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Summary

Transposable elements (TEs) are /oci that can replicate and multiply within the genome
of their host. Within the host, TEs through transposition are responsible for variation on
genomic architecture and gene regulation across all vertebrates. Genome assemblies have
increased in numbers in recent years. However, to explore in deep the variations within different
genomes, such as SNPs (single nucleotide polymorphism), INDELs (Insertion-deletion),
satellites and transposable elements, we need high-quality genomes. Studies of molecular
markers in the past 10 years have limitations to correlate with biological differences because
molecular markers rely on the accuracy of the genomic resources. This has generated that a
substantial part of the studies of TE in recent years have been on high quality genomic resources
such as Drosophila, zebrafinch and maize. As testudine have a slow mutation rate lower only
to crocodilians, with more than 300 species, adapted to different environments all across the
globe, the testudine clade can help us to study variation. Here we propose Testudines as a clade
to study variation and the abundance of TE on different species that diverged a long time ago.
We investigated the genomic diversity of sea turtles, identifying key genomic regions
associated to gene family duplication, specific expansion of particular TE families for
Dermochelyidae and that are important for phenotypic differentiation, the impact of
environmental changes on their populations, and the dynamics of TEs within different
lineages. In chapter 1, we identify that despite high levels of genome synteny within sea turtles,
we identified that regions of reduced collinearity and microchromosomes showed higher
concentrations of multicopy gene families, as well as genetic distances between species,
indicating their potential importance as sources of variation underlying phenotypic
differentiation. We found that differences in the ecological niches occupied by leatherback and
green turtles have led to contrasting evolutionary paths for their olfactory receptor genes. We
identified in leatherback turtles a long-term low population size. Nonetheless, we identify no
correlation between the regions of reduced collinearity with abundance of TEs or an
accumulation of a particular TE group. In chapter 2, we identified that sea turtle genomes
contain a significant proportion of TEs, with differences in TE abundance between species, and
the discovery of a recent expansion of Penelope-like elements (PLEs) in the highly conserved
sea turtle genome provides new insights into the dynamics of TEs within Testudines. In chapter
3, we compared the proportion of TE across the Testudine clade, and we identified that the
proportion of transposable elements within the clade is stable, regardless of the quality of the
assemblies. However, we identified that the proportion of TEs orders has correlation with

genome quality depending of their expanded abundancy. For retrotransposon, a highly abundant



element for this clade, we identify no correlation. However, for DNA elements a rarer element
on this clade, correlate with the quality of the assemblies.

Here we confirm that high-quality genomes are fundamental for the study of
transposable element evolution and the conservation within the clade. The detection and
abundance of specific orders of TEs are influenced by the quality of the genomes. We identified
that a reduction in the population size on D. coriacea had left signals of long-term low
population sizes on their genomes. On the same note we identified an expansion of TE on D.
coriacea, not present in any other member of the available genomes of Testudines, strongly
suggesting that it is a response of deregulation of TE on their genomes as consequences of the
low population sizes.

Here we have identified important genomic regions and gene families for phenotypic
differentiation and highlighted the impact of environmental changes on the populations of sea
turtles. We stated that accurate classification and analysis of TE families are important and
require high-quality genome assemblies. Using TE analysis we manage to identify differences
in highly syntenic species. These findings have significant implications for conservation and
provide a foundation for further research into genome evolution and gene function in turtles
and other vertebrates. Overall, this study contributes to our understanding of evolutionary

change and adaptation mechanisms.



Zusammenfassung

Transponierbare Elemente (TEs) sind Loci, die sich im Genom ihres Wirts replizieren
und vermehren konnen. Innerhalb des Wirts sind TEs durch Transposition fiir die Variation der
genomischen Architektur und der Genregulation bei allen Wirbeltieren verantwortlich. In den
letzten Jahren hat die Zahl der Genomassemblies zugenommen. Um jedoch die Variationen
innerhalb verschiedener Genome, wie SNPs, INDELs, Satelliten und transponierbare Elemente,
eingehend zu untersuchen, benétigen wir qualitativ hochwertige Genome. Studien {iiber
molekulare Marker in den letzten 10 Jahren haben nur begrenzt mit biologischen Unterschieden
korreliert, da molekulare Marker von der Genauigkeit der genomischen Ressourcen abhidngen.
Dies hat dazu gefiihrt, dass ein grofer Teil der TE-Studien der letzten Jahre an qualitativ
hochwertigen genomischen Ressourcen wie Drosophila, Zebrafinken und Mais durchgefiihrt
wurde. Da die Testudinen eine langsame Mutationsrate haben, die nur bei Krokodilen niedriger
ist, aber mehr als 300 Arten umfassen, die an verschiedene Umgebungen auf der ganzen Welt
angepasst sind, kann uns diese Gruppe bei der Untersuchung der Variation helfen. Hier
schlagen wir Testudinen als Klade vor, um die Variation und die Hiufigkeit von TE bei
verschiedenen Arten zu untersuchen, die sich vor langer Zeit auseinanderentwickelt haben. Wir
untersuchten die genomische Vielfalt der Meeresschildkréten und identifizierten genomische
Schliisselregionen, die mit der Duplikation von Genfamilien, der spezifischen Ausbreitung
bestimmter TE-Familien bei den Dermochelyidae verbunden und fiir die phénotypische
Differenzierung wichtig sind, sowie die Auswirkungen von Umweltverdnderungen auf ihre
Populationen und die Dynamik transponierbarer Elemente (TEs) innerhalb verschiedener
Linien.

In Kapitel 1 stellen wir fest, dass trotz des hohen Mafles an Genomsyntenie innerhalb
der Meeresschildkroten Regionen mit geringerer Kollinearitit und Mikrochromosomen eine
hohere Konzentration von Genfamilien mit mehreren Kopien sowie genetische Abstinde
zwischen den Arten aufweisen, was auf ihre potenzielle Bedeutung als Variationsquellen fiir
die phénotypische Differenzierung hinweist. Wir fanden heraus, dass die Unterschiede in den
okologischen Nischen, die Lederschildkroten und Suppenschildkroten besetzen, zu
gegensitzlichen evolutiondren Pfaden fiir ihre Geruchsrezeptorgene gefiihrt haben. Bei
Lederschildkréten haben wir Anzeichen fiir langfristig niedrige Populationsgrofen festgestellt.
Dennoch konnten wir keine Korrelation zwischen den Regionen mit reduzierter Kollinearitét
und der Héufigkeit von TEs oder einer Akkumulation einer bestimmten TE-Gruppe feststellen.
In Kapitel 2 haben wir festgestellt, dass die Genome von Meeresschildkrdten einen

betridchtlichen Anteil an TEs enthalten, mit Unterschieden in der TE-Héufigkeit zwischen den
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Arten, und die Entdeckung einer kiirzlichen Ausbreitung von Penelope-dhnlichen Elementen
(PLEs) im hochkonservierten Genom von Meeresschildkréten bietet neue Einblicke in die
Dynamik von TEs innerhalb der Testudinen. In Kapitel 3 haben wir den Anteil der TE innerhalb
der Testudinenklade verglichen und festgestellt, dass der Anteil der transponierbaren Elemente
innerhalb der Klade stabil ist, unabhéngig von der Qualitdt der Assemblies. Allerdings haben
wir festgestellt, dass der Anteil der TEs Bestellungen hat Korrelation mit Genom Qualitit in
Abhidngigkeit von ihrer erweiterten Héufigkeit, wie auf Retrotransposon, ein sehr héufig
Element fiir diese Klade, wir identifizieren keine Korrelation, aber, DNA-Elemente ein seltener
Element auf dieser Klade, korrelieren mit der Qualitdt der Baugruppen.

Hier bestitigen wir, dass qualitativ hochwertige Genome fiir die Untersuchung der
Entwicklung transponierbarer Elemente und der Erhaltung innerhalb der Gruppe von
grundlegender Bedeutung sind. Der Nachweis und die Haufigkeit bestimmter Ordnungen von
TEs werden durch die Qualitit der Genome beeinflusst. Wir haben festgestellt, dass eine
Verringerung der PopulationsgroBBe bei D. coriacea Signale fiir langfristig niedrige
Populationsgréfen in ihren Genomen hinterlassen hat. Gleichzeitig haben wir bei D. coriacea
eine Ausdehnung der TE festgestellt, die in keinem anderen Mitglied der verfiigbaren Genome
der Testudinen vorkommt, was stark darauf hindeutet, dass es sich um eine Reaktion auf die
Deregulierung der TE auf ihren Genomen als Folge der geringen Populationsgrof3en handelt.

Hier haben wir wichtige genomische Regionen und Genfamilien fiir die phénotypische
Differenzierung identifiziert und die Auswirkungen von Umweltverdnderungen auf die
Populationen von Meeresschildkroten aufgezeigt. Wir haben festgestellt, dass eine genaue
Klassifizierung und Analyse von TE-Familien wichtig ist und qualitativ hochwertige
Genomassemblies erfordert. Mit Hilfe der TE-Analyse gelingt es uns, Unterschiede in
hochsynthetischen Arten zu identifizieren. Diese Ergebnisse sind von grof3er Bedeutung fiir den
Artenschutz und bilden eine Grundlage fiir die weitere Erforschung der Genomevolution und
der Genfunktionen bei Schildkréten und anderen Wirbeltieren. Insgesamt tragt diese Studie zu

unserem Verstindnis des evolutiondren Wandels und der Anpassungsmechanismen bei.
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General introduction

Genomes are a resourceful type of data for the study of evolutionary biology, and the
analysis and comparison of genomes from related species has proven to be an effective method
for studying molecular evolution (Ekblom and Wolf 2014; Koepfli et al. 2015). However, the
effectiveness of linking molecular diversity to evolutionary processes is dependent on the
quality of the genomic data used. Complete genomes provide access to the molecular evolution
of different types of genetic markers whose evolutionary changes could shape and maintain
genetic variation in organisms (Shahid and Slotkin 2020). Nonetheless, genomes generated
through short-read sequencing technologies alone have limitations in comprehending the
evolutionary patterns found in repetitive regions, sub-telomeric regions of chromosomes, and
in grasping chromosomal structure and synteny (Damas et al. 2017; Rhie et al. 2021). Therefore,
improving the contiguity of genome assemblies is a critical aspect of genome research,
providing greater completeness of genes and genomic elements and enabling a more in-depth
examination of the evolution of countless species.

Structural variations in the genomes provide different information on species evolution
that could not be recovered only from conserved regions of the genome. Therefore,
investigating the modifications such as gene duplications, chromosomal rearrangements and
transposable elements also contribute to understand the role of repetitive regions of the genome
in species adaptation (Mérot et al. 2020).

In genomics, transposable elements (TEs) refer to /oci that can replicate and multiply
within the genome of their host (Boissinot et al. 2019). These elements are incredibly diverse
and can be grouped into orders, superfamilies, families, and subfamilies based on their
sequence, length, structure, and distribution (Wicker et al. 2007). Also, TEs can be divided into
two main classes based on their mechanism of transposition and subsequently subdivided into
superfamily, family, and subfamily according to the mechanism of chromosomal integration.
Based on their transposition mechanism, two categories of TEs were described: Class I and
Class II. Class I elements are retrotransposons that use an RNA intermediate to create a cDNA
copy which is integrated into the genome through a "copy-and-paste" mechanism, as described
by Boeke (1985) and reviewed by Bourque (2018). On the other hand, Class II elements, which
are also known as DNA transposons, move through a “cut-and-paste” mechanism or a “peel-
and-paste” replicative mechanism involving a circular DNA intermediate (Grabundzija et al.
2016; Greenblatt and Alexander Brink 1963; Rubin, Kidwell, and Bingham 1982).

The proportion of TEs in eukaryotic genomes can vary widely, with estimates ranging

from 30-60% of reptile and mammal genomes (Canapa et al. 2015). Furthermore, the presence
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of TEs is a major contributor to variations in haploid genome size (Margaret G. Kidwell 2002;
Elliott and Gregory 2015). Differences in the abundance of TEs across genomes can also
contribute to other genome features, such as differences in base composition in distinct regions
or ectopic recombination (Symonova and Suh 2019; Robberecht et al. 2013). However, TEs
and their host are in a constant battle, in which both suppression of TE expression and increased
mutations in TEs may be employed to combat TE invasions (Skipper et al. 2013). Over time,
as TE families become more evolutionarily ancient, they may acquire mutations that render
them inactive. This happens due to mutations or fragmentation that occur during or after
insertion or due to an active role of the host through different mechanisms (Bruno, Mahgoub,
and Macfarlan 2019; Jacobs et al. 2014), and the extent of this inactivation can be measured
using the Kimura 2-parameter distance to consensus (K-value) (Kimura 1980).

Furthermore, TEs show non-random patterns in their integration into host genomes. For
instance, there is evidence that recent TE insertions in A. thaliana in regions enriched with
genes related to environmental response (Baduel et al. 2021), while Mutator elements in
Drosophila target open chromatin regions near recombination spots (S. Liu et al. 2009). P
elements in Drosophila have also been found to associate with replication origins (Spradling,
Bellen, and Hoskins 2011). Also Penelope-like elements have been described as associated with
telomeric regions of the chromosomes helping to extend the telomeres (Gladyshev and
Arkhipova 2007). This selective integration is not limited to regulatory regions, as 7y3-Gypsy
LTR retroelements can bind specific methylation on histone H3 to only transpose to
heterochromatin, a phenomenon seen in fungi to vertebrates (Malik and Eickbush 1999).
Another example of integration into gene-poor regions is seen with the Ty5 LTR
retrotransposon, with approximately 90% of its insertions in S. cerevisiae found within silent
mating type loci or near silent heterochromatin at telomeres (Zou and Voytas 1997; Zou et al.
1996; Zou, Wright, and Voytas 1995).

Despite the rapid generation of high-quality genomes, the majority of reptile genomic
resources have been applied to avian species, leaving non-avian reptiles severely
underrepresented (Kelley et al. 2016; Card, Jennings, and Edwards 2023). The Testudine clade
is seen as a good subject for the examination of TE dynamics (Sotero-Caio et al. 2017). Despite
this, the progress in generating high-quality genomes for this group is limited and there is
restricted information on TE composition, only available for a few turtle species such as the
western painted turtle (Shaffer et al. 2013), the Chinese softshell turtle (Wang et al. 2013), the
Asian yellow pond turtle (X. Liu et al. 2022), the Common Snapping Turtle (Das et al. 2020),
and sea turtles (Wang et al. 2013). Hence, investigating TE evolution in the turtle clade is

essential to understand how TE ratios may have impacted turtle evolution and diversity, as well
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as provide a deeper understanding of the evolution of TEs in Testudines by including
information from this understudied group. Given that turtle genomes have longer generation
times and slower mutation rates compared to mammals and most reptiles (Janes et al. 2010),
this clade provides an unique opportunity to examine mobilome diversification. A comparison
of TE genome compositions in turtles can provide answers to questions about the relationship
between TEs and functional genomic regions, ultimately contributing to a better understanding
of TE evolution.

One specific group of Testudines that have a fascinating evolutionary history and no
high-quality reference genome is the lineage of sea turtles. The sea turtle group is one of the
most widely distributed vertebrates on the planet and has recolonized the seas over 100 million
years ago (Hirayama 1998; Shaffer et al. 2017; Pike 2013). Of the seven species of sea turtles
that exist today, leatherback turtles (Dermochelys coriacea) are the only living species from the
Dermochelidae family, which diverged from other sea turtles (Cheloniidae) over 60 million
years ago (Thomson, Spinks, and Shaffer 2021). Leatherbacks have unique characteristics that
set them apart from other sea turtles, including a soft shell and the ability to feed in cool and
productive pelagic habitats (Frair, Ackman, and Mrosovsky 1972; Davenport 1997). In contrast,
green turtles (Chelonia mydas) are a species of hard-shell (Cheloniidae family) and are found
in warmer water and nearshore habitats (Bentley et al. 2023).

As mentioned before, turtles in general exhibit slow rates of nucleotide substitution
compared to other vertebrates (Green et al. 2014; Avise et al. 1992). In particular, sea turtles
from the superfamily Chelonioidea exhibit low levels of genetic divergence in various genome-
wide studies (Komoroske, Miller, and O’Rourke 2019; Vilaga et al. 2021; Zbinden et al. 2007;
van der Zee et al. 2022; Driller, Vilaca, and Arantes 2020). However, the underlying genomic
differences between these two sea turtle groups are not well understood.

For species like green and leatherback turtles to succeed in diverse environments, they
must have the ability to regulate the expression of different genes. This occurs through random
changes, allowing the best-adapted individuals to survive. The coordination of various genomic
elements, such as promoters, enhancers, silencers, and insulators, which are non-coding
sequences that control gene expression, plays a role in this process (Ali, Han, and Liang 2021;
Conley, Piriyapongsa, and Jordan 2008). Several studies have demonstrated that TEs, which
play a role in regulating gene expression, can contribute to changes in gene expression by
altering their transcription machinery (Franchini et al. 2011; Samuelson et al. 1990; Brini, Lee,
and Kinet 1993; Hambor et al. 1993). Moreover, one of the most variable genomic features
among vertebrates is the number and diversity of TEs (Sotero-Caio et al. 2017; Tollis and

Boissinot 2012). TEs are known to be a significant source of genetic variation in living
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organisms (M. G. Kidwell and Lisch 2001) and can be a valuable source of data for comparing
genomes of closely related species or species with slow evolution (Green et al. 2014), such as
green and leatherback turtles.

Due to their high levels of conservation, sea turtles are ideal models for studying the
evolution of TEs since speciation, which has been of interest for over 30 years (Endoh and
Okada 1986). Despite the early discovery of the role of Short Interspersed Elements (SINEs) in
hijacking the retropositional machinery of LINEs by acquiring 3' sequence fragments from
LINEs on turtles (Kajikawa, Ohshima, and Okada 1997), there is limited understanding of the
dynamics of TEs in the sea turtles clade. Although a draft-level genome of the green turtle was
sequenced a decade ago (Wang et al. 2013), only recently has there been a focus on producing
reference genomes for this group, offering quality data to enhance our understanding of their
evolutionary history using this type of genetic markers.

Therefore, the creation of nearly-complete, high-quality, chromosome-level genomes
for sea turtles presents a valuable opportunity to fully characterise the sea turtle genome and

understand its evolution through comparative genomics of transposable element regions.
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Aims of this study

Complete gapless reference genomes are a valuable resource in genetics, enabling the
identification of genomic variations among closely related species. In recent years, numerous
projects have successfully produced complete genome assemblies in various organisms.
However, there is a lack of genomic resources for non-avian reptiles. Therefore, the first
objective of this thesis was to generate high-quality genome assemblies for the understudied
sea turtles.

In recent years, a comprehensive analysis of transposable elements has led to a greater
understanding of their significance in adaptation, gene regulation, copy number variation, and
other regulatory modifications resulting from their transposition. Based on this understanding,
we aim to investigate the genomic divergence that this group of elements can generate in long-

time diverged species with a slow mutation rate.

1 - Sequence, assemble and describe high-quality genomes of sea turtles. Subsequently,
compare different features of these genomes in order to identify potential regions that may have
contributed to phenotypical differences between two species that have important

morphological, ecological and behavioural differences and a deep divergence time.

2 - To conduct a thorough comparison of transposable elements between the two newly
assembled high-quality sea turtles genomes and identify potential regions for genomic

divergence between highly syntenic sea turtles.

3 - To conduct a comprehensive analysis of transposable elements across the entire clade
of Testudines, with a particular emphasis on identifying variations within this slowly evolving
group. Furthermore, we aim to examine the association between transposable elements and

genomic attributes such as genes and exons.
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Chapter 1

Divergent sensory and immune gene evolution in sea
turtles with contrasting demographic and life
histories
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Sea turtles representan andent lineage of marine vertebratesthat evolvedfrom terrestrial
ancestorsover 100 Mya. The genomic basis of the unique physiological and ecological
traits enabling thesespedesto thrive in diversemarine habitats remains largely unknown.
Additionally, many populationshave drastically declined dueto anthropogenicactivities
overthe pasttwo centuries, and their recoveryis a high global conservation priority. We
generated and analyzed high—-quality reference genomesfor the leatherbadk (Dermochelys
coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle

families. Thesegenomesare highly syntenic and homologous, but loclized regions of
noncollinearity wereassodatedwith higher copy numbersof immune, zinc-finger,and
olfactory receptor (OR) genesin greenturtles, with ORs related to waterbomeodor-
ants greatly expandedin greenturtles. Our findings suggestthat divergent evolution of
these key genefamilies may underlie immunological and sensory adaptations assisting
navigation, occupancy of netitic versuspelagic environments, and diet spedalization.

Reduced collinearity wasespedally prevalent in microchromosomes, with greatergene
content, heterozygosity,and genetic distances betweenspedies, supporting their aritical

role in vertebrateevolutionary adaptation. Finally, diversity and demographichistories
starkly contrasted between spedes, indicating that leatherback turtles have had a low
yet stableeffective population size, exhibit extremely low diversity comparedwith other
reptiles, and harbor a higher genetic load compared with green turtles, reinforcng
concem over their persistence under future dimate scenarios. These genomesprovide
invaluable resourcesfor advandng our understanding of evolution and conservation
best practices in animperiled vertebrate lineage.

marine turtle | gene evolution | conservation genomics | genetic diversity | demographic history

Sea turtles recolonized marine environments over 100 Mya (1, 2) and are now one of the
most widely distributed vertebrate groups on the planet (3). Leatherback turtles
(Dermochelyscoriacea)representthe only remaining speciesof the family Dermochelyidae,
which diverged from the Cheloniidae (hard-shelledseaturtles) about 60 Mya (4). Unique
morphological (Fig. 1A) and physiological traits allow leatherback turtles to exploit cool,
highly productive pelagic habitats (5, 6), while greenturtles (Chelonia mydas)and other
hard-shelledspecieslargely inhabit warmer nearshore habitats following an early pelagic
life stage.Most previous researchin this group has focused on organismal and ecological
adaptations (7), but the genomic basis of traits that differentiate or unite these speciesis
not well understood.

Anthropogenic pressureshavecausedsubstantial population declines in seaturtles, with
contemporary populations representing mere fractions of their historical abundances

Significance

Sea turtle populations have
undergone recent global declines.
We analyzed de novo assembled
genomes for both extant sea turtle
families through the Vertebrate
Genomes Project to inform their
conservation and evolutionary
biology. These highly conserved
genomes were differentiated by
localized gene-rich regions of
divergence, particularly within
microchromosomes, suggesting
that these genomic elements play
key functional roles in the
evolution of sea turtles and
possibly other vertebrates. We
further demonstrate that
dissimilar evolutionary histories
impact standing genomic diversity
and genetic load, and are critical to
consider when using these metrics
to assess adaptive potential and
extinction risk. Our results also
demonstrate how reference
genome quality impacts inferences
of comparative and conservation
genomics analyses that need to be
considered in their application.

The authors declare no competing interest.

