
Technische Berichte Nr. 62

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Covering or Complete?

Discovering Conditional

Inclusion Dependencies

Jana Bauckmann, Ziawasch Abedjan, Ulf Leser,
Heiko Müller, Felix Naumann

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 62

Jana Bauckmann | Ziawasch Abedjan | Ulf Leser |
Heiko Müller | Felix Naumann

Covering or Complete?

Discovering Conditional Inclusion Dependencies

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2012
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2012/6208/
URN urn:nbn:de:kobv:517-opus-62089
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62089

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-212-4

mailto:verlag@uni-potsdam.de

Covering or Complete?
Discovering Conditional Inclusion Dependencies

Jana Bauckmann1 Ziawasch Abedjan1 Ulf Leser2

Heiko Müller3 Felix Naumann1
1firstname.lastname@hpi.uni-potsdam.de

2leser@informatik.hu-berlin.de
3heiko.mueller@csiro.au

1Hasso Plattner Institute, Potsdam, Germany
2Humboldt-Universität zu Berlin, Germany

3Intelligent Sensing and Systems Laboratory, Hobart, Australia

Abstract. Data dependencies, or integrity constraints, are used to im-
prove the quality of a database schema, to optimize queries, and to en-
sure consistency in a database. In the last years conditional dependencies
have been introduced to analyze and improve data quality. In short, a
conditional dependency is a dependency with a limited scope defined
by conditions over one or more attributes. Only the matching part of
the instance must adhere to the dependency. In this paper we focus on
conditional inclusion dependencies (Cinds).
We generalize the definition of Cinds, distinguishing covering and com-
pleteness conditions. We present a new use case for such Cinds showing
their value for solving complex data quality tasks. Further, we define
quality measures for conditions inspired by precision and recall. We pro-
pose efficient algorithms that identify covering and completeness condi-
tions conforming to given quality thresholds. Our algorithms choose not
only the condition values but also the condition attributes automatically.
Finally, we show that our approach efficiently provides meaningful and
helpful results for our use case.

1 Problem Statement

Studying data dependencies, or integrity constraints, has a long history in data-
base research. Traditionally, integrity constraints are defined such that all tuples
in a table must obey them, and they have mostly been used to preserve con-
sistency in a database and as a hint to the query optimizer. Recently, a weaker
form of dependencies, so called conditional dependencies, have gained atten-
tion, mostly due to their power in analyzing and improving data quality [9]. A
conditional dependency is a dependency with a limited scope, where the scope
typically is defined by conditions over several attributes. Only those tuples for
which these conditions evaluate to true must adhere the dependency. Research
has focussed on two types, i.e., conditional functional dependencies (Cfds) [4]
and conditional inclusion dependencies (Cinds) [5]. Results have been published

5

on reasoning about consistency and implication [5, 6], validation of known condi-
tional dependencies [6], or detection of conditional functional dependencies [11,
13].

Interestingly, detecting conditional inclusion dependencies has yet received
little attention. Here we present an entirely new case for Cinds, which clearly
shows their value for solving complex data quality tasks. To this end we general-
ize the established definition for Cinds to cover a subtle, yet important difference
between different classes of Cinds. We present algorithms to detect all Cinds
and evaluate the algorithms’ efficiency.

1.1 Motivating Use Case

Our motivation for studying Cinds comes from the problem of describing links
between objects on the web. Consider, as a concrete example, the problem of
interlinking representations of persons in the English and German version of DB-
pedia [?]. Clearly, many persons have both an English and a German description
in DBpedia. Relationships between entries in DBpedia are either represented by
using the same URI or by “sameAs”-links; we refer to these relationships as links.
The relationship between corresponding entries for the same person, however, is
not made explicit in all cases. Having a German (English) description of a person
without a link to an English (German) description of a person, two situations
are possible: (1) This English (German) description does not exist; then the lack
of the link truly reflects the database. (2) The English (German) description
does exist; then the missing link is a data quality problem. Such problems are
very common in scenarios where heterogeneous data sets have overlapping do-
mains but no central authority takes care of properly and bi-directionally linked
objects in this overlap. Many examples of such cases can be found in the world
of Linked Open Data [15] and in dataspaces [12].

The key idea to identify candidates for missing links is to look for charac-
teristics of those persons in the German DBpedia that are also included in the
English DBpedia and vice versa. Most probably, a certain set of persons in the
German DBpedia is interesting to US or English readers (and vice versa), but
the question is how this set can be characterized. A quite reasonable guess is,
for instance, that “German” persons with a birthplace or place of death in the
United States are much more likely to also be represented in the English DBpe-
dia. We propose a method to find such hypotheses automatically by computing
a special kind of Cinds between the sets of interlinked objects. Objects that also
have the same characteristics but are not yet linked are then good candidates
for missing links. Note that our approach does not perform record linkage per
se, but merely suggests good candidates of one dataset that might also be rep-
resented in the other data set. Focusing record linkage on a subset of entities
is an important feature of efficient record linkage strategies. We show in Sec. 5
that our identified conditions indeed provide a reasonable (and interesting and
unforeseen) semantic distinction between included and non-included persons.

We use the following relational schema to represent information about per-
sons: person(pid, cent, description), birthplace(pid, bplace), and deathplace(

6

pid, dplace) with foreign key relationships from birthplace.pid to person.pid

and from deathplace.pid to person.pid. Each person has an identifier (pid;
mostly a person’s name), century of birth (cent), and a description. The sep-
arate relations for place of birth and place of death result from the fact that
persons in DBpedia can have several places of birth or death distinguishing for
example the country, region, and city of birth or death. For example, for the ac-
tor Cecil Kellaway the places of birth are Kapstadt and Südafrika and places of
death are Los Angeles, Kalifornien, and United States in the German version of
DBpedia. Figure 1 shows (part of) the result of the full outer join over relations
person, birthplace, and deathplace on the foreign key attributes in the English
version of DBpedia (Person EN) and the German version (Person DE).

Links between persons in Person EN and Person DE in Fig. 1 are represented by
an identical pid. For some persons in Person EN, e. g., Sante Gaiardoni, there is
no link to Person DE (and vice versa). The inclusion dependency Person EN.pid ⊆
Person DE.pid therefore only holds for part of Person EN. The goal of discovering
Cinds is to identify conditions within Person EN that summarize properties of
those persons that have a link to Person DE. In the given example we can observe
a condition deathplace = United States ∧ cent = 18, which can be explained by
the large number of European emigrants in the 19th century to the US.

1.2 CIND Discovery and Condition Features

We approach the problem of Cind detection in three steps: (i) detecting an
approximate Ind, i. e., an Ind that is only satisfied by part of the database,
(ii) detecting conditions that can turn an approximate Ind into a Cind, i. e.,
conditions that hold in the part of the database that satisfies the approximate
Ind, and (iii) choosing a (sub-)set of discovered conditions to build the pattern
tableau of the Cind. The first step can be solved using detection methods for
approximate Inds, such as [2, 18], or it could be manually performed by an expert
user. The problem of finding an optimal pattern tableau has been addressed for
Cfds in [13]. In this paper we assume approximate Inds to be given and focus
on the second step, namely on efficiently detecting “good” conditions that turn
given approximate Inds to Cinds. We outline in related work how the third step
can be realized by applying our algorithms to the ideas of [13].

Features of Conditions. To achieve this goal, we need to formulate desired
features of identified conditions. In the following we reason over single conditions
and their features. Given an approximate inclusion dependency R1[X] ⊆ R2[Y]
between attributes X in relation R1 and attributes Y in relation R2. A condi-
tion over the dependent relation R1 should distinguish tuples of R1 included in
the referenced relation R2 from tuples not included in R2. A condition filtering
only included tuples is called a valid condition. The degree of validity can be
regarded as the “precision” of a condition. Furthermore, a condition should fil-
ter all included tuples; its degree can be regarded as the “recall” of a condition.
However, our example in Fig. 1 shows that simply relying on counting the num-
ber of tuples that match a condition may not give the desired results. In our

7

p
id

c
e
n
t
b
irth

p
la
c
e

d
e
a
th

p
la
c
e

d
e
sc
rip

tio
n

<
h
ttp

:...C
ecil

K
ellaw

ay
>

1
8

<
h
ttp

:...S
o
u
th

A
frica

>
<
h
ttp

:...U
n
ited

S
ta
tes>

“
A
cto

r”
@
en

<
h
ttp

:...M
el

S
h
ep

p
a
rd
>

1
8

<
h
ttp

:...U
n
ited

S
ta
tes>

<
h
ttp

:...U
n
ited

S
ta
tes>

“
A
m
erica

n
a
th
lete”

@
en

<
h
ttp

:...B
u
d
d
y
R
o
o
sev

elt>
1
8

<
h
ttp

:...M
eek

er,
C
o
lo
ra
d
o
>

<
h
ttp

:...M
eek

er,
C
o
lo
ra
d
o
>

“
A
cto

r
a
n
d
stu

n
t
m
a
n
”
@
en

<
h
ttp

:...S
a
n
te

G
a
ia
rd
o
n
i>

1
9

-
-

“
2
O
ly
m
p
ic

cy
clin

g
g
o
ld
s”
@
en

(a
)
R
ela

tio
n
P
e
r
s
o
n
E
N

p
id

c
e
n
t
b
irth

p
la
c
e

d
e
a
th

p
la
c
e

d
e
sc
rip

tio
n

<
h
ttp

:...C
ecil

K
ellaw

ay
>

1
8

<
h
ttp

:...K
a
p
sta

d
t>

<
h
ttp

:...L
o
s
A
n
g
eles>

“
...S

ch
a
u
sp
ieler”

