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General Summary
The shallow Earth’s layers are at the interplay of many physical processes: some being
driven by atmospheric forcing (precipitation, temperature...) whereas others take their
origins at depth, for instance ground shaking due to seismic activity. These forcings cause
the subsurface to continuously change its mechanical properties, therefore modulating
the strength of the surface geomaterials and hydrological fluxes. Because our societies
settle and rely on the layers hosting these time-dependent properties, constraining the
hydro-mechanical dynamics of the shallow subsurface is crucial for our future geographical
development. One way to investigate the ever-changing physical changes occurring under
our feet is through the inference of seismic velocity changes from ambient noise, a technique
called seismic interferometry. In this dissertation, I use this method to monitor the
evolution of groundwater storage and damage induced by earthquakes. Two research
lines are investigated that comprise the key controls of groundwater recharge in steep
landscapes and the predictability and duration of the transient physical properties due
to earthquake ground shaking. These two types of dynamics modulate each other and
influence the velocity changes in ways that are challenging to disentangle. A part of my
doctoral research also addresses this interaction. Seismic data from a range of field settings
spanning several climatic conditions (wet to arid climate) in various seismic-prone areas
are considered. I constrain the obtained seismic velocity time-series using simple physical
models, independent dataset, geophysical tools and nonlinear analysis. Additionally, a
methodological development is proposed to improve the time-resolution of passive seismic
monitoring.
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Allgemeine Zusammenfassung
Die oberflächennahen Erdschichten sind ein Zusammenspiel vieler physikalischer Prozesse:
Einige werden durch atmosphärische Einflüsse (Niederschlag, Temperatur...) angetrieben,
während andere ihren Ursprung im Untergrund haben, beispielsweise Bodenerschütterungen
aufgrund seismischer Aktivität. Diese Kräfte führen zu sich ständig ändernden
mechanische Eigenschaften des Untergrunds, und damit auch Änderungen der Festigkeit
der Geomaterialien der Oberfläche, sowie der Wasserflüsse. Als Gesellschaft leben wir auf
der Erdoberfläche, und sind auf diese zeitabhängigen Eigenschaften angewiesen. Für unsere
zukünftige, geographische Entwicklung ist es daher essentiell, die hydromechanischen
Dynamiken des flachen Untergrunds zu verstehen. Eine Möglichkeit, die sich stetig
ändernden physikalischen Eigenschaften unter unseren Füßen zu untersuchen, ist die
Ableitung seismischer Geschwindigkeitsänderungen aus dem Umgebungslärm, mit Hilfe
einer Technik namens seismische Interferometrie. In dieser Dissertation verwende ich
diese Methode, um die Entwicklung der Grundwasserspeicherung, sowie durch Erdbeben
verursachte Schäden zu untersuchen. Es werden zwei Forschungslinien untersucht, diese
umfassen die Hauptkontrollen der Grundwasserneubildung in steilen Landschaften und
die Vorhersagbarkeit und Dauer der transienten physikalischen Eigenschaften aufgrund
von Erdbebenerschütterungen. Beide Dynamiken beeinflussen sich gegenseitig, sowie die
Geschwindigkeitsänderungen im Untergrund in einer Weise, die schwer zu entschlüsseln ist.
Ein Teil dieser Doktorarbeit behandelt daher auch diese Wechselwirkung. Wir verwenden
seismische Daten, die unter verschiedenen klimatischen Bedingungen (feuchtes bis trockenes
Klima) in mehreren, seismisch gefährdeten Gebieten erhoben wurden. Die gewonnenen
seismischen Geschwindigkeitszeitreihen werden mit Hilfe einfacher, physikalischer Modelle,
unabhängiger Datensätze, geophysikalischer Instrumente und nichtlinearer Analysen
untersucht. Darüber hinaus wird eine methodische Entwicklung vorgeschlagen, um die
zeitliche Auflösung des passiven, seismischen Monitorings zu verbessern.
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Extended Summary
The Earth’s surface is restless: the landscape always changes its shape and provides
resources for our societies at variable rates. Some of the drivers of this overall time-
evolution come from above the surface in forms of changing atmospheric conditions e.g
precipitation, temperature. The other drivers originate from the opposite direction, at
depth, and are caused by tectonic forces. These forces generate intermittent earthquakes,
which generate ground shaking at the surface during the passage of seismic waves. All these
external forcings induce time-dependent physical changes of the invisible shallow Earth’s
subsurface properties and modulate visible critical environmental surface features such
as landslides rates or the availability of freshwater. Therefore, probing and constraining
the state of the time-dependent subsurface at regular time-intervals are keys to anticipate
spatial planning and environmental management.

In this dissertation, I estimate relative seismic velocity changes at high temporal
resolution (from one day to one minute time-step) with seismic ambient noise correlations
to study the hydro-mechanical evolution of the shallow subsurface. This technique, called
seismic interferometry, is sensitive to the integrated physical state of the subsurface and
has the advantage of using passive sources of energy at the Earth’s surface. I employ an
interdisciplinary approach in which I combine my seismological analyses with independent
climatic and surface observations, geochemistry, simple empirical and physical modelling and
other geophysical methods. The resulting work spreads over four studies from the Nepalese
Himalayas to the Atacama desert in Chile. This range of geological and environmental
conditions allows me to investigate the dynamics of groundwater in mountains and the key
controls of earthquake damage due to seismic ground shaking. I also explore the interactions
between the two topics and advance our understanding of seismic interferometry methods.

First, I focus my attention on a steep catchment of the Nepal Himalayas to investigate
the groundwater recharge and discharge generation due to the Indian Summer Monsoon.
I demonstrate the importance of the superficial moisture reservoir, often overlooked in
mountainous environments, in controlling the hydrological fluxes. In this study, I test
whether this reservoir has an impact on groundwater recharge in mountainous environments.
For three monsoon seasons, I measure several parameters including relative seismic velocity
changes, hydrological measurements and geochemistry. The obtained data shows that
pre-monsoon precipitation does not affect discharge and groundwater storage and instead
recharges the subsurface moisture reservoir. The onset of groundwater recharge only occurs
when the superficial reservoir reaches saturation. A simple model accounting for this
dynamics is proposed to model the resulting seismic velocity changes.

In a second study, I use the same Nepalese data and my local hydrological model to
constrain the impact of the 2015 Mw 7.8 Gorkha earthquake on the subsurface. I quantify
the effect of the relaxation phenomenon, in which the recovery of material properties
after earthquake damage is not instantaneous. By fitting the velocity data, I model the
transient damage effects (expressed as a drop followed by a postseismic recovery in the
velocity changes) with a universal relaxation function that contains a unique maximum
relaxation timescale for the main shock and the aftershocks, independent of the ground
shaking intensity. The hydrological model is then used to study the residuals obtained with
this assumption and characterise another transient behaviour, interpreted as an enhanced
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Extended Summary

permeability. These results indicate that the coupling between hydrological properties
and the non-linear mechanical recovery after earthquake damage can be disentangled with
seismic interferometry and that the relaxation phenomena may not be dependent on ground
shaking.

Moving away from the wet Himalayan conditions, I process seismic data from a dense
array located in the Atacama desert of Chile in a third study. The dry conditions allow
me to focus on constraining the effect of ground shaking on subsurface properties without
hydrological effects. Seismic velocity changes were estimated at a 10-minutes resolution for
a two weeks period. A moderate ground shaking event (PGV ∼ 1 cm/s) induced a velocity
drop of ∼0.5% at this time resolution and was succeeded by a two-days recovery. With the
16 stations array, I test for the ergodic property of seismic interferometry, which permits
to observe the recovery due to the relaxation down to a one-minute resolution. Moreover, I
combine this analysis with imaging and inversion techniques to show that the relaxation
phenomenon at this site is located in hard rocks in the first 200 m.

Finally, I address the predictability of the duration of the relaxation phenomena after
earthquake damage. I analyse the successive effect of two large earthquakes (the 2007 Mw
7.7 Tocopilla and 2014 Mw 8.2 Iquique earthquakes) on seismic velocity changes. After
quantifying the recovery timescales after these two events and their aftershocks, I propose
that the relaxation duration is a function of the current state of the subsurface when
perturbed by earthquakes. This interpretation suggests that earthquake damage dynamics
in the Earth’s near-surface is predictable. I reconcile my observations with existing physical
frameworks by considering the superposition of different populations of damaged contacts
and voids, each with their own timescales of recovery, in the subsurface.

All together, these studies push further our understanding of the time-dependent
properties of the shallow subsurface through the study of two parameters ubiquitous
to the near-surface: the water content and voids/cracks dynamics. I show that these
parameters are coupled in the field and are better understood with an interdisciplinary
approach. Despite this complexity, the simple models brought in this dissertation reproduce
the first-order evolution of the relative seismic velocity changes and highlight the salient
features to investigate in future research: the location, type and storage of water reservoirs
in the near surface and the characterisation of the density and distribution of flaws within
these shallow layers. These modulate the delivery of exploitable water and the long-term
response to seismic ground shaking.
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Chapter 1

Introduction
We all have made the experience of travelling back to a cherished place but only soon to
realise that the landscape has changed: our favorite secret place is now a distant childhood
memory. There are no natural systems that are fixed in time. This is a striking feature
of Earth surface observations: if one waits long enough, everything will move from the
pebble in the river to the large landslide that gave up to gravity. These time-dependent
behaviours directly impact how our societies settle, rely and interact with the Earth’s
surface and its shallow layers. As a consequence, taking a fixed snapshot of these processes
is undeniably not sufficient to make accurate predictions.

In this thesis, I have focused my attention to understanding the impact of major
external forcings of the Earth’s surface. Some of these driving perturbations come from
above in forms of precipitation or temperature changes. On the other side, the landscape is
constrained from below by tectonic forces inducing incoming seismic waves. These restless
processes induce a continuous change of properties in the shallow subsurface, which in
turn influence Earth surface observations. To monitor the geomaterials under our feet at
high-temporal resolution, I used a specific probe: the seismic ambient noise, the wavefield
constantly recorded by seismometers.

First, I briefly review the remarkable time-dependent behaviours exhibited by these
systems and the corresponding observations of seismic velocity changes previously retrieved
and reported from ambient noise. This part naturally leads to my research outline and the
foundations for the four separate studies of the dissertation. Note that this introduction
contains citations anterior to the first publication of this dissertation to depict the existing
science prior to the doctoral research.

1.1 Time-dependent observations at the Earth’s
surface

In this section, I present some salient time-dependent behaviours that were discovered in
the subsurface. First, I focus on the complex boundary conditions that govern groundwater
storage in steep landscapes. In a second part, I review transient surface observations after
large earthquakes. The literature review presented in this section is highly non-exhaustive
for the sake of brevity. More comprehensive overviews can be found in the paper’s chapters.

1.1.1 Groundwater storage in steep landscapes

The underground storage of water is at the core of many surface processes and societal
challenges and is therefore one of the most important variables in the dynamic Earth
subsurface. It modulates flooding (Bosserelle et al., 2022), contaminants transfers (Li et
al., 2021) and landsliding (Iverson, 2000), and constitutes a major part of our freshwater
resources (Carrard et al., 2019). In the Himalayas, the groundwater reservoir has been
the main source of discharge (Andermann et al., 2012) but it has received relatively less
attention in comparison to melt water in science-to-policy proceedings like the recent IPCC
reports (Jiménez Cisneros et al., 2015; Regine Hock, 2019). Nevertheless, mountainous
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environments provide a major part of the worldwide surface runoff when compared to
lowlands runoff contribution (Fig. 1.1) (Viviroli et al., 2007), hence earning them the
reputation of ’water towers’ (Immerzeel et al., 2010).

Figure 1.1: Contribution of runoff generated in mountains relative to lowland contributions.
Values above 1 (from pink to red) indicate the mountainous areas in which more discharge
is generated in comparison to the lower parts of basins with which they are connected.
Map from Viviroli et al. (2007).

Through a simple hydrological mass balance equation, the physical representation of the
underground water storage dynamics is inherently time-dependent due to its ever-changing
boundary conditions :

dS

dt
= P − E −Q. (1.1)

In this relation, P , E and Q are the precipitation, evapotranspiration and discharge
fluxes (depth per time), typically averaged over an entire catchment. S is the water stored
underground (unit of depth) in different reservoirs such as soil moisture or water stored in
the saturated groundwater bedrock aquifers.

Each of the fluxes presented in equation (1.1) can be measured in the field but the
estimation of S remains a challenge as it is not directly observed. Classically, estimations
of S are performed with boreholes that only give a point-based measurement of the local
groundwater level. In steep landscapes, drilling wells often presents logistical challenges
and fail to represent an averaged measure of S due to heterogeneous complexities(Dralle et
al., 2018). Another complementary technique is to measure gravity anomalies with the
GRACE satellite (Chen et al., 2016). This method has the advantage of integrating all
the reservoirs included in S in a non-destructive fashion. However, it fails to capture the
local dynamics at the finer scale of small mountainous catchments due to its large spatial
resolution, downscaled to about 100 x 100 km.

A step change for monitoring storage in steep catchments came with the paper of
Kirchner (2009). Considering equation (1.1) as a dynamical system, he showed that S can
be estimated from measuring Q in hydrograph time-series. Considering the recession limb
of these hydrographs (Fig. 1.2a), one can assume that P � Q and E � Q. Under these
conditions, the discharge Q is only a function of storage S through a sensitivity function g:

dQ

dS
= g(Q). (1.2)

This function can be integrated to find S, while g can be obtained by measuring the
rate of discharge change dQ/dt during recession period (Fig. 1.2ab) with the approximation
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a.

b. c.

Figure 1.2: Illustration of a recession analysis and impact of time-dependent boundary
conditions. a. A classic precipitation time-series with the local hydrograph. The black dots
indicate the periods in which dQ/dt is calculated. b. The recession plot from the data
shown in a.. Subplots a and b are from Kirchner (2009). c. Time-dependent recession
analysis. Each curve corresponds to a different recession event. The colour indicates the
value of b, the exponent of the power law 1.4. Plot is from Jachens et al. (2020).

g(Q) ≈ −dQ/dt
Q

. (1.3)

For an ideal single aquifer (Brutsaert & Nieber, 1977; Rupp & Selker, 2005), a power
law is predicted such as

− dQ/dt = aQb.

(1.4)

This law is extensively fitted in the literature in recession analysis (Kirchner, 2009;
Roques et al., 2017), and the recession parameters a and b completely characterise the
aquifer behaviour and determines the storage prediction in the catchment. Although this
development is elegant, storage S has remained under discussion: the values a and b are
highly biased by the parameter estimation method (Roques et al., 2017) and highly time-
dependent (Jachens et al., 2020), even when measured in the same catchment. This time-
dependency is evident when comparing estimates of a and b that were obtained after different
recharge events (Fig. 1.2c). More specifically, inter-arrival time, antecedent precipitation
conditions and magnitudes have been shown to influence the recession parameters, which
suggests a seasonal influence on storage recharge.
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The previous equation and the recession framework make the assumption of a single
aquifer, directly recharged by precipitation and feeding the river discharge. Often, these
simplifications are being made in hillslope hydrology. In a seminal string of studies
(Montgomery et al., 1997; Anderson et al., 1997; Torres et al., 1998), natural and artificially-
induced rainfall was found to take complex pathways through the subsurface of a steep
hillslope in the Oregon Coast Range. Volumetric measurements showed that a large
proportion of the discharge water and the saturation of the soils was controlled by fast
pathways through the shallow bedrock underneath the surface slope (Montgomery et al.,
1997; Anderson et al., 1997). However, this pattern was heterogeneous and ultimately, a
direct causal link between precipitation and discharge was only established when a steady
pore pressure gradient was developed in the vadose zone (Torres et al., 1998). More recently,
Rempe and Dietrich (2018) have shown that the moisture reservoir can be of an important
volumetric size due to a storage not only in soils but also in the weathered rocks in the
subsurface (Fig. 1.3). Consecutive measurements during several years highlighted a finite
seasonal maximum capacity of this reservoir. The associated storage was not hydraulically
connected to streams (Dralle et al., 2018) which suggests that the link between S and Q
shown in equation (1.2) may be seasonally dependent and a source of bias in recession
curve analysis. These observations highlight a changing complex boundary condition to
the surface due to processes in the unsaturated zone.

Lastly, the complex water flow patterns modulating the boundary conditions are not the
only time-dependent variables in hydrological mountain systems. In fact, the fundamental
properties of the rocks constituting the aquifers can also experience a transient behaviour as
shown by permeability changes following large earthquakes. This phenomenon is reviewed
in the next section.

Figure 1.3: Rock moisture profiles in the subsurface. The schematic shows a cross section of
a hillslope and the location of wells into the groundwater system. Corresponding profiles for
two of them are shown. The profile colours correspond to different time-periods described
in the legend inset. The similarity of the profiles in 2015-2016 and 2016-2017 suggests a
finite storage capacity. Modified from Rempe and Dietrich (2018).

1.1.2 Transient perturbations introduced by earthquakes

Severe ground shaking during earthquakes can cause damage to infrastructure and
widespread landsliding (Keefer, 1994; Meunier et al., 2007; Marc et al., 2016). These
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coseismic effects are well known but the extent of their legacy in shallow subsurface
properties is less familiar. Nevertheless, transient postseismic surface observations have
shown that the landscape carries a real ’memory’ of these seismic effects that can last for
several years.

Co-seismic release of water in streams has been reported for several large earthquakes
(Manga et al., 2003; Montgomery & Manga, 2003; C. Y. Wang et al., 2004; Mohr et
al., 2017). The corresponding hydrographs often exhibit a step change in discharge not
long after the onset of ground shaking (Fig. 1.4b), after which the streamflow restores to
background values on timescales that can vary from a few days to a few months (Mohr et
al., 2017). The origin of these changes is debated, with hypotheses that include transient
groundwater flow due to coseismic changes in the hydraulic head (Mohr et al., 2017) or
ground motion shaking water out of soils(Mohr et al., 2015). A few observations point at a
temporary increase of permeability in the feeding aquifer(Manga et al., 2012; Hosono et al.,
2020). The evolution of stable isotopes in wells, springs, streams and precipitation water
after the 2016 Kumamoto earthquake indicates new pathways through a fractured aquifer
(Hosono et al., 2020). This chemical signal corroborates many physical observations in
groundwater wells. Hydraulic head measurements show either an increase or a decrease
of the water table depth (Montgomery & Manga, 2003; Shi et al., 2015; Hosono et al.,
2019) indicating a reorganisation of the groundwater system. Importantly, the permeability
around these wells inferred from the phase of tidal variations shows an initial increase after
the passage of seismic waves (Elkhoury et al., 2006) that can be followed by a recovery phase
of several years Xue et al. (2013) (Fig. 1.4c). Potential candidates for this permeability
increase and healing mechanism are the mobilisation of particles in the fracture system and
poroelastic effects (Manga et al., 2012) or aquitard breaching (C. Y. Wang et al., 2016). A
minimum threshold in ground motion is necessary to initiate most of these phenomena but
interestingly, recent work has shown that the groundwater discharge to streams release
does not increase further when past the initiation threshold (Mohr et al., 2018).

Moving away from the aquifer system, other transient perturbations are observed at
and near the Earth’s surface after major earthquakes. The study of Marc et al. (2015)
showed sustained high landslides rates in the aftermath of four large earthquakes (Marc
et al., 2015). From satellite imagery, mapped postseismic landslide areas were shown to
be more elevated for equivalent meteorological forcing during the preseismic period (Fig
1.4d). Analogous to permeability, these landslide rates returned to background values
with a recovery timescale that ranged from one to to four years. The landslides rooted
at superficial depths (0-10 m, (Marc et al., 2015)) suggesting that the damage-recovery
mechanisms for these perturbations occur in the layers immediately below the Earth’s
surface. The weakening induced by these processes may enhance the transfer of hillslope
materials to rivers, which would explain the sustained high sediment load that is observed
for many years after large earthquakes (Hovius et al., 2011). Earthquake-induced landslides
can also cause a decrease in overall vegetation activity of several years as shown by NDVI
values (a remote-sensing indicator of leaf colour) due to damage to a large portion of
soils and trees (Zhang et al., 2018; Gan et al., 2019; Allen et al., 2020). The case of the
Wenshuan earthquake is reported in Figure (Fig 1.4a). Vegetation recovery can take up to
several years after the initial phase of degradation (Gan et al., 2019).

The striking observation of similar damage-recovery dynamics at different depths points
at a universal underlying mechanism. This mechanism also affects the properties of aquifers
in which groundwater is stored. To unravel its possible physics and key controls, we need an
investigation tool that is sensitive to the hydro-mechanical properties of the subsurface with
a well resolved temporal resolution. In the following, I argue that seismic interferometry
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Figure 1.4: Observations of transient surface response after large earthquakes: a.
Cumulative NDVI (Normalised Density Vegetation Index) pixel values for years prior
and after Wenshuan earthquake, China. High NDVI values signal more greenness and
vegetation density in the satellite image. From Gan et al. (2019). b. Increase in streamflow
following the Chi-Chi earthquake, Taiwan. The arrow indicates the onset of groundshaking.
From C. Y. Wang et al. (2004). Note that the earthquake occurred during a period
without significant rainfall. c. Transient permeability evolution in groundwater wells in
the Wenshuan fault zone area. Dashed lines indicate the onset of the teleseismic events.
Modified from Xue et al. (2013) d. Transient landslide rates induced by Chi-Chi earthquake.
From Marc et al. (2015).

with ambient noise is such a method.

1.2 Using seismic interferometry for monitoring
subsurface changes

The seismic ambient noise wavefield allows for the monitoring of relative seismic velocity
changes in the subsurface. Here, I present the main concepts behind this method and show
applications related to groundwater and earthquake damage monitoring.
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1.2.1 Estimation of seismic velocity changes from the ambient
noise wavefield

The Earth’s surface is the theater of many processes: rivers flowing, storms in the oceans,
meteorological conditions, anthropic activities . . . The resulting forces generate continuous
sources of seismic energy that are recorded by seismometers, the so-called seismic ambient
noise wavefield. The early recognition of these seismic sources dates back to the start of the
20th century (Cook & Dietze, 2022) but for a long time, the background ambient noise was
mostly considered as a nuisance to be minimized in order to have a clear view of earthquake
signals. At a first glance, it is true that the noise wavefield does not seem to carry any
information (Fig. 1.5a). Its apparent randomness is due to the sources forever shifting
in time and space. In the late 50’s, pioneering work from Aki showed that deterministic
useful information about the subsurface structure can be extracted from these signals by
cross-correlating the ambient noise recorded at different stations (Aki, 1957). With the
advancement of computing power and the improvement of seismic stations, the idea of Aki
has seen a revival in the early 2000’s under the umbrella term ’seismic interferometry’. The
field has persistently expanded since.

The cross-correlation between two seismic waveforms at positions A and B can be
expressed as

〈CAB(t)〉 =
∫
uA(τ)uB(t+ τ)dτ. (1.5)

where u indicates the seismic trace and τ is the lapse time of the correlation function.
Because the ambient noise is a diffuse wavefield, the correlation CAB must be averaged
over a long time (typically ∼ days, hence the angle brackets) for any information to emerge
from the correlation (Fig. 1.5a). In simple words, the correlation averaging between A to B
(or B to A with CBA) converges to a virtual seismogram that would be recorded if a wave
would leave from A and would be recorded at B (and vice-versa). When the noise sources
are randomly distributed and isotropic in space, this convergence leads to CAB being
equivalent to the Green’s function between the receivers (Lobkis & Weaver, 2003). The
ideal condition of isotropic source distribution is rarely met in nature but for monitoring
purpose, a localised source of noise is acceptable as long as it is statistically stable in time
(Hadziioannou et al., 2009). The resulting correlations contain a ballistic arrival (often
surface waves (Shapiro, 2019)), that is followed by coda waves. Because the coda waves
travel longer scattered paths through the medium, they are more sensitive to small in
situ physical changes and are therefore often used for monitoring tasks. To emphasize
these coda waves, one can also consider the correlation between the components of a single
station (Hobiger et al., 2014), or autocorrelations, to mostly retrieve local scattered waves.
The correlation C can always be computed to build a time-series as long as the source
conditions at all monitoring intervals are similar: this is a remarkable advantage compared
to active seismic methods.

When all correlations are computed, they can be arranged in a matrix (the correlogram)
in which the coda waves can be compared. Despite not knowing the absolute paths of the
waves, we can estimate the evolution of their relative velocities dv/v. Assuming that the
velocity change in the medium is homogeneous, the coda waveform will be stretched or
compressed proportionally to the velocity change:

ε = dv

v
= −dt

t
. (1.6)
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Raw seismic traces

Correlation function CAB

a. b.

Figure 1.5: Ambient noise cross-correlation concept and estimation of relative seismic
velocity changes with the stretching technique. a. Top panels show two seismic random noise
traces. The correlation of these two signals can be seen on the lower panel. Negative and
positive lapse time stand for the direction of the correlation. From Obermann and Hillers
(2019). b. The top panel illustrates the stretching algorithm in which the correlation
function in black is stretched to match the grey correlation function. This process leads
to the exploration of the best fitting stretching factor ε shown on the lower plot. From
Sens-Schönfelder and Brenguier (2019).

In this equation, ε is the stretching coefficient (Sens-Schönfelder & Wegler, 2006). To
calculate the evolution of dv/v, we extract a reference, often taken as the averaged cross-
correlation of the whole monitored period (dark waveforms in Figure 1.5b) and numerically
stretch it along several tested values for ε. For each increment of ε, the observed correlation
function is then compared to the modified reference at monitoring time ti. The value of ε
leading to the best correlation between the reference and the correlation function will be
retained as the velocity change (Fig. 1.5b). This process can be repeated until reaching
the last correlation function corresponding to time tN . Note that a specific time-window
([τ1, τ2]) in the correlation functions can be used for the stretching technique. The choice
of the time window allows for emphasizing a larger sampling depth and surface around the
stations towards late times τ (Pacheco & Snieder, 2005; Obermann et al., 2013). Other
methods can be used to measure velocity changes, but the stretching technique is the
anchor point of this dissertation due to its past reliability in countless studies and stability
with noisy correlation functions.

More relevant details of seismic interferometry are described in the later chapters,
notably the choice of pre-processing techniques to remove the effects of sudden high-
amplitudes signals (such as earthquakes) prior to correlation.