(8, 9). Although seaturtles spendmost of their life in the ocean, they also exhibit long-
distance migrations to natal rookeriesfor terrestrial reproduction (7, 10, 11). Consequently,
they are threatened by human activities in both terrestrial and marine environments,
including direct harvest of meatand eggs(12), fisheries bycatch (13), coastal development
(14, 15), pollution (16), disease(17), and climate change(18, 19), which is exacerbated
by their temperature-dependentmechanismof sexdetermination (TSD) altering popu-
lation dynamics (20, 21). The IUCN lists mostseaturtle speciesasvulnerable or endan-
gered, and while decades of conservation efforts have fueled positive trends for some
populations (22), others continue to decline (23). In particular, leatherbackturtles have
undergoneextensivededines (>95% in somepopulations) over the last century (24-27),

including the extirpation of the Malaysian nesting population (28). Leatherback turtle

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).

To whom correspondence may be addressed. Email:
bbentley@umass.edu, mazzoni@izw-berlin.de, or
lkomoroske@umass.edu.

2C.J.M.and L.M.K. contributed equally to this work.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2201076120/-/DCSupplemental.

Published February 7,2023.

PNAS 2023 Vol. 120 No. 7 €2201076120 https://doi.org/10.1073/pnas.2201076120

18



1 2 3 4 5 6 7 8 9 10111213 14 15161718192022223 24226228

T o\\e\ﬂ
i e(«_\"cea
k roo“a

on®

o
’0‘“‘\,&5 o Telololale

7 8 9 10 111213 14 15161718192020232429@ 28

y° 1 2 13 (45 6 7 8 9 10111213 14 15 16/718120@1222324 25207

)
(@
woiest
D\

5 6 7 8 9 10 11 1213 14 15 16 17181RE@R2R2LE
[TTTT

‘(\‘15 1 2 3 4

“e
@% o
b S

1 2

P

Fig. 1.

3 4 5 6 7 8 91011 1228

e e e e oo e e e o onnnnaannanaan

(A)Green turtle (C.mydas);photo credit: NOAA NMFS PIFSC under USFWS Permit #TE-72088A-3,andleatherbackturtle (D.coriacea); photo credit: Ricardo

Tapilatu. (B) Dot plot showing regions with an identity greater than 0.5across the entire genomes of green (red) and leatherback (blue) turtles. (C) Gene synteny
and collinearity among leatherback turtle (blue), green turtle (red), Chinese pond turtle (Mauremysreevesii;green), pond slider turtle (Trachemysscripta;purple)
and Goode's thornscrub tortoise (Gopherusevgoodei;yellow). Each bar represents chromosomes with respective numbers, and gray lines represent homolog

gene connections.

recovery is impeded by relatively low hatching successcompared
with other seaturtle species(29). In contrast, many greenturtle

populations haverecently increasedfollowing conservation actions
(22), but their continued recovery remainsthreatenedby anthro-
pogenic activities and high incidence of the neoplastic disease
fibropapillomatosis (FP), a viral-mediatedtumor diseasethat dis—
proportionately impacts this species(30).

Genomic data have been instrumental in advancing under-
standing of species’evolutionary histories and ecological adapta—
tions (31-33), and providing critical information for conservation
management(34-37). However, this researchhas been hampered
in taxawhere genomicresourcesremainlimited. In particular, the
lack of high-quality reference genomes,which are essential for
accurate comparative evolutionary analyses (38, 39) and robust
estimates of a range of metrics to inform conservation biology
such as inbreeding, hybridization, diseasesusceptibility, genetic
load, and adaptation (36, 40, 41), impedethis work in threatened
spedies. A draft genomefor the green turtle was assembledalmost
a decadeago (42), and provided important insights into turtle
evolution. However, errors, gaps, misassemblies,and fragmenta-
tion in draft genomescan lead to spurious inferences, potentially
masking signals of interest (38, 43) and impeding effective man-
agementstrategies (41). Well-annotated, chromosomal-levelref-
erence genomes can resolve these issues, improving our
understanding of the genomic underpinnings of ecological and
evolutionary adaptations (39, 44). For example, high-quality
genomeswith accurate annotations have enabled examination of
gene changes associated with recolonization of the marine envi-
ronment by terrestrial vertebrates, including the loss of olfactory
receptor(OR) genefamilies (32, 45). Comparative genomicanal-
yseshave also demonstratedadaptive diversity in genesunderlying
reptilian immunity (46), and high—-quality genomeshaveprovided
key insights into mammalian diseasesusceptibility (33, 47, 48).
Equivalent investigations are critical for seaturtles, with diseases
suchasFP adverselyimpacting populations acrossthe globe (30),
information on immune genesis needed for devising effective
conservation strategies(49).

We assembled chromosome-level reference genomesfor leath-
erback and greenturtles aspart of the Vertebrate Genomes Project
(VGP), and leveragedtheseresourcesto addressquestions centered

https://doi.org/10.1073/pnas.2201076120

around evolutionary history and conservation. Specifically, we
provide insights into the genomic underpinnings of phenotypic

traits that separate and unite these two species by examining

genomesynteny and regionsof divergence. Given the contrasting

recent population trends of thesetwo species,we additionally used
whole genomeresequencing data of individuals representative of
global populations to compare key conservation-relevant metrics,

including pattems of diversity and deleterious variants, and recon-
structed demographic histories to inform assessmentsof future

wulnerability. Thesegenomesrepresenttwo of the most contiguous

reptilian genomesassembledto date, and our results provide a
foundation for further hypothesis-driveninvestigations into the

evolutionary adaptation and conservation of this imperiled verte-
brate lineage.

Results

Genome Quality. Reference genomesfor the leatherback and
green turtles were generated using four genomic technologies
following the VGP pipeline v1.6 (39), with minor modifications
(see Methods). A total of 100% of the leatherback and 99.8%
of the green turtle assembled sequenceswere placeable within
chromosomes. The assembled genomes were near full-length
(~2.1 GB), with annotations of all 28 known chromosomes
for both species, composed of 11 macrochromosomes (>50
Mb) and 17 microchromosomes(<50Mb) (SI Appendix, Table
S1 and Fig. S1). These genomesare among the highest quality
genomesassembledfor nonavian reptiles to date in terms of both
contiguity and completeness(Dataset S1), with the leatherback
turle assembly representing the first reptile genome where all
scaffolds were assignedto chromosomes. Scaffold N50s were high
for both genomes(SI Appendix, Table S1). We annotated 18,775
protein—coding genesin the leatherback and 19,752 in the green
turtle genomes(see below for analysis of these gene differences).
For the leatherbackand greenturtles, 96.9% and 97.5% of these
geneswere supported at >95% of their length from experimental
evidence and/or high-quality protein models from related species
(see Methods). The numbers of protein—coding genesare within the
rangeof other reptiles (Dataset S1) and include 97.7% and 98.2%
complete BUSCO  copies for leatherback and greenturtles based
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on Sauropsidamodels(50), which are similar to or higher than all
other assembledreptilian genomestodate (SI' Appendix,Fig. S2).

Genome Architecture. Despite diverging over 60 Mya (4),
leatherback and green turtles show extremely high genome
synteny and collinearity (Fig. 1B and C and SI Appendix,Figs.
S6 and S7), with ProgressiveCACTUS revealing95% sequence
identity acrossthe length of the genomes(SI Appendix, TableS3).
After multiple rounds of manual curation to correct artifacts of
misassemblies, few large structural rearrangements between the
two species remained, including inversions of up to 7 Mb on
chromosomes12,13, 24,and 28 (SI Appendix,Fig. S6). The high
collinearity between spedies included near-complete end-to-end
contiguous synteny for nine of 28 chromosomes(SI Appendix,
Fig. S6). The remaining 19 chromosomesexhibited at least one
small region of reduced collinearity (RRC) betweenthe species,
with RRCs representingatotal of ~83.4Mb (~3.9%) and~110.5
Mb (~5.2%) of the leatherback and greenturtle genomelengths,
respectively. Eight chromosomesexhibited small RRCs (0.1 to
3 Mb), and 11 contained RRCs that were between 3 and 18
Mb in length (Fig. 2 A-D and Dataset S3). Analysesof coding
regions revealed a similar pattem of strong collinearity between
the two species(Fig. 1C and SI Appendix,Fig. S6), particularly
within the macrochromosomes,whichcontain morethan 80% of
the total length of the genomes.The two genomesalso displayed
similar percentages of repetitive elements (REs), which were
almost exclusively transposable elements (TEs) and unclassified
repeats(Sl Appendix,Fig. S8). The landscapeof TE superfamily
composition over evolutionary time wasalso similar betweenthe
two species,with the exception of REs with low Kimura values
(<5%), which appearedat a higher frequency in the leatherback
turtle genome(see SI Appendix,section | for full analyses).

Gene Families and Gene Functional Analysis. Gene function
analysis of localized RRCs revealed that most contained genes
with higher copy numbersin the greenturtle comparedwith the
leatherback (Fig. 2 A-D and Dataset S3). Nineteen chromosomes
had RRCs with higher gene copy numbers in the green turtle,
and of these, ten contained genesassodated with immune systermn,
olfactory reception, and/orzinc-fingerprotein—coding genes.Many
of the samegenefamilies were also detected ashigh—diversity exonic
regionsvia separate,independent analyses(Sl  Appendix,section I),
reinforcing their importance in the divergent evolution of these
spedies.In addition to localized RRCs, higher gene copy numbers
in the green turtle occurred in many gene orthologous groups
(orthogroups) acrossthe entire genome,and generally in variable
multicopy genes(Fig. 2 F andG). Copy numbervariation accounted
for most of the nearly one thousand more genes annotated in
the green turtle genomerelative to the leatherback (Fig. 2 F and
G andSI Appendix, TableS1). We detectedno evidenceof collapsed
multicopy genesin the leatherback turtle assemblyacrossmultiple
analyses (see Methodsand S| Appendix, Table $4), supporting this
asa biological signal rather than technical artifact of the assemblies.
Olfactory receptors(ORs) representedthe largestorthogroups
in both genomes,and differences in copy numberswere connected
to manyof theidentified RRCs. All OR classl geneswereclustered
at the beginning of chromosome1, and the greenturtle had higher
copy numbersin this region (Fig. 2 A-D). This areaalsocontained
adusterof OR dlass| genesin at least three additional testudinid
species(SI Appendix,Fig. S10), and is the only divergent region
across the very large chromosome 1 in the turtles analyzed. In
contrast, OR dassll geneswere spreadacrossseveral chromosomes
in both seaturtle species,with higher copy numbersagain in the
greenturtle foundwithin RRCs(Fig. 2 B-D). Theinstability and

PNAS 2023 Vol.120 No. 7 e2201076120

rapid evolution of OR genenumbersin turtles is further illustrated
in the expansion-contractionanalysis of orthogroups(Fig. 2E and
Dataset S6 A-D), which showedthat OR classl genesunderwent
amodestcontraction in the ancestral seaturtle lineage, followed
by an expansionin the greenturtle but a further contraction in the
leatherback turtle. Similar trends were detected for OR dlass ll
genes,but with a greater magnitude of contraction in the ancestral
seaturtle lineage followed by a further contraction for the leather-
backturtle and only a smallexpansionforthe greenturtle (Fig. 2E).

Another important RRC (RRC14) encompassedthe major
histocompatibilitycomplex(MHC), which playsa critical role in
vertebrateimmunity and is particularly relevant to seaturtle con-
servation dueto the threat of FP and other diseases(32). In addi-
tion to the MHC region, this RRC includes severalcopiesof OR
dass Il genes, zinc—finger protein—coding genesand other genes
involved with immunity, such asbutyrophilin subfamily members
and killer cell lectin-like receptors (Fig. 2D and Dataset S3).
Invariably, the greenturtle carried higher numbersof all the mul-
ticopy genespresentin RRC14. RRCs on other chromosomes
similarly showed increased levels of zinc—finger protein genesin
the greenturtle, including the RRCs labeled 6A, 11A, 14A, and
28 (Dataset S3). In particular, zinc-finger protein genes were
highly prevalent on chromosomes14 and 28 in both seaturtles,
representing more than 50% of all the protein domains present
on these chromosomes(SI Appendix,Fig. S11). Finally, all but
three geneswith knownrolesin TSD in reptiles (Dataset S7) were
located as single-copygeneswithin both seaturtle genomes,with
homologous copies located in the sameregion of the chromosomes
in both species(see SI Appendix,section | for full analyses).

Macro and Microchromosomes. Microchromosomescontained
significantly higher proportions of genesthan macrochromosomes
(Fig. 3 AandB; greenturtle: F, ,5=16.46, P <0.01; leatherback
turtle: F, 55 =16.35, P <0.01), and gene content was strongly
positively correlated with GC content (SI Appendix, Flg S13;
greenturtle R? =0.81, P <0.01; leatherback turtle R? =0.87,
P <0.01). These pattems were particularty apparent in small
(<20Mb) microchromosomes,whereGC content reached 50%,
compared with the 43 to 44% genome-wideaverages.Within
chromosomegroups, larger proportions of multicopy geneswere
genera]ly associatedwith higher total geneg counts (green turtle:
R? 0.84, P <0.01; leatherback turtle: R2 =0.92, P <0.01),
and chromosomes with the highest multicopy genes numbers
had increasedproportions of RRCs (Fig. 3 A and B; greenturtle:
=0.69, P <0.01; leatherback turtle: R? =0.81, P <0.01).
Mean genetic distances for single—copyregions betweenthe two
seaturtles were also higher in small microchromosomes (0.053)
comparedwith both intermediate (>20Mb) microchromosomes
(0.047), and macrochromosomes(0.045)Fig. 3G, F;,, ;5 =21.98,
P <0.01). However, examination of intermediate microchromo-
some and macrochromosome RRCs  revealed elevated genetic
distances in these regions that approached the values observed in
small microchromosomes(SI Appendix, Table S5). Genetic dis—
tanceswere also S|gn|ﬁcantly positively correlated with heterozy-
gosnty (green turtle: R? =0.97, P < 0.01; leatherback turtle
R? =0.97, P < 0.01), which was significantly higher in small
microchromosomesfor both species (Fig. 3D; green turtle: F,
25 =15.72,P <0.01; leatherback turtle: F, ,5 =5.09, P <0.05).

Genome Diversity. Genome-widenucleotidediversitywasalmost
amagnitude of order lower in leatherback compared with green
turtles (mean repeat masked TT=2.86 x 10 and 246 x 1073,

respectively; tss, =36.9, P <0.001; Fig. 4A and S| Appendlx
Figs. S15-S17 and Table S7). Despite having largely similar gene

https://doi.org/10.1073/pnas.2201076120
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Fig. 2. (A-D)Dotplots (identity values; dark green =1 to 0.75,green =0.75 to 0.5, orange =0.5 to 0.25 and yellow =0.25 to 0) showing four of the regions with
reduced collinearity (RRC) identified within chromosomes and associated with higher copy numbers of immune system (IS), ORs, or zincfinger domain genes
in the green turtle relative to leatherback turtle (see also SI Appendix,Fig.S6 and Tables S3-S5 and Dataset S3 for full details of all RRCs). RRC positions are
marked with gray squares on the dot plots (Left;with leatherback turtle on the X-axesand green turtle on the Y-axes)and gene collinearity maps (Right)for each
chromosome highlighting the connections among specific gene families in different colors. (E) Gene family evolution of ORs class | (red) and class Il (black) for
amniote phylogeny. Gene numbers are presented on the nodes and gain/lossalong each branch are presented below branches. Small scale bar represents
substitutions/site,and big scale bar represents divergence times (MA). The blue dashed line shows the estimated divergence between the two sea turtle families.
(F)Number of unique and shared orthogroups and single-and multicopy genes between the two sea turtles (coding genes including genes with rearrangement).
The boxes outlined in black denote shared orthogroups, with the higher multicopy in the green turtle due to greater gene copies within orthogroups. (G)
Comparison of gene counts between both species per multigenicorthogroup, depicting only those orthogroups where both species have different numbers of
genes and a minimum number of five genes for one of the species. Bubbles above the diagonal represent higher counts for the green turtle and below for the
leatherback turtle. The size of the bubbles represents the number of orthogroups with the same gene count combination.

content identified in the annotation, this strong pattern was also
observed in coding regions (Fig. 4A; tss, =37.7, P <0.001),
such that leatherback turtles possess much less standing
functional variation, possibly impacting their adaptive capacity
to future novel environmental conditions. The strikingly low
genomic diversity of leatherback turtles is also less than almost
all other reptile speciesexamined(SI Appendix,Fig. S19; but see
ref. 51), including Chelonoidis abingdonii, where low diversity
has been considered a contributing factor to their extinction
(52). Contrastingly, genomic diversity of the green turtle fell
in the midrange for reptiles, as well as for mammals examined

https://doi.org/10.1073/pnas.2201076120

using similar methods (53, 54). Finally, within both species,
heterozygosity was lower in coding regions (mean T1=2.77 x10™*
and 2.18 x 17> for leatherback and greenturtles; Fig. 4A) relative
to noncoding regions (mean Tt = 3.18 x 10*and 264 x 107>;
leatherbacks: [t, = —89,P < 0.01] and greens: [t =—30.9,
P <0.01), asexpected from selection pressuresdriving higher
sequenceconservation in these functional genomic regions.

Runs of Homozygosity (ROH). In addition to lower genome-
wide heterozygosity, leatherbacks had a greater total number of
ROHs (>50 kb) than green turtles (mean Ny =4,510 and
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829, respectively), aswell asa greatertotal aggregatelength of the
genomein ROH (range =26.1to 45.5% in leatherback turtles;
1.8 to 17.7% in greenturtles). The mean length of ROHs was
alsosignificantly higherin leatherback(Lyo; =183.9kb) compared
with greenturtles (Lgoy =154.9 kb) (74204 =—8.85,P <0.01).
Length distribution breakdown showedthat leatherbacks have a
higher aggregatelength of all categoriesof ROHs relative to the
greenturtles(Fig. 4B andSI Appendix,Fig.S22). Short ROHs(50
to 500 kb) had the highest total aggregatelength in leatherbacks,
with a mean aggregatelength of 597 Mb (Fig. 4B), suggesting
long-termlow population sizesin the leatherback turtle.

Within species,overall ROH distributions weregenerally sim-
ilar between samples representative of different populations for
leatherback turtles, although individuals from the Northwest
Atlantic and East Pacific populations displayed slightly higher
total aggregatelengthsof ROHs than thosefrom the West Pacific
population, primarily dueto greateraggregatelengthsof medium
and long ROHs (Fig. 4B). Among green turtles, the aggregate
length of ROHs in all categorieswere generally smalland similar
acrossindividuals, with the clear exception of the genomerefer-
ence samplethat originated from the Mediterranean population.
This individual displayed higher numbers and lengths of long
ROHs (>1Mb) comparedwith all other greenturtles (n =50
comparedwith <5,and aggregatelength =74 Mb compared with
<4Mb), suggestinghigher levels of recent inbreeding relative to
the other green turtle populations represented in our dataset.

PNAS 2023 Vol.120 No. 7 e2201076120

Comparative analysesmappingthis individual to the two previous
green turtle assemblies failed to detect these long ROHs
(Sl Appendix,Fig. S23), demonstratingthe importance of highly
contiguous referencegenomesfor detecting biologically important
patterns using this conservation-relevant metric.

Genetic Load. Coding regionvariantswith predictedhigh (e.g.,
stop-codongain or loss) or moderate impacts were significantly
more common in leatherback compared with green turtles
(Fig. 4C; high-impactvariants: t ;5 =—65.7,P <0.001; moderate
impact variants: ts;, =—29.5,P <0.001). Conversely, low-impact
and modifier (i.e., variants predicted to causenegligible impacts)
variants weresignificantly morecommonin greenturtles (Fig. 4C;
low-impactvariants: ts g5 =4.0, P <0.01; modifier variants: ts 33,
=31.8, P <0.001). The missense-to-silentmutation ratio wasalso
higher in leatherbacks than greenturtles (4 =—72.3,P <0.001;
mean = 0.99 and 0.70), further suggestingthat genetic load is
higherin the leatherbackturtles. Within species,therewaslimited
variation betweenindividuals for all variant categories(Fig. 4C).

Demographic History. PairwiseSequentialMarkovianCoalescence
(PSMO)  analysesindicateddifferent historical effectivepopulation
sizes(N,) betweenthe two seaturtle species(Fig. 4D). N, for all
leatherback turtle populations represented in our dataset have
beenrelatively small and sustainedover time, ranging in sizefrom
approximately 2,000 to 21,000 over the last 10 My, up until the
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Fig. 4. Data are presented for the leatherback (blue) and green (red) turtle
used to generate the draft genome (+; Wang et al. 2013). (A) estimates of he

genomes, includingreference individuals for both species (*), and the individual
terozygosity for the entire genome, repeat-masked genome, exon and nonexon

regions, with outliers removed. (B) accumulated lengths of runs of homozygosity (ROH). (C) predicted impacts of variants from within codingregions. (D) Pairwise
sequential Markovian coalescent plot (PSMC) of demographic history of both species overlayed with temperature. Letters indicating portions of the PSMC curves
(A-D)are geological events referred to in the main text and SI Appendix,sectionl.

Last Glacial Maximum (LGM) and at the lowerend of this range
for most of the last 5 My. This pattemn is consistent between all
individuals examined, with similar timings and magnitudes of
N, fluctuations until recent history (Fig. 4D). In contrast, green
turtles have experienced wider variation and a higher overall
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N. in general, fluctuating between approximately 50,000 and
125,000, until the late Pleistocene, with estimates varying by
population (Figs. 4D andSI Appendix,Fig. S24). While N, for
leatherback turtles is relatively low, it modestlyincreasedprior to
the Eemian warm period (Fig. 4D [B]), followed by asubsequent
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decreaseduringthisperioduntil the LGM (Fig. 4D [A]) whenall
populations exhibit sharp spikesin N, possibly due to interocean
geneflow following warming after the LGM. In contrast, green
turtles generally displayed three distinct peaksin N, (Fig. 4D),
associatedwith ocean connectivity changesfollowing the closure
of the Tethys Sea [D], during the Pleistocene period [C], and
prior to the Eemian warming period (Fig. 4D [B]). While the
patterns of N, are broadly similar within greenturtles, the timing
and magnitude of these fluctuations varied between populations
(Sl Appendix,Fig. S24).

Discussion

Divergence in Localized RRCsand Microchromosomes amidst
High Global Genome Synteny. Theancestrallineageleadingto
leatherback and greenturtles diverged over 60 Mya (4), giving
rise to speciesthat are adaptedto dissimilar habitats, diets, and
modes of life. Despite high overall levels of genome synteny
between the species, RRCs and small microchromosomes
were associatedwith higher concentrations of multicopy gene
families, aswell as heightened nucleotide diversity and genetic
distances between species, suggesting that these genomic
elements may be important sources of variation underlying
phenotypic differentiation. Higher heterozygositydespitericher
gene content in the microchromosomes suggests that these
regions accumulate variation and may have a high adaptation
value. Though our results here do not demonstrate direct
causality, we haveidentified candidate regionsand genefamilies
that can betargetedin further studies quantifying evidence for
positive selection and their roles in seaturtle adaptation and
speciation.

