian repeater networks

These results of course also apply to general quantum
repeater networks, where the aim is to end up with a highly
entangled pair between any two points in the repeater network
(see, e.g., Ref. [43] for a qubit version thereof). That is, in
Gaussian repeater networks, one will also need non-Gaussian
operations to make the network work, quite consistent with
the findings in Refs. [9,31,32].

F. MBQC

The impossibility of encountering a localizable entangle-
ment that is not exponentially decaying directly leads to a
statement on the impossibility of using a GPEPS as a quantum
wire. Such a wire should be able to perform the following
task [17]: Assume that a single mode holds an unknown qubit
in an arbitrary encoding; that is,

|φin〉 = α|0L〉 + β|1L〉. (22)

This system is then coupled to a defined site A, the first site of
the wire, of a GPEPS by a fixed in-coupling unitary operation
which can in general be non-Gaussian. To complete the
in-coupling operation, the input mode is measured in an
arbitrary basis, where we also allow for probabilistic protocols;
that is, the operation does not have to succeed for all
measurement outcomes. Then one performs local Gaussian
measurements on each of the modes. Then, at the end, one

expects the mode at a single site B to be in the state
vector |φout〉 = U |φin〉 (or at least arbitrarily close in trace
norm) for any chosen U ∈ SU(2). Note that the length of
the computation, and therefore the position of output mode
B, may vary and that the computational subspace can be
left during the measurement. We want to stress that it is also
possible to consider quantum wires which process qudits or
even CV quantum information, where even on the logical level,
information is encoded continuously. However, the capability
of processing a qubit is clearly the weakest requirement.
Thus, we address this situation only because the corresponding
statements for other quantum wires immediately follow. With
this clarification we can state the following lemma.

Observation 3. Impossibility of using Gaussian operations
on arbitrary GPEPSs in general graphs for quantum wires. No
GPEPS on any graph together with Gaussian measurements
can serve as a perfect quantum wire for even a single qubit.

This is obvious from the previous considerations, as
the measurements for the localizable entanglement and the
incoupling operation commute, and clearly, the procedure is
especially not possible for U = 1. The same argument, of
course, also holds true in general graphs: No wire can be
constructed from local Gaussian measurements in this sense,
again for an exponential decay of the localizable entanglement.
This observation is related to the decay of fidelity when
performing CV quantum teleportation with squeezed vacuum
states, as discussed in Ref. [44]. As mentioned, this statement
can also be refined to having up to exponential corrections of
finite-influence regions altogether.

V. NON-GAUSSIAN OPERATIONS

We now turn to our second main result, namely, that—
under rather general assumptions which we detail below—
Gaussian states defined on slabs of a finite width cannot be
used as perfect primitives for resources for MBQC, even if
non-Gaussian measurements are allowed for: Any influence
of local measurements will again exponentially decay with
distance.

More specifically, we first show that a 1D GPEPS cannot
constitute a quantum wire in the sense of the definition in
Sec. IV F extended to arbitrary measurements. This already
covers all kinds of sophisticated encodings that can be carried
by a single quantum wire, including ideas of “encoding qubits
in oscillators” [16]. We then discuss the situation where an
entire cubic slab of constant width is being used to encode
a single quantum logical degree of freedom and find that
the fidelity of transport will still decay exponentially. Not
even using many modes and coupled quantum wires, possibly
employing ideas of distillation, can this obstacle be overcome
with local measurements alone. That is, we show that Gaussian
states cannot be uplifted to serve as perfect universal resource
states by measurements on finite slabs alone: Frankly, the finite
squeezing present in the initial resources—although the state
is pure and known—must be treated as a faulty state, and
some full machinery of fault tolerance [14,15], which has yet
to be developed for this kind of system, necessarily has to
be applied even in the absence of errors. This contrasts quite
severely with other limitations known for Gaussian quantum
states. For example, while the distillation of entanglement is
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(a)

(b)

FIG. 5. (Color online) (a) Sequential preparation of a GMPS
state: Each line represents a mode of a unitary tensor network,
whereas each box stands for a Gaussian unitary. For a suitable choice
of Gaussian unitaries, the resulting state is a Gaussian cluster state
being prepared in the valence-bond construction (b).

not possible using Gaussian operations alone, non-Gaussian
operations help to accomplish this task [45].

A. Sequential preparation of 1D Gaussian quantum wires

To make the statement, we first have to introduce another
equivalent way of defining a GPEPS— or, specifically, a
GMPS—in one dimension: It is easy to see that a GMPS
with state vector |ψ〉 of N modes can be prepared as

|ψ〉 = 〈ω|N+1

N∏
j=1

U (j,j+1)|0〉⊗(N+1), (23)

with identical Gaussian unitaries U (j,j+1) supported on modes
j,j + 1, depicted as gray bars in Fig. 5. This follows
immediately from the original construction in Ref. [24] (see
also Ref. [25]), translated into the Gaussian setting. A detailed
study of sequentially preparable infinite-dimensional quantum
systems with an infinite or finite bond dimension will be
presented elsewhere.

B. Impossibility of transport by non-Gaussian measurements
in one dimension: General considerations

We start by stating the main observation here: Frankly, even
under general non-Gaussian measurements, transport along
a 1D chain is not possible. We refer to the notions of both
localizable entanglement and the probability of transport:
This is the average maximum probability of recovering an
unknown input state in a fixed subspace S of dimension at least
dim(S) � 2 which has been transported through the wire:
Specifically, one asks for the maximum average success
probability of a positive operator-valued measure applied to
the output of the wire that leads to the identity channel up
to a constant, where the average is taken with respect to
all possible outcomes when performing local measurements
transporting along the wire. We see that this probability decays
exponentially with the distance between the input and the
output site.

This decay follows regardless of the encoding chosen.
Note that by no means do we require logical information
to be contained in a certain fixed logical subspace along the

computation: Only in the first and last steps—when initially
encoding quantum information or coupling to another logical
qubit—do we ask for a fixed subspace. This logical subspace is
even allowed to stochastically fluctuate along the computation
dependent on measurement outcomes that are obtained in
earlier steps of the computation.

Observation 4. Impossibility of using Gaussian 1D chains
as quantum wires under general measurements. Let G be a
one-dimensional GPEPS. Let S be either S = H or a subspace
thereof. Then the probability of transport between any two
sites A and B of the wire satisfies

p � c3e
−d(A,B)/ξ3 (24)

for suitable constants c3,ξ3 > 0. This implies that for any
subsets of sites EA and EB and for fixed local subspaces,
the entanglement between EA and EB that can be achieved
by arbitrary local measurements of all sites except those
contained in EA and EB is necessarily exponentially decay-
ing in d(EA,EB). This also means that, for any two sites
A and B,

ES(A,B) � c4e
−d(A,B)/ξ3 (25)

for some c4 > 0 are constants, even if arbitrary local measure-
ments are taken into account.

We now proceed in two steps. First, it is shown that there
exists no subspace S ∈ H of dimension at least dim(S) � 2
such that Vj can be chosen to be unitary, for all j for which
pj > 0 and

〈ηj |U |ψ〉|0〉 = p
1/2
j Vj |ψ〉 (26)

for all |ψ〉 ∈ S, where all U is the Gaussian unitary of the
sequential preparation in Eq. (23), where the index of the
mode, and also any label of tensor factors, is suppressed (see
Fig. 6). {|ηj 〉} is an orthonormal basis of H, with j labeling
the respective outcome of the local measurement, possibly a
continuous function. Because the computational subspace S is
allowed to vary during the processing but must be invariant for
the computation as a whole, we have to consider all N steps
in the sequential preparation and all measurements together.
For reasons of simplicity, we present the argument for a wire
consisting of just two sites first and extend it afterward. We

(a) (b)

FIG. 6. (Color online) (a) Network representing a single step of a
sequential preparation of a GMPS; (b) tensor network representation
of 〈ψ |〈0|U †(1 ⊗ |0〉〈0|)U |0〉|ψ〉.
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define the operator

M = U †(1 ⊗ |0〉〈0|)U (27)

and formulate the subsequent lemma.
Lemma 3. Conditions for nondecaying transport fidelity. A

necessary condition for Eq. (26) to be satisfied is that

〈ψ |〈ηj |M|ψ〉|ηj 〉 = pj (28)

for all j and all |ψ〉 ∈ S, with
∑

j pj = 1 and {|ηj 〉} forming
a complete orthonormal basis of H.

To see this, note that the fact that Eq. (26) holds true for
each j for any |ψ〉 ∈ S means that

PS〈ηj |U |0〉PS = p
1/2
j PS, (29)

where PS denotes the projection onto S. Using completeness
of {|ηj 〉}, ∑

j

|ηj 〉〈ηj | = 1. (30)

A moment of thought reveals that for any |φ〉 ∈ S⊥, the latter
denoting the orthogonal complement of S, one has that

PS〈ηj |U |φ〉|0〉 = 0. (31)

What is more,

〈φ|〈ηj |U |0〉PS = 0, (32)

again, for all |φ〉 ∈ S⊥. This further means that (see Fig. 6)

〈ψ |〈ηj |U †(1 ⊗ |0〉〈0|)U |ψ〉|ηj 〉 = 〈ψ |〈ηj |M|ψ〉|ηj 〉 = pj ,

(33)

which proves Lemma 3. Now summing over all measurement
outcomes j in Eq. (33), which is the same as performing the
partial trace (see Fig. 6) with respect to the second mode, we
obtain

〈ψ |tr2(U †(1 ⊗ |0〉〈0|)U)|ψ〉 = 1, (34)

which in turn implies, together with the preceding, that

PS tr2[U †(1 ⊗ |0〉〈0|)U ]PS = PS. (35)

But this in turn means that the Gaussian operator tr2[U †(1 ⊗
|0〉〈0|)U ] has at least two spectral values that are identical.
Now it is only possible for a Gaussian operator to have two
equal, nonzero spectral values if the spectrum is flat and
corresponds to an operator that is not of trace class (related to
“infinite squeezing” and “infinite energy,” which was excluded
due to the restriction to proper quantum states with finite
energy).

We now extend the argument to a wire of arbitrary length.
Toward this aim we denote the measurement basis on the
kth site {|η(k)

j 〉} and the corresponding probabilities p
(k)
j .

Definition (27) is generalized to

M = [U †(1 ⊗ |0〉)]N [(〈0| ⊗ 1)U ]N. (36)

Condition (26) becomes(⊗k

〈
η

(k)
j

∣∣)U⊗N |ψ〉|0〉⊗N =
∏
k

(
p

(k)
j

)1/2
V

(k)
j |ψ〉, (37)

where
∏

k V
(k)
j is unitary for all sequences of measurement

outcomes and, furthermore, acts trivially on S⊥. Modifying
also Eqs. (32), (33), and (35) in a similar manner and using
the completeness of the N measurement bases {|η(k)

j 〉}, we
find that for Eq. (37) to hold, the Gaussian operator O =
trN (M), where trN denotes the N -fold partial trace (or suitable
tensor contraction), has two equal spectral values, which is not
possible, as already mentioned, and thus, the first step in the
proof is complete.

C. Impossibility of transport by non-Gaussian measurements
in one dimension: Proving a gap

In the second step we now show that Observation 4 holds
if Eq. (26) is not fulfilled. The problem of recovering an
unknown state after propagation through the wire is equivalent
to that of undoing a nonunitary operation. Obviously, it is
a fundamental feature of quantum mechanics that it is not
possible to implement a nonunitary linear transformation in a
deterministic fashion. Since one does not have to correct for
a nonunitary operation in each step, however, the technicality
of the argument is related to the fact that we only have to undo
an entire sequence of nonunitary Kraus operators once.

Assume that we aim to use our wire for the transport of
a single pure qubit. After N steps of transport it will still be
pure but, in general, distorted, due to the application of some
nonunitary operator

VJ = V
(N)
jN

· · ·V (1)
j1

, (38)

where J = (j1, . . . ,jN ) is an index reflecting the entire
sequence of measurement outcomes on the N lattice sites.
To recover the initial state, one has to apply an XJ such that

XJ VJ = cJ1, (39)

with cj ∈ C. The success probability of this recovery opera-
tion, averaged over all measurement outcomes, is nothing but
the probability of transport. It will decay exponentially in N

whenever, for any k, at least a single V
(k)
jk

is not unitary. The
maximal average probability to undo random sequence VJ of
Kraus operators is found to be

pN = max tr(XJ VJ ρV
†
J X

†
J ), (40)

subject to

X
†
J XJ = 1, (41)

XJ VJ = cJ1. (42)

A moment of thought reveals that this probability of transport
is then found to be

pN =
∑

J

λ1[(V †
J VJ )−1]−1 =

∑
J

λn(V †
J VJ ), (43)

where λ1 (λn) denotes the largest (smallest) eigenvalue.
To show that Observation 4 is true if Vk is not proportional

to a unitary matrix for at least one k can be shown by induction.
Denoting, again, the operators applied by the measurements
of the first N sites by VJ and the corresponding operators for
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site N + 1 by {Wj }, we get from Eq. (43) that

pN+1 =
∑
J,j

λn(V †
J W

†
j WjVJ ). (44)

Before we proceed, we note that it is possible to assume that all
Wj and Vj are effective 2 × 2 matrices, corresponding to the
situation where the computational subspace S does not change.
If this is not the case, one can account for the fluctuation of
the computational subspace by replacing Vj �→ UjVj (and
performing an analogous replacement for Wj ) with a suitable
unitary Uj . All arguments that follow do not depend on the
choice of this unitary Uj . Key to the exponential decay is a
lemma that is proven in the Appendix.

Lemma 4. Bound to eigenvalues of the sum of 2 × 2
matrices. For any positive A,B ∈ C2×2 with [A,B] �= 0, there
exists a δ > 0 such that

λ2(A + B) � λ2(A) + λ2(B) + δ. (45)

If there exists at least one pair (i,j ) for which

[W †
i Wi,W

†
j Wj ] �= 0, (46)

then also

[V †
J W

†
i WiVJ ,V

†
J W

†
j WjVJ ] �= 0, (47)

and we can apply Lemma 4 directly to Eq. (44). If, in contrast,

[W †
i Wi,W

†
j Wj ] = 0 (48)

for all pairs (i,j ), all W
†
i Wi can be simultaneously diagonal-

ized. This means that we can—without loss of generality—
assume that

W
†
i Wi = diag(ξi,ζi). (49)

Because a nonunitary Wi exists by assumption, min{|ξi − ζi | :
i = 1,2} > 0. In both cases we are provided with a ν < 1
such that

pN+1 � ν
∑

J

λ2(V †
J VJ ) = νpN, (50)

where we have used the completeness relation∑
j

W
†
j Wj = 1. (51)

This observation gives rise to the anticipated gap that proves
the exponential decay of the probability of transport and,
therefore, to Observation 4. The exponential decay of the
subspace localizable entanglement follows directly: If there
was a nondecaying localizable entanglement, this could be
used to transport with a high recovery probability, in contrast
to what we have shown. If this were not the case, one could
use the wire to distribute entanglement, which is obviously not
possible.

D. Impossibility of transport by non-Gaussian measurements
in one dimension: Concluding remarks

Note, finally, that even though we have presented Ob-
servation 4 for local projective measurements—which suits
the paradigm of measurement-based computing—the ar-
gument obviously holds true for positive operator-valued

measurements. The proof is completely analogous, with∑
j |ηj 〉〈ηj | = 1 being replaced by a more general resolution

of the identity.
This argument shows that 1D GPEPSs cannot be used as

quantum wires even when allowing for arbitrary non-Gaussian
local measurements. Note that for this argument to hold,
completeness of the measurement bases are indeed necessary:
For single outcomes, the condition of the output being up
to a constant unitarily equivalent to the input can well be
achieved also for matrices having a different structure; but then
one cannot assure that this is true for each outcome j of the
measurement. This, however, is required to faithfully transport
quantum information. If we allow for a finite rate of failure
outcomes j in individual steps, then the overall probability of
success will asymptotically again become 0 at an exponential
rate.

E. Gaussian cluster states under arbitrary encodings
and in higher dimensional lattices

One might wonder whether this limitation can be overcome
if a large number of physical modes of a higher dimensional
lattice are allowed to carry logical information. The same
argument, actually, can be applied to a k × k × · · · × k × n

cubic slab, as a subset of a D-dimensional cubic lattice, where
one aims at transporting along the last dimension, with local
measurements at each site (Fig. 7). In fact, contracting any
dimension except from the last—so summing over all joint
indices—one arrives at a GMPS with a bond dimension that
is exponential in k. This, however, is a constant. This situation
is hence again covered by a GMPS, as long as one allows
for more than one physical mode and more than one virtual
mode per site. Since the argument in Sec. V B does not make
use of the fact that we have only a single virtual and physical
mode per site: only that now |0〉⊗(k(D−1)) are being fed into the
sequential preparation.

Observation 5. Exponential decay of subspace localizable
entanglement in a higher dimensional lattice. Let G be a one-
dimensional GPEPS, and A and B two sites in a k × k × · · · ×
k × n slab as a subset of a D-dimensional cubic lattice, and
denote by i,j the last coordinate of sites A and B. Then

ES(A,B) � c4e
−d(i,j )/ξ4 , (52)

where c4,ξ4 > 0 are constants, even if arbitrary local measure-
ments are taken into account.

So even encodings in higher dimensional Gaussian cluster
states do not alter the situation that one cannot transport along

FIG. 7. (Color online) A slab of a k × n lattice, aiming at using
the second dimension as a quantum wire for quantum computation.
Again, the probability of transport between A and B decays
exponentially with the distance along the last dimension.
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a given dimension, if one wants to think of such slabs as perfect
primitives being used in a universal quantum computing
scheme.

F. Role of error correction and fault tolerance

Observations 2 and 5 show that, under mild conditions,
Gaussian cluster states need not be used as or made almost-
perfect resources by local measurements alone. This consti-
tutes a significant challenge for MBQC with Gaussian cluster
states but does not rule out this possibility. In this section, we
briefly comment on ways that might allow one to overcome
the limitations identified here.

Clearly, it is very much conceivable that this observation
may again be overcome by concatenated encoding in fault-
tolerant schemes, effectively in slabs whose width scales
with the length of the computation: Rather, at the level
of finite encodings, the resource cannot be uplifted to a
perfect resource. The situation encountered here—having pure
Gaussian states—hence has some similarity to noisy finite-
dimensional cluster states built with imperfect operations
[14,15]. Considering the preparation of the quantum wire
and the transport by local measurements as a sequence of
teleportations with not fully entangled resources, this means
that every step adds a given amount of noise to the quantum
information. In finite-dimensional schemes, if this noise
corresponds to an error rate below the fault tolerance, a nested
encoding with an error correction code allows one to perform
computations. The size of the code grows polynomially with
the size of the circuit one wishes to implement. In addition
to this intrinsic error, any physical implementation will, of
course, also suffer from experimental errors which must also be
compensated by error correction schemes. Thus, the combined
error rate must be below the fault-tolerance threshold. It is
therefore possible that recognizing all finite squeezings as full
quantum errors—which has to be done in the light of the
results of the present work—and using suitable concatenated
encodings over polynomially many slabs, there exists a finite
squeezing allowing for full universal quantum computation
with eventual polynomial overhead. The question whether
schemes such as these—or ones where suitable polynomially
sized complex structures are “pinched” out of a large lattice—
that are universal can be constructed remains a challenging
and interesting open question.

G. Ideas on percolation

One possible way forward toward the goal of achieving a
fully universal resource under local non-Gaussian measure-
ments is to think of first performing local measurements at
each site, aiming at filtering an imperfect qubit, C2 cluster
from a Gaussian cluster state. Ideally, one would arrive at
the situation on, say, a cubic lattice of some dimension,
where one could extract a graph state [46] corresponding to
having an edge between nearest neighbors with some finite
probability. If this probability ps is sufficiently high—higher
than the appropriate threshold for edge percolation—and if one
can ensure suitable independence, an asymptotically perfect
cluster on a renormalized lattice can be obtained [47–49].
When trying to identify such percolation schemes, one does

not have to rely solely on classical percolation schemes, but
can also make use of more general repeater-type schemes
as in Ref. [50], referred to as quantum percolation (see also
Ref. [48]). To identify such maps, either classical or quantum,
however, appears to be a very challenging task.

One might also ask whether TMSS bonds as such can
be transformed into suitable maximally entangled pairs of
C2 ⊗ C2 systems. This, however, clearly is the case. Again
applying a result for finite-dimensional systems to infinite-
dimensional ones by making use of appropriate nets of Hilbert
spaces, one finds that given a state vector |ψλ〉 of a TMSS
of some squeezing parameter λ > 0, the transformation |ψλ〉
to (|0,0〉 + |1,1〉)/√2 is possible with a generalized local
filtering on A only, together with a suitable unitary in B, with
a probability of success of [51,52]

p = min[1,2(1 − λ2)]. (53)

Hence, whenever λ � 1/
√

2, this transformation can be done
deterministically. This has interesting consequences for quan-
tum repeaters. The protocol performing the transformation

|ψλ〉A,B �→ 1√
2

(|0,0〉 + |1,1〉) (54)

can be implemented by combining A with an ancillary system
C, performing a joined unitary transform on A,C, measuring
C, and applying another unitary gate on B classically condi-
tioned on the measurement result.

But even if λ < 1/
√

2, one can still distill a resource from
a collection of TMSSs distributed in a graph, performing an
argument involving percolation here. This, however, merely
shows that Gaussian states as such can be resources for
information processing. Most importantly, this is not the
resource anticipated, so not the actual GPEPS, but a collection
of suitable TMSS. Thus, non-GPEPS projections cannot be
implemented with linear optics without a massive overhead.
Finally, the eventually created qubit cluster state would be
obtained in a single-rail representation where measurements
in the superposition bases, which are needed for the actual
computation, are experimentally very difficult and require
additional photons. So the question of actual universality of
the Gaussian cluster state, under all fair meaningful ways of
defining a set of rules, remains an interesting and challenging
question.

H. Remarks on 1D Gaussian quantum repeaters

We finally briefly reconsider the question of a quantum
repeater setting based on general non-Gaussian operations. We
have shown that it is not possible to obtain a finitely entangled
state for an arbitrary long 1D GPEPS. However, what is also
true at the same time is that a sequential repeater scheme based
on sufficiently entangled TMSSs before the PEPS projection
does yield a nondecaying entangled bond between the end
points. That is, using only projective local measurements of
each of the sites, one can transform a collection of distributed
TMSSs in a 1D setting into a maximally entangled qubit pair
shared between the end sites. To show this, it suffices to revisit
the situation for three sites, as the general statement on N sites
follows immediately by iteration.
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Now consider the quantum repeater setting and assume for
simplicity that we already have a qubit Bell pair, |φ〉A,B1 =
(|0,0〉 + |1,1〉)/√2, which we want to swap through a TMSS
|ψλ〉B2,C with λ � 1/

√
2. We can use the higher, unoccupied

Fock levels of the state vector |φ〉A,B1 as an ancilla to transform
|ψλ〉B2,C according to Eq. (54). As the final unitary on C after
local operations and classical communication with one-way
classical communication does not change the entanglement,
we can also omit it. As the unitary, the ancilla measurement,
and the final Bell measurement on B1,B2 are equivalent to a
single projective measurement on B1,B2, it is possible to swap
entanglement through a physical TMSS perfectly. Needless to
say, this will be a highly non-Gaussian, complicated operation
and will not overcome the limitation of Gaussian cluster states
discussed.

VI. DISCUSSION AND SUMMARY

In this article, we have assessed the requirements for
possible architectures when using Gaussian states as resources
for MBQC and for entanglement distribution by means of
quantum repeater networks. Using a framework of GPEPSs,
we have shown that under Gaussian measurements only,
the localizable entanglement decays exponentially with the
distance in arbitrary graphs. This rules out the possibility
of processing or even transporting quantum information with
Gaussian measurements only.

The preceding results also show that Gaussian cluster
states—under mild conditions of the encoding of logical
information in slabs, rather than general encodings in the
entire lattice—cannot be used as or made perfect universal
resources for MBQC. No information can be transmitted
beyond a certain influence region, and hence, no arbitrarily
long computation can be sustained. Now if one allows for
a higher energy, and hence larger two-mode squeezing, in
the resource states, this influence region will become larger.
In other words, small-scale implementations as proof-of-
principle experimental realizations of such an idea will be
entirely unaffected by this: Any state with finite energy will
constitute some approximation of the idealized improper state
having infinite energy, and its outcomes in measurements will
approximate the idealized ones. However, with this state, one
could not go ahead with an arbitrarily long computation.
This observation shows that Gaussian cluster states are fine
examples of states that eventually allow for the demonstration
of the functioning of a CV quantum computer, possibly
realized using the many modes available in a frequency
comb [5–7].

Also, we have discussed the requirements for fault tolerance
and quantum error correction for such schemes, yet to be
established, in that any finite squeezings essentially have to

be considered full errors in a concatenated encoding scheme.
This work motivates further studies of the fault tolerance of
systems with a finite-dimensional logical encoding in infinite-
dimensional systems. But it also strongly suggests that it could
be a fruitful enterprise to further at alternative CV schemes
not directly involving Gaussian states, but other relatively
feasible classes of states, such as coherent superpositions
of a few Gaussian states like the so-called cat states, which
have turned out to be very useful within another computation
paradigm [53]. We hope that this article will contribute to
clarifying the requirements that any architecture eventually
must meet based on the interesting idea of doing quantum
computing by performing local measurements on Gaussian or
non-Gaussian states of light.
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APPENDIX: PROOF OF LEMMA 4

Let A,B ∈ C2×2, with A,B � 0. We set

c = ‖A1/2B1/2‖2

‖A‖‖B‖ . (A1)

The inequality c � 1 follows directly from the submultiplica-
tivity of the operator norm, while equality holds if and only if
A and B commute. Rewriting

λn(A + B) = tr(A + B) − λ1(A + B)

= tr(A + B) − ‖A + B‖, (A2)

we can now use a sharpened form of the triangle inequality
for the operator norm of 2 × 2 matrices in Ref. [54] to
obtain

λ2(A + B) = tr(A + B) − ‖A + B‖
� tr(A + B) − 1

2 (‖A‖ + ‖B‖)

+ 1
2 (‖A‖ − ‖B‖)2 + 4‖A1/2B1/2‖2)1/2. (A3)

If now c < 1, then there exists a δ > 0 such that

λ2(A + B) � tr(A + B) − ((‖A‖ − ‖B‖)2

+ 4‖A‖‖B‖)1/2 + δ

= tr(A + B) − (‖A‖ + ‖B‖) + δ (A4)

= λ2(A) + λ2(B) + δ, (A5)

which proves Lemma 4.
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[42] J. Niset, J. Fiurášek, and N. J. Cerf, Phys. Rev. Lett. 102, 120501

(2009).
[43] S. Perseguers, J. I. Cirac, A. Acin, M. Lewenstein, and J. Wehr,

Phys. Rev. A 77, 022308 (2008).
[44] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869

(1998).
[45] J. Eisert, D. E. Browne, S. Scheel, and M. B. Plenio, Ann. Phys.

(NY) 311, 431 (2004).
[46] M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311

(2004).
[47] K. Kieling, T. Rudolph, and J. Eisert, Phys. Rev. Lett. 99, 130501

(2007).
[48] K. Kieling and J. Eisert, Quantum and Semi-classical Perco-

lation and Breakdown in Disordered Solids (Springer, Berlin,
2009), pp. 287–319.

[49] D. E. Browne, M. B. Elliott, S. T. Flammia, S. T. Merkel,
A. Miyake, and A. J. Short, New J. Phys. 10, 023010 (2008).

[50] A. Acin, J. I. Cirac, and M. Lewenstein, Nature Phys. 3, 256
(2007).

[51] G. Vidal, Phys. Rev. Lett. 83, 1046 (1999).
[52] M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).
[53] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and

S. Glancy, Phys. Rev. A 68, 042319 (2003).
[54] F. Kittaneh, J. Operator Theory 48, 95 (2002).

042336-12



28
Chapter 3 - Limitations of quantum computing with Gaussian

cluster states



Chapter 4

Efficient measurement-based

quantum computing with

continuous-variable systems



PHYSICAL REVIEW A 85, 062318 (2012)

Efficient measurement-based quantum computing with continuous-variable systems

M. Ohliger1,2 and J. Eisert1
1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

2Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
(Received 16 December 2011; published 21 June 2012)

We present strictly efficient schemes for scalable measurement-based quantum computing using continuous-
variable systems: These schemes are based on suitable non-Gaussian resource states, ones that can be prepared
using interactions of light with matter systems or even purely optically. Merely Gaussian measurements such as
optical homodyning as well as photon counting measurements are required, on individual sites. These schemes
overcome limitations posed by Gaussian cluster states, which are known not to be universal for quantum
computations of unbounded length, unless one is willing to scale the degree of squeezing with the total system
size. We establish a framework derived from tensor networks and matrix product states with infinite physical
dimension and finite auxiliary dimension general enough to provide a framework for such schemes. Since in the
discussed schemes the logical encoding is finite dimensional, tools of error correction are applicable. We also
identify some further limitations for any continuous-variable computing scheme from which one can argue that
no substantially easier ways of continuous-variable measurement-based computing than the presented one can
exist.

DOI: 10.1103/PhysRevA.85.062318 PACS number(s): 03.67.Lx, 03.65.Ud, 42.50.−p

I. INTRODUCTION

To realize a quantum computer in the circuit model, it is
crucial to have precise control over each of the carriers of
quantum information. In addition to keeping the quantum state
of the computer protected from unavoidable noise induced
by the environment, it is necessary to implement suitable
quantum gates, usually in the form of one- and two-qubit
gates. The latter is of particular difficulty, especially when
optical quantum systems are used because their interaction is
either weak or merely induced by measurements.

The paradigm of measurement-based quantum computing
(MBQC) as pioneered by Raussendorf and Briegel [1,2] and
substantially generalized by Gross and Eisert [3,4] allows us
to get rid of the necessity of performing unitary operations to
implement a quantum circuit. Instead, the actual computation
is performed by preparing a multipartite entangled state, the
resource, in a first step followed by adaptively chosen local
measurements on this resource. The important improvement
stems from the fact that the resource is universal, i.e., it can be
prepared independently of the algorithm one wants to perform.
This means that the presumably difficult step, the one which
involves entangling operations, can be performed off-line. This
resource-preparation may also be probabilistic as it is possible
to wait with the implementation of the algorithm until the
resource is available. What is more, individual addressing
in the final read-out step is also required in the circuit
model, so this step does not add any further difficulty to the
scheme.

Quantum computing based on continuous-variable (CV)
quantum optical systems differs from the more conventional
notion based on their discrete analogs in not making use of
single photons as the carriers of quantum information [5,6].
Instead, it relies to a large extent on Gaussian states and their
manipulation. The notable advantage is that Gaussian states
are easier to prepare in the laboratory, the corresponding
interactions are often stronger and easier to accomplish,
and some measurements, e.g., homodyne detection, can be

performed with an efficiency substantially surpassing the one
of single-photon measurements. However, quantum informa-
tion protocols using Gaussian states only, Gaussian operations,
and Gaussian measurements suffer from serious limitations
as in this setting neither entanglement distillation [7–9] nor
error correction against Gaussian errors [10] is possible.
Also, since one can easily efficiently keep track of first and
second moments, any Gaussian evolution of Gaussian states
can be efficiently simulated on a classical computer [11],
clearly ruling out as the possibility of universal quantum
computing.