1.2.2 Groundwater dynamics

The first study utilising seismic noise to monitor velocity changes in the subsurface was
performed on the Merapi volcano (Sens-Schönfelder & Wegler, 2006). The inferred seismic
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velocity changes were highly anti-correlated with the daily precipitation rates, suggesting
that groundwater variations influenced subsurface properties. The presence of water in
rocks changes their elastic moduli due to pore pressure variations (Gueguen & Palciauskas,
1994). In poroelasticity theory, rocks have two elastic moduli, one for the unsaturated state
and another for the saturated state with lower S-wave velocities for the latter (Gueguen
& Palciauskas, 1994). The coda waves often exhibit a shear wave sensitivity due to a
favored energy equilibration towards S-waves at late lapse time τ in the correlation function
(Snieder & Page, 2007). In consequence, the relative velocity change dv/v will drop if the
groundwater level rises and the proportion of saturated medium increases in the volume
probed by the waves.

The influence of groundwater fluctuations on dv/v has since been reproduced in different
settings: with a borehole array drilled into an earthquake rupture plane in Taiwan (Hillers
et al., 2014), at the crustal scale in Japan (C. Y. Wang et al., 2016), and on a slow-moving
landslide (Bontemps et al., 2020). However, the idea of using precipitation-induced dv/v
variations to monitor groundwater for freshwater resources applications is fairly recent.
The study of Lecocq et al. (2017) used four historical German seismic stations to infer the
groundwater storage dynamics during ∼ 30 years. Another similar proof of concept was
conducted in the San Gabriel Basin, an area prone to consecutive droughts (Clements and
Denolle (2018), Fig. 1.6). These studies show the potential of seismic interferometry for
monitoring groundwater storage at any location in the vicinity of a seismic station. In
mountainous areas, the logistic advantage is substantial as drilling boreholes in remote
settings is not always an option, and the mountain borehole network is sparse as a result.
Furthermore, the average spatial sensitivity of the method (probing volumes of ∼ 101 to
103 m3) allows to bridge the gap between point-based well observations and large scale
gravimetric measurements and target specific locations in a catchment.

The seismic velocity changes dv/v are often modeled with a simple hydrological
framework that can be justified by a few direct co-located observation of relative velocity
changes and groundwater depth changes in wells. These changes are directly proportional
to the hydraulic head height h(t) through a decay parameter a and can be modelled with
the expression

dh

dt
(t) = P (t)

Φ − ah(t) (1.7)

in which P is the precipitation (often measured at the time resolution of the dv/v
measurement) and Φ is the porosity of the aquifer reservoir. It has been reported that
variations of the water table on the order of 10−2 m are sufficient to induce a change in
relative velocity changes (Voisin et al., 2017; Clements & Denolle, 2018). In the details,
this framework can change slightly (pore pressure can also be modelled with an error
function (C. Y. Wang et al., 2016)) but most of resulting models predict approximately
the same dynamics: a very fast transfer of precipitation to the groundwater reservoir
and an exponential decay of the water table as described by Darcy’s law. At the first
order, this modelling effort succeeds in reproducing precipitation-induced velocity changes
(Sens-Schönfelder & Wegler, 2006; Hillers et al., 2014; C. Y. Wang et al., 2016) but the
validity of equation (1.6) is limited to the situation of a highly permeable subsurface with a
single reservoir or as an average representation of large areas. The potential complexity of
the near-surface and the unsaturated zone processes mentioned earlier in the introduction
may affect the velocity in ways that have not yet been probed.

9



1. Introduction

Figure 1.6: Seismic velocity changes and groundwater depths in the San Gabriel Basin,
California. The black line indicates the relative seismic velocity changes averaged over the
whole basin after correction for thermo-elastic strain (dashed line). The y-axis is reversed.
The blue line shows the groundwater depth in a local borehole for the same time interval.
From Clements and Denolle (2018).

1.2.3 Earthquake damage and induced relaxation

Early interferometry studies carried in Niigata (Wegler & Sens-Schönfelder, 2007) and
Parkfield (Brenguier et al., 2008) aimed at monitoring changes of fault zone properties
due to seismic activity. In this context, the evolution of seismic velocity in the subsurface
followed a recurring pattern: the seismic velocity dropped sharply at the co-seismic time and
recovered during a post seismic period found to last up to some years. These observations
were initially attributed to ’healing’ phenomena acting in the fault zone. The reproduction
of these results for many earthquakes (Sawazaki et al., 2009; Nakata & Snieder, 2011;
Sawazaki et al., 2018; Viens et al., 2018) has revealed that these velocity changes are
emphasized when using high-frequency noise, more sensitive to shallower depths. This
trend has led to a community consensus that the response of near-surface materials is
responsible for most of the drop and recovery signature due to non-linear behaviour induced
by dynamic strain during ground shaking. Hence, repeated perturbations by seismic waves
cause the Earth surface to change its properties in multiple cycle of velocity reduction
and recovery (Gassenmeier et al., 2016). These continuous changes can be coined as
Non-Linear Mesoscopic Elasticity, with the term mesoscopic used to distinguish the field
scale observation from pre-existing experimental results, which are described in the next
paragraph.

The behaviour shown in field observations has been documented in the laboratory since
the 90’s under the name of ’slow dynamics’ or "relaxation" (TenCate & Shankland, 1996;
TenCate et al., 2000). During experimental rock deformation, seismic velocity and/or
resonant frequencies (both being a function of elastic moduli and density) can be measured
with piezo-electric transducers at a scale of ∼ 10−2 m. This approach has helped to
establish the universality of the time-dependent phenomena. First, slow dynamics have
been observed in a wide variety of rocks (Fig. 1.8, (TenCate et al., 2000; Brantut, 2015;
Shokouhi et al., 2017)) and media such as granular assemblies (Knight et al., 1995) and
concrete (TenCate et al., 2000). The onset of relaxation can be caused by either a dynamic
strain perturbation (of a mere 10−6 in the seminal study of TenCate et al. (2000)) or by a
static strain increase (Brantut, 2015). The recovery shape is always logarithmic and can
last from a few seconds (Shokouhi et al., 2017) to several years (Brenguier et al., 2008). The
fact that there is overlap between laboratory and field-scale observations further underlines
the likely scale-invariance and universality of this behavior.

Despite the convergence of research findings at different scales and settings, a unified
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Figure 1.7: Seismic velocity evolution induced by Tocopilla earthquake at Patache, Chile.
Sharp velocity drops are visible during the Tocopilla earthquake, its aftershocks and the
Iquique earthquake at the end of the time-series. A non-linear post-seismic velocity recovery
that spans several years is visible in the dataset. The magenta line indicates an exponential
decay fit. Each blue dot is a daily best velocity estimation. From Gassenmeier et al. (2016).

physical description of slow dynamics in all materials has not been derived. Nevertheless,
the logarithmic evolution of the velocity recovery hints at an aging behaviour similar
to the one found in friction frameworks (Dieterich, 1979) and/or thermally activated
creeping dynamics (Aharonov & Scholz, 2018). A general phenomenological description
consists of an initial destruction of contacts or connections with voids creation (Ostrovsky
et al., 2019) during a straining perturbation. This ’damage’ phase creates metastable
contacts that subsequently return to a new equilibrium through non-instantaneous thermally
activated processes. Several models have been developed along these lines and inspired
by contact physics (Baumberger & Caroli, 2006), or microcrack dynamics (Kachanov &
Sevostianov, 2005) exist (Ostrovsky et al., 2019; Sens-Schönfelder & Eulenfeld, 2019) but
their corresponding parameters are underconstrained in the field. The processes driving
recovery are not necessarily purely mechanical, but can also have chemical origins (Brantut,
2015).

Due to this complexity, relaxations observed in the field are empirically fitted with an
exponential function, characterised by one timescale τ . The exponential decay shows a
limited agreement with data during the early phase of relaxation (Fig. 1.7). An alternative
is to fit a logarithmic slope log(t) that is more representative of the data. However, the
logarithm diverges at the limits t → 0 and t → +∞, which poses a conceptual problem
for the physical description of the recovery. We also know from highly resolved laboratory
experiments that the logarithmic slope breaks down at a minimum timescale τmin after
the initial perturbation and before the onset of the recovery (Fig. 1.8c). To address these
limitations, Snieder et al. (2016) used a phenomenological approach and introduced a
universal relaxation function R(t) characterised by a superposition of exponential recoveries:

R(t) =
∫ τmax

τmin

1
τ
e−(t−t0)/τ dτ. (1.8)

This expression is finite at both t0 (the onset of the relaxation) and t+∞ and has a
logarithmic evolution between the minimum and maximum relaxation timescales (τmin
and τmax). The expression has not yet been scaled to field measurements. A potential
complication arises when aftershocks induce successive relaxation cycles, which makes the
quantification of the timescales challenging. Nevertheless, knowledge of the key controls of
τmax is needed to predict the duration of transient mechanical properties and of other Earth
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surface phenomena, such as enhanced landsliding and permeability after earthquakes.

a. c.b.

Figure 1.8: Relaxation behaviours observed in different experimental settings and materials.
a. Evolution of the resonance frequency in a sandstone sample after a dynamic longitudinal
strain pertrubation. Time is plotted on the X-axis with a logarithmic scale. The different
curves indicate different perturbation amplitudes. The inset shows the speed of the recovery
m as a function of this amplitude. From TenCate et al. (2000) b. P-wave velocity recovery
after static strain load episodes (amplitudes indicated in %) in limestones. The different
colours show the different probing angles in the experiment. From Brantut (2015) c. On
this figure, the onset of the logarithmic regime occurs after a minimum time τmin in several
consolidated granular media. From Shokouhi et al. (2017).

1.3 Research outline

1.3.1 Main questions
In the previous sections, I have shown time-dependent surface observations that are likely
to take their roots in the hydro-mechanical properties variations in the subsurface. I
introduced the tool of seismic interferometry and showed its capability for monitoring
groundwater storage dynamics and damage induced by earthquakes. These two topics are
often treated separately but they are linked in many ways: groundwater dynamics affect
the reigning pore pressure in the subsurface, which preconditions the mechanical state prior
to further seismic or atmospheric perturbations. In the other direction, seismic ground
shaking durably affects the elastic moduli through the relaxation phenomenon and often
causes permeability changes. Moreover, as seismic velocity changes integrate the whole
state of the subsurface, the entanglement between water storage and damage is particularly
relevant.

Here, I outline four areas of questions, some being focused on one aspect of the dynamic
subsurface system while others look at deciphering the many probed interactions. These
questions are:

Q1: How do variations in subsurface moisture affect groundwater recharge in a large
mountain belt ? Mountains, and in particular the Himalayas, are often seen as ’water
towers’ due to their large contribution to the global runoff. Despite this importance,
there are two simplistic views that dominate hydrological modelling: Mountain belts
are either seen as composed of impermeable rock mass covered by a shallow conductive
layer (in hillslope hydrology Tromp-Van Meerveld and McDonnell (2006)), or as
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highly fractured basements that promote fast flow in deep aquifers (Andermann et
al., 2012; Padilla et al., 2014). Growing evidence of a more complex time-dependent
storage behaviour may be linked to moisture dynamics within the vadose zone. Little
is known about the vadose zone in mountain settings, and about its possible role in
regulating groundwater recharge and discharge. To study this potential effect, more
ground surface observations are needed in remote mountainous areas.
In Chapter 2, I use seismic interferometry to monitor relative seismic velocity changes
dv/v as a proxy for groundwater storage dynamics in a steep Himalayan catchment
during three consecutive monsoon seasons. The velocity evolution is compared to
hydrological and geochemical variables to constrain the groundwater and discharge
cycle at our field site. The data shows that the fast recharge of groundwater by
precipitation is only effective when the subsurface moisture is at saturation. Based
on this observation, a simple model is derived, taking into account the precipitation
history and providing a good agreement with the estimated velocity changes.
The Himalayan catchment studied in Chapter 2 is also prone to seismic hazard and
was in the epicentral area of the 2015 Mw 7.8 Gorkha earthquake. The relevance of
the hydrological model may be limited to reproduce the dv/v data in the aftermath
of the earthquake. This leads to our next question.

Q2: How can the hydrological and geomechanical effects on relative seismic velocity be
disentangled ? Seismic interferometry with ambient noise integrates many different
processes that acts simultaneously in the complex subsurface (Fig. 1.9). In physics
terms, the representative elementary volume sampled by the noise wavefield has
heterogeneous properties and the derivation of a simple differential equation is
challenging. To find physical drivers and to bridge the seismic velocity changes to
other processes, one has to play a detective game. In the dissertation, I use a range
of methods to decipher relationships and controls.
First, well calibrated model for one aspect of the subsurface can be used to strip the
dv/v data from a particular process, and study the obtained residuals. For instance,
I use one of the Nepalese seismic station of Chapter 2 to estimate the relaxation
timescales after the 2015 Gorkha earthquake and its aftershocks in Chapter 3: The
hydrological model derived in Chapter 2 allows me to highlight a separate relaxation
timescale τhydro that stands for the permeability increase and recovery in the local
fractured aquifer.
In most of the Chapters, I compare the estimated seismic velocity changes with
independent observations such as hydrological and meteorological dataset, remote
sensing products and geochemical analysis. In Chapter 4, I use complementary
geophysical analysis such as the focal spot imaging technique and transdimensional
Bayesian inversion. I also test a series of physical-based and empirical functions to
fit the interferometry data. Finally, I show in Chapter 5, that the seismic velocity
changes can be considered as a dynamical system such that dimensional analysis and
phase portrait plotting are useful tools to discover underlying relationships. These
techniques show that despite the subsurface complexity, there is often one process
that dominates the velocity changes, which allows for a reduced complexity approach.
Certainly, one can also perform seismic interferometry on stations located in targeted
environments. In the middle of the thesis, I move from the complex wet Himalayas
to the arid Atacama desert in Chile, an area with very low hydrological variability.
Therefore, the next question regarding seismic damage can be addressed.
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Q3: What controls the timescales of subsurface relaxation after small and large earthquakes
? Many post-seismic processes such as transient landslides rates and enhanced
permeability exhibit a similar time evolution that is comparable to the universal
relaxation phenomenon observed with seismic velocities (Section 1.1.2 and 1.2.3).
However, we lack a firm understanding of what controls the timescales of recovery
after a straining perturbation, especially at the field scale. The knowledge of these
key controls and the prediction of the recovery timescale would be a step toward
quantitative anticipation of post-seismic geological hazards and their mitigation.
In Chapter 4, a dense network of 16 stations located in the Atacama desert is used to
monitor the response to moderate ground shaking (PGV ∼ 1 cm/s) at a 10-minutes
resolution. I show that most of the velocity recovery occurs at a sub-daily timescale.
Using the array capability and a Bayesian inversion scheme, I also constrain the 1D
subsurface structure under the array and show that the relaxation phenomena is
located within hard rocks (the shallow layer has a shear wave velocity of VS ∼ 1500
m/s).
In Chapter 5, I stay in the same arid environment of Chapter 4 and estimate 13 years
of seismic velocity evolution with the permanent PATCX station. After correcting
for temperature-induced variations, the time-series gives the unique opportunity
to study the effect of two consecutive large earthquakes (2007 Mw 7.7 Tocopilla
and 2014 Mw 8.2 Iquique earthquakes) on subsurface material properties. I show
that both earthquakes have the same relaxation timescale when normalised by their
respective velocity drop. Using additional information gleaned from the aftershocks
of these earthquakes, I demonstrate that the timescale of recovery is controlled by
the initial velocity baseline before the drop onset. I reconcile this observation with a
state-variable framework in which different contact dynamics superpose, each with
their own characteristic relaxation timescale.
Note that the results from Chapter 5 were anticipated by some of the preliminary
results of my second Nepalese study (Chapter 3): I use an original approach in
which a constant maximum timescale of relaxation τmax after small and large ground
shaking perturbations is fitted to the velocity data. The goodness of fit obtained
from this assumption suggests that the relaxation timescales are mostly controlled by
the medium and ambient conditions rather than the strain intensity. This conclusion
is further validated in Chapter 5.
All the questions and their answers presented so far rely on noiseless dv/v data
obtained at a well-resolved time resolution, essential to access the full dynamics of a
system. In consequence, I spent some time on the next final question.

Q4: How can we obtain a better time-resolution in seismic velocity estimates ? To compute
a representative correlation function that can be used for seismic interferometry, one
has to correlate long segments of ambient noise data (eq. 1.5), that can be on the
order of several days to months. The requirement for long-time averaging limits the
resolution of any time series of relative seismic velocity changes. Therefore, processes
acting at relatively shorter timescales cannot be studied.
In Chapter 4, we use 16 co-located stations to decrease the time-averaging of the
correlation functions. Instead of using long-time segments of ambient noise, we
use smaller time-segments from different stations and average their results. This
method is a direct test of the ergodic hypothesis potential for seismic interferometry

14



Contributions of the author and publications

studies. I demonstrate how highly resolved seismic velocity measurements over ten-
minute intervals can be obtained, which paves the way for future detailed studies of
time-dependent behavior using seismic data.

Figure 1.9: The concept of the field-probed volume. The conceptual probed volume (right
side, drawing by Anne Voigtländer for this dissertation.) in this dissertation in comparison
with a classic elementary volume in physics (left side, from Ting (2016)). The yellow
marks at the surface stands for hypothetical seismometers location. Different colours in
the subsurface indicate the presence of water.

1.3.2 Structure of the dissertation
This dissertation has seven Chapters, including the Introduction in which I have provided
a background and rationale for the work presented in Chapters 2-5. This central part of
the dissertation consists in four paper chapters, that are either already published, in review
or about to be submitted to international peer-reviewed journals. In the second to last
Chapter, I bring together the main conclusions of the dissertation. Finally, I present the
main overall insights and outcomes from my doctoral research in a synthesis Chapter. The
reference list closes the dissertation.

1.4 Contributions of the author and publications
This dissertation comprises to the following studies that are either published or awaiting
publication:

1. L. Illien, C. Andermann, C. Sens-Schönfelder, K. L. Cook, K. P. Baidya, L. B.
Adhikari, N. Hovius: Subsurface Moisture Regulates Himalayan Groundwater Storage
and Discharge, AGU Advances, doi.org/10.1029/2021AV000398
Contributions: LI and CA conceived the study with research inputs from CSS,
KC and NH. LI conducted all data analysis and wrote the manuscript with inputs
from CA, NH, CSS and KC. LBA and KPB participated in important data collection
missions.
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2. L. Illien, C. Sens-Schönfelder, C. Andermann, O. Marc, K. L. Cook, L. B. Adhikari,
N. Hovius: Seismic Velocity Recovery in the Subsurface: Transient Damage and
Groundwater Drainage Following the 2015 Gorkha Earthquake, Nepal, Journal of
Geophysical Research: Solid Earth, doi.org/10.1029/2021JB023402
Contributions: LI, CSS, CA, OM, KC and NH conceived the study. LI conducted
all data analysis and wrote the manuscript with inputs from CA, NH, OM, CSS and
KC. LBA participated in important data collection.

3. L. Illien, C. Sens-Schönfelder, KY Ke: Resolving minute temporal seismic velocity
changes induced by earthquake damage: The more stations, the merrier ?, in review
at Geophysical Journal International.
Contributions: LI and CSS conceived the study. LI conducted all data analysis
and wrote the manuscript with inputs from CSS. KYK provided guidance during the
inversion analysis. CSS conducted the data collection.

4. L. Illien, J. M. Turowski, C. Sens-Schönfelder, C. Berenfeld, N. Hovius: Predictable
healing rates after earthquakes near-surface damage, In preparation.
Contributions: LI conceived the study with research inputs from JMT, CSS, CB
and NH. LI conducted all data analysis and wrote the manuscript with inputs from
JMT, CSS, NH and CB. LI and CB contributed equally to the mathematical theory
of the paper.

Additionally, I have been involved in the following published studies:

• O. Marc, R. Behling, C. Andermann, J. M. Turowski, L. Illien, S. Roessner,
N. Hovius: Long-term erosion of the Nepal Himalayas by bedrock landsliding:
the role of monsoons, earthquakes and giant landslides, Earth Surface Dynamics,
doi.org/10.5194/esurf-7-107-2019

• E. R. C. Baynes, D. Lague, P. Steer, S. Bonnet, L. Illien: Sediment flux-driven
channel geometry adjustment of bedrock and mixed gravel–bedrock rivers, Earth
Surface Processes and Landforms, doi.org/10.1002/esp.4996

• M. Dietze, K. L. Cook, L. Illien, O. Rach, S. Puffpaff, I. Stodian, N. Hovius: Impact
of nested moisture cycles on coastal chalk cliff failure revealed by multi seasonal
seismic and topographic surveys, Journal of Geophysical Research: Earth Surface,
doi.org/10.1029/2019JF005487

• M. Dietze, M. Krautblatter, L. Illien, N. Hovius: Seismic constraints on rock damaging
related to a failing mountain peak: the Hochvogel, Allgäu, Earth Surface Processes
and Landforms, doi.org/10.1002/esp.5034
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Subsurface Moisture regulates
Himalayan groundwater storage and
discharge
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ten L. Cook, Lok B. Adhikari, Niels Hovius
Published in AGU Advances, May 2021, volume 2, issue 2, DOI:
10.1029/2021AV000398.

I

Abstract

Through the release of groundwater, most mountain rivers run year-round despite
their small catchments and sporadic precipitation. This makes mountain ranges
important sources of reliable fresh water for downstream populations in many parts
of the world. However, due to a lack of observations, very little is known about
groundwater dynamics in steep landscapes. Recent research has shown the existence
of a superficial moisture reservoir that does not lead to discharge. In this study, we
test whether this reservoir has an impact on groundwater recharge in mountainous
environments. We present results from an observatory located in the Nepal Himalayas.
During three monsoon seasons, we measured an array of parameters including relative
seismic velocity changes from ambient noise correlations. This non-invasive technique
allows us to monitor groundwater dynamics in conjunction with classical hydrological
measurements. We found that pre-monsoon precipitation does not affect discharge
and groundwater storage and instead recharges the subsurface moisture reservoir.
Only when this superficial reservoir reaches saturation does groundwater become
connected to precipitation inputs and transpiration losses. We model these dynamics
using a surface layer that has a finite storage capacity that controls the connectivity
of groundwater to surface flux. The extension of this concept, which is thought to
apply widely in flat and undulating landscapes, to steep mountain topography with
thin and discontinuous soils underlain by regolith and bedrock is a paradigm shift in
mountain hydrology.

2.1 Introduction
The fate of water in mountains involves flow pathways through reservoirs with different
physical properties and capacities (Alley et al., 2002; Oki & Kanae, 2006). Accurate water
budget estimation requires knowledge of these reservoirs and their connections, specifically
of groundwater storage dynamics in response to precipitation inputs and its export to
discharge. Most water in rivers has an age of years to decades (McGuire & McDonnell,
2006; Gleeson et al., 2016), which suggests that it has spent a significant amount of time
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in storage. This ’old’ water concept is especially relevant in steep mountain catchments,
where deeper vertical infiltration seems more prevalent than direct runoff (Jasechko et al.,
2016). It is widely accepted that these mountain areas act as water towers that supply
essential fresh water resources downstream. The prime example is the Himalayan Range,
which provides water for ∼ 800 million people in the Indus, Ganges and Brahmaputra
basins. The evolution of this resource is often viewed through the prism of glacier melt
(Viviroli et al., 2007; Immerzeel et al., 2010), whereas the larger and more ubiquitous
mountain groundwater reservoir has received less attention. With ∼ 2/3 of the annual
river discharge in the Nepal Himalayas coming from groundwater (Andermann et al., 2012),
understanding the key controls on this reservoir is essential for projecting the future of
mountain water resources in the light of global climate change and increasing hydropower
and land use. However, constraints on groundwater recharge and dynamics in this area
and more generally in mountainous landscapes are rare due to the scarcity of ground
observations in steep remote locations.

Before reaching groundwater and ultimately streams, precipitation must generally first
pass through the unsaturated superficial zone of the subsurface (vadose zone), which
suggests that any change in physical conditions within this shallow layer may modulate
groundwater recharge and runoff. In steep catchments, the importance of this conditioning
for controlling hydrological fluxes is often debated due to the lack of instrumentation and
contradicting observations. A first string of studies have shown that hydrological fluxes in
steep catchments are mainly controlled by the presence of a fractured bedrock basement in
these locations that promotes fast flow and efficient infiltration to the groundwater table,
therefore quickly bypassing the vadose zone (Zillgens et al., 2007; Katsura et al., 2008; Salve
et al., 2012; Andermann et al., 2012; Padilla et al., 2014, 2015). This preferential flow path
along fractures has been reported to cause an important volumetric contribution of bedrock
groundwater to both the baseflow and stormflow component of discharge in these studies.
This observation could also explain the weak dependence of groundwater recharge and
runoff dynamics with subsurface conditions and the soil/sediment cover (Salve et al., 2012;
Padilla et al., 2014, 2015). Nevertheless, a few studies have also shown that hydrograph
response to precipitation is dependent on initial baseflow and various pre-conditions in
the vadose zone. Such pre-conditions include current soil wetness that determines soil
hydrological conductivity (Tani, 1997) or a finite water storage capacity in the regolith
which modulates the transfer of precipitation to rivers and to deeper reservoirs (Onda,
1989; Montgomery et al., 1997). Recent research has shown that a significant volume
of water stored in the regolith is in fact ‘rock moisture’ that is trapped below the soil
layer in the unsaturated weathered layer of bedrock (Salve et al., 2012; Rempe & Dietrich,
2018). In this study, we will use the term subsurface moisture reservoir for all exchangeable
water in the vadose zone, encompassing soil and rock moisture. Because this reservoir
can represent a significant part of seasonal dynamic storage (Dralle et al., 2018) and is
located above the groundwater table, it has been shown to buffer groundwater recharge by
precipitation and hinder runoff in a steep (32°) 4km2 hillslope in the Northern California
Coast Ranges (Rempe & Dietrich, 2018). However, a very limited effect of subsurface
moisture on groundwater storage and discharge has also been reported close to the same
study site due to the previously mentioned fracture pathways (Salve et al., 2012). This
discrepancy in the literature raises the question of the relevance of the subsurface moisture
for regulating water transfers at larger scales, as this control is generally observed locally
on rather small hillslopes. In this study, we hypothesize that the highly variable conditions
in subsurface moisture due to the monsoon seasonality in the Nepal Himalayas regulate
groundwater recharge and runoff generation at the catchment scale and thus control the
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annual availability of hydrological resources downstream.
To track subsurface water in a spatially integrated way in remote locations where

standard techniques and data may be limited, new approaches are needed for monitoring
groundwater dynamics. Here, we use non-invasive seismic interferometry, based on data
from broadband seismometers. From ambient seismic noise correlations, SI retrieves
relative seismic velocity changes (dv/v) in the subsurface, allowing for the monitoring of
rock properties through time (Lobkis & Weaver, 2001; Sens-Schönfelder & Wegler, 2006;
Gassenmeier et al., 2016). Because fluid content in rocks affects elastic moduli and therefore
seismic velocity, seismic interferometry can be used to estimate relative groundwater storage
evolution (Sens-Schönfelder & Wegler, 2006; Lecocq et al., 2017; Clements & Denolle,
2018; Kim & Lekic, 2019b). This method is sensitive at the mesoscale (101–102 m, length
scale of the 3D volume of influence), allowing for spatially integrated monitoring of the
groundwater system and its dynamics. Thus, it bridges the gap between point-based
well measurements and larger scale methods such as catchment scale hydrograph analysis
or satellite-based gravimetry. It also avoids possible observational artifacts compared to
piezometric measurements, where borehole installation often alters the subsurface condition.