The high global stability of macro- and microchromosomes
betweenseaturtle families aligns with recent work showingsimilar
pattemns across reptiles, induding birds, emphasizingthe impor-
tance of microchromosomesin vertebrate evolution (55). Higher
evolutionary rates in microchromosomes have been documented
in intraspecific (56) and interspecific (57) avian studies, so it is
possiblethat the characteristics of microchromosomesand RRCs
we observedare not unique to seaturtles, but rather, are prevalent
amongvertebrates. The mechanismsdriving these pattems are not
well-understood, but could be related to higher recombination
rates in micro-compared with macrochromosomes(58) that result
in higher nuclectide diversity and lower haplotype sharing. Once
generated, balancing selection may play a role in maintaining
variation in these gene-denseregions, but more work is needed
across taxa to determine the broad support for these hypotheses.
The prevalenceof localized genomicdifferentiation and underlying
mechanismsamongother closely or more distantly related verte-
brate groupshasyet to bewidely evaluated due to a lack of equiv-
alent quality genomicresources,but this is rapidly changing. Our
detailed analysesof RRCs, microchromosomes,and their associ-
ated geneswere only possible due to the high-quality of the assem-
bled genomes because these analyses can be sensitive to genome
fragmentation and misassemblies(39). For example, the RRCs
and many microchromosomes could not be detected using the
draft greenturtle genomedue to fragmentation and sequencegaps
I Appendix,Figs. S3 and S$4). As chromosomal-level genomes
acrossall vertebrate lineages becomeavailable, our work provides
aroadmapfor identifying genomicregions harboring contrasting
expansion/contractions of gene families and diversity levels. For
taxawith highly conserved genomeslike sea turtles, analyses of
RRCs and microchromosomesarelikely important to understand
their divergent evolutionary histories andthe phenotypic connec-
tions of the geneswithin them.

PNAS 2023 Vol.120 No. 7 e2201076120

Contrasting Sensory and Immune gene Evolution between Sea
Turtle Families. Sea turtles have complex sensory systemsand
can detect both volatile and water-soluble odorants, which are
imperative for migration, reproduction, andidentification of prey,
conspecifics, and predators (59-63). However, leatherback and
green turtles occupy dissimilar ecological niches, depending on
different sensorycues.While leatherback turtles almost exclusively
inhabit the pelagic environment posthatching, performing
large horizontal and vertical migrations to seek out patches of
gelatinous prey (64), greenturtles recruit to neritic coastal and
estuarine habitats as juveniles, and can have highly variable diets
(65, 66). Seaturtle nasal cavity morphology also differs between
species,with leatherbackturtle cavities relatively short, wide, and
more voluminous than chelonids (67-69), suggesting reduced
requirements for olfactory reception. OR genesencode proteins
usedto detect olfactory cues, with the number of genescorrelated
with the number of detectable odorants (70), and linked to the
chemical complexity of the inhabited environment (71). The two
major groups of ORs in amniotic vertebrates are separated by
their affinities with hydrophilic molecules(classl) or hydrophobic
molecules(class I) (72). Class | OR genesmay be particularly
important in aquatic adaptation (32), and expansionsof class |

ORs in testudines, including greenturtles, have been previously
reported. However, the accuracy of these estimates for complex
gene families using short-read assemblies has been uncertain

because they may be prone to misassembly (32, 42, 73). We
detected an additional 93 class | OR genesin our green turtle
genomecompared with those reported in the draft green turtle

genome (42), suggesting they can be eroneously collapsed in

short-readassembilies.Our reconstruction of both classesof OR

geneevolution throughout the seaturtle lineage revealedthat after
ancestral contractions, genecopy evolution diverged in opposite
directions between the two sea turtles. The greater loss of class
II' comparedwith class| OR genesin the ancestral sea turtle
lineage likely reflects relaxed selection for detection of airborme
odorants, as has been observedin other lineages that recolonized
marine environments (74). However, as seaturtles continue to
useterrestrial habitats for reproduction, they may needto retain
someof these capabilities, which could explain why the observed
contraction was weaker than those in exdusively marine species
(e.g., the vaquita Phocaenasinus;Fig. 2E).

The strong class | OR expansionin the green turtle may be
relatedto its distribution in complexneritic habitats and variable
diet, requiring detection of a high diversity of waterborne odor-
ants, while the continued loss of ORs in the leatherback turtle
could be a consequenceof its more specialized diet and the lower
chemosensory—complexityof pelagic habitats. Although leather-
back turtles can detect chemical cues from their prey, sensory
experiments have indicated that visual cues are more important
for food recognition in this species(75, 76). Additionally, while
the precise mechanisms underpinning philopatry in sea turtles
remain unclear, greenturtles are thought to useolfactory cuesto
reach specific natal nesting beachesfollowing long-distance nav-
igation guided by magnetoreception(61, 63). In contrast, leath-
erback turtles exhibit more ‘straying’ from natal rookeries than
other species, and such relaxed philopatry may be related to
reduced reliance on olfactory cuesto hone in on specific beaches.

Diversity within the highly complexMHC regionis akeycom-
ponent in the vertebrate immune response to pathogens, with
greater gene copy humbers and heterozygosity linked to lower
diseasesusceptibility (77). While both seaturtle speciescontained
most of the core MHC-related genes,the greenturtle had more
copiesof genesinvolved in adaptive andinnate immunity. Pathogen
prevalence and persistenceis often greaterin neritic habitats than
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open oceanhabitats (78), sogreenturtles may beexposedto higher
pathogen loads and diversity than leatherback turtles (79).
However, reptilian immune systemsare understudied compared
with other vertebrates,with few studiesof MHC genesconducted
in turtles (80). Thus, it is not yet understood how immune gene
diversity translates into diseasesusceptibility or ecological adap-
tation in seaturtles, which is critical for their conservationas FP
continues to threaten population recoveriesaround the globe(30).
Although this viral-mediated tumor diseaseoccursin all seaturtle
species, prevalence and recovery greatly vary betweenand within
species, making it plausible that harboring certain genes, copy
numbers, or specific alleles may play important roles in disease
dynamics. Despite decadesof research on this disease(30) only
one study on the immunogenomic factors goveming FP suscep—
tibility or resilience hasbeenconducted(81), in part dueto diffi-
culty in accurately quantifying hypervariable and complexMHC
loci with short-readsequencingtechnologies (82). Our reference
genomesnow enable studies to accurately interrogate these com-
plex genefamilies to advance our fundamental understanding of
immune geneevolution in testudines.

Differential Genomic Diversity and Demographic Histories.
Genomic diversity is a critical metric for evaluating extinction risk
and adaptive potential to environmental perturbation (83-85),
with heterozygositypositively correlated with individual fitness
(see reviews by refs. 86 and 87). Understanding the causesand
consequencesof genomic diversity is imperative for leatherback
turtles in particular, where contemporary populations havesharply
declined due to human activities (25). The exceptionally low
genomic diversity observedin leatherback turtles broadly aligns
with previousestimates(88,89), butour PSMC andROH results
indicate that this is likely a consequenceoflong-termlow effective
population sizes and historical bottleneck events, rather than
lossesduring recent population declines. This is consistent with
mitochondrial analysessuggestingthat contemporary populations
radiated from a small number of matriarchal lineages within a
single refugiumfollowing the Pleistocene (89). In contrast, higher
heterozygosity,limited ROHs, and larger, morevariable historical
N, in greenturtles likely reflects radiation from many refugia and
frequent admixing of populations (90).

Regardlessof the causesof current genomicdiversity levels, the
amountof standingvariation can haveimportant implications for
species’future persistence(91), especially given the adaptive capac-
ity likely required to keep pacewith rapid anthropogenic global
change. Although genome-wide diversity estimation does not
require high—quality reference genomes,they enable deeperexam-
ination of diversity patterns relevant to conservation. The use of
our reference genomes demonstrated that diversity is very low
within coding regions of leatherback turtle genomes,indicating
limited standingfunctional variation that may haveimplications
for their adaptive potential to novel conditions. Additionally,
leatherback turtles exhibited a higher genetic load comparedwith
green turtles, and this signal was consistent across all samples,
regardlessof population. Leatherback turtles have substantially
lower hatching successcomparedwith other seaturtle species(29),
potentially related to the heightened genetic load and low hete-
rozygosity (92, 93), and may combine with other factors to slow
population recoveriesdespite conservation efforts. However, other
specieswith low diversity have rebounded following population
dedlines and/or appearto have purged deleterious alleles through
long-term low population sizes (94-96), thereby limiting the
impacts on viability (54, 94, 97). Although our results of greater
genetic load despite long-term low N, suggestthis is not the sce-
nario for leatherback turtles, further in—-depth research on these
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topics enabled by the presented reference genomeswill dlarify
these relationships for leatherback and other seaturtle speciesto
guide conservation recommendations.

Although pattems of diversity, genetic load, and demographic
histories were generally consistent within species,ROH analyses
revealeda striking exception of the greenturtle referenceindivid-
ual from the Mediterranean. This isolated population hasunder—
goneseveredecline over the last century dueto human exploitation
(98), and our resultsindicate that consequentinbreeding is likely
occurring, which mayimpact recovery. The specificindividual was
from the Israel greenturtle rookery, estimatedto have only 10 to
20 nesting females in the last decade (99, 100), but it is unclear
whether Israel is demographically isolated from other rookeriesin
the region (100, 101). Further researchis neededto understand
whether inbreeding is a concem only for this nesting aggregation,
or the Mediterranean population more broadly. These findings
also highlight the utility of ROH metrics evenin animals with
longer generation times, and the importance of using highly con-
tiguous genomes for accurate ROH assessmentto inform
conservation.

While it is widely documentedthat environmental changescan
strongly impact species’abundancesand distributions (102-104),
following an initial decreaseassociatedwith declining tempera—
tures, N, of leatherback turtles remained relatively constant
throughout substantial temperaturefluctuations in the Pleistocene.
As ectotherms, reptiles are sensitive to climatic thermal fluctua—
tions; however, leatherback turtles exhibit unique physiological
adaptations that produce regional endothermy and facilitate
exploitation of cold-waterhabitats (6), potentially leading them
to being less susceptible to periods of cooler temperatures. The
long-termlower N, of leatherback turtles may be associatedwith
this species’greater massand trophic position (105). In contrast,
wide fluctuations for greenturtles appearcorrelated with climatic
events, beginning with the closure of theTethys Sea, which altered
oceanconnectivity and representeda period of increasing temper-
atures that may have opened more suitable habitat. As tempera-
tures subsequently decreased, N, also decreased; however,
temperature fluctuations during the Pleistocene were associated
with additional increasesin N,. While warmertemperaturespre—
sumably allowed for larger population sizesof green turtles, large
spikesin N, around the Eemian warming, particularly for the
Mediterranean individual, are likely associatedwith admixing of
previously isolated populations due to warm-water corridors
allowing movementbetween populations and oceanbasins (106).
While our overall estimates and trends for both species were
broadly concordant with previous studies (89, 107, 108), a recent
studyusingmultiple sequentiallyMarkovian coalescent(MSMC2)
analyses found steep declines in N, for green turtles >100,000y
beforepresent(108), which was not detectedin our PSMC anal-
yses.Since this decline wasalsonot detected in a prior study using
PSMC on the draft greenturtle genome(107), and demographic
inferences are generally robust to genomequality (109, 110), this
is likely a consequenceof the different methods, with MSMC
analysesinferring larger N, for more ancient time scales(109).

Enabling Future Research and Conservation Applications. In
addition to the insights reported here, the reference genomesfor
both extant seaturtle families provide invaluable resourcesto
enable a wide breadth of previously unattainable fundamental
and applied research. Combined with other forthcoming
genomes (39), comparative genomics analyses can reveal
the genomic basis for long-standing traits of interest such as
adaptation to saltwater, diving capacity, and long-distancenatal
homing. Studies leveraging these reference genomes alongside
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whole-genome sequencing of archival samples can assesshow
genomic erosion, inbreeding, and mutational load are linked
to population size, trajectories, and conservation measures
in global sea turtle populations. For instance, the fact that
leatherback turtles have persistedwith low diversity and N, for
extended periods offers hope for their recovery, but given that
somepopulations have now beenreduced to only a few hundred
individuals (111), researchquantifying purging of deleterious
alleles, inbreeding depression, and adaptive capacity within
populations is urgently needed(112). We emphasizethat high-
quality reference genomesarenot required for all researchgoals,
and combined with other recent studies (109, 110, 113), our
findings provide clear guidance on whenthey may,or may not, be
hecessaryto generateaccurate resultsto inform conservation. For
example,genome-widediversity estimatesare typically robust to
assemblyquality, but detection of long ROHs can be strongly
affected. AsROH metrics are increasingly usedto guide species
managementplans (114-116), it is important for researchersto
understand how genomequality may impact their analysesand
inferences. Additionally, many conservation applications that
may not explicitly require whole-genomedata can also directly
benefit from the utility of these reference genomes,including
the development of amplicon panels and molecular assaysto
investigate TSD mechanisms and adaptive capacity under
dimate change, and assessinglinkages between immune genes
and diseaserisk. Finally, with global distributions and long-
distance migratory connectivity, seaturtle conservation requires
interational collaboration that has been previously hampered
by difficulty comparing datasetsbetween laboratories. Existing
anonymous markers (e.g., microsatellites and restriction-site
basedSNP markers) can now be anchored to these genomes,and
new ones can be optimized for conservation-focused questions
and shared across the global research community, facilitating
large-scalesynthesesandequitable capacity building for genomics
research. While ongoing anthropogenic impacts continue to
threaten the viability of seaturtles to persist, combinedwith the
critical work of reducing major threats such asfisheries bycatch
and habitat loss, these genomeswill enable research that make
critical contributions to recovering imperiled populations.

Methods

Reference Sample Collections, Genome Assembly, and Annotation. Ultra-
high molecular weight DNAwas isolated fromblood collections, and biopsies of
intemal organsfor RNAwere collected opportunistically fromrecently deceased
oreuthanized animals. Raw datawere deposited into the VGP Genome Arkand
NCBI Short-ReadArchive (SRA; see DataAccessibility Statement). We assembled
bothgenomesusing fourgenomictechnologies following the VIGPpipeline v1.6
(39) with minor modifications. Short-and long-readtransaiptome data RNA-Seq
and Iso-Seq)) were generated from tissues knownfor their high transaipt diver-
sity in each spedes to enable accurate, spedes—spedficannotations. Thesedata,
plus homology-basedmapping from other spedes, were used to annotate the
genomesusing the standardizedNCBI pipeline (117). We performedannotation
as previously desaibed (39, 118), using the sameRNA-Seq|lso-Seg,andprotein
input evidence for the prediction of genes in both spedes. Full details forall
methodsare provided in SI Appendix,section .

Genome Quality Analysis. \We usedthe pipeline assembly-statsfromhttps://
github.com/sanger—pathogens/assembly-statstoestimatescaffold N50, size diistri-
butions, andassemblysize. BUSCOanalysis (115) and QWalue estimations (116)
wereconductedtoassess the overall completeness, duplication, and relative qual-
ity of the assemblies.We used D-GENIES(1 18) with default parametersto conduct
dot plot mapping of the entire genomes and each individual chromosometo
evaluate the synteny betweenleatherbadand green turtle genomes,andHaibao
Tang)CM wutility libraries following the MCScan pipeline (119) to verify their
contiguity. Incongruences in gene synteny blodks were manually investigated
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using Artemis ComparisonTool (120), identifying possible regions that could
be caused by artifacts during assembly, and corredting these. Thefinal curated
assemblieswereanalyzedusing the genomeevaluation pipeline (https://gitimp.
fu-berlin.de/amazzoni/GEPtoobtain all final QCplots and summarystatistics.

Identification and Analysis of RRCs. Usingdotplots,20Mbwindowswere
visually sareenedto identify regions of reducedcollinearity (RRCs; SI Appendix,
Fig. S5). Several genomicfeatures (e.g., GCcontent, repeat elements) were com-
pared between RRCs and equisized regions diredy up-and down-streamto
determinewhetherthesewereinfluencing collinearity (DatasetS5). Interproscan
(119) wasusedto identify the functions of genesfoundwithin RRCs,and overall
GO-termproportionsfor each chromosomewere estimated using PANTHER(120);
Sl Appendix,Fig. S25). Thetwoseaturtle genomeswerealigned using Progressive
Cacdus (121, 122) to examine whether RRCs presented pattemns of sequence
divergence and/orgene duplication between the spedes.

Gene Families and Gene Functional Analysis. ToestimatethetimingofOR
gene family evolution in sea turtles, we used computational analysis of gene
family evolution (CAFEVS; (123). CAFEuses phylogenomicsand gene family sizes
toidentify expansionsand contractions.We used a dataset containing 8 spedes
of turtle, 4 nonturtle reptiles, 3 mammals,and 1 amphibian using OrthoFinder
(124, 125). OR orthogroupswere grouped basedon subfamily (dass | and dass

I, seeref.73), andan ulrametricphylogeny wasgeneratedbygathering 1:1 ort-
hologs. We then aligned OrthoFinder aminoadd sequencesfor eachorthogroup
and generated a phylogenetic tree. See SI Appendix, section | for searches of
other spedific genes.

Genetic Diversity and Demographic History. ThehalSnpspipeline(126)was
used to estimate genetic distance between spedes by computing interspedfic
single variants basedonalignments obtained with Progressive Cactus(121, 122).
Genetic distances were claulated for 10,000-bpwindows aaoss the genome,
where each window induded only single alignments in the Cactus output.
Differences in genetic distance, gene content, GC content, and heterozygosity
between maao-intermediate miao-,and small microchromosomeswere tested
using one-wayANOVAsfor each spedes. Regression analyses were usedto test
for comrelations between these measures aaoss chromosomes.

For genomediversity, ROH,demographichistory, and genetic load analyses,
we induded whole-genomeresequendngdata for additional individuals repre—
senting multiple global populations in each spedes (SI Appendix, TableS6 and
section ). We calculated genome-wideheterozygosityusing amethod adapted
from(127) using 100-kbnonoverlappingwindows. Heterozygosity wasclculated
forthe entire genome, repeat-maskedgenome,exons,and nonexons. Statistical
comparisonshetweenspedes weremadeusing t tests. We subsequently applied
the heterozygosity pipeline to generate genome-wideheterozygosity for addi-
tional reptilian spedes sourcedfromNCBI SRA, wherespedes-spedficreference
genomeswere available (SI Appendix,section|).

ROHswereidentified by generating a SNP-listusing the analysis of nextgen-
eration sequendng data [ANGSD;(128)] pipeline. ANGSDwas rizedto
output files configured for use as input for the PLUNK ROHanalysis (129). ROHs
were then further characterized into size dasses approximately based on (130).

Estimates of deleterious allele accumulation were conducted using snpEf
(131). We estimated the impacts of variants (SNPs and INDELS) from coding
regions using the spedes—spedific genomeannotations generated for both spe—
des. gVCFsweregenerated foreachindividual followed byjoint-genotypingusing
CATK(132), allowing the reference individuals to indude homozygousalleles
foundin otherindividuals. CombinedV(Fswere separated for eachindividual
and fittered using based on depthof coverage(/sx-2x meancoverage). snpEff
predicts variant impacs and bins theminto ‘high-',‘moderate’, or ‘low-"impact
categories, and outputs a list of genes that have predicted variant effects. We
ran the snpEff analysis onall individuals for both spedes, and compared the
percentages of each variant type between spedes using t tests.

PSMC(133)analysesof demographichistorywereemployedforall individuals
for both spedes. We used SAMtools (134) and BCFtools (135) to call genotypes
with baseand mappingquiality filters of >Q30,beforefittering forinsert size(50
to 5,000bp)andallele balance(AB), and retaining only biallelic sites with anAB
of <0.25and >0.75. Wethen ranPSMCanalysis using the first 10scaffolds(84%
of total genomelength). We scaled our outputs using a generation time of 30y
(8! Appendixsection ), and amutationrate of 1.2 x 1078(107).
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Data Accessibility Statement. Genomeassemblieshavebeendepositedon
NCBI GenBank. TheNCBI GenBank accession numbersfor the leatherback turtle
assembly (DerCorl) are GCF 009764565.3 and GCA 009762595.2 for the
annotatedprimaryandoriginal altemate haplotypesin BioProject PRINA561993,
and for the green turle assembly ((CheMyd1) are GCF_015237465.2 and
GCA 015220195.2 for primary and altemate haplotypes respectively in
BioProject PRINA56194 1. Therawdata usedfor assemblies are available onthe
Vertebrate Genome Ark (htips:/ vgp.github.io/genomeark/). The leatherbadk
turtle data generated for the purpose of assemblyannotation was deposited in
the SRA under accession numbers SRX8787564-SRX8787566 RNA-Seq) and
SRX6360706-SRX6360708(S0-Seq) Greenturtle data forannotation
were deposited in SRALINder accessions SRX10863130-SRX10863133RNA-Seq)
and as SRX11164043-SRX11164046(SO-Seq). TheNovaSeq 6000 DNA-Seqidata
for the green turtle resequending, induding raw reads, are deposited in NCBI
(https: / ;Awwv.ncbi.nlm.nih.gov/)underBioProject ID: PRINA449022. All scripts
used for downstream analyses following genome assembly and annotation
have been deposited on GitHub under repository https: / /github.com/bpbentley/
sea_turtle_ genomes.

Data, Materials, and Software Availability. Allgenomicdataandscriptsdata

have been deposited in VIGP GenomeArk(136, 137) Github (138).
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Supplementary material

All scripts associated with these analyses have been deposited under GitHub repository
https://github.com/bpbentley/sea_turtle genomes.

Sample collection & data generation

The conservation status of leatherback and green turtles precludes the sacrifice of
individuals to obtain tissue samples, so blood was collected using minimally invasive
techniques for isolation of ultra-high molecular weight DNA from a male leatherback turtle off
the coast of Monterey, California (NMFS ESA10alA permit #21260 and USFWS Recovery
Permit #TE-72088A-3) and a captive male green turtle in Israel National Sea Turtle Rescue
Centre (INPA Permit worker 02457/2021 given to YL). Blood samples were flash frozen
following collection and stored at -80°C until processing. Frozen subsamples of whole blood
were placed in Iml of 95-100% ethanol and processed using a modified version of the Bionano
blood DNA isolation protocol optimized for frozen whole nucleated blood stored in ethanol
(https://bionanogenomics.com/wp-content/uploads/2017/03/30215-Bionano-Prep-Frozen-
Blood-Protocol.pdf). DNA quality was assessed using pulse field gel electrophoresis (PFGE)
(Pippin Pulse, SAGE Science, Beverly, MA) or the Femto Pulse instrument (Agilent
Technologies, Santa Clara, CA). DNA was then further prepared for the different library types
(PacBio, 10X Chromium and Bionano optical map imaging) as described in Rhie et al. (2021).
Hi-C of the green turtle was performed on flash-frozen blood following the Arima Hi-C
protocol (Arima Hi-C user guide for Animal tissues, vO1, Material Part Number: A510008).

