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Air pollution has been a persistent global problem in the past several hundred years. 

While some industrialized nations have shown improvements in their air quality through 

stricter regulation, others have experienced declines as they rapidly industrialize. The 

WHO’s 2021 update of their recommended air pollution limit values reflects the 

substantial impacts on human health of pollutants such as NO2 and O3, as recent 

epidemiological evidence suggests substantial long-term health impacts of air pollution 

even at low concentrations. Alongside developments in our understanding of air 

pollution's health impacts, the new technology of low-cost sensors (LCS) has been taken 

up by both academia and industry as a new method for measuring air pollution. Due 

primarily to their lower cost and smaller size, they can be used in a variety of different 

applications, including in the development of higher resolution measurement networks, 

in source identification, and in measurements of air pollution exposure. While significant 

efforts have been made to accurately calibrate LCS with reference instrumentation and 

various statistical models, accuracy and precision remain limited by variable sensor 

sensitivity. Furthermore, standard procedures for calibration still do not exist and most 

proprietary calibration algorithms are black-box, inaccessible to the public. This work 

seeks to expand the knowledge base on LCS in several different ways: 1) by developing an 

open-source calibration methodology; 2) by deploying LCS at high spatial resolution in 

urban environments to test their capability in measuring microscale changes in urban air 

pollution; 3) by connecting LCS deployments with the implementation of local mobility 

policies to provide policy advice on resultant changes in air quality.  

In a first step, it was found that LCS can be consistently calibrated with good performance 

against reference instrumentation using seven general steps: 1) assessing raw data 

distribution, 2) cleaning data, 3) flagging data, 4) model selection and tuning, 5) model 

validation, 6) exporting final predictions, and 7) calculating associated uncertainty. By 

emphasizing the need for consistent reporting of details at each step, most crucially on 

model selection, validation, and performance, this work pushed forward with the effort 

towards standardization of calibration methodologies. In addition, with the open-source 

publication of code and data for the seven-step methodology, advances were made 

towards reforming the largely black-box nature of LCS calibrations. 

With a transparent and reliable calibration methodology established, LCS were then 

deployed in various street canyons between 2017 and 2020. Using two types of LCS, metal 

oxide (MOS) and electrochemical (EC), their performance in capturing expected patterns 

of urban NO2 and O3 pollution was evaluated. Results showed that calibrated 

concentrations from MOS and EC sensors matched general diurnal patterns in NO2 and O3 

pollution measured using reference instruments. While MOS proved to be unreliable for 

discerning differences among measured locations within the urban environment, the 
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concentrations measured with calibrated EC sensors matched expectations from 

modelling studies on NO2 and O3 pollution distribution in street canyons. As such, it was 

concluded that LCS are appropriate for measuring urban air quality, including for assisting 

urban-scale air pollution model development, and can reveal new insights into air 

pollution in urban environments. 

To achieve the last goal of this work, two measurement campaigns were conducted in 

connection with the implementation of three mobility policies in Berlin. The first involved 

the construction of a pop-up bike lane on Kottbusser Damm in response to the COVID-19 

pandemic, the second surrounded the temporary implementation of a community space 

on Böckhstrasse, and the last was focused on the closure of a portion of Friedrichstrasse 

to all motorized traffic. In all cases, measurements of NO2 were collected before and after 

the measure was implemented to assess changes in air quality resultant from these 

policies. Results from the Kottbusser Damm experiment showed that the bike-lane 

reduced NO2 concentrations that cyclists were exposed to by 22 ± 19%. On 

Friedrichstrasse, the street closure reduced NO2 concentrations to the level of the urban 

background without worsening the air quality on side streets. These valuable results were 

communicated swiftly to partners in the city administration responsible for evaluating the 

policies’ success and future, highlighting the ability of LCS to provide policy-relevant 

results. 

As a new technology, much is still to be learned about LCS and their value to academic 

research in the atmospheric sciences. Nevertheless, this work has advanced the state of 

the art in several ways. First, it contributed a novel open-source calibration methodology 

that can be used by a LCS end-users for various air pollutants. Second, it strengthened the 

evidence base on the reliability of LCS for measuring urban air quality, finding through 

novel deployments in street canyons that LCS can be used at high spatial resolution to 

understand microscale air pollution dynamics. Last, it is the first of its kind to connect LCS 

measurements directly with mobility policies to understand their influences on local air 

quality, resulting in policy-relevant findings valuable for decisionmakers. It serves as an 

example of the potential for LCS to expand our understanding of air pollution at various 

scales, as well as their ability to serve as valuable tools in transdisciplinary research.



 

 

Luftverschmutzung ist seit hundert Jahren ein anhaltendes globales Problem. Während 

sich die Luftqualität in einigen Industrieländern durch strengere Vorschriften verbessert 

hat, hat sie sich in anderen Ländern im Zuge der schnell fortschreitenden Industriali-

sierung verschlechtert. Die Aktualisierung der von der WHO für das Jahr 2021 

empfohlenen Grenzwerte für die Luftverschmutzung spiegelt die erheblichen Aus-

wirkungen von Schadstoffen wie Stickstoffdioxid (NO2) und Ozon (O3) auf die menschliche 

Gesundheit wider, da neuere epidemiologische Erkenntnisse darauf hindeuten, dass Luft-

verschmutzung selbst bei niedrigen Konzentrationen erhebliche langfristige gesundheit-

liche Auswirkungen hat. Parallel zu den Entwicklungen in unserem Verständnis der 

gesundheitlichen Auswirkungen von Luftverschmutzung wurde die neue Technologie der 

Low-Cost-Sensoren (LCS) sowohl von der Wissenschaft als auch von der Industrie als neue 

Methode zur Messung der Luftverschmutzung aufgegriffen. Vor allem aufgrund ihrer 

geringeren Kosten und kleineren Größe können sie in einer Vielzahl von Anwendungen 

eingesetzt werden, u. a. bei der Entwicklung von Messnetzen mit höherer räumlicher Auf-

lösung, bei der Identifizierung von Quellen und bei der Messung der Luftverschmutzung. 

Es wurden zwar erhebliche Anstrengungen unternommen, um LCS mit Hilfe von 

Referenzinstrumenten und verschiedenen statistischen Modellen genau zu kalibrieren, 

aber die Genauigkeit und Präzision bleiben durch die variable Sensorempfindlichkeit 

begrenzt. Darüber hinaus gibt es immer noch keine Standardverfahren für die 

Kalibrierung, und die meisten proprietären Kalibrierungsalgorithmen sind Blackboxen, die 

für die Öffentlichkeit nicht zugänglich sind. Mit dieser Arbeit soll die Wissensbasis über 

LCS auf verschiedene Weise erweitert werden: 1) durch die Entwicklung einer Open-

Source-Kalibrierungsmethodik; 2) durch den Einsatz von LCS mit hoher räumlicher 

Auflösung in städtischen Umgebungen, um ihre Fähigkeit zur Messung kleinräumlicher 

Veränderungen der städtischen Luftverschmutzung zu testen; 3) durch die Verknüpfung 

von LCS-Einsätzen mit der Umsetzung lokaler Verkehrsmaßnahmen, um politische 

Empfehlungen zu den daraus resultierenden Veränderungen der Luftqualität geben zu 

können.  

In einem ersten Schritt wurde festgestellt, dass LCS mit Hilfe von sieben allgemeinen 

Schritten konsistent und mit guter Leistung gegenüber Referenzinstrumenten kalibriert 

werden können: 1) Bewertung der Rohdatenverteilung, 2) Datenbereinigung, 3) Kenn-

zeichnung von Daten, 4) Modellauswahl und -abstimmung, 5) Modellvalidierung, 6) 

Export der endgültigen Vorhersagen und 7) Berechnung der damit verbundenen Un-

sicherheit. Durch die Betonung der Notwendigkeit einer konsistenten Berichterstattung 

über Details bei jedem Schritt, insbesondere bei der Modellauswahl, -validierung und  

-leistung, hat diese Arbeit die Bemühungen um eine Standardisierung der Kalibrierungs-
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methoden vorangetrieben. Darüber hinaus wurden mit der Open-Source-Veröffent-

lichung von Code und Daten für die siebenstufige Methodik Fortschritte bei der 

Reformierung der weitgehenden Blackbox-Natur von LCS-Kalibrierungen erzielt. 

Nach der Einführung einer transparenten und zuverlässigen Kalibrierungsmethode 

wurden die LCS zwischen 2017 und 2020 an verschiedenen Straßen eingesetzt. Unter Ver-

wendung von zwei Arten von LCS, Metalloxid (MOS) und elektrochemisch (EC), wurde ihre 

Leistung bei der Erfassung der erwarteten Muster der NO2- und O3-Belastung in Städten 

bewertet. Die Ergebnisse zeigten, dass die kalibrierten Konzentrationen der MOS- und EC-

Sensoren mit den allgemeinen Tagesmustern der NO2- und O3-Belastung überein-

stimmten, die mit Referenzgeräten gemessen wurden. Während sich MOS als unzuver-

lässig erwies, wenn es darum ging, Unterschiede zwischen den gemessenen Orten inner-

halb der städtischen Umgebung zu erkennen, entsprachen die mit kalibrierten EC-

Sensoren gemessenen Konzentrationen den Erwartungen aus Modellierungsstudien zur 

Verteilung der NO2- und O3-Belastung in Straßenschluchten. Daraus wurde der Schluss 

gezogen, dass LCS für die Messung der Luftqualität in Städten geeignet sind, auch zur 

Unterstützung der Entwicklung von Luftverschmutzungsmodellen auf städtischer Ebene, 

und dass sie neue Erkenntnisse über die Luftverschmutzung in städtischen Umgebungen 

liefern können. 

Um das letzte Ziel dieser Arbeit zu erreichen, wurden zwei Messkampagnen im 

Zusammenhang mit der Umsetzung von drei verkehrspolitischen Maßnahmen in Berlin 

durchgeführt. Bei der ersten handelte es sich um den Bau einer Pop-up-Radweg auf dem 

Kottbusser Damm als Reaktion auf die COVID-19-Pandemie, bei der zweiten um die 

vorübergehende Einrichtung eines Gemeinschaftsraums in der Böckhstraße und bei der 

letzten um die Sperrung eines Teils der Friedrichstraße für den gesamten motorisierten 

Verkehr. In allen Fällen wurden NO2-Messungen vor und nach der Durchführung der Maß-

nahme durchgeführt, um die Veränderungen der Luftqualität infolge dieser Maßnahmen 

zu bewerten. Die Ergebnisse des Experiments am Kottbusser Damm zeigten, dass die NO2-

Konzentrationen, denen die Radfahrer ausgesetzt waren, durch den Radweg um 22 ± 19 

% gesenkt wurden. In der Friedrichstraße sank die NO2-Konzentration durch die Straßen-

sperrung auf das Niveau des städtischen Hintergrunds, ohne dass sich die Luftqualität in 

den Seitenstraßen verschlechterte. Diese wertvollen Ergebnisse wurden den verantwort-

lichen Ansprechpersonen in der Stadtverwaltung, die für die Bewertung des Erfolgs und 

der Zukunft der Maßnahmen verantwortlich sind, schnell mitgeteilt, was die Fähigkeit von 

LCS unterstreicht, politisch relevante Ergebnisse zu liefern. 

Da es sich um eine neue Technologie handelt, muss noch viel über LCS und ihren Wert für 

die akademische Forschung im Bereich der Atmosphärenwissenschaften gelernt werden. 

Dennoch hat diese Arbeit den Stand der Technik in mehrfacher Hinsicht verbessert. 

Erstens wurde eine neuartige Open-Source-Kalibrierungsmethode entwickelt, die von 

LCS-Anwender*innen für verschiedene Luftschadstoffe verwendet werden kann. 

Zweitens wurde die Beweisgrundlage für die Zuverlässigkeit von LCS zur Messung der Luft-

qualität in Städten gestärkt, indem durch neuartige Einsätze in Straßenschluchten fest-

gestellt wurde, dass LCS mit hoher räumlicher Auflösung zum Verständnis der Dynamik 

der Luftverschmutzung auf kleinräumlicher Ebene eingesetzt werden kann. Schließlich ist 

es die erste Studie dieser Art, die LCS-Messungen direkt mit verkehrspolitischen Maß-

nahmen verknüpft, um deren Einfluss auf die lokale Luftqualität zu verstehen, was zu 

politisch relevanten Erkenntnissen führt, die für Entscheidungsträger*innen wertvoll sind. 
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Die Studie ist ein Beispiel für das Potenzial von LCS, unser Verständnis von Luftver-

schmutzung in verschiedenen Maßstäben zu erweitern, sowie für ihre Fähigkeit, als wert-

volle Werkzeuge in der transdisziplinären Forschung zu dienen. 

 



  

 

 



      

  

Throughout the past several hundred years, air pollution has been one of the most 

extensive, persistent, and challenging environmental problems on Earth (Fowler et al., 

2020). One cannot discuss the Anthropocene without mentioning the impacts of air 

pollution on the biosphere, human health, and the climate. Despite successes in some 

parts of the world in addressing acute air pollution in the past few decades, it remains a 

significant stressor of human and environmental health in both developed and developing 

countries.  

There are myriad biogenic and anthropogenic air pollutants that influence the 

environment and affect human health in various ways. Among them are gases such as 

nitrogen dioxide (NO2), ozone (O3), and volatile organic compounds (VOCs), and 

particulate matter (PM). While all of them are relevant when investigating the impacts of 

air pollution, this work focuses explicitly on two gaseous pollutants and their 

measurement: NO2 and O3. These species were selected for this study as their chemistry 

is interlinked, they have negative impacts on both the environment and human health, 

and are especially relevant to policymakers. 

More recently, various state actors, scientists, and private industries have developed and 

implemented a wide range of technologies to effectively monitor air pollution and 

manage its impacts. With expanding innovation, new technologies and approaches to 

measuring air pollution have appeared in the past 10-15 years. Of particular importance 

are recent developments in low-cost sensing technology, henceforth referred to as low-

cost sensors (LCS). The construction, calibration, and application of LCS has brought about 

rapid growth in the spatiotemporal measurement of air pollution around the world and 

enabled a new generation of end-users to engage with air pollution. Furthermore, as will 

be explored in this work, unique characteristics of LCS have encouraged innovation in the 

application of air pollution measurements to citizen-science and policy-relevant contexts. 

In the following chapter, scientific literature will be explored and summarized regarding 

the connections between air pollution and the environment (1.1), including linkages to 

climate change, atmospheric chemistry, and meteorology; human health (1.2); and 

mobility (1.3). Thereafter, technical details of measurements of air pollution using 

reference-grade and low-cost instruments (1.4) will be described. Last, the important role 

of the Research Institute for Sustainability’s (RIFS) transdisciplinary approach to scientific 

research on this work will be briefly explained. 
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Air pollution engages with the environment in complex ways; it both influences and is 

influenced by physical and chemical interactions with the biosphere, lithosphere, and 

atmosphere. These relationships define how air pollutants are emitted, transformed, 

transported, and deposited, as well as the magnitude of their impact on the surrounding 

environment. This is particularly evident in the troposphere, where anthropogenic and 

biogenic air pollutants react with other chemical species and are influenced by 

meteorology. This section highlights typical NOx and O3 chemical pathways and processes, 

further connecting them with meteorology and climate change. 

 

NOx and O3 are both among the most important molecules in atmospheric chemistry 

(Seinfeld & Pandis, 2006). NOx refers to the total combination of nitric oxide (NO) and 

nitrogen dioxide (NO2) and is short-lived, with an atmospheric lifetime of hours to a few 

days. Globally, 122 teragrams (Tg) of NOx (as NO2) were emitted in 2017 from 

anthropogenic activities (McDuffie et al., 2020), coming primarily from the shipping, land 

transportation, and energy production sectors. Transport emissions taken together, 

including shipping, land transport, and aviation, account for roughly 50% of the global 

total (Szopa et al., 2021). Over the last several decades, however, emissions-reducing 

technology has led to a consistent decline in annual anthropogenic NOx emissions 

(McDuffie et al., 2020; Szopa et al., 2021).  

Tropospheric O3, on the other hand, is not emitted directly from anthropogenic or 

biogenic sources. Instead, it is a secondary pollutant and greenhouse gas (GHG) formed 

primarily through in situ chemical production and transport from the stratosphere, with 

an atmospheric lifetime of days to weeks (25 days on average, globally) (Seinfeld & Pandis, 

2006). The global O3 burden based on multi-model and observational estimates was 

calculated to be 347 ± 28 Tg in the year 2010 (Szopa et al., 2021), which is an increase 

from previous estimates of 337 ± 23 Tg and 310 Tg reported in AR5 and Seinfeld and 

Pandis, (2006), respectively. From 1850 to present day, it is estimated that the 

tropospheric O3 burden has increased by 109 ± 25 Tg, largely due to increases in emissions 

of precursors such as NOx and VOCs. 

In the troposphere, NOx and O3 interact with one another in a chemical cycle that leads to 

the constant formation and destruction of O3. The photolysis of NO2 at wavelengths <424 

nm leads to the production of an oxygen atom (eq. 1), which quickly reacts with oxygen 

(O2) in a termolecular reaction with a third body (M) to produce O3 (eq. 2). Once formed, 

O3 can react with NO to regenerate the initial NO2 (eq. 3), thereby maintaining a steady-

state cycle (Seinfeld & Pandis, 2006). 

𝑁𝑂2 + ℎ𝑣 → 𝑁𝑂 + 𝑂 (1) 

𝑂 + 𝑂2 +𝑀 → 𝑂3 +𝑀 (2) 

𝑂3 +𝑁𝑂 →  𝑁𝑂2 + 𝑂2 (3) 

However, in the presence of non-methane VOCs (NMVOCs), carbon monoxide (CO), and 

methane (CH4), a different set of chemical reactions occurs to produce O3 (Monks et al., 

2015; Seinfeld & Pandis, 2006; Sillman, 1999; E. von Schneidemesser et al., 2015), seen 

below (eqs. 4-8): 
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𝑉𝑂𝐶 + 𝑂𝐻 
𝑂2
→  𝑅𝑂2 +𝐻2𝑂    (4) 

𝐶𝑂 + 𝑂𝐻 
𝑂2
→  𝐻𝑂2 + 𝐶𝑂2    (5) 

𝑅𝑂2 +𝑁𝑂 
𝑂2
→  𝑉𝑂𝐶 + 𝐻𝑂2 +𝑁𝑂2   (6) 

𝐻𝑂2 +𝑁𝑂 → 𝑂𝐻 + 𝑁𝑂2    (7) 

𝑁𝑂2 + ℎ𝑣 → 𝑁𝑂 + 𝑂     (8) 

𝑂 + 𝑂2 +𝑀 → 𝑂3 +𝑀    (9) 

In brief, VOCs are oxidized by the hydroxyl radical (OH) to form peroxy radicals (RO2), 

which then replace O3 in the steady-state cycle and react with NO to produce NO2. 

Similarly, CO can react with OH to form the hydroperoxyl radical (HO2), which also 

replaces O3 in the formation of NO2. The net result of these reactions is the regeneration 

of the OH radical, allowing for the continuous oxidation of VOCs and a net accumulation 

of O3 in the troposphere (R. Atkinson, 2000; E. von Schneidemesser et al., 2015).  

Given these reactions, O3 production tends to fall into two distinct regimes: VOC-limited 

and NOx-limited. As VOCs and NOx compete for reaction with the OH radical, the ratio of 

VOC/NOx determines which regime dominates (Seinfeld & Pandis, 2006), but other factors 

such as VOC reactivity, biogenic emissions, and meteorology also impact the O3 

production regime (E. von Schneidemesser et al., 2015). In areas of high NOx 

concentrations, the rate of removal of NOx is limited by the availability of OH radicals, so 

further emissions do not increase the chemical processing of NOx. In the rest of the 

troposphere, NOx concentrations are far exceeded by OH concentrations, allowing for 

sufficient chemical removal of NOx and a NOx-limited regime (Sillman, 1999). Urban 

environments, on the other hand, tend to be NOx-saturated or VOC-limited due to 

substantial local NOx emissions (E. von Schneidemesser et al., 2015), whereas the 

opposite is true in the rest of the troposphere (Sillman, 1999). 

 

The chemistry of NOx and O3 in the troposphere is closely linked with regional 

meteorology. These interactions occur at macro-, meso-, and microscale. At macroscale 

(horizontal distances > 1000 km), air parcel trajectories are determined largely by synoptic 

patterns and fronts. Features such as high- or low-pressure systems and cold fronts 

influence meteorological factors such as wind speed, wind direction, and temperature, 

and can have large impacts on local air pollution. For example, high-pressure systems tend 

to lead to stagnant meteorological conditions with low wind speeds, reducing pollutant 

dispersal and increasing local concentrations (Jacob & Winner, 2009; Perez, Garcia, 

Sanchez, Pardo, & Fernandez-Duque, 2020; Petetin et al., 2020; Erika von Schneidemesser 

et al., 2021). Synoptic scale meteorology also leads to the long-range, transboundary 

transport of air pollutants with lifetimes of days to weeks, as is the case with O3 (Derwent, 

2004; Monks et al., 2009). At mesoscale, the circulation of air parcels is dominated by 

influences from orographic features and land-sea interactions (Perez et al., 2020). The 

former, such as mountain-valley breeze circulation can influence the regional transport of 

precursors to polluted, VOC-limited areas, leading to enhanced O3 production (Beaver & 

Palazoglu, 2009; Pusede et al., 2014). The latter, mixed with synoptic scale influences such 

as pressure, can affect wind speed and direction at the land-sea interface, thereby leading 

to pollutant dispersal or stagnation (Perez et al., 2020). 
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While macro- and mesoscale meteorological patterns shape the flow, type, and 

composition of air parcels that move through a region, microscale meteorological 

influences play an important role in local concentrations of air pollutants such as NOx and 

O3, particularly in urban environments. Microscale in this case refers to phenomena 

occurring at scales of 1 km or less (Seinfeld & Pandis, 2006). These include the mixing layer 

height (MLH), temperature (T), relative humidity (RH), and wind speed (WS), as well as 

urban morphology (Perez et al., 2020). While T, RH, WS, and MLH also fall under the 

umbrella of mesoscale meteorological patterns, their interactions with e.g., urban 

morphology and urban heat island effects result in unique microscale patterns relevant in 

the context of air pollution. For O3, significant positive and negative correlations exist with 

T and RH, respectively (Melkonyan & Kuttler, 2012; Noelia Otero et al., 2018; N. Otero, 

Sillmann, Schnell, Rust, & Butler, 2016) in central Europe. Higher temperatures usually 

correlate with an increase in solar radiation, which implies more available energy for 

photochemical activity. As such, this relationship is particularly strong in summer, where 

longer days lead to enhanced O3 production following photolysis of NO2 (Ordóñez et al., 

2005; Pusede et al., 2014).  

Microscale meteorological influences on NOx are quite different than for O3, largely due 

to the greater role played by local emissions in urban areas. Studies have found NOx to be 

minorly correlated with temperature (Pearce, Beringer, Nicholls, Hyndman, & Tapper, 

2011) or not at all (Voiculescu et al., 2020); others identified a weak, positive relationship 

with relative humidity (Aldrin & Haff, 2005; Pearce et al., 2011; Voiculescu et al., 2020); 

and a few find minor evidence of a relationship with MLH (Geiß et al., 2017; Wagner & 

Schäfer, 2017). Instead, the most important meteorological factor for NOx in urban 

environments is wind speed (Carslaw, Beevers, & Tate, 2007; Grundström, Hak, Chen, 

Hallquist, & Pleijel, 2015; Harkey, Holloway, Oberman, & Scotty, 2015; Pearce et al., 2011). 

This is most evident on days with low wind speeds, as NOx emissions accumulate in 

stagnated air, leading to increases in concentrations of NO2, as emitted NO is quickly 

converted to NO2 (Carslaw et al., 2007; Elminir, 2006; Grundström et al., 2015; Pearce et 

al., 2011). Given the increased role of local NOx emissions, wind direction has also been 

found to play an important role, with areas downwind of highways, urban centres, and 

industrial areas subject to increased NO2 concentrations (Arain, Blair, Finkelstein, Brook, 

& Jerrett, 2009; Venkatram, Snyder, Isakov, & Kimbrough, 2013). 

 

Through physical and chemical processes in the atmosphere, air pollutants also have an 

influence on and are influenced by climate change. O3 is of particular importance in this 

regard, as it is a GHG in the troposphere. The Sixth Assessment Report (AR6) from the 

International Panel on Climate Change (IPCC) reported a contribution to effective 

radiative forcing (ERF) from 1750-2019 of 0.47 W m-2 (90% confidence range: 0.24 – 0.70 

W m-2) for O3 (Szopa et al., 2021). For context, the ERF attributed to CO2 over the same 

period is 2.16 W m-2 (Gulev et al., 2021). Due to the secondary nature of O3, much of the 

increase in radiative forcing is attributed to rising anthropogenic emissions of precursors 

such as CH4, NMVOCs, CO, and NOx (Monks et al., 2015; Stevenson et al., 2013; E. von 

Schneidemesser et al., 2015). There are various further indirect effects of tropospheric O3 

on climate, including increased warming through the inhibition of plant uptake of CO2 

from the degradation of chlorophyll, as well as cooling from the repeated oxidation of 

VOCs to produce OH radicals that oxidize sulphur dioxide (SO2) to sulphuric acid (Monks 

et al., 2015; E. von Schneidemesser et al., 2015).  
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For NOx, impacts on radiative forcing occur largely through secondary pathways. Through 

the production of tropospheric O3 as described in Section 1.1.1, NOx has a positive ERF, 

whereas through enhanced production of the OH radical, which reduces the atmospheric 

lifetime of CH4, and nitrate aerosols it has a negative ERF. Overall, these indirect effects 

of anthropogenic NOx emissions from 1750-2019 were estimated to lead to a net ERF of 

–0.27 W m-2 (90% confidence range: -0.55 – 0.01 W m-2), which is more negative than the 

AR5 estimate (Szopa et al., 2021). Due to spatiotemporal differences in NOx effects on O3 

formation, anthropogenic NOx emissions lead to warming in the short-term (10-20 years), 

but in the long-term the resultant removal of CH4 has an overall cooling effect (E. von 

Schneidemesser et al., 2015). 

 

As laid out in the previous section, NOx and O3 are important, prevalent air pollutants in 

the troposphere. These chemical species also impact human health in a variety of 

different ways. The Lancet recently published a comprehensive assessment of the health 

impacts of pollution in which it was estimated that 6.7 (5.9-7.5) million global deaths in 

2015 were due to air pollution risk factors (Landrigan et al., 2018). A recent reassessment 

confirmed these values, finding the majority of deaths (4.1 million) were attributed to 

exposure to ambient PM2.5 pollution, with 370,000 attributed to O3 pollution (Fuller et al., 

2022). A more recent study evaluated the impacts of ambient air pollution exposure in 

Europe using an updated evidence base to re-evaluate this burden of disease, estimating 

the number of premature deaths to be more than a factor of two higher than the Global 

Burden of Disease study in 2015 (Lelieveld, Klingmuller, et al., 2019).  

As the majority of premature deaths from air pollution globally are associated with PM2.5, 

most studies focus on quantifying the impact of particulates on human health. There are, 

however, a significant number of studies assessing the long-term impacts of NO2 and O3 

exposure on human health. Several systematic reviews on long-term exposure to NO2 (> 

1 year) have found effects of NO2 on mortality independent of other pollutants in multi-

pollutant models (S. Huang et al., 2021; Huangfu & Atkinson, 2020). Similarly, longitudinal 

studies have found statistically significant positive associations between peak O3 

concentrations and respiratory disease, cardiovascular disease, lung cancer, and chronic 

obstructive pulmonary disease (COPD), independent of other pollutants (Huangfu & 

Atkinson, 2020; Kazemiparkouhi, Eum, Wang, Manjourides, & Suh, 2020; Lim, Hayes, et 

al., 2019). Other studies have identified statistically significant increased risks of mortality 

(all-cause, cardiovascular, and respiratory) even at low concentrations of air pollution 

(Brunekreef et al., 2021; Hanigan et al., 2019; Stafoggia et al., 2022), further highlighting 

the significant health effects of long-term exposure to any amount of air pollution. 

 

Using the evidence base available in 2005, the World Health Organization (WHO) created 

a series of recommended air quality limit values for pollutants such as PM, NO2, and O3. 

These were partially used by the European Union (EU) to inform its air quality directive in 

2008 (European Parliament, 2008). In light of new evidence presented in the previous 

section, especially with regards to new findings of the impacts of low concentrations of 

air pollutants on health, the WHO updated its recommended limit values in 2021 (WHO, 

2021), which have been summarized in Table 1-1. 
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Table 1-1 Comparison of the WHO air quality guideline (AQG) levels for various pollutants between their original 
2005 and the 2021 updated values, as well as with the current EU air quality limit values. 

Of the various changes made to the AQG levels, most notable is the reduction in the 

recommended annual average NO2 level from 40 µg.m-³ to 10 µg.m-³. As noted in their 

report, the previous value was informed by morbidity effects observed in children 

exposed to elevated indoor NO2 concentrations, whereas the updated value reflects the 

aforementioned long-term exposure studies on all-cause and respiratory mortality (WHO, 

2021). The inclusion of a 24-hour recommended AQG value for NO2 was similarly based 

on available epidemiological evidence. For O3, the evidence base was not strong enough 

to justify a reduction in the 8-hour AQG level, but a peak seasonal value of 60 µg.m-³ over 

the 6 months with the highest moving average was included to reflect the strong 

seasonality of this species.  

As reported by the European Environment Agency (EEA), almost all Europeans are 

exposed to PM2.5 (96%), NO2 (89%), and O3 (95%) concentrations above the new WHO 

recommended AQG levels (EEA, 2022). This continued exposure has enormous costs on 

society and any action taken to reduce air pollution will benefit the surrounding 

population (Hoffmann et al., 2021). With these changes, it is expected that the EU will aim 

to update its air quality directive to reflect the new targets (EEA, 2021a), ensuring the 

heightened health and policy-relevance of air pollution going forward.  

 

There are many sources of air pollution, both anthropogenic and biogenic, with the some 

of the largest sources coming from energy generation, industrial processes, 

transportation, and natural sources such as dust. In urban environments, one of the 

largest contributors to local concentrations of primary pollutants such as NOx and 

secondary pollutants such as O3 is the transport sector. In 2018, 39% of the total NOx 

emissions across the EU-28 countries were contributed by the road transport sector, with 

non-road transport contributing a further 8% (EEA, 2020b). In the same year in Germany, 

road and non-road transport accounted for 40% and 4% of all NOx emissions, respectively 

(Umweltbundesamt, 2022). In large urban agglomerations with large vehicle fleets such 

as Berlin, the relative contribution from transport to total emissions is higher. In 2015, car 

transport alone contributed 39% of the total NOx emissions in Berlin, with a further 9% 

coming from other forms of vehicle transport (e.g., trucks, busses) (SenUMVK, 2022b).  

While the transport sector still contributes a substantial portion of total NOx emissions, 

the overall total in 2018 decreased by roughly 50% in the EU-28 with respect to 2000, 

despite increases in passenger and freight transport (EEA, 2020b). In Germany in 2018, 

total NOx emissions were 58% of their 1990 levels, with a 64% reduction in road and non-

Pollutant Averaging Time 2005 AQG level 2021 AQG level Current EU limit-
value 

PM2.5 (µg.m-³) 
Annual 10 5 25 

24-hour 25 15 NA 

PM10 (µg.m-³) 
Annual 20 15 40 
24-hour 50 45 50 

O3 (µg.m-³) 
Peak Season NA 60 NA 
8-hour 100 100 120 

NO2 (µg.m-³) 
Annual 40 10 40 
24-hour NA 25 NA 
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road transport emissions (Umweltbundesamt, 2022). These reductions from road 

transport are in large part due to improvements in vehicle technology that has reduced 

the total NOx emitted over the lifetime of light-duty vehicles (Carslaw et al., 2019). 

However, despite substantial improvements in the past several decades, NO2 

concentrations are still well above the new recommended WHO AQG levels in all 

European cities and more needs to be done to further reduce the contribution from the 

mobility sector. 

 

With such a large proportion of NOx emissions coming from vehicle traffic, the extent and 

type of mobility infrastructure plays an important role in the dispersion and concentration 

of urban NO2 and O3 pollution. For example, highways, artery roads, and intersections 

typically exhibit higher NOx emissions due to elevated traffic levels (Apte et al., 2017; 

Borge et al., 2016; Wallace & Kanaroglou, 2008), leading to high NO2 concentrations, 

depending on meteorological conditions and site-specific characteristics affecting 

pollutant distribution. This in turn impacts the local formation and destruction of O3, as 

explored in Section 1.1.1. Overall, changes to the built environment that impact the 

number of vehicles on a particular street or across a city can impact local NO2 and O3 

concentrations. 

Various studies have assessed changes in air quality associated with transportation 

infrastructure. Atmospheric models are often used to this effect, for example to assess 

the impact of large-scale transport policies such as traffic management strategies on air 

pollution (B. Degraeuwe, Pisoni, Christidis, Christodoulou, & Thunis, 2021; Tang, 

McNabola, & Misstear, 2020), project changes in air quality in association with Sustainable 

Urban Mobility Plans (SUMPs) (Pisoni, Christidis, Thunis, & Trombetti, 2019), or to 

calculate impacts on traffic-related air pollution based on various future emissions 

scenarios (Holnicki, Nahorski, & Kałuszko, 2021; Roustan, Pausader, & Seigneur, 2011). 

Other studies rely on city-wide air pollution monitoring networks to assess changes in air 

quality in connection with transport policies such as low emission zones (LEZ) (Boogaard 

et al., 2012; J. Gu et al., 2022; Lebrusán & Toutouh, 2020) and speed limits (Folgerø, 

Harding, & Westby, 2020). Fewer studies use targeted measurement campaigns to assess 

changes, such as local impacts of traffic management strategies (Krecl et al., 2020). While 

these studies are effective at assessing large-scale impacts of centralized policies on air 

quality, they are inadequate for assessing local impacts at street-level.  

 

Cities across Europe are beginning to transform their approach to mobility infrastructure 

to mitigate climate change and air pollution. In Germany, this has been dubbed the 

“Verkehrswende” or “mobility transition” (Herberg, Haas, Oppold, & von 

Schneidemesser, 2020; Kallenbach, 2020). This movement exemplifies a shift in the 

underlying mobility paradigm, away from the dominance of individual motorized 

transport and towards the greater uptake of active mobility, particularly cycling. An 

important step in the development of this transition occurred in Berlin in 2018 with the 

passing of the Berlin Mobility Act, which was largely influenced by a citizen-led 

referendum on increasing the availability and safety of cycling infrastructure (Becker & 

Renn, 2019; Kunst, 2018; D. von Schneidemesser, Herberg, & Stasiak, 2020).  

Though not a primary focus of the Berlin Mobility Act, as the city’s infrastructure shifts 

away from motorized transport, both vehicles and their emissions are displaced, resulting 
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in impacts on local air quality. As specific measures implemented under this act are 

decentralized, planned at city district level (Rode, 2019), and enacted irregularly over 

time, the aforementioned methods for assessing their impacts on air quality are 

inappropriate for determining air quality effects of individual measures, largely due to 

issues with resolution and uncertainty. Instead, targeted measurements associated with 

the implementation of each measure are needed, as the city-wide monitoring network is 

too sparse to capture local effects. Such local measurements can disentangle specific 

effects on local exposure to air pollution in association with each measure. The next 

section will highlight a new technology that meets these requirements and can fill an 

important gap in our understanding of the impacts of the mobility transition on air quality 

in cities. 

 

Currently, there are a wide range of instruments available for measuring air pollution. For 

in-situ, ground-based measurement of air pollution, these include, but are not limited to, 

reference-grade instruments, typically used in monitoring compliance to air quality 

regulations; passive samplers, a cost-effective method with high spatial but low temporal 

resolution; and low-cost sensors (LCS), an industrial technology that has found new 

applications in air pollution research. The latter is the focal point of this work and 

therefore will be the primary subject of this section, particularly with regards to the 

measurement of NO2 and O3. 

 

LCS are part of a changing paradigm in air pollution monitoring of the past 10-15 years, in 

which instruments are becoming cheaper, more portable, and easier to use (Snyder et al., 

2013). These sensing elements are typically combined with other technological 

components for sampling (e.g., inlets or fans), operational hardware (e.g., 

microcontrollers), power systems (e.g., batteries, power supply units), storage and 

transmission capability (e.g., SIM cards, Wi-Fi, GSM), and weatherproof physical 

enclosures to form what are known as sensor systems (Peltier, 2020). While LCS have 

opened up a range of new applications for air pollution monitoring, they are still subject 

to greater uncertainty than reference instruments, as they are less sensitive, less precise, 

and are subject to various cross-sensitivities between chemical species (Peltier, 2020). In 

general, LCS can be separated into two broad categories: 1) those that measure 

concentrations of gas-phase species such as NO2, O3, or CO; and 2) those that measure 

PM or other properties of particles and aerosols (Snyder et al., 2013). This work focuses 

on gas-phase LCS for measurement of NO2 and O3, therefore this section will describe the 

technology, their calibration, and potential applications for research.