We have used seismic interferometry to study groundwater dynamics in the Himalayas,
focusing on the Bhote Koshi catchment in Nepal (Fig. 2.1a). Like most catchments in the
central Himalaya, the Bhote Koshi receives up to ∼ 80 % of its annual precipitation during
the Indian Summer Monsoon (Bookhagen & Burbank, 2010). We analysed ∼ 2.5 years of
seismic data, covering three monsoon seasons, recorded at two seismic stations (Fig. 2.1a).
Listi station was located at 2310 masl., near a ridge crest with steep flanks (slope of ∼ 80
%), and ∼ 1100 m above the Chaku station, which was located on a bedrock terrace 75 m
above the Bhote Koshi River. Both stations are underlain by sheared metasedimentary
rocks of the Lesser Himalayan series, below a layer of regolith and colluvium. To resolve
interactions between precipitation, subsurface moisture, groundwater, and river discharge
in this typical mountain setting, we combined the observations from these stations with
complementary measurements (Fig. 2.1a). Soil moisture sensors installed in the surface
layer (0-20 cm depth) were located at both seismic stations and precipitation was measured
at six weather stations. In addition, we measured the flow stage height of the Kahule
Khola upstream of its confluence with the Bhote Koshi River using a pressure sensor.
This stream drains a ∼ 35 km2, glacier-free catchment, the flow of which reflects the
drainage of the instrumented ridge by which it is bounded. At the stage gauge, stream
water samples were taken twice a week from January 2016 to October 2018. The stable
oxygen isotope ratio (δ18O) of these samples was measured as a tracer for seasonal water
input variations and to probe for evaporative loss. Finally, we extracted the normalized
difference vegetation index (NDVI) from MODIS multi spectral imagery. NDVI is generally
correlated with soil moisture (Taktikou et al., 2016) and is a good proxy for vegetation
activity and transpiration (Running & Nemani, 1988; Ichii et al., 2010). This multi-proxy
approach allowed us to assess the temporal evolution of groundwater storage, and revealed
the first-order importance of subsurface moisture in regulating groundwater recharge and
baseflow release during the monsoon in the Nepal Himalayas.

2.2 Materials and Methods
Precipitation was measured at six locations using fully automated VAISALA WXT510
Weather Transmitters (Fig. 2.1a). All weather parameters were logged at 1-min intervals.
To obtain a representative time series and account for potential orographic effects, all
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Figure 2.1: a. Map showing the Bhote Koshi observatory. Red triangles indicates the sites
that contain seismic stations, soil moisture sensors and precipitation gauges. Yellow circle
in the Kahule Khola tributary indicates the hydrometric station where stage height and
δ18O are measured. Green triangles are additional weather stations used for estimating
average precipitation. Red square in inset shows location of the observatory in Nepal. BK:
Bhote Koshi river. b. Hypsometric curve of the Kahule Khola catchment. Symbols on the
right axis of the plot represent the elevation of the stations relatively to the Kahule Khola
hypsometry.

six precipitation measurements were interpolated in a square box extending ∼ 10*10 km
by applying a Voronoi-Thiessen tessellation on the daily precipitation sums (Fig. 2.5).
The aggregated precipitation time series represents the spatial mean precipitation of the
integration area. Stations with missing data at certain dates were not used for spatial
interpolation. We used the dirichlet(X) function in the R spatstat package. Because most
of the Kahule Khola catchment lies under 3000 m altitude (Fig. 2.1b), snowfall is neligible
at our field site (Putkonen, 2004).

Relative river stage height of the Kahule Khola river was measured ∼ 100 m upstream
of the confluence with Bhote Koshi River (Fig. 2.5). Stage height was logged using Hobo
Onset pressure transducers. The logging interval was set to either 15 or 30 min intervals
depending on the deployment period. The relative stage height record was corrected for
atmospheric variations using the barometric time series recorded at our closest weather
station, Tyantali station (Fig. 2.5).

For the measurement of δ18O, daily water samples were taken by a trained onsite
operator every day at around 9AM. Sampler were filtered onsite (0.22 µm filter) and stored
in 30 ml Nalgene vials at ambient temperature before being shipped to Germany. All
samples were analysed in the GFZ Potsdam OSG-Lab, using a Picarro L-2140i Ringdown
spectrometer.

Soil moisture was acquired at the six weather stations using a Campbell Scientific
CS650 soil moisture sensor. The sensor was installed close to the surface and integrates
approximately 8 liters of soil volume and records volumetric water content as a function of
bulk electric conductivity.

NDVI was extracted from the online MODIS / VIIRS Land Products global Subsetting
Tool. The subsetting area was picked to cover the entire Kahole Kohla landscape to
integrate valley-to-ridge variability of vegetation types and agricultural land use. The Tool
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is available at https://modis.ornl.gov/globalsubset/.
Broadband seismic stations (Nanometrics - Trillum Compact 120s) were used in this

study. Data were acquired at a sampling rate of 200 Hz. We estimated daily relative seismic
velocity changes from ambient seismic noise correlations in the frequency range of 4 - 8 Hz.
We used single-station cross correlation technique (Hobiger et al., 2014) and computed the
velocity time serie from the stretching method using multiple references (Sens-Schönfelder
& Wegler, 2006; Sens-Schönfelder et al., 2014). Detailed method is available in Appendix
A.

2.3 Results and Discussion

2.3.1 Co-evolution of hydrological variables

The Indian Summer Monsoon imposes a strong annual cycle on the hydrology of the Bhote
Koshi catchment, with a distinct dry and wet season (Fig. 2.2a). The seasonality of
precipitation input is matched by a sustained increase in discharge of the Kahule Khola
stream during the monsoon, followed by a well-defined long-lasting recession throughout
the dry part of the year. Importantly, we observed little to no discharge generation in
the pre-monsoon season (∼ March to ∼ June). Despite significant precipitation in the
pre-monsoon season, the hydrograph shows a continuous decrease in baseflow-generated
river discharge with only a few short-lived rise-and-fall type events from direct runoff.
This decoupling suggests that there are different hydrological regimes throughout the year.
Because the stream is predominantly fed by groundwater (Andermann et al., 2012), the
transition between these regimes is likely to be controlled by the onset of groundwater
recharge, initiating a period when groundwater and precipitation are coupled. If this is
correct, then understanding the timing of this coupling in relation to precipitation input
is essential, requiring observation of groundwater storage through time. We defined two
seasonal boundaries based on this coupling in Figure 2.2: from a dry to an uncoupled-wet
season and from an uncoupled-wet to a coupled-wet season.

Previous work has linked seismic velocity decreases to increased groundwater levels
(Sens-Schönfelder & Wegler, 2006; Lecocq et al., 2017; Clements & Denolle, 2018; Kim
& Lekic, 2019b) and increases in pore pressure (Q.-Y. Wang et al., 2017). Thus, the
time series of estimated daily relative seismic velocity changes dv/v at Listi and Chaku
stations (Fig. 2.2b) may serve as a relevant proxy for groundwater storage. The annual
cyclicity of dv/v, with a decrease during each recorded monsoon seasons followed by a
recovery during the subsequent dry season is in agreement with these studies. At ∼ 8%,
the amplitude of change at our stations was significantly larger than in previously reported
cases (Lecocq et al., 2017; Clements & Denolle, 2018; Kim & Lekic, 2019b), suggesting
a dominant hydrological forcing on the velocity changes through substantial variations
in groundwater content and level. Both stations exhibited similar dv/v dynamics, with
a lower amplitude at Listi. This amplitude difference could reflect smaller groundwater
variations at Listi because it is at a higher topographic position with less upstream area.
However, because the seismic interferometry technique loses sensitivity to changes with
increasing depth (Pacheco & Snieder, 2005; Obermann et al., 2013), our observations could
also point to a deeper average groundwater level higher in the landscape (Jasechko et
al., 2016). A striking co-evolution between the streamflow (Fig. 2.2a) and the dv/v time
series occurred during major parts of the monitored period: the variables were negatively
correlated during monsoons, and the recovery of velocities during the post-monsoon period
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coincided with a discharge recession. Remarkably, the sharp decrease of seismic velocity
during the monsoon systematically coincided with a sustained increase in streamflow.
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Figure 2.2: Observations from the Bhote Koshi observatory. a. Black solid line indicates
the river stage height measured at the Kahule Khola. Daily precipitation is plotted in
blue. b. Daily relative seismic velocity changes variations in the 4 - 8 Hz frequency band
is plotted as circles with a 3 days moving average for visualisation. Measurements of soil
moisture volumetric content are reported by the solid lines. Green and red colours indicate
Chaku and Listi sites respectively. c. Red dots represent δ18O values measured at the
Kahule Khola. Black Dots represents Normalised Difference Vegetation Indexes (NDVI)
computed in our study area, that is a proxy for vegetation activity. The different seasons
and regimes of the hydrological system are indicated in the background and labeled at the
top.

Further insight into the timing of this onset and the fate of pre-monsoon precipitation
comes from soil moisture measurements (Fig. 2.2b). Over the annual cycle, the measured
soil moisture concentration had a pronounced relation with precipitation (Fig. 2.2a-b).
From the onset of pre-monsoon precipitation, soil moisture increased, while dv/v remained
unaffected, suggesting that any infiltrating rainwater was stored in the shallow subsurface
unconnected to the groundwater. The onset of coupling of precipitation and groundwater
occurred around the start of the summer monsoon, after reaching ∼ 610, 660 and 400 mm
of cumulative precipitation in 2016, 2017 and 2018, respectively. Coupling coincided with

24



Results and Discussion

the stabilization of soil moisture concentrations, despite mounting precipitation totals. We
attribute this stabilization to reaching a mean field capacity of the vadose zone. Under
these conditions, the equivalent volume of any additional water input to the subsurface is
gravitationally transferred into the groundwater reservoir, leading to rising groundwater
levels reflected by the seismic velocity decrease. We note that the buildup of moisture in
the subsurface during the pre-monsoon period was barely recorded by the seismic velocity
observations (Fig. 2.2b). This may be due to the frequency-dependent response of velocity
changes to partial fluid content (J. E. White, 1975; Helle et al., 2003), or to the limited
depth extent of the layer prone to soil moisture changes. The duration of the soil moisture
buildup phase was different for the three seasons on record with different cumulative
precipitation totals, likely because of differences in precipitation intensity. In addition,
transpiration losses could have slowed the increase in moisture. The onset of vegetation
activity signaled by increasing NDVI values during the pre-monsoon period underpins this
interpretation (Fig. 2.2c).

The co-evolution of our hydrological observables gives insight into the transition from
the coupled to the uncoupled hydrological regimes after the monsoon season. Early in the
dry season, a distinct and sustained decrease in the rate of recovery of dv/v occurred in
both recorded years (Fig. 2.2b), especially visible at Chaku station. This change of slope
suggests a step change in groundwater depletion, from fast in the early post-monsoon to
steady, but slower depletion during the dry season from ∼ November until around the
start of the next monsoon. Because this feature follows the last monsoon precipitation and
the decrease in soil moisure, we used it to conservatively define the end of the wet season
(boundary between the wet-coupled to dry season in Figure 2.2). We note that the stage
height of the Kahule Khola does not share the slope break observed in dv/v. This hints at
the operation of a second groundwater depletion pathway, connected not to streamflow, but
rather upwards via transpiration, which operates during the coupled hydrological regime,
but not during the subsequent dry season. This hypothesis can be tested with the oxygen
isotope record of the Kahule Khola.

Over the monitoring period, which comprised two annual cycles, δ18O values of Kahule
Kohla discharge were constant around -10%� during the dry season, increased progressively
to -6%� from the onset of pre-monsoon precipitation, dropped rapidly to around -11%�
early in the monsoon season, and restored to values around -10%� later in that season (Fig.
2.2c). The stable isotopic composition of stream water is determined by the precipitation
input and any subsequent fractionation. We constrain precipitation chemistry using a
contemporaneous precipitation δ18O measurement time series of samples from Kathmandu
(Fig. 2.11). Kathmandu is located at 1400 masl., about 50 km to the SW of our study area,
and exposed to the same general weather systems. During 2016 and 2017, Kathmandu
precipitation δ18O showed a similar pattern, with sparse dry season values around -9%�,
pre-monsoon values increasing up to 5%�, early monsoon rain around -15%� increasing to
-10%� later in the monsoon season. Fractionation after precipitation appears to be limited,
as the Kahule Khola δ18O data consistently plot on a local meteoric waterline (Fig. 2.10).

In this context, and in view of the paucity of winter precipitation, we interpret the
constant, intermediate δ18O values for Kahule Khola dry season water samples to indicate
that the stream was mainly fed by a groundwater reservoir in which isotopically light
monsoon input is mixed with some isotopically heavier pre-monsoon input on time scales
exceeding an annual cycle. It is likely that this mixing occurs after the vadose zone has
reached field capacity and water starts to move downward into the groundwater reservoir.
Heavier isotopic values of Kahule Khola stream water indicate that a part of pre-monsoon
rainfall translates into fast direct runoff. At the onset of the coupled hydrological regime,
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with incoming isotopically light monsoon precipitation, the oxygen isotopic values of
the stream water decreased to slightly below the characteristic value of the groundwater
reservoir. We attribute this to a combination of groundwater evacuation and direct runoff
during intense monsoon rainfall. The Kahule Khola water reverted to its steady, well mixed
δ18O signature independently of the slope break in the dv/v time series at Chaku, early in
the post-monsoon dry season. We infer that the secondary, upward loss of water in the
period before the break is largely due to vegetation transpiration which can modulate the
drainage of water tables close to rooting depth (Maxwell & Condon, 2016; Koirala et al.,
2017) without oxygen isotope fractionation.

2.3.2 Soil moisture and groundwater recharge

Our results suggest that two distinct hydromechanical regimes are active in the steep
Kahule Khola catchment. A key parameter controlling the passage between these regimes
could be the pore connectivity in the vadose zone. When this zone is undersaturated,
the pores are not efficiently connected and the presence of air may impede flow, causing
infiltrated rainwater to be stored as tightly bound water (Renée Brooks et al., 2010) that
is removed by root uptake building up early season biomass . This state is characterised
by short-lived episodes of direct runoff generation and a continuous decrease of baseflow.
When the subsurface moisture reservoir reaches a characteristic storage capacity, the
subsurface can no longer store additional water and begins to transmit to the deeper
groundwater reservoir. This behavior is analogous to a ‘sponge’ where prior hydrophiling
of the surfaces modulates the infiltration (DiCarlo, 2004, 2006). After the monsoon, the
bound water depleted by transpiration can be replaced by groundwater through upward
percolation processes (Renée Brooks et al., 2010), allowing vegetation to use groundwater
indirectly at depths exceeding the root zone (Koirala et al., 2017; Condon et al., 2020).
Therefore, evapotranspiration of subsurface moisture competes directly with precipitation
input to regulate groundwater recharge. Because we can not differentiate between a shallow
and deep groundwater reservoir at our field site, the hypothesis of a perched seasonal
groundwater reservoir (Padilla et al., 2015; Salve et al., 2012) depleted by transpiration is
also plausible. Therefore, the dynamics would be an integrated measure of both shallow
and deep groundwater storage. We conclude that despite evidence for a fractured bedrock
basement in the Nepal Himalayas (Tipper et al., 2006; Andermann et al., 2012), the
subsurface moisture reservoir governs hydrological fluxes in the Kahule Khola.

While this concept explains our observations at Chaku station, low in the Bhote Koshi
valley, it may not apply to higher positions in the mountain landscape. At Listi station,
close to a mountain ridge crest, seismic velocities decreased somewhat during pre-monsoon
despite the soil moisture not being at saturation, suggesting that precipitation became
connected to the groundwater reservoir (Fig. 2.2a-b). This early connection may be due to
a greater permeability of the surface, associated with thin soil cover and the presence of
deep-reaching tension fractures that allows localized areas of rapid recharge (Gleeson et al.,
2009). Moreover,the clear slope break that we attribute to the termination of transpiration
losses from the groundwater reservoir at Chaku is not as striking at Listi, where the recovery
in dv/v appeared more gradual from the wet to the dry season. This can be explained by a
groundwater reservoir that is below rooting depth (Maxwell & Condon, 2016). The similar
but yet different seismic velocity evolution at Listi and Chaku shows that the seismic
interferometry approach is a promising tool to monitor groundwater dynamics in different
parts of a landscape, including those that may be representative of the catchment and its
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subsurface. Thus, local gradients in the groundwater system can be targeted, something
that is beyond the reach of classic hydrograph analysis.

2.3.3 Modelling of seismic velocity changes

Our data suggest that subsurface moisture is a first-order control on groundwater storage
and discharge in the Himalayan Bhote Koshi catchment. We further demonstrate our
findings by reproducing the dv/v data with a hydrological model.
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Figure 2.3: Results of dv/v modelling. a. The sketches indicate models tested in the paper
with sign conventions shown by black arrows. Coloured arrows accounts for the fluxes
regulating groundwater dynamics (P: Precipitation, Q: Discharge, T: transpiration). GWD
(Groundwater Depth), h (hydraulic head), h0 (asymptotic level) and hb (critical depth for
transpiration) are the variables described in equation (2.1) and (2.3). b. Observations from
Chaku station and the best fitting dv/v predictions of models A and B. c. Antecedent
precipitation index P17 used in model B and the Pθ threshold. Grey areas depict the
periods when the groundwater is connected to precipitation and transpiration e.g. at the
field capacity of the vadose zone when P17 > Pθ.

Simple hydrological models have succeeded in reproducing key features of dv/v variation
in various settings (Sens-Schönfelder & Wegler, 2006; Gassenmeier et al., 2015; Hillers et
al., 2014). Although the details of these models have varied, they shared the assumption
of instantaneous transfer of precipitation to the groundwater system on the daily timescale.
Such models predict an exponential decay of the modeled hydrological variable (evolution
of groundwater table level, pore pressure, groundwater storage) after precipitation input.
To test whether these models can capture the essence of groundwater hydrology at our
field site, we have tried to fit the velocity changes observed at Chaku station with a
groundwater-level evolution model (Sens-Schönfelder & Wegler, 2006; Hillers et al., 2014).
We computed the hydraulic head h(t) as follows:
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dh

dt
= P (t)

φ
− ah(t) (2.1)

where P is the daily precipitation measured at the site, φ is the porosity of our
reservoir, and a is a decay parameter that describes the recession of the hydraulic head
after precipitation. We then converted changes in hydraulic head h(t) into synthetic relative
seismic wave velocity changes, by linking the relative variation in saturated rock mass with
a relative slowness perturbation of the medium (details in Appendix B01 ). Results from
this model do not adequately reproduce the Chaku data (Fig. 2.3b). For example, the
synthetic velocities decrease during the pre-monsoon, as model precipitation is directly
passed to the groundwater reservoir (model A, Fig. 2.3a). This model may be valid in
places such as volcanoes (Sens-Schönfelder & Wegler, 2006) where highly permeable bedrock
is exposed at the surface. However, in our setting, the subsurface moisture reservoir buffers
groundwater recharge and may be represented by including a second layer in the model. To
do this without introducing unconstrained physical quantities, we computed the antecedent
precipitation index PM(t) (Katsura et al., 2008; Kosugi et al., 2008):

PM(t) = PM(t− 1)exp(ln0.5/M) +Rh(t)exp(ln0.5/2M). (2.2)

Here, Rh(t) is the cumulative precipitation from t − 1 to t, and M the time in days
required for precipitation input to the layer to decay to half its initial value. We assumed
that the filling of the subsurface moisture reservoir can be represented by the cumulative
nature of equation (2.2) and that the half-time M captures the reduction of the moisture
content by transpiration. Then, we introduced a threshold Pθ to represent the field capacity
of the vadose zone. The Pθ threshold was taken as the mean value of PM(t) at the dates
corresponding to the onset of the seismic velocity decrease between the uncoupled to
coupled regimes in 2016, 2017 and 2018 (details in Appendix B02 ). Precipitation is only
passed to the groundwater reservoir when PM(t) > Pθ with

dh

dt
= P (t)

φ
− ah(t)− b (min(0, GWD(t)− hb)) (2.3)

where GWD(t) is the groundwater depth, and hb is the depth range in which
transpiration is active (model B, Fig. 2.3a-b). b is a coupling constant linking the
transpirative flux with the groundwater level through an increase of root density toward
the surface (Canadell et al., 1996). This scaling is a simplification as water may be used
directly and indirectly by roots. For periods with PM(t) < Pθ, we used equation (2.1)
without a precipitation input term. Our model best fits the seismic velocity data of Chaku
station with (least-squares misfit criterion L2 = 0.022, model B shown in Figure 2.3b-c),
and M values from ∼ 10 d to ∼ 40 d produce reasonable fits (L2 shown in Figure 2.9). We
attribute this broad range of suitable half time values to a lack of constraints in our model
and to the simplicity of our approach.

A few offsets between our model and the data occurred during dry seasons, possibly due
to changing local hydro-geological complexities, the single groundwater reservoir assumption,
thermal strain (Richter et al., 2014), or a long term mechanical effect of the 2015 Gorkha
earthquake and aftershocks on seismic velocity (Brenguier et al., 2008). In general, though,
our modelling captures the dv/v dynamics and shows that key hydrological observations in
the Bhote Koshi catchment require a subsurface moisture layer which is governed by the
balance of precipitation input and transpirative loss, and acts as a gatekeeper that either
separates the groundwater reservoir from surface precipitation or to permits recharge.
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2.4 Conclusions and perspectives
Based on our combined seismological, hydrological, meteorological and geochemical
observations and modelling, the precipitation-subsurface moisture-groundwater-stream
water complex in the central Nepal Himalayas undergoes an annual cycle with four stages
(Figure 2.4). (1. Dry Stage) The background is defined by a dry season, during which stream
flow is fed only by gravity-driven groundwater discharge, causing progressive depletion of
the groundwater reservoir. (2. Decoupled Stage) Pre-monsoon precipitation is converted to
subsurface moisture and direct runoff, but does not result in groundwater recharge, such that
the groundwater reservoir continues to be depleted. During this period, precipitation and
groundwater are decoupled, and this state is prolonged by transpiration loss of subsurface
moisture. (3. Coupled Stage) When the shallow subsurface, i.e. the vadose zone, has
reached field capacity, precipitation causes direct runoff as well as groundwater recharge and
evacuation. During this coupled phase, when precipitation and groundwater are connected,
moisture that accumulated in the vadose zone over the pre-monsoon season remains constant
and additional precipitation is removed by transpiration or mixed with the pre-monsoon
input and is moved into the groundwater reservoir at a rate determined by the local
hydraulic conductivity and the infiltration capacity. Mixed water resides in this reservoir
for at least one full annual cycle, meaning that evacuated mountain groundwater is older
water. (4. Coupled Stage) As monsoon precipitation wanes, groundwater recharge slows
down and a combination of evacuation to streams and upward loss through transpiration
causes the groundwater table to drop. This drop is initially fast, but slows down once
plants are no longer connected to the groundwater reservoir. At this point, the dry state
sets in anew.
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Figure 2.4: Conceptual sketch of the evolution of hydrological systems throughout the
monsoon cycle. The arrows indicates the fluxes that control groundwater and subsurface
moisture storage with T being transpiration, P the precipitation and Q the discharge. The
colourbar indicates the scale for subsurface moisture storage where θc is the characteristic
field capacity required to connect the precipitation input and the transpiration outtake
to the groundwater. colours in trees indicate the evolving vegetation activity during one
complete seasonal cycle. Sketches are in a 1D representation. Schematically, we also report
the corresponding dv/v variations observed at Chaku at the different part of the Monsoon
cycle. Time axis is not scaled.

The annual cycle we have described has hydrological seasons, which may differ from the
meteorological seasons (Müller et al., 2014; Brunello et al., 2019). In the Nepal Himalayas,
the crucial transition from the decoupled to the coupled state, after which precipitation is
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most effectively translated into runoff, is determined by the saturation of the subsurface,
which is governed, in turn, by the balance of precipitation and evapotranspiration during
the preceding weeks to month. During our monitoring in the Bhote Koshi catchment,
this transition happened around the meteorological monsoon onset and after 400-600
mm of cumulative precipitation over a period of some weeks, but elsewhere it may occur
with a greater offset. We note that the similar threshold behaviour observed in the rock
moisture reservoir on a hillslope in the Northern California Coast Ranges may not be
as dependent on transpirative loss, as the onset of groundwater storage happened at a
constant cumulative precipitation total for each recorded year in that study (Rempe &
Dietrich, 2014). Moreover, within one landscape, the decoupled-to-coupled transition may
not be uniform, with locations with less vegetation and soil cover, more precipitation, or
less evaporation transitioning sooner.

These findings have likely implications for the prediction of natural hazards in the
Himalayas. A precipitation event that may have little impact early in the year, when
subsurface moisture is depleted and has a buffering capacity, could result in a flood later
in the year when the vadose zone is at field capacity and both infiltration and direct runoff
lead to water discharge. Monitoring of subsurface moisture and dv/v can help identify
the transition from the decoupled to the coupled state, when the likelihood of flooding
changes. This transition occurs when subsurface moisture ceases to rise and the shallow
seismic velocity starts to decrease. Similarly, the decoupled-to-coupled transition may
also have an impact on deep-seated landsliding: a substantial and sustained hazard in
the Himalaya. Such landslides are often attributed to increased pore pressure (Iverson,
2000), which occurs once the vadose zone of the upslope area has reached field capacity.
The hydrological regimes highlighted in our study could help delineate a landslide season,
during which slope stability is a direct function of local precipitation (Gabet et al., 2004).
A universal relation between precipitation rate and landsliding does not apply where the
groundwater is episodically decoupled from precipitation input.

