
Institut für Mathematik der Universität Potsdam
Lehrstuhl  für Wahrscheinlichkeitstheorie

Point Processes in Statistical Mechanics
A Cluster Expansion

Approach

Dissertation
zur Erlangung des akademischen Grades

"doctor rerum naturalium"
(Dr. rer. nat.)

in der Wissenschaftsdisziplin Wahrscheinlichkeitstheorie

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Dipl.-Math. Benjamin Nehring

Prüfungskommission

Prof. Dr. Sylvie Paycha (U Potsdam) Vorsitzende

Prof. Dr. Sylvie Roelly (U Potsdam) Betreuer- und Gutachterin

Prof. Dr. Wolfgang Freudenberg (TU Cottbus) Gutachter

Prof. Dr. Wolfgang König (TU Berlin) Gutachter

Prof. Dr. Gilles Blanchard (U Potsdam) Kommissionsmitglied

Prof. Dr. David Dereudre (U Lille) Kommissionsmitglied

Prof. Dr. Markus Klein (U Potsdam) Kommissionsmitglied

Prof. Dr. Arkadi Pikovski (U Potsdam) Kommissionsmitglied

Dr. Elke Warmuth (HU Berlin) Kommissionsmitglied

Prof. Dr. Hans Zessin (U Bielefeld) Kommissionsmitglied

Potsdam, den 10ten Juli 2012



This work is licensed under a Creative Commons License: 
Attribution - Noncommercial - Share Alike 3.0 Germany 
To view a copy of this license visit 
http://creativecommons.org/licenses/by-nc-sa/3.0/de/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published online at the 
Institutional Repository of the University of Potsdam: 
URL http://opus.kobv.de/ubp/volltexte/2012/6268/ 
URN urn:nbn:de:kobv:517-opus-62682 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62682 



Summary

A point process is a mechanism, which realizes randomly locally finite point
measures. One of the main results of this thesis is an existence theorem for a
new class of point processes with a so called signed Lévy pseudo measure L,
which is an extension of the class of infinitely divisible point processes. The
construction approach is a combination of the classical point process theory,
as developed by Kerstan, Matthes and Mecke, with the method of cluster
expansions from statistical mechanics. Here he starting point is a family
(Θm)m of signed Radon measures, which defines on the one hand the Lévy
pseudo measure L, and on the other hand locally the point process. The
relation between L and the process is the following: this point process solves
the integral cluster equation determined by L, which we denote by (ΣL).

We show that the results from the classical theory of infinitely divisible
point processes carry over in a natural way to the larger class of point pro-
cesses with a signed Lévy pseudo measure. In this way we obtain e.g. a
criterium for simplicity and a characterization through the cluster equation
(ΣL), interpreted as an integration by parts formula, for such point processes.

Our main result in chapter 3 is a representation theorem for the factorial
moment measures of the above point processes. With its help we will identify
the permanental respective determinantal point processes, which belong to
the classes of Boson respective Fermion processes. As a by-product we obtain
a representation of the (reduced) Palm kernels of infinitely divisible point
processes.

In chapter 4 we see how the existence theorem enables us to construct
(infinitely extended) Gibbs, quantum-Bose and polymer processes. The so
called polymer processes, point processes in the space of finite connected
subsets of Zd, seem to be constructed here for the first time.

In the last part of this thesis we prove that the family of cluster equations
(ΣL)L has certain stability properties with respect to the transformation of
its solutions. At first this will be used to show how large the class of solutions
of such equations is, and secondly to establish the cluster theorem of Kerstan,
Matthes and Mecke in our setting. With its help we are able to enlarge the
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class of Pôlya processes to the so called branching Pôlya processes.
The last sections of this work are about thinning and splitting of point

processes. One main result is that the classes of Boson and Fermion processes
remain closed under thinning. We use the results on thinning to identify a
subclass of point processes with a signed Lévy pseudo measure as doubly
stochastic Poisson processes. We also pose the following question: Assume
you observe a realization of a thinned point process. What is the distribution
of deleted points? Surprisingly, the Papangelou kernel of the thinning, be-
sides a constant factor, is given by the intensity measure of this conditional
probability, called splitting kernel.



Zusammenfassung

Ein Punktprozess ist ein Mechanismus, der zufällig ein lokalendliches Punkt-
maß realisiert. Ein Hauptresultat dieser Arbeit ist ein Existenzsatz für eine
sehr große Klasse von Punktprozessen mit einem signierten Lévy Pseudo-
maß L. Diese Klasse ist eine Erweiterung der Klasse der unendlich teilba-
ren Punktprozesse. Die verwendete Methode der Konstruktion ist eine Ver-
bindung der klassischen Punktprozesstheorie, wie sie von Kerstan, Matthes
und Mecke ursprünglich entwickelt wurde, mit der sogenannten Methode der
Cluster-Entwicklungen aus der statistischen Mechanik. Ausgangspunkt ist ei-
ne Familie (Θm)m von signierten Radonmaßen. Diese definiert einerseits das
Lévysche Pseudomaß L; andererseits wird mit deren Hilfe der Prozeß lokal
definiert. Der Zusammenhang zwischen L und dem Prozeß ist so, daß der
Prozeß die durch L bestimmte Integralgleichung (genannt Clustergleichung
und notiert ΣL) löst.

Wir zeigen, dass sich die Resultate aus der klassischen Theorie der un-
endlich teilbaren Punktprozesse auf natürliche Weise auf die neue Klasse der
Punktprozesse mit signiertem Lévy Pseudomaß erweitern lassen. So erhalten
wir z.B. ein Kriterium für die Einfachheit und eine Charackterisierung durch
ΣL für jene Punktprozesse.

Unser erstes Hauptresultat in Kapitel 3 zur Analyse der konstruierten
Prozesse ist ein Darstellungssatz der faktoriellen Momentenmaße. Mit dessen
Hilfe werden wir die permanentischen respektive determinantischen Punkt-
prozesse, die in die Klasse der Bosonen respektive Fermionen Prozesse fallen,
identifizieren. Als ein Nebenresultat erhalten wir eine Darstellung der (redu-
zierten) Palm Kerne von unendlich teilbaren Punktprozessen.

Im Kapitel 4 konstruieren wir mit Hilfe unseres Existenzsatzes unend-
lich ausgedehnte Gibbsche Prozesse sowie Quanten-Bose und Polymer Pro-
zesse. Diese letzte Klasse enthält Punktprozesse auf dem Raum der zusam-
menhängenden endlichen Teilmengen des Zd. Unseres Wissens sind sie bisher
nicht konstruiert worden.

Im letzten Teil der Arbeit zeigen wir, dass die Familie der Integralglei-
chungen (ΣL)L gewisse Stabilitätseigenschaften gegenüber gewissen Trans-
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formationen ihrer Lösungen aufweist. Dies wird erstens verwendet, um zu
verdeutlichen, wie groß die Klasse Punktprozeßlösungen einer solchen Glei-
chung ist. Zweitens wird damit der Ausschauerungssatz von Kerstan, Matt-
hes und Mecke in unserer allgemeineren Situation gezeigt. Mit seiner Hilfe
können wir die Klasse der Pôlyaschen Prozesse auf die der von uns genann-
ten Pôlya Verzweigungsprozesse vergrößern. Der letzte Abschnitt der Arbeit
beschäftigt sich mit dem Ausdünnen und dem Splitten von Punktprozes-
sen. Wir beweisen, dass die Klassen der Bosonen und Fermionen Prozesse
abgeschlossen unter Ausdünnung ist. Die Ergebnisse über das Ausdünnen
verwenden wir, um eine Teilklasse der Punktprozesse mit signiertem Lévy
Pseudomaß als doppelt stochastische Poissonsche Prozesse zu identifizieren.
Wir stellen uns auch die Frage: Angenommen wir beobachten eine Realisie-
rung einer Ausdünnung eines Punktprozesses. Wie sieht die Verteilung der
gelöschten Punktkonfiguration aus? Diese bedingte Verteilung nennen wir
splitting Kern, und ein überraschendes Resultat ist, dass der Papangelou-
Kern der Ausdünnung, abgesehen von einem konstanten Faktor, gegeben ist
durch das Intensitätsmaß des splitting Kernes.



Acknowledgement

I would like to express my gratitude to professor Hans Zessin for introducing
me to the topic of point processes and his invaluable support over the last
years. Furthermore, I would like to thank professor Sylvie Roelly for her kind
supervision. In addition, I would like to thank the professors in the committee
for undertaking this task. Moreover, I am indepted to the probability group
at U Potsdam and the IRTG Stochastic Models of Complex Processes for a
friendly working atmosphere. I am grateful for finanical support of the DFG
and the Berlin Mathematical School. In particular, I thank the Einstein
visiting fellow Wendelin Werner, who enabled the funding for the last period
of my work through the Einstein Foundation Berlin.

7



8



Contents

1 Introduction 15

1.1 The Cluster Expansion Method (CEM ) . . . . . . . . . . . . . 15

1.2 Summary of the Results of this Thesis . . . . . . . . . . . . . 22

2 Basic Concepts and Key Tools 27

2.1 Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The Campbell Measure . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Infinitely Divisible Processes . . . . . . . . . . . . . . . . . . . 31

2.4 Cluster Processes and Thinning . . . . . . . . . . . . . . . . . 33

2.5 Papangelou Processes . . . . . . . . . . . . . . . . . . . . . . . 34
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Chapter 1

Introduction

1.1 The Cluster Expansion Method (CEM )

The cluster expansion method (CEM for short) is one of the main mathe-
matical methods to study the structure of the collection of Gibbs processes
(or states) and to analyze the properties of these processes. This includes
also their construction. The development of these topics will be our main
task in the sequel; and also to apply the method to several examples of clas-
sical and quantum statistical mechanics. We develop the cluster expansion
method within the theory of random measures and point processes as it had
been worked out by the Jena school of probability (i.e. Matthes, Kerstan,
Mecke and Fichtner) in the sixties.

Historical Remarks

We make these remarks by quoting three relevant sources and begin with
Glimm and Jaffe [22].

¶ There are regimes in statistical physics where the observable quantities
admit power series expansions. These expansions, in a suitable parameter
range, converge uniformly in the volume, and allow a mathematical definition
of all thermodynamic quantities in the infinite volume limit. Thus these
expansions are a very powerful tool. They are generally known as cluster
expansions.

The cluster expansions originated in the work of Mayer and Montroll
[42, 32, 26], and they have been generalized to apply to a great number of sit-
uations. Although these various expansions employ fundamentally the same
set of ideas, they have generally contained a proliferation of special and ad
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16 CHAPTER 1. INTRODUCTION

hoc features, so that the theory had to be developed separately in each case.
More recently, it has been realized that the notion of polymers unified these
various expansions. (. . . )

They have been applied to a variety of questions, including their origi-
nal use to establish convergence of the infinite volume limit, structure of the
phase diagram, and exponential decay of correlations, in problems of statis-
tical mechanics of particles and statistical mechanics of classical fields
(i.e. Euclidean quantum field theory).

We also cite some comments to the historical development of the method
from the Saint-Flour lectures of Dobrushin which can be found in [14].

¶ The cluster expansion method found also important applications in the
quantum field theory which, in its so-called Euclidean variant, leads to the
theory of distribution-valued Markov fields with continuous argument. (. . . )
Sometimes it seems that the specialists in probabilistic mathematical physics
pronounce the words ”Now the cluster expansion can be applied” as some kind
of magic incarnation. They mean that now we can be sure that all plausible
facts can be rigorously proved. (. . . )

The literature on the method of cluster expansion and its application is
enormous - see the books and review papers [22, 40, 67, 9, 65, 41] and refer-
ences therein. The history of the method traces back to the deeps of theoretical
physics. The introduction of cluster expansions as a way of rigorous math-
ematical investigation is due to Glimm, Jaffe and Spencer [24]. Often the
cluster expansion method is treated as a class of ideas and approaches which
have to be additionally specialized and modified for application to any con-
crete situation. But there is also a tendency to find a unified approach. An
essential contribution to it was made by Gruber and Kunz [25] who introduced
the so-called polymer model. (. . . )

Even a more general and so more convenient model was introduced by
Kotecký and Preiss [33].

We quote finally from the recent paper of Poghosyan and Ueltschi [58]:

¶ The method of cluster expansions was introduced in the 1930s in sta-
tistical mechanics in oder to study gases of classical interacting systems. Its
main achievement, from the point of view of physics, may be the derivation
of the van der Waals equation of state for weakly interacting systems. The
method was made rigorous by mathematical physicists in the 1960s, [63] and
references therein.

The method splits afterwards. One branch involves continuous systems,
with applications to classical systems ([55, 47, 10]), quantum systems [19,
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20, 59], or quantum field theory [23, 41, 10, 11]. The other branch involves
polymer systems, i.e. discrete systems with additional internal structure
[25, 13, 2, 48, 68, 15, 27]. An important step forward was the article of
Kotecky and Preiss with its simplified setting and its elegant condition for
the convergence of the cluster expansion [33].

The methods for proving the convergence are diverse. Let us mention
the study of Kirkwood-Salzburg equations that involve correlation functions
(see[63]) and references therein, the algebraic approach of Ruelle [63], com-
binatorial approaches using tree identities [55, 10, 4, 11] and inductions for
discrete systems [13, 2, 48].

Important and useful surveys were written by Brydges [9], Pfister [56],
and Abdessalam and Rivasseau [1].

Thus historically the first to start an axiomatization of the cluster ex-
pansion method were Gruber and Kunz [25], and then Glimm and Jaffe [21].
The first systematic mathematical exposition of the CEM can be found in
the monography of Malyshev and Minlos [40]. As such it is of fundamental
importance. Nevertheless, it seems that all authors didn’t arrive at a final
formulation of this method which is wide enough to describe at the same time
discrete as well as continuous classical and quantum systems. For instance
the important case of random measures or point processes is indicated only
shortly in [40] as an aside. In the latter case the method had been developed
mainly by Poghosyan, starting with his thesis [57] with further developments
afterwards as cited in [58].

The next essential step was made recently by Poghosyan and Ueltschi [58]
who formulated a general setting for the CEM. Furthermore, Poghosyan and
Ueltschi found sufficient criteria for its convergence, which where already for-
shaddowed in the thesis of Kuna [36]. Kuna, in his thesis from 1999, followed
the method of cluster expansions to study models of classical and quantum
statistical mechanics. He worked within the classical frame of Kirkwood-
Salzburg equations as designed already by Ruelle [63, 64], but started to
combine it with the approach of Nguyen and Zessin [53], which is presented
more precisely under (α) in the next section, instead of using the approach of
Dobrushin Lanford and Ruelle in terms of conditional expectations (DLR ap-
proach). (The same idea has been indicated already by Kutoviy and Rebenko
in [37] but without giving detailed mathematical arguments.)

Our aim will be to do some further steps in direction of a general math-
ematical method of cluster expansions. Valuable elements in this direction
(as well as references concerning the mathematical origins of these ideas)
were given already in the book of Daley and Vere-Jones [12]. There the au-
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thors also start from the combinatorial device (see lemma 5.2.VI. in [12] resp.
lemma 3.1.2 below) which relates local cumulants and Schur measures. Here
we proceed a bit further and add general conditions for the convergence of
these local characteristics. The formulation of these conditions is inspired by
the old work of Mecke [44].

Cluster Representations

The CEM consists of two parts: First one has to give a description of the
process locally in space, e.g. its local description in terms of a local law, ex-
pectations of local observables etc., which are explicitly represented in terms
of certain cluster measures. Then, in a second step, one has to formulate
conditions under which these local characteristics converge in the thermody-
namic limit.

Our point of view differs from the traditional one in the following re-
spects. For us a cluster is a finite positive measure on some basic phase
space. Examples of clusters are finite point configurations in a Euclidean
space, finite measures on X or their supports etc.. We shall therefore work
within the frame of random measure and point process theory which seems
to be a natural general setting for the CEM.

The main new features for us are:

(α) We consider abstract Gibbs processes P (which are the main objects
to study) not in the sense of Dobrushin, Lanford, Ruelle, where they are
specified locally, by means of a given potential, by the Gibbs distribution
given the outside environment, but as a Papangelou process specified by the
kernel π(µ, dx) = exp(−βE(x, µ)) %(dx) we call Boltzmann kernel. Here
E(x, µ) is the conditional energy of the particle in x, given the environment
µ, defined in terms of some potential. % is some reference measure on the
basic state space X.

That P is such a Papangelou process means that it is a solution of an
integration by parts formula, called (Σ′π) and to be found in section 2.5,
determined by the kernel π. This point of view is equivalent to the DLR
approach in case of the Boltzmann kernel π by a theorem of Nguyen, Zessin
[53]. We point out that the class of Papangelou processes is much larger than
the class of Gibbs states, containing also quantum mechanical processes like
the Bose and Fermi gas. And for this reason we choose this point of view.

(β) Accordingly we shall give a formulation of the CEM in a more general
and abstract form than one can find usually in the literature. It is formulated
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in terms of Radon measures rather than functions (correlation and cluster
functions etc.).

We start the desciption of our version of the CEM : We are interested in
two families {%k}∞k=1 and {Θm}∞m=1 of signed Radon measures, which are in
duality with respect to one another in the sense that

%k(⊗kj=1 fj) =
∑
σ∈Sk

∏
ω∈σ

Θ`(ω)(⊗j∈ωfj), f1, . . . , fk ∈ Fbc,+(X), (1.1)

where Sk is the symmetric group, the product is taken over the cycles ω ∈
σ in the permutation σ and `(ω) denotes the length of the cycle ω. For
the measures %k, k ≥ 1, we choose the name Schur measures, whereas the
Θm,m ≥ 1, are called the cumulant measures. We also call (1.1) a cluster
representation of {%k}∞k=1 in terms of {Θm}∞m=1. An equivalent dual cluster
representation of the cumulant measures {Θm}∞m=1 in terms of the Schur
measures {%k}∞k=1 is

Θm(⊗mj=1 fj) =
1

(m− 1)!

∑
J∈π({1,...,m})

(−1)|J |−1(|J | − 1)!
∏
J∈J

%|J |(⊗j∈Jfj).

(1.2)
Here π({1, . . . ,m}) denotes the set of partitions of {1, . . . ,m}.

Remark 1.1.1. In several cases the terminology used here is not fixed in the
literature. For example, our notion of a cumulant measure, which is used by
[12], appears also as a semi-invariant in [40] or as Ursell function [67] or
even cluster function [73]. Moreover our notion of Schur measure is new and
not used in the literature. We propose it here because it is intimately related to
the notions of generalized cycle index respectively generalized Schur function
(cf. [45]) in representation theory. Another possibility for this notion is to
call it immanantal measure because in some special situations (see [51]) it is
a measure having a density given by an immanant.

The Cluster Structure

The cluster structure is also defined in terms of the cumulant measures.
Suppose that we are given signed and (without restricting the generality)
symmetric Radon measures Θm on Xm.

Define then the signed cluster pseudo measure on the space M··
f (X) of

cluster configurations by

L(ϕ) =
∑
m≥1

∫
Xm

ϕ(δx1 + · · ·+ δxm−1 + δx) Θm(dx dx1 . . . dxm−1),
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where ϕ lies in some appropriate test function space such that L(ϕ) is well
defined. The signed cluster pseudo measure produces the clusters of the
process we are going to construct. This justifies its name.

In the sequel we will assume that L satisfies a certain integrability con-
dition in order to guarantee the convergence of the method.

The Cluster Expansion of the Local Process

Starting with representation (1.1) of the Schur measures we next define locally
the point process belonging to these Schurr measures by means of the method
of cluster expansion.

Suppose we are given the cluster measures Θm. Define the Schur measures
%k by means of the corresponding cluster representation (1.1) and make the
assumption that they all are positive, i.e.

(℘) %k ≥ 0 , k ≥ 1.

Then define for any bounded Borel set Λ in X the finite point process

QΛ(ϕ) =
1

Ξ(Λ)
·
∑
k≥0

1

k!
·
∫

Λk
ϕ(δx1 + · · ·+ δxk) %k(dx1 . . . dxk), (1.3)

where ϕ ∈ F+(M··
f (X)) and Ξ(Λ) is the normalizing constant, i.e. the par-

tition function in the context of statistical mechanics. That this constant is
finite and strictly positive follows for instance from the integrability assump-
tion that the variation |L| of the signed cluster pseudo measure L is of first
order, i.e. its first moment measure is locally finite. This will be formulated
precisely and assumed later. The process QΛ defined locally in Λ is often a
Papangelou process, or even a local Gibbs process, but not always.

Following the terminology of [40, 58] we call the representation (1.3) of
the local processes QΛ its cluster expansion in terms of the Schur measures
{%k}∞k=1 resp. cumulant measures {Θm}∞m=1 .

The Cluster Equation of the Infinitely Extended Process

Under the assumption that |L|, the variation of the signed cluster pseudo
measure, is of first order we can then construct the limiting process P . In our
approach this corresponds to the convergence step of the CEM. If the local
process QΛ is Papangelou or even Gibbs then the question arises whether the
limiting process has the same property. We are able to answer this question
in several cases.
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The connection between L and P is expressed by the fact that P is the
unique solution of an equation having the following structure:

(ΣL) CP = CL ? P.

Here ? denotes some version of the convolution operation (see (2.5) for a
precise definition). This shows that the Campbell measure of the signed
cluster pseudo measure L is a divisor of the Campbell measure of P with
respect to the convolution operation ?. And this reflects the essential nature
of the cluster expansion method of P ; for this reason we call equation (ΣL)
the cluster equation of P for L. P is called the random KMM process with
signed cluster pseudo measure L or more shorter KMM process for L and is
denoted by =L.

As we saw in the beginning, for the above construction one can even start
with a family %k, k ≥ 1, of positive Radon measures, and then define the
cumulant measures Θm,m ≥ 1, by means of the dual cluster representation
(1.2). Applying the above cluster expansion method then leads to some
limiting process, solution of the cluster equation (ΣL).

To summarize: The cluster expansion method (CEM) consists in defin-
ing first the signed cluster pseudo measure L by means of the given data
{Θm}∞m=1 respectively {%k}∞k=1; and next, to construct with their help locally
the process. (This construction reflects the cluster structure.) The limit-
ing process is obtained, under the condition that |L| is of first order, as the
unique solution of the cluster equation belonging to L.

In the classical case of positive measures Θm,m ≥ 1, there is a direct and
transparent construction. Here the signed cluster pseudo measure L is an
ordinary positive measure on M··

f (X).
Suppose that L is of first order. Then one can consider the Poisson process

PL in the (Polish) phase space of clustersM··
f (X) with intensity measure L.

This process is well defined and realizes configurations of clusters of the form

ν = δx1 + δx2 + . . . , xj ∈M··
f (X).

The point process P , we are interested in, is a process in X given by the
image of PL under the dissolution mapping

ξ : ν = δx1 + δx2 + . . . 7−→ x1 + x2 + . . . .

It is the unique solution of equation (ΣL); moreover, P is infinitely divisible;
and conversely, any solution of the cluster equation (ΣL) is infinitely divisible.
Here L is called the Lévy measure of P . In particular this construction gives
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the same process P which one obtains by using the new CEM -construction
above. All this can be found in [31], see also [52].