Tissue samples of internal organs for RNA were collected opportunistically from
recently deceased or euthanized animals in the US Virgin Islands, New England Aquarium, and
the National Marine Fisheries Service Pacific Island Fisheries Science Center (NMFS permit
#15685), flash frozen and stored at -80°C until processing. Total RNA was extracted placing
20-30mg of frozen tissue on dry ice and cut into 2mm pieces before being disrupted and
homogenized with the Qiagen TissueRuptor II (Cat No./ID: 9002755), followed by extraction
using Qiagen kits (leatherback turtle: gonad, lung and brain tissues using QITAGEN RNeasy kit,
Cat. No. 74104; green turtle: brain, gonads, thymus, and spleen using QIAGEN RNeasy Protect
kit, Cat. No. 74124). The quality and quantity of RNA were measured with a Qubit 3
Fluorometer (Qubit RNA BR Assay Kit, Cat no. Q33216; ThermoFisher Scientific, Waltham,
MA) and a Fragment Analyzer (Agilent Technologies); RINs were within 7.5-9.5. Libraries
were then prepared for short-read Illumina sequencing (RNA-Seq) and long-read PacBio
sequencing (Iso-Seq). For RNA-Seq, aliquots of total RNA from each tissue and both species
were sent to Psomagen (Rockville, MD) for library preparation (TruSeq stranded mRNA Kkits,
Illumina) and sequencing. For the leatherback turtle, PacBio Iso-seq libraries were prepared
according to the 'Procedure & Checklist - Iso-SeqTM Template Preparation for Sequel®
Systems' (PN 101-070-200 version 05) without Blue Pippin size selection. Briefly, cDNA was
reversely transcribed using the SMRTer PCR cDNA synthesis kit from 1 pug total RNA and
amplified in a large-scale PCR. Two fractions of amplified cDNA were isolated using either 1x
AMPure beads or 0,4x AMPure beads. Both fractions were pooled equimolar and went into the
Pacbio SMRTbell template preparation v1.0 protocol following the manufacturer's instruction.
For the green turtle, PacBio Iso-seq libraries were prepared according to the ‘Procedure &
Checklist — Iso-Seq™ Express Template Preparation for Sequel® and Sequel II Systems’ (PN
101-763-800 Version 01). Briefly, cDNA was reverse transcribed using the NEBNext® Single
Cell/Low Input cDNA Synthesis & Amplification Module (New England BioLabs, cat. no.
E6421S) and Iso-Seq Express Oligo Kit (PacBio PN 10 1-737-500) from 300ng total RNA.
Forward and reverse barcoded primers were used during cDNA amplification. PacBio Iso-seq
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libraries were sequenced on one PacBio 8M SMRT Cell (PN: 101-389-001) on the Sequel II
instrument with Sequencing Kit 2.0 (PN: 101-820-200) and Binding Kit 2.1 (PN: 101-843-000)
and 24 hours movie with 2 hours pre-extension. Resulting raw data was deposited into the NCBI
Short-Read Archive (SRA) for genome annotation (see Data Accessibility Statement).

Genome assembly & curation

Both genomes were assembled following the VGP pipeline v1.6 (Rhie et al. 2021) with
a few modifications. Initially, all genomic data from each species were screened for low quality
and contamination with Mash (Ondov et al. 2016) as described by Rhie et al. (2021). A
preliminary analysis was performed using the 10X Illumina data (with 24bp-barcodes trimmed-
off) and GenomeScope 2.0 (Vurture et al. 2017) to estimate the haploid genome length, repeat
content, and heterozygosity and k-mer size of 21bp (Fig. S1). The predicted genome length was
used to help select the amount of PacBio reads covering 50% of the genome. The selected
PacBio reads were first corrected and subsequently assembled into partially phased contigs
using FALCON and FALCON-unzip (Chin et al. 2016). The primary assembly was further
purged of false haplotype duplications using purge dups (Guan et al. 2020) and all removed
regions were assumed to represent haplotype retention and added to the alternative assembly
(Fig. S1). Scaffolding of the primary assembly was performed in three major steps. First, the
10XG linked reads were aligned to the primary contigs, and two scaffolding rounds were
performed using scafflOx v2.2 (https:/github.com/wtsi-hpag/Scaff10X). Subsequently,
Bionano cmaps were generated using the Bionano Pipeline in non-haplotype assembly mode
and used to further scaffold the assembly with Bionano Solve v3.2.1. We used the DLE-1 one
enzyme non-nicking approach, and scaffold gaps were sized according to the software estimate.
Finally, Hi-C reads were aligned to the Bionano cmaps scaffolded assembly using the Arima
Genomics mapping pipeline (https://github.com/ArimaGenomics/mapping_pipeline), as
described on Rhie et al. (2021). The restriction enzymes used to generate each library were
specified using parameters -e GATC, GANTC for Arima reads. The processed Hi-C alignments
were then used for scaffolding with Salsa2 (Ghurye et al. 2019) using the parameters -m yes -i
5 -p yes. In parallel, the mitochondrial genome was assembled by the mitoVGP pipeline
(Formenti et al. 2021) using the corrected PacBio reads and 10XG reads as input.

Following the scaffolding steps, primary, alternative and mitochondrial assemblies were
concatenated for two rounds of nucleotide polishing. As described in Rhie et al. (2021), a first
round of polishing was performed with Arrow (Chin et al. 2013) using the PacBio CLR reads,
followed by two rounds of polishing using the 10XG Illumina short-reads. For the latter, reads
were first aligned to the assembly with Longranger align 2.2.2 (Garrison and Marth 2012) and
variants were called with FreeBayes v1.2.0 (Garrison and Marth 2012) using default options.
Consensus were called with bcftools consensus (Li et al. 2009). To minimize the impact of the
remaining algorithmic shortcomings, both assemblies were subjected to rigorous manual
curation (Howe et al. 2021). All data generated for both of the resulting assemblies; rDerCorl
and rCheMyd1 were collated, aligned to the primary assembly and analyzed in gEVAL (Chow
et al. 2016); (https://vgp-geval.sanger.ac.uk/index.html), visualizing discordances in a feature
browser and issue lists. In parallel, each species’ Hi-C data were mapped to the primary
assembly and visualized using Juicebox (Durand et al. 2016; Dudchenko et al. 2018) and
HiGlass (Kerpedjiev et al. 2018). Based on identified mis-joins, missed joins and other
anomalies from genome curators, the primary assembly was corrected accordingly. A second
round of curation was performed after the synteny analysis between both genomes revealed a
small number of remaining anomalies.
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Genome annotation

Annotation was performed as previously described (Rhie et al. 2021; Pruitt et al. 2014),
using the same RNA-Seq, IsoSeq and proteins input evidence for the prediction of genes in the
leatherback and green turtle. A total of 3.5 billion RNA-Seq reads from eight the green turtle
tissues (blood, brain, gonads, heart, kidney, lung, spleen and thymus) and 427 million reads
from three leatherback turtle tissues (blood, brain, lung and ovary) were aligned to both
genomes, in addition to 144,000 leatherback and 1.9 million green turtle PacBio IsoSeq reads,
and all Sauropsida and Xenopus GenBank proteins, known RefSeq Sauropsida, Xenopus, and
human RefSeq proteins, and RefSeq model proteins for Gopherus evgoodei and Mauremys
reevesii.

Transposable element analysis

Transposable elements (TEs) from the genomes of the leatherback and green turtles
were identified by creating a denovo database of transposable elements using RepeatModeller2
(Flynn et al. 2020) using the module -LTRStruct for each genome. Using this database,
RepeatMasker (Tarailo-Graovac and Chen 2009; Smit, Hubley, and Green 2015) was run with
the additional parameters of -a -s -gccalc to calculate kimura values for all the transposable
elements identified using the script calcDivergenceFromAlign.pl with the parameters -s and -a.
An inhouse script was also used, align_with _divHandeler.py, to isolate the TEs flagged as
Unknowns from which each representative sequence of all TE families of Unknowns was
isolated. Once isolated the distribution of size and number of transposable elements was
analysed for both genomes for the complete scaffolds and for the low synteny regions using the
inhouse script StatsTeRegion.py (Table S5); CheckNesting.py, Size nesting.py (Table S4);
Calculate_masking_size.sh (Figure S2) and createRepeatLandscape.pl with the same
parameters used in the first iteration, to create the TE landscape presented in Fig. S5.

Genome alignment

The genomes of the sea turtles were aligned against each other using two outgroups. For
this, genome assemblies of four turtle species (leatherback turtle, green turtle, Gopherus
evgoodei [GCA _007399415.1] and Mauremys reevesii [GCA_016161935.1]) were first soft-
masked with RepeatMasker to reduce the total number of potential genomic anchors formed by
the many matches that occur among regions of repetitive DNA. Progressive Cactus, a reference-
free whole genome aligner, was used (Paten et al. 2011; Armstrong et al. 2020) to align all other
genomes applying the parameter --realTimeLogging. The guide tree and divergence time used
as input for Cactus were retrieved from (Thomson, Spinks, and Shaffer 2021), with branch
lengths reflecting neutral substitutions per site. To obtain an alignment only for the two sea
turtles the parameter --root was used, setting as root the ancestral of the two sea turtles. For the
alignment among all four turtles no root was set.

Analysis of regions of low synteny

Leatherback and green turtle genomes were mapped to each other using Minimap2 and
a dot plot with the mappings was generated using D-GENIES (Cabanettes and Klopp 2018) to
evaluate genome synteny and identify regions that presented low identity or structural
rearrangements. Specifically, windows of 20 Mb were screened by eye in the dotplot, and every
region bigger than 1 Mb presenting one or more breaks in the synteny was cataloged (Table
S3). Some regions smaller than 1 Mb but larger than 100,000bp that contained obvious signals
of genomic rearrangements were also cataloged for future analysis. To identify if these low
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syntenic regions present differences in content or nucleotide composition, they were compared
to two sections of the same length immediately upstream and downstream in the chromosome.
In cases where the low syntenic region was located at one of the chromosome extremities, either
two upstream or downstream sections were used for comparison for all of them (Table S3). The
function of the genes present on those regions were extracted using the annotation results as
well as the identification of protein domains using Interproscan (Blum et al. 2021). To verify if
the low synteny regions present a pattern of higher sequence duplication, the Cactus alignment
was analyzed. First, the tool hal2maf from HalTools (Hickey et al. 2013) was used to convert
the output of cactus to the .maf format selecting (1) green turtle as reference and (2) leatherback
turtle as reference. Also, using the coordinates for the low synteny regions, coding sequences
(CDS) were isolated from the genomes fasta files based on the coordinates provided by the
annotation file (.gff) using GFFreads tool (Pertea and Pertea 2020). A reciprocal blast (Aubry
et al. 2014) was performed between the two species and, for each low synteny region, all
homologous genes that presented more than one copy for one of the two species were isolated
to retrieve duplicated genes using an inhouse script.

To determine if olfactory receptor (OR) genes were more numerous in one of the species
throughout the genome in addition to the differences found within RRCs, we searched the
annotation for the term “olfactory”. Grep searches were performed on annotation files (gff) for
both sea turtle species, M. reevesii, G. evgoodei and T. scripta in order to identify and compare
gene numbers between these species. ORs were considered as Class I if numbered 51-56, while
the remaining ORs were considered as Class II genes. After preliminary findings showing
consistent higher gene copy numbers in the green turtle, we performed multiple analyses in
order to rule out the possibility of collapsed multicopy genes in the leatherback turtle assembly.
Specifically, we checked gene connections based on similarity for each set of gene copies
manually, and estimated the predicted number of multicopy genes based on short read (Illumina
10X data) coverage for each RRC. Both analyses showed no evidence of gene collapse in the
leatherback turtle.

Gene families and gene functional analysis

To estimate the timing of gene family evolution for the olfactory receptor gene families
on sea turtles we used Computational Analysis of gene Family Evolution v5 (Mendes et al.
2020) https://github.com/hahnlab/CAFES). CAFES uses phylogenomics and gene family sizes
to identify gene families with rapid expansions and/or contractions for all branches in a
phylogeny. First, we generated a dataset containing the numbers of OR genes for a dataset
containing 8 species of turtles, 4 non-turtle reptiles, 3 mammals and 1 anura species using
Orthofinder v 2.5.4 (Emms and Kelly 2015, 2019). OR orthogroups were grouped based on OR
class I and class II subfamilies as described previously (Vandewege et al. 2016) and identified
from the human genome (Glusman et al. 2001). We generated an ultrametric phylogeny by
gathering all 1:1 orthologues identified by Orthofinder. We aligned amino acid sequences from
each ortholog group with MAFFT v6.864b (Katoh and Standley 2013) using default parameters
and trimmed with Trimal v1.4 (Capella-Gutiérrez, Silla-Martinez, and Gabaldon 2009) using
the “automated1” algorithm. Then we concatenated the trimmed alignments in a supermatrix
using geneSticher.py (https://github.com/ballesterus/Utensils/blob/master/geneStitcher.py) and
generated a tree with IqTree v2.1.4 (Minh et al. 2020; Nguyen et al. 2015), considering each
orthogroup as a partition and with 1000 bootstrap. We then calibrated the tree using r8s
(Sanderson 2003) with the same known evolutionary divergences based on fossil records used
by (Wang et al. 2013).

We additionally searched the genomes for known TSD-related genes. We initially
searched the annotation files (gff) using gene identification strings from our gene reference list
using a ‘grep’ search. Given that some genes have many aliases depending on the lineages they
were discovered in, and their function, we additionally applied a BLAST (Camacho et al. 2009)
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search using orthologous protein sequences pulled from the NCBI protein database. We used
‘tblastn’ (e-value =le; max_target sequences=5; and max hsps=10) to query the protein
sequences against the genome, and where possible, pulled down sequences from the species
where the gene had been previously implicated in TSD. The majority of the gene sequences
were sourced from Trachemys scripta scripta, Chrysemys picta belli, and Alligator
mississippiensis (but see Table S7). Matches were then filtered downstream such that only
sequences with >90% identity matches were retained, and positions of matches were checked
against the annotation file. Results from grep and BLAST searches were then examined and
compiled to create a comprehensive list of TSD genes for each of the two genomes. To compare
the position of the genes within the genome, the positions of each gene were plotted on a Circos
plot using CIRCA (http://omgenomics.com/circa).

Genome-wide heterozygosity

We used the 10X Genomics paired-end reads generated for the leatherback and green
turtles and aligned them back to their respective primary assembly to conduct analyses of
genome-wide diversity and historical demography. To apply standard mapping and genotype
calling pipelines to the data, we first removed 10X linked barcodes from the raw reads using
the script ‘process 10xReads.py’ (Andrews et al. 2012). Reads were aligned to the reference
with BWA-MEM v0.7.17 (Li 2013) using default parameters. PCR duplicates were removed
and read group headers were added with Picard-Tools v2.23.2 using the MarkDuplicates and
AddOrReplaceReadGroups functions, respectively (http://broadinstitute.github.io/picard). The
resulting alignment files for each species were used for all downstream analyses described
below.

Genome-wide heterozygosity was calculated using a sliding-window approach adapted
from methods described in (Robinson et al. 2019), and using the Genome Analysis Toolkit
(GATK; v4.1.8.1 (McKenna et al. 2010)). HaplotypeCaller was applied to identify and call loci
in the emit reference confidence mode with base-pair resolution (-ERC BP_ RESOLUTION),
with the output GVCF file containing both variant and non-variant sites. Genotypes at each site
were then generated from this output using GenotypeGVCFs, including at the non-variant sites.
We removed unused alternate alleles from the genotypes using SelectVariants, and then filtered
the VCF file based on depth of coverage (V5% - 2x mean coverage) and genotype quality scores
(MinQ = 20) at each site using an inhouse python script. We used the resulting filtered VCF
file to estimate heterozygosity (m) in 100 Kb non-overlapping windows across the genome. To
ensure the number of callable sites didn’t influence our results, we calculated heterozygosity as
the number of heterozygous sites divided by all sites that passed filtering steps, and only
retained windows that contained a minimum of 80 Kb callable sites. Heterozygosity estimates
for regions without a known location in the genome (i.e. unplaced scaffolds) were not included
in calculations. We also estimated heterozygosity for subsets of the genome using the same
methods as above, using an input BED file to specify the regions of interest. Specifically, we
targeted regions that: (1) were not identified as containing repeat or low-complexity sequences
(i.e. the ‘masked genome’, see Tramsposable element analysis section above), (2) were
identified as exon regions through the annotation and (3) non-exon regions (i.e., regions not
identified as exons, identified by inverting the exon region BED file using BedTools v2.29.2
(Quinlan and Hall 2010). For the windows containing exons, we examined the genes associated
with regions of high diversity by extracting the annotation information for windows that had a
proportion of heterozygosity higher than 3x SD above the mean. Gene lists were then run
through PANTHER (Mi et al. 2021) to investigate gene ontology (GO) terms.

To directly compare heterozygosity between the two sea turtle species, we also mapped
the 10X barcode removed reads to the reference genome for Mauremys reevesii (Liu et al. 2021)
using the same methodology as described above for alignment, duplicate removal and genotype
calling as described above, using scaffolds that were at least 10 Mb in length (N=43, ~98% of
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the genome), and estimates diversity for whole-genome and exons. We then compared
heterozygosity in corresponding exon windows between both species, and identified windows
that had either (1) substantially higher heterozygosity in one species than the other, i.e.
heterozygosity was greater than three times the mean in one species but not the other; or (2)
exceptionally higher heterozygosity in both species, where heterozygosity was greater than
three times the mean in both species. Following this identification, annotations of genes present
in these windows were extracted and explored to determine differences between the two
species.

To examine the context of the genomic diversity found in the two sea turtle species, we
also directly estimated the genome-wide heterozygosity for a number of other reptile species
(N=13). As the software and parameters used for genotyping can directly influence the
heterozygosity estimates (see (Prasad, Lorenzen, and Westbury 2022)). We downloaded raw
reads associated with reference genome assemblies from the EBI-ENA database and employed
a standardized mapping and genotyping pipeline to generate comparable heterozygosity
estimates. The heterozygosity pipeline is similar to that described above for the two focal
species with slight alterations: if data was generated with 10X Chromium linked-reads, the first
22bp of the R1 read were trimmed using trimmomatic v0.39 (Bolger, Lohse, and Usadel 2014).
Following this, paired and trimmed reads were used as input for trimmomatic with default
parameters, before being aligned to the reference genome with BWA-MEM, having duplicate
reads removed and read group headers added with Picard-Tools. The resulting alignment files
were then used with the GATK pipeline described above, using 100 Kb windows, and only
retaining scaffolds that were at least 100 Kb in length. Windows were discarded from
downstream calculations if they contained fewer site calls than one standard deviation from the
mean number of calls.

To determine the impact of genotype calling method, we also generated genome-wide
heterozygosity using the Analysis of Next Generation Sequencing Data software (ANGSD;
v0.933(Korneliussen, Albrechtsen, and Nielsen 2014)). To achieve comparable results to the
GATK heterozygosity pipeline, we initially re-aligned the consensus genome around insertion-
deletion (indel) sites using the RealignerTargetCreator and IndelRealigner functions included
in GATK (v3.5), as this step is automatically included in the GATK analysis software (> v4.0).
The indel realigned bam file was used as input for ANGSD, with site allelic frequencies
calculated (-doSaf) using SamTools v1.9 (Li et al. 2009) genotype-likelihoods (-GL1), and the
same depth and quality filters as those applied in the GATK pipeline applied. Site allelic
frequency files were then parsed through the realSFS function in ANGSD to calculate the site
frequency spectra (SFS), with the outputs used to calculate heterozygosity within 100kb
windows which were generated through bedtools MakeWindows function.

Runs of homozygosity

To detect autozygosity within the genome, we used the PLINK v 1.90b6.9 SNP-based
runs of homozygosity (ROH) analysis (Purcell et al. 2007). Given that the high-coverage
(hcWGS) data used in these analyses was the same as that used to assemble the genome, and
PLINK requires homozygous alleles at variant sites to call a ROH, we generated low- to
medium-coverage (2-12%) whole genome resequenced data (WGR) from five individuals of
each species to identify variant sites. Data for whole-genome resequenced individuals per
species was generated through a Novaseq 6000 S4 using I1lumina 150bp paired-end sequencing.
We generated low-coverage data for green turtles from two populations, and medium-coverage
data from three populations of leatherback turtle (Table S11). To ensure that coverage was not
influencing downstream results, we also down-sampled leatherback turtle data to match green
turtle data, and re-ran the ROH analysis, with our results not impacting the general qualitative
patterns of ROH distributions. Importantly we note that our aim was not to present findings for
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the WGR individuals as this is part of a companionate study, but to produce a SNP-list that
could be used to detect ROHs within the hcWGS reference sample.

Briefly, we trimmed and aligned reads to the respective reference genomes, before
removing PCR duplicates, adding read-group headers, and re-aligning around indels. These
alignment files were then used with indel re-aligned files produced for the genome data, and
used with ANGSD (Korneliussen, Albrechtsen, and Nielsen 2014) to generate a SNP-list in the
form of a PLINK file with a posterior probability cutoff of 0.95 and a SNP p-value of le«. The
ANGSD-generated SNP-list containing all WGR samples and the genome sample was then run
through PLINK to determine the distribution of ROHs across the genome for each individual
using a minimum ROH length of 100 Kb (--homozyg-kb 100), a minimum of 20 SNPs (--
homozyg-snp 20), an allowed missingness of 10 sites (--homozyg-window-missing 5), and a
maximum of 3 heterozygous sites allowed per window to account for sequencing error (--
homozyg-window-het 1). ~ The PLINK outputs were then exported and analyzed using the R
environment (R Core Team 2020). Only the high-coverage genome data was used for analysis.
ROHs were segregated into length classes, with ‘small” ROHs between 100-500 Kb in length,
‘medium’ ROHs, 500 Kb-1 Mb in size, and ‘long” ROHs >1 Mb in length. Total aggregate
lengths were calculated for each length class, and the proportion of each chromosome in ROH
was calculated by dividing the aggregate length of ROHs by the total chromosome size.

Given that genotype-likelihood information is lost when running ANGSD to generate a
SNP-list in the format of a PLINK file (as required for the PLINK ROH analysis), we also ran
the medium-coverage leatherback turtle whole-genome resequenced samples through a GATK
pipeline. Briefly, we used HaplotypeCaller on the individual data with the ERC parameter set
to output one GVCEF file to generate one file per sample including only variant sites. These were
then combined using the GATK GenomicsDBImport function, with joint genotypes called
using GenotypeGVCFs. The output VCF file, which contained variant sites for each of the five
WGR samples as well as from the high-coverage reference individual, was filtered for mean
depth (--min-meanDP 6, --max-meanDP 1000), as well as number of minor alleles required to
call a heterozygote (--mac 3), and a minimum base quality threshold of 30 (--minQ 30). The
filtered VCEF file was then used with the same parameters as the ANGSD generated SNP-list in
the PLINK ROH analysis function using the VCF read-in parameter (--vcf).

Demographic history

The demographic histories of leatherback and green turtles were inferred using the
pairwise sequential Markovian coalescent (PSMC) (Li & Durbin 2011). To process the data for
PSMC we used samtools v1.11 (Li et al. 2009) and bcftools v1.6 (Li 2011) to call variants,
requiring base and mapping qualities of 30. We performed additional filtering by insert size
retaining reads between 50-5000 bp, to remove potentially spurious short alignments. To
mitigate the possibility of spurious heterozygotes we filtered by allele balance (AB), removing
biallelic heterozygotes with AB<0.25 or AB>(0.75 and filtered by repeat-masked positions. We
retained the first 10 ‘SUPER’ scaffolds, which do not include any sex-linked chromosomes as
sex-determining genes are not localized to discrete sex chromosomes in sea turtles. Following
protocol (Li and Durbin 2011) retained sites between a third of the average read depth (-d) and
twice the average read depth (-D). We applied PSMC using the parameters -N25 -t15 -r5 -p
"4+25*2+4+6", and scaled the output using a mu of 1.2*10-8 (Fitak and Johnsen 2018) and a
generation time of 30 years (which is the midpoint between literature estimates for the two
species). We additionally plotted the PSMC outputs using species-specific generation times for
each species, with values of 14 and 42.8 for leatherback and green turtles respectively. This
scaling factor produced negligible impacts on the curves for N., with the 30-year generation
time used for all downstream tests.