 

Available gas-phase LCS typically operate under a simple unifying principle of 

measurement, in which the sensing material interacts with the desired gas-phase species, 

producing a measurement with units of voltage or resistance. The two main technologies 

used to this end for measuring NO2 and O3 are metal oxide semiconductors (MOS) and 

electrochemical cells (EC) (Snyder et al., 2013). In the former, the semiconductor is 

composed of three main parts: the surface, the bulk, and the particle boundary (Figure 

1-1). When heated to several hundred degrees centigrade, oxygen atoms in the air parcel 

will bond to the semiconductor, thereby extracting electrons from the surface. These 

bonded oxygen atoms will then either react with ambient gases or adsorb to the 
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semiconductor surface, changing the sensor resistance proportionally to the amount of 

gas reacting with the semiconductor (Peterson et al., 2017). This resistance is the raw 

sensor signal that is then calibrated against reference measurements of the target 

species. 

As a result of this mechanism MOS are subject to several limitations. The relationship 

between change in sensor resistance and species concentrations is typically non-linear, 

the semiconductors are sensitive to changing environmental conditions, particularly high 

temperature and relative humidity, and they are subject to numerous cross-sensitivities 

(Peltier, 2020; Peterson et al., 2017; Rai et al., 2017; Laurent Spinelle, Gerboles, Villani, 

Aleixandre, & Bonavitacola, 2015). Their lifetime is roughly 1-2 years but can also degrade 

sooner as continuous adsorption of chemicals to the surface of the semiconductor 

reduces the sensor’s sensitivity. This causes a drift in the baseline sensor resistance over 

just a few months of deployment, therefore requiring MOS to be regularly calibrated with 

reference measurements to ensure suitable performance (Peterson et al., 2017). Last, as 

they must be heated to high temperatures, they have notable warm-up times (Peterson 

et al., 2017), including if the sensor turns off temporarily, and can give off excess heat 

inside the sensor system. 

Electrochemical cell sensors operate via a different principle of measurement. These are 

composed of electrochemical cells in which a current is generated when a reduction-

oxidation (redox) reaction at the interface between electrode and electrolyte produces a 

flow of electrons (Popoola et al., 2016). There are typically three or four electrodes in 

these sensors, depending on the model, including the worker, reference, counter, and 

auxiliary nodes, the latter of which is unique to four-electrode EC sensors (Figure 1.2). The 

target gas undergoes this redox reaction at the worker electrode at the gas-electrolyte 

interface, the current of which is counterbalanced by the reaction at the counter 

electrode. The reference electrode measures only in the electrolyte to keep the worker 

electrode at a stable potential. Similarly, the auxiliary electrode is never in contact with 

the gas species and is used to provide information on environmental effects on the worker 

electrode, particularly from temperature (Popoola et al., 2016; Rai et al., 2017). The 

resultant current is a measure of voltage and is calibrated against reference 

concentrations of the target species.
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Figure 1-1 Diagram of the typical functioning of a metal oxide sensor describing the various components as well 
as the four types of reaction that can occur with gas-phase species. Reproduced under the CC BY 4.0 license 
from Peterson et al. (2017). 
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EC sensors are also known to be susceptible to various sources of uncertainty and 

interference (David E. Williams, 2020). In particular, they are sensitive to temperature 

(particularly above 30°C) and relative humidity and require correction (Castell et al., 2017; 

Peltier, 2020; Popoola et al., 2016). As the electrolyte degrades through continuous use, 

they also experience drift over the course of 6 months to a year and require repeated 

calibration with reference instrumentation (Mead et al., 2013), though this drift is notably 

less substantial than for MOS. While still susceptible to cross-sensitivities with other 

gaseous species, EC sensors are more sensitive, stable, and accurate at parts-per-billion 

(ppb) concentrations for specific gas-phase species than MOS (Peltier, 2020; Russell et al., 

2022).  

 

Given that LCS do not directly produce a measure of the ambient concentrations of gas-

phase species, they must be properly calibrated before use in the field. To effectively 

calibrate this raw data against reference concentrations, models using various statistical 

and machine-learning techniques have been explored in various studies. Among these are 

linear regression (LR), multiple linear regression (MLR), random forests (RF), artificial 

neural networks (ANN), and support vector regression (SVR), which – with the exception 

of LR – have all been found to be appropriate for calibrating LCS (Bigi, Mueller, Grange, 

Ghermandi, & Hueglin, 2018; Cordero, Borge, & Narros, 2018; Hagan et al., 2018; 

Karagulian et al., 2019; Lewis et al., 2016; Malings et al., 2019; Laurent Spinelle et al., 

2015; Laurent Spinelle, Gerboles, Villani, Aleixandre, & Bonavitacola, 2017; Zimmerman 

et al., 2018). However, there is tremendous variability among these results, as the 

environmental conditions of these deployments are quite different, leading to variable 

influences of cross-sensitive species, temperature, and relative humidity on sensor 

performance. Moreover, results vary across sensor systems, as performance is 

manufacturer, model, and firmware specific, and even if the sensor components 

themselves are the same, performance can vary (Peltier, 2020). 

In contrast to regulatory monitoring of air pollution with reference instruments, there is 

still an absence of standardized procedures for LCS calibration. Some work to this end is 

underway in the United States (US) and Europe (EU) such as at the US environmental 

protection agency (US EPA) (R. Williams et al., 2019) or the EU Joint Research Centre (JRC) 

(Schneider et al., 2019), including some joint and individual efforts such as the EuNetAir 

sensor comparison exercise (Borrego et al., 2016; Borrego et al., 2018), or systematic 
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Figure 1-2 Diagram of the components of an electrochemical sensor for the measurement of gas-phase species, 
in this case with nitrogen oxide (NO). Reproduced under the CC BY 4.0 license from Popoola, Stewart, Mead, 
and Jones (2016) 
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reviews on calibration methodologies (Jose M. Barcelo-Ordinas, Doudoub, Garcia-Vidala, 

& Badache, 2019; Karagulian et al., 2019). Despite these efforts, gaps still exist in the 

application of methodologies, including in the reporting of performance metrics and 

details on model selection, tuning, and validation. Further challenging standardization 

efforts are private sector companies, which sell LCS and sensor systems that use 

proprietary black-box algorithms to provide calibrated data to their users, and do not 

publish their methodologies (Peltier, 2020). As such, there are currently no standards for 

the calibration of LCS. 

 

Given their small size and lower cost, LCS were from the beginning praised as having great 

potential for new applications in air pollution research (Snyder et al., 2013). In the past 

decade, many of these applications have been explored, including, but not limited to: 1) 

using LCS for improved personal exposure measurements in epidemiological studies 

(Jerrett et al., 2017; Mahajan & Kumar, 2020; Morawska et al., 2018); 2) increasing the 

spatial resolution of regulatory measurement networks with large numbers of LCS (J. M. 

Barcelo-Ordinas, Ferrer-Cid, Garcia-Vidal, Ripoll, & Viana, 2019; Mead et al., 2013; 

Popoola et al., 2018; Spandonidis et al., 2020; D. E. Williams, 2019); 3) citizen science 

studies that empower individuals to engage with the measurement of air pollution 

(Bosello, Delnevo, & Mirri, 2020; Languille et al., 2020; Mahajan, Luo, Wu, & Chen, 2021; 

Mijling, Jiang, de Jonge, & Bocconi, 2018; Ripoll et al., 2019); and 4) source apportionment 

studies (Bousiotis et al., 2022; Bousiotis et al., 2021). While LCS are still too inaccurate to 

be used for regulatory purposes or for personal exposure measurement (Castell et al., 

2017; Jerrett et al., 2017) they can provide useful indicative measurements on air 

pollution sources and trends, especially where real-time information is necessary 

(McKercher, Salmond, & Vanos, 2017). 

Despite the rapid expansion in research on applications of LCS, there remain still many 

unexplored areas of research. For example, beyond their deployment in higher spatial 

resolution measurement networks, LCS could also be deployed in targeted campaigns in 

various urban environments to understand more about the micro-dynamics of air 

pollution. This would have implications for improving understanding of pollution exposure 

and could even be used to validate and improve urban-scale models. Alternatively, such 

deployments could also be connected with physical changes to urban environments, such 

as in coordination with policies that modify transportation infrastructure to understand 

their impacts on air pollution and exposure.  

 

Many of the daunting environmental, social, and political problems of the 21st century are 

challenging, if not impossible, to solve due to their complex and interconnected 

characteristics. Arguably, air pollution belongs to the category of ‘wicked’ problems 

(Lawrence, Williams, Nanz, & Renn, 2022); emissions of air pollutants come from every 

aspect of human civilization, their impacts on society range from the economic to the 

epidemiological, and due to complex transboundary impacts, no single nation can 

mitigate air pollution alone. As such, while traditional scientific methods are effective at 

understanding fundamental processes underlying air pollutants and their impacts, they 

are less capable of providing the required information to decision makers. It is here where 

transdisciplinary research can be a valuable tool for tackling these ‘wicked’ problems.  
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There are three phases that generally describe the process by which transdisciplinary 

research proceeds (Lawrence et al., 2022). During Phase 1, a societal problem is 

transformed into a boundary object by a collaborative research team, which often results 

in an overarching idea or concept linking the societal and scientific aspects of the problem, 

thereby collectively identifying knowledge gaps relevant to all actors. Once this 

framework is established, in Phase 2 integrative methods are developed and applied to 

co-create the knowledge needed, with research typically proceeding in a disciplinary 

fashion and then becoming harmonized with interdisciplinary methods. In other words, 

Phase 2 is the actual “doing” of the research identified as necessary during Phase 1. In the 

final Phase, the different types of knowledge generated are re-integrated into scientific 

and societal discussions, through typical forms such as journal articles and presentations 

in the former, and in negotiations, debates, and news media in the latter. In turn, these 

discussions lead to a reformulation of the societal problem, by which the transdisciplinary 

research process begins anew. 

 

As previously outlined, with the growing inclusion of LCS into research in atmospheric 

chemistry, there are several gaps that remain to be investigated. In particular, more 

research is needed in standardizing LCS calibration methodologies, as well as in making 

them more transparent for users; in understanding and expanding their potential 

applications; and in their deployment for the production of policy-relevant results. With 

this in mind, this thesis investigates several clear objectives with three main guiding 

research questions: 

Although many researchers are expanding the knowledge base on methodologies for the 

calibration of LCS, there are still no standards to which they are beholden. Furthermore, 

the majority of LCS are marketed by private companies using calibration methodologies 

that are proprietary secrets; in other words, they are black-box and inaccessible to end-

users. This work will develop an open-source calibration methodology for gas-phase 

sensors, with the goal of establishing a clear calibration protocol for standardization 

purposes, while also providing the relevant resources for end-users to implement 

themselves. In addition, it lays a foundation for the rest of this work by establishing a 

protocol for routine production of measurements of NO2 and O3 with gas-phase LCS.  

Many studies seek to deploy LCS in urban environments, often with a focus on citizen 

science, building new measurement networks, or complementing existing networks. 

However, few have assessed precisely to what extent LCS capture expected patterns of 

urban pollution. Fewer still, if any, have measured air pollution with targeted 

deployments of LCS at high spatial resolution in urban environments such as street 

canyons. To expand upon this knowledge gap, several targeted deployments of LCS will 

be carried out in Berlin to assess their performance in measuring NO2 and O3 pollution, as 

well as to uncover their potential for application to this line of research.
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One line of research that has not yet been investigated is the direct application of LCS 

deployments to assess the impact of (mobility) policy. Due to their greater flexibility and 

lower cost, LCS can be deployed rapidly and at high spatial resolution, allowing them to 

be deployed alongside specific mobility policies to assess their impact on air quality. This 

work will be the first of its kind to use LCS to measure local air quality before and after 

physical changes to mobility infrastructure, assessing not only the ability of LCS to be used 

in this way, but also their potential to inform policymakers of their policies’ impact on air 

quality. To this end, the three phases of transdisciplinary research will be utilized to 

engage with relevant societal actors, co-create the relevant knowledge, and disseminate 

the results back into public and political discourse. 

 

The research described in this dissertation was conducted entirely in the Urban Air 

Quality, Mobility, and Health Research Group at the Research Institute for Sustainability, 

Helmholtz Centre Potsdam (RIFS). This thesis is structured around a core of four chapters, 

comprised of two published articles and two manuscripts submitted for peer-review.  

In this chapter, a seven-step methodology for the field calibration of gas-phase low-cost 

sensors is introduced, with the goal of fulfilling objectives under RQ 1. It provides 

guidelines for end-users in predicting concentrations of NO2 and O3 using input data from 

reference instruments with statistical models. The RF machine-learning technique and 

MLR are used as examples, though other techniques could also be used with this 

methodology. This paper was published in Atmospheric Measurement Techniques as: 

Schmitz, Seán, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, 
Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser. 2021. 
'Unravelling a black box: an open-source methodology for the field calibration of 
small air quality sensors', Atmospheric Measurement Techniques, 14: 7221-41. 

 

Personal contributions: development of the methodology and concept; data analysis; 

development of code and functions for online publication; production of figures and 

tables; primary author of the manuscript with contributions from co-authors. 

This chapter serves as a proof-of-concept that LCS can be used to reliably measure NO2 

and O3 pollution in urban environments and seeks to provide answers to RQ 2. For this 

study, measurement campaigns were conducted in three street canyons in Berlin 

between 2017 and 2020 using MOS and EC LCS. Using the seven-step methodology 

outlined in Chapter 2, all LCS used in these experiments were calibrated against reference 

instrumentation to provide concentrations of NO2 and O3. Results support the utility of 

LCS for reliable measurement of urban air pollution and indicate that LCS in targeted, high 

spatial resolution deployments can reveal new insights into the impacts of urban 
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morphology on pollutant concentrations.  This manuscript was published in Atmospheric 

Environment as: 

Schmitz, S., Villena, G., Caseiro, A., Meier, F., Kerschbaumer, A., & von Schneidemesser, 
E. (2023). Calibrating low-cost sensors to measure vertical and horizontal 
gradients of NO2 and O3 pollution in three street canyons in Berlin. Atmospheric 
Environment, 307(2), 119830.  

 

Personal contributions: planning of measurement campaigns; installation of sensors; 

sensor co-location and calibration; data collection; data analysis; production of figures 

and tables; primary author of manuscript with contributions from co-authors. 

Chapter 4 builds upon the foundations established in Chapters 2 and 3 by directly 

connecting measurements of NO2 pollution with transport policy in Berlin, largely focusing 

on answering RQ 3. In a case-study from 2020, a measurement campaign was conducted 

on Kottbusser Damm in Berlin alongside the construction of a new bike-lane and the 

implementation of a car-free community space on a side-street. Using before-after 

stationary and mobile measurements, the direct impacts of these policies on local air 

quality and on cyclists’ exposure to NO2 pollution was quantified. These results were then 

directly communicated to the relevant policymakers, who were also partners in the 

development of the project. This paper was published in Environmental Research Letters 

as: 

Schmitz, Seán, Alexandre Caseiro, Andreas Kerschbaumer, and Erika von Schneidemesser. 
2021. 'Do new bike lanes impact air pollution exposure for cyclists?—a case study 
from Berlin', Environmental Research Letters, 16. 

 

Personal contributions: concept design; planning and execution of measurement 

campaign; coordination with project partners; data collection; sensor co-location and 

calibration; data analysis; production of figures and tables; primary author of manuscript 

with contributions from co-authors. 

In the final chapter of this work, another transport policy is assessed using targeted 

deployments of LCS, also addressing RQ 3. Beginning in 2020, a section of the 

Friedrichstrasse street in Berlin was closed to car traffic and opened to pedestrians and 

cyclists. In connection with this mobility policy and in partnership with responsible 

decision makers, a measurement campaign was conducted to quantify the impact of the 

street closure on local air quality, both on the Friedrichstrasse and on side streets. Results 

indicate that NO2 concentrations sank to the level of the urban background on the 

Friedrichstrasse and did not increase on side streets. It serves as another case-study of 

the potential for LCS to provide policy-relevant advice in targeted campaigns alongside 

mobility policies. This manuscript was submitted to Atmospheric Environment: X as: 

Caseiro, Alexandre, Seán Schmitz, Andreas Kerschbaumer, and Erika von Schneidemesser. 
‘Low-cost system application for policy assessment: a case study from Berlin’. 
Atmospheric Environment: X. Submitted on 26.08.2022. 
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Personal contributions: design and planning of measurement campaign; coordination 

with project partners; sensor co-location and calibration; data collection; minor 

contributions to data analysis; minor contribution to production of figures and tables; 

second author of manuscript, primary author of methods and discussion sections. 

  



    



 

 

 

The last two decades have seen substantial technological advances in the development of 

low-cost air pollution instruments using small sensors. While their use continues to spread 

across the field of atmospheric chemistry, the air quality monitoring community, as well 

as for commercial and private use, challenges remain in ensuring data quality and 

comparability of calibration methods. This study introduces a seven-step methodology for 

the field calibration of low-cost sensor systems using reference instrumentation with 

user-friendly guidelines, open access code, and a discussion of common barriers to such 

an approach. The methodology has been developed and is applicable for gas-phase 

pollutants, such as for the measurement of nitrogen dioxide (NO2) or ozone (O3). A full 

example of the application of this methodology to a case study in an urban environment 

using both Multiple Linear Regression (MLR) and the Random Forest (RF) machine-

learning technique is presented with relevant R code provided, including error estimation. 

In this case, we have applied it to the calibration of metal oxide gas-phase sensors (MOS). 

Results reiterate previous findings that MLR and RF are similarly accurate, though with 

differing limitations. The methodology presented here goes a step further than most 

studies by including explicit, transparent steps for addressing model selection, validation, 

and tuning, as well as addressing the common issues of autocorrelation and 

multicollinearity. We also highlight the need for standardized reporting of methods for 

data cleaning and flagging, model selection and tuning, and model metrics. In the absence 

of a standardized methodology for the calibration of low-cost sensor systems, we suggest 

a number of best practices for future studies using low-cost sensor systems to ensure 

greater comparability of research. 

Published as:  

Schmitz, S., Towers, S., Villena, G., Caseiro, A., Wegener, R., Klemp, D., Langer, I., Meier, 

F., & Von Schneidemesser, E. (2021). Unravelling a black box: An open-source 

methodology for the field calibration of small air quality sensors. Atmospheric 

Measurement Techniques, 14(11), 7221–7241. https://doi.org/10.5194/amt-14-7221-

2021 

https://doi.org/10.5194/amt-14-7221-2021
https://doi.org/10.5194/amt-14-7221-2021


34                                                              2 Unravelling a black box 

 

Air pollution remains a leading cause of premature death globally (Landrigan et al., 2018). 

The recent trend in air pollution research of using low-cost sensors (LCS) to measure 

common gas-phase and particulate air pollutants (e.g. CO, NOx, O3, PM) is an attempt to 

close gaps in our understanding of air pollution and make its measurement cheaper, 

widespread, and more accessible (Kumar et al., 2015; Lewis et al., 2016; Lewis, von 

Schneidemesser, & Peltier, 2018). The development of these new technologies represents 

a paradigm shift that has opened up air pollution monitoring to a much wider audience 

(Morawska et al., 2018; Snyder et al., 2013). In recent years, LCS have been used to 

develop or supplement existing air pollution monitoring networks to provide higher 

spatial resolution (e.g. CitiSense, U.S. EPA Village Green), as well as in a citizen science 

contexts to report on and share information about air quality (e.g. AirVisual, Purple Air) 

(Morawska et al., 2018; Muller et al., 2015). Projects like these are a promising step 

towards empowering citizens with greater knowledge of their local air quality.  

However, as there are myriad commercially available LCSs that use a variety of sensors 

and have substantial differences in quality, standardizing their application remains 

challenging and urgent (Karagulian et al., 2019). In measuring gas-phase pollutants, for 

example, metal oxide sensors (MOS) and electrochemical sensors (EC) are often used 

which have different limits of detection and cross-sensitivities that need to be taken into 

account (Lewis et al., 2016; Lewis et al., 2018; Rai et al., 2017). Under ambient conditions, 

the performance of these two sensor types varies substantially, with some studies 

reporting moderate to good agreement with concentrations measured by reference 

instrumentation, whereas others find very poor agreement (Lewis et al., 2018). A further 

challenge is that many LCS are in the form of small sensor systems1 sold as ready-to-use 

products to customers, most often using a “black box” proprietary calibration algorithm 

for producing concentrations which, along with raw data, is not publicly available 

(Karagulian et al., 2019). Furthermore, a wide range of calibration techniques have been 

applied to LCS in field studies, but lack uniformity in metrics used, experimental setup, 

reference equipment, and environmental conditions, making it difficult to draw 

conclusions about their overall performance (Karagulian et al., 2019; Rai et al., 2017).  

In general, pairwise reference calibration has been done on an individual sensor system 

basis as well as a sensor system cluster basis, also known as “sensor fusion” (Jose M. 

Barcelo-Ordinas et al., 2019). The former tends to be more accurate but becomes 

logistically and computationally intensive for large numbers of LCS and is more sensitive 

to sensor decay and medium-scale drift. The latter has been shown to be effective at 

calibrating groups of sensors when using the median sensor signal of a co-located cluster 

of sensors to develop a single calibration model applicable to all sensors (K. R. Smith et 

al., 2017; Kate R. Smith et al., 2019). Using a cluster-based approach has been shown to 

produce calibration factors that may be more robust over longer time frames but have 

higher margins of error for individual sensors. Both methods have their advantages and 

disadvantages that must be balanced based on the desired application for the sensor 

systems. Further methods for calibration beyond pairwise reference calibration include 

 
1 In this case “sensor” and “LCS” refer to the sensor components which react chemically with 

various air pollutants, whereas “sensor system” refers to the complete device, including sensors, 

housing unit, data storage, etc. 
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node-to-node calibration (Kizel et al., 2018) or proxy calibration (Miskell, Salmond, & 

Williams, 2018). 

Previous research has used linear regression, multiple linear regression (MLR), and 

machine-learning techniques such as random forest (RF), artificial neural networks (ANN), 

and support vector regression (SVR) to calibrate LCS with reference instrumentation for 

gas-phase pollutants. Here too, there is a lack of standardization, as MLR, RF, ANN, and 

SVR have all been found to be the most accurate method across various studies (Bigi et 

al., 2018; Cordero et al., 2018; Hagan et al., 2018; Karagulian et al., 2019; Lewis et al., 

2016; Malings et al., 2019; Kate R. Smith et al., 2019; Zimmerman et al., 2018). Only linear 

regression has been consistently identified as an unsuitable model, largely because it fails 

to take into account cross-sensitivities and environmental influences on sensor 

functioning and because sensors responses are often non-linear. For this same reason, 

nonparametric methods such as the aforementioned machine-learning techniques tend 

to be more accurate, as they are better at modelling non-linear sensor responses while 

being able to better take into account interferences in sensor functioning (Jose M. 

Barcelo-Ordinas et al., 2019; Karagulian et al., 2019). However, it must be said that any of 

these statistical methods can be applied as long as they properly account for 

autocorrelation, multicollinearity, and non-linearity in the data with relevant 

transformations. 

There are several key issues with previous work on calibrating LCS that must be 

acknowledged. First, the metrics used to report model suitability vary substantially. 

Karagulian et al. (2019) found in their comprehensive review of the LCS literature that 

only the coefficient of determination (R²) was applicable for cross-comparison of all 

studies. While this metric can be useful in measuring the agreement between LCS data 

and reference measurements, it does not give a sense of the model error. Future studies 

should, at a minimum, report R², root mean square error (RMSE), and mean average error 

(MAE), when discussing calibration performance (Jose M. Barcelo-Ordinas et al., 2019; 

Karagulian et al., 2019). Second, while there are many studies that calibrate LCS with MLR 

or machine-learning techniques, the associated model selection, validation, and tuning 

methods are rarely reported. The latter of these is especially important for machine-

learning (ML) techniques with many tuning parameters, where the problem of over-fitting 

is more common. Some studies do report steps for model validation (Hagan et al., 2018; 

Laurent Spinelle et al., 2015; Zimmerman et al., 2018) or model tuning (Bigi et al., 2018; 

Laurent Spinelle et al., 2015), but they do not go into depth as to how these were 

determined or optimized. Especially with “black box” techniques such as ANN, SVR, or RF, 

reporting steps taken to validate the model and optimize parameters is crucial to ensuring 

consistency among studies. Last, the issues of multicollinearity and autocorrelation, which 

are common among LCS time series data and of substantial importance when using MLR, 

are rarely addressed. If at all mentioned, they are referred to as being better handled by 

non-linear ML techniques such as SVR or RF (Bigi et al., 2018) or as potentially obscuring 

the statistical significance of models (Masiol, Squizzato, Chalupa, Rich, & Hopke, 2018). 

This study seeks to take a step forward in ensuring these issues are addressed in future 

LCS calibration studies. 

In the absence of a standardized calibration methodology, the ever-growing body of LCS 

literature will continue to be largely incomparable, with research running in parallel using 

varied methods. Though several comprehensive reviews of LCS have been completed 

which establish helpful guidelines for their use (Lewis et al., 2018; R. Williams et al., 2014), 
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best practices for calibration with reference instruments that should be undertaken in any 

field deployment were not specifically reported. More recently, Barcelo-Ordinas et al. 

(2019) published an extensive study on the calibration of LCS, including some general 

calibration guidelines. While these are a helpful guide for calibration methodologies, they 

lack important details on the post-processing of data during the model-building process. 

This study seeks to expand upon this work and specifically address the standardization of 

individual pairwise calibration of LCS housed in sensor systems with reference 

instrumentation by presenting user-friendly guidelines, open access code, and a 

discussion of common barriers to field calibration. With the publication of this step-by-

step methodology for the statistical calibration of low-cost sensor systems, we hope to 

establish a framework from which calibration methods can be better compared.  

 

The following section outlines a methodology for the deployment and field calibration of 

LCS for the measurement of gas-phase pollutants. First, some key considerations for the 

experimental deployment of small sensor systems will be discussed. Second, a 7-step 

statistical calibration methodology for the post-processing of data will be described. Last, 

an example of the use of this methodology, both for deployment and calibration, using 

data collected during a measurement campaign in 2017 and 2018, is provided (Section 

2.3).  

For this methodology, it is important to first establish under which circumstances the 

following steps would apply. This is a reference-based pairwise method for the individual 

calibration of small sensor systems and therefore the user will need to have access to 

reference instrumentation with which the small sensor systems can be co-located, 

whether their own or in collaboration with e.g. a city monitoring network. This makes the 

methodology inapplicable for individual users in a citizen science context that may not 

have access to reference instrumentation. These reference instruments should adhere to 

standardized guidelines on accuracy (i.e. EU Air Quality Directive (2008/50/EC), U.S. 

National Ambient Air Quality Standards (NAAQS)). A co-location in this sense refers to the 

installation of the small sensor systems in the close vicinity (ca. 1-3 meters) of the 

reference instruments, so that they receive the same parcels of air. This paper focuses on 

the usage of field (i.e. in-situ) co-locations in calibrating small sensor systems. If access to 

reference data or the raw small sensor data is not possible, then this methodology cannot 

be applied. Furthermore, while it was applied here to sensor systems containing metal 

oxide LCS, this methodology is also equally as applicable to electrochemical (EC) LCS or 

photoionization detectors (PID), as these produce a similar measure of voltage that varies 

in response to changing concentrations of gas-phase species and have similar cross-

sensitivities to temperature and relative humidity. It is not directly applicable for optical 

particle counters (OPC) for the measurement of particulate matter, as the transformation 

of the raw data into concentrations during calibration functions differently, though some 

of the principles discussed here are still relevant. For an application of this methodology 

to EC sensors, please see Schmitz et al., (2021).

 

When calibrating small sensor systems, the experimental deployment and co-location of 

devices is a key step with several important considerations that must be accounted for. 

First, the co-location with reference instrumentation should ideally occur at the same test 

site where the small sensor systems are to be deployed. If unfeasible for logistical reasons, 
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an analogue site should be selected. Criteria for analogue selection entail similar 

characteristics as those for test site selection. The analogue site should: 1) have similar 

sources and ranges of concentrations of air pollutants as the test site; 2) experience 

comparable meteorological conditions and similar circulation dynamics; and 3) be 

physically located in the same region as the test site. While it is unlikely that there will be 

a perfect analogue site, any field calibration should take these criteria into consideration 

in order to enhance validity of experimental results.  

Second, the frequency and timing of co-locations should reflect site-specific variations in 

meteorological conditions. Generally, these should be done often enough so that co-

location data cover similar ranges of meteorological conditions and concentrations of air 

pollutants as the experimental data, but not so often that there is a concomitant loss of 

experimental data. A rule-of-thumb for long-term experiments (>6 months) in temperate 

seasonal environments is a 2-week co-location every 2-3 months. For short- to medium-

term experiments, a 2-week co-location before and after and perhaps one in-between, 

depending on changes in meteorological conditions, should suffice. Regular co-location 

allows for the establishment of datasets that cover not only changes in meteorology, but 

also sensor functioning and interactions of potentially cross-sensitive species. If these 

considerations are taken into account during the experimental deployment, the likelihood 

that these datasets will be of good quality will be higher. In this study, we focus primarily 

on stationary field deployment of low-cost sensor systems. There are, however, other 

forms of deployment, including indoor and mobile, for which these criteria also apply. It 

is important to mention that there may be other considerations required in such 

alternative forms of deployment, e.g., more scrutinous data cleaning in mobile 

deployments due to impacts of rapidly changing environments on sensor performance. 

 

Raw data from small sensor systems, if treated and transformed properly, can provide 

informative air pollutant concentrations. This treatment must, however, be rigorous if the 

resultant concentrations are to be used in further analysis. This section provides a general 

description of a seven-step methodology for the post-processing and calibration of LCS 

data gathered with small sensor systems. Multiple Linear Regression (MLR) and Random 

Forest (RF) were selected as calibration methods to be used in this methodology, although 

it can be generally applied to other regression or machine learning methods. Information 

on the functions and packages from the open-source R statistical software program R Core 

Team (2019) used in this methodology is provided for each step. This information and the 

code can be found in the open-source repository Zenodo (see below for DOI). 

 

The first step is to gain a general understanding of the data. Specifically, establishing an 

overview of data distributions and potential data quality issues (data gaps, presence of 

outliers, changes in baselines, etc.) is helpful for identifying problems and solutions during 

calibration. It should also be checked that all associated metadata are available for all 

datasets.  

In this study, all variables that were to be used in model selection were assessed in this 

step. For example, the distributions of the reference concentrations, small sensor system 

raw data, and meteorological variables from the co-location and experimental datasets 

were analysed. Meteorological variables including temperature, relative humidity, and 

wind speed and direction across the co-location and experimental datasets were 
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compared. Additional variables that could be considered but were not analysed here 

include precipitation, boundary layer height, and insolation, among others. A visual 

assessment of these data using histograms, violin plots, and time series plots was 

conducted. This step provided information about the structure of each available co-

location dataset and the experimental dataset crucial to decision-making in later steps.  

 

Next, the datasets should be cleaned of erroneous outliers and unreliable data. This step 

is crucial, as outliers can have a particularly strong effect on calibration models and 

especially so on linear regression models.  

To accomplish this, the time series plots generated in step 1 were first used to visually 

evaluate the data. Sequence outliers resultant from sensor warm-up time or sensor 

malfunctioning were identified and removed using an automated function. Next, an 

algorithm was tested, trained, and implemented that uses a simple z-test with a running 

mean and standard deviation to detect point outliers resultant from instrument 

measurement error. Tests of normality with datasets greater than 50 points are irrelevant 

in determining whether parametric tests can be used or not (Ghasemi & Zahediasl, 2012). 

Analysis of the data in this study revealed the same, as data segments of less than 30 

points consistently passed the Shapiro-Wilk test, but with progressively larger data 

segments, more and more of the data failed the test. Therefore, it was assumed that the 

data aligned enough with the normal distribution for this test to apply. The size of the 

moving time frame from which the running mean and standard deviation were calculated 

and the z-score threshold used to designate ‘outlierness’ were tested and optimized. 

Durations of 1, 2, 5, 10, 30, 60, 120, and 300 minutes were considered for the moving 

window and thresholds of 3, 4, 5, and 6 were tested. This was done for each variable 

individually. The points flagged as outliers with this method were then graphically 

assessed against neighbouring datapoints to prevent inadvertent removal of peak 

emission events. In other cases where assessing all outliers is impractical, it is 

recommended to do so with a random subset of outliers. Furthermore, if substantial 

short-term events are expected due to the deployment environment, such as during 

mobile measurements, a more thorough check of potential outliers should be done. Other 
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Figure 2-1 Schematic representation of the seven-step calibration method for processing small sensor system 
data. 
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outlier detection functions using Autoregressive Integrated Moving Average (ARIMA) and 

Median Absolute Deviation (MAD) were tested and were found to be inappropriate for 

this data. 

 

Experimental data outside the range of the co-location data (i.e., beyond the minimum 

and maximum values) should be flagged as they may be less reliably predicted than those 

which are in-range and should be given a higher level of uncertainty (Kate R. Smith et al., 

2019). Flagging such data points strikes a balance between removing them from the 

analysis and highlighting their associated uncertainty.  

Once flagged, these data points were treated differently in later analysis (Section 2.3.5). 

Similarly, co-location data outside the range of the experimental data received a flag. 

During the model selection process, these flags were used to remove data that may serve 

to bias the model. While this may seem unnecessary, if the experimental range of 

environmental conditions is much smaller than those of the co-locations, it could be that 

using a smaller, more comparable range of co-location data is more suitable for model 

selection. This is data and model dependent, however, and was therefore tested in Step 

6.  

 

Model selection and tuning is a seldom-reported step that is vital in ensuring the 

calibration model is suitable for use. Rigorously scrutinizing a variety of potential models 

and optimizing their parameters provides reproducible justification for the final model 

selected. This is particularly important for machine-learning techniques which can have a 

wide array of parameters for tuning model performance. Furthermore, appropriate 

methods used in model selection ensure that problems of multicollinearity and 

autocorrelation can be corrected for, as superfluous predictors suffering from these 

issues will be identified and removed. Before building and selecting potential models, the 

relationships between predictors and response variable, including potential 

transformations, must be determined. This is important for linear regression models but 

is not relevant for ML techniques which do not take these transformations into account. 

Often the sensor specifications indicate what type of transformation (exponential, log-

linear, etc.) may be necessary.  

The co-location data were used in this step to train various models and determine the 

best fitting MLR and RF models. In this case, log transformations were recommended for 

the MOS sensors used, but were cross-checked with other common transformations 

including: log-log, square-root, and inverse. Model selection proceeded through 

backwards selection using the coefficient of determination (R²), root mean squared error 

(RMSE), and the Akaike Information Criterion (AIC) (Akaike, 1973) for MLR or Variable 

Importance (VI) (Breiman, 2001) for RF as criteria. To determine the best models, the 

training data set was broken up into smaller sets by using a moving window of four days 

to train the models and the fifth day to test. The models with the best average RMSE over 

the various fifth day predictions were selected. 

For RF the model parameters of mtry (the number of randomly selected variables at each 

node), min.node.size (the minimum number of data points in the final node), and splitrule 

(the method by which data are split at each node) were optimized by testing various 

combinations and selecting the most accurate in terms of RMSE, with data split in the 

same manner as for MLR. Subsequently, measures of AIC for the regression model and VI 
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for the random forest model were assessed to determine which predictors should remain 

in the model. For MLR, this involved the repeated bootstrapping of the training set 

combined with stepwise selection, using the AIC to robustly determine predictor 

inclusion. The models were then finally tested on the test subset and assessed using RMSE 

and R². The most accurate MLR and RF models were then sent to the next step for 

validation.  

 

Model validation is often overlooked but is necessary to ensure that the most accurate 

model selected is reliable (i.e. has good predictive power for independent data). While a 

singular instance of splitting the dataset during the model selection process into training 

and testing subsets is one method of validating the model, an additional step ensures 

more rigorous validation.  

In this case, to validate the MLR and RF models selected in Step 4, the co-location data 

was repeatedly split into training and testing subsets at a ratio of 75/25. This was done by 

splitting the co-location training set into continuous blocks representing 25% of the 

training data (in this case 6 days) as test subsets and using the rest of the co-location data 

to train the model. A robustness cross-check with various splitting ratios was conducted 

and found that changing the splitting ratio did not significantly impact the results. Using 

continuous blocks instead of random sampling is necessary to account for the 

autocorrelation in the data (Carslaw & Taylor, 2009). The accuracy of the final models was 

then assessed on the continuous blocks using R², RMSE, and Variable Importance. These 

metrics were then graphed across all continuous blocks to assess model stability. In this 

case, instability refers to major differences in R² and RMSE between folds likely caused by 

differing field conditions among the training and test folds. If this is seen, it indicates that 

the model may be too sensitive to changes in field conditions. If the graphs showed 

instability across the various folds, Step 4 was repeated and a new model was selected for 

validation.  

 

Once the selected model has been validated, the next step in the process is to export 

predictions of the experimental data as concentrations. Only co-location data deemed 

relevant from the Steps 1-3 should be used to train the model, which is then used to 

predict experimental concentrations. 