It is now however possible that (ΣL) has a unique solution P = =L even
in case of a non-trivial L−. In this case the process is no longer infinitely
divisible.

We observe that the classical construction cannot be used if the signed
cluster pseudo measure L has a non-trivial negative part L− because there
is no Poisson process with a signed intensity measure. Thus we see, that we
need another method in case of signed L. The analysis of this signed case
can be considered as the main topic of this thesis.

Here one can see the fundamental importance of the CEM : As Dobrushin
mentioned, it is a magic incarnation of an instrument which enables the
solution of problems in situations where classical methods do not function.

1.2 Mathematical Foundations

and Summary of the Results

In this thesis we use the CEM to construct processes either of Bosonic resp.
Fermionic type. Specification of the measures Θm respectively %k then leads
to permanental, determinantal processes, classical or quantum Gibbs or Poly-
mer processes.

One remark is in order here. The use of the terms Boson or Fermion
in the literature is vague. We do not clarify here the use of the names
Bose resp. Fermi gas or process. It appears today in the literature in an
unspecified manner. It would be very useful to have a clear picture of these
notions. For us these processes are examples of KMM processes. We take
here the following pragmatic point of view: If in the applications below the
cumulant measures depend on the parameter ε ∈ {−1,+1}, say Θm(ε), then
the process belonging to case ε = −1 is called Fermion process and otherwise
Boson process.

The mathematical foundations of the CEM are taken mainly from Mecke’s
book [44]. This is an early document of the achievements of the Jena school
of probability theory in the sixties. Other relevant sources of the theory ap-
peared later in the monographies of Matthes, Kerstan and Mecke [31] and
Kallenberg [28]. Another early unpublished document are the Sorbonne lec-
tures of Krickeberg from 1975/76 which will appear in [35].

In chapter 2 we present the classical results of the theory of random
measures and point processes as one can find them in [44].
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The construction of the random KMM process =L for a given signed
cluster pseudo measure L by means of the CEM is presented in theorem
3.1.3, chapter 3. =L is characterized by the fact that its Laplace transform
is given by the modified Laplace functional (mlf)

KL(f) = exp(−L(1− e−ζf )) , f ∈ Fbc,+(X); (1.4)

and, under more restrictive assumptions on L, as a solution of the cluster
equation (ΣL) in theorem 3.3.1. As an important consequence of this result
we see that the local process QΛ converges to =L not only weakly as Λ ↑ X
but even in the sense of the Campbell measures, i.e. CQΛ

−→ C=. This will
be used in section 5.2 for the construction of classical Gibbs processes.

In chapter 4 we start to apply the CEM for the construction of special
point processes which are relevant for statistical mechanics. In section 4.2
we present Pólya sum and difference processes. These processes have their
origin in the work [75, 50, 51]. As has been shown by Bach and Zessin [2] the
sum process corresponds to the quantum mechanical Bose-Einstein statistical
operator whereas the difference process is related to the statistical operator
of Fermi-Dirac. We shall not discuss here the connections to such functional
analytic descriptions of these systems.

The cumulant measures of the Pólya pocesses are given by

Θn,ε(
n
⊗
j=1
fj) = εn−1znλ(

n∏
j=1

fj),

where z ∈ (0, 1) and λ ∈M(X) is some locally finite reference measure on X.
It is surprising that these point processes, which seem to be as fundamental
as the well known Poisson process, have not been considered before within
the point process community.

Our next applications in section 4.5 are the construction of permanental
and determinantal processes. These processes also arise in physics in connec-
tion with Fermions and eigenvalues of random matrices, or in combinatorics
in connection with non-intersecting paths and random spanning trees.

Historically the first who studied determinantal processes was Macchi.
She was able to construct quantum mechanical Fermions on a rigorous math-
ematical level in 1972. (See [38], and for the english translation [39].) The
subtitle of this seminal work is Contribution à l’étude théorique des proces-
sus ponctuels. Applications à l’Optique Statistique et aux Communications
Optiques.
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Roughly speaking a determinantal process is determined by a kernel
K(x, y), called correlation kernel, in such a way that the correlation func-
tions, as introduced in section 2.2 definition 2.1.3, of the process are given
by det(K(xi, xj)). Their cumulant measures are

Θn,ε(dx1 . . . dxn)

= εn−1 k(x1, x2)k(x2, x3) . . . k(xn−1, xn)k(xn, x1)λ(dx1) . . . λ(dxn), (1.5)

where k is the so called interaction kernel and λ is some reference measure on
X. The precise relation between interaction and correlation kernel is given
in theorem 4.5.1.

These processes appear as invariant measures of a model of interact-
ing Brownian particles, the so called Dyson model, in the work of Spohn
[70, 71]. Here the correlation kernel K is the sine-kernel. Unfortunately the
sine-kernel does not satisfy the assumptions of our existence theorem 4.5.1.
Soshnikov [69] constructed these processes in full generality and presented
many examples. A weak point in our construction of permanental and de-
terminantal processes is that if we let the interaction kernel be translation
invariant k(x, y) = ψ(x − y) then the conditions of theorem 4.5.1 require
ψ ∈ L1(X,λ). But there are some interesting examples like the sine kernel,
which are in L2(X,λ) but not in L1(X,λ).

Shortly after Shirai and Takahashi [66] gave constructions of these pro-
cesses including Bosons. Finally in the work of Borodin and Olshansky (see
[7] and the literature cited there) there appear many very special determi-
nantal processes in the representation of the infinite symmetric group.

Our construction method, the CEM, differs from the approaches of Sosh-
nikov and Shirai/Takahashi mentioned above. Instead using Kolmogoroff’s
extension theorem we use our abstract version of the CEM and no functional
analytic methods as needed in [66, 69]. Also our main examples are coming
from other sources.

On the other hand the work of Macchi [38] and Fichtner [16] was im-
portant for the development of our reasoning here. In the latter it is shown
that the so called position distribution of the ideal Bose gas is an infinitely
divisible point process in Rd. This example appears in section 4.5 as the
ideal Bose gas where X = Rd, ε = +1 and the interaction kernel is given by
a scaled Gaussian density where z ∈ (0, 1) and β > 0 are some parameters:

gz(x− y) =
z

(2πβ)d/2
exp

(
−‖x− y‖

2

2β

)
, x, y ∈ Rd.

The ideal Fermi gas of Macchi is obtained if X = R, ε = −1 and the correla-



1.2. SUMMARY OF THE RESULTS OF THIS THESIS 25

tion kernel is defined by

χ(x− y) = γ exp(−|x− y|
α

), x, y ∈ R,

where α, γ > 0 are chosen such that 4αγ < 1.
Note that in both cases also the process for the opposite sign of ε in (1.5)

exists.

In chapter 5 we’ll construct by means of our methods first of all Gibbs
processes for classical systems, i.e. point processes in X = Rd with the
Lebesgue measure λ, interacting by means of some given nice pair potential.
As mentioned already above, this is done within the framework of Papan-
gelou processes and does not use the DLR approach. The construction of
these processes has a long history starting with the work of Ruelle as it is
documented in [63, 64] and Minlos [46]. An axiomatic approach to the the-
ory of Gibbs states including their existence can by found in the unpublished
seminal work of Preston [60]. The Ruelle approach by solving the Kirkwood-
Salzburg equations can be found later again in Kuna [36], the literature cited
there, and in [37].

For the CEM the classical Gibbs process is specified in terms of the so
called Ursell functions u by means of the cumulant measures

Θn(dx1 . . . dxn) =
1

(n− 1)!
u(x1, . . . , xn)λn(dx1 . . . dxn). (1.6)

The approach of Poghosyan and Ueltschi allows directly to use our construc-
tion. But to show that the corresponding limiting KMM process is a Gibbs
process is difficult. A similar result can be found already in [36], but derived
by DLR methods.

The approach of Poghosyan and Ueltschi allows also to construct so called
polymer systems; and surprisingly, even the construction of a quantum Bose
gas. Here the underlying phase space X is a path space of Brownian loops
with reference measure λ given by a (non-normalized) Brownian loop mea-
sure. The cumulant measures have the same structure as in (1.6), but now
understood with the measure λ, on the path space of loops and the Ursell
function u defined for these loops. The resulting limiting KMM process can
be considered as a discrete version of the interacting Bose gas which appears
in the classical work of Ginibre [20]. Unfortunately we are not able to treat
the analogous interacting Fermi gas, nor Ginibre’s versions of quantum gases.
This important open problem remains to be done.

In the last chapter 6 we are interested in the problem how random KMM
processes behave under the transformations of cluster dissolution and of clus-
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tering, in particular under the operations thinning and splitting. These meth-
ods are coming from quantum optics and have been introduced into point
process theory by Fichtner and Freudenberg. (See [16, 17])

The thinning operation is intimately related to the Pólya difference pro-
cess; to be more precise, in (6.11) we see that thinning of a point process
is in fact a doubly stochastic Pólya difference process. Theorem 6.3.4 is a
representation of a thinned KMM process in terms of loop measures. The
considered examples are Pólya, permanental and determinantal processes.

Next splitting laws are computed for Pólya and Poisson processes. In
theorem 6.3.7 the Papangelou kernel of the thinned process is related to the
intensity of its splitting kernel.

Finally, a large class of KMM processes is identified as Cox, i.e. doubly
stochstic Poisson processes. The Pólya sum process is an example. As a
consequence we obtain the surprising result that Pólya difference processes
cannot be Cox.



Chapter 2

Point Processes
Basic Concepts and Key Tools

In this introductory chapter we shall present the main concepts and the clas-
sical results of the theory of random measures and point processes which we’ll
use in the sequel. They are mainly taken from the work of Mecke [44]. The-
orem 2.3.2 gives the existence of point processes P for a large class of (non-
negative) Lévy measures L having as Laplace transform KL or solving the
cluster equation (ΣL). Another result, presented in theorem 2.3.3, which is
often used, is Mecke’s version of Lévy’s continuity theorem.

The point of departure of the main topic of this thesis is the problem as it
is formulated in the monography of Matthes, Kerstan and Mecke [31]: Given
a finite signed measure K on M··(X) with K+(M··(X)) = K−(M··(X)),
does there exists a point process P being the exponents of K, i.e. P =
exp(K)? Or equivalently, does there exist a finite signed measure L on
M··(X) with L({0}) = 0 such that LP = KL? We shall pose this question in
a more general form.

After presenting the concepts of cluster point processes and the notion of
Campbell measure (also versions of higher orders) we develop the notion of
a Papangelou process, which will be of fundamental importance for us in the
sequel. We present in lemma 2.5.3 Zessin’s [75] existence result for finite
Papangelou processes.

2.1 Point Processes

Let X be a complete separable metric space. Such a space is called Polish.
By B(X) we will denote the σ-field of its Borel sets. Of great importance is
also the ring B0(X) of relatively compact sets of X. B0(X) will sometimes

27
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also be denoted by the collection of bounded Borel sets. The triple

(X,B(X),B0(X))

will be called phase space. In a second step we now introduce measures on
the phase space

(i) The space of locally finite measures

M(X) = {µ measure : µ(B) <∞ for B ∈ B0(X)} ,

(ii) The space of locally finite, diffuse measures

M◦(X) = {µ ∈M(X) : µ({x}) = 0 for all x ∈ X} ,

(iii) The space of locally finite, counting measures

M··(X) = {µ ∈M(X) : µ(B) ∈ N for B ∈ B0(X)} ,

(iv) The space of locally finite, simple counting measures

M·(X) = {µ ∈M··(X) : µ({x}) ∈ {0, 1} for x ∈ X} ,

(v) The space of finite counting measures

M··
f (X) = {µ ∈M··(X) : µ(X) <∞} .

Let us denote byK+(X) the space of continuous functions onX with compact
support and consider the following function for f ∈ K+(X)

ζf :

{
M(X)→ R+

µ 7→ µ(f).

We now introduce a topology onM(X) by requiring that we take the coarsest
topology which makes all ζf , f ∈ K+(X) continuous. This topology will be
called the vague topology. It can be found in [31] proposition 3.2.1. that
M(X) equipped with the vague topology is Polish. Furthermore lemma
3.2.4. in [31] says that M··(X) is vaguely closed in M(X) and thus Polish.
So we can now introduce phase spaces on the level of measures

(M(X),B(M(X)),B0(M(X))) and (M··(X),B(M··(X)),B0(M··(X))) .

We remark that the Borel σ-fields B(M(X)) and B(M··(X)) coincide with
the smallest σ- fields making the ζB = ζ1B for B ∈ B0(X) measurable on
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the respective spacesM(X) andM··(X). So in particular if we let Fbc,+(X)
be the space of bounded non negative functions with compact support in
X then all ζf , f ∈ Fbc,+(X), are measurable with respect to B(M(X)) and
B(M··(X)).

Now a random measure is a probability measure on (M(X),B(M(X))) and
a point process is a probability measure on (M··(X),B(M··(X))). Certainly
a point process P is a random measure such that P (M··(X)) = 1. The
Laplace transform of a random measure P is given by

LP (f) =

∫
M(X)

e−ζf (µ) P (dµ) for f ∈ Fbc,+(X).

A random measure is characterized by its Laplace transform: We recall the
classical result from [44] proposition 3.

Proposition 2.1.1. Let P1 and P2 be two random measures such that

LP1(f) = LP2(f) for f ∈ Fbc,+(X).

Then P1 = P2.

Definition 2.1.2. The n-th order moment measure of a random measure P
is given by

νnP (f) =

∫
M(X)

P (dµ)

∫
Xn

µ(dx1) . . . µ(dxn) f(x1, . . . , xn) for f ∈ F+(Xn).

If νnP ∈ M(Xn) then we say that P is of n-th order. Let now P be a point
process then its n-th order factorial moment measure is defined by

ν̌nP (f) =

∫
M··(X)

P (dµ)µ−[n](f), (2.1)

where f ∈ F+(Xn) and µ−[n] is the following symmetric measure on Xn

µ−[n](dx1 . . . dxn)

= µ(dx1)(µ− δx1)(dx2) . . . (µ−
n−1∑
j=1

δxj)(dxn) for µ ∈M··(X) (2.2)

Most of the time the factorial moment measures have densities with re-
spect to some product measure.

Definition 2.1.3. If P is a point process and λ ∈ M(X) is some reference
measure on X such that

ν̌nP (dx1 . . . dxn) = ϑn(x1, . . . , xn)λ(dx1) . . . λ(dxn),

then we call {ϑn}∞n=1 the family of correlation functions of P .
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2.2 The Campbell Measure

Given a non negative measure K on M(X) its Campbell measure is defined
by

CK(h) =
x

h(x, µ)µ(dx)K(dµ) for h ∈ F+(X ×M··(X)).

Remark that the marginal ν1
K(f) = CK(f ⊗ 1) for f ∈ F+(X) is the first

moment measure of K. The Campbell measure will be an important tool in
this work. In the sequel we will also need the Campbell measures of higher
order. They are defined as follows. Let K be as above then the n-th order
Campbell measure is given by

Cn
K(h) =

∫
M(X)

K(dµ)

∫
Xn

µ(dx1) . . . µ(dxn)h(x1, . . . , xn;µ)

for h ∈ F+(Xn ×M(X)). The marginal

νnK(f) = Cn
K(f ⊗ 1) for f ∈ F+(Xn)

is the n-th order moment measure of K. For measures K onM··(X) we will
also need the following modification of the n-th order Campbell measure.
The reduced Campbell measure of n-th order is given by

C !,n
K (h) =

∫
M··(X)

K(dµ)

∫
Xn

µ−[n](dx1 . . . dxn)h(x1, . . . , xn;µ−
n∑
i=1

δxi),

for h ∈ F+(Xn ×M··(X)). The marginal

ν̌nK(f) = C !,n
K (f ⊗ 1) for f ∈ F+(Xn)

is the n-th order factorial moment measure of K. In section 4.3 we will need
the following measure

Čn
K(h) =

∫
M··(X)

K(dµ)

∫
Xn

µ−[n](dx1 . . . dxn)h(x1, . . . , xn;µ),

which remains unnamed. In section 4.6 we will encounter the so called Palm
kernels Kx1,...,xn of n-th order of K: Assume K is a σ-finite measure on
M··(X). We certainly have Cn

K(· ×N)� νnK for any fixed N ∈ B(M··(X)).
Let us denote the Radon-Nykodim derivative by

Kx1,...,xn(N) =
dCn

K(· ×N)

d νnK
(x1, ..., xn).
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The theory of disintegration of measures ([54], chapter V, theorem 8.1) then
yields that for νnK−a.e.[(x1, . . . , xn)] Kx1,...,xn can be chosen as a point process
in X. So in short hand formulation we have

Cn
K(dx1 . . . dxn dµ) = νnK(dx1 . . . dxk)Kx1,...,xn(dµ). (2.3)

The reduced n-th order Palm kernels K !
x1,...,xn

are defined analogously.

The following result says that it suffices to know the Campbell measure for
a certain class of test functions. It can be found in: [44] chapter 4, proof of
theorem 10.

Lemma 2.2.1. Let C1 and C2 be two non negative measures on Xn×M··(X)
such that

C1(
n
⊗
j=1
fj ⊗ e−ζg) = C2(

n
⊗
j=1
fj ⊗ e−ζg) <∞ for f1, . . . , fn, g ∈ Fbc,+(X),

then C1 = C2.

Proof. Define two measures on M··(X): For f1, . . . , fn ∈ Fbc,+(X) let

R
(fj)

n
j=1

i (ϕ) = Ci(
n
⊗
j=1
fj ⊗ ϕ), ϕ ∈ F+(M··(X)), i = 1, 2.

Then R
(fj)

n
j=1

i are finite measures whose Laplace transforms coincide, which

implies that R
(fj)

n
j=1

1 = R
(fj)

n
j=1

2 due to proposition 2.1.1. So C1 and C2 are
finite and coincide on

G = {B1 × . . .×Bn ×N |B1, . . . , Bn ∈ B0(X) and N ∈ B(M··(X))}.

Since σ(B0(X)) = B(X) we certainly have σ(G) = B(X)⊗n ⊗ B(M··(X)).
Furthermore G is stable under intersections and so C1 and C2 coincide due to
the uniqueness of measure theorem.

2.3 Infinitely Divisible Point Processes and a

Generalization

Definition 2.3.1. We denote by W the class of non negative measures L on
M··(X) such that

L({0}) = 0 and L(1− e−ζf ) <∞, f ∈ Fbc,+(X),

where 0 denotes the zero measure.
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We collect several key results of [44] in the following theorem.

Theorem 2.3.2. Let L ∈ W. Then there exists a unique point process P
such that its Laplace transform is given by

LP (f) = e−L(1−e−ζf ) for f ∈ Fbc,+(X), (2.4)

and P is infinitely divisible. Moreover if L is of first order then (2.4) is
equivalent to

(ΣL) CP (h) =

∫
M··(X)

∫
M··(X)

∫
X

h(x, η + µ)CL(dx d η)P (dµ)

for all h ∈ F+(X ×M··(X)). This point process will be denoted =L in the
sequel.

The existence of P for given L ∈ W can be found in lemma 8 chapter
2 of [44] and the equivalence of the representation of the Laplace transform
with (ΣL) in theorem 11 chapter 4 of [44]. As an aside we remark that also
the converse holds true: To every infinitely divisible point process P there
belongs some L ∈ W such that (2.4) is valid. The measure L is called the
Lévy measure of the infinitely divisible point process =L. The right hand
side of (ΣL) can be seen as a kind of convolution of CL with P so we will
denote it by

(CL ? P )(h) :=

∫
M··(X)

∫
M··(X)

∫
X

h(x, η + µ)CL(dx d η)P (dµ) (2.5)

Here ? should not be confused with the convolution operator ∗ used below.
Furthermore let KL be the functional on Fbc,+(X) such that

KL(f) = e−L(1−e−ζf ),

the so called modified Laplace functional. Mecke’s proof in [44] relies on
the following result, also due to him, which is a version of Lévy’s continuity
theorem for random measures

Theorem 2.3.3. Let (Pm)m be a sequence of laws on M(X) such that

LPm(f)→ K(f) as m→∞

for f ∈ Fbc,+(X) and the limiting functional K on Fbc,+(X) has the following
continuity property:

For any sequence un ∈ Fbc,+(X) with un ↓ 0,K(un)→ 1 as n→∞.

Then there exists a law P on M(X) such that LP = K.
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A natural question is whether KL is still a Laplace transform of a point
process if we let L be a finite signed measure onM··(X). In the monograph
[31] the authors asked whether for a finite signed measure K onM··(X) with
K+(M··(X)) = K−(M··(X)) does there exists a point process P such that

P = exp(K) =
∞∑
j=0

K∗j

j!
?

Here ∗ is the usual convolution operator. It can be seen that this question
is equivalent to the existence of a finite signed measure L on M··(X) with
L({0}) = 0 such that LP = KL. They showed that this is the case if and
only if

=L+ = =L− ∗ P. (2.6)

Here L+ resp. L− is the positive resp. negative part in the Hahn-Jordan
decomposition of L. This “is quite a complicated question“ as the authors of
[31] on page 79 remarked. The negative part L− of the Lévy measure L can
be interpreted as to contribute to a deletion of points in =L+ , since according
to the convolution equation (2.6) to obtain a realization of =L+ we have to
take a realization of P and superpose it independently by a realization of
=L− . As Matthes et al. [31] formulated, P is the convolution quotient of the
infinitely divisible point processes =L+ and =L− .

The main problem studied here: Given any two L+, L− ∈ W , does there
exist a point process P such that (2.6) holds? In the sequel we will denote
L = L+ − L−, the so called signed Lévy pseudo measure of a point process
P if either (2.6) or LP = KL on Fbc,+(X) are valid. But note here: L is not
even a signed measure on M··(X) since undefined expressions like ∞−∞
can occur, which justifies the name signed Lévy pseudo measure. Remark
that L is well defined on the set of |L|-integrable functions,

L1(|L|) = {ϕ ∈ F+(M··(X)) : |L|(ϕ) <∞}.

Here |L| denotes the variation L+ +L−. In the introduction we also used the
term signed cluster pseudo measure. Let us agree on the following convention:
Any L = L+ − L− with L+, L− ∈ W will be called a signed cluster pseudo
measure. If L is a signed cluster pseudo measure such that a point process
P exists and (2.6) holds then we say it is a signed Lévy pseudo measure.

2.4 Cluster Processes and Thinning

Let E and X be two Polish spaces and P be a point process in E. A
cluster field {Πa}a∈E is a measurable mapping from E to the set of point
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processes in X. Measurability is meant here in the following sense: For any
N ∈ B(M··(X)) the mapping a 7→ Πa(N) is measurable with respect to
B(E). The cluster process of a point process P is given by

PΠ(·) =

∫
P (dµ) ∗

a∈µ
Πa.

A realization of PΠ(·) can be described as follows: First P realizes a point
measure µ in E. Then, independently for any a ∈ µ, Πa realizes a point
measure ηa in X. The realization of PΠ(·) is now given by the superposition∑

a∈µ ηa. The clustering can be thought of as a one step branching process
in that PΠ(·) describes the distribution of the daughter generation.
There arises now one major question: Does the cluster process exist as a point
process? In general

∑
a∈µ ηa might contain an infinite number of points in a

bounded domain and this case has to be excluded.
Let us denote Πµ = ∗a∈µΠa. Then we say that the cluster process exists if

Πµ is a point process P − a.s.[µ].