Our results also imply that prediction of mountain water resources requires knowledge
of the thickness and properties of the soil and regolith layer, which is a gate keeper to
the fractured crystalline bedrock in which the groundwater reservoir is primarily located
(Rempe & Dietrich, 2014, 2018). During our three-year observation period, pre-monsoon
precipitation did not contribute significantly to discharge but was rather mostly consumed
in the vadose zone. However, this period contributes to the wetting of the landscape and
pre-conditions rapid and effective transfer into groundwater and hence river discharge. The
moisture content of the vadose zone determines first-order features of the precipitation-
discharge relation in the Bhote Koshi catchment, and probably other catchments in the
Himalayas and other mountain belts. The modulation cycle exerted by the subsurface
moisture shows an indirect relation between precipitation and groundwater that may be
responsible for the low streamflow sensitivity to water storage observed in other mountainous
areas (Berghuijs et al., 2016). It is mediated not only by the infiltration of rain water,
but also by upward water losses due to evaporation and transpiration. The balance of
these gains and losses is likely highly sensitive to ecosystem composition, land use and the
macroporosity of the soil: parameters that are influenced by climate change (Hirmas et al.,
2018; Samaniego et al., 2018).

Recent work by Brunello et al. (2020) highlighted increasing pre-monsoon precipitation
totals over the last ∼ 70 years. In conjunction with our findings, a longer and wetter pre-
monsoon season would impact directly on the saturation of the vadose zone, the recharge
of groundwater and river discharge, increasing the availability of water for hydropower and
irrigation purposes. The demand for this water availability is large in densely populated
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Asian basins, particularly the ones relying on Himalayan freshwater (Immerzeel et al., 2020).
Forecasts of global climate change impacts on the Himalayan region predict a reduction
of melt-water availability for an estimated 60 million people downstream (Immerzeel et
al., 2010)). However, if global climate change will also alter the intensity distribution of
the Indian monsoon, then we can expect vegetation activity, soil formation, erosion, and
subsurface moisture dynamics to change as a consequence, with potentially even more
severe consequences for water resources. The effect of subsurface changes due to climate
change or changing land use has been acknowledged as a major knowledge gap in the
freshwater resources IPCC special report (Jiménez Cisneros et al., 2015). For instance,
decreasing trends in soil moisture due to warmer days (A. Wang et al., 2011; Fischer et al.,
2011) would lead to a poor conversion of precipitation to water availability in environments
similar to our study area. Therefore, the notion of mountain water towers in the Himalayas
and sustainability studies on high mountain areas (Regine Hock, 2019) must be expanded
from the cryosphere to include mountain subsurface moisture and groundwater and their
complex link with precipitation. With ∼ 1.5 billions people on Earth projected to rely on
discharge sourced from mountain areas (Viviroli et al., 2020), constraining this link for the
major lithologies and ecosystems and monitoring the state of the vulnerable vadose zone
in mountain regions are keys to anticipating the future trajectories of some of our most
important freshwater reserves.
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2.5 Appendix of paper I

Appendix A: Ambient Noise Processing
Preprocessing and calculation of correlation functions

A first step of preprocessing is needed to reduce the impact of high amplitude signals such
as those induced by earthquakes or rockfalls before calculating the correlation functions.
The seismic traces were trimmed to one hour segments, downsampled to 50 Hz, detrended
and filtered in the 4-8 Hz frequency range. Then we applied spectral whitening: all the
amplitudes in the Fourier spectrum were set to 1 before applying the inverse Fourier
transform. The correlation functions with single station cross correlation (SC, (Hobiger et
al., 2014)) were calculated as follows:

Ck1,k2(ti, τ) =
ti+T/2∫
ti−T/2

sgn[Xk1(t′)] · sgn[Xk2(t′ + τ)]dt′ (2.4)

In the equation, km represents the different components m = Z,N,E with k1 6= k2 for
SC, t is the time of the year and τ is the lag time of the correlation. T is the temporal
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discretization in the correlation process. The sgn function stands for the 1-bit normalization
of our signal: positive amplitudes are set to 1 and negative amplitudes are set to -1. We
computed correlation functions at a time step of one hour and averaged them on a daily
basis in order to get daily correlation functions (DCFs). We stored all the DCFs in a
correlation matrix as shown in Figure 2.6.

Estimating velocity changes

If we assume a spatially homogeneous relative velocity change δv = dv/v in the medium, a
relative time delay δτ = dt/τ will be observed in the DCFs coda with δv = −δτ where τ is
the lapse time in the correlation functions and dt is the absolute time shift of a coherent
phase. The relative velocity change has been estimated using the stretching technique
(Sens-Schönfelder & Brenguier, 2019).

Depending on the daily velocity change, each DCFs (C(ti, τ)) will be stretched or
compressed and compared to a long term average reference ξ(τ). For this study, we
used multiple references ξr(τ) to avoid the possible degradation of a unique reference
when averaged over the whole time period (Sens-Schönfelder et al., 2014). To do so, we
first computed monthly references ξr(τ) with an overlap of 15 days. For each of these
references, we calculated the correlation coefficients Rr(ti, εj) between stretched versions of
the reference and the DCF as

Rr(ti, εj) =
∫ τ2

τ1
C(ti, τ)ξr(τ ∗ (1 + εj))dτ (2.5)

where τ is the traveltime of waves in the DCF and εj indicates a set of stretch-values
that are tested in the time window set by [τ1, τ2]. We defined the length of the time window
as follows: we skipped four signal periods before computing the stretching on a duration
of 12 periods (corresponding window indicated in Figure 2.6). One period corresponds
to the lowest frequency of the filter we previously applied (here τ1 = 1 s). Introducing τ1
is necessary to avoid the use of early arrivals that are prone to change in noise sources
characteristics. All Rr(ti, εj) values were stored in a similarity matrix as shown in Figure
2.7.

For each reference, a first daily measurement of δv(ti) can be done by reading the
amount of stretching εj that yields the daily maximum Rr(ti, εj) value. To combine the
measurements done with the multiple references, we stacked all similarity matrices Rr(ti, εj)
after correcting for their shifting due to the velocity differences between the references.
We finally obtained a stacked similarity matrix R(ti, εj) which describes the daily velocity
variations obtained from one combination of sensor components k1, k2 (Fig. 2.7).

We applied this method to the three possible combinations (ZN, ZE, EN). In a last step,
we stacked the three R(ti, εj) matrices and picked the εj as the location of the maximum
of R(ti, εj) again. The final daily δv(ti) at the station is equal to εj.

Appendix B: modelling velocity changes induced by groundwater
level variations, detailed method

Model A

The first applied model in the paper is similar to the one used in Sens-Schönfelder Wegler,
2006 and Hillers et al, 2014. In a first step, we model the evolution of the groundwater
table depth. Conventions are shown on Figure 2.3 of the main text. The variation of the

32



Appendix of paper I

hydraulic head is here approximated as a representative column reservoir of porosity φ. We
assume that the rate of recession of the hydraulic head h(t) is proportional to its height
such as

dh

dt
(t) = P (t)

φ
− ah(t) (2.6)

where P (t) is the precipitation rate and is the decay parameter. Similarly to an
unconfined aquifer that obeys to Darcy’s law, this equation predicts an exponential decay
of the hydraulic head after impulsive rain events at tn with its analytical solution:

h(t− tn) = P (tn)
φ

e−a(t−tn) (2.7)

We introduce the asymptotic level h0 to convert the hydraulic head height into the
absolute groundwater table depth GWD(t) as shown on Figure 2.3 with:

GWD(t) = h0 + h(t) (2.8)
Equation (2.6) is here discretised and integrated using a central Euler scheme with the

daily precipitation data as inputs to obtain daily h(t). Figure 2.8a shows examples of the
model using our precipitation dataset with parameters taken as φ = 0.017 and a = 0.08 d−1.
Because absolute groundwater level changes are unconstrained, we run our simulations
with an arbitrary but realistic value of h0 = −50 m.

We then convert the hydraulic head daily variations h(t) into daily relative velocity
changes δv. We assume that a change of h(t) will induce a change in the relative slowness
profile S(t, z) with δs being the relative slowness difference between the saturated and dry
state of the reservoir. We define a reference hydraulic head href that is taken as the mean
h(t) over the whole time period of the study. We have S(t, z) = δs for h(t) < z < href and
S(t, z) = −δs for href < z < h(t).

To model the depth sensitivity of the seismic waves, we used the 3-D scattered wavefield
kernel derived by Pacheco and Snieder (2005). Because we applied the single station cross
correlation technique, we considered coincident source and receiver which leads to the
following equation

K3D(x, τ) = (2πDr)−1 exp −r
2

Dτ
(2.9)

with D being the diffusion constant, x is the point in space at distance r from the
source/receiver and τ is the lapse time in the correlation function. We horizontally integrate
K3D(x, τ) to get the depth sensitivity K(z, τ). Kernel examples for different diffusivity
constant are plotted in Figure 2.8b.

In a last step, we compute the daily delay time by integrating the slowness perturbation
profile weighted by the kernel as

δτ(t, τ) =
∫ ∞

0
S(t, z)K(z, τ)dz. (2.10)

We then convert the delay times in modeled daily relative velocity changes δvm = −δτ/τ .
We report in Figure 2.8c different synthetic velocity changes obtained from equation (2.10)
with the 3 kernels proposed in Figure 2.8b. Because the kernels do not change significantly at
the spatial scale of groundwater changes (∼ 10 m) results are poorly dependent on the value
of the diffusivity D and the kernel used. Therefore, we use the value of D = 1.105m2.s−1

for our simulations.
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We used an interior point algorithm in Matlab® (fmincon) to minimise the following
least square misfit between our model and the data over the total number of days N :

misfit =
N∑
i=1

(δvm(i)− δv(i))2. (2.11)

Our best fitting model is obtained with a = 0.0134d−1, φ = 0.032 and δs = 0.007. We
note that different combinations for φ and δs can give similar results.

Model B

As explained in the main text, we propose to implement the role of the subsurface moisture
reservoir with a simple antecedent precipitation index approach that does not require
unconstrained physical parameters. The antecedent index is computed as follows:

PM(t) = PM(t− 1)exp(ln0.5/M) +Rh(t)exp(ln0.5/2M). (2.12)
Rh(t) is the cumulative precipitation from t− 1 to t and M is the half-time period in

days required for the precipitation fed to the layer to decay to half of its initial value. We
then introduce a threshold Pθ to model the field capacity of the subsurface: precipitation is
only passed to the groundwater storage when PM(t) > Pθ. We calculate the Pθ threshold
as the mean value of PM(t) at the date of the 2016 June 17th, 2017 June 21th and 2018
June 9th (red lines on Figure 2.9b-f). We chose these dates based on the trend detection of
the onset of the seismic velocity decrease and the plateau observed in the soil moisture
data that defines the start of the coupled regime. Then, we model the effect of vegetation
in introducing the parameter hb which is the critical depth at which the vegetation do not
influence the drainage of groundwater anymore (see conventions in Figure 2.3). For this
study we take the value of hb = 10m which is a classic reported tree root depth (Canadell et
al., 1996). We introduce the effect of transpiration on the groundwater with a second term
to equation (2.6) involving an additional scaling term b within the depth hb. Therefore, for
PM(t) > Pθ, we have

dh

dt
= P (t)

φ
− a (GWD(t)− h0)− b (min(0, GWD(t)− hb)). (2.13)

For periods when groundwater is not connected to the surface (PM(t) < Pθ), we have

dh

dt
= −a (GWD(t)− h0). (2.14)

We convert the hydraulic head h(t) evolution in seismic velocity variations following
the same method described in model A. We test a whole class of models with parameter
M ranging from 1 to 100 days and try to fit the data in minimising the misfit 2.11 using
the same solver applied before for model A. The corresponding misfit values are shown
in Figure 2.9a. The misfit space shows several local minima ranging from M ∼ 10 d to
M ∼ 40 d. This suggests that values corresponding to the weekly and monthly scale fit
the data equally well. We show 5 inverted models in Figure 2.9b-f and their corresponding
antecedent precipitation index PM .
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Figure 2.5: Map of the weather station array installed in the Bhote Koshi River Valley
during seismic monitoring period. We show the corresponding Thiessen polygons used to
interpolate the precipitation time-serie used in this study.
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Figure 2.6: Correlation Matrix for Chaku station, Channel combination ZN. Red rectangles
indicate the lapse time windows used for the stretching technique. Amplitudes are
normalised in this time window.
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Figure 2.7: Illustration of the velocity change measurements. Similarity matrix example is
shown in the upper panel. Corresponding stretch values are shown on the middle plot with
corresponding picked correlation coefficients in the lower plot.
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Figure 2.8: Building blocks of model A. a. Modeled groundwater level b. 3-D depth
sensitivity kernels for diffusive wave propagation, different colours indicates different values
of the diffusivity D c. Velocity changes inferred from the groundwater level evolution
shown in a. and the associated kernels shown in b.
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Figure 2.9: Illustration of model B for various values of the half-time M a. Misfit values
obtained in the inversions of model B with different values of parameter . Corresponding
models are shown in b-f. In each model subplot, the upper plots show the data at Chaku
(black line) versus the best inferred model (red line). Lower plots shows corresponding
antecedent precipitation index PM(t) curve with the threshold Pθ in green taken as the
mean of PM at the dates indicated by the red lines.
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Figure 2.10: Local Meteoric Water Line in the Kahule Khola versus global MWL.

Figure 2.11: Stable isotopes in the Kahule Khola versus precipitation at Kathmandu.
Black markers indicate δ18O values measured in rain water in Kathmandu. Red markers
corresponds to δ18O values measured in the Kahule Khola river. Y-axis have different
scales due difference in isotopic concentration in precipitation and the stream.
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What about ground shaking ?
In Chapter 2, I have shown that the moisture saturation in the shallow subsurface acts as a
gatekeeper for groundwater recharge and discharge generation against the Indian Summer
Monsoon precipitation. This dynamics determines the annual water availability in the
Bothe Koshi catchment, typical of the wider lower Himalayas units. We used an array
of methods to constrain the hydrological dynamics, including the monitoring of relative
seismic velocity changes as a proxy for groundwater storage. This technique allowed us to
build a simple hydrological model that can predict the evolution of the local groundwater
dynamics as a function of daily precipitation totals. Surprisingly, the moisture in the
shallow subsurface did not influence the seismic velocity evolution which suggests that the
dv/v measurement at our site mostly integrate the dynamics in the local fractured bedrock
aquifer (Andermann et al., 2012).

We know from previous studies that fractured aquifers exhibit a transient response
after earthquake ground shaking, notably an increase in permeability (Manga et al., 2012;
Xue et al., 2013; Hosono et al., 2020). In April 2015, the Bothe Koshi field site experienced
intense ground shaking and landsliding (Marc et al., 2019) due to the Mw 7.8 Gorkha
earthquake. A month after the event, the seismic stations of Chapter 2 were deployed.

In Chapter 3, I have a closer look at the seismic velocity changes inferred at the same
stations in the second half of 2015 and the early part of 2016. The effect of hydrological and
earthquake induced velocity changes is often treated independently in seismic interferometry
studies. Using the calibrated hydrological model derived in Chapter 2, I strip the dv/v time-
series from the hydrological effects and disentangle the interaction between groundwater
dynamics and the possible damage caused by ground shaking on the dv/v variations.
Because the stations were deployed after the Gorkha earthquake, no prior velocity baseline
is constrained by the data. Despite this limitation, the quantification of the timescales of
perturbation of the hydrological system and the overall subsurface damage is my main
focus in the next Chapter.
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Abstract

Shallow earthquakes frequently disturb the hydrological and mechanical state of the
subsurface, with consequences for hazard and water management. Transient post-
seismic hydrological behaviour has been widely reported, suggesting that the recovery
of material properties (relaxation) following ground shaking may impact groundwater
fluctuations. However, the monitoring of seismic velocity variations associated with
earthquake damage and hydrological variations are often done assuming that both
effects are independent. In a field site prone to highly variable hydrological conditions,
we disentangle the different forcing of the relative seismic velocity variations δv
retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 Mw
7.8 Gorkha earthquake. We successfully model transient damage effects by introducing
a universal relaxation function that contains a unique maximum relaxation timescale
for the main shock and the aftershocks, independent of the ground shaking levels.
Next, we remove the modeled velocity from the raw data and test whether the
corresponding residuals agree with a background hydrological behaviour we inferred
from a previously calibrated groundwater model. The fitting of the δv data with this
model is improved when we introduce transient hydrological properties in the phase
immediately following the main shock. This transient behaviour, interpreted as an
enhanced permeability in the shallow subsurface, lasts for ∼ 6 months and is shorter
than the damage relaxation (∼ 1 year). Thus, we demonstrate the capability of seismic
interferometry to deconvolve transient hydrological properties after earthquakes from
non-linear mechanical recovery.

3.1 Introduction
Following the passage of seismic waves, a wide range of transient effects have been observed
near the Earth’s surface, including increased landslide rates (Marc et al., 2015), enhanced
permeability (Manga et al., 2012; Xue et al., 2013) and perturbations of frictional properties
in fault zones (Pei et al., 2019). These observations suggest that earthquakes induce a
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lingering effect in the properties of near-surface rocks that may be linked to non-linear
mesoscopic elasticity (NLME, e.g. Gassenmeier et al., 2016; Marc et al., 2021). This
phenomenon is generally expressed by a drop in elastic moduli after a dynamic or static
strain perturbation, that is followed by a non-instantaneous recovery of these moduli. This
recovery phase, also called relaxation or slow dynamics, is linear on a logarithmic time
scale (Snieder et al., 2017) and can last anywhere from a few seconds (Shokouhi et al.,
2017) to several years (Brenguier et al., 2008; Gassenmeier et al., 2016). Because most
subsurface materials display this behaviour (Shokouhi et al., 2017; Gliozzi et al., 2018),
understanding the amplitudes and timescales of the damage and recovery process of NLME
is important for post-earthquake hazard mitigation.

In the field, the study of slow dynamics has been particularly advanced by the
development of seismic interferometry techniques that monitor relative seismic velocity
changes δv = dv/v in the subsurface over time. Observations of co-seismic velocity drop
and subsequent recovery in epicentral areas now abound and have been obtained from
seismic ambient noise correlations (Wegler & Sens-Schönfelder, 2007; Brenguier et al., 2008;
Hobiger et al., 2014; Gassenmeier et al., 2016) or waveform deconvolution in boreholes
(Sawazaki et al., 2009; Wu et al., 2010; Nakata & Snieder, 2011). However, constraints
on the physical mechanisms responsible for NLME in the field and the prediction of its
amplitudes, timescales and associated effects have remained scare for several reasons.
Firstly, the spatially averaged nature of the observation techniques does not allow for the
precise identification of the responsible relaxation process among the many post-seismic
processes acting at all depths and scales within a perturbed substrate. This complexity has
prompted seismologists to use exponential functions characterised by variable timescales to
fit velocity recoveries caused by individual events (Hobiger et al., 2014; Gassenmeier et al.,
2016; Qin et al., 2020) rather than using particular physical relaxation models constrained
from laboratory experiments (Lieou et al., 2017; Ostrovsky et al., 2019; Bittner & Popovics,
2021). Although this empirical approach can facilitate comparison between events, the
understanding and prediction of the wide range of different recovery timescales (from
minutes to years) between studies and sometimes within the same epicentral area (Viens et
al., 2018) are limited. Moreover, aftershocks may induce superposed damage and healing
processes, which may affect the observed recovery time of the main shock (Sawazaki et al.,
2018).

The effects of slow dynamics may be obscured by hydrological fluctuations (Sens-
Schönfelder & Wegler, 2006; Kim & Lekic, 2019a; Illien et al., 2021), which can influence
the seismic velocity. Monitoring of hydrologically induced velocity variations (δvH) is often
done under the assumption that hydrological changes and NLME are independent processes
that can be superimposed such that the observed δv signal is simply the sum of hydrological
and NLME effects (δv = δvNLME + δvH). However, there is evidence that both effects are
not independent. It has been shown that the hydrological conditions of hillslopes can alter
the NLME-response to dynamic strain (Bontemps et al., 2020). Moreover, as mentioned
above, transient hydrological behaviour following co-seismic ground shaking has been widely
reported in borehole measurements (Elkhoury et al., 2006; Xue et al., 2013; Shi et al.,
2015) and streamflow (C. Y. Wang et al., 2004), suggesting that the hydrological system is
also impacted by the transient variation of material properties. For example, the opening
of cracks, which is often used to explain coseismic velocity decreases, can also introduce
a change in substrate permeability (Elkhoury et al., 2006; Xue et al., 2013). Lastly, the
similarity between the seismic velocity recovery timescale (∼ 50 days, Taira et al., 2015)
and the duration of the stream discharge increase (C. Y. Wang & Manga, 2015) observed
after the 2014 South Napa earthquake suggests a strong link between relaxation-induced
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Figure 3.1: Map of the study area. a) Black solid lines show the isolines for the Gorkha
co-seismic slip (in cm) from the inverted solution of Elliott et al. (2016) using INSAR data.
Yellow dots account for aftershocks of magnitude > 4 (Adhikari et al., 2015). Red stars
show the epicenter of the Gorkha earthquake and its main aftershock (12th of May 2015).
Green square is the Bothe Koshi observatory and blue star is the water gauge for measuring
stage height of the Bothe Koshi river. b) Close-up on the Bothe Koshi observatory. Red
triangles show the site where seismic stations are deployed. B.K stands for Bhote Koshi
river.

velocity changes and transient hydrological properties. Because of the complexity of both
processes and their coupling, it has not yet been possible to document the shaking induced
perturbation of the hydrological system by means of seismic interferometry.

To investigate the shaking induced variations of a hydrological system with seismic
interferometry, we use a seismo-hydrological dataset from the Nepal Himalayas that
(a) features strong hydrological forcing, (b) includes the recovery phase of a large
crustal earthquake and (c) is described by a calibrated hydrological model that connects
precipitation input to seismic velocity variations (Illien et al., 2021). Our approach involves
accurate observations of seismic velocity changes, correcting the velocity changes for NLME
effects due to the seismic activity and finally investigating the ability of the hydrological
model to describe the residual velocity changes during different phases of the main shock
recovery. Our field site is located in the epicentral area of the 2015 Mw 7.8 Gorkha
Earthquake (Fig. 3.1a), in the Bhote Koshi catchment in Nepal about 60km north east of
Kathmandu in the steep ridge and valley topography of the lesser Himalayas. The region
experienced strong ground shaking (Wei et al., 2018), widespread landsliding (Roback et
al., 2018) and numerous aftershocks (Adhikari et al., 2015). Due to a distinct wet and
dry season in which ∼ 80% of the annual precipitation occurs during the Indian Summer
Monsoon between ∼ May and ∼ October (Bookhagen & Burbank, 2010; Brunello et al.,
2020), the hydrological conditions at this site are highly variable. This combination of
pronounced and well-constrained hydrological and seismic forcing makes our field site a
suitable location to study the interplay of seismic damage and hydrology.

The paper is organised as follows: we present the data and the seismic interferometry
technique used to estimate velocity changes in Section 3.2. Section 3.3 shows the
corresponding raw velocity changes observed after the Gorkha earthquake and its aftershocks.
In Section 4, we present and discuss our models used to compute synthetic δv values based
on models for damage and hydrology. Section 3.4.1 is devoted to the damage-induced
variations δvNLME in which we introduce a new approach to describe the effects of the
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Gorkha mainshock and its aftershocks in a consistent model whereas Section 3.4.2 explores
the residuals of the damage-corrected δv time series using the hydrological model of Illien
et al. (2021). This allows us to assess transient variations of the hydrological system in the
Bhote Koshi catchment following the Gorkha event.

3.2 Data and methods for estimating seismic velocity
changes

Three broadband seismic stations (3-components Trillum compact 120s) were installed
on the 6th of June 2015, 42 days after the Gorkha main shock near Chaku village (Fig.
3.1b) and recorded until the 23rd of October 2018. The seismic stations were installed on
a bedrock terrace at a distance of ∼ 100 m from each other to achieve highly resolved
temporal averaging at the same location. The metasedimentary rocks of the terrace are
covered by a layer of regolith and colluvium. Because our stations were deployed after the
Gorkha main shock, we also used data from the Gumba station (Fig. 3.1b) of the Nepalese
Seismological Center to confirm that our field site experienced a co-seismic velocity drop
nearby and is in a recovery phase. This station has a single component and is located at
4.3km from our field site and 1700m higher the Chaku terrace. For Gumba station, we
evaluated data from January 1st, 2014 to December 9th, 2015. Daily precipitation were also
measured from a network of precipitation gauges set up in the Bothe Koshi observatory
(see the Data availability statement). We note that no major landslides occured in the
vicinity of our seismic stations (Marc et al., 2019) which imply that observed velocity
changes are unlikely to be caused by redistributions of surface materials.

3.2.1 Estimation of daily relative seismic velocity changes
We use seismic ambient noise to monitor variations of seismic velocity in the subsurface
(Sens-Schönfelder & Brenguier, 2019). To reduce the impact of high amplitude signals
in the noise correlation process, we use the following pre-processing scheme: the seismic
traces are trimmed to one hour segments, downsampled to 50 Hz (only for Chaku stations)
and detrended. We filter Chaku stations in the 4-8 Hz frequency range and data from
Gumba station in the 2-4 Hz range due to limited seismic energy at higher frequencies.
We normalize Chaku amplitudes to 1 in the Fourier spectrum (spectral whitening) and
perform single station cross correlation (SC method, Hobiger et al., 2014), using

Ck1,k2(ti, τ) =
ti+T/2∫
ti−T/2

sgn[Xk1(t′)] · sgn[Xk2(t′ + τ)]dt′, (3.1)

where ti is the time of the trace and τ is the lapse time of the correlation. T , the length
of the correlated noise segments determines the temporal resolution of the δv time series.
The sgn function represents the 1-bit normalization of the signal in which we set positive
amplitudes to 1 and negative amplitudes to -1. km stands for the different components
m = Z,N,E with k1 6= k2 for SC. Because Gumba has one component only, we compute the
autocorrelation of the vertical component CZZ(ti, τ). Correlation functions are calculated
with a time step of one hour before averaging them every 24h to obtain daily correlation
functions (DCFs). We store all the DCFs in a correlation matrix, as shown in Figure 3.12.