MBQC based on Gaussian resource states has been exten-
sively discussed in the literature [12–16] due to several fea-
tures: They are a direct generalization of the well-known qubit
cluster state to the continuous-variable regime, they allow for
universal quantum computing with Gaussian measurements
and a single non-Gaussian one, and they can be prepared with
present-day experimental techniques, as already demonstrated.
However, if they are not formed from idealized infinitely
squeezed states (ones that are not contained in Hilbert space
and would require infinite energy in preparation) but rather
from physical states possessing only finite squeezing, they
suffer from exponentially decaying localizable entanglement.
This limitation, which applies to any Gaussian resource
state irrespectively of the permitted class of measurements
[17], implies that full error correction and the machinery of
fault-tolerant quantum computing [18,19], in parts yet to be
developed for such continuous-variable systems, appears to be
necessary even when both state preparation and measurements
are perfect. Notably, those restrictions only apply when trying
to perform a quantum computation of an unbounded length.
For any finite length, there exists, for any required accuracy,
a physical cluster state such that any quantum operation up to
this length is possible with this accuracy. Because the widely
assumed superior power of quantum computers compared to
classical ones manifests itself most prominently in the scaling
of the runtime with the problem size, the situation of a quantum
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computation with unbounded length is in the focus of attention
in this work.

In addition to schemes based on Gaussian cluster states,
two more classes of schemes relying on CV-quantum optics
have been proposed. The first one is based on superpositions
of coherent states which are called Schrödinger cat states or,
when they have very low amplitude, “kitten” states [20]. They
can be, in approximation, created by subtracting photons from
squeezed states and allow for universal quantum computing by
passive operations such as beam splitters and photon-counting
detection only. However, they also suffer from quite severe
problems: The probabilistic nature of the quantum operations
stemming from the use of nonoverlapping basis elements
seems to be the most fundamental one, giving rise to significant
overheads. The second approach combines the advantageous
features of both discrete and continuous-variable optics
[21,22]. In these schemes, quantum information is carried
by qubits and single-qubit operations are performed directly
on them. Two-qubit operations, in contrast, are performed
by letting both qubits interact with a strong CV-mode, the
qubus.

With this article, we pursue two different, but complemen-
tary, goals: On the one hand, we aim at clarifying the boundary
between settings where CV-MBQC is possible and such
situations where this is not the case. For this reason, we will
develop a general framework capable of describing quantum
computation in the measurement-based paradigm, regardless
of the dimension of the carriers of quantum information.
Within this picture, we can identify some serious limitations
giving rise to challenges that have to be overcome. On the
other hand, we introduce a strictly efficient scheme relying
only on a simple controlled rotation, which can be realized
by an atom-light interaction of the Jaynes-Cummings type or
purely optically by the Kerr effect, for the creation of the
resource. On the measurement side, we require beam splitters,
phase-space displacers, and photon counting measurements.
While this scheme is not fleshed out in all detail of its concrete
physical implementation, it should be clear that quantum
optical implementations of such ideas are conceivable.

The present article is organized as follows: First, we
discuss what operations are possible with continuous-variable
quantum systems and introduce a framework based on matrix
product states (MPS) to describe MBQC in a general setting.
After a discussion of the properties which a CV-MBQC scheme
needs to posses in order to be called theoretically efficient,
we show the problems of achieving those requirements with
Gaussian measurements on non-Gaussian resource states.
Last, we provide an example for a feasible scheme and
discuss in detail how efficient MBQC can be performed in
this situation.

II. FEASIBLE PRIMITIVES FOR CV
QUANTUM COMPUTING

When performing tasks of quantum information with
continuous-variable quantum optics, different classes of op-
erations are considered to be of different difficulty. This is also
true for measurements where the achievable efficiency greatly
differs among the various methods.

A. Gaussian operations

Before continuing with the discussion, we remind the reader
of some basic properties of Gaussian states and operations
while also taking the opportunity to set the notation. We
consider a single light mode. The energy eigenvectors of the
unit oscillator are denoted by |n〉 with n = 0,1, . . .. The annihi-
lation operator â acts on them according to â|n〉 = √

n|n − 1〉.
The commutator relation with its adjoint, the creation operator,
is [â,â†] = 1, setting h̄ = 1. The eigenvectors of the photon-
number operator n̂ = â†â with n̂|k〉 = k|k〉 are called the
number states or Fock states. One can now define the canonical
operators or quadratures as

q̂ = 1√
2

(â + â†), (1)

p̂ = − i√
2

(â − â†), (2)

and for θ ∈ [0,2π ] the family of rotated quadrature operators

q̂θ = q̂ cos(θ ) + p̂ sin(θ ). (3)

The latter family of observables is the one that captures
homodyne detection [23]. Gaussian unitaries are the ones
which can be written as Û = eiĤ (q̂,p̂), where Ĥ contains
no terms in higher than quadratic order in q̂ and p̂ (or,
equivalently, in â and â†). There are three classes of Gaussian
single-mode unitary operators into which all Gaussian unitary
gates can be decomposed. The first ones are corresponding
to the application of the displacement operator D̂(α) =
exp(αâ† − α∗â) for α ∈ C. Such a transformation is reflected
in the Heisenberg picture by a map of the form

q̂ �→ q̂ +
√

2 Re α, (4)

p̂ �→ p̂ +
√

2 Im α. (5)

Optically, such a transformation can be realized by mixing the
mode with a second mode, which is in a strong coherent state,
on a beam splitter in the limit of vanishing reflectivity. In the
second one are the transformations generated by the clockwise
rotation operator R(θ ) = exp(−iθ n̂), which can be realized by
a phase shifter, acting on the canonical operators as q̂ �→ q̂θ ,
p̂ �→ q̂θ+π/2, while in the last one are those generated by the
squeezing operator

Ŝ(ξ ) = exp

[
r

2
(â2 − â†2)

]
, (6)

acting as q̂ �→ er q̂, p̂ �→ e−r p̂. The single-mode Gaussian
unitary operations form a (noncompact) group which we
denote by UG. To complete the set of operators, which
are necessary to implement arbitrary multimode Gaussian
operations, we introduce the (absorption-free) beam splitter
acting on two modes 1 and 2 by

B̂ = exp

[
θ

2
(â†

1â2 − â1â
†
2)

]
, (7)

where t = cos(θ/2) and r = sin(θ/2) are the transmission and
reflection coefficient, respectively.

The Gaussian operations can be divided into two classes:
Phase shifters and beam splitters do not change the total
number of photons and are called passive operations. To

062318-2



EFFICIENT MEASUREMENT-BASED QUANTUM COMPUTING . . . PHYSICAL REVIEW A 85, 062318 (2012)

implement a squeezer or a displacer, on the other hand, one
does need additional photon sources which makes them more
difficult to realize.

B. Other Hamiltonian building blocks

There are also non-Gaussian operations which are within
the realm of present experimental techniques: The cross Kerr
effect gives rise to a nonlinear coupling between two modes;
its Hamiltonian reads

Ĥ = χn̂1 ⊗ n̂2. (8)

It can be realized by transmitting two modes together through
an optically nonlinear medium. As nonlinear optical effects
are weak and absorption needs to be kept low, the achievable
effective coupling strength is quite small, i.e., tχ 	 1, where
t is the interaction time. For the most relevant situation,
where one of the modes carries a state with many photons while
the other one is in the single-photon regime, the Hamiltonian
(8) has already been experimentally implemented to perform
quantum nondemolition measurement (QND) [24]. The related
Hamiltonian

Ĥ = χ |1〉〈1| ⊗ n̂ (9)

for a positive χ describes the coupling of a two-level atom to
a light mode in the dispersive limit of the Jaynes-Cummings
model. In this situation, the effective coupling strength can be
increased by placing the mode and the atom inside an optical
cavity. A particularly strong interaction can be achieved with a
technique known as electromagnetically induced transparency
(EIT), which is routinely used to exchange quantum informa-
tion between between light modes and atomic vapors and for
which also experiments with single atoms exist [25,26].

C. Measurements

We now turn to the kind of measurements that we
will consider feasible for the purposes of this work. The
most important Gaussian measurement scheme is homodyne
dectection, which correponds to the observable q̂θ in Eq. (3).
It is realized by combining the mode with a strong laser,
called the local oscillator, in an interferometer, measuring the
intensities on both output ports and subtracting the results.
Another important type of Gaussian measurement is eight-port
homodyning corresponding to a direct measurement of the Q

function, i.e., Qρ(α) = 〈α|ρ|α〉 for α ∈ C, where

|α〉 = e−|α|2/2
∑

n

αn

√
n!

|n〉 (10)

are the state vectors of the non-orthogonal and overcomplete
coherent states [23].

Non-Gaussian measurements are in many instances more
difficult to realize than Gaussian ones, and usually with
significantly lower detection efficiencies. The most feasible
instance of a non-Gaussian measurement reflects a single-
photon detector which can distinguish only between the
absence of photons and the presence of one or more photons.
The corresponding POVM elements are |0〉〈0| and 1 − |0〉〈0|.
A photon-number resolving detector is more challenging to im-
plement but, with time-multiplexing [27] or superconducting

nanowires [28], it is possible to perform photon counting for
the first few number states with reasonable efficiency.

III. FRAMEWORK FOR CV-MBQC

In this section, we introduce a general framework to
describe measurement-based quantum computing. A MBQC
scheme consists of two ingredients: First, a resource state and,
second, a set of possible, or allowed, local measurements. We
start with a description of quantum wires which are used for
single-qudit processing [29] and discuss their coupling to fully
universal resources afterward.

A. Matrix product states

The formalism of matrix product states, which was orig-
inally introduced to describe a certain class of entangled
one-dimensional many-body states [30,31], is extremely use-
ful to capture the essentials of quantum computing in the
measurement-based model [4]. We start by describing one-
dimensional continuous-variable quantum wires which can
be used to carry a single qubit of quantum information. The
techniques we develop are independent of the actual physical
implementation but we will often describe them with terms of
quantum optics and have such a system in mind.

We consider a chain of L quantum systems with dimension
dp which are called lattice sites. We also allow for the
situation dp = ∞ which describes CV light modes. We say
that a state is physical if it has finite mean energy, i.e.,
for a single mode: Tr (n̂ρ) � ∞. We choose a basis (or a
countably infinite Hilbert-space basis) {|i〉 : i = 1, . . . ,dp} of
Cdp , which we call the computational basis, associate to any
basis element a D-dimensional matrix A[i] ∈ MD(C), and
write a translationally invariant matrix product state (MPS) as

|�〉 =
dp∑

iL,...,i2,i1=1

〈L|A[iL] . . . A[i2]A[i1]|R〉|iL, . . . ,i2,i1〉,

(11)

where |L〉 ,|R〉 ∈ CD . This vector space is the one where the
quantum computation will take place and is called correlation
space. The matrices must fulfill the completeness relation

dp∑
i=1

A[i]†A[i] = 1, (12)

for rendering deterministic computation feasible.
An important fact is that all physical states can be

approximated arbitrary well by a finite-dimensional MPS. As
any finite-dimensional state can be written as a MPS [31], it
only remains to show that one can truncate states with finite
energy. We write the mean total photon number of a state ρ

with k modes as

Nmean =
∞∑

n1,...,nk=0

(n1 + . . . + nk)ρn1,...,nk ;n1,...,nk

� k(nmax + 1)
∞∑

n1,...,nk=nmax+1

ρn1,...,nk ;n1,...,nk
, (13)

where the matrix elements of ρ are the ones of the Fock basis.
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Let ρtrunk be the non-normalized state obtained from ρ by
setting ρn1,...,nk ;n′

1,...,n
′
k
= 0 if one of the indices is larger than

nmax. This state fulfills

Tr(ρ − ρtrunc) � Nmean

k(nmax + 1)
. (14)

Denoting the trace norm, which is the relevant norm for the
distinguishability of quantum states, by ‖ · ‖1, we get, from
Ref. [32],

‖ρtrunc − ρ‖1 � 3

(
Nmean

k(nmax + 1)

)1/2

. (15)

If we assume the mean photon number (the energy) per
mode to be constant, the truncation error is independent of the
system size. This means, for a given required accuracy, we can
choose a cut-off number nmax independently of the length of
the intended computation.

B. MPS as quantum wires

We now show how single-qudit MBQC can be performed
with such a matrix product state, following and extending the
line of reasoning used in Ref. [4]. Let us assume that the first
mode is measured in the computational basis with result k.
The remaining system then is described by the state vector

|�〉 ∝
dp∑

iL,...,i2=1

〈L|A[iL] . . . A[i2]A[k]|R〉|iL, . . . ,i2〉. (16)

This can be viewed as the action of the matrix A[k] on the
right boundary vector |R〉. To interpret this as the action
of a quantum gate it is necessary that A[k] is proportional
to a unitary matrix, i.e., A[k]†A[k] = p(k)1, where p(k)
is the probability with which the measurement result k is
obtained. When the measurement basis is continuous, we
denote by p the probability density while P denote the
corresponding probability measure. Because we will also
discuss measurements where the corresponding matrices are
not proportional to unitary ones, we note that the probability in
this more general situation is p(k) = ‖A[k]|ψ〉‖2, where |ψ〉
is the state vector of the correlation system. If the measurement
is not performed in the computational basis but in another one
and the result corresponds to a projection to the state vector
|x〉, the matrix applied on |R〉 reads

AB[x] =
dp∑
i=1

〈x|i〉A[i] . (17)

Note that the basis B = {|x〉} may be continuous and/or
overcomplete and that measurements in such bases naturally
occur in CV-quantum optics. We also allow this basis to consist
of improper eigenstates reflecting an idealized homodyne
detection. We can now already note an almost trivial but very
important necessary requirement for a single-qudit MBQC
scheme: If there exists no allowed measurement basis such
that A[x] is proportional to a unitary matrix for almost all x, it
is not even possible to transport a single D-dimensional qudit.
An equivalent formulation is that p(x) must not depend on the
state vector |ψ〉 of the correlation space. If this was the case, a

M1 M2

|φ〉 Û Û U |φ〉

|Ψ〉 |Ψ〉

FIG. 1. Interpretation of single-qudit MBQC as sequential inter-
action with an ancilla. The physical sites are initially in the state vector
|�〉 and interact with the correlation system through Û . Depending on
the measurement results in M1 and M2, the unitary gate U is applied
on |φ〉.

measurement would yield information about |ψ〉, which would
clearly destroy coherence.

C. Sequential preparation

A possible way of preparing a matrix product state with
bond dimension D is a sequential interaction with a D-
dimensional auxiliary system [31,33]. This picture proves to be
extraordinarily useful when discussing quantum wires. Let the
interaction between this auxiliary system and a local physical
system be described by

Û : CD ⊗ Cdp → CD ⊗ Cdp (18)

and assume the physical system to be initialized in the state
vector |�〉. The matrix elements of the MPS matrices then
read

A[i]j,k = (〈k| ⊗ 〈i|) Û (|j 〉 ⊗ |�〉) . (19)

In this picture, which is sketched in Fig. 1, the correlation
system is identified with the auxiliary system, and a single-
qudit gate is performed by first letting the auxiliary system
interact with a mode in a known state and then measuring
the mode. It is important to note that this picture works
regardless of the actual way the resource state is prepared. For
this reason, we will use the picture of sequential preparation
to be more intuitive while maintaining full generality. For
example, resource states can also arise as ground states of local
Hamiltonians or be prepared by the action of translationally
invariant quantum cellular automata [34,35].

D. Encoding of quantum information in correlation spaces

If the goal is not to process a D-dimensional qudit but only
a d-dimensional one with d < D, the above requirement is too
strong. The d-dimensional space is called the computational
subspace. We introduce the encoding

V : Cd → CD (20)

with V †V = 1d and the encoded matrices

B[i] = V †A[i]V , B ∈ Md (C) . (21)

If they are proportional to unitary matrices for all i, it is
possible to process a single d dimensional qudit. One can
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observe that

〈φ|V †AbL
[iL] . . . Ab1 [i1]V |ψ〉 = 〈φ|BbL

[iL] . . . Bb1 [i1]|ψ〉,
(22)

where |φ〉,|ψ〉 ∈ Cd . The subscripts bi denote the chosen
measurement bases. This means, for all measurements, the
state with the matrices B behaves exactly like the one with the
matrices A. Thus, we can just proceed as if we had a state with
a d-dimensional correlation space from the very beginning.

This situation is not the most general one. The isometry (20)
can depend on the measurement basis and the outcome of the
previous steps. In this case, the computational subspace is not
fixed but changes during the computation. It is reasonable to
demand that at least the initial and the final encoding coincide
so it is possible to work with a fixed in- and out-coupling,
provided by V . In this case Eq. (21) becomes

〈φ|V †AbL
[iL]VbL−1 [iL−1] . . . Vb1 [i1]V †

b1
[i1]Ab1 [i1]V |ψ〉

= 〈φ|BbL
[iL] . . . Bb1 [i1]|ψ〉, (23)

where B[ik] = V
†
bk

[ik]A[ik]Vbk−1 [ik−1]. When several quantum
wires are used to perform a quantum computation, it is also
necessary to demand the changing encoding to return to the
initial encoding given by V , whenever a coupling occurs. If this
was not the case, the couplings would have to depend on the
history of measurements and their results in both of the wires.
This would clearly be against the spirit of a measurement-
based protocol, where all the adaptation lies in the choice of
measurement bases only.

The infinite-dimensional matrix product states used in
this work bear some resemblance to the continuous matrix
product states which were introduced in Refs. [36,37] to
describe one-dimensional bosonic quantum fields. In contrast
to the discrete structure of bosonic modes described here, they
are formulated without an underlying lattice. However, such
cMPS can be obtained as a suitable continuum limit from
infinite-dimensional matrix product states. In this limit, only
two independent MPS matrices remain while the rest can be
calculated from them, which is an important difference to the
present situation.

E. Coupling of wires

To go beyond single-qudit processing and achieve quantum
computational universality, wires have to be coupled. Physi-
cally, this can be performed in different ways. One possibility
is to let the auxiliary systems of the sequential preparation
scheme interact. However, this might be very challenging to do
in reality, both when working with atoms, due to the difficulty
of controlling them, and with light, due to weak nonlinear
interaction. For this reason, joint measurements are preferable
to couple two wires which is also shown in Fig. 2. In an optical
situation, this could mean to combine two modes belonging
to two different wires on a beam splitter and measuring both
output ports. This is a broadening of the usual definition of
MBQC where only local measurements are performed while
we now also allow for two local ones. On the other hand,
there also exists a closely related third way which is also
based on the beam-splitter interaction but strictly stays within
the measurement-based paradigm. The idea is to perform the

M
1

M
2

Û Û

Ŵ

FIG. 2. Coupling of two quantum wires. The interaction of two
physical systems through Ŵ and the subsequent measurements
(M1 and M2) induces a entangling gate on the two correlation
systems.

coupling independently of the executed algorithm according to
some fixed scheme. This step then belongs to the preparation of
the resource while the subsequently performed measurements
are purely local.

Let Ŵ be the coupling between the two modes, {|x1〉} and
{|x2〉} the measurement bases after interaction. The applied
operation then reads

A[x1,x2] =
∑
i,j

〈x1,x2|Ŵ |i,j 〉A[i] ⊗ A[j ]. (24)

IV. REQUIREMENTS FOR EFFICIENT MBQC SCHEMES

In this section, we give three condition a MBQC scheme
has to fulfill to be called efficient and comment on their
importance. To facilitate the derivation, we restrict ourselves
to the arguably most important case of D = 2 while stressing
that the requirements for universal computing on qudits with
larger dimension are completely analogous. When discussing
requirements, one has to distinguish between two different
notions: One the one hand, there are theoretical requirements,
of the kind that, if they are met, efficient scalable quantum
computing is possible in the absence of noise. Going away
from this idealized situation, on the other hand, two new
features arise. First, in practice, any quantum operation is
affected by noise, which error correction may counter to
some extent. Second, any actual quantum computation is,
needless to say, finite. Thus, the practical requirements that
might be sufficient to sustain a computation may differ
from the theoretical ones. However, as we are primarily
interested in scalable quantum computing, for reasons of
clarity we will focus on the theoretical requirements and
comment on other practical implications whenever it is in
order.

A. Conditions

We start with the theoretical requirements for quantum
wires (which process single qubits) and state the first necessary
condition.

Requirement 1 (Transport). Let |ψn〉 be the state vector of
the correlation system after n steps in the quantum wire when
the initial state vector was |ψ〉. We say that transport of a single
qubit is possible if there exists some ε > 0 such that for all n

Fmin := max
U∈SU2

min
|ψ〉

|〈ψ |U |ψn〉|2 � 1
2 + ε. (25)
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Here, U is the best attempt at undoing the action of
the quantum wire on |ψ〉. This requirement ensures that
computations are not limited in length. If encodings of single
logical qubits in multiple wires are used, this requirement can
be weakened to 1/ε = poly(n).

For universal single-qubit quantum computing to be possi-
ble, it is not enough to merely transport quantum information.
It is also necessary that any one-qubit unitary U ∈ SU2

can be efficiently approximated. Because it depends on the
measurement outcome which operation is applied, we cannot
hope for this to be possible deterministically. Instead, the
measurements induce a random walk on SU2 which can be
controlled by choosing the measurement basis in the next
step depending on the gate implemented so far. For efficient
quantum computing, the average number of steps must not
increase too fast with the desired accuracy. We set

ĀB[k] := p(k)−1/2AB[k], (26)

where B denotes the measurement basis and define

ĀB[k] =
n∏

i=1

ĀBi
[ki]. (27)

Requirement 2 (Single-qubit universality). Let U ∈ SU2

and ε > 0. There exits a sequence (possibly adaptive) of bases
Bi such that the expectation value for an approximation Ũ =
ĀB[k] fulfilling

‖Ũ − U‖ � ε (28)

after at most n measurements in the wire satisfies

E (n) = O

[
polylog

(
1

ε

)]
. (29)

Here, ‖ · ‖ denotes the operator norm, which is the mean-
ingful figure of merit in this case. Of course, single-qubit
operations are not sufficient for universality but an entangling
operation is also needed:

Requirement 3 (Coupling). Denote with

CZ = diag(1,1,1,−1) (30)

the controlled-Z gate. The expectation value for an approxi-
mation C̃Z fulfilling

‖C̃Z − CZ‖ � ε (31)

after at most n measurements on both of the quantum wires
involved, where both single-site and two-site measurements
are allowed, must satisfy

E (n) = O

[
polylog

(
1

ε

)]
. (32)

Requirements 2 and 3 guarantee that every quantum circuit
can be simulated in correlation space with a polylogarithmic
overhead. This is the commonly used requirement in quantum
computing. When one is content with a polynomial overhead,
(29) and (32) can both be relaxed to

E(n) = O

[
poly

(
1

ε

)]
(33)

for some constant c > 0. A computational model fulfilling
only this weaker condition is still of interest when the ultimate

aim is to perform a quantum algorithm which provides ex-
ponential speed-up over the corresponding classical one (like
Shor’s algorithm). However, whenever the speed-up is only
polynomial (like in Grover’s search algorithm), the stronger
polylog scaling is clearly necessary for the quantum algorithm
to have any advantage. When one aims at the implementation
of constant size quantum circuits only, Requirements 2 and
3 are not necessary as one does not need to implement the
quantum gates to arbitrary accuracy but only to some ε > 0
which is determined by the total length of the computation.

The last feature to demand from a MBQC model is the
ability to initialize the correlation system into some known
state and to perform a measurement of the correlation space in
the computational basis.

Requirement 4 (Initialization and read-out). For efficient
initialization of the correlation system to be possible, there
must exist some measurement sequence such that, indepen-
dently from its initial state vector |ψ〉,

‖|ψn〉 − |0〉‖ � ε. (34)

Here |ψn〉 is the state vector after n steps in the wire and it
must be true that E(n) = O(polylog(1/ε)).

For read-out, it is necessary that after n steps with

E (n) = O

[
polylog

(
1

ε

)]
(35)

the combined normalized action

ĀB[k] =
1∏

j=n

ĀBj
[kj ] (36)

fulfills either ‖ĀB[k] − |0〉〈0|‖ � ε or ‖ĀB[k] − |1〉〈1|‖ � ε.
The first requirement just means that one can approach

one of the computational basis states fast enough, while
the second one ensures an efficient implementation of an
approximative measurement in the computational basis. While
measurement-based computational schemes that do not respect
these requirements may be conceivable in principle, within the
framework presented here they are very natural indeed and
necessary for universal quantum computing.

B. Consequences

In the previous section we have discussed the requirements
a MBQC scheme has to fulfill in order to be called efficient. We
now show some consequences of these requirements, which
will help us find classes of schemes that cannot be efficient and
some that are. This seems an important enterprise in order to
arrive at “no-go results” to identify serious limitations that have
to be circumvented in one way or the other. For many important
situations, Fmin in Requirement 1 vanishes exponentially in n

as the following observation shows, which by virtue of the
above statement implies that efficient quantum computing is
not possible.

Observation 5 (Impossibility of transport). Given a basis B,
let C ⊂ B, with P (C) > 0. If for all x ∈ C, A[x] �∝ U with U ∈
SU2, transport is impossible when measuring in this basis.
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Proof. We calculate the fidelity

fmin(x) := max
U [x]∈SU2

min
|ψ〉

|〈ψ |U [x]A[x]|ψ〉|2
p(x)

. (37)

Because P (C) > 0 and fmin(x) < 1 for all x ∈ C, there exists
a nonempty compact interval I ⊂ C such that there is some
δ < 1 with fmin(x) � δ for all x ∈ I. Using an argument from
Ref. [17], one can show that this implies the exponential decay
of Fmin, showing that Requirement 1 is not satisfied. Thus,
for transport to be possible, there must exist a basis such
that almost all measurement outcomes correspond to some
A[x] with A[x]†A[x] ∝ 1. For transport over a fixed length,
Observation 5 does not apply because even if the fidelity decays
exponentially fast, it might be still large enough for the task
under question.

We show a simple sufficient condition, which will be used
later when discussing examples for which Requirement 2 is
true.

Observation 6 (Condition for an efficient random walk).
Assume that for any target gate U ∈ SU2 there exists some
basis B and some C ⊂ B for any P (C) � p(ε) with 1/p(ε) =
O (polylog(1/ε)) where ε is the desired accuracy. When

‖ĀB[k] − U‖ � ε (38)

for all k ∈ C, Requirement 2 is fulfilled.
Proof. The expected number of tries can be bounded by

E(nε) �
∞∑

k=1

kp(ε)[1 − p(ε)]k−1 = 1

p(ε)

= O

[
polylog

(
1

ε

)]
. (39)

The most important important situation covered by Observa-
tion 6 is the one where the measurements have discrete results
and for every U ∈ SU2 a basis exists which contains at least a
single element which fulfills the requirements of Observation
6. Sufficient conditions for initialization and read-out of the
correlation system to be possible are provided by the following
observation:

Observation 7 (Sufficient conditions for Requirement 4).
Let there exist some δ > 1 and a basis B containing some
subset C ⊂ B of “nonunitary measurements.” Assume that

A[x] ∝ U [x]

[
s1(x) 0

0 s2(x)

]
V † (40)

for all x ∈ C, where U [x],V ∈ SU2, and s1(x), s2(x) are the
(not necessarily ordered) singular values of A[x] which fulfill
either s1/s2 > δ or s2/s1 > δ. In this case, efficient read-out
and initialization of the correlation system is possible.

Proof. The situation is most transparent when s2(x) = 0. In
this case, a measurement result x corresponds to a projection
of the correlation space state to the state vector V |0〉. In
the more general case the measurement is not projective but
merely weak. By performing the unitary operation V U †[x],
which is efficiently possible due to Requirement 2, and
repeating the measurement, a projective measurement in the
basis {V |0〉,V |1〉} can be approximated. This approximation is
efficient, due to the existence of a finite gap between s1 and s2

occurring with finite probability. The independence of V of x is

crucial: If this is not the case, the basis in which the correlation
space measurement will occur cannot be fixed. This will lead
to a destruction of quantum information resulting in a failure of
the MBQC scheme. Initialization of the correlation system in
the state vector |0〉 can be performed in the very same manner.
One just performs the measurement procedure outlined above
after which the correlation system is in U [x]|0〉 or U [x]|1〉,
depending on the outcome. Applying now the gates U [x]† or
XU [x]†, respectively, achieves the required initialization.

V. LIMITATIONS

When devising a MBQC scheme, there are several funda-
mental limitations concerning the use of Gaussian states and
Gaussian measurements. The first important fact is that all
protocols involving only Gaussian measurements on Gaussian
states can be simulated efficiently on a classical computer,
ruling out the possibility for any quantum speed-up [11].
However, for an ideal Gaussian cluster state, universality can
be achieved by adding a single non-Gaussian measurement to
the toolbox [12]. On the other hand, any physical Gaussian
quantum wire, including an one-dimensional Gaussian cluster
state cannot fulfill Requirement 1 even when allowing for
non-Gaussian measurements [17].

A. Controlled Gaussian operations

We now discuss further limitations and consider the
situation where the interaction (18) can be written as

Û = |0〉〈0| ⊗ Ĝ0 + |1〉〈1| ⊗ Ĝ1, (41)

up to local unitaries on the correlation system, where Ĝ0,Ĝ1 ∈
UG. This class contains states which allow for transport of a
qubit in a wire by Gaussian measurements only. An example
is given by

Û = |0〉〈0| ⊗ exp(−iθ n̂) + |1〉〈1| ⊗ exp(iθ n̂), (42)

where θ > 0 is a parameter characterizing the interaction
strength. Taking a coherent state vector |α〉 with α ∈ R, α > 0
as input, q0 = √

2α cos(θ ), p0 = √
2α sin(θ ), a q-quadrature

measurement with result x applies in correlation space

Ā[x] = diag
(
eip0(x− q0

2 ),e−ip0(x− q0
2 )) (43)

with probability p(x) = exp(−(x − q0)2)/
√

π . Thus, Re-
quirement 1 is fulfilled. However, efficient single-qubit gates
are impossible due to the lack of control. The only possible
measurement (up to squeezing) for which Ā[x] is unitary
are phase-space displacements followed by q-quadrature
homodyne detection as for all others, the projectors do not
fulfill

|〈ψ(x)|eiθα〉| = |〈ψ(x)|e−iθα〉|, (44)

which implies that the probabilities of the measurements
depend on the state of the correlation system and, therefore,
the applied matrix is not unitary. Writing the displacement as

 = (
q + i
p)/

√
2, we get

Ā
[x] = diag
(
ei(p0+
p)(x− q0+
q

2 ),e−i(p0−
p)(x− q0+
q

2 )
)

(45)

with probability p
(x) = exp(−(x − q0 − 
q)2)/
√

π . Up to
a redefinition q0 �→ q0 + 
q and some global phase, (45) is
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constant in 
, i.e., there is no way of controlling the random
walk, making it impossible to meet Requirement 2. The same
argument holds for any controlled Gaussian operation and for
any Gaussian input state.

When allowing for non-Gaussian input states, some amount
of control is indeed possible, as the following example
shows: Consider the interaction of Eq. (42) together with a
superposition of two different photon numbers as an input,
|ψ〉 = (|0〉 + |2〉)/√2. Choosing θ = π/4, the postinteraction
state reads

a|0〉 1√
2

(|0〉 − i|2〉) + b|1〉 1√
2

(|0〉 + i|2〉) (46)

and the normalized matrices Āq and Āp for the q- and p-
quadrature measurements are

Āq[x] = diag (e−iφ(x),eiφ(x)), (47)

Āp[x] = diag (eiφ(x),e−iφ(x)), (48)

with

φ(x) = arctan
2x2 − 1√

2
(49)

and

p(x) = (4x4 − 4x2 + 3) exp(−x2)/(4
√

π ). (50)

Thus, there exist two Gaussian measurements which allow to
control the random walk but even this control is not enough to
meet Requirement 2. Because this is a general feature of any
MBQC-scheme relying solely on Gaussian measurements we
will discuss it in detail.