To rule out that increases in V. for the PSMC analyses for both species were an artifact
of using the same individual that was sourced for genome assembly, we ran the same pipeline
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for one additional individual for each species (Fig. S17). For the leatherback turtle, we aligned
reads from a moderate-coverage (~13x) individual that was also used for the purposes of the
ROH analysis. For the green turtle, we ran the PSMC analysis using the raw reads that were
used to assemble the initial green turtle draft genome by (Wang et al. 2013). In both cases, reads
were trimmed and aligned to the respective genomes following the methods described
previously, before following through the PSMC pipeline used for the two focal individuals.

Genetic load

In the absence of genetic diversity, deleterious recessive alleles are more likely to be
expressed, however, highly deleterious alleles should be purged from the population as they are
less likely to be masked in a heterozygous state (Grossen et al. 2020). In order to examine
deleterious allele accumulation and genetic load, we extracted variants from coding regions for
both species using the outputs from the GATK analysis of heterozygosity within the exonic
regions. Given the stringency of base and map quality (Q>20), as well as site depth filtering
(¥3x < depth > 2x), all variants are considered to be reliable and of high quality. These variants
were then annotated using snpEff (Cingolani et al. 2012), where each variant was designated as
either ‘modifier’, ‘low’, ‘moderate’, or ‘high’ impact. Proportions of each type of variant were
then compared between species. SnpEff also calculated the silent to missense ratio of variants,
with higher ratios showing a higher proportion of variants that are expected to have an effect
on amino acid sequences.

Extended Results

Analysis of regions of low synteny

Here we provide in-depth descriptions of gene function and copy number comparisons
between the two sea turtle species found in each region of low synteny. See Tables S3 and S5
for complete details. Two regions of low identity were identified on chromosome 1 from 1 Mb
to 8 Mb for the green turtle and 1 Mb to 6 Mb for the leatherback turtle for region A, and from
210.8 Mbp to 214.4 Mbp for the green turtle and 215.7 Mb to 216.85 Mb for the leatherback
turtle for region B. Inside region B, an unusual string of Ns was observed for the green turtle
(51.2% of the total region length). The 3.5 Mb region was analyzed together with the same
length section upstream and downstream for both green and leatherback turtles. The cactus
alignment detected that both species exhibited more than 4 times duplications in this region,
and the duplications are at least double in base-pair lengths, compared to surrounding regions
(Table S3). We further selected only duplications larger than 21, 100, and 500bp for
examination, and in all the cases the pattern remained the same for the region of low identity.
Additionally, there was a small increase in the amount of TEs for this region in the leatherback
turtle (35;46;30 number of TEs in up to downstream order), but no difference in the green turtle
(39;35;34 number of TEs in up to downstream order), possibly as a result of the high proportion
of Ns in the green turtle for this region (Fig S5). Region A presented 59 genes with functions
associated with Olfactory Receptors (OR) in the leatherback turtle, while the corresponding
region for the green turtle presented a total of 256 OR gene copies (Table S5). The region B of
chromosome 1 also presented multiple copies of three genes related to the Immune System
(antigen WCl.1-like, TAPASIN and one gene containing Scavenger receptor cysteine-rich
domain) for the green turtle compared to the leatherback turtle. We additionally checked for a
possible association between the RRCs and TEs by comparing the RRCs with regions up- and
down-stream, and found that the number of TEs was similar between these regions (Table S5).
However, all large RRCs (> 1 Mb) in the green turtle that were associated with gene copy
number differences had larger average TEs, potentially indicating an association of differential
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activity of TEs and structural differences in associations with gene copy number variations
between species.

Two regions of low synteny were found on chromosome 2, region 2A (0 - 2.2 Mbp
green turtle and 0 - 2.4 Mbp on the leatherback turtle) were associated with the presence of a
duplication of one gene related to sphingomyelin phosphodiesterase 5 for the green turtle. The
beginning of chromosome 4 also encompassed a region of low synteny (0 - 4.5 Mbp green turtle
and 0 - 3.03 Mbp leatherback turtle) where multiple copies of genes related to the immune
system (erythroid membrane-associated protein/butyrophilin and major histocompatibility
complex class I) and one gene containing maestro-related heat domain were found for the green
turtle. In chromosome 6, two low identity regions were identified at the beginning of the
chromosome sequence. The first one (6A- and 0 - 15.47 Mbp green turtle and 0 - 7.67 Mbp
leatherback turtle) contained potential gene duplication for genes related to olfactory receptors,
the immune system and zinc-fingers for the green turtle compared to the leatherback turtle (see
details in Table S3), while the second (6B) contained one gene of the immune system (NACHT
2C LRR and PYD domains-containing protein 3) with three copies on the green turtle compared
to one on the leatherback turtle. The low synteny region on chromosome 8 (8A - 61.7 - 2.7 Mbp
green turtle and 63.53 - 64 Mbp leatherback turtle) included the immune system gene
complement factor H with 3 copies in the green turtle and 1 in the leatherback turtle. On
chromosome 11, one region of low identity (11A - 74. 2 - 79.5 Mbp green turtle and 80.0 -
80.022 Mbp leatherback turtle) had multiple copies of zinc-finger genes for the green turtle
compared to the leatherback turtle. Chromosome 12 presented a large inversion in the beginning
of the chromosome; however, no signs of gene duplication were found for this region (3.004 -
7.090 Mbp green turtle and 3.296 - 7.396 Mbp leatherback turtle). As was found for
chromosomes 1 and 6, multiple copies of genes related to the immune system and OR were
found on a region of low synteny on chromosome 13 (13A - 32.3 - 42.95 Mbp green turtle and
33.3 - 41.16 Mbp leatherback turtle), and chromosome 14 (14A - 26.5 - 44.3 Mbp green turtle
and 27.6 - 40.02 Mbp leatherback turtle). While the first region of low synteny identified on
chromosome 15 did not present signs of gene duplication, the second region (15B - 13.7 - 14.3
Mbp green turtle and 13.3 - 13.6 Mbp leatherback turtle) had eight copies of one gene related
to immunoglobulin lambda constant 1 for the green turtle compared with one copy for the
leatherback turtle. Chromosome 20 presented duplication signs for genes related to Keratin type
IT head, adhesion G protein-coupled receptor E1 in the low synteny region 20A (4.9 - 14.1 Mbp
green turtle and 4.8 - 14.7 Mbp leatherback turtle). The low synteny region found on
chromosome 21 did not present signs of gene duplication. Chromosome 23 presented one of
the larger regions of low synteny (6.0 - 19.3 Mbp green turtle and 5.9 - 17.23 Mbp leatherback
turtle) with multiple copies of genes from immune system, reproductive system and iron
homeostasis for the green turtle compared to the leatherback turtle. Additionally, chromosome
24 displayed rearrangements that were confirmed using 10X data as biologically real (Fig. S3;
24A -12.2-19.2 Mbp green turtle and 11.6 - 16.95 Mbp leatherback turtle) containing multiple
copies of genes from the immune system and maintenance of the mucosal structure (IGGFC-
binding protein) again for the green turtle relative to the leatherback turtle. Finally, chromosome
28 was one of the largest low synteny regions, corresponding to the entire chromosome and
included the presence of multiple copies of zinc-finger genes in the green turtle. All the genes
present in multiple copies for the green turtle are shown in Table S3. The low synteny regions
present on chromosome 2 (2B), 3 (3A), 5 (5A and 5B), 12, 15 (15A), 21, and 26 did not contain
genes or signs of gene duplication. Other functions of genes with higher copies for the green
turtle within RRCs included lipid metabolism (region 20A and 24A), cornification (region
20A), response to hypoxia (region 23A), and mucus production (region 24A).

38



Genome diversity

Genome-wide diversity was approximately seven-times lower in the leatherback turtle
compared to the green turtle, irrespective of whether repeat regions were masked in the analysis
(unmasked, masked m = 3.47 x 10+, 3.19 x 10+leatherback turtle and 22.3 x 10+, 22.2 x 10+
green turtle; Figs. 4a & S11-13). At the chromosome level, variation was relatively evenly
spread across the genome in both species (SD = 4.3 x 10+ and 1.7 x 10+, respectively), but
generally higher in the microchromosomes. In particular, diversity within the smallest
chromosome (chromosome 28) was almost double the overall mean in both species (Figs. S12
& S13) despite containing approximately the same quantity of genes as other
microchromosomes. Exons had lower levels of heterozygosity than the non-coding regions
(Fig. 4a). The proportion of heterozygous sites (number of heterozygous sites/total callable
sites) within 100KB non-overlapping windows across the genome ranged from 0 to 0.028 for
the leatherback turtle, and from 0 to 0.061 for the green turtle. From the 21,285 and 20,709
windows that passed filtering steps, 610 (2.87%) and 1,367 (6.60%) contained zero
heterozygous sites for the leatherback turtle and the green turtle respectively, suggesting
diversity was lower overall in the leatherback turtle, but more evenly spread than the green
turtle.

To identify genes with high diversity relative to baseline genome variation, we extracted
exon-containing 100 Kb windows that had higher proportions of heterozygous sites than the
mean for each species (see Methods) and identified 1,945 and 3,987 exons for the leatherback
turtle and the green turtle, respectively (Table S10). Windows containing tRNA genes showed
high heterozygosity for both species; however, the only specific genes observed in both species
were EPHA3 and CHIDI, which encode an ephrin receptor and a response protein to excess
calcium, respectively. Though a large proportion of the unique genes these exons comprise were
with unannotated gene identifiers in both species (171 out of 302 for the leatherback turtle; 439
out of 506 for the green turtle), analysis of the annotated unique genes with PANTHER showed
that the genes were involved with biological processes including development, locomotion,
growth, response to stimulus and signaling (Fig. S14). The leatherback turtle also showed high
diversity in genes associated with reproductive processes. Examination of the annotated
molecular functions from these exons revealed many with diversity in the leatherback turtle
were related to cell adhesion, transport, and binding, while in the green turtle, they were
associated with olfactory reception, immunity, tumorigenesis, and zinc finger proteins (Table
S10). In both species, these high diversity regions also included rRNA genes, as well as genes
involved with biological processes including development, locomotion, growth, response to
stimulus and signaling. The leatherback turtle also had high diversity in genes associated with
reproductive processes (Fig. S14).

When aligned to a common reference (M. reevesii) as opposed to themselves, we found
similar results, with the diversity of the green turtle generally higher than the leatherback turtle
(Fig. 4c), albeit with a dampened difference between species (Table S10). In regions where
diversity was high for both species (see Methods), many olfactory receptors were once again
present, as were T-cell receptors, other immune-related genes (e.g. MHC related genes),
maestro heat-like repeat-containing family members, and zinc finger proteins (Table S10). For
regions that were only indicated to have high diversity in the leatherback turtle, the genes within
these regions were linked to some olfactory receptor genes, zinc finger proteins, and genes
involved with signaling. Olfactory receptor genes were present in a higher number in the
regions of high diversity in the green turtle, as were many immune-related genes, including
genes linked to the MHC. When compared to estimates from other non-avian reptiles generated
using a standardized heterozygosity pipeline, we show that the leatherback turtle possesses very
low genomic diversity (Fig. 4b), with estimates lower than even that of the well documented
extinct Chelonoidis abingdonii (Quesada et al. 2019). The green turtle diversity falls midway
between the other species, with estimates close to that of Gopherus evegoodei (Rhie et al. 2021).
Diversity did not correlate with the conservation status for the species examined.
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Searches for genes related to the core region of the MHC

We further investigated immune genes associated with the core MHC region and found
substantial differences between the leatherback turtle and the green turtle (Table S12). Out of
the core set of MHC genes (Gemmell et al. 2020), 46 were present in the leatherback turtle and
39 in the green turtle, similar in number to those found in Chrysemys picta bellii and Alligator
mississippiensis using the same gene set (Gemmell et al. 2020). Several genes were missing in
both species, suggesting that either these genes have been lost in sea turtles, are too variable to
be effectively annotated, or that this region still contains gap-rich regions. Eleven genes present
in the leatherback turtle genome were absent from the green turtle, including BAG6, DDX39B,
RNF5, and STK19, but only four genes that were present in the green turtle versus the
leatherback turtle (KIFCI, LTA, TAP1, and TAP2). Excluding the MHC Class I and II genes,
all core MHC-related genes were found on chromosome 14, except for C4, which was found
on chromosome 1 in both species. In the green turtle, the ATFB6, NOTCH4, and PRRTI genes
were additionally located on an unplaced scaffold (NW_025111287.1), while these were found
on chromosome 14 in the leatherback turtle. This suggests that the assembled MHC region in
the green turtle genome may be partly fragmented. Examination of MHC Class 1 genes
suggested that multiple copies were present on chromosome 14 in both species (Fig. 2d), with
seven copies found in the region for the leatherback turtle and six copies found for the green
turtle, with an additional copy located on another unplaced scaffold (NW_025111276.1). There
were two additional copies of the MHC Class I a gene in both species that were not located
within the core MHC region on chromosome 14, with a single copy located on chromosomes 4
and 5.
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Supplemental Figures
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Fig. S1 | Quality control plots for the genome assemblies of Dermochelys coriacea (upper) and Chelonia mydas
(lower) turtles. Plots from left to right; Genoscope profile for 21-mers collected from 10X linked reads using Meryl
(https://github.com/marbl/meryl).; K-mer spectra plots for both genomes assemblies produced using KAT,
showing the frequency of k-mers in the assembly versus the frequency of k~-mers in the raw 10X linked reads. ; Hi-
C maps contact map (Pretext https://github.com/wtsi-hpag/PretextView) for the complete assembly. Plots from
left to right represent the kmer distribution profile from short reads (GenomeScope 2.0); the kmer multiplicity of
reads coloured by the number of times each kmer appears in the assembly; and the contact map based on Hi-C
short-read data produced using PreText.
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Chelonia mydas GCF_015237465.2 103

Dermochelys coriacea GCF_009764565.3 101

Gopherus evgoodei GCF_007399415.2 100

Mauremys reevesii GCF_016161935.1 100

Crocodylus porosus GCF_001723895.1 100

Busco Categories | Complete and Single Copy [J| Complete and Duplicated  Fragmentea [JJ|] missing

% BUSCOS

Fig. S2 | Comparison of the completeness of gene annotations, as a percentage of sauropsida_odb10 from BUSCO.
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Dermochelys coriacea
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Fig. S3 | Dot plot analysis for all individual chromosomes in the leatherback turtle (Dermochelys coriacea) and
the green turtle (Chelonia mydas) genomes, with identified regions of low synteny denoted by red boxes (top
panel, each chromosome), and gene synteny analysis (bottom panel, each chromosome). The colored blocks with
the same color in gene synteny graphs represent orthologous genes and the grey lines represent the links between
them in the two species. At the genomic level, near end-to-end synteny was observed in 9 chromosomes
(chromosomes: 7, 9, 10, 16, 17, 18, 19, 25, and 27), while from the remaining 19, 8 exhibited lower synteny
restricted to specific sub-regions (>0.1Mbp - 3Mbp; chromosomes: 2, 3, 5, 8, 15, 21, 22, and 26), and 11 present
low synteny regions larger than 3Mbp (chromosomes: 1, 4, 6, 11, 12, 13, 14, 20, 23, 24 and 28). Of the 19
chromosomes with regions of low synteny, the 13 that exhibited putative gene duplications within these regions
are denoted by (*) in the upper left graph corner. The low synteny regions found on chromosomes 1, 4, 6, 8, 13,
14, 15, 20, 23, and 24 present multiple copies of genes related to immune system and/or olfactory reception in C.
mydas. See details of region locations and compositions in Table S3.
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Fig. S4 | Circos plot for the genomes of the leatherback turtle (Dermochelys coriacea) and the green turtles
(Chelonia mydas) showing high synteny, with the outer rings showing respective chromosome numbers for C.
mydas (red) and D. coriacea (blue).
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Kimura substitution level (CpG adjusted)
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Fig. S5 | Repeat element (RE) landscape for Chelonia mydas (a,b) and Dermochelys coriacea (c,d).
Colors in the stacked bar charts and pie charts correspond to the transposable elements subfamilies and
Unknown REs as indicated in the key, with the proportion of the unmasked genome depicted in black in

b and d. See Table S4 for details.

46



Species . C. mydas . D. coriacea

2004
| | | | | | | ‘

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Scaffolds

Average size TE

b)

15001

10004
5004
04

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Scaffolds

2000
10004 |

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Scaffolds

TE every 1 Mbp

RE every 1 Mbp

=)

Fig. S6 | Distribution of (a) average size in bp of classified transposable elements (TEs), (b) number of TEs per 1
million bp and (¢) number of all Repeat Elements per 1 million bp for each chromosome in Chelonia mydas (red)
and Dermochelys coriacea (blue).
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Fig. S7 | Comparison of Chromosome 1 homology across five turtle species depicting (cyan) the region with a
cluster of Olfactory receptors class 1. Chelonia mydas (red), Dermochelys coriacea (blue), Mauremys reevesii
(Mree), Trachemys scripta (Tscr) and Gopherus evgoodei (Gevg).
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Figure S8 | Proportion of Zinc finger domains per chromosome for the green turtle (Chelonia mydas) and the
leatherback turtle (Dermochelys coriacea). A concentration of Zinc finger domains can be observed in
chromosomes 6, 14 and 28 for both species.
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Fig S9 | Locations of 213 genes that have been implicated in temperature-dependent sex determination and that
were located in the genomes of both species of sea turtle (green turtle (Chelonia mydas): left; leatherback turtle
(Dermochelys coriacea): right).
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Fig S10 | Relation between number of genes per 1 Mb and GC content for Chelonia mydas and Dermochelys
coriacea. Macro-chromosomes are grouped in purple, micro-chromosomes with >20 Mb in orange and micro-
chromosomes with <20 Mb in C. mydas.
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Fig. S11 | Genome-wide heterozygosity plots generated through GATK for both Dermochelys coriacea (A, B) and
Chelonia mydas (C, D) turtle genome assemblies for the known 28 chromosomes. Both (A) and (C) show the
proportion of heterozygous sites in 100kb windows where at least 90% of the sites were callable. Alternating colors
show breaks between chromosomes. Plots (B) and (D) are histograms displaying the relative density of windows
with associated heterozygous proportions. Note that the mean genome-wide heterozygosity estimates are
approximately 6.5-times higher for C. mydas.
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Fig. S13 | Mean heterozygosity per chromosome (+/- SE).
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Fig. S14 | GO Biological Process Categories for genes identified with higher than average (mean + 3*SD) diversity
in the leatherback turtle (Dermochelys coriacea) and the green turtle (Chelonia mydas) turtle genomes as predicted
by PANTHER.
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Fig. S18 | PANTHER GO-slim classification by biological process of the coding sequences present in each
chromosome for Chelonia mydas and Dermochelys coriacea.
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Abstract

Transposable elements are known to induce variation in vertebrate genomes through their
diversity and number, with related species usually presenting consistency in the proportion and
abundance of TE families. Despite their ancient divergence times, sea turtles Chelonia mydas
and Dermochelys coriacea show high levels of overall genomic synteny and gene collinearity,
but there is still a lot to explore regarding their TE panorama. In light of this, we analysed high-
quality reference genomes of these species, which represent the two different extant
superfamilies of sea turtles - Dermochelyidae and Cheloniidae - to explore their mobilomes and
compared them with the 13 available Testudines draft genomes. In line with previous genome-
wide comparisons between the two distantly related sea turtle superfamilies, our analyses
showcased that turtle genomes generally share similar mobilomes. Nonetheless, we identified
that the main difference between these mobilomes is a much higher proportion of Penelope-
like Elements (PLEs) and Long Interspersed Elements (LINEs) in D. coriacea. Finally, we
identified a new PLE subfamily of Neptune-1 present in D. coriacea’s genome, with evidence
for a substantial amount of recent insertions. These results show that despite the overall slow

evolutionary pace of turtle genomes, at least D. coriacea exhibits an active mobilome.
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Introduction

One of the genomic features that are known to vary the most among vertebrates is the
number and diversity of transposable elements (TEs) (Sotero-Caio et al. 2017; Tollis and
Boissinot 2012). TE is an umbrella term used to describe a wide variety of mobile genetic
elements that can replicate and multiply in their host’s genome (Boissinot et al. 2019). TE
abundance is one of the main determinants of haploid genome size variation (Margaret G.
Kidwell 2002; Elliott and Gregory 2015), and the difference in TE abundance across genomes
contributes indirectly to other characteristics of genomes, such as regional variations in base
composition (Symonova and Suh 2019).

TEs are self-replicating genetic elements that can mobilise across the genome. The
proportion of TEs varies among eukaryotic genomes, comprising around 30-60% of reptilian
and mammalian genomes (Canapa et al. 2015). Despite their abundance, TE identification is a
rather challenging and time-consuming process due to their complexity and the amount of data
that needs to be processed and compared (Rodriguez and Makatowski 2022). In addition, TEs
are extremely diverse, as they comprise multiple classes of genetic elements grouped into
orders, superfamilies, families, and subfamilies, which can vary immensely in sequence, length,
structure, and distribution (Wicker et al. 2007).

In eukaryotic genomes, TEs propagate in a selfish manner, being considered essentially
genomic parasites (Legrand et al. 2019; Orgel and Crick 1980). TEs and their hosts are in a
constant arms race where TE invasion may be counteracted by suppression of TE expression or
by TE hypermutation (Skipper et al. 2013). TE families can be very old in evolutionary time
and consequently accumulate mutations that would produce inactive copies, as a result of
mutations or fragmentation during or after insertion, and this can be quantified using Kimura
2-parameter distance to consensus (K-value) (Kimura 1980). It has been shown that TEs may
represent a major source of genetic variation in living organisms (M. G. Kidwell and Lisch
2001), and they could be a powerful source of data to compare genomes from closely related
species or species with slow-paced evolution, such as some major reptilian clades (Green et al.
2014). Testudines constitute one of the reptilian clades with slow rates of nucleotide substitution
compared to other vertebrates (Green et al. 2014; Avise et al. 1992) and sea turtles (superfamily
Chelonioidea) have been shown to keep low levels of genetic divergence in different genome-
wide analyses (Komoroske, Miller, and O’Rourke 2019; Vilaga et al. 2021; Zbinden et al. 2007;
van der Zee et al. 2022; Driller, Vilaca, and Arantes 2020). Despite their ancient divergence
times of 58-100 MY (Thomson, Spinks, and Shaffer 2021), Chelonia mydas and Dermochelys
coriacea — representatives from the two living sea turtle families — show strikingly similar
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genomic synteny and gene colinearity (Bentley et al. 2023). The high conservation levels
suggest sea turtles as an excellent model group to study the evolution of TEs since speciation.
Interest in turtle mobilomes emerged over 30 years ago (Endoh and Okada 1986) and has led
to major contributions, such as the discovery that Short Interspersed Elements (SINEs) hijack
the retropositional machinery of LINEs, achieving this by acquiring 3’ sequence fragments
from LINEs (Kajikawa, Ohshima, and Okada 1997). Despite these early findings, little is
known about the recent dynamics of TEs in this reptilian clade.

