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Abstract

Program behavior that relies on contextual information, such as physical location
or network accessibility, is common in today’s applications, yet its representation
is not sufficiently supported by programming languages. With context-oriented
programming (COP), such context-dependent behavioral variations can be explicitly
modularized and dynamically activated. In general, COP could be used to manage
any context-specific behavior. However, its contemporary realizations limit the
control of dynamic adaptation. This, in turn, limits the interaction of COP’s
adaptation mechanisms with widely used architectures, such as event-based, mobile,
and distributed programming.

The JCop programming language extends Java with language constructs for context-
oriented programming and additionally provides a domain-specific aspect language
for declarative control over runtime adaptations. As a result, these redesigned
implementations are more concise and better modularized than their counterparts
using plain COP.

JCop’s main features have been described in our previous publications. However, a
complete language specification has not been presented so far. This report presents
the entire JCop language including the syntax and semantics of its new language
constructs.

1 Introduction

In most object-oriented programming languages, any method execution is influenced
by its execution context, for example the values of its arguments or the state
of referenced objects. For a single method, such behavioral variations can be
well modularized by the common means of object-oriented languages, such as
method parameterization and overriding. Programs may additionally use conditional
statements and inheritance to separate the variation code from the default behavior.

Context-oriented programming [11, 6] (COP) addresses the representation of be-
havioral variations that impact several method executions simultaneously. Their
implementation often crosscuts the class-based decomposition. With common
object-oriented means, these kinds of crosscutting behavioral variations cannot be
sufficiently modularized [8]1. In addition, context information must be propagated
within a control flow and exposed to the respective methods. This requires addi-

1In the following, we consider COP as a extension of object-oriented programming, though its
basic concepts can be applied to other paradigms as well. In fact, COP has been originally
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tional infrastructural code for both the context propagation and the dispatch to
the required variation. In the following, we refer to source code that implements
behavioral variations as an adaptation. The code that triggers the execution of
an adaptation is called a composition because it composes the base behavior with
adaptations.

In COP, behavioral variations can be represented by special methods called partial
method declarations that implement variations of particular methods. Partial
method declarations are encapsulated by layers. Depending on this contextual
information, adaptations may be explicitly composed for a control flow. Adaptation
composition—in COP also called as layer composition—is expressed by special
layer activation and deactivation statements. Layer activation is scoped to specific
control flows. This prevents layer adaptations from unintentionally affecting other
computations, which could lead to state inconsistencies and corrupted results.

JCop [1, 3, 16, 15] is our Java language extension that provides dedicated language
constructs for COP, such as layer and partial method declarations, and layer
composition statements. In addition, JCop offers linguistic means to overcome the
issue of scattered layer composition statements that has been identified and described
in previous work [3, 2]. Therefore, JCop integrates COP with a domain-specific
aspect-oriented programming [12] (AOP) language.

Although JCop has been presented in previous publications, a complete language
specification has not been presented, yet. This report presents the entire JCop
language including the syntax and semantics of its new language constructs.

Section 2 gives an overview of the fundamentals of context-oriented programming
that are necessary to understand JCop’s features. Section 3 presents JCop’s
declaration constructs that have been added to Java: layer type declarations and
partial method declarations. Section 4 discusses the control mechanisms for dynamic
adaptation. Section 5 describes the context class declaration.

We present the syntax production rules in the following sections using the grammar
notion of the Java Language Specification, third edition [9]. Terminals are shown
in fixed font, non-terminals are shown in italic. Each line of a grammar definition
represents one alternative right-hand side. The subscripted suffix ’opt’ after elements
denotes an optional symbol. The words ’one of ’ after a grammar definition header
starts an abbreviation that declares each of the following terminal symbols as
alternative definitions. Some JCop production rules extend existing Java production
rules, which we mark with underlines and abbreviate their definition using ’...’.

implemented for Lisp [6].
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Figure 1: Modularization of behavioral variations by layers and partial methods.

2 Overview of Context-oriented Programming

In this section, we give an overview of the key features of COP. Subsection 2.1
introduces layer-based modularization. Subsection 2.2 describes the run-time
composition of layers.

2.1 Modularization

Layers are modules that are conceptually orthogonal to classes, i.e., a layer may
extend or replace the functionality of one or more classes. To distinguish between
different kinds of method definitions, we use the following terms.

Plain method declaration denotes a common (Java) method that is not affected by
layer adaptations.

Layered method declarations are the counterpart to plain methods. The term de-
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scribes methods that are adapted by layers. A layered method declaration
consists of a base method and at least one partial method.

Base method declarations are plain methods that are executed if no active layer
provides a corresponding partial method. In most COP languages, the
methods provided by the base language belong to an implicit base layer,
which is why we use the term base method.

Partial method declarations are declared within a layer and implement a behavior
variation of a base method.

Layer local methods are declared within a layer. They are only accessible from
within the layer and can be referred by partial methods for a better modular-
ization.

The enclosing class of a base method is called the host class of the base method and
its partial method. Figure 1 illustrates the different kinds of method definitions.

2.2 Runtime Adaptation

At run-time, layers can be activated and deactivated. On layer activation, its partial
methods are composed with their base methods and the partial methods of the
other active layers. Therefore, layer activation and deactivation is called layer
composition.

Layer composition influences the method lookup of a layered method. Listing 2
illustrates the activation of a layer Alpha. On activation, the layer and its methods
are composed with the base system. During this composition, a call to B.y is first
dispatched to the partial method of Alpha. Hence, the layer-aware method dispatch
adds another dimension to the object-oriented method lookup. In addition to
a message’s receiving object and signature, the layer-aware method lookup also
considers the message’s contextual information that is implicitly passed through
the control flow. A layer composition is expressed by a block statement and either
implemented by a method or a special language construct. Layer composition is
scoped to the dynamic extend of a block of statements2.

In Figure 2, the method call B.y is first dispatched to the partial method of Alpha.
To explicitly invoke the base method of B.y within the partial method, we can use

2This denotation is borrowed from Lisp [14]. A layer composition established at the start of
the execution the composition block and disappears when that block finishes executing: the
lifetime of the composition is tied to composition block
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Figure 2: Dynamic composition of layers is controlled by layer activation.

proceed, a pseudo-method that allows invoking the next partial method definition
(or the base method). Both the return type and the expected arguments of proceed

must conform to the method’s signature.

The base method of B.y then activates another layer, Beta, and calls the method
A.x. Because this layer composition is executed within the dynamic extend of our
previous layer composition, the method A.x consists of two partial methods (of Beta

and Alpha) and the base method. Partial method definitions can be declared to be
executed before, after, around, or instead of the base method definition. The layer
Beta of our example declares its partial method of A.x to be executed after the base
method. Therefore, the method call is first dispatched to Alpha, then to the A, and
finally to Beta. Layers can also be explicitly deactivated for a specific control flow
by a similar construct.

3 Layer Modularization

This section presents JCop’s language constructs for the modularization of adapta-
tions. Subsections 3.1 and 3.2 describe the two main constructs, layers and partial
methods. Subsection 3.3 presents layer inheritance mechanisms.
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3.1 Layer Declarations

JCop extends the Java type system with layer type declarations that modularize
behavioral variations. Layer declarations can contain partial method declarations in
addition to the standard member declarations. This section describes the properties
of layer declarations that implement class-in-layer adaptations. It also explains open
layer declarations that allow the extension of a layer declaration with additional
partial method declarations, which is called layer-in-class adaptation [11].

3.1.1 Layer Type Declaration

Like a top-level class, a layer is declared in its own compilation unit and specifies a
new, named reference type. Unlike classes, nested and anonymous layer declarations
are not allowed. However, declarations can be opened in any class (or nested class3)
to add partial member declarations, see Subsection 3.1.2.

C l a s s D e c l a r a t i o n :
. . .
LayerDec la ra t i on
Con t e x tC l a s sDec l a ra t i on

LayerDec la ra t i on :
LayerMod i f i e r s opt layer I d e n t i f i e r Superopt I n t e r f a c e s opt

LayerBody

Layer declarations use the keyword layer instead of class. The keyword is optionally
preceded by modifiers and followed by superlayer and interface declarations. A
layer declaration implicitly inherits from jcop.lang.Layer. The extends clause known
from class declarations can be used to specialize the super type. Layers can only
inherit from other layers; they cannot inherit from classes. Layers can implement
interfaces in the same way classes do. Layers extend the inheritance mechanism for
partial members, see Subsection 3.3.