B. General resource states with Gaussian measurements

We consider an MPS with D = 2 with the continuous
family of matrices Aq[x] with x ∈ R. As the projectors
describing eight-port homodyning are not orthogonal, they
will turn the state of the remaining system into a mixed one
when measuring a mode, and we do not need to consider this
measurement. Because all relevant Gaussian measurements
can be expressed as the application of squeezing, rotating, and
displacing, followed by a q-quadrature measurement, we can
write

Aθ,
q,
p,λ[x]

= cos(θ )Aq[λx + 
q] + sin(θ )Ap[x/λ + 
p], (51)

where

Ap[q] = 1√
2π

∫
dx Aq[x]eiqx (52)

and where we have omitted global phase factors. If single-
qubit transport is possible in this wire, we can, without loss of
generality, assume that Aq[x] := A0,0,0,0[x] is proportional to
a unitary matrix for all relevant x. As both squeezing by a finite
λ and shifting in phase space merely results in a redefinition

of x in Eq. (51), we can restrict ourselves to the discussion of

Aθ [x] = cos(θ )Aq[x] + sin(θ )Ap[x]

=
dp−1∑
n=0

eiθnψn(x)A[n] (53)

where ψn(x) are the energy eigenfunctions of the harmonic
oscillator. We assume that the physical dimension is finite
and discuss the required changes due to an infinite physical
dimension afterward.

We now argue that Requirement 2 cannot be fulfilled in the
present situation:

Observation 8 (Impossibility of control). Let Aθ [x] be as in
(53) with finite dp. Then, there exist some constants C > 0,
λ > 0, and ε0 > 0 such that for all U ∈ SU2, θ ∈ [0,π ], and
all 0 < ε � ε0

Pθ (‖Āθ [x] − U‖ � ε) < Cελ, (54)

where Pθ denotes the probability for the random variable x

which corresponds to a quadrature measurement with angle θ .
If this is true, the expected number of tries to implement

any unitary is bounded as E(nε) > C−1(1/ε)λ for 0 < ε � ε0,
and Requirement 2 is not fulfilled. The proof is given in the
appendix.

This result, which can be summarized as “no quantum com-
putation with Gaussian measurements only” is complementary
to the one reported in Ref. [17] which can, in turn, be summa-
rized as “no quantum computing with Gaussian states only.”
These results apply only to the model where all operations
are noiseless and error correction is not performed. Together,
this means that both non-Gaussian states and non-Gaussian
measurements are simultaneously necessary for continuous-
variable MBQC. However, the two limitations differ markedly.
For the former, not enough localizable entanglement exists,
which means that the quantum information gets destroyed
along the wire and transport or teleportation is not possible.
The root of the latter limitation is the insufficient possibility to
control what quantum gate is performed.

C. Infinite-dimensional physical systems

Up to now, we have considered only resource states where
the physical dimension is finite. We demonstrate the difference
between states with and without support on a finite number of
Fock states with the help of an example where the resource
state is described by the matrices

A[x] = 1√
N

(f (x)1 + ig(x)Z) (55)

with N = ∫
dx (|f (x)|2 + |g(x)|2) to ensure the normaliza-

tion condition ∫
dx A[x]†A[x] = 1. (56)

Both f and g are chosen to be real, even functions. Thus,
also their Fourier transforms f̃ , g̃ are real and the matrices
corresponding to q̂θ are

Aθ [x] = 1√
N

{[(f (x) cos(θ ) + f̃ (x) sin(θ )]1

+ i[g(x) cos(θ ) + g̃(x) sin(θ )]Z}, (57)
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which are all unitary. If the resource state is finite dimensional,
f , g, f̃ , and g̃ are of the form

h(x) = poly(x) exp(−x2/2) (58)

and the probability for Āθ [x] to differ too much from the
desired unitary is too large. If we allow the resource state to
be infinite dimensional, the situation changes. In particular, it
is possible that f (x) = const for |x| � c for some constant
c > 0. This allows us to find a resource state where a
q-quadrature measurement implements some gate with a
finite probability. This is a striking example for a qualitative
difference between a proper continuous-variable state and all
of its finite dimensional truncations.

One might now be tempted to use this new insight to
devise a MBQC scheme which allows for theoretically efficient
single-qubit processing with Gaussian measurements only, but
this is impossible. This can be immediately seen by truncating
the state according to (15). The above results then imply
that single-qubit MBQC is impossible when the energy per
mode stays constant when scaling the system. If, on the other
hand, the energy per mode is increased with the length of the
computation, this no-go result no longer holds.

The reasons for the existence of such a severe limitation lies
in the strong notion of efficiency. If Eq. (32) in Requirement 2
is weakened to (33), this restriction is no longer present, and
it is possible to devise a MBQC-scheme based on Gaussian
measurements on a non-Gaussian resource. To do so, one can
take the resource defined by the matrices (43). After changing
the variable and neglecting global phases, one gets

Ā[x] = S(−p0q0)S(−2p0x) (59)

with p(x) = exp(−x2)/
√

π , where

S(φ) = diag[exp(−iφ/2), exp(iφ/2)]

= exp(−iφ/2)diag[1, exp(iφ)] (60)

is the phase gate. Assume that the target gate is S(φ).
Chose q0 and p0 such that θ = −q0p0 and, therefore, Ā[0] =
S(θ ). Using ‖S(α) − S(β)‖ � |α − β|, one can bound the
probability that the distance of the actually implemented gate
to the desired one is larger than ε as

P (‖Ā[x] − S(θ )‖ > ε) � P (|2p0x| > ε) � Cp0ε, (61)

where C is some constant. This means it is possible to
approximate an arbitrary phase gate in O(1/ε) steps. Changing
the interaction unitary to contain an additional Hadamard gate
on the correlation space and using the decomposition detailed
below together with the composition law for errors, it is easy
to show that any U ∈ SU2 can be approximated in O((1/ε)4)
steps.

VI. FEASIBLE, EFFICIENT CV-MBQC SCHEMES

In this section, we present a scheme which allows for
efficient CV-MBQC. The limitations discussed above force
us to use both non-Gaussian resource states and non-Gaussian
measurements. Even though the experimental requirements
for its realization are indeed challenging, the scheme uses
only primitives which all have already been demonstrated to
be feasible in proof-of-principle experiments.

A. Single-qubit operations

We choose the interaction unitary in Eq. (18) to be

U = (H ⊗ 1)(|0〉〈0| ⊗ exp(−iθ n̂) + |1〉〈1| ⊗ exp(iθ n̂)),

(62)

where θ > 0 is a parameter. We initialize the modes in a
coherent state vector |α〉 with α > 0. Equation (62) describes a
controlled rotation in phase space. The class of measurements
corresponding to unitary evolution is given by the displaced
photon-counting measurements, i.e., projections onto the state
vector |x,n〉 := D̂(x)|n〉, where x ∈ R. With the help of (10),
the applied gates read

Āx[n] = H

[
e−inφ(x) 0

0 einφ(x)

]
, (63)

where

φ(x) = arctan

(
α sin(θ )

α cos(θ ) + x

)
. (64)

The corresponding probabilities are

px(n) = e−(α2+x2+2x cos(θ)) (α2 + x2 + 2x cos(θ ))n

n!
(65)

and fulfill, for every x, the normalization condition∑
n px(n) = 1.
Any single-qubit unitary operation can be efficiently ap-

proximated with those operations: Every U ∈ SU2 can be
written as

U = S(φ1)HS(φ2)HS(φ3), (66)

where H is the Hadamard gate and φi ∈ [0,2π ]. Rewriting
this as

U = HS(0)HS(φ1)HS(φ2)HS(φ3), (67)

we have decomposed every gate into four applications of (63).
Inverting (64) yields

x(φ) = α sin(θ )

tan(φ(x))
− α cos(θ ). (68)

To implement S(φ), one only has to choose x such that
−2φ(x)n = φ for some small n where n = 0 and n = 1 suffice
and the former is only needed for φ = 0. For any fixed α �= 0
and θ �= 0, the maximally necessary shift |x| is bounded and
with (65) there exists a lower bound 0 < p0 � px(n) for all
relevant x and n. Using (67), one can see that the probability
to obtain any chosen U ∈ SU2 in four steps is lower bounded
by p4

0. Thus, the conditions for Observation 6 are fulfilled and
efficient single-qubit processing is possible.

B. Coupling of wires

We now turn to the coupling of two wires. Let the two
correlation space qubits be prepared in |ψ〉j = aj |0〉 + bj |1〉
for j = 1,2. Then, the state vectors after the interaction with
the light mode reads

aj |0〉|e−iθα〉 + bj |1〉|eiθα〉. (69)

Displacing now both modes by 
x = α cos(θ ), rotating the
second mode by an angle of π/2, and setting γ = α sin(θ ), the
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joint state vector becomes

a1a2|0,0〉|γ 〉|iγ 〉 + a1b2|0,1〉|γ 〉| − iγ 〉
+ b1a2|1,0〉| − γ 〉|iγ 〉 + b1b2|1,1〉| − γ 〉| − iγ 〉. (70)

A balanced beam splitter transforms two coherent states as

|α〉|β〉 �→
∣∣∣∣α + β√

2

〉∣∣∣∣α − β√
2

〉
. (71)

Applying this to (70) yields

a1a2|0,0〉
∣∣∣∣ γ√

2
(1 + i)

〉∣∣∣∣ γ√
2

(1 − i)

〉

+ a1b2|0,1〉
∣∣∣∣ γ√

2
(1 − i)

〉∣∣∣∣ γ√
2

(1 + i)

〉

+ b1a2|1,0〉
∣∣∣∣ γ√

2
(−1 + i)

〉∣∣∣∣ γ√
2

(−1 − i)

〉

+ b1b2|1,1〉
∣∣∣∣ γ√

2
(−1 − i)

〉∣∣∣∣ γ√
2

(−1 + i)

〉
. (72)

The matrices corresponding to a photon-counting measure-
ment in both modes with results n1 and n2 respectively read

A[n1,n1] = diag
(
e− iπn1

4 ,e− i7πn1
4 ,e− i3πn1

4 ,e− i5πn1
4

)
× diag

(
e− i7πn2

4 ,e− iπn2
4 ,e− i5πn2

4 ,e− i3πn2
4

)
, (73)

which is, up to a local unitary, a controlled phase gate, i.e.,

A[n1,n2] = diag
(
e− iπ(n1+7n2)

4 ,e− iπ(3n1+5n2)
4

)
⊗ diag

(
1,e− iπ(6n1−6n2)

4
)

× diag (1,1,1,e−iπ(−n1+n2)). (74)

If n1 + n2 is even, A[n1,n2] is not entangling, and the local
operations can be efficiently undone as described above.
If n1 + n2 is odd, a CZ gate is implemented up to local
corrections. As this situation occurs with finite probability
for any choice of α and θ , this means that Requirement 3 is
fulfilled.

It remains to show that initialization and read-out are
possible. To measure in the computational basis, we shift the
mode after the interaction by 
 = α(cos(θ ) − i sin(θ )) which
turns the joint state of qubit and mode to

a|0〉|0〉 + b|1〉|2iα sin(θ )〉. (75)

Counting the photons leads to a matrix fulfilling the conditions
of Requirement 4. Note that there is some asymmetry: If the
counted number of photons is larger than one, the qubit is in
|1〉. If the result is zero, one has to undo the gate Hdiag (1,−i)
and repeat the procedure. Due to the gap between 1 and
|〈0|2iα sin(θ )〉|, this is efficiently possible. This concludes the
proof that the proposed scheme is efficient.

As already mentioned, the coupling scheme discussed so far
is not completely in the MBQC paradigm because it involves
the adaptive coupling of sites. However, this is not necessary:
Consider two wires which are coupled every k + 1 sites by
the beam splitter described by Eq. (71). Because C2

Z = 1,
two consecutive couplings can be undone by appropriately
choosing local operations between them. From Eq. (65)
it follows that for every block of four sites, there exists

FIG. 3. Nonadaptive coupling of four quantum wires where the
wiggly lines denote the probabilistic measurement-based CZ gate. By
scaling the distance between the single couplings polylogarithmically
in the length of the computation, the total probability of failure can
be made arbitrarily small.

a probability p0 > 0 that the desired gate is realized and
probability of failure in at least one of the wires is upper
bounded by 2(1 − p0)k/4. Let n be total number of gates, the
total probability of failure is bounded by

pfailure � 2n(1 − p0)k/4 � c1ne−c2k (76)

for suitable constants c1 and c2. Thus, for a fixed probability
of success, k has only to grow as k = O(polylog(n)), which
means that the need for two-site measurements can be removed
for the price of a polylog overhead. For a quantum circuit
consisting of more than two wires, as depicted in Fig. 3,
every wire should be alternately coupled to its left and right
neighbor. When the circuits consists of m quantum wire
with all have a length n, the respective overhead behaves as
k = O(polylog(nm)).

C. Errors

Even if a model fulfills the theoretical requirements it
will still be affected by noise. Thus, error correction will
be necessary to build a scalable quantum computer. In the
scheme presented above, one plausible dominant source of
errors is reflecting the finite efficiency of the photon-counting
measurement needed to perform both single- and two-qubit
gates. If photon loss happens, a “wrong” operation is applied
in the two-dimensional correlation space. When the rate of
these qubit errors is low enough, techniques of error correction
and fault-tolerant quantum computing may be applied to
make a computation with unbounded length possible at the
expense of a polylogarithmic overhead [18,19]. This contrasts
with the errors stemming from the use of finitely squeezed
states in the scheme based on Gaussian cluster states for
which no method of error correction exists yet to achieve fault
tolerance.

In addition to the obvious errors stemming from decoher-
ence and imperfections in the measurement procedure, the
presented continuous variable schemes have an important
additional source of errors. For example, when performing
a shifted photon counting, uncertainty in the parameter of
the shift operator D(x) results in uncertainty of the applied
operator. We now investigate how those errors scale with
the length of the computation. We restrict ourselves to the
single-qubit case while noting that the error analysis for
multiple qubits is completely analogous. Consider the situation

062318-10



EFFICIENT MEASUREMENT-BASED QUANTUM COMPUTING . . . PHYSICAL REVIEW A 85, 062318 (2012)

where the target gate reads U = ∏n
i=1 Ui while the gate

actually applied is Ā = ∏n
i=1 Āi . We assume that the error

induced by a single step is bounded, i.e., for all i,

‖Āi − Ui‖ � ε. (77)

If all Āi are also unitary, the total error grows linearly in n and
can be bounded as ‖Ā − U‖ � nε. If this is not the case, an
tight upper bound to the error is

‖Ā − U‖ � nε(1 + ε)n, (78)

i.e., it grows, in the worst case, exponentially in n. In the
MBQC-scheme based on Gaussian cluster states as discussed,
e.g., in Refs. [12–15], the implemented gates are not unitary for
physical resource states, which is the reason for the exponential
decay of the transport fidelity [17].

VII. CONCLUSION

In this work, we have investigated the possibilities provided
by measurement-based quantum computing with continuous-
variable resources. After introducing a framework allowing
for the description of a huge class of possible resource
states, we have clarified which conditions are necessary
for a CV-MBQC scheme to be viable. Those conditions
lead to new limitations. Especially, we have shown that,
without the use of not-yet-developed continuous-variable
error correction, scalable quantum computing with Gaussian
measurements alone is impossible, even if the resource state is
non-Gaussian, complementing the prior result which prohibits
MBQC with Gaussian resources, even if the measurements are
non-Gaussian. As the second main result, we gave an explicit
example of an efficient MBQC scheme where the resource
could be created by a simple interaction between light modes in
coherent states and some qubit degrees of freedom. Processing
is then performed by shifted photon counting while entangling
two-qubit gates rely on simple beam splitters. An analysis of
errors highlighted the qualitative differences of the two major
kinds of errors.

Two major conclusions can be drawn from our findings:
First, continuous-variable measurement based quantum com-
puting is an extraordinarily difficult enterprise. Second, when
non-Gaussian resource states are combined with non-Gaussian
measurements, efficient schemes do exist, and in this work,
we introduce such strictly efficient schemes. While this may
be disappointing when aiming at a scalable optical quantum
computer, one does need to keep in mind that our statements
about efficiency address only the asymptotic behavior. Thus,
the limitation do not at all rule out the usefulness of much
simpler protocols in situations where only a few modes are
used. Such situations include quantum repeaters and hybrid
entanglement-distribution protocols for applications particu-
larly in quantum cryptography. Hence, for such purposes, both
the purely Gaussian setting as well as those non-Gaussian
schemes that asymptotically do not give rise to universal
quantum computing can well be feasible as elementary tools
for entanglement distillation schemes. It is the hope that the
framework established here fosters further such investigations.
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APPENDIX: PROOF OF OBSERVATION 8

To find an upper bound to P (‖Āθ [x] − U‖ � ε), we first
lower bound the probability that |x| > x0 for some suitably
chosen x0. Then, for |x| � x0, we upper bound ‖Āθ [x] − U‖
by a polynomial in x and use that the probability for a
polynomial to be larger than ε cannot grow too fast for
small ε.

We calculate

‖Āθ [x] − U‖ � ‖ Aθ [x]√
pθ (x)

− U‖2/
√

2, (A1)

where ‖O‖2 =
√∑

i,j |Oij |2 denotes the Frobenius norm. We

now use (53) and the fact that

ψn(x) = 1√
2nn!

√
π

Hn(x)e−x2/2, (A2)

where Hn(x) denotes the nth Hermite polynomial. We also
use 0 � √

x � x + 1 and that pθ (x) is upper bounded by
a constant independent of θ . This allows us to find non-
negative polynomials fU,θ and gU,θ , where the coefficients
are continuous functions of U and θ with ‖Āθ [x] − U‖ �
fU,θ (x)/gU,θ (x). As the probability density pθ (x) is of the
form pθ (x) = poly(x) exp(−x2) we get

Pθ

[
|x| > C1 ln

(
C2

ε

)]
� ε (A3)

for some suitable C1 > 0, C2 > 0. Now we assume that |x| �
C1 log (C2/ε). In this case, gU,θ can be upper bounded by
C3 (C1 log (C2/ε))r for some C3 > 0 and some even r . Note
that the maximal degree of all polynomials only depends on
dp. Assume that fU,θ has M zeros x1, . . . ,xM . Around any
of these zeros, fU,θ can be lower bounded by C4(x − xi)s for
some C4 > 0 and some even s. Using this and (A3), we chose
some ε0 such that

Pθ (‖Āθ [x] − U‖ � ε) � ε (A4)

+
M∑
i=1

Pθ

{
C4(x − xi)

s � C3

[
C1 ln

(
C2

ε

)]r

ε

}
. (A5)

for all ε � ε0. Because pθ (x) is upper bounded, there exist a
constant C5 such that

P ((x − xi)
s � ε) � C5ε

1/s . (A6)

for all ε � ε0. Inserting (A6) into (A5), one obtains (54). As
all constants depend on U and θ in a continuous way, and U

and θ are both taken from compact domains, there exist a set
of constants such that (54) is simultaneously true for all U and
θ . Thus, Observation 8 holds.
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Abstract

We significantly extend recently developed methods to faithfully reconstruct
unknown quantum states that are approximately low-rank, using only a few mea-
surement settings. Our new method is general enough to allow for measurements
from a continuous family, and is also applicable to continuous-variable states. As a
technical result, this work generalizes quantum compressed sensing to the situation
where the measured observables are taken from a so-called tight frame (rather than
an orthonormal basis) — hence covering most realistic measurement scenarios. As
an application, we discuss the reconstruction of quantum states of light from homo-
dyne detection and other types of measurements, and we present simulations that
show the advantage of the proposed compressed sensing technique over present
methods. Finally, we introduce a method to construct a certificate which guaran-
tees the success of the reconstruction with no assumption on the state, and we show
how slightly more measurements give rise to “universal” state reconstruction that
is highly robust to noise.

1 Introduction
One of the most fundamental tasks in quantum mechanics is that of quantum state
tomography, i.e., reliably reconstructing an unknown quantum state from measure-
ments. Specifically in the context of quantum information processing in most experi-
ments one has to eventually show what state had actually been prepared. Yet, surpris-
ingly little attention has so far been devoted to the observation that standard methods
of quantum state tomography scale very badly with the system size. Only quite re-
cently, novel more efficient methods have been introduced which solve this problem
in a more favorable way in the number of measurement settings that need to be per-
formed [1, 2, 3, 4, 5, 6, 12]. This development is more timely than ever, given that
the experimental progress with controlled quantum systems such as trapped ions is so
rapid that traditional methods of state reconstruction will fail: E.g., 14 ions can already
be controlled in their quantum state [7]. Hence, further experimental progress appears
severely challenged as long as ideas of reconstruction cannot keep up. Such new meth-
ods are based on ideas of quantum compressed sensing [1, 2, 6] — inspired by recent
work on low-rank matrix completion [8, 9] — or on ideas of approximating unknown
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quantum states with matrix-product states [4]. Indeed, using methods of quantum com-
pressed sensing, one can reduce the number of measurement settings from n2 − 1 in
standard methods to O(rn log2 n) for a quantum system with Hilbert space dimension
n, if the state is of rank r. This is efficient in the sense that the number of measurements
required is only slightly greater (by an O(log2 n) factor) than the number of degrees of
freedom in the unknown state.

These ideas have so far been tailored to the situation where observables are taken
from an orthonormal operator basis, which is not always the natural situation at hand.
In this paper, we introduce a theory of state reconstruction based on quantum com-
pressed sensing that allows for continuous families of measurements, referred to as
tight frames, which can be thought of over-complete, non-orthogonal generalization of
operator bases. These settings are particularly important in the context of continuous-
variables, which are notably used to describe quantum optical systems beyond the
single-photon regime. These have drawn a considerable amount of research, both ex-
perimentally and theoretically, due to very desired features such as easy preparation
and highly efficient detection. Note that when talking about a measurement, we always
mean the estimation of an expectation value of an observable for which, of course,
several repetition of some experimental procedure are necessary. In this paper we are
mainly concerned with the number of distinct observables or measurement settings that
are needed for tomography.1

In this work, we make significant progress towards a full theory of efficient state
reconstruction via compressed sensing:

1. We introduce new incoherence properties for tight frames, that are sufficient to
ensure efficient compressed sensing for low-rank states. This uses an extension
of the “golfing” proof technique of [1, 2]. We give examples of tight frames
that satisfy these properties. In addition, we show that, if one only wishes to
reconstruct “typical” or “generic” low-rank states, there is a much larger class of
tight frames that also lead to efficient compressed sensing.

2. We also describe a way to certify a successful reconstruction of the state, making
our protocol unconditional and heralded. In this way, one does not need to make
any a priori assumptions on the unknown state. Our method uses convex duality,
and is different from other approaches to certification that focus mainly on pure
states [1, 4, 11, 12]. Also, we discuss the robustness of the procedure under
decoherence, imperfect measurements, and statistical noise. We show that, as
long as all those effects are small, it is possible to certify that the reconstructed
state is close to the true state.

3. We show that, using an incoherent tight frame, and a slightly larger number of
measurements, one can achieve universal state reconstruction: a single fixed set
of measurements can simultaneously distinguish among all possible low-rank
states. This is a qualitatively stronger claim than those shown above, and it is
obtained using a different technique, based on the “restricted isometry property”
(RIP) [6, 13]. This implies strong error bounds, showing that our procedure for
state reconstruction is robust to statistical noise, and that it works even when
the true state is full-rank with rapidly decaying eigenvalues (in which case our
procedure returns a low-rank approximation to the true state).2

1Other work addresses the number of copies of the unknown state that must be provided [10] — that is,
the sample complexity of tomography.

2As a side note, the RIP-based analysis also shows that the compressed sensing state estimator is nearly
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4. We show how our theory can be applied in realistic experimental scenarios, in-
volving pointwise measurements of the Wigner function, and homodyne detec-
tion.

5. We demonstrate numerically that compressed sensing outperforms the naive ap-
proach to tomography not only in the asymptotic limit of large systems but also
for system sizes commonly accessible in present day experiments.

This article is organized as follows: We start by introducing quantum compressed
sensing in the general setting described by tight frames in Section 2. After discussing a
suitable notion of efficiency, we show in Section 3 that efficient compressed sensing is
possible if the tight frame fulfills certain incoherence properties. Section 4 is devoted to
certified compressed sensing. We discuss how to certify the success of the reconstruc-
tion without prior assumptions on the tight frame, both in the ideal case and under the
effects of errors. In Section 5 we show universal state reconstruction and error bounds.
In Section 6, we investigate applications of the formalism to two common classes of
quantum optical experiments; and in Section 7, numerical data, showing the efficiency
for small systems, is presented.

2 Quantum compressed sensing
Consider a quantum system with Hilbert space dimension n. In most cases of interest,
n is very large, but the states one wants to reconstruct are approximately low-rank, that
is, they are well-approximated by density matrices having rank r � n. (Pure states
correspond to the case where r = 1.) When dealing with continuous-variable systems,
we will truncate the infinite-dimensional Hilbert space and choose n to be some large
but finite cutoff. This is unavoidable, if one wants to do tomography as one cannot
reconstruct a state that contains an infinite number of completely independent param-
eters. However, in most experimentally relevant situations, e.g., continuous-variable
light modes with finite mean energy, all states can be arbitrarily well approximated by
finite-dimensional ones. We will elaborate on this claim when discussing other sources
of errors such as decoherence or imperfect measurements.

Compressed sensing contains two key ideas. First, rather than measuring all n2 de-
grees of freedom, it is sufficient to measure a randomly chosen subset of about rn de-
grees of freedom, provided these degrees of freedom satisfy certain incoherence prop-
erties. Secondly, one can reconstruct the state using an efficient algorithm. The obvious
approach of searching for the lowest-rank state compatible with the measurement re-
sults leads to a computationally intractable problem (generally NP-hard). Instead, one
can perform a convex relaxation, and minimize ‖.‖1 instead of the rank. Here ‖.‖p
stands for the Schatten p-norm: ‖.‖1, ‖.‖2, and ‖.‖ = ‖.‖∞ are respectively the trace
norm, Frobenius norm, and spectral (or operator) norm.

Let us denote themmeasured observables, i.e. Hermitian matrices, byw1, . . . , wm,
and suppose that we estimate their expectation values (by measuring many copies of
the unknown state). Knowing these expectation values (for an unknown state ρ) is
equivalent to knowing the value of the sampling operator R(ρ), where we define

R : σ 7→ n2

m

m∑

i=1

(wi, σ)wi (1)

minimax-optimal [13], and it implies nearly-optimal bounds on the sample complexity of low-rank quantum
state tomography [10].
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where (A,B) = Tr(A†B) is the Hilbert-Schmidt scalar product. In all of our com-
pressed sensing schemes, w1, . . . , wm will be chosen independently at random from
some distribution µ. The sampling operator R is a linear super-operator on the d2-
dimensional real vector space of Hermitian matrices, or operators, B(Cn). Such super-
operators will always be denoted by capital script letters. Sometimes we will use the
notationRσ, multiplying the “matrix”R by the “vector” σ; this means the same thing
asR(σ).

Let ρ be the unknown state. In the ideal case, with perfect measurements and no
statistical noise, we measureR(ρ) exactly. Then the procedure to reconstruct ρ can be
written as

min
σ∈B(Cn)

‖σ‖1 , subject to R(σ) = R(ρ). (2)

Note that a quantum state ρ is a Hermitian matrix with the additional properties ρ ≥ 0
and Tr ρ = 1. However, the reconstruction procedure (2) does not make use of this
property and is, therefore, also applicable in more general settings, e.g. matrix com-
pletion. This problem can be stated as a semi-definite program (SDP) and, therefore,
solved efficiently with many well-developed tools.

In the case of noisy data, we measure R(ρ) approximately, that is, we measure
some b such that ‖b−R(ρ)‖ ≤ δ, for some norm ‖ · ‖ and tolerance δ that are chosen
depending on the kind of noise that is expected. The constraint Rσ = Rρ in (2) can
then be replaced by ‖R(σ)− b‖ ≤ δ, which implies ‖R(σ − ρ)‖ ≤ 2δ.

We remark that equation (2) is the key to certifying our estimate for ρ. Notice that
if the solution σ∗ of (2) is unique and fulfills ‖σ∗‖1 = 1, then it must be the case that
σ∗ = ρ. We will show later on how one can test the uniqueness of the solution σ∗,
without assuming anything about ρ. (This can be adapted to work with noisy data,
without assuming anything about the noise.)

2.1 Measurements and tight frames
When we talk about a compressed sensing scheme, we mean any protocol based on
the reconstruction procedure (2), with some choice of measurements described by the
sampling operator (1). In Refs. [1, 2], the observables were required to be chosen uni-
formly at random from an operator basis. We substantially generalize these techniques,
using the notion of a tight frame, which naturally captures many useful quantum mea-
surements:

Definition 1 (Tight frame). Let µ be a probability measure on some set S, and for
every α ∈ S, let wα be an observable, i.e., a Hermitian operator, and let Pα be the
(unnormalized) orthogonal projector which acts as Pα : σ 7→ (wα, σ)wα. We say that
(wα)α∈S is a tight frame if ∫

Pαdµ(α) =
1

n2
. (3)

This can also be written as Eα(n2Pα) = 1 where α is drawn according to µ.
Because we deal with randomly drawn operators very often, α will usually denote a
random element of S that has distribution µ. Note that we do not require that ‖wα‖2 =
1 for all α as it will be convenient in many applications. However, we do require a
weaker normalization condition: Eα[‖wα‖22] = 1 which follows by taking the trace of
(3).

We also define a generalized notion of a tight frame, where the sampling operator is
not a sum of projectors; we will need this later to model homodyne detection on optical
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modes, where a single measurement setting provides more information than only one
expectation value.

Definition 2 (Generalized tight frame). Let µ be a probability measure on some set
S, and for every α ∈ S let Qα be a positive operator. We say that (Qα)α∈S forms a
generalized tight frame if ∫

Qαdµ(α) =
1

n2
. (4)

We note that the formalism can be also applied to 8-port homodyne detection which
corresponds, for a single mode, to projections on coherent states |α〉 with α ∈ C.

2.2 Uniqueness of the solution to (2)
For ρ to be the unique solution to (2), any deviation ∆ must be either trace-norm
increasing, i.e., ‖ρ + ∆‖1 > ‖ρ‖1, or infeasible, i.e., R∆ 6= 0. This is done by
decomposing ∆ into a sum ∆T + ∆⊥T , and then showing that, with high probability, in
the case where ∆T is large, ∆ must be infeasible, while in the case where ∆T is small,
∆ must be trace-norm increasing. Here, we denote by T the real space of Hermitian
matrices that send the kernel of ρ on its image. In other words, the elements of T are
the Hermitian matrices σ whose restriction on and to the kernel of ρ, i.e. πσπ where π
is the orthogonal projection on Ker ρ, is equal to 0. PT denotes the projection on this
space T .

Again, in the actual reconstruction, no assumptions have to be made concerning ρ
or T . Theorem 1 gives a sufficient condition for uniqueness. The sign function sgn
of a Hermitian matrix is defined by applying the ordinary sign function to the matrix’
eigenvalues.

Theorem 1 (Uniqueness of the solution). Let Y ∈ rangeR, and set (a) c1 := ‖PTY −
sgn ρ‖2, (b) c2 := ‖P⊥T Y ‖, and (c) c3 := ‖PTRPT − PT ‖. If

1

n3
(1− c2)

√
1− c3
m

− c1 > 0, (5)

then the solution to (2) is unique.