Out of the different orders of TEs, the most abundant in reptilian genomes are LINEs
(Sotero-Caio et al. 2017; Shaffer et al. 2013; Wang et al. 2013). Nonetheless, Penelope-like
Elements (PLEs) are a particularly interesting group of group I transposon, characterised by
two open reading frames (ORFs): one coding for reverse transcriptase (RT) and another for a
GIY-YIG endonuclease (EN) (Evgen’ev and Arkhipova 2005; Wicker et al. 2007). Moreover,
PLEs seem to have a different origin than the other retrotransposons group I elements (Wicker
et al. 2007). The GIY-YIG EN domain typically associated with PLEs may have its
evolutionary origins in bacterial group I introns, which are not retroelements (Stoddard 2014).
PLE ENs are characteristically homing proteins because of the CCHH Zn-finger motif, with
two cysteines located directly between the CIY and the YIG motifs (Arkhipova 2006). PLEs
are also interesting from a phylogenetic perspective since their RT does not belong to either
long terminal repeat (LTR) or LINE retrotransposon classes, but to a sister clade of telomerase
reverse transcriptase (TERTs), which use a specialised RNA template to add G-rich repeats
capping telomeres (Arkhipova et al. 2003). All described PLEs can be classified into two main
categories: endonuclease-deficient (EN-), which are found in several kingdoms at or near
telomeres, and endonuclease-containing (EN+), which use the aforementioned GIY-YIG
endonuclease to transpose throughout the genome (Craig et al. 2021; Gladyshev and Arkhipova
2007). Despite the ancient origin of PLEs predating their divergence from TERTSs, which are
pan-eukaryotic, the phylogenetic distribution of PLEs (EN+) so far appears to be restricted to
animals, with one exception of documented horizontal transfer to conifers (Lin et al. 2016).
Additionally to this classification, PLEs have been subclassified into clades by the presence or
absence of different ORFs (Capy 2005; Arkhipova 2006; Craig et al. 2021). The described EN+
clades are Penelope, Poseidon, Neptunes, Hydra, Chlamys, Naiad, and Nematis. EN- clades
include Athena and Coprina, among others.

In this study, we compared the high-quality genomes (Rhie et al. 2021) from two sea turtles
representing the two extant families Dermochelyidae and Cheloniidae. We analysed and
explored the mobilomes of these family representatives and compared them with the 13

available Testudines assemblies. We identified that the main difference between these
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mobilomes is the expansion of PLEs in D. coriacea. More specifically, we identified a new
subfamily of PLEs present in D. coriacea, with evidence of recent insertions and similarities to

other Neptune elements identified on different species.
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Methods

Genomes and their raw sequencing data were retrieved from the National Center for
Biotechnology Information database (NCBI: http://www.ncbi.nlm.nih.gov/) using the latest
version available for each assembly. In order to assess the quality of the assemblies prior to
analysis, the Genome Evaluation Pipeline (https://git.imp.fu-berlin.de/cmazzoni/GEP) was run,
yielding results for analyses such as BUSCO (Seppey, Manni, and Zdobnov 2019), Sanger
contig stats (Assembly-Stats: Get Assembly Statistics from FASTA and FASTQ Files n.d.), kmer
analysis, mercury (Rhie et al. 2020) and N50 values for each assembly (Supplementary Table
1).

TEs and unclassified repeats from the testudines genome assemblies of Emydura
subglobosa, Podocnemis expansa, Carettochelys insculpta, Pelodiscus sinensis, Chelydra
serpentina, C. mydas, D. coriacea, Platysternon megacephalum, Terrapene carolina triunguis,
Chrysemys picta bellii, Trachemys scripta elegans, Chelonoidis abingdonii, Gopherus
evgoodei, Mauremys reevesii and Cuora mccordi (Bioproject Id at Supplementary Table 1)
were recovered by creating a de-novo TE library for each genome using RepeatModeler2 (Flynn
et al. 2020) and the module -LTRStruct. Using the library for each species, RepeatMasker
(Tarailo-Graovac and Chen 2009; Smit, Hubley, and Green 2015) was run with the additional
parameters -a -s -gccalc to calculate Kimura 2-parameter distance to consensus (K-value) with
divCpGMod (Smit, Hubley, and Green 2015; Tarailo-Graovac and Chen 2009) for all the TEs
identified using the script calcDivergenceFromAlign.pl. To recover and plot the TEs statistics,
two in-house scripts were used, respectively, align with_divHandeler.py and PlotTEstats.R
(https://github.com/Tcvalenzuela/Recent-expansion-of-Penelope-like-elements-in-the-
leatherback-turtle-Dermochelys-coriacea).

To improve the annotation, manual curation was performed on each sea turtle TE
library, where each insertion was extended to 2000 bp on both flanks and then clustered together
for examination of the characteristic component of the respective family of TE. This was done
using a set of manual curation and identification as TE-Aid (Goubert et al. 2022), Repbase
(Jurka et al. 2005; Kohany et al. 2006; Kapitonov and Jurka 2008), and CDD/SPARCLE (Lu
et al. 2020) following the recommendations of Goubert et al. (2022).

In order to investigate the evolutionary context of a newly identified PLE from the
Neptune family present in D. coriacea’s genome (Neptune-1_DC), we performed phylogenetic
analysis using the RT of PLEs retrieved from Repbase and present in genomes from many
animal species (Supplementary Table 2). The NCBI CDD database (Lu et al. 2020; Marchler-
Bauer et al. 2015) was searched to identify conserved protein domains. After extraction of the
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conserved protein domains identified, multiple sequence alignments were performed with
PROMALS3D (Pei, Tang, and Grishin 2008; Pei and Grishin 2014; Pei, Kim, and Grishin 2008)
including telomerase reverse transcriptase Protein Data Bank files (3kyl, 3du5) to assess the
secondary structure of the proteins. Alignments were visualised in Jalview (Waterhouse et al.
2009), using the Clustal2 colouring scheme, and visually checked to confirm the presence of
each conserved RT motif (Supplementary Figure 1). Maximum likelihood phylogenetic
inference was then performed using IQ-TREE v.2.0.3 (Minh et al. 2020) and the most
appropriate model of evolution was selected using ModelFinder (Kalyaanamoorthy et al. 2017).
Branch support was assessed through 1,000 ultrafast bootstrap replicates (Hoang et al. 2018).
Finally, the trees were visualised and edited with FigTree v1.4.4 (Rambaut 2014). To identify
if any TE subfamily was significantly younger than the others, we used the confidence interval
around the median (+/- 1.57 x IQR/sqrt of n) (Chambers et al. 1983).

To identify potentially active copies of TEs, we analysed the long-read transcriptome (IsoSeq)
data from 3 different tissues (brain, ovaries, and lungs) of D. coriacea available at the NCBI
database under identifiers SRR9594996, SRR9594994, and SRR9594995, respectively
(Bentley et al. 2023). IsoSeq reads were mapped to the genome of D. coriacea
(GCF_009764565.3) with minimap2 (Li 2018), applying the additional parameters -ax splice -
uf—secondary=no -C5 -06,24 -B4. To visually explore the genome using IGV (Thorvaldsdéttir,
Robinson, and Mesirov 2013; Robinson et al. 2022), we put together the fasta file, the gff for
the fasta file, the sorted bam of the mapping and a custom-made bed file that indicates scaffold,
start, end, name, and K-value for each TE separated by tabs. This custom-made bed file is a
simplification of the output of align with_divHandeler.py where we filtered for the desired TE
families, k-value, length, or any other characteristic that we could be interested in for each

particular case.
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Results

TE comparison between C. mydas and D. coriacea

Manual curation of the de novo TE library generated by RepeatModeler2 substantially
reduced the number of unclassified (“Unknown”) elements via their assignment to TE
categories whenever possible. The genome percentages of unknown elements for D. coriacea
and C. mydas were reduced from 25.64% and 24.48% to 14.5% and 16.8% , respectively (Table
1). This was performed mainly by identifying different subfamilies clustered together by
RepeatMasker as one subfamily, and splitting them into the respective “real” subfamilies as
described in Methods (Goubert et al. 2022).

The overall proportion of TEs belonging to the different TE orders was found to be
similar in the genomes of C. mydas and D. coriacea (Table 1). The most striking difference in
the TE genome composition between the two turtles refers to LINEs and PLEs, where the latter
represent more than double the genome proportion in D. coriacea in comparison to C. mydas

(4.70% vs. 2.34%).

Table 1. Summary statistics for the two analysed reference genome assemblies. Repeat-masked regions are
summarised in main categories.

D. coriacea C. mydas
Number of Length Percentage of Number of Length Percentage of
elements occupied [bp] the genome elements occupied [bp] the genome

Retrotransposon 1,413,834 520,779,780 24.06 1,324,757 437,477,849 20.50

SINEs 352,713 54,104,600 2.50 398,125 61,313,780 2.87

PLEs 282,130 101,830,861 4.70 166,116 50,010,116 2.34

LINEs 962,901 394,684,017 18.23 833,888 307,190,132 14.39

LTR

elements 98,220 71,991,163 3.33 92,744 68,973,937 3.23
DNA transposons 487,853 139,785,029 6.46 521,973 146,552,919 6.87
Unclassified 1,776,631 316,126,834 14.60 1,790,156 351,644,615 16.48
Small RNA 45,675 7,619,320 0.35 54,482 9,128,255 0.43
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PLE expansion of D. coriacea

To explore differences in the accumulation of TE insertions between C. mydas and D.
coriacea, the K-value of each insertion against its consensus sequence was calculated and a
divergence profile generated (Figure 1). We identified that D. coriacea has a substantial
accumulation of TE insertions with K-values between 0% and 2% (136,923 copies in total), and
these younger TE subfamilies mostly belonged to LINEs and PLEs. Additionally, we explored
the divergence profile of 15 Testudines representatives from 6 turtle superfamilies - Chelidae,
Pelomedusoidea, Trionychoidea, Kinosternoidea, Chelonioidea, and Testudinoidea -
(Supplementary Figure 2: summarised in Figure 2) of similarly between them high-quality
assemblies based on BUSCO and QV scores (Supplementary Table 1). We identified that D.
coriacea has a recent expansion of LINEs and PLEs not present in any of the other Testudines
genomes analysed. D. coriacea was the only one for which TEs with K-values of 0% and 1%
surpassed a genome proportion of 2% (i.e., 43,295 Mp; see first two columns on the TE
divergency profiles plots, Supplementary Figure 2). Other turtles with a relatively high
percentage of genomes composed of TEs with low K-value are Chelydra serpentina (0.79% or

17,836 Mb at K-value 0%) and Cuora mccordi (0.80% or 18,082 Mb at K-value 0%). We

explored retrotransposons of the family LINE but we did not find anything as relevant there as

we found in PLEs.
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Figure 1. TE divergence profiles. The relative age of each insertion and their relative proportion in the genomes
was calculated for C. mydas (A) and D. coriacea (B). On display are the main orders and superfamilies of
transposable elements identified together with unclassified repeats (“Unknown”, grey). The main observed
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differences are in the lowest K-values (0-3%), where D. coriacea presents a higher proportion of their genome
composed of LINE and PLEs.

Due to the expansion of PLEs observed in D. coriacea and absent in all other turtles
included in this analysis, we explored PLE insertions in more detail by contrasting low,
medium, and high K-values (low <5%; medium >5% and <15%; high >15%) to better
understand the expansion of PLEs. We found that 140,928 (43.49%) PLE insertions have a low
K-value, out of a total of 324,013 PLEs insertions. This proportion is close to twice the amount
of low K-value PLEs found for C. mydas 65,931 (28.5%). Moreover, the D. coriacea proportion
of recent PLESs is higher than all the turtles included in this analysis (Supplementary Table 3),
where the average was 25,372 (18.92%) of low K-value PLE insertions.
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Active PLE subfamily in D. coriacea

To explore if any particular subfamily of PLEs has been recently active in the genome
of D. coriacea, we rely on the K-value distribution, given that an active TE will generate
identical copies and thus lead to significantly lower K-values than older, non-active TEs. We
identified that seven subfamilies have a distribution of divergence for their insertions with 3 out
of the 4 quartiles under the overall average and significantly lower than all others using the
confidence interval around the median (Supplementary Figure 3) (Chambers et al. 1983). One
particular subfamily (see below) was identified with a high proportion of elements with low K-
values, 140,713 (43.4 %) copies with low K-values, 131,897 (40.7 %) copies with medium K-
value, and presented an average K-value significantly lower than all the other PLE subfamilies
in D. coriacea using the confidence interval around the median (Supplementary Figure 1;
Supplementary Table 3).

We explored the Repbase database and identified that this particular subfamily shows a
sequence similarity of 91.38% with Neptune-1 CPB from Chrysemys picta bellii, in a segment
longer than 80 bp, fulfilling the 95-80-98 rule for a separate subfamily (Flutre et al. 2011)
(Figure 3C). Therefore, we decided to name it Neptune-1_DC. It is important to highlight that
here we identified a 5° truncation on Neptune-1_DC, since the sequence similarity match with
Neptune-1_CPB starts only at position 1088 bp of Neptune-1 DC, a phenomenon that is
expected of PLEs given their transposition strategy. We identified the GIY-YIG endonuclease
domains (Accessions Cdd:cd00304 and Cdd:cd10442, respectively) together with
retrotranscriptase TERTSs characteristic for this element and in the correct order according to
previous PLE studies (Figure 3B) cataloguing Neptune-1_DC as an EN+ PLE (Craig etal. 2021;
Evgen’ev and Arkhipova 2005; Arkhipova 2006). Through an analysis comparing expression
data of the turtle’s ovaries, brain, and lung tissues, we explored each genomic Neptune-1 DC
insertion and identified expression in the three tissues independently (example case shown in

Figure 3A).
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the protein domain detected from the sequence of Neptune-1 _DC shown in (A). (C) Repbase CENSOR results of
masking the consensus sequence of Neptune-1 DC, indicating high similarities with Neptune-1 _CPB from

Chrysemys picta bellii.

We generated a phylogeny of the RT domain of the newly identified Neptune-1 DC
element and other PLEs sequences retrieved from Repbase and previous studies (Craig et al.
2021, Arkhipova, 2006) and present in other animal genomes (Figure 4). As expected, Neptune-

1 _DC clustered together with other Neptune elements and was more distantly related to other

PLE superfamilies such as Poseidon and Naiad (Figure 4).
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Figure 4. Maximum likelihood phylogeny of PLEs based on the amino acid sequence of the RT domain
for different PLE subfamilies from several species listed in Supplementary Table 4. Sequences was obtained from
Repbase. The colours indicate the different PLE superfamilies. Marked with a red arrow is the likely active PLE
subfamily we identified in D. coriacea (Neptune-1_DC).
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Furthermore, the novel described Neptune-1 DC formed a strongly supported clade with all
Neptune PLEs from testudinian (Chrysemys picta bellii) and crocodilian genomes (Crocodylus
porosus) included in the analysis. Additionally, the Neptune element clade shows some degree
of congruence with the phylogenetic relationships between the host species, with Neptune
elements from reptilians clustering together with those present in amphibian (Xenopus
tropicalis - Xt) and fish species (Takifugu rubripes - FR). It is important to highlight that this
pattern is present also in the other clades from the different PLEs included in the phylogeny of
the RT present in this study, showing an astonishing level of clade diversity in PLEs RT as also

described by Craig (2021).
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Discussion

This study brings new insights into the transposable element (TE) dynamics within
Testudines and reports a recent expansion of Penelope-like elements (PLEs) on an otherwise
highly conserved and slow-evolving sea turtle genome.

We compared the TE composition of two extant species of sea turtles - C. mydas and D.
coriacea - estimated to have shared their last common ancestor around 58-100 MYA (Wang et
al. 2013; Shaffer et al. 2013; Vilaga et al. 2021; Thomson, Spinks, and Shaffer 2021). In a recent
study (Bentley et al, 2023), we showed that TEs comprise a similar proportion of these species’
genomes, reaching 45.79% for D. coriacea and 44.41% for C. mydas (Bentley et al, 203), values
significantly higher than those reported by previous studies (close to 10% for C. mydas) (Wang
et al. 2013; Shaffer et al. 2013; Sotero-Caio et al. 2017). However, it is important to note that
previous analyses have been performed using a draft version of the species genome available
at the time, something that we addressed with reference genomes in Bentley et al. (2023) and
expanded upon here. Despite being an assembly based only on short-read sequencing
technologies, the draft genome of C. mydas (Wang et al. 2013) presented high completeness
and broad contiguity levels in commonly used metrics such as BUSCO and scaffold N50.
Nonetheless, BUSCO scores and scaffold N50 values are not considered good indicators to
assess highly repetitive regions of the genome (Peona, Blom, Xu, et al. 2021; Prost et al. 2019).
As Peona et al. (2021) have shown, when compared to [llumina short reads, PacBio long reads
allow the assembly of higher numbers of (young) TEs and are especially effective in the
identification of novel subfamilies of TEs. Given that TE identification is highly influenced by
the completeness and accuracy of the genome assemblies used (Wierzbicki et al. 2020;
Bergman and Quesneville 2007; Rhie et al. 2021; Peona, Blom, Xu, et al. 2021), we believe
that our analyses - based on high-quality near error-free reference genomes assembled using
long reads - significantly increase the robustness of the results and represent an important
advancement in the understanding of the mobilomes within Chelonioidea.

Additionally, we reinforce the importance of manual curation of the TE repeats
identified by algorithms. While performing manual curation, we were able to identify several
incorrect classifications, including 1) consensus sequences that were annotated as belonging to
a certain superfamily of TE, but were in fact a mixture of different subfamilies, ii) insertions
lacking the characteristic component of the respective family and iii) multigenic families
flagged as “#Unknown”. These issues with classifications of TE are a known problem of
currently available TE identification and classification pipelines and strategies (Goubert et al.
2022; Peona, Blom, Frankl-Vilches, et al. 2021; Galbraith et al. 2021; Boman et al. 2019).
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Despite the high degree of similarity of the TE content, differences in abundance were
found when comparing the divergence profiles of some TE subfamilies using K-values (Figure
1). D. coriacea presents 2% of the genome with younger insertions within K-values of 0-2%
(Figure 1), which are not present on C. mydas. These insertions are mostly LINEs and PLEs,
indicating a recent expansion of these elements in D. coriacea’s genome. LINEs are the most
abundant TE order in both genomes, with CR1 as the most abundant TE superfamily and a
difference of only 4% between both sea turtles (Supplementary table 2). These results are in
line with previous reports that LINEs and PLEs are comparatively abundant in Testudines
(Sotero-Caio et al. 2017; Shaffer et al. 2013; Wang et al. 2013) and that the CR1 LINE
superfamily is dominant among amniotes (Suh 2015; Suh et al. 2014). Nonetheless, for PLEs,
the difference is more accentuated: they constitute twice the proportion of the genome of D.
coriacea compared to C. mydas (4.70% versus 2.34%) indicating a more accentuated expansion
on the PLEs of D. coriacea.

The phenomenon of expansion of a TE family (or several) post speciation has been well
studied on several organisms, including Arabidopsis (Slotkin et al. 2009) and tobacco
(McCormick 2004), Drosophila (Marcillac, Grosjean, and Ferveur 2005), fish (Renaut and
Bernatchez 2011; Rogers and Bernatchez 2007) among others as reviewed here (Serrato-
Capuchina and Matute 2018; Mérot et al. 2020). In reptiles, a similar case of expansion of TE
families as a result of speciation has been shown for snakes, comparing the Burmese python
genome with a TE content of ~21% of the genome versus the pit viper with a TE content of
~45% (Castoe et al. 2011; Kumar et al. 2017; Galbraith et al. 2022). These differences have
been associated mostly with the TE expansion in the pit viper, occurring after these two species
diverged ~90 Mya (Galbraith et al. 2022) a similar time of divergence between C. mydas and
D. coriacea (Thomson, Spinks, and Shaffer 2021).

An initial simple comparison including only C. mydas and D. coriacea would not allow
us to differentiate between PLE expansion in D. coriacea or contraction in C. mydas. In order
to clarify this, we expanded the TE abundance analysis to include 13 other turtle species from
all 6 superfamilies of testudines (Figure 3). It was identified that D. coriacea indeed presents a
higher proportion of the genome as PLEs, supporting the idea that this species’ genome went
through an expansion of PLE insertions not seen in the other analysed representatives of
Testudines. Additionally, in this broader comparison, we identified that D. coriacea was the
only species with more than 2% of the genome composed of very young or young TEs with K-
values between 0-2% (Supplementary Figure 2). The only other species with high abundance
of TEs within low K-values are C. serpentina (Kinosternoidea) and C. mccordi (Testudinoidea)

both of them with less than half of the proportion of insertions with K-values 0-2%, compared
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to D. coriacea. Therefore, the expansion of PLEs of D. coriacea is exclusive to this species’
lineage and we were not able to identify any recent TE expansions of comparable scale
happening in any of the other turtles analysed.

After seeing the expansion in D. coriacea, we searched for potentially active copies of
PLEs by focusing on the lowest K-values, based on the rationale that an active TE will generate
identical copies and thus lead to significantly lower K-values than older, non-active TEs. We
identified 7 subfamilies of PLE with significantly lower K-values (Supplementary Figure 3)
using the confidence interval around the median (Chambers et al. 1983). Furthermore, within
this group of subfamilies, we identified one with K-values significantly lower than all other
subfamilies. In an effort to catalogue this subfamily, we identified it as a member of the Neptune
family. PLEs as described by Arkhipova (Evgen’ev and Arkhipova 2005) have two major
groups: endonuclease positive (EN+) or negative (EN-) (Craig et al. 2021; Pyatkov et al. 2004;
Gladyshev and Arkhipova 2007). In this particular case, we identified evidence of an EN,
distinguished by the presence of the GIY-YIG endonuclease domain (Figure 3B), particularly
the accession Cdd:cd10442, characteristic of Neptune PLEs. This insertion also presented a
reverse transcriptase TERT domain (Figure 3B). Additionally, this subfamily showed high
levels of similarities with another Neptune from Chrysemys picta bellii (Figure 3C), Neptune-
1 CPB, with evidence for a separate subfamily in D. coriacea following the 95-80-98
rule(Flutre et al. 2011). Therefore here we describe the Neptune-1_DC as an active and recently
expanded subfamily of PLEs. By analysing RNA expression data from three different tissues,
we identified actively transcribed copies of Neptune-1 DC , raising the possibility of current
activity of this element in the genome of D. coriacea.