Listing 1 presents an example consisting of two classes that are adapted by two
layers. The listing is an implementation of the layers depicted in Figures 1 and 2.
The layer Alpha adapts methods of both classes—thus, it implements crosscutting
behavior. The layer Beta adapts the method B.z that is also adapted by Alpha. If
both layers are composed together, their composition order determines which is
executed first.

3The Java Language Specification defines a nested class as a general term for static nested classes
and inner classes (non-static nested classes) [9].
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1 public class A {
2 public int x() { ... }
3 }
4
5 public class B {
6 public int y() { ... }
7 public int z() { ... }
8 }

9 public layer Alpha {
10 public int A.x() { ... }
11 public int B.y() { ... }
12 }
13
14 public layer Beta {
15 public int B.x() { ... }
16 }

Listing 1: Two layers adapting the methods of two classes.

3.1.2 Open Layer Declaration

The implementation of behavioral variations can be regarded from two perspectives.
A developer may either focus on the commonality of the partial methods that
implement a behavioral variation (i.e., their interaction among themselves), or on
their individuality (i.e., their interaction with its host class). If the focus is on
commonality, the partial methods should be implemented within a top-level layer
declaration. In this case, source code changes that affect several partial methods
are specified locally in the top-level layer declaration. However, if the focus is
on individuality, the partial methods should be implemented close to their base
method definition rather than in their top-level layer declaration.

We implement the second approach by using an open layer technique, similar to
the open class concept [5, 17]. As a result, JCop layer definitions can be opened
in classes and extended with additional partial methods. Syntactically, open layer
declarations are class body declarations. They can only contain partial methods of
base methods that are defined or inherited by the enclosing class. This mechanism
also allows adaptation of methods with restricted visibility, see Subsection 3.2.2.
Listing 2 shows a declaration of a partial method for the private method A.x within
an open layer declaration in A.

ClassBodyDec lara t ion :
. . .
OpenLayerDec larat ion

OpenLayerDec larat ion :
layer I d e n t i f i e r { OpenLayerBodyDeclarationopt }

OpenLayerBodyDeclaration :
ClassMemberDeclarat ion
Loca lPar t i a lMe thodDec l a ra t i on
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public class A {
private void x() { ... }
// open layer declaration
layer Alpha {
private void x() { ... }

}
}

public class B {
public int y() { ... }

}

public layer Alpha {
public int B.y() { ... }

}

Listing 2: Top-level and open layer declaration of layer Alpha.

1 import lib.*;
2 public class A {
3 public int x() {
4 return new LibClass().aMethod();
5 }
6 }
7
8 public staticactive layer Alpha {
9 public int lib.LibClass.aMethod() { ... }

10 }

Listing 3: A layer declaration using the staticactive modifier.

3.1.3 Layer Modifiers

Layer access can be declared by the default Java modifier, public, protected, and
private. These modifiers have the same effect on layers as on classes. In addition,
layers can be declared abstract, which means concrete subtypes must then implement
all abstract layer members.

By default, layers are composed per control-flow. In addition, the modifier
staticactive declares that one singleton instance of the layer is implicitly glob-
ally activated on static initialization of the layer declaration. For the initialization
of the singleton, the default constructor of the layer is used. This feature simplifies,
for example, the adaptation of library methods that need to be active for the whole
application life cycle, as shown in Listing 3.

LayerMod i f i e r s :
LayerModi f i e r
LayerMod i f i e r s LayerModi f i e r

LayerModi f i e r : one o f
C l a s sMod i f i e r staticactive

8



3.2 Partial Method Declarations

A layer body declaration may contain partial method declarations, and class member
declarations (fields, inner classes, interfaces, and methods). The execution order of
partial methods is controlled using special adaptation modifiers . Partial method
declarations qualify the base method to be adapted by their signature. They are
executed in the scope of the object to be adapted but declared within layers. The
scope of both the object and layer can be accessed through special keywords.

LayerBody :
{ LayerBodyDec lara t ions opt }

LayerBodyDec lara t ions :
LayerBodyDec larat ion
LayerBodyDec lara t ions LayerBodyDec larat ion

LayerBodyDec larat ion :
ClassMembersDec larat ion
LayerMemberDeclaration

LayerMemberDeclaration :
Par t i a lMe thodDec l a ra t i on

3.2.1 Partial Method Modifiers

Partial methods can declare additional modifiers, the partial method modifiers.
They only affect partial method declaration, they do not affect the corresponding
base method. The set of partial method modifiers consists of final, abstract, and
the adaptation modifiers before and after.

Part ia lMemberModi f i er s :
Part ia lMemberModi f ier opt Mod i f i e r s

Part ia lMemberModi f ier : one o f
before after final abstract

Adaptation modifiers can declare the execution order of partial methods and the
base method in the following way:

Execute before the base method If the partial method’s signature contains the before

modifier, the variation will be executed before the original join point. In that
case, partial methods are void and do not contain a return statement.

9



1 package p;
2
3 public class A {
4 public int x(int i) { ... }
5 }

6 public layer Alpha {
7 public int p.A.x(int i) { ... }
8 before public int p.A.x(int value) { ... }
9 after public int p.A.x(int value) { ... }

10 }

Listing 4: Partial method declarations using adaptation modifiers.

Execute after the base method A partial method containing an after modifier will
execute its method block after the base method. This execution time time
corresponds to a the execution of a finally block after a return statement of
a plain Java method.

Execute around the base method The pseudo-method call proceed is used to proceed
to other method variations, see Section 4.1.3. It can be used in any partial
method to call the next partial method of the current composition chain.
The expression can also be used multiple times in a partial method, causing
multiple invocations of the next partial methods.

Execute instead the base method If no partial member modifier is declared, partial
methods are executed instead of the base methods. Their method blocks are
executed without calling other partial methods.

Layers can form a inheritance hierarchy and override partial method declarations,
see Subsection 3.3. To force sublayers to implement a partial method, the method
can be declared abstract. To prohibit sublayers from overriding a partial method,
the method can be declared final.

3.2.2 Partial Method Signature

Partial method definitions are qualified by a full qualified signature that includes
the base method’s enclosing type name and the full package name. The latter
guarantees a unique specification of the corresponding base method. At run-time,
partial methods may replace their base method. Therefore, they must adhere to
the base method’s parameter and return types as well as to its modifiers. The
modifiers may be preceded by an additional adaptation modifier but cannot be
further refined. A layer may contain several partial methods for the same method
that are preceded by a different adaptation modifier. For example, the partial
method declaration of the method A.x in Listing 4 is extended by a full qualified
identifier and can contain an adaptation modifier.

The first partial method of layer Alpha replaces its base method (Line 7). If proceed

is called in its method body, the partial method is executed around its base method,
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modifier adaptability
private, protected open layer declarations only

default layers of same package and open layer declarations
public any layer declaration

final, abstract, native no adaptation
static, volitaire, strictfp no direct effect

Figure 3: Effect of method modifiers to the adaptability by partial methods.

see Section 4.1.3. The second partial method (Line 8) is executed before the base
method (Line 4); the third partial method (Line 9) after the base method. Methods
with before or after modifier must not contain a return statement (regardless of
their return type), but can use proceed.

A method’s modifiers also apply to its partial methods. Hence, the partial methods
must declare the same modifiers. The effect of these modifiers must be respected by
layer adaptations; modifiers may restrict or even prohibit adaptation by a partial
method, as shown in Figure 3: In general, partial methods can be declared for
any method visible to the respective layer. The partial method declarations of
top-level layer declarations can adapt any method that is accessible—with respect
to its encapsulation rules—by the layer. To adapt a method with default visibility,
the layer must be declared in the same package as the method’s class. Top-level
layers cannot declare partial methods for private or protected methods. Private
and protected methods can only be adapted by local partial methods.

A method that is declared as final cannot be adapted by a layer just as it cannot
be overridden by subclasses. Also, abstract methods cannot be adapted since
they cannot be executed. However, their overridden methods in subclasses can
be adapted. JCop does not support adaptation of native methods. Any incorrect
declaration of partial methods will cause a compile-time error. Note that because
of the aforementioned restrictions, the use of the modifiers abstract and final with
partial methods is unambiguous: The modifiers cannot be part of the signature of
the base method but instead refer to the partial method.

Par t i a lMe thodDec l a ra t i on :
Part ia lMethodHeader MethodBody

Part ia lMethodHeader :
Par t ia lMemberModi f i er s opt Resul tType LayerMethodDec larator

Throwsopt

LayerMethodDec larator :
Fu l lQua l i f i edName ( FormalParameterListopt )
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Ful lQua l i f i edName :
TypeName . I d e n t i f i e r

A local partial method is declared in an open layer declaration, see Subsection 3.1.2.
Local partial methods can only adapt methods of the enclosing class declaration
(or its super types). They do not use a full qualified signature. Instead, they use
the same as their plain methods, optionally preceded by an adaptation modifier.