In this case, the co-location data were used to train the best MLR and RF models identified 

in Steps 4 and 5. These models were then applied to the raw experimental data in order 

to predict final concentrations. The final predictions were then graphed and compared 

using time plots and histograms. 

 

Last, it is vital that overall error and confidence intervals for the predictions are reported 

in this step. Most models have associated methods for reporting metrics such as standard 

error which can be used to establish confidence intervals around the predictions. 

Compounded to this must be the technical error associated with measurements from the 

reference instruments. Thus, the overall error should combine technical and statistical 

error.  

In this study, to test the impact of the precision of the reference measurements on model 

accuracy, the reference NO2 and O3 data were smeared using a normal distribution with 
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each point as the mean and each instrument’s measure of imprecision as the standard 

deviation. Smearing refers to transforming the data by shifting the actual value within the 

range of uncertainty. This test therefore determined whether the imprecision given by 

each instrument’s specifications should be factored into the overall predictive error. This 

was done over 50 iterations to see how model accuracy responded to shifts in reference 

concentrations within the margins of error. Co-location data were split 75/25 into a 

training set and testing set, respectively. In each iteration, separate MLR and RF models 

for NO2 and O3 were trained; each was trained once with the reference measurements 

and once with smeared reference measurements. All models were then tested for 

predictive accuracy on the testing subset, to compare the impact of smeared versus 

measured reference data on model performance.  

Last, the overall uncertainty was calculated. For the reference instruments, the technical 

measurement was taken from their specifications. This was added to the overall statistical 

error, for which the median MAE across all blocks from the model validation step was 

used. Both the MLR and RF model calculated a measure of standard error, which was 

compared with the combined uncertainty measure. The more appropriate of the two was 

then added to the final predictions from Step 6.  

 

 

The small sensor systems used in this example are EarthSense Systems, Ltd. “Zephyr” 

prototypes2, henceforth referred to as “Zephyrs”. This term refers to the whole small 

sensor system including housing, sensors, GPS, etc. Installed within the Zephyr prototypes 

were a number of Metal Oxide Sensors (MOS) that measure reducing gases, oxidizing 

gases (used here for detection of nitrogen dioxide), ozone, and ammonia, as well as a 

meteorological sensor for temperature and relative humidity; see Table 2-1 for more on 

these sensor specifications. These MOS sensors typically experience significant amounts 

of drift four months after initial calibration, which is why in this study co-locations were 

conducted at high frequency, before and after each experiment. For greater detail on the 

development, functioning, and operation of the sensors housed within these prototypes 

see Peterson et al. (2017). 

 

The reference instrumentation included a Teledyne Model T-200 NO/ NO2 /NOx Analyser 

and a 2B Technologies, Inc. Ozone Monitor. These instruments were intercompared with 

reference instruments – CAPS (Aerodyne, U.S.A.), CLD 770 AL ppt (ECOPHYSICS, 

Switzerland) and O242M (Environnement S.A., France) –  from the Forschungszentrum 

Jülich as part of the measurement campaign and showed decent agreement (R2 = 0.70) 

for NO2 and good agreement (R2 = 0.88) for O3 (see Figures 2.S-1-2.S-3 in the supplemental 

information). Ambient air temperature and relative humidity (Lambrecht, PT100) data 

one block away from the experimental site were provided by the Free University Berlin 

for two measurement campaigns (more information in Section 2.3.3). Wind speed and 

direction (Campbell Scientific, IRGASON) were measured 10m above the roof of the main 

building of the Technical University Berlin (TUB) at Campus Charlottenburg, which is  

 
2 The EarthSense Zephyrs have since evolved substantially and, as such, this study does not 
represent current performance or configuration. 
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Table 2-1 Sensors installed within the EarthSense Zephyr prototypes. Table reproduced from Peterson et al. 
(2017). 

located across the street from the experimental site. This site is part of the Urban Climate 

Observatory (UCO) Berlin operated by the TUB for long-term observations of atmospheric 

processes in cities (Scherer, Ament, et al., 2019). 

 

Measurements were conducted in a street canyon on the Charlottenburg Campus of the 

TUB, on the façade of the Mathematics Building (52° 30' 49.7" N, 13° 19' 34.5" E) as a part 

of several measurement campaigns of the joint project 'Three-dimensional observation 

of atmospheric processes in cities' (3DO) (Scherer, Ament, et al., 2019), which was part of 

the larger research program Urban Climate Under Change [UC]2 (Scherer, Antretter, et al., 

2019). The area directly around the measurement site consists of university buildings with 

a wide main thoroughfare (Strasse des 17. Juni) that runs from East to West through Berlin 

(see Figure 2.S-6 in the supplementary information). These occurred during two 

measurement campaigns which are henceforth referred to as the Summer Campaign (SC), 

which includes all 2017 measurements, and the Winter Campaign (WC) which includes 

the 2018 measurements, respectively (Figure 2-2).  

For the field calibration the Zephyrs were co-located with the aforementioned reference 

instruments at the deployment site. The reference station for co-location was set up in an 

office on the 6th floor of the Mathematics building on the south facing façade that 

provided constant power for reference instrumentation and the Zephyrs, as well as space 

for air inlet tubing to be passed through the windows to the reference instrumentation 

(Figure 2-3). The Zephyrs and the air inlets were attached next to each other on the same 

railing outside the office. This ensured that all instruments were receiving the same 

parcels of air throughout the co-location. One Zephyr was co-located with reference 

instrumentation throughout the summer campaign (s71) and one throughout the winter 

campaign (s72). The reference station measurements were continuous throughout the 

co-locations and the experiments. The experiments took place from July 29th – August 28th 

and from September 20th – October 12th in 2017, and from January 27th – February 23rd in 

2018. Five co-locations were conducted in total across the two campaigns. These took 

Gases Measured Sensor Model Method of detection Gas detected and 
detection limits 

Reducing gases 
SGX Sensortech MICS-
4514 

Redox reaction 

CO: 1-1000 ppm 
NH3: 1-500 ppm 
C2H5OH: 10-500 ppm 
H2: 1-1000 ppm 
CH4: >1000 ppm 

Oxidising gases 
SGX Sensortech MICS-
4514 

Redox reaction 
NO2: 0.05-10 ppm 
H2: 1-1000 ppm 

Ozone 
SGX Sensortech MICS-
2614 

Redox reaction 10-1000 ppb 

Ammonia 
SGX Sensortech MICS-
5914 

Redox reaction 

NH3: 1-500 ppm 
C2H5OH: 10-500 ppm 
H2: 1-1000 ppm 
C3H8: >1000 ppm 
C2H8(CH4)2: >1000 
ppm 

Temperature and 
relative humidity 

GE Measurement and 
Control CC2D25 

Polyamide capacitance 
Temp.: -40 – 125 °C 
RH: 0 – 100% 
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place from July 18th – July 27th, August 29th – September 7th and October 14th – October 

27th (all in 2017) during the SC and from January 13th – January 24th and February 23rd – 

March 8th (both in 2018) during the WC. All dates refer to time frames of the data 

presented, as the first and last days of deployment or co-location were not used owing to 

different start and end times of installation, as well as sensor warm up times. To compare 

sensor performance between s71 and s72, an intercomparison of available co-location 

raw data was conducted for the oxidizing MOS (Oxa) and ozone MOS (O3a). During all co-

locations, the sensors had a linear relationship and an R² > 0.95 (Figures 2.S-4 and 2.S-5). 

In only one instance was this not the case (co-location 2, O3a), where the R² was 0.59 and 

a deviation from linearity was detected. This relationship was linear and normal in all 

other co-locations.  

 

Figure 2-2 Timeline of SC and WC depicting the relationship between co-locations and experiments. Due to 
technical issues of individual instruments, data were unavailable for the segments marked in red. 

This example focuses on Zephyr s71 during the SC and Zephyr s72 during the WC. For the 

sake of brevity, all graphs and tables included in this section pertain only to the former. 

Those relevant for the latter can be found in the Supplementary Information. Due to 

continuous co-location of these two sensors, the statistical models established using the 

7-step method could be trained with co-location data and, atypically, assessed for their 

accuracy using reference concentrations during the entire experimental window. What 

follows is a thorough description of the application of the seven-step method for 

calibration. 

In order to calibrate the Zephyrs, reference NO2 and O3 data, meteorological data, and 

raw data from the Zephyr sensors were used. Concentrations of NO2 from the Teledyne 

T200 NOx Analyser and O3 from the O3-2B Technologies instruments were used as 

response variables in the models. Ambient temperature (Tamb) and relative humidity 

(RHamb) data as well as wind speed (WS) and direction (WD) data were tested as predictors 

in the statistical models. Four variables from the Zephyrs themselves were also tested in 

the statistical models as predictors: 1) Oxa, a measure of resistance from one MOS sensor 

used to detect oxidizing substances (in this case NO2); 2) O3a, another measure of 

resistance from a MOS sensor that detects O3; 3) a measure of temperature collected by 

the Zephyr (Tint); and 4) a measure of relative humidity collected by the Zephyr (RHint). 

Finally, the binary time-of-day (ToD) variable was created to distinguish between night 

and day, as the chemistry of the analysed species changes significantly. Further reference 

data on other species would have been beneficial to this calibration, as the MOS do exhibit 

cross-sensitivities to other species, but resources were insufficient, and these data were 

not collected. 
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The temperature and relative humidity from the Zephyrs (Tint and RHint) reflect the 

conditions within the sensor system and typically parallel ambient data, however, with an 

offset. These data are henceforth referred to as “internal” temperature and relative 

humidity. Throughout the example, both internal and ambient T and RH are used to assess 

their comparative influence on model accuracy. This was tested as ambient T and RH from 

reference instruments are not always available at experimental sites, whereas the internal 

T and RH of the Zephyrs are always available. The reference and meteorological data had 

an original time resolution of 1 minute whereas the Zephyr data was collected at a time 

resolution of 10 seconds. Analysis during the seven-step process was conducted using 5-

minute averages except for outlier detection, which was done at original time resolution.  

 

The distributions of the reference, meteorological, and Zephyr data were first compared 

between each co-location individually, both co-locations together, and the experimental 

deployment data of Experiment 1. The violin plots of ambient RH and T, NO2, and O3 for 

co-location 2 (Figure 2-4) show that the meteorological conditions and pollutant 

concentrations experienced were quite similar to those of the experiment. The ranges, 

median values, and the interquartile ranges are quite similar. This is further reflected by 

the similarity in distributions of both the Zephyr MOS sensor data (Oxa and O3a) and the 

reference instrument data between the 2nd co-location and the experiment.  

By contrast, the distributions of the same variables for the 3rd co-location (Figure 2-4) are 

demonstrably different from the other co-location and the experimental data. The 

ambient temperature and relative humidity conditions were significantly cooler and 

wetter in the 3rd co-location than during the experiment and the NO2 and O3 

concentrations were much higher and lower, respectively. Furthermore, the MOS sensor 

data in this co-location have a much different median and IQR than the experiment 

although the overall range is similar.  

Figure 2-3 Set-up of the co-location of the prototype Zephyrs with reference instruments on the 6th floor of the 
Mathematics building. The grey units are the Zephyrs, and the two inlet tubes connect to the reference devices 
located inside the office. 
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With both locations combined (Figure 2-4), the distributions of all variables are 

representative of the experimental data, but with worse agreement than with co-location 

2 alone. These results suggested that the 2nd co-location alone could be the best training 

set for the model building process. In order to further assess this hypothesis, co-location 

2, co-location 3, and a combination of both were used in exporting final model predictions 

and evaluated using the atypical co-located experimental data as a “comparison” dataset. 

 

Point outliers were determined using the developed outlier detection function. The 

threshold and running window parameters were optimized individually for each variable. 

This was done through visual assessment of points identified as outliers under various 

parameters, in order to determine if the designation was appropriate. For the reference 

NO2 and O3 data, using a z-score threshold of five and a running mean calculated with 120 

data points (equivalent to two hours of data) was optimal for identifying true outliers. 

Using a lower threshold often falsely identified the extremes of normal data spikes as 

outliers. Figure 2-5 shows example outliers that were identified using the function 

described above for the reference data. The reference relative humidity and temperature 

data provided by the Free University had been pre-processed and as such no outliers were 

identified in those data. 

Figure 2-4 Violin plots of a) reference NO2, b) reference O3, c) Oxa, d) O3a, e) Tamb, f) RHamb, g) Tint, and h) RHint 
for co-location 2, co-location 3, both co-locations combined, and the experimental data. 
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As part of normal operation, the Zephyrs send logged data via GSM connection every 15 

minutes to a database maintained by EarthSense. When this occurs, all metal oxide 

sensors in the device turn off. The MOS sensors by design, however, run quite hot and 

require a constant input of power to maintain their temperature. As can be seen in Figure 

2-6, each time the MOS sensors turn off, they need to warm-up again before stabilizing. 

Figure 2-7 Examples of outliers detected on Zephyr s71 data using a z-test with running mean for the SC. A 
value of “TRUE” means the point was deemed an outlier. 

Figure 2-6  Example of outliers due to MOS sensor warm-up following a GSM connection of the Zephyrs. A value 
of “TRUE” indicates the point was included in the 2.5-minute MOS warm-up period. 

Figure 2-5 Examples of outliers detected on reference data using a z-test with running mean for the SC. A value 
of “TRUE” means the point was deemed an outlier by the z-test.  
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The time series plots developed in Step 1 were key to identifying and addressing this issue. 

By developing a function in R that analyses the MOS sensor data patterns following time-

gaps due to GSM connection, we developed a rule-of-thumb for identifying and removing 

these data. Analysis of this issue showed that the sensors required two and a half minutes 

to warm-up and return to normal functionality. 

Once the time-gap anomalies were removed from the Zephyr data, the outlier detection 

function was applied to the four Zephyr variables in original time resolution. As can be 

seen in Figure 2-7, outliers were detected for the four Zephyr variables with a z-score 

threshold of five and a running mean of 360 data points (equivalent to one hour of data). 

It is likely that these anomalous data points all result from brief technical failures within 

the instrument. 

 

Given that the data coverage from the 2nd co-location encompassed most of the 

experimental data, only a few points during the experiment were flagged for being out-

of-bounds of the 2nd co-location set. As can be seen in Figure 2-8 a, only low NO2 

concentrations from the experimental set were flagged. The 3rd co-location experienced 

a narrower range of NO2 concentrations, as can be seen in Figure 2-4 from Step 1. As such, 

more experimental data points of lower concentrations and some of high concentrations 

were flagged for this co-location (Figure 2-8 b). This shows the utility of comparing the 

results of Step 1 with the flags generated in Step 3. 

Similarly, the 2nd co-location dataset received few flags, as most variables had comparable 

ranges to those of the experimental dataset. For example, only a few data points in which 

the internal Zephyr temperature dipped below ~289K were flagged (Figure 2-8 c). For the 

3rd co-location, which was conducted in colder conditions in October, far more data points 

were flagged (Figure 2-8 d). This indicated that a larger portion of the 3rd co-location could 

be unsuitable for use in calibration. It also proved valuable for later analysis when 

analysing the final predicted concentrations of the model in Step 6. 

  

Figure 2-8  a) and b) Example time series plots of the experimental data with points out-of-bounds of the 2nd 
and 3rd co-location flagged, respectively. c) Time series plot of the 2nd co-location with points flagged for being 
out-of-bounds of the experimental data set. d) Time series plot of the 3rd co-location with points flagged for 
being out-of-bounds of the experimental data set. 
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The results of the model selection process can be seen in Tables 2-2 – 2-5. For readability, 

these tables reflect a later stage in the process, after which a wide range of other models 

had already been tested and excluded on the basis of AIC and accuracy metrics. A 

combination of these metrics was used to designate the “best” models in which RMSE 

and R² received a higher priority than AIC. The most accurate MLR model for predicting 

NO2 was determined to be one in which Oxa, O3a, RH, and T were included as single terms 

with interactions between all variables. The relationship between NO2 and Oxa was 

determined to be logarithmic, whereas the relationship to T was determined to be 

inverse. This is in line with what would be expected in urban environments, as T can be 

seen as a proxy for insolation, which causes the photolysis of NO2. For O3 the most 

accurate MLR model had Oxa, O3a, RH, and T included as single terms with interactions. 

The relationship between Oxa and O3 was also determined to be logarithmic. For both 

NO2 and O3, MLR models using ambient T and RH were consistently more accurate than 

those using internal T and RH. 

Table 2-2 Results of the MLR model selection process for NO2. The most accurate model is in bold font. RMSE 
and MAE are in units of ppb. 

Formula R² RMSE MAE AIC 

NO2~ log(Oxa) * O3a * RHamb * (1/Tamb) 0.82 3.90 3.02 26527.04 

NO2~ log(Oxa) + O3a + RHamb + (1/Tamb) 0.83 4.11 3.20 27027.58 

NO2~ log(Oxa) * O3a * RHamb * Tamb 0.77 4.26 3.57 25896.72 

NO2~ log(Oxa) + O3a + RHamb + Tamb 0.84 4.15 3.33 26602.66 

NO2~ log(Oxa) * O3a * RHint * (1/ Tint) 0.77 4.61 3.65 27552.32 

NO2~ log(Oxa) + O3a + RHint + (1/ Tint) 0.81 4.59 3.89 28174.42 

NO2~ log(Oxa) * O3a * RHint * Tint 0.78 5.78 4.49 26621.64 

NO2~ log(Oxa) + O3a + RHint + Tint 0.80 4.62 3.92 27936.49 

Table 2-3 Results of the MLR model selection process for O3. The most accurate model is in bold font. RMSE 
and MAE are in units of ppb. 

Formula R² RMSE MAE AIC 

O3 ~ log(Oxa) * O3a * RHamb * Tamb 0.91 3.38 2.59 23842.89 

O3 ~ log(Oxa) + O3a + RHamb + Tamb 0.94 3.05 2.46 25023.60 

O3 ~ log(Oxa) * O3a * (1/RHamb) * Tamb 0.92 2.91 2.29 24088.18 

O3 ~ log(Oxa) + O3a + (1/RHamb) + Tamb 0.94 3.20 2.44 25077.30 

O3 ~ log(Oxa) * O3a * RHint * Tint 0.81 4.06 2.80 26173.68 

O3 ~ log(Oxa) + O3a + RHint + Tint 0.92 3.67 2.69 28054.23 

O3 ~ log(Oxa) * O3a * (1/ RHint) * Tint 0.82 4.30 3.03 26374.23 

O3 ~ log(Oxa) + O3a + (1/ RHint) + Tint 0.91 3.67 2.78 28178.23 
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Table 2-4 Results of the RF model selection process for NO2. Min.node.size and split rule were optimized in a 
previous step not shown here for brevity and are therefore constant. RMSE and MAE are in units of ppb. 

Formula mtry min.node.size Split rule R² RMSE MAE 

NO2 ~ Oxa + O3a + RHamb + Tamb + ToD + WD + WS 7 5 extratrees 0.70 4.49 3.62 

NO2 ~ Oxa + O3a + RHamb + Tamb + ToD + WD 6 5 extratrees 0.71 4.58 3.49 

NO2 ~ Oxa + O3a + RHamb + Tamb + ToD 5 5 extratrees 0.75 4.43 3.51 

NO2 ~ Oxa + O3a + RHamb + Tamb 4 5 extratrees 0.76 4.01 3.25 

NO2 ~ Oxa + O3a + RHamb 3 5 extratrees 0.74 4.08 3.26 

NO2 ~ Oxa + O3a + Tamb 2 5 extratrees 0.76 4.64 3.92 

NO2 ~ Oxa + O3a 2 5 extratrees 0.70 4.44 3.38 

NO2 ~ Oxa + O3a + RHint + Tint + ToD + WD + WS 7 5 extratrees 0.60 5.06 3.97 

NO2 ~ Oxa + O3a + RHint + Tint + ToD + WD 6 5 extratrees 0.58 5.20 4.09 

NO2 ~ Oxa + O3a + RHint + Tint + ToD 5 5 extratrees 0.58 5.34 4.00 

NO2 ~ Oxa + O3a + RHint + Tint 3 5 extratrees 0.63 5.12 3.93 

NO2 ~ Oxa + O3a + RHint 2 5 extratrees 0.65 5.59 4.37 

NO2 ~ Oxa + O3a + Tint 2 5 extratrees 0.70 4.86 3.79 

Table 2-5 Results of the RF model selection process for O3. Min.node.size and split rule were optimized in a 
previous step not shown here for brevity and are therefore constant. RMSE and MAE are in units of ppb. 

Formula mtry min.node.size Split rule R² RMSE MAE 

O3 ~ Oxa + O3a + RHamb + Tamb + ToD + WD + WS 4 5 extratrees 0.92 3.37 2.42 

O3 ~ Oxa + O3a + RHamb + Tamb + ToD + WD 4 5 extratrees 0.90 3.20 2.53 

O3 ~ Oxa + O3a + RHamb + Tamb + ToD 2 5 extratrees 0.90 3.10 2.45 

O3 ~ Oxa + O3a + RHamb + Tamb 2 5 extratrees 0.92 3.39 2.52 

O3 ~ Oxa + O3a + RHamb 2 5 extratrees 0.93 3.71 2.62 

O3 ~ Oxa + O3a + Tamb 2 5 extratrees 0.93 2.95 2.36 

O3 ~ Oxa + O3a 2 5 extratrees 0.90 4.09 2.87 

O3 ~ Oxa + O3a + RHint + Tint + ToD + WD + WS 4 5 extratrees 0.90 3.44 2.46 

O3 ~ Oxa + O3a + RHint + Tint + ToD + WD 4 5 extratrees 0.90 3.60 2.46 

O3 ~ Oxa + O3a + RHint + Tint + ToD 2 5 extratrees 0.91 3.64 2.42 

O3 ~ Oxa + O3a + RHint + Tint 2 5 extratrees 0.87 3.72 2.65 

O3 ~ Oxa + O3a + RHint 2 5 extratrees 0.87 3.92 2.77 

O3 ~ Oxa + O3a + Tint 2 5 extratrees 0.85 3.78 2.66 
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For random forest, the most accurate NO2 model was determined to be one that included 

Oxa, O3a, ambient RH, and ambient R. The optimal mtry parameter was determined to 

be 4, with a minimum node size of 5. For predicting O3 the results were similar to those 

of NO2, except that ambient T replaced ambient RH. For both NO2 and O3 the use of 

ambient T and RH produced more accurate models. Overall, the random forest models 

performed very similarly to the MLR models, with only slight differences in R² and RMSE. 

 

For MLR and RF, the R² and RMSE for each block were saved and plotted (Figure 2-9 a-d). 

As can be seen, the models using ambient T and RH for both O3 and NO2 remained 

relatively stable across all blocks. They consistently have a higher R² and a lower RMSE 

than the models trained with internal T and RH, for both NO2 and for O3. Conversely, the 

models trained with internal T and RH are much more volatile in terms of R² and RMSE, 

for both NO2 and O3. In addition, blocks 11, 12, and 13 show a marked decrease in R² and 

increase in RMSE across all models with internal T and RH. This trend was true for several 

models tested at this step, indicating that the internal T and RH were less stable for these 

blocks. Generally, the differences in RMSE between ambient and internal T and RH were 

more pronounced for NO2 than for O3. This is true across most blocks and indicates that 

the final concentrations should be predicted using ambient T and RH data instead of 

internal. Tables 2-6 and 2-7 show the median R² and RMSE for all selected models for NO2 

and O3, respectively. They reveal MLR and RF using ambient T and RH are similarly 

accurate at predicting NO2 and O3. The differences in accuracy are more pronounced for 

the models using internal T and RH. 

Of all predictors included in the RF models, the MOS variable O3a had the highest VI for 

predicting both O3 and NO2 (Figure 2-10 a-d). The MOS variable Oxa was also of relative 

importance, usually as the 2nd most important variable, with the exception of the O3 

models for which temperature (internal or ambient) was sometimes the 2nd most 

important variable. Results from these graphs indicate that all variables should remain in 

the RF models. 

Table 2-6 Median R² and RMSE across all test blocks of the best MLR and RF models using internal and ambient 
T and RH for NO2. RMSE and MAE are reported in units of ppb. 

 
NO2 

Median 

R² 

Median 

RMSE 

Median 

MAE 

 

MLR 
NO2 ~ log(Oxa) * O3a * RHamb * (1/Tamb) 0.82 4.35 3.54 Model 1a 

NO2 ~ log(Oxa) * O3a * RHint * (1/Tint) 0.67 6.12 4.10 Model 1b 

RF 
NO2 ~ Oxa + O3a + RHamb + Tamb  0.75 4.88 3.90 Model 2a 

NO2 ~ Oxa + O3a + Tint  0.72 5.29 3.89 Model 2b 

 

Table 2-7 Median R² and RMSE across all test blocks of the best MLR and RF models using internal and ambient 
T and RH for O3. RMSE and MAE are reported in units of ppb. 

 
O3 

Median 

R² 

Median 

RMSE 

Median 

MAE 

 

MLR 
O3 ~ log(Oxa) * O3a * (1/RHamb) * Tamb 0.91 3.83 2.86 Model 3a 

O3 ~ log(Oxa) * O3a * (1/RHint) * Tint 0.82 4.81 3.79 Model 3b 

RF 
O3 ~ Oxa + O3a + Tamb  0.90 3.77 3.00 Model 4a 

O3 ~ Oxa + O3a + Tint + RHint + ToD  0.86 5.20 4.10 Model 4b 
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Final concentrations predicted for NO2 and O3 using the MLR and RF models with both 

ambient and internal T and RH can be seen in Figure 2-11. While the results indicated that 

ambient T and RH should be used, both are included here for further analysis beyond the 

seven-step methodology. For NO2, the MLR models predict a much narrower range of 

concentrations and occasionally predict negative concentrations (Figure 2-11 a). The RF 

models tend to predict higher concentrations than MLR, have a wider range, and don’t 

Figure 2-9 a) R² and b) RMSE over the 19 test blocks for the MLR models (1a, 1b, 3a, 3b), respectively. c) R² and 
d) RMSE over the 19 blocks for the RF models (2a, 2b, 4a, 4b), respectively. 

Figure 2-10 Variable importance over the 19 test blocks of a) model 2a, b) model 4a, c) model 2b, and d) model 
4b. 
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predict negative concentrations (Figure 2-11 b). For O3, the differences between MLR and 

RF are less pronounced, with both capturing the diurnal cycle well (Figure 2-11 c-d). In all 

figures it can be seen that models using ambient T and RH consistently predict higher 

concentrations than those using internal T and RH. This indicates that there is a difference 

between predictions using Zephyr internal versus reference temperature and relative 

humidity sensors. 

 

As can be seen in Figure 2-12, smearing the reference data had minimal impact on the 

predictive accuracy of all models. This indicates that the uncertainty of the reference 

instruments did not impact the predictive accuracy of the models and can therefore in 

this case be ignored as a potential interference. Overall predictive error was then 

calculated as the reference error plus median MAE of each model across all blocks from 

the model validation step. The T-200 NOx instrument has a measurement uncertainty of 

0.5% of the measurement above 50 ppb or an uncertainty of 0.2 ppb below 50 ppb. For 

the Tech 2B Ozone Monitor, the uncertainty was the larger between 2% of the 

measurement or 1 ppb. This can be seen in Figure 2-13, which depicts the MLR and RF 

predicted concentrations for Experiment 1 with shaded regions representing the 

uncertainty. The uncertainty of the RF and MLR models was fairly similar, but was higher 

for NO2 than for O3. This reflects the findings from Steps 4-6 in which O3 was predicted 

more accurately than NO2 by both models. The standard error for MLR models was found 

to not reflect the realistic accuracy of the predicted concentrations in relation to actual 

concentrations, as it was found to be very low. The RF models calculated a more 

appropriate measure of standard error using the infinitesimal jackknife method (Wager, 

Hastie, & Efron, 2014), but for consistency with the MLR models, this measure was not 

used. The accuracy of the final models in predicting on experimental data for which 

reference concentrations are not available for comparison is then best reflected by 

combining the uncertainty of the reference instruments with the median MAE of the test 

blocks during Step 5 (Tables 2-6 and 2-7). 

 

To further test the impact of using more representative training datasets, the final models 

identified in Steps 4 and 5 were trained with each co-location individually as well as with 

both combined. The predictive accuracy of these separate models was then compared 

using the experimental dataset for which reference NO2 and O3 measurements were 

available, as Zephyr s71 was co-located throughout the experiment. Additionally, these 

datasets were also tested with data points flagged in Step 3 removed to understand 

further influences on model accuracy. This extra validation allowed for better evaluation 

of the performance in predicting experimental concentrations of the MLR and RF models 

selected with the seven-step method. This is, however, atypical for field studies, as these 

sensor systems are intended to be deployed independently of reference instrumentation. 

Table 2-8 shows the results of training these various models for NO2. The most accurate 

model at predicting experimental concentrations was the RF model using internal T and 

trained with data only from co-location 2. The same model trained with all available co-

location data was slightly more inaccurate. Co-location 3 was the least accurate of the 

training subsets, reiterating findings from Step 1. For the MLR models, this dip in accuracy 

when using exclusively co-location 3 as the training set was most pronounced, as can be 

seen in Table 2-8 and Figures 2-14 g-h. When filtering out flagged data points, most NO2 

models improved slightly in predictive accuracy. This was most pronounced for those 
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using co-location 3 as a training set, which improved substantially in terms of R². This 

alludes largely to the impact of seasonal changes on co-location 3, which experienced 

different meteorological and pollution conditions than were present during experiment 

1. While results show that this co-location was not useful for accurate prediction, it is 

likely that it would have been more relevant for prediction on experiment 2, during which 

the environmental conditions were more comparable. Similarly, co-location 1 would likely 

have been more valuable for prediction with experiment 1 than with experiment 2. 

However, due to the loss of data from s71, this could not be assessed more closely in this 

study.  

For O3, the most accurate model was the RF model using internal T and RH and trained 

exclusively using data from co-location 2, though the MLR internal model for the same co-

location was of comparable accuracy. The RMSE for this model was substantially lower 

than the one trained using ambient T and RH. With the MLR models, this difference in 

predictive accuracy between models trained with internal and ambient T and RH was 

much greater, again favouring the internal models. Co-location 3 was highly inaccurate at 

predicting experimental data, further reiterating findings from Step 1 that indicated the 

unsuitability of this co-location for use in predicting final concentrations. Figures 2-15 e-f 

clearly depict the boundaries for predictions with RF models when the training data are 

unsuitable, as is the case with co-location 3. This is a fundamental flaw of RF models as 

they cannot predict outside the bounds of the co-location data they are trained with. 

Filtering out the points flagged in Step 3 did not improve the predictive accuracy of models 

trained exclusively with co-location 2, but it substantially improved those trained with co-

location 3, especially those using internal T and RH.  

Table 2-8 Results of RF and MLR models for NO2 trained with co-location 2, co-location 3, or a combination of 
both when tested on the comparison experimental dataset. In the lower half of the table, the models are 
trained with the same datasets but are tested on the experimental dataset with data points outside the ranges 
of each training dataset filtered out. 

 NO2 Co-location 2 Co-location 3 Both co-locations 

 
 

R² RMSE R² RMSE R² RMSE 

MLR 
NO2 ~ log(Oxa) * O3a * RHamb *(1/Tamb) 0.66 5.49 0.22 12.08 0.61 5.66 

NO2 ~ log(Oxa) * O3a * RHint * (1/Tint) 0.66 6.41 0.57 10.99 0.67 5.55 

RF 
NO2 ~ Oxa + O3a + RHamb + Tamb 0.67 5.23 0.41 6.64 0.66 4.97 

NO2 ~ Oxa + O3a + Tint 0.73 4.44 0.61 5.60 0.68 4.87 

        

 NO2 – filtered        

MLR 
NO2 ~ log(Oxa) * O3a * RHamb *(1/Tamb) 0.63 5.53 0.45 12.88 0.62 5.62 

NO2 ~ log(Oxa) * O3a * RHint * (1/Tint) 0.63 6.49 0.64 11.17 0.69 5.54 

RF 
NO2 ~ Oxa + O3a + RHamb + Tamb 0.65 5.09 0.66 5.64 0.56 4.90 

NO2 ~ Oxa + O3a + Tint 0.71 4.38 0.65 6.01 0.68 4.85 
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Figure 2-11  Time series plots and boxplots for Experiment 1 of a) predicted NO2 concentrations using the MLR 
model, b) predicted NO2 concentrations using the RF model, c) predicted O3 concentrations using the MLR 
model, d) predicted O3 concentrations using the RF model. ‘Ambient’ and ‘internal’ refer to the use of ambient 
or internal T and RH data in each model. 
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Figure 2-12 RMSE of models trained using smeared reference measurements versus actual reference 
measurements for a) NO2 with MLR, b) NO2 with RF, c) O3 with MLR, and d) O3 with RF. 

Figure 2-13 Time series plots of both MLR and RF predictions for Experiment 1 including the measurement 
uncertainty as shaded regions for a) NO2 and b) O3. Data were averaged to 30-minute resolution. 



56                                                              2 Unravelling a black box 

Table 2-9 Results of RF and MLR models for O3 trained with co-location 2, co-location 3, or a combination of 
both when tested on the comparison experimental dataset. In the lower half of the table, the models are 
trained with the same datasets but are tested on the experimental dataset with data points outside the ranges 
of each training dataset filtered out. 

 O3 Co-location 2 Co-location 3 Both co-locations 

 

 
R² RMSE R² RMSE R² RMSE 

MLR O3 ~ log(Oxa) * O3a *  (1/RHamb) *  Tamb 0.86 7.00 0.86 5.12 0.88 6.06 

O3 ~ log(Oxa) * O3a *  (1/RHint) *  Tint 0.94 3.37 0.16 17.20 0.91 3.94 

RF O3 ~ Oxa + O3a + Tamb 0.91 5.14 0.73 7.77 0.91 5.14 

O3 ~ Oxa + O3a + Tint + RHint + ToD 0.94 3.31 0.67 9.95 0.92 3.80 

        

 O3 – filtered        

MLR O3 ~ log(Oxa) * O3a *  (1/RHamb) *  Tamb 
0.85 6.78 0.85 4.13 0.87 5.97 

 O3 ~ log(Oxa) * O3a *  (1/RHint) *  Tint 
0.93 3.33 0.52 9.24 0.91 3.90 

RF O3 ~ Oxa + O3a + Tamb 
0.91 5.18 0.77 5.13 0.90 5.15 

 O3 ~ Oxa + O3a + Tint + RHint + ToD 
0.93 3.30 0.65 7.53 0.91 3.82 

 

 

 

  

Figure 2-14 Scatter plots of predicted NO2 versus reference NO2 concentrations for the experimental data using 
MLR and RF models trained with co-location 2 (i-l), co-location 3 (e-h), and both combined (a-d). All 
concentrations are reported in ppb. 
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The results of this study have several implications for the field of low-cost sensors. In line 

with other research, this study found that MLR and RF were similarly accurate in 

predicting experimental concentrations of NO2 and O3 (Karagulian et al., 2019), though 

the differences in accuracy between MLR and RF were more pronounced for O3 than for 

NO2. In fact, it was found that RF was the better predictor of both O3 and NO2 

concentrations when evaluated with the longer experimental data set, albeit only slightly. 

This contrasts with findings from the model selection and validation process, as the MLR 

models were consistently more accurate at predicting on subsets of the co-location data. 

What this indicates is that models found to be more accurate during “calibration” may 

have differing model performance when assessed with a “comparison” dataset, in this 

case the experimental dataset that was co-located throughout for one sensor. This is a 

result that has been found previously, where the R² is lower for comparison datasets than 

for calibration (Karagulian et al., 2019). If RF, MLR, or other ML techniques are selected 

for their accuracy when predicting on calibration data and are not tested on comparison 

data, it may well be that the performance does not hold for new experimental data. Given 

the similarity between RF and MLR in predicting NO2 and O3 found in this study, as well as 

in the literature, either method can be used. However, as MLR is simpler to implement 

than most ML techniques, has fewer parameters that need to be optimized, and the 

model calculations are well understood, unlike the black-box calculations of RF and most 

ML techniques, this should be the preferred option to achieve greater model transparency 

and control. 

Further important to the proper evaluation of model accuracy is the reporting of multiple 

metrics such as RMSE and MAE, in addition to R². It is quite clear from Tables 2-8 and 2-9 

that R² is not the best metric with which to measure predictive accuracy of calibration 

models. Models trained with co-location 3 exclusively to predict O3, for example, had an 

Figure 2-15  Scatter plots of predicted O3 versus reference O3 concentrations for the experimental data using 
MLR and RF models trained with co-location 2 (i-l), co-location 3 (e-h), and both combined (a-d). All 
concentrations are reported in ppb. 
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R² greater than 0.70, which is acceptable agreement. Those same models, however, had 

an RMSE of >7 ppb, which is much more inaccurate than an R² of 0.70 alone would reveal. 

As another example, the same models trained exclusively with co-location 2 for O3 (Table 

2-9) had an R² between 0.86 and 0.94, but had a wide range of RMSE between 3.30-7.00 

ppb. It is therefore crucial that multiple performance metrics are used to evaluate 

calibration models before final decisions are made on their suitability. At a minimum, R² 

and RMSE should be reported. 