@
d
e

<
h
ttp

:...C
ecil

K
ellaw

ay
>

1
8

<
h
ttp

:...K
a
p
sta

d
t>

<
h
ttp

:...K
a
lifo

rn
ien

>
“
...S

ch
a
u
sp
ieler”

@
d
e

<
h
ttp

:...C
ecil

K
ellaw

ay
>

1
8

<
h
ttp

:...K
a
p
sta

d
t>

<
h
ttp

:...U
n
ited

S
ta
tes>

“
...S

ch
a
u
sp
ieler”

@
d
e

<
h
ttp

:...C
ecil

K
ellaw

ay
>

1
8

<
h
ttp

:...S
ü
d
a
frika

>
<
h
ttp

:...L
o
s
A
n
g
eles>

“
...S

ch
a
u
sp
ieler”

@
d
e

<
h
ttp

:...C
ecil

K
ellaw

ay
>

1
8

<
h
ttp

:...S
ü
d
a
frika

>
<
h
ttp

:...K
a
lifo

rn
ien

>
“
...S

ch
a
u
sp
ieler”

@
d
e

<
h
ttp

:...C
ecil

K
ellaw

ay
>

1
8

<
h
ttp

:...S
ü
d
a
frika

>
<
h
ttp

:...U
n
ited

S
ta
tes>

“
...S

ch
a
u
sp
ieler”

@
d
e

<
h
ttp

:...M
el

S
h
ep

p
a
rd
>

1
8

<
h
ttp

:...A
lm

o
n
esso

n
L
a
k
e>

<
h
ttp

:...Q
u
een

s>
“
...L

eich
ta
th
let”

@
d
e

<
h
ttp

:...S
a
m

S
h
ep

p
a
rd
>

1
9

-
-

“
...M

ed
izin

er,
...”

@
d
e

<
h
ttp

:...Iso
b
el

E
lso

m
>

1
8

<
h
ttp

:...C
a
m
b
rid

g
e>

<
h
ttp

:...L
o
s
A
n
g
eles>

“
...S

ch
a
u
sp
ielerin

”
@
d
e

<
h
ttp

:...Iso
b
el

E
lso

m
>

1
8

<
h
ttp

:...C
a
m
b
rid

g
e>

<
h
ttp

:...K
a
lifo

rn
ien

>
“
...S

ch
a
u
sp
ielerin

”
@
d
e

(b
)
R
ela

tio
n
P
e
r
s
o
n
D
E

F
ig
.
1
.
S
elected

d
a
ta

o
f
rela

tio
n
P
e
r
s
o
n
E
N
rep

resen
tin

g
p
erso

n
s
in

th
e
E
n
g
lish

D
B
p
ed

ia
a
n
d
rela

tio
n
P
e
r
s
o
n
D
E
rep

resen
tin

g
p
erso

n
s
in

th
e
G
erm

a
n
D
B
p
ed

ia
.
A
ttrib

u
te

cen
t
p
rov

id
es

th
e
cen

tu
ry

o
f
b
irth

.

8

example there are multiple tuples for a single person. If we want to find a con-
dition filtering all included persons, should all tuples for this person match the
condition or does one matching tuple suffice? Consider the six tuples for Cecil

Kellaway in Person DE: Cecil Kellaway certainly matches condition deathplace =

Los Angeles. Counting tuples, however, lets this condition look only one-third
as good, because it covers only 2 out of 6 tuples. This problem is common when
discovering Cinds over relations that are derived by joining relations in a nor-
malized database. The problem is usually aggravated as the number of relations
that are joined increases. In the full version of DBpedia persons that we use
for our experiments, for example, we observe 1, 458 tuples for James Beaty Jr..
Since none of these tuples matches condition deathplace = Los Angeles the over-
all tuple count for this condition does not properly reflect the number of persons
having Los Angeles as their place of death. To account for these discrepancies
we introduce a new feature to characterize the scope of conditions: We distin-
guish covering conditions for counting objects, e. g., persons, and completeness
conditions for counting tuples. More general, a covering condition counts groups
of tuples whose projection on the inclusion attributes is equal. Note, that com-
pleteness conditions suffice if the inclusion attributes form a key, i. e., in this case
there is only one tuple per group (or person in our running example).

Quality of Conditions. Our use case requires to find valid and covering condi-
tions with a certain quality. We not only search for valid conditions that perfectly
choose only included persons. Such Cinds are interesting in and of themselves,
but we could not propose any missing links. We are also interested in “almost
valid” conditions with some non-included persons matching the condition. Fur-
thermore, it is quite unlikely to find a condition covering all included persons.
We need to rate conditions by their number of covered persons. In fact, we find
in our test data no conditions with perfect validity, covering, or completeness
(see Sec. 5). To measure the quality of a condition, i. e., the degree of its validity,
covering, or completeness, we use precision and recall measures (see Sec. 3).

1.3 Challenges of Condition Discovery

Discovering valid and covering, or valid and completeness conditions of a given
quality for given approximate Inds poses two major challenges: (i) Which (and
how many) attributes should be used for the conditions? (ii) Which attribute
values should be chosen for the conditions? Within this paper, we propose al-
gorithms that address both of these challenges. Given an approximate Ind, our
algorithms find all selecting conditions above a given quality threshold for va-
lidity and covering (or completeness) without the need to specify the set of
attributes over which the condition is generated.

The contributions of this paper are as follows:

– We describe a novel use case for Cind detection that is motivated by the
increasing amount of linked data that is published on the Web.

– We define a generalization of Cinds to distinguish covering and completeness
conditions for discovering Cinds over denormalized relations.

9

– We define quality measures for identified conditions inspired by precision
and recall that are used to restrict the discovered set of conditions to those
that are most likely to represent characteristic descriptions for existing links
between databases.

– We propose a SQL-based discovery approach.
– We present two algorithms that efficiently identify valid and covering (or

valid and completeness) conditions, while choosing the condition attributes
and their values automatically.

– We provide a thorough evaluation of the effectivity and efficiency of algo-
rithms using two real-world data sets.
The remainder of this paper is structured as follows: Section 2 formally de-

fines Cinds. In Sec. 3, we define Cind condition features and quality measures
for Cinds and propose a SQL approach. Sec. 4 presents our algorithms for discov-
ering Cinds efficiently. We evaluate our algorithms in Sec. 5. Section 6 discusses
related work. We conclude in Sec. 7 and briefly discuss future work.

2 CIND Definition

Formally, a Cind is defined by an embedded approximate Ind and a pattern
tableau representing the conditions. The following definitions are based on [5]
and [9] but we chose a different, yet in our mind more intuitive formulation.
Let R1, R2 be relational schemata over a fixed set of attributes A1, A2, . . . , Ak.
Each attribute A has an associated domain dom(A). We denote instances of
R1 and R2 by I1 and I2, respectively. Each instance I is a set of tuples t such
that t[A] ∈ dom(A) for each attribute A ∈ R. Let X,XP and Y, YP be lists of
attributes in R1 and R2, respectively. We use t[X] to denote the projection of t
onto attributes X.

Definition 1 (Approximate IND). An approximate Ind R1[X] ⊆ R2[Y] is
an Ind that is satisfied for a non-empty subset of tuples in I1, i. e., ∃t1 ∈ I1, t2 ∈
I2 : t1[X] = t2[Y].

A tuple t1 ∈ I1 satisfies R1[X] ⊆ R2[Y] if there exists a referenced tuple
t2 ∈ I2 with t1[X] = t2[Y]. We call attributes X and Y inclusion attributes.

Definition 2 (Pattern tableau). A pattern tableau TP restricts tuples of R1

over attributes XP and tuples of R2 over attributes YP . For each attribute A in
XP or YP and each tuple tp ∈ TP , tp[A] is either a constant ’a’ in dom(A) or a
special value ’-’.

Each pattern tuple tp ∈ TP defines a condition. A constant value for tp[A]
restricts a matching tuple’s attribute value to this constant, a dash represents
an arbitrary attribute value. A tuple t1 ∈ I1 matches tp ∈ TP (t1 � tp) if
∀A ∈ XP : tp[A] = (’–’ ∨ t1[A]). The definition for a tuple t2 ∈ I2 matching
tp ∈ TP follows analogously over attributes YP . The pattern tableau is divided
into a left-hand side (with attributes XP) and a right-hand side (with attributes

10

YP). Both sides of the tableau can be left empty; an empty side specifies no
restriction on any attribute of the respective relation. We call attributes XP and
YP condition attributes.

Definition 3 (Conditional inclusion dependency (CIND)). A conditional
inclusion dependency

ϕ: (R1[X;XP] ⊆ R2[Y ;YP], TP)

consists of the embedded approximate Ind R1[X] ⊆ R2[Y] and the pattern tableau
TP over attributes XP and YP defining the restrictions. Sets X and XP are
disjoint, and Y and YP are disjoint.