Loca lPar t i a lMe thodDec l a ra t i on :
Loca lPart ia lMethodHeader MethodBody

Loca lPart ia lMethodHeader :
Par t ia lMemberModi f i er s opt Resul tType MethodDec larator

Throwsopt

3.2.3 Partial Method Body Scoping

The scope of a class member declaration in, or inherited by, a layer type Alpha is
the entire body of Alpha, including any nested type declarations. The scope of layer
member declarations in a layer type Alpha is the target class which is to be adapted.
As a consequence, the behavior of Java’s keywords this and super must be specified
for their use within partial method definitions. The two methods of the layer Alpha

in Listing 5 give concrete examples of the scoping. Member references without an
explicit receiver object or this keyword are first looked up in the enclosing layer, then
in the scope of the target object (Line 22). In partial methods, the this keyword
refers to the object to be adapted (Line 23) and the super keyword does not refer to
the layer’s super type but to the super type of the partial method’s target object
(Line 25). Therefore, for the explicit access of the enclosing layer within partial
methods, we introduce two new keywords: thislayer refers to the enclosing layer
and superlayer refers to the super type of the enclosing layer. Without declaring
any receiver object, the invocation is dispatched to the layer-local method, which is
equivalent to thislayer.m1. Using this, the method call is passed to A or to partial
methods of m1.

Access :
. . .
thislayer
superlayer
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1 public class SuperA {
2 public void n() {
3 ...
4 }
5 }
6 public class A extends SuperA {
7 public void m() {
8 ...
9 }

10 public void n() {
11 ...
12 }
13 }
14 public layer SuperAlpha {
15 protected void n() {
16 ...
17 }
18 }

19 public layer Alpha extends SuperAlpha {
20 // executed in the scope of A
21 public void A.m(){
22 n(); // Alpha.n()
23 this.n(); // A.m1()
24 thislayer.n(); // Alpha.n()
25 super.n(); // SuperA.n()
26 superlayer.n(); // SuperAlpha.n()
27 }
28 // executed in the scope of Alpha
29 private void n() {
30 n(); // Alpha.n()
31 this.n(); // Alpha.n()
32 // 'thislayer' is undefined
33 super.n(); // SuperAlpha.n()
34 // 'superlayer' is undefined
35 }
36 }

Listing 5: Example for scoping of layer method bodies.

3.3 Layer Inheritance

The implicit super type of a layer is jcop.lang.Layer. Optionally, layers can declare
a super layer using Java’s extends declaration. Layers may only inherit from other
layers. They cannot inherit from classes. The scope of the super layer can be
accessed by the superlayer keyword.

A partial method mAlpha declared in a layer Alpha overrides a partial method,
mSuperAlpha, declared in layer SuperAlpha if all of the following are true:

1. Alpha is a sublayer of SuperAlpha.

2. The signature of mAlpha is equal to the signature of mSuperAlpha, including all
partial method modifiers (except abstract4).

Listing 6 demonstrates how abstract layers and partial methods can be used to
define adaptation points that can be implemented by concrete layers. The example
shows an abstract layer that adapts methods that are relevant for file creation and
access. Concrete layers can implement different logging styles or replace the original
file interaction by database access.

Layers can also inherit from concrete layers and override concrete partial methods.
Partial methods do not appear in the interface of layers (since their scope is the
class to be layered). Thus the implementation of a partial method in a super
layer cannot be invoked by a super call like super.partialMethod5. To support super

4SuperAlpha and mSuperAlpha may be declared abstract and implemented by mAlpha.
5Otherwise, the same mechanism would allow explicit calls of any partial method of a super
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1 abstract public layer FileAccess {
2 abstract public File FileHandler.create(String name);
3 abstract public String FileReader.read(File toBeRead);
4 }
5
6 public layer FileAccessLogging extends FileAccess {
7 public File FileHandler.create(String name) {
8 System.out.println("create file");
9 return proceed(name);

10 }
11 public String FileReader.read(File toBeRead) {
12 System.out.println("read file");
13 return proceed(toBeRead);
14 }
15 }

Listing 6: Layer hierachy with abstact partial methods.

access for partial methods, JCop provides a variation of the proceed expression,
superproceed, that allows access to a partial method’s super declaration. The use
of superproceed is statically checked. Therefore, if no super layer implements a
corresponding partial declaration its use causes a compile-time error. The layer
VerboseFileAccessLogging in Listing 7 extends FileAccessLogging of the previous example
and attaches additional information to the logging. The original logging functionality
is invoked by superproceed.

4 Layer Adaptation and Composition

Behavioral variations of layers are composed at run-time and scoped to the execution
of one or more expressions. If active, a partial method superimposes its base method
and receives all method invocations first. These semantics are referred as sideways
composition [11]. COP languages define layer composition by an explicit statement
that wraps the expressions to be adapted.

In this section, we present the semantics of layer composition in JCop and JCop’s
means for layer composition. Subsection 4.1 explains the semantics of layer ac-
tivation and deactivation, the adaptation modifiers, and the proceed instruction.
Subsection 4.2 describes the language constructs for explicit layer composition;
Subsection 4.3 introduces reflective access to layers and layer composition, and
demonstrates reflective layer activation.

JCop additionally supports a declarative specification of adaptation points in a
dedicated class, the so called contextclass. A full discussion of this aspect of JCop

layer, with unclear semantics.
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1 public layer VerboseFileAccessLogging extends FileAccessLogging {
2 public File FileHandler.create(String name) {
3 File createdFile = superproceed(name);
4 System.out.println("file name: " + name);
5 return createdFile;
6 }
7 public String FileReader.read(File file) {
8 String content = superproceed(file);
9 String log = String.format("file name: %s content: %s",

10 file.getName(), content);
11 System.out.println(log);
12 return content;
13 }
14 }

Listing 7: Usage of superproceed in partial methods

layer composition is provided in Section 5.

4.1 Semantics of Layer Composition

Layer composition can be expressed by the two functions with and without that
operate on sets of layers. These two functions allow dynamic activation or exclusion
of layers at any point in the control flow. To specify these control flow locations,
JCop provides different composition constructs.

In the following, we formulate the semantics of layer composition. Let base be the
base layer and L the set of layers6 li in a program:

L = {l1, ..., li, ..., ln}, 1 ≤ i ≤ n ∈ N.

An ordered list of layers is then denoted as tuple (l1, ..., ln). We define two layer
tuple sets, L and C. L represents the set of tuples that may be activated by a
composition. These tuples must not contain the base layer.

L = {(l1, ..., li, ..., lnk
, base) | li ∈ L ∧ 1 ≤ i ≤ nk ∈ N}

A layer composition list is a layer tuple whose last element is the base layer. C
describes the set of all possible layer compositions:

6Layers in JCop are instantiable. However, for layer composition, we can omit that implementa-
tion detail. Thus, an element li refers to a layer instance. It is possible that two tuple elements
lx and ly refer to the same layer instance.
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C = L× {base}

The following subsections present the semantics of the composition functions
(Subsection 4.1.1) and the effect of adaptation modifiers (Subsection 4.1.2) and
proceed to the layer dispatch (Subsection 4.1.3).

4.1.1 Composition Functions

The active layer composition can be manipulated by the two composition functions,
with and without . As a first step, we omit the presence of adaptation modifiers and
assume that layers, e.g, their partial methods, always proceed to the next layer in
the composition.

The with function defines the join of a composition tuple ∈ C with a tuple ∈ L.
This operation is called layer activation:

with : C × L → C
(c1, ..., cn, base) × (l1, ..., lm) 7→ (lm, ..., l1, c1, ..., cn, base)

Note that the layers (l1, ..., lm) of the right-hand side of with are attached to the
composition in reverse order.

The following examples use infix notation and demonstrate the effect of the function
to the composition. The left-hand side describes the initial composition which will
be joined to the right hand side tuple. The first example activates a layer alpha
while no other layer (except for the base layer) is active. In this case, the call of a
method layered by alpha would be dispatched first to the layer, and then to the
base method.

(base) with (alpha) 7→ (alpha, base)

In the following example, we append a layer to the head of the active composition.
Thus, the last activated layer is accessed first.