Multicollinearity is an issue common not only to MLR, but also to small sensor systems, 

which often have multiple LCSs measuring the same or similar species with heavily auto-

correlated data. While uncommonly addressed in the literature, except for a few studies 

mentioning its influence on MLR models (Bigi et al., 2018; Hagan et al., 2018; Masiol et 

al., 2018), the solution, as presented in Steps 4 and 5, is relatively straightforward. To 

ensure that the predictor variables included in the final model are, in fact, explanatory, 

the model should be repeatedly validated using bootstrapped samples. To deal with 

autocorrelation, this validation should be done using continuous blocks and not with 

random sampling. Including these steps in the model-building process is simple and 

should be considered best practice. 

Further underlining the importance of repeated validation is the variation in results when 

using ambient or internal T and RH. While the inclusion of ambient meteorological data 

led to more accurate models during calibration, this did not hold for the comparison 

dataset. Instead, for the prediction of both NO2 and O3, it was internal T and RH data that 

led to more accurate prediction. This indicates that for the prediction of NO2 and O3 

concentrations with EarthSense Zephyrs, not only are the internal T and RH sensors 

acceptable for use in predictive models, but they are likely more representative of normal 

operating conditions. Given that the MOS sensors radiate large amounts of heat, the 

conditions inside the Zephyrs are significantly different than ambient conditions. As such, 

the internal T and RH sensors likely better represent the exact environmental conditions 

under which species are adsorbing to the MOS sensors. However, given that models using 

ambient data were more accurate during the validation step and significant differences 

between predictions of models trained with internal vs ambient T and RH were identified, 

these results require closer inspection, which should be the subject of future research. 

The final results also reveal the value of pre-processing the data in Steps 1-3. It became 

clear by looking at the distribution of the co-location datasets in Step 1 that co-location 3 

might be unsuitable for use in predicting the experimental concentrations. These data 

were then flagged in Step 3. While the models trained exclusively with co-location 3 were 

substantially less accurate than those using data from co-location 2, their accuracy 

increased when flagged experimental data points outside the range were removed. In 

essence, the 3rd co-location was useful for predicting on experimental data within its 

range of conditions, but very inaccurate for those outside of that range. Co-location 2, on 

the other hand, was identified as being well-suited for prediction in Step 1 and received 

few flagged points in Step 3. Final results indicate that MLR and RF models trained with 

co-location 2 perform better than those trained with co-location 3, for both NO2 and O3. 

Combining the two co-locations did not improve the predictive accuracy for NO2 or O3, 

when compared with the more-suitable 2nd co-location (Tables 2-8 and 2-9). As such, 

training calibration models with co-location 2 exclusively would have been correctly 

justified using evidence from Step 1. What is evident from this analysis is that ensuring 
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quality of training data used in calibration is crucial to accurate prediction. Incorporating 

quality control into the calibration methodology is therefore an important best practice.  

Finally, LCS data should be reported with associated error values. While we discussed 

RMSE in the context of model fit and validation, as well as a method for evaluating 

whether reference instrument accuracy affects the model output, error values should be 

reported not just in the assessment of the LCSs themselves, but also with some form of 

representative error associated to the reported concentration data. Our recommendation 

is to combine the uncertainty of the reference instruments with the median MAE across 

blocks from the model validation step. As can be seen in Tables 2-8 and 2-9, the RMSE of 

predictions tested with the comparison experimental dataset are quite similar to the 

median RMSE values in Tables 2-6 and 2-7. This indicates that using median error from 

the model validation step is quite representative of the LCS uncertainty. However, over 

longer measurement campaigns, this should be repeatedly tested and validated with 

additional co-location training sets, so as to account for sensor drift, deteriorating 

functionality, and varying meteorological conditions.  

 

While many details of this methodology are already well-known, they are often 

overlooked or go unreported in published literature. In most cases not all aspects are 

included. As a result, many studies assessing pairwise calibration methodologies for low-

cost sensors cannot be compared. In the absence of calibration standards for these 

technologies in a field that continues to diversify and grow, researchers must start to 

consolidate around an agreed-upon set of best practices. This study has highlighted 

several of them. First, details on model selection, validation, and tuning must be reported 

if researchers are to be able to effectively compare results across studies. If models are 

not rigorously tested for suitability using standardized methods, especially with “black-

box” machine-learning techniques, then their comparison will remain challenging at best. 

Second, models should be validated not only on the calibration dataset, but also on a 

separate comparison dataset, if possible. All validation should be done using R² and RMSE, 

at a minimum. This will provide greater insight into the suitability of selected models for 

prediction on experimental data as well as better comparability across studies. Third, pre-

processing the data, including visual inspection, outlier removal, and data-flagging are an 

integral part of an effective calibration methodology. Understanding the quality and 

distribution of available data is important to identifying problems and solutions 

encountered during calibration.  

Last, it is clear that a standardized methodology for the calibration of low-cost sensors is 

needed if they are to be incorporated into air quality monitoring programs and contribute 

new insights to the field of atmospheric chemistry. This seven-step methodology seeks to 

fill a gap in the literature up until now left largely unreported. In addition, this 

methodology, complete with relevant R code, is the first to be completely transparent and 

open-access. This is a valuable contribution to a young, but rapidly growing body of 

literature surrounding low-cost sensors. With this work, we hope to begin pulling back the 

curtains on the black box of sensor calibration.
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All relevant code for this study can be found in this open-access Zenodo repository: 

https://doi.org/10.5281/zenodo.4317521 

All relevant data for this study can be found in this open-access Zenodo repository: 

https://doi.org/10.5281/zenodo.4309853 
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Figure 2.S-1 Intercomparison of the T-200 NO2 concentrations with the CAPS (Aerodyne, U.S.A.) from 
Forschungszentrum Jülich. The data are presented as: a) a scatter plot to establish a correction factor, and b) 
a time series plot showing the comparison between the two instruments and the range selected for the 
correction factor. 

Figure 2.S-2 Intercomparison of the T-200 NO concentrations with the CLD 770 AL ppt (ECO Physics, 
Switzerland) from Forschungszentrum Jülich. The data are presented as: a) a scatter plot with selected data to 
establish a correction factor, and b) a time series plot showing the comparison between the two instruments 
and the range selected for the correction factor. 
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Figure 2.S-3 Intercomparison of the Tech 2B Ozone Monitor O3 concentrations with the O242M 
(Environnement S.A., France) from Forschungszentrum Jülich. The data are presented as: a) a scatter plot of all 
data to establish a correction factor, and b) a time series plot showing the comparison between the two 
instruments. 

Figure 2.S-4 Intercomparison of standardized raw MOS O3a data from sensors s71 and s72 during all co-
locations in the summer and winter campaigns. 
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Figure 2.S-5 Intercomparison of standardized raw MOS Oxa data from sensors s71 and s72 during all co-
locations in the summer and winter campaigns. 
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Figure 2.S-6 Map of the experimental deployment on and near the campus of the Technical University Berlin 
(TUB) during the Summer Campaign of 2017 and the Winter Campaign of 2018. The meteorological data 
provided by the Free University (FU) were collected at the site labeled on the map. 
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Table 2-10 Median R² and RMSE across all test blocks of the best MLR and RF models using internal and ambient 
T and RH for NO2. RMSE and MAE are reported in units of ppb. 

 
NO2 

Median 
R2 

Median 
RMSE 

Median 
MAE 

MLR 
NO2 ~ log(Oxa) + log(O3a) + RHamb + 1/Tamb 0.55 4.13 3.05 
NO2 ~ log(Oxa) + log(O3a) + RHint + 1/Tint 0.55 4.13 3.08 

RF 
NO2 ~ Oxa + O3a + Tamb 0.53 4.35 3.36 
NO2 ~ Oxa + O3a + Tint 0.53 4.17 3.25 

Table 2-11 Median R² and RMSE across all test blocks of the best MLR and RF models using internal and ambient 
T and RH for O3. RMSE and MAE are reported in units of ppb. 

 
O3 

Median 
R2 

Median 
RMSE 

Median 
MAE 

MLR 
O3 ~ Oxa + 1/O3a + RHamb + Tamb 0.74 4.62 3.75 
O3 ~ Oxa + 1/O3a + RHint + Tint 0.72 5.16 4.17 

RF 
O3 ~ Oxa + O3a + Tamb 0.79 4.21 3.13 
O3 ~ Oxa + O3a + Tint 0.94 2.60 2.04 

Table 2-12 Results of RF and MLR models for NO2 trained with co-location 4, co-location 5, or a combination of 
both when tested on the Experiment 3 for IOP 3. In the lower half of the table, the models are trained with the 
same datasets but are tested on Experiment 3 with data points outside the ranges of each training dataset 
filtered out. 

Formula Co-location 4 Co-location 5 Both co-locations 

NO2 R2 RMSE R2 RMSE R2 RMSE 

NO2 ~ log(Oxa) + log(O3a) + RHamb + 1/Tamb 0.53 5.77 0.69 4.52 0.66 4.65 

NO2 ~ log(Oxa) + log(O3a) + RHint + 1/Tint 0.52 5.87 0.68 4.59 0.66 4.70 

NO2 ~ Oxa + O3a + RHamb + Tamb 0.37 6.52 0.64 5.13 0.63 4.82 

NO2 ~ Oxa + O3a + RHint + Tint 0.45 6.28 0.45 6.28 0.64 4.77 

       
NO2 – filtered       

NO2 ~ log(Oxa) + log(O3a) + RHamb + 1/Tamb 0.46 4.67 0.65 4.53 0.63 4.54 

NO2 ~ log(Oxa) + log(O3a) + RHint + 1/Tint 0.45 4.70 0.65 4.61 0.63 4.60 

NO2 ~ Oxa + O3a + RHamb + Tamb 0.34 5.10 0.62 4.95 0.61 4.70 

NO2 ~ Oxa + O3a + RHint + Tint 0.36 5.01 0.64 4.81 0.62 4.64 

Table 2-13 Results of RF and MLR models for NO2 trained with co-location 4, co-location 5, or a combination of 
both when tested on Experiment 3 for IOP 3. In the lower half of the table, the models are trained with the 
same datasets but are tested on Experiment 3 with data points outside the ranges of each training dataset 
filtered out. 

Formula Co-location 4 Co-location 5 Both co-locations 

O3 R2 RMSE R2 RMSE R2 RMSE 
O3 ~ Oxa + 1/O3a + RHamb + Tamb 0.76 6.35 0.81 8.57 0.73 4.72 

O3 ~ Oxa + 1/O3a + RHint + Tint 0.80 5.94 0.82 7.94 0.73 4.75 

O3 ~ Oxa + O3a + Tamb 0.82 4.48 0.83 8.35 0.81 4.73 

O3 ~ Oxa + O3a + Tint 0.86 3.85 0.90 4.95 0.95 2.30 

       
O3 – filtered       
O3 ~ Oxa + 1/O3a + RHamb + Tamb 0.80 3.86 0.81 8.53 0.73 4.65 

O3 ~ Oxa + 1/O3a + RHint + Tint 0.81 3.88 0.82 7.92 0.73 4.61 

O3 ~ Oxa + O3a + Tamb 0.88 2.33 0.82 8.30 0.80 4.80 

O3 ~ Oxa + O3a + Tint 0.91 2.06 0.91 4.52 0.95 2.30 
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Figure 2.S-7 Time plots and histograms for IOP 3 Experiment 3 of a) predicted vs. reference NO2 concentrations 
using the RF model, b) predicted vs. reference NO2 concentrations using the MLR model, c) predicted vs. 
reference O3 concentrations using the RF model, d) predicted vs. reference O3 concentrations using the MLR 
model. ‘Ambient’ and ‘internal’ refer to the use of ambient or internal T and RH data in each model. 
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Figure 2.S-8 Time plots of both MLR and RF predictions for IOP 3 Experiment 3 including the 95% confidence 
intervals as shaded regions for a) NO2 and b) O3. Data were averaged to 30-minute resolution. 

Figure 2.S-9 Scatter plots of predicted NO2 versus reference NO2 concentrations for Experiment 3 in the Winter 
Campaign using MLR and RF models trained with co-location 4 (i-l), co-location 5 (e-h), and both combined (a-
d). All concentrations are reported in ppb. 
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Figure 2.S-10 Scatter plots of predicted O3 versus reference O3 concentrations for Experiment 3 in the Winter 
Campaign using MLR and RF models trained with co-location 4 (i-l), co-location 5 (e-h), and both combined (a-
d). All concentrations are reported in ppb. 



 

 

 

Despite improvements in air quality over the last several decades, air pollution will 

continue to be a leading cause of harmful health effects in European cities as urban 

populations continue to grow. In recent years, the technology of low-cost sensors (LCS) 

has been adapted for use in expanding air pollution measurements at higher spatial 

resolution in cities across the globe. In a novel application, this exploratory study deploys 

metal oxide (MOS) and electrochemical (EC) low-cost sensors housed in EarthSense 

Zephyr sensor systems to measure NO2 and O3 concentrations in three street canyons in 

Berlin in winter, spring, and summer from 2017-2020. After calibration with reference 

instrumentation using the seven-step methodology outlined by Schmitz et al. (2021), we 

compare the measured concentrations with reference and urban background 

concentrations and investigate relationships with meteorology. We find that, following 

proper calibration, LCS capture expected patterns of urban pollution in association with 

diurnal chemistry and meteorology well. Additionally, EC sensors outperform MOS and 

allow for greater insights into local patterns of pollution. Furthermore, we measure 

concentrations of NO2 and O3 in street canyons that match expectations from modelling 

studies, indicating that high spatial resolution deployment of LCS could successfully yield 

new insights in urban microenvironments and inform model development. While LCS 

have a wider range of uncertainty than reference instruments, these results suggest that 

they can be reliably used for several new applications, such as validating urban street 

canyon models or measuring air pollution alongside changes to urban infrastructure. 

 

Keywords: low-cost; electrochemical; metal oxide sensor; street canyon; air pollution; 

urban;
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Air pollution has remained a persistent problem in cities worldwide for centuries (Fowler 

et al., 2020). Over 55% of the world’s population were living in cities in 2018, with this 

number projected to rise to 68% by 2050. In Europe, 74% of the population was already 

living in urban areas in 2018 (World Urbanization Prospects: The 2018 Revision 

(ST/ESA/SER.A/420), 2019). With such a dense concentration of the population living in 

cities, urban air pollution negatively affects human health on both the individual and 

societal scale. Systematic reviews of epidemiological studies on the influence of air 

pollution on human health are clear; particulate matter (PM), nitrogen dioxide (NO2), and 

ozone (O3) are leading causes of premature mortality and various respiratory and 

cardiovascular diseases (Chen & Hoek, 2020; S. Huang et al., 2021; Huangfu & Atkinson, 

2020; Landrigan et al., 2018; Mills, Atkinson, Anderson, Maynard, & Strachan, 2016; 

Ohlwein, Kappeler, Kutlar Joss, Kunzli, & Hoffmann, 2019; Orellano, Reynoso, Quaranta, 

Bardach, & Ciapponi, 2020; Tainio et al., 2021; Zheng, Orellano, Lin, Jiang, & Guan, 2021). 

These substantial health effects translate to an average reduction of life expectancy of 2.2 

years in Europe (Lelieveld, Klingmuller, et al., 2019). 

There are many factors influencing urban air pollution, including local emissions, chemical 

reactions, long-range transport, and regional meteorological patterns at macro-, meso-, 

and microscale (Perez et al., 2020). At macroscale, synoptic patterns and fronts determine 

air parcel trajectories over large distances; at mesoscale, orographic features 

predominantly change the way in which air parcels circulate, recirculate, and stagnate in 

a given region; and at microscale, the atmospheric boundary layer height, local 

temperature and relative humidity, and urban morphology are of significance (Perez et 

al., 2020).  

Previous studies in Central Europe and Germany have found significant positive 

correlations between O3 concentrations and temperature, as well as negative 

relationships with relative humidity (Melkonyan & Kuttler, 2012; Noelia Otero et al., 2018; 

N. Otero et al., 2016), with some evidence of a negative influence of wind speed in some 

parts of Europe (Melkonyan & Kuttler, 2012; N. Otero et al., 2016). The relationship with 

ambient temperature is particularly strong in summer, as higher temperatures correlate 

with increased solar radiation, which cause an increase of both biogenic volatile organic 

compounds (BVOCs) emissions and evaporative emissions of anthropogenic VOCs 

(Ordóñez et al., 2005; Pusede et al., 2014), as well as an increase in photochemical activity. 

One study in Berlin found a clear, positive relationship between mixing layer height (MLH) 

and O3 concentrations, but attributed this to other physical processes such as the 

photochemical production of O3 and downward mixing from the residual layer (Geiß et 

al., 2017). 

NO2 concentrations are affected differently by local meteorology than O3 as they are 

highly correlated with traffic NOx emissions in urban areas and vary substantially due to 

complex dispersion patterns. Temperature has been found to play a minor role (Pearce et 

al., 2011), with some studies finding temperature to be the least relevant meteorological 

parameter in predicting NO2 (Voiculescu et al., 2020). In rural areas, there is a larger 

influence of temperature through increased soil NOx emissions (Romer et al., 2018). Some 

studies have found no strong relationship between NO2 and relative humidity (Aldrin & 

Haff, 2005; Pearce et al., 2011), though others do see a consistent positive correlation 

(Voiculescu et al., 2020). The aforementioned study in Berlin found relationships between 
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MLH and NOx concentrations that were negative at rural and urban background sites, but 

positive at traffic sites (Geiß et al., 2017). Another study from Germany, however, found 

NO2 to be the pollutant least affected by MLH (Wagner & Schäfer, 2017). The most 

dominant meteorological factor for NO2 in urban environments appears to be wind speed, 

especially as pertains to dispersion of traffic-related emissions (Carslaw et al., 2007; Bart 

Degraeuwe et al., 2017; Pearce et al., 2011). Particularly on days with very low wind 

speeds, NO2 emissions do not disperse in the stagnated air and concentrations tend to 

increase (Carslaw et al., 2007; Elminir, 2006; Pearce et al., 2011).  

In addition to meteorology, urban morphology affects the distribution of air pollutants as 

it changes how air flows across the city. The flow is affected predominantly by wind speed 

and direction, and architectural form, influencing concentration and location of pollutant 

accumulation. These relationships have been modelled often using computational fluid 

dynamics (CFD) models and are typically well-understood (Bright, Bloss, & Cai, 2011; 

Gonzalez Olivardia, Zhang, Matsuo, Shimadera, & Kondo, 2019; Y.-D. Huang et al., 2019; 

Park et al., 2019; Park, Kim, Kim, Park, & Cheong, 2015; Voordeckers, Lauriks, et al., 2021; 

Voordeckers, Meysman, Billen, Tytgat, & Van Acker, 2021). In general, wind that travels 

parallel to a street canyon and flows through it will lead to elevated pollutant 

concentrations downwind, whereas wind travelling perpendicularly to the street will lead 

to elevated concentrations on the leeward side of the street with respect to the windward 

side and the rooftop (Bright et al., 2011; Y.-D. Huang et al., 2019; Voordeckers, Lauriks, et 

al., 2021), particularly of pollutants emitted from traffic such as PM or NOx. There are, 

however, few studies that validate these patterns of street canyon pollution with 

observations (Chew, Glicksman, & Norford, 2018; Kwak, Lee, Seo, Park, & Baik, 2016), as 

such measurement campaigns are logistically intensive to organize and expensive if 

reference-grade instruments are used.  

The relationship between concentrations at street-level versus the building rooftops of 

street canyons is also well-understood, with several studies calculating road-to-roof 

concentration ratios (Kukkonen et al., 2001; Kwak et al., 2016; S.-J. Park et al., 2015; Xie, 

Zhang, Qi, & Tang, 2003). For O3, concentrations are typically lower in street canyons, with 

road-to-roof concentration ratios between 0.53 and 0.85. NO2 concentrations, on the 

other hand, are higher at street-level with road-to-roof ratios between 1.2 and 3.2 across 

various studies. These relationships are most affected by street morphology and wind 

direction, though wind speed does have an impact on the road-to-roof ratio of O3 and NO2 

(Kwak et al., 2016). 

In the past decade, low-cost sensors (LCS) have become a popular new technology in the 

field of atmospheric chemistry. The atmospheric measurement community has embraced 

research investigating the accuracy (Cross et al., 2017; Karagulian et al., 2019; Malings et 

al., 2019; Rai et al., 2017; Russell et al., 2022; Zimmerman et al., 2018), applicability (Bigi 

et al., 2018; Castell et al., 2017; McKercher et al., 2017; Morawska et al., 2018), and 

technology (Fishbain et al., 2017; Peterson et al., 2017; Spandonidis et al., 2020; David E. 

Williams, 2020) behind LCS to further understand the extent to which they can improve 

our understanding of air pollution, particularly in urban environments. Many studies 

assess the extent to which these sensors can complement traditional monitoring 

networks by filling measurement gaps in cities (J. M. Barcelo-Ordinas et al., 2019; Kim, 

Shusterman, Lieschke, Newman, & Cohen, 2018; Popoola et al., 2018; D. E. Williams, 

2019), with some others conducting measurements in a citizen science context (Bosello 

et al., 2020; Ripoll et al., 2019). However, few studies have looked at measuring air 
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pollution in specific urban environments to understand micro-scale patterns of pollution 

(Hofman et al., 2022), with none that have measured air quality in street canyons.  

While it is crucial that research on the calibration and development of LCS continues, 

more research is required regarding the evaluation of LCS performance in field 

experiments. In contrast to reference-grade instrumentation, the versatility of LCS 

enables their deployment at high spatiotemporal resolution to measure complex patterns 

of air pollution in micro-scale urban environments. Some recent work has highlighted the 

importance of field calibration at the experimental site or an analogue, as well as the need 

for regular co-location with reference instrumentation to appropriately capture changes 

in sensor sensitivity and meteorological conditions (Schmitz, Towers, et al., 2021b). 

However, this has thus far not been thoroughly investigated. Therefore, this exploratory 

study seeks to fill a gap in the literature by evaluating field calibrated LCS measurements 

of NO2 and O3 in urban environments, particularly in street canyons. The three main 

research questions guiding this work are:  

1. Do field calibrated LCS capture expected changes in urban NO2 and O3 pollution 

in accordance with changes meteorology? 

2. Are field-calibrated LCS able to capture expected changes in NO2 and O3 

concentrations in urban street canyons and what new insights can they bring? 

3. What implications do these results have for the applicability of LCS in the 

measurement of urban NO2 and O3 pollution?  

In the following, Section 3.2 elaborates on the sensors used, the measurement sites 

selected, and the choice of statistical analysis. Section 3.3 highlights the key results 

ascertained from this work and Sections 3.4 and 3.5 discuss their general and policy-

relevant implications, as well as limitations to this research. Further figures and tables 

relevant for this work can be found in the supplementary information. 

 

 

The air quality monitors used in this study are EarthSense Zephyrs©, henceforth referred 

to as “Zephyrs”, which refers to the whole small sensor system including low-cost sensors, 

housing, battery, etc. Two versions of Zephyrs were used throughout this study as they 

were being continually developed by EarthSense: Zephyr “prototypes” and “Fully 

operational Zephyrs”. Installed within the Zephyr prototypes were an assortment of metal 

oxide sensors (MOS) that measure reducing gases, oxidizing gases, ozone, and ammonia, 

as well as environmental sensors for temperature and relative humidity; see Table 3-1 for 

more on these sensor specifications. For greater detail on the development, functioning, 

and operation of the sensors housed within these prototypes, see Peterson et al. (2017). 

Installed within the fully operational EarthSense Zephyrs are primarily electrochemical 

cell (EC) sensors that measure NO2 and O3, a micro-optical sensor that measures PM, as 

well as further environmental sensors for internal temperature (T), relative humidity (RH), 

and pressure (Table 3-2). Included in both versions of the Zephyrs are: 1) a rechargeable 

lithium-ion battery; 2) an internal fan for air intake and expulsion; 3) a global positioning 

system (GPS) unit; and 4) a Global System for Mobile Communications unit for sending 

logged data to an external database. The air intake is located on the bottom of the Zephyrs
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Table 3-1 Sensors installed within the EarthSense Zephyr prototypes. Table reproduced from Peterson et al. 
(2017). 

Variables Measured Sensor Model Sensor Type Gas detected and 
detection limits 

Reducing gases 
SGX Sensortech MICS-

4514 
Metal Oxide 

CO: 1-1000 ppm 
NH3: 1-500 ppm 

C2H5OH: 10-500 ppm 
H2: 1-1000 ppm 
CH4: >1000 ppm 

Oxidizing gases 
SGX Sensortech MICS-

4514 
Metal Oxide 

NO2: 0.05-10 ppm 
H2: 1-1000 ppm 

Ozone 
SGX Sensortech MICS-

2614 
Metal Oxide .01-1 ppm 

Ammonia 
SGX Sensortech MICS-

5914 
Metal Oxide 

NH3: 1-500 ppm 
C2H5OH: 10-500 ppm 

H2: 1-1000 ppm 
C3H8: >1000 ppm 

C2H8(CH4)2: >1000 ppm 

Temperature and 
relative humidity 

GE Measurement and 
Control CC2D25 

Polyamide 
capacitance 

Temp.: -40 – 125 °C 
RH: 0 – 100% 

 

Table 3-2 Sensors installed within the fully operational EarthSense Zephyrs. 

Variables Measured Sensor Model Sensor Type Gas detected and 
detection limits 

NO2 
O3 

Alphasense NO2A43F 
Alphasense OXA431 

Electrochemical 
NO2: 0-10 ppm 

O3: 0-7.5 ppm 

PM1 / PM2.5 / PM10 Plantower PMS5003 Micro-optical 
PM1: 0-20,000 µg.m-³ 

PM2.5: 0-20,000 µg.m-³ 
PM10: 0-20,000 µg.m-³ 

Temperature, 
pressure, and relative 

humidity 

Sensirion SHT31 
Bosch BME680 

Environmental 
Temp.: -40 – 125 °C 

Pres.: 300 – 1,100 hPa 
RH: 0 – 100% 

 

 

Between 2017 – 2020, measurements were conducted in Berlin, Germany, at three 

separate sites with different street morphologies, as is depicted below in Figure 3-1. These 

sites (Strasse des. 17 Juni, Frankfurter Allee, and Kottbusser Damm) are briefly described 

in the following sections. For all dates of deployments and general characteristics of each 

measurement campaign, see Table 3-3. 

 

Measurements were conducted in a main thoroughfare that cuts through the campus of 

the Technical University (TU) Berlin, at Strasse des 17. Juni 135 (TU Mathematics Building) 

(52° 30' 49.7" N, 13° 19' 34.5" E) and Strasse des 17. Juni 13 (52° 30’ 44.2” N, 13° 19’ 41.4” 

E) (Main TU Building) on the roof. The area directly around the measurement site is mainly 

university buildings with a main thoroughfare (Strasse des 17. Juni) that runs West-East 

through Berlin (see Figure 3-1 a). At the experimental site, the Strasse des. 17 Juni has six 

lanes of car traffic, three in each direction; there is a median strip used for parking in the 

middle of the street, as well as available parking on each side of the street; and there is a 

slip road that allows cars to access additional parking areas that are off the main street, 

in some cases also integrating a bike lane. The total distance between the buildings 
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including the street, median, sidewalk, and parking area is ca. 115 m, with an aspect ratio 

(AR) of 0.37, thus classifying it as a wide asymmetric avenue canyon, according to 

Vardoulakis, Fisher, Pericleous, and Gonzalez-Flesca (2003). A 2019 study by the Berlin 

Senate Department for the Environment, Urban Mobility, Consumer Protection and 

Climate Action estimated that 42,700 cars and 920 trucks traverse this segment of the 

street on workdays (SenUMVK, 2019).   

During this experiment, five Zephyrs were deployed on the façade of the mathematics 

building (south-facing façade - north side of the street), one on the roof of the Main TU 

Building (north-facing - south side of the street), and one on a parked van in the median 

strip of the street (Figure 3-1). The Zephyrs were field calibrated during co-locations with 

reference instruments at the deployment site in an office on the 6th floor of the 

mathematics building (Figure 3.S-1). These reference measurements were continuous 

throughout the co-locations and the experiments. Reference instrumentation used for co-

location included a Teledyne Model T-200 NOx Analyser and a 2B Technologies Ozone 

Analyser. Five co-locations were conducted in connection with the experimental 

deployment (see Table 3-3).  

 

In 2018, measurements were conducted on Frankfurter Allee in front of the 

Friedrichshain-Kreuzberg district administrative office building at Frankfurter Allee 35/37 

(52° 30’ 54.9” N, 13° 27’ 41.3” E). This street is a main thoroughfare with a West-East 

orientation connecting central Berlin with the eastern part of the city, high volumes of 

traffic (48,500 cars, 1,110 trucks on workdays) (SenUMVK, 2019), and a typical street 

canyon morphology. Along the length of the street, there are three lanes of traffic in each 

direction, but directly at this site in the westward direction is a turning lane, representing 

a 4th lane of traffic. On each side of the road are five-story buildings, roughly 22 m tall. The 

street canyon itself is roughly 40 m wide, including traffic lanes, median, and sidewalk 

(see Figure 3-1 b). It has an AR of 0.55 and should be classified as a long, symmetric avenue 

canyon (Vardoulakis et al., 2003). 

During this experiment, two Zephyrs were deployed at street level on lampposts at 

roughly 3 m height, one south-facing on the northern side of the street, and the other 

north-facing on the southern side of the street. A third Zephyr was placed on the roof of 

the administrative office building (south-facing), but for logistical reasons, it could not be 

placed at the highest point, but rather 2m lower on a terraced portion of the roof. See 

Table 3-3 for dates of deployment and co-location. In this experiment, no field calibration 

station could be set-up directly at the site; instead, the Zephyrs were co-located at a 

roadside monitoring station (MC 174) of the Berlin air pollution measurement network – 

Berliner Luftgüte Messnetz (BLUME), located in the same street canyon several blocks 

east of the experimental site at Frankfurter Allee 86b (52° 30’ 50.7” N, 13° 28’ 11.7” E). 

The BLUME network measures a variety of air pollutants (including NOx, PM, and O3) and 

adhere to strict standards to determine compliance with air quality in accordance with EU 

regulations (European Parliament, 2008). 

The instruments located in this measurement station are an APNA-370 NOx Monitor to 

measure NO2 concentrations in ambient air in accordance with DIN EN 14211 (DIN, 2012) 

and a HORIBA APOA 370 for O3. Figure 3.S-2 (see supplementary information) shows the 

general set-up of this co-location, with the Zephyrs installed on the railing of the roof of 

the station, near the air intake used for the reference instruments inside. The units face 

away from the street to prevent potential damage from passing trucks or busses. 
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The final experiment took place on Kottbusser Damm in 2020 as a part of a larger 

measurement campaign associated with the construction of a new bike-lane (Schmitz, 

Caseiro, Kerschbaumer, & von Schneidemesser, 2021). Kottbusser Damm is a Northwest-

Southeast oriented thoroughfare between the Berlin city districts of Friedrichshain-

Kreuzberg and Neukölln but does not experience traffic volume as large as on Frankfurter 

Allee or Strasse des 17. Juni (23,400 cars, 660 trucks on workdays) (SenUMVK, 2019). As 

with Frankfurter Allee, Kottbusser Damm has a typical urban street canyon morphology, 

but with fewer traffic lanes in either direction it has a comparably higher aspect ratio. The 

experiment took place at Kottbusser Damm 25 and involved an intersecting side-street 

(Lenau Strasse) (Figure 3-1 c). The AR of this site is 0.63 and should be classified as a long, 

symmetric regular canyon (Vardoulakis et al., 2003). 

As with Frankfurter Allee, two Zephyrs were placed diagonally from one another at street-

level facing the street, with the one on the eastern side of the street placed at the 

intersection with Lenau Strasse. A third Zephyr was placed on the 4th floor windowsill of 

the western building outside. No access to the roof at this site was obtained, therefore 

the Zephyr was placed as high on the building as possible. See Table 3-3 for dates of 

deployment. As with Frankfurter Allee, no space for on-site co-locations was available and 

therefore the Zephyrs were co-located at BLUME station MC 117 at Schildhornstrasse 76. 

While this station is in a different part of the city, it has a similar morphology (2 traffic 

lanes each direction) and traffic volume (31,900 cars, 450 trucks on workdays) as 

Kottbusser Damm and was considered suitable as an analogue site (Schmitz, Towers, et 

al., 2021b).  

During the Kottbusser Damm campaign, the COVID-19 global pandemic caused strict 

lockdowns to be enforced in Berlin. To prevent any influence of these policies on the 

results presented here, data collected during the lockdown between March 22nd and April 

23rd, 2020, were removed from the analysis. There were still measures in place after April 

23rd, 2020, but as activity in the city returned almost to pre-lockdown levels, these data 

were not removed. Closer analysis of this lockdown data was considered out of the scope 

of this study. 

Table 3-3 Details about each experimental deployment, including morphology, dates, and sensor type. 

Site 
(Season) 

Aspect 
Ratio 

LCS 
Type 

(No. of 
Zephyrs) 

Pollutants 
Measured 

Co-locations 
Experimental 
Deployment 

Strasse des 17. 
Juni (Summer) 

0.37 
MOS 
(5) 

NO2 
O3 

18.07.2017 - 27.07.2017; 
29.08.2017 - 07.09.2017; 
14.10.2017 - 27.10.2017 

29.07.2017 - 
28.08.2017 

Strasse des 17. 
Juni (Winter) 

0.37 
MOS 
(5) 

NO2 
O3 

13.01.2018 - 25.01.2018; 
23.02.2018 - 08.03.2018 

27.01.2018 - 
23.02.2018 

Frankfurter 
Allee (Summer) 

0.55 
EC 
(3) 

NO2 
O3 

26.06.2018 - 07.07.2018; 
01.09.2018 - 19.09.2018 

20.07.2018 - 
30.08.2018 

Kottbusser 
Damm 
(Winter/Spring) 

0.63 
EC 
(3) 

NO2 
02.02.2020 - 18.02.2020; 
15.05.2020 - 02.06.2020 

21.02.2020 - 
11.06.2020 
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a) 

b) 

c) 

Figure 3-1 Street morphology and locations of the Zephyrs during the experimental deployment on a) Strasse 
des 17. Juni, b) Frankfurter Allee, and c) Kottbusser Damm in Berlin, Germany. Diagrams not to scale. 
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At each experimental site, the meteorological parameters of temperature (T), relative 

humidity (RH), wind direction (WD), wind speed (WS), and mixing layer height (MLH) were 

collected from available sources. These were used both in the calibration of the Zephyrs 

and in subsequent analysis. For the campaign on Strasse des 17. Juni, T and RH data were 

available from a Free University (FU) monitoring site (52° 30’ 45” N, 13° 20’ 8.16” E) 

roughly 400 m away. Wind (WD and WS) and MLH data were available from a monitoring 

site on top of the TU main building. MLH was calculated by implementing the COBOLT 

method on ceilometer data collected with a Lufft CHM15k (Geiß, 2016).  

For the experiments on Frankfurter Allee and Kottbusser Damm, meteorological data 

were gathered from the German Weather Service (Deutscher Wetterdienst; DWD) station 

located at the former Tempelhof Airport (52° 28’ 57” N, 13° 24’ 00” E). From this station, 

T, RH, WD, and WS data were collected for use with these two experimental sites, as no 

on-site meteorological data were available. Ceilometer data at these two sites were also 

unavailable, therefore data from the top of the TU main building were used. This is a 

limitation to this work, as on-site meteorological conditions, especially with regards to 

WD and WS, were likely different from those at Tempelhof Airport, located several 

kilometres away. However, given the exploratory nature of this study, the inclusion of 

these meteorological parameters did still provide helpful indications of their importance 

to local patterns of air pollution. Henceforth, this data will be referred to as ‘prevailing’ 

WD and WS. 

Each field campaign was also compared with urban background NO2 and O3 

concentrations measured by the BLUME network. In this case, averages of several urban 

background stations surrounding the experimental sites were calculated for each 

campaign. For NO2, stations MC 010, MC 018, MC 042, and MC 171 were used, whereas 

for O3 data were only available from stations MC 010 and MC 042 (Figure 3-2). Data from 

these stations are reported in µg.m-³ and were converted to ppb for this study using 

standard temperature (298 K) and pressure (1 atm). 

 

Figure 3-2 Locations of BLUME measurement stations and experimental sites in Berlin. MC 010, MC 171, MC 
018, and MC 042 are urban background sites, whereas MC 117 and MC 174 are roadside monitoring stations. 
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The raw signal, which is typically a measure of voltage or resistance for gas-phase sensors, 

must first be properly calibrated with reference instrumentation. Using the seven-step 

methodology developed in Schmitz, Towers, et al. (2021b), the Zephyr prototypes and 

fully-operational Zephyrs were calibrated with the aforementioned reference 

instruments during co-locations conducted before and after each field deployment (Table 

3-3). The Zephyr prototypes were calibrated using raw signals from the MICS-4514 and 

MICS-2614 metal oxide sensors, which measure oxidizing gases and O3, respectively. 