Our example Cind is denoted as follows:

ϕ: (Person EN[pid; cent, deathplace] ⊆ Person DE[pid;], TP)

TP :
cent deathplace
18 <http:. . . United States>

A Cind ϕ holds for a pair of instances I1 and I2 if

1. Selecting condition on I1: Let t1 ∈ I1 match any tuple tp ∈ TP . Then t1
must satisfy the embedded IND.

2. Demanding condition on I2: Let t1 ∈ I1 match tuple tp ∈ TP . Further, let t1
satisfy the embedded Ind with referenced tuple t2 ∈ I2, i. e., t1[X] = t2[Y].
Then t2 also must match tp.

Note that the Cind definition treats selecting conditions, i. e., the left-hand
side of the pattern tableau, and demanding conditions, i. e., the right-hand side
of the pattern tableau, separately and asymmetrically: Selecting conditions are
required to be valid, i. e., to select only included tuples. Further, they should be
complete or covering to be able to build concise pattern tableaux. In contrast,
demanding conditions are required to be complete, i. e., all referenced tuples are
required to match the condition. There is no equivalent notion for validity. In the
following, we focus on selecting conditions, because their requirements subsume
the demanding condition’s requirements.

3 Condition Features

In this section we formally define the features valid, completeness, and covering,
and define their degree through the precision and recall of a condition. These
features are used to quantify the quality of individual conditions (i. e., pattern
tuples) in a pattern tableau. All three features refer to selecting conditions only.

Given a conditional inclusion dependency ϕ and instances I1 and I2. Let
Iϕ denote the set of tuples from I1 that satisfy the embedded Ind, i. e., Iϕ =
I1�X=Y I2. We refer to Iϕ as the set of included tuples. For denormalized relations
like those in our motivating example we are also interested in groups of included

11

tuples that have equal values in attributes X, e. g., all tuples for Cecil Kellaway.
Let gx denote a group of tuples in I1 having value x for t[X], i. e., gx = {t|t ∈
I1 ∧ t[X] = x}. We call gx an included group if all tuples are included tuples,
i. e., gx ⊆ Iϕ. A group gx matches a pattern tuple tp, denoted by gx � tp, if any
of the tuples in gx matches tp, i. e., gx � tp ⇔ ∃t ∈ gx : t � tp. Let G1 denote
the set of groups in I1 and Gϕ denote the set of included groups. Finally, for a
pattern tuple tp let I1[tp] and Iϕ[tp] denote the set of tuples from I1 and Iϕ that
match tp, respectively. G1[tp] and Gϕ[tp] denote the groups in G1 and Gϕ that
match tp, respectively.

Definition 4 (Valid Condition). A condition is valid if all tuples of I1 that
match tp also satisfy the embedded IND, i. e., I1[tp] ⊆ Iϕ.

Definition 5 (Complete Condition). A condition is complete if it matches
all included tuples, i. e., Iϕ ⊆ I1[tp].

Definition 6 (Covering Condition). A condition is covering if it matches
all included groups, i. e., Gϕ ⊆ G1[tp].

3.1 Measuring Condition Features

One will rarely find single conditions that are valid, complete, or covering. Our
use case, furthermore, actually requires to find conditions that are not perfectly
valid. In the following, we define measures for validity, completeness, and cov-
ering that are used to constrain the conditions that are found by our condition
discovery algorithms.
Valid Conditions. The validity of a condition can be measured by the precision
of this condition, i. e., the number of matching and included tuples related to
the number of all matching tuples:

valid(tp) :=
|Iϕ[tp]|
|I1[tp]|

A validity of one means that all tuples that match tp are included tuples,
i. e., tp is valid. If valid(tp) > γ we call tp γ-valid.

Although the definition for valid conditions over tuples also works in the pres-
ence of groups, it is useful to redefine the degree of the feature for groups: Con-
sider a condition cent = 18 for persons in Person DE to be included in Person EN

(see Fig. 1). Counted over tuples, this condition would be 0.78-valid, but over
groups (or persons) it is just 0.67-valid. That is, the six included and matching
tuples for Cecil Kellaway made this condition look “more valid” than it is. The
other way around, several matching tuples for a non-included group would make
it look “less valid” than it really is. So we apply the idea of using precision
as measure for validity to groups, i. e., we relate the number of matching and
included groups to the number of all matching groups:

validg(tp) :=
|Gϕ[tp]|
|G1[tp]|

12

We call a condition γ-validg if validg(tp) > γ. Note that validity can also be
interpreted as the confidence of the rule “If a condition matches a tuple, then
this tuple is an included tuple.” The resulting ratio equals our quality measure.
Completeness Conditions. The completeness of a condition can be measured
as recall of this condition counting the relation’s tuples, i. e., the number of
matching and included tuples related to the number of all included tuples:

complete(tp) :=
|Iϕ[tp]|
|Iϕ|

A completeness of one means that tp matches all included tuples, i. e., tp
is complete. If complete(tp) > δ we call tp δ-complete. Completeness is also a
measure for quality (i. e., confidence) for the rule “If a tuple is an included tuple,
then the condition matches this tuple”.
Covering Conditions. The quality of covering conditions can be measured by
the recall of these conditions based on the relation’s groups, i. e., the number of
matching and included groups related to the number of all included groups:

covering(tp) :=
|Gϕ[tp]|
|Gϕ|

A covering of one means that tp matches all included groups, i. e., tp is cover-
ing. If covering(tp) > λ we call tp λ-covering. Covering is a measure for quality
(i. e., confidence) for the rule “If a group is an included group, then the condition
matches at least one tuple in this group”.

3.2 Detecting Conditions Using SQL

For a given approximate Ind and a set of condition attributes, we can use SQL
to detect conditions. The general idea is threefold: (i) Compute a left outer join
over the dependent and referenced relation, (ii) use the referenced attributes as
indicator for included or non-included tuples (or groups), (iii) group the result
by the preselected condition attributes to examine each value combination as
condition.

Recall our example on finding persons in the German DBpedia to be in-
cluded in the English DBpedia. Consider the left outer join over (Person DE.pid,
Person EN.pid) grouped by the condition attributes deathplace and cent of rela-
tion Person DE (see Fig. 2). Person DE.pid lists all persons in the German DBpedia
and Person EN.pid indicates if a person is included (i. e., a non-NULL value) or
non-included (i. e., a NULL value). Counting values in Person DE.pid gives the
number of matching tuples, i. e., |I1[tp]|; counting values in Person EN.pid gives
the number of matching and included tuples, i. e., |Iϕ[tp]|. Using this observation
we can compute the validity and completeness of a condition.

Fig. 3a shows the SQL statement to find γ-valid and δ-complete conditions
and their quality measures. Note that the statement returns the absolute number
of matching and included tuples. To compute completeness we have to divide
this number by the total number of included tuples. In our example condition

13

lhs inclusion attribute condition attributes Person DE. rhs inclusion attribute
Person DE.personID cent deathplace Person EN.personID

Cecil Kellaway 18 Los Angeles Cecil Kellaway
Cecil Kellaway 18 Los Angeles Cecil Kellaway
Isobel Elsom 18 Los Angeles NULL

Cecil Kellaway 18 Kalifornien Cecil Kellaway
Cecil Kellaway 18 Kalifornien Cecil Kellaway
Isobel Elsom 18 Kalifornien NULL

Cecil Kellaway 18 United States Cecil Kellaway
Cecil Kellaway 18 United States Cecil Kellaway

Mel Sheppard 18 Queens Mel Sheppard

Sam Sheppard 19 - NULL

Fig. 2. Left outer join over relations Person DE and Person EN as given in Fig. 1,
projected on inclusion and condition attributes and grouped by condition attributes.
URL-specific parts of values are omitted for readability.

Person DE.cent = 18 and Person DE.deathplace = Los Angeles is computed as
2/3-valid with an absolute value for completeness of 2 (out of 7 included tuples).

Figure 3b shows the modified statement to find γ-validg and λ-covering
conditions by counting the number of distinct values for Person DE.pid and
Person EN.pid instead. The results are the number of matching groups (|G1[tp]|),
and the number of matching and included groups (|Gϕ[tp]|). Both values can
again be used to compute the quality measures, but now for validg and covering
conditions. Our example condition Person DE.cent = 18 ∧ Person DE.deathplace

= Los Angeles achieves more interesting measures as it is computed to be 1/2-
validg with an absolute value for covering of 1 (out of 2 included persons).

SELECT de.cent, de.deathplace,
cast (count(en.pid) as double)

/ count(de.pid) as valid,
count(en.pid) as complete abs

FROM Person DE de left outer
join Person EN en

on de.pid = en.pid
GROUP BY de.cent, de.deathplace

(a) γ-valid and δ-complete conditions

SELECT de.cent, de.deathplace,
cast (count(distinct en.pid) as

double)
/ count(distinct de.pid) as

valid g,
count(distinct en.pid) as

covering abs
FROM Person DE de left outer

join Person EN en
on de.pid = en.pid

GROUP BY de.cent, de.deathplace

(b) γ-validg and λ-covering conditions

Fig. 3. SQL statements to find conditions and their quality measures for embedded
IND Person DE ⊆ Person EN over preselected attributes cent and deathplace.