(alpha, base) with (beta) 7→ (beta, alpha, base)
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JCop does not prohibit composing the same layer multiple times:

(beta, alpha, base) with (alpha) 7→ (alpha, beta, alpha, base)

The without function removes—or deactivates—the tuple elements of its second
argument from the composition. With other words, the result tuple contains the
maximal number of layers of the first tuple that are not contained in the second
tuple while preserving the original order:

without :
C × L → C

(c1, ..., cn, base) × (l1, ..., lm) 7→ (ci1 , ..., cik
, base)

cij
∈ {c1, ..., cn}\{l1, ..., lm},

1 ≤ j ≤ k ∧ ir < is for r < s ∧
k beeing maximal

The deactivation of a layer that is not part of the composition has no effect.

(alpha, base) without (beta) 7→ (alpha, base)

If a without operation only affects layers at the head of a composition list, the
respective layers can be simply removed.

(beta, alpha, base) without (beta) 7→ (alpha, base)

If layers are removed at another position in the composition list, the list is reordered
accordingly. A layer deactivation removes any occurrence of this layer from the
composition list.

(alpha, beta, alpha, base) without (alpha) 7→ (beta, base)

Any operation on the layer composition list only affects the dynamic extend of
the current execution. Once the control flow returns from that execution, the
composition is set to its old value.
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4.1.2 Effect of Adaptation Modifiers

The composition functions with and without define the general order in which partial
methods will be executed. In addition, partial methods themselves can influence
their location in the dispatch chain by their adaptation modifiers.

For illustration, we consider the dispatch of a base method C.x and its partial
methods. We assume that each layer in (l1, ..., ln) provides one partial method for
C.x7 . The layer lmod

i denotes a method’s (for example, C.x) partial method that is
declared in layer li and uses the adaptation modifier mod ∈Mod. The adaptation
modifiers are defined by the set:

Mod = {before, after, around, base}.

Its elements before and after represent the adaptation modifiers explained in
Subsection 3.2.1. The effect of around and instead methods on the composition
order is the same. Thus, we represent both types by around. For convenience, the
modifier base denotes the base method (hence, lbase

i ≡ basebase ≡ base).

mod <adapt mod′ :↔ (mod = before) ∨
(mod = around ∧mod′! = before) ∨
(mod = base ∧mod′ = after) ∨
(mod′ = after)

Based on this partial order, we define the dispatch order of partial methods. The
dispatch order of two active partial methods is then defined as follows.

lmod
i <pmo lmod′

j :↔ (mod <adapt mod′) ∨ (mod = mod′ ∧ i ≤ j)

The function pmo orders a tuple according to <pmo. It is applied right before the
dispatch of a layered method (i.e., right before the execution of C.x). The following
two examples demonstrate the effect of the reordering to the dispatch chain. Note
that the reordering does not affect the layer composition order but only the execution

7A layer could provide up to three partial methods for x that possess different adaptation
modifiers. However, for our formulation, we can ignore that fact and represent a layer l with
three partial methods as tuple (lbefore, laround, lafter).
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Figure 4: Execution order of before (A), after (B), around (C), and instead meth-
ods (D).

chain for the respective layered method. Reordering is only necessary if the partial
method contains adaptation modifiers other than around (and base). If not, pmo
has no effect to the execution order.

pmo((betaaround, alphaaround, base)) = (betaaround, alphaaround, base) (1)

If before and after are used, all before methods are moved to the compositions
head and the after methods to the tail, while preserving the original order between
the set of after and before methods.

pmo((deltaafter, alphabefore, betaafter, gammabefore, base)) =
(alphabefore, gammabefore, base, deltaafter, betaafter)

4.1.3 Proceeding Partial Methods

The previous sections presented the composition of layers to generate an ordered
layer tuple. In the simplest case, we employ only around methods (as shown in
Equation (1)) and a method call is only dispatched to the first partial method. This
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1 class A {
2 public int x(int i) {
3 ...
4 }
5 }
6
7 layer Alpha {
8 public int A.x(int i) {
9 return proceed(i * 2);

10 }
11 }
12
13
14

Listing 8: A partial method that is
executed around its base method.

1 class A {
2 public int x(int i) {
3 ...
4 }
5 public float y(int i, boolean b) {
6 ...
7 }
8 }
9

10 layer Alpha {
11 public int A.x(int i) {
12 return (int) y(i, true);
13 }
14 }

Listing 9: A partial method that is
executed instead of its base method.

method eventually returns to the call side without calling the next partial method
(or the base method), much like a call to an overwriting method that does not
automatically execute its super method. Proceeding through the layer composition
can be declared either implicitly or explicitly.

So far, we introduced implicit execution of more than one partial method by adap-
tation modifiers. That means, a composition (lbefore

1 , ..., laround
m , ..., base, ..., lafter

n )
would only execute the before methods l1 up to the first around method lm and
the after methods ln. Figure 4 (top) presents the execution time of before and
after methods. They can only execute side-effects; they can neither manipulate the
underlying method’s execution nor return any value. A before method is implicitly
called before the execution of its underlying method; an after method is executed
right after its underlying method returns from its computation.

Explicit proceeding from one partial method to the next can be declared using the
pseudo-method call proceed. Figure 4 (bottom) shows an around method that uses
proceed to access the base method and an instead method that replaces the base
method by not using proceed. The proceed call may be used only in the body of a
partial method; if it appears anywhere else, a compile-time error occurs because
it expects an argument list to be passed to the next partial method. In this way,
partial methods can also influence the execution of their base method by modifying
the base method’s arguments. Listing 8 shows an example of an around method
that doubles the value of the original argument by using the proceed call. Listing 9
illustrates an instead method that executes another method instead of its base
method.
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4.2 Explicit Layer Composition

Explicit composition statements are defined in the source code around the expres-
sions to be adapted. JCop provides two block statements for composition, with and
without. Both can be used in any statement block (method bodies and initializers).
They consist of a keyword, an argument list specifying the right-hand side of the
adaptation function, and a block that contains the expressions to be executed with
the composition. The argument list consists of layer type expressions denoting the
layers to be activated. More precisely, expressions of type Layer8, Iterable<Layer>,
or Layer[] are valid arguments. However, the use of any other expression type will
cause a compile time exception. If all with arguments are evaluated to an empty
list (or null), no layer is activated. The specified composition is only active for
the dynamic extent of the composition statement block, i.e. for the control flow of
any expression within the block. This implies that the composition of a particular
layer is confined to the threads in which the layer was explicitly composed. Layer
composition does not propagate to new threads; they start with no layers being
active. Subsection 4.3.1 describes how layer composition could be transfered to
other threads using meta programming.

Explicit layer activation is implemented by the with statement. The first activation
in Listing 10 is parameterized with an instance of Alpha (Lines 6–8). The layer
activation scope is defined by the following block, which contains one statement.
Activation statements can contain a list of layers or expressions of type Layer to be
activated. The second composition shows the activation of Alpha and Beta, which
is the return value of expr (Lines 10–12). Alternatively, with statements can be
nested to activate multiple layers (Lines 14–18). The without statement implements
the without function, which excludes specific layers from the current composition
tupel. A deactivation removes all references to the deactivated layer in the current
composition (Lines 22–24). Layer instances are considered as different layers.
Therefore, a deactivation of one instance does not remove any other instances of
the same layer. For convenience, JCop offers the withoutall construct to remove all
instances (Lines 25–27).

Sta t ementWi thou tTra i l ingSubs ta t ement :
. . .
LayerComposit ionStmt

LayerComposit ionStmt :
LayerComposit ionHeader Block

LayerComposit ionHeader :
LayerComposi t ionFunct ion( ArgumentList )

8Layer is located in the JCop standard library package jcop.lang.
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1 public void main() {
2 B b = new B();
3 Alpha alpha = new Alpha();
4 Alpha alpha2 = new Alpha();
5
6 with (alpha) {
7 b.y();
8 }
9

10 with (alpha, expr()) {
11 b.y();
12 }
13
14 with (alpha) {
15 with (new Beta()) {
16 b.y();
17 }
18 }
19
20 with (alpha, alpha, alpha2) {
21
22 without (alpha) {
23 b.y();
24 }
25 withoutall(Alpha.class) {
26 b.y();
27 }
28 }
29 }
30
31 private Layer expr() {
32 return new Beta();
33 }

(base) with (alpha) 7→ (alpha,base)

(base) with (alpha, beta) 7→ (beta, alpha,base)

(base) with (alpha) 7→ (alpha,base)
(alpha,base) with (beta) 7→ (beta, alpha,base)

(base) with (alpha, alpha, alpha2)
7→ (alpha2, alpha, alpha,base)
(alpha2, alpha, alpha,base) without (alpha)
7→ (alpha2,base)

(alpha2, alpha, alpha,base) without (alpha, alpha2)
7→ (base)

Listing 10: Explicit layer compositions and their corresponding composition
functions.