In summary, we have identified that in spite of the high levels of sequence similarity
and chromosome collinearity between the genomes of the two sea turtles analysed, there is a
recent expansion of PLEs in D. coriacea. We report for the first time a likely active
PLE/Neptune in reptiles. This is a contribution to the understanding of the dynamics of TE in
slow-evolving reptiles and serves as an exemplary case of how the deceleration in the
evolutionary rates of testudines can make them a unique model for studying the evolution of

genome features such as TEs.
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Supplementary table 2. Proportion of PLE lower than 5 K-values for all representatives of testudines lineage

Species Total PLE PLE K-value<5 [%]*

Platysternon megacephalum 98,437 17,123 17.39%
Pelodiscus sinensis 194,440 30,003 15.43%
Podocnemis expansa 258,507 25,003  9.67%
Carettochelys insculpta 312,531 42,634 13.64%
Emydura subglobosa 49,357 5,269 10.68%
Mauremys reevesii 94,041 24,117 25.65%
Gopherus evgoodei 125,045 33,071 26.45%
Chelonoidis abingdonii 108,624 26,160 24.08%
Terrapene carolina triunguis 110,600 14,841 13.42%
Cuora mccordi 125,192 35,390 28.27%
Chrysemys picta bellii 121,701 17,707 14.55%
Trachemys scripta elegans 119,010 33,145 27.85%
Chelonia mydas 231,717 66,113 28.53%
Dermochelys coriacea 324,013 140,928 43.49%

* Percentage of PLE with K-value <5

Average without C. mydas and D. coriacea

Average Total PLE Average PLE K-value<5 Average [%]*

143,124

25,372 18.92%

Supplementary table 3. General proportions of PLEs compare with the most abundant superfamiles of TEs

Total Neptune-

Kimura STR % LINEs % SINEs % PLEs % 1 DC %
S Low 268,003 10.25% 224,081 17.40% 836 0.17% 140,713 43.43% 24,509 70.70%
~§ Med 667,214 25.51% 395,975 30.75% 33,882 6.81% 131,897 40.71% 8,691 25.07%
8 High 1,680,017 64.24% 667,650 51.85% 463,146 93.03% 51,403 15.86% 1,467 4.23%
= Total 2,615,234 100% 1,287,706 100.00% 497,864 100% 324,013 100.00% 34,667 100%

Kimura Total STR % LINEs % SINEs % PLEs %

Low 187,468 7.48% 136,717 13.09% 702 0.12% 65,931 28.45%
§ Med 626,819 25.01% 344,040 32.93% 34,741 6.11% 121,332 52.36%
¢ High 1,692,128 67.51% 563,949 53.98% 532,902 93.76% 44,454 19.18%

Total 2,506,415 100% 1,044,706 100% 568,345 100% 231,717 100%

Low=[0-5[ ; Medium = [5-15[ ; High = [15-50]
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Supplementary table 4. Species names and abbreviation used for phylogenetic tree.

Abbreviation  Species

AAe
AMi
Bf
Bm
CI
CMy
CPB
Cr
Crp
DC
DEI

Dw
Ebur
EuTe
FR
LMi
Obim
OL
PMon
Pp
Ppac
Ptep
Sm
Smed
SP
Tama
Tcas

Xt

Aedes aegypti

Alligator mississippiensis
Branchiostoma floridae
Bombyx mori

Ciona intestinalis
Chelonia mydas
Chrysemys picta bellii
Caenorhabditis remanei
Crocodylus porosus
Dermochelys coriacea
Drosophila elegans
Drosophila virilis
Drosophila willistoni
Eptatretus burgeri
Eulimnadia texana
Takifugu rubripes
Locusta migratoria
Octopus bimaculoides
Oryzias latipes

Penaeus monodon
Pristionchus pacificus
Pristionchus pacificus
Parasteatoda tepidariorum
Schistosoma japonicum
Schmidtea mediterranea
Sphenodon punctatus
Thalassophryne amazonica
Tribolium castaneum

Xenopus tropicalis
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Supplementary Figure 3. Kimura 2-parameter distance to consensus (K-value) distribution for each PLE subfamily
in D. coriacea. Frequency distributions are shown in violin plots (green), and quartile distributions are shown in
boxplots (grey). The average K-value for all the PLEs is shown as a vertical dotted black line.
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Abstract

Different environments offer distinct selective pressures associated to species adaptation
and this process leaves behind signatures in species genomes. Transposable elements (TEs) are
important agents during adaptation, changing and modulating their host genomes in a non-
random way, through sequence-specific transposition, histone methylation modification and
insertions dependent of gene density. This could produce gene duplication and or modification
in the regulation of genes. Nonetheless, the relationship between genes and TEs has been poorly
studied, especially in the focus on how TE are positionally related to genes features such as
genes and exons. Here we show a comparative TE analysis on ten species from six different
turtle superfamilies. We compare the general proportion of TE across different species.
Additionally, we explore the interaction between TEs and gene features, describing their
proportions in each species and proposing TE (Helitron) as an example of TEs actively
duplicating gene features. The turtle species studied showed a similar level of TEs comprising
around 42% of their genome content. We identify TEs interacting with different parts in a gene
feature (exons and introns). We also report TEs integrating into the genome in the same
proportion upstream and downstream of genes and exons. Also, we identify evidence of
Helitrons containing a gene that could duplicate upon transposition, together with evidence of
members of the same subfamily and fragments of the inserted gene in a different part of the
genome. This constitutes the first attempt to describe and understand the relationship between
gene features and TEs on Testudines. Our findings hard to the understanding of interactions
between gene features and TE and brings a broad understanding of the Testudine clade

mobilome.
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Introduction

Different environments have evolutionary shaped (via selection) the differential
regulation of gene expression in different species. This process can be summarised as the
cooperation and coordination of different genomic elements, and according to the proximity to
their gene target, they can perform a Cis or Trans regulation. Among these regulators are
promoters, enhancers, silencers, and insulators, that in general are non-coding sequences whose
products control gene expression. Genomic regulatory elements are classified considering their
activity and could be subclassified accordingly with the necessity to be in the same orientation
as the target gene (Ali, Han, and Liang 2021; Conley, Piriyapongsa, and Jordan 2008). For
example, promotors are orientation-dependant elements with respect to the genes that they
regulate, providing a docking site for the transcriptional machinery. In contrast, enhancers and
silencers are orientation and position-independent with respect to the target genes (Franchini et
al. 2011; Conley, Piriyapongsa, and Jordan 2008).

Additionally, the modification of genomes resulting from TEs activity has been
suggested to modulate evolution and to facilitate species adaptation to new environments
(Clément Goubert et al. 2015; Clement Goubert et al. 2017), providing modifications on the
regulation of genes, genes copy duplications (Krasileva 2019; Schrader and Schmitz 2019), and
horizontal transference (Galbraith et al. 2022, 2021), among others. Many studies have shown
that transposable elements (TEs) can contribute to all regulatory regions as enhancers,
modifying the promoter, deactivating the promoter, among others (Franchini et al. 2011;
Samuelson et al. 1990; Brini, Lee, and Kinet 1993; Hambor et al. 1993). The intrinsic
characteristic of TE that allows them to transpose and code their own machinery, makes them
good candidates for regulating gene expression. TEs possess individual promoters,
enhancers/insulators, splice sites, and terminators. Their own internal regulation allows TEs to
interfere with the regulation of the sites where they transpose. As an example, LTR and LINEs
-highly abundant on Testudines (Carrasco-Valenzuela in prep.) - carry Polymerase (POL) II
promoters, while SINEs carry promoters for either POL III or POL II (Swergold 1990; Roy et
al. 2000). This interaction of TE with the regulatory machinery is not restricted only to
promoters. For example, TEs like L1 can carry antisense sequences that also interfere with the
expression of genes (Speek 2001). TEs have been reported to originate conserved enhancers in
vertebrates’ genomes (Bejerano et al. 2006; Franchini et al. 2011; J. Wang et al. 2014).

TEs are DNA sequences with the ability to change position within a genome. TEs can
be divided into two major classes (Class I and Class II) based on their mechanism of
transposition. They can also be divided into subclasses based on the mechanism of
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chromosomal integration. Class I elements are retrotransposons that mobilise through a ‘copy-
and-paste’ mechanism. For these elements, an RNA intermediate is reverse-transcribed into a
cDNA copy before being integrated into the genome (Boeke et al. 1985; Bourque et al. 2018).
Class II elements, also known as DNA transposons, mobilise via a DNA intermediate through
a ‘cut-and-paste’ mechanism or, in the case of Helitrons, a ‘peel-and-paste’ replicative
mechanism involving circular DNA intermediate (Grabundzija et al. 2016; Greenblatt and
Alexander Brink 1963; Rubin, Kidwell, and Bingham 1982).

Additionally, there is substantial evidence that TEs insert non-randomly in host
genomes. In maize, for example, Activator elements transpose more frequently into linked
genomic regions (Cowperthwaite et al. 2002). Additionally, Mutator elements target unlinked
open chromatin regions near recombination spots, which tend to be close to 5° end of genes (S.
Liu et al. 2009). Moreover, P elements in Drosophila have been associated with replication
origins also at the 5* end of genes (Spradling, Bellen, and Hoskins 2011). This phenomenon is
not restricted to sequence base regulator regions, for example, 7y3-Gypsy LTR retroelements
can bind specific methylations on H3 of the histones to transpose exclusively to the
heterochromatin and is widely found from fungi to vertebrates (Malik and Eickbush 1999).
Another example of integration directed to gene-poor regions is associated with 7y5 LTR
retrotransposon. Approximately 90% of 7y5 LTR insertions in S. cerevisiae are within silent
mating type loci or near silent heterochromatin at telomeres (Zou and Voytas 1997; Zou et al.
1996; Zou, Wright, and Voytas 1995).

Another example of how TEs can modulate gene expression is through their abundance
of interfered genes. Several TEs are able to trap genes inside them and duplicate those genes
during the transposition. Examples of this process can be found broadly in bacteria (Vogan et
al. 2021; Urquhart et al. 2022) and vertebrates (Morgante et al. 2005; Thomas and Pritham
2015). Helitrons, for example, are elements from the DNA TE group able to capture genes at
RNA and DNA levels and they were reported to capture complete genes or intronless genes in
several organisms such as maize (Morgante et al. 2005; Yang and Bennetzen 2009), silkworms
(Han et al. 2013), rice (Sweredoski, DeRose-Wilson, and Gaut 2008), and bats (Thomas et al.
2014).

The Testudine clade is considered a good model for the study of TE dynamics (Sotero-
Caio et al. 2017). However, the effort to generate good quality genomes for this clade is
incipient and there is little information on TE composition for this clade, limited to a few turtle
species like the western painted turtle (Shaffer et al. 2013), the Chinese softshell turtle (Z. Wang
et al. 2013), the Asian yellow pond turtle (X. Liu et al. 2022), the Common Snapping Turtle
(Das et al. 2020), and for sea turtles (Z. Wang et al. 2013; Bentley, Carrasco-Valenzuela,
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Ramos, Pawar, Souza Arantes, et al. 2023). Recent insights from sea turtles' genomes suggest
that TE activity could be related to key modifications among turtle species (Bentley, Carrasco-
Valenzuela, Ramos, Pawar, Souza, et al. 2023). Therefore, studying TE evolution in the turtle
clade emerges as an important strategy to comprehend how TE proportions could influence
turtle evolution and diversity, as well as bring insights into the evolution of TEs in Testudines,
by including information for this poorly investigated clade. Because turtle genomes present
long generation times and slower mutation rates compared to mammals and most reptilians,
(Janes et al. 2010), this clade provides an interesting scenario to explore the diversification of
mobilomes. A comparison of TE genomes composition in turtles could answer specific
questions like how TEs relate with functional genomics regions contributing to a better
understanding of TE evolution.

In this study, we explored the mobilome of ten species of turtles from six different
superfamilies and identified remarkable similarities in the total mobilomes of these species. The
only difference that was identified pertained to the abundance of certain TE orders.
Furthermore, we collected all available turtle genomes with annotations from the NCBI and
examined interactions between TEs and gene records.

Firstly, we examined the relationship between TEs and genes using the gff files, and
secondly, we investigated the relationship with exons. We found that despite the high number
of interactions between TEs and genes, there was no evidence suggesting that TEs in the studied
turtles influenced gene expression. Instead, what we discovered was that the quality of the

genome assembly played a crucial role in the analysis of TEs.
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Methods

Genome accessions
Genomes and their raw sequencing data for Pelodiscus sinensis, Chelydra serpentina,

Chelonia mydas, Dermochelys coriacea, Terrapene carolina triunguis, Chrysemys picta bellii,
Trachemys scripta elegans, Chelonoidis abingdonii, Gopherus evgoodei, and Mauremys
reevesii were retrieved from the National Center for Biotechnology Information database
(NCBI: http://www.ncbi.nlm.nih.gov/), using the latest version available for each assembly
(Bioproject Id at Supplementary Table 1). The Genome Evaluation Pipeline (https://git.imp.fu-
berlin.de/cmazzoni/GEP) was run to assess the quality of the assemblies prior to further
analysis. The statistics such as BUSCO (Seppey, Manni, and Zdobnov 2019), Sanger contig
stats (Assembly-Stats: Get Assembly Statistics from FASTA and FASTQ Files n.d.), kmer
analysis, mercury (Rhie et al. 2020) and N50 values for each assembly were recovered for each

species (Supplementary Table 1).

Transposable element analysis

To recover TEs from ten Testudines genome assemblies, a de-novo TE library was
generated for each genome using RepeatModeler2 (Flynn et al. 2020) with the -LTRStruct
module. RepeatMasker was then run on each species' TE library(Tarailo-Graovac and Chen
2009; Smit, Hubley, and Green 2015). To calculate Kimura 2-parameter distance to consensus
(K-value) with divCpGMod, the script calcDivergenceFromAlign.pl was utilised. Two in-
house scripts were created to recover (align_with_divHandeler.py) and plot (PlotTEstats.R) the
TEs statistics which can be found on GitHub at https://github.com/Tcvalenzuela/Testudine-
wide-Transposable-element-exploration-A-history-of-slow-evolution-and-conserved-

genomes.

Gene closeness analysis
To explore the interactions between the annotated genes and the TEs, we use the in-

house script AreTEsonGenes.py available at GitHub at
https://github.com/Tcvalenzuela/Testudine-wide-Transposable-element-exploration-A-

history-of-slow-evolution-and-conserved-genomes. Script XXX compares the genome
annotation file (.gff) from the NCBI against the TE annotation file (TE-gff), which is generated
with align with_divHandeler.py. To explore the interaction between each annotated gene
feature against the TE-gff files, script xxx compares the start and end positions for each
corresponding TE against the start and end positions of the genes. Then it suggests five possible

cases also described in Figure 1, flagging the occurrences accordingly:
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1. TE from inside to Upstream of the gene: the numerical value of the start position of
the TE is lower than the numerical value of the start of the gene feature but the end of
the TE is lower than the end of the Gene.

2. TE from inside to Downstream of the gene: the start of the TE is bigger than the start
of the gene feature, the end of the TE is bigger than the end of the gene feature and the
start of the TE is lower than the end of the gene. In this case, we flag it as.

3. Gene inside TE: That the start of the TE is lower than the start of the gene feature and
the end of the TE is bigger than the end of the gene feature..

4. TE inside gene: That the start of the TE is bigger than the start of the gene feature and
the end of the TE is lower than the end of the gene feature.

5. Gene exactly on TE: That the start and end of both, gene feature and TE, are the same

numbers.
ne Gen
start end
Genefeature - - - - - - - - - - - - - -
TE TE
TE from inside to Upstream of *‘_a“_m_“ _____________
the gene
TE TE
TE from inside to Downstream stat end
ofthegene T T T T T T T T 7 7T 77 T SSEEENNNNNENNN T T T~
TE
. . s‘lraErt end
TEinsideaGene @ = = = = = = = = = - = - ____________
TE TE
. . start end
Geneinside TE = - - - - I - - - -
TE TE
start end
Geneexactyon TE = - = = - - - - - - - - - -

Figure 1. Diagram of the interactions between TEs and gene features showing five different categories of
interaction between TEs and gene features: TE from inside to Upstream of the gene, TE from inside to
Downstream of the gene, TE inside the gene, and TE exactly on the gene.

Mapping the reads of C. Serpentina
To validate the insertion of Helitrons on C. Serpentina. BWA2 (Vasimuddin et al. 2019), was

used with default parameters to map the reads SRR10270344 against the genome
GCA 018859375.1 ASM1885937v1_genomic.fna, both available at the NCBI. Subsequently,
the assemble quality of this region and the positions of Helitrons insertions in relation to genes

and exons were evaluated.
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Results and Discussion
Genome quality
The turtle genomes analysed had a range of 26.04 QV (Chelonoidis Abingdonii) to 50.43 QV
(Trachemys scripta elegans), with an average GC percentage of 44.06%, consistent with
previous findings for this group (Bentley, Carrasco-Valenzuela, Ramos, Pawar, Souza, et al.
2023; Thomson, Spinks, and Shaffer 2021; Z. Wang et al. 2013). Out of the nine genomes
analysed, four were assembled as scaffolds and five as chromosomes level. The quality of
genome assemblies affects transposable element (TE) analysis, with fragmented assemblies
producing a different TE profile than complete assemblies with similar QV (QV as a quality of
genome assembly as Rhie (2020)). For example, the C. serpentina genome is more fragmented
than the C. mydas genome, even though they have similar total sequence lengths and QV. This
is evident in their assembly statistics, with C. serpentina having 55,422 scaffolds with 50% of
the genome length contained in scaffolds equal or longer than 20,808,427bp, while C. mydas
has only 92 total scaffolds, with 50% of the genomes length contained in scaffolds equal or
longer than 134,428,053bp. It is widely recognized that more complete genome assemblies are
necessary for a better detection of complete and active TEs (Peona et al. 2021; Prost et al. 2019).
In particular, long-reads can play an essential role in identifying and assembling repetitive
regions, as they often contain full repetitive element regions, allowing for more robust TE

identification (Peona et al. 2021).
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Transposable elements content
TE profiles in the Testudines studied here correspond to an average of 42.72% of the

genomes. The highest amount of TEs was found in Gopherus evgoodei at 45.33%, and the
lowest was in Chrysemys picta bellii at 39.92% (Table 2). The Testudines clade has a very
stable proportion of the genome with repetitive elements, which is expected given that turtles,
after crocodilians, have the lowest heterozygosity levels among vertebrates (Green et al. 2014;
Avise et al. 1992). As has been highly observed, LINEs are the most abundant TE family on
Testudines (Sotero-Caio et al. 2017; Shaffer et al. 2013; Z. Wang et al. 2013).

Despite consistency in the total level of TEs, turtle families differ in the accumulation
of insertions within the main TE orders and families. We compared the TE profile among the
turtle species studied here and recovered different patterns for each main TE order.

The amount of Retrotransposon elements identified is directly proportional to the contiguity of
the genome, with D. coriacea presenting the highest values while P. sinensis presented the
lowest (Figure 2a). This dependence on genome contiguity was not identified for DNA TEs
(Figure 2b). For example, highly contiguous genomes, like the sea turtles’ ones, are among the
species with the lowest amounts of DNA TEs. The lack of dependence of DNA TE proportions
with the contiguity of the genome could suggest that this TE order is more variable among
turtles, and the proportion of the insertions carry information about the natural biology or
evolution of different turtle families. However, DNA TEs are more infrequent than
Retrotransposon TEs in turtles' genomes, which could also contribute to the lack of a pattern
found. Therefore, the fact that both sea turtles included in this study have a reduced proportion
of class II TEs deserves further investigation. The total proportion of TEs also presents a pattern
dependent on genome quality, showing a decrease in TE elements for genomes with lower
contiguity (Figure 2c), except for the P. sinensis genome. Nevertheless, this turtle has the
highest amount of Unclassified TE (Table 2), which could mean that the a very low contiguity

genome results in a misidentification of TEs in general.
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Interaction between TEs and gene features

TEs x entire Genes
In regards to the way TEs interact with functional regions in the genome, we have

classified them into three main categories: genes that are within TEs, TEs that are inserted in
the border regions of gene features (with upstream and downstream behaving similarly), and
TEs that are inside genes. For turtles, the last category has the most interactions. We have
observed 1,183,543 interactions where TEs are found inside genes, with an average of 45.47%
of genes containing TEs. The average K-value for TEs inside genes is 20.35% of divergence
and does not vary significantly among different turtle families (as shown in Figure 3). This
value is quite similar to the average K-value for all TEs, which is 20.36% of divergence (for
further details, please refer to Supplementary Table 2 for mean K-value and Supplementary

Table 3 for Average K-value on TEs inside genes).
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Figure 3. Kimura distance-based copy divergence analysis of transposable elements among Testudines
families showing the distribution of K-values for each TEs interaction with gene features category.
Turtle species appear in the order shown in the legend.
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For the category of TEs interaction with the borders of genes, we have identified a
similar number of upstream and downstream interactions in all the genomes analysed,
regardless of their independent insertions events, as shown in Table 3. TEs are rarely randomly
distributed in the genome and have the ability to target different sections of the genes (upstream
and downstream) (Bourque et al. 2018). However, we did not recover more insertions in the
upstream region of the gene feature when compared to the downstream regions. This pattern
could suggest that TEs in turtles are not significantly targeting immediately close promoter
regions of genes.

The category of “gene inside TE” varies the most among Testudines families (Figure
3). We observed that this category has the least total number of interactions and shows
significantly lower k-values for C. serpentina’s compared to other turtles included in this
analysis. The turtle superfamily Testudinoidea has a relatively similar average number of K-
value for genes inside TEs. On Cheloniodea, C. mydas present a lower average of k-values for
gene inside TEs than D. coriacea. This is interesting because it has been reported that D.
coriacea presents a higher accumulation of TEs with lower k-values for the Penelope-like
elements and LINEs in general (Carrasco-Valenzuela in prep).This results therefore implies

that the few young TEs present in C. mydas are in average more prone to carry genes inside.

TEs x Exons
We were also interested in TE insertions occurring inside the coding regions of the genes

(TEs x Exons). We recovered similar distributions of K-values across the 4 categories of
interactions between TEs and exons analysed. For the category of TE interacting with
downstream and upstream regions of an exon, we observed a similar pattern observed for TE
interactions with the entire gene described above. The number of interactions although not
exactly the same numbers are remarkably similar. For all the species analysed, the category TE
inside exon is the one with more interactions (Table 3). Mauremys reevesii, presents
substantially more exon-TE interaction than any other turtle. The number of exons in the M.
reevesii annotation is similar to D. coriacea. However, M. reevesii present about 10 times more
TEs interaction inside the exons than D. coriacea. Although presenting more annotated genes,
a great amount of them are considered non-coding genes (see M. reevesii annotation report on
NCBI (GCF_016161935.1)). The increased amount of TEs inside exons for this species could
explain the highest amount of non-coding genes for M. reevesii, and the presence of TEs inside
these non-coding genes could be further investigated. M. reevesii assemble is among the high-

quality genomes for turtles, with a QV of 33.55, a total assembly with 62 scaffolds, and a
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scaffold N50 of 139,244,951 bp, which does not suggest any particular indication of artefactual
mistakes that could lead to these differences. After M. reevesii, sea turtles are the species that
have more insertions of TEs inside exons, with C. mydas presenting almost double the amount
of TEs inside exons compared to D. coriacea. Previous studies report that main differences
between sea turtle genomes rely on multicopy gene families (Bentley, Carrasco-Valenzuela,
Ramos, Pawar, Souza Arantes, et al. 2023). The functions of the genes with exons containing
TEs should be investigated to understand if TE activity is related to those multicopy gene
families in sea turtles.