The following result, proposition 4.2.3. in [31], will provide a sufficient con-
dition for existence.

Proposition 2.4.1. For all point processes P in E and all cluster fields
{Πa}a∈E the following statements are equivalent:

a) PΠ(·) exists and is of first order.

b) ν1
P (ν1

Π(·)
(f)) <∞ for f ∈ Fbc,+(X).

In this case ν1
PΠ(·)

(f) = ν1
P (ν1

Π(·)
(f)) for f ∈ Fbc,+(X).

An important example of a cluster field is given by

Φx = (1− q)δ0 + qδδx for q ∈ (0, 1) and x ∈ X,

where 0 denotes the zero measure. The corresponding cluster process PΦ(·)
will be denoted by Γq(P ) and is called the independent q-thinning of P .

2.5 Papangelou Processes

We recall some facts on these processes from Zessin [75]. Let π(µ, dx) be a
kernel from M··(X) to M(X).
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Definition 2.5.1. A point process P is a Papangelou process with kernel π
if

(Σ′π) CP (h) =
x

h(x, µ+ δx) π(µ, dx)P (dµ) for h ∈ F+(X ×M··(X)).

We also say that π is the Papangelou kernel of the point process P , if P
satisfies (Σ′π).

For a detailed discussion on the (Σ′π) condition the interested reader is
referred to [28]. Define for η ∈M··(X), m ≥ 1,

π(m)(η; dx1 . . . dxm) = π(η, dx1)π(η+δx1 , dx2) . . . π(η+δx1+. . .+δxm−1 , dxm)

the iterated kernel π(m) from M··(X) to M(Xm).

Definition 2.5.2. We say that the kernel π satisfies the cocycle condition if
for any η ∈M··(X), π(2)(η; dx d y) is a symmetric measure. That is

π(2)(η; f1 ⊗ f2) = π(2)(η; f2 ⊗ f1) for f1, f2 ∈ F+(X).

In particular if π satisfies the cocycle condition then for any η ∈M··(X),
π(m)(η; ·) is a symmetric measure.
Let now π be a kernel fromM··

f (X) toMf (X) such that for some η ∈M··
f (X)

0 < Ξ(η) :=
∞∑
m=0

1

m!
π(m)(η;Xm) <∞

then we say that π is η-integrable. Under the condition of η-integrability of
π the following finite point process

P η
π (ϕ) :=

1

Ξ(η)

∞∑
m=0

1

m!

∫
Xm

ϕ(δx1 + . . .+ δxm) π(m)(η; dx1 . . . dxm) (2.7)

for ϕ ∈ F+(M··
f (X)) is well defined. The following result from [75] will later

serve as a main lemma for us.

Lemma 2.5.3. Assume that π is η-integrable for some η ∈ M··
f (X) and

satisfies the cocycle condition. Then P η
π , given by (2.7), is a Papangelou

process with boundary condition η. That is P η
π is a solution to

CP (h) =
x

h(x, µ+ δx) π(η + µ, dx)P (dµ) for h ∈ F+(X ×M··
f (X)).

Thus in particular we have that P 0
π is a Papangelou process with Papan-

gelou kernel π. Here 0 denotes the zero measure on X.
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2.6 Möbius Inversion Formula

For a more detailed exposition to the subject see [5] or [62].

Theorem 2.6.1 (Möbius inversion formula). Let X be a finite set endowed
with a partial order � (reflexive, transitive, anti-symmetric). Assume (X,�)
has a minimal element, denoted by 0. Let f and g be two real valued functions
on X. Suppose that for all x ∈ X

g(x) =
∑

0�z�x

f(z). (2.8)

Then
f(x) =

∑
0�z�x

µ(z, x)g(z), x ∈ X.

Here µ is the so called Möbius function.

Corollary 2.6.2. Asume {αJ}J⊂N and {βJ}J⊂N are two families of real num-
bers, indexed by subsets of N, such that there holds for I ⊂ N

βI =
∑
J∈π(I)

∏
J∈J

αJ .

Then
α{1,...,n} =

∑
J∈π({1,...,n})

(−1)|J |−1(|J | − 1)!
∏
J∈J

βJ , n ∈ N,

where π({1, . . . , n}) denotes the set of partitions of the set {1, . . . , n} and |J |
denotes the number of elements in the partition J .

Proof. Take X = π({1, . . . , n}) and let J � J ′ if J is a refinement of J ′. It
is easily seen that (X,�) is a partially ordered set with zero. We define two
functions on X as follows:

g(J ) =
∏
J∈J

βJ and f(J ) =
∏
J∈J

αJ .

They satisfy the relation (2.8). In [5] Brender and Goldmann have computed
the Möbius function of (X,�). In particular they obtain

µ(J , {{1, . . . , n}}) = (−1)|J |−1(|J | − 1)!.



Chapter 3

Point Processes with a Signed
Lévy Pseudo Measure

Here we present the basic theorem 3.1.3 which yields the existence of the
random KMM process (or shortly) KMM process for L. Specializing L will
provide us later with many examples from classical and quantum statistical
mechanics. It is formulated in terms of the cluster expansion method. Here
we add a comparison with the approach of Malyshev and Minlos [40] to the
CEM in case of point processes. Proposition 3.1.6 gives a new criterium for
simplicity of a KMM process =L.

3.1 Existence

For the moment let us consider L to be a finite signed measure on M··(X),
that is L = L+−L− with |L| ∈ W and |L|(M··(X)) <∞. Then the question
of existence of =L is equivalent to the problem if L is the logarithm of a point
process P as is seen by

Remark 3.1.1. Let P be a point process. Then the following statements are
equivalent:
(i) There exists some finite signed measure K on M··(X) with

P = exp(K) :=
∑
n≥0

1

n!
K∗n with K0 = δ0.

(ii) There exists some finite signed measure L on M··(X) with L({0}) = 0
such that

P = =L.

37
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Proof. ”(i) ⇒ (ii)” Let us introduce Y = M··(X) \ {0} and define L =
K(· ∩ Y ) then

LP (f) = exp(L+ (K(M··(X))−K(Y )) δ0)(e−ζf ) = exp(−L(1− e−ζf )).

The last equality follows by observing that K(M··(X)) = 0, because other-
wise we would get a contradiction to P (M··(X)) = 1.
”(ii)⇒ (i)” Define K = L− L(Y )δ0 then

P (e−ζf ) = exp(L(e−ζf )− L(Y )) = exp(K(e−ζf )) = exp(K)(e−ζf ).

We will restrict our investigation to measures L+, L− ∈ W which are
concentrated on M··

f (X) and which can be represented as follows

Lε(ϕ) =
∞∑
n=1

1

n

∫
Xn

ϕ(δx1 + . . .+ δxn) Θε
n(dx1 . . . dxn), (3.1)

for all ϕ ∈ F+(M··
f (X)). Here Θε

n is a non negative measure on Xn. Certainly
they can always chosen to be symmetric. Only in section 4.5 we will start
with a family Θε

n, which has no more symmetry properties than invariance
under cyclic permutations. At the end of this section we discuss in more
detail this problem of symmetry of the Θε

n. We also introduce

Θn = Θ+
n −Θ−n .

We shall call {Θn}∞n=1 the family of cumulant measures. We will see that
under the condition |L|(1 − e−ζf ) < ∞ for f ∈ Fbc,+(X), |Θn| = Θ+

n + Θ−n
is a locally finite (or Radon) measure on Xn. We refer to remark 1.1.1 on
page 19 for the used terminology. Remark that Θn is only a well defined
finite signed measure if restricted to the bounded sets of Xn. Θn evaluated
for unbounded sets might lead to undefined expressions like ∞−∞. Such
objects will be called signed Radon measures in the sequel.

Let us agree on the following convention. If we say, we are considering a
signed cluster pseudo measure of the form

L(ϕ) =
∞∑
n=1

1

n

∫
Xn

ϕ(δx1 + . . .+ δxn)ϑ(x1, . . . , xn)λ(dx1) . . . λ(dxn), (3.2)

where ϕ ∈ L1(|L|), ϑ : t∞n=1X
n 7→ R is a real valued measurable function

and λ is some non negative measure on X, then it is always understood that
we have made the canonical choice

Θε
n(dx1 . . . dxn) = ϑε(x1, . . . , xn)λ(dx1) . . . λ(dxn),
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where ϑε = max{ε ϑ, 0} are the positive ε = +1 resp. negative ε = −1 part
of ϑ. The following combinatorial result is a direct consequence of Ruelle’s
algebraic approach ([63], chapter 4, eqn. (4.14)). It can also be found in
the book [72] of Stanley, corollary 5.1.6, where it is called the exponential
formula.

Lemma 3.1.2. For a sequence hk of real numbers, such that the series on
the below left hand side converges absolutely, the series on the below right
hand side converges absolutely and we have

exp

[
∞∑
k=1

hk
k!

]
= 1 +

∞∑
k=1

1

k!

∑
J∈π([k])

∏
J∈J

h|J |.

Here π([k]) denotes the set of all partitions of the set [k] = {1, . . . , k}.

Now we can formulate our main existence result.

Theorem 3.1.3. Let L+, L− ∈ W be of the form (3.1). Then |Θn| has to be
a Radon measure. Furthermore we assume that the following signed measures

%k(⊗kj=1fj) =
∑
σ∈Sk

∏
ω∈σ

Θ`(ω)(⊗
i∈ω
fi), f1, . . . , fk ∈ Fbc,+(X). (3.3)

are actually non negative Radon measures. Here the above product has to
be taken over all cycles ω in the permutation σ and `(ω) denotes the cycle
length. Then there exists a point process =L such that =L+ = =L− ∗ =L or
equivalently L=L = KL on Fbc,+(X).

Proof. Let Λ ∈ B0(X) and M··(Λ) = {µ ∈ M··(X)| supp(µ) ⊂ Λ}. The
method of the proof will be to investigate the restriction

LΛ(ϕ) = L(1M··(Λ)ϕ) for ϕ ∈ L1(|L|Λ)

of L to point measures in Λ. By a combinatorial argument (i.e. lemma 3.1.2)
we will then observe that there exist finite point processes QΛ in Λ such that
LΛ is the signed Lévy pseudo measure of QΛ. As Λ ↑ X we will see that
KLΛ

→ KL. By using theorem 2.3.3 we will obtain the assertion.

Let us first observe that LΛ is a finite signed measure on M··
f (X):

|LΛ|(1) = 2 |L|(1M··(Λ)
1

2
) ≤ 2 |L|(1− e−ζΛ) <∞.

For the first inequality observe that ζΛ ≥ 1 on M··(Λ), |L|-a.e. and 1
2
≤

1 − e−x for x ≥ 1. In particular |LΛ|(1) < ∞ implies that Θε
n are Radon
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measures.
Now set Ξ(Λ) := exp[LΛ(1)], the so called partition function. Thus we have

KLΛ
(f) =

1

Ξ(Λ)
exp[LLΛ

(f)], f ∈ Fbc,+(X),

where

LLΛ
(f) =

∞∑
n=1

Θ+
n ((1Λe

−f )⊗n)−Θ−n ((1Λe
−f )⊗n)

n
.

The above sum converges absolutely due to |LΛ|(1) < ∞. So choose in
lemma 3.1.2 hn = (n− 1)! Θn((1Λe

−f )⊗n) and combine it with the fact that
|Scyn | = (n − 1)!, here Scyn is the set of permutations of the set [n], which
consists of one cycle, then

exp[LLΛ
(f)] = 1 +

∞∑
n=1

1

n!

∑
σ∈Sn

∏
ω∈σ

Θ`(ω)((1Λe
−f )⊗`(ω)).

Inserting the definition (3.3) of the measures %n leads to

KLΛ
(f) =

1

Ξ(Λ)

∞∑
n=0

1

n!

∫
Λn
e−f(x1) . . . e−f(xn) %n(dx1 . . . dxn), f ∈ Fbc,+(X).

So we have identified KLΛ
as the Laplace functional of the finite point process

QΛ(ϕ) =
1

Ξ(Λ)

∞∑
n=0

1

n!

∫
Λn
ϕ(δx1+. . .+δxn) %n(dx1 . . . dxn), ϕ ∈ F+(M··

f (X)).

Now let us check that the assumptions of Mecke’s theorem 2.3.3 are fulfilled.
Since

|(L− LΛ)(1− e−ζf )| ≤ |L|((1− 1M··(Λ))(1− e−ζf )) ↓ 0 as Λ ↑ X,

by dominated convergence, we obtain LQΛ
→ KL as Λ ↑ X on Fbc,+(X).

Similarly one can establish continuity of KL at zero. Let un ∈ Fbc,+(X) with
un ↓ 0 then

|L(1− e−ζun )| ≤ |L|(1− e−ζun ) ↓ 0 as Λ ↑ X

which is again justified by dominated convergence. So theorem 2.3.3 gives us
the existence of a law =L on M(X) such that L=L = KL on Fbc,+(X). Now
since =L is the weak limit of the QΛ we have =L(M··(X)) = 1, because the
set of point processes is closed with respect to weak convergence (see [28],
page 32).
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Furthermore, =L is called here the random KMM process (or shortly
KMM) process for L. These are the initials of Kerstan, Matthes and Mecke
respectively.

Remark that =L does only depend on the difference Θn = Θ+
n − Θ−n . If we

have found another family {Θ̃ε
n}∞n=1, such that the assumptions of theorem

3.1.3 are satisfied and Θn coincides with Θ̃n on bounded sets then =L = =L̃
is implied by QΛ = Q̃Λ for Λ ∈ B0(X).

Remark 3.1.4. In the proof of theorem 3.1.3 we have constructed finite point
processes QΛ such that

=L+
Λ

= =L−Λ ∗QΛ.

Furthermore we have shown =LεΛ ⇒ =Lε weakly as Λ ↑ X, where ε ∈
{+1,−1}. Now using a theorem of Matthes et al. ([31], proposition 3.2.9.),
which says that if we have three sequences of point processes (Vn)n, (Qn)n
and (Pn)n such that (Vn)n respective (Qn)n converge weakly to some point
process V respective Q and Vn = Qn ∗ Pn, then also (Pn)n converges weakly
to some point process P and we have V = Q ∗ P , we can conclude that there
exists a point process P , the weak limit of the QΛ such that

=L+ = =L− ∗ P.

Thus this gives an alternative to theorem 2.3.3 for establishing the existence
of the thermodynamic limit.

Remark 3.1.5. Since 1 − e−x ≤ x we have |L|(1 − e−ζf ) ≤ ν1
|L|(f), f ∈

Fbc,+(X). So |L| being of first order is a sufficient condition for |L| ∈ W. In
all upcoming examples this will be the case.

Let us give a sufficient condition for the simplicity of =L.

Proposition 3.1.6. Assume that for some measurable function ϑ : t∞n=1X
n →

R and λ ∈M◦(X), i.e. λ is a diffuse Radon measure,

L(ϕ) =
∞∑
n=1

1

n

∫
Xn

ϕ(δx1 + . . .+ δxn)ϑ(x1, . . . , xn)λ(dx1) . . . λ(dxn),

for ϕ ∈ L1(|L|), is a signed Lévy pseudo measure such that L+ is of first
order (we take for L+, L− the canonical choice as in (3.2)). Then =L is a
simple point process.
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Proof. The result is an immediate consequence from [31] proposition 2.2.9.
which says that an infinitely divisible point process =H is simple if and only
if H(M··(X) \ M·(X)) = 0 and H({ζ{x} > 0}) = 0 for all x ∈ X. Now it

is well known that for a diffuse λ the product λn is concentrated on X̀n =
{(x1, . . . , xn) ∈ Xn|xi 6= xj for i 6= j} (see [34] theorem 3), which yields
L+(M··(X) \M·(X)) = 0. Moreover for f ∈ Fbc,+(X)

ν1
L+(f) =

∫
X

f(x)
∞∑
n=1

∫
Xn−1

ϑ+(x, x2, . . . , xn)λ(dx2) . . . λ(dxn)λ(dx).

So ν1
L+ is a diffuse Radon measure and we obtain L+({ζ{x} > 0}) ≤ L+(ζ{x}) =

0. Since =L+ is simple the equation =L+ = =L− ∗ =L forces =L− and =L to
be simple.

Symmetry of Measures

Lemma 3.1.7. Let %k be symmetric signed Radon measures on Xk and let
α be a real valued function on ∪k≥1π([k]) then

Θk(⊗kj=1fj) =
∑
J∈π([k])

α(J )
∏
J∈J

%|J |(⊗j∈Jfj), f1, . . . , fk ∈ Fbc,+(X)

are symmetric signed Radon measures.

Proof. For the symmetry it suffices to show that Θk remains invariant under
transpositions. For the sake of clearness of notation let us take the transpo-
sition (1 2). We also abbreviate G(J ) := α(J )

∏
J∈J %|J |(⊗j∈Jfj). Let us

now decompose the sum over all partitions in two parts. First we sum over
all partitions of [k] such that 1 and 2 lie in the same set. The symmetry of
the %j then implies that this sum remains invariant under transposition of 1
and 2. So let us consider the sum where 1 and 2 lie in different sets, this is
indicated by the * in the below sum

∗∑
J∈π([k])

G(J ) =
∑

J∈π({3,...,k})

∑
i 6=j

G(Ji,j) +
∑
j

(G({{1},J 2
j }) +G({{2},J 1

j })

+G({{1}, {2},J }).

Here for J ∈ π({3, ..., k}) let us give it some arbitrary numbering J =
{J1, ..., J|J |} then Ji,j denotes the partition of [k] such that we replace Ji by
Ji ∪ {1} and Jj by Jj ∪ {2}. And J 1

j denotes the partition where we have
added 1 to the j-th set of J , analogusly for J 2

j . All three inner sums remain
invariant under the transposition of 1 and 2.
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This gives us

symmetry of {%k}k≥1 ⇔ symmetry of {Θk}k≥1.

3.2 The Cluster Expansion Method (CEM )

We recall shortly the CEM

In theorem 3.1.3 we started with a family of signed Radon measures {Θn}∞n=1,
the cumulant measures and obtained the family of Schur measures {%k}∞k=1

by means of (3.3). We then say that the family of Schur measures admits
a cluster representation in terms of the cumulant measures. Certainly (3.3)
gives us a duality between the Schur and cumulant measures. If we prescribe
a family of non negative symmetric Radon measures {%k}∞k=1 then we obtain
the cumulant measures by a Möbius inversion as described in section 2.6

Θn(⊗nj=1fj) =
1

(n− 1)!

∑
J∈π([n])

(−1)|J |−1 (|J | − 1)!
∏
J∈J

%|J |(⊗j∈Jfj), (3.4)

where f1, . . . , fn ∈ Fbc,+(X). For the existence of the limiting point process
=L according to theorem 3.1.3 it remains to check that the signed cluster
pseudo measure L, built on the cumulant measures defined in (3.4) and for
some choice of Θ+

n , Θ−n , satisfies |L|(1 − e−ζf ) < ∞, f ∈ Fbc,+(X). We say
that (3.4) is the dual cluster representation of the cumulant measures in terms
of the Schur measures. In the upcoming examples it will always be the case
that the Schur measures are of the form %k = ψ(x1, . . . , xn)λ(dx1) . . . λ(dxk)
for some symmetric measurable function ψ : t∞n=0X

n 7→ [0,∞). So with
the help of the dual cluster representation we obtain that the corresponding
signed cluster pseudo measure has the form (3.2) with

ϑ =
1

(n− 1)!

∑
J∈π([n])

(−1)|J |−1 (|J | − 1)!
∏
J∈J

ψ((xj)j∈J). (3.5)

The method of cluster expansion thus consists in defining first the signed
cluster pseudo measure L by means of the given data {Θn}∞n=1 respectively
{%k}∞k=1; and next, to construct with their help the local processes {QΛ}Λ∈B0(X).
(This construction reflects the cluster structure.) The limiting process is ob-
tained under the condition that |L|(1 − e−ζf ) < ∞, f ∈ Fbc,+(X). If fur-
thermore |L| is of first order it is the unique solution to the cluster equation
(ΣL), see theorem 3.3.1.



44 CHAPTER 3. SIGNED LÉVY PSEUDO MEASURES

Comparison to the Approach of Malyshev and Minlos

Here we give some relations to the work [40] of Malyshev and Minlos. They
are in the following setting: Let λ ∈M◦(X) be a diffuse Radon measure and
ϑ : M··

f (X) \ {0} 7→ R a measurable function. Moreover, let the cumulant
measures be of the form

Θn(dx1 . . . dxn) =
1

(n− 1)!
ϑ(x1, . . . , xn)λ(dx1) . . . λ(dxn), (3.6)

where we have used that ϑ can be thought of as a symmteric function on
t∞n=1X

n. If we introduce the following measure Π on M··
f (X)

Π(ϕ) =
∞∑
n=0

1

n!

∫
Xn

ϕ(δx1 + . . .+ δxn)λ(dx1) . . . λ(dxn), ϕ ∈ F+(M··
f (X)),

the signed cluster pseudo measure can be written as

L(ϕ) =

∫
M··f (X)\{0}

ϕ(µ)ϑ(µ) Π(dµ) for ϕ ∈ L1(|L|). (3.7)

Malyshev and Minlos impose the following condition on ϑ. For any Λ ∈
B0(X) there holds∫

M··(Λ)\{0}
Π(dµ)

∫
M··f (X)

Π(d η) |ϑ(µ+ η)| <∞. (3.8)

Then they can show that there exists a weak limit of the QΛ, the local Gibbs
modifications, as Λ ↑ X (see [40], chapter 3, theorem 2). Condition (3.8) can
also be formulated in terms of the factorial moment measures of |L|. The
following representation will be shown in example 4.4.2: For Λ ∈ B0(X)

ν̌n|L|(Λ
n) =

∫
Λn
λ(d y1) . . . λ(d yn)

∫
M··f (X)

Π(d η) |ϑ(δy1 + . . .+ δyn + η)| (3.9)

So (3.8) can be formulated in terms of |L| as

∞∑
n=1

ν̌n|L|(Λ
n)

n!
<∞ for Λ ∈ B0(X).

We required only that ν1
|L|(Λ) = ν̌1

|L|(Λ) <∞, which is a bit weaker.
Let us remark that it is immediate from the proof of theorem 3.1.3 that the
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partition function Ξ(Λ) can be either expressed as

log(Ξ(Λ)) =

∫
M··(Λ)\{0}

Π(dµ)ϑ(µ),

Ξ(Λ) =

∫
M··(Λ)

Π(dµ)
∑

J∈π([|µ|])

∏
j∈J

ϑ((xj)j∈J).

Here we have given each µ = δx1 + ... + δx|µ| some arbitrary numbering.
Malyshev and Minlos call the second identity a cluster representation of the
partition function.
We remark that, due to proposition 3.1.6, all point processes constructed in
this section are simple.

3.3 The Cluster Equation

Theorem 3.3.1 shows that the condition that the variation |L| is of first order
implies that the KMM process =L has this property too, and furthermore is
a solution of the cluster equation (ΣL). We saw already before that =L is
a solution of the equation L=L = KL. As an important corollary for later
applications we obtain that the local process QΛ converges not only weakly
to =L as Λ ↑ X but even in the sense that CQΛ

−→ C=L .