LayerComposi t ionFunct ion : one o f
with without withoutall

The with block statement can be used in method bodies. It contains an argument
list of layer type expressions denoting the layers to be activated. More precisely,
expressions of type Layer9, Iterable<Layer>, or Layer[] are valid arguments; the usage
of any other type will cause a compile time exception. If all with arguments are
evaluated to an empty list (or null), no layer is activated.

The specified layers are only active for the dynamic extent of the with block. That
is, for the control flows of any expression within the block. This implies that the
activation of a particular layer is confined to the threads in which the layer was
explicitly activated. Layer activation does not propagate to new threads; they start
with no layers being active10.

9jcop.lang.Layer
10Section 4.3.1 describes how layer composition could be easily transfered to other threads using
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1 public void main() {
2 Composition comp = Composition.current();
3 Composition newComp = comp.withLayer(new Alpha());
4 with(newComp.getLayers()) { ... }
5 }

Listing 11: Reflective layer activation

1 public void m() {
2 with(new Alpha()) {
3 ...
4 final Composition compOfOtherThread = Composition.current();
5 new Thread() {
6 public void run() {
7 with(compOfOtherThread.getLayers()) {
8 ...
9 }

10 }
11 }.start();
12 }

Listing 12: Using reflection to instrument new threads with a layer composition.

4.3 Reflective Layer Composition

The constructs presented so far support most common scenarios for layer composi-
tion. For situations requiring special reasoning about layers and their composition,
JCop provides a reflection API. It gives access to inspect and manipulate layers,
their composition and their partial methods at run-time. In addition, JCop provides
layer-based composition—the ability of layers to decide about their activation .

4.3.1 Reflection API

The complete reflection API is documented in Appendix 6. Its class Composition

represents a layer composition and contains the ordered list of layers. It provides
access and navigation through the composition’s layers. The methods withLayers,
withoutLayers, and withoutAllLayers correspond to the composition functions presented
in the previous sections and return a new instance representing the modified
composition. Note that the methods do not activate the composition object. For
activation, the composition’s layers can be passed to a composition function. In
Listing 11, the run-time composition is accessed via the Composition interface. Using
the withLayer method, a new composition object containing the old composition
plus an instance of Alpha is generated. An array containing the composition’s layers

meta programming

23



1 public class Display {
2 public void render() { ... }
3 }
4
5 public layer DayDisplay {
6
7 public Composition onWith(Composition current) {
8 Composition comp = current.withoutAllLayer(NightDisplay.class);
9 if (!comp.contains(Display3D.class)) {

10 comp = comp.withLayer(new Display3D());
11 }
12 return comp;
13 }
14 public Composition onWithout(Composition current) {
15 return current.withoutAllLayer(Display3D);
16 }
17 public void render() { ... }
18 }
19
20 public layer NightDisplay {
21 public Composition onWith(Composition current) {
22 return current.withoutAllLayer(DayDisplay.class);
23 }
24 public void Display.render() { ... }
25 }
26
27 public layer Display3D { ... }

Listing 13: Implicit layer-based activation.

is then used as an argument of the with statement.

A new thread that is started in this dynamic extend will not inherit the composition
of its creating thread. However, using reflection we can easily initialize the new
thread with the old layer composition, as demonstrated in Listing 12. First, we
assign the layer composition list of the parent thread to a final variable of type
Composition. Then, we override the method run in the new thread. In this method,
we access the layers of the composition variable using getLayers. Finally, we activate
these layers in the new thread.

4.3.2 Layer-based Composition

Structural relationships between layers is addressed by JCop’s layer inheritance
mechanisms. In addition, some application-specific dependencies may impact layer
composition. For example, the use of a layer may prevent or cause the activation
of another layer. JCop achieves such layer-based composition by an event-handler
mechanism that allows layers to manipulate the run-time composition on activation
and deactivation. For that purpose, the interface of jcop.lang.Layer —the implicit
superclass of all layers—provides the two event handler methods onWith and onWithout

that can be overwritten by concrete layers. The handlers are called for explicit
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and declarative layer composition. However, they are not called for reflective layer
activation, which could lead to infinite loops. The handlers are right after layer
activation and right before layer deactivation. The current composition is passed
as an argument to the method so that it can be analyzed and manipulated using
reflection as described in the previous paragraph. The handler methods return a
composition object that is activated instead of the input composition.

We give an example of the use of layer-based activation by expressing layer depen-
dencies such as (mutual) exclusions and inclusions. The example in Listing 13,
implements two layers, DayDisplay and NightDisplay for a GPS device. To assure
that instances of both layers are never active at the same time (mutual exclusion),
we override onWith. On activation of one layer, its composition handler method
takes care that any instance of the other one is removed from the list. We can
also include other layers on activation of a specific layer. For example, the layer
DayDisplay implicitly activates Display3D on activation.

For convenience, Composition provides the methods requires, excludes, excludesAll

weakRequires, weakExcludes, and weakExcludesAll with which a layer can express its
dependencies. The method requires checks if the required layer is part of the current
composition. If not, the application throws a CompositionException that may be used
to solve the conflict. The method weakRequires also checks for the presence of the
required layer, but instead of throwing a CompositionException, it implicitly activates
the layer. The other methods, excludes and weakExcludes work in a similar manner.

4.3.3 Object-based Activation

Objects can implicitly activate layers on execution of their layered methods. That
is, even if the composition does not contain a layer for a layered method A.x, on
execution of A.m, A can decide to activate a layer to execute a partial method of
x. As with the layer event handlers of the previous subsection, objects can imple-
ment the event handler onLayeredExecution provided by the interface LayerProvider:
Listing 14 shows an extreme example in which an object prohibits any further
modification by layers11:

11In most cases, declaring the methods to be protected as final would also serve this purpose
and might be the more elegant solution. Final methods cannot be adapted by partial methods
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1 interface LayerProvider {
2 public Composition onLayeredExecution(Composition current);
3 }
4
5 class UnadaptableClass implements LayerProvider {
6 public Composition onLayeredExecution(Composition current) {
7 return current.withoutLayer(current.getLayers());
8 }
9 }

Listing 14: Use of the LayerProvider interface.

5 Declarative Compositions

JCop’s declarative layer composition is implemented by a domain-specific aspect
language. Its join point model consists solely of method executions. These join
points can be specified by pointcuts. Syntactically, declarative compositions consist
of two parts, a pointcut part and an advice composition part. The pointcut part is
a logic expression consisting of built-in and named pointcuts, see Subsection 5.1.
Subsection 5.2 discusses the evaluation of when pointcuts. The advice composition
contains a sequence of with and/or a without operators, see Subsection 5.3.

5.1 Layer Composition Pointcuts

Layer composition pointcuts can be composed using the logic operators and (‘&&’),
or (‘||’) and not (‘!’), like pointcuts in AspectJ [12] and predicates in Prolog [13].
JCop provides four built-in pointcuts, on, when, this, and args, and the declaration of
named pointcuts.

Built-in Pointcuts The on pointcut can describe method executions at which layers
should be composed. The respective method is specified by its signature. The
example in Listing 15 presents an on pointcut that surrounds the execution of A.x

and A.y with the activation of Alpha (Lines 1–3). The same behavior is shown on
the right using explicit activation (Lines 10, 11).

The when pointcut allows for a more implicit description of composition time inde-
pendent of the actual execution in the main control flow. It is useful for applications
in which context activation depends on the change of a specific property (such as
the state of a sensor) that can be evaluated by a boolean expression. Whenever this
expression evaluates to true, the layer composition is applied. Listing 16 presents a
when pointcut that activates Alpha depending on location data.
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1 on (int pckg.A.x()) ||
2 on (void pckg.A.y(int)) :
3 with(new Alpha());
4
5
6

7 package pckg;
8
9 public class A {

10 public int x() { with(new Alpha()) { ... } }
11 public void y(int i) { with(new Alpha()) { ... } }
12 }

Listing 15: Modular declarative (left) vs. redundant explicit composition state-
ments (right).

1 when (Sensor.inLibrary()) :
2 with(new SilenceMode());
3
4 layer SilenceMode {
5 public void PhoneAlert.incomingCall() {
6 // vibrate
7 }
8 public void Display.update() {
9 // discrete message

10 }
11 }
12
13 class Sensor {
14 public static boolean inLibrary() {
15 /* checks GPS and RFID data */
16 }
17 }

18 class PhoneAlert {
19 public void incomingCall() {
20 // ring
21 display.update();
22 }
23 }
24
25 class Display {
26 public void update() {
27 // bright blinking
28 }
29 }
30
31
32
33
34

Listing 16: A when predicate that handles phone recomposition.