Additional measures of internal Zephyr temperature and relative humidity, which reflect 

sensor operating conditions, were also included in the model building process. The fully 

operational Zephyrs were calibrated using raw signals from the working electrodes of the 

Alphasense electrochemical cell sensors (NO2A43F and OXA431), as well as with internal 

Zephyr temperature and relative humidity. Correction of the raw signal using the auxiliary 

and reference electrodes of the Alphasense sensors was found to not be necessary for 

calibration. All available field co-location data were subsequently used to train models of 

best-fit, which in turn were used to produce concentrations of NO2 and O3. All 

concentrations reported in this manuscript were produced from MLR models optimized 

using the seven-step methodology with the aforementioned input data. For greater detail 

on this methodology, please refer to Schmitz, Towers, et al. (2021b). All statistical analysis 

was conducted using R statistical software (R Core Team, 2022). 

To assess calibration model performance during each experimental period, tests were 

conducted using validation sets from each co-location for each individual Zephyr. For co-

locations that occurred prior to each campaign, models were trained with the initial 75% 

of the data and tested on the remaining 25%, closest to the experimental window. For co-

locations that occurred after each campaign, the same principle was used with the initial 

25% and remaining 75% of the data. Results of these tests can be found in the 

supplementary information. 

 

To compare distributions and means of NO2 and O3 concentrations between Zephyrs 

during each experiment, Mann-Whitney-Wilcoxon U-tests (MWU) and student’s t-tests, 

respectively, were conducted. The null hypothesis of the MWU test states that the 

distributions of both populations are identical. In this case, a p-value of 0.05 was used to 

determine significance. If the value of the test was lower than this threshold, the 

alternative hypothesis was accepted and the two distributions were considered 

significantly different from one another. Results of the student’s t-tests can be found in 

the supplementary information. 

 

To assess the influence of meteorology on calibrated NO2 and O3 concentrations, 

generalized additive models (GAMs) were built with T, RH, WS, WD, and MLH as predictors 

for every Zephyr, reference instrument, and set of urban background data across all 

experiments. In short, GAMs are regression models that replace linear coefficients with 

smoothing splines for each covariate, which allows for better modelling of complex non-

linear relationships, as is often the case with air pollution data (Carslaw et al., 2007; Hastie 

& Tibshirani, 1990). The formula can be given by: 
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log(𝑦𝑖) = 𝛽0 + ∑𝑠𝑗(𝑥𝑖𝑗) + 𝜀𝑖

𝑛

𝑗=1

 

where yi is the NO2 or O3 concentration at time i, β0 is the mean of the response, sj(xij) is 

the smoothing function of covariate j at time i, the total number of covariates is given by 

n, and εi is the normally distributed residual at time residual at time i (Hastie & Tibshirani, 

1990; Pearce et al., 2011). The mgcv package using R statistical software and the gam() 

function were used to this end. Smoothing parameter estimation occurs automatically, 

using a mix of generalized cross validation (GCV) and the un-biased risk estimator (UBRE) 

criterion to optimize the smoothing function based on penalized regression splines (S. N. 

Wood, 2017). 

These models were then used to calculate the total explained variance of NO2 and O3 

concentrations by the five meteorological variables independently of source emissions. 

This limits the explanatory power of the models, especially for NO2 given the importance 

of local emissions, but is suitable for exploring general relationships with meteorology. 

Partial effects plots were made to understand influences of each meteorological variable 

on NO2 and O3. GAMs were favoured over linear models due to the existence of various 

non-linearities in the relationships between NO2 and O3 and meteorological parameters. 

Linear models do not model these complex relationships effectively and were therefore 

not used (Carslaw et al., 2007; Pearce et al., 2011; Thompson, Reynolds, Cox, Guttorp, & 

Sampson, 2001).  

 

In the following section, analysis of the calibrated NO2 and O3 concentrations from the 

Zephyrs is presented, focusing first on general distributions of pollution, then looking 

more closely at relationships with meteorology and street canyon morphology. Strasse 

des 17. Juni was excluded from the assessment of impacts of street canyon morphology 

due to its low aspect ratio, heterogeneous building morphology, and the short extent of 

the canyon. The dynamics of the site are different than would be expected in a typical 

urban street canyon, particularly with regards to wind flow and pollutant dispersion and 

the uncertainty and variability between MOS installed in the prototype Zephyrs is too high 

to identify gradients at the site. 

 

Models built for each Zephyr during each experiment were validated with a test set in 

each co-location where data were available to test model performance. Results are 

presented in Figures 3.S-3 - 3.S-6 in the supplementary information. On Strasse des 17. 

Juni in the summer (Figure 3.S-3), MLR models for MOS performed poor to well, with large 

variability among sensors for NO2 (R2: 0.25 – 0.72; MAE: 1.85 – 3.84 ppb) and well for O3 

with less variability (R2: 0.79 – 0.95; MAE: 2.75 – 4.29 ppb) across both co-locations. In the 

winter (Figure 3.S-4), performance was poorer for NO2 (R2: 0.18 – 0.79; MAE: 1.69 – 7.47 

ppb) and better for O3 albeit with greater variability (R2: 0.88 – 0.97; MAE: 0.91 – 4.03 

ppb). In all cases, models tended to overpredict both NO2 and O3 when compared to 

reference instrumentation, with evidence of nonlinearities present in some of the 

modelled relationships. Figures 3.S-7 and 3.S-8 show diurnal profiles of concentrations of 

all units versus reference concentrations during each test set for the summer and winter 

campaigns, respectively. In general, intra-sensor agreement of calibrations and 

agreement with reference concentrations was acceptable for NO2 and very good for O3 in 



80                                                           3 Using LCS to measure gradients of pollution in Berlin 

the summer, but with greater disagreement at night. In the winter, there was greater 

intra-sensor disagreement for NO2 and poor performance with respect to reference 

concentrations, whereas for O3, agreement between sensors and with reference 

concentrations remained good.  

On Frankfurter Allee (Figure 3.S-5), most MLR models for EC sensors performed 

acceptably, with one sensor performing very poorly, for NO2 (R2: 0.02 – 0.58; MAE: 3.50 – 

8.28 ppb), and well for O3 with the exception of one sensor (R2: 0.36 – 0.95; MAE: 3.84 – 

13.05 ppb) during the first co-location. This is corroborated by diurnal profiles of the 

calibrations depicted in Figure 3.S-9. As a result, issues with data quality and consistency 

were identified, and therefore training data were not included from this co-location for 

any Zephyrs during final calibration. For this same reason, data from 20.07. – 05.08.2018 

during the experiment in later analysis were also excluded. During the second co-location, 

models performed in all but one case well for NO2 (R2: 0.48 – 0.87; MAE: 2.19 – 5.44 ppb) 

and in all cases very well for O3 (R2: 0.93 – 0.98; MAE: 1.20 – 2.57 ppb). Models tended to 

overpredict NO2 at lower concentrations (0 – 10 ppb). Intra-sensor agreement and 

agreement with reference concentrations during co-location 2 was very good for O3 and 

poor for NO2 (Figure 3.S-9), especially under lower night-time concentrations. On 

Kottbusser Damm (Figure 3.S-6) NO2 models performed well across both co-locations (R2: 

0.61 – 0.91; MAE: 2.12 – 3.85 ppb), while also showing a tendency to overpredict at lower 

concentrations. Diurnal profiles show good intra-sensor agreement and improved 

performance versus reference concentrations as compared to the co-locations conducted 

on Frankfurter Allee (Figure 3.S-10), highlighting the importance of training data quality 

for calibration.  

 

Figures 3-3 and 3-4 show the diurnal profiles of the NO2 and O3 concentrations captured 

over the course of each experiment, including data from the Zephyrs, reference 

instruments, and the urban background. Results of Wilcoxon-Mann-Whitney U-tests for 

statistically significant differences between the distributions can be found in Tables 3-4 

and 3-5, with results of students t-tests of the means in Tables 3.S-1 and 3.S-2.  

On Strasse des 17. Juni, both in the winter and the summer, the Zephyrs capture expected 

daily fluctuations in NO2 and O3 concentrations (Figure 3-3 a-d). NO2 summer 

concentrations at street-level were slightly higher than those at all other heights, the 6th 

floor reference site, and the urban background. No clear evidence exists for a vertical 

gradient in NO2 concentrations across the various heights, though all sites are statistically 

different from one another via the u-test (Table 3-4). A student’s t-test reveals that the 

means at the 1st floor, rooftop, and the urban background are not statistically different 

(Table 3.S-1). The relationship for O3 is reversed, with rooftop, 3rd floor, and 6th floor 

concentrations higher than at street level and on the 1st floor, but also higher than 6th 

floor reference and ground-level urban background concentrations. These relationships 

are within the range of uncertainty calculated during calibration and therefore are not 

definitive. Measurements at the 3rd floor, 6th floor, and rooftop are not statistically 

different from one another via a u-test, nor are measurements at street level, the 1st floor, 

and the reference 6th floor (Table 3-4). Results of the student’s t-test display the same 

relationships, except at street-level versus the reference 6th floor and at roof top versus 

the 6th floor, where mean concentrations are statistically different. 
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In winter, there is limited evidence for a vertical gradient in NO2 concentrations, as 1st 

floor, 3rd floor, and rooftop concentrations are all lower than at street-level. However, 6th 

floor Zephyr and reference concentrations, as well as urban background concentrations, 

are similar to those at street level. 6th floor concentrations are not statistically different 

than street level or urban background concentrations via both a u-test (Table 3-4) and 

student’s t-test (Table 3.S-1). O3 concentrations similarly show some evidence of a vertical 

gradient, opposite in direction to NO2. All sites have statistically different means and 

distributions via the t-test and u-test, respectively, except for street level and the urban 

background, and the 3rd floor and roof top.  

On both Frankfurter Allee and Kottbusser Damm, diurnal patterns of NO2 match those 

typical of an urban street canyon, except for at the southern lamppost on Frankfurter 

Allee (Figure 3-4). This Zephyr consistently overpredicted NO2 at lower concentrations 

during calibration (Figure 3.S-5) and therefore has a higher uncertainty range than the 

other units on Frankfurter Allee. All NO2 concentrations during both experiments are 

statistically different from one another, except for the 4th floor and the western side of 

the street on Kottbusser Damm, where the distributions are not statistically different 

(Table 3-5). Diurnal concentrations on Frankfurter Allee also match expected patterns of 

O3 pollution, with a clear early morning dip and late afternoon peak in accordance with 

known photochemical processes. Concentrations are much higher on the roof and the 

northern side of the street than the southern, with roof concentrations not significantly 

different than the urban background (Table 3-5). 

 

Contained in Table 3-6 are the adjusted R-squared values of generalized additive models 

(GAMs) modelling measured NO2 and O3 concentrations versus five meteorological 

variables (T, RH, WS, WD, MLH) for each experiment. On Strasse des 17. Juni in summer, 

these meteorological variables account for 57 – 72% and 83 – 89% of the variance in NO2 

and O3 concentrations, respectively. The explained variance in winter is slightly less for 

NO2 (37 – 51%) and substantially less for O3 (46 – 73%). On Frankfurter Allee (summer), 

meteorology explains 33 – 41% and 72 – 87% of the variance in NO2 and NO2 

concentrations, respectively. On Kottbusser Damm (winter/spring), meteorology explains 

37 – 48% of the variance in NO2 concentrations. Overall, this matches expectations and 

agrees between LCS and reference measurements. All missing explained variance can 

likely be attributed to the missing data on source emissions and activity. 

Figures 3-5 and 3-6 display partial effects plots of the GAMs for each site and 

meteorological variable across all the experiments for NO2 and O3, respectively. These 

capture the non-linear effects of each meteorological variable on NO2 and O3 across their 

measured range in each experiment. For NO2, WD and WS are the most relevant 

predictors, highlighting the importance of dilution and transport. More stationary air 

parcels (WS < 2 m s-1) correlate with higher NO2 concentrations whereas higher WS (> 4 

m s-1) correlate with lower NO2 concentrations. On Strasse des 17. Juni all measurements 

exhibit similar relationships with WD in both summer and winter, indicating that wind 

effects due to street morphology affect all Zephyrs similarly. This differs at Frankfurter 

Allee and Kottbusser Damm, where different sides of the street exhibit different 

relationships with prevailing background WD, suggesting the local relevance of street 

morphology on NO2 and O3 concentrations. 
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Figure 3-3 Diurnal profiles of NO2 (a, b) and O3 (c, d) concentrations at the Strasse des 17. Juni 
experimental site in Summer (a, c) and Winter (b, d). Dashed lines represent reference NO2 and O3 
concentrations measured on the 6th Floor of the mathematics building. Dotted lines represent the 
average urban background concentrations. Shaded areas represent the uncertainty range 
calculated for each Zephyr using the seven-step methodology. 

Figure 3-4 Diurnal profiles of NO2 (a, b) and O3 (c) concentrations at the Frankfurter Allee (a, c) and 
Kottbusser Damm (b) experimental sites. Dashed lines represent reference NO2 and O3 
concentrations measured on the 6th Floor of the mathematics building. Dotted lines represent the 
average urban background concentrations. Shaded areas represent the uncertainty range 
calculated for each Zephyr using the seven-step methodology. 
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Table 3-6 Adjusted R-squared values for the generalized additive models (GAM) built using measured NO2 and 
O3 concentrations and five explanatory meteorological variables (T, RH, WS, WD, MLH) for each site and 
experiment, where data were available. 

 Strasse des 17. Juni (Summer)  

 Street 1st Floor 3rd Floor 6th Floor Roof Reference UB 

NO2 Adj.-R2 0.57 0.63 0.72 0.58 0.64 0.63 0.59 

O3 Adj.-R2 0.89 0.84 0.83 0.89 0.89 0.80 0.81 

x        

 Strasse des 17. Juni (Winter)  

 Street 1st Floor 3rd Floor 6th Floor Roof Reference UB 

NO2 Adj.-R2 0.37 0.48 0.53 0.45 0.51 0.48 0.44 

O3 Adj.-R2 0.46 0.62 0.59 0.73 0.58 0.58 0.55 

        

 Frankfurter Allee   

 
Street 

(North) 
Street 

(South) 
Roof MC 174 UB   

NO2 Adj.-R2 0.33 0.41 0.41 0.51 0.63   

O3 Adj.-R2 0.80 0.72 0.87  0.85   

        

 Kottbusser Damm    

 
Street 
(West) 

Street 
(East) 

4th Floor UB    

NO2 Adj.-R2 0.37 0.45 0.48 0.56    

 

Some ambient temperature effects on NO2 concentrations are seen across the 

experiments, particularly at low temperatures reflecting night-time conditions, but are 

strongest at Frankfurter Allee, the sole experiment with temperatures exceeding 30°C. 

The partial effects plot in Figure 3-5, panel k indicates a stronger relationship with 

temperature on the southern side of the street by both the Zephyr and the reference 

instrument (MC 117) than on the northern side of the street. No strong influences of MLH 

are seen across the experiments, except on Frankfurter Allee (Figure 3-5, panel o), the 

only experiment with a recorded MLH above 3 km. Under elevated MLH conditions NO2 

concentrations increase slightly at all sites. However, confidence intervals for this 

relationship are very large due to the small sample size of datapoints with MLH > 3 km. 

For O3 in summer (Strasse des 17. Juni; Frankfurter Allee), the majority of the variance in 

concentrations is explained by ambient temperature, whereas the other meteorological 

variables are significant but only marginally important. In winter (Strasse des 17. Juni), RH, 

WS, and WD are of similar importance in explaining the variance in concentrations. The 

predictor of lowest significance for explaining O3 at all sites in all experiments is MLH. 

Partial effects for ambient temperature are clear in both summer experiments (Figure 3-

6, panels a, k) at all sites, exhibiting a strong correlation with O3 concentrations. In all 

three experiments, this relationship is reversed for ambient RH; values < 60% are 

associated with higher concentrations and values > 90% associated with lower 

concentrations, though this is strongest in winter. Wind speeds below 2 m s-1 and above 

5 m s-1 are associated with lower and higher O3 concentrations, respectively, across the 

three experiments. While there are no differences between sites with regards to WD on 

Strasse des 17. Juni, these are evident on Frankfurter Allee. No clear relationship on the 

northern side of the street can be discerned, but O3 concentrations on the southern side 

of the street exhibit a strong dependence on wind direction. 
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Road-to-roof ratios of hourly NO2 and O3 concentrations across the experiments can be 

seen in Table 3-7. The ratio for NO2 is greater than 1 in each case, indicating that 

concentrations are diluted at elevated heights compared to street-level, except for 

Kottbusser Damm. At this site, the ‘roof’ concentrations are from the 4th floor and 

therefore are still within the street canyon. The NO2 ratios reflect this, indicating that the 

concentrations at the 4th floor are roughly equal to those at street-level. On Strasse des 

17. Juni the ratio is greater in the winter than in the summer. On Frankfurter Allee the 

NO2 ratios are greater on the southern side of the street than on the northern. For O3, 

ratios are always less than 1, indicating higher concentrations on the roof compared to 

street level. At Strasse des 17. Juni, the winter ratio is smaller than the summer ratio. On 

Frankfurter Allee, the O3 ratio on the southern side of the street is much lower than on 

the northern side. 

Table 3-7 Road-to-roof ratios of NO2 and O3 concentrations at each experimental site. *On Kottbusser Damm 
the “roof” concentrations used are those from the 4th floor and therefore still within the street canyon. 

 Strasse des 17. 
Juni (Summer) 

Strasse des 17. 
Juni (Winter) 

Frankfurter 
Allee (N) 

Frankfurter 
Allee (S) 

Kottbusser 
Damm (W)* 

Kottbusser 
Damm (E)* 

NO2 1.34 2.53 1.33 2.03 1.05 0.95 

O3 0.87 0.66 0.88 0.69   

 

Figure 3-6  Partial effects plots of each meteorological variable as calculated by the generalized additive models 
(GAMs) for O3 for each site at Strasse des 17. Juni in Summer (a-e) and Winter (f-j), and Frankfurter Allee (k-o). 
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While these ratios indicate influences of street canyon morphology on overall NO2 and O3 

concentrations, closer analysis reveals more about the nature of these relationships. 

Figure 3-7 shows boxplots of NO2 and O3 hourly concentrations for Frankfurter Allee and 

Kottbusser Damm broken down by daily average cardinal wind direction (e. g. NESW) and 

various wind speeds. As can be seen in panels a, c, and e, the relative relationships 

between concentrations at the various Zephyr locations in each street canyon change with 

prevailing wind direction, suggesting the influence of local urban morphology on street 

canyon pollution circulation patterns. On Frankfurter Allee, NO2 concentrations on the 

southern side of the street are highest with wind blowing from the South and lowest with 

wind coming from the North. In the latter case, NO2 concentrations are not significantly 

different on opposite sides of the street. All other sites are statistically significant (p <0.05) 

from one another using a Wilcoxon-Mann-Whitney test (Tables 3.S-3 – 3.S-8), regardless 

of wind direction. NO2 concentrations at roof level do not vary with wind direction and 

are consistently higher than the urban background. 

O3 concentrations on Frankfurter Allee (Figure 3-7, panel c) follow similar but inverse 

patterns with regards to prevailing wind direction. With wind from the North, street-level 

O3 concentrations are not significantly different from one another, whereas with wind 

from the South, concentrations at street-level and on the roof on the northern side of 

Frankfurter Allee are not significantly different from one another or from the urban 

background. When wind blows parallel to the street from the East, there is no statistically 

significant difference between concentrations at the roof and the northern side of the 

street. Roof concentrations are lower than those of the urban background with wind 

blowing from all directions except from the South and West, where there is no statistically 

significant difference between them. At all sensor locations and in the urban background, 

O3 concentrations were lowest with wind blowing from the West. 

On Kottbusser Damm (Figure 3-7, panel e), clear differences between NO2 concentrations 

on the eastern and western sides of the street are seen with varying wind direction. With 

wind from the North and East, concentrations on the eastern side are higher, while the 

reverse is true when wind blows from the South and West. However, the relationships 

from the North and East are not statistically significant (p < 0.05). Concentrations at the 

4th floor are not statistically different from those at street-level on the western side of the 

street, regardless of wind direction, and are consistently higher than the urban 

background.  

On Frankfurter Allee and Kottbusser Damm, prevailing wind speed does not affect the 

relative relationships of NO2 and O3 concentrations between sensor locations. At both 

sites, NO2 concentrations decrease with increasing wind speed, as evidenced by smaller 

interquartile ranges of concentrations at higher wind speeds, lower median 

concentrations, and less extreme peaks. These patterns are matched in the urban 

background and agree with results from the GAMs (Section 3.3.3). At wind speeds < 2 m 

s-1, there are no statistically significant differences between all street-level NO2 and O3 

concentrations and the elevated concentrations (rooftop on Frankfurter Allee and 4th 

floor on Kottbusser Damm). Only at wind speeds from 4-6 m s-1 are rooftop O3 

concentrations significantly different from the urban background. 
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A closer analysis of the internal Zephyr temperature (Figure 3-8 for co-locations and 

experiments) profiles on Frankfurter Allee and Kottbusser Damm was completed to 

further understand differences in overall NO2 and O3 concentrations. As can be seen in 

Figure 3-8, the internal temperature profiles of the units match up during co-locations 

and differ substantially during experimental deployment. During the Frankfurter Allee 

experiment, the unit on the southern side of the street experienced temperatures up to 

5-7 K cooler than the units on the northern side of the street and the roof during the day, 

with temperatures equalizing at night. Therefore, these profiles suggest that internal 

Zephyr temperature can be evaluated as a proxy for direct insolation. As such, we 

hypothesize that less photolysis would occur on the southern side of Frankfurter Allee, 

which experiences far more shading than on the northern side, leading to lower total O3 

production and elevated NO2 concentrations. While this could also occur as a result of 

high temperatures (>30 °C) influencing EC performance, no strong influence of high 

temperature was seen on NO2 concentrations by Zephyrs located on the northern side of 

Figure 3-7 Boxplots of Zephyr, reference, and urban background NO2 and O3 hourly concentrations for the 
Frankfurter Allee (a-d) and Kottbusser Damm (e, f) campaigns, subset by cardinal wind direction and various 
wind speeds. 
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the street (Figure 3-5). To account for the impact of temperature on sensor functioning, 

a sensitivity analysis was conducted in which internal Zephyr T was removed from 

calibration models and new concentrations were predicted. This revealed no differences 

in NO2 concentrations at this site, and slight reductions in O3 concentrations on the 

northern side of the street, but with no change to the significant differences between 

Zephyr locations (Figure 3.S-11). However, the Zephyr on the southern side of the street 

exhibited poorer performance for predicting NO2 (Figures 3.S-5 and 3.S-9) and therefore 

this relationship for NO2 is not conclusive.  

On Kottbusser Damm, the same impact of photolysis can be found for the lower NO2 

concentrations on the eastern side of the street and is more suggestive due to improved 

sensor performance (Figures 3.S-6 and 3.S-10). The internal temperature of this Zephyr 

peaks three to four hours later than the western street-level and 4th floor units, 

respectively, more NO2 can be photolyzed over the course of the day. As can be seen in 

Figure 3-4, this peak in insolation matches with a respective reduction in NO2 

concentrations, which equalize at night with the concentrations on the western side of 

the street and the 4th floor. No sensitivity analysis was conducted here, as internal Zephyr 

temperature was not included in the original model of best-fit, as it was removed during 

model selection. 

 

There are several key results of this study of value to the expanding field of LCS literature. 

First, while many studies have evaluated the calibration of LCS and tested their accuracy 

in field measurement campaigns (J. M. Barcelo-Ordinas et al., 2019; De Vito et al., 2018; 

Figure 3-8  Diurnal profiles of the Zephyrs’ internal temperature deployed at Frankfurter Allee (a) and 
Kottbusser Damm (b). Shown are profiles for the co-locations and for the experiments. During co-location 1 for 
the Kottbusser Damm campaign, the Zephyr deployed on the 4th floor was at a different BLUME station than 
the other 2 units. In the 2nd co-location all three were at the same BLUME station. 
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Mahajan et al., 2021; Ripoll et al., 2019), few have assessed to what extent LCS capture 

expected patterns of urban pollution or how their measurements are influenced by 

meteorology, and none have deployed them in urban street canyons. Our findings 

presented here show that both MOS and EC LCS accurately measure typical diurnal 

patterns of NO2 and O3 pollution in urban environments following proper calibration with 

reference instrumentation. However, MOS tend to be less accurate and more variable in 

performance than EC, which matches recent research (Russell et al., 2022), therefore we 

deem the former inappropriate for discerning high spatial resolution differences in air 

pollution.  

Second, these general patterns in pollution can to a large extent be explained by micro-

scale meteorology, as evidenced by the GAMs built in this study. The total variance 

explained by meteorology for the LCS agrees well with the amount explained for reference 

measurements at the experimental sites and in the urban background. Furthermore, the 

confluence of insolation and wind direction appear to play an important role in the 

variability of NO2 and O3 concentrations in street canyons. On Frankfurter Allee, 

regardless of prevailing wind direction, NO2 and O3 concentrations are consistently higher 

and lower, respectively, on the southern side of the street than on the northern side. On 

Kottbusser Damm, while concentrations are significantly different on opposite sides of 

the street, they equalize at night and vary substantially during the day. This suggests that 

photochemical processes play an important role in the variability of NO2 and O3 

concentrations in street canyons (Zhang et al., 2020), but stronger evidence is needed for 

this to be conclusive. 

For O3, previous studies found strong positive and negative relationships between O3 

concentrations and T and RH, respectively (Melkonyan & Kuttler, 2012; Noelia Otero et 

al., 2018; N. Otero et al., 2016). This relationship is particularly strong in summer when T 

is strongly correlated with insolation, leading to photochemical O3 production, and 

weaker in winter, which our study confirms. Therefore, local production contributes much 

more to O3 concentrations in summer and less so in winter. We did not find a negative 

relationship between O3 and WS or a positive relationship with MLH, as found in other 

studies (Geiß et al., 2017; Melkonyan & Kuttler, 2012; N. Otero et al., 2016).  

For NO2, our results agree with other studies that the most dominant meteorological 

factor is wind speed (Carslaw et al., 2007; Elminir, 2006; Pearce et al., 2011). Also 

consistent with the literature are the lack of strong relationships with T, RH, and MLH. In 

the latter case, our results agree with Wagner and Schäfer (2017) that MLH does not have 

an impact on NO2 concentrations. We find minor evidence of a relationship with NO2 

when MLH is greater than 3 km in height but lack enough data to say this conclusively. In 

general, less variance is explained by meteorology for NO2 than for O3, which accurately 

reflects the greater role of production from local emissions and short-range transport for 

NOx and of photochemical production for O3. Furthermore, less variance is explained by 

meteorology for O3 in the winter than in the summer, further highlighting the role of 

photochemical production on local concentrations. The strong relationship with wind 

speed indicates that dispersal and dilution are most important in explaining NO2 

concentrations from a local meteorological perspective.  

Third, our measurements show that LCS can capture micro-scale differences in NO2 and 

O3 concentrations in street canyons. Prevailing wind direction and speed have statistically 

significant impacts on the concentrations measured by each Zephyr on both Frankfurter 

Allee and Kottbusser Damm. In both cases, NO2 and O3 concentrations are higher and 
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lower, respectively, on the leeward side of the street when wind blows perpendicularly, 

which matches expectations from previous studies modelling street canyon flow (Bright 

et al., 2011; Gonzalez Olivardia et al., 2019; Y.-D. Huang et al., 2019; Park et al., 2019; S.-

J. Park et al., 2015; Voordeckers, Lauriks, et al., 2021; Voordeckers, Meysman, Billen, 

Tytgat, & Van Acker, 2021). Measured differences between Zephyrs on these two streets 

are reduced or statistically insignificant with parallel wind flow.   

We also find indications of a strong influence of insolation on O3 and NO2 concentrations 

using the Zephyrs’ measure of internal temperature as a proxy. On Frankfurter Allee, 

daytime O3 concentrations are consistently lower on the southern side of the street than 

on the northern side and on the roof. Zephyr internal temperature profiles reveal that this 

side of the street is exposed to less, if any, direct sunlight than the northern side. As such, 

less NO2 is photolyzed and thereby less O3 is produced. Similarly, on Kottbusser Damm, 

daytime NO2 concentrations on the eastern side of the street are lower than on the 

western side, with virtually equal night-time concentrations, indicating greater daytime 

photolysis on the eastern side. However, this should be considered as preliminary 

evidence, as Zephyr internal temperature is only a proxy for insolation, not a direct 

measurement of it. 

 

These results of this exploratory study are valuable to the growing field of LCS research 

for several reasons. Primarily, end-users of MOS and EC LCS, including actors outside of 

the academic arena, can be confident that LCS accurately capture general patterns of 

urban NO2 and O3 pollution, matching diurnal trends and meteorological influences. While 

LCS cannot be used to determine exact magnitudes of concentrations and associated 

changes within the necessary uncertainty requirements for monitoring compliance with 

limit-values, they are appropriate for general measurement of urban air pollution. Two 

caveats to this are the need for rigorous field calibration with reference instrumentation, 

as suggested in Schmitz, Towers, et al. (2021b), and the relatively short lifetime of LCS, 

which can increase long-term operational costs (Peltier, 2020).  

The ability of LCS to measure expected changes and differences in micro-scale urban 

environments, such as in street canyons in this study, brings further added value to this 

field of research. We find that LCS can be deployed at high spatial resolution to 

understand differences in air pollution in varying urban environments. Few studies have 

measured air pollution at this spatial resolution using LCS, highlighting the novelty of 

these results and underscoring the versatility of LCS. Furthermore, it underscores the 

potential for LCS to be deployed in many different contexts by various end-users, without 

the need for complex and computationally intensive modelling. In fact, LCS could 

potentially be used to validate urban-scale models and inform their further development. 

While this exploratory study does not combine modelling exercises with LCS 

measurements to avoid further enlarging its scope, we recommend future work 

investigate this line of research. Additionally, LCS could be deployed to measure changes 

in air pollution in connection with changes to physical and transport infrastructure in 

urban environments. 

 

There are several limitations to this study. While the calibration of the LCS has been 

optimized using the seven-step method outlined in Schmitz, Towers, et al. (2021b), there 

is still a range of uncertainty associated with these measurements that limits the scope of 
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our conclusions. The uncertainty varies between experiments and sensors and is subject 

to the quality and quantity of available training data during calibration. This is particularly 

relevant for MOS sensors, which show much greater inter-sensor variability in 

performance and sensitivity. EC sensors are more consistent and perform better overall 

when compared with reference instruments. As such, the consistency in measured 

concentrations across Zephyrs and agreement with reference and urban background 

concentrations, particularly for EC sensors and less so for MOS, gives us confidence that 

the results presented here accurately reflect changes in local pollution.  

Due to a combination of financial and logistical reasons, the number of deployable 

Zephyrs in this study was constrained. As such, this study sought to identify indications of 

LCS performance in measuring NO2 and O3 gradients in the following three street canyons, 

but future studies should include greater numbers of deployed sensor systems to clarify 

the preliminary results provided here. Moreover, deploying instrumentation for the 

measurement of local meteorology (e.g., T, RH, WS, WD) alongside each sensor system is 

highly recommended. In this study, for similar reasons, this was not feasible. 

For the assessment of impacts of meteorology on NO2 and O3 concentrations, there were 

two key limitations to this research. First, on-site meteorological data were only available 

at Strasse des 17. Juni and not at Frankfurter Allee or Kottbusser Damm. While data from 

the weather station several kilometres away from each site proved sufficient to glean 

indications into street canyon pollution dispersal dynamics, future research should seek 

to measure meteorological parameters alongside LCS. Second, no real-time emissions or 

traffic data were available for implementation in this work. Without such data, further 

insights into LCS performance in measuring street canyon pollution (e.g., for validating 

urban-scale models) will remain limited. Future research must also include emissions data 

and traffic counts to complete the picture outlined in this study.  

During the measurement campaign on Kottbusser Damm, there was a technical failure 

with the reference O3 instrument during co-location that prevented the proper calibration 

of O3 concentrations with the Zephyrs. Without O3 data for this campaign, a more 

complete understanding of air pollution in this street canyon was not possible, nor was a 

full comparison to the campaign on Frankfurter Allee. Furthermore, during this campaign 

health and safety measures in response to the COVID-19 pandemic such as lockdowns 

were enacted that impacted the levels of air pollution on the street. Data collected during 

the strictest lockdowns were removed from this analysis, but it is possible that other 

indirect effects on air pollution, such as changing mobility habits and the construction of 

a pop-up bike lane, impacted the results presented here.  

 

In this exploratory study, two different types of LCS housed in EarthSense Zephyrs were 

deployed in a novel application to measure NO2 and O3 pollution in three different urban 

environments in Berlin between 2017 – 2020. We find that properly calibrated LCS 

measure expected levels of urban NO2 and O3 pollution consistently and agree with 

reference measurements on site and in the urban background well. A substantial amount 

of variance in measured NO2 and O3 concentrations is explained by local meteorology 

across all experiments, with good agreement between LCS and reference measurements. 

As found in other studies, wind speed is the most important predictor of NO2 

concentrations, whereas temperature is most important for explaining O3 in summer. In 
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winter, less total variance in O3 concentrations is explained by meteorology, with RH, wind 

speed, and wind direction of greater importance. 

This study also assessed measurements of NO2 and O3 in two street canyons in Berlin, 

finding good agreement with known patterns of street canyon pollution described in 

various studies modelling wind flow and pollution distribution. Specific preliminary results 

include: 1) identifying significant differences in NO2 and O3 concentrations on opposite 

sides of the street; 2) varying relationships between NO2 concentrations at street-level 

and on the roof or the 4th floor; and 3) measurable impacts of insolation on O3 

concentrations on different sides of the street. These results appear to be attributable to 

influences of urban morphology and wind flow within the street canyons, but are not 

conclusive due to the several key limitations to the study. However, these indications still 

highlight the ability of LCS to reliably measure urban air pollution at high spatial 

resolution, which should continue to be taken advantage of in future research. 

As the academic and commercial usage of LCS continues to expand, it is crucial to continue 

to better understand their potential. This exploratory study shows that measurements of 

NO2 and O3 pollution using MOS and EC LCS match expected diurnal patterns in urban 

environments, align with known relationships to micro-scale meteorological parameters, 

and can capture high spatial resolution details of street canyon pollution. Future research 

should expand on this study by including calibrated measurements of nitrogen monoxide 

(NO) and particulate matter (PM), as well as include higher spatial resolution in-situ 

meteorological data in the assessment of street canyon pollution. Future efforts should 

also consider connecting LCS measurements and urban-scale models. End-users, including 

researchers and citizens, can be confident that measurements they take with LCS are 

reliably capturing general patterns and trends in air pollution, provided they are properly 

calibrated with reference instrumentation. As a result, potential new applications for LCS 

arise, such as validating urban pollution models, understanding air pollution patterns in 

diverse micro-scale urban environments, and connecting measurements to changes in the 

physical urban environment.  
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Figure 3.S-1 Set-up of the co-location of the Zephyrs with reference instruments on the 6th floor of the 
mathematics building. The grey units are the Zephyrs, and the two inlet tubes bring air to the reference devices 
located inside the office. 

Figure 3.S-2 Set-up of the co-location of the Zephyrs at BLUME station MC 117 (Schildhornstrasse). A 
similar set-up was used at MC 174 (Frankfurter Allee) during the co-locations on Frankfurter Allee. An 
inlet to the right of frame draws air into the station for the reference instruments to use. 
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Figure 3.S-3 Scatter plots of calibrated Zephyr NO2 (a,b) and O3 (c,d) concentrations versus reference 
concentrations for a validation set in each co-location of the Summer, 2017 experiment on Strasse des 17. 
Junis. Model performance metrics of R2 and mean average error (MAE) are given for each Zephyr. The validation 
set is composed of the final 25% of the data for co-location 1, which occurred prior to the experiment, and the 
initial 25% of the data for co-location 2, which occurred following the experiment. The units are labeled by their 
id number and their location during the experimental window. 
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Figure 3.S-4 . As with Figure S3 for NO2 (a,b) and O3 (c,d) concentrations on Strasse des 17. Juni in Winter, 2018. 

Figure 3.S-5 As with Figure S3 for NO2 (a,b) and O3 (c,d) concentrations on Frankfurter Allee in Summer, 2018. 
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Figure 3.S-6 As with Figure S3 for NO2 concentrations on Kottbusser Damm in Winter and Spring, 2020. 

Figure 3.S-7 Diurnal plots of calibrated Zephyr NO2 (a,b) and O3 (c,d) concentrations versus reference 
concentrations for a validation set in each co-location of the Summer, 2017 experiment on Strasse des 17. 
Junis. The validation set is composed of the final 25% of the data for co-location 1, which occurred prior to the 
experiment, and the initial 25% of the data for co-location 2, which occurred following the experiment. The 
units are labeled by their id number and their location during the experimental window. 
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Figure 3.S-8 As with Figure 3.S-7  for NO2 (a,b) and O3 (c,d) concentrations on Strasse des 17. Juni in Winter. 