Theorem 3.3.1. Let L be a signed Lévy pseudo measure such that |L| is of
first order. Then =L is of first order and solves the cluster equation

(ΣL) CP (h) + CL− ? P (h) = CL+ ? P (h), h ∈ F+(X ×M··(X)).

Here the ? operation is as defined in (2.5).

Proof. By using the representation of the Laplace transform of =L and ap-
plying two times 1 − e−x ≤ x for x ∈ R, we obtain for f ∈ Fbc,+(X) and
s > 0

=L
(

1− e−sζf
s

)
=

1− e−L(1−e−sζf )

s
≤ |L|(ζf ) = ν1

|L|(f).

So if we use the lemma of Fatou then we get

ν1
=L(f) = =L(ζf ) = =L

(
lim inf
s↓0

1− e−sζf
s

)
≤ ν1

|L|(f).
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Now it is well known (see [44]) that if P is a point process of first order
(this allows to interchange integration and differentiation below) then for
f, g ∈ Fbc,+(X) we have

CP (f ⊗ e−ζg) = − d

d s
LP (sf + g)

∣∣∣∣
s=0

.

So we have to compute

− d

d s
L=L(sf + g) = L=L(sf + g)

d

d s
L(1− e−ζsf+g)

= L=L(sf + g)L(ζfe
−ζg)

= CL(f ⊗ e−ζg)L=L(sf + g).

Again the second equality holds since we are allowed to interchange differ-
entiation and integration with respect to L since |L| is of first order. Also
we have abbreviated CL(f ⊗ e−ζg) = CL+(f ⊗ e−ζg) − CL−(f ⊗ e−ζg). We
arrive at C=L(f ⊗ e−ζg) = CL ?=L(f ⊗ e−ζg), which certainly can be brought
into the form (ΣL). Now lemma 2.2.1 yields that (ΣL) holds true for all
h ∈ F+(X ×M··(X)).

In the following we shall see that besides the weak convergence QΛ ⇒
=L as Λ ↑ X, we also have convergence of the Campbell measures for a
sufficiently large class of test functions.

Corollary 3.3.2. Let f, g ∈ Fbc,+(X) and assume that L is a signed Lévy
pseudo measure such that |L| is of first order. Then we have for h = f⊗e−ζg

CQΛ
(h)→ C=L(h) as Λ ↑ X.

Proof. Note that CQΛ
(h) = CLΛ

(h)LQΛ
(g), since QΛ is a solution to (ΣLΛ

).
Similarly we have C=L(h) = CL(h)L=L(g). Since LQΛ

(g)→ L=L(g) is already
established, CLΛ

(h)→ CL(h) remains to be seen. But

|(CL − CLΛ
)(h)| = |(L− LΛ)(ζfe

−ζg)| ≤ |L|((1− 1M··(Λ))ζfe
−ζg) ↓ 0,

as Λ ↑ X, by dominated convergence.

We remark that the result remains valid if f ∈ Fbc,+(X) is replaced by
f ∈ F+(X) satisfying ν1

|L|(f) < ∞. The converse to theorem 3.3.1 is valid,
too:
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Proposition 3.3.3. Let L be a signed cluster pseudo measure such that |L|
is of first order and let P be a solution to (ΣL). Then L is a signed Lévy
pseudo measure with P = =L.

Proof. Assume P solves (ΣL). We certainly have CP (h) ≤ C|L| ? P (h) for all
h ∈ F+(X ×M··(X)). This implies ν1

=L ≤ ν1
|L| on F+(X). So if |L| is of first

order then also P is. Thus for f ∈ Fbc,+(X)

d

d s
LP (sf) =

d

d s
P (e−sζf ) = −P (ζfe

−sζf ) = −CP (f ⊗ e−sζf )

= −(CL ? P )(f ⊗ e−sζf ) = −CL(f ⊗ e−sζf ) LP (sf).

Therefore s 7→ LP (sf) satisfies a first order differential equation with initial
value LP (0) = 1. An integration yields that LP (f) = KL(f), so P = =L.



48 CHAPTER 3. SIGNED LÉVY PSEUDO MEASURES



Chapter 4

Palm and Moment Measures

We first present a decomposition of the moment measures of a point process
or, more generally, of a measure on M··(X) of order k into its factorial
moment measures. One of the main lemmata will be in the sequel the rep-
resentation 4.1.3. It will serve as a tool to check the non-negativity of the
Schur measures in concrete situations.

In section 4.2 our construction method is used for the first time to prove
the existence of the so called Pólya sum and difference processes.

Furthermore, a construction of permanental and determinantal point pro-
cesses is given by means of theorem 3.1.3 . Special examples covered by this
result are the ideal Bose gas of Fichtner [16] and the 1-dimensional Fermion
gas of Macchi [38].

4.1 Decomposition of Moment Measures

For µ ∈M··(X) and ε ∈ {−1,+1} let us introduce

µε[k] = µ(dx1)(µ+ εδx1)(dx2) . . . (µ+ ε

k−1∑
j=1

δxj)(dxk). (4.1)

Remark that µ+[k] is also well defined for µ ∈M(X) and µε[k] are symmetric
measures. The µε[k] are given recursively by:

µε[k](
k
⊗
j=1
fj) = µ(fk)µ

ε[k−1](
k−1
⊗
j=1
fj) + ε

k−1∑
j=1

µε[k−1]( ⊗
i∈[k−1]\{j}

fi ⊗ f{j,k}), (4.2)

for f1, . . . , fk ∈ Fbc,+(X), where we denoted fJ =
∏

j∈J fj for J ⊂ [k].

49
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Theorem 4.1.1. Let R be a measure on M··(X) of k-th order. Then the
family {ν̌kR}k of factorial moment measures of R is the unique family of sym-
metric Radon measures such that they decompose the moment measures {νkR}k
in the following way

νkR(
k
⊗
j=1
fj) =

∑
I∈π([k])

ν̌
|I|
R ( ⊗

I∈I
fI) for f1, . . . , fk ∈ Fbc,+(X).

Proof. Recall the definition of (factorial) moment measures given in (2.1)
section 2.1. It will be sufficient to show by induction∑

I∈π([k])

µ−[|I|]( ⊗
I∈I
fI) = µ(fk)

∑
I∈π([k−1])

µ−[|I|]( ⊗
I∈I
fI) = µ(f1) . . . µ(fk).

Taking expectations on both sides of the above equation then yields the
result.
But we have

∑
I∈π([k])

µ−[|I|]( ⊗
I∈I
fI) =

∑
I∈π([k−1])

[
µ−[|I|+1]( ⊗

I∈I
fI ⊗ fk)

+
∑
H∈I

µ−[|I|]( ⊗
I∈I\{H}

fI ⊗ fH∪{k})
]
.

Now by (4.2) the above expression in square brackets equals µ(fk)µ
−[|I|]( ⊗

I∈I
fI).

The uniqueness is clear. For the symmetry we refer to [28] page 109.

Remark 4.1.2. Let X̀k be the space of all k-tuples with distinct components.
If R is concentrated on M·(X) its factorial moment measures coincide with
the restriction of its moment measures to the set X̀k, ν̌kR = 1X̀kνkR.

Lemma 4.1.3. We have

µε[k](
k
⊗
j=1
fj) =

∑
J∈π([k])

εk−|J |
∏
J∈J

(|J | − 1)!µ(fJ) =
∑
σ∈Sk

εk−|σ|
∏
ω∈σ

µ(fω),

where f1, . . . , fk ∈ Fbc,+(X).

Proof. As above the proof will be given by induction. By (4.2) and using the
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inductive hypothesis we have

µε[k](
k
⊗
j=1
fj)

=
∑

J∈π([k−1])

(
εk−1−|J |

∏
J∈J

(|J | − 1)!µ(fJ)µ(fk)

+ε
∑

J∈π([k−1])

k−1∑
j=1

εk−1−|J |(|Hj| − 1)!µ(fHj∪{k})
∏

J∈J\{Hj}

(|J | − 1)!µ(fJ)

 ,

where Hj ∈ J ∈ π([k − 1]) is such that j ∈ Hj. Observe now that

k−1∑
j=1

(|Hj| − 1)!µ(fHj∪{k})
∏

J∈J\{Hj}

(|J | − 1)!µ(fJ)

=
∑
H∈J

|H|!µ(fH∪{k})
∏

J∈J\{H}

(|J | − 1)!µ(fJ).

Thus we have established the first equality in lemma 4.1.3. By using Scyl '
Sl−1 we also obtain∑
σ∈Sk

εk−|σ|
∏
ω∈σ

µ(fω) =
∑
J∈π([k])

εk−|J |
∑

ω1∈Scy|J1|

. . .
∑

ω|J |∈S
cy
|J|J ||

µ(fω1) . . . µ(fω|J |)

=
∑
J∈π([k])

εk−|J |
∏
J∈J

(|J | − 1)!µ(fJ).

Corollary 4.1.4. Let R be a measure on M··(X) then there holds

ν̌kR(
k
⊗
j=1
fj) =

∑
I∈π([k])

(−1)k−|I| ν
|I|
R ( ⊗

I∈I
fI)

∏
I∈I

(|I| − 1)!

=
∑
σ∈Sk

(−1)k−|σ|ν
|σ|
R ( ⊗

ω∈σ
fω).

Proof. Taking expectation of the expression in lemma 4.1.3 for ε = −1 yields
the result.
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4.2 The Pólya Sum Process and the Pólya

Difference Process

Let z ∈ (0, 1) and λ ∈ M··(X). In case of ε = +1 we will also permit
λ ∈M(X). Now consider the following two families of cumulant measures

Θn,ε(
n
⊗
j=1
fj) = εn−1zn λ

( n∏
j=1

fj

)
for f1, . . . , fn ∈ Fbc,+(X). (4.3)

Let us check whether the corresponding point process exists, that is whether
the conditions of theorem 3.1.3 are satisfied. We have

ν1
|Lε,z,λ|(f) =

∞∑
n=1

znλ(f) <∞ for f ∈ Fbc,+(X).

But if we compare (3.3) and lemma 4.1.3 we see that the Schur measures are
given by (λε[n] is as defined in (4.1))

%n,ε = znλε[n],

which are non negative.

Theorem 4.2.1. If λ ∈ M··(X) and 0 < z < 1 then there exists for ε ∈
{−1,+1} exactly one point process P ε

z,λ which is the KMM process belonging
to the signed Lévy pseudo measure Lε,z,λ built on the cumulant measures
{Θn,ε}∞n=1. Again in case of ε = +1 we also permit λ ∈M(X).

The point process P+
z,λ corresponding to {Θn,+1}∞n=1 is the so called Pólya

sum process and the point process P−z,λ corresponding to {Θn,−1}∞n=1 is the
so called Pólya difference process . These processes have their origin in the
work [75, 50, 51].

4.3 Iterated Cluster Equations

Theorem 4.3.1 will be used to determine factorial moment measures of KMM
point processes. The associated corollary 4.3.2 allows the calculation of the
moment measures respectively factorial moment measures of the KMM pro-
cess by means of the corresponding measures of the signed Lévy pseudo
measure L.

We will need the iterated cluster equations (Σn
L) and

(
Σ!,n
L

)
in section 4.6

to determine the Palm respective reduced Palm kernels of infinitely divisible
point processes. Moreover (Σn

L) will be needed later to show the Gibbs
property of certain point processes in section 5.2.
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Theorem 4.3.1. Assume that |L| is of first order. Let n ≥ 1 and f1, . . . , fn, g ∈
F+(X) such that νk|L|(max

j∈[n]
{fj}⊗k) <∞ for all 1 ≤ k ≤ n then νn=L(max

j∈[n]
{fj}⊗n) <

∞ and we have

(Σn
L) Cn

=L(
n
⊗
j=1
fj ⊗ e−ζg) = L=L(g)

∑
J∈π([n])

∏
J∈J

C
|J |
L ( ⊗

j∈J
fj ⊗ e−ζg)

(
Σ̌n
L

)
Čn
=L(

n
⊗
j=1
fj ⊗ e−ζg) = L=L(g)

∑
J∈π([n])

∏
J∈J

Č
|J |
L ( ⊗

j∈J
fj ⊗ e−ζg)(

Σ!,n
L

)
C !,n
=L(

n
⊗
j=1
fj ⊗ e−ζg) = L=L(g)

∑
J∈π([n])

∏
J∈J

C
!,|J |
L ( ⊗

j∈J
fj ⊗ e−ζg).

Proof. The proof will be given by induction. Let us start by establishing
(Σn

L). The case n = 1 has been dealt with in theorem 3.3.1. Denote fmax =
maxj∈[n] fj. Now let us assume that νk=L(f⊗kmax) < ∞ and

(
Σk
L

)
holds for

1 ≤ k ≤ n− 1.

νn=L(f⊗nmax) = C=L(fmax ⊗ ζn−1
fmax

)

≤ C|L| ? =L(fmax ⊗ ζn−1
fmax

)

=
∑

B⊂{2,...,n}

ν
|B|+1
|L| (f⊗(|B|+1)

max ) ν
|Bc|
=L (f⊗|B

c|
max ) <∞.

1. So that

Cn
=L(

n
⊗
j=1
fj ⊗ e−ζg) = − d

d s
Cn−1
=L (

n−1
⊗
j=1

fj ⊗ e−ζsfn+g)

∣∣∣∣
s=0

Now (Σn
L) follows by just using the product rule of differentiation and the

fact that

Ck
L(

k
⊗
j=1
fj ⊗ e−ζg) = − d

d s
Ck−1
L (

k−1
⊗
j=1
fj ⊗ e−ζsfk+g)

∣∣∣∣
s=0

for 1 ≤ k ≤ n.

Indeed we obtain then

Cn
=L(

n
⊗
j=1

fj ⊗ e−ζg) = L=L(g)CL(fn ⊗ e−ζg)
∑

J∈π([n−1])

∏
J∈J

C
|J |
L ( ⊗

j∈J
fj ⊗ e−ζg)

+ L=L(g)
∑

J∈π([n−1])

∑
H∈J

C
|H|+1
L ( ⊗

j∈H∪{n}
fj ⊗ e−ζg)

∏
J∈J\{H}

C
|J |
L ( ⊗

j∈J
fj ⊗ e−ζg).
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2. Now let us show
(
Σ̌n
L

)
. Due to (4.2) we have

Čn
=L(

n
⊗
j=1
fj ⊗ e−ζg) =− d

d s
Čn−1
=L (

n−1
⊗
j=1

fj ⊗ e−ζsfn+g)

∣∣∣∣
s=0

−
n−1∑
j=1

Čn−1
=L ( ⊗

i∈[n−1]\{j}
fi ⊗ f{j,n} ⊗ e−ζg)

= T1 + T2.

T1 can be treated as in case of (Σn
L):

T1 =L=L(g)CL(fn ⊗ e−ζg)
∑

J∈π([n−1])

∏
J∈J

Č
|J |
L ( ⊗

j∈J
fj ⊗ e−ζg)

+ L=L(g)
∑

J∈π([n−1])

∑
H∈J

∫
µ−[|H|]( ⊗

i∈H
fi)µ(fn)e−µ(g) L(dµ)×

×
∏

J∈J\{H}

Č
|J |
L ( ⊗

j∈J
fj ⊗ e−ζg)

= T11 + T12.

Now as above let us denote by Hj ∈ J ∈ π([n− 1]) the set such that j ∈ Hj.
Then we have

−T2 =
∑

J∈π([n−1])

n−1∑
j=1

Č
|Hj |
L ( ⊗

i∈Hj\{j}
fi ⊗ f{j,n} ⊗ e−ζg)

∏
J∈J\{Hj}

Č
|J |
L (⊗

i∈J
fi ⊗ e−ζg)

=
∑

J∈π([n−1])

∑
H∈J

∑
j∈H

Č
|H|
L ( ⊗

i∈H\{j}
fi ⊗ f{j,n} ⊗ e−ζg)

∏
J∈J\{H}

Č
|J |
L (⊗

i∈J
fi ⊗ e−ζg)

But now we have due to (4.2)

T12 + T2 =
∑

J∈π([n−1])

∑
H∈J

Č
|H|+1
L ( ⊗

i∈H∪{n}
fi ⊗ e−ζg)

∏
J∈J\{H}

Č
|J |
L (⊗

i∈J
fi ⊗ e−ζg).

So we conclude as in case of (Σn
L).

3. Observe finally that for any measure K on M··(X) there holds

C !,n
K (

n
⊗
j=1
fj ⊗ e−ζg) = Čn

K(
n
⊗
j=1

(fje
g)⊗ e−ζg)

and so
(
Σ!,n
L

)
straightforwardly follows.
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Corollary 4.3.2. Let |L| be of arbitrary order then we have for f1, . . . , fn ∈
Fbc,+(X)

νn=L(
n
⊗
j=1
fj) =

∑
J∈π([n])

∏
J∈J

ν
|J |
L ( ⊗

j∈J
fj), ν̌n=L(

n
⊗
j=1
fj) =

∑
J∈π([n])

∏
J∈J

ν̌
|J |
L ( ⊗

j∈J
fj).

Proof. Since the (factorial) moment measures are the marginals of the Camp-
bell measures of higher order, this is immediately obtained by setting g = 0
in theorem 4.3.1.

4.4 Representation of

Factorial Moment Measures

The main result is theorem 4.4.4. It gives, for a certain class of signed Lévy
pseudo measures L, a representation of the factorial moment measures of the
KMM process =L in terms of certain loop measures.

We shall now assume that the cumulant measures are invariant under
cyclic permutations and can be represented as

Θn(dx1 . . . dxn) = Bx1
n−1(dx2 . . . dxn)λ(dx1), (4.4)

where Bxn is a finite signed measure on Xn, Bx0 is a real number and λ ∈
M(X). Let us denote by Bx,εn the positive resp. negative part of Bxn and by
|Bxn| the variation of Bxn. We will assume throughout this section

Assumption 4.4.1. The variation

|L|(ϕ) =
∞∑
n=1

1

n

∫
Xn

ϕ(δx1 + . . .+ δxn) |Bx1
n−1|(dx2 . . . dxn)λ(dx1),

ϕ ∈ F+(M··(X)), of the signed Lévy pseudo measure L has moments of all
orders.

Lemma 4.4.2. If the cumulant measures are invariant under cyclic permu-
tations then we have

CL(h) =
∞∑
n=1

∫
Xn

h(x1, δx1 + . . .+ δxn) Θn(dx1 . . . dxn) , h ∈ L1(C|L|).
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Proof. We have

CL(h) =
∞∑
n=1

1

n

n∑
j=1

∫
Xn

h(xj, δx1 + . . .+ δxn) Θn(dx1 . . . dxn).

Now let us take a cyclic permutation such that j 7→ 1. Since δx1 + . . . + δxn
is unaffected by permutation of the xi we obtain for any j ∈ [n],∫

Xn

h(xj, δx1 + . . .+ δxn) Θn(dx1 . . . dxn)

=

∫
Xn

h(x1, δx1 + . . .+ δxn) Θn(dx1 . . . dxn).

Proposition 4.4.3. The factorial moment measures of L are given by

ν̌kL =
∑
ω∈Scyk

Cx1
k−1(dxω(1) . . . dxωk−1(1))λ(dx1),

where for m ≥ 1 and f1, . . . , fm ∈ Fbc,+(X)

Cxm(
m
⊗
j=1
fj) =

∞∑
n=m

∫
Xn

∑
1≤i1<...<im≤n

f1(xi1) . . . fm(xim)Bxn(dx1 . . . dxn) (4.5)

and Cx0 =
∞∑
n=1

Bxn−1(Xn−1). We will call {Cxm}∞m=0 the family of loop measures.

Proof. Let f1, . . . , fk ∈ Fbc,+(X), we have

ν̌kL(
k
⊗
j=1
fj) =

∫
L(dµ)µ−[k](

k
⊗
j=1
fj)

=

∫
L(dµ)µ(dx) (µ− δx)−[k−1](

k
⊗
j=2
fj)f1(x) = CL(h),

where h(x, µ) = f1(x)(µ− δx)−[k−1](
k
⊗
j=2
fj). Now observe that

h(x1, δx1 + . . .+ δxn) = 1[n](k) f1(x1)
n∑

i2,...,ik=2
ij 6=il,j 6=l

f2(xi2) . . . fk(xik).
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Furthermore

n∑
i2,...,ik=2
ij 6=il,j 6=l

f2(xi2) . . . fk(xik) =
∑

σ∈S{2,...,k}

∑
2≤i2<...<ik≤n

fσ(2)(xi2) . . . fσ(k)(xik).

So applying lemma 4.4.2 yields

ν̌kL(
k
⊗
j=1
fj) =

∑
σ∈S{2,...,k}

∫
X

f1(x1)
∞∑
n=k

∫
Xn−1∑

2≤i2<...<ik≤n

fσ(2)(xi2) . . . fσ(k)(xik)B
x1
n−1(dx2 . . . dxn)λ(dx1)

=
∑

σ∈S{2,...,k}

∫
X

f1(x1)Cx1
k−1(fσ(2) ⊗ . . .⊗ fσ(k))λ(dx1).

Now we observe as in [16] that S{2,...,m} ' Scy[m]. Moreover for m ≥ 2

S{2,...,m} → Scy[m]

σ 7→ (1, σ(2), . . . , σ(m))

is a bijection with inverse ω 7→ (i 7→ ωi−1(1)) for i ∈ {2, . . . ,m}. So we
finally conclude

νkL(
k
⊗
j=1
fj) =

∑
ω∈Scy

[k]

∫
X

f1(x)Cxk−1(fω1(1) ⊗ . . .⊗ fωk−1(1))λ(dx).

Example 4.4.1. If you recall the cumulant measures (4.3) of the Pólya point
processes we have

Bxn(
n
⊗
j=1
fj) = εnzn+1f1(x) . . . fn(x)

and Bx0 = z. So if we use that

∞∑
n=m

(
n

m

)
yn =

ym

(1− y)m+1
for y ∈ (−1, 1),

one obtains

Cxm(
m
⊗
j=1
fj) = εm

zm+1

(1− εz)m+1
f1(x) . . . fm(x).
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Thus the factorial moment measures of the signed Lévy pseudo measure of
the Pólya processes are given by

ν̌kLε,z,λ( ⊗
j∈[k]

fj) =
zk

(1− εz)k
(k − 1)!λ(f[k]) for f1, . . . , fk ∈ Fbc,+(X). (4.6)

We now have the tools at hand to establish (3.9). That is the represen-
tation of the factorial moment measures of the variation |L| of a signed Lévy
pseudo measure L of the form (3.7).

Example 4.4.2. Let ϑ : M··
f (X) \ {0} → R be some measurable function

and λ ∈ M◦(X) a diffuse Radon measure. Again we can think of ϑ as a
measurable symmetric function t∞n=0X

n → R. Since the cumulant measures
are given by (3.6) we have

Bxn−1 =
1

(n− 1)!
|ϑ(x, x2, . . . , xn)|λ(dx2) . . . λ(dxn).

So by symmetry of ϑ we obtain via the definition of the loop measures (4.5)

Cxm−1(
m−1
⊗
j=1

fj) =
∞∑

n=m−1

1

n!