Proof: ∆ must be infeasible if ‖R∆‖ > 0 which is the case if

‖R∆T ‖22 = (R∆T ,R∆T ) > ‖R∆⊥T ‖22. (6)

The right-hand side is bounded as ‖R∆⊥T ‖22 ≤ ‖R‖2‖∆⊥T ‖22 ≤ n8‖∆⊥T ‖22 while the
left-hand side fulfills

‖R∆T ‖22 =(R∆T ,R∆T ) ≥ n2

m
(∆T ,R∆T )

≥n
2

m
(1− ‖PTRPT − PT ‖) ‖∆T ‖22. (7)

Thus, (6) is satisfied if

n2

m
(1− ‖PTRPT − PT ‖) ‖∆T ‖22 > n8‖∆⊥T ‖22, (8)
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which, using definition (c), is equivalent to

‖∆⊥T ‖2 <
1

n3
‖∆T ‖2

√
1− c3
m

. (9)

Using the pinching [19] and Hölder’s inequalities, as detailed in Ref. [2], yields

‖ρ+ ∆‖1 ≥ ‖ρ‖1 + (sgn ρ+ sgn ∆⊥T ,∆). (10)

The second term is equal to

(sgn ρ− Y,∆T ) + (sgn ∆⊥T − Y,∆⊥T ) (11)

which is, according to (a) and (b), larger than

‖∆⊥T ‖2 − c2‖∆⊥T ‖2 − c1‖∆T ‖2. (12)

Inserting this into (9) gives rise to condition (5) and concludes the proof. If all the
elements in the tight frame fulfill ‖wα‖2 = 1 we call it normalized and one can bound
‖R‖ ≤ n2. In this case (5) in Theorem 1 can be weakened to

1

n
(1− c2)

√
1− c3
m

− c1 > 0. (13)

2.3 Efficient quantum compressed sensing
Let ρ be a state of dimension n and rank r. In the compressed sensing method of
tomography, we choose m observables w1, . . . , wm randomly from some distribution,
measure their expectation values with respect to ρ, then solve (2) to obtain σ∗, which
is our estimate of ρ.

For a given state ρ, there is some probability pf (ρ) that the procedure may fail
(i.e., it may return a solution σ∗ that is not close to ρ). Note that this probability pf (ρ)
is taken with respect to the random choice of w1, . . . , wm, and the random outcomes
of the measurements. We say that the method succeeds with high probability if, for
every low-rank state ρ, the failure probability is pf (ρ) small. Equivalently, the method
succeeds with high probability if,

for every low-rank state ρ, most choices of the observables w1, . . . , wm
can be used to successfully reconstruct ρ.

Now, the basic question is: how large does m have to be, to ensure that the method
succeeds with high probability? A common situation is that the system under consider-
ation consists of k subsystems with local Hilbert space dimension d; then n = dk. Of
course, no method of tomography can counter the exponential growth of the required
number of measurements in k. Thus, efficiency needs to be regarded relative to the
n2 − 1 measurements necessary for standard tomography. As even a pure state needs
Θ(n) parameters to be described, this also is a lower bound to the number of observ-
ables that need to be measured. We allow for an additional polylogarithmic overhead
and define efficiency as follows:

Definition 3 (Efficient quantum compressed sensing). Compressed sensing for a state
ρ (with dimension n and rank r) is regarded as efficient if: The number of measured
observables satisfies m = O(nr polylog(n)), and the probability of failure satisfies
pf (ρ) < 1/2.
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If this is the case, pf (ρ) can be made arbitrarily small by repeating the protocol and
using a majority vote among the reconstructed states to get the final result. Then, the
probability of failure decays exponentially in the number of repetitions.

Note that this is a very stringent definition of efficiency. One can also merely ask
for any scaling of m in o(n2). Of course, this weaker condition is easier to satisfy, as
we shall see later on.

2.4 Sufficient conditions for efficiency
The general theory of quantum compressed sensing, which will be developed here, re-
lies heavily on and significantly extends the analysis for the special case where the ob-
servables form an operator basis in Ref. [2]. The hypothesis for Theorem 1 is fulfilled
if c1 ≤ 1/(2n4), c2 ≤ 1/2, c3 ≤ 1/2 under the additional condition m < n2/2, which
can be safely assumed to be true as we are only interested in the regime of m � n2.
For normalized tight frames, the first condition can be weakened to c1 ≤ 1/(2n2). We
show conditions to the tight frame under which those conditions are fulfilled with high
probability.

For efficient compressed sensing to be possible, the observables wα need to fulfill
certain incoherence properties. Roughly speaking, the observables are “incoherent”
if they have small inner product with every possible state one wishes to reconstruct.
For example, operator norm can be a measure of incoherence for reconstructing pure
states, since ‖wα‖ = max〈ψ|ψ〉=1〈ψ|wα|ψ〉. We distinguish two general cases (which
we will define more precisely in the following sections):

1. “Fourier-type” compressed sensing, where almost all of the observables have
small operator norm. In this case, efficient compressed sensing is possible for
any low-rank state.

2. “Non-Fourier type” compressed sensing, where the observables may have large
operator norm, but efficient compressed sensing is still possible for certain re-
stricted classes of states, e.g., generic states.

2.5 Fourier-type efficient compressed sensing
The efficiency of a tomography protocol, as given in Definition 3, is a statement about
a family of procedures acting on systems with growing dimension n. We now give
a sufficient condition for a family of tight frames to allow for efficient compressed
sensing.

Theorem 2 (Fourier type). Let (wα(n))α∈S be, for any n > 0, a tight frame. Let ρ(n)
be any state with dimension n and rank r. Let ν = O(polylog(n)). Set C(n) := {α ∈
S : ‖wα(n)‖2 > ν/n} and let µ(C(n)) be the measure of this set. If

µ(C(n)) ≤ 1

16
√
rn2m

, (14)

efficient compressed sensing is possible for the family of states ρ.

Here, the underlying “incoherence property” is the bound on the operator norm of
the observables,

‖wα(n)‖2 ≤ ν/n, (15)

which holds for “most” choices of α. If there is no risk of confusion, we will omit the
explicit dependencies on n.
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2.5.1 Perfect Fourier-type case

We have to first consider the case µ(C) = 0. Even though the proof in Ref. [2] can
be applied with only minor changes, we state it in a way as complete and still non-
technical as possible where we focus on the asymptotic behavior and do not provide
explicit constants. We need Lemma 5 from Ref. [2] which reads:

Lemma 1 (Large deviation bound for the projected sampling operator). For all t < 2

P [‖PTRPT − PT ‖ > t] ≤ 4nr exp

(
− t

2κ

8ν

)
, (16)

where κ = m/(nr) is the oversampling factor which must fulfill κ = O(polylog(n))
for efficiency.

The tool to prove Lemma 1 and other bounds of this form is provided by the
operator-Bernstein inequality which was first given in Ref. [17] and which we state
here without a proof.

Lemma 2 (Operator-Bernstein inequality). Let (Xi)i=1,...,m be i.i.d. Hermitian matrix-
valued random variables with zero mean. Suppose there exist constants V0 and c such
that ‖E(X2

i )‖ ≤ V 2
0 , ‖Xi‖ ≤ c where the latter needs to be true for all realizations of

the random variable. Define A =
∑
iXi and V = mV 2

0 . Then, for all t ≤ 2V/c

P [‖A‖ > t] ≤ 2n exp

(
− t2

4V

)
. (17)

The proof of Lemma 1 is given in Ref. [2] but we restate it here because it is
quite instructive. Let α be a random variable taking values in S. We define m ran-
dom variables by Zαi

= (n2/m)PTPαi
PT and Xαi

= Zαi
− E(Zαi

). Now S =
PTRPT − PT =

∑
iXαi

and we have to estimate the maximum of ‖Xαi
‖ and the

norm of the variance of Xαi in order to apply Lemma 2. From the incoherence condi-
tion (15), we get by using the matrix Hölder inequality [19]

‖PTwα‖22 = sup
σ∈T,‖σ‖2=1

(wα, σ)2 ≤ 2ν
r

n
. (18)

This allows us to write

‖E(X2
αi

)‖ =‖E(Z2
αi

)−E(Zαi
)2‖

≤2nνr − 1

m2
‖PT ‖ ≤

2ν

mκ
(19)

and

‖Xαi‖ =
1

m
‖n2PTPαiPT − PT ‖

≤ 1

m
‖n2PTPαi

PT ‖ =
n2

m
‖PTwαi

‖22

≤2ν

κ
. (20)

Here, and in the remainder, statements of the form (20) are meant to hold for all real-
ization of the random variable as needed in the Operator Bernstein inequality. Inserting
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now (19) and (20) into Lemma 2 yields Lemma 1 which concludes the proof. Applying
Lemma 1 for t = 1/2 and choosing κ = O(polylog(n)), the probability that c3 > 1/2
can be made arbitrarily small.

Now we have to construct a certificate Y whose projection on T is close to sgn ρ.
This is done by an iterative process, called the golfing scheme [2]. The m samples are
grouped into l groups which are indexed by i and contain mi samples each. LetRi be
the sampling operator of the ith group and setX0 = sgn ρ,Xi = (1−PTRiPT )Xi−1,
Yi =

∑i
j=1RjXj−1, and Y = Yl.

Again, Lemma 1 can be used to show that with high probability (at the expense of
a polylog growth of κi)

‖Xi‖2 ≤ ‖PTRiPT − PT ‖‖Xi−1‖2 ≤
1

2
‖Xi−1‖2, (21)

and, therefore, ‖Xi‖2 ≤
√
r2−i from which we get

c1 = ‖Xl‖2 ≤
√
r2−l ≤ 1

2n2
, (22)

while for the final inequality to hold it is enough to set l = Θ(log(
√
rn)). For the last

remaining condition we need the subsequent statement:

Lemma 3 (Bound for the orthogonal projection). Let F ∈ T and t ≤
√

2/r‖F‖22.
Then

P
[
‖P⊥T RF‖ > t

]
≤ 2n exp

(
− t2κr

4ν‖F‖22

)
. (23)

Proof: Without loss of generality, consider ‖F‖2 = 1 and define the zero-mean
random variables Xαi

= (n2/m)P⊥T wαi
(wαi

, F ) which fulfill
∑
iXαi

= P⊥T RF .
Their variance is bounded by

‖E(X2
αi

)‖ ≤ n
4

m2

∫
d(µ) (wα, F )2‖(P⊥T wα)2‖

≤ ν

mκr
, (24)

and their norm by

‖Xαi‖ ≤
n2

m

√
ν

n

2νr

n
=

√
2ν√
rκ
. (25)

Lemma 3 follows directly from using (24) and (25) in Lemma 2. Now we can bound

c2 = ‖P⊥T Y ‖ ≤
1

4

l∑

i=1

2−(i−1) <
1

2
. (26)

Again, the probability of (26) not being true can be made as small as desired by choos-
ing κ = O(rmpolylog(n)). Of course, this is also true for the total probability of
failure which concludes the proof.
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2.5.2 Imperfect Fourier-type case

We now show that the incoherence condition may be violated for some of the ob-
servables and adapt a technique used in Ref. [14]. Intuitively, when µ(C) is small
enough, we can just abort and restart the reconstruction procedure whenever we en-
counter a non-incoherent operator during our sampling process. The probability of this
to happen is upper bounded by (16

√
rn2)−1 as obtained from (14) by a union bound

over the m measurements. This is equivalent to sampling only from the set S \ C.
The conditional probability distribution on the observables does fulfill the approximate
tight-frame condition

‖W − 1‖ ≤ 1/(8
√
r), (27)

whereW = n2E(Pα|E) whereE is the event that all of them chosen operators satisfy
‖wαi

‖2 ≤ ν/n and its complement is denoted by Ec. Let 1E be the indicator function
of E. Then, 1 = n2E(Pα) = n2E(Pα1E) + n2E(Pα1Ec). This leads to

‖n2E(Pα|E)− 1‖P(E) = ‖(1−P(E))1− n2E(Pα1Ec)‖
≤ P(Ec) + n2‖E(Pα1Ec)‖. (28)

With the help of Jensen’s inequality, we can simplify ‖E(Pα1Ec)‖ ≤ E(‖Pα‖1Ec) =
P(Ec). Inserting this into (28) and rearranging, we get

‖n2E(Pα|E)− 1‖ ≤ 2n2P(Ec)

1−P(Ec)
≤ 2n2P(Ec). (29)

Our claim follows by taking P(Ec) = 1/(16
√
r) which is always true by a union

bound. We now have to justify why the tight frame condition (3) can be replaced by
the approximate one in Eq. (27) in the proof of Lemma 1 and Lemma 3. We denote the
probability measure which is conditioned on the event E by µ̄.

Lemma 1 provides a bound to

‖PT (R− 1)PT ‖ ≤ ‖PT (R−W)PT ‖ (30)
+ ‖PT (W − 1)PT ‖.

We define the random variables Zαi and Xαi as in the proof of Lemma 1 and bound
their variance as

‖E(X2
αi

)‖ = ‖E(Z2
αi

)−E(Zαi
)2‖

≤ ‖E(Z2
αi

)‖+ ‖E(Zαi
)2‖

≤ 1

m2

(
2nνr + ‖W‖2

)

=
1

m2

(
2nνr + (

1

8
√
r

+ 1)2
)
≤ 4nνr

m2
, (31)

and their norm as ‖Xαi‖ ≤ 2νnr/m. Using the operator Bernstein inequality yields

Lemma 4 (Large deviation bound for the projected sampling operator).

P(‖PTRPT − PT ‖ > t) ≤ 4nr exp

(
− t

2κ

64ν

)
, (32)

for all 1/(4
√
r) ≤ t ≤ 4.
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where we have also used (30) to bound the second term in (27). Thus, up to an
irrelevant constant factor, Lemma 4 replaces Lemma 1 wherever it is used.

To also replace Lemma 3, let F ∈ T , ‖F‖2 = 1 and note that

‖P⊥T RF‖ ≤ ‖P⊥T (R−W)F‖+
1

8
√
r
. (33)

The random variables are Zαi
= (n2/m)P⊥T Pαi

F and Xαi
= Zαi

− E(Zαi
) where

the variance is bounded by

‖E(X2
αi

)‖ = ‖E(Z2
αi

)−E(Zαi
)2‖

≤ ‖E(Z2
αi

)‖+ ‖E(Zαi
)2‖

≤ 1

m2

(
nν +

1

64r

)
≤ 2ν

mκr
(34)

which gives, together with ‖Xαi‖ ≤ 2
√

2ν/(
√
rκ), and an application of the operator-

Bernstein inequality the subsequent statement.

Lemma 5 (Bound for the orthogonal projection). LetF ∈ T and 1/(2
√
r) ≤ t/‖F‖2 ≤

2
√

2/r. Then

P
[
‖P⊥T F‖ > t

]
≤ 2n exp

(
− t2κr

32ν‖F‖22

)
. (35)

Lemma 5 takes the place of Lemma 3 and, again, differs only by a constant factor
in the exponent which concludes the proof of Theorem 2.

An example for a Fourier-type frame for which µ(C) 6= 0 is given by the following
situation. Here, with some probability, every Hermitian matrix with unit Frobenius
norm is drawn in the measurement.

Example 1 (Tight frame containing all Hermitian matrices). Any wα ∈ B(Cn) with
‖wα‖2 = 1 can be viewed as a vector on the n2 dimensional unit sphere. Therefore,
on can define a rotationally invariant Haar measure on it. The tight frame formed
by the Haar measure on all Hermitian matrices with ‖wα‖2 = 1 fulfills Theorem 2.
Therefore, it allows for efficient compressed sensing.

In order to satisfy Theorem 2, we have to show

P

(
‖wα‖2 >

ν

n

)
≤ 1

16
√
rn2m

, (36)

where ν = O (polylog (n)). To see that this is true, we note that we are dealing with
a normalized version of the extensively discussed Gaussian unitary ensemble (GUE)
denoted by {w̄α}, wα = w̄α/‖wα‖2. Now for all δ > 0, ε > 0 we have

P

(
‖wα‖ ≥

δ√
n

)
≤ P

(
‖w̄α‖ >

δε√
n

)
+P (‖w̄α‖2 > ε) . (37)

The first term can be bounded using a result from Ref. [16] yielding

P(‖w̄α‖ > δε/
√
n) ≤ c1 exp(−c2n(δε− 2)3/2) (38)

where c1, c2 > 0 are small constants while for the second term we use the properties
of the χ2

k-distribution which are given the appendix. From this, we get

P
(
‖w̄α‖22 > 1− y

)
≤ exp(−y2n3/4). (39)

11



We set y = 1/2 and see that (36) is fulfilled for some constant ν when n is large
enough.

Product measurements are of great experimental importance: They describe the
situation of addressing individual quantum systems, say, ions in an ion trap experiment
or individual modes in an optical one. They are described by tight frames which are
formed as tensor products of tight frames on the local systems. Given a tight frame
which fulfills ‖wα‖2 ≤ ν/d, one can obtain a tight frame on the n = dk dimensional
Hilbert space by forming the k-fold tensor product. The strongest possible incoherence
property we can obtain is ‖wα‖2 ≤ νk/n. Unless ν = 1, as for the Pauli matrices, ν
grows too fast to allow for efficient compressed sensing for all states. This is even true if
the incoherence condition may be violated on some set C with µ(C) = O(1/poly(n)).

2.6 Non-Fourier-type efficient compressed sensing
The conditions in Theorem 2 imply that efficient compressed sensing is possible for
any low-rank state ρ. This is a quite special situation and for Theorem 2 to be ful-
filled, either a very special structure, like the one of the Pauli basis [1], or a large
amount of randomness, like in the above example, is needed. As an example for a very
different situation, consider the state ρ = |0〉〈0| together with the observables which
corresponds to the sampling of single matrix-entries (or the Hermitian combinations
of two of them). Here, one needs to take Θ(n2) attempts until one “hits” the single
non-zero entry in the upper-left corner. This is not surprising because the operators in
this basis fulfill ‖wα‖ = Θ(1). However, for most of the states, efficient compressed
sensing is indeed possible in this basis. In Theorem 3, we give a sufficient condition
for combinations of states and tight frames to work.

Theorem 3 (Non-Fourier-type efficient compressed sensing). For a given tight frame
{wα | α ∈ S}, and a given rank-r state ρ, denote by C ⊂ S the set of observables for
which at least one of the following conditions is not fulfilled:

‖PTwα‖22 ≤
2νr

n
, (40)

(wα, sgn ρ)2 ≤νr
n2
. (41)

If µ(C) ≤ (16
√
rn2m)−1, efficient compressed sensing is possible for the state ρ.

The golfing scheme works exactly like in the Fourier-type case, as does the proof
of Lemma 1. However, Lemma 5 must be replaced by something else. Again, we
use the technique of conditioning which means that we assume the incoherence con-
dition to hold for all operators in the tight frame and the tight frame condition to be
approximately true as in (27). First, we need some preparation.

Lemma 6 (Bound to the scalar product). Let F ∈ T such that ‖F‖2 ≤ f , 1/(4
√
r) ≤

f/t ≤ 2
√

2/r, and

(wα, F )2 ≤ νf2

n2
(42)

for all α ∈ S. Then

P
(
‖P⊥T RF‖ > t

)
≤ 2n exp

(
− t2κr

64νf2

)
. (43)
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Proof: We consider the same same random variables as in the proof of Lemma 4
(note that we have again set ‖F‖2 = 1) and bound their variance as

‖E(X2
αi

)‖ ≤ n
4

m2

(
max
ψ

∫
dµ(α) (wα, F )2〈ψ|w2

α|ψ〉+
1

64r

)

≤ 4ν

mκr
, (44)

where we have used the incoherence property and
∥∥∥∥
∫

dµ̄(α)w2
α

∥∥∥∥ ≤
2

n
. (45)

To see that (45) holds, we start with

1

n
=

∫
dµ(α)w2

α = (1− |C|)
∫

dµ̄(α)w2
α +

∫

C

dµ(α)w2
α (46)

where the first equality follows directly from the tight frame property, c.f. Ref. [2],
while the second one stems from the definition of the conditional probability distribu-
tion µ̄. Rearranging and taking the norm yields

∥∥∥∥
∫

dµ̄(α)w2
α

∥∥∥∥ ≤
1

1− |C|

(
1

n
+ |C|

)
(47)

which implies (45). Using (44) together with ‖Xαi‖ ≤ 2
√

2ν/(
√
rκ) in Lemma 2, we

obtain Lemma 6 which concludes the proof.
The above Lemma must by applied for F = X0, . . . , Xl, i.e., the operators occur-

ring in the golfing scheme. By the second incoherence condition, (42) is fulfilled for
F = X0. To ensure that incoherence is preserved during the golfing scheme, we must
use a more complicated and technical argument than in Ref. [2] where a union bound
over all elements of the operator basis was used which is clearly impossible in a tight
frame with an infinite number of elements.

Lemma 7 (Replacing the union bound).

PR

(
ξ((1− PTRPT )F ) >

1

2
‖F‖2

)
≤ 16

√
rmn2 exp

(
− κ

64ξ(F )ν

)
, (48)

where ξ(F ) is the smallest number such that

Pα

(
(wα, F )2 < ξ(F )

)
≤ 1

16
√
rn2m

. (49)

Proof: We fix an element wβ from the tight frame and note that for F ∈ T

|(wβ ,PT (R− 1)F )| ≤|(wβ ,PT (R−W)F )|
+ |(wβ ,PT (W − 1)F )|. (50)

The latter term is smaller than ‖W − 1‖‖F‖2. To bound the former term, we define
the random variable

Xαi =
1

m
(wβ , F )− (wβ ,

n2

m
PTwαi)(wαi , F ) (51)
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whose variance is bounded by

|E[X2
αi

] ≤ 2nξ(F )νr

m2
+

1

m2
‖W − 1‖2‖F‖22 (52)

and ‖Xαi‖ ≤ 2(1+nνr)
√
ξ(F )/m. Using once again the operator Bernstein inequal-

ity yields after squaring

P

(
(wβ , (1− PTRPT )F )2 >

1

2
‖F‖22

)
≤ 2 exp

(
− m

128nrξ(F )ν

)
. (53)

Eq. (53) says that the desired property is true with high probability for any fixed wβ .
To show that it is also true with high probability for most of the operators, we need a
simple fact from probability theory, which is shown in the appendix.

Lemma 8 (Inverting probabilities). Let X and Y be two measure spaces and denote
by x ∼ y a relation between the elements x ∈ X and y ∈ Y . If

∀x ∈ X : P(x 6∼ y|y ∈ Y ) ≤ p (54)

then
P (P(x 6∼ y|x ∈ X) > β|y ∈ Y ) ≤ p

β
(55)

Applying this to (53) and using the definition of ξ(F ), one directly obtains (48)
which completes the proof of Lemma 7. Now, we can see that µ(Xi) ≤ 2−i

√
rν/n2

which means that Lemma 6 can be applied in the golfing scheme and we have proven
Theorem 3.

2.7 Reconstructing generic quantum states
In a next step, we investigate the reconstruction of random quantum states, that are
sampled from probability measures that are invariant under the action of the unitary
group by conjugation. We show examples of tight frames that satisfy the incoherence
properties required in Theorem 3 to allow reconstruction of most quantum states.

Theorem 4 (Incoherence properties of generic states). Let (wα)α∈S be a (family of)
tight frame for which all operators fulfill ‖wα‖1 = O(polylog(n)), and pick a ran-
dom rank r quantum state ρ, with a distribution that is invariant under the action of
the unitary group. Then the probability that ρ cannot be efficiently reconstructed by
compressed sensing vanishes as O(1/poly (n)).

Note that Theorem 4 holds for all unitarily invariant measures on the quantum states
of rank r regardless of the actual distribution of the eigenvalues.

Proof: We first show that for any fixed element of the tight frames, both incoherence
properties are fulfilled with high probability. First, we turn to

‖PTw‖22 =
∑

i,j|min(i,j)≤r
|(U†wU)i,j |2 (56)

where U is a unitary matrix which is chosen according to the Haar measure and we
have fixed an element w from the tight frame. We look at the ith row of U†wU and
note that

∑
j |(U†wU)i,j |2 =

∑
j |(U†w)i,j |2. We write wj for the jth column vector
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of w and note that U†wj/‖wj‖ is just a random vector on a sphere . Thus, the squares
of its coordinates are concentrated around 1/n, c.f. the appendix, and we get

PU

( |(U†w)i,j |2
‖wj‖2

>
ν

n

)
≤ 2 exp

(
−ν

8

)
. (57)

Using this in Eq. (56), inserting
∑
i ‖wi‖2 = ‖w‖22 = 1, and applying a union bound

yields

PU

(
‖PTw‖22 >

2νr

n

)
≤ 2nr exp

(
−ν

8

)
. (58)

Employing again Lemma 8, this implies

PU

(
Pw

(
‖PTw‖22 >

2νr

n

)
>

1

16
√
rn2m

)
≤ 32r3/2n3m exp

(
−ν

8

)
. (59)

where w is chosen according to the probability distribution of the tight frame. By al-
lowing ν to grow polylogarithmically in n, this probability vanishes polynomially in n
which means that it is violated to much only for a proportion of state vanishing poly-
nomially as n grows. Now we turn to the second non-Fourier incoherence condition.
Decomposingw as a sum of projectors on orthogonal subspacesw =

∑
k λk|Ψk〉〈Ψk|,

we can write

|(w, sgn ρ)| ≤
r∑

i=0

∑

k

|λk||〈i|U†|Ψk〉|2. (60)

Using the concentration of measure on the sphere and
∑
k |λk| = ‖w‖1 yields

P

(
(w, sgn ρ)2 >

r2ν

n2
‖w‖21

)
≤ 2nr e−

√
ν/8, (61)

which finally gives

PU

(
Pw

(
(w, sgn ρ)2 >

r2ν

n2
‖w‖21

)
>

1

16
√
rmn2

)

≤ 32r3/2mn3 exp

(
−
√
ν

8

)
. (62)

Since the additional factor of r can be absorbed in ν, Theorem 4 follows from Eq. (62).
Tight frames for which this is the case include those where the rank of the operators

does not grow with n. The other extreme is given by the Pauli basis: From ‖w‖2 = 1
and ‖w‖ = 1/

√
n it follows that ‖w‖1 =

√
n. Colloquially speaking, a small spectral

norm implies a large trace norm and vice versa. Thus, we have two classes of tight
frames (Fourier likes ones and the ones with small 1-norm) for which efficient com-
pressed sensing is efficiently possible. Because they represent in some sense the two
extreme cases (flat spectra vs. concentrated spectra), we have some reason to believe
that this is indeed true for any tight frame.

3 Certification

3.1 Ideal case
Theorems 2 and 3 show that efficient compressed sensing is possible in a vast number
of situations. They are stated in the asymptotic regime for clarity but could be furnished
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with reasonable prefactors for finite Hilbert-space dimension n. However, when using
compressed sensing in actual experiments, one encounters three main problems.

• Firstly, the necessary number of measurements as calculated from the incoher-
ence properties of the employed tight frame might still be too large to be feasible.

• Secondly, repetition of the experiments to increase the probability of success to
a satisfactory value may be expensive or difficult.

• Thirdly, it is unknown how close to low-rank the state actually is. After all, no
assumptions are made about the unknown input state.

The solutions to those problems is provided by certification. Instead of theoretically
constructing some certificate based on ρ with the help of the golfing scheme, we use
the solution of the minimization problem σ∗ to explicitly check whether the conditions
for Theorem 1 are satisfied for σ∗. The candidate for the certificate can be calculated
as

Y = RPT ′(PT ′RPT ′)−1 sgnσ∗ (63)

where PT ′ is obtained like PT but with ρ replaced by σ∗ and M−1 denotes the Moore-
Penrose pseudo inverse of M . One can now check whether (5) is fulfilled. If the
conditions for Theorem 1 are fulfilled and ‖σ∗‖1 = 1, the solution must be unique and
equal to the state ρ, i.e. tomography was successful.

3.2 Errors and noise
For compressed sensing to work in a realistic setting, the reconstruction procedure must
be robust, i.e., small errors introduced by decoherence, errors stemming from imper-
fect measurements, and statistical noise due to the fact that every observable is only
measured a finite number of times, should only lead to small errors in the reconstructed
state. In addition, the Hilbert space might be infinite-dimensional. When the mean
energy, and therefore, the mean photon number Nmean, is finite, the error made by
truncating the Hilbert space at photon number N vanishes as

‖ρtrunc − ρ‖1 ≤ 3

√
Nmean

N + 1
= ε (64)

which is shown in the appendix. This means that the expectation values with respect to
the truncated state are close to the actually measured ones, i.e.,

|Tr(wρtrunc)− Tr(wρ)| ≤ ε, (65)

for all w such that ‖w‖ ≤ 1.
We assume that the observed data correspond to a matrix ρ̃ (not necessarily a state)

with ‖PR(ρ̃ − ρ)‖2 ≤ δ where ρ is the low-rank, infinite-dimensional state, i.e., the
errors made by truncating to a finite-dimensional Hilbert space are already included in
δ, and where we denote by PR the projection to the image of the sampling operator.
Such a tube condition is satisfied with very high probability for realistic error models
like Gaussian noise [1, 18]. We relax the conditions in (2) to

‖PR(σ − ρ̃)‖2 ≤ δ. (66)

The solution of the SDP might not be of low rank. Because a low-rank state is needed
for the construction of the certificate Y , we truncate σ∗ to the q largest eigenvalues
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(call this σ∗q ) and obtain PT ′ as above. As r = rank ρ is in general not known, one has
to perform the truncation of σ∗ and the subsequent construction of the certificate Y for
q = 1, 2, . . . until a valid Y , as to be specified below, has been found. If this is not the
case, the number of measurements was not enough and needs to be increased.

To provide an error bound, we denote the 2-norm error made by the truncation of
σ∗ to rank q by ε and obtain from the triangle inequality

‖PR(σ∗q−ρ)‖2 = ‖PR(σ∗q−σ∗)‖2+‖PR(σ∗−ρ̃)‖2+‖PR(ρ̃−ρ)‖2 ≤ ε+2δ. (67)

We calculate a candidate for a certificate as Y = RPT ′(PT ′RPT ′)−1 sgnσ∗q where T ′

is obtained from σ∗q . If Y is valid, i.e., ‖PT ′⊥Y ‖ ≤ 1/2, and PT ′PRPT ′ ≥ (p/2)PT ′
with p = m/n2, then the proof of Theorem 7 in Ref. [18] yields the robustness result

‖σ∗q − ρ‖2 ≤
(

4

√
(2 + p)n

p
+ 2

)
(2δ + ε). (68)

By the equivalence of the norms, this also provides a 1-norm bound at the expense of
an additional factor

√
n.

Thus, with no further assumption than 2-norm closeness of the observations to
the state of interest it is possible to obtain a certified reconstruction which is also
close to the state of interest. In this sense, quantum compressed sensing can achieve
assumption-free certified quantum state reconstruction in the presence of errors. This
discussion applies to box errors, where each of the expectation values is assumed to be
contained in a certain interval. The discussion of other error models will be the subject
of forthcoming work.

4 Universal quantum compressed sensing

4.1 Universal quantum state reconstruction
The preceding discussion has focused on claims of the following form:

For every low-rank state ρ, most choices of the observables w1, . . . , wm
can be used to successfully reconstruct ρ.

In some situations, however, one can actually prove a much stronger statement, in
which the order of the quantifiers is reversed:

Most choices of the observables w1, . . . , wm will have the property that,
for every low-rank state ρ, the observables w1, . . . , wm can be used to
successfully reconstruct ρ.

This is known as universal reconstruction; more simply, it says that a fixed set of ob-
servables w1, . . . , wm can distinguish among all low-rank states simultaneously. Be-
sides being of conceptual interest, universal reconstruction also implies stronger error
bounds for reconstruction from noisy data.