Figure 3.S-9 As with Figure 3.S-7 for NO2 (a,b) and O3 (c,d) concentrations on Frankfurter Allee in Summer, 
2018. 



3.S Supplemental information    101 

 

Figure 3.S-10 As with Figure 3.S-7 for NO2 (a,b) concentrations on Kottbusser Damm in Winter/Spring, 2020. 
During the first co-location, unit s186 was co-located at a different BLUME station (MC 042) than the other 
two. All three were co-located at MC 117 during the second co-location. 
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Figure 3.S-11 Diurnal profiles of NO2 (a) and O3 (b) concentrations at the Frankfurter Allee experimental site. 
Dashed lines represent reference NO2 and O3 concentrations measured on the 6th Floor of the mathematics 
building. Dotted lines represent the average urban background concentrations. Shaded areas represent the 
uncertainty range calculated for each Zephyr using the seven-step methodology. Modelled NO2 and O3 
concentrations were produced without the input of internal Zephyr temperature to account for potential 
impacts on sensor performance. 
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Table 3.S-9 Wilcoxon-Mann-Whitney U-tests of NO2 and O3 concentrations at Frankfurter Allee. Extremely small 
p-values are rounded down to 0. Modelled NO2 and O3 concentrations were produced without the input of 
internal Zephyr temperature to account for potential impacts on sensor performance. 

NO2 

Frankfurter Allee 
Street (N) Street (S) Roof MC 174 

Urban 

Background 

Street (N) 1     

Street (S) 0 1    

Roof 0 0 1   

MC 174 0.256 0 0 1  

Urban Background 0 0 0 0 1 
      

O3 

Frankfurter Allee 
Street (N) Street (S) Roof 

Urban 

Background 
 

Street (N) 1     

Street (S) 0 1    

Roof 0 0 1   

Urban Background 0 0 0.004 1  

 

Table 3.S-10 Student’s t-tests of NO2 and O3 concentrations at Frankfurter Allee. Extremely small p-values are 
rounded down to 0. Modelled NO2 and O3 concentrations were produced without the input of internal Zephyr 
temperature to account for potential impacts on sensor performance. 

NO2 

Frankfurter Allee 
Street (N) Street (S) Roof MC 174 

Urban 

Background 

Street (N) 1     

Street (S) 0 1    

Roof 0 0 1   

MC 174 0.110 0 0 1  

Urban Background 0 0 0 0 1 
      

O3 

Frankfurter Allee 
Street (N) Street (S) Roof 

Urban 

Background 
 

Street (N) 1     

Street (S) 0 1    

Roof 0 0 1   

Urban Background 0 0 0.003 1  

 

 



 

 

  



 

 

 

Cities in the 21st century are dynamically changing in response to environmental and 

societal pressures, not least among which are climate change and air pollution. In some 

of these metropoles, such as Berlin, a transformation of mobility systems has already 

begun. Along a mid-sized street in Berlin, a measurement campaign was conducted in 

2020 to accompany the construction of a bike lane and the implementation of a 

community space along one of the side-streets. Using the new technology of low-cost 

sensors, higher resolution measurements of local air quality were enabled. Stationary and 

mobile measurements were taken using EarthSense Zephyr sensor systems before and 

after the construction of the bike lane and during the timeframe when the community 

space was in place. It was found that the implementation of the bike lane led to a 

reduction in NO2 exposure for cyclists. During periods when the community space was in 

place, a reduction in NO2 concentrations was also measured. This study highlights not only 

the utility of low-cost sensors for the measurement of urban air quality, but also their 

value in a science-policy context. Measuring local air quality changes in response to traffic 

interventions will enhance understanding of the associated health benefits, especially in 

connection with measures promoting more sustainable modes of active travel. More 

research of this nature is needed to gain a clear understanding of the impacts of traffic 

interventions on local air quality for better protection of human health. 

 

Keywords: air pollution exposure; low-cost sensors; sustainable mobility; transport 

policy; science-policy 
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Ambient air pollution was estimated to contribute to around 4.2 million deaths globally 

in 2015 (Landrigan et al., 2018). Other studies using updated hazard risk ratios (Lelieveld, 

Klingmuller, et al., 2019) and alternative risk and exposure assumptions (Burnett et al., 

2018; Vohra et al., 2021) suggest that this number might be twofold larger. The health 

effects of ambient air pollution are significant in Europe, with 74% and 99% of its urban 

population exposed to particulate matter less than 2.5 µm in diameter (PM2.5) and ozone 

(O3) concentrations, respectively, above WHO recommended limit values in 2018 (EEA, 

2020b).  

Urban air pollution is a major human health problem with substantial emissions from the 

transport sector. Consequently, participants in urban transportation (car-drivers, cyclists, 

pedestrians, etc.) are exposed to high levels of air pollution. The level of exposure is driven 

by many factors, including, but not limited to, transport emissions, city and transportation 

infrastructure, time spent commuting, and climate and meteorology. In Europe, car-

drivers are exposed to the largest amount of air pollution, followed by cyclists and public 

transportation users, with pedestrians typically exposed to the least amount (A. de 

Nazelle, Bode, & Orjuela, 2017; Rank, Folke, & Jespersen, 2001; Raza, Forsberg, 

Johansson, & Sommar, 2018). A systematic review found that commuters using motorized 

transport had increased exposure to air pollution due to their proximity to traffic and high 

air interchange whereas the increased inhalation rates and commuting time of active 

commuters caused them to have a higher inhaled dose (Cepeda et al., 2017). The 

calculation of exposure varies across these studies, but an intercomparison of these 

methods reveals that there is no single best method, many are appropriate, and they 

should be selected based on the size and objectives of the study (E. Dons et al., 2017) 

The direct health impacts of this air pollution exposure have been studied extensively, 

though most studies use particulate matter and black carbon as proxies for all air 

pollutants, with less assessing the impact of exposure to high levels of nitrogen dioxide 

(NO2). One study found a significant relationship between exposure to NO2 and heart rate 

variability in healthy adults (Weichenthal et al., 2011), whereas previous studies identified 

this relationship only in elderly populations or subjects with pre-existing cardiovascular 

disease. A cohort study found similar results, with long-term exposure to NO2 pollution 

associated with higher risk of heart failure (Sorensen et al., 2017). Moreover, systematic 

reviews of studies assessing NO2 exposure and mortality have consistently found evidence 

of NO2 exposure associated with a higher risk of all-cause, cardiovascular, and respiratory 

mortality that might be independent of other common air pollutants (R. W. Atkinson, 

Butland, Anderson, & Maynard, 2018; Faustini, Rapp, & Forastiere, 2014; S. Huang et al., 

2021; Huangfu & Atkinson, 2020). This connection between NO2 and health effects was 

also made by participants in a study across seven European cities, in which levels of 

pollution at their home addresses was significantly linked to their concern over the health 

effects of air pollution (Evi Dons et al., 2018). 

While studies show that the benefits of active travel outweigh the negative health effects 

of air pollution exposure (Cepeda et al., 2017; Giallouros, Kouis, Papatheodorou, 

Woodcock, & Tainio, 2020; Tainio et al., 2021), further reductions in exposure by choosing 

low-traffic routes can additionally reduce associated health effects (Jarjour et al., 2013; 

Shrestha, Mullins, Zhao, Selvey, & Rumchev, 2020). Research from Montréal and Bogotá 

revealed that cyclists’ exposure to particulate matter and BC was reduced when riding on 
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separated, protected bike lanes as opposed to in-street facilities (Farrell, Weichenthal, 

Goldberg, & Hatzopoulou, 2015; Hernández, Ramírez, Benavides, & Franco, 2021). In 

addition to the reduction in air pollution exposure gained from implementing dedicated 

cycling infrastructure in cities, the primary increase in health benefits at city-scale comes 

from the consequent increase in physical activity as more citizens switch to active 

transport (Schepers et al., 2015).  

Personal exposure measurements are limited, and regulatory monitoring stations are 

sparsely distributed throughout cities. This means that exposure to microenvironments, 

such as the transport environment, are poorly understood in the context of overall daily 

exposure. While urban background monitoring locations are often used in population 

exposure assessment, studies have shown poor agreement between measurements at 

these monitoring stations and personal exposure in transport environments (Audrey de 

Nazelle et al., 2012; Gulliver & Briggs, 2004; Ragettli et al., 2013; Xu, Jiang, Zhao, & 

Stephens, 2017). To overcome these issues, new technologies such as low-cost sensors 

are being used to increase the spatial resolution of monitoring networks (J. M. Barcelo-

Ordinas et al., 2019; Kumar et al., 2015; Mead et al., 2013; Morawska et al., 2018; Popoola 

et al., 2018), to assess personal exposure (Mahajan & Kumar, 2020; Morawska et al., 2018; 

Piedrahita et al., 2014), and in mobile monitoring (Gao et al., 2016; Genikomsakis et al., 

2018; Lim, Kim, et al., 2019; Lin et al., 2017a; E. von Schneidemesser et al., 2019b). While 

they are less accurate than reference-grade instruments, their low-cost and relatively 

small size make them more suitable for these applications. Furthermore, they can serve 

to increase our understanding of air pollution in urban environments, especially with 

regards to human health and exposure, providing valuable information not only for 

scientists, but also for citizens and policymakers. 

For various reasons, European cities are starting to shift towards sustainable modes of 

transport. Some are focused on the win-win of achieving climate goals by reducing 

emissions of greenhouse gases and reducing the health impacts of air pollution, while 

others are focused on making these modes safer and more attractive for their citizens. To 

achieve these goals, many of these cities need to enact policies to encourage greater 

uptake of cycling (Brand et al., 2021; Nieuwenhuijsen, 2020), among other sustainable 

transport options. In cities like London, Barcelona, and Berlin, the shift towards more 

active transport has already begun (Aldred & Goodman, 2020; López, Ortega, & Pardo, 

2020; D. von Schneidemesser et al., 2020). Berlin became the first federal state in 

Germany to enact a Mobility Act in 2018, which was driven largely by a citizen-led bicycle 

referendum called the ‘Volksentscheid Fahrrad,’ (D. von Schneidemesser et al., 2020). As 

a result, new cycling infrastructure, such as protected bike lanes, has been built in the city, 

with more planned in the coming years. On one street, Kottbusser Damm (KD) in the 

district of Friedrichshain-Kreuzberg, a protected bike lane was initially planned to be built 

in the late summer of 2020. With the onset of the COVID-19 pandemic, plans for this were 

accelerated and it was built as a temporary pop-up bike lane to provide safer 

infrastructure for citizens seeking to switch away from public transport and towards 

cycling. A separate measure that was planned and executed according to plan involved 

the transformation of a portion of a side-street (Böckhstrasse) that is directly linked to KD 

into a Spielstrasse or ‘community space’, for which the street was closed to through-

traffic, allowing for greater outdoor space for public use. In this study, we conducted a 

measurement campaign using low-cost sensors to assess changes in air quality on 

Kottbusser Damm and on the Böckhstrasse in connection with the bike lane and the 

community space, respectively.
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This data used in this study were collected with small air quality sensors housed in the 

EarthSense Zephyr sensor system. Included in this sensor system are: 1) Electrochemical 

(EC) sensors that provide a measure of NO2 and O3; 2) micro-optical sensors that count 

particles to provide a measure of PM; 3) a global positioning system (GPS) unit; 4) internal 

temperature and relative humidity monitors; 5) an internal fan for air intake and 

expulsion; 6) a lithium-ion battery; and 7) a Global System for Mobile Communications 

(GSM) unit for sending logged data to an external database (EarthSense). These sensor 

systems are part of a new generation of air quality measurement devices that are lower-

cost, smaller, and easier to use in comparison to standard reference instrumentation. As 

a result, they are easily deployed for both stationary and mobile measurements with a 

potential for high spatial and temporal resolution in various environments. 

The EC sensors housed within the Zephyrs react in the presence of atmospheric gas-phase 

pollutants such as NO2 and O3, as the molecules chemically interacting with the 

measurement nodes of the sensor. To transform this raw voltage signal into 

concentrations of each pollutant, the sensor system must be co-located and calibrated 

with reference-grade air quality sensors. Co-location in this context refers to physically 

installing the sensor systems at a location where they will receive samples from the same 

parcel of air as the reference instruments. 

 

To co-locate the Zephyrs, measurement stations of the Berlin Air Quality Measurement 

Network (BLUME) were used. When co-locating small sensors, it is crucial that the 

calibration site experience environmental conditions (i.e., pollution levels, meteorological 

conditions) as similar to those of the experimental site as possible (Peltier, 2020). In this 

case, the Zephyrs that were installed on lampposts along KD in Neukölln, Berlin were co-

located at a roadside-traffic station, MC117 in Steglitz, Berlin. While it is situated several 

kilometres away from the experimental site in a different part of the city, the shape of the 

street canyon and traffic levels are comparable to those of KD. The Zephyr that was 

installed on the 1st floor of the primary school on the Böckhstrasse was co-located at an 

urban background station, MC042 in Neukölln, Berlin. This station is only a few blocks 

away from KD and since the side streets do not experience heavy traffic, it was selected 

as a more appropriate co-location site than MC117. 

 

As can be seen in Figure 4-1, four Zephyrs were deployed on lampposts on KD and one 

was deployed on the 1st floor façade of a primary school on the side-street Böckhstrasse. 

The latter location was selected as the school lies along the stretch of Böckhstrasse that 

was converted to a community space. For the mobile measurements, two separate routes 

were designed to capture various changes in air pollution associated with the new bike-

lane; the primary route covered the length of KD, whereas the second route covered side-

streets, including along Böckhstrasse. A timeline of the measurement campaign can be 

seen in Figure 4-2. In total, 9 sets and 11 sets of mobile measurements were conducted 

before and after the implementation of the bike lane, respectively, and were composed 

of three continuous loops along each route. These measurements were conducted during 

the morning, afternoon, and evening to capture the range of intra-day variability in NO2 

concentrations.
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To calibrate the Zephyrs, data from the reference instruments was used to train statistical 

models that included as independent variables the raw sensor signal and meteorological 

conditions, such as temperature and relative humidity. To this end, the seven-step 

method was used to clean and flag the raw data; build, train, and optimize the parameters 

of a multiple linear regression (MLR) model; and predict the final concentrations with an 

associated measure of uncertainty for each measurement (Schmitz, Towers, et al., 2021a). 

A Random Forest (RF) model was also built, but this was determined to have no significant 

increase in accuracy over the MLR model and had more limitations. Further details on the 

seven-step methodology can be found in (Schmitz, Towers, et al., 2021a). The seven-step 

methodology has been developed and applied to gas-phase concentrations only at this 

point. For this reason, as well as the predominance of traffic emissions to total NOx 

emissions in urban areas in Europe and Berlin, the analysis presented here is limited to 

NO2.  

To account for changes in meteorological conditions, traffic patterns, and other external 

forces such as the COVID-19 lockdowns that may have influenced variations in NO2 

concentrations on KD, all calibrated concentrations were normalized. In this case, hourly 

averaged concentrations from the six stationary Zephyrs along KD and on the side-streets 

were normalized to the hourly average of 4 urban background (UB) stations by subtracting 

the UB hourly averaged concentrations from the Zephyr hourly averaged concentrations. 

Similarly, the mobile measurements along KD and the side-streets were normalized to the 

five-minute averages of the four lamppost Zephyrs on KD and the Nansenstrasse urban 

background station, respectively. This higher resolution was necessary as each set of 

mobile measurements took roughly ~40 minutes for each route. 

Figure 4-1 The locations of the six Zephyrs (blue squares), the routes for the mobile measurements, the location 
of the Nansenstrasse BLUME station (red square), and the location of the temporary community space. The 
new bike lane was implemented along the entire length of KD between Urbanstrasse and Kottbusser Tor. 
Labeled along the primary route are the individual street segments. 
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As can be seen in Figure 4-3, the stationary measurements along KD exhibit a similar 

diurnal pattern with good agreement. The side-street Zephyr on the primary school 

agrees more closely with the average urban background NO2 across four stations. In all 

cases, the morning and evening peaks in NO2 align, with the KD Zephyrs showing higher 

concentrations and a lower mid-day dip as a result of higher local emissions from the 

street. Using a Mann-Whitney U-test, the distributions of all stationary Zephyrs were 

compared (Table 4-1). All KD Zephyrs were found to have significantly different 

distributions than the primary school Zephyr Among the lamppost Zephyrs, the northern 

and southern Zephyrs form two distinct groups. Given these results, it was concluded that 

normalizing the mobile measurements along the primary route to the nearest pair of 

sensors was appropriate. For measurements along segments between the two pairs, a 

weighted average was used. However, using the simple average of all four Zephyrs 

produced similar results.  

Analysis was conducted to assess the relative impact of the bike lane on the stationary 

measurements, which reflect the local air pollution conditions on KD. However, due to 

the significant impact of the COVID-19 pandemic and subsequent stringent measures in 

Berlin, potential effects from the bike lane on NO2 concentrations for the general KD area, 

as represented by the stationary measurements on KD, could not be isolated. More data 

would be needed to establish this connection. 

Table 4-1 Wilcoxon-Mann-Whitney U-tests of the difference in means between each of the stationary Zephyrs 
across the entire experiment. Reported in the table are p-values. Italicized and bolded are values below the 
Bonferroni-corrected p-value of 0.01, which indicate acceptance of the alternative hypothesis, that the 
distributions of the 2 sensors are NOT equal. Extremely low p-values are represented here as 0. 

 

KD SW KD SE KD NW KD NE 
Lemgo 
1st floor 

KD SW      
KD SE 0.48     
KD NW 0 0    
KD NE 0.0058 0.0003 0.053   
Lemgo 1st floor 0 0 0 0  

Figure 4-2 Timeline of the measurement campaign depicting the temporal coverage of the mobile and 
stationary measurements, as well as key events. “Before” refers to the measurements captured prior to bike 
lane construction and “after” refers to those following its implementation. Each tick represents the beginning 
of a new month, starting in February, 2020. 
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To assess the impact of the bike lane on cyclists’ personal exposure, NO2 concentrations 

from the primary and secondary route from before and after its construction were 

compared. Figure 4-4 shows these data in box-and-whisker plots, grouped according to 

the presence of the bike lane. As each measurement contained an associated uncertainty, 

error was propagated when comparing the before and after samples3. For the primary 

route, a decrease in the median normalized NO2 of 8.4 ± 7.4 µg.m-3 was measured 

whereas for the secondary route the decrease in the median normalized NO2 was 2.5 ± 

7.4 µg.m-3. In both cases, tests with the Mann-Whitney U-test were significant at a p-value 

of 0.05, indicating the distributions of the data from before and after the implementation 

of the bike lane are different. At the 95th percentile, the reduction in normalized NO2 for 

the primary route was 14 ± 7.4 µg.m-3, whereas for the secondary route an increase of 2.4 

± 7.4 µg.m-3 was found. 

To more closely inspect these results, the data from each route were broken down into 

smaller segments. For the primary route, the trend of decreasing concentrations was 

found in every segment, and all were statistically significant. Two of the segments along 

the route, at Hermannplatz and Kottbusser Tor, showed the same trend in decreasing 

concentrations even though no changes to cycling infrastructure were implemented at 

these sites. The same analysis for the secondary route was inconclusive, as only three of 

the twelve segments were statistically significant, with some segments showing no 

decrease or even a slight increase in NO2 concentrations. 

 
3 Propagation of error for differences between medians and the 95th percentile were 

calculated using the formula 𝑄 = √(𝑒1)
2 + (𝑒2)

2, where Q is the propagated error and 
e1 and e2 are the individual uncertainties of the two measurements being compared. 

Figure 4-3 NO2 diurnal pattern of all stationary Zephyrs as well as the urban background (UB) average for the 
duration of the campaign. The KD Zephyr locations correspond to cardinal directions related to their position 
on the street, e.g., se = southeast. 
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Figure 4-5 shows box-and-whisker plots for the Zephyr located at the primary school, 

grouped according to whether the community space was in place or not. On Wednesdays 

between 14:00 and 18:00, when the community space was in place (April – September), 

the median normalized NO2 was 3.7 ± 11.2 µg.m-3 less than when there was no community 

space in place (February, March, and October). A Mann-Whitney U-test indicated that 

these distributions are statistically different (p = 0.012). To confirm that the difference 

seen in Figure 4-5a (the comparison of Wednesdays with and without the community 

space) was indeed owing to the community space, a parallel comparison for all other 

weekdays was also carried out (Figure 4-5b). This difference in median normalized NO2 

from 14:00 – 18:00 was 0.42 ± 11.2 µg.m-³ under the same conditions and was not 

statistically significant (p = 0.61). With this analysis, it was assured that the changes 

measured on Wednesdays could be associated with the community space, as all other 

weekdays during the same time window did not exhibit any significant changes. A 

comparison to weekend concentrations was not made, as weekend NO2 concentrations 

were significantly different than on weekdays and were not related to the street closures. 

Finally, an analysis to control for holiday days that fell on weekdays was done and showed 

that the effect was negligible.  

 

  

Figure 4-4 (left) Box-and-whisker plots of mobile measurements along KD normalized to the five-minute 
average NO2 of the four lamppost Zephyrs, with and without the presence of a bike lane, not including 
measurements from Kottbusser Tor or Hermannplatz; (right) Box-and-whisker plots of mobile measurements 
along the side-streets of KD normalized to five-minute average NO2 of the Nansenstrasse urban background 
station, with and without the presence of a bike lane. 
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This study has successfully shown that low-cost sensors can be deployed to assess 

changes in air quality in connection with local transport measures. In general, the Zephyrs 

accurately captured the expected diurnal trends of NO2 on KD as well as on the 

Böckhstrasse, demonstrating their utility for such work. Despite the higher level of 

uncertainty in the measurements, these low-cost sensors have proven their value in 

assessing small-scale spatial changes in air quality in cities, which has implications for 

future research aimed at understanding local changes in air quality, including before-after 

measurements in connection with transport measures. In the context of the mobility 

transition in Germany, these sensors can provide valuable information to policymakers 

with regards to the effect on air quality for the various measures they may implement.  

Here, a reduction in exposure to NO2 for cyclists following the implementation of the bike 

lane, after normalization to local conditions, was measured. Furthermore, the reduction 

in exposure along KD was higher at the 95th percentile, which suggests that cyclists were 

exposed to fewer extreme peaks in concentrations associated with proximity to tailpipe 

emissions from motor vehicles. These reductions were not seen along the side-streets, 

indicating that the effect is local in nature and can be associated with the construction of 

the bike lane. The exposure to peak concentrations can be quite important; Evi Dons et 

al. (2019) found that only 5.5% of participants’ daily exposure was attributed to peak 

concentrations, but these contributed to 21% of their total exposure (Evi Dons et al., 

2019). As such, cyclists along KD appear to have profited from this measure, not only from 

the increased safety of a protected bike lane, but also from the reduction in exposure to 

both overall and peak NO2 concentrations. An effect of the bike lane on overall air quality 

on KD could not be determined due to a lack of data representative of local conditions 

following the implementation of the bike lane that are free of effects from restrictive 

COVID-19 health measures. While no other studies exist in the literature that are directly 

comparable, related studies have shown that cycling infrastructure influences the particle 

number concentration cyclists are exposed to (Boogaard, Borgman, Kamminga, & Hoek, 

2009; E. von Schneidemesser et al., 2019a), whereas others quantify the role of urban 

infrastructure on air pollution, such as green walls or low emission zones (LEZ) (Boogaard 

et al., 2012; Paull, Krix, Torpy, & Irga, 2020), but these do not assess changes to cyclists’ 

Figure 4-5 Box-and-whisker plots of measurements from the Zephyr located at the primary school, normalized 
to the hourly average of four urban background stations, grouped by time periods where the community space 
was or was not in place on a) Wednesdays only and b) All weekdays excluding Wednesdays. 
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exposure to air pollution. Other studies that explicitly measured cyclists’ exposure to air 

pollution did not explicitly connect their mobile measurements to specific transport 

measures (Samad & Vogt, 2021). Therefore, this study is one of the first to measure 

changes in cyclists’ exposure to NO2 in direct connection with changes in cycling 

infrastructure. 

While quantifying the health benefits associated with this reduction is beyond the scope 

of this study, a reduction in NO2 exposure is a positive influence on cyclists’ health, given 

the established connections between NO2 exposure and mortality (R. W. Atkinson et al., 

2018; Faustini et al., 2014; S. Huang et al., 2021; Huangfu & Atkinson, 2020; Sorensen et 

al., 2017). In addition, recent research has shown that pop-up bike lanes increased cycling 

across European cities (Kraus & Koch, 2021). That study estimated that the associated 

health benefits in terms of kilometres of new bike lanes per square kilometre were 

estimated to be worth between $1 and $7 billion annually, or $1.2 – $3.5 in terms of 

kilometres per capita, if the uptake in cycling is maintained (Kraus & Koch, 2021). This is 

in line with other research estimating the health benefits across 167 European cities, in 

which the expansion of cycling networks could lead to the avoidance of 10,000 premature 

deaths annually (Mueller et al., 2018). These findings indicate that a measured increase 

in cycling uptake along KD confers additional health benefits to Berlin cyclists alongside 

the reduction in NO2 exposure associated with new bike lane infrastructure. 

The implementation of the community space also led to a measured reduction in NO2 

concentrations. On other weekdays where the community space was not in place, there 

was no discernible difference in NO2 concentrations. While this reduction was smaller 

than that on KD, it highlights the relationship between NO2 and vehicle traffic. 

Böckhstrasse is already traffic-calmed, but if cars are no longer allowed to traverse the 

street, there will be further local reductions in NO2 concentrations. The overall decrease, 

however, is constrained by urban background levels of NO2 pollution, which would require 

larger-scale changes in emissions sources to change.  

 

This study and its findings are subject to several key limitations. Primarily, the COVID-19 

pandemic disrupted the plans for this measurement campaign. Due to restrictive 

lockdowns implemented in Berlin in response to the pandemic, traffic patterns and 

behaviours were substantially altered during the campaign. Furthermore, the bike lane 

was implemented as temporary cycling infrastructure months earlier than anticipated. 

These circumstances led to a substantial reduction in the amount of data collected before 

and after the bike lane was in place. In addition, this study would have benefited from 

additional measurements that quantitatively assessed traffic patterns, composition, and 

behaviour along KD and its side-streets. This data would allow for a more detailed analysis 

of the impact of the bike lane on local traffic, individual transport decisions, and the 

concomitant influences on air quality. For this study, such data were unavailable. In 

addition, no tests on sensor performance pertaining to mobile deployment were 

conducted and therefore the potential influences of mobile use on the sensors (i.e., 

vibration) in this study are unknown. However, as the analysis focuses on gas-phase 

species (not particulate matter) isokinetic sampling is a non-issue, and previous mobile 

deployments of measurement devices have not shown vibration to cause any 

interference. As there are few studies assessing low-cost sensor performance in mobile 

conditions, more research is needed to identify potential interferences on measurement 

quality. Last, it should be noted that the deployment of the sensors in this study did not 
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follow regulatory guidelines for site selection, nor did the sensor go through any 

certification process for assessing their performance relative to regulatory standards. As 

such, the data should not be used to assess exceedances of air quality limit values. 

However, the results of this study still have a high relevance for human health in urban 

areas, and data are presented with associated uncertainties.

 

This study has demonstrated the utility of small sensors for both stationary and mobile 

measurements in an urban environment to measure small scale spatial changes in air 

quality. This is one of the first studies to implement such small sensors to accompany the 

implementation of a mobility policy to quantify the effect on air pollution, including 

exposure. Results showed that the implementation of a (pop-up) bike lane, in which 

cyclists went from cycling in the street with traffic, to a dedicated bike lane largely 

protected from motor vehicle traffic by a lane of parked cars, resulted in a reduction of 

8.4 ± 7.4 µg.m-3 in NO2 or 22% ± 19% that they were exposed to. This underlines the 

importance of infrastructure for the protection of human health in urban areas. Additional 

studies are needed to understand how representative and transferrable these results are. 

As the mobility transition in Berlin and across Europe proceeds, these types of 

measurements will prove invaluable for decisionmakers.  
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Local policies are part of the toolbox available to decision makers to improve air quality 

but their effectiveness is under-evaluated and underreported. We evaluate the impact of 

the closure of a street in the city centre of Berlin on the local air pollution. Nitrogen 

dioxide (NO2) was measured on the street where the policy was implemented and on two 

parallel streets using low-cost sensor systems supported by periodic calibrations against 

reference-grade instruments and constrained by passive samplers. Further 

measurements of NO2 were conducted with a reference-grade instrument mounted on a 

mobile platform. The concentrations were evaluated against the urban background to 

isolate the policy-related signal from natural fluctuations, long-term trends and the 

COVID-19 lockdown. The intervention reduced NO2 concentrations to the level of the 

urban background on week- days. Kerbside NO2 concentrations exhibited substantial 

differences to the concentrations measured at lampposts highlighting the difficulty for 

such measurements to capture personal exposure. The results have implications for 

policy, showing that an intervention on the local traffic patterns can be very effective in 

improving local air quality. The versatile and fast deployment capabilities of low-cost 

systems offer a quick information return regarding policy. Sampling locations must be 

chosen carefully in order to assess human exposure. 

Submitted to Atmospheric Environment: X on 26.08.2022 as: 
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‘Low-cost system application for policy assessment: a case study from Berlin’. 
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Cities are hot spots of atmospheric emissions and urban populations. Worldwide, cities 

have struggled with air quality issues for decades (EEA, 2007; Lelieveld, Evans, Fnais, 

Giannadaki, & Pozzer, 2015; Liu et al., 2019). A vast majority (over 70 %) of the population 

of the European Union (EU) lives in cities. Despite improvements, 77 % of the EU-28 urban 

population was still exposed to PM2.5 concentrations above the World Health 

Organization (WHO) Air Quality Guidelines value in 2019 (EEA, 2019, 2020a, 2020c). Even 

low concentrations of air pollutants pose a threat to human health (Dominici et al., 2019; 

Stanaway et al., 2018), and the WHO has recently recognized this research finding by 

updating its guidelines based on a systematic review of the body of literature (WHO, 

2021). The presence of pollutants in the air impacts the population by means of increased 

incidence of diseases and years of life lost, mainly via cardiovascular diseases (Burnett et 

al., 2018; HEI, 2020). For instance, in 2018, 54000 premature deaths in the EU-28 (of which 

9200 in Germany) were attributed to NO2 alone (EEA, 2020a). In the context of the 

ongoing SARS-CoV-2 pandemic, previous exposure to air pollution was identified as a 

relevant factor increasing mortality risk from the COVID-19 disease (Pozzer et al., 2020; 

Erika von Schneidemesser et al., 2021).  

In 2013, relevant and ambitious goals were set in Europe to tackle the issue: (1) the long-

term goal to reach the WHO guidelines, even upon update (European Commission, 2013; 

WHO, 2021), (2) full compliance with existing legislation by 2020, and (3) the halving (in 

2030 relative to the 2005 levels) of the premature deaths in the EU due to air pollution 

(European Commission, 2013). Although achieving the objective for 2020 was deemed 

unlikely in all member states already in 2018 (EEA, 2018), the adoption of novel 

instruments (e.g. the National Emission reduction Commitments Directive of 2016) allows 

some degree of optimism regarding the attainment of the long-term objectives, with 

significant disparities between member states, depending on if the member-states 

comply with the obligations laid out in their National Air Pollution Control Programmes 

(EC, 2019, 2021; Sicard, Agathokleous, De Marco, Paoletti, & Calatayud, 2021).  

Fossil fuel burning has been identified as a dominant source of air pollution-related health 

impacts (Lelieveld, Klingmüller, et al., 2019). The role of road traffic in the concentration 

increase of air pollutants in urban areas with respect to background levels has long been 

acknowledged (Lenschow et al., 2001; Oliveira et al., 2010). For NO2 in particular, 

exceedances of the standards in European cities are attributed mainly to the high levels 

of road traffic and domestic combustion (Dias et al., 2018). This has spurred the 

emergence of a concept known as the mobility transition. Indeed, over half of the policies 

implemented by member states to reduce air pollution were traffic-related, targeting 

urban mobility either by addressing technological issues to lower end-of-pipe emissions 

or reducing traffic (urban road tolls, low emission zones (LEZ), and access regulation 

schemes) (EEA, 2018).  

Traffic reduction policies, technological measures and behavioural change are factors 

which have been recognized as having the potential to mitigate exposure to air pollution 

in an ever more urbanized anthropocentric world (Fuglestvedt, Berntsen, Myhre, Rypdal, 

& Skeie, 2008; Gallardo et al., 2018; Kelly & Zhu, 2016; Shindell et al., 2011; Yan et al., 

2014).  The EU has evolved towards more stringent emission standards (Magueta, 

Madaleno, Ferreira Dias, & Meireles, 2018).  Despite the technological advances 

prompted by the evolution of legislation, which have considerably decreased the fleet’s 
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emission factors, the increased use of personal motorized transportation has offset those 

gains (Kelly & Zhu, 2016). European cities therefore find themselves in a situation where 

the reduction in per vehicle emissions has not been sufficient to alleviate the detrimental 

effects of traffic emissions on human health.  

The policy treated in the present work goes along with strategies such as charging 

schemes, LEZs, vehicle speed management or the prohibition of circulation for highly 

polluting vehicles, which have been adopted by European cities in recent years 

(Rodriguez-Rey et al., 2022). Such strategies are translated into policies and put in place 

in order to reduce the externalities related to traffic, such as congestion, noise, accident 

risk and air pollution (Bernardo, Fageda, & Flores-Fillol, 2021a, 2021b; De Borger & Proost, 

2013; Morton, Mattioli, & Anable, 2021; Sfendonis, Basbas, Mintsis, Taxiltaris, & Politis, 

2017; Tretvik, Nordtømme, Bjerkan, & Kummeneje, 2014). While charging schemes aim 

to reduce the flow of traffic within a city, LEZs are defined areas where access by more 

polluting vehicles is restricted or banned, in an attempt to control the technology mix of 

the emitters. There is indeed some evidence that freight transport and fleet composition 

are affected by the implementation of LEZs, but the change, relative to e.g., the national 

average, appears to be short-lived (André, Carteret, Pasquier, & Liu, 2017; Ellison, 

Greaves, & Hensher, 2013; Peters, Burguillo, & Arranz, 2021; Settey, Gnap, & Beňová, 

2019; Ye, Qin, & Chen, 2021). LEZs have been implemented in over 250 European cities in 

the last decade and a half, with varying approaches and rules (Aguayo, Reichmuth, & 

Weintraub, 2021; Cruz & Montenon, 2016). In Berlin (the capital city of Germany, with 3.7 

million people), some of the policies implemented to improve air quality over the past 

decade include a ban on older, high NO2-emitting vehicles on eight highly polluted streets, 

the establishment of a LEZ and the fostering of clean transport modes ((e-)bikes and 

electric buses), among others, and can be understood as a part of the mobility transition, 

reinforced by the Berlin mobility Act of 2018. Although the situation for particulate matter 

has been improving over the last years (EEA, 2018), NO2 exposure is still a serious problem 

(EEA, 2021b).

LEZs and similar policies are under-evaluated in the scientific literature. The study of the 

impact of LEZs may be conducted via modelling exercises, either ex-ante in the planning 

phase or after their implementation (Börjesson, Bastian, & Eliasson, 2021; Carslaw & 

Beevers, 2002; B. Degraeuwe et al., 2021; Dias, Tchepel, & Antunes, 2016; Host et al., 

2020; Keuken, Jonkers, Zandveld, Voogt, & Elshout van den, 2012; Poulhès & Proulhac, 

2021; Sánchez, Ortega, López-Lambas, & Martín, 2021). The number of studies which 

evaluate the impact of LEZs on air quality by means of measurements is limited and the 

conclusions are sometimes contradictory, e.g., Boogaard et al. (2012) and Panteliadis et 

al. (2014) (the Netherlands), H. E. Wood et al. (2015) and Mudway et al. (2019) (London), 

or Ferreira et al. (2015) and Santos, Gómez-Losada, and Pires (2019) (Lisbon). Indeed, the 

effect on air pollutant concentrations, and public health indicators, appears to be of 

diminished importance relative to pre-LEZ levels (Ellison et al., 2013; Ferreira et al., 2015; 

Jianwei Gu et al., 2022; Jones, Harrison, Barratt, & Fuller, 2012; H. E. Wood et al., 2015). 