(
n

m− 1

)∫
Xn

f1(x1) . . . fm−1(xm−1)×

× |ϑ(x, x1, . . . , xn)|λ(dx1) . . . λ(dxn)

for f1, . . . , fm−1 ∈ F+(X). So finally

ν̌m|L|(
m
⊗
j=1
fj) = (m− 1)!

∞∑
n=m−1

1

(m− 1)!(n− (m− 1))!

∫
X

∫
Xn

f1(x1) . . . fm−1(xm−1)fm(x)|ϑ(x, x1, . . . , xn)|λ(dx1) . . . λ(dxn)λ(dx)

=

∫
Xm

λ(dx1) . . . λ(dxm) f1(x1) . . . fm(xm)
∞∑

n=m−1

1

(n− (m− 1))!∫
Xn+1−m

λ(dxm+1) . . . λ(dxn+1) |ϑ(x1, . . . , xm, xm+1, . . . , xn+1)|

=

∫
Xm

λ(dx1) . . . λ(dxm) f1(x1) . . . fm(xm)∫
M··f (X)

Π(dµ) |ϑ(δx1 + . . .+ δxm + µ)|,

which gives us (3.9).

If we now combine corollary 4.3.2 and proposition 4.4.3 we get
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Theorem 4.4.4. The factorial moment measures of =L, where the signed
Lévy pseudo measure L is defined by the family of cumulant measures given
in (4.4), can be represented by

ν̌k=L(
k
⊗
j=1
fj) =

∑
σ∈Sk

∏
ω∈σ

∫
fiω(x)Cx`(ω)−1(fω1(iω) ⊗ . . .⊗ fω`(ω)−1(iω))λ(dx),

where f1, . . . , fk ∈ Fbc,+(X). The above product has to be taken over all cycles
ω in σ, iω is any element of the cycle ω and `(ω) denotes its length.

Example 4.4.3. The factorial moment measures of the Pólya point processes
are given by

ν̌kP εz,λ =
zk

(1− εz)k
λε[k].

Proof. We have

ν̌kP εz,λ(
k
⊗
j=1
fj) =

zk

(1− εz)k

∑
σ∈Sk

εk−|σ|
∏
ω∈σ

λ(fω).

But the above sum coincides with λε[k](
k
⊗
j=1
fj) due to lemma 4.1.3.

So apart from a constant the factorial moment measures and Schur mea-
sures coincide in case of the Pólya point processes.

4.5 Permanental and Determinantal Processes

Let λ ∈ M(X) and k : X ×X 7→ R be a positive definite kernel, that is for
every x1, . . . , xn ∈ X and z1, . . . , zn ∈ R we have

n∑
i,j=1

zik(xi, xj)zj ≥ 0.

Consider the following two families of cumulant measures, ε ∈ {+1,−1}

Θn,ε(dx1 . . . dxn)

= εn−1 k(x1, x2)k(x2, x3) . . . k(xn−1, xn)k(xn, x1)λ(dx1) . . . λ(dxn). (4.7)

Let us denote by Lε the signed cluster pseudo measure corresponding to the
family {Θn,ε}∞n=1 of cumulant measures given by formula (4.7). Furthermore
let us denote by k(n)(x, y) =

∫
k(x, z)k(n−1)(z, y)λ(d z), k(1) = k, n ∈ N the

convoluted kernels of k, in case the integral is well defined. Borrowing the
terminology from Georgii and Yoo [18] we will call k the interaction kernel.



60 CHAPTER 4. PALM AND MOMENT MEASURES

Theorem 4.5.1. If the interaction kernel k is positive definite with

‖k‖∞ := sup
x,y∈X

|k(x, y)| <∞

α := sup
x∈X

∫
|k(x, y)|λ(d y) < 1, (4.8)

then there exist point processes =ελ,k such that Θn,ε, given in (4.7), are their
associated cumulant measures. Moreover =+

λ,k is a permanental point process

to the kernel K+ =
∑

m≥1 k
(m) and =−λ,k is a determinantal point process to

the kernel K− =
∑

m≥1(−1)m−1k(m). That is the correlation functions ϑn,ε
(see definition 2.1.3) of the processes =ελ,k are given by

ϑn,ε(x1 . . . xn) =
∑
σ∈Sn

εn−|σ|
n∏
j=1

Kε(xj, xσ(j)).

We call Kε the correlation kernel of =ελ,k.

Proof. A straightforward computation shows that

ν1
|Lε|(f) =

∑
n≥1

∫
f(x)|k|(n)(x, x)λ(dx) for f ∈ Fbc,+(X).

Furthermore we have the following estimate ‖|k|(n)‖∞ ≤ ‖k‖∞αn−1, which
yields ν1

|Lε|(f) < ∞. Let us verify non-negativity of the Schur measures.
Recall from theorem 3.1.3 that the Schur measures are expressed in terms of
the cumulant measures by

%k,ε(
k
⊗
j=1
fj) =

∑
σ∈Sk

∏
ω∈σ

Θ`(ω),ε( ⊗
j∈ω
fj).

Since Θn,ε is only invariant under cyclic permutations and not symmetric we
have to set the order of integration in Θ`(ω),ε( ⊗

j∈ω
fj). The convention will be

that we integrate the coordinates along the cycle ω. That is

%k,ε =
∑
σ∈Sk

εk−|σ|
∏
ω∈σ

`(ω)∏
j=1

k(xωj−1(iω), xωj(iω))λ(dx1) . . . λ(dxk)

=
∑
σ∈Sk

εk−|σ|
∏
ω∈σ

`(ω)∏
j=1

k(xωj−1(iω), xσ(ωj−1(iω)))λ(dx1) . . . λ(dxk)

=
∑
σ∈Sk

εk−|σ|
k∏
j=1

k(xj, xσ(j))λ(dx1) . . . λ(dxk).
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where as above iω ∈ ω, ω0(iω) = iω and |σ| denotes the number of cycles in
σ. So we obtain that the Schur measures have densities with respect to the
products of λ and are given by

d %n,+
dλn

= per(M) and
d %n,−
dλn

= det(M),

whereM is the matrix {k(xi, xj)}1≤i,j≤n and per(M) =
∑

σ∈Sn
∏n

j=1 M(j, σ(j))
is the so called permanent of M . Since M is a positive definite matrix it is
well known (see [6]) that per(M) ≥ det(M) ≥ 0, which implies non negativ-
ity of the Schur measures. So theorem 3.1.3 gives us the existence of point
processes =ελ,k.

Now let us compute the loop measures of =ελ,k. Let n ≥ m ≥ 1 and
1 ≤ i1 < . . . < im ≤ n and f1, . . . , fm ∈ Fbc,+(X) then we have∫
Xn

f1(xi1) . . . fm(xim)Bxn(dx1 . . . dxn)

= εn
∫
Xn

f1(xi1) . . . fm(xim) k(x, x1)k(x1, x2) . . . k(xi1−1, xi1)k(xi1 , xi1+1) . . .

k(xi2−1, xi2)k(xi2 , xi2+1) . . . k(xim−1, xim)k(xim , xim+1) . . . k(xn, x) dλn

= εm
∫
Xm

f1(y1) . . . fm(ym) εi1−1k(i1)(x, y1)εi2−i1−1k(i2−i1)(y1, y2) . . .

εim−im−1−1k(im−im−1)(ym−1, ym)εn−imk(n+1−im)(ym, x)λ(d y1) . . . λ(d ym)

Now since we have for gj : N→ R, j ∈ [m]

∞∑
n=m

∑
1≤i1<...<im≤n

g1(i1)g2(i2 − i1) . . . gm(im − im−1)gm+1(n+ 1− im)

=
∞∑

j1,...,jm+1=1

g1(j1) . . . gm+1(jm+1)

we obtain by introducing Kε =
∞∑
j=1

εj−1k(j)

Cxm(
m
⊗
j=1
fj) = εm

∫
Xm

f1(x1) . . . fm(xm)Kε(x, x1)Kε(x1, x2) . . . Kε(xm, x) dλm

(4.9)
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Now theorem 4.4.4 yields the assertion

ν̌n=ελ,k =
∑
σ∈Sn

εn−|σ|
n∏
j=1

Kε(xj, xσ(j)) dλn.

For another approach to the construction of permanental and determi-
nantal point processes we refer to [66] and [69], who use the Kolmogorov
extension theorem for the existence of the thermodynamic limit. Also, dif-
ferently to [66, 69], we are imposing conditions on the interaction and not on
the correlation kernel. If λ ∈M◦(X) then proposition 3.1.6 shows that =ελ,k
is simple.
There are interesting examples, which will be presented below, where the
interaction kernel k(x, y) does only depend on x − y. In this case theorem
4.5.1 can be formulated as follows:

Corollary 4.5.2. Let k(x, y) = ψ(x − y), where ψ is a bounded positive
definite function such that ‖ψ‖1 := λ(|ψ|) < 1. Then the corresponding
permanental and determinantal processes =ελ,k exist.

Characteristic functions ψ are positive definite and bounded. So we still
need to verify ‖ψ‖1 < 1. In the case X = R Móricz [49] has given suffi-
cient conditions for the Lebesgue integrability of ψ. Let us give two typical
examples:

Example 4.5.1. Let X = Rd and

gz(x) =
z

(2πβ)d/2
exp

(
−‖x‖

2

2β

)
, x ∈ Rd,

be a scaled gaussian density where z ∈ (0, 1) and β > 0 are some parameters.
It is well known that gz is positive definite and if we let λ the Lebesgue mea-
sure on Rd then ‖gz‖1 = z < 1. Thus there exists a permanental point process
=+
λ,gz

with interaction kernel gz(x−y). It is called the ideal Bose gas and was
studied in [16]. Fichtner has shown in [16] that the correlation functions of
=+
λ,gz

coincide with the reduced density matrices of a locally normal state ω

of Boson systems on Rd.
Moreover there exists a determinantal point process =−λ,gz with interaction

kernel gz(x− y). We call here =−λ,gz the corresponding ideal Fermi gas.

Example 4.5.2. Let X = R and λ the Lebesgue measure on R

χ(x) = γ exp(−|x|
α

), x ∈ R, (4.10)
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where α, γ > 0 are chosen such that ‖χ‖1 = 2αγ < 1. It is well known that
χ is positive definite. So corollary 4.5.2 yields that there exist permanental
and determinantal point processes with interaction kernel given by χ(x − y)
under the condition 2αγ < 1.

Macchi [38] gave an example of a determinantal point process with cor-
relation kernel given by χ as defined in (4.10). In order to apply the above
construction we have to ask which interaction kernel j(x − y) has the cor-
responding correlation kernel χ(x − y). En passant, we will also construct
the permanental process with correlation kernel χ(x − y). To incorporate
also the Boson case we write the index jε. If we recall theorem 4.5.1 (and
corollary 4.5.2) then we see that jε should be chosen such that ‖jε‖∞ < ∞,
‖jε‖1 < 1 and

χ =
∞∑
n=1

εn−1j∗nε , (4.11)

where j∗nε denotes n-times convolution of jε with itself. Taking characteristic
functions, indicated by theˆ, of both sides of (4.11) yields

χ̂ =
ĵε

1− ε ĵε
that is ĵε =

χ̂

1 + ε χ̂
.

Now it is well known (see also [18] example 3.11) that χ̂(t) = 2αγ
1+(αt)2 . There-

fore the characteristic function of jε should be given by ĵε = 2αγ
1−2αγ+(αt)2 .

So

jε(x) = γε exp(−|x|
αε

), αε =
α√

1 + ε 2αγ
, γε =

γ√
1 + ε 2αγ

,

is the right choice. jε is bounded and we require ‖jε‖1 = 2αεγε = 2αγ
1+ε 2αγ

< 1,

that means (1− ε)2αγ < 1. To summarize we have

Example 4.5.3. There exists a determinantal point process with correlation
kernel χ(x− y) if 4αγ < 1.
Furthermore there exists a permanental point process with correlation kernel
χ(x− y) for any choice of α, γ > 0.

Remark that Macchi [38] and Soshnikov [69] only require 2αγ ≤ 1 for the
construction of the corresponding determinantal process =−λ,j− . Macchi [38]

has shown that if restricted to [0,∞), =−λ,j− is a renewal process. That is if
we order its realization µ = δx1 + δx2 + δx3 + . . . such that x1 ≤ x2 ≤ x3 ≤ . . .
then the variables s1 = x2 − x1, s2 = x3 − x2, . . . are i.i.d. under =−λ,j− .
Furthermore Macchi computed the distribution of the sj explicitly. Later
Soshnikov obtained in [69] that if a determinantal point process is a renewal
process its correlation kernel has to be given by χ.
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4.6 Palm Kernels in the Classical Case

Let us for the moment consider the classical case of non negative L that is
L− is the zero measure. Corollary 4.3.2 yields that for any J ∈ π([n]) the

measure
∏
J∈J

ν
|J |
L ((dxj)j∈J) is absolutely continuous to νn=L and so we can

introduce the Radon-Nykodim density

ϑJ (x1, ..., xn) =

∏
J∈J

ν
|J |
L ((dxj)j∈J)

νk=L(dx1 . . . dxn)
.

By Mecke’s argument as outlined in lemma 2.2.1 the equations (Σn
L) and(

Σ!,n
L

)
can be extended from test functions f1 ⊗ . . . ⊗ fn ⊗ e−ζg , where

f1, . . . , fn, g ∈ Fbc,+(X) to arbitrary h ∈ F+(Xn ×M··(X)). That is

(Σn
L) Cn

=L(h) =

∫
=L(dµ)

∑
J∈π([n])

∫ ∏
J∈J

C
|J |
L ((dxj)j∈J , d ηJ)

h(x1, . . . , xn;
∑
J∈J

ηJ + µ).

Now if we disintegrate the higher order Campbell measures of L according
to (2.3) and using the densities ϑJ we have

Cn
=L(h) =

∫
νn=L((dxj)j∈[n])

∫
=L(dµ)

∑
J∈π([n])

ϑJ ((xj)j∈[n])×

×
∏
J∈J

L(xj)j∈J (d ηJ)h((xj)j∈[n];
∑
J∈J

ηJ + µ).

So the higher order Palm kernels, as defined in section 2.2, of =L can be
directly read of as

(=L)x1,...,xn
= =L ∗

∑
J∈π([n])

ϑJ ((xj)j∈[n]) ∗
J∈J

L(xj)j∈J .

This representation is due to Kallenberg [29] section 5. If we take a look at
theorem 4.3.1 and corollary 4.3.2 then we see that the reduced higher order
Palm kernels of =L have a similar representation

(=L)!
x1,...,xn

= =L ∗
∑

J∈π([n])

ϑ̌J ((xj)j∈[n]) ∗
J∈J

L!
(xj)j∈J

. (4.12)
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Here ϑ̌J is the derivative of the corresponding factorial moment measures.
As Kallenberg remarked in [29] in the non-reduced situation we have∑

J∈π([n])

ϑ̌J (x1, . . . , xn) = 1 ν̌n=L − a.e.[(x1, . . . , xn)]. (4.13)

This can be established by taking the left hand side of (4.13) as a density for
ν̌n=L and then by observing that this new measure is actually the old one ν̌n=L .

In particular (4.13) says that J 7→ ϑ̌J (x1, . . . , xn) is a probability on π([n]).

Application to Pólya Sum Processes

Let us start by computing the reduced Palm kernels of the Lévy measure L
of the Pólya sum process.

Lemma 4.6.1. Let L be the Lévy measure of the Pólya sum process P+
z,λ then

we have
L!
x1,...,xm

= P+
z,δx1+...+δxm

for x1, . . . , xm ∈ X.

Proof. Remark that for n ≥ m, (nδx)
−[m](f1⊗. . .⊗fm) = n!

(n−m)!
f1(x) . . . fm(x)

and for n < m, (nδx)
−[m](f1 ⊗ . . .⊗ fm) = 0. Let now h ∈ F+(X ×M··(X))

C !,m
L (h) =

∞∑
n=1

zn

n

∫
λ(dx)(nδx)

−[m](dx1 . . . dxm)h(x1, . . . , xm;nδx −
m∑
j=1

δxj)

=
zm

(1− z)m
(m− 1)!

∫
λ(dx)δx(dx1) . . . δx(dxm)

(1− z)m

zm
1

(m− 1)!

∞∑
n=m

zn

n

n!

(n−m)!
h(x1, . . . , xm; (n−m)δx1)

=

∫
ν̌mL (dx1 . . . dxm) (1− z)m

∞∑
n=m

zn−m
(
n− 1

m− 1

)
h(x1, . . . , xm; (n−m)δx1).

For the last equation observe that ν̌mL has been determined in (4.6). So after
an index shift we obtain

L!
x,...,x(ϕ) = (1− z)m

∞∑
j=0

zj
(
j +m− 1

j

)
ϕ(jδx) for ϕ ∈ F+(M··(X)),
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that means L!
x,...,x places a negative binomial distributed number of points on

x. Since ν̌mL is concentrated on the diagonal Dm = {(x, . . . , x) ∈ Xm|x ∈ X}
see (4.6), L!

x1,...,xm
can be set arbitrarly for (x1, . . . , xm) ∈ Xm \ Dm. Now

recall that

P+
z,mδx

(ϕ) = (1− z)m
∞∑
j=0

zj

j!

∫
ϕ(δx1 + . . .+ δxj) (mδx)

+[j](dx1 . . . dxj)

for ϕ ∈ F+(M··(X)). But (mδx)
+[j](f1 ⊗ . . . ⊗ fj) = (j+m−1)!

(m−1)!
f1(x) . . . fj(x),

whence L!
x,...,x = P+

z,mδx
follows.

Now we are prepared to state the result

Theorem 4.6.2. Let z ∈ (0, 1) and λ ∈M(X) then the reduced Palm kernels
of the Pólya sum process are given by(

P+
z,λ

)!

x1,...,xm
= P+

z,λ+δx1+...+δxm
for x1, . . . , xm ∈ X.

Proof. Recall (4.12) and let us start by computing ∗
J∈J

L!
(xj)j∈J

. The Pólya

sum process has the following property: For λ, ρ ∈ M(X) we have P+
z,λ ∗

P+
z,ρ = P+

z,λ+ρ. Thus

∗
J∈J

L!
(xj)j∈J

= P+
z,δx1+...+δxm

.

But if we insert this in (4.12) and use (4.13) we obatin the assertion.

In [28] Kallenberg remarked in section 12.4. “Links to conditioning“ that
the reduced Palm distribution P !

x1,...,xn
of a point process P can be interpreted

as P conditioned on the event that δx1 + . . . + δxn is part of the realization
and then by removing δx1 + . . .+ δxn from it.
For Shirai and Takahashi [66] a Boson process is a point process such that
a point realization increases the probability of other points occuring in its
neighborhood (attractiveness property). In this sense theorem 4.6.2 says that
the Pólya sum process can be thought of as a Boson process.



Chapter 5

Gibbs Processes, Polymers
and Quantum Gases

In this chapter we will see that a rich class of point processes appearing
in statistical mechanics can be constructed via CEM. A main tool is that the
abstract cluster expansion developed in the recent paper [58] of Phogosyan and
Ueltschi gives sufficient conditions for |L|, the variation of the signed cluster
pseudo measure L, to be of first order. Polymers, classical and quantum
continuous systems are constructed. In particular, classical limiting Gibbs
states exist and can be characterized as Gibbs states. Moreover also Ginibre’s
quantum Bose gas is constructed but not characterized as a Gibbs state.

5.1 Abstract Cluster Expansions

for Point Processes

We are in the old setting: X is a Polish space equipped with the Borel
σ-field B(X) and B0(X) denotes the ring of bounded sets of X as before.
Moreover a Radon measure ρ ∈M(X) and a measurable symmetric function
φ : X×X → R∪{+∞} is given. φ will be called pair potential in the sequel.
Set

ξ(x, y) = e−φ(x,y) − 1, x, y ∈ X.

We let ξ = −1 if φ = +∞. Several assumptions on the potential φ have to
be imposed:

67
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(A1) (Weak stability)
There exists b ∈ F+(X) such that for n ≥ 1

∑
1≤i<j≤n

φ(xi, xj) ≥ −
n∑
j=1

b(xj) ρn − a.e.[(x1, . . . , xn)].

If b can be chosen bounded then weak stability becomes stability in the
sense of Ruelle [63] definition 3.2.1.

(A2) (Weak regularity)
There exists a ∈ F+(X) such that∫

ρ(d y) |1− e−φ(x,y)| e(a+2b)(y) ≤ a(x) ρ− a.e.[x].

We remark that for bounded a and b weak regularity implies regularity
of φ in the sense of Ruelle [63] definition 4.1.2.
The following can replace (A2):

(A2′) There exists a ∈ F+(X) such that∫
ρ(d y) |φ̄(x, y)| e(a+b)(y) ≤ a(x) ρ− a.e.[x],

where

φ̄(x, y) =

{
φ(x, y), if φ(x, y) <∞
1, if φ(x, y) =∞.

(A3) (Integrability of a, b)

e(a+2b)(x) ρ(dx) ∈M(X).

Under condition (A2′) we will always work instead of condition (A3)
with

(A3′)
e(a+b)(x) ρ(dx) ∈M(X).

For our further analysis in this chapter the so called Ursell function

u(x1, ..., xn) =
∑
G∈Cn

∏
{i,j}∈G

ξ(xi, xj) and u(x1) = 1,

for x1, . . . , xn ∈ X, where we denote by Cn the set of all undirected connected
graphs with n vertices and the product has to be taken over all edges inG, will
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be of considerable importance. Remark that the Ursell function is symmetric
in its arguments. If we introduce the energy

E(µ) =
∑

1≤i<j≤n

φ(xi, xj)

of a finite point measure µ = δx1 + . . .+δxn , then Ruelle’s algebraic approach
[63] chapter four yields that

e−E(δx1+...+δxn ) =
∑

J∈π([n])

∏
J∈J

u((xj)j∈J). (5.1)

The following theorem will serve as a main lemma for us.

Theorem 5.1.1 (Poghosyan/Ueltschi [58]). Assume conditions (A1) and
(A2) respectively (A1) and (A2′). Then we have

∞∑
n=1

1

(n− 1)!

∫
Xn−1

ρ(dx1) . . . ρ(dxn−1) |u(x, x1, . . . , xn−1)| ≤ ea(x)+2b(x).

Under condition (A2′) this holds true with eb(x) instead of e2b(x).

Now we can formulate our existence result.

Theorem 5.1.2. Assume φ is a pair potential which satisfies (A1), (A2) and
(A3) respectively (A1), (A2′) and (A3′). Then there exists a point process
=< with signed Lévy pseudo measure

<(ϕ) =
∞∑
n=1

1

n!

∫
Xn

ϕ(δx1 + . . .+ δxn)u(x1, . . . , xn)ρn(dx1 . . . dxn), (5.2)

for ϕ ∈ L1(|<|). That is its cumulant measures are given by

Θn(dx1 . . . dxn) =
1

(n− 1)!
u(x1, . . . , xn) ρn(dx1 . . . dxn).