The two remaining pointcuts this and args help to further specify the join points
collected by on and when but do not bind new join points. For example, the following
pointcut uses an reference of type A to restrict the join points collected by on to
instances of a.

A myA = A();
...
on (int pckg.A.x()) && this(a)

If the type of a does not match the type of the method, the pointcut expression
returns an empty join point set.

Named Pointcuts Pointcut expressions may become complex and hard to compre-
hend. For a better modularization, they can be explicitly declared by a named
pointcut declaration. Named pointcut declarations are treated as a member of
their enclosing context class, see Section 5.4. As a member, it may have an access
modifier such as public, protected, private, abstract, or final.

Syntactically, named pointcuts in JCop are similar to their counterparts in AspectJ.
However, named pointcuts in JCop do not have parameters because they do not
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1 public @interface Evaluate {
2 EvalPolicy value() default EvalPolicy.OncePerCflow ;
3 public enum EvalPolicy {OncePerCflow, UntilTrue, UntilFalse, Always}
4 }
5
6 @Evaluate(EvalPolicy.UntilTrue)
7 when (Sensor.inLibrary()) : with(new SilenceMode());

Listing 17: The Evaluate annotation can specify the evaluation policy of when

pointcuts.

pass variables to their advice block, see Subsection 5.3. For example, using a named
pointcut, the layer composition declaration of Listing 15 can separate the pointcut
specification from the layer composition:

pointcut relevantMethods : on (int pckg.A.x()) && on (void pckg.A.y(int));
relevantMethods : with(new Alpha());

5.2 Evaluation of when Pointcuts

The when pointcut expressions are evaluated every time a method invocation is
potentially dispatched to a layer involved in the composition, i.e, at every execution
of a layered method.

In general, it is hard to predict the actual number layered method calls and with
that the number of pointcut evaluations in a program execution. Therefore, the
pointcut expressions are considered to be side-effect free12. In this example, the
pointcut evaluates the boolean method inLibrary on every invocation of incomingCall

and update because these methods are affected by the layer composition specified in
the advice: on activation of SilenceMode their partial methods become active.

In order to guarantee that a dynamic extent is executed with a consistent layer com-
position, we impose an additional restriction to the when evaluation. Figure 5 (left)
illustrates an issue with multiple evaluations of when within one control flow for
the library example in Listing 16. On invocation of incommingCall, the pointcut
checks if the layer should be activated. The sensor returns false, therefore the
base method of incommingCall is executed. During the execution of incommingCall, the
method update is called. This causes again the evaluation of the pointcut because
the layer SilenceMode—which should be activated by the advice—provides also a
partial method for update. This causes inconsistent behavior because the phone
alert is executed in the default mode, but the display is rendered for a discreet

12A similar restriction is specified for expressions used in guard predicates in the ObjectTeams
language [10].
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Figure 5: Composition consistency for pointcut-based layer adaptation.

notification. JCop prevents such inconsistent behavior by ensuring that, once when

is evaluated, it is not re-evaluated within the dynamic extent originating from this
evaluation, as depicted in Figure 5 (right). This strategy conforms to the original
context-oriented programming model: once a composition has been activated, it is
consistent and valid until its with block terminates.

However, if another evaluation strategy is explicitly desired, the when pointcut can
be annotated with @Evaluate. The annotation expects a value of the enumeration
EvalPolicy that contains four elements. The element OncePerCflow represents the
default behavior explained in the previous paragraph (i.e., no annotation is specified).
If instead the evaluation within a control flow should be continued until the condition
reaches either true or false, the annotation can specify UntilTrue or UntilFalse. For
a continuous evaluation at any method execution, the evaluation policy is set to
Always. This may be useful if the expression to be evaluated has side effects that
should be always executed. Listing 17 shows the declaration of jcop.lang.Evaluate

and a specification of a when pointcut to be executed at any method. Note that a
composed pointcut expression can only specify one evaluation strategy (i.e., one
@Evaluate annotation).

5.3 Composition Advice

A composition advice consists of a comma separated list of with, without, or withoutall
operations that are applied to the join point consecutively. The composition block
is only executed if the pointcut condition matches at least one join point. There
are two different reasons for a pointcut to match. Either, a method is executed
that is declared by an on pointcut. Or, the expression of a when pointcut evaluates
to true. The layers specified by the composition operations are be applied to the
composition in the order of their declaration.
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1 public contextclass LibraryContext {
2 private SilenceMode silence = new SilenceMode();
3
4 when (inLibrary()):
5 with(new SilenceMode());
6
7 public boolean inLibrary() {
8 /* checks GPS and RFID data */
9 }

10 }
11
12 public class Main {
13 void main() {
14 LibraryContext library = new LibraryContext();
15 library.activate();
16 }
17 }

Listing 18: A context class declaration.

5.4 Context Class Declaration

Declarative compositions and named pointcuts, presented in the previous sections,
are enclosed by a context class declaration, a special class declaration that must
contain at least one composition declaration. In addition, context class declara-
tions can contain any class member declarations and named pointcut declarations.
Context class declarations use the keyword contextclass instead of class.

Listing 18 shows a context class for our previous library example. Besides the
composition declaration, it contains an auxiliary method to evaluate context change
and a private layer field. Declarative compositions are evaluated at instance level.
Hence, multiple instances of a context class can influence the layer composition.
The evaluation of the predicates can be controlled by two means. First, like layers,
context classes can be declared to be static active by a modifier. In this case,
a singleton instance of the context class (using the default constructor) will be
automatically created on static initialization. Second, context class instances can
be deployed and undeployed, in a similar way to dynamic aspects languages, such
as CaesarJ [4]). The interface of the implicit super type jcop.lang.ContextClass

provides the deployment API shown in Appendix 6.2.1. Context class activation is
thread-local but not bound to a dynamic extend like layer activation. Also note
that context activation does not immediately cause any changes to the composition
but registers composition statements for future computations. Line 15 of Listing 18
shows a dynamic activation of the context class LibraryContext.
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6 Appendix

6.1 ENBF of the JCop Language Extension to Java

We present the syntax production rules in the following sections using the grammar
notion of the Java Language Specification, third edition [9]. Terminals are shown
in fixed font, non-terminals are shown in italic. Each line of a grammar definition
represents one alternative right-hand side. The subscripted suffix ’opt’ after elements
denotes an optional symbol. The words ’one of ’ after a grammar definition header
starts an abbreviation that declares each of the following terminal symbols as
alternative definitions. Some JCop production rules extend existing Java production
rules, which we mark with underlines and abbreviate their definition using ’...’.

6.1.1 Layers and Partial Methods

6.1.2 Layer Declaration

C l a s s D e c l a r a t i o n :
. . .
LayerDec la ra t i on
Con t e x tC l a s sDec l a ra t i on

LayerDec la ra t i on :
LayerMod i f i e r s opt layer I d e n t i f i e r Superopt I n t e r f a c e s opt

LayerBody

LayerBody :
{ LayerBodyDec lara t ions opt }

LayerBodyDec lara t ions :
LayerBodyDec larat ion
LayerBodyDec lara t ions LayerBodyDec larat ion

LayerBodyDec larat ion :
ClassMembersDec larat ion
LayerMemberDeclaration

Layer Modifiers

LayerMod i f i e r s :
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LayerModi f i e r
LayerMod i f i e r s LayerModi f i e r

LayerModi f i e r : one o f
C l a s sMod i f i e r staticactive

Open Layer Declaration

ClassBodyDec lara t ion :
. . .
OpenLayerDec larat ion

OpenLayerDec larat ion :
layer I d e n t i f i e r { OpenLayerBodyDeclarationopt }

OpenLayerBodyDeclaration :
ClassMemberDeclarat ion
Loca lPar t i a lMe thodDec l a ra t i on

Partial Method Declaration

LayerMemberDeclaration :
Par t i a lMe thodDec l a ra t i on

Par t i a lMe thodDec l a ra t i on :
Part ia lMethodHeader MethodBody

Part ia lMethodHeader :
Par t ia lMemberModi f i er s opt Resul tType LayerMethodDec larator Throwsopt

LayerMethodDec larator :
Fu l lQua l i f i edName ( FormalParameterListopt )

Ful lQua l i f i edName :
TypeName . I d e n t i f i e r

Par t ia lMemberModi f i er s :
Part ia lMemberModi f ier opt Mod i f i e r s

Part ia lMemberModi f ier : one o f
before after final abstract

Express ion :
. . .
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ProceedExpress ion
SuperProceedExpress ion

Access :
. . .
thislayer
superlayer

ProceedExpress ion :
proceed ( ArgumentList )

SuperProceedExpress ion :
superproceed ( ArgumentList )