Therefore, results of such studies are largely affected by which sources of bias are taken 

into consideration and how they are controlled for (Gehrsitz, 2017; Holman, Harrison, & 

Querol, 2015; Malina & Scheffler, 2015a, 2015b) (Morfeld, Groneberg, & Spallek, 2015a, 

2015b). The heterogeneity of the nature of LEZs (e.g., which vehicles are affected or how 

large the LEZ is) further hinders drawing a general conclusion on their effectiveness (Josef 

Cyrys, Wichmann, Rückerl, & Peters, 2018; Holman et al., 2015; Lurkin, Hambuckers, & 

van Woensel, 2021). For example, results from Germany, where light-duty vehicles (LDVs) 
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have been affected by LEZs along with heavy-duty vehicles (HDVs), show a clearer effect 

than in places where only HDVs, and not LDVs, are the subject of policies (Holman et al., 

2015; Jiang, Boltze, Groer, & Scheuvens, 2017; Pestel & Wozny, 2021). In the particular 

case of air pollution, most studies have evaluated the pre- and post-policy levels by means 

of data from monitoring stations (Ferreira et al., 2015; Gehrsitz, 2017). Although suitable 

for large inner-city areas, monitoring data do not have the necessary spatial resolution 

which allows catching the fine nature of the impact of a local policy. Furthermore, 

confounders such as meteorology and pre-policy technological trends, influence the 

outcome of the before/after analysis and are only seldom accounted for in 

measurements-based assessments (Mudway et al., 2019; Salas, Perez-Villadoniga, Prieto-

Rodriguez, & Russo, 2021; Santos et al., 2019; Tartakovsky, Kordova – Biezuner, Berlin, & 

Broday, 2020).  

In the present study, we attempt to overcome the limitations listed above by using 

localized, calibrated, NO2 measurements (from reference instrumentation on a mobile 

platform and static, calibrated, low-cost systems (LCS) and passive samplers), normalized 

to the urban background, to assess the impact of a street closure to motor vehicle traffic 

on air quality. Additionally, we investigate the relevance of sampling location at the micro-

environment scale for exposure assessment. LCS are a popular new technology in the field 

of atmospheric chemistry, especially within the last 10-15 years. Much research has been 

done investigating their accuracy (Cross et al., 2017; Karagulian et al., 2019; Malings et 

al., 2019; Rai et al., 2017; Zimmerman et al., 2018), potential applications (Bigi et al., 2018; 

Castell et al., 2017; McKercher et al., 2017; Morawska et al., 2018), and technological 

advancement (Fishbain et al., 2017; Peterson et al., 2017; Spandonidis et al., 2020), but 

few studies deploy them in a policy evaluation context (Schmitz, Caseiro, et al., 2021). 

Despite current accuracy and precision limitations, LCS are highly versatile are highly 

versatile and offer the possibility a quick information return upon a flexible deployment.  

The policy was implemented by the city of Berlin as a trial in the context of the mobility 

transition. The idea behind the policy was primarily to increase the attractiveness of the 

street, the Friedrichstrasse, thereby increasing the volume of visitors to the heavily 

commercial street. In addition, a new bike-lane would be implemented for cyclists 

traversing the street. This trial street closure was put in place in August 2020 and was 

planned through the end of January 2021. It was later extended until the end of October 

2021. This study presents the results of that measurement campaign and discusses their 

implications. We show that LCS have the ability to quickly inform policymakers about the 

change in ambient air quality produced by a policy. We further show that the sampling 

location must be chosen carefully if the measurements are to be used to assess human 

exposure to urban air pollution.  

 

 

In this study, a variety of instruments were used to gather data on air pollution at the 

study site and generally in Berlin. In the present study, we focus on the measurement of 

NO2, owing to the substantial contribution of vehicle emissions to NO2 concentrations in 

Berlin and urban areas generally. 
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To gather high-resolution data at multiple sites in the study area, three Zephyrs 

manufactured by EarthSense Systems Ltd. were installed on lampposts at about 3 m 

height. These sensor systems contain a variety of components including: 1) 

electrochemical (EC) sensors that measure NO2 and O3; 2) micro-optical sensors for the 

measurement of PM; 3) a global positioning system (GPS) unit; 4) internal temperature 

and relative humidity monitors; 5) an internal fan for air intake and expulsion; 6) a lithium-

ion battery; and 7) a Global System for Mobile Communications (GSM) unit for sending 

logged data to an external database (EarthSense, 2021). These sensor systems are part of 

a new generation of air quality measurement devices that are lower-cost, smaller, and 

easier to use in comparison to standard reference instrumentation. These were installed 

on Glinkastrasse, Friedrichstrasse, and Charlottenstrasse on June 13th, 2020, and provided 

continuous measurements throughout the entire campaign (until January 31st, 2021).  

As the low-cost sensors within the Zephyrs do not directly measure concentrations of 

pollutants such as NO2, they must be calibrated with reference-grade instrumentation. By 

doing so, statistical models can be trained using reference data and the raw data from the 

Zephyrs as response and predictor variables, respectively. To achieve this, the Zephyrs 

were co-located at a BLUME roadside monitoring station (MC117) in Steglitz, Berlin.  Over 

the course of the campaign, four co-locations were performed at the same site. These 

were spaced accordingly with seasonal variation, so as to cover as wide a range of 

meteorological conditions as possible. Statistical models, in this case using multiple linear 

regression (MLR), were then built using the seven-step method (Schmitz, Towers, et al., 

2021b) and were used to predict NO2 concentrations throughout the measurement 

campaign. 

 

In the process of obtaining NO2 concentrations, an uncertainty range in the form of 

upper and lower bounds are also produced. In the present study, the ratio of the average 

upper (lower) bounds to the individual 5-minutes data are 1.31, 1.34 and 1.27 (0.69, 0.65 

and 0.73) for Friedrichstrasse, Glinkastrasse and Charlottenstrasse.  These bounds were 

calculated in the final step of the seven-step method, in which reference instrument error 

was combined with the prediction uncertainty of the statistical MLR models calculated 

during validation with co-location data. As low- cost sensors’ field performance are 

affected by many factors, this calculation produces representatively large ranges of 

uncertainty. However, this uncertainty is associated with the magnitude of changes in 

concentrations, not with the direction of the changes, as the Zephyrs capture the diurnal 

patterns of NO2 concentrations. A first sensitivity analysis was conducted using the upper 

and lower bounds of the individual 5-minutes data as input for the analysis and comparing 

its outcome to the that of the main analysis.  

The seven-step methodology produces NO2 concentrations based on co-location data. Co-

locations within the sampling campaign (co-locations 2, 3 and 4, roughly between June 

13th, 2020 and January 31st, 2021, see Table 4-1) were used for the main analysis. Data 

from three other co-locations (co- locations 1, 5 and 6, see Table 4-1) were added to the 

calibration process and the corresponding NO2 concentrations used as input for the 

analysis for sensitivity analysis purposes. 

To compare results using different methods, the seven-step methodology was used to 

produce NO2 concentrations with MLR and the random forest machine-learning 
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technique (RF). These produced consistent results, but MLR was selected as it more 

accurately captured extreme high and low concentrations, which the RF model did not. 

The analysis was repeated with the RF-based dataset as a third sensitivity analysis to check 

the robustness of the calibration.  

 

As a part of the test phase of the car-free Friedrichstrasse policy, the Berlin Senate 

Department for the Environment, Urban Mobility, Consumer Protection and Climate 

Action (SenUMVK) expanded their network of passive samplers to include more locations 

in the study area.  Of these, three were located on lampposts at about 3 m height one 

block north of the EarthSense Zephyrs on each street and were therefore selected for 

comparison with the Zephyrs (Figure 4-1b).  

Passive samplers capture ambient NO2 as the gas molecules adsorb to a reactive chemical 

on the surface of the tube. This mixture is then extracted and chemically analysed to 

measure the total amount of NO2 collected. All samplers were deployed for periods of 

two weeks, whereafter they were collected for analysis and replaced with new ones. In 

this case, an external lab provided the passive samplers and conducted the laboratory 

analysis. For samplers MP 701 and MP 702, these measurements began on the 16th of 

June 2020 and continued through the end of the campaign. Sampler MP 562 was already 

in place as part of the measurement network run by the SenUMVK and therefore has 

continuous data from well before the start and through the end of the campaign. 

 

In addition to the measurements with passive samplers and EarthSense Zephyrs, 

measurements with reference instruments were conducted on Charlottenstrasse. These 

took place on the same city block as the EarthSense Zephyr installed there. To achieve 

this, three reference-grade instruments were installed in a specially designed e-cargo bike 

(LuftRad) which was parked on the street, allowing for the instrument inlets to face the 

street at about 1–1.5 m height. A GRIMM 11-R mobile particulate matter (PM) monitor, a 

2B-Technologies Ozone Monitor, and a Teledyne T-200 NOx monitor were used to this 

end. The devices were powered by a rechargeable Lithium-ion GreenPack® battery from 

Ansmann AG. Each set of measurements lasted as long as the battery-life, which totalled 

roughly seven hours. In total, five days of measurements using this cargo bike were 

conducted on Charlottenstrasse.  

 

The five BLUME stations used in this analysis employ HORIBA APNA-370 NOX Monitors to 

measure NO2 concentrations in ambient air in accordance with DIN EN 14211 (DIN, 2012). 

For quality assurance, these NOX Monitors are subject to an automatic daily function 

check with NO2 permeation test gas generators, a two-monthly calibration with NO and 

NO2 test gas cylinders and an annual maintenance and adjustment in the BLUME test and 

calibration laboratory (TÜV, 2006). All test gases used are traceable to national standards 

of the German Environment Agency (Umweltbundesamt, UBA). 

 

 

In the present study we have used the pressure and wind speed data measured at three 

stations within, or in the direct vicinity of, the city of Berlin (Berlin Brandenburg, Berlin-

Tegel and Berlin-Tempelhof, see Figure 4-1) and operated by the German Weather Service 
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(Deutscher Wetter Dienst, DWD). The data were downloaded from the DWD Open Data 

Hub (https://opendata.dwd.de/), accessed on August 10, 2021. The vertical temperature 

profiles were retrieved from the DWD Open Data Hub for the Lindenberg station (52.2◦ 

N, 14.1◦ E).  

 

The boundary layer height (BLH) data was retrieved from the Copernicus Atmosphere 

Monitoring Service (CAMS) global greenhouse gas reanalysis (EGG4). The data were 

downloaded from the Copernicus Atmosphere Monitoring Service Atmosphere Data 

Store (ADS) (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-

reanalysis-egg4), accessed on August 10, 2021.  

 

Traffic counters were installed at the intersections between Friedrichstrasse, 

Glinkastrasse and Charlottenstrasse and the perpendicular streets Französische Strasse, 

Jägerstrasse, Taubenstrasse, Mohrenstrasse, Kronenstrasse and Leipziger Strasse (see 

Figure 4-1). This resulted in counts for five segments (a subsection of the street between 

two intersections) for Friedrichstrasse and the parallel streets Glinkastrasse and 

Charlottenstrasse, from North to South: segment 1 (between Französische Strasse and 

Jägerstrasse), segment 2 (between Jägerstrasse and Taubenstrasse), segment 3 (between 

Taubenstrasse and Mohrenstrasse), segment 4 (between Mohrenstrasse and 

Kronenstrasse), segment 5 (between Kronenstrasse and Leipziger Strasse). The traffic 

counts were conducted on seven days throughout the experiment: 2 days before the 

closure of Friedrichstrasse (2020-07-14 and 2020-08-13, Tuesday and Thursday), 4 days 

after the closure and before the lockdown (2020-09-10, 2020-10-06, 2020-11-05 and 

2020-12-15, Thursday, Tuesday, Wednesday, and Tuesday) and one day after the closure 

and during the lockdown (2021-01-21, Thursday). 

 

For this study, several sources of in-situ data from the measurement campaign, as well as 

from the Berlin air quality measurement network (BLUME) were used. The measurement 

site was located in the Mitte city district of Berlin and covers a three by five city-block area 

(Figure 4-1). The car free Friedrichstrasse policy led to the closure of the street to car-

traffic between Französische Strasse and Leipziger Strasse (5 blocks). Within this study 

area, passive samplers and EarthSense Zephyrs were installed on Glinkastrasse, 

Friedrichstrasse, and Charlottenstrasse. These locations were selected to assess the effect 

of the policy on the air quality on Friedrichstrasse itself, as well as on parallel streets 

associated with potential changes in traffic patterns. Also incorporated in this study were 

data collected from measurement stations that are a part of BLUME. Figure 4-1 (upper 

panel) shows the location of four urban background stations (MC 010, MC 018, MC 042, 

MC 171) and one roadside station (MC 117) that were selected for use in comparison to 

the study area. These urban background stations surround the measurement site and 

together were considered representative of urban background conditions for Berlin. 

Relevant dates for the experiment are given in Table 4-1.  
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Figure 5-1 a) Map of the city districts of Berlin, including the locations of the four urban background BLUME 
stations, three meteorological stations, one roadside BLUME station, and the location of the main 
measurement site; b) map of the measurement site, including the location of the passive samplers, the 
EarthSense Zephyrs, and the LuftRad. Highlighted in green is the portion of Friedrichstrasse closed to car traffic 
for the policy. 
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Table 5-1 Relevant dates regarding the sampling campaign. 

 Start End 

Co-location 1 05.02.2020 18.02.2020 

Co-location 2 14.05.2020 02.06.2020 

Experiment start 13.06.2020  

Motorized traffic allowed  21.08.2020 

Co-location 3 24.07.2020 30.07.2020 

Public space adaptation 21.08.2020 28.08.2020 

Reopening without motorized traffic 28.08.2020  

Co-location 4 06.11.2020 18.11.2020 

Stringent lockdown 16.12.2020  

Experiment end  01.02.2021 

Co-location 5 04.03.2021 16.03.2021 

Co-location 6 24.06.2021 07.07.2021 

 

 

 

Figures 5-2, 5-3 and 5-4 show the time series of the Zephyr data at the city centre sites. 

The dashed vertical lines represent the closure and the reopening of the Friedrichstrasse, 

between which arrangements for the new, car-free, street space were implemented. In 

the measurement period before the closure of the Friedrichstrasse, the NO2 hourly 

concentrations measured by the Zephyrs were in the ranges (first and ninety-ninth 

percentiles) 0–56, 0–47 and 0–50 µg.m−3 at Friedrichstrasse, Glinkastrasse and 

Charlottenstrasse, respectively. The concentration ranges when the Friedrichstrasse was 

car-free were 2.7–57, 1.3–59 and 4.2–58 µg.m−3 at Friedrichstrasse, Glinkastrasse and 

Charlottenstrasse, respectively. 

Figure 5-2 NO2 concentration time series at the Friedrichstrasse site. The dots are the hourly values, the line 
shows the daily averages. The dashed vertical lines represent the closure and the reopening of the 
Friedrichstrasse, after which the street was car-free.  The periods without data are the times when the Zephyr 
instruments were taken for co-location. 
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In order to confirm, beyond the calibration procedure, the reliability of the Zephyr data, 

we performed a comparison with the data from the passive samplers deployed one block 

away (see Figure 5-1). The passive samplers have a temporal resolution of two weeks.  

Figure 5-5 presents the comparison of the NO2 concentrations from the passive samplers 

with the average NO2 concentrations and the 10th, 25th, 75th and 90th from the Zephyrs 

during the same two weeks. The datasets compare well given the difference in 

measurement method and measurement location. The passive sampler measurements lie 

within the inter-quartile range of the Zephyr measurements except in three cases, where 

it is slightly outside this range. 

 

Figure 5-6 shows the traffic counts at Friedrichstrasse and the two parallel streets 

Glinkastrasse and Charlottenstrasse. The first two days for which traffic data is available, 

both before the Friedrichstrasse closure, took place during the summer, a time of year 

where traffic intensity throughout the city is lower. The Friedrichstrasse closure is clear in 

the data. The effect of the lockdown is also clear on the counts from 2021-01-21, clearly 

lower (by approximately one third) than the peaks on 2020-09-10, 2020-10-06, and 2020-

Figure 5-3 NO2 concentration time series at the Glinkastrasse site. The dots are the hourly values, the line shows 
the daily averages. The dashed vertical lines represent the closure and the reopening of the Friedrichstrasse, 
after which the street was car-free. The periods without data are the times when the Zephyr instruments were 
taken for co-location. 

Figure 5-4 NO2 concentration time series at the Charlottenstrasse site. The dots are the hourly values, the line 
shows the daily averages. The dashed vertical lines represent the closure and the reopening of the 
Friedrichstrasse, after which the street was car-free.  The periods without data are the times when the Zephyr 
instruments were taken for co-location.  
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12-15. The sampling strategy for the traffic counts does not allow to evaluate if the closure 

of Friedrichstrasse had an impact on the traffic at the two parallel streets. The phenomena 

identified as the sources of the fluctuations at the three streets are expected to uniformly 

impact the city centre as a whole.  

 

 

  

Figure 5-5 NO2 concentration, comparison between the passive samplers and the Zephyrs average, 10th, 25th, 
75th and 90th percentiles over the corresponding passive sampling resolution (two weeks).  
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Vehicles were allowed on the Friedrichstrasse until 2020-08-21 04:00:00, when 

construction started. The street reopened one week later on 2020-08-28 22:00:00, 

without vehicle traffic. In the following analysis, we subtract (on an hourly basis) the 

average urban background (UB) concentration from the concentration measured at the 

experiment sites. UB sites are representative for several square kilometres, influenced by 

the integrated contribution from all sources upwind and not dominated by a single source 

(European Parliament, 2008). The resulting variable is called the NO2 roadside impact and 

can be understood as normalized NO2 concentration. With this approach we not only take 

into consideration the weather variability but also other phenomena which impacted the 

air quality within the city, including the effects of the various COVID-19-related lockdown 

phases, in an effort to isolate the signal produced by the intervention. The UB stations 

considered (Figure 5-1) are: Wedding (MC 010) to the Northwest, Schöneberg (MC 018) 

to the Southwest, Mitte (MC 171) to the East, and Neukölln (MC 042) to the Southeast. 

Figure 5-6 Traffic counts at Friedrichstrasse and the two parallel streets Glinkastrasse and Charlottenstrasse. 
The counts represent the light traffic between 7:00 and 19:00, local time, on 7 days: 2 days before the closure 
of the Friedrichstrasse (2020-07-14 and 2020-08-13), 4 days after the closure but before the lockdown 
measures (2020-09-10, 2020-10-06, 2020-11-05 and 2020-12-15) and 1 day after the closure and during the 
lockdown measures (2021-01-21). The counts are detailed for five segments (see Section 2.3), each 
representing a subsection of the street between two intersections.  
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To test the hypothesis that local concentrations were reduced and became similar to 

urban back- ground levels and in order to disentangle the effects of the intervention and 

that of the stringent lockdown related to the COVID-19 pandemic, we compare the 

concentrations at the three experiment sites with the average of the 4 closest UB stations 

(see Figure 5-1) by means of the Student’s t-test, the Wilcoxon-Mann-Whitney U-test and 

the Kolmogorov-Smirnov test (K-S-test). The null hypothesis of the Student’s t-test states 

that the true difference in means is equal to 0. The null hypothesis of the Wilcoxon-Mann-

Whitney U-test and of the K-S-test (both two-sided) state that both the distributions are 

equal. If the p-value of the test is very low, the null hypothesis is rejected. Table 5-2 shows 

the p-values of the statistical tests conducted to compare the concentrations at 

Friedrichstrasse, Glinkastrasse and Charlottenstrasse with those at the 4 closest UB 

stations. The tests were conducted for the time intervals before (June 16th – August 21st, 

2020), after the intervention without stringent COVID-19 lockdown policies (August 28th 

– December 16th, 2020), and after the intervention with stringent COVID-19 lockdown 

Figure 5-7 shows that before the intervention, NO2 concentrations at the three streets were clearly above the 
urban background on weekdays (Monday to Friday), with a lesser difference on weekends (Saturday – Sunday). 
After the intervention, the concentrations at Friedrichstrasse were clearly lower than before, relative to the 
urban background, with little to no differentiation between weekdays and weekends. For Charlottenstrasse, 
there is a drop on weekends but not so much on weekdays, whereas for Glinkastrasse the increment relative 
to the urban background was maintained after the intervention (weekdays) or even increased (weekends). 
Besides the closure to traffic, the introduction of stringent COVID-19 lockdown policies introduced in mid-
December 2020 is another factor that could have strongly influenced local concentrations.  
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policies (December 16th, 2020 – February 1st, 2021), discriminated by weekdays and 

weekends.  

Table 5-2 Results of the statistical tests (p-value) comparing the measurements in the city centre area and the 
urban background measurements from the Berlin monitoring network. For a simplified reading, p-values which 
indicate a difference are written in red, whereas those indicating a similitude are written in blue. 

  t-test   U-test  K-S-test 

Friedrichstrasse  
   

Before  
   

weekdays (Mon-Fri)  5.8 × 10−39 9.8 × 10−45 0 

weekends (Sat-Sun) 5.4 × 10−2 9.3 × 10−3 9.1 × 10−87 

After, no lockdown     

weekdays (Mon-Fri)  2.3 × 10−1 5.9 × 10−3 1.9 × 10−3 

weekends (Sat-Sun)  1.1 × 10−2 1.1 × 10−3 2.4 × 10−4 

After, lockdown    

weekdays (Mon-Fri)  2.1 × 10−11 2.5 × 10−11 5.1 × 10−11 

weekends (Sat-Sun)  4.4 × 10−7 6.2 × 10−6 2.4 x 10-4 

Glinkastrasse     

Before     

weekdays (Mon-Fri)  3.4 × 10−20 2.3 × 10−35 0 

weekends (Sat-Sun) 5.5 × 10−2 1.1 × 10−2 6.3 × 10−12 

After, no lockdown     

weekdays (Mon-Fri)  3.4 × 10−10 1.7 × 10−21 0 

weekends (Sat-Sun)  1.0 × 10−5 8.2 × 10−9 1.9 × 10−8 

After, lockdown    

weekdays (Mon-Fri)  1.7 × 10−13 4.5 × 10−15 9.0 × 10−14 

weekends (Sat-Sun)  8.4 × 10−5 5.5 × 10−7 2.0 × 10−6 

     

Charlottenstrasse     

Before     

weekdays (Mon-Fri)  2.7 × 10−13 3.7 × 10−20 0 

weekends (Sat-Sun) 1.5 × 10−1 7.2 × 10−3 2.1 × 10−9 

After, no lockdown     

weekdays (Mon-Fri)  2.7 × 10−13 7.2 × 10−22 0 

weekends (Sat-Sun)  3.1 × 10−4 2.6 × 10−6 2.2 × 10−6 

After, lockdown    

weekdays (Mon-Fri)  6.5 × 10−1 5 × 10−1 6.9 × 10−3 

weekends (Sat-Sun)  1.3 × 10−2 6.2 × 10-2 1.4 × 10−1 

 

The density plots (Figure 5-8) of the NO2 concentrations show a difference at 

Friedrichstrasse: before the intervention (blue lines), the concentrations are clearly higher 

than at the UB sites on weekdays, but more similar on weekends. This is confirmed by the 

statistical tests (Table 5-2): the means and the distribution are different before the 
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intervention on weekdays, but similar on weekends. Following the intervention but 

before the hard lockdown was put in place (green lines on Figure 5-8), Friedrichstrasse 

became, in terms of NO2 concentrations, similar to an urban background site, as 

confirmed by the statistical tests (no differences in means and similarity of the 

distributions).  

Before the intervention, the weekdays concentrations at the side streets Glinkastrasse 

and Charlottenstrasse (Figures 5-9 and 5-10, blue lines) were also higher than at the UB 

sites, which is confirmed by the very low p-values. On weekends, concentrations were 

more similar. Unlike for Friedrichstrasse, the intervention (until the stringent lockdown 

policies were put in place) may have had some impact on the concentrations, in that the 

distribution shape is closer to the shape of the distribution at UB. However, the low p-

values indicate that these are not significant.  

After the stringent lockdown policies were put in place (16 December 2020), the very low 

p-values of the statistical tests show that concentrations were again significantly different 

between Friedrichstrasse and the UB, both in terms of averages and in terms of 

distribution.  However, unlike before the intervention, the density plots show that 

concentrations at Friedrichstrasse were lower than at the UB (Figure 5-8, red lines). The 

side street Charlottenstrasse became, in terms of NO2 concentrations, similar to an UB 

site (Figure 5-10, red lines), whereas Glinkastrasse still exhibited higher NO2 

concentrations. A possible explanation for that difference could be that Charlottenstrasse 

is more commercial whereas Glinkastrasse is starting to become more residential. The 

three streets under investigation are dominated by services and residents are very few. 

During the stringent lockdown, with the closure of commerce, traffic probably dropped 

there more than in other parts of the city, leading to localized lower NO2 concentrations.  

 

  

Figure 5-8 Density plots for the NO2 concentration at Friedrichstrasse on weekdays and weekends: before the 
intervention, after the intervention and before the stringent lockdown was put in place, after the stringent 
lockdown was put in place. 
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The seven-step methodology proposed by Schmitz, Towers, et al. (2021b) and used in the 

present work also outputs upper and lower bounds for the individual, 5-minute, 

measurements of the Zephyrs. That range represents the combination of the uncertainty 

from the model and the uncertainty from the reference instrument used to calibrate the 

LCS units. In order to check our results against that particular source of uncertainty, the 

same statistical tests were run with the upper and with the lower bounds of the Zephyr 

measurements. The results are presented in Table 5-3 (for weekdays only). 

The derived p-values show that when using the lower bounds, the NO2 levels at 

Friedrichstrasse are of the same magnitude as those at the urban background before the 

intervention. At Glinkastrasse and Charlottenstrasse the concentrations before the 

intervention are above the urban background level. After the intervention the 

Figure 5-9 Density plots for the NO2 concentration at Glinkastrasse on weekdays and weekends: before the 
intervention, after the intervention and before the stringent lockdown was put in place, after the stringent 
lockdown was put in place.  

Figure 5-10 Density plots for the NO2 concentration at Charlottenstrasse on weekdays and weekends: before 
the intervention, after the intervention and before the stringent lockdown was put in place, after the stringent 
lockdown was put in place.  
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concentrations at the three locations evolve, with the different lockdown situations, 

towards being clearly lower than at the urban background. When considering the upper 

bounds, concentrations in the city centre are always higher than at the urban background. 

This sensitivity analysis shows that the interval given by the seven-step methodology for 

the city centre concentrations measured by the Zephyrs encompasses the urban 

background levels. This highlights the fact that LCS technologies, together with the 

associated evaluation algorithm, are not a replacement for reference hardware and 

although the change produced by the intervention can be evaluated, its exact magnitude 

is uncertain.  

Table 5-3 Results of the statistical tests (p-value) comparing the upper and lower bounds of the measurements 
in the city centre area and the urban background measurements from the Berlin monitoring network 
(weekdays only). 

Lower bounds t-test U -test K-S-test 

Friedrichstrasse    

Before 7.7 ×10−1 3.9 ×10−5 0 

After, no lockdown 1.7 ×10−57 2.1 ×10−69 0 

After, lockdown 1.8 ×10−114 1.5 ×10−100 0 

Glinkastrasse    

Before 7.9 ×10−31 1.6 ×10−47 0 

After, no lockdown 1.4 ×10−56 4.1 ×10−57 0 

After, lockdown 1.6 ×10−47 1.9 ×10−40 0 

Charlottenstrasse    

Before 1.4 ×10−6 3.4 ×10−15 0 

After, no lockdown 3.3 ×10−13 5.7 ×10−13 8.2 ×10−14 

After, lockdown 5.6 ×10−44 2.0 ×10−42 0 

Upper bounds    

Friedrichstrasse    

Before 8.2 ×10−142 3.3 ×10−174 0 

After, no lockdown 8.1 ×10−75 2.0 ×10−106 0 

After, lockdown 3.2 ×10−28 6.7 ×10−26 0 

Glinkastrasse    

Before 5.8 ×10−176 8.2 ×10−200 0 

After, no lockdown 1.1 ×10−164 1.1 ×10−202 0 

After, lockdown 5.2 ×10−156 1.1 ×10−130 0 

Charlottenstrasse    

Before 1.6 ×10−78 2.6 ×10−106 0 

After, no lockdown 3.9 ×10−101 4.8 ×10−133 0 

After, lockdown 1.6 ×10−39 4.9 ×10−36 0 

 

A second sensitivity analysis was conducted using different co-location data. The analysis 

was repeated using data from co-locations 1–6, whereas the main analysis was conducted 

using a calibration derived from data collected during co-locations 2–4 (which occurred 

within the experiment dates). The repeated analysis (Table 5-4) shows a similar trend as 

the main analysis (NO2 concentrations at Friedrichstrasse were higher before the 

intervention, lower after the lockdown measures were put in place and intermediate in-

between). The statistical significance of the relation to the UB NO2 concentrations is 

different: the concentrations at Friedrichstrasse were still significantly higher after the 
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intervention, a situation that only changed when the lockdown measures were put in 

place. We trace back such behaviour to the introduction of higher concentrations in the 

calibration process (the additional co-location periods took place within the city and 

outside the COVID-19-related lockdown) and show the importance of using appropriate 

co-location data, as argued by Schmitz, Towers, et al. (2021b). 

A third sensitivity analysis was done comparing the output from two models: MLR (used 

for the main analysis) and RF (also output in the calibration process). Results from the RF 

model (p-values in Table 5-5) show the same trend as the MLR-based analysis: NO2 

concentrations at Friedrichstrasse were clearly larger than at the UB before the 

intervention, similar after the intervention without lockdown and clearly lower after the 

lockdown measures were put in place. This shows that our findings are robust with 

respect to the model used to derive calibrated NO2 concentrations.  

Table 5-4 Results of the statistical tests (p-value) comparing the NO2 concentrations obtained from 6 co-
location experiments for the city centre area and the urban background measurements from the Berlin 
monitoring network (weekdays only). 

 t-test U -test K-S-test 

Friedrichstrasse    

Before 1.3 ×10−122 1.1 ×10−169 0 

After, no lockdown 1.1 ×10−7 5.8 ×10−16 0 

After, lockdown 4.3 ×10−3 7.3 ×10−3 6.9 ×10−3 

Glinkastrasse    

Before 2.7 ×10−33 8.2 ×10−53 0 

After, no lockdown 3.4 ×10−32 2.9 ×10−53 0 

After, lockdown 9 ×10−40 9.0 ×10−40 0 

Charlottenstrasse    

Before 5.5 ×10−43 1.6 ×10−66 0 

After, no lockdown 3.5 ×10−47 2.0 ×10−71 0 

After, lockdown 1.5 ×10−13 1.3 ×10−12 5.9 ×10−12 
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Table 5-5 Results of the statistical tests (p-value) comparing the NO2 concentrations obtained from random 
forest (RF) models for the city centre area and the urban background measurements from the Berlin monitoring 
network (weekdays only). 

 

t-test U -test K-S-test 

Friedrichstrasse 
   

Before 9.5 ×10−67 7.8 ×10−101 0 

After, no lockdown 4.3 ×10−1 7.9 ×10−2 6.5 ×10−2 

After, lockdown 1.8 ×10−10 2.1 ×10−10 2.5 ×10−11 

Glinkastrasse 
   

Before 2.5 ×10−93 3.3 ×10−145 0 

After, no lockdown 6.4 ×10−16 2.6 ×10−28 0 

After, lockdown 2.9 ×10−7 5.5 ×10−7 3.9 ×10−6 

Charlottenstrasse 
   

Before 2.8 ×10−43 5.4 ×10−79 0 

After, no lockdown 5.4 ×10−14 1.2 ×10−22 0 

After, lockdown 9.6 ×10−1 9.4 ×10−1 5.0 ×10−2 

 

 

At Charlottenstrasse we also conducted measurements with reference-grade air quality 

monitoring equipment installed on a cargo bike (see Section 5.2.1.4). The cargo bike 

measures NO2 near exhaust height (1–1.5 m), closer to the breathing zone than the 3 m 

height at which the Zephyrs are deployed (on lampposts). Figures 5-11 and 5-12 show the 

data from the cargo bike together with the data from the closest Zephyr on the following 

days: Thursday 17 September, Wednesday 30 September, Tuesday 13 October, Monday 

26 October and Saturday 21 November.  

The time series plots (Figure 5-11) show that while the peaks tend to be concurrent in 

time, the concentration closer to the source is much higher than at 3 m height. The 

distribution of the points in Figure 5-12 further confirms higher concentrations at the 

kerbside, but with strong contrast between different days. A larger departure from the 

unity line towards higher kerbside concentrations hap- pens on 30 September and 21 

November than on the other 3 days. Meteorological conditions which favour rapid vertical 

mixing can be one reason for such an observation. A lesser source strength (less 

concentrated traffic) may also influence such an outcome.  
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Figure 5-11 Time series of the NO2 concentrations (5 minutes averages) measured at the lamppost height and 

at the kerbside at Charlottenstrasse on five different days. Time of day is UTC. 
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No direct relationship could be found between the extent of the difference in the peaks 

at the kerbside and on the lampposts and pressure and wind speed (Figure 5-13 and 

Tables 5-7 and 5-6): poor vertical mixing conditions were observed on September 30th 

and October 13th: low boundary layer height (Table 5-7) and a stable atmospheric vertical 

profile. (Figure 5-13). Charlottenstrasse has a roughly N-S orientation, and the sensor was 

located on the western side of the street. Wind direction influences the horizontal 

distribution of NO2 across the street. The most common wind directions, reported in Table 

5-7, do not show any matching pattern with the difference in the peaks at the kerbside 

and on the lampposts. A more complex relationship could possibly be derived, taking into 

consideration the local traffic, besides meteorological variables. However, detailed local 

traffic data is not available.  

  

Figure 5-12 Scatter plot of the NO2 concentrations (5 minutes averages) measured at the lamppost height and 
at the kerbside at Charlottenstrasse on five different days. 
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Table 5-6 Distribution statistics of the NO2 concentrations (5 minutes averages) measured at Charlottenstrasse: 
lamppost (by Zephyr) and kerbside (by T200). 

Date Time Location min P10 P25 P50 P75 P90 max 

17.09.2020 11:25 lamppost 1.6 9.2 12.3 15.8 21 24.3 34.8 

Thursday 19:15 kerbside 4.2 7.6 11.1 16.6 20.8 30.5 60.5 

30.09.2020 10:00 lamppost 10.6 17 23.4 32.9 45.9 57.4 73.6 

Wednesday 16:05 kerbside 13.1 20.8 26 34.7 52.8 71.9 135.8 

13.10.2020 09:30 lamppost 15.7 20.7 26 36.4 45.6 65.8 90.4 

Tuesday 16:15 kerbside 9.8 17.6 23.6 30.4 48.8 59.8 92.1 

26.10.2020 10:30 lamppost 11.7 19.1 22.9 31.3 35.6 39.6 47 

Monday 16:35 kerbside 13.8 21.5 25.7 31.4 39.9 44.9 78.5 

21.11.2020 11:15 lamppost 8.6 11.3 13.6 16.1 19.6 23 30.8 

Saturday 17:40 kerbside 10.1 13.4 14.7 16.5 19 23.2 31.5 

 

Even taking into consideration local meteorology, no clear pattern arises and such results 

highlight the necessity to take into consideration, when assessing the exposure to air 

pollutants in cities, the high temporal and spatial variability induced by the meteorology 

and traffic patterns. This also shows that it is critical to determine measurement location, 

including height, based on the intended application. In this case, the measurement data 

shows that to adequately capture population exposure, a difference of a few meters or 

less in measurement height can have a substantial impact on concentrations, limiting the 

conclusions one can draw with the data gathered. This is reinforced by the complexity of 

the relationship between concentrations relevant for exposure and concentrations 

measured a few metres away vertically.  

Table 5-7 Meteorological conditions measured in Berlin on the 5 days where kerbside measurements were 
made. Pressure, wind speed and direction were measured by the DWD at three stations within the city. The 
range of the averages for pressure and wind speed and the dominant wind directions are given here. Boundary 
layer height (BLH) was obtained from the CAMS reanalysis. 

Date  Pressure (hPa) Wind Speed (m.s−1) Wind Direction BLH (m) 

17.09.2020 1021 – 1023 3.2 – 4.8 N and E 726 

30.09.2020 1010 – 1011 1.1 – 1.5 N, S and W 34.1 

13.10.2020 1009 – 1011 1.8 – 2.9 N, S and W 44.6 

26.10.2020 998 – 1000 2.0 – 2.8 S and W 230 

21.11.2020 1024 – 1025 4.5 – 6.1 S and SW 154 
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This study has identified several key takeaways regarding the connections between 

mobility, health, and air pollution. First and foremost, the results of these measurements 

indicate that mobility policies, such as the street redesign on Friedrichstrasse, which 

removes cars from the street, reduces local emissions of pollutants, such as nitrogen 

dioxide and improves local air quality. That the removal or relocation of large volumes of 

traffic leads to reductions in NO2 emissions has been known for some time. Such changes 

were measured during the Beijing Olympics in 2008 (Kelly & Zhu, 2016; Wang & Xie, 2009), 

have been modelled in various scenario-testing studies (Buchholz, Krein, Junk, 

Heinemann, & Hoffmann, 2013; Bart Degraeuwe et al., 2017; Holman et al., 2015; Sousa 

Santos et al., 2020; Steinberga, Sustere, Bikse, Jr, & Kleperis, 2019) and most recently 

were seen in 2020 as a result of the strict lockdowns in response to the COVID-19 

pandemic (Berman & Ebisu, 2020; Brancher, 2021; Gautam, 2020; Skirienė & Stasiškienė, 

2021; Erika von Schneidemesser et al., 2021). The results presented here are further proof 

that a reduction in vehicle traffic leads to concomitant improvements in local air quality 

but show that this improvement is restricted to levels of urban background pollution in 

heavily trafficked areas. Other studies have shown that reductions in NO2 concentrations 

in connection with traffic- reducing measures may be offset by an associated increase in 

O3 pollution, resulting from lower rates of NOx titration under NOx-saturated regimes 

(Brancher, 2021; Erika von Schneidemesser et al., 2021; Wang & Xie, 2009). To achieve 

further reductions in air pollution in cities such as Berlin would require holistic measures 

on a city-wide scale that address emissions of NO2 from traffic and other key sources, as 

well as regional scale policies that address O3 precursor emissions. 