Proof. For theorem 3.1.3 to hold it suffices to show non negativity of the
Schur measures %n and that |<| is of first order. Let us first consider the
Schur measures

%n(
n
⊗
j=1
fj) =

∑
σ∈Sn

∏
ω∈σ

Θ`(ω)(⊗
i∈ω
fi) =

∑
J∈π([n])

∏
J∈J

(|J | − 1)! Θ|J |( ⊗
j∈J
fj)

=

∫
Xn

f1(x1) . . . fn(xn) e−E(δx1+...+δxn )ρn(dx1 . . . dxn),
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for f1, . . . , fn ∈ Fbc,+(X). The last equation is due to (5.1). Now let us give
the estimate for the first moment measure of |<|:

ν1
|<|(f)

=
∞∑
n=1

1

(n− 1)!

∫
X

∫
Xn−1

f(x) |u(x, x1, . . . , xn−1)|ρn−1(dx1 . . . dxn−1)ρ(dx)

≤
∫
X

f(x) ea(x)+2b(x) ρ(dx) <∞ for f ∈ Fbc,+(X).

The first inequality is due to theorem 5.1.1 and the second holds true by
(A3) respectively (A3′) if (A2′) is satisfied.

5.2 The Classical Case: Gibbs Processes

As in the previous section X denotes any Polish space. We let

ρ = z λ

where λ ∈M(X) and z ∈ (0,∞) is some parameter called the activity. The
pair potential φ will satisfy

(A i) (Stability)
In assumption (A1) we can choose b to be a non negative constant
B ≥ 0.

(A ii) (Regularity)
In assumption (A2) we can also choose a to be constant. That is

Cφ := sup
x∈X

∫
λ(d y) |1− e−φ(x,y)| ≤ z−1e−2B ae−a ≤ z−1e−2B−1,

since a 7→ ae−a attains its maximum at a = 1.

Now theorem 5.1.2 yields

Corollary 5.2.1. Let φ be a stable and regular, that is z ∈ (0, e
−2B−1

Cφ
), pair

potential. Then =<, which will be denoted Gz,φ in the sequel, exists.

Remark that stable pair potentials are bounded from below E(δx + δy) =
φ(x, y) ≥ −2B.
In [63] remark to definition 4.1.2. Ruelle gave the important hint that reg-
ularity of a pair potential implies the existence of a set with finite Lebesgue
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measure such that the potential is absolutely integrable on its complement.
Ruelle is in the setting of translation invariant potentials. So the below re-
mark is a straightforward generalization to arbitrary pair potentials. In the
sequel let us denote φx : y 7→ φ(x, y).

Remark 5.2.2. Let ε > 0. Since |1−e−t| ≥ c(ε) for |t| > ε for some c(ε) > 0
we have

Cφ ≥ sup
x∈X

∫
{|φx|>ε}

λ(d y) |1− e−φx(y)| ≥ c(ε) sup
x∈X

λ({|φx| > ε}).

Furthermore since |1− e−t| ≥ c̃(ε)|t| for |t| ≤ ε for some c̃(ε) > 0 we have

Cφ ≥ sup
x∈X

∫
{|φx|≤ε}

λ(d y) |1− e−φx(y)| ≥ c̃(ε) sup
x∈X

∫
{|φx|≤ε}

λ(d y) |φx(y)|.

The conditional energy at x ∈ X given the configuration µ ∈ M··
f (X) is

defined as

E(x, µ) =

∫
φ(x, y)µ(d y).

Later it will be important to consider E(x, µ) also for infinite µ. Remark
that for any x ∈ X and µ ∈M··

f (X)

E(µ+ δx) = E(µ) + E(x, µ). (5.3)

Furthermore let us denote by

γ(µ, dx) = e−E(x,µ) ρ(dx) for µ ∈M··
f (X)

the so called Boltzmann kernel. Remark that due to (5.3) the iterated kernels
of γ evaluated for the zero boundary configuration are given by

γ(k)(0; dx1 . . . dxk) = e−E(δx1+...+δxk ) ρ(dx1) . . . ρ(dxk). (5.4)

The following tree estimate of the Ursell function due to Poghosyan and
Ueltschi will be fundamental in the sequel.

Theorem 5.2.3 (Poghosyan, Ueltshi). Let φ be a weakly stable pair potential
then

|u(x1, ..., xn)| ≤
n∏
j=1

e2b(xj)
∑
G∈Tn

∏
{i,j}∈G

|ξ(xi, xj)|.

Here Tn denotes the set of trees with n vertices.
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Since we are here in the setting of stable φ the b(xj) can be replaced by
the stability constant B ≥ 0 in the above equation. As already remarked in
[40] the number |Tn| is dominated by cnn! for some constant c, which can be
taken to be c = e. We obtain that, uniformly in x ∈ X,∫

λ(dx2) . . . λ(dxn) |u(x, x2, . . . , xn)| ≤
(
e2B
)n
enn!Cn−1

φ . (5.5)

So by using (5.5) we obtain as in theorem 5.1.2 for f ∈ Fbc,+(X)

ν1
|<|(f) =

∞∑
n=1

zn

(n− 1)!

∫
Xn

f(x)|u(x, x2, . . . , xn)|λ(dx)λ(dx2) . . . λ(dxn) <∞

if we let z ∈ (0, e
−2B−1

Cφ
). In fact the tree estimate, theorem 5.2.3, is vital in the

proof of the main result, theorem 5.1.1, in [58], which provides a sufficient
condition for the convergence of the cluster expansion method. The next
task is to identify the above constructed point process Gz,φ as a Gibbs point
process where the interaction is given by the pair potential φ. Remark that
Gz,φ is simple due to proposition 3.1.6 if λ ∈M◦(X).

Theorem 5.2.4. Let φ be a stable and regular pair potential. Then for
z ∈ (0, e

−4B−1

Cφ
) Gz,φ exists, the Boltzmann kernel γ is Gz,φ-a.s. well defined

and Gz,φ is a solution to
(
Σ′γ
)
. That is Gz,φ is a Papangelou process with

the Boltzmann kernel γ as Papangelou kernel. Papangelou processes are in-
troduced in definition 2.5.1.

Proof. Since existence of Gz,φ was already established it remains to be seen
that it satisfies the integration by parts formula

(
Σ′γ
)
. Since the Schur mea-

sures %k coincide with γ(k)(0; ·), see (5.4) the finite point process QΛ coincides
with the Papangelou point process P 0

γΛ
for Λ ∈ B0(X), where γΛ denotes the

Boltzmann kernel restricted to Λ. It is straightforward to see that γ satisfies
the cocycle condition. So with Zessin’s lemma 2.5.3 we conclude that QΛ is
a solution to

(
Σ′γΛ

)
. That is

CQΛ
(h) =

∫
M··(Λ)

∫
Λ

h(x, µ+ δx) γ(µ, dx)QΛ(dµ), (5.6)

for h ∈ F+(Λ ×M··(Λ)). In the sequel let h be of the form f ⊗ e−ζg for
f, g ∈ Fbc,+(X) and Λ such that supp(f), supp(g) ⊂ Λ. In corollary 3.3.2
convergence of CQΛ

(h) → CGz,φ(h) as Λ ↑ X was proved. Remark that
E(x, µ) = ζφx(µ), so the right hand side of (5.6) can be written as∫

X

f(x)e−g(x)LQΛ
(g + φx) zλ(dx). (5.7)
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Certainly in order to prove the theorem we would like to have

LQΛ
(g + φx)→ LGz,φ(g + φx) as Λ ↑ X.

We already now that LQΛ
(f)→ LGz,φ(f) for f ∈ Fbc,+(X). But since g + φx

can be unbounded, negative and does not need to have bounded support it is
not clear whether convergence of the Laplace transforms on Fbc,+(X) imply
convergence for g + φx. This difficulty will be overcome by the use of the
modified Laplace functionals K<Λ

resp. K< of QΛ resp. Gz,φ. We will first
establish K<Λ

(g + φx) → K<(g + φx) and then show that we actually have
LQΛ

(g + φx) = K<Λ
(g + φx) and LGz,φ(g + φx) = K<(g + φx). The main

technical result will be the following

Lemma 5.2.5. Choose ε > 0 such that z < e−4B−1−ε

Cφ
and let Υ be the function

on M··
f (X)

Υ(µ) =

{
2 e2Bµ(X), for supp(µ) ∩Ox 6= ∅
µ(|φx|) eεµ(X), for µ ∈M··

f (O
c
x),

where Ox = supp(g)∪{|φx| > ε}. Then we have |1−e−ζg+φx | ≤ Υ onM··
f (X)

and there exists some α ∈ R+, independent of x ∈ X, such that |<|(Υ) ≤ α.

Proof. Since φx(y) ≥ −2B for all y ∈ X we certainly have |1− e−µ(g+φx)| ≤
1 + e2Bµ(X) ≤ 2e2Bµ(X) for all µ ∈ M··

f (X). Let now µ ∈ M··
f (O

c
x) since

Oc
x = supp(g)c ∩ {|φx| ≤ ε} we have µ(g) = 0 and |µ(φx)| ≤ εµ(X). So due

to |1− et| ≤ |t|e|t| we have |1− e−µ(g+φx)| ≤ Υ(µ). Let us name γ = e2B+1Cφ
in the sequel.

|<|(1M··f (Ocx) Υ)

=
∞∑
n=1

zn

n!
eεn

∫
(Ocx)n

n∑
i=1

|φx(xi)||u(x1, ..., xn)|λ(dx1)...λ(dxn)

≤
∞∑
n=1

zneεn

(n− 1)!

∫
Ocx

λ(d y) |φx(y)|
∫

Xn−1

λ(dx1)...λ(dxn−1) |u(y, x1, ..., xn−1)|

≤ 1

Cφ

∞∑
n=1

n(zeεγ)n
∫
Ocx

λ(d y) |φx(y)|

≤ 1

Cφ

1

(1− zeεγ)2
λ
(
|φx|1{|φx|≤ε}

)
≤ 1

(1− zeεγ)2

1

c̃(ε)
=: α1.

The first inequality is due to the symmetry of u and replacing (n− 1)-times
integration over Oc

x by integration over X. For the second inequality we have
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used the estimate (5.5) and the last inequality is due to remark 5.2.2.
Since Xn \ (Oc

x)
n = (Ox ×Xn−1) ∪ (X ×Ox ×Xn−2) ∪ ... ∪ (Xn−1 ×Ox) we

have

|<|(1{µ∈M··f (X)|supp(µ)∩Ox 6=∅}Υ)

≤
∞∑
n=1

zn

n!
n2
(
e2B
)n ∫
Ox

λ(d y)

∫
Xn−1

λ(dx1)...λ(dxn−1) |u(y, x1, ..., xn−1)|

≤ 2

Cφ

∞∑
n=1

n(ze2Bγ)n λ(Ox)

≤ 2

Cφ

1

(1− ze2Bγ)2
(λ(supp(g)) + λ({|φx| > ε}))

≤ 2

Cφ

1

(1− ze2Bγ)2
(λ(supp(g)) +

Cφ
c(ε)

) =: α2.

For the second inequality we have used the estimate (5.5). The last inequality
follows by remark 5.2.2. And so we can choose α = α1 + α2.

Corollary 5.2.6. We have K<Λ
(g + φx) → K<(g + φx) as Λ ↑ X and there

exists a constant α̃, independent of Λ and x, such that K<Λ
(g + φx) ≤ α̃.

Proof. By the preceding lemma we have |(<− <Λ)(1− e−ζg+φx )| ≤ |<|((1−
1M··(Λ))Υ) ↓ 0 as Λ ↑ X by dominated convergence. Furthermore we certainly
have |<Λ(1− e−ζg+φx )| ≤ |<|(Υ) ≤ α, so we can choose α̃ = eα.

To shorten notation let us denote φ̃ = g + φx in the sequel.

Lemma 5.2.7. We have

LGz,φ(φ̃) = K<(φ̃) and LQΛ
(φ̃) = K<Λ

(φ̃).

Proof. Let us start by establishing LGz,φ(φ̃+) = K<(φ̃+). Let (fn)n≥1 be an

increasing sequence of functions in Fbc,+(X) such that fn ↑ φ̃+ as n → ∞,
i.e. fn = min{φ̃+, n}1Λn with Λn ∈ B0(X) and Λn ↑ X. Remark that due
to monotone convergence there holds limn→∞ ζfn = ζφ̃+

on M··(X). Thus

with 1 − e−ζfn ≤ 1 − e
−ζφ̃+ ≤ Υ we conclude by dominated convergence

<(1 − e−ζfn ) → <(1 − e−ζφ̃+ ) as n → ∞, which implies the last equality in
the following expression.

LGz,φ(φ̃+) = lim
n→∞

LGz,φ(fn) = lim
n→∞

K<(fn) = K<(φ̃+).
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The first equality above can also be justified by dominated convergence and
the second is due to fn ∈ Fbc,+(X). Now let us treat the general case.

<(1− e−ζφ̃) =

∫ (
1− e−µ(φ̃+)

∞∑
j=0

µ(φ̃−)j

j!

)
<(dµ)

=

∫ (
1− e−µ(φ̃+)

)
<(dµ)−

∫ ∞∑
j=1

e−µ(φ̃+)µ(φ̃−)j

j!
<(dµ)

The second equality above is due to the following: Since e
ζφ̃− − 1 ≤ Υ we

have∫ ∞∑
j=1

e−µ(φ̃+)µ(φ̃−)j

j!
|<|(dµ) ≤

∫ (
eµ(φ̃−) − 1

)
|<|(dµ) <∞. (5.8)

According to the monotone convergence theorem we are allowed to exchange
in the below equation the sum with the integrals.∫ ∞∑

j=1

e−µ(φ̃+)µ(φ̃−)j

j!
<(dµ) =

∞∑
j=1

1

j!
Cj
<(φ̃⊗j− ⊗ e

−ζφ̃+ ).

The estimate (5.8) also shows absolute convergence of the above right hand
side. So we have by lemma 3.1.2

exp

[
∞∑
j=1

Cj
<(φ̃⊗j− ⊗ e

−ζφ̃+ )

j!

]
= 1 +

∞∑
j=1

1

j!

∑
J∈π([j])

∏
J∈J

C
|J |
< (φ̃

⊗|J |
− ⊗ e−ζφ̃+ ).

Collecting everything together we obtain

K<(φ̃) = K<(φ̃+) exp

[
∞∑
j=1

Cj
<(φ̃⊗j− ⊗ e

−ζφ̃+ )

j!

]

= LGz,φ(φ̃+)

1 +
∞∑
j=1

1

j!

∑
J∈π([j])

∏
J∈J

C
|J |
< (φ̃

⊗|J |
− ⊗ e−ζφ̃+ )


= LGz,φ(φ̃+) +

∞∑
j=1

Cj
Gz,φ

(φ̃⊗j− ⊗ e
−ζφ̃+ )

j!

=

∫
e−µ(φ̃+)

∞∑
j=0

µ(φ̃−)j

j!
Gz,φ(dµ) = LGz,φ(φ̃).
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The third equation is due to theorem 4.3.1 equation (Σn
L), since (5.8) implies

νn|<|(φ̃
⊗n
− ) < ∞ for n ≥ 1 and therefore the assumptions of that theorem

are satisfied. In particular we have ν1
Gz,φ

(φ̃−) < ∞ which implies ζφ̃− < ∞,

Gz,φ − a.s. so the conditional energy E(x, µ) is Gz,φ − a.s. well defined.

Certainly all arguments are valid if we replace < by <Λ therefore we also
obtain the second assertion.

We can now finish the proof of the theorem:

With corollary 5.2.6 we obtain LQΛ
(g + φx) → LGz,φ(g + φx) as Λ ↑ X

and LQΛ
(g + φx) ≤ α̃. So we can take the limit Λ ↑ X inside the inte-

gral of equation (5.7) and thus obtain that Gz,φ solves
(
Σ′γ
)

for test func-
tions h = f ⊗ e−ζg , f, g ∈ Fbc,+(X). But again this can be extended to all
h ∈ F+(X ×M··(X)) by lemma 2.2.1.

In [53] Nguyen and Zessin have shown that each solution of
(
Σ′γ
)

has
the local specifications of a Gibbs point process with parameters z and φ
in the sense of Dobrushin-Lanford-Ruelle. So we have identified Gz,φ as a
Gibbs point process. Since X can be a general Polish space, lattice as well
as continuous systems are covered by theorem 5.2.4.

A small drawback is that we could construct Gz,φ for z ∈ (0, e
−2B−1

Cφ
) but

the Gibbs property could only be shown for z ∈ (0, e
−4B−1

Cφ
). If there exists a

sharper estimate than the one given by lemma 5.2.5 this difficulty might be
overcome.
In [64] Ruelle found that if the conditions of regularity, superstability and
lower regularity are imposed on a translation invariant pair potential then
there exists a Gibbs point process for any activity. Kuna obtained in [36] by
the method of cluster expansions combined with an analysis of Kirkwood-
Salzburg equations that Ruelle’s superstability assumption can be replaced
by stability if we choose the activity sufficiently small, that is z ∈ (0, e

−2B−1

Cφ
).

Like us, Kuna is in the setting of general pair potentials φ, which means that
φ does not have to be translation invariant. Here we have shown that if one
chooses the activity even smaller, z ∈ (0, e

−4B−1

Cφ
), then also the condition of

lower regularity can be dropped.
We have shown that the cluster equation (Σ<) implies

(
Σ′γ
)
. A natural ques-

tion is if also
(
Σ′γ
)
⇒ (Σ<) holds. If this is the case then no phase transition

can occur since (Σ<) has a unique solution. In [64] theorem 5.7. Ruelle
remarked that for small z there exists a unique solution to the Dobrushin-
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Lanford- Ruelle equations for his class of superstable pair potentials. So it
is suggestive to ask whether this remains true in our setting.

Remark 5.2.8. The proof to theorem 5.2.4 gives a general scheme for show-
ing that a point process with a signed Lévy pseudo measure L, such that |L|
is of first order, is a Papangelou point process. Assume you have a candi-
date π for the Papangelou kernel of =L and π satisfies the cocycle condition.
Assume also that the Schur measures are of the form %k = π(k)(0; ·). Then if
for f, g ∈ Fbc,+(X)

lim
Λ↑X

∫
M··(Λ)

π(µ, f)e−µ(g) QΛ(dµ) =

∫
M··(X)

π(µ, f)e−µ(g)=L(dµ),

we can indentify π as the Papangelou kernel of =L. Later the same method
will be applied to determine the Papangelou kernel of the so called Pólya
branching process in theorem 6.2.3.

In the end let us give an open question: Is theorem 5.2.4, for a sufficiently
small activity, still valid if we only assume (A1) weak stability and (A2) weak
regularity?

5.3 Polymer Systems

Again quoting Dobrushin from his Saint-Flour lectures [14]: ¶An essential
contribution to it [the cluster expansion method] was made by Gruber and
Kunz [25] who introduced the so-called polymer model.

Now consider the lattice Zd for some d ∈ N. Our space X is the set of
finite connected subsets of the lattice. It is of countably infinite cardinality.
We equip X with the discrete topology, that is every subset of X is open
(and hence closed). Remark that a set in X is compact if and only if it is
finite. By |x| for x ∈ X we denote the number of lattice sites x consists of.
The measure ρ is now given by

ρ(dx) = z(x) cd(dx), z(x) = e−γ|x| for some γ > 0, (5.9)

and cd is the counting measure on X. z(x) is called the activity. Now let us
introduce a pair potential on X:

φ(x, y) =


∞, if x ∩ y 6= ∅
−η c(x, y), if x ∩ y = ∅
0, x and y have no neighbours,

(5.10)
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where c(x, y) denotes the number of neighbours of x and y and η > 0 is some
parameter. The hard core condition excludes the possibility of overlapping
polymers. Furthermore φ is of finite range. Poghosyan and Ueltschi have
shown in [58] that φ satisfies (A1) with

b(x) = ηd|x|

and (A2′) is satisfied with a(x) = (2d)−
3
2 |x| if the parameter γ in the activity

(5.9) is chosen sufficiently large, that is

γ ≥ 2(2d)−
3
2 + 3dη + 2 log(2d). (5.11)

Now since every B ∈ B0(X) has finite cardinality as remarked above, con-
dition (A3′) is certainly satisfied because a finite sum of finite expressions
is finite. Therefore theorem 5.1.2 yields the existence of the corresponding
point process =< of polymers. To summarize:

Theorem 5.3.1. Under the condition (5.11) and for the choice of ρ and φ
as in (5.9) and (5.10) there exists a point process =< in the space of finite
connected subsets of Zd such that its signed Lévy pseudo measure < is given
by formula (5.2).

A natural question now is whether percolation occurs in this model, that
is

=<(There exists an infinite polymer) > 0.

If the attractive part of φ is large enough that is for large η this should be
the case. Poghosyan and Ueltschi noted:
¶ For large η one should expect interesting phases with many contacts between
the polymers.

5.4 Quantum Continuous Systems: The Bose

Gas

This model has been introduced by Ginibre [19].

Here we let X be the space of winding loops in Rd of length mβ, m ∈ N
is free, and β > 0 is a fixed parameter. That is X is the set of all continuous
paths x : [0,mβ]→ Rd such that x(0) = x(mβ). Now the major question is:
With what kind of topology should we equip X and what are the relatively
compact sets in X? Let us consider the space C(Rd) of continuous functions



5.4. QUANTUM CONTINUOUS SYSTEMS: THE BOSE GAS 79

x : R+ → Rd. X can be thought of as a subset of C(Rd) by setting every
x ∈ X constant outside [0,mβ]. It is well known that this space is Polish for
the topology of uniform convergence on compacta. The bounded, measur-
able sets B ∈ C(Rd) for the local uniform topology are characterized by the
Ascoli-Arzela theorem by the following two properties:

(α) sup
x∈B
|x(0)| <∞

(β) for all n ≥ 1, lim
r↓0

sup
x∈B

ωn(x, r) = 0, where

ωn(x, r)

= sup
t∈R+

{ sup
s1,s2∈[t,t+r]

|x(s1)− x(s2)| : 0 ≤ t ≤ t+ r ≤ n}, r > 0, n ≥ 1.

Recall that the Borel σ-field in X coincides with the σ-field generated by
all coordinate projections prt : x 7→ x(t). All this can be found e.g. in
[74]. In particular due to condition (α) we have that for every B ∈ B0(X)
there exists Λ ∈ B0(Rd) such that B ⊂ XΛ = {x ∈ X|x(0) ∈ Λ}, take
Λ = {x(0) : x ∈ B}.
Let us denote by P a,b

t the non-normalized law for the Brownian bridge from
a to b in time t. The non-normalization is chosen such that

P a,b
t (C(Rd)) =

1

(2πt)
d
2

e−
‖a−b‖2

2t .