Loca lPar t i a lMe thodDec l a ra t i on :
Loca lPart ia lMethodHeader MethodBody

Loca lPart ia lMethodHeader :
Par t ia lMemberModi f i er s opt Resul tType MethodDec larator Throwsopt

6.1.3 Layer Composition

Explicit Composition Statement

Sta t ementWi thou tTra i l ingSubs ta t ement :
. . .
LayerComposit ionStmt

LayerComposit ionStmt :
LayerComposit ionHeader Block

LayerComposit ionHeader :
LayerComposi t ionFunct ion( ArgumentList )

LayerComposi t ionFunct ion : one o f
with without withoutall

Declarative Composition

Dec la ra t i v eCompos i t i on :
Compos i t ionPoin tcu t s : C o m p o s i t i o n S p e c i f i c a t i o n ;
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C o m p o s i t i o n S p e c i f i c a t i o n :
LayerComposit ionHeader
LayerComposit ionHeader , C o m p o s i t i o n S p e c i f i c a t i o n

Pointcut Declaration

Compos i t ionPoin tcu t s : one o f
Compos i t ionPointcut EmbracedComposition LogicComposi t ion

Compos i t ionPointcut : one o f
Bas i cPo in t cu t s NamedPointcutAccess

Bas i cPo in t cu t s : one o f
onPointcut whenPointcut t h i s P o i n t c u t a r g s P o i n t c u t

Po in t cu tPa t t e rn :
Mod i f i e r s opt Resul tType LayerMethodDec larator

Log i cPo in t cu t : one o f
Nega tedPoin tcu t AndPointcut OrPointcut

EmbracedPointcut :
( Compos i t ionPoin tcu t s )

AndPointcut :
Compos i t ionPoin tcu t s && Compos i t ionPoin tcu t s

OrPointcut :
Compos i t ionPoin tcu t s || Compos i t ionPoin tcu t s

Nega tedPoin tcu t :
! Compos i t ionPoin tcu t s

NamedPointcutDec larat ion :
pointcut I d e n t i f i e r : Compos i t ionPoin tcu t s ;

Access :
. . .
NamedPointcutAccess

NamedPointcutAccess :
I d e n t i f i e r

onPointcut :
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on ( Po in t cu tPa t t e rn )

whenPointcut :
when ( Express ion )

t h i s P o i n t c u t :
this ( Express ion )

a r g s P o i n t c u t :
args ( ArgumentList )

6.1.4 Context Class Declaration

C l a s s D e c l a r a t i o n :
. . .
LayerDec la ra t i on
Con t e x tC l a s sDec l a ra t i on

Con t e x tC l a s sDec l a ra t i on :
Con t e x tC l a s sMod i f i e r s opt contextclass I d e n t i f i e r

Contex tC las sBodyDec lara t ion

Contex tC las sBodyDec lara t ion :
{ ContextClassMembers }

ContextClassMembers :
ContextClassMember
ContextClassMembers ContextClassMember

ContextClassMember : one o f
Dec l a ra t i v eCompos i t i on NamedPointcutDec larat ion ClassMember

Con t e x tC l a s sMod i f i e r s :
Con t ex tC la s sMod i f i e r
Con t e x tC l a s sMod i f i e r s Con t ex tC la s sMod i f i e r

Con t ex tC la s sMod i f i e r : one o f
C l a s sMod i f i e r staticactive
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6.1.5 Additional Syntax Elements

Unless Statement

The unless statement is taken from the Ruby language and is syntactic sugar for
negative if conditions.

UnlessThenStatement :
unless ( Express ion ) Statement

UnlessThenElseStatement :
unless ( Express ion ) Sta tementNoShor t I f else Statement

The Expression must have type boolean or Boolean, or a compile-time error occurs.
Executes code if conditional expression is false. If the conditional is true, code
specified in the else clause is executed.

If and Unless Modifier

JCop shares another feature with Perl and Ruby. Statement modifiers let you tack
conditional statements onto the end of a normal statement.

Statement ::=
. . . |
C o n d i t i o n a l M o d i f i e r

C o n d i t i o n a l M o d i f i e r ::=
I f M o d i f i e r |
UnlessModi fer

I f M o d i f i e r ::=
Sta tementExpres s ion if Express ion ;

U n l e s s M o f i f i e r : : =
Sta tementExpres s ion unless Express ion ;

6.2 Libraries and APIs

In the following, we document the reflective API that is part of the JCop core
and the context query library that we developed during the development of our
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WhenToDo application.

6.2.1 Reflection API

The reflective API is integrated with Java’s API java.lang.reflect. It consists of
three classes of the jcop.lang package, namely Layer, Composition, and PartialMethod.
Layer provides reflective access to its partial method definitions. Composition objects
allow access to their layers and the (de-)activation of layers. PartialMethod is the
meta-class of partial methods, corresponding to Java’s java.lang.reflect.Method class.
As Method, it inherits from AccessibleObject and implements the Member interface, which
are both defined in the package java.lang.reflect, see Figure 6.

jcop.lang.Layer

public Composition onWith(Composition current)

Returns the current thread-local composition. The method can be overridden for
specific composition handling.

public Composition onWithout(Composition current)

Returns the current thread-local composition. The method can be overridden for
specific composition handling.

public static Composition onWithoutAll(Composition current)

Returns the current thread-local composition. The method can be overridden for
specific composition handling.

public void includes(Layer toBeIncluded, boolean stopOnConflict)

Specifies that on layer activation toBeIncluded must be part of the composition.
The rule is checked right after the activation of the layer by the default imple-
mentation of onWith in jcop.lang.Layer. If stopOnConflict is true, onWith will
throw a CompositionException. If stopOnConflict is false, onWith will activate
toBeIncluded.

public void excludes(Layer toBeExcluded, boolean stopOnConflict)

Figure 6: Extension of the Java reflection API.
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Specifies that on layer activation toBeExcluded must not be part of the compo-
sition. The rule is checked right after the activation of the layer by the default
implementation of onWith in jcop.lang.Layer. If stopOnConflict is true, onWith
will throw a CompositionException. If stopOnConflict is false, onWith will remove
toBeExcluded from the composition.

public Composition getComposition()

Returns the enclosing layer composition
public boolean isActive()

Returns true if the layer is activated in the current thread.
public boolean providesPartialMethodFor(String)

Determines if the layer provides a partial definition for a method with signature
represented by the parameter

public PartialMethod[] getPartialMethods()

Returns an array of PartialMethod objects reflecting all the partial methods pro-
vided by the layer.

public PartialMethod getPartialMethod(String)

Returns a PartialMethod object representing a partial method of the layer with
the signature specified by the parameter.

jcop.lang.ContextClass

public void deploy()

Activates the context class. Multiple activation is ignored.
public void undeploy()

Deactivates the context class. Multiple deactivation is ignored.
public boolean isDeployed()

Returns true it the context class is active.

jcop.lang.Composition

public static Composition current()

Returns the current thread-local composition.
public Composition withLayers(Layer... layers)

Activates a layer in the current composition. Returns a clone of the old composition
before the activation.

public Composition withoutLayers(Layer... layers)

Deactivates a layer in the current composition. Returns a clone of the old composi-
tion before the activation.

public Composition withoutAllLayers(Class<Layer>... layers)

Deactivates a all instances of a layer type in the current composition. Returns a
clone of the old composition before the activation.

public Layer firstLayer()

Returns the first layer of the composition.
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public Layer next(Layer currentLayer)

Returns the successor of currentLayer in the composition. Returns null, if current-
Layer is not part of the composition.

public boolean contains(Layer aLayer)

Returns true if the layer is part of the composition.
public boolean contains(Class<Layer> aLayer)

Returns true if the composition contains at least one instance of the layer.
public Layer[] getLayers()

Returns the composition’s layers as array.

jcop.lang.ContextComposition

public static ContextComposition current()

Returns the thread-local context composition.
public ContextClass[] getContextClasses()

Returns the deployed context class instances.

jcop.lang.PartialMethod

public Layer getDefiningLayer()

Returns the layer defining this partial method
public Class getDeclaringClass()

Returns the declaring class of the partial method
public Class[] getExceptionTypes()

Returns an array of the exception types
public String getName()

Returns a string representation of that method
public Class getReturnType()

Returns the return type of the method
public int getModifiers()

Returns the Java language modifiers for the method represented by this Method
object, as an integer

public Object invoke(Object target, Object... args)

Invokes the underlying partial method on the specified object with the specified
parameters

jcop.lang.ILayerProvider (Interface)

public Composition onLayeredExecution(Composition current)
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Objects can implicitly activate layers on execution of their layered methods by
implementing this event handler method. Therefore, even if the composition does
not contain a layer for a layered method A.x, on execution of A.m, A can decide
to activate a layer to execute a partial method of x.