Formally, we say that our method performs universal compressed sensing if pfu <
1/2, where pfu is the “universal” failure probability. That is, we define pfu to be the
probability (with respect to the choice of observables w1, . . . , wm) that there exists
a state ρ (with dimension n and rank r) such that the method fails with probability
> 1/2 (where this last probability is taken with respect to the random measurement
outcomes).
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Definition 4 (Efficient universal quantum compressed sensing). Universal compressed
sensing (with dimension n and rank r) is regarded as efficient if: the number of mea-
sured observables satisfies m = O(nr polylog(n)), and the probability of failure sat-
isfies pfu < 1/2.

4.2 Universal reconstruction using any Fourier-type tight frame
In this section, we show that measurements using a Fourier-type tight frame lead to
efficient universal quantum compressed sensing. This result can be viewed as a com-
panion to Theorem 2. Essentially, it says that, by using a slightly larger number of
measurements (by a polylog(n) factor), one can construct (with high probability) a sin-
gle, fixed set of measurements that can reconstruct all possible states of rank r and
dimension n. In addition, universal reconstruction implies very strong error bounds, in
the case of noisy data; we will discuss this in the following section.

Theorem 5 (Universal reconstruction). Let (wα)α∈S be a tight frame. Let ν = O(polylog(n)),
and suppose that, for all α ∈ S, ‖wα‖2 ≤ ν/n. Then efficient universal compressed
sensing (for states of rank r and dimension n) is possible.

This proof of this theorem is a straightforward generalization of [6]. First, we define
the sampling operator to be A : Cn×n → Rm,

(A(σ))i =
n√
m

(w′i, σ), i = 1, . . . ,m. (69)

This is related to the notation used in previous sections by A†A = R. (As before,
the observables w′1, . . . , w

′
m are sampled independently from the distribution µ on the

tight frame, and (A,B) = Tr(A†B) is the Hilbert-Schmidt inner product.)
A key tool in the proof is the restricted isometry property (RIP) [23]. We say that

A satisfies the RIP if there exists some constant δ ∈ [0, 1) such that, for all rank-r
n-dimensional states σ,

(1− δ)‖σ‖2 ≤ ‖A(σ)‖2 ≤ (1 + δ)‖σ‖2. (70)

In geometric terms, the set of all low-rank states forms anO(rn)-dimensional manifold
in Cn×n, and A satisfies the RIP if it embeds this manifold into Cm, with constant-
factor distortion.

The importance of the RIP stems from the following fact: when A satisfies RIP,
one can reconstruct any low-rank state ρ from noiseless data A(ρ), by solving a trace-
minimization convex program:

min ‖σ‖1 , subject to A(σ) = A(ρ). (71)

This follows from a standard argument of [23]. This result can be generalized to the
case of noisy data; we will discuss this in the following section.

It now remains to prove that, when the observables wα are chosen from a Fourier-
type tight frame (i.e., they satisfy ‖wα‖2 ≤ ν/n), the sampling operator A satisfies
RIP with high probability. Intuitively, one first shows that, for any particular low-rank
state σ, and a random choice of measurements w′1, . . . , w

′
m, the sampling operator

A satisfies equation (70) with high probability. After this comes the main part of the
argument. Let pf (σ) denote the probability of failure on a given state σ. One now needs
to upper-bound the probability of a failure on any one of the states σ. The simplest
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approach is to assume that the failure events are disjoint, and so the probabilities sum
up — this is the union bound, and it does not give a useful bound in this case. Instead,
one uses an “entropy argument” that exploits the fact that failure events are not disjoint:
failures on nearby states are correlated.

Formally, the entropy argument is carried out using Gaussian processes and Dud-
ley’s inequality (following [20, 21]), and using bounds on covering numbers of the
trace-norm ball due to [22]. The proof is essentially the same as in [6]; the original
proof in [6] handles the case where the wα form an incoherent orthonormal basis, but
the same proof goes through unchanged for a Fourier-type tight frame. This shows
that, if the number of measurements satisfies m ≥ Cνrn log6 n (for some constant C),
then with high probability the sampling operator A satisfies the RIP (for rank r and
dimension n).

4.3 Robust reconstruction from noisy data
More interestingly, RIP implies strong error bounds in the case of noisy data [13]. We
sketch the basic idea here. Suppose one observes y = A(ρ) + z, where z denotes a
noise component. Then one can replace (71) with other estimators, such as the matrix
Dantzig selector:

min ‖σ‖1 such that ‖A†(y −A(σ))‖ ≤ λ, (72)

or the matrix Lasso:
min 1

2‖A(σ)− y‖22 + µ‖σ‖1. (73)

(See Ref. [13] for details about setting the parameters λ and µ.)
When the noise vector z is normally distributed, one can show particularly nice

error bounds. These hold even for states ρ that are full-rank (though ρmust at least have
decaying eigenvalues, for the bounds to be useful) [13] (see also [6]). Suppose that ρ is
arbitrary, and one simply assigns some value for r, and measures m = O(νrn log6 n)
observables. Then let σ∗ denote the solution returned by either of the above estimators.
Intuitively, one expects that σ∗ should reconstruct the first r eigenvectors of ρ. One can
prove a bound that is consistent with this intuition: the squared 2-norm error ‖σ∗−ρ‖22
will be nearly proportional (up to log factors) to the total variance of the noise acting
on the first r eigenvectors of ρ, plus the squared 2-norm of the “tail” of ρ (consisting
of its last n− r eigenvectors).

5 Applications
We now demonstrate how our theory can be applied to some common experimental
setups in quantum optics. We show how pointwise measurements of the Wigner func-
tion, and histograms obtained using homodyne detection, can be expressed as mea-
surements using tight frames, and generalized tight frames. Furthermore, we propose
efficient compressed sensing schemes (with Fourier-type tight frames) using these mea-
surements.

5.1 Homodyne detection
The most common way to do quantum state tomography on continuous-variable light
modes is based on homodyne detection, which is done by combining the light field with
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a mode in a strong coherent state, called the local oscillator, in an interferometer and
measuring the difference of the intensities on the two output ports [29, 30, 31]. This
amounts to sampling x ∈ R according to the one-dimensional probability distribution
given by the Radon transform (at angle θ) of the Wigner function, i.e.,

Pθ(x) =

∫
W (x cos θ − p sin θ, x sin θ + p cos θ)dp. (74)

The angle θ is chosen by phase-shifting the mode with respect to the local oscillator.
For a general quantum state with maximal photon number N , N + 1 equidistant

choices of θ ∈ [0, π) are sufficient and necessary to reconstruct the state by an inverse
Radon transform of Eq. (74) or by using pattern functions [29, 30]. Here we show how
these measurements can be described by a generalized tight frame. A tight frame by
itself does not suffice because here every measurement setting, i.e., every choice of θ,
does not only give a single number as a result but an entire distribution Pθ.

A key observation is that the Fourier transform of the probability distribution (74)
is identical to the characteristic function, i.e., the Fourier transform of the Wigner func-
tion, written in radial coordinates. We define

W̃ (u, v) =

∫
dxdpW (x, p) exp[−i(ux+ vp)] (75)

which fulfills
P̃θ(ζ) = W̃ (ζ cos θ, ζ sin θ) (76)

where P̃θ(ζ) =
∫
dxPθ(ζ) exp(−iζx).

This allows us to write the projector (corresponding to measurement setting θ and
outcome ζ) as

(Pθ(ζ))(i,j),(k,l) = W̃|j〉〈i|(ζ cos θ, ζ sin θ)W̃ ∗|l〉〈k|(ζ cos θ, ζ sin θ) . (77)

Because choosing a measurement setting does not mean choosing values for θ and ζ,
but rather only choosing a phase θ and obtaining a whole “slice” of the characteristic
function, the operator corresponding to a measurement setting is

Pθ =

∫
dζ Pθ(ζ) . (78)

It is easy to check that Pθ fulfills

1

π

∫ π

0

dθPθ =
1

n2
, (79)

which implies that it satisfies Definition 2 and forms a generalized tight frame.

5.2 Efficient compressed sensing using homodyne measurements
In the previous subsection, we have introduced the generalized tight frame correspond-
ing to homodyne detection. This can be combined with the convex program in equation
(2) to perform state reconstruction. In Section 6, we show by means of a numerical sim-
ulation that this procedure performs well in practice. However, our theoretical analysis
does not apply to this procedure, due to the generalized tight frame; it would be inter-
esting to try to extend our theoretical results to this case.

20



In this section, we present a different way of using homodyne detection to recon-
struct low-rank states, which is a little less direct, but does have a rigorous guarantee
of success. We will do three things. First, we will show how homodyne measurements
can be used to estimate expectation values of displacement operators. Then, we will
use (scaled) displacement operators to construct a tight frame. Finally, we will show
that this tight frame has Fourier-type incoherence. By combining these pieces, we will
then get an efficient compressed sensing scheme.

Before continuing, we note that D(α) cannot be directly measured as it is not Her-
mitian. However, one can also use 8-port homodyning to directly measure the ob-
servables |α〉〈α| = D(α)|0〉〈0|D†(α) [28]. Because the experimental effort is higher,
compared to standard homodyning, we will not discuss this scheme here.

Define the displacement operators

D(α) = e−|α|
2/2eαa

†
e−α

∗a, α ∈ C. (80)

Note that we have the identities D(α) = eαa
†−α∗a = e|α|

2/2e−α
∗aeαa

†
.

Now recall the definition of the characteristic function [32]:

C(s)(β) = Tr(eiβa
†+iβ∗aρ), β ∈ C. (81)

Setting α = iβ, we see that C(s)(β) is precisely the expectation value of the displace-
ment operator D(α). On the other hand, C(s)(β) is also equal to W̃ (β), the (two-
dimensional) Fourier transform of the Wigner function W (ξ). This in turn is related,
via equation (76), to the probability distribution Pθ(x), which we can sample using
homodyne detection.

Thus, we can estimate the expectation value of a displacement operator D(α) as
follows: set β = −iα, and make homodyne measurements with phase angle θ =
arg(β). This produces several points x1, . . . , x` ∈ R sampled from the distribution
Pθ(x). Then set ζ = |β|, and compute 1

`

∑`
i=1 exp(−iζxi). This gives an estimate

for P̃θ(ζ) = W̃ (β) = C(s)(β), which is the desired expectation value.
Note that a lossy detector (i.e., one with efficiency less than 1) has the effect of

convolving the true Wigner function W (ξ) with a Gaussian, to produce the empiri-
cally observed Wigner function [33]. This is equivalent to pointwise multiplying the
characteristic function C(s)(β) with a Gaussian envelope. We can compensate for this
by re-scaling C(s)(β) at each point β, provided that our raw estimates of C(s)(β) are
sufficiently precise, and the detector efficiency is not too poor.

Next, we will construct a tight frame using the displacement operators D(α). Note
that the D(α) form an orthonormal basis for the state space [32]:

ρ =
1

π

∫

C

D(α)Tr(D(α)†ρ)dα, for all states ρ, (82)

where we are taking a 2-dimensional integral over the complex plane. Now suppose
we sample α from a 2-dimensional Gaussian distribution on the complex plane with
width σ (which we will choose later). This distribution has probability density

PG(α) = 1
2πσ2 e

−|α|2/2σ2

. (83)

Define scaled displacement operators

D̃(α) =
√

2σe|α|
2/4σ2

D(α). (84)
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Then we can rewrite (82) as

ρ =

∫

C

D̃(α)Tr(D̃(α)†ρ)PG(α)dα, for all states ρ. (85)

This is (up to normalization) a tight frame for the full, infinite-dimensional state space.
In fact, we are only interested in the finite-dimensional subspace consisting of states

with at most N photons; this subspace is isomorphic to C(N+1)×(N+1). So we will
truncate the above operators. Let ΠN be the projector onto span{|0〉, |1〉, . . . , |N〉}
(where the |j〉 are Fock basis states). Then define truncated displacement operators

DN (α) = ΠND(α)ΠN , and D̃N (α) = ΠN D̃(α)ΠN . (86)

Then the operators wα = 1
N+1D̃N (α) form a tight frame for C(N+1)×(N+1), as de-

sired:

1
(N+1)2 ρ =

∫

C

wαTr(w†αρ)PG(α)dα, for all ρ ∈ C(N+1)×(N+1). (87)

Finally, we set σ =
√

2N log(1 + 4N), and we claim that the above tight frame
{wα} is Fourier-type incoherent, in the sense of Theorems 2 and 5. More precisely, we
claim that

‖D̃N (α)‖ ≤
√

2eσ = 2e
√
N log(1 + 4N), for all α ∈ C; (88)

we will prove this below. This directly implies

‖wα‖ ≤
2e
√

log(1 + 4N)√
N

, for all α ∈ C. (89)

Then, by Theorems 2 and 5, we have an efficient compressed sensing scheme.
We now show why (88) holds. First, note that while the displacement operators

D(α) are unitary, the scaled operators D̃(α) are unbounded. However, when α is
small, this is not a problem. In particular, when |α| ≤ 2σ, we can just use the trivial
bound

‖D̃N (α)‖ ≤ ‖D̃(α)‖ ≤
√

2σe|α|
2/4σ2

, (90)

which implies (88).
It remains to consider the case where |α| > 2σ. In this case, D̃(α) is large, but

it acts mostly on states with more than n photons, so the truncated operator D̃N (α) is
small. Using a straightforward calculation, we can bound D̃N (α) in the 2-norm, which
implies (88). See the appendix for details.

5.3 Pointwise measurements of the Wigner function
A quantum state ρ of a single optical mode can be represented in phase space by a real
Wigner functionWρ : R2 → R [28]. For a single mode it is given by, c.f. Ref. [26, 27],

Wρ(ξ) =
2

π
Tr
(
(−1)n̂D(ξ)†ρD(ξ)

)
(91)

where (−1)n̂ is the parity operator where ξ = (x, p) ∈ R2, D(ξ) is the displacement
operator which becomes the one defined in (80) by setting α = (1/

√
2)(ξ1+iξ2). With
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the same convention, we will, whenever it is convenient, regard the Wigner function as
a function of a complex variable.

Eq. (91) allows pointwise measurement of the Wigner function by a displacement
in phase space followed by a measurement of the parity of the photon number. This has
already been experimentally performed for optical fields in a cavity [24] and for pulsed
single photons (for the special case of a rotationally invariant state) [25]. We consider
a single mode containing up to N photons and, therefore, Hilbert space dimension
n = N + 1. Measuring the Wigner function at a point α amounts to a measurement of
the observable

wα =
√

2π
2

π
D(α)(−1)n̂D†(α). (92)

We make again use of the probability density PG of Eq. (83) and define scaled, trun-
cated operators w̃α = n−1PG(α)−1/2ΠNwαΠN . They form a tight-frame on the
truncated Hilbert space when the sampling is performed according to PG.

We now proceed exactly as in the previous section to show that the operator norm
of the w̃ is small enough for the Fourier type incoherence property of Theorem 2. We
do not give explicit constants but focus on the asymptotic scaling in n. If |α| ≤ 2σ,
we get the bound ‖w̃α‖ ≤ 4eσ/n. We will show that if we set σ =

√
n log n one has

‖ exp(|α|2/(2σ2))wα‖ ≤ 1 for all α with |α| > 2σ whenever n is large enough which
implies the requirements of Theorem 2. We need the matrix elements 〈l|wα|k〉 =
W|k〉〈l|(α). To calculate them, first let ξ = (x, p) and recall the definition of the
Wigner function [28]:

W|l〉〈k|(x, p) =
1

π

∫
dy ψ∗l (x+ y)ψk(x− y)e2ipy. (93)

where we remember the identification α = (1/
√

2)(x + ip). Inserting the eigen-
functions of the harmonic oscillator ψi, using the properties of the occurring Hermite
polynomials, and performing the integral allows to write

W|l〉〈k|(x, p) =
(−1)l+kex

2

π
√

2l+kl!k!

∂l+k

∂xk∂x′l
G(x, x, p′)

∣∣∣∣∣
x′=x

(94)

with the generating function

G(x, x′, p) = e−p
2+2ip(x−x′)−2xx′ . (95)

From this, one gets the bound, which is by no means tight but strong enough, |W|k〉〈l|(α)| ≤
nn(2|α|)n exp(−2|α|2) which allows us to write

‖ exp(|α|2/(2σ2))wα‖ ≤‖ exp(|α|2/(2σ2))wα‖2

≤ exp

(
−2|α|2 + (n+ 2) log n+ 2n log(2|α|) +

|α|2
2σ2

)
.

(96)

We now set σ =
√
n log n and get, for large enough n, a bound valid for all α with

|α| > 2σ which reads

‖ exp(|α|2/(2σ2))wα‖ ≤ exp
(
−2n log2 n+ (n+ 2) log n+ 2n log(4

√
n log n)

)
.

(97)
As the first term in the exponent grows fastest, one has ‖ exp(|α|2/(2σ2))wα‖ ≤ 1
for sufficiently large n. Thus, there is some C > 0 such that ‖w̃α‖ ≤ C log n/

√
n

which means that the pointwise Wigner function measurement is of Fourier type and,
therefore, can be used for efficient compressed sensing.
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Figure 1: (color online) Reconstruction of a random pure state on 4 qubits by Pauli-
measurements. Red triangles: Probability of successful state recovery. Blue circles:
Probability of successful certification.

6 Numerical examples
We now present some examples which show the performance of certified compressed
sensing for randomly chosen states. We demonstrate the method for small-dimensional
noiseless states and defer a detailed analysis of the method, especially in the presence
of noise and decoherence, to a subsequent publication. For small systems, the condition
c3 < 1 in Theorem 1 is hard to satisfy. However, the conditions for uniqueness can be
replaced by (a’) c1 := ‖PTY −sgn ρ‖2 = 0 and (b’) c2 := ‖P⊥T Y ‖ < 1, discarding the
condition on c3, because these conditions imply that the expression in (11) is positive,
which guarantees that any feasible change in the solution will be 1-norm increasing.

Figure 1 demonstrates certified compressed sensing for the very important case of
the Pauli basis. It is clearly visible that the certificate is only a sufficient condition and
not a necessary one as it is possible that the reconstruction is successful but no valid
certificate is produced. It is also apparent that the overhead in the number of queries
needed for certification is actually quite reasonable.

For the tight frame consisting of all Hermitian matrices, as shown in Figure 2, it is
interesting to note that taking global random observables performs superior to taking
tensor products of local random observables. The intuitive reason for this is provided
by concentration of measure. By considering a distribution of observables which is
invariant under the action of the unitary group on the full system, the proportion of
observables that are not Fourier-like, i.e., whose operator norms are too large, is much
smaller. Thus, more information is obtained per observable which leads to a faster
reconstruction.

Figure 3 illustrates that compressed sensing also works using optical homodyne
detection with a generalized tight frame, c.f. Subsection 5.1. In Figure 4, we show the
reconstruction of a single mode optical state based on the measurement of expectation
values of displacement operators as discussed in Subsection 5.2.
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Figure 2: (color online) Reconstruction of a pure state on 4 qubits. Red triangles
(blue circles): Probability of successful state recovery (certification) for local random
measurements. Green squares (black crosses): Successful state recovery (certification)
for global random measurements.
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Figure 3: (color online) Reconstruction of a random state with rank 5 on 3 modes with
up to 2 photons each by optical Homodyne detection. Red triangles: Probability of
successful state recovery. Blue circles: Probability of successful certification.
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Figure 4: (color online) Reconstruction of a random state of a single optical mode, trun-
cated at the 15-th number state, by measuring expectation values of 2-norm normalized
displacement operators D(α) where |α‖ is chosen uniformly at random between 0 and
5 while arg(α) is chosen uniformly between 0 and 2π. Red triangles: Probability of
successful state recovery. Blue circles: Probability of successful certification.

7 Summary
In this article, we have presented a general theory of quantum state tomography for
continuous-variable systems using compressed sensing. We have used tight frames
to describe continuous measurement families, which are very natural in a plethora of
physical situations. We have shown how our theory applies to prominent and fre-
quently used techniques in quantum optics, in particular, pointwise measurements of
the Wigner function, and homodyne detection.

• We have explored different incoherence properties sufficient for efficient com-
pressed sensing. Improved results using Fourier-type tight frames were presented
in Theorem 2. Also, it was shown in Theorem 3 that for every tight frame whose
operators fulfill

‖wα‖1 = O(polylog(n)), (98)

most states (i.e., all but a proportion 1/poly(n) thereof) can be reconstructed
from merely O(npolylog(n)) expectation values. It would be interesting to
extend these results to generalized tight frames.

• We have introduced the idea of certified compressed sensing which allows to get
rid of all assumptions and guarantee successful state reconstruction a posteriori.
This assumption-free certified quantum state reconstruction is possible even in
the presence of errors.

• Furthermore, we have shown universal compressed sensing results for any Fourier-
type tight frame in Theorem 5. This implies strong error bounds in the case of
noisy data.

• We have presented numerical results showing the practical (non-asymptotic) per-
formance of these methods. It would be interesting to investigate this further, in
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particular to other types of feasible measurements, and to apply these ideas on
other physical systems as well.

8 Acknowledgements
We would like to thank Jukka Kiukas for comments and Earl Campbell for discussions.
YKL thanks Scott Glancy and Manny Knill for many helpful explanations and sugges-
tions. This work was supported by the EU (Qessence, Minos, Compas), the BMBF
(QuOReP), and the EURYI. Contributions to this work by NIST, an agency of the US
government, are not subject to copyright laws.

References
[1] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Phys. Rev. Lett. 105,

150401 (2010).

[2] D. Gross, IEEE Trans. on Inf. Th. 57, 1548 (2011).

[3] A. Shabani, R. L. Kosut, M. Mohseni, H. Rabitz, M. A. Broome, M. P. Almeida,
A. Fedrizzi, A. G. White, Phys. Rev. Lett. 106, 100401 (2011).

[4] M. Cramer, M. B. Plenio, S. T. Flammia, D. Gross, S. D. Bartlett, R. Somma, O.
Landon-Cardinal, Y.-K. Liu, and D. Poulin, Nat. Commun. 1, 149 (2010).

[5] A. Shabani, M. Mohseni, S. Lloyd, R. L. Kosut, and H. Rabitz, Phys. Rev. A 84,
012107 (2011).

[6] Y.-K. Liu, Adv. in Neural Information Processing Systems 24, 1638–1646 (2011).

[7] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M.
Harlander, W. Hänsel, M. Hennrich, and R. Blatt, Phys. Rev. Lett. 106, 130506
(2011).

[8] E. J. Candès and B. Recht, Found. of Comput. Math. 9, 717 (2009).

[9] E. J. Candès and T. Tao, IEEE Trans. on Inf. Th. 56, 2053 (2010).

[10] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, arXiv:1205.2300.

[11] S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011).

[12] M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Phys. Rev. Lett. 107, 210404
(2011).

[13] E. J. Candès and Y. Plan, IEEE Trans. on Inf. Th. 57, 2342 (2011).

[14] E. J. Candès and Y. Plan, IEEE Trans. on Inf. Th. 57(11), 7235 (2011).

[15] B. Laurent and P. Messart, Ann. Statist. 28, 1302 (2000).
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Appendix

Properties of the χ2
k-distribution

In order to be self-contained, we repeat two simple bounds to the tails of a χ2
k dis-

tributed random variable X which can be found in Ref. [15]. A right-sided bound
is

P

(
X − k > 2

√
kx+ 2x

)
≤ e−x, (99)

while a left-sided one is

P

(
k −X > 2

√
kx
)
≤ e−x . (100)
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Random vectors on a sphere
A random vector v ∈ Cn on a sphere can be obtained by choosing an vector v̄ ∈ R2n

with Gaussian entries and normalizing. Doing so yields

P

(
|vi| ≥

δ√
n

)
≤ P

(
|v̄i| >

δε√
n

)
+P (‖v̄‖ < ε) . (101)

To bound the first term, one can use (99), obtaining

P

(
|v̄i| >

1

ε
√
n

)
≤ exp

(
−δ

2ε

2

)
(102)

while for the second terms the inequality (100) leads to

P
(
‖v̄‖2 < 1− y

)
< exp

(
−y

2n

2

)
. (103)

Setting ε = 1/2 finally gives

P
(
|vi| > δ/

√
n
)
≤ 2 exp

(
−δ

2

8

)
. (104)

Proof of Lemma 8
Proof: From

P (P(x 6∼ y|x ∈ X) > β|y ∈ Y ) ≤ p

β
(105)

it follows that
P(x 6∼ y|x ∈ X, y ∈ Y ) ≤ p. (106)

We assume now the contrary of (105), i.e.,

P (P(x 6∼ y|x ∈ X) > β|y ∈ Y ) >
p

β
(107)

from which follows
P(x 6∼ y|x ∈ X, y ∈ Y ) > p, (108)

which is a contradiction to (106) and, therefore, concludes the proof.

Truncating the Hilbert space of a continuous-variable-light mode
We show how large the Hilbert space must be to describe a continuous-variable-light
mode with bounded energy, i.e., bounded photon number. Let ρ be the state of interest,
Nmean its mean photon number, and ρtrunc the truncation of ρ to the firstN Fock layers
which is not normalized

Nmean =
∞∑

n=0

nρn,n ≥ (N + 1)
∞∑

n=N+1

ρn,n

≥ (N + 1)Tr(ρtrunc − ρ). (109)

From this we obtain
Tr(ρ− ρtrunc) ≤

Nmean

N + 1
. (110)

To get from (110) an error to the 1-norm we need
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Lemma 9 (Truncation of matrices). Let M be a positive semidefinite matrix, or a
trace-class operator, written as

M =

(
A B
B† C

)
, (111)

where A and C are square matrices. It is true that

‖B‖21 ≤ ‖A‖1‖C‖1. (112)

Inserting (112) withM = ρ into (110) and employing the triangle inequality yields
with ‖A‖1 ≤ 1.

‖ρtrunc − ρ‖1 ≤
Nmean

N + 1
+ 2

√
Nmean

N + 1
≤ 3

√
Nmean

N + 1
, (113)

as long as N + 1 ≥ Nmean.

Proof of Lemma 9
We decompose the Hilbert space according to the block structure of (111) asE⊕F and
writeM asM =

∑
k λMk where theMk are rank one projectors withAk, Bk, and Ck

as in (111) and λ ≥ 0. Now, we write λMk = |Ψk〉〈Ψk| with |Ψk〉 = ak|φk〉+ bk|ψk〉
where |φk〉 ∈ E and |ψk〉 ∈ F . From this, one obtains immediately

‖Bk‖21 = |ak|2|bk|2 = ‖Ak‖1‖Ck‖1. (114)

To conclude the proof, we write

‖B‖1 ≤
∑

k

‖Bk‖1 ≤
∑

k

√
‖Ak‖1

√
‖Ck‖1

≤
√∑

k

‖Ak‖1
√∑

k

‖Ck‖1 =
√
‖A‖1

√
‖C‖1, (115)

where we have used the Cauchy-Schwarz inequality.

Proof of equation (88)
It remains to consider the case where |α| ≥ 2σ. We start by bounding the matrix
elements of the displacement operator D(α):

〈k|D(α)|`〉 = e−|α|
2/2〈k|eαa†e−α∗a|`〉, (116)

e−α
∗a|`〉 =

∑̀

i=0

(−α∗)i
i!

√
` · · · (`− i+ 1)|`− i〉 =

∑̀

i=0

(−α∗)`−i

(`−i)!
√
` · · · (i+ 1)|i〉,

(117)

〈k|eαa† =

k∑

j=0

αj

j!

√
k · · · (k − j + 1)〈k − j| =

k∑

j=0

αk−j

(k−j)!
√
k · · · (j + 1)〈j|, (118)

〈k|D(α)|`〉 = e−|α|
2/2

min(k,`)∑

j=0

αk−j

(k−j)!
(−α∗)`−j

(`−j)!
√
k · · · (j + 1)

√
` · · · (j + 1). (119)
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Using the Cauchy-Schwarz inequality, and the binomial theorem,

∣∣〈k|D(α)|`〉
∣∣ ≤ e−|α|2/2

[min(k,`)∑

j=0

(
|α|k−j

(k−j)!

)2
· k · · · (j + 1)

]1/2[min(k,`)∑

j=0

(
(|α|)`−j

(`−j)!

)2
· ` · · · (j + 1)

]1/2

= e−|α|
2/2
[min(k,`)∑

j=0

(
k
j

) |α|2(k−j)

(k−j)!

]1/2[min(k,`)∑

j=0

(
`
j

) |α|2(`−j)

(`−j)!

]1/2

≤ e−|α|2/2
[ k∑

j=0

(
k
j

)
|α|2(k−j)

]1/2[∑̀

j=0

(
`
j

)
|α|2(`−j)

]1/2

= e−|α|
2/2(1 + |α|2)k/2(1 + |α|2)`/2.

(120)

Note that, for any fixed k and `, this quantity decays exponentially as |α| becomes
large.

We now consider the N -photon truncated operator DN (α). We can bound it in
2-norm as follows:

‖DN (α)‖2 ≤ e−|α|
2/2
[ N∑

k,`=0

(1 + |α|2)k(1 + |α|2)`
]1/2

= e−|α|
2/2

N∑

k=0

(1 + |α|2)k = e−|α|
2/2 (1 + |α|2)N+1 − 1

(1 + |α|2)− 1
(since |α| > 0)

≤ e−|α|2/2(1 + |α|2)N+1|α|−2 = e−|α|
2/2(1 + |α|2)N (1 + |α|−2).

(121)

Then we can bound the scaled truncated operator D̃N (α) as follows:

‖D̃N (α)‖2 ≤
√

2σ exp( |α|
2

4σ2 − |α|
2

2 )(1 + |α|2)N (1 + |α|−2)

=
√

2σ exp[ |α|
2

4σ2 − |α|
2

2 +N log(1 + |α|2)](1 + |α|−2).
(122)

Let
E := |α|2

4σ2 − |α|
2

2 +N log(1 + |α|2) (123)

be the quantity inside the exponential; we will upper-bound it. Note the following
identity, for any x, x0 ∈ (0,∞): (by approximating log(1 + x) to first order at the
point x = x0)

log(1 + x) ≤ log(1 + x0) + x−x0

1+x0
= log(1 + x0) + 1+x

1+x0
− 1. (124)

Set x = |α|2 and x0 = 4N , then we have

log(1+|α|2) ≤ log(1+4N)+ 1+|α|2
1+4N −1 ≤ log(1+4N)+ 1+|α|2

4N −1 ≤ log(1+4N)+ |α|
2

4N .
(125)

Then
E ≤ ( 1

4σ2 − 1
2 + 1

4 )|α|2 + n log(1 + 4N). (126)

Using the fact that α ≥ 2σ =
√

8N log(1 + 4N), we get

E ≤ ( 1
4σ2 − 1

2 + 1
4 + 1

8 )|α|2 = (− 1
8 + 1

4σ2 )|α|2. (127)
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Plugging this into (122), we get

‖D̃N (α)‖2 ≤
√

2σ exp[(− 1
8 + 1

4σ2 )|α|2](1 + |α|−2). (128)

Using the fact that σ ≥ 2 and |α| ≥ 2σ ≥ 4, we have that

‖D̃N (α)‖2 ≤
√

2σ exp[− 1
16 |α|2](1 + |α|−2) ≤

√
2σ exp(−1) 17

16 <
√

2σ. (129)

Since the operator norm is upper-bounded by the 2-norm, this implies (88).
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We present a novel method to perform quantum state tomography for many-particle systems which are par-
ticularly suitable for estimating states in lattice systems such as of ultra-cold atoms in optical lattices. We show
that the need for measuring a tomographically complete set of observables can be overcome by letting the state
evolve under some suitably chosen random circuits followed by the measurement of a single observable. We
generalize known results about the approximation of unitary 2-designs, i.e., certain classes of random unitary
matrices, by random quantum circuits and connect our findings to the theory of quantum compressed sens-
ing. We show that for ultra-cold atoms in optical lattices established techniques like optical super-lattices, laser
speckles, and time-of-flight measurements are sufficient to perform fully certified, assumption-free tomography.
Combining our approach with tensor network methods – in particular the theory of matrix-product states – we
identify situations where the effort of reconstruction is even constant in the number of lattice sites, allowing in
principle to perform tomography on large-scale systems readily available in present experiments.