Now consider the following non negative measure on the loop space X:

ρ(g) =
∞∑
m=1

zm

m

∫
Rd

∫
X

g(x) e−v(x) P a,a
mβ(dx) d a, g ∈ F+(X), (5.12)

where z ∈ (0,∞) is some parameter and v is the so called self potential on
X. It is defined as follows: Let the loop x ∈ X return in time mβ to its
starting point. That is we say x consists of m elementary components x(0, β],
x(β, 2β], . . . , x((m− 1)β,mβ]. Then we define

v(x) :=
∑

0≤j1<j2≤m−1

1

2

β∫
0

V (x(s+ j1β)− x(s+ j2β)) d s, (5.13)

here V (a− b) is an ordinary pair potential on Rd, which is stable (Ai) with
stability constant B ≥ 0. The integral in (5.13) describes the interaction of
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the j1 + 1 with the j2 + 1 component. Now we can also introduce a pair
interaction on X:

φ(x1, x2) :=

m1−1∑
j1=0

m2−1∑
j2=0

1

2

β∫
0

V (x1(s+ j1β)− x2(s+ j2β)) d s, (5.14)

here xi is a loop of length miβ. Poghosyan and Ueltschi have shown in [58]
that (A1) holds true with

b(x) = m(x)βB + v(x),

where m(x) denotes the number of elementary components of x. Moreover
under the condition ‖V ‖1 <∞ they obtained that (A2′) is valid for a of the
form

a(x) = c ·m(x),

where c > 0 is a positive constant satisfying

β‖V ‖1

(4πβ)
d
2

∞∑
m=1

zme(c+βB)m

m
d
2

≤ c. (5.15)

Inequality (5.15) is certainly satisfied for small z. In order to apply theorem
5.1.2 we are left with verifying condition (A3′). So let B ∈ B0(X) then as
we have seen in the beginning there has to exist a Λ ∈ B0(Rd) such that
B ⊂ XΛ,

ρ(1Be
a+b) ≤ ρ(1XΛ

ea+b)

=
∞∑
m=1

zm

m

∫
Λ

∫
XΛ

e−v(x)+a(x)+b(x) P τ,τ
mβ(dx) d τ

=
∞∑
m=1

zm

m

∫
Λ

∫
XΛ

eβBm+cm P τ,τ
mβ(dx) d τ

= λ(Λ)
∞∑
m=1

zme(c+βB)m

m

1

(2πmβ)
d
2

.

Thus we obtain that if z is chosen sufficiently small such that (5.15) holds
true then also ρ(1Be

a+b) <∞ for all B ∈ B0(X) is valid. So we have shown
the following

Theorem 5.4.1. Let V be an integrable stable pair potential on Rd. Choose
the measure ρ and the pair potential φ as in (5.12) and (5.14). Then for
sufficiently small z, such that (5.15) holds, there exists a point process =<
in the loop space X with signed Lévy pseudo measure < as given by theorem
5.1.2 in formula (5.2).



Chapter 6

Clustering,
Thinning and Splitting.
Cox Processes

We continue our study of KMM processes, in particular transformation prop-
erties. We want to know what happens under the transformations of cluster
dissolution resp. clustering, in particular thinning and splitting.

In proposition 6.1.1 and theorem 6.1.5 we construct starting from solu-
tions P to (ΣL) new solutions P̃ to (ΣL̃). This then is applied to Pólya
sum and difference processes. Two other examples are given. A new class,
called branching Pólya processes, is introduced and characterized as Papan-
gelou processes in theorem 6.2.3.

Next we consider the operations of thinning and splitting of point pro-
cesses. We see in (6.11) that the thinning operation is intimately related to
the Pólya difference process. On the other hand we show in corollary 6.3.3
that this operation can be reduced to the computation of factorial moment
measures of some modification of the signed Lévy pseudo measure. The main
result is theorem 6.3.4 which gives a representation of a q-thinned KMM pro-
cess in terms of loop measures. As examples we consider Pólya, permanental
and determinantal processes.

Then we pose the question: Having observed a realization µ of a q-thinning
of a given point process, what is the distribution of that part of the configura-
tion which has been deleted? This conditional distribution is described by the
splitting kernel. Such kernels are computed for Pólya and Poisson processes.
The main result then is theorem 6.3.7 which relates the Papangelou kernel of
the thinning of a given point process to the intensity of its splitting kernel.

Finally point processes with signed Lévy pseudo measures from a certain
class are identified as Cox processes. This is based on Mecke’s characteriza-

81
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tion of Cox processes in theorem 6.4.1. Examples are Pólya sum processes.
An important consequence of this result is that Pólya difference processes
cannot be Cox.

6.1 Invariance Properties of the Cluster Equa-

tion

Invariance under Cluster Dissolution

Let Y =M··(X) \ {0}. The following so called cluster dissolution mapping
has its origin in [43] and was later used by [52].

ξ :


M··(M··(X) \ {0})→ measures on X

µ 7→
∫
Y

ν µ(dν).

Proposition 6.1.1. Let L be a signed cluster pseudo measure on M··(Y ).
If there exists a point process P in Y such that P solves (ΣL), then the point
process ξP in X solves (ΣξL).

Proof. We have

CξP (h) =

∫
h(x, ξ(µ)) ν(dx)µ(d ν)P (dµ) for h ∈ F+(X ×M··(X)).

Now the right hand side of the above equation is the Campbell measure
of P evaluated at the function h̃(ν, µ) =

∫
h(x, ξ(µ))ν(dx). By using the

transformation theorem one obtains (CLε ? P )(h̃) = (CξLε ? ξP )(h). So if P
is a solution to (ΣL) then ξP is a solution to (ΣξL).

Remark that if ξ|L| is of first order then we have for B ∈ B0(X)

ξ|L|(ζB) =

∫
ξ(µ)(B) |L|(dµ) =

∫
µ(ζB) |L|(dµ) = ν1

|L|(ζB) <∞.

Now since the bounded sets in Y are given by {ζB > 0} for some B ∈ B0(X)
and we certainly have 1{ζB>0} ≤ ζB on Y , in this case also |L| is of first order
and proposition 6.1.1 can now be reformulated as follows:

Corollary 6.1.2. Let L be a signed Lévy pseudo measure on M··(Y ) such
that ξ|L| is of first order. Then ξL is a signed Lévy pseudo measure on
M··(X) and ξ=L = =ξL.
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Proof. By theorem 3.3.1 =L solves (ΣL). Applying now proposition 6.1.1
yields that ξ=L solves (ΣξL). But since ξ|L| is assumed to be of first order
we conclude by proposition 3.3.3.

Example 6.1.1. Let Hε be a measure on Y of first order, ε ∈ {−1,+1}.
In case ε = −1 we additionally require that H−1 ∈ M··(Y ). Consider the
following signed cluster pseudo measure

Lε(ϕ) =
∞∑
n=1

εn−1 z
n

n

∫
Y

ϕ(nδµ)Hε(dµ) for ϕ ∈ L1(|Lε|).

And let us verify that the conditions of corollary 6.1.2 are satisfied. A
straightforward computation yields that

ν1
ξ|Lε|(f) =

z

1− z
ν1
Hε(f) <∞ for f ∈ Fbc,+(X).

And again due to 1{ζB>0} ≤ ζB on Y for B ∈ B0(X) implies Hε ∈M(Y ), so
that =L+ = P+

z,H+
is a Pólya sum and =L− = P−z,H− a Pólya difference process

in Y . Now corollary 6.1.2 gives us that the Pólya cluster dissolution ξP ε
z,Hε

has a signed Lévy pseudo measure given by

ξLε(ϕ) =
∞∑
n=1

εn−1 z
n

n

∫
Y

ϕ(nµ)Hε(dµ) for ϕ ∈ L1(ξ|Lε|).

So ξLε is given by the (non negative measure) Hε except that each realization
of Hε gets a weight according to the “pseudo distribution“ n 7→ εn−1 zn

n
on N.

In corollary 6.1.3 below we will see that a large class of point processes
admit a signed Lévy pseudo measure. But at first, we need to introduce the
so called simple Fermi process.

Example 6.1.2 (Simple Fermi process). Let η be a non negative finite mea-
sure on X with total mass η(X) ∈ (0, 1) and let the cumulant measures be
given by Θk = (−1)k−1 η⊗k. Then

ν1
|L|(f) =

η(f)

1− η(X)
for f ∈ Fbc,+(X),

and the Schur measures are given by

%k(
k
⊗
j=1
fj) =

∑
σ∈Sk

(−1)k−|σ|
k∏
j=1

η(fj) =

{
η(f1), for k = 1

0, for k ≥ 2,
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for f1, . . . , fk ∈ Fbc,+(X). Since the determinant of the matrix with 1 in every
entry is zero. Furthermore

=L(ϕ) =
ϕ(0) +

∫
X
ϕ(δx) η(dx)

1 + η(X)
for ϕ ∈ F+(M··(X)).

Remark that its Papangelou kernel is given by

π(0, dx) = η(dx) and π(µ, dx) = 0 for µ 6= 0.

A similar version of the next result can already be found in [31] page 74
remark 1.9.9., we present an alternative proof.

Corollary 6.1.3. Let P be a point process in X with P ({0}) > 1
2
. Then P

is a solution to (ΣL) where L is given by

L =
∞∑
n=1

(−1)n−1

n
Q∗n,

with Q = P |Y
P ({0}) and P |Y denotes the restriction of P to Y =M··(X) \ {0}.

Proof. The condition P ({0}) > 1
2

implies Q(Y ) < 1. So let R be the simple
Fermi process (see example 6.1.2) in Y to Q. And denote by F its signed
Lévy pseudo measure , so that

F (ϕ) =
∑
n≥1

(−1)n−1

n

∫
Y n
ϕ(δν1 + . . .+ δνn)Q(d ν1) . . . Q(d νn), ϕ ∈ L1(|F |).

Proposition 6.1.1 tells us that ξR is a solution to (ΣξF ). But ξF = L and
(see example 6.1.2)

R(ϕ) =
ϕ(0) +

∫
Y
ϕ(δν)Q(d ν)

1 +Q(Y )
for ϕ ∈ F+(M··(Y )).

Which yields combined with 1 +Q(Y ) = P ({0})−1

(ξR)(ϕ) =
ϕ(0) +

∫
Y
ϕ(ν)Q(d ν)

1 +Q(Y )
= ϕ(0)P ({0}) +

∫
Y

ϕ(ν)P (d ν) = P (ϕ)

for ϕ ∈ F+(M··(X)).
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Invariance under Clustering

For an introduction to the notions concerning clustering we refer to section
2.4.

The next lemma can also be found in [31] proposition 5.2.3. Here we give
an alternative proof.

Lemma 6.1.4. Let {Πa}a∈E be a cluster field on E. Assume that for some
µ ∈M··(E) we have ∫

ν1
Πa(f)µ(d a) <∞ for f ∈ U. (6.1)

Then Πµ exists and there holds

CΠµ(h) =

∫
(CΠa ? Πµ−δa)(h)µ(d a) for h ∈ F+(X ×M··(X)).

Proof. Existence of Πµ follows by proposition 2.4.1. Now, if a ∈ µ, then we
have

CΠµ(h) =

∫
h(x, κ1 + κ2) (κ1 + κ2)(dx)Πµ−δa(dκ1)Πa(dκ2)

= (CΠµ−δa
? Πa)(h) + (CΠa ? Πµ−δa)(h) (6.2)

Now since we have for any measure C on X ×M··(X) and point processes
P1, P2 ∈ PM··(X) that

(C ? P1) ? P2 = C ? (P1 ∗ P2),

iterated application of (6.2) yields for any B ∈ B0(E)

CΠµ(h) = (CΠµBc
? ΠµB)(h) +

∫
B

(CΠa ? Πµ−δa)(h)µ(d a),

where µB denotes the restriction of µ to B. Let now h be of the form f⊗e−ζg
with f, g ∈ Fbc,+(X). Then

(CΠµBc
? ΠµB)(h) ≤ ΠµBc (ζf ) =

∫
Bc

ν1
Πa(f)µ(d a).

Now if we let B ↑ E the above right hand side tends to zero due to (6.1). So
we obtain the assertion for this special class of h. Lemma 2.2.1 now yields
that this can be extended to all non negative measurable h.
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The following theorem can be already found in [31] theorem 4.3.3. in the
classical case of a non negative Lévy measure L. But in contrast to [31] we
will use the cluster equation (ΣL), which simplifies the proof but requires
existence of the first moments, which is not needed in [31].

Theorem 6.1.5. Let a signed Lévy pseudo measure L and a cluster field
(Πa)a∈E be given such that ν1

|L|(ν
1
Π(·)

(f)) < ∞ for f ∈ Fbc,+(X). Then

=LΠ(.) = =LΠ(·).

So the clustering of a KMM process with signed Lévy pseudo measure L
is given by the KMM process with clustered L.

Proof. Recall that ν1
=L ≤ ν1

|L| on F+(X), so condition (6.1) is satisfied =L −
a.s.[µ] and |L| − a.e.[µ]. Now due to lemma 6.1.4 there holds for W =
=L or Lε and h ∈ F+(X ×M··(X))

CWΠ(·)(h) =

∫
CΠµ(h)W (dµ) =

x
(CΠa ? Πµ−δa)(h)µ(d a)W (dµ). (6.3)

Let us denote hκ(x, η) = h(x, η + κ). So we have (CLεΠ(·) ? =LΠ(·))(h) =∫
CLεΠ(·)(hκ) (=LΠ(·))(dκ). By using (6.3) with W = Lε we obtain

CLεΠ(·)(hκ) =
x

(CΠa ? Πµ−δa)(hκ)µ(d a)Lε(dµ)

=
x

(CΠa ? (Πµ−δa ∗ δκ))(h)µ(d a)Lε(dµ)

If we now employ the definition of the cluster process =LΠ(·) =
∫

Πη =L(d η)
one obtains

(CLεΠ(·) ? =LΠ(·))(h) =
y

(CΠa ? (Πµ−δa ∗ Πη))(h)µ(d a)Lε(dµ)=L(d η)

=
y

(CΠa ? Πη+µ−δa)(h) η(d a)Lε(dµ)=L(d η)

= (CLε ? =L)(h̃),

where h̃(a, µ) = (CΠa ? Πµ−δa)(h). Moreover (6.3) for W = =L yields

C=LΠ(·)(h) = C=L(h̃). Now we are ready to show that =LΠ(·) solves
(
ΣLΠ(·)

)
,

by using that =L solves (ΣL).

C=LΠ(.)
(h) + (CL−Π(·) ? =LΠ(·))(h) = C=L(h̃) + (CL− ? =L)(h̃)

= (CL+ ? =L)(h̃) = (CL+Π(·) ? =LΠ(·))(h).

Now since |L|Π(·) was assumed to be of first order we conclude by proposition
3.3.3.



6.2. THE BRANCHING PÓLYA PROCESSES 87

6.2 The Branching Pólya Processes

Let κ be a probability kernel from X to X. Then a natural cluster field is
given by

Πx =

∫
κx(d y)δδy .

In this section we want to study the Pólya processes clustered according to
{Πx}x∈X . That is the point processes

Pε =

∫
P ε
z,λ(dµ) ∗

x∈µ

∫
κx(d y)δδy .

If we denote by Lε the signed Lévy pseudo measure of P ε
z,λ then theorem

6.1.5 tells us that if ν1
|Lε|(ν

1
Π(·)

(f)) = z
1−zλ(κ(f)) < ∞, for all f ∈ Fbc,+(X),

Pε exists and has signed Lévy pseudo measure

Lε(ϕ) =
∞∑
n=1

εn−1

n
zn
∫

Xn+1

ϕ(δx1 + . . .+ δxn)κx(dx1) . . . κx(dxn)λ(dx), (6.4)

for ϕ ∈ L1(|Lε|). Remark that we have ν1
Pε(f) = z

1−εzλ(κ(f)). In the sequel
we will denote (λ◦κ)(f) = λ(κ(f)) for f ∈ Fbc,+(X). The Pólya sum respec-
tive difference processes owe their name to the structure of their Papangelou
kernel. In [50] it is shown that the Papangelou kernel of P ε

z,λ is given by

πε(µ, dx) = z(λ+ εµ)(dx).

Now the main question is: What is the Papangelou kernel πε of Pε? A
natural Ansatz would be πε(µ, f) = πε(µ, κ(f)) for µ ∈ M··(X) and f ∈
Fbc,+(X). But the next result shows that πε can only be a Papangelou kernel
if κ is a regular conditional probability on X.

Lemma 6.2.1. Let κ be a probability kernel from X to X.

(i) πε satisfies the cocycle condition that is for all µ ∈M··(X)

π(2)
ε (µ, f1 ⊗ f2) = π(2)

ε (µ, f2 ⊗ f1), for f1, f2 ∈ F+(X).

(ii) κ coincides with the regular conditional probability κx(A) = H[A|E ](x),
where E is a sub σ-field of B(X) and the probability H on X is given
by

H(f) =

∫
λ(dx)φ(x)

∫
κx(d y) f(y) for f ∈ F+(X),

where φ > 0 is chosen so that λ(φ) = 1.
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(ii′) For any N ∈ B(X), Pε{ζN > 0} = 0 implies P ε
z,λ{ζN > 0} = 0.

(iii) There exists N ∈ B(X) such that Pε{ζN > 0} = 0 and for all µ ∈
M··(N c)

π(2)
ε (µ, f1 ⊗ f2) = π(2)

ε (µ, f2 ⊗ f1), for f1, f2 ∈ F+(X). (6.5)

Then the following implications hold true (i)⇒ (ii) and (ii) + (ii′)⇒ (iii).

Proof. Let us assume (i) and compute

π(2)
ε (µ, f1 ⊗ f2) =

2∏
i=1

πε(µ, fi) + επε(µ, κ(f1κ(f2))).

If we evaluate (i) for µ equal to the zero measure we obtain λ(κ(f1κ(f2))) =
λ(κ(f2κ(f1))). Setting now µ = δx yields

κx(f1κ(f2)) = κx(f2κ(f1)) for x ∈ X. (6.6)

Recall Bahadurs [3] characterization of conditional expectation: Let H be a
probability on (X,B) and T an operator on L2(X,B, H) into itself. Then T
is a conditional expectation if and only if:

(1) T is linear (2) f ≥ 0⇒ Tf ≥ 0 (3) T 2 = T
(4) H (f Tg) = H (g Tf) (5) T is constant preserving,

and the above properties (1)− (5) have to hold H-a.s.. Condition (3) respec-
tive (4) mean that T is a idempotent respective self adjoint operator.
Now let H be as in (ii). Since κ is a probability kernel it certainly satisfies
(1), (2), (5). (3) holds on F+(X) due to (6.6) and if we apply H to both sides
of (6.6) and apply (3) we obtain (4) for f, g ∈ F+(X). It remains to be seen
that κ : L2(H)→ L2(H). First we have to show that for f ∈ L2(H) ⊂ L1(H),
κ(f) is well defined, that is

κ(|f |) <∞ H − a.s. (6.7)

But if we apply (4) with f = 1 and g = |f | then we obtain H(κ(|f |)) =
H(|f |) < ∞. It remains to be seen that κ(f) ∈ L2(H). Due to (6.7) we
can apply Jensens inequality H-a.s. and obtain H(κ(f)2) ≤ H(κ(f 2)) =
H(f 2) < ∞. By decomposition of the respective functions in positive and
negative part the properties (1)− (5) extend from F+(X) to L2(H).
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Let us now discuss the the condition (ii′).For any point process P we have
P{ζN > 0} = 0 is equivalent to ν1

P(N) = 0. Now since we have

ν1
Pε =

z

1− εz
λ ◦ κ and ν1

P εz,λ
=

z

1− εz
λ

condition (ii′) is equivalent to λ� λ ◦ κ. Furthermore the probability mea-
sure H in (ii) is equivalent to λ ◦ κ, which leads to λ� H.

Let us now assume (ii) and (ii′). Remark that a φ as in (ii) always ex-
ists, since we can choose a partition {Bj}∞j=1 of X such that λ(Bj) > 0. Now
φ =

∑
j≥1(2)−j(λ(Bj))

−11Bj has the required properties. Since κ is a regular
conditional probability there exists N ∈ B(X) with H(N) = 0 and

κx(f1κ(f2)) = κx(f2κ(f1)) for x ∈ N c. (6.8)

But due to the above remark we also have λ(N) = 0 and so we can integrate
(6.8) with respect to λ and obtain λ(κ(f1κ(f2))) = λ(κ(f2κ(f1))), which
yields (iii).

In order not to get confused with null sets we shall in the sequel work
under the

Assumption 6.2.2. κ is a probability kernel such that for all x ∈ X

κx(f1κ(f2)) = κx(f1)κx(f2) for f1, f2 ∈ F+(X).

Theorem 6.2.3. Let κ be as in assumption 6.2.2 and λ ◦ κ ∈M(X). Then
Pε exists and its Papangelou kernel is given by πε.

Proof. The existence of Pε under the condition λ(κ(f)) < ∞ for f ∈ U has
already been established in the introduction. It remains to be seen if Pε

satisfies the integration by parts formula
(
Σ′πε

)
. We will follow the same

scheme already used in the proof of theorem 5.2.4 and explicitly described
in remark 5.2.8. Let us start by computing the Schur measures. Since the
cumulant measures can be directly read of from (6.4) we have

%ε,n(
n
⊗
j=1
fj) = zn

∑
σ∈Sn

εn−|σ|
∏
ω∈σ

∫ ∏
j∈ω

κx(fj)λ(dx) = %ε,n(
n
⊗
j=1
κ(fj))

= π(n)
ε (0,

n
⊗
j=1
κ(fj)) for f1, . . . , fk ∈ Fbc,+(X).

The following lemma will be decisive.
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Lemma 6.2.4. We have for m ≥ 1 and µ ∈M··(X)

π(m)
ε (µ, f1 ⊗ . . .⊗ fm) = π(m)

ε (µ, κ(f1)⊗ . . .⊗ κ(fm)).

Proof. This will be done by induction.

π(m)
ε (µ, f1 ⊗ . . .⊗ fm)

=

∫
Xm−1

f1(x1) . . . fm−1(xm−1)πε(µ+ δx1 + . . .+ δxm−1 , fm)

π(m−1)
ε (µ, dx1 . . . dxm−1)

=

∫
Xm−1

κx1(f1) . . . κxm−1(fm−1)πε(µ+ δx1 + . . .+ δxm−1 , fm)

π(m−1)
ε (µ, dx1 . . . dxm−1)

=

∫
Xm−1

κx1(f1) . . . κxm(fm) π(m)
ε (µ, dx1 . . . dxm)

The second equation is due to the inductive Hypothesis and the fact that for
any µ ∈ M··(X) and x ∈ X, κx(πε(µ + δ(·), f) g) = πε(µ + δx, f)κx(g) for
f, g ∈ F+(X) due to assumption 6.2.2.

So lemma 6.2.4 gives us %ε,n = π
(n)
ε (0, ·). Thus we have identified Qε,Λ as

the finite Papangelou process P 0
πε in Λ ∈ B0(X), that is

CQε,Λ
(h) =

x
h(x, µ+ δx)πε(µ, dx)Qε,Λ(dµ) for h ∈ F+(Λ×M··(Λ)).

Let now h be of the form f⊗e−ζg for f, g ∈ Fbc,+(X). The method of proof will
now be to show that in the limit Λ ↑ X the above integration by parts formula
remains valid. In corollary 3.3.2 we have already shown CQε,Λ

(h) → CPε(h)
as Λ ↑ X. Now if we choose Λ such that supp(f), supp(g) ⊂ Λ and evaluate
the above right hand side we obtain

zλ(κ(fe−g))LQε,Λ
(g) + εzCQε,Λ

(κ(fe−g)⊗ e−ζg).