In summary, it is possible to detect valid and completeness, or validg and cov-
ering conditions and their quality measures using SQL – for preselected condition

14

attributes. In our example there are 12 potential condition attributes leading to
212 − 1 combinations to test. Execution times for the given statements were
1.2 s for valid and completeness conditions, and in 5.9 s for validg and covering
conditions. Assuming this as the average runtime, the estimated runtime for all
combinations is about 80min and 6 h40min, respectively. In the next section
we present more efficient approaches to detect conditions without the need to
preselect condition attributes.

4 Discovering General Conditions

In this section we describe algorithms to detect all γ-validg and λ-covering con-
ditions, as well as γ-valid and δ-complete conditions without restricting the at-
tributes that should be used. We describe two different approaches – “Condi-
tional INclusion DEpendency REcognition Leveraging deLimited Apriori” (Cin-
derella) uses an Apriori algorithm and is faster, while “Position List Intersec-
tion” (PLI) leverages value position lists and consumes less memory. We compare
the complexity of both algorithms in Sec. 4.3. We first describe our algorithms
to detect validg and covering conditions, and modify them afterwards to detect
valid and completeness conditions.

Both algorithms reuse the idea of a left outer join over the dependent and
referenced relation with the referenced attributes as flag for included or non-
included tuples (or groups) (Sec. 3.2). Our algorithms do not rely on the rela-
tional representation of the data. Instead, we choose a representation for the join
result that allows handling multiple uses of one attribute or predicate for a single
group. Each group is represented by three items: (i) the left-hand side inclusion
attribute, i. e., the person identifier, (ii) a right-hand side inclusion indicator
with values Included for included groups or Null for non-included groups, and
(iii) a list of (attribute : value)-pairs for potential condition attributes, i. e., all
attributes of the dependent relation apart from the inclusion attributes. Figure 4
shows this representation for the embedded IND Person DE.pid ⊆ Person EN.pid.

4.1 Using Association Rule Mining

Association rule mining was introduced for market basket analysis to find rules
of type “Who buys X and Y often also buys Z”. We apply this concept to identify
conditions like “Whose century of birth is 18 and place of death is ‘United States’
often also is Included (in the English DBpedia)”.

To leverage association rule mining we need to prepare our baskets in two
steps: We use the modified representation of the left outer join result as shown
in Fig. 4. Note that we only need the right-hand side inclusion indicator and
the potential condition attributes to build the baskets, because we do not want
to find conditions over the dependent inclusion attributes. Second, we must
encode the affiliation of values to their attributes to form basket items. For our
example, we want to be able to distinguish the two conditions birthplace = Los

Angeles and deathplace = Los Angeles. Therefore, we prefix each value with an

15

lhs inclusion rhs inclusion potential condition attributes
attribute indicator and values

1 de.pid:Cecil Kellaway en.pid:Included cent:18, birthplace:Kapstadt,
birthplace:Südafrika,
deathplace:Los Angeles,
deathplace:Kalifornien,
deathplace:United States,
description:“. . . Schauspieler”@de

2 de.pid:Mel Sheppard en.pid:Included cent:18, birthplace:Almonesson Lake,
deathplace:Queens,
description:“. . . Leichtathlet”@de

3 de.pid:Sam Sheppard en.pid:Null cent:19, description:“. . .Mediziner,
. . . ”@de

4 de.pid:Isobel Elsom en.pid:Null cent:18, birthplace:Cambridge,
deathplace:Los Angeles,
deathplace:Kalifornien,
description:“. . . Schauspielerin”@de

Fig. 4. Left outer join over Person DE and Person EN in Fig. 1; Modified representation
handles multiple occurrences of one attribute for a single person. URL-specific parts
of values are omitted for readability.

attribute identifier. Using prefixes A to D for our example yields the following
basket for the first group of Fig. 4: { Included, A18, BKapstadt, BSüdafrika,
CLos Angeles, CKalifornien, CUnited States, D“. . . Schauspieler”@de }. Now we
are able to apply an Apriori algorithm to these baskets to find frequent itemsets
and derive rules.

The Apriori algorithm [1] consists of two steps: (i) Find all frequent itemsets
that occur in at least a given number of baskets, and (ii) use these frequent
itemsets to derive association rules. Apriori uses support and confidence of a
rule to prune the search space. In our case the covering of a condition is a
measure for the support of a condition in the set of included groups, and the
validity of a rule corresponds to the confidence of the rule. Thus, we apply those
measures for pruning in the Apriori algorithm. A frequent itemset then ensures
λ-covering conditions, while the rule generation step filters γ-validg conditions.

We could use the original Apriori algorithm to find conditions, but we would
waste optimization possibilities based on the following observation: We need only
a special case of association rules to identify conditions: We need only rules with
right-hand side item Included, because left-hand side items of such rules build
the selecting condition. Thus, we only need to find frequent itemsets containing
item Included, i. e., we can largely reduce the number of itemsets that must
be handled and therefore improve the efficiency of the algorithm. We describe
our algorithm Conditional INclusion DEpendency REcognition Leveraging de-
Limited Apriori (Cinderella) in the next section.

16

Cinderella Algorithm The Cinderella algorithm reduces the number of
generated frequent itemsets by only considering itemsets that contain item In-
cluded. Algorithm MultipleJoins is a Apriori variation that finds rules contain-
ing (or not containing) specified items [20]. It proposes three joins for candidate
generation depending on the position of the specified item in the basket. In our
case we can simplify this approach. We reduce it to only one join, due to our
strict constraint of exactly one fixed item (Included).

Algorithm 1 shows the detection of frequent itemsets with item Included.
It assumes (as Apriori) that all items in a basket are sorted by a given order.
Furthermore, it assumes that item Included is the first element in this order,
i. e., Included is always the first item in any sorted basket or itemset. We
therefore can reduce the three joins of the algorithm MultipleJoins in our case
to only one join.

Let Lk denote the set of frequent itemsets of size k. The first set L1 is
retrieved by a single scan over all included baskets; L2 is built by combining each
frequent 1-itemset with item Included. All further sets Lk are built level-wise
by combining sets of Lk−1 using method aprioriGen-Constrained (see Alg. 2) to
itemset candidates Ck and testing them afterwards. The algorithm stops if Lk−1

is empty.

Algorithm 1: Apriori-Constrained: Find all frequent (i. e., λ-covering)
itemsets with item Included.
input : Included tuples as baskets: baskets
output: frequent itemsets with item Included
/* single scan over baskets to get L1 */

1 L1 = {frequent 1-itemsets} ;
2 L2 = {(Included, l1) | l1 ∈ L1} ;
3 for k=3; Lk−1 �= ∅; k++ do
4 Ck =aprioriGen-Constrained(Lk−1) ;
5 foreach basket b ∈ baskets do
6 Ct = subset(Ck, b) ;
7 foreach c ∈ Ct do
8 c.count++;

9 Lk = {c ∈ Ck | c.count ≥ λ ∗ |baskets|}
10 return ∪kLk

⋃
L2

Method aprioriGen-Constrained (Alg. 2) combines in the first step two item-
sets of size k − 1 to an itemset candidate if both itemsets are equal in the first
k−2 items. In the second step it prunes such candidates with at least one subset
of size k − 1 that contains Included but that is not contained in Lk−1. Cre-
ating the candidates by a self-join of Lk−1 is exactly the same as in Apriori.
This procedure works for our constrained case, because we require Included to
be smaller than any other item. Thus, each created candidate will contain In-
cluded. The difference to the original aprioriGen is that only such subsets are

17

considered for pruning that contain item Included, because only these itemsets
can be contained in Lk−1.

After creating the candidate itemsets of size k, the number of occurrences
in the baskets of each candidate is counted. We can apply method subset as
described for Apriori: All candidates Ck are represented in a HashTree to find
the subset of candidates Ct contained in a basket very fast. Then, all frequent
(i. e., λ-covering) candidates build set Lk.

Algorithm 2: aprioriGen-Constrained

input : frequent itemsets of size k − 1: Lk−1

output: candidates for frequent itemsets of size k: Ck

1 insert into Ck

2 select p.item1, p.item2, . . . , p.itemk−1, q.itemk−1

3 from Lk−1 p, Lk−1 q
4 where p.item1 = q.item1 ∧ . . .∧ p.itemk−2 = q.itemk−2 ∧ p.itemk−1 <

q.itemk−1,

5 foreach candidate c ∈ Ck do
6 foreach (k − 1)-subsets s of c containing item Included do
7 if s �∈ Lk−1 then
8 delete c from Ck

9 return Ck

The rule generation step uses the identified frequent itemsets and computes
the validity of conditions: The number of included groups matching the condition
is the number of occurrences (support) of a frequent itemset; the number of all
groups matching a condition is the support of the frequent itemset without item
Included. This number of occurrences must be counted in an extra scan over
all baskets, because we do not have this information up to this step. Again, all
itemsets can be represented in a hash tree to count their occurrences fast. Using
both values for each frequent itemset we can filter γ-validg conditions.