For the category “exon inside TE”, the average K-value for the TEs in C. serpentina is
significantly lower than all the other species (Figure 4). We identified the presence of TEs from
the family Helitron as the most frequent within this category, indicating that C. serpentina has
significant younger insertions of Helitrons (with an average K-value of 0) within exons when
compared to all the testudines analysed (Figure 5). Looking inside this group, we identified
Helitrons carrying tRNA-Asp. The Helitron insertions in C. serpentina therefore possess
signals of recent insertions while carrying tRNAs. For example, the Helitron on scaffold
JAHGAV010000047.1 of C. serpentina starts at position 9,890,866 and ends at position
9,914,925 (24,059 bp). This insertion has a 4.19% K-value and presents 15 exons from a tRNA-
Asp. The latter exons spam from positions 9,891,242 to 9,911,752 bp (Supplementary Table 3).
Interestingly, we identify another 3 Helitrons from the same family at positions
JAHGAV010000366.1 844,908-847,049;  JAHGAV010000366.1 846,998-848,627
JAHGAV010000366.1 848,660-856,419 (Supplementary Table 3). These Helitrons are also
carrying tRNA exons, nonetheless, they carry only a single exon each. Additionally, their lower
K-value and their proximity, suggest that either the same Helitron was wrongly annotated as
three independent insertions or that there are more recent attempts of transposition of the longest
insertion (carrying 15 exons inside).

We further explored the Helitron found on scaffold JAHGAV010000047 from C. serpentina
and mentioned above (Supplementary Table 4). To validate the insertion, we mapped back the
reads to the reference genome. The average read coverage of mapping was significantly
different than the surrounding regions of the insertion, with a peak of 2,000 mapping reads at
the beginning of the Helitron. Also, we identified a breaking point of the assembly just before
the peak in coverage. This suggests a contraction in the assembly at the beginning of the
Helitron, reducing the quality of the region and bringing uncertainty to the veracity of the
Helitron insertion. This supports the necessity of using high-quality genomes to study TE
dynamics and evolution patterns, since badly assembled regions could mask the real size of the

insertion, or even compromise the detection of the particular recognition domains of TEs.
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in the order shown in the legend.
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In general we found substantially more TE insertions outside exons when compared to
other regulatory or non-coding parts of the gene (introns). This pattern was expected, since TE-
gene relationship results in an alteration in the structure and function of key genes that could be
detrimental to the fitness of the individual. If the alteration is lethal, the individual will cease to
exist, and therefore this transposition will not pass to the next generations (Schrader and
Schmitz 2019; Mackay 1986) being purged from the population in the process of s natural
selection.

Hopefully, future studies will be able to confidently identify families of TEs more
associated with insertion inside genes or exons, advancing further our understanding towards

TE evolution.
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Conclusions

Here we show the most comprehensive comparison of TE content in turtles. Testudines,
in general, have the same proportion of TEs across different turtle superfamilies, with the main
differences lying inside the DNA TE order. Retrotransposon TEs proportions for this group are
highly affected by the quality of the genome assemblies. As mentioned before, the analysis of
TEs relies on the quality of the assemblies, and lack of contiguity and low certainty on base
calls make biological conclusions out of the analysis very difficult to validate. Also, this is to
our understanding the first Class-wide exploration of the relationships between TEs and
genomics features. We reported that TEs transpose equally frequently in upstream and
downstream regions of genes and exons. Nonetheless, to properly assess any biological
meaning of a TE analysis, it is vital to have high-quality genomes. We identified no evidence
of a particular family or order of TE that is more active or significantly younger and is also
interacting with genes. We demonstrated that the TE proportion of the genomes for certain
Orders correlates more with the quality of the genomes rather than any biological relationship

of the species.
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Suppementary Table 2. Average K-value for all the TEs identified for each specie.

Species Average K-value
Pelodiscus sinensis 20.08
Chelydra serpentina 20.08
Chelonia Mydas 20.81
Dermochelys coriacea 19.83
Terrapene carolina triunguis 20.45
Chrysemys picta belii 20.26
Trachemys scripta elegans 20.33
Chelonoidis abingdonii 20.93
Gopherus evgoodei 20.36
Mauremys reevesii 20.43
General average 20.35

Suppementary Table 3. Average K-value for the TEs inside genes for each specie.

Species Average K-value
Pelodiscus sinensis 20.08
Chelydra serpentina 20.10
Chelonia Mydas 20.82
Dermochelys coriacea 19.84
Terrapene carolina triunguis 20.45
Chrysemys picta belii 20.27
Trachemys scripta elegans 20.35
Chelonoidis abingdonii 20.94
Gopherus evgoodei 20.38
Mauremys reevesii 20.45
General average 20.37
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General discussion

The purpose of this thesis was to enhance our understanding of the evolution of
transposable elements (TE) by examining their composition in the Testudines clade, an
underrepresented lineage in genomic studies, investigating particularly the TE distribution and
association with coding regions in these organisms. We aimed to gain insights into the
relationship between transposable elements dynamics and species diversification and
adaptation.

In order to achieve this, we had to generate and analyse the genomes of sea turtles, an
important lineage of Testudines that lacked high-quality genomic data for investigating
transposable elements (Chapter 1). We then investigated the molecular evolution of TEs in sea
turtle species to identify specific changes in the transposable content in a pairwise comparison
(Chapter 2). Finally, we conducted comparisons of the transposable elements proportion of the
genomes in a larger number of Testudines species, including marine representatives, to explore
the evolutionary pattern of transposable elements in a lineage that is distributed in diverse
environments but exhibits relatively slow evolution rate in comparison to other vertebrates.
We also investigated the composition of transposable elements potentially associated with
functional regions of these species' genomes (Chapter 3).

In the following discussion, we present our key findings and the challenges we
encountered during our research, as well as our future prospects for studying the evolution of

transposable elements.

Sea turtle genomes have similar genome structure and TE composition.

The divergence of leatherback and green turtles is ancient and has resulted in species
adapted to different habitats, diets, and lifestyles (Wyneken, Lohmann, and Musick 2013). In
chapter 1 we showed that despite high levels of genome synteny, these two sea turtles have
several regions presenting breaks in the collinearity. Additionally, we demonstrate that on
microchromosomes, these sea turtles showed higher concentrations of multicopy gene families,
as well as heightened nucleotide diversity and genetic distances between the species. Therefore,
in chapter 1 we highlighted the potential importance of these regions as sources of variation
underlying phenotypic differentiation.

Microchromosomes may have a higher adaptation value, as they accumulate variation
and have a higher heterozygosity despite richer gene content. While the mechanisms driving

these patterns are not well-understood, they may be related to higher recombination rates
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(Rodionov 1996). As more chromosomal-level genomes become available, these findings
provide a roadmap for identifying genomic regions involved in divergent evolutionary histories
and the phenotypic connections of the genes within them. Further studies can be done to
evaluate the prevalence of localised genomic differentiation and underlying mechanisms among
other vertebrate groups.

We detected regions longer than 1 Gb with low synteny in the highly syntenic genomes
of sea turtles and defined them as regions of reduced collinearity (RRCs). Our analysis revealed
expansion or contraction of gene families associated with olfactory receptors, immunity, and
zinc finger domains within these RRCs. However, we did not observe any correlation between
the RRCs and differential accumulation of transposable elements or any specific group of
transposable elements with higher concentration in the sea turtles genomes.

Sea turtles possess intricate sensory systems that allow them to detect volatile and water-
soluble odorants crucial for migration, reproduction, and identifying prey, and predators
(Courtney S. Endres and Lohmann 2013; C. S. Endres, Putman, and Lohmann 2009; Manton,
Karr, and Ehrenfeld 1972; Kitayama et al. 2020; Courtney S. Endres et al. 2016). However,
leatherback and green turtles inhabit different ecological niches and rely on distinct sensory
cues. Leatherback turtles typically reside in the pelagic environment after hatching, undertaking
vast horizontal and vertical migrations to locate patches of gelatinous prey (Dodge, Logan, and
Lutcavage 2011). Conversely, green turtles inhabit neritic coastal and estuarine habitats as
juveniles and have variable diets (Seminoff et al. 2021; Arthur, Boyle, and Limpus 2008). Our
study of sea turtle genomes provided insights into the evolution of sensory and immune genes
in these species. The differences in the ecological niches occupied by leatherback and green
turtles have led to contrasting evolutionary paths for their olfactory receptor genes, with a
greater loss of class II OR genes in the ancestral sea turtle lineage and an expansion of class I
OR genes in the green turtle.

The MHC region is highly diverse and plays a vital role in the vertebrate immune
response against pathogens. Greater gene copy numbers and heterozygosity within this region
are associated with lower disease susceptibility (Siddle et al. 2010). While both sea turtle
species have most of the core MHC-related genes, the green turtle has more copies of genes
involved in adaptive and innate immunity. Pathogen prevalence and persistence are generally
higher in neritic habitats than in open ocean habitats, so green turtles may be exposed to a higher
diversity and load of pathogens than leatherback turtles (Escobar et al. 2015). However,
research on reptilian immune systems, especially MHC genes in turtles, is limited.

The green turtle's greater immune gene diversity may reflect exposure to higher

pathogen loads and diversity in neritic habitats. However, the exact relationship between
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immune gene diversity and disease susceptibility or ecological adaptation in sea turtles remains
unclear, and further research is needed to fully understand the role of these genes in the
conservation of these species, particularly in the face of threats such as fibropapillomatosis. The
availability of reference genomes will enable more accurate study of these complex gene
families and advance our understanding of immune gene evolution in sea turtles.

The level of genomic diversity in a species has significant implications for their future
survival and adaptive capacity, particularly in the face of rapid human-induced global change
(Kardos et al. 2021). While high-quality reference genomes are not necessary for estimating
genome-wide diversity, they allow for a more comprehensive examination of diversity patterns
relevant to conservation. The reference genomes produced in this study reveal very low
diversity in the coding regions of leatherback turtle genomes, indicating limited functional
variation and potentially hindering their ability to adapt to new conditions. Leatherback turtles
also exhibit lower heterozygosity compared to green turtles(Dobrynin et al. 2015; Mattila et al.
2012), which may contribute to their lower hatching success and slow population recoveries
(Eckert et al. 2012). However, some species with similarly low diversity have bounced back
after population declines, possibly due to purging of deleterious alleles resulting from long-
term low population sizes (Robinson et al. 2018; Dussex et al. 2021; Kyriazis, Wayne, and
Lohmueller 2021). The reference genomes presented in this study enable further research into
these topics, clarifying the relationships between genomic diversity, genetic load, and
population viability in sea turtle species to inform conservation strategies.

Patterns of diversity, genetic load, and demographic histories were generally consistent
within species, but ROH analyses revealed a striking exception for the green turtle reference
individual from the Mediterranean. This isolated population has suffered severe decline in the
last century due to human exploitation, and our results suggest that consequent inbreeding is
likely occurring, which may impact the population's recovery (Casale et al. 2018). Our study
highlights the importance of understanding genomic diversity and demographic histories for
conservation efforts of endangered species such as leatherback and green turtles. The low
genomic diversity observed in leatherback turtles is likely a result of long-term low effective
population sizes and historical bottleneck events, while higher heterozygosity and larger
historical effective population sizes in green turtles reflect radiation from many refugia and
frequent admixing of populations. This emphasises the significance of standing genetic
variation for a species' future persistence, and the importance of deeper examination of diversity
patterns within coding regions of genomes for conservation purposes. Finally, we provide
insights into the impact of environmental changes on species' abundances and distributions, and

emphasises the importance of using highly contiguous genomes for accurate ROH assessment
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to inform conservation efforts. Overall, these findings will aid in developing better conservation

strategies and help to ensure the long-term survival of these important marine species.

Leatherback turtles have recent expansion of PLE TEs.

This study presents novel findings regarding transposable element (TE) dynamics in sea
turtles, highlighting a recent expansion of Penelope-like elements (PLEs) in the slow-evolving
genome of leatherback turtle. The study involved a comparison of the TE composition of two
sea turtle species - C. mydas and D. coriacea - estimated to have diverged around 58-100 MYA.
In the first chapter, we reported that TEs constitute a similar proportion of the genomes of both
species, reaching 45.79% for D. coriacea and 44.41% for C. mydas, which are significantly
higher than previous estimates (approximately 10% for C. mydas). Nonetheless, the previous
analyses like the one performed on Wang (2013), were based on draft genome versions, whereas
on this thesis was sequenced, assembled and utilised high-quality reference genomes assembled
using long reads, providing more comprehensive and accurate data on the mobilomes in
Chelonioidea.

When comparing the TE content of the genomes of two sea turtle species, C. mydas and
D. coriacea, we found differences in abundance comparing the divergence profiles and the
proportion of the genomes for TE subfamilies as LINEs as PLEs (Figure 1 chapter 2). D.
coriacea's genome contains younger insertions within K-values of 0-2%, mainly LINEs and
PLEs, which are not present in C. mydas. Moreover, PLEs were found to be twice as abundant
as a general proportion in the genome of D. coriacea than in C. mydas (4.70% versus 2.34%)).
This suggests a recent expansion of these elements in the genome of D. coriacea.

To determine whether the higher proportion of PLEs in D. coriacea's genome was due
to expansion in this species or contraction in C. mydas, a comparison was made with 13 other
turtle species from all six superfamilies of testudines. This analysis revealed that D. coriacea
indeed had a higher proportion of the genome consisting of PLEs, indicating that its genome
underwent an expansion of PLE insertions not seen in other analysed testudines. Moreover, D.
coriacea was the only species with more than 2% of the genome composed of very young or
young TEs with K-values between 0-2%, as shown in Figure 2 of chapter 2. C. serpentina
(Kinosternoidea) and C. mccordi (Testudinoidea) had a lower proportion of insertions with K-
values 0-2% than D. coriacea, suggesting that the expansion of PLEs in D. coriacea was
exclusive to this species' lineage. No recent TE expansions of comparable scale were found in

any of the other turtles analysed.
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Expansion of TE families post-speciation has been extensively studied in various
organisms, including Arabidopsis (Slotkin et al. 2009), tobacco (McCormick 2004), Drosophila
(Marcillac, Grosjean, and Ferveur 2005), and fish (Renaut and Bernatchez 2011; Rogers and
Bernatchez 2007), among others. This topic has been reviewed by Serrato-Capuchina and
Matute (2018) and Mérot et al. (2020). However the fact that none other species present an
expansion on TE as shown in figure 2 of chapter 2, indicates that this is an isolated phenomena
happening in D. coriacea. As shown in chapter 1, D. coriacea suffered a recent bottleneck in
their population. As other genetic mutations, the fixation of transposable elements (TEs) in a
population is influenced not only by their fitness effects and generation time but also by
demographic parameters, especially the effective population size (N.). In populations with low
Ne, TEs are more likely to be fixed by genetic drift, which can lead to their invasive fixation in
the genome after genetic bottlenecks (Matzke et al. 2012).

Upon observing the PLE expansion in D. coriacea, we conducted a search for
potentially active PLE copies by focusing on the lowest K-values. From this search, we
identified 7 subfamilies of PLE with significantly lower K-values, and within this group, we
found one with significantly lower K-values than all other subfamilies. To catalogue this
subfamily, we identified it as a member of the Neptune family. PLEs can be divided into
endonuclease positive (EN+) or negative (EN-) groups, and we identified evidence of an EN
with the GIY-YIG endonuclease domain, characteristic of Neptune PLEs, in this particular
subfamily. We also found a reverse transcriptase TERT domain in this subfamily. Further
analysis revealed that this subfamily showed high levels of similarity with Neptune-1 CPB
from Chrysemys picta bellii, with evidence for a separate subfamily in D. coriacea following
the 95-80-98 rule. Therefore, we describe this subfamily as Neptune-1 DC, an active and
recently expanded subfamily of PLEs. By analysing RNA expression data from three different
tissues, we identified actively transcribed copies of Neptune-1 DC, suggesting that this element
may still be active in the genome of D. coriacea.

In the second chapter, we highlight the significance of using high-quality genome
assemblies to improve the accuracy of identifying and characterising transposable elements
(TEs) in species, and to determine their dynamics within different lineages. The results
demonstrate that sea turtle genomes are highly conserved, and sea turtle genomes contain a
significant similar proportion of TEs, with few differences in specific TE family abundance
between species. The discovery of a recent expansion of Penelope-like elements (PLEs) on
leatherback within the highly conserved sea turtle clade provides new insights into the dynamics
of TEs within Testudines. This finding aligns with previous research on the expansion of TE

families in different organisms post-speciation (Slotkin et al. 2009). Overall, this study provides
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an important contribution to the understanding of the mobilomes within Chelonioidea and

advances our knowledge of TE dynamics within different lineages of species.

Influence of the reference genome quality on the probability to detect and identify
TEs

As previously mentioned, D. coriacea has experienced long-term low effective
population sizes and historical bottleneck events, which have been linked to deregulation of TE
activity. In chapter 2, we identified a recent expansion of TEs in this species. Consequently, we
are interested in investigating the interaction between TEs and genomic features in testudines.

We explore the correlation between TE insertion and the genomes of ten different
species of Testudines. The quality of genome assemblies is known to affect transposable
element (TE) analysis, with fragmented assemblies producing different TE profiles than
complete assemblies with similar QV. For instance, the C. serpentina genome is more
fragmented than the C. mydas genome, even though they have similar total sequence lengths
and QV. To better detect complete and active TEs, more complete genome assemblies, made
with long reads are required (Peona et al. 2021; Prost et al. 2019).

Although the total level of TEs is consistent, the accumulation of insertions within the
main TE orders and families varies among turtle families. A comparison of the TE proportion
of the genomes among the turtle species in this study showed different patterns for each main
TE order. The amount of Retrotransposon elements detected is directly proportional to the
quality of the genome, with D. coriacea having the highest values and P. sinensis having the
lowest (Figure 2a chapter 3). However, the proportion of DNA TEs does not show a dependence
on the quality of the genomes (Figure 2b chapter 3). For instance, the genomes generated in this
thesis are among the species with the lowest amounts of DNA TEs. This lack of dependence of
DNA TE proportions on genome quality may suggest that this TE order is more variable among
turtles, and the proportion of the insertions could provide information about the natural biology
or evolution of different turtle families. However, DNA TEs are less frequent than
Retrotransposon TEs in turtle genomes, which may contribute to the absence of a clear pattern.
Hence, the fact that both sea turtles included in this study have a reduced proportion of DNA
TEs requires further investigation. The total proportion of TEs also follows a pattern that
depends on genome quality, showing a decrease in TE elements for genomes with lower quality,
except for P. sinensis genome. Nevertheless, this turtle has the highest amount of Unclassified
TE (Table 2 chapter 3), which may indicate that the lower quality of the genome leads to

misidentification of TEs in general.
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In all genomes studied, there are similar numbers of interactions upstream and
downstream of genes, regardless of independent insertion events (Table 3 chapter 3). We
expected that TEs would play a role in the regulation of gene expression of the turtles, especially
on D. coriacea. However we did not observe a higher number of insertions in the upstream
region of gene features, suggesting that TEs in turtles do not significantly target promoter
regions.

Among the species, Mauremys reevesii has the highest number of exon-TE interactions,
with about 10 times more interactions than D. coriacea, despite having a similar number of
annotated genes. M. reevesii has a higher number of non-coding genes, which could be due to
the increased number of TEs inside exons for this species. The M. reevesii assembly is of high
quality and does not suggest any indication of artifactual error that could lead to these
differences. After M. reevesii, sea turtles have the highest number of TEs inside exons, with C.
mydas having almost double the amount of TEs inside exons compared to D. coriacea. In
chapter 1, we described that the main differences between sea turtle genomes lie in multicopy
gene families, as OR and MHC. Investigating the functions of the genes with exons containing
TEs may help us understand if TE activity is related to these multicopy gene families in sea
turtles.

We observed a significantly higher number of TE insertions in non-coding regions, such
as introns, compared to exons or other regulatory elements. This finding was not surprising, as
the insertion of TEs within genes can disrupt their function and structure, potentially leading to
negative impacts on the fitness of individuals. Consequently, such deleterious insertions are
often purged from populations during the process of species adaptation (Schrader and Schmitz
2019; Mackay 1986). Moving forward, it would be interesting to explore whether certain
families of TEs have a higher propensity for insertion within genes or exons, which could
provide further insights into the evolution of TEs.

Finally, after a Testudine-wide analysis, we identified that the assembly status of the
genomes affects the identification and analysis of transposable elements, and more complete
assemblies are crucial for detecting active TEs. Retrotransposons are more dependent on
genome quality than DNA TEs, which could suggest that the proportion of the insertions of
DNA TEs in turtles' genomes in this analysis carries information about the natural biology or
evolution of different turtle families. There are differences in the accumulation of insertions
within TE orders and families among turtle families but not in the overall proportion of TEs.
Regarding the interaction of TEs with the functional regions on the genome, TEs can affect

gene expression by insertion inside genes, in the borders of gene features, or in regulatory
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regions, leading to significant evolutionary consequences. Overall, the findings presented here

provide a valuable resource for future studies of genome evolution and TE dynamics in turtles.

Prospects and Future Research on Testudines TE evolution.

The reference genomes for both extant sea turtle families, in addition to the insights
reported here, offer an immense opportunity to conduct a wide range of fundamental and
applied research that was previously unattainable. When combined with other upcoming
genomes, comparative genomics analyses can shed light on the genomic basis for long-standing
traits such as adaptation to saltwater, diving capacity, and long-distance natal homing among
many others. By leveraging these reference genomes in conjunction with whole-genome
sequencing of ancient samples, studies can determine the relationship between genomic
erosion, inbreeding, and mutational load with population size, trajectories, and conservation
measures in global populations. Although high-quality reference genomes are not necessary for
all research goals, they are crucial for certain objectives. For example, the use of ROH metrics,
that is increasingly important in species management plans, and researchers should understand
how genome quality may affect their analyses and inferences. The reference genomes can also
be used to develop molecular assays and amplicon panels, investigate temperature sex
determination mechanisms and adaptive capacity under climate change, and assess linkages
between immune genes and disease risk. Moreover, the genomes can anchor existing
anonymous markers and optimise new ones for conservation-focused questions, leading to
large-scale syntheses and equitable capacity building for genomics research. Therefore the
necessity for high quality genomes go far beyond the boundaries of basic sciences and could
have an impact on the conservation of life itself.

Also, here we describe the reduction of the population size of D. coriacea and how this
unleash an expansion of TE on their genome. To later explore if we can catch an intervention
of TEs on the genomic regulation of D. coriacea. Regardless, that more investigation is
necessary to fully comprehend this interaction. This study provides an insight into the
interaction of TE and sea turtles, with particular focus on endangered species within the

Testudine clade.
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Conclusion

As expected in a slow evolving clade the differences in the abundance of TE among
turtles are little,with the exception of very specialised species, such as D. coriacea. This slow
evolving pattern is even more evident compared to the differences observed inside a closely
related clade of avian genomes (Kapusta and Suh 2017).

In conclusion, the comparative study of sea turtle genomes has provided valuable
insights into the genomic diversity of these species, including the identification of key genomic
regions and gene families that are important for phenotypic differentiation, as well as the impact
of environmental changes on their populations. TEs analysis are highly susceptible to the
quality of the genomes. As a response to a reduction in population size we observed an
expansion of TEs on D. coriacea’s genome. We described the interaction between TE and
genomic features as genes and exons, although no significant correlation was found, the clade-
wide analysis showed once again that the quality of the genomes is of high importance in order
to study the TEs abundancy on genomes.

These findings have significant implications for conservation efforts and highlight the
importance of understanding the dynamics of transposable elements within different lineages.
The availability of high-quality genome assemblies and manual curation of TE repeats is crucial
for accurate classification and analysis of TE families. The study's results provide a foundation
for further research into the evolution of genome structure and gene function in turtles and other
vertebrate groups, ultimately contributing to our broader understanding of the mechanisms

underlying evolutionary change and adaptation.
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