We use the stretching technique (Sens-Schönfelder & Wegler, 2006) to estimate relative
velocity variations. After a spatially homogeneous relative velocity change δv = dv/v in
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the medium, the time delay δτ = dt/τ can be observed in the DCFs coda with δv = −δτ
where τ is the correlation lapse time and dt is the absolute time shift of a coherent phase
with travel time τ . Depending on the daily velocity changes, the DCFs (C(ti, τ)) are
stretched or compressed when compared to a long term average reference ξ(τ). To avoid
the effects of a possible degradation of a unique reference when averaged over the whole
time period (Sens-Schönfelder et al., 2014), we use multiple references ξr(τ) at the Chaku
site by computing monthly references ξr(τ) with an overlap of 15 days (we illustrate the
use of different references in Figure 3.13). For each of these references, we calculate the
correlation coefficients Rr(ti, εj) between stretched versions of the reference and the DCF
such that

Rr(ti, εj) =
∫ τ2

τ1
C(ti, τ)ξr(τ ∗ (1 + εj))dτ (3.2)

where τ is the traveltime of waves in the DCF and εj indicates a set of stretch-values
that are tested in the time window set by [τ1, τ2]. We define the length of the time window
as follows: we skip four signal periods T , where one period corresponds to the lowest
frequency of the bandpass filter we previously applied (here T = 0.25s), before computing
the stretching on a duration of 12 periods (corresponding window indicated in Figure 3.12).
Introducing τ1 is necessary to avoid the use of early arrivals that are prone to changes in
noise sources characteristics. All Rr(ti, εj) values are stored in a similarity matrix.

For each reference, a first daily velocity measurement δvr(ti) can be done by reading
the amount of stretching εj that yields the daily maximum Rr(ti, εj) value. Combining the
measurements done with the N various references, we stack all similarity matrices Rr(ti, εj)
after correcting for any average shifting (δvr) due to the velocity differences between the
references (full method described in Sens-Schönfelder et al., (2014)) following the relation

R(ti, εj) =
N∑
r=1

Rr(ti, εj)− shift(δvr). (3.3)

R(ti, εj) describes the daily velocity variations obtained from one combination of sensor
components k1, k2. We applied this method to the three possible combinations (ZN, ZE,
EN) for each of the Chaku stations. We finally stack the resulting nine R(ti, εj) matrices
(3 stations with 3 combinations) and pick the εj(t) with the maximum R(ti, εj) again. The
final daily δv(ti) at the Chaku site is equal to this specific εj(t). For Gumba station, we
use only one reference as the use of multiple references does not improve the retrieved δv
values.

3.2.2 Local aftershocks catalog and estimation of associated
velocity changes δvA

Aftershocks recorded after the Gorkha earthquake may bias the recovery timescale estimated
after the main shock by inducing further velocity drops and recoveries. However, due to
potentially large hydrological fluctuations at the daily timescale of the interferometric
processing, it may be challenging to dissociate the effect of cumulative aftershocks from
hydrologically induced velocity variations. To address this issue, dedicated velocity change
measurements following local aftershocks were conducted at a finer temporal resolution.
Despite aftershock catalogs being available for the Gorkha earthquake (Adhikari et al.,
2015; Baillard et al., 2017), their relevance for our field site remains limited as they
lack information about the local shaking at the Chaku site. Therefore, to estimate the
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cumulative effects of shaking due to the aftershocks on the velocities, we build a catalog
based on the daily peak ground velocity (PGV) recorded at Chaku. We first retain days
with PGV greater than 1e−4 m.s−1. In the field, this value is approximately an order of
magnitude lower than the minimum excitation required to induce a detectable change
in rock properties as reported in the literature (Elkhoury et al., 2006; Wu et al., 2010).
To exclude potential spurious peaks due to local artefacts, we check if the corresponding
signals were also recorded at another temporary station (Hindi station on Figure 3.1b)
located at ∼ 3km from our site. Using this procedure, we pick 82 potential aftershocks.

To test whether these events triggered NLME, we perform single station cross
correlations of the ambient noise centered around the 82 events using the same method
described in section 3.2.1, but with a 10-minute interval for the estimation of δv. We find
that 18 events triggered a seismic velocity drop that was observable at this resolution. We
quantify the co-seismic velocity drops by taking the difference between the median δv value
of the 12 hours preceding the aftershocks (no detectable velocity drops occurred during
this time span) and the median value of the first hour succeeding the events.

3.3 Seismic velocity changes

3.3.1 Evidence for non-linear recovery after Gorkha earthquake

In Figure 3.2a, we report the daily relative seismic velocity changes estimated at the Chaku
site and the daily precipitation totals recorded at nearby precipitation gauges in Figure 3.2b.
The Chaku δv time series exhibits a clear annual cyclicity exerted by the climatic forcing
with a consistent drop of up to 8% in measured δv values during the monsoon season.
Because of these significant hydrology-induced velocity changes and our dataset starting
at 42 days after the Gorkha main shock (dashed lines in Figure 3.2), the recognition of
any non-hydrological component in the δv time series is strongly overprinted. Nevertheless,
several arguments pinpoint the presence of NLME recovery in our time series.

First, we report the velocity changes observed at the Gumba seismic station (Fig. 3.2d)
as general evidence for NLME in the study area. A clear velocity drop of ∼ 5% is observed
at the date of the Gorkha earthquake. We attribute the noisy nature of the measurements
to the lack of averaging in the velocity retrieval at this station for which only a single
component is available. For this reason and because of the limited data coverage after the
main shock, we do not attempt to characterise the recovery phase following the main shock
at this station. Nonetheless, the clear co-seismic drop shows that ground shaking during
the Gorkha event has caused damage in the Bhote Koshi catchment that is likely followed
by a phase of recovery of subsurface material properties.

A second observation pointing to NLME behaviour comes from a comparison of the
annual cycles in δv as shown in Figure 3.2c. In 2016-2018, the mean annual δv cycle peaked
to ∼ + 4% at the end of the pre-monsoon season in May. At the same time of the year in
2015, a clear offset from this value was observed with δv as low as ∼ - 1%. Despite our
precipitation dataset starting the 6th of June 2015, it is unlikely that this offset is caused
by climatic conditions. Indeed, with the 2015 monsoon being rather weak compared to
precipitation totals of other monsoons seasons (Fig. 3.14), a dryer season would cause the
2015 δv data to be relatively higher than in the other years. This was not observed.

Finally, the last argument indicating NLME processes comes from hydrological modelling.
We previously showed that the seismic velocity at Chaku reflects the groundwater content
of the substrate in the vicinity of seismic instruments (Illien et al., 2021). This can be
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Figure 3.2: Evidences for NLME at Chaku. Black dashed lines in plots ab and d indicate
the date of the Gorkha earthquake. a) Black dots show the raw daily δv measured at
Chaku. coloured solid lines display results using the hydrological model of Illien et al.
(2021) with different initial conditions. b) Blue lines show local daily precipitation. Black
stars stand for the PGV of aftershocks that caused a seismic velocity drop at the Chaku
site. c) shows the same data as panel a, but with the δv of each year plotted on top of
each other. 2015 velocity is in red. d. δv variations estimated from Gumba station.

shown using the precipitation data recorded at our field site (Fig. 3.2b). For comparison,
we report this model in Figure 3.2a. We consider two different initial conditions for δv in
our model: one using the initial observed δv (green line in Figure 3.2a) and another using
the expected δv value based on observations from years 2016-2018 at this time of the year
(red line in Figure 3.2a). Both synthetics show good agreement with the velocities from
April 2016 to the end of the time series – the period in which the model was calibrated,
assuming that the NLME effect should be negligible in comparison to the hydrological
influence on δv. However, velocities in 2015 are largely overestimated by the hydrological
model with an offset of ∼ 4% at the start of the time series. We note that this mismatch
is progressively reduced at later times and converge towards the hydrological calibration.
This supports a significant second control on δv during the observation period, in addition
to the pervasive hydrological influence. Considering this list of arguments, we conclude
that a recovery behaviour due to NLME likely occurred at Chaku.
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a. c. d.b.

e. f. g. h.

Figure 3.3: Velocity recoveries following aftershocks. abcd) show the velocity obtained at
a 10-minute resolution with the red dots indicating the first 100 hours after the events.
efgh) show the close-ups of the results in the first 100 hours after the events in a log-linear
plot. Results are averaged at a 30-minutes resolution. The red lines depict the fit of a
log-linear slope on the first 24 hours of relaxation.

3.3.2 Seismic velocity drop and recovery induced by single
aftershocks

We observe small velocity drops that are particularly visible during the first dry season of
the Chaku dataset (starting ∼ November 2015 in Figure 3.2a). We attribute these drops
to further dynamic strain perturbations induced by aftershocks. Figure 3.2b shows the
PGV measurements corresponding to the aftershock catalog we described in section 3.2.2.
The occurrence of the velocity drops in the daily δv time series agrees with the timing of
the reported ground shaking.

Observed velocity drops range from 0.25 to 1.5 % and appear to have a linear relationship
with PGV values (0.25 to 1.3 cm.s−1, Figure 3.15) although with a moderate scatter (R2 =
0.62). For events occurring during dry periods, a clear slow dynamics behaviour is observed
with a distinct nonlinear recovery in the following hours after the initial drop (Fig. 3.3,
a-d). We highlight the characteristic log-linear behaviour by averaging the data at a 30-min
resolution and showing the first 100h in δv after the velocity drops in a log-linear plot
(Fig. 3.3, e-h). The fit of a log-linear function of the form δv = s log(t) + C, typical of
the NLME functional form (TenCate et al., 2000), gives a satisfactory representation of
the velocities. To avoid the possible larger hydrological modulation of δv at late recovery
times, we will model aftershock effects considering only an early time span.

3.4 Modelling δv: derivation and implications
In this section, we develop and use models to fit the seismic velocity changes presented
in section 3.3 and discuss their implications. The classic approach to decompose seismic
velocity changes δv is a linear superposition of forcing that can be written as

δv = δvNLME + δvH (3.4)

where δvNLME are the velocity changes due to NLME and δvH are the hydrologically-
induced velocity changes. δvNLME can be further decomposed into two components
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representing the relaxations due to Gorkha (δvG), and its aftershocks (δvA). To go beyond
the linear description of expression 3, which does not account for transient post-seismic
hydrological behaviour, we propose a modelling approach based on two iterations: we first
model the effect of NLME using conventional exponential functions. This approach is
compared to the use of universal relaxation functions R(t) which are calibrated for the first
time on field data and are characterised by constant relaxation timescales, independent
from ground shaking amplitude. To avoid a contamination by strong hydrological variations
in the fitting, we calibrate the functions R(t) using the initial 24 h δv dynamics following
aftershocks events.

In a second step, we remove the inferred δvNLME component from the δv time series
to obtain residuals that represent the hydrological induced variations δvH (Section 3.4.2).
We test whether δvH is not only influenced by precipitation but also by seismic damage.
Because the meteorological effect on δvH is well constrained by the model of Illien et al.
(2021), we introduce a transient drainage parameter in this model to estimate δv∗H, which
represents the seismically forced part of the hydrological component.

3.4.1 Post-seismic relaxations
We first apply the classic approach to model the recovery as an exponential recovery of
the moduli and show that despite having numerous parameters for each event, the model
performance is insufficient. Therefore, we propose a new strategy that uses a universal
relaxation function and allows the description of all aftershocks and the mainshock with
one consistent model, facilitating a correction of the time series for NLME effects.

3.4.1.1 Modelling δvNLME with exponential functions

In seismic interferometry studies (Hobiger et al., 2014; Gassenmeier et al., 2016; Qiu et al.,
2020), the nonlinear recovery in seismic wave velocity δv is often fitted with the following
function:

δv(t) = δv0 exp
[
−(t− t0)

τ

]
+ C (3.5)

where t0 is the time of the earthquake occurrence, δv0 is the initial co-seismic velocity
drop at the temporal observation scale, τ is a characteristic time scale of recovery and C is
a permanent drop.

To estimate the three empirical parameters of the exponential model, we use the
velocity changes computed during the first 24h following the four aftershocks presented in
section 3.3.2 (Fig. 3.3). In this time-span, a clear drop-recovery signal with no apparent
hydrological-induced variations is observed (Fig. 3.3). Assuming that C = 0 for the small
excitations caused by the aftershocks, we fit expression 3.5 to the four δv time series to
obtain the characteristic timescales for the aftershocks τA. The recovery time constants
range from τA = 1.18 d to τA = 3.03 d (Fig. 3.4). To demonstrate the performance of
this model, we build two synthetic time-series for the velocity variations induced by all
aftershocks δvA using these two end-member values (Fig. 3.5a, full method in Text S1).

After removing the synthetic δvA from the full δv Chaku time-series, we fit the residuals
with equation (3.5) to obtain the recovery time constant τG for the Gorkha earthquake. We
find a best fitting model with τG = 198 d and a confidence interval of 80 d < τG < 1208 d
that includes all model solutions with a variance ratio above 95% (Fig. 3.16). The value
used for the aftershocks correction (τA of 1.18 or 3.03 days) does not influence the inferred

51



3. Transient damage and groundwater drainage after Gorkha earthquake

a. d.b. c.

Figure 3.4: Fitting of the aftershocks recoveries. On each plot, green lines show the best
fit of the exponential function for each observed recoveries (black lines). Red lines show
the best fitting model using the relaxation function with a constant maximum relaxation
timescale (τmax = 155 d)

a.

b.

Figure 3.5: Synthetic seismic velocities induced by aftershocks δvA. a) Models built with
the two end-member values τA measured with the exponential functions. b) Models built
using superposition of the relaxation functions of models R155, R846, R250.

τG. Synthetic time-series corresponding to the joint effect from the mainshock and the
aftershocks are in Figure 3.6ab together with the data residuals after correction for δvNLME.
The strongest differences are observed in the early part of the recovery depending on the
characteristic timescale τG chosen for the main shock. Despite using the longest time scale
for aftershock recovery of τA = 3.03 d, the recoveries seem to not be fully corrected between
∼ November 2015 and ∼ June 2016 (Fig. 3.6c). This suggests that longer timescales of
relaxation after aftershocks should be introduced to fully correct for δvA.

3.4.1.2 Modelling δvNLME with a universal relaxation function

A characteristic of NLME is that the functional form of the recovery process is linear on a
logarithmic time scale (Fig. 3.3). A very convenient way to model this behavior is provided
by the universal relaxation function used by Snieder et al. (2017). In this framework, the
relative seismic velocity changes are described by a relaxation function R(t):

δv(t) = δvss + sR(t− t0) (3.6)
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Zoom

Zoom

a.

b.
c.

Figure 3.6: NLME models built with exponential recovery functions. a) Each curve indicates
synthetic recoveries characterised by different τG within the 95% confidence interval of the
best fitting model (τG= 198 d). We superposed on this curve the recoveries associated with
the synthetic δvA time series (τA= 3.03 d). b) Corresponding residuals from the models
shown in a. Light grey line show the raw data. Dashed line indicates the zoomed window
for the plot shown in c.

where δvss is the steady state value of δv(t) and s is a scaling factor. R(t) is the
relaxation function that represents a multitude of processes with characteristic timescales.
These timescales are distributed between a lower bound τmin and a maximum relaxation
time τmax. This theory leads to a superposition of these exponential processes that is given
by

R(t) =
∫ τmax

τmin

1
τ
e−(t−t0)/τ dτ. (3.7)

A justification of equation (3.7) based on the Arrhenius law is given by Snieder et al.
(2017) but we recall a few important properties of the relaxation function: R(t) exhibits
a logarithmic behavior between the bounds τmin and τmax and its value at t = 0 is finite
and determined by R(0) = ln(τmax/τmin). The prefactor 1/τ increases the contribution of
the processes with the shortest relaxation times, which leads to a uniform distribution
of barrier energies according to Arrhenius law. Figure 3.7 illustrates the influence of the
parameters τmin and τmax.

Because of the multi-scale character of the universal relaxation function, we can describe
the effects of the weak aftershock perturbations and the strong perturbation induced by the
main shock with the same relaxation times τ in equation (3.7). As we observe logarithmic
recovery from the earliest measurement in Figure 3.3, we fix the parameter τmin to 1 h
corresponding to the observation timescale. In the lab, minimum relaxation times down to
10−2 s have been reported (Shokouhi et al., 2017) but these smaller timescales τmin would
not affect the model fit).

We construct three models for the NLME with the relaxation function (3.7). First,
the recovery phases of the four aftershocks with the clear recoveries shown in Figure 3.3
are fitted by adjusting a single τmax to minimize the cumulative squared residuals. This
consists in (a) numerically integrating equation (3.7) and (b) fitting equation (3.6) to
δva by adjusting the scaling s for each aftershock. The red lines in Figure 3.4 show the
obtained data fit. The best fit is found with τmax = 155 d (misfit curve in Figure 3.17a).
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Figure 3.7: Sensitivity of the relaxation function R(t). a) The different colours account
for the different τmax indicated in the Figure. τmin is fixed to one hour. b) The different
colours account for the different τmin indicated in the Figure. τmax is fixed to 400 days.

We will refer to this model as R155 where the superscript stands for the fitted maximum
relaxation timescale τmax.

The second value for τmax is inferred by fitting the complete long term δv data for
the recovery of the main shock (Fig. 3.8). τmax = 846 d is the best estimate in this case
(misfit curve, Figure 3.17b). Finally, we estimate a third timescale τmax, combining the
two previous measurements by stacking the misfit curves (Fig. 3.17c) corresponding to the
fit of the four aftershocks (R155) and the misfit curve from the fit of the entire time series
(R846). This combined estimate yields τmax = 250d as the value minimizing the combined
misfit.

We compute three different NLME models (R155, R846, R250) characterised by the
different τmax values (Fig. 3.8). For the 18 aftershocks, we use the measured velocity
drop values (Fig. 3.15) to compute the value s in equation (3.6) that scales the relaxation
function R(t) and stack the resulting functions (Fig. 3.5b). After removing the aftershock
perturbations δvA from the Chaku δv time series, we use equation (3.6) again to adjust
the scaling of R(t) for the main shock recovery δvG. The total NLME-induced δvNLME
from this procedure with its obtained residuals are shown in Figure 3.8. We note that in
comparison with the exponential approach, the aftershocks induce a larger and long-lasting
perturbation of δv (Fig. 3.5) which better describes the observed effects of aftershocks
between ∼ November 2015 and ∼ June 2016 when compared to the time series with the
exponential models (Fig. 3.6c vs Fig. 3.8c).

3.4.1.3 Implications of the universal relaxation function and the modelling
approaches

We used two methods to model the effect of NLME on the estimated δv. The first approach,
using simple exponential functions, yielded a poor correction of the aftershocks-induced
velocity changes (Fig. 3.6c), despite using a dedicated relaxation timescale for aftershocks
(τaft ∼ 1.18 - 3.03 d). In the second approach, we calibrated the universal relaxation
function R(t) (Snieder et al., 2017) with the same maximum relaxation time τmax for all
aftershocks events and the main shock of the Gorkha earthquake (Fig. 3.8). The fit using
R(t) better captures the effect induced by aftershocks in the first part of the year 2016
(Fig. 3.8). This agreement can be explained by the sensitivity of the R(t) function to long
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Figure 3.8: NLME models built with relaxation functions. a) Each curve indicates synthetic
recoveries characterised by different maximum relaxation timescale τmax. b) Corresponding
residuals from the models shown in a. Light grey line show the raw data. Dashed line
indicates the zoomed window for the plot shown in c.

relaxation times (Fig. 3.7a), even when fitted on the early part of the relaxation curve
following the aftershocks. Because of the apparent superiority of the R models in this
manuscript and considering the lower degrees of freedom to characterise the relaxation
timescales τ , we favor this approach.

We note that both our modelling approaches rely on the assumption of a linear
summation of each induced perturbation. If the summation is realistic, it means that the
ability to predict NLME requires the knowledge of strain history and not only the current
state of the system. At our field site, this is important because our dataset starts 25 days
after the Mw 7.3 main aftershock of the 12th of May 2015 (Fig. 3.1). We did not correct for
this event or any aftershocks occurring between the 25th of April 2015 and the 6th of June
2015. Nevertheless, we predict that most of the NLME effects are contained within the first
∼ year (R155, R250, Figure 3.8), a value consistent with the inferred recovery of landslide
rates in the Bhote Koshi (∼ 1 year) (Marc et al., 2021). If we assume that our inferred δv
estimated at rather high frequency (4-8 Hz) is a good proxy for shallow subsurface damage,
this comparison with landsliding shows that our model is realistic and does not support a
longer effect for NLME, such as inferred on model R846 (Fig. 3.8).

Another advantage in using R(t) rather than the purely empirical approach is that the
relaxation function may be more informative on the physical mechanisms responsible for
NLME. The theory leading to the function R(t) is based on an Arrhenius-like law (Snieder
et al., 2017), in which the maximum relaxation timescale is given by

τmax = A exp
(
Emax

a
kBT

)
(3.8)

in which A is a prefactor, Emax
a is an activation energy, kB is the Boltzmann constant

and T is the temperature. Emax
a can be interpreted as the barrier energy that needs to be

overcome to reach a lower energy state from a metastable state. This barrier may correspond
to characteristic contacts that undergo a particular thermally-activated process in the slow
dynamics phase e.g dislocation creep or rearrangement transitions in granular composites.
We obtained a good correction of the δv data by using the same τmax for events with
variable initial perturbations, from PGV of 10−3 to 10−2 m s−1 for aftershocks, and in the
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range of ∼ 5.10−1 m s−1 for the Gorkha earthquake (Wei et al., 2018). Following equation
(3.8), this means that the nature of the physical mechanisms corresponding to Emax

a and
responsible for the longest relaxation timescale is independent from the intensity of ground
shaking. Therefore, the relaxation timescales τ controlling slow dynamics in the probed
medium would rather be a function of the ambient conditions such as temperature (Bekele
et al., 2017), fluid content (Bittner & Popovics, 2021) or pre-existing damage (Lyakhovsky
et al., 1997, 2009; Astorga et al., 2018) while the size of the initial excitation would control
the number of characteristic broken contacts (Ostrovsky et al., 2019). This interpretation
has important implications for the prediction of NLME and suggests that by studying
the response induced by small events, one may predict the damage timescales induced
by large dynamic strains. The investigation of a constant maximum relaxation timescale
τmax after dynamic strain perturbations of variable sizes could open a new perspective on
NLME-induced changes: a complex physical phenomenon but with a potential deterministic
behaviour. This potential independence of τ from the ground shaking amplitude could
explain the scattered relation between these variables when tested in field data (Viens et
al., 2018). Considering the complexity of the relaxation processes in the Earth surface, the
simple picture of a constant τmax need to be tested in future works.

Velocity changes estimated at Chaku with lower frequency bands (1-2 and 2-4 Hz)
exhibit smaller variations when plotted against the changes we report in this study at 4-8
Hz (Fig. 3.18). This comparison indicates that the dominating NLME mechanisms are
likely to be concentrated in near surface materials where smaller perturbations can induce
strong changes at shallow depths (Qin et al., 2020) due to lower confining pressure and
more compliant materials. A relevant process is the re-arrangement of grains in soft spots
of the near surface materials (Lieou et al., 2017). The higher susceptibility to dynamic
strain of superficial loosely packed layers (Sawazaki et al., 2018) across a range of ground
shaking intensities could explain the good fit of the R(t) function of δv after variable
excitations using a constant τmax. At depths, the long term relaxation may happen in
larger geological structures such as the fracture network, which is likely to expand through
a large span of crustal depths in the tectonic regime of the Himalayas (Molnar et al., 2007).
The simple picture of constant τmax may be altered in these deeper layers where a variety
of mechanisms can be activated such as micro-crack closure (Brantut, 2015; Meyer et al.,
2021), creeping of asperities (Aharonov & Scholz, 2018) or pressure-dissolution (Yasuhara
& Elsworth, 2008). These mechanisms are generally activated above a certain dynamic
strain threshold, required to break contacts under larger confining pressure. This can
be justified by Amonton’s law in which macroscopic friction is load dependent but also
by recent observations that at the nanoscale, chemical bonds responsible for frictional
force increase with normal load (Tian et al., 2020). Therefore, a constant universal τmax
might not hold if one compares different frequency bands that probe larger depths: The
observation of diverse relaxations in the entire crust (Q. Y. Wang et al., 2019), the influence
of confining pressure on velocity recovery (Meyer et al., 2021) and the example of larger
NLME-induced changes at depths in fault zone (Qiu et al., 2020) support this direction. A
spectrum of relaxation timescales responsible for slow dynamics (Shokouhi et al., 2017)
may be needed to characterise different depths at any field site.
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3.4.2 Hydrological perturbation δv∗
H after the Gorkha earthquake

3.4.2.1 Static and transient model for hydrological changes

In the previous section, we modeled the δvNLME component by building three different
relaxation models (R155, R846, R250) characterised by different maximum relaxation
timescales τmax. In this section, we study the residuals obtained from these models
(green lines, Figure 3.8 a-c) and compare them to the hydrological model of Illien et al.
(2021) (Fig. 3.9a-c).

We observe that the initial seismic velocity in June 2015 for the time-series corrected
by models R155 and R250 are now comparable to the δv level estimated in the following
years at the same period (between +2.5% and +3% in the month of June), a feature that
was not observed in the raw data (Section 3.3.1 and Figure 3.2a-c). This observation
suggests that the residuals mainly describe the hydrological component δvH, at least after
a correction for NLME by models R155 and R250. To test this hypothesis, we use the
initial seismic velocity of the residuals to calibrate the initial groundwater level condition
used in the hydrological model of Illien et al. (2021) and plot the corresponding modeled
velocities (red lines, Figure 3.9a-c) without changing the original hydrological parameters
inferred from the previous study. For the three NLME models, the agreement between
the velocity residuals δv and the hydrological model is greatly improved in comparison
with the raw velocity data shown in Figure 3.2a. Nevertheless, the hydrological model
predicts lower velocities than the observed residuals at the start of the 2015 monsoon, still
causing a visible offset in the early part of the time series (Fig. 3.9a-c). In the model,
lower velocities correspond to higher groundwater levels in the subsurface. This indicates
that our hydrological prediction that was based on the velocities of the following years
(2016-2018) overestimates the groundwater storage in the 2015 monsoon.