Detecting Completeness Conditions with Cinderella We can apply the
Cinderella algorithm to also detect γ-valid and δ-complete conditions by a sin-
gle modification: We only need to build our baskets differently. So far, we built
one basket per group to detect λ-covering conditions. Now, we build several
baskets per group, i. e., we build one basket per tuple in the relational represen-
tation. In our running example we now have six baskets for Cecil Kellaway. Using
this slight modification we can apply the Cinderella algorithm as described.
Having only one basket per tuple, we now count tuples instead of groups and
therefore detect γ-valid and δ-complete conditions.

18

4.2 Using Position List Intersection

The Position-List-Intersection (PLI) approach searches for conditions in a depth-
first manner and uses an ID list representation for each value of an attribute.
Using the position list representation for conditions the algorithm is able to
prune irrelevant candidate conditions and is more memory efficient than Cin-
derella because of its depth-first approach. The position list representation of
values has also been applied by the algorithm TANE for discovering functional
dependencies [16]. While our approach looks for intersections of lists, the par-
tition refinement of TANE is based on the discovery of subset relationships of
position lists. In the following, we first introduce the concept of position lists
and intersections and then describe the PLI algorithm.

Position Lists and Intersections The PLI algorithm is based on the idea that
every distinct value in an attribute can be represented by the set of row numbers
(or tuple IDs [16]) where the value occurs in the table. Those sets are referred to
as position lists (or inverted lists). Thus, each attribute is associated with a set
of position lists – one for each of its distinct values. In our case positions can be
both tuple IDs when looking for completeness conditions and group-IDs (e.g.,
numbers 1-4 in Fig. 4) when looking for covering conditions. In the following,
we refer only to group-IDs as we describe the algorithm for the discovery of
λ-covering and γ-validg conditions.

Table 1 illustrates the position lists for the attributes cent and deathplace

from the example in Fig. 4. The frequency of each value is given by the cardi-
nality of its position list. Values having a position list with fewer members than
required by the covering threshold can be ignored for further analysis and are
omitted. We use a special position list, called includedPositions, for all included
groups. Intersecting the position list of a value with includedPositions returns
the included subset of the groups that match the value. The list includedPosi-
tions is the position list for en.pid’s value Included in Table 1.

The position lists of an attribute combination can be calculated by the cross-
intersection of the position lists of its contained attributes. Cross-intersection
means each position list of one attribute is intersected with each position list
of the other attribute. For example, detection of conditions from the attribute
combination cent, deathplace requires to intersect each position list of attribute
cent with the position lists of each value in attribute deathplace: The intersection
of the position list of cent:18 with the position list of deathplace:Los Angeles,
for example, results in position list {1}. Intersecting position list cent:18 with
position list deathplace:Kalifornien results in {1, 2}.

Workflow of the PLI Algorithm While the Cinderella algorithm tra-
verses the powerset lattice of condition combinations breadth-first or level-wise,
by checking all combinations of a certain size in the same pass, the recursive
PLI algorithm processes the powerset lattice depth-first by checking all possible
combinations that contain a certain condition. The algorithm is based on two

19

attribute value position list

cent 18 {1, 2, 4}
19 {3}
Los Angeles {1}
Kalifornien {1, 2}

deathplace United States {1}
Queens {2}

en.pid Included {1, 2}
Null {3, 4}

Table 1. Position List Example

phases: First, it retrieves the position lists for each single attribute and the set
of included group-IDs. Second, it retrieves all combinations of conditions across
multiple attributes by cross intersection of the position lists of the disjoint at-
tribute combinations.
Position list retrieval. The algorithm needs to scan the table once for re-
trieving position lists of each potential condition attribute. In addition, posi-
tion list includedPositions is retrieved that contains all group-IDs of included
groups. This step is straightforward by iterating through all groups using sev-
eral hashmaps per attribute that map each value to a list of group-IDs. At the
same time position list includedPositions is maintained by adding group-IDs of
each included group. In our running example, list retrieval includes includedPo-
sitions and position lists for the attributes deathplace, birthplace, description,
and cent.
Multi-attribute analysis. After retrieving the position lists of potential inclu-
sion attributes, the next step is to discover all γ-validg and λ-covering conditions.
In this step, each value of the current attribute is extended via cross intersec-
tion with values of other attributes. As far as the result of the cross intersection
contains λ-covering position lists the algorithm continues to cross intersect the
result with the position lists of the next attribute in line. Whenever a cross in-
tersection results in an empty set, the recursive algorithm backtracks one step
in its recursion and substitutes the last added attribute with the next alterna-
tive attribute. The beginning of the recursion is always a single attribute that
contains λ-covering conditions.

The PLI algorithm (Algorithm 3) iterates over all potential condition at-
tributes ensuring that all attribute combinations are considered. In each itera-
tion function analyze is called. Using an arbitrary but fixed numerical order over
the attributes, the analyze function traverses all combinations that involve the
current attribute and attributes of higher order. The numerical order prevents
that the same combination is analyzed repeatedly. For convenience, we use nu-
merical identifiers {1, 2, . . . } for attributes. Function analyze returns all γ-validg
and λ-covering conditions of these attribute combinations.

Function analyze is shown in Algorithm 4. The method traverses the powerset
lattice of the condition attributes depth-first. Its parameters are the currently
added attribute (attrNo), the position lists of the attribute (attrNoPLs), the

20

Algorithm 3: PLI: pli()

input : potential condition attributes
output: all γ-valid and λ-covering conditions
/* Start recursive call for each attribute */

1 for i = 1 to |attributes| do
2 analyze (i, getPLs (i), ∅, ∅) ;
3 return conditions

current combination of attributes (currComb) (without attrNo), and the position
lists of currComb (combPLs).

The method analyze is initially called with the numerical identifier of the first
attribute attrNo, its position lists attrNoPLs and ∅ for the current attribute com-
bination currComb and its position lists, respectively. At first the method builds
a new combination newAttrComb by adding the given attrNo to the current set
of attributes currentComb and creates the new set of position lists newComb-
PLs by cross-intersecting the position lists of the given attrNo and the current
combination currComb.

If currComb is ∅, the new combination contains just the position lists at-
trNoPLs of the current single attribute attrNo (line 2). Next, each position list
in newCombPLs is checked for λ-covering and γ-validity (lines 7-12). For this
purpose each of the position lists PL is intersected with the position list of the in-
clusion attribute includedPositions. If the corresponding condition of a position
list is λ-covering it is added to the new list of position lists coveringCombPLs
that can be extended by further attributes in the next recursion step. If the
condition is also γ-validg, it is added to the result set conditions.

As far as coveringCombPLs contains any position list the algorithm can con-
tinue to select the next attribute that can be added to the new set of attributes
newColComb. So the method analyze is called for the next attribute in line
(i > attrNo), the new attribute combination newColComb and their position
lists respectively. The method terminates as soon as no further attribute can be
added to the current combination either because there are no λ-covering posi-
tion lists or the current attribute was the last attribute. In both cases, the set
of generated conditions is returned.

Detecting Completeness Conditions with PLI For the discovery of λ-
covering conditions we considered group-IDs as positions. For the discovery of δ-
complete conditions on key inclusion attributes the algorithm can be adapted by
using tuple-IDs of the relational representation instead of group-IDs as positions.

4.3 Cinderella vs. PLI

We now compare our two algorithms in terms of complexity. The search space of
both algorithms is in worst case exponential in the number of attributes: Given

21

Algorithm 4: Analyze Attribute Combinations: analyze

input : attrNo, attrNoPLs, currComb, combPLs
output: all γ-validg and λ-covering conditions for given attribute combination

and extensions with attribute number larger than attrNo

/* Build new attribute combination. */

1 newAttrCombs ← currComb ∪ attrNo ;
2 if currComb �= ∅ then
3 newCombPLs ← crossIntersect (
4 attrNoPLs, combPLs);

5 else
6 newCombPLs ←attrNoPLs;

/* Check each position list. */

7 foreach pl ∈ newCombPLs do
8 plIncluded ← (pl ∩ includedPositions) ;

/* Compute measures of covering, validg. */

9 if |plIncluded|
|includedPositions| > λ then

10 coveringCombPLs.add (pl) ;

11 if |plIncluded|
|pl| > γ then

12 conditions.add(
13 newCombAttrNos, pl.values (),
14 covering, valid) ;

15 if ¬ coveringCombPLs.isEmpty () then
16 for i = attrNo + 1 to |attributes| do
17 conditions.addAll (analyze (i, getPLs (i),
18 newColCombs, coveringCombPLs))) ;

19 return conditions

n attributes and the average number of values per attribute v, both algorithms
have to check O(2n · vn) potential conditions.

Using the apriori paradigm of pruning Cinderella is able to reduce the
search space drastically, depending on the δ and λ thresholds for respectively
completeness and covering conditions. The PLI algorithm works depth-first and
is not able to apply this pruning strategy. Therefore the search space of the PLI
algorithm is always at least as large as for the Cinderella algorithm. Both
algorithms scan the database only once and therefore require the same disk io.