Figure 5-13 Vertical temperature (T in degrees centigrade) profiles (metres above ground level, m.a.g.l.) at 
Lindenberg during the days where kerbside measurements were taken. The situation evolved from the green 
line to the blue line and towards the red line over the course of the day (6:00 to 12:00 to 18:00 UTC). Green 
lines are not shown for the days when the co-location experiment started after 11:00 UTC. 
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These results further highlight the necessity to consider the high temporal and spatial 

variability induced by changing meteorology and traffic patterns when assessing exposure 

to air pollutants in cities. Other research has identified poor agreement between kerbside 

and ambient air pollution measurements (Audrey de Nazelle et al., 2012; Xu et al., 2017). 

However, we find evidence that even on the same block of the same street, there are 

differences between 3 m height and kerbside measurements, with clear implications for 

the calculation of personal exposure to air pollutants. This indicates it is important to 

carefully consider the impact of measurement location on achieving research goals, and 

that measurements located a few meters away vertically may already truncate the 

knowledge one can obtain about a population’s air pollution exposure. In this case, even 

after taking into consideration local meteorology, only a weak relationship between these 

measurements on Charlottenstrasse arises, reflecting the difficulty to assess exposure 

from concentrations which were not measured at an ideal height but were rather focused 

on understanding broader changes to the area.  

Last, the results captured in this study were enabled by the flexibility of LCS. Since such 

small sensors can be readily deployed in higher numbers at lower cost than reference-

grade instruments, measurement campaigns can now be conducted at higher spatial and 

temporal resolution. While other studies have taken advantage of these characteristics to 

measure in mobile or stationary microenvironments (Lim, Kim, et al., 2019; Lin et al., 

2017b; E. von Schneidemesser et al., 2019b) or to establish higher resolution 

measurement networks (J. M. Barcelo-Ordinas et al., 2019; Mead et al., 2013; Morawska 

et al., 2018), few studies such as this one use LCS to directly measure changes in air quality 

in association with mobility policies (Schmitz, Caseiro, et al., 2021). These types of 

measurements highlight the capacity of LCS to quickly generate valuable insights for 

decision makers regarding changes in air pollution.  

 

Over the course of the past decade, there has been an increasing policy focus on 

mitigating air pollution in German cities. With diesel vehicles accounting for a large 

proportion of air pollutant emissions (NO2 and PM) in cities, policymakers across Germany 

have responded by implementing LEZs and other large-scale policies, with only marginal 

success in improving air quality and human health (J. Cyrys, Peters, Soentgen, & 

Wichmann, 2014; Margaryan, 2021; Pestel & Wozny, 2021). In light of the recent update 

to the WHO recommended air pollutant limit values (WHO, 2021), cities will require new 

policies that are more effective than LEZ to achieve their air quality goals.  This study 

shows that, in the short-term, more stringent policies such as traffic restrictions and street 

closures can also be successful in reducing local emissions and improving air quality. To 

achieve larger scale reductions in air pollutant emissions, such as those seen during the 

lockdowns of the COVID-19 pandemic, cities are likely to require the widespread removal 

of (diesel) vehicles from their streets. To be effective in the long-term, these policies 

should be combined with others that promote the use of public transport and alternative 

mobility options, so as to prevent displacement of emissions and support citizens in 

switching to alternative transport modes. The Friedrichstrasse case-study exemplifies 

how such policies can have measurable impacts on local air pollutant concentrations 

when implemented on a small-scale. With respect to the Berlin Mobility Act and the city’s 

planned mobility transition, improvements in air quality on Friedrichstrasse have already 

contributed to the narrative of this project as a success story that increased the quality of 

life for visitors and residents of the street, also serving as evidence for the need of further 

such policies city-wide (SenUMVK, 2021a, 2021b). To ensure that the impacts of these 
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policies can be properly quantified going forward, policymakers should further seek to 

measure changes in air pollution at a higher spatial resolution and in more appropriate 

locations to better understand the real-world total exposure of their citizens. 

 

There are several limitations to this study. First, while it was planned to also measure O3 

during this campaign, there was a technical failure with the reference instrument used 

during the co-locations that prevented calibration of the raw Zephyr O3 data. Given that 

other studies have found increases in O3 concentrations in connection with traffic-

reducing measures, as described previously, the lack of O3 data in this study prevented us 

from capturing a more complete picture of changes in air pollution in the study site. In 

addition, in the present work we did not study the impact of the Friedrichstrasse car-free 

measure on local concentrations of particulate matter (PM) due to limitations in 

instrumentation, but a comprehensive assessment of the impact of the measure on the 

local air quality would have to include it as well. Last, the practicality and lower cost of 

sensor systems allowed us to conduct this study with a higher spatial resolution of 

measurements than would have been possible with reference instruments. However, LCS 

housed in sensor systems are currently less accurate than reference devices. Although we 

have maximized the accuracy of the data obtained through the LCS and provided 

representative measures of uncertainty, these are still not, in terms of accuracy, a 

technological equivalent to reference methods. Therefore, while the general changes in 

air quality measured in this study are clear, the precise magnitude of the reduction in NO2 

concentrations cannot be determined with precision, as it is shown by the sensitivity 

analysis. Finally, while real-time traffic count measurements were planned, these ended 

up being much more limited, also affecting the analysis.  

 

In the present study, we analyse the effect of an urban intervention – the closure to 

motorized traffic of a street in central Berlin – on the air quality in the vicinity (the street 

proper, Friedrichstrasse, and two parallel, adjacent, side streets not closed to traffic, 

Glinkastrasse and Charlottenstrasse). Nitrogen dioxide concentrations were measured 

with low-cost systems (EarthSense Zephyrs, one on each street) following a thorough 

calibration methodology confirmed by a comparison with passive samplers deployed on 

the same streets. 

From our analysis, we can conclude that the intervention had an impact at 

Friedrichstrasse: the concentrations were brought down to the level of the urban 

background by the intervention, both on weekdays and weekends. At the side streets 

Glinkastrasse and Charlottenstrasse, the concentrations of NO2 after the intervention 

remained higher than the urban background but did not increase relative to the 

concentrations prior to the intervention. After the stringent lockdown policies were put 

in place (16th December 2020), measurements at Friedrichstrasse consistently show lower 

concentrations than at the urban background. At Friedrichstrasse, the stringent lockdown 

signal comes on top of the reduction from the intervention. On the side streets, the 

lockdown brings the concentrations down to the level of the urban background for 

Charlottenstrasse only.  

Our results show that even a relatively small street closure can have a relevant effect on 

air quality. While the hypothesis was that the emissions on side streets would increase, 
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due to car drivers using those streets as alternative routes, this was shown to not be the 

case. We also highlight the difference between measuring at street level versus on 

lampposts at about 3 m height. While suitable for quantifying the change induced by 

altered traffic patterns, for exposure purposes we demonstrate that it is important to 

consider the measurement location carefully, and that it is not straightforward to derive 

exposure-relevant concentrations from measurements taken even a few meters higher. 

The present study was conducted using LCS as the main instruments. The study not only 

demonstrates the utility of such instruments for urban deployments, but also for 

evaluation of policy impacts. Despite the calibration methodology used, which focuses on 

traceability and the maximization of the output concentration accuracy, the 

concentration output comes associated with an uncertainty range too large to precisely 

quantify the change in NO2 concentration associated with the intervention. Instead of a 

precise quantification, our study based on LCS technology was able to deliver a qualitative, 

yet policy-relevant, outcome: closing one street in the city centre to traffic brought the 

NO2 concentrations in that street down to the level of the urban background, without 

adversely affecting the concentrations on surrounding streets. 
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This thesis sought to gain several new insights into gas-phase low-cost sensors, including 

to improve the transparency of their calibration, to understand their suitability for 

measuring urban NO2 and O3 pollution, and to explore new applications for their use, 

including the production of policy-relevant results. Over the course of 2017-2020 four 

extensive measurement campaigns were conducted to answer the core research 

questions posed in this thesis. With these as a framework, this section outlines the key 

findings and outcomes from Chapters 2-5, as well as recommendations for future work. 

With a substantial increase in the number of studies deploying and calibrating LCS in the 

last several years, standardization of calibration protocols has become a central topic to 

this field of research. As outlined in Chapter 2, with further contributions from Chapters 

3-5, this work has achieved several advances with regards to RQ 1. Primarily, the seven-

step methodology was developed and published as open access, demarcating necessary 

steps for successful, transparent calibration of gas-phase LCS. In a step beyond most 

published work on calibration, this methodology exemplified best practices for 

transparency through the reporting of statistical methods and relevant performance 

metrics at each step, especially during data cleaning and model selection, tuning, and 

validation. It also served as an example for future research on how to report calibration 

methods, calling for the calculation of multiple metrics (e.g., R², RMSE, MAE) to critically 

assess model performance. Furthermore, the use of the methodology is not limited to a 

specific statistical model or technique, though examples with multiple linear regression 

(MLR) and random forests (RF) are provided. As such, the seven steps are generalized and 

can be implemented with any model, given that an appropriate level of detail on decision-

making regarding model selection, tuning, and validation is provided. The final step 

established a method for calculating uncertainty associated with the predicted 

concentrations. By utilizing the median MAE calculated during model validation, an 

appropriate range of uncertainty was established using field co-located data, ensuring 

further transparency regarding the accuracy of the LCS measurements. Taken as a whole, 

this methodology exemplified the potential for calibrating LCS with good performance 

without the need for black-box proprietary algorithms or complex machine-learning 

techniques. By publishing all code and data used for the example calibrations in the 

manuscript in an open-access repository, end-users were able to freely access and 

reproduce the methodology presented. 
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With the establishment of this methodology in Chapter 2, a foundation was laid for the 

work conducted in Chapters 3-5. Once properly calibrated with reference instrumentation 

using the seven-step methodology, these LCS were able to generate new results regarding 

the suitability of MOS and EC sensors for the measurement of urban air quality (Chapter 

3), and on the impact of changes to transportation infrastructure on local air quality 

(Chapters 4 and 5). Indeed, the results of these subsequent measurement campaigns 

strengthen the conclusion that the seven-step methodology produces good calibrations 

of gas-phase LCS. Of key importance was the repeated field co-location of Zephyrs with 

reference instruments to account for sensor drift, as well as influences of cross-sensitive 

species and seasonality. As a result of the good quality in training data and the rigorous 

pre-processing in the seven-step methodology, the MLR models used throughout 

Chapters 3-5 performed well in transforming raw sensor data into calibrated NO2 and O3 

concentrations, as discussed with regards to RQs 2 and 3. 

Through the compilation of results generated from several measurement campaigns 

deploying both MOS and EC LCS in street canyons in Berlin, Chapter 3 provided answers 

to the issues raised in RQ 2. Generally, both MOS and EC captured diurnal patterns of NO2 

and O3 well, when compared to reference measurements both on-site and in the urban 

background. Both technologies performed better in measuring O3 than NO2, which in part 

reflected the greater consistency in diurnal patterns of O3 pollution, as they are driven 

more by the confluence of chemistry, transport, and meteorology than for NO2, the 

concentrations of which are strongly influenced by local NOx emissions. The construction 

of generalized additive models (GAMs) using calibrated LCS concentrations and local 

meteorological parameters further confirmed their suitability for urban measurement of 

NO2 and O3, as variance in MOS and EC measurements were explained by meteorology to 

a similar extent as reference measurements across all three measurement campaigns. In 

addition, relationships between calibrated LCS NO2 and O3 concentrations and 

temperature, relative humidity, mixing layer height, wind speed, and wind direction 

agreed with expected relationships from the literature, as well as with reference 

measurements locally and in the urban background. This agreement provided additional 

evidence in support of the hypothesis that EC and MOS sensors properly capture trends 

in urban air pollution and are suitable for use in such environments. 

Of the two technologies, EC sensors perform better than MOS, largely due to reduced 

inter-sensor variability and longer-term stability, with reduced levels of uncertainty 

following calibration. The measurement campaign at Strasse des 17. Juni with MOS 

further showed that their poorer performance worsened in winter, and they exhibited 

increased inter-sensor variability. This was reflected in the uncertainty ranges calculated 

in the final step of calibration, which were larger for MOS than for EC, preventing the 

establishment of clear differences in measurements across sensors at different sites. 

Conversely, EC sensors showed good performance across seasons and measured NO2 and 

O3 more accurately than MOS, indicating their greater suitability for the measurement of 

urban air pollution. In addition, the uncertainty ranges calculated during calibration were 

smaller than for MOS, reflecting longer-term stability and sensitivity of EC in measuring 

NO2 and O3. As a result, this Chapter concluded that the use of MOS for higher spatial 
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resolution measurements is inadvisable and that EC are preferred, but that both can 

provide indicative measurements of NO2 and O3 pollution.  

In Chapter 3, results showed the potential for EC sensors to generate insights into urban 

pollution dynamics. Measurement campaigns on Frankfurter Allee and Kottbusser Damm 

using EC sensors demonstrated that concentrations of NO2 and O3 varied with prevailing 

wind direction, wind speed, and photochemical activity in agreement with published 

results from by computational fluid dynamic (CFD) modelling studies and wind tunnel 

experiments for idealized street canyons. Additionally, LCS measurements produced 

insights into the horizontal and vertical gradients at each site. For example, on Kottbusser 

Damm concentrations of NO2 at street level and on the 4th floor were not statistically 

different, whereas on Frankfurter Allee statistical differences in street level and rooftop 

NO2 concentrations depended on prevailing wind direction. At both sites, evidence was 

found for the important role of photochemistry in local concentrations of O3 and NO2. On 

Frankfurter Allee, O3 concentrations on the southern side of the street were found to be 

substantially lower than on the northern side, regardless of wind direction, and tracked 

well with measurements of internal temperature, a proxy for direct insolation. A similar 

result was found with regards to NO2 concentrations on the eastern and western sides of 

Kottbusser Damm, as daytime NO2 concentrations on the eastern side of the street were 

lower than on the western side and then equalized at night. Taken together, these results 

show that high spatial deployments of LCS not only measure expected patterns of street 

canyon pollution well, but suggest that with further, targeted deployments they could 

also be used to improve or validate urban-scale pollution models. As such, the 

measurement campaigns detailed in Chapter 3 represented both a novel application of 

LCS not yet described in the literature and a pathway to the development of new 

applications.  

Last, in Chapter 5, LCS measurements of NO2 agreed well with on-site reference 

measurements as well as passive samplers. On Glinkastrasse, Charlottenstrasse, and 

Friedrichstrasse, 2-week average NO2 concentrations measured by the Zephyrs showed 

good agreement with the 2-week resolution passive sampler measurements taken 

nearby. As passive samplers have been established as providing reliable measurements 

of NO2 concentrations with uncertainty low enough to measure compliance with air 

quality criteria (Cape, 2009) and show good agreement with chemiluminescence 

reference methods (Atkins, 1986), this lends greater reliability to the LCS measurements 

presented throughout this work. Furthermore, passive samplers have been used in a 

variety of different studies assessing NO2 concentrations in urban environments (Laxen & 

Noordally, 1987; Voordeckers, Meysman, Billen, Tytgat, & M, 2021), indicating that, with 

the agreement shown here between LCS and passive samplers, LCS are suitable for 

measuring urban air pollution. The good agreement between reference NO2 

measurements taken with the mobile reference measurement station (LuftRad) in 

Chapter 5 and the stationary LCS lamppost measurements on Charlottenstrasse also 

underscores this suitability for the measurement of urban air pollution. However, it was 

also shown that while the 3 m height stationary Zephyr measurements capture local NO2 

concentrations well, they did not register the large peaks measured by the roadside 

measurements of the LuftRad. This suggests that 3 m height measurements are neither 

suitable for capturing peak concentrations of NO2 associated with traffic emissions, nor 

for quantifying personal levels of NO2 exposure. These preliminary results open the door 

for future research to investigate even higher spatial resolution patterns of air pollution, 

to better understand true levels of exposure in urban environments. 
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In order to effectively address RQ 3, transdisciplinary methods were utilized in the studies 

described in Chapters 4 and 5. Through collaboration with partners in the Berlin city 

administration and the municipal district administration, the pop-up bike-lane on 

Kottbusser Damm, the community space on Böckhstrasse, and the transformation of the 

Friedrichstrasse to an open space for pedestrians and bicyclists were identified as policies 

of interest for which quantifying impacts on air quality would be of added value to 

decision makers. To this end LCS’ flexibility in deployment due to their small size and lower 

maintenance costs was exploited to design measurement campaigns in connection with 

these measures. On Kottbusser Damm, this involved the deployment of Zephyrs on 

lampposts along the street, as well as in mobile measurements mounted on bicycles; on 

Böckhstrasse, one Zephyr was deployed on the 1st floor balcony of a primary school 

located in the section of the community space; on Friedrichstrasse, Zephyrs were 

deployed at the site of the street closure, as well as parallel to it on two side-streets. Using 

sets of before-and-after measurements, these campaigns produced valuable results 

regarding each policy’s impacts on local NO2 pollution.  

Through the mobile measurements conducted on the bike lane on Kottbusser Damm, a 

reduction of 8.4 ± 7.4 µg.m-³ in the median normalized NO2 concentrations was measured 

following its implementation, with no substantial reduction measured on the side-streets. 

At the 95th percentile, this reduction was 14 ± 7.4 µg.m-³, with a slight increase on side-

streets. While the uncertainty in the exact values was notable, their trend was clear: 

cyclists’ exposure to NO2 pollution was reduced through the introduction of a protected 

bike lane, especially for peak concentrations. On days where the community space on 

Böckhstrasse was implemented, a reduction in median normalized NO2 concentrations of 

3.7 ± 11.2 µg.m-³ was measured. Again, the trend was towards an improvement, but the 

propagated uncertainty range was too large to reach a definitive conclusion on this 

policy’s impact on local air quality. On the Friedrichstrasse, following the transformation 

of the street space and removal of vehicle traffic, local NO2 concentrations were reduced 

to the level of the urban background. On the side-streets, there was no increase in NO2 

concentrations following the implementation of the open space, providing evidence that 

displaced vehicle traffic did not increase pollution on adjacent streets.  

These results proved to be robust assessments of the impacts of mobility policies on local 

air pollution, proving the value of LCS to research for science-policy. Furthermore, similar 

deployments using measurement techniques such as reference instruments or passive 

samplers would have been more expensive and likely logistically infeasible in the former 

and at very low temporal resolutions in the latter. As such, the unique flexibility, high 

temporal resolution, and lower cost of LCS made them the best choice for deployment 

alongside the implementation of these mobility policies in Berlin. Last, through 

continuous collaboration with the local city administrators responsible for carrying out 

and assessing these policies, the results were quickly discussed with decision makers and 

other interested societal actors, highlighting the important role played by 

transdisciplinary methods in successfully addressing RQ 3.
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Since their introduction to the field of atmospheric science, low-cost sensors have 

expanded rapidly into a host of new applications, including the establishment of high 

spatial resolution measurement networks (Popoola et al., 2018), personal exposure 

measurements (Jerrett et al., 2017), citizen science (Ripoll et al., 2019), and even 

environmental justice (Tanzer, Malings, Hauryliuk, Subramanian, & Presto, 2019). Much 

of the research so far has concentrated on the lowest hanging fruit of these applications, 

such as establishing higher spatial resolution LCS networks or getting them in the hands 

of citizen scientists for identification of pollution hot spots. As such, progress in expanding 

the literature on potential applications has slowed, with much of the focus still given to 

ideas presented a decade ago (Snyder et al., 2013). In a step towards filling this gap, the 

work presented here harnessed the unique features of LCS to investigate two heretofore 

unexplored lines of research.  

First, as described predominantly in Chapter 3 but underscored in Chapters 4 and 5, the 

concept of deploying LCS at high spatial resolution was expanded upon with targeted 

deployments in street canyons to investigate local patterns of pollution. Previous research 

conducting measurements in street canyons relied either upon high spatial and low 

temporal resolution measurements at low-cost with passive samplers (Dėdelė, Miškinytė, 

& Česnakaitė, 2019; Voordeckers, Meysman, Billen, Tytgat, & Van Acker, 2021) or low 

spatial but high temporal resolution measurements with expensive reference instruments 

(S.-B. Park et al., 2015). This work has highlighted the potential for LCS to produce both 

high spatial and high temporal resolution measurements in street canyons with relative 

ease and at comparably low cost. Furthermore, results of these measurement campaigns 

indicated not only that LCS can reliably measure expected street canyon concentrations 

of NO2 and O3, but that they can identify new insights into their dispersal based on 

morphology and meteorology. With these results as a foundation, future research could 

expand the knowledge base with measurement campaigns in new urban environments 

with diverse topologies to improve our understanding of urban-scale air pollution. In 

addition, these measurements could be coupled with models to validate their results and 

inform their continued development. 

The second novel application of LCS explored in this work, the coupling of measurements 

to changes in mobility infrastructure to provide policy advice, was enabled by the success 

of the first. In demonstrating that LCS could measure high spatial resolution distributions 

of NO2 pollution reliably and with good accuracy, Chapter 3 paved the way for the 

production of policy-relevant results in Chapters 4 and 5. As cities change their 

transportation infrastructure to accommodate more sustainable forms of travel in their 

pursuit of carbon neutrality, these transformations will have added benefits for local air 

quality and human health (Pisoni et al., 2019). Therefore, measuring the extent to which 

such changes improve air quality and human health will only become more important in 

the near future for decision makers seeking to evaluate these policies. In this regard, this 

work has highlighted the potential for LCS to directly measure impacts of mobility policies 

on local air quality, filling an important research gap and providing a foundation for future 

research in science-policy for years to come. 
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As detailed throughout this thesis, a substantial body of research has emerged in the last 

several years investigating a host of different methods for the calibration of LCS. While 

many have found success, they often come at the cost of transparency, such as when 

using machine-learning techniques with black-box algorithms (D. E. Williams, 2019), or 

with substantial transformation of the original raw data signal, such as with double-

calibration involving multiple statistical models (Cordero et al., 2018) or with a data fusion 

approach (Okafor, Alghorani, & Delaney, 2020). In addition, these methods risk overfitting 

the models to the training data, as recent research suggests (Russell et al., 2022). Overall, 

given the discrepancies between studies in 1) the level of transparency in reporting 

methodological choices, 2) the use of performance metrics, 3) the treatment of data and 

fusion of external parameters, and 4) experimental conditions, it is currently challenging 

to discern clear best practices for calibration.  

However, thanks to recent efforts, some advances have been made towards 

standardization of calibration protocols and determining best practices for use of LCS. In 

particular, two recently published reports from the World Meteorological Organization 

(WMO) on LCS provide a helpful overview on cost, applications, calibration methods, and 

technologies, including a small set of generalized best practices in deployment (Lewis et 

al., 2018; Peltier, 2020). Another helpful resource is Schneider et al. (2019), which makes 

recommendations for a hierarchical classification of processing levels for LCS 

measurements based on the treatment of data and parameters used in calibration. With 

regards to calibration methodologies, only a handful of studies provide an overview of 

existing methodologies used in the literature (e.g. (Jose M. Barcelo-Ordinas et al., 2019; 

Delaine, Lebental, & Rivano, 2019)), but do not go so far as to establish a recommended 

calibration protocol.  

To fill this gap, the seven-step methodology developed in this thesis has taken several 

strides towards establishing best practices and standardizing calibration protocols. 

Primarily, it transparently codifies the steps needed to effectively process and calibrate 

LCS raw data in a pairwise fashion with reference instrumentation. In addition, the code 

and data necessary to reproduce the examples provided in Chapter 2 are open source, 

with over 70 downloads to date (https://zenodo.org/record/4317521, last accessed 

13.10.2022). The work has already been taken up in the research community as in one 

recently submitted paper where the seven-step methodology was implemented for the 

re-calibration of LCS to measure particulate matter in Grenoble, France (Aix, Schmitz, & 

Bicout, 2022, Submitted). Second, the examples provided in Chapter 2, as well as the 

results from Chapters 3-5, show that the seven-step methodology can produce 

meaningful, reliable concentrations of NO2 and O3 with representative ranges of 

uncertainty without the need for complex machine-learning techniques. Instead, this 

work emphasizes the value in using well-understood statistical methods such as MLR 

combined with rigorous scrutiny of raw data to calibrate LCS. This suggests further that 

future research seeking to improve LCS accuracy should focus less on developing new, 

complex statistical methods and more on the technology itself, including sensor system 

design (Russell et al., 2022; David E. Williams, 2020). Last, it joins in the call for the 

consistent reporting of performance metrics to ensure agreement and comparison across 

studies (Jose M. Barcelo-Ordinas et al., 2019). If the best practices and seven-step 

methodology put forth in this work continue to be taken up in the research community, 

they can serve as a foundation for future efforts to standardize protocols for the pairwise 

calibration of LCS with reference instrumentation.  

https://zenodo.org/record/4317521
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Of the several key contributions of this research to the body of literature, the deployment 

of LCS alongside mobility policies is perhaps the most important, as it contributes useful 

results in both scientific and societal discourse. As explored previously, air pollution can 

be considered a ‘wicked’ problem that pervades most aspects of human society. 

Improving air quality, particularly in cities, will require action across all levels of 

government. At the international, regional, national, and local scales, new policies must 

be implemented to reduce emissions of primary air pollutants (e.g. NOx), and reduce the 

production of secondary pollutants (e.g. O3, PM2.5). While atmospheric models and 

regional monitoring networks can inform macro-scale policies, up until now there have 

been few effective methods for directly assessing the influence of local-scale measures. 

As exemplified with the case studies on Kottbusser Damm and Friedrichstrasse, this work 

has provided local decision makers with a new tool for assessing the impact of small-scale 

policies on air pollution and informing their further development. While still inappropriate 

for measuring compliance with air quality limit values, it is now clear that LCS can be 

deployed alongside mobility policies to measure changes in air quality resultant from their 

implementation. This is especially relevant in the context of German cities such as Berlin, 

that are currently attempting a mobility transition away from fossil-fuel powered vehicles. 

In these cities, many policies take the form of changes to physical mobility infrastructure 

and are implemented in large part by local policymakers and administrators, with 

substantial input from citizen actors (D. von Schneidemesser et al., 2020). It is precisely at 

this scale where the information LCS can provide is most needed, including in supporting 

the further uptake of such measures and contributing to efforts to reduce air pollution 

and its harmful impacts on society. 

To achieve the goal of providing policy-relevant results to decision makers, this work 

profited directly from the implementation of transdisciplinary methods. This work made 

particular use of the three general phases of transdisciplinary research: Phase 1, problem 

framing and team-building, Phase 2, co-creation of solution oriented transferable 

knowledge, and Phase 3, re-integration and application of created knowledge (Lawrence 

et al., 2022). Prior to the conceptualization of the measurement campaigns on Kottbusser 

Damm and Friedrichstrasse, a network was established with relevant actors from the NGO 

Changing Cities e.V., the Berlin Senate Department for the Environment, Urban Mobility, 

Consumer Protection and Climate Action (SenUMVK), and the Friedrichshain-Kreuzberg 

city district Department for Roads and Parks. Together with these actors during Phase 1, 

attention was drawn to the policies planned for Kottbusser Damm and Friedrichstrasse 

and the need for accompanying measurements of air quality was established. In addition, 

in connection with the pop-up bike lane on Kottbusser Damm, an interdisciplinary team 

of researchers from RIFS (the LuftMODE project; Luftqualität, Mobilität und Demokratie; 

English: Air quality, mobility, and democracy) was assembled to measure the various 

environmental, societal, and political effects of the policy (Becker et al., 2022). With 

respect to the removal of vehicles from the Friedrichstrasse, the measurements of air 

quality described in Chapter 5 were part of an interdisciplinary assessment of the impacts 

of the measure on businesses, traffic, and the environment, conducted in large part by 

the SenUMVK (SenUMVK, 2022a). These interdisciplinary efforts in both case studies 

comprised the core of Phase 2 of the transdisciplinary research process.  

In the final Phase 3, both official reports and scientific publications were used to 

communicate and integrate the knowledge gained from each measurement campaign 

into public, academic, and political discourse. For the Kottbusser Damm campaign, an 
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initial press release with an accompanying report was published by RIFS and the Berlin 

Senate detailing the pop-up bike lane’s impacts on air pollution exposure for cyclists (E. 

von Schneidemesser, Schmitz, & Caseiro, 2021), and two peer-reviewed articles were 

published. Schmitz et al. (2021) described the specific impacts of the measure on local air 

quality and cyclists’ air pollution exposure, as detailed in Chapter 4 of this thesis. Becker 

et al. (2022) compiled the results of the interdisciplinary LuftMODE research group, 

ultimately providing commentary on the nature of the policy-making process itself, 

recommending that decision makers adopt a learning-by-doing approach to new policies 

to encourage their more rapid uptake following major disruptions such as the COVID-19 

pandemic. With regards to the Friedrichstrasse measurement campaign, the results were 

directly taken up in the SenUMVK’s final report on the policy’s impact on businesses, 

traffic, and the environment (SenUMVK, 2022a). This report was used as a primary basis 

for decision makers to gauge the success of the policy, using its key messages, including 

the improvements in air quality, to justify the permanent implementation of the car-free 

zone on Friedrichstrasse (Thomsen & Lühmann, 2021, 2022). The accompanying peer-

reviewed article on the impacts of the policy on local air quality, as detailed in Chapter 5, 

prepared the results for uptake in academic discussions. Last, in both case studies, the 

results of this research were taken up into public discourse on the future and success of 

these policies, particularly by the German media (Goldstein, 2021; Tagesspiegel, 2022). As 

the mobility transition progresses and discussions on the associated importance of air 

quality provoked by this thesis continue, new knowledge gaps and thereby more avenues 

for future research will open, providing a basis for the transdisciplinary process to being 

anew. This thesis thereby represents an example in the application of transdisciplinary 

methods to produce policy-relevant results.  

 

There are several directions in which future research should expand upon the work 

presented here. First, the open-source calibration of LCS should be further encouraged to 

contribute best practices towards their standardization. While this work highlighted an 

avenue for achieving this with gas-phase sensors, new research can focus on applying the 

seven-step methodology to LCS for the measurement of PM, as well as to alternative gas-

phase MOS and EC sensors from manufacturers not assessed in this work. In addition, 

following suit with this research, more studies should publish the data and code 

associated with their calibration methodologies in open-source repositories, to ensure 

greater transparency and transferability of results to end-users, ultimately assisting 

efforts at standardizing calibration methodologies. Most importantly, further research 

seeking to improve LCS performance following calibration should transition away from 

developing ever more complex black-box methodologies and focus on improving 

hardware, especially with regards to sensor sensitivity and selectiveness to specific 

species. 

Second, this research opened up a new application for LCS in the high-resolution 

measurement of air pollution in urban environments. While this study presented 

promising preliminary results as to the new insights such LCS measurements could 

provide, future research can confirm or expand upon them by deploying LCS in a host of 

new environments with unique morphologies. Ideally, this could take a similar form as the 

large-scale measurement campaign with passive samplers described in Voordeckers et al., 

(2021), in which micro-scale pollution dynamics were described in a variety of different 

street canyons with differing aspect ratios. In addition, while this research was able to 

measure NO2 and O3 with LCS effectively, the results could be expanded by including other 
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important urban air pollutants such as PM and CO, both of which can be measured with 

existing LCS technologies. New research would ideally also assess the distribution of VOCs 

in these environments, given their importance in urban chemistry, but most currently 

available technologies show a lack of appropriate sensitivity and are not selective to 

particular species to be truly of value (L. Spinelle, Gerboles, Kok, Persijn, & Sauerwald, 

2017). Future studies should also investigate coupling LCS measurements with urban-

scale air pollution models, to assess LCS’ potential for validating model results and 

informing their further development.  

Last, as shown in this work, LCS have great potential for use in both transdisciplinary 

research and in science-policy. Future research should continue to take advantage of this 

by working with partners in policy, practice, and industry (e.g., decision makers, NGOs, 

manufacturers) to identify further gaps in knowledge with regards to the impacts of 

societal transformations on air quality and co-create the knowledge necessary to fill them. 

While this work has provided two case studies utilizing such a research approach to 

provide policy-relevant results, it by no means serves as the only example. Future 

research could include, for example: 1) citizen science applications in which LCS are put in 

the hands of various end-users to measure local air pollution and its sources; 2) campaigns 

assessing personal levels of exposure to air pollution during daily routines in conjunction 

with health data, or 3) continued assessment of new mobility policies to assess their 

impacts on emissions and concentrations of multiple air pollutants, as opposed to the 

focus placed on NO2 in this work, thereby expanding understanding of how mobility 

policies influence air quality.  

 

This thesis has filled several research gaps in the field of low-cost sensors, including their 

calibration, reliability in measuring urban air pollution, and potential applications, 

including through transdisciplinary research and the production of policy-relevant results. 

With data captured during four unique measurement campaigns in different urban 

environments in Berlin from 2017-2020: 1) an open-source methodology for the 

calibration of MOS and EC gas-phase LCS was developed, 2) LCS suitability for measuring 

high spatial resolution concentrations of NO2 and O3 in street canyons was quantified, and 

3) three different mobility policies were assessed for their impact on local air quality as 

case studies in LCS’ potential for use in transdisciplinary research in science-policy. Key 

results include:  

- An open-source, seven-step methodology for the calibration of gas-phase LCS was 

developed, with code and data provided in an online repository. Examples of 

calibration were provided using multiple linear regression (MLR) and random 

forests (RF), finding that both performed well against new experimental data, but 

recommended MLR for use, as it is better understood than RF and can predict 

outside of the range of the training data, which RF cannot (Chapter 2). 

 

- Several best practices for the calibration of gas-phase LCS were established. These 

include 1) the transparent reporting of methods used for model selection, 

validation, and tuning; 2) the use of R², mean average error (MAE), and root mean 

squared error (RMSE) as model performance metrics to enhance comparability 

across calibration studies; 3) rigorous pre-processing of raw sensor data, including 

outlier removal and data flagging; and 4) the use of median MAE from model 
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validation with subsets of co-location data to produce a representative measure 

of predictive uncertainty (Chapter 2). 

 

- As the first study of its kind, LCS were deployed in two novel applications in 

several experiments in Berlin, including to measure high spatial resolution 

patterns of air pollution in street canyons and in connection with mobility 

measures to produce policy-relevant results. Results from these campaigns 

indicate not only that LCS are suitable for these applications, but that they can 

provide valuable insights into urban NO2 and O3 pollution and its intersection with 

mobility policy (Chapters 3 – 5). 

 

- Gas-phase LCS such as MOS and EC can be effectively calibrated in pairwise 

fashion with reference instrumentation to reproduce urban concentrations of 

NO2 and O3. Of the two technologies, EC perform better in measuring both NO2 

and O3, with MOS subject to greater inter-sensor variability and instability. Of 

these two species, O3 can be calibrated more reliably, especially in the summer 

(Chapters 2 + 3).  

 

- EC sensors can capture high spatial resolution variability in street canyon NO2 and 

O3 pollution in agreement with expected patterns resultant from the confluence 

of urban morphology, meteorology, and chemistry. Results highlight the 

important role played by wind direction, wind speed, and photochemistry in 

diurnal concentrations of NO2 and O3 in street canyons and suggest that LCS can 

be used to develop and validate urban-scale pollution models (Chapter 3). 

 

- Measurements of NO2 during the Friedrichstrasse campaign with EC sensors 

agreed well with nearby passive sampler and reference measurements, further 

underscoring LCS suitability in measuring air pollution. Stationary measurements 

on Charlottenstrasse at 3 m height did not capture peaks in NO2 concentrations 

measured at roadside by the LuftRad, suggesting that 3 m height measurements 

do not reflect true street-level exposure to NO2 (Chapter 5). 

 

- In two case studies in Berlin, changes in local air quality were assessed in 

connection with three unique mobility policies using stationary and mobile 

measurements. Results show: 1) the implementation of a pop-up bike lane on 

Kottbusser Damm reduced cyclists’ median NO2 exposure by 8.4 ± 7.4 µg.m-³,  2) 

the creation of a temporary community space on Böckhstrasse reduced median 

concentrations of NO2 by 3.7 ± 11.2 µg.m-³ during times when it was in place; and 

3) the opening of the Friedrichstrasse to pedestrians and restriction of vehicle 

traffic resulted in local NO2 concentrations being reduced to the level of the urban 

background, with no significant increases on parallel side streets (Chapters 4 + 5). 

 

- Through the application of transdisciplinary methods involving the co-creation of 

results with partners in policy and practice, this work highlighted the potential for 

LCS to provide timely, policy-relevant advice for decision makers regarding local 

changes in air quality. It also serves as an example for future work seeking to 

engage in transdisciplinary research (Chapters 4 + 5).
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