In the model of Illien et al. (2021), the groundwater drainage efficiency is proportional
to the height of the hydraulic head h(t) through a simple scaling:

dh

dt
(t) = −assh(t) + f

(
P (t), vadose(t)

)
(3.9)

where ass is the constrained steady state decay parameter that represents the average
hydrological properties in the aquifer. f is a function of the precipitation input P (t) and
the saturation condition in the vadose zone. A full derivation of the model is available
in Illien et al. (2021). We test whether changing the parameter a in a transient fashion
following the Gorkha earthquake leads to better prediction of the velocity in 2015. We
assume that the parameter a is time-dependent and obeys the following evolution

a(t) = ass

(
1 +D exp

[
−(t− tGorkha)

τhydro

])
. (3.10)

We introduce a transient perturbation of the groundwater drainage with Dass being
the initial perturbation of the decay parameter at the date of Gorkha (tGorkha) and τhydro
being the characteristic timescale for the recovery towards ass. The chosen form for a(t)
can be interpreted as a more efficient drainage of the groundwater table at early times
after the earthquake, that progressively recovers towards a constant hydrological behaviour.
This is motivated by the observation that ground shaking can temporally increase stream
discharge (Manga et al., 2003) and permeability measured in wells (Xue et al., 2013; Lai et
al., 2014).

We minimize a least-square criterion to find the best fit between the velocities modeled
with our time-dependant hydrological model and the δv residuals obtained after removing
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Figure 3.9: Hydrological models vs residuals from the NLME relaxation models. abc)
Residuals from the models R155, R846 and R250 are plotted in black. Red lines indicate
the model from Illien et al. (2021) with an initial condition based on the residuals. def)
The green lines show the best fitting transient decay parameter a(t). ghi) The green lines
indicates the modified hydrological models with the transient decay parameter a(t) shown
in plots def. Close-ups on the data and the inferred models in 2015 in jkl.

the δvNLME synthetics. We explore a range of parameters for scaling D and τhydro from
equation (3.10). For each NLME correction (R155, R846, R250), we report the best fitting
transient decay parameter a(t) in Figure 3.9d-f and the associated modeled velocity changes
in Figure 3.9g-i. For all cases, introducing a transient increase of the groundwater drainage
improves the fitting of δv in the monsoon of 2015 (Fig. 3.9j-l). We find that best fitting
values for the timescale τhydro range from 20 to 76 d and are therefore consistently one
order of magnitude shorter than the maximum relaxation timescale τmax applied in the
NLME models. To compare the six inferred δvH models (Fig. 3.9abc-ghi), we compute
their variances (Fig. 3.10a). When no transient drainage parameter a(t) is introduced, the
model corrected with R846 has the highest measured variance (σ2 = 4.3.10−5) in comparison
with R155 and R250 (both models around σ2 = 2.910−5). With the transient parameter a(t),
R250 is clearly the best fitting model(σ2 = 2.3.10−5) while R846 and R155 both reproduce
less than 90 % of the R250 variance based on their variance ratio (Fig. 3.10b). Moreover,
introducing the transient decay parameter a(t) considerably improved the variance of model
R250 by a margin of ∼ 20%. To test the significance of the fit, we perform a F-test (Text
S2) between the model R250 with no transient hydrological parameter (Fig. 3.9c) and the
model R250 with the addition of the 2 parameters D and τhydro (Fig. 3.9i). We find that
the introduction of a(t) is statistically significant at 95% of confidence interval. Finally, we
also explore a range of models with τhydro ranging from 101 to 103 days and a dedicated
relaxation time for the Gorkha earthquake τGmax ranging from 2.101 to 5.103 days while
retaining τAmax = 155 d for the aftershocks and optimising all the other parameters. Fitting
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Figure 3.10: Variance of the hydrological models. a) Absolute variance of the models,
subscript h indicate models with the introduction of the transient parameter a(t) b) Same
plot as a. but normalised with the best misfit value of the model R250. I need to change
the R conventions on this figure

all models characterised by the recovery timescales in this parameter space and minimising
a least-square criterion, we found that the best model is found for τhydro = 41 d and τmax =
450 d (misfit space in Figure 3.19). These values are similar to our inferred model R250

with τhydro = 35 d.
The velocities in the 2015 monsoon are therefore better described with a transient

drainage parameter, suggesting that the relaxation processes following the Gorkha
earthquake affected hydrological properties. The duration of this perturbation for the best
fitting model R250 is ∼ 6 months (Fig. 3.9f). We address the validity of this claim and its
implications in the next section.

3.4.2.2 Monitoring of transient hydrological properties with seismic
interferometry

A number of methods has been used to study how dynamic strain influences hydrological
properties such as amplitudes and phase analysis in wells levels (Elkhoury et al., 2006; Xue
et al., 2013), measurement of stream discharge (Manga et al., 2003) or monitoring with
stable isotopes (Hosono et al., 2020). In parallel, a growing community of seismologists now
use seismic interferometry to constrain groundwater storage (Lecocq et al., 2017; Kim &
Lekic, 2019a) but no attempt has been made to address earthquake hydrology topics with
such methods. As mentioned before, this is partially due to the challenging decomposition
of the several processes that influence seismic velocity. Our seismic interferometry analysis
opens a window for monitoring transient hydrological behaviours on an intermediate
spatial scale between point-based well measurements and catchment averaged isotopic and
discharge analyses. We showed in Figure 3.9 that a transient increase in the drainage
efficiency of the groundwater table improves our description of the seismic velocity changes
in the 2015 monsoon in the aftermath of the Gorkha earthquake. This progress in the δv
fitting was tested for its significance, given the two parameters (D and τhydro) we added to
the original model of Illien et al (2021) (F-test in Text S2). However, the confidence interval
of this test need to be taken carefully as our non-linear hydrological model may not produce
normally distributed residuals, which are essential for parametric statistic tests (J. Gao,
2007). More interferometric datasets that are influenced by hydrological and seismic events
should be tested in the future for cross-validation of our parameterisation of transient
properties a(t). Nevertheless, additional tests with a linear recovery for parameter a(t)
(Fig. 3.20) do not improve the variance observed with our exponential parameterisation in
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Figure 3.11: Data from the Bahrabise gauge. The black solid line represents the stage
height of the Bahrabise river (location of the gauge in Figure 3.1a). The height is
corrected for an offset caused by the July 2016 glacial outburst flood (Cook et al.,
2018). Precipitation estimated in the area are in blue and are obtained from the Global
Precipitation Measurement data, IMERGHH 6B (Huffman et al., 2019). The green line
shows the transient decay parameter a(t) of the best fitting relaxation model R250 (τhydro=
35 d). The background red colour illustrates the period with enhanced permeability after
Gorkha. G indicates the date of the Gorkha earthquake.

equation (3.10) (Fig. 3.21).
Given the absence of additional constraint on τhydro in our study, the physical

assumptions in our model are still supported by existing observations such as a long
lasting increase of permeability observed in other mountainous areas (Hosono et al., 2020),
or the permeability healing phenomena observed for ∼ 1 yr after the Wenchuan earthquake
(Xue et al., 2013) and other South Californian earthquakes (Elkhoury et al., 2006). To
further support our finding, we plot in Figure 3.11 the best fitting transient decay parameter
(a(t) from model R250) and an independent river stage height dataset from Bahrabise gauge
station, located ∼ 13 km downstream from our field site. (blue star in Figure 3.1a).
We compute the precipitation derived from the Global Precipitation Measurement data,
IMERGHH 6B (Huffman et al., 2019) in a square of 100 m2 upstream of the gauge (footprint
in Figure 3.22) as it offers a suitable averaged measure to compare with the river height. The
stage height measurement displays a co-seismic increase in discharge, supporting a release
of mountain groundwater due to ground shaking (C. Y. Wang et al., 2004). Additionally,
the stage height has a clear co-evolution with monsoon precipitation with steep increase of
the stage height that is concomitant with the onset of strong precipitation. However, the
river gauge sensitivity to precipitation in 2015 seems relatively buffered, especially at the
start of the 2015 monsoon when the onset of intense precipitation does not cause significant
increase in stage height. This behaviour looks to fade away rather quickly within the 2015
monsoon where the second pulse of precipitation induces a clear response in the stage
height. A more permeable landscape with groundwater fluxes travelling more efficiently
downstream or towards deeper layers at early times after the Gorkha earthquake is a
plausible interpretation. Remarkably, the best fitting transient decay parameter a(t) (τhydro
= 35 d) recovers simultaneously to this observation, therefore showing a good agreement
with this scenario (green line, Figure 3.11).

There is a limited number of experimental studies that links NLME and the evolution
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of hydrological properties. In limestones subjected to inelastic axial strain, it has been
shown that after deformation, the seismic velocity was recovering for a few days but the
permeability remained constant after a permanent increase due to damage (Brantut, 2015).
The study mainly interprets the healing of velocities as the closure of micro-cracks porosity
while the tortuosity of the pores network, which is the main control on permeability at the
microscale (Kachanov & Sevostianov, 2005), remained unchanged. In this case, there is
no co-evolution of hydrological properties with the slow dynamics phase. However, fluid
flow in the field is thought to be largely controlled by the macroporosity (Baechle et al.,
2004) and discrete fractures (Talwani et al., 2007). Notably, measurements of seismic
velocity and permeability along a laboratory rock fracture both exhibit a phase of recovery
after dynamic stressing (Shokouhi et al., 2020). At our field site, the estimated healing in
hydrological properties from our model hints that the δvH variations could be contained
in the fracture network. Possible mechanisms for permeability recovery includes fracture
aperture modulation by destruction/creation of contact interfaces (Shokouhi et al., 2020)
or colloids re-clogging (Mays & Hunt, 2007). In our relaxation models, τhydro is constantly
shorter than the maximum recovery timescale τmax used to correct NLME (Fig. 3.9). This
discrepancy between τmax and τhydro may be explained by the non-linear relation between
fracture aspect ratio and permeability (Ebigbo et al., 2016) due to percolation threshold.
Another hypothesis would be that the changes responsible for these timescales are contained
in different porosity units (micropores, macropores, fractures, others . . . ). New approach
for characterising NLME in the field are needed to disentangle these scenarios. At greater
crustal depths, changes in hydrological properties may influence fluid migrations and
low-frequency events, as observed several months after the 2011 Tohoku-Oki earthquake
(Q. Y. Wang et al., 2021).

Future work may address the opposite role of water on relaxation processes. Pore water
is generally considered to reduce frictional properties of interfaces, therefore raising the
susceptibility to ground shaking (Brenguier et al., 2014). However, water also controls
the rate of recovery through chemical reactions and changes in activation energies (Liu &
Szlufarska, 2010; Brantut, 2015). The actual impact of such processes on ground velocity
retrieved by seismic interferometry remains to be assessed.

3.5 Conclusions
In this study, we estimated relative seismic velocity changes δv from single station cross-
correlations in the aftermath of the 2015 Mw 7.8 Gorkha earthquake for a duration of ∼ 3
years. Using the same characteristic relaxation timescales after the main shock and all the
aftershocks (best fitting model for τmax = 250 d), we corrected for the non-linear mesoscopic
elasticity (NLME) effect. We found that the velocity changes evolve towards background
values until the 2016 monsoon which suggests that most of the subsurface damage is
recovered during the first year after the main shock. With the hydro-seismological model
of Illien et al. (2021), we fitted the residual δv corrected for NLME and inferred a shorter
relaxation timescale τhydro that we attributed to an enhanced permeability of the subsurface
that recovers gradually for ∼ 6 months during the 2015 monsoon.

Special attention should be given when substracting earthquake-induced velocity changes
to constrain background hydrology as a transient behaviour may be hidden in the data.
Therefore, seismic interferometry studies may need to go beyond the assumed superposition
of contributions δv = δvNLME + δvH as the relaxation processes may affect the hydrological
properties of the subsurface. In our study, we calibrated the nonlinear recovery with the
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relaxations triggered by the aftershocks, hence without biasing hydrological-induced velocity
variations that can possibly be affected by ground shaking. Because of the importance of
hydrological properties for freshwater resources, initiation of hillslope hazards (Iverson,
2000) and the frictional properties of fault zones (Talwani et al., 2007), we encourage the
use of seismic techniques to estimate the hydrological response to large earthquakes using
dense seismic arrays and multiple frequency bands.

Data availability
The precipitation time-series for the Bhote Koshi observatory can be found at the
following DOI: 10.5880/GFZ.4.6.2021.002. Seismic data are available at the DOI
10.14470/KA7560056170.
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3.6 Supplementary materials to paper II
Text S1: Building of aftershocks-induced δv models with exponential functions

Based on the fitted values τA, we built synthetics representing the velocity variations
induced by aftershocks (δvA) at the Chaku site. We assumed that each aftershock that cause
a velocity drop also induce a subsequent recovery in δv. We included in this assumption,
all the events occurring during monsoon seasons where the recovery is masked by strong
hydrological variations. We also assumed that all aftershock responses can be linearly
superposed in this range of perturbation. From these assumptions, we estimated two
models for δvA using the end-member values inferred in the main text (Fig. 3.4): one with
a fast recovery timescale τA = 1.18 d and the other one with τA = 3.03 d. For each event,
we took for the velocity drop δv0, the values we measured in section 3.2.2 (Fig. 3.15).
Using the chosen value for τA, we used equation (3.5) from the main text and computed
for each event the corresponding synthetic. We interpolated each synthetic at the daily
timescale using the mean of the modeled δv for each day and superposed them to finally
obtain one time series δvA as shown in Figure 3.5a of the main text. We subtracted these
models from the long term Chaku δv time series.
Text S2: F-statistic analysis of the hydrological model with transient parameter
a(t)

We tested if the introduction of the two new parameters D and τhydro (equation 3.10 in
main text) in the model of Illien et al. (2021) is statistically significant to fit the residuals
of the model R250. Basis for the F-statistic are provided in Rees (2001). We used a F-test
with the null hypothesis being: The introduction of D and τhydro do not provide a statiscally
better fit. The F-statistic can be calculated as follows:

F =

(
RSS1−RSS2

p2−p1

)
(
RSS2
n−p2

) (3.11)

where RSS1 is the residual sum of squares of the model without the new parameters (=
0.0357) with p1 being its number of parameters (= 7), RSS2 is the residual sum of squares
of the model with the new parameters (= 0.0286) with p2 being its number of parameter
in the (= 9) and n is the number of observation (= 1222). Because our F-statistic (=
148.9) is greater than the value of the F-statistic distribution at 95% of confidence interval
(Fc(0.95|∆p, n− p2) = 3), we rejected the null hypothesis.
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Figure 3.12: Correlation matrix for station NEP10 at Chaku, channel combination ZE.
The green rectangles show the lapse time windows used for estimating the velocity changes.
The correlations are normalised by the maximum amplitudes.
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Figure 3.13: Illustration of the velocity change measurements with multiple references.
On each subplot, the top panel shows the similarity matrix for the ZE combination on
station NEP10 at Chaku. The best corresponding stretch values are reported on the middle
panel while the lower plot indicates the associated correlation values. In a., the reference
was taken as the mean average of the correlation function during the first month of the
time-series while b. shows the time-series obtained using the first month of 2016 as average
(red rectangle). Because of different references, the time-series are shifted because of the
velocity difference between the references. In c., we show the final time-series for this
combination, using monthly references computed every 15 days.
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Figure 3.14: Annual cumulative precipitation at the Bhote Koshi observatory. Each colours
indicate a different year. The cumulative values are calculated from the 10th of June, the
date at which our precipitation measurement started in 2015.

Figure 3.15: Relation between aftershocks-velocity drops and corresponding PGV. The
horizontal bars correspond to the standard deviations of the PGV recorded at the three
stations on the Chaku terrace. Vertical bars are calculated using the standard deviations
calculated from the δv measurement obtained during the first hour after the events. The
red line indicates the best linear regression.
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Figure 3.16: Variance ratio of the fitted exponential models with fixed τGorkha parameter.
The variance ratio is normalised with the best fitting model (ratio at 1). The different
colours stand for the presence and influence of the aftershocks correction when fitting
τGorkha. The dashed line shows the limit above which the fitted models reproduce the best
fitting model variance at 95 %.

a. b. c.
best        = 155 d best        = 846 d best        = 250 d

Figure 3.17: Misfit curves for building the relaxation models. a. Normalised least square
values for each tested τmax when fitting the first 24h recoveries induced by the four
aftershocks. b. Normalised least square values for each tested τmax when fitting the long
term daily δv time series at Chaku. c. Combined misfit curve when stacking the data
shown in a. and b. For each plot, the best τmax value is indicated.
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Figure 3.18: Relative seismic velocity changes retrieved at Chaku using different frequency
bands. For each frequency band, we used the method that is presented in the main text.

Figure 3.19: Variance space obtained after testing different values for the hydrology recovery
timescale τhydro and the maximum relaxation time τmax induced by Gorkha. The space is
normalised by the variance of the best fitting model (indicated by the red cross). The
black ellipse shows the 0.95 value contour.
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d. e. f.

g. h. i.

Figure 3.20: Residuals from the NLME relaxation models vs hydrological models with linear
recovery τhydro. Plot are zoomed to 2015 data for better comparison. abc. Residuals from
the models R155, R846, R250 are plotted in black. Red lines indicate the model from Illien et
al. (2021) with an initial condition based on the residuals. def. The green lines stand for
the best fitting transient decay parameter a(t) ghi. The green lines indicates the modified
hydrological models associated with the introduced a(t) from the plots in def.

R155 R846 R250

Figure 3.21: Variance of the hydrological models characterised by exponential and linear
hydrological recovery τhydro.
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Figure 3.22: Footprint of the surface used in the retrieval of precipitation from the Global
Precipitation Measurement. The footprint has a 10*10 km surface. The Bahrabise gauge is
indicated. Screenshot from Google Earth.
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Transition: We should go somewhere
dry...
In Chapter 3, I have shown that most of the effects due to subsurface damage recovered
within ∼ one year following the Gorkha earthquake. Thanks to the hydrological model
calibrated in Chapter 2, I propose a possible permeability increase triggered by the main
shock. This increase was short-lived (a few month during the 2015 monsoon) and recovered
to a steady state value until the end of the seismic instrumentation. This hydrological
perturbation was not studied by means of seismic interferometry prior to this study.

I also proposed that the relaxation timescales in the subsurface after ground shaking
are independent of the perturbation intensity, with the difference that larger earthquakes
introduce larger changes in seismic velocity. I used the framework introduced by Snieder
et al. (2016) to infer the maximum relaxation timescale τmax and find an optimal fitting
value of τmax ∼ 250 d at my Nepalese field site. The timescale was constrained by using
both the early relaxations caused by aftershocks and the full multi seasonal time-series.
This work suggests that the relaxation timescales at one field site is mostly function of the
medium and may be predictable. However, the hydrological storage dominates the velocity
changes in the Bothe Koshi catchment and I lack a velocity baseline prior to the Gorkha
earthquake. These cause limitations to study and test assumptions regarding the impact
of ground shaking on subsurface properties.

In the next Chapters (4 and 5), I move away from Nepal to focus on seismic stations
located in the Atacama desert in Patache, Chile. The field site is characterised by high
seismicity and an arid climate with rare precipitation events. This setting is ideal to study
the impact of seismic events on the velocity changes without the influence of complex
hydrological variations. I will first characterize the field site and infer dv/v at a high
temporal resolution with a dense array that was deployed for ∼two weeks.
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Abstract

Ground shaking induced by earthquakes often introduces transient changes in seismic
velocity monitored with ambient noise. These changes are usually attributed to
relaxation behavior following the co-seismic damage in the subsurface and are
of relevance for postseismic hazard mitigation. However, the velocity evolution
associated with this phenomenon can occur at very small timescales and amplitudes
that are not resolved with seismic interferometry and are therefore challenging to link
to laboratory experiments. A way to improve the temporal resolution of the velocity
time-series is to test whether the estimation of the relative seismic velocity changes
dv/v obeys the ergodic hypothesis in which the joint use of co-located stations would
lead to better resolved measurements. In this study, we present results from a dense
seismic array that was deployed for two weeks at the remarkable Patache site in
Chile. Thanks to high temporal averaging capabilities, we are able to resolve seismic
velocity changes in the 3-6 Hz frequency band at a 10-minutes resolution around
the occurrence of a moderate earthquake (PGV ∼ 1 cm/s). We report a velocity
drop of ∼0.4% in the first 10 minutes after ground shaking. Half of this initial drop
was recovered within the two following days. The shape of the recovery follows a
log-linear shape over the whole observed recovery phase, analogous to slow dynamics
experiments. When normalised by the total amount of processed data, we show that
the ergodic hypothesis almost perfectly holds in our network: the dv/v signal to noise
ratio (SNR) obtained when averaging a few observation with large stacking durations
for the correlation functions is almost equal to the SNR when using a large number of
observations with small stacking durations. To understand if the ergodicity is linked
to a particular site property, we use the array capabilities to identify the surf at the
shoreline as the source of the noise and to derive a 1D shear velocity profile with the
focal spot imaging technique and a transdimensional Bayesian inversion framework.
The inversion shows that hard rocks lie close to the surface indicating that this
material hosts the observed shallow velocity changes. We discuss our high-resolution
measurements and attribute them to a stable noise source excited by the shore, the
ergodicity property and an ideal subsurface structure. Finally, we discuss the effect of
moderate earthquakes on subsurface damage and the potential relaxation processes
in hard rocks.
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4.1 Introduction

Monitoring of seismic velocity changes obtained from ambient noise cross-correlations is
now a widely used technique among seismologists. Because the seismic velocity in rocks is
sensitive to many driving processes, this tool has been used to constrain various dynamics
in the subsurface such as changes in groundwater (Lecocq et al., 2017; Gassenmeier et
al., 2015; Clements & Denolle, 2018; Illien et al., 2021), soil moisture (Dietze et al., 2020;
Oakley et al., 2021), permafrost thickness (Overduin et al., 2015; Albaric et al., 2021;
Lindner et al., 2021) and volcanic activity (Sens-Schönfelder et al., 2014; Budi-Santoso
& Lesage, 2016; Donaldson et al., 2019). The use of seismic interferometry has also
enabled the study of rock properties changes in response to in-situ strain induced by surface
temperature (Richter et al., 2014; Lecocq et al., 2017), Earth tides (Takano et al., 2014;
Sens-Schönfelder & Eulenfeld, 2019) and more notably to dynamic strain due to ground
shaking during earthquakes. Indeed, there is a plethora of seismic interferometry studies
that were conducted following major earthquakes (Brenguier et al., 2008; Nakata & Snieder,
2012; Viens et al., 2018; Qin et al., 2020). Most of this literature shows two distinct phases:
a short co-seismic phase in which the seismic velocity drops and a post-seismic phase in
which the velocity recovers in a non-linear fashion. This latter phase is called relaxation or
slow dynamics and can last for several years (Brenguier et al., 2008; Marc et al., 2021).
These time-dependent changes of the seismic velocity suggests that earthquakes induce a
lingering effect in subsurface rock properties. This mechanical perturbation may be at the
origin of other transient surface observations, which exhibit a similar time-evolution such
as transient increases of aquifer permeability (Manga et al., 2012; Illien et al., 2021) or
landslide rates (Marc et al., 2015).

The time dependency of the elastic behaviour is linked to a non-classical type of elastic
non-linearity. This behaviour has been reproduced experimentally in a wide range of
materials ranging from rocks (TenCate et al., 2000; Brantut, 2015; Shokouhi et al., 2017)
over concrete (Bekele et al., 2017) to unconsolidated granular samples (Knight et al., 1995),
which suggests that this phenomena is universal (Snieder et al., 2016). The transient
dynamics is generally interpreted as the result of 1) a phase of "damage" during deformation
that arises from a variety of contacts (Ostrovsky et al., 2019; Sens-Schönfelder et al., 2019a)
which are broken at grain boundaries or at defect locations and 2) a phase of "healing"
associated with thermally activated processes that bring the metastable contacts towards
a new equilibrium state – a phase also called slow dynamics or relaxation (Guyer et al.,
1999; TenCate et al., 2000). In rocks and near-surface geomaterials, this contact recovery
is thought to happen due to micro-cracks and fracture closure (Meyer et al., 2021) or
re-arrangement of frictional shear zones (Lieou et al., 2017) and with a large contribution of
chemical processes modulated by moisture (Brantut, 2015; Bittner & Popovics, 2021; L. Gao
et al., 2022). Corresponding physical and phenomenological models can be developed from
laboratory observations thanks to a fine control of the strain disturbance (Remillieux et al.,
2017), a well-resolved temporal acoustic monitoring system (that can observe relaxation
timescales down to fractions of a second (Shokouhi et al., 2017)), simplified geometries
(Yoritomo & Weaver, 2020) or the knowledge of the physical properties of the chosen
rock samples. However, the application of models to field observations is challenging due
to poorly resolved velocity measurements, superimposed influences and depth-dependent
properties. Indeed, the stochastic nature of the seismic ambient noise wavefield requires
temporal stacking of the noise correlations to recover the stable pseudo Green’s function
that is required for velocity monitoring (Xu et al., 2021). This reconstruction controls the
final time-resolution of the obtained dv/v measurements. Moreover, constraints on the
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subsurface structure and velocity are rarely available. These limitations prevent us from
answering fundamental questions that would bridge the gap between field observations and
models, which includes what is the impact of small/moderate shaking perturbation, what is
the shortest relaxation timescale in the field or in which structures/rocks the relaxation is
likely to occur in the subsurface?

To address these questions, we performed seismic interferometry study using a dense
seismic array in Patache, Chile (Fig. 4.1) located around the permanent station PATCX
in the IPOC network. This station has produced remarkable results with observations of
stable velocity changes induced by the Earth’s tides (Sens-Schönfelder & Eulenfeld, 2019),
earthquakes (Gassenmeier et al., 2016) or temperature (Richter et al., 2014). The relative
success of these studies suggests that the conditions at this site are particularly suited for
monitoring studies. In this paper, we attempt to investigate these specific conditions and
increase the time-resolution of the velocity changes retrieval at Patache with the ergodic
hypothesis (Moore, 2015): We assume that the average statistical properties of the diffuse
noise wavefield across the dense network (the ensemble average) during a short time interval
at time t is similar to the average statistical properties recorded at one station over a larger
time span (the time average). If this assumption holds, by spatially averaging the results
obtained from co-located stations, one can significantly reduce the time window needed for
stacking correlation functions and therefore improve the time-resolution of stable velocity
change measurement δv. This hypothesis has been made implicitly in previous studies
(Sens-Schönfelder et al., 2014; Illien, Sens-Schönfelder, et al., 2022) but not tested. Here,
we address the validity of this assumption explicitly.