With regard to memory usage the PLI algorithm outperforms Cinderella,
since it needs only the position lists for each single attribute and the position lists
that have been created during one complete recursion branch. The upper bound
for the total number of position lists in memory is at most O(2 · n · v) resulting
from n · v position lists for the single attributes and additional n · v position
lists that might be created in one recursion branch. The breadth-first search
strategy of the Cinderella algorithm, however, requires to store all

(
n
l

) · vl
generated candidates of each level l in memory. In the worst case, the number of

22

candidates corresponds to
(
n
n
2

) ·v n
2 for itemsets of size n

2 . Our implementation of

Cinderella holds all baskets in memory, such that we have a resulting memory
complexity of O(

(
n
n
2

) · v n
2 · n

2 + v · n). Although a position list requires (in most

cases) more memory than an itemset, PLI still should outperform Cinderella
with regard to memory usage, because of its quadratic complexity compared
to Cinderella’s exponential complexity. In the next section, we confirm our
complexity analysis using actual experimental results.

4.4 Detecting Demanding Conditions

Until now we have solely focused on discovering selecting conditions. Our algo-
rithms could directly be used to discover demanding conditions by indicating
referenced tuples instead of included tuples. The definitions for completeness
and covering could easily be adapted for right-hand side conditions. There is,
however, no equivalent notion for validity, i. e., matching unreferenced tuples is
not considered a violation for a demanding conditions. Thus, we can omit the
extra check for validity in our algorithms.

5 Evaluation

We evaluate our methods with two real-life data sets: Persons in the English
and German DBpedia 3.6 (see introduction) and using Wikipedia image data
from [14]. Section 5.1 shows results on the former case, namely on discovering
conditions for persons in the German DBpedia to be included in the English
DBpedia, and vice versa. In Section 5.2 we evaluate and compare the efficiency
our algorithms experimentally on the DBpedia data sets. Results for applying
our algorithms on the Wikipedia data set are shown in Section 5.3.

In DBpedia, individual persons are represented by the same URI in both data
sets. There are 296, 454 persons in the English DBpedia and 175, 457 persons in
the German DBpedia; 74, 496 persons are included in both data sets. We mapped
the data sets into relations to enable detection of covering and completeness
conditions. We use one attribute per predicate, namely pid, name, givenname,
surname, birthdate, birthplace, deathdate, deathplace, and description. Fur-
ther, we extracted the century and the year of birth and death into additional
attributes from attributes birthdate and deathdate, respectively. The resulting
relations contain 474, 630 tuples for the English DBpedia, and 280, 913 tuples
for the German DBpedia with an intersection of 133, 208 tuples.

5.1 Identified Conditions

In this section we point out discovered conditions to show the value of applying
the concept of Cinds to our use case of detecting missing links. Figure 5 shows
a scatter plot over all covering conditions with an absolute threshold of at least
one person for persons in the German DBpedia to be included in the English
DBpedia, i. e., 566, 830 conditions. We can see that the conditions spread over

23

the entire range of γ for validity. The majority of conditions has a λ-covering of
less than 0.01, which corresponds to 744 persons.

Fig. 5. Identified conditions.

We decided to set the validity threshold depending on the instances. We use
the validity of an empty condition as reference value: As validity is computed
as the fraction of matching and included persons to all matching persons, the
empty condition’s validity is the fraction of included persons to all persons in
the dependent data set. We use twice this validity value as threshold for γ-valid
conditions.

German DBpedia persons included in the English DBpedia. The valid-
ity of the empty condition is 0.42, i. e., 42% of persons in the German DBpedia
are also included in the English DBpedia. We used a covering threshold of 0.008
(i. e., 600 persons), which leads to a useful amount of conditions. We identify 85
conditions with a γ-validity of above 0.84, including 16 conditions with γ > 0.95.

The two conditions with the largest covering measure are description =

American actor1 (γ-validg = 0.91, λ-covering = 0.029, i. e., 2173 persons) or
description = American actress(γ-validg = 0.89, λ-covering = 0.024, i. e., 1791
persons). We also found both conditions in conjunction with the condition birth-

1 Note that we provide translated condition values as the actual value is in German.

24

century = 19 with slightly increased validity and slightly decreased covering mea-
sures.

The above conditions are intuitive and hardly surprising. But we also found
the following unforeseen conditions while similar probable conditions were not
found: We identified the conditions

– birthcentury = 18 ∧ description = American politician

(γ-validg = 0.94, λ-covering = 0.015)
– birthcentury = 19 ∧ deathplace = Los Angeles

(γ-validg = 0.91, λ-covering= 0.010)
– birthcentury = 19 ∧ deathplace = New York City

(γ-validg = 0.86, λ-covering = 0.012)
– birthcentury = 19 ∧ deathplace = California

(γ-validg = 0.91, λ-covering = 0.015)

Interestingly, we found a class of conditions using only the year of birth, e. g.,
birthyear = 1900, for the years 1900 to 1928 and 1945 to 1947. Each of these
conditions has a γ-validity of above 93% and a λ-covering between 0.8% to
1%, i. e., 595 to 744 persons. Combining all these conditions using a disjunction
results in a overall validity of 93% and a covering of 28.8% (or 21, 454 persons).
The reason for these conditions can be seen in Fig. 6: The English DBpedia
contains overall more persons born in 1900 to 1928 and 1945 to 1947 compared
to other years, while there is no special behavior for these years in the German
DBpedia. Thus, persons born in these years are more likely to be included than
others. If we had known this data skew in advance, we could have guessed these
conditions. But detecting conditions led us to detect this data skew instead of
imagining and checking all possible, guessable variations in the data.

0

500

1000

1500

2000

2500

3000

1800 1850 1900 1950 2000

nu
m

be
r o

f p
er

so
ns

birthyear
English DBpedia German DBpedia

Fig. 6. Persons per year of birth.

25

English DBpedia persons included in the German DBpedia. The valid-
ity of the empty condition is 0.25, i. e., 25% of persons in the German DBpedia
are also included in the English DBpedia. We choose a covering threshold of
0.007. We identified 14 conditions with a γ-validity of above 0.5 with the maxi-
mum γ-validity of 0.66.

We find obvious conditions, such as birthplace = Germany (γ-validg = 0.59,
λ-covering = 0.024) or deathplace = Germany (γ-validg = 0.55, λ-covering =
0.011), or again description = actor ∧ birthcentury = 19 or description = ac-

tress (both with γ-validg = 0.60 and λ-covering = 0.01)).
But we also find the surprising conditions deathplace = United States ∧

birthcentury = 18 (that we already introduced in Sec. 1) with γ-validg = 0.51
and λ-covering = 0.008, or a description = road bicycle racer (γ-validg =
0.66, λ-covering = 0.012).

5.2 Performance of Algorithms

We set up two experiments on the DBpedia data sets to evaluate (i) the effect of
the number of identified conditions, and (ii) the effect of the number of tuples in
the dependent data set. We consider runtime and memory consumption in both
experiments.

We implemented our algorithms Cinderella and PLI in Java6, and store
the data sets in a commercial DBMS. We run our experiments on a 2x Xeon
quad-core server with 16GB RAM running a 64bit Linux.
Varying Number of Conditions. In this experiment we want to test the effect
of the number of identified conditions. We use the German DBpedia person data
set and its included persons in the English DBpedia. We vary the number of
identified conditions by varying λ or δ for detecting covering or completeness
conditions, respectively.

Figures 7(a) and 7(b) show the runtime and memory consumption for vary-
ing λ, i. e., for detecting covering conditions. In both diagrams we also show
the number of identified conditions using a secondary y-axis on the right. The
runtime of both algorithms correlates with the number of identified conditions,
but Cinderella is less sensitive to increasing numbers of identified conditions.
Generally, Cinderella is faster than PLI. The memory consumption of Cin-
derella correlates with the number of identified conditions, while PLI is much
less sensitive to larger numbers of conditions and generally needs less memory.
These observations confirm our complexity estimations in Sec. 4.3.

Experiments on completeness conditions reveal equivalent results as can be
seen in Fig. 8. In comparison to discovering covering conditions increases the
number of identified conditions strongly for very low thresholds, which is caused
by larger conditions (i. e., over more attributes) satisfying the thresholds. The
runtime increases for both algorithms where more conditions are identified, i. e.,
for low thresholds. Memory consumption increases for both algorithms for all
thresholds, which results from an increased amount of work: Cinderella must
handle more baskets as each tuple forms a basket instead of each group. PLI
must handle longer position lists, which result from using tupleIDs instead of

26

0

200

400

600

800

1000

1200

1400

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 0.005 0.01 0.015 0.02 0.025 0.03

nu
m

be
r o

f c
on

di
tio

ns

ru
nt

im
e

[s
]

-covering

Cinderella

PLI

number of
conditions

(a) runtime

0

200

400

600

800

1000

1200

1400

0

0.5

1

1.5

2

2.5

0 0.005 0.01 0.015 0.02 0.025 0.03

nu
m

be
r o

f c
on

di
tio

ns

m
em

or
y

co
ns

um
pt

io
n

[G
B]

-covering

Cinderella

PLI

number of
conditions

(b) memory consumption

Fig. 7. Results for varying covering thresholds.

groupIDs. Again Cinderella increases less in runtime while PLI increases less
in memory consumption, as expected by our complexity analysis.

Due to PLIs low memory requirements we were able to detect all conditions
covering at least one person (with validity threshold set to zero). This run took
41min using 2.4GB memory and returned 566, 830 conditions. A run detecting
completeness conditions with an absolute completeness of at least one tuple took
112min using 5.8GB memory and delivering 9, 214, 406 conditions. With Cin-
derellas higher memory requirements, we could perform the same experiment
only up to at least 10 covered persons. The run took 3min20 s using 7.8GB RAM
and returned 12, 587 conditions. Clearly, this entire set of conditions is not useful
to find individual interesting conditions. But we can use it for a scatter plot as
given in Fig. 5, which gives an intuition about the distribution of conditions and
helps to set profitable thresholds.