I. INTRODUCTION

Quantum state tomography is – for obvious reasons – a pro-
cedure of great importance in a large number of experiments
involving quantum systems: It amounts to reconstructing an
unknown quantum state entirely based on experimental data.
In many situations one indeed aims at identifying what state
has actually been prepared in an experiment. This seems par-
ticularly important in the context of quantum information sci-
ence, where quantum state and process tomography is now
routinely applied to small, precisely controlled quantum sys-
tems [1–3]. Yet, needless to say, in a number of other contexts
the reliable reconstruction of quantum states is an important
aim as well.

For finite-dimensional quantum systems, conventional
quantum state tomography can be performed by choosing
a suitable basis of B(Cd), i.e., the operators on the d-
dimensional Hilbert space of the system in question. Then, the
expectation values of these d2 observables are being measured
to some required accuracy, from which one can reconstruct the
unknown density matrix ρ. The same approach, however, is
doomed to failure when applied to quantum many-body sys-
tems: If one has a many-body system at hand with k lattice
sites of local dimension dl, the number of necessary differ-
ent measurement settings is given by m = d2kl , i.e., it scales
exponentially with the size, rendering the treatment even of
reasonably large systems impossible. Techniques of quantum
compressed sensing [4–8] allow to significantly reduce the re-
quired number of measurement settings, if the state is of rank
r, to m = Θ(rd log2 d) (where Θ denotes asymptotic equal-
ity). If r � d, this is an impressive reduction, and gives rise to
feasible quantum state tomography in medium-sized quantum
systems, but this number is still exponential in the number of
sites. Such a scaling cannot be overcome without further re-
striction of the class of possible states, simply because even a
pure state needs of the order of d parameters to be described.
However, if the state is not only pure but also described by a

FIG. 1. Realization of a random quantum circuit by an optical su-
perlattice. The lattice with the larger period is switched between the
two depicted situations, and the lattice depth is changed locally by
∆i which is uncorrelated between the lattice sites.

generic matrix product state (MPS), the necessary number of
measurements only scales linearly with the system size and is
even independent of it for the important special case of trans-
lationally invariant MPS. What is more, in several instances
the classical procedure to reconstruct the MPS matrices from
the measurement data is efficient [9].

This small number of parameters ought to make tomogra-
phy an easier task, but in many practical settings involving
quantum many-body systems, a serious challenge arises: In
most interesting systems it is very difficult if not impossi-
ble to directly measure a full operator basis. Instead, merely
measurements of some preferred observables might be readily
available.

In the present work, we propose a solution to this problem.
We do so by combining the action of a suitable random quan-
tum circuit with a measurement of a very small number of
different observables (even a single one can be enough). Such
random circuits are just becoming a tool of great theoretical
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importance in several subfields of quantum information the-
ory [10–12]. Here, we show that they also offer technological
advantages, in that they allow for the natural implementation
of quantum state tomography in systems of ultra-cold atoms
using only the techniques of super-lattices and laser speck-
les. Both techniques have already been experimentally proven
to be feasible [13–15]. Combining these new insights with
the above mentioned methods of MPS tomography brings, for
the first time, full tomography of many-particle systems close
to experimental reach. Needless to say, it still amounts to a
very difficult prescription. But while conventional measure-
ments in ultra-cold bosonic systems amount to measuring cer-
tain correlation functions or estimates of the temperature in
thermometry, say, the path described here eventually allows
for the full reconstruction of an unknown state of a quantum
many-body system – quite a promising perspective.

The remainder of this article is organized as follows: First,
we introduce in Section II tomographically complete sets of
observables and a generalization of operator bases, called tight
frames, and discuss their realization by means of random uni-
tary matrices. In a next step, we show in Section III how ef-
ficient compressed sensing is possible with families of uni-
tary matrices which form approximate unitary 2-designs [10–
12, 16–18]. In Section IV, a way to efficiently realize such
unitary 2-designs with the help of random quantum circuits is
presented, before we discuss the application of this approach
to ultra-cold atoms in optical lattices in Section V. Finally,
Section VI shows how, under certain assumptions on the state,
tomography is possible with a number of measurements which
is linear or constant in the number of lattice sites before a con-
clusion is given in Section VII.

II. TOMOGRAPHY BY MEANS OF UNITARY
EVOLUTION

Before we turn to the question of how tomography is pos-
sible, we provide general conditions for sets of observables to
be suitable for reconstructing quantum states. We discuss why
tomographic completeness as such is not sufficient and intro-
duce generalizations of operator bases which allow for robust
tomography.

A. Tomographically complete sets of observables and tight
frames

We consider a quantum system consisting of k subsystems,
called (lattice) sites which all have local dimension dl. Let ρ ∈
S(H) be a quantum state on the Hilbert space H = Cd with
dimension d = dkl and S the set of corresponding normalized
observables, i.e., Hermitian matrices w ∈ B(H) with ‖w‖2 =
1. In this whole work, we denote by ‖ · ‖p the Schatten p-
norm, where p = 2 and p = ∞ are the Frobenius norm and
operator norm respectively. Furthermore, we use the Hilbert-
Schmidt scalar product defined as (A,B) = Tr(A†B) and the
projection on the subspace spanned by some w ∈ S which is

defined as

Pw : ρ 7→ (w, ρ)w. (1)

Noting that a measurement of the expectation value of w cor-
responds to determining (w, ρ), we define the total sampling
operator

Wd = d2
∫

dµ(w)Pw ∈ B(B(H)), (2)

where µ is a probability measure on S.
A finite set of observables is said to be tomographically

complete if any two different quantum states have distinct ex-
pectation values for some observable: This implies that one
can theoretically reconstruct the state if one knows all expec-
tation values. If Wd has full rank, i.e. rank(Wd) = d2, the
state ρ can be obtained from Wd(ρ) by matrix inversion if
issues of statistical errors and numerical imprecisions are ne-
glected. For general probability measures we make use of the
subsequent definition.

Definition 1 (Tomographic completeness). The measure µ is
said to be tomographically complete ifWd, as defined in Eq.
(2), is full rank.

In practice, not every tomographically complete measure
on the observables is necessarily useful: The observables,
viewed as vectors in Rd

2

, should not be too unevenly dis-
tributed over the sphere. That is to say, if the ratio between
the largest and smallest eigenvalues ofWd is large, small er-
rors in the expectation values can lead to large errors in the
reconstructed state. The ideal situation is that of a tight frame,
also known as spherical 1-design:

Definition 2 (Tight frame). A probability measure µ on the set
of 2-norm normalized Hermitian matrices S is called a tight
frame ifWd = 1 withWd given by Eq. (2).

Examples for tight frames include any operator basis and
the rotationally invariant measure on the 2-norm sphere S [8].
When observables are taken from tight frames, the reconstruc-
tion problem is well conditioned and small errors in the ex-
pectation values only lead to a small error in the reconstructed
state [8, 19].

B. Evolution of observables

A tomographically complete set of observables must con-
tain at least d2 observables, which might be difficult to mea-
sure directly. We introduce a way to do tomography by per-
forming suitably random unitaries, followed by the estimation
of the expectation value for a single observable. A different
but related approach has been employed in Ref. [20] to per-
form high-fidelity quantum state reconstruction in situations
where the knowledge about the state is not tomographically
complete. In the present work, the time evolution is a tool to
obtain knowledge about the quantum state of the system leav-
ing the question of determining Hamiltonians aside [21].
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Switching to the Heisenberg picture, the outlined procedure
amounts to measuring the time-evolved observables. Simple
as this idea is, it allows the economical reconstruction of un-
known quantum states, as it turns out:

Definition 3 (Induced observables). To a measure µ̃ on the
special unitary group SU(d) and an observable w0 we asso-
ciate the following induced measure on S:

µ =

(
1− 1

d2

)
µ̃ ◦ f−1 +

1

d2
δ
1/
√
d (3)

where f : U(d) → S is defined by f(U) = U†w0U , and
δx denotes the Dirac in x. Notice that if µ̃ is a probability
measure, then so is µ.

An important insight is provided by the following observa-
tion.

Observation 1 (Tight frame induced by random unitary). Let
w be a traceless, normalized observable and µH be the Haar
measure on SU(d). The measure induced on S is a tight
frame.

Proof: To show this observation, we use (3) to calculate the
sampling operator (2) for a state ρ with Tr(ρ) = 1:

Wd,H(ρ) = (d2 − 1)

∫
dµH(U)(U†w0U, ρ)U†w0U +

1

d
.

(4)
As w is diagonalized by a unitary matrix, we can assume it to
be diagonal and obtain

(Wd,H(ρ))i,j =(d2 − 1)
∑

k,l,m,n

EU∼µH

[
Uk,lUm,jŪk,nŪm,i

]

× wk,kwm,mρl,n +
δi,j
d

(5)

where U ∼ µH indicates that U is distributed according to
the Haar measure. The occurring expectation values can be
obtained from Ref. [22]. We first consider the off-diagonal
elements, i.e., the ones with i 6= j. Here, the expectation
value vanishes unless l = i and n = j, in which case we get

EU∼µH

[
Uk,iUm,jŪk,jŪm,i

]
=

1

d(d2 − 1)
(δk,m(n− 1) + (1− δk,m)(−1)) . (6)

We now turn to the diagonal elements and note that if i = j,
one needs l = n to get a non-vanishing expectation value. We
consider two cases separately: If m = k we get

EU∼µH

[
Uk,lUk,iŪk,lŪk,i

]
=

1

d(d2 − 1)
(δi,l2(n− 1) + (1− δi,l)(n− 1)) , (7)

while for m 6= k we obtain

EU∼µH
[
Uk,lUm,iŪk,lŪm,i

]
=

1

d(d2 − 1)
(δi,l(n− 1) + (1− δi,l)n) . (8)

Inserting now (6), (7), and (8) into (4) and using
∑
i ρi,i = 1,∑

i wi,i = 0, and
∑
i |wi,i|2 = 1, we getWd,H(ρ) = ρ which

concludes the proof.

C. Tight frames under physical restrictions

In many situations of interest, the quantum state is not com-
pletely arbitrary but satisfies some additional conditions. In
experiments with ultra-cold atoms, for example, the total par-
ticle number is conserved and super-selection rules forbid su-
perpositions of states belonging to different eigenvalues of the
corresponding operator. Assume that the quantum state ρ acts
only on the eigenspace of some operator N̂ corresponding to
the eigenvalue N and denote the corresponding matrix valued
projection operator as PN . In this case, Definition 2 can be
relaxed to

WdNPN = PN (9)

where dN denotes the dimension of the subspace correspond-
ing to the eigenvalue N of N̂ . If one aims at realizing such a
restricted tight frame by the means of Observation 1, one can
replace the group SU(d) by

SUN̂ (d) =
{
U ∈ SU(d) : [U, N̂ ] = 0

}
. (10)

As this group is compact, there exists a unique Haar probabil-
ity measure on it. We adapt Definition 3 to this situation.

Definition 4 (Induced observable on subspace). Let N̂ ∈
B(H) and SN its dN dimensional eigenspace corresponding
to the eigenvalue N . To a measure µ̃ on the group SUN̂ (d)
and an observable w0 ∈ SN with ‖w0‖2 = 1, we associate
the following measure on SN :

µ =

(
1− 1

d2N

)
µ̃ ◦ f−1 +

1

d2N
δ
1/
√
dN

(11)

where f(U) = U†w0U .

The matrices ρ, w0, and all V ∈ SUN̂ (d) are block di-
agonal with respect to the eigenbasis of N̂ . We consider the
block corresponding to the eigenvalue N . Invariance of the
Haar measure on SUN̂ implies that if V ∼ µH,SUN̂(d)

, then
PN (V ) ∼ µH,SU(dN ). Thus, one can apply the proof of Ob-
servation 1 to this block and obtain Eq. (9).

III. UNITARY t-DESIGNS

The effort to implement random unitaries drawn from the
Haar measure scales exponentially in the number of lattice
sites k, making an implementation both theoretically ineffi-
cient and pratically unfeasible. However, this problem can be
circumvented by replacing the Haar measure by a unitary 2-
design which is much easier to sample from as we will see
later on. Unitary t-designs behave like the Haar measure in
specific situations [12, 17, 18]. The definition most suited to
our problem is the following: Let ν be a probability measure
on SU(d). We define two channels on B(H⊗t):

Gt,ν(ρ) = EU∼ν
[
U⊗tρ(U†)⊗t

]
(12)
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and Gt,µH
, where µH is the Haar measure. We say that ν

is a unitary t-design if Gν = GH. We say that ν is an ε-
approximate t-design if

‖Gt,ν − Gt,H‖ ≤ ε (13)

where ‖ · ‖ denotes the superoperator 2 → 2-norm which is
defined as

‖O‖ = sup
X,‖X‖2=1

‖O(X)‖2. (14)

This superoperator norm is equal to the Schatten ∞-norm
when the channel is seen as a mere linear operator acting on
the real vector space of Hermitian matrices. In the remain-
der we only consider the case t = 2 and drop the index t for
simplicity.

A. Tight frames from unitary 2-designs

For our purpose, i.e., replacing the Haar measure random
unitary in Observation 1, we need an approximate unitary 2-
design. This is the case because when Haar measure induces
a tight frame, c.f. Eq. (4), both U and U† appear twice.

Observation 2 (Tight frames induced by unitary 2-designs).
Let w0 be a traceless, 2-norm normalized observable and ν
be an ε-approximate unitary 2-design. Then the sampling op-
eratorWd,ν corresponding to the induced measure fulfills

‖Wd,ν − 1‖ ≤
√
d(d2 − 1)ε. (15)

Proof: We have

‖Wd,ν − 1‖ =‖Wd,ν −Wd,H‖
= sup
X,‖X‖2=1

‖Wd,ν(X)−Wd,H(X)‖2. (16)

We note that

Wd,ν(X) =(d2 − 1)EU∼ν
[
(U†w0U,X)U†w0U

]
+
1

d
TrX

=(d2 − 1)
√
dTr1

(
EU∼ν

[
(U† ⊗ U†)

× (w0 ⊗ w0)(U ⊗ U)
](
X ⊗ 1√

d

))
+
1

d
TrX,

(17)

where Tr1 denotes the partial trace with respect to the first of
the two subsystems of equal dimension. Note that we have ex-
tended the definition ofWd,ν to operators with non-unit trace.
This relation yields (15) after inserting it into Eq. (16) and
applying (13).

The same argument holds also for restricted tight frames as
defined in (9): Let ν be a distribution on SUN̂ (d) such that if
U ∼ ν, thenPN (U) is drawn from an ε-approximate 2-design
on SU(dN ). This implies

‖WdN ,νPN − PN‖ ≤
√
dN (d2N − 1)ε, (18)

as follows from the application of the above proof to the block
in U corresponding to the eigenvalue N of N̂ .

B. Compressed sensing

The technique of compressed sensing allows to reduce the
number of measurements which are needed to reconstruct a
quantum state from Θ(d2) to Θ(dpolylog(d)) if the rank of
the state does not increase with d. To perform this method, one
has to choose m = Θ(dpolylog(d)) observables w1, . . . , wm
randomly from the tight frame according to the correspond-
ing probability measure and determine their expectation value
(wi, ρ) by measurement. Then, one can efficiently solve the
optimization problem

min
σ
‖σ‖1 s.t.∀i = 1, . . . ,m : (wi, σ) = (wi, ρ). (19)

The theory has been developed for observables forming oper-
ator bases in Refs. [5, 6] and extended to tight frames in Ref.
[8]. There, it was also shown that the tight frame condition
may be violated and compressed sensing is still possible if

‖Wd − 1‖ ≤
1

8
√
r
, (20)

where r is the rank of the state we want to reconstruct. Not
all tight frames are equally suited for compressed sensing as
can be seen with a simple example: Let w1, . . . , wd2 be the
elements of an orthonomal operator bases of B(Cd) where w1

is a rank-one projector and ρ = w1. In this case, one has to
measure of the order of d2 observables before one “hits” w1

and gets any information on the system. In Refs. [5, 6, 8], it
has been shown that this problem cannot occur if all observ-
ables fulfill the so-called “Fourier type incoherence condition”
which reads

Pw∼µ

(
‖w‖2∞ >

λ

d

)
= 0, (21)

where λmust fulfill λ = O(polylog(d)). Note that statements
like (21) make only sense when considering families of tight
frames with growing dimension d. As we are mainly inter-
ested in the asymptotic efficiency of our scheme, we restrict
ourselves to the scaling behavior and omit explicit prefactors.
We now give a condition under which (21) is fulfilled in the
situation of interest.

Observation 3 (Compressed sensing with induced observ-
ables). Let w0 be a traceless, normalized observable fulfill-
ing ‖w0‖2∞ ≤ λ/d with λ = O(polylog(d)), and let ν be a
1/(8
√
rd(d2 − 1))-approximate 2-design. The induced tight

frame fulfills (21), which implies that it allows for compressed
sensing.

Proof: Since

‖U†w0U‖2∞ = ‖w0‖2∞ (22)

and ‖1/
√
d‖2∞ = 1/d, condition (21) is fulfilled and from

(15) it follows that (20) is satisfied which proves that com-
pressed sensing is possible.

Observation 3 holds especially in the important case of a
observable which acts non-trivially only on a few number of
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lattice sites because here it is of the form

w0 = v ⊗
1dk−ml

(dk−ml )1/2
(23)

for some normalized, traceless observable v and some small
constant m.

IV. APPROXIMATION OF UNITARY 2-DESIGNS BY
RANDOM QUANTUM CIRCUITS

In the previous section, we have shown that unitary 2-
designs can be used to realize tight frames. We now show how
they can be approximated by parallel random circuits and gen-
eralize the results of Refs. [10, 11, 16] to show the following:

Observation 4 (Random circuits). Assume k to be even. Con-
sider a parallel random circuit where in each step either
U1,2 ⊗U3,4 ⊗ . . .⊗Uk−1,k or U2,3 ⊗U4,5 ⊗ . . .⊗Uk−2,k−1
is performed with probability 1/2 where Ui,i+1 acts on the
neighboring sites i and i + 1. If the nearest-neighbor uni-
taries are drawn, in each step independently, from a probabil-
ity measure ν2 which is universal, as defined below, there ex-
ists a constantC (depending on the local dimension) such that
the random circuit forms an ε-approximate unitary 2-design
after n = C log(1/ε)k log k steps.

A finite set of nearest-neighbor unitary quantum gates is
called universal if they generate a dense subgroup of SU(d2l ).
For an arbitrary probability measure on SU(d2l ), the notion of
universality can be generalized, according to Ref. [16]:

Definition 5 (Universality). We say that µ is universal if for
any open ball S there exists l > 0 such that S has a nonzero
weight for the l-fold convolution product of µ.

Proof: The proof of Observation 4 is an extension of that of
similar results in Refs. [10, 11]. Readers mostly interested in
the application to optical lattice systems can safely skip to the
next section.

In Ref. [11], it is shown that parallel random circuits with
periodic boundary conditions form ε-approximate 2-designs
after n = C log(1/ε)k steps if the unitaries are drawn from
the Haar measure on SU(d2l ).

We now proceed in three steps: First, we show that the
nearest-neighbor unitaries can be drawn from an approximate
2-design on SU(d2l ) instead from the Haar measure. We de-
note the measure corresponding to a single step of the random
circuit by νk and define the linear operator Gνk by

Gνk =

∫
dνk(U)U⊗2 ⊗ Ū⊗2. (24)

This operator can be decomposed as Gνk = (Me + Mo)/2
with

Me = P1,2 ⊗ P3,4 ⊗ . . .⊗ Pk−1,k, (25)
Mo = Pk,1 ⊗ P2,3 ⊗ . . .⊗ Pk−2,k−1 (26)

where

Pi,j =

∫
dν2(Ui,j)U

⊗2
i,j ⊗ Ū⊗2i,j . (27)

We have to bound

‖Gnνk −GH‖∞ = λ2(Gνk)n (28)

where n is the depth of the circuit and λ2 denotes the second
largest eigenvalue. In Ref. [11], it is shown that if the nearest-
neighbor unitaries are drawn from the Haar measure, there
exists a constant Λ > 0 such that the corresponding operator
G̃νk fulfills λ2(G̃νk) ≤ 1 − Λ. Using now the fact, that ν2 is
a δ-approximate 2-design, we get

λ2(Gνk) ≤ λ2(G̃νk)+k‖Gν2−GH2‖∞ ≤ 1+kδ−Λ. (29)

For the right-hand side to be smaller than one, which is nec-
essary and sufficient for an exponentially fast convergence,
one has to choose δ = O(1/k). To realize this local approx-
imate 2-design, we use a result from Ref. [16] which states
that one needs to draw only s = O(log(1/δ)) gates from an
arbitrary universal gate set to achieve this. Thus, we have a
circuit with depth

nε = O(ns) = O(log(1/ε)k log k) (30)

where the random choice between Me and Mo is not made in
every step but in blocks of s steps which corresponds to the
operator (Ms

e + Ms
o )/2 while s steps of the actual quantum

circuit performed are described by ((Me +Mo)/2)s. As they
have the same fixed point and

λ2

((
Me +Mo

2

)s)
≤ λ2

(
Ms
e +Ms

o

2

)
, (31)

the convergence of the actual circuit cannot be slower and (30)
holds. The last thing needed to obtain Observation 4 is to
switch to open boundary conditions, i.e., remove the first ten-
sor factor in Eq. (26). As this does not affect the fixed point
and the operator norm difference is on the order of δ, only
the prefactor is changed slightly. We note that the prefactor
depends on the actual choice of ν2.

The conditions for Observation 3 to apply are fulfilled if
1/ε = O(d5/2). Using this in Eq. (30), we get

nT = O(k2 log k). (32)

This means compressed sensing is possible with a single trace-
less observable and a parallel random quantum circuit with a
depth given by Eq. (32).

We did not explicitly discuss the case of restricted tight
frames because it can be, again treated by block-decomposing
all matrices according to the spectral decomposition of the op-
erator N̂ describing the symmetry, c.f. Eq. (10). Thus, with a
parallel random quantum circuit as in Observation 4 with uni-
taries which are universal for SUN̂ (d2l ) with a depth as in Eq.
(32), one can perform compressed sensing for states within
some eigenspace of N̂ .
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V. OPTICAL LATTICE SYSTEMS

Ultra-cold atoms in optical lattices form some of the clean-
est quantum many-particle systems available for experiments
and allow for the realization of well-known effects from con-
densed matter. For example, both the bosonic super-fluid
Mott-insulator transition and the Mott state of fermions where
observed by changing the intensity of the laser forming the
lattice [23, 24]. Such systems also have the potential of func-
tioning as quantum simulators which means, they allow to
simulate systems from other branches of physics like the no-
toriously difficult quantum chromodynamics (QCD) [25].

A. Time-of-flight measurements

Even though measurements with spatial resolution have
been demonstrated in recent experiments [15], the standard
technique is still provided by time-of-flight absorption imag-
ing. Here, the lattice and the confining trap are instanta-
neously switched off and, after some time during which the
atoms expand approximately without interaction, an absorp-
tion image is taken [23, 27]. As the distance that the atoms
fly during the expansion is proportional to the initial momen-
tum, this procedure amounts to a measurement of the den-
sity in momentum space. We restrict ourselves to the bosonic
case, while noting that fermions can be treated in a completely
analogous way, and expand the field operators of the one-
dimensional bosonic field as

Ψ̂(x) =

∞∑

j=1

k∑

s=1

W (j)(x− xs)b̂(j)s (33)

where W (j) is the Wannier function of the j-th band, xs is the
position, and b̂(j)s the corresponding annihilation operator at
site s. If the lattice is sufficiently deep, all bands but the lowest
one can be neglected, and we drop the upper index in (33).
The momentum-space distribution, which is measured in the
time-of-flight experiment, is given by n(p) = |W̃ (p)|2S(p)

where W̃ is the Fourier transform of the Wannier function and
the quasi-momentum distribution is given by

S(p) =
k∑

s,l=1

eip(xs−xl)〈b̂†sb̂l〉. (34)

As we do not assume the state to be translationally invariant,
Eq. (34) cannot be inverted to get the two-point correlation
functions in real space but we can get for integer l

k∑

s=1

〈b̂†sb̂s+l〉 =
1

2π

∫ π

−π
dp eiplS(p), (35)

where we have set the lattice spacing to one. If the atoms are
bosons, the local Hilbert space is infinite-dimensional. How-
ever, as the interaction between the atoms must always be re-
pulsive to ensure stability of the quantum gas, one can neglect
state where more than a given cut-off number of atoms are

present on a single lattice site. This allows us to work with
a finite-dimensional Hilbert space. We note that this does not
even needs to be an approximation as one can set the maximal
number of bosons per site NS to their total number N . How-
ever, in any practical setting, one would use NS � N and
still get a very good approximation. For an arbitrary i, we set

w
(i)
0 ∝

k∑

j=1

(b̂†i b̂i+j + b̂†i+j b̂j) (36)

which is traceless. Due to the sum, which stems from the
absence of translational invariance, Eq. (36) is not exactly of
the form given by (23) but a sum of few, i.e. logarithmically
many in the Hilbert space dimension d, terms of this form.
This implies

‖w(i)
0 ‖∞ ≤ C

k∑

j=1

‖b̂†j b̂i+j + b̂†i+j b̂j‖∞ ≤ C̃k (37)

where C and C̃ are constants. Because k = Θ(log d), we
can employ Observation 1 to show that a measurement of the
momentum space distribution, together with an approximate
2-design, allows for efficient compressed sensing.

Although already a single choice of i yields an approxi-
mate tight frame, we can use the data corresponding to all
i = 1, . . . , k, as they are measured anyway, to reduce the nec-
essary number of experiments.

B. Realization of the random circuit

We now discuss how a probability measure on the nearest-
neighbor unitaries that is universal can be obtained. To be as
specific and simple as possible, we use the single-band Bose
Hubbard model with Hamiltonian [28]

Ĥ = −
k∑

i=1

Ji(b̂
†
i b̂i+1+b̂†i+1b̂i)+

Ui
2
n̂i(n̂i−1)+∆in̂i, (38)

where n̂i = b̂†i b̂i and J1 . . . , Jk; ∆1, . . . ,∆k;U1, . . . , Uk ∈
R. To realize the parallel random quantum circuit, we make
use of the techniques of super-lattices [14, 15, 26] and speckle
patterns [13]. As the total number of atoms is conserved and
super-selection rules forbid the superposition of states with
different particle numbers, we restrict ourselves to particle-
number conserving operations.

By using an additional lattice for which the lattice constant
is twice as large, one can change the height of the wells be-
tween alternating pairs of site. This mainly affects the hopping
constants Ji and to much less extend the interaction parameter
Ui, an effect which we neglect. By choosing the depth of the
super-lattice large enough, we get Ji = 0 for the non-coupled
pairs and Ji = J for the coupled ones. Such a double-well
structure has been used in Ref. [15] to probe correlation func-
tions. A speckle pattern is created by illuminating an uneven
surface with a laser and can be modelled by a spatially fluctu-
ating ∆i. The situation is sketched in Figure 1. For reasons of
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simplicity, we only consider the regime for which the strength
of the speckle potential is not correlated over the lattice sites,
i.e., all ∆i are independently distributed. Thus, we have a ran-
dom circuit as in Observation 4 and we only need to show that
the corresponding gates generate a dense set in SUN (d2l ). The
local gates are

Ui,j(∆1,∆2, t) = exp
(
−it(−J(b̂†1b̂2 + b̂†2b̂1)

+
U

2
(n̂1(n̂1 − 1) + n̂2(n̂2 − 1))

+ ∆1n̂1 + ∆2n̂2)
)
, (39)

where t ≥ 0 is the time after which the super-lattice is
switched and a new realization of the laser speckle is cre-
ated. We assume ∆1,2 to be Gaussian distributed, and we
have neglected global phases. Now one can adopt an argument
used in Ref. [29] for showing that the Gaussian operations to-
gether with a single non-Gaussian one allow for continuous-
variable quantum computation. For universality to hold, one
has to generate all operations where the corresponding Hamil-
tonian is a polynomial in the creation and annihilation opera-
tors where every monomial must contain an equal number of
creation and annihilation operators, i.e., must be balanced, to
ensure particle-number conservation. This is true as Eq. (39)
contains all quadratic terms and a single quartic one. Since
one can generate the entire algebra generated from the origi-
nal set of Hamiltonian by commutation, one can approximate
an arbitrary unitary [29]. Thus, by varying ∆1,2, we can ap-
proximate any gate to arbitrary accuracy which implies, by
continuity of Eq. (39) universality as in Definition 5. By ap-
propriately choosing the distribution from which t is chosen,
the set can be made closed under Hermitian conjugation. Now,
we can apply Observation 4 which shows together with Ob-
servation 1 that one can perform efficient compressed sensing
by using a optical super-lattices, laser speckles, and time-of-
flight imaging.

VI. MORE EFFICIENT TOMOGRAPHY SCHEME FOR
MATRIX PRODUCT STATES AND OPERATORS

Even though compressed sensing notably reduces the num-
ber of necessary measurements, it still scales exponentially
with the number of lattice sites. Without any further assump-
tion on the state, this cannot be overcome. However, when
the state is described by a generic matrix-product state (MPS)
with a fixed bond dimension, tomography is possible with the
number of measurements growing, in general, almost linearly
with the system size and being constant for translationally in-
variant MPS. Ground states of gapped Hamiltonians which
are a sum of terms acting only on a constant number of lattice
sites are, generically, of this type [30].

A. Reconstructing reduced density matrices

The exponential reduction of the necessary number of mea-
surements if the state is a MPS is due to the fact that such

states are completely determined by their reduced density ma-
trices on all blocks of l consecutive sites where l only depends
on the bond dimension [9, 30]. In Ref. [9], an efficient algo-
rithm is given for finding the MPS matrices from these re-
duced density matrices. Note that this procedure only works
if an upper bound to the bond-dimension, or, equivalently, to
the locality size of the Hamiltonian is known. This is obvious
as there could always be long range correlations which do not
affect the l site reduced density matrices.

Let dB = dll be the dimension of the subsystem under con-
sideration and define the operator TRq : B(Cd) 7→ B(CdB ) be
the operator acting as TRq (ρ) = TrRqρ and Rq denote all lat-
tice sites but q, . . . , q+ l− 1. Then, the tight frame-condition
of Definition 2 becomes

TRqWdB = TRq (40)

If additional constraints apply, the condition reads

TRqWdBNPN = TRqPN (41)

where dBN is the dimension of the matrix block correspond-
ing to the eigenvalue N of N̂ , restricted to the subsystem of l
lattice sites. We concentrate on the former case as the second
follows in an analogous way and show that a random circuit
with a depth which does not depend on the system size can
realize such a reduced tight frame: Assume w0 to be a sum of
traceless observables, each acting non-trivially only on some
block of l lattice sites. For compressed sensing to be possi-
ble, it is sufficient for ν to induce, for every q, an approximate
reduced tight frame with

‖TRq (WdB ,ν − 1)‖ ≤
√
dB(d2B − 1)ε. (42)

This is the case if it is an approximate reduced unitary 2-
design with

∀q : sup
X,‖X‖2=1

∥∥∥∥TrRq (Gν − G(q)Hl
)(X)

∥∥∥∥
2

≤ ε. (43)

where G(q)Hl
denotes the channel which acts as GH on a block of

l sites starting at q and as the identity on the rest of the system.
To see that this is true, we calculate

‖TRq (WdB ,ν − 1)‖ =

sup
X,‖X‖2=1

‖TrRq (WdB ,ν(X)−WdB ,H(X))‖2, (44)

which yields the desired result after inserting (17) and apply-
ing (43).