Using this technique, we report stable observations of velocity changes at a 10-minute
resolution for a period of ∼ two weeks. During this interval, we measure a co-seismic
velocity drop of 0.4 % amplitude and a well-resolved subsequent recovery in the 3-6 Hz
frequency band. Utilising the dense network, we also compute the local Rayleigh wave
dispersion curve using the focal spot imaging technique. We invert the obtained results
for a 1D shear velocity profile using transdimensional Bayesian inversion and show that
the relaxation changes are hosted in a hard rock site. The characterisation of the site also
allows to highlight advantageous conditions for stable dv/v measurements.

We describe the data and methods in section 4.2. In section 3.1 and 3.2, we present the
seismic velocity changes results and the inferred 1D shear velocity profile obtained at our
field site. Section 4 is dedicated to the discussion, notably on the stability of the velocity
estimates and the relaxation processes in hard rocks. Conclusions are in section 5.

4.2 Data and Methods

4.2.1 The Peso array

The Peso array consists of 15 geophones (3-components) located around the broadband
station PATCX of the Chilean IPOC network (GFZ Potsdam and CNRS-INSU (2006),
Fig. 4.1). Stations were installed on the 21st of October 2018 with nine stations recording
for ∼ two weeks while the others were relocated after ∼ 1.5 days . The array geometry
was designed in a circular-triangular pattern to maximise different inter-station distances
and optimize the usability for different tasks such as the study of the noise sources, the
investigation of the subsurface velocity structure and the monitoring of velocity changes.
Placed on top of an escarpment located at 70 km south of Iquique city (Fig. 4.1, Fig.
4.9), the stations have an elevation of about 600 m above sea level. After performing a
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Figure 4.1: Map of the study area and beamforming analysis. a. Location of the PESO
array relative to Chile. The red star indicates the epicenter of the 1st of November 2018
earthquake. b. Geometric setting of the PESO array. The blue triangle stands for the
permanent PATCX station. The circle indicates our convention for the inner ring and the
outer ring for this study c. Results of the beamforming analysis. Colorbar indicates the
energy level that is reported on the azimuthal plot.

beamforming anaylsis (method in Text in Supplements), we estimate that the array is
strongly dominated by waves propagating in the network from the south-west direction
with a slowness of 0.65 s/km (Fig 4.1c).

4.2.2 Seismic interferometry for retrieving relative seismic
velocity changes

We compute ambient noise cross-correlations to estimate relative seismic velocity changes
dv/v (Sens-Schönfelder & Brenguier, 2019) using the stations that were installed for two
weeks (9 stations) and the permanent station PATCX (Fig. 4.1). We first preprocess the
seismic traces to limit the effect of high-amplitudes arrivals such as earthquakes on the
correlations. These signals are numerous in the seismically active continental margin of
northern Chile due to many small earthquakes (Gassenmeier et al., 2016; Sens-Schönfelder
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Muting of PA31-SHZ (2018-10-26, 9:00-11:00)

time [min]

a.

b. 2

2

Figure 4.2: Muting of the seismic trace, an example. a. The black trace shows two
hours of vertical data at the station PA31. The other trace stands for the muted version
with a close-up for clarity. b. The blue line indicates the estimates of β2 based on the
average squared envelope of the raw trace shown in a at a 1-minute resolution. Orange line
shows the prediction of β1 based on the squared envelope predicted by the log-Rayleigh
distribution at each hour. The ratio of the observation and the prediction is shown in black
with the red line indicating the threshold used for muting the raw trace.

& Eulenfeld, 2019). To minimise unphysical bias introduced by non-linear normalisation
schemes such as the 1-bit normalisation or spectral whitening (Fichtner et al., 2017), we
choose a statistical approach to identify the time segments which contain the short-term
high amplitudes and remove them from the analysis.

Due to its multiple scattering nature, the recorded seismic wavefield follows a Gaussian
probability distribution (Groos & Ritter, 2009). The amplitudes of the envelope of such a
field are Rayleigh-distributed. The corresponding distribution is defined by a single scale
parameter β (McNicol, 1949; Oshima & Takenaka, 2020):

p(a) = a

β2 exp
(
a2

2β2

)
(4.1)

where p(a) denotes the probability density of the envelope amplitudes a.
The ballistic arrivals and coda waves induced by a seismic event or a local disturbance

unavoidably superpose on the background noise and increase the amplitude of the recorded
field, changing the scale parameter β. Our approach consists of building amplitude
predictions based on an estimate of β dominated by the background noise and compare it
to short-term estimates of the mean squared envelope that are dominated by large transient
amplitudes.

In a first step, we filter the seismograms and compute the envelopes a(t) using the
Hilbert transform. The mean of the logarithm of the envelope is linked to the scale
parameter β through the log-Rayleigh distribution (Rivet et al., 2007). Since the mean
of the logarithm down-weights large amplitude samples, we obtain an estimate of β that
characterises the amplitude of the background field. According to Rivet et al. (2007), β
can be retrieved from the following relationship:
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β1 = exp
[
ln a(t)− 1

2(ln 2− γ)
]

(4.2)

In this equation, γ is the Euler’s constant and ln a(t) = 1/N ∑
i ln(ai) is the logarithm

of the geometric mean. Corresponding computations were performed in 1-hour segments
to down-weight furthermore the short-lived high amplitudes of earthquakes or other local
disturbances. The assumption is that these disturbances, despite potentially being orders
of magnitudes larger than the background, do not significantly bias this estimate of β due
to the logarithm and the long term averaging. β1 can be used as a prediction of background
amplitude even if perturbations superpose the recorded signal.

In a second step, we obtain a short term estimate over 1-minute time windows of β
with the intention to identify the high amplitude disturbances. Therefore, we estimate β
from the mean squared envelope (McNicol, 1949):

β2 =
√

2 a2 (4.3)

with a2 = 1/N ∑
i a

2
i being the arithmetic average of the squared envelope. If the seismic

signal is Rayleigh-distributed with a stationary scale parameter, the two estimates β1 and
β2 will be equal. Short disturbances superposing the background signal are very well
discriminated by the ratio β2/β1 even for fairly small additional signals.

We illustrate this process in Fig. 4.2 by comparing the amplitude of the signal, the
predicted background signal amplitude derived from β1 and the short term high amplitude
estimate derived from β2. To identify segments containing disturbances, we calculate the
ratio of β2/β1 and compare it to a threshold value I that we set equal to 1.6 based on visual
inspection of the performance. We construct a mask that we set to zero for all 1-minute
segments with β2/β1 > I and to 1 otherwise (Fig. 4.2b). In a last step, we taper the edges
of the mask and save it to a file. We build masks for every station of the network using
the vertical component filtered in a narrow band centered at 4Hz. On average, we found
that 10 to 40% of the seismic traces were muted depending on the day and the station
considered (Fig. 4.10).

Following the previous calculations, we trim the traces to 1-minute segments and
resample the data at 50 Hz. We taper and filter the data in the 3-6 Hz frequency band.
This band was chosen because of the stable results it has provided in previous studies
at this site (Richter et al., 2014; Gassenmeier et al., 2016; Sens-Schönfelder & Eulenfeld,
2019). Finally, we mute the raw traces with the computed masks (Fig. 4.2). We calculate
all possible cross-correlation combinations which include all autocorrelations AC (ZZ, EE,
NN, 30 combinations), single station cross-correlations SC (ZN, ZE, EN, 30 combinations)
and interstation cross-correlations CC (9 components cross-correlation tensor after rotation
for 405 combinations). We cross-correlate the 1-minute segments and stack the results over
intervals of 10 minutes.

To estimate the average relative velocity changes dv/v, we use the stretching technique
(Sens-Schönfelder &Wegler, 2006), assuming the velocity changes are spatially homogeneous.
For each combination, we compute the stretched versions of the correlation functions C(ti, τ)
where ti is the date and τ is the lapse time of the correlation function. We use the 7 to
16 seconds lapse time window ([τ1, τ2]) and compare them to a unique reference ξr that is
taken as the average cross-correlation function of the whole time period. This allow us to
form the similarity matrix with εj being the stretching factor:

Rr(ti, εj) =
∫ τ2

τ1
C(ti, τ)ξr(τ ∗ (1 + εj))dτ. (4.4)
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Figure 4.3: Focal spot fitting results.Each plot indicates the result from a different central
frequency (indicated in the titles with the corresponding inferred phase velocity). Y-axis
represents the amplitude of the cross-coherence ZZ functions at zero lag time while the
x-axis shows the interstation distance. Red and blue lines show the fitting from the first
iteration and second iteration respectively. Dashed lines indicate the 0 amplitude.

These similarity matrices Rr(ti, εj) can be all stacked to obtain the final dv/v
representative for the entire field site (Fig. 4.11). Details for calculations can be found in
Illien et al. (2021) in which we used the same computation scheme for the velocity changes
estimation.

4.2.3 Estimation of the Rayleigh wave dispersion curve

To constrain the range of absolute velocities in which the relative changes dv/v occur and
resolve the subsurface structure at our field site, we estimate the average 1D Rayleigh
wave dispersion curve. We use the data recorded on the 22nd of October by the 16
stations network (Fig. 4.1) to maximize the number of available interstation distances. We
preprocess the traces by correcting for the instrument responses, filtering in the 0.25-16 Hz
range and muting high-amplitudes arrivals with the technique described in section 2.2.

We use the focal spot imaging technique to obtain Rayleigh wave phase velocities
(Hillers et al., 2016). This technique is based on the spatial width of the zero lag cross-
correlation field and aims to reconstruct the high-amplitude focal spot that emerges due to
time-reversal properties (Conti et al., 2002; Fink, 2008). To normalise amplitudes between
the different stations, we compute in the Fourier domain the cross-coherence γ. For two
stations A and B, we have

γAB(w) = uA(w)u∗B(w)
|uA(w)||uB(w)| (4.5)

with uA and uB being the waveforms recorded at stations A and B and w the angular
frequency. We perform the computation on hourly segments and stack the 24 resulting
cross-coherence functions of the 22nd of October for each ZZ interstation combination. We
assume that the wavefield is dominated by Rayleigh waves. In this case, the cross-coherence
amplitudes at the zero lag time τ (for ZZ combinations) can be expressed as (Hillers et al.,
2016)
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A(r, τ = 0) ∼ σJ0(kr)e−αr. (4.6)

In this equation, r is the interstation distance, k is the wavenumber, σ is a scaling
constant that accounts for the preprocessing and α is an apparent attenuation coefficient.
J0 is the Bessel function of the first kind. The first zero crossing of equation (4.6), which
determines the size of the focal spot, is located at

r0 = 3
8λ (4.7)

and therefore completely determines the wavelength λ. From fitting relation (4.6),
one can see that phase velocities for different frequencies can be obtained with a suitable
interstation distance coverage r. To obtain w, we apply a 0.5 Hz wide bandpass filter on the
cross-coherence functions centered around target frequencies between 0.5 Hz and 2.75 Hz
with a frequency increment of 0.25 Hz. We fit the data in a procedure similar to Hillers
et al. (2016): we first use all the available amplitudes to obtain a first estimate for the
wavelength λ (red lines in Fig. 4.3). Then, we fit the combinations that are within the first
0.7 λ (green lines in Fig. 4.3) to obtain a second improved estimate: At distances larger
than one wavelength, the estimation can be contaminated by scattering and topography
effects (Hillers et al., 2016), hence we estimate the velocity closer to the first 0 crossing.
We obtain 10 measures for the dispersion curve that we re-interpolate to 20 data points
with the Geopsy software.

4.2.4 Inversion of the 1D shear velocity profile

We invert the dispersion curve with BayHunter (Dreiling & Tilmann, 2019; Dreiling et al.,
2020), a python package dedicated to Markov chain Monte Carlo transdimensional Bayesian
inversion. The main advantage of a Bayesian inversion is the retrieval of an ensemble
of models and a better assessment of uncertainties in the retrieved solutions. Another
advantage is that the model complexity i.e the number of layers (hence transdimensional)
and the noise in the data are unknown hyper-parameters that are determined during the
inversion process. For more details regarding the algorithm, we refer the reader to the
paper of Bodin et al. (2012) and the documentation of BayHunter (Dreiling & Tilmann,
2019).

In this paper, we focus on estimating a shear-velocity profile and the VP/VS ratio. We
give a range of possible solutions for these physical parameters and the hyper-parameters
as priors for the inversion (Table 4.1). 50 Monte-Carlo chains are initialized to explore
enough possibilities in the parameter space, using a total of 772608 iterations with a 2:1
ratio between the burn-in phase (initial exploration) and the exploration phase in which we
look for the possible models. Some of the chains fail to converge as they return significantly
smaller likelihoods than most chains after the burn-in phase: The threshold controlling the
convergence is a percentage (here taken as 95%) of the maximum reached median likelihood
from the chain ensemble. The chains not reaching this median likelihood are declared
outlier chains. The final posterior distribution gathers 100,000 models by subsampling all
non-outlier chains. We interpolate the results at a 50 m resolution.
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Vs [km/s] (0.5, 4)
z [km] (0, 1)

number layers (1, 12)
Vp/Vs (1.5, 2.2)

noise [km/s] (1e-4, 1e-1)

Table 4.1: Parameters priors used in the inversions.

4.3 Results

4.3.1 Relative Seismic Velocity changes

4.3.1.1 The dv/v time-series

Measurements of relative seismic velocity changes for each individual cross-correlation
combination appear to be strongly scattered, although the measurements converge towards
a clear dynamics when all plotted together (black dots, Fig. 4.4a). To illustrate the precision
that can be obtained with a single station we show the measurements jointly obtained
using the six possible combinations of the permanent station PATCX (autocorrelations and
single-station cross-correlations) with the blue curve in Fig. 4.4a. The highest precision is
obtained when using all combinations in the network, reducing the noise to an apparent ∼
0.05% (red line, Fig. 4.4). For all measurements, we observe periods with larger scatter
that we attribute to changes in the noise wavefield. These changes are seen in the traces
amplitudes computed when building the pre-processing masks (Fig. 4.4b). We attribute
the larger amplitudes (obtained here at 4 Hz) to strong winds in the afternoon.

We observe little to no velocity changes from the 22nd of October to the 1st of November.
A clear drop of ∼0.4% is then visible and simultaneous with the Mw 6.2 earthquake that
occurred at ∼ 150 km from the array (Fig. 4.1a). Averaging all horizontal component
envelopes in our network, we measure a ground shaking intensity of the event to ∼1 cm/s
PGV (Fig. 4.12). Half of the initial velocity drop was recovered after two days, with
strongest recovery at early times after the co-seismic drop. The duration of our data is
not sufficient to see a full recovery, hence reduced velocities appeared sustained for the
observation time.

4.3.1.2 Stability of the measurement

We quantify the effect of multiple station averaging relative to the noise level in the final
dv/v estimation. The standard deviation of the velocity time-series dv/v over all time
samples of the 10 days prior to the earthquake can be plotted as a function of the stacking
duration window and the number of combinations used (Fig. 4.5). Assuming that the
velocity variations during this time-span is mostly due to noise, this standard deviation
is a good proxy of the signal to noise ratio of (SNR) of the dv/v time-series and for the
measurement stability. Because we exploit a late time-window (starting at 7 s, which
corresponds to ∼ 21 wavelengths at 3Hz, the lower limit of the used bandpass filter) in the
correlation function for measuring the dv/v changes, we ensure to minimise diurnal physical
changes that arise when processing earlier times (Richter et al., 2014; Sens-Schönfelder &
Eulenfeld, 2019). To construct the plot, we use all 6 self-correlations (AC+SC) for each
of the ten stations. After shuffling the 60 combinations randomly in a list, we split them
into multiple subsets corresponding to 6 (10 subsets), 10 (6 subsets), 15 (4 subsets), and
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Figure 4.4: PESO dv/v time-series. a. Each black dot indicates an estimation using a
single cross-correlation combination in the network. Blue line shows the joint result using
the 6 self-combination of the PATCX station. Red line shows the results using all 405
combinations. Time resolution is 10 minutes. b. Noise amplitudes time-series at 4 Hz.
Each lines represents the hourly logarithm of the hourly-averaged noise amplitudes for
all the stations deployed during the 2 weeks. Opacity is a function of the curves overlap.
Traces were processed with a 4 Hz Gaussian filter beforehand.

30 combinations (2 subsets). For each subset, we average the velocity changes using the
similarity matrix stacking (eq. 4.4) described in the methods (section 4.2.2) and extract
the standard deviation of the obtained dv/v. We perform these calculations at several time
resolution using different durations for the stacking window of the correlation functions
ranging from 1 minute (no stacking) to 1 day stack. Finally, we also build the plots
considering only the inner-ring stations (interstation distances from 260 to 670 m) and the
outer-ring stations (interstation distances from 570 to 1580 m). The ring conventions are
shown in Figure 4.1b.

The standard deviation always increases when using a lower number of combinations
(Fig. 4.5a-c). For all curves, smaller stacking duration consistently also yields larger
standard deviations. However, this deterioration systematically happens at different
thresholds depending on the number of combinations used (Fig. 4.5a-c). This threshold is
important as it drives the transition towards standard deviations that can be one order
of magnitude higher at smaller time-resolution. Surprisingly, for large time windows, the
average standard deviation of the outer ring stations (36 combinations, Fig. 4.5c) is smaller
than the average using all combinations (Fig. 4.5a).

To illustrate the improvement of the estimations when using more stations, we plot the
ratios between the standard deviations measured with many combinations (60, 24 and 36
combinations depending on the configuration) and the one measured with 6 combinations,
which is the amount of information that would be obtained with one station (Fig. 4.5d-f).
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a. b. c.

d. e. f.

Figure 4.5: Standard deviations of the dv/v changes prior to the earthquake (from the 22nd
of October to the 1st of November) obtained using different stacking durations and number
of combinations a. Curves obtained using all single-combinations in the network. For each
stacking duration, the mean of the standard deviation of the respective combination subset.
The subsets are characterised by a number of combination shown as an inset label. We
show on b. and c. the same plot but using only the inner ring stations and the outer ring
stations respectively. The subplots d, e and f show the corresponding ratio between the
standard deviation using all considered combinations and when using only six. The dashed
line shows the theoretical reduction of the standard deviation for independent variables
with the same mean and variance.

Theoretically, the reduction of the standard deviation of a sum of independent random
variables with the same mean and variance should obey to a factor of 1/

√
N with N being

the number of variables. For all combinations, we indicate this theoretical reduction using
N = 10 (10 stations), N = 4 for the four inner ring stations and N = 6 for the six outer
ring stations. We observe that the improvement of the dv/v result is not significant at
both large time-windows and at small-time windows (Fig. 4.5d-f) for the three considered
configurations. However, in an intermediate sweet spot, the ratios reach the theoretical
reduction limit and even plot at lower values.

Finally, we normalised the standard deviations shown in Figure 4.5a by the amount
of data used to obtain a velocity estimation. The resulting plot shows a remarkable
collapse of the data point along a single non-linear decreasing trend (Fig. 4.6). Using our
averaging method, the same signal to noise ratio can be achieved by either using more
stations and smaller stacking time-windows or using less stations with more stacking, as
long as the same amount of ’information’ is used. Under these conditions, the ergodicity
property can therefore be validated. Practically, this also means that a good precision can
be obtained with one station at the cost of having larger stacking time and therefore a
lower time-resolution. We note that above the 103 minute mark, the standard deviations
exhibit a step change and the agreement between the points is less striking. Knowing that
small daily velocity changes due to temperature (Richter et al., 2014) or the Earth’s tides
(Sens-Schönfelder & Eulenfeld, 2019) are active at the Patache field site, we attribute the
degradation to physical effects that are more or less smoothed or averaged at large stacking
times depending on the number of used combinations.
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Figure 4.6: Noise in the seismic velocity time-series normalised by the total amount of
used seismic data. Data are identical to Figure 4.5a but normalised by the total added
length of the used seismic traces.

4.3.2 Shear velocity profile

The inverted 1D shear velocity profile is shown in Figure 4.7a along with the target
dispersion curve which we inferred from the focal spot imaging technique 4.7c. The average
shear velocities are in the 1250-2000 m/s range (mean = 1600) in the first ∼ 200 m and
in the 2400-3200 m/s range (mean=2750 m/s) in the ∼ 250-1000 m depth range. The
profile and the histogram of the layers depths is characterised by a clear two-layer structure
(Fig. 4.7abd) with absolute seismic velocities indicating a hard-rock site. Most of inferred
models result in smoother version of the target dispersion curve (Fig. 4.7c) with a noise
level in the measurements estimated at a 25 m/s median value (Fig. 4.7e). The V p/V s
ratio is poorly constrained but exhibits a median value of 1.58, typical of crystalline rocks
or consolidated sediments (Mavko et al., 2009).

We note that the average velocity value inferred in the shallow surface (∼1600 m/s)
shows a rather good agreement with the apparent velocity (∼1500-1600 m/s in the 4-6
Hz frequency range) inferred from the beamforming analysis performed to characterise
the noise distribution (Fig. 4.1c). To refine the velocity profile, we performed a second
inversion with the same method, adding the rough estimate of the high frequency phase
velocity obtained from the beamforming analysis (velocity at 1550 m/s at ∼4 Hz) to the
target dispersion curve (Fig. 4.13). The obtained velocity profile emphasises the 2-layer
structure with a discontinuity at ∼200 m depth and refines the shear velocity to 1550-1600
m/s in the superficial layer and ∼2750 m/s in the second layer. However, these secondary
results should be interpreted with caution, as velocity measurement with beamforming
may be flawed due to the potential steep incidence of body waves (Rost & Thomas, 2002).

4.4 Discussion

4.4.1 Conditions for stable velocity measurements

Finer time-resolution using passive seismic monitoring is a long standing challenge in seismic
interferometry. Previous attempts to tackle this issue include denoising the cross-correlations
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Figure 4.7: Inversion of the 1D shear velocity profile and corresponding target dispersion
curve. a. Inferred shear velocity profile interpolated at a 50 m resolution. Green and blue
lines shows the mean and the median value of the best retained models. Dashed black lines
indicate the standard deviation. b. Histogram of the depth of the inferred layer structures
c. The green line shows the dispersion curve that we use for the inversion, the other curves
showing the best fit obtained for each chains . Histograms corresponding to the other
inverted parameters are shown in d. for the number of layers, in e. for the noise level in
the measurements and in f. for the Vp/Vs ratio.

with adaptative filters (Hadziioannou et al., 2011) or convolutional autoencoders (Viens
& Van Houtte, 2020), performing single-station cross-correlation at higher frequencies
(Hobiger et al., 2014), stacking more short time-windows instead of a lower number of long
time-windows (Xu et al., 2021) or tracking a persistent phase in the correlation functions
(Lu & Ben-Zion, 2022). In our study, we took the simple road of combining more stations
for testing the ergodicity of the seismic velocity estimated from the noise wavefield.

The velocity change measurements were improved, with a noise level down to one order
of magnitude lower than the one obtained with one station (6 combinations), depending
on the length of the stacking window (Fig. 4.5). The theoretical limits plotted in Fig.
4.5d-f give a limited prediction of this improvement which indicates that our assumption
of independent variables with the same mean and variance may not hold. However, at
intermediate stacking length, the refinement of the results is clear (Fig. 4.5d-f). Outside
of this intermediate range, the benefits are limited: With small stacking windows, the
space-averaging is not sufficient to counter-balance the requirement of a minimum time
duration for an effective statistical noise source summation (Fichtner et al., 2017). At
the other end, with large stacking windows, the time-averaging is long enough for stable
measurements and is not improved greatly when adding more stations. We conclude that
the sweet spot between these conditions could be constrained with pilot deployments to
optimise the number of stations needed for high-resolved temporal measurements. The plot
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of the dv/v recovery phase at different time resolutions highlights the trade-off between
the choice of a time-resolution and the addition of noise in the time-series (Fig. 4.8).
Ultimately, the ergodicity hypothesis was satisfied as long as the same amount of data was
used (Fig. 4.6), suggesting that the stacking time of the correlation functions should be
decided upon the number of available stations.

We found no significant effects when using different interstation distances (Fig. 4.5bc).
However, the effects of this parameter should be investigated further because it is thought to
be critical for optimised measurements as it controls the overall correlation of the observed
wavefield at the different stations (relative to the targeted monitoring frequency). The
largest correlation should be obtained when the interstation distance is on the order of the
monitoring wavelength λ. At 3-6 Hz and using 1600 m/s for Rayleigh waves, we obtain
λ ∼ 266− 533 m. With the 90-1600 m range in our array, we have therefore a mixture of
correlated and uncorrelated arrivals. At large distances, the observed dv/v changes are
also caused by different structural changes and the spatial averaging is not useful anymore.

Beyond methodological aspects, the monitoring of seismic velocity requires certain noise
and structural conditions for stable measurements. Regarding noise source distribution,
the reconstruction of the Green’s function from correlations requires random and isotropic
noise sources (Lobkis & Weaver, 2001), a condition that is unlikely met in the field
(Mulargia & Castellaro, 2013). Nevertheless, a stable localised noise source is sufficient for
monitoring purposes (Hadziioannou et al., 2009) and represents another ideal situation. In
our frequency band, the beamforming analysis shows that the incoming energy has one
dominant azimuthal direction (Fig. 4.1c). This feature suggests that the Peso field site
is continuously excited by the same source which is likely to be induced by the surf of
the ocean waves hitting the shoreline (Fig. 4.9). This stable situation is disturbed during
windy afternoons, which cause the degradation of our velocity measurements (Fig. 4.4) due
to high-amplitude arrivals. In our study, a statistical pre-processing scheme was designed
to limit the disturbances from these deterministic signals. The 1D profile also suggests that
a low velocity layer is present at the surface (Fig. 4.7ab) with elevated velocities (>1000
km/s for most of inferred models, Fig. 4.7a). Considering a low-velocity layer of VS = 1600
m/s with a thickness H = 200 m, we can estimate an approximate resonance frequency
with fk = ((2k + 1)/4)/(VS/H) (Nakamura, 2000). With this relation, we obtain f0 ∼ 2
Hz to for the fundamental mode and f1 ∼ 6 Hz for the first overtone, these values being
almost in the range of the 3-6 Hz band we used in this study. This configuration could
promote the trapping and reverberation of seismic energy around this specific frequency
band and with limited dissipation which are ideal conditions for monitoring subsurface
changes (Sheng et al., 2021).