27

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 0.005 0.01 0.015 0.02 0.025 0.03

nu
m

be
r o

f c
on

di
tio

ns

ru
nt

im
e

[s
]

-complete

Cinderella

PLI

number of
conditions

(a) runtime

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0

0.5

1

1.5

2

2.5

0 0.005 0.01 0.015 0.02 0.025 0.03

nu
m

be
r o

f c
on

di
tio

ns

m
em

or
y

co
ns

um
pt

io
n

[G
B]

-complete

Cinderella

PLI

number of
conditions

(b) memory consumption

Fig. 8. Results for varying completeness thresholds.

Varying Size of Data Set. This experiment evaluates two aspects of the
data set size: (i) the effect of the absolute size of the data set and (ii) the
ratio of included and non-included groups (or tuples). Therefore, we concatenate
multiple instances of the German DBpedia data set. To increase the absolute
size of the data set with a constant ratio of included-to-non-included tuples we
consider multiples of the entire data set. A second class of data sets is created
by adding multiples of non-included persons to decrease the ratio of included-
to-non-included persons. In both setups we ensured to add new persons instead
of adding new tuples to the same group (person) by adding suffixes to values of
attribute de.person. Note that the number of identified conditions is constant
in both setups: If we multiply the entire data set, then all conditions and the
ratios remain the same. Multiplying only the non-included persons has no impact
on the covering (or completeness) threshold, because it relates to the constant
number of included persons (or tuples).

28

Figures 9(a) and 9(b) show the runtime and memory behavior for both setups
and both algorithms. Generally, runtime and memory consumption increase with
increasing data size as expected from our complexity analysis. Multiplying only
the non-included persons results in a softer increase of the runtime and memory
consumption than multiplying the entire data set. This means, the amount of
included tuples is the decisive factor for both algorithms, not so much the size of
the entire data set. Again, Cinderella is faster, while PLI needs less memory.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 0.5 1 1.5 2 2.5 3

ru
nt

im
e

[s
]

number of tuples
Millions

Cinderella
multiple instance

PLI
multiple instance

Cinderella
more non-included

PLI
more non-included

(a) runtime

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 0.5 1 1.5 2 2.5 3

m
em

or
y

co
ns

um
pt

io
n

[G
B]

number of tuples
Millions

Cinderella
multiple instance

PLI
multiple instance

Cinderella
more non-included

PLI
more non-included

(b) memory consumption

Fig. 9. Results for discovering covering conditions over varying number of tuples.

Experiments for detecting completeness conditions using equivalent setups
show comparable results (Fig. 10). All observations appear even stronger pro-
nounced, which result again from the increased amount of work for discovering
completeness conditions instead of covering conditions on the same data set.

29

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0 0.5 1 1.5 2 2.5 3

ru
nt

im
e

[s
]

number of tuples
Millions

Cinderella
multiple instance

PLI
multiple instance

Cinderella
more non-included

PLI
more non-included

(a) runtime

(b) memory consumption

Fig. 10. Results for discovering completeness conditions over varying number of tuples.

Our experimental results confirm our comparison of the algorithms in Sec. 4.3,
as Cinderella is more runtime efficient due to its additional pruning possibili-
ties, but needs always more memory than PLI, because of its breadth-first search
manner and its in-memory baskets.

5.3 Evaluating the Wikipedia Use Case

A work closely related to ours is [14], which also discovers conditions for Cinds
and builds additionally a pattern tableau, but pre-selects condition attributes
and restricts considered conditions by parsimony. We use the same dataset to
compare the conditions discovered by both approaches.

Golab et al. [14] use two tables of Wikipedia data, namely table Image with
attributes name, size, width, height, bits, media type, major mime, minor mime,
user, user text, timestamp, sha1 and the table Imagelinks denoting links from

30

webpages to image files (attributes il from and il to). They assert the embedded
Ind image.name ⊆ imagelinks.il to and build a pattern tableau with complete-
ness conditions of the pre-selected attributes bits, media type, and user text.

If we restrict our algorithms to the same attribute set with the same validity
threshold of 0.85 and a completeness of at least 0.003, we discover the same
conditions as [14], except the one on user text = ProteinBoxBot, which shows a
lower validity in our experiments. We cannot explain this slight difference, as we
have used the original dataset pointed to by the authors. Cinderella runs 23s
compared to 18s reported by [14] (on presumably different hardware).

However, our algorithms also discover more detailed conditions, which cannot
be found by [14]: For condition media type = AUDIO there is another condition
media type = AUDIO ∧ bits = 0 with the exact same validity and completeness.
In the same manner, the five conditions bits = 5, bits = 6, bits = 7, user

text = Blofeld of SPECTRE, and user text = Melesse can all be combined with
media type = BITMAP while covering the same tuples. These stricter conditions
give more insight into the dataset and prevent wrongly generalizing the identified
conditions for similar datasets.

The main advantage of our approach over [14] is that the condition attributes
need not be pre-selected. Running our algorithms without restricting attributes
yields even more interesting results: Unexpectedly, attributes width and height

provide conditions with higher completeness than all other attributes. Condi-
tions width = 200 ∧ major mime = image and width = 300 ∧ major mime = image

both reach a completeness of 0.04, instead of the completeness measures of the
above conditions between 0.003 and 0.008. Conditions height = 300 and height

= 200 (each with completeness = 0.02), height = 240 and width = 240, (each
with completeness = 0.01) also have higher completeness. These conditions are
non-trivial: other widths and heights also appear in the dataset with similar fre-
quency. Another interesting identified condition regarding audio data is bits =

0 ∧ major mime = application ∧ minor mime = ogg with completeness 0.008 and
validity 0.9. Cinderella run 78 s to identify 188 conditions with γ-valid > 0.85
and δ-complete > 0.008.

In summary, the ability to select the condition attributes automatically led
to the discovery of more complete conditions satisfying the same validity require-
ments, which in turn provide a base to build better pattern tableaux. [14] report
an overall support of 0.0636, while we discover already individual conditions with
a completeness of 0.04, which corresponds to a support of 0.03. Simply choosing
our top two conditions yields a tableau with a completeness of 0.0824 (support
0.0641).

6 Related Work

Conditional inclusion dependencies (Cinds) were proposed by Bravo et al. [5]
for data cleaning and contextual schema matching. In [5], complexity bounds for
reasoning about Cinds and a sound and complete inference system for Cinds are
provided. The problem of discovering Cinds from a given database instance, how-

31

ever, is not addressed. Different aspects of Cind discovery have been addressed
in [2, 8, 14, 18]. De Marchi et al. propose data mining algorithms to discover ap-
proximate Inds, i. e., Inds that are satisfied by part of a given database [18]. To
allow mining of approximate Inds an error measure is introduced based on the
number of tuples that one has to remove from a database to obtain a database
for which a Ind is satisfied. Likewise, our Ind discovery algorithm SPIDER has
been adopted to discover approximate Inds [2]. Approximate Inds are input to
the algorithms presented in this paper. The work in [2, 18] is therefore orthogo-
nal to our work. Algorithms for generating pattern tableaux for given Inds are
proposed in [8, 14]. The algorithm in [8], however, assumes that the given Ind
is fully satisfied by the database, i. e., it does not ensure or check validity of
conditions. Golab et al. present Data Miner, a system for analyzing data qual-
ity [14]. Given an approximate Ind, the system generates a pattern tableau that
as a concise summary of those subsets of the database that a) satisfy, and b) fail
the Ind. Golab et al. assume that the set of attributes over which the tableau
patterns is generated (i. e., XP), is given as input to the algorithm. The fact that
pre-selecting XP is not necessary is one of the major differences to our work. A
second difference is that we introduce the new concept of covering Inds which
is essential for the type of data and use case that we consider.

The algorithm in [14] is an extension of the algorithm proposed in [13] for gen-
erating pattern tableaux for conditional functional dependencies (Cfds). Cfds
were introduced in [10] for data cleaning. Similar to Cinds, a Cfd augments an
embedded functional dependency (Fd) with a pattern tableau that defines the
subset of the database in which the Fd is satisfied. In [13] Golab et al. character-
ize the quality of a pattern tableau based on properties of support, confidence,
and parsimony. The authors show that generating an optimal tableau for a given
Fd is np-complete but can be approximated in polynomial time via a greedy
algorithm. Here, we consider the problem of generating conditions for a pattern
tableau. Deriving an optimal tableau from the discovered set of conditions is
similar to the basic greedy algorithm proposed in [13]. To regard marginal local
support and confidence defined in [13], which are necessary to build concise pat-
tern tableaux, we can adapt our algorithms slightly: Cinderella can compute
these measures by re-counting the itemset frequencies as in the rule generation
step. PLI must preserve the position list for each identified condition (instead
of saving only meta-data). Then the marginal local supports and confidences
can be calculated for each condition after choosing conditions for the pattern
tableau.