To show that obtaining such a tight frame is efficiently pos-
sible, we adapt Observation 4:

Observation 5 (Reduced tight frames by reduced unitary
2-designs). Let the parallel random circuit be as in Obser-
vation 4. There exists some constant C such that it forms an
ε-approximate reduced l-site 2-design as defined in (42) after
n = C log(1/ε)l log l steps.
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FIG. 2. Top: Parallel random circuit acting on the entire system.
Bottom: Random circuit used in the proof of Observation 5 which
acts only on the inner sites. The above circuit randomizes the states
of the inner sites not less than the above one.

Proof: We show the fast convergence of our random cir-
cuit to a reduced unitary 2-design by comparing it with an-
other random circuit which is easier to deal with, see Fig. 2.
In analogy to Eq. (24) we denote by G(q)νl the channel corre-
sponding to an application of the parallel quantum circuit to a
block consisting of l lattice sites starting from q. Observation
4 implies

sup
X,‖X‖2=1

‖TrRq ((G(q)νl
)n − G(q)Hl

)(X)‖2 ≤ ε (45)

for n = C log(1/ε)l log l where C is a constant. Using that
λ2(Gνk) ≤ λ2(Gνl), one obtains (43) concluding the proof.

B. Complexity of classical post-processing

Observation 5 implies that a random quantum circuit of
constant depth is sufficient to perform tomography on a re-
duced density matrix of constant size. The number of opera-
tions, i.e. random unitary gates and measurements of expecta-
tion values of w0, does only scale polynomially with the num-
ber of lattice sites. Therefore, we regard the quantum part of
the protocol as efficient. However, this says nothing about the
amount of post-processing needed because the reconstruction
of the l-site reduced density matrices requires the knowledge
of TrRqw for all observables w obtained by the realizations of
the random quantum circuit. If one needed to keep track of the
evolution of observables on the entire Hilbert space this would
require an exponential amount of computational resources. To
see that this is not a problem in the present situation, we use
the fact that w0 is a sum of terms which act non-trivially only
on blocks of constant size. Thus, the observables induced by
the constant-depth random circuit can be written as

w(U) =
∑

i

wi(U)⊗ 1Ri/(dRi)1/2 (46)

FIG. 3. Influence region for a local observables. Only the action of
the darkly colored gates influences the measured observables.

where wi(U) acts non-trivially only on a block of constant
size L starting with site i and where Ri denote all lattice sites
but i, . . . , i+ L− 1, see Figure 3. From Eq. (46), we get

TrRq (w(U)) =
∑

i

√
dRiTrRq (wi(U)), (47)

which means that one only needs to deal with observables on k
Hilbert spaces which all have dimension dLl not depending on
k making also the classical part of the protocol efficient. If the
system is assume to be translationally invariant, all reduced
density-matrices are equal, reducing the necessary number of
measurements to a constant. Roughly speaking, the random
circuit transforms a local observable to a reduced tight frame
on l lattice sites with some influence on L > l sites and none
on the rest of the system.

C. Mixed states

Even though the method developed in this section is, in its
present form, limited to pure states, it can be naturally ex-
tented to mixed states by using recent results on tomography
for matrix-product operators (MPO) which are a natural gen-
eralization of MPS [31, 32]. In Ref. [33], it is shown that large
classes of MPO states can be efficiently reconstructed from
the reduced density matrices on a constant number of sites
not depending on the system size. As we have presented a
method of recovering these objects, one directly obtains a way
of performing tomography on states in optical lattices which
are described be MPO while requiring the same experimental
techniques.

VII. CONCLUSION

In this article, we have presented a new route towards ef-
ficient quantum state tomography for quantum many-body
systems, specifically for bosons in optical lattices. By us-
ing random circuits, which can be implemented by means of
super-lattices and laser speckles, one can avoid the use of to-
mographically complete local measurements. These are very
challenging, needless to say, but rely solely on time-of-flight
imaging techniques, and seem conceivable with present tech-
nology. Without any further assumptions to the state, the num-
ber of necessary measurements is optimal up to constants and



9

logarithmic factors in the systems dimension. Restricting the
set of possible states to matrix product states, both the number
of measurements and the depth of the required random quan-
tum circuit does not at all depend on the system size. This
idea gives rise to the exciting perspective of actually measur-
ing out the quantum state of a quantum many-body system in
the laboratory.

There are a number of questions arising from this: For ex-
ample, it would be very interesting to compare the perfor-
mance of the present scheme, which is based on random cir-
cuits, with one where the quantum gates are chosen in an op-
timal way from some set of feasible operations. While there
is not much room for improvements concerning the asymp-
totic behavior, the performance for small systems might differ
notably. This will be studied extensively by numerical means

in forthcoming work. We hope that this work stimulates fur-
ther work – both of theoretical and especially experimental
kind – in “quantum system identification”, in order to inno-
vate ways of rendering quantum state tomography feasible for
large quantum systems.
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almost frustration-free models in a simple fashion, outperforming mean-field theory.
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Understanding the physics of quantum many-body sys-
tems is a central goal of modern physics, as they can
exhibit exotic phenomena with no parallel in classical
physics, including topological effects and quantum phase
transitions at zero temperature. However, the very source
of their rich physics also leads to a major roadblock in their
study: The Hilbert space dimension of these systems scales
exponentially with the number of particles. This means that
brute-force numerical techniques fail even for systems of
only a handful of particles.

A key insight in the study of local quantum many-body
systems is that naturally occurring states occupy only a
small subspace of the Hilbert space which, in principle, is
available to them. Specifically, it has been realized that
ground, thermal, and dynamically evolving states are only
weakly entangled: The entanglement entropy satisfies what
is referred to as an ‘‘area law’’ [1–3]. This insight is the
basis of the density-matrix renormalization group ap-
proach and higher-dimensional analogues [4]. So success-
ful are these methods in practice that one is tempted to
boldly conjecture that all physically relevant systems will
soon be tractable to one or another of the numerical tools
we have at hand. Recent results give cause for caution,
showing that general numerical methods cannot well ap-
proximate the physics of an arbitrary local quantum sys-
tem, even in 1D; these include local glassy models where
approximating the ground-state energy is NP-hard [5],
suggesting that such systems would be intractable.
However, these results do not give much reason for prac-
tical concern thus far, as at least in 1D they rely on rather
baroque constructions (involving very large local
dimensions).

In this work, we approach the issue of the complexity or
‘‘hardness’’ of finding ground states from the other di-
rection: We establish a large class of models for which
the task of finding the ground state is easy, in that the
ground-state manifold can be described exactly and effi-
ciently. This is the class of all natural frustration-free

spin-1=2 models with nearest-neighbor interaction on gen-
eral lattices. (By the qualifier ‘‘natural,’’ we mean that all
two-spin interaction terms have excited states which are
entangled, which might be taken as implicit in the seman-
tics of an ‘‘interaction term.’’) Extending ideas of Ref. [6]
on QUANTUM 2-SAT and going beyond 1D models as in
Ref. [7], we find that the complete ground-state manifold
of such Hamiltonians can be constructed by reduction to
the symmetric subspace of a smaller system. In doing so,
we find that the resulting ground-state manifold can be
efficiently grasped in terms of tree-tensor networks. We
discuss how this allows expectation values of local observ-
ables to be computed efficiently. What is more, the ground
states satisfy an area law. Physically, we can view this work
as describing a large class of models for which an instance
of real-space renormalization provides an exact solution to
the true genuine quantum many-body model. Finally, we
see how this construction—a tree-tensor network with a
symmetric subspace as an input—can serve as an ansatz
class to simulate systems which are ‘‘close’’ to frustration-
free models, outperforming mean-field approaches in a
very simple fashion.
In our analysis, we allow for nearest-neighbor

Hamiltonians on arbitrary lattices. This could be a cubic
lattice of some dimension or, more generally, any graph,
the vertex set of which we denote by V. On this lattice, the
spin Hamiltonian H is represented as

H ¼ X

fa;bg
ha;b (1)

for terms ha;b acting on pairs of spins fa; bg � V. By
rescaling, we may require that the ground energy of each
term ha;b is zero. The ground-state manifold M of such a

Hamiltonian may be degenerate: We identify the ground
state � with the maximal mixture over M. (This is a pure
state only ifH is nondegenerate.) We describe properties of
the ground state � and, more generally, the manifold M,
given H as in Eq. (1). The Hamiltonian H is frustration-
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free (or unfrustrated) if the ground-state vectors j�i 2 M
correspond to ground states of individual coupling terms,
that is, if ha;bj�i ¼ 0 holds for all ha;b and all j�i 2 M;

we say otherwise that H is frustrated.
We will call a spin Hamiltonian H natural if it contains

no isolated subsystems, and each interaction term ha;b
(considered as an operator on C2 � C2) has at least one
entangled excited state (i.e., an entangled state orthogonal
to the ground-state manifold of ha;b). In what follows we

will consider only such natural Hamiltonians.
Frustration-free spin Hamiltonians.—Our main results

concern the class of frustration-free spin Hamiltonians H.
We show that the ground-state manifold M of such a spin
Hamiltonian on N spins has dimension at most N þ 1.
What is more, it is the image of a space of low Schmidt
measure [8] under a tree-tensor network.

First, we describe the needed components of Ref. [6], in
the language of frustration-free models. Consider a
Hamiltonian HU containing terms hu;v of rank 2 or 3. If

HU is frustration-free, the reduced state �u;v of any state

vector j�i 2 kerðHÞ is in the kernel of hu;v; we may then

consider a subspace Su;v � H u �H v of dimension 2

which contains suppð�u;vÞ. By defining an isometry

Ru:uv:H
�fug
2 ! Su;v � H �fu;vg

2 ; (2)

we can reduce to a Hamiltonian on fewer spins: We let

H0
U ¼ Ry

u:uvHURu:uv ¼ X

fa;bg
Ry
u:uvha;bRu:uv: (3)

Such a spin Hamiltonian H0
U is a sum of two-spin inter-

actions (and possibly single-spin terms) of the form h0a;b ¼
Ry
u:uvha;bRu:uv. (If hu;v has rank 3, then h0u;v is a nonzero

single-spin operator acting on u alone.) If H contains
nonzero terms ha;u and ha;v, we obtain two nonzero con-

tributions h0a;u ¼ Ry
u:uvha;uRu:uv and h0a;v ¼ Ry

u:uvha;vRu:uv

in the Hamiltonian H0, each of which act on fu; ag. The
sum gives a combined term �h0a;u ¼ h0a;u þ h0a;v in H0

U,

possibly of higher rank than either h0a;u or h0a;v [9]. If the

new HamiltonianH0
U contains terms of rank 2 or 3, we may

perform another such reduction, and so on. This reduction
procedure has the following features:

a. Preservation of the kernel dimension.—By construc-
tion, we have kerðHUÞ ¼ Ru:uv kerðH0

UÞ. Thus, the kernels
of HU and H0

U have the same dimension. In particular, if
H0

U has any terms of full rank acting on either one or two
spins, then dim½kerðHUÞ� ¼ 0, in which case HU is frus-
trated. If no full-rank terms are produced, each reduction
leads to an operator acting on fewer spins, until we obtain a
Hamiltonian having only terms of rank 1.

b. Arbitrariness of reduction order.—The dimension of
the kernel is preserved by these reductions. We may per-
form such reductions until we obtain a Hamiltonian which
either (i) contains only terms of rank 1 or (ii) contains a
full-rank term. The latter cannot occur in the reduction of a
frustration-free Hamiltonian; we discuss below the analy-

sis for Hamiltonians having only rank-1 terms. Thus, we
may choose any convenient reduction sequence.
The above features allow us to reduce to the special case

of a Hamiltonian H0
U (acting on a system V 0) which has

only interaction terms of rank 1. Each two-spin
Hamiltonian term h0a;b ¼ j�a;bih�a;bj may be regarded as

imposing constraints on the corresponding two-spin mar-
ginals �a;b of states j�i 2 kerðHÞ: We aim to obtain addi-

tional constraints on pairs of spins u; v 2 V0 by combining
the known constraints. To this end, Ref. [6] shows that a
state j�i which is in the kernel of two functionals h�a;bj
and h�b;cj is also in the kernel of

h�0
a;cj ¼ ðh�a;bj � h�b;cjÞð1 � j��i � 1Þ (4)

acting on the spins fa; cg, where j��i is the two-spin
antisymmetric state vector. For each such ‘‘induced’’ con-

straint h�0
u;vj on spins fu; vg, we may add the term ~hu;v ¼

j�0
u;vih�0

u;vj to H0
U, resulting in a Hamiltonian ~HU which

has the same kernel as H0
U. (If H

0
U contains a term h0u;v 6/

~hu;v, it can be subsumed into a term �hu;v with rank at least

2, in which case we apply a reduction Ru:uv as above.) One
may induce further constraints from the terms of ~H, until
we arrive at a ‘‘complete homogeneous’’ Hamiltonian Hc,
having only terms of rank 1, for which the constraints
h�u;vj are closed (up to scalars) under the constraint-

induction procedure of Eq. (4).
Reference [6] shows that such a Hamiltonian Hc, acting

on at least one spin and lacking single-spin operators [10],
has a ground space containing product states. Thus, the
above remarks essentially recap the following result.
Observation 1.—There is an efficient algorithm to de-

termine whether a spin Hamiltonian is frustration-free.
We now extend the above results, to obtain a strong

characterization of ground-state manifolds for natural
frustration-free systems. We note the following three addi-
tional features of the isometric contraction scheme above:
c. Tree-tensor construction.—The complete network of

isometric reductions T represents a tree-tensor network, a
special case of the multiscale entanglement renormaliza-
tion ansatz [11] which is related to real-space renormal-
ization. Each isometry Ru:uv has one free input tensor index
and two free output indices, and the sequential nature of the
reduction ensures that the network is directed and acyclic.
Thus, any spin v introduced by an isometry Ru:uv is a
‘‘daughter spin’’ of a unique parent u, leading to a treelike
structure on the tensor network T. Note, however, that T
has free input indices, corresponding to the roots of each
tree: By construction, the ground space of HU is the image
Tj�i of states j�i 2 kerðHcÞ.
d. Preservation of natural Hamiltonians.—Importantly,

the isometric reductions above preserve the class of natural
frustration-free spin Hamiltonians: That is, the mapping

ha;u � Ry
u:uvha;uRu:uv does not decrease the rank of the

interaction on fa; ug and does not map the orthocom-
plement of the kernel to the space j�i � C2 for any j�i.
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e. Reduction to the symmetric subspace.—As a conse-
quence of the previous feature, we may use the isometric
reductions to map any natural frustration-free Hamiltonian
to a complete homogeneous Hamiltonian Hc on a system
Vc, in which the nonzero terms ha;b ¼ j�a;bih�a;bj are

supported on entangled states j�a;bi. We show that the

kernel of such a Hamiltonian has small dimension and is
spanned entirely by product states. For an arbitrary spin
a 2 Vc, we may let La ¼ 1 and define a family of opera-
tors Lv satisfying

h�a;vj / h��ja;vð1a � LvÞ (5)

for spins v 2 Vc and operators h�a;vj. One then finds that

C ¼ N
v2Vc

Lv is a linear isomorphism (not necessarily an

isometry) from the subspace SymmðH �Vc

2 Þ of symmetric

states to the ground space ofHc. (This isomorphism is also
noted in Ref. [12], Sec. III A, for generic Hamiltonians

with rank-1 interactions.) As SymmðH �Vc

2 Þ is spanned by

uniform superpositions jWki of standard basis states having
Hamming weight 0 � k � nc ¼ jVcj, we have

dim½SymmðH �nc
2 Þ� ¼ nc þ 1. This subspace may also

be spanned by product state vectors j�0i�nc ; . . . ; j�nci�nc
for any set of nc þ 1 pairwise independent state vectors
j�ji 2 H 2. Thus, any complete homogeneous (natural)

Hamiltonian Hc has a ground space spanned by vectors

j�ji ¼
O

v2Vc

ðLvj�jiÞ ¼ Cj�ji�nc ; (6)

for some j�ji 2 H 2 as above. Coupled with the tree-

tensor structure of the isometric reductions, this character-
ization has the following consequences.

Observation 2.—For an unfrustrated spin Hamiltonian
HU, any constant k, and k-local operators A, hAi can be
efficiently computed with respect to ground states of H.

Let Hc be a homogeneous Hamiltonian acting on nc
spins, obtained by isometric reduction of an unfrustrated

Hamiltonian HU. Consider a k-local operator ~A. As
kerðHcÞ is spanned by product vectors j�0i ¼
Cj�0i�nc ; . . . ; j�nci ¼ Cj�nci�nc as in Eq. (6), we can

efficiently compute the restriction of ~A to kerðHcÞ by
evaluating

Wð ~AÞ ¼ Xnc

j;k¼0

jjih�jj ~Aj�kihkj (7)

followed by a suitable transformation. Specifically, con-
sider the operator B ¼ Wð1Þ; we have B ¼ U�Uy for
some U unitary and � positive and diagonal. We find

��1=2Uy X
nc

j¼0

jjih�jj ¼
Xnc

j¼0

jjih�jj; (8)

for some orthonormal basis j�0i; . . . ; j�nci of kerðHcÞ;
thus, the restriction of ~A to kerðHcÞ with respect to the
basis of states j�ji may be computed as

�A ¼ ��1=2UyWð ~AÞU��1=2: (9)

[For ~A consisting of a single k-spin term, the inner products

of Eq. (7) are products of constant-dimensional inner prod-

ucts; for ~A a sum of multiple terms, we extend linearly.] Let
T: kerðHcÞ ! kerðHUÞ be the network of isometric reduc-

tions. Then, by considering operators ~A ¼ TyAT, we may
compute the restriction �A of such operators A to the ground
space ofHU. We may then efficiently compute expectation
values by using such matrices.
Observation 3.—Ground states of frustration-free spin

Hamiltonians HU on lattices obey an entanglement area
law.
For any contiguous subsystem A containing a spins, we

may reduce the Hamiltonian HðAÞ
U acting internally on A—

by a tree-tensor isometry TA acting on A alone—to obtain a

homogeneous Hamiltonian HðAÞ
c , acting on at most a spins.

The ground space of HðAÞ
c has dimension at most aþ 1; as

the ground space of HðAÞ
U is an isometric image of that of

HðAÞ
c , the same is true of HðAÞ

U . As HU is unfrustration, any

ground state of HU is also a ground state of HðAÞ
U ; it follows

that the Schmidt measure [8] of j�i with respect to the
bipartition V ¼ A [ ðV n AÞ is at most logðaþ 1Þ. For a
spin lattice of any dimension, we obtain an area law for
arbitrary subsystems by summing this logarithmic bound
over the number of distinct connected components.
‘‘Almost’’ frustration-free Hamiltonians.—We now

leave the rigorous exact setting and turn to the observation
that the above techniques can be used to grasp approxi-
mately frustration-free models. Observation 2, in particu-
lar, suggests a variational approach to estimating ground
energies for Hamiltonians H for which

H ¼ HU þ �HF (10)

for some � � 1, where HU is frustration-free but the
Hamiltonian H itself is frustrated. For such Hamiltonians
H, if no phase transition is encountered, the eigenvalues
and eigenstates may differ little from those of the unfrus-
trated Hamiltonian HU (for related bounds on eigenvalues,
see, e.g., Ref. [13]). If the lowest k eigenvectors (for some
suitable 1 � k � nþ 1) have a sufficiently high overlap
with the lowest k eigenvectors of HU, we may approxi-
mately sample from the low-energy eigenvectors of H by
restricting to the kernel of HU, by using the efficient
algorithm above. In particular, as this procedure is varia-
tional, estimates obtained in this way for the ground-state
energy of H are guaranteed to be upper bounds.
We may consider improvements to this ansatz which

retain more information about the ‘‘frustrating’’ compo-
nent �HF than in the tree-tensor renormalization procedure
for HU. To obtain better estimates—and to extend these
techniques to the case where � may be significantly
large—we may consider partial reductions by tree-tensor
networks, having many free input spins, and isometries
depending on the terms of the perturbed Hamiltonian H
(rather than those of HU).
If the ground-state manifold of HU is contained in a

subspace K which is spanned by product states and has
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‘‘small’’ dimension (i.e., polynomial rather than exponen-
tial in the system size, as in the case of the symmetric
subspace for ferromagnetic Ising or XXX models), we may
indeed forgo isometric reductions entirely and estimate the
ground energy of H by considering the restriction of H to
K by using the techniques described for Observation 2. In
contrast to a full tree-tensor contraction, this has the ad-
vantage of yielding exact results for the frustration-free
case � ¼ 0 while retaining more information about the
frustrating component HF. The resulting estimate for the
ground-state energy will be a linear function of �, whose
value and first derivative with respect to � agree with that
of the exact ground energy at � ¼ 0. For small � and
modest system sizes, this may yield a good estimate of
the ground-state energy of H; see Fig. 1 [14].

To obtain estimates which account for spatially decaying
correlations, we may perform a partial tree-tensor reduc-
tion with a small number of contraction layers and sample
with respect to a subspace K as described above. In each
layer, we may fix a collection of (nonintersecting) adjacent
site pairs fa; bg to contract and for each such pair fa; bg
apply some isometric contraction as described in Eq. (3).
However, rather than apply the reductions which would be
suggested by the frustration-free Hamiltonian HU, we may
use isometries

Qa:ab ¼ jc 0
a;bih0j þ jc 1

a;bih1j; (11)

where jc 0
a;bi and jc 1

a;bi are the lowest energy eigenvectors
of the interaction term ofH on sites a and b. Given a tensor
network T1 consisting of a product of such two-site opera-
tors Qa:ab, we may then consider the spin model given by

H0 ¼ Ty
1HT1 and estimate the ground energy of H0 with

respect to a low-dimension subspace or another isometric
contraction; this yields an upper bound on the ground
energy of the original Hamiltonian H.

Summary.—In this work, we have introduced a class of
spin models that can be completely solved: The entire

ground-state manifold can be explicitly given and parame-
trized by an entire symmetric subspace under a tensor
network. This class of models is expected to provide a
rich playground of exploring ideas on quantum lattice
models, complementing work that exemplifies how com-
putationally difficult it can be to approximate ground-state
energies. The considered models can also be viewed as the
parent Hamiltonian of the network, in a converse approach
taken for tree-tensor networks in Ref. [15]. The models we
consider obey area laws, establishing a class of models
beyond free systems for which this holds. It is the hope that
this work stimulates further research on models for which
tensor networks arise not only as computational but as
essentially analytical tools.
We acknowledge support by the EU (QESSENCE,

MINOS, COMPAS) and the EURYI scheme.
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FIG. 1 (color online). Left: Ground-state energy for XXZ
model on a trigonal lattice on a 3� 3 torus, hi;j ¼ �XiXj �
YiYj � ð1� �ÞZiZj, by symmetric subspace estimate compared

to product state ansatz and exact diagonalization. The inset
shows the same model on a 6� 6 torus where exact solution
is not feasible and, therefore, is replaced by an Anderson lower
bound. Right: Magnetization in z direction for Ising model in a
transverse field on a 4� 4 torus, hi;j ¼ �ZiZj, hi ¼ ��Xi, by

symmetric subspace estimate compared to mean-field approxi-
mation (product state ansatz) and exact diagonalization.
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Chapter 8

Discussion and conclusion

In the five articles, we have elaborated on various aspects of quantum systems

which are relevant for quantum information where we have put an emphasis

on measurement-based quantum computing and quantum state tomography.

In the present chapter, we give a short summary of those articles and also

mention what the contributions of the author were. Furthermore, we provide

a brief conclusion and give some outlook to future research projects.

• Limitations of quantum computing with Gaussian cluster statesa

In this article, we have discussed the limitations of using Gaussian states

as resources for measurement-based quantum computing. Gaussian clus-

ter states are the natural continuous-variable generalizations of qubit

cluster states, which were the first known resource for MBQC. Gaussian

cluster states allow for universal MBQC where only Gaussian measure-

ments and a single non-Gaussian one are necessary [37]. Unfortunately,

in their ideal form, they need an infinite amount of energy to be pre-

pared which renders them unphysical. We have shown that in any Gaus-

sian state with finite energy, the entanglement localizable by Gaussian

measurement decays exponentially in the distance between the modes.

This is true on any graph and shows that every scalable MBQC scheme

would need non-Gaussian measurements already to just transport a sin-

gle qubit. Furthermore, if the modes are arranged on a one-dimensional

lattice, transport is impossible even when allowing for completely ar-

bitrary measurements. These results gravely limit the use of Gaussian

states in creating a scalable measurement-based quantum computer.

The author’s contribution was to show the technical results and to write

the manuscript while acknowledging support from KK and JE especially

on section IV.C, V.B, and the appendix.
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• Efficient measurement-based quantum computing with conti-

nuous-variable systems

In this chapter, we have continued the investigation of continuous-variable

MBQC and have both introduced a unifying framework allowing for

the description of MBQC schemes both with qudits and CV systems.

We have formalized the requirements for efficient quantum computing

in this paradigm which helped us to find another important no-go re-

sult: In a system composed of one-dimensional quantum wires, scal-

able measurement-based quantum computing with Gaussian measure-

ments only is impossible when the one-dimensional resource state can

be described by a matrix product state with constant bond dimension.

Thus, both non-Gaussian resource state and non-Gaussian measure-

ments are necessary. As a second main result, we have provided the

first scalable CV-MBQC scheme. It only uses coherent states as an in-

put, beam-splitters and cross-Kerr cells as interactions, and displaced

photon-counting as measurement. Even though the last two require-

ments are experimentally quite challenging, they have all already been

demonstrated at least in proof-of-principle experiments [38].

The main contribution of the author was to formulate and show the

observations made in this article and to write the manuscript. He ac-

knowledges contributions of JE to this article, especially concerning the

presentation.

• Continuous-variable quantum compressed sensing

We have introduced the concept of continuous-variable compressed sens-

ing. We were able to provide sufficient conditions observables must fulfill

to be of use for efficient tomography. These conditions are not merely

of purely theoretical interest but they are fulfilled for the measurements

most commonly used in continuous-variable quantum optics. Further-

more, we have presented a method to certify the success of the tomogra-

phy protocol from the measured data. This is especially of interest when

considering medium sized systems which are accessible to present day ex-

periments. We have exemplified this with numerical studies showing the

superior performance of compressed sensing.

The main part of manuscript of this article has been written by the au-

thor who also showed, together with his co-authors, most of the technical

results. This excludes sections 4 and 5.2 as well as the last appendix.
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• Efficient and feasible state tomography of quantum many-body

systems

We have made use of the technique developed in the previous chapter

to propose a scheme for full quantum state tomography of ultra-cold

atoms in optical lattices which only relies on the techniques of speckle-

patterns and super-lattices which have both already demonstrated in

experiment. Under the assumption that the state is a generic ground

state of a Hamiltonian, which is a sum of local terms, the required effort,

both measurement procedure and post-processing, grows only polynomi-

ally in the system size. This is to be compared to a necessarily expo-

nential growth in the general situation. The protocol is based on the

observation that compressed sensing is possible by applying a random

unitary to the quantum state in question followed by a measurement

of a fixed observable and repeating this procedure to get the required

amount of expectation values. We have shown that such random unitary

matrices, called approximate unitary 2-designs, can be realized by suit-

able random circuits which, in turn, can be performed by means of the

mentioned super-lattices and speckle-patterns. We have discussed the

scaling of the necessary depth of the random circuit, i.e., the number

of operations performed before the measurements, with the system size

and have shown that it is, in the particular important case of matrix

product state tomography, independent of it.

The manuscript was written by the author. Contributions of VN and

JE to the idea of this research projects, the mathematical foundations,

and the presentation of the results are acknowledged.

• Solving frustration-free spin systems

In the first four articles, we have investigated the particularities of con-

tinuous-variable systems with respect to measurement-based quantum

computing and compressed sensing while in this chapter, we have con-

sidered quantum many-body systems consisting of qubits, in this context

often called spins. We have presented a method to find the ground-state

manifold of a large class of Hamiltonians, i.e., frustration free nearest-

neighbor ones on any graph. Such Hamiltonians are sums of terms acting

non-trivially only on two neighboring systems. In addition, the global

ground state is simultaneously the ground state of all the terms con-

tributing to the Hamiltonian. We have done this by adapting the method

used in Ref. [39]. The key idea is to perform a sequence of isometric re-
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ductions which leave the ground-state invariant. At the end, one obtains

an isometric tree-tensor network which has the property that the image

of the symmetric subspace under it is exactly the ground-state manifold.

As the algorithm to find this tree-tensor network scales polynomially in

the number of spins N and the dimension of the symmetric subspace is

N+1, the solution fulfills the requirements of efficiency. The notable dif-

ference to other techniques based on tensor-networks is that we were able

to provide an analytic, compared to a merely numerical, algorithm. Fur-

thermore, our algorithm can be used as an approximative technique to

find solutions of Hamiltonians which are close to being frustration free.

We have applied this technique to the XXZ model and compared our

findings to results obtained by exact diagonalization, variational meth-

ods, and Anderson bound techniques showing a favorable performance

at least in part of the parameter range.

The main contributions of the author to this work were the numerical

results and the part on the idea of using the presented method as a

simulation technique for slightly frustrated systems.

The main aim of this thesis was to investigate and characterize continuous-

variable quantum states where we have focused on two important aspects.

The first two articles have discussed the possibility of using such states as

resources for measurement-based quantum computing (MBQC). This was of

particular interest in the view of the research program started with Ref. [37]

in which Gaussian analogs of the cluster state, as used in the first MBQC

protocol [6], were introduced and which inspired a substantial amount of re-

search in this direction. We have contributed to this efforts by developing a

framework to describe a very general class of MBQC schemes both discrete

and continuous. This allows to clearly state the requirements any efficient

MBQC scheme has to fulfill. Using this framework, we have shown serious

limitations of the Gaussian cluster state approach on one hand and presented

a measurement-based computing scheme not suffering from these drawbacks

on the other hand. Besides the direct implications, these results highlight

again the necessity of non-Gaussian elements in quantum information. While

it was known before that non-Gaussian measurements are needed, we have

shown that non-Gaussian resource states are required at the same time. This

is a substantial difference to the situation of entanglement distillation where

non-Gaussian resource states are sufficient [19–21]. This motivates a closer in-

vestigation of the resource character of non-Gaussian states as already started

in Appendix A.
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The second subfield of quantum information, this thesis has contributed

to, is quantum state tomography. We have addressed this problem from three

directions. On the theoretical side, we have generalized the technique of com-

pressed sensing such that a large class of measurements can be used. This has

allowed us to give detailed description how compressed sensing can be per-

formed in experiments involving quantum optics or ultra-cold gases in optical

lattices. To connect our theoretical findings, which are mainly concerned with

asymptotic statements, i.e., the scaling of the effort with the system size, to

experiments, we have also performed numerical simulations. They show that

compressed sensing outperforms other methods of quantum state tomography

not only in the asymptotic limit but also in medium size systems accessible

in present day experiments. A next step in this research program is to ap-

ply these results to actual experimental data to show the superiority of this

method also in real-life situations.

We hope the present work is a little puzzle piece in the quest for a bet-

ter understanding of the properties of quantum mechanical systems and for

realizing a quantum computer and other quantum information devices.
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[13] E. Jané, G. Vidal, W. Dür, P. Zoller, and J. I. Cirac, Simulation of

quantum dynamics with quantum optical systems, Quant. Inf. Comp. 3,

15 (2003).

[14] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, Matrix Prod-

uct State Representations, Quant. Inf. Comp. 7, 401 (2007).