6.2.2 Context Query Library

Our query library alleviates the access to the CMS. It supports executing context
queries and defining actions - for example, layer activation - to be taken on context
change. In the following, we describe the most important API objects and methods.

Query Language Overview The query language is syntactically inspired by OCL
(Object Constraint Language) and supports logic reasoning about context sources.
A query depends on context sources that provide context information and meta-
data. The context information is retrieved from sensors, local applications or
external services. Context sources are represented by RDF (Resource Description
Framework) which represents contexts and their meta-data as object-graphs.
Contexts are queried by predicates over the Java RDF types. We can refer to the
set of instances of a class with its class name C. The language provides a number of
operations on context sets, aligned to the OCL names: select, reject, forAll, exists
and additionally the one operation. The following expression selects all context
instances bound by the expression e which fulfill the condition c:

e->select(c)

Properties on a list of contexts are mapped to each list member individually,
meaning for all list elements for which the property exists, the property is added to
the returned list. So the following expression matches all properties p of instances
of C fulfilling c:

C->select(c).p

The one operation is special to the CQL compared to OCL. It binds one context
instance at a time and the CQL backtracks over all elements of a list:

e->one(c)

The condition c is evaluated in the context of the queried type. If the property
has a range (rdfs:range) of rdf container or collection v will be bound to the array
of all elements, otherwise it will backtrack over all defined properties, e.g. in case
Contact->one().name over all defined name properties. The instance of the queried class
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may be named; in the following example, the current contact instance is bound to
c.

Contact->one( c | c.firstName=value1 && c.lastName=value2 ) {...}

All logic variables must be declared at the beginning of the expression enclosed in
parenthesis and separated by a colon from the query. Variables and expression can
be unified via the unification operator ‘=’. For example, the following query binds
the variable c to a Contact object and the CQL backtracks over all contact objects
in the context factbase.

(Contact c): c = Contact->one()

Context query sources are accessed by the following expression.

var = SensorTypeName->methodName({param1 = value1,...})

Continuing the nearby contacts example, a query returning information about
contacts within a maximum distance of 100 meters can be written as:

(Nearby[] nc):
nc = NearbyService->nearby({maxDistance=100})

Universally quantified statements over context lists are written as e->forAll(c) and
the existential quantification is written as e.exists(c). The language supports all
primary logic operations (and, or, not). The following conditions ascertains that
all contacts from the given list cs are nearby and that their distance to the current
position is less than the value max.

(Contact[] cs, int max) : cs->forAll(c | NearbyService->
nearby({maxDistance=max})->exists(c.email=email))

Library API

jcop.cms.ContextQuery public ContextQuery(ContextRequest, String, String)

A query object is instantiated with its context type schema, a default
namespace, and a string representation of the CQL expression.

public boolean evaluate()

A query can be executed synchronously and will immediately return a
Boolean value whether the context is constituted or not.

public void evaluate(IContextHandler)
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Queries can also be executed asynchronously. In that case, an
IContextHandler object is passed to the query’s evaluation method that
is called by the CMS on context entry and exit.

public ResultSet getResultSet()

The variable bindings of the last executed query are represented by a
ResultSet that holds a list (for each solution found via backtracking)
containing maps of key-value pairs. In addition, ResultSet provides
some auxiliary methods such as boolean isEmpty().

public void addLayers(Layer[])

Layers can be associated with a query, for example, to make them
accessible to the IContextHandler callback methods.

jcop.cms.IContextHandler The IContextHandler interface is frequently used if queries
are evaluated asynchronously.

public void IContextHandler.onContextEntry/onContextExit(Layer[])

The callback methods are activated on context change and can be
used for implementing any kind of reaction to the new state. They are
parameterized with Layer objects if they have been associated with the
query.

6.3 Compiler Options

In the following, we describe the usage of the JCop compiler that is able to
compile programs of the JCop and Java programming language. The compiler
implements the language as defined in this report. The compiler is an extension to
the JastAddJ [7] Java compiler that is implemented based on the JastAdd compiler
framework.

6.3.1 Synopsis

jcopc [Options] [file]

6.3.2 Description

The jcopc command compiles JCop and Java source, producing .class files compliant
with any Java VM (1.5 or later). The argument after the options specifies the
source file to compile. Source files are specified by their full qualified name (package
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name + type name), separated by a dot ("."). The command jcopc accepts source
files with either the .java extension or the .jcop extension.

6.3.3 Options

-classpath <path>

Specifies where to find user class files and annotation processors.

-sourcepath <path>

Specifies where to find input source files. Only required if the sources are not
located in the working directory. Example:

jcopc -sourcepath src myPckg.MyMainClass}

-d <directory>

Specifies where to place generated class files. Example:

jcopc -d bin -sourcepath src myPckg.MyMainClass

-sourcedump <path>

Dumps Java source files of the compiled classes into the specified folder. Example:

jcopc -sourcedump dump myPckg.MyMainClass

-agg <path>

Generates a file containing an AGG graph representation of the program’s AST.
Example:

jcopc -agg output/agg myPckg.MyMainClass

-ctl

Logs JCop-specific messages about what the compiler is doing. Example:

jcopc -ctl myPckg.MyMainClass
...
> copying PartialMethod.java
> to src\jcop\lang
> ..done
...
> compiling:...src\de\uni_potsdam\hpi\swa\Widget.jcop ..done
> compiling:jcop\lang\Composition.java ..done
...
> ..done
> compile and weave auxilliary aspect bin\jcop\lang\JCopAspect.aj
> ..done
> compiled in 3723 millis
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-rtl

Logs layer activation and composition information at runtime. Example:

jcopc -rtl myPckg.MyMainClass
...
> INFO: accessing base method of getBMI
> INFO: accessing method getBMI of layer Visualization
...

-help

Prints a synopsis of standard options.

-aspectinfo

Prints messages about aspect weaving.

-version

Prints version information.

-xml-outline-path <path>

Generates an outline in XML format. For each compilation unit, a corresponding
XML file is generated.

-class-in-layer-outline

Generates a layer cross-reference view in XML format that outlines which methods
are adapted by a layer.

6.3.4 Underlying Java Command

If you encounter any problems using jcopc, you may use the plain Java command.
For instance, the command

jcopc -classpath bin -ctl MyApplication

is equivalent to:

java -jar -ea "%JCOP_HOME%\jcop.jar" -classpath bin -ctl MyApplication

6.4 Launcher Options

The JCop launcher instruments the Java launcher with some libraries that are
required by
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6.4.1 Synopsis

jcop [Options] class [arguments]

6.4.2 Description

The jcop command launches a JCop or Java application. It does this by starting
a Java runtime environment (instrumented with the AspectJ weaver), loading a
specified class, and invoking that class’s main method. The method declaration
must look like a plain Java main method:

public static void main(String args[]) {...}

The method must be declared public and static, it must not return any value, and
it must accept a String array as a parameter. By default, the first non-option
argument is the name of the class to be invoked. A fully-qualified class name should
be used.

The argument after the options specifies the class file to compile and by its full
qualified name (package name + type name), separated by a dot ("."). The jcop

command accepts Java bytecode files with the class extension.

6.4.3 Options

All standard Java options are accepted by the JCop launcher.

6.4.4 Underlying Java Command

If you encounter any problems using jcop, you may use the plain java command.
For example, in Windows, the command

jcop -classpath "bin;lib\mylib\" MyApplication my args

is equivalent to:

java -classpath "%JCOP_HOME%\aspectjweaver.jar;bin;lib\mylib\"
"-Djava.system.class.loader=org.aspectj.weaver.loadtime.WeavingURLClassLoader"
"-Daj.class.path=%ASPECTPATH%;%CLASSPATH%"
"-Daj.aspect.path=%ASPECTPATH%"
MyApplication my args
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6.5 Limitations of the JCop Compiler

Use of the Default Package Layer types cannot be declared in the default package.
However, classes of the default package can import and use layers.

Nested Class Support Layers cannot be declared and activated within nested and
anonymous classes:

public class MyClass {
class MyInnerClass {
void m() { ... }
layer MyLayer{ ... } // this wonŠt work

}
void myMethod() {
new MyNestedClass() {
layer MyLayer { ... } // this wonŠt work

}
}

Reserved Keywords In addition to Java’s keywords the following keywords are intro-
duced by JCop and cannot be used as identifiers. This might require identifier
renaming in existing Java programs that should be compiled by JCop.

after, before, contextclass, layer, on, when,
this, args, proceed, with, without, withoutall
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