Algorithms for discovering Cfds are also considered in [7, 11]. In contrast to
other approaches, the work in [7] does not assume that the Fd is given in advance.
Discovering Fds, however, is significantly different from discovering approximate
Inds and it therefore is not clear how the algorithms in [7] can be applied to Cind
discovery. Fan et al. propose an algorithm for discovering constant Cfds based on
closed itemset mining [11]. A minimal constant Cfd is a special form of Cfd for
which the pattern tableau contains only constant values for the attribute in the
right-hand side of the embedded Fd. Thus, minimal constant Cfds correspond

32

to association rules with single attribute in their antecedent with confidence
100%, i. e., to selecting conditions with γ-validity one. Algorithm CFDMiner
in [11] uses closed itemset mining to find such association rules. Algorithms for
mining association rules with fixed or constrained antecedent that are based on
Apriori were proposed in [17, 20]. These algorithms were the motivation for our’s
in Sec. 4.

Contradiction pattern are also a form of association rules with fixed an-
tecedent [19]. Contradiction patterns were proposed to discover conditions that
are frequent within a subset of a database but not frequent within the remainder
of the database. The definitions of conflict relevance and conflict potential are
similar to our definitions of valid and completeness conditions. Covering condi-
tions, however, cannot be discovered using the algorithms presented in [19].

7 Conclusion and Future Work

We generalize the definition of Cinds by distinguishing covering and complete-
ness conditions. This distinction is important when discovering Cinds over de-
normalized relations. To discover Cinds we present algorithms Cinderella and
PLI. In contrast to existing approaches, both algorithms not only select the con-
dition values but also the condition attributes automatically. Cinderella is
faster than PLI, but consumes more memory. In our experimental evaluation we
identified comprehensible, but unforeseen conditions that highlight characteris-
tics of persons for which there exists a link between the English and German
version of DBpedia.

In future work we plan to adapt the distinction of covering and completeness
conditions to the right-hand side of the pattern tableau. That is, if a person
in the English DBpedia matches condition birthplace = California, we could
require the referenced person in the German DBpedia to match birthplace =

Kalifornien. This modification is valuable to improve data quality. There is also
an even more interesting application in linked data. We currently can identify
persons that are candidates for links without being able to state to which cor-
responding person they should be linked to. Right-hand side conditions can be
used to generate rules that are input to systems like SILK [3] for automatic
generation of links between pairs of datasets in the Web of Data.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the International Conference on Very Large Databases
(VLDB), 1994.

2. J. Bauckmann, U. Leser, and F. Naumann. Efficient and exact computation of
inclusion dependencies for data integration. Technical Report 34, Hasso-Plattner-
Institut, Potsdam, 2010.

3. C. Bizer, J. Volz, G. Kobilarov, and M. Gaedke. Silk - a link discovery framework
for the web of data. In Workshop about Linked Data on the Web (LDOW), 2009.

33

4. P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for data cleaning. In Proceedings of the International
Conference on Data Engineering (ICDE), 2007.

5. L. Bravo, W. Fan, and S. Ma. Extending dependencies with conditions. In Pro-
ceedings of the International Conference on Very Large Databases (VLDB), 2007.

6. W. Chen, W. Fan, and S. Ma. Analyses and validation of conditional dependencies
with built-in predicates. In Database and Expert Systems Applications, 2009.

7. F. Chiang and R. J. Miller. Discovering data quality rules. Proceedings of the
VLDB Endowment, 1:1166–1177, 2008.

8. O. Curé. Conditional inclusion dependencies for data cleansing: Discovery and
violation detection issues. In Proceedings of the International Workshop on Quality
in Databases (QDB), 2009.

9. W. Fan. Dependencies revisited for improving data quality. In Proceedings of the
Symposium on Principles of Database Systems (PODS), 2008.

10. W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional depen-
dencies for capturing data inconsistencies. ACM Transactions on Database Systems
(TODS), 33(2):1–48, 2008.

11. W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional functional de-
pendencies. IEEE Transactions on Knowledge and Data Engineering (TKDE),
23(4):683–698, 2011.

12. M. J. Franklin, A. Y. Halevy, and D. Maier. From databases to dataspaces: a new
abstraction for information management. SIGMOD Record, 34(4):27–33, 2005.

13. L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On generating near-
optimal tableaux for conditional functional dependencies. Proceedings of the VLDB
Endowment, 1:376–390, 2008.

14. L. Golab, F. Korn, and D. Srivastava. Efficient and effective analysis of data quality
using pattern tableaux. IEEE Data Engineering Bulletin, 34(3):26–33, 2011.

15. H. Halpin, P. Hayes, J. P. McCusker, D. McGuinness, and H. S. Thompson. When
owl:sameas isn’t the same: An analysis of identity in linked data. In Proceedings
of the International Semantic Web Conference (ISWC), 2010.

16. Y. Huhtala, J. Kaerkkaeinen, P. Porkka, and H. Toivonen. TANE: an efficient
algorithm for discovering functional and approximate dependencies. The Computer
Journal, 42(2):100–111, 1999.

17. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In Proceedings of the ACM International Conference on Knowledge discovery and
data mining (KDD), pages 80–86, 1998.

18. F. D. Marchi, S. Lopes, and J.-M. Petit. Unary and n-ary inclusion dependency
discovery in relational databases. J. Intell. Inf. Syst., 32:53–73, 2009.

19. H. Müller, U. Leser, and J.-C. Freytag. Mining for patterns in contradictory data.
In Proceedings of the SIGMOD International Workshop on Information Quality
for Information Systems (IQIS), 2004.

20. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.
In Proceedings of the ACM International Conference on Knowledge discovery and
data mining (KDD), pages 67–73, 1997.

34

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

61 978-3-86956-

194-3
Vierter Deutscher IPv6 Gipfel 2011 Christoph Meinel, Harald Sack

(Hrsg.)

60 978-3-86956-
201-8

Understanding Cryptic Schemata in Large
Extract-Transform-Load Systems

Alexander Albrecht,
Felix Naumann

59 978-3-86956-
193-6

The JCop Language Specification

Malte Appeltauer,
Robert Hirschfeld

58 978-3-86956-
192-9

MDE Settings in SAP: A Descriptive Field
Study

Regina Hebig, Holger Giese

57 978-3-86956-
191-2

Industrial Case Study on the Integration of
SysML and AUTOSAR with Triple Graph
Grammars

Holger Giese, Stephan
Hildebrandt, Stefan Neumann,
Sebastian Wätzoldt

56 978-3-86956-
171-4

Quantitative Modeling and Analysis of
Service-Oriented Real-Time Systems
using Interval Probabilistic Timed
Automata

Christian Krause, Holger Giese

55 978-3-86956-
169-1

Proceedings of the 4th Many-core
Applications Research Community
(MARC) Symposium

Peter Tröger,
Andreas Polze (Eds.)

54 978-3-86956-
158-5

An Abstraction for Version Control
Systems

Matthias Kleine,
Robert Hirschfeld, Gilad Bracha

53 978-3-86956-
160-8

Web-based Development in the Lively
Kernel

Jens Lincke, Robert Hirschfeld
(Eds.)

52 978-3-86956-
156-1

Einführung von IPv6 in
Unternehmensnetzen: Ein Leitfaden

Wilhelm Boeddinghaus,
Christoph Meinel, Harald Sack

51 978-3-86956-
148-6

Advancing the Discovery of Unique
Column Combinations

Ziawasch Abedjan,
Felix Naumann

50 978-3-86956-
144-8

Data in Business Processes Andreas Meyer, Sergey Smirnov,
Mathias Weske

49 978-3-86956-
143-1

Adaptive Windows for Duplicate Detection Uwe Draisbach, Felix Naumann,
Sascha Szott, Oliver Wonneberg

48 978-3-86956-
134-9

CSOM/PL: A Virtual Machine Product Line

Michael Haupt, Stefan Marr,
Robert Hirschfeld

47 978-3-86956-
130-1

State Propagation in Abstracted Business
Processes

Sergey Smirnov, Armin Zamani
Farahani, Mathias Weske

46 978-3-86956-
129-5

Proceedings of the 5th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

45 978-3-86956-
128-8

Survey on Healthcare IT systems:
Standards, Regulations and Security

Christian Neuhaus,
Andreas Polze,
Mohammad M. R. Chowdhuryy

44 978-3-86956-
113-4

Virtualisierung und Cloud Computing:
Konzepte, Technologiestudie,
Marktübersicht

Christoph Meinel, Christian
Willems, Sebastian Roschke,
Maxim Schnjakin

ISBN 978-3-86956-212-4
ISSN 1613-5652

	Title
	Imprint

	Abstract
	1 Problem Statement
	1.1 Motivating Use Case
	1.2 CIND Discovery and Condition Features
	1.3 Challenges of Condition Discovery

	2 CIND Definition
	3 Condition Features
	3.1 Measuring Condition Features
	3.2 Detecting Conditions Using SQL

	4 Discovering General Conditions
	4.1 Using Association Rule Mining
	4.2 Using Position List Intersection
	4.3 Cinderella vs. PLI
	4.4 Detecting Demanding Conditions

	5 Evaluation
	5.1 Identified Conditions
	5.2 Performance of Algorithms

	6 Related Work
	7 Conclusion and Future Work
	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