Since LQε,Λ
(g)→ LPε(g) as Λ ↑ X holds,

CQε,Λ
(κ(fe−g)⊗ e−ζg)→ CPε(κ(fe−g)⊗ e−ζg) as Λ ↑ X

remains to be seen. According to the remark after corollary 3.3.2 the above
convergence holds if ν1

|Lε|(κ(fe−g)) <∞. But

ν1
|Lε|(κ(fe−g)) =

z

1 + z
λ(κ(κ(fe−g))) =

z

1 + z
λ(κ(fe−g)) <∞.



6.2. THE BRANCHING PÓLYA PROCESSES 91

Now let us consider some examples of regular conditional probabilities
κx(A) = H(A|E)(x), conditioned on some sub σ-field E .

Example 6.2.1. (i) Let E = B(X), then a regular version of H(·|E) is
given by

κx = δx.

(ii) Let {Bj}Nj=1, with N ∈ N∪{+∞}, be a partition of X such that λ(Bj) <
∞. Then a regular version is given by

κx(f) =
N∑
j=1

H(1Bjf)

H(Bj)
1Bj(x).

(iii) Let X = Rd and E = {A ∈ B(X)|A = σ(A), σ ∈ Sd} the σ- algebra of
permutation invariant sets then a regular version is given by

κ(x1,...,xd) =
1

d!

∑
σ∈Sd

δ(xσ(1),...,xσ(d)).

Thus in the first case points stay at their location and the branching pro-
cess is the process itself. In the second case, X is partitioned into seperate
islands and points are not allowed to migrate between them. In the last
case a point x is transformed by a permutation of its coordinates. Remark
that the examples (i)−(iii) satisfy assumption 6.2.2 as well as λ◦κ ∈M(X).

Let B ∈ E , then for H − a.s.[x] we have κx(B) = 1B(x) since κx is given by
a conditional probability and the child of x is again contained in B. Thus
the richer E is the more restrictions are put on the branching mechanism.

Remark 6.2.5. Let λ � λ ◦ κ that is for any N ∈ B(X), Pε{ζN > 0} = 0
implies P ε

z,λ{ζN > 0} = 0, which is the same assumption as in (iii) of lemma
6.2.1, then

LPε(g) = LP εz,λ(g) for g ∈ Fbc,+(X, E).

Proof. By using the signed Lévy pseudo measure (see (6.4)) of Pε and the
expansion of the logarithm log(1− x) =

∑∞
n=1

xn

n
, x ∈ (−1, 1) we obtain for

f ∈ Fbc,+(X)

LPε(f) = exp

(
−ε
∫

log

(
1− εzκx(e−f )

1− εz

)
λ(dx)

)
. (6.9)

Now we have κx(e
−g) = e−g(x) H−a.s.[x] for g ∈ Fbc,+(X, E) and as discussed

in lemma 6.2.1 (ii) there holds λ� H. So κx(e
−g) = e−g(x) λ− a.e.[x] holds

true, too.
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Under the technical condition λ� λ◦κ we now obtain the following weak
independence of increments property: For B1, . . . , Bn ∈ E ∩ B0(X) the joint
distribution of ζB1 , . . . , ζBn coincide under Pε and P ε

z,λ.

6.3 Thinning and Splitting

Heuristically an independent q-thinning, with q ∈ (0, 1), of a point process
P is given as follows: Each point x in a realization µ of P will be either
deleted with probability 1− q or will survive with probability q and this will
be done independently for all points in µ. Certainly Γq(P ) always exists and
it is of first order if and only if P has this property. One can generalize the
independent thinning by letting the survival probability be position depen-
dent q : X → (0, 1). We will work in the setting of constant q but nearly all
results carry over to this more general setting.

For an introduction to thinning and the main notations we refer to section
2.4.

Corollary 6.3.1 (to theorem 6.1.5). If L is a signed Lévy pseudo measure
such that |L| is of first order then Γq(=L) = =Γq(L), where Γq(L)ε = Γq(L

ε).

So a thinning of a KMM process with signed Lévy pseudo measure L
is given by the KMM process with thinned L. In the following we want
to establish a connection between the Pólya difference process P−z,λ and the
family (Φx)x∈X , as introduced in section 2.4.

Lemma 6.3.2. We have Φµ = P−q
1−q ,µ

for µ ∈M·· and q ∈ [0, 1).

Proof. Remember that the finite Pólya difference process is given by

P−z,µ(ϕ) = (1+z)−µ(X)
∑
n≥0

zn

n!

∫
Xn

ϕ(δx1 +. . .+δxn)µ−[n](dx1 . . . dxn). (6.10)

If we evaluate (6.10) for µ = δx we obtain P−z,δx(ϕ) = 1
1+z

ϕ(0) + z
1+z

ϕ(δx).

After inserting z = q
1−q we get Φx = P−q

1−q ,δx
and by P−z,µ = ∗

x∈µ
P−z,δx the

assertion follows.

In particular the independent thinning

Γq(P ) =

∫
P−q

1−q ,µ
P (dµ) (6.11)

is a doubly stochastic Pólya difference process. The next corollary will help
us to identify the thinned process Γq(=L).
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Corollary 6.3.3. Assume that the signed Lévy pseudo measure L is concen-
trated on M··

f (X) and |L| is of first order. Then Γq(=L) has a signed Lévy
pseudo measure given by∑

n≥1

qn

(1− q)nn!

∫
Xn

ϕ(δx1 + . . .+ δxn) ν̌nH(dx1 . . . dxn), ϕ ∈ L1.

Here ν̌nH is the n-th factorial moment measure of H(dµ) := (1−q)µ(X)L(dµ).
It is a signed Radon measure on Xn and we even have ν̌n|H|(Λ×Xn−1) <∞
for Λ ∈ B0(X).

Proof. Corollary 6.3.1 combined with (6.11) imply that the positive respec-
tive negative part of the signed Lévy pseudo measure of Γq(=L) are given
by
∫
P−q

1−q ,µ
Lε(dµ). If we now use the representation of the finite Pólya dif-

ference process (6.10) and the monotone convergence theorem we obtain for
any ϕ ∈ F+(M··(X))∫
P−q

1−q ,µ
(ϕ)Lε(dµ) =

∑
n≥1

qn

(1− q)nn!

∫
Xn

ϕ(δx1 + . . .+ δxn) ν̌nHε(dx1 . . . dxn),

(6.12)
with Hε(dµ) = (1− q)µ(X)Lε(dµ), which implies the assertion. Certainly Lε

can be replaced by |L| in (6.12). If we then evaluate (6.12) for ϕ = ζΛ we
obtain the last statement due to the finiteness of the left hand side.

Now we have reduced the task of identifying the thinned point process to
the computation of the factorial moment measures of H. We return to the
setting of section 4.4 and consider point processes with signed Lévy pseudo
measure of the form

L(ϕ) =
∞∑
n=1

1

n

∫
Xn

ϕ(δx1 + . . .+ δxn)Bxn−1(dx2 . . . dxn)λ(dx1), (6.13)

for ϕ ∈ L1(|L|). Let us denote Bxn,q = (1 − q)n+1Bxn and by Cxn,q the corre-
sponding loop measures. Then we have

Theorem 6.3.4. Let L be a signed Lévy pseudo measure of the form (6.13)
such that |L| is of first order. Then Γq(=L) has signed Lévy pseudo measure∑
n≥1

qn

(1− q)nn

∫
Xn

ϕ(δx1 + . . .+ δxn) Cx1
n−1,q(dx2 . . . dxn)λ(dx1), ϕ ∈ L1.

Proof. The result follows by corollary 6.3.3 and proposition 4.4.3.
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Let us now consider some examples.

Example 6.3.1 (Pólya processes). Since the loop measures of the Pólya point
processes have been computed in example 4.4.1 we obtain

Cxm,q(
m
⊗
j=1
fj) = εm

(z(1− q))m+1

(1− εz(1− q))m+1
f1(x) . . . fm(x).

This means the signed Lévy pseudo measure of Γq(P
ε
z,λ) is given by

∑
n≥1

εn−1

n

(zq)n

(1− εz(1− q))n

∫
ϕ(nδx)λ(dx), ϕ ∈ L1.

Therefore

Γq(P
ε
z,λ) = P ε

zq
1−εz(1−q) ,λ

.

Example 6.3.2 (Permanental and determinantal processes). We consider
those permanental and determinantal point processes =ελ,k as constructed by
theorem 4.5.1. The transition from Bxn to Bxn,q is also straightforward since we
just have to replace k by (1− q)k. In (4.9) we computed the loop measures of
the permanental and determinantal processes. Thus we obtain by introducing

Kε,q =
∞∑
j=1

εj−1(1− q)j−1k(j)

Cxm,q(
m
⊗
j=1
fj) = εm(1− q)m+1

∫
Xm

f1(x1) . . .fm(xm)Kε,q(x, x1)Kε,q(x1, x2) . . .

. . . Kε,q(xm−1, xm)Kε,q(xm, x) dλm

That is the thinning Γq(=ελ,k) of =ελ,k has signed Lévy pseudo measure

∞∑
n=1

εn−1

n
qn
∫
Xn

ϕ(δx1 + . . .+ δxn)Kε,q(x1, x2) . . . Kε,q(xn, x1) dλn, ϕ ∈ L1.

So we finally obtain

Γq(=ελ,k) = =ελ,qKε,q .

To summarize we see: The last two examples show that the classes of
Pôya sum-, Pólya difference-, permanental- and determinantal processes re-
main invariant under independent thinning.
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Splitting of Point Processes

A natural question is: Having observed a realization µ of a thinning Γq(P )
of a point process P , what is the distribution of deleted point configurations
given µ. This is the object of interest in this section and it will be denoted
Υµ
q (P ), the so called splitting kernel.

Let us start by introducing the splitting law for any point process P and
q ∈ (0, 1)

Sq(P )(h) =
x

P (dµ)P−q
1−q ,µ

(d ν)h(ν, µ− ν),

for any h ∈ F+(M··(X)×M··(X)). A realization of the splitting law can be
described as follows: P realizes a point configuration µ, which is q-thinned
by the Pólya difference process P−q

1−q ,µ
. The realization of the splitting law is

now the pair of point configurations which survived the thinning and those
which have been deleted. The marginal laws of the splitting law are given by

Sq(P )(ϕ⊗ 1) = Γq(P )(ϕ), Sq(P )(1⊗ ϕ) = Γ1−q(P )(ϕ)

for any ϕ ∈ F+(M··(X)). Thus for N ∈ B(M··(X)) we have Sq(P )(·×N)�
Γq(P ), which enables us to disintegrate the splitting law with respect to the
q-thinning Γq(P ) of P and so by the theory of disintegration we obtain the
splitting kernel Υν

q (P ), that is

Sq(P )(d ν d η) = Γq(P )(d ν)Υν
q (P )(d η).

In the case of finite point processes there is a close connection between the
splitting kernel and the reduced Palm kernels. The following proposition can
already be found in [30]. Here we give a proof by means of disintegration
theory.

Proposition 6.3.5. Let P be a finite point process then the splitting kernel
is given by

Υν
q (P )(ϕ) =

1∫
(1− q)µ(X)P !

ν(dµ)

∫
ϕ(η)(1− q)η(X) P !

ν(d η),

for ϕ ∈ F+(M··(X)).

Proof. Recall the representation (6.10) of the finite Pólya difference process.
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This gives us for any h ∈ F+(M··(X)×M··(X))

Sq(P )(h)

=
∞∑
n=0

qn

(1− q)nn!

∫ ∫
P (dµ)µ−[n](dx1 . . . dxn) (1− q)µ(X)h(

n∑
i=1

δxi ;µ−
n∑
i=1

δxi)

=
∞∑
n=0

qn

(1− q)nn!

∫ ∫
C !,n
P (dx1 . . . dxn; d η) (1− q)n+η(X)h(

n∑
i=1

δxi ; η)

=
∞∑
n=0

qn

(1− q)nn!

∫ ∫
ν̌nP (dx1 . . . dxn)P !

x1,...,xn
(d η) (1− q)n+η(X)h(

n∑
i=1

δxi ; η)

=

∫
P (dµ)(1− q)µ(X)

∞∑
n=0

qn

(1− q)nn!

∫
µ−[n](dx1 . . . dxn)P !

x1,...,xn
(d η)

(1− q)n+η(X)−µ(X)h(
n∑
i=1

δxi ; η)

=
y

P (dµ)P−q
1−q ,µ

(d ν)P !
ν(d η) (1− q)(ν+η−µ)(X)h(ν, η).

Let now ϕ ∈ F+(M··(X)) and ϕ̃(ν) = 1∫
(1−q)µ(X)P !

ν(dµ)
ϕ(ν). Then we have

x
P (dµ)P−q

1−q ,µ
(d ν) (1− q)(ν−µ)(X) ϕ(ν)

=
y

P (dµ)P−q
1−q ,µ

(d ν)P !
ν(d η) (1− q)(ν+η−µ)(X) ϕ̃(ν) = Sq(P )(ϕ̃⊗ 1) = Γq[P ](ϕ̃)

Now by choosing ϕ(ν) =
∫
P !
ν(d η)(1− q)η(X) h(ν, η) we obtain the assertion.

So in case of finite point processes the identification of the splitting kernel
boils down to the computation of the reduced Palm kernels. In case of
infinitely divisible point processes we obtained the reduced Palm kernels, see
equation (4.12), in terms of the reduced Palm kernels of the Lévy measure.
In general there does not exist a canonical method to determine the splitting
kernel of a point process. One has more or less to guess the right solution.
We now want to compute the splitting kernel for some examples. Since we
know the Laplace transform of the Pólya difference process

LP−q
1−q ,µ

(f) = exp(µ(log(1− q + qe−f )))

a direct computation shows that

S!,q
P (e−ζf ⊗ e−ζg) = LP (g − log(1− q + qe−(f−g))). (6.14)
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Example 6.3.3 (Poisson process). Let Pλ be the Poisson process with inten-
sity λ ∈M··(X). Applying (6.14) one sees that

Sq(Pλ) = Pqλ ⊗ P(1−q)λ.

Since it is well known that Γq(Pλ) = Pqλ we conclude that

Υν
q (Pλ) = P(1−q)λ.

Example 6.3.4 (Pólya processes). We have

Υν
q (P

ε
z,λ) = P ε

z(1−q),λ+εν . (6.15)

Recall that the Laplace transforms of the Pólya processes are given by (6.9),
so that

LP εz,λ(f) = exp[−ελ(log(
1− εze−f

1− εz
))].

Applying (6.14) we straightforwardly obtain

Sq(P
ε
z,λ)(e

−ζf ⊗ e−ζg) = exp[−ελ(log(
1− εz(qe−f + (1− q)e−g)

1− εz
))].

We already know that Γq(P
ε
z,λ) = P ε

qz
1−εz(1−q) ,λ

, see example 6.3.1. Let us now

verify that (6.15) is the right choice for the splitting kernel of the Pólya
processes. A direct computation yields

x
P ε

qz
1−εz(1−q) ,λ

(d ν)P ε
z(1−q),λ+εν(d η) e−ν(f)e−η(g)

= exp[−ελ(log(
1− εz(qe−f + (1− q)e−g)

1− εz
))] = Sq(P

ε
z,λ)(e

−ζf ⊗ e−ζg).

Remark 6.3.6. Let us compute the intensity measures of the splitting ker-
nels, obtained in the last two examples.

ν1
Υµq (Pλ) = (1− q)λ, ν1

Υµq (P εz,λ) =
z(1− q)

1− z(1− q)
(%+ εµ)

Theorem 6.3.7. For every q ∈ (0, 1) Γq(P ) is a Papangelou process and its
kernel is given by

π(µ, dx) =
q

1− q
ν1

Υµq (P )(dx).
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Proof. So let us start by computing

CΓq(P )(h) =

∫
P (dµ)CP−q

1−q ,µ
(h)

=

∫
P (dµ)P−q

1−q ,µ
(dκ)

q

1− q
(µ− κ)(dx)h(x, κ+ δx)

=

∫
Γq(P )(dκ)Υκ

q (P )(d η)
q

1− q
η(dx)h(x, κ+ δx)

=

∫
Γq(P )(dκ)

q

1− q
ν1

Υκq (P )(dx)h(x, κ+ δx).

For the second equation we have used the integration by parts formula (Σ′)
for the Pólya difference process and the third equation follows by definition
of the splitting kernel.

Let us end this section with an open question. We certainly have, as one
would expect, Γq(P ) ⇒ P weakly as q → 1. This can be established by
convergence of the respective Laplace transforms and by using − log(1− q+
qe−f ) ≤ fef due to the estimate − log(1 − x) ≤ x

1−x for x ∈ (0, 1). Now a
natural question is: Which conditions have to be imposed for the existence
of a kernel π such that for all f ∈ Fbc,+(X)

lim
q→1

q

1− q
ν1

Υµq (P )(f) = π(µ, f) P − a.s.[µ]

and when is it the Papangelou kernel of P? We remark that both questions
have a positive answer in case of the two examples in remark 6.3.6. Recall
that q

1−q = z is the parameter such that the q-thinning is given by the mixture

of Pólya difference processes P−z,µ with respect to µ see (6.11).

6.4 Cox Point Processes

In this section we want to identify a class of point processes with a signed
Lévy pseudo measure as Cox processes. The link between independend thin-
nings and Cox processes is given by the following fundamental theorem of
Mecke in [44] theorem 8.

Theorem 6.4.1 (Characterization of Cox distributions). Denote by P the set
of point processes and by ∆ the set of Cox processes then

⋂
0<q<1 Γq(P) = ∆.

The mapping Γq is injective and if P ∈
⋂

0<q<1 Γq(P) then P =
∫
PρR(dρ)

with
LR(f) = lim

q→0
LΓ−1

q (P )(qf), f ∈ U.
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So in order to verify that a point process Q is a Cox process we have
to check that for each q ∈ (0, 1) there exists a point process Pq such that
Q = Γq(Pq). And for this task we will employ theorem 6.3.4.

Theorem 6.4.2. Let =z be a point process with signed Lévy pseudo measure

Lz(ϕ) =
∞∑
n=1

zn

n

∫
Xn

ϕ(δx1 + . . .+ δxn)Bx1
n−1(dx2 . . . dxn)λ(dx1), ϕ ∈ L1,

where z ∈ (0, 1), λ ∈ M(X), {Bxm}m≥0 is a projective family of finite signed
measures, that is for k ≤ m and 1 ≤ i1 < . . . < ik ≤ m we have for any
f1, . . . , fk ∈ U

Bxk(
k
⊗
j=1
fj) =

∫
Bxm(dx1 . . . dxm) f1(xi1) . . . fk(xik).

Furthermore we assume that Bx1
n−1(dx2 . . . dxn)λ(dx1) is as above invariant

under cyclic permutations. Then =z is a Cox process and the directing ran-
dom measure Rz is the weak limit of the sequence q= z

z+(1−z)q
as q tends to

zero.

Proof. Let us start by computing the q reweighted loop measures of =z, which
were introduced preceding theorem 6.3.4. Due to the projectivity we have

Cxm,q(
m
⊗
j=1
fj) =

∞∑
n=m

(
n

m

)
(z(1−q))n+1 Bxm(

m
⊗
j=1
fj) =

(z(1− q))m+1

(1− z(1− q))m+1
Bxm(

m
⊗
j=1
fj).

The second equation follows as in example 4.4.1. Now theorem 6.3.4 shows
that =z has signed Lévy pseudo measure

∞∑
n=1

(zq)n

(1− z(1− q))n
1

n

∫
Xn

ϕ(δx1 + . . .+ δxn)Bx1
n−1(dx2 . . . dxn)λ(dx1), ϕ ∈ L1.

A straightforward computation yields that if we choose γ(z, q) = z
z+(1−z)q

then
γ(z, q)q

1− γ(z, q)(1− q)
= z,

which implies Γq(=γ(z,q)) = =z and we conclude with Mecke’s theorem 6.4.1.

The following example is due to Rafler [61].
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Example 6.4.1 (Pólya sum process). The family

Bxn = δx(dx1) . . . δx(dxn)

certainly has the projectivity property. The corresponding point process =z
is the Pólya sum process P+

z,λ (see section 4.2). So according to theorem
6.4.2 it is a Cox process. Let us compute its directing measure. The Laplace
transform of the scaled Pólya sum process qP+

γ(z,q),λ is given by

LqP+
γ(z,q),λ

(f) = exp

−∫
X

log(
1− γ(z, q)e−qf(x)

1− γ(z, q)
)λ(dx)

 .

The integrand in the above term on the right hand side is dominated by some
λ-integrable function as follows. Remember log(x) ≤ x − 1, x ≥ 1 and
1− e−x ≤ x, x ≥ 0 so that

log(
1− γ(z, q)e−qf(x)

1− γ(z, q)
) ≤ γ(z, q)(1− e−qf(x))

1− γ(z, q)
≤ γ(z, q)q

1− γ(z, q)
f(x)

=
z

1− z
f(x).

Let us now investigate the convergence of the integrand. Using l’Hôpitales
rule we get

lim
q→0

1− z(y, q)e−qf(x)

1− z(y, q)
= 1 +

y

1− y
f(x).

So the Laplace transform of the directing random measure is given by

LR(f) = exp

(
−
∫

log(1 +
y

1− y
f(x))λ(dx)

)
.

We see that for f, g ∈ Fbc,+(X) with supp(f) ∩ supp(g) = ∅ there holds

LR(f + g) = LR(f)LR(g)

Therefore R has independent increments. Let us calculate the Laplace trans-
form of the field variable ζB for some B ∈ B0(X). We have

LζB(t) = LR(t1B) =
1

(1 + y
1−y t)

λ(B)
, t ≥ 0.

Thus ζB is Gamma distributed, and so we have identified R as the Poisson-
Gamma process.
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Remark 6.4.3. The Pólya difference process P−z,λ can not be a Cox process,

because the field variables ζB, B ∈ B0(X) are bounded under P−z,λ due to

the fact that for every realization µ of P−z,λ we have µ ⊂ λ. More formally

assume that P−z,λ is Cox with directing measure R and let B ∈ B0(X) such
that λ(B) ≥ 1. Then we must have R{ζB > 0} > 0 and

1 = P−z,λ{ζB ≤ λ(B)}

=

∫
{ζB=0}

Pρ{ζB ≤ λ(B)}R(d ρ) +

∫
{ζB>0}

Pρ{ζB ≤ λ(B)}R(d ρ)

= R{ζB = 0}+

∫
{ζB>0}

Pρ{ζB ≤ λ(B)}R(d ρ) < 1,

contradiction.
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[43] Mecke, J.: Stationäre zufällige Maße auf lokalkompakten Abelschen
Gruppen, Z. Wahrscheinlichkeitstheorie verw, Gebiete 9,36-58 (1967).

[44] Mecke, J.: Random measures. Walter Warmuth Verlag (2011).

[45] Merris, R.: Manifestations of Polya’s Counting Theorem. Lin. Alg. and
its Appl. 32, 209-234 (1980).

[46] Minlos,R.A.: Limiting Gibbs distribution. Funct. Anal. Appl. 1,141 -
150 (1967).

[47] Minlos, R.A., Poghosyan, S.: Estimates of Ursell functions, group func-
tions, and their derivatives. Theor. Math. Phys. 31, 408 (1977).

[48] Miracle-Sole, S.: On the convergence of cluster expansions. Physica A
279, 244 (2000).
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