[15] U. Leonhardt, Measuring the Quantum State of Light, Cambridge Uni-

versity Press (1997).

[16] W. P. Schleich, Quantum Optics in Phase Space, Wiley-VCH (2001).

[17] A. Mari, K. Kieling, B. Melholt Nielsen, E. S. Polzik, and J. Eisert,

Directly estimating non-classicality, Phys. Rev. Lett. 106, 010403 (2011).

[18] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, K. Nemoto, Efficient Clas-

sical Simulation of Continuous Variable Quantum Information Processes,

Phys. Rev. Lett. 88, 097904 (2002).

[19] J. Eisert, S. Scheel, and M. B. Plenio, Distilling Gaussian States with

Gaussian Operations is Impossible, Phys. Rev. Lett. 89, 137903 (2002).

[20] J. Fiurasek, Gaussian transformations and distillation of entangled Gaus-

sian states, Phys. Rev. Lett. 89, 137904 (2002).

[21] G. Giedke and J. I. Cirac, The characterization of Gaussian operations

and Distillation of Gaussian States, Phys. Rev. A 66, 032316 (2002).

[22] E. T. Campbell and J. Eisert, Gaussification and entanglement distillation

of continuous variable systems: a unifying picture, Phys. Rev. Lett. 108,

020501 (2012).

[23] M. S. Kim, E. Park, P. L. Knight, and H. Jeong, Nonclassicality of a

photon-subtracted Gaussian field, Phys. Rev. A 71, 043805 (2005).

[24] T. Kiesel, W. Vogel, M. Bellini, and A. Zavatta, Nonclassicality

Quasiprobability of Single-Photon Added Thermal States, Phys. Rev. A

83, 032116 (2011).
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Appendix A

Measures of non-Gaussianity

As discussed in Chapter 4, non-Gaussian quantum states are necessary for

measurement-based quantum computing. Another important task in quantum

information, where Gaussian states are required, is Gaussian entanglement

distillation. Assume that two parties, called Alice and Bob, want to perform

a quantum information protocol which requires them to share an entangled

quantum optical state, e.g. entanglement-based quantum key distribution [40].

Now, Alice prepares such a state locally and then sends half of it to Bob. In

reality the link connecting them, e.g. an optical fiber, will always be lossy.

Thus, if the distance is too long, the state shared between Alice and Bob might

not possess enough entanglement or might be too mixed. An entanglement-

distillation protocol now allows to convert a number of weakly entangled,

mixed states to a smaller number of highly entangled, purer states which can

then be used to perform the required task. However, if Alice and Bob share

only Gaussian states, entanglement distillation with Gaussian operations only

is impossible [19–21]. Non-Gaussian states, on the other hand, allow to be

distilled with Gaussian operations [19,22].

This motivates the search for a quantification of non-Gaussianinity. The

measure proposed first was based on the Hilbert-Schmidt distance [41], which,

unfortunately lacks an operational meaning. A second one was based on the

quantum relative entropy, which is connected to the distinguishability of two

quantum states in the limit of many copies [42].

In this section, we define another non-Gaussianity measure based on the

trace-distance between the state and a reference Gaussian state. As the trace-

distance determines the probability to distinguish two quantum states in a

single measurement, our measure has a operational meaning which is relevant

for quantum information processing.
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A.1 Non-Gaussianity based on trace-distance

For a quantum state ρ, we denote the Gaussian state with the same first and

second moments by τ . We then define the non-Gaussianity by

δ(ρ) =
1

2
‖ρ− τ‖1, (A.1)

where ‖ · ‖1 denotes the trace norm which is also called the Schatten 1-norm,

and which is given by the sum of all singular values. From the properties of

the trace norm, it is clear that δ is continuous, takes values only in the interval

[0, 1] and is zero if and only if ρ itself is a Gaussian state. Furthermore, it has

the following properties:

Lemma 1. The measure δ is invariant under Gaussian unitary transformations.

Proof: The state ρ transforms as ρ′ = UρU †. Its covariance matrix trans-

form as σ′ = ΓσΓT where Γ is the symplectic transformation corresponding

to U while the vector of the first moments d transforms as d′ = Γd. The first

and second moments of the Gaussian reference states undergo the same trans-

formation. Because the Gaussian reference state is completely determined by

its first and second moments, it must also transform as τ = UτU †. Then, the

invariance of δ follows from the unitary invariance of the trace norm.

Lemma 2. The measure δ stays invariant when adding a Gaussian state to the

system.

Proof:

δ(ρA ⊗ τB) =
1

2
‖(ρA ⊗ τB)− (τA ⊗ τB)‖1

=
1

2
‖(ρA − τA)⊗ τB‖1 =

1

2
‖ρA − τA‖1‖τB‖1 = δ(ρA). (A.2)

Lemma 3. The measure δ does not increase under the partial trace-operation,

i.e., δ(TrB(ρAB)) ≤ δ(ρAB).

Proof: Because the second moments of the reduced state form a block

in the covariance matrix, the Gaussian reference state of the reduced state

is τA = TrB(τAB). As the trace distance does not increase under the partial

trace, δ must also be non-increasing.

Lemma 4. The measure δ does not increase under the application of a Gaussian

channel.

Proof: Every Gaussian channel can be performed by the following proce-

dure: Adding a Gaussian ancilla state, performing a Gaussian unitary oper-

ation, and tracing out the ancilla state [43]. Thus Lemma 4 follows directly

from Lemmata 2, 1, and 3.
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Lemma 5. The measure δ is subadditive under tensor products, i.e.,

δ(ρA ⊗ ρB) ≤ δ(ρA) + δ(ρB). (A.3)

Proof:

δ(ρA ⊗ ρB) =
1

2
‖(ρA ⊗ ρB)− (τA ⊗ τB)‖1

=
1

2
‖ρA ⊗ ρB − τA ⊗ ρB + τA ⊗ (ρB − τB)‖1

≤1

2
‖(ρA − τA)⊗ τB‖1 + ‖τA ⊗ (ρB − τB)‖1

=δ(ρA) + δ(ρB). (A.4)

Single-mode continuous-variable quantum optical states are most conve-

niently described in terms of the Wigner function which is a real quasi-

probability distribution of two phase-space coordinates and the most straight-

forward generalization of the classical phase-space distribution to the quantum

regime [16].

Unfortunately, it is not possible to calculate δ directly from the Wigner

function without first reconstruction the density matrix. However, there exists

a lower bound to the non-Gaussianity which follows from the ordering of the

different p-norms:

δ =
1

2
‖ρ− τ‖1 ≥

1

2
‖ρ− τ‖2 =

1

2

√
Tr(ρ− τ)2

=
1

2

√
2π

∫
dξ (Wρ(ξ)−Wτ (ξ))2, (A.5)

where ‖ · ‖2 denotes the Schatten 2-norm, i.e., the square root of the sum of

the squares of the singular values.

A.2 Negativity of Wigner function

We note that the non-Gaussianity δ is not convex. Even more, a non-trivial

convex combination of Gaussian states with different first moments can have

a non-vanishing δ. This already points in the direction that δ may not be a

suitable measure if one is interested in the properties of non-Gaussianity as

a resource. For this reason, we examine a measure of non-classicality, which

was introduced in Ref. [44] and which is given by the volume of the negative

part of the Wigner function

δN (ρ) =

∫
dξ |Wρ(ξ)| − 1, (A.6)
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where Wρ(ξ) is the Wigner function of the state ρ. One can show that it fulfills

Lemmas 1, 2, 3, and 4. Furthermore, it is convex.

Lemma 6. The measure δN is convex, i.e., δN (p1ρ1 +p2ρ2) ≤ δN = p1δN (ρ1)+

p2δN (ρ2) where p1, p2 ≥ 0.

Proof: The proof directly follows from the definition (A.6) and the triangle

inequality.

We now consider Gaussian measurements: As a Gaussian measurement can

always be written as an x-quadrature measurement proceeded by a Gaussian

unitary, we restrict ourselves to this case.

Lemma 7. The measure δN does not increase on average when performing a

Gaussian measurement on a subsystem.

Proof: We state the proof for a two-mode system, however, it is valid for

any number of modes. The Wigner function of the remaining system (ρA(x2))

after performing a x-quadrature measurement on the second subsystem and

obtaining the result x2 is

W̃ (x1, p1) =
1

p(x2)

∫
dp2W (x1, p1, x2, p2), (A.7)

where p(x2) is the probability distribution for the measurement results. The

average Wigner function negativity is

〈δN (ρA)〉 =

∫
dx2 p(x2)δN (ρA(x2)). (A.8)

Inserting (A.7) into (A.8) yields

〈δN (ρA)〉 =

∫
dx2

∫
dx1

∫
dp1

∣∣∣∣
∫
dp2W (x1, p1, x2, p2)

∣∣∣∣− 1

≤
∫
dx2

∫
dx1

∫
dp1

∫
dp2 |W (x1, p1, x2, p2)| − 1 = δN (ρAB) (A.9)

which concludes the proof. Note that this statement is only true on average.

For some measurement outcomes, δN does increase.

A.3 Distance to states with positive Wigner func-

tion

The measure of non-classicality δN defined above unfortunately lacks an oper-

ational meaning. To cure this problem, we define yet another non-classicality
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measure by means of the trace distance to the set of states with positiv Wigner

function:

N(ρ) = min
σ

1

2
‖ρ− σ‖1, (A.10)

where the minimization runs over all states with positiv Wigner-function

(Wρ > 0). This measure has nice properties too:

Lemma 8. The negativity N is invariant under Gaussian unitary operations.

Proof: We observe that Gaussian unitaries conserve the positivity of the

Wigner function. Denoting the optimal reference state for ρ by ρ+, we get

N(UρU †) ≤ 1

2
‖UρU † − Uρ+U †‖1 =

1

2
‖ρ− ρ+‖1 (A.11)

This shows that N cannot increase. However, if it could decrease, the inverse

operation U−1 would increase the negativity of the state ρ′ = UρU †. As this

is not possible, N must stay invariant.

Lemma 9. The negativity N does not increase when tracing out a subsystem.

Proof: Here we only need the fact that the partial trace operation also

preserves Wigner function positivity and get

N(TrAρAB) ≤ 1

2
‖TrAρAB − TrAρ

+
AB‖1 ≤ N(ρAB), (A.12)

where we have also used that the trace distance is non-increasing under partial

trace.

Lemma 10. The negativity N is convex.

Proof: We use the convexity of the set of states with positive Wigner

function and get

N(p1ρ1 + p2ρ2) ≤ 1

2
‖(p1ρ1 + p2ρ2)− (p1ρ

+
1 + p1ρ

+
2 )‖1

≤ 1

2
p1‖ρ1 − ρ+

1 ‖1 +
1

2
p2‖ρ2 − ρ+

2 ‖1 = p1N(ρ1) + p2N(ρ2). (A.13)

Lemma 11. The negativity N does not increase when performing a tensor-

product with a positive state.

Proof: We pick a possible reference state to get a lower bound

N(ρ1⊗ρ+
2 ) ≤ 1

2
‖(ρ1⊗ρ+

2 )−(ρ+
1 ⊗ρ+

2 )‖1 =
1

2
‖ρ1−ρ+

1 ‖1‖ρ+
2 ‖1 = N(ρ1). (A.14)

Note that we can only proof an inequality here because the optimal reference

state of the tensor product does not need to be the tensor product of the

optimal reference states of the factors.
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Lemma 12. The negativity N is sub-additive under tensor products.

Proof: We take Lemma 11 and procede exactly as in the proof of Lemma

5.

Those lemmata show together that the negativity can only decrease under

Gaussian channels, which can be also shown directly using the contractive

property of the trace distance. In addition, we have:

Lemma 13. The negativity N does not increase on average under Gaussian

measurements.

Proof: We denote the (non trace-preserving) quantum operation corre-

sponding to the Gaussian measurement by Ek where k denotes the measure-

ment outcomes. This operation preserves positivity, i.e., WEk(ρ+) > 0 and,

therefore, Ek(ρ+) is a valid possible reference state for remaining the system

after the measurement. This yields

∑

k

N(Ek(ρ)) ≤
∑

k

‖Ek(ρ)− Ek(ρ+)‖1 =
∑

k

‖Ek(ρ− ρ+)‖1. (A.15)

The trace distance can not increase on average under any quantum operation.

Thus, we obtain ∑

k

N(Ek(ρ)) ≤ N(ρ) (A.16)

which completes the proof. Again, the statement is only true on average as

for some measurement outcomes, the negativity can increase.

A reason why negativity is a better description of the resource character

of non-Gaussian states than the non-Gaussianities discussed in the literature

and above is that convex mixtures of Gaussian states can be non-Gaussian.

However, they are, for example, not useful for teleportation as the following

lemma shows:

Lemma 14. Non-trivial entanglement distillation with states which are mix-

tures of Gaussian states is impossible under Gaussian operation.

Proof: Suppose the states to be distilled are of the form ρ =
∑

k pkρk,

where the pk are positive and sum to one and all ρk are Gaussian. An entan-

glement distillation protocol is a (non-trace preserving) quantum operation.

The input state ρ⊗N is also a convex mixtures of bipartite Gaussian states,

i.e., ρ⊗N =
∑

j qjσj where qj and σj can be easily obtained from pj and ρj .

Applying now the protocoll, we can use linearity to get

τ := E(ρ⊗N ) =
∑

j

qjE(σj). (A.17)
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Now all σj are Gaussian states which are no more entangled than ρk due

to convexity of entanglement measures. Using now the no-go theorem from

Ref. [19], we get E(E(σj)) ≤ E(ρk) where E(ρ) is an entanglement measure.

Using convexity again we finally get E(τ) ≤ maxkE(ρk). This means, it is

not possible to distill a state which is more entangled than the most entangled

state forming the convex mixture ρ. It is possible to get a state which is more

entangled than the mixture ρ itself but this is not surprising. With the same

technique, one can also show similar results for other quantum information

tasks where Gaussian no-go theorems exist.

Not all states with positive Wigner functions are convex combinations of

Gaussian states. One example is the single-photon state which has undergone

a sufficient amount of photon loss, i.e., ρ = (1− η)|1〉〈1|+ η|0〉〈0| for η > 1/2.

The general question of deciding whether a state can be written as a mixture of

Gaussian states can be translated to the level of the Wigner function. Denoting

a Gaussian centered around ζ with the matrix M−1 as done in Ref. [45] by

G(ξ;M, ζ) =

√
detM

πn
exp

[
−(ξ − ζ)TM(ξ − ζ)

]
, (A.18)

we ask if we can write

Wρ(ξ) =

∫
dζ p(ζ)G(ξ;M(ζ), ζ) (A.19)

with a positive normalized probability distribution p(ζ). For constant M(ζ)

this is just a folding integral which can be converted to a product when making

the transition to Fourier space. This renders it possible to calculate p(ζ) and

to check whether it is positive. In the general case, however, on has to solve

an integral equation for p(ζ) and M(ζ) which might be complicated.

It is important to note that negativity of the Wigner function is not neces-

sary for entanglement distillation as the following example shows [19]: Let the

density matrix elements be ρ0,0,0,0 = 1/(1 + ε2), ρ1,1,0,0 = ρ0,0,1,1 = ε/(2 + 2ε),

ρ1,1,1,1 = ε2/(1 + ε2) with zeros everywhere else. This state allows for en-

tanglement distillation with Gaussian operation for all ε > 0 but its Wigner

function is positive for small enough ε. This means that to investigate the

resource character of non-Gaussian state, one should define a measure which

we will call the essential non-Gaussianity

NG(ρ) = min
σ

1

2
‖ρ− σ‖1, (A.20)

where the minimization runs over all states which can be written as a convex

combination of Gaussian states, i.e., whose Wigner functions are of the form
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(A.19). This measure is bounded by the trace distance non-Gaussianity and

the Wigner function negativity by

N(ρ) ≤ 2NG(ρ) ≤ 2δ(ρ). (A.21)

Furthermore, NG(ρ) fulfills all Lemmata shown for N(ρ) as can be easily

shown. The explicit calculation of NG(ρ) is difficult, but bounds can be cal-

culated using (A.21).

A.4 Summary and Conclusion

In this appendix, we have introduced various measures which allow to quantify

non-Gaussianity and non-classicality. By measuring the distance to a reference

state by means of the trace norm, the non-Gaussianity δ obtains an operational

meaning. However, states with large δ can be created by classical mixing of

Gaussian states, and such states are not useful for entanglement distillation

and other protocols where non-Gaussian states are necessary. For this reason,

we have introduced the essential non-Gaussianity NG which is defined as the

minimal trace distance to the convex hull of Gaussian states. This quantity is

a good candidate for measuring the resource character of non-Gaussian states

but its use is limited as it is not easily calculable.

Regions where the Wigner function are negative are a clear indication for

the non-classicality of the corresponding state [17]. Nevertheless, we have

shown that negative Wigner functions are by no means necessary to circum-

vent the no-go theorems, e.g. for entanglement distillation with Gaussian op-

erations. Thus, non-classicality measures which are based on the negativity of

the Wigner function, as δN defined in (A.6) and N defined in (A.10) are not

suited to measure the capability of a state in entanglement distillation with

Gaussian operations and related protocols.
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Ultra-cold atoms in optical

lattices beyond the

single-band approximation

In this appendix, we investigate the behavior of Bosons and Fermions in optical

lattices. We start with solving the Schödinger equation for a single particle

in a periodic potential. Then, we go the picture of second quantization and

derive a Hamiltonian describing the mixture of interacting spinless Bosons

and Fermions and numerically calculated the various hopping and interaction

parameters characterizing the systems as well as the Wannier functions of

the lowest few bands. This allows us to assess the single-band approximation

commonly employed when discussing such systems [46]. Then, we solve the

Hamiltonian, we have derived, numerically in the limit of a deep lattice, i.e.,

where hopping between the lattice sites is absent. We calculate the occupation

of the higher bands depending on the interaction and the lattice depths.

B.1 Non interacting Bosons and Fermions in optical

lattices

We consider a single particle in three dimensions with mass m moving in a

potential U(r) which is periodic with lattice constant a. The single-particle

Hamiltonian reads

ĥ = −~2∇2

2m
+ U(r). (B.1)

For mathematical convenience and for later numerical calculations, we consider

a homogeneous finite D-dimensional cube [−aN/2, aN/2)D =: D with periodic



112
Chapter B - Ultra-cold atoms in optical lattices beyond the

single-band approximation

boundary conditions. Furthermore, we introduce the lattice wave vector kL =

π/a and the recoil energy ER = ~2k2
L/(2m). The latter will be used as a unit

of energy whenever it is possible. From Bloch’s theorem we know that the

solutions of the Schrödinger equation are of the form

ψx,n(r) = [1/(aN)D/2]e2ikLx·r/Nux,n(r), (B.2)

where x ∈ {−N/2, . . . , N/2 − 1}×D =: B. The Bloch functions ux,n(r) have

period a and are labeled by the band index n. The corresponding energy

eigenvalues will be denoted by Ex,n and are shown in Fig. B.1.

Now, we can define the Wannier functions for z ∈ B as

wz,n(r) = 1
ND/2

∑

x∈B
e−2πix·z/Nψx,n(r). (B.3)

There exists a notable freedom in the definition of the Wannier functions, i.e.,

the choice of the phases in (B.3). However, Ref. [47] provides a rule to choose

the phases such that the resulting Wannier functions are real, symmetric (for

even bands) or antisymmetric (for odd bands), and maximally localized. Be-

cause the lattice potential depends on the intensity of the light-field we take the

one-dimensional potential U(r) = V0 sin2(kLr). The one-dimensional Wannier

functions for the first band is shown for different lattice depths in Figs. B.2.

In the limit of an infinitely deep lattice, the Wannier functions converge to the

eigenfunctions of the harmonic oscillator. For a simple cubic lattice, and this

is the situation we want to consider in this appendix, the Wannier functions

factorize and we can write

wz,n(r) = wz,n1(x)z,n2(y)wz,n3(z). (B.4)

Thus, in a three-dimensional system all bands but the first one are degenerate.

For example, there exist three first excited bands, i.e., nx = (1, 0, 0), ny =

(0, 1, 0), and nz = (0, 0, 1). However, because of the factoring property (B.4),

it is in most of the cases enough to consider the one-dimensional situation as

we will do in the following. The Wannier functions of the first four bands are

shown in Fig. B.3.

B.2 Interacting atoms

In order to consider the interaction between the particles, we turn to the

second-quantized formulation of the problem. The interaction between ultra-

cold atomic gases is very well described by s-wave scattering with a delta-

shaped pseudo-potential [11]. Therefore, all interactions are characterized
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Figure B.1: Lowest three energy bands of a one-dimesional system for V0 =

10ER.

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

√
aw(x)

x/a

Figure B.2: One-dimensional Wannier function of the lowest band for V0 =

5ER (blue), V0 = 20ER (red), and V0 = 30ER (green).
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Figure B.3: One-dimensional Wannier function of the first four bands (green,

red, blue, pink) for V0 = 19ER.

by only two parameters, i.e., the scattering length for Bose-Bose scattering

(aBB) and the one for Bose-Fermi scattering (aBF ). In a second quantized

description, the Hamiltonian reads

Ĥ = ĤB + ĤF + ĤBB + ĤBF , (B.5)

with

ĤB,F =

∫
dr Ψ̂†B,F (r)ĥB,F (r)Ψ̂B,F (r), (B.6)

ĤBB =
g

2

∫
dr Ψ̂†B(r)Ψ̂†B(r)Ψ̂B(r)Ψ̂B(r) , (B.7)

ĤBF = f

∫
dr Ψ̂†B(r)Ψ̂†F (r)Ψ̂B(r)Ψ̂F (r), (B.8)

where ΨB (ΨF ) is the Bosonic (Fermionic) annihilation operator and g =

(4π2~2aBB)/mB, f = 4π2~2aBF (mB +mF )/(2mBmF ).

We now expand the field operators into Wannier functions

Ψ̂B,F =
∑

i,n

wi,n(r)b̂i,n (B.9)

which yields (â = b̂, f̂)

ĤB,F =
∑

i,j,n

JB,Fi,j,n â
†
i,nâj,n, (B.10)
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where

JB,Fi,j,n = 1
ND

∑

x∈B
e2πix(i−j)/NE

B/F
x,n , (B.11)

i.e., different energy bands are not coupled through hopping. The intra-species

interaction Hamiltonian reads (we use super-indices (i,n) = i)

ĤBB =
∑

i,j,
k,l

Ui,j,k,l

2 b̂†i b̂
†
j b̂kb̂l, (B.12)

where Ui,j,k,l = gWi,j,k,l with

Wi,j,k,l = g

∫

D
drw∗i (r)w∗j (r)wk(r)wl(r). (B.13)

We note that because we have chosen the Wannier functions to be real, a

permutation of the indices does not chance the value of the interaction co-

efficients. Because of the factoring property (B.4), all these integrals factor

into products of one-dimensional integrals over the respective one-dimensional

Wannier functions. For all Wannier functions centered around the same lat-

tice site, i.e., the ones occurring in the terms describing local interactions, they

read

Wi,j,k,l =

∫ ∞

−∞
dfr w∗i (r)w

∗
j (r)wk(r)wl(r), (B.14)

where i, j, k, l are band indices. Because the even (odd) Wannier functions are

even (odd), most of these coefficients, e.g. W0,0,0,1, vanish. The inter-species

interaction Hamiltonian reads in complete analogy

ĤBF =
∑

i,j,k,l

Vi,j,k,lb̂
†
i b̂jf̂

†
kf̂l, (B.15)

where Vi,j,k,l = fWi,j,k,l. In Fig. B.6 coefficients corresponding to intra-band

interaction of the Bosons are shown. They are larger in the lower bands

because these bands are more localized and, therefore, the overlap of the wave-

function with itself is larger. The coefficients which couple two bands, i.e., the

one associated with inter-band interaction and with transfer of the atoms from

one band to another, are also smaller for higher bands. This fact, together with

the band-gap, c.f. Fig. B.7, which imposes an energy penalty when occupying

higher bands, justifies to consider only the lowest two or three bands. In

addition, we note that the interaction between particles on neighboring sites

is much smaller then every other interaction coefficient and will be neglected

in the remainder of this appendix. The hopping parameters defined in (B.11)

are larger in the higher bands, because they are less localized. Furthermore,

comparing Figs. B.4 and B.5 one sees that the effect of next-nearest neighbor

hopping is very weak and therefore not considered in the following calculations.
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Figure B.4: Nearest-neighbor hopping parameter for the lowest (blue), first

(red), and second (green) Bloch band.
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Figure B.5: Next-nearest neighbor hopping parameter for the lowest (blue),

first (red), and second (green) Bloch band.
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Figure B.6: On-site intra-band interaction coefficients W0,0,0,0 (blue), W1,1,1,1

(red), W1,1,1,1(green).
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Figure B.7: On-site inter-band coupling coefficients W0,0,1,1 (blue), W0,0,2,2

(red), W1,1,2,2(green).
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B.3 Single site system

We consider a single lattice-site which corresponds to setting all hopping pa-

rameters to zero. Due to the presence of the Boson-Fermion interaction and

especially because of the multiple bloch bands, already the single-site physics

is highly non-trivial.

We concentrate on the situation of one Fermion and n Bosons on a single

site and restrict ourselves to the one-dimensional case, which is very similar to

the three-dimensional one due to the factorization properties of the Wannier

functions. We diagonalize the resulting Hamiltonian numerically exact. As

the simplest non-trivial example, we take the Hamiltonian truncated to the

lowest and one first excited band which are seperated by the gap ∆B/F . With

the abbreviations Up = Up,p,p,p, Vp = Vp,p,p,p and µ0 = µ, µ1 = µ+∆B, ν0 = ν,

ν1 = ν + ∆F , it reads

Ĥ(0) =
1∑

p=0

Ĥ
(0)
i,p + Ĥ

(0)
i,p (B.16)

with

Ĥ
(0)
i,p =

Up
2
n̂p(n̂p − 1)− µpn̂+ V n̂pm̂p − νpm̂, (B.17)

while the one describing inter-band interaction and coupling reads with U01 =

U0,0,1,1 and V01 = V0,0,1,1,

Ĥ
(0)
i,01 = 2U01n̂0n̂1 + V01 (n̂0m̂1 + n̂1m̂0)

+ U01

(
b̂†0b̂
†
0b̂1b̂1 + b̂†1b̂

†
1b̂0b̂0

)
+ V01

(
b̂†0b̂1f̂

†
0 f̂1

+b̂†0b̂1f̂
†
1 f̂0 + b̂†1b̂0f̂

†
0 f̂1 + b̂†1b̂0f̂

†
1 f̂0

)
. (B.18)

The dimension of the Hilbert space for n Bosons and m Fermions is dH = n+1

for (m = 0 or m = 1) and dH = 2(n+1) for m = 1 which is easily diagonalized

for all reasonable occupation numbers. Its eigenstates and energies are denoted

by

Ĥ(0)|n,m; l〉 = εn,m;l|n,m; l〉. (B.19)

Now, we calculate the expectation values of both the Bosons and the Fermions

in the different bands, i.e., 〈n̂i〉 and 〈m̂i〉 for i = 0, . . . , k. Before we do this,

we shortly discuss the physical meaning of the contributions to (B.18) which

are proportional to U01. Because, as already mentioned, W0,0,0,1 = 0, it is not

possible for a single Boson to jump into the second band, which means that

the influence of the second band is absent in the important special case of one

Boson per lattice site. In contrast, a process where a single particle jumps to
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Figure B.8: Occupation of the second band 〈n̂2〉 for two Bosons and one

Fermion on a single lattice site in one dimension without Bose-Fermi ineraction

(blue), aBF = −400 a0 (red), and aBF = +400 a0 (green).

the third band, described by b̂†3b̂
†
1b̂1b̂1 is possible. Even though its contribution

is in generally not neglectable compared to the one of the second band, we,

nevertheless, consider a two-band model for simplicity reason because we aim

at understanding multiband effects with the simplest possible model.

From Fig. B.8, it is clearly visible that the occupation of the second band

increases with increasing Bose-Fermi interaction and is larger for repulsive

interaction. In order to be specific, we consider from now on a mixture of 87Rb

and 40K in a lattice produced by a laser with a wave-length of 755nm [48].

In this experiment, the Bose-Bose scattering length was aBB = 100a0 while

the Bose-Fermi scattering length could be changed form -800 a0 to +800 a0,

where a0 is the Bohr radius. Furthermore, the detuning of the lasers is chosen

in such a way that the lattice potential for the two species are the same in

their respective recoil energy, i.e. Ṽ := V B
0 /EBR = V F

0 /E
F
R .

The Wannier functions are a set of basis functiosn derived from a single

particle wave function. Of course, they form a complete set of basis func-

tions also for interacting particles, but in this situation they are not optimal

anymore in that sense that only one them is necessary to fully describe the

system. Instead of taking higher Bloch bands into account, one can also con-

sider Wannier-functions which are modified by the interaction and then work

with an effective single-band model with renormalized parameters. The key

idea is the following: The presence of the Fermions changes the effective lattice
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potential seen by the Bosons which yields, when approximating the Fermionic

particle number operator by the Fermionic density,

V B
eff(x) = V B(x) + fρF (x). (B.20)

The same arguing is also true vise versa and the effective lattice potential

for the Fermions reads

V F
eff(x) = V F (x) + nfρB(x). (B.21)

For an attractive Bose-Fermi interaction, the effective potentials are deeper

than the bare ones which means that the hopping gets weaker and the on-site

interaction stronger. Therefore, this effect, which was also found in [48] with

more sophisticated methods, is often called “self-trapping”. Starting from the

non-interacting wave function, we can calculate the Wannier functions in a

self-consistent way which converges after a few steps. From these Wannier

functions we determine renormalized hopping (J̃) and interaction parameters

(Ũ) for the Bosons. Then, the Hamiltonian, restricted to the lowest band, is

the well-known and extensively studied Bose-Hubbard Hamiltonian

Ĥ =
Ũ

2

∑

i

n̂(n̂− 1)− J̃
∑

<i,j>

b̂†i b̂j . (B.22)

The whole effect of the Fermions is now only incorporated in the modifi-

cation of J̃ and Ũ . Because this ratio becomes lower, as seen in Fig. B.9,

the superfluid-Mott insulator transition is shifted to lower values of the lat-

tice depth which agrees with experimental findings. However, for repulsive

Bose-Fermi interaction, the effective potential is shallower than the bare one

which leads to anti-trapping and a shift of the quantum phase transition into

the other direction. This contradicts the experimental results and, therefore,

other explanations are needed in this parameter regime

B.4 Summary and Outlook

We have derived the Bose-Fermi Hubbard Hamiltonians for a contact interac-

tion in the most general form. We have seen that even though the occupation

of the higher bands is small for the interaction strengths realized in present

day experiments, they still can play an important role for the physics of such

systems. This is due to the fact that the atoms in these higher bands are less

localized resulting in a higher hopping constant, i.e., their mobility is larger.
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V0/ER

Figure B.9: Ratio of renormalized (see text) ratio of hopping and interaction

coefficient in the lowest band for one Fermion and two Bosons per site without

Bose-Fermi interaction (blue) for aBF = −400 a0 (red), and aBF = +400 a0

(green).

A next step should be to use the solution of the single-site systems as a

starting point to address the full many-body system. One possible route is

to use perturbative techniques, as used, e.g. in Ref. [49] for the single-band

Bosonic model. A second promising idea is to treat the Bosons numerically

by a Gutzwiller ansatz while solving the Fermionic subsystem exactly which

is possible as spin-less Fermions do not interact with each other which is other

due to the Pauli principle. This approach has also already been demonstrated

for the single-band Bose-Fermi Hubbard model [46].
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