4.4.2 Relaxation in the field: timescales and geological structures
Following the 1st of November 2018 earthquake, we report a 0.4 % velocity reduction in
the first 10 minutes after the earthquake. The observable slow dynamics behavior lasted
roughly for ∼2 days and is well resolved at the 10-minute resolution (Fig. 4.4) with a
characteristic log-linear recovery (Fig. 4.8). A minimum timescale of relaxation was not
observed (Snieder et al., 2016; Shokouhi et al., 2017) and if it exists, must be below our
10-minutes resolution. The dv/v time-series obtained at 1-minute resolution resolves an
additional 0.1% drop at earlier relaxation times, albeit an increase in noise measurements
according to previous analyses (grey line in Fig. 4.8). Such minute seismic-induced velocity
changes in both amplitude (less than 0.5%) and timescale were not observed at this
relatively high frequency band (3-6 Hz) to our knowledge. We used a late time window to
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ensure minimising source artefacts and sampling a large portion of the subsurface. Rapid
velocity changes were also reported in the literature but often using different techniques
that may be more prone to noise source changes and near-surface non-linearity: Using very
early times in autocorrelation functions during earthquake ground motion at frequencies
above 10 Hz, the technique lead to comparatively larger changes (>5%) for very small
PGV (< 10−4 m/s) (Bonilla et al., 2019). Another remarkable time-series (at a 10-minute
resolution) was obtained using P/S converted waves following the Mw 7.1 Ridgecrest
earthquake (Lu & Ben-Zion, 2022). However, their observed changes are larger than our
results due to significant ground shaking. Our study suggests that small ground shaking
induces a lingering effect that may be challenging to resolve. These effects matter for
understanding the effect of cumulative aftershocks for the recovery of material properties
after large earthquakes (Sawazaki et al., 2018). Our temporal coverage was not sufficient
to estimate the maximum relaxation timescale of the recovery. In a previous study we
hypothesized that material properties and ambient conditions are the dominant control
of the observable maximum relaxation time, rather than the co-seismic ground shaking
intensity (Illien, Sens-Schönfelder, et al., 2022). A dynamic system analysis on a longer
time-series could help us shed light on these controls and assumptions and is planned in a
future manuscript.

In field studies, relaxation mechanisms are often interpreted as near-surface non-linearity
induced by soils deformation (Sleep & Nakata, 2017; Viens et al., 2018; Guéguen et al.,
2019). Pictures from the field (Fig. 4.14) indicate the presence of a conglomerate with
evaporites at the surface, which may constitute the first 200 m layer (Fig. 4.7a). If we
assume the dominance of Rayleigh wave energy in the noise wavefield, the corresponding
sensitivity kernel associated with the measured dispersion curve (Fig. 4.7c) and the
inferred 1D model (Fig. 4.7a) suggest that these rocks host the observed velocity changes at
frequencies above 3 Hz (Fig. 4.15). The higher velocity in the second layer could correspond
to crystalline rocks such as gabbros, according to geological studies in the area (Tapia et
al., 2018). In the laboratory, relaxation has been observed in crystalline (Shokouhi et al.,
2020; Meyer et al., 2021) and sedimentary rocks (Brantut, 2015). Numerical simulations
and experiments suggests that the largest contact areas in the rock fractures (Shokouhi et
al., 2020), cracks (K. Gao et al., 2019), and the grain contacts in granular media (Kober et
al., 2022) controls the relaxation timescale. Due to higher strength, hard rocks can sustain
larger flaws and fractures, which in turn may lead to longer relaxation timescale due to
high activation barriers. This statement may only be valid if slow dynamics behaviour
effectively originates due to thermally-activated processes such as with the Arrhenius
equation (Snieder et al., 2016; Ostrovsky et al., 2019).

4.5 Conclusions

In this study, we explored the potential advantage of using more co-located stations to
improve the time resolution of relative seismic velocity changes dv/v inferred from ambient
noise correlations. We made the assumption that the dv/v estimation obeys the ergodic
hypothesis i.e the time-average (one station with large stacking time for the correlation
functions) is equal to the space-average (several stations with small stacking time for
correlation functions). We found that the staking time required to obtain stable correlation
functions and therefore velocity measurements can be significantly lowered by using more
stations. When normalised by the amount of used seismic data, the ergodicity was satisfied,
which suggests that the minimum time-resolution of dv/v measurements is a function of
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resolution:

Figure 4.8: Relaxation phase recorded by the PESO array at different resolutions. The
recovery phase shown in Fig. 4.4 using all the combinations is plotted in red. The log-linear
x-axis emphasises the characteristic slow dynamics recovery. Note the variation of noise at
high-resolution (dt = 1 minute) and at lower resolution (dt = 30 minutes).

the number of available stations. What is the highest time-resolution limit that one can
reach ? This question remains to be answered but our study demonstrates an important
property of seismic interferometry from ambient noise correlations.

Thanks to the gained precision, we resolved a 0.4% velocity drop after a seismic event
that induced ∼1 cm/s of PGV at a 10-minutes resolution. Half of this drop was then
recovered with a log-linear relaxation shape in agreement with slow dynamics studies. The
largest changes were contained in the immediate aftermath of the earthquake. We showed
that this relaxation behaviour is happening in a hard rock site according to the local 1D
shear velocity profile we derived from the focal spot imaging technique and an McMC
transdimensional Bayesian inversion.
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Figure 4.9: Screenshot of the array in Google Earth. The yellow pins stand for the
PESO stations. The picture highlights the cliff escarpment. The shoreline orientation is
in agreement with the beamforming results in which the noise strikes the array from a
south-west direction.

Figure 4.10: Proportion of daily muted segments. Each color stands for a different station.

4.6 Supplementary materials to paper III
Text S1: Beamforming To investigate the character of the wavefield used to monitor
the velocity changes we apply plane-wave beamforming to the noise recorded with the
array in the 4 - 6 Hz band. We use instrument corrected data from October 22nd for
an F-K analysis of 10s long time windows with 50% overlap. Analysis is implemented
using the Obspy array processing routine. From each of the 10s long segments we infer
the slowness vector with the maximum energy. Figure 4.1c of the main text shows the
probability distribution of the resulting slowness vectors. Energy in this frequency band
is strongly dominated by waves with a slowness of 0.65 s/km striking the network from
south-west.
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Figure 4.11: Illustration of the similarity matrix. On the left, we report the similarity
matrix when using only one autocorrelation at one station. The blue dots show the
stretching value corresponding to the best correlation values in the equation (4.4) of the
main text. On the right, we show the similarity matrix built when stacking all the possible
matrices (such as the one on the left) of the network. The figure illustrates the enhancement
of the measure using this technique.

Figure 4.12: Average envelope of the horizontal components in the network during coseismic
ground shaking. The time 0 corresponds to the onset of the P-wave. The envelope is
averaged over all the network.
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Figure 4.13: Inversion results when adding the observation from the beamforming method.
a. Inferred shear velocity profile interpolated at a 50 m resolution. Green and blue lines
shows the mean and the median value of the best retained models. Dashed black lines
indicated the standard deviation. b. Histogram of the depth of the inferred layer structures
c. The green line shows the dispersion curve that we use for the inversion, the other curves
showing the best fit obtained for each chains. Histograms corresponding to the other
inverted parameters are shown in d. for the number of layers, in e. for the noise level in
the measurements and in f. for the Vp/Vs ratio.

Figure 4.14: Geological media observed in the field. The geology hints at clasts embedded
in a matrix containing large amounts of evaporites (likely gypsum and halite). The picture
is taken from the study of Sens-Schönfelder and Eulenfeld (2019).
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Figure 4.15: Rayleigh wave sensitivity given the inferred 1D profile and the measured
dispersion curve. The kernel was computed using the CPS software (Herrmann & Ammon,
2002).
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Transition: Can you predict anything ?
In Chapter 4, I demonstrated the important property of ergodicity for seismic interfer-
ometry. This property allows to increase the time-resolution of seismic velocity changes
measurements by using more co-located stations. This has important implications for
monitoring a dynamic forcing acting on small timescales. Additionally, I also showed a
perfect log-linear recoevery behaviour at sub daily timescales (down to a minute) that was
triggered by moderate ground shaking. A complementary inversion also showed that the
associated relaxation was occuring close to the surface in hard rocks (VS =1500 m/s).

If the relaxation was observed at small timescales at our field site, the duration of the
array deployment (two weeks) was not suited for constraining the total duration of the
recovery, essential for the forecast of long term subsurface damage after earthquakes.

In the next and final study (Chapter 5), I will use the full 13 years of seismic noise
recorded at the permanent station PATCX, located at the same site than Chapter 4.
Remarkably, the station was in place during two large seismic events (the 2007 Mw 7.7
Tocopilla and the 2014 Mw 8.2 Iquique), which gives the unique opportunity to study the
successive effect of the relaxation behaviour for an isolated site and finally address the
predictability and the physics of the slow dynamics phenomenon at the field scale.
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Predictable healing rates in
near-surface materials after
earthquake damage
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Abstract

Earthquakes introduce long-lasting transient mechanical damage in the subsurface,
which causes postseismic hazards and can take years to recover to steady-state values.
This observation has been linked to relaxation, a phenomenon observed in a wide
class of materials after straining perturbations. Here, we analyse the successive effect
of two large earthquakes on ground properties through the monitoring of seismic
velocity from ambient noise interferometry. We show that the relaxation time scale is
a function of the state of the substrate at the time of seismic perturbation, rather than
the intensity of ground shaking. Our study highlights the predictability of earthquake
damage dynamics in the Earth’s near-surface and potentially other materials. We
propose to reconcile this finding with existing physical frameworks by considering
the superposition of different populations of damaged contacts.

5.1 Introduction
Earthquakes cause catastrophic effects at the Earth’s surface, which range from urban
damage to physical changes in the landscape (Fan et al., 2019; Marc et al., 2015). For
instance, landsliding (Marc et al., 2015), aquifer permeability (Manga et al., 2012) and
river discharge (C. Y. Wang et al., 2004) have shown a temporary increase after ground
shaking before eventually going back to pre-earthquake levels. Although these effects
do not last forever, they have a duration up to multiple years and therefore impact the
resilience ability of our societies after seismic events.

These transient phenomena are observed at the surface but they also suggest that the
hydro-mechanical properties of the shallow Earth’s subsurface are compromised in the
aftermath of earthquakes. To probe into these underground dynamics, seismologists have
started to use the continuous ambient noise recorded by seismometers to estimate seismic
velocity changes as a proxy for subsurface physical changes before and after earthquakes.
They have found that earthquakes induce a drop in subsurface seismic velocity, which is
followed by a recovery on time scales ranging from a few days to several years (Brenguier
et al., 2008; Gassenmeier et al., 2016; Viens et al., 2018). This recovery dynamics resemble
the universal relaxation (TenCate et al., 2000), a phenomenon observed in rocks(Shokouhi
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et al., 2017), granular media (Knight et al., 1995), concrete (Bentahar et al., 2020) and
civil structures (Astorga et al., 2018), in which the acoustic velocity in a material drop
due to a straining perturbation and recovers on time scales that are defined from seconds
to years. In epicentral areas, the relaxation timescale observed with seismic velocity has
shown to correlate with the duration of enhanced postseismic landsliding(Marc et al., 2021),
which suggest that the latter and possibly other transient surface processes originate from
damage represented by the relaxation dynamics of the shallow subsurface. Therefore, a
physically based model with clear observables to predict and constrain the duration of the
recovery would be crucial information for the emergency response after earthquakes and
the monitoring of damaged buildings and fault zones.

The relaxation of earthquake-induced damage subsurface materials is commonly analysed
by fitting an exponential decay of observed seismic velocity changes, with a single timescale
(Hobiger et al., 2014; Gassenmeier et al., 2016). This method yielded numerous relaxation
timescales ranging from a few days to several years (Viens et al., 2018; Marc et al., 2021)
but no consensus exists regarding the predictability and the main control of this duration.
Moreover, the recovery of the seismic velocity changes exhibits a logarithmic evolution,
which the exponential fit fails to capture (Gassenmeier et al., 2016). It is clear that this
is an insufficient basis for reliable prediction of post-seismic recovery. Recently, models
based on contact mechanics and friction physics have been used to explain the velocity
changes (Ostrovsky et al., 2019; S. Y. Wang et al., 2021). These relationships predict that
the rate of change of the velocity changes dv/dt is a direct function of the current state
velocity v(t). Observational validation of this approach requires that the trajectory of the
velocity changes after an earthquake is considered as the product of multiple ground shaking
events, including those due to aftershocks and subsequent events. If these expressions
are appropriate, then the relaxation duration can be predicted from the velocity data.
However, seismic monitoring studies often focus on the impact of one earthquake and not
on the potential successive relaxations due to multiple ground shaking events. This lack of
observation makes the testing of these models limited and hampers the predictive potential
and understanding of the phenomenon.

We propose to advance our understanding of the subsurface recovery after earthquakes
by estimating daily seismic velocity changes (Materials and Methods in supplementary
materials) at a seismic station (PATCX) in the Atacama desert of Chile (Fig. 5.1ab). This
site was chosen for 3 reasons. First, previous work has demonstrated that the station
records support highly stable measurements of very small velocity changes (Richter et
al., 2014; Gassenmeier et al., 2016; Sens-Schönfelder & Eulenfeld, 2019). Second, the
arid setting precludes significant effects of changes in water content. And third, the site
has experienced two major earthquakes, the 2007 Mw 7.7 Tocopilla and the 2014 Mw
8.2 Iquique, and numerous aftershocks. This makes it uniquely suited for studying the
cumulative damaging and relaxation behaviour of the subsurface for a period of 13 years.
With the resulting time-series, we show that the timescales or recovery can be predicted
from pre-earthquake seismic velocity values regardless the initial ground shaking intensity.

5.2 13 years of seismic velocity changes induced by
earthquake damage

Seasonal temperature variations in the Atacama desert induce thermal strain, affecting
the seismic velocity measurements (Richter et al., 2014). We remove these thermal effects
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(Materials and Methods) to obtain the impact of earthquakes on the relative velocity
changes (Fig. 5.1a), which we scale to the local reference value for the shear velocity
VS = 1500 m/s (Illien, Sens-Schönfelder, & Ke, 2022). After correction, the residuals show
velocity drops of 15 and 35 m/s for the Tocopila and Iquique earthquake, respectively, each
followed by a long-lived recovery (∼ 3-4 yrs), the largest one occurring during the Iquique
earthquake. Additional drops and associated recoveries due to aftershocks and smaller
earthquakes can be observed, particularly in the aftermath of the Tocopilla earthquake.
Drop magnitudes have been shown to be proportional to the peak ground velocity in
previous studies (Richter et al., 2014; Gassenmeier et al., 2016).

To test for log-linear behaviour of the post-seismic velocity recovery observed in
experimental slow dynamics studies, we plot the first 1000 days of the large recovery phases
on a logarithmic scale (Fig. 5.1c). For three orders of time magnitude,the recoveries
after both large earthquakes appear linear in this space, with some deviations due to
aftershocks. The consistency of the slope despite these additional perturbations suggests
that the recovery timescale may be predictable by measuring the rate of velocity change in
the early aftermath after an earthquake.
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Figure 5.1: 13 years of seismic velocity data for Station PATCX in Chile, including
transient changes due to the Tocopilla and Iquique earthquakes a. The black-line indicates
the relative seismic velocity changes scaled with the reference velocity value of 1500 m/s.
The red line shows the correction we applied beforehand to account for the thermal strain
due to seasonal temperature fluctuations. b. Map showing the study area with both stars
indicating the epicenters of the main shocks. c. Plot of seismic velocity during the first
1000 recovery days following the main shocks on a logarithmic time-axis. The blue and
orange lines represent for the Tocopilla and the Iquique earthquakes episodes respectively.
d. Plot of seismic velocity recoveries normalised by the amplitude of the respective initial
velocity drops.

We normalised the recoveries by considering the percentage of recovered changes relative
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to the pre-earthquake velocity levels (Fig. 5.1d). This normalisation collapses the two
time-series onto the same line. This indicates that although causing different perturbation
amplitudes, both earthquakes induced a relaxation behaviour that had a similar timescale
of recovery over the first 1000 post-seismic days. The co-seismic velocity reductions were
approximately halved in the first 200 days of recovery following the main shocks. Although
aftershocks caused smaller velocity drops, these did not have a significant impact on
the total relaxation duration. On average, We estimate that full recovery of the seismic
velocity after Tocopilla and Iquique earthquakes would take about 3887 days (Materials
and Methods, Fig. 5.4a).

5.3 Pre-drop velocity level controls the timescale of
relaxation

Using the same normalisation, we further analyse the recoveries induced by aftershocks to
unify all relaxation observations. The first 10 days of recovery after each seismic event can
be visualised and normalised by their pre-drop velocity levels (Fig. 5.2a). We use a 10-day
window to minimise the potential superposition of recoveries associated with previous
aftershocks. In this time, recovery ranged from 20-30% for some aftershocks to 100% for
others. A relationship appears to exist between the pre-drop velocity for an aftershock and
the rate of recovery, with faster recovery for drops with lower starting velocities (Fig. 5.2a).

We quantify this trend by fitting the initial recovery slope plotted on Figure 5.2a with
a universal relaxation function and find their optimum maximum relaxation timescale τmax
(Snieder et al., 2016) (Materials and Methods, Fig. 5.4b). The inferred timescales τmax can
be described by an exponential relationship with the pre-drop velocity with values ranging
from ∼ 8 to ∼ 3000 days. This scaling suggests that at low velocities relative to the steady
state value, the near surface may be more resilient to additional shaking perturbations.

Using this fitted exponential relationship, we build a synthetic seismic velocity time-
series. We measure all the velocity drops in the data, and calculate their recovery timescale
with their pre-drop velocity levels, and superpose them linearly, creating one time-series
with multiple relaxations. Even if this synthetic time-series does not directly fit the full
measured dataset, there is a good overall agreement (Fig. 5.2c), in contrast to a synthetic
velocity time series calculated with a constant recovery time scale, as previously used (Illien,
Sens-Schönfelder, et al., 2022) (Fig. 5.5). The remaining offsets between the data and the
synthetic time-series (particularly visible in the 2012-2014 period) can be attributed to
the limitation of the temperature correction, a new persistent velocity base level following
the Tocopilla earthquake or a draw-down in the Atacama groundwater levels (Viguier et
al., 2019), which could affect the velocity changes (Clements & Denolle, 2018; Illien et al.,
2021).

5.4 Which physics for near-surface earthquake
damage ?

Our observations suggest that the timescale of seismic velocity recovery at a site can be
predicted from the known pre-drop velocity. This feature is not directly tied to existing
physical equations for relaxation. Most existing physical and conceptual models associate
the relaxation dynamics to a ’state variable’ representing the dynamics of a type of contacts
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Figure 5.2: Pre-drop velocity level as a control for the relaxation timescale and corresponding
synthetic time-series. a. Recoveries after multiple seismic events, normalised by the
amplitude of the drop. The colour indicates the velocity value before the onset of the drop.
The thick line shows the early average recovery observed after the Tocopilla and Iquique
main shocks. b. Fitted maximum recovery timescales on the recoveries shown on plot a
(n=17). The blue line shows the best fitting exponential scaling. The orange and green
data and corresponding fits were obtained using ± 10% of the variance of the best fitting
recovery timescale values for all events. c. The synthetic velocity time-series built with
the superposition of relaxations obtained with the relationship fitted on plot b. The grey
line indicates the original data.

or voids undergoing deformation. In these frameworks, the evolution of the variable of
interest (here taken as dv/dt) is a direct function of the variable itself (v(t)). For instance,
this is the case in the rate and state friction framework (Dieterich, 1979) and studies
that involve contact dynamics (Aharonov & Scholz, 2018) and creeping mechanisms to
fit relaxation data (Ostrovsky et al., 2019; S. Y. Wang et al., 2021). Field studies often
test such models based on one relaxation event. Our dataset, comprising 17 consecutive
drop-and-recovery cycles does not not support this state variable approach. Importantly,
the phase portrait showing the relationship between the rate of velocity change dv/dt
against the velocity v(t) shows very different phase locations after each seismic event (Fig
5.6) e.g. the same state velocity v(t) can have different rates of variation dv/dt. Hence, a
revision of theory is required.

Yet, we suggest that a state variable argument can be reconciled with our observations.
In the field, seismic velocity measurements probe a subsurface volume that contains many
types of contacts and flaws (Snieder et al., 2016; Shokouhi et al., 2017; Sens-Schönfelder
et al., 2019b). We assume that all of these structures obey their own state variable
equations that determine their timescales of relaxation. For instance, crack populations
can be defined by their aspect ratios, which determine their times of closure under a
specific load (Budiansky et al., 1982; Meyer et al., 2021). We use a generic state variable
model (Materials and methods) that can characterise different processes, each with their
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own timescale (Fig. 5.3a). The simple superposition of all population dynamics yields
a synthetic time-series with the same features as our seismic velocity observations : A
logarithmic recovery of velocity after each drop at a rate dependent on the pre-drop
velocity (Fig. 5.3bc). Therefore, the superposition of different timescales in a sequence of
perturbations can reproduce the dynamics we observe in this study (Fig. 5.3).

The contribution of several populations of characteristic contacts is key to reconciling
observations and physics. At the reference velocity value (in our study around 1500 m/s),
all contacts are at steady state and the system does not evolve. When all contacts are
disturbed, they enter a metastable state and recover at different rates. As the general
reference velocity is approached, only the contact populations with the longest recovery
times remain activated, while populations with a faster recovery have stabilized (Fig. 5.3).

Robust knowledge of the recovery timescale of the subsurface allows an assessment of
the feasibility and timeliness of reconstruction after large earthquakes. It may also allow an
estimation of the propensity to failure of steep topographic slopes in an earthquake epicentral
area. This can reduce lingering post-seismic risk, and minimize spurious investment. We
propose that by measuring the rate of velocity changes over a period immediately after
an episode of strong ground motion, one can support an estimation of the recovery of
substrate damage over a much longer period of up to years. Fundamentally, this can be
done using measurements from small seismic events, and then upscaled for larger scenarios.
The early observation of universal slow dynamics in the lab showed that the perturbation
was not influencing the timescale of recovery (TenCate et al., 2000). Our study suggests
that this is valid for large earthquakes and that the medium mechanical properties control
the relaxation behaviour while the ground shaking intensity only controls the amplitude
of the observation. If this is the case in near-surface geomaterials, then it may also be
valid for man-made structures. Understanding the link between specific types of flaws and
relaxation timescales can lead to a targeted material test for management of the response
to damage.
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5.5 Supplementary materials to paper IV

5.5.1 Materials and Methods
Seismic Interferometry: We compute the 6 self-correlations (EE, NN; ZZ, EN, EZ, NZ)
of the PATCX station after filtering the traces in the 3-6 Hz band. Daily cross-correlations
are extracted with a pre-processing scheme fully described in Illien, Sens-Schönfelder,
and Ke (2022) (Chapter 4). To measure the velocity changes, the stretching technique
(Sens-Schönfelder & Wegler, 2006) is applied in the 7 to 16 seconds window of the daily
correlation functions. The full method for averaging the 6 self-correlations is detailed in
Chapters 3 and 4.

Measurement of τmax: We use the expression of Snieder et al. (2016) to find the
maximum relaxation timescale τmax, which controls the duration of the recovery phase
after earthquakes:

R(t) =
∫ τmax

τmin

1
τ
e−(t−t0)/τ dτ. (5.1)

From equation (5.1), one can see that function R(t) is therefore a superposition of
exponential recoveries characterised by timescales τ . From a previous study at the Patache
field site (Illien et al., 2022, Chapter 4), we know that the minimum relaxation timescale
τmin is inferior to one day, the time resolution of the retrieved velocity time-series of this
study. Fixing τmin to this time resolution, we scale R(t) to the velocity measurements and
find the best fitting τmax.

We first quantify the relaxation time of the Iquique and Tocopilla earthquakes, assuming
from Figure 5.1d that both earthquakes are followed by the same recovery timescale.
Therefore, we average the first 1000 days of relaxation of both time-series (Fig. 5.4a) and
interpolate the resulting recovery on a logarithmic x-axis. The latter step gives an equal
weight to the early relaxation times in the fitting process. Finally, we fit and scale the
expression R(t) and obtain a best fitting value of τmax = 3887 d.

For each aftershock-induced recoveries, τmax was obtained by fitting the first 10 days
of relaxation (Fig. 5.4b) without the interpolation step. We also report the τmax values
corresponding to ± 10% of the variance of the best fitting value (orange and green lines in
Figure 5.2b).

Temperature-correction: We first quantify the phase of the periodic temperature
(taken at the Iquique airport, 30 km from the station) and dv/v seasonal variations.
To approximate a periodical variation, we calculate the average temperature and velocity
cycle by stacking the yearly temperature and dv/v time-series and fitting the average
stack with a sinusoidal function (Figure 5.7). The fitting of the velocity data yields a first
empirical correction of the thermal-induced velocity changes (red line in Fig. 5.9). The
phase lag between the temperature and the velocity is equal to ∼ 19.5 days.

We assume that the velocity changes originate from the thermal strain observed at one
depth z due to thermal diffusion in a subsurface layer of thermal diffusivity κ. For a periodic
temperature oscillation at the surface (of period ω), the phase lag for the temperature T
at depth z can be retrieved with the following equation (Turcotte & Schubert, 2014):

T = T0 + ∆T exp
(
−z
√
ω

2κ

)
cos

(
ωt− z

√
ω

2κ

)
. (5.2)
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In this relation, one can see that the phase lag is equal to −z
√

ω
2κ . From the phase

difference calculated before and after setting the period ω to one year, we obtain the
value of the ratio z2/2κ, which determines the system. Assuming now a generic thermal
diffusivity of κ = 1.10−2 cm2/s, we can model the velocity changes from the temperature
observed at the characteristic depth of the ratio (z = 1.25 m). Plugging these values in a
1D thermal diffusion numerical simulation (computed with a forward Euler scheme) and
using the surface temperature time-series (Fig. 5.8a), we obtain the temperature depth
profiles shown in Figure 5.8b. We extract the temperature at depth z = 1.25 m and scale
it to the velocity changes through a factor α, which represent the expansion coefficient of
the rocks in the subsurface. This scaling is done on the velocity data of 2007 prior to the
Tocopilla earthquake. The velocity time-series from this simulation is shown in Figure 5.9a.

The retained temperature model for the paper is taken as the average between the two
modeled dv/v time-series (Fig. 5.9a). Indeed, we combine the best of both corrections as
1. the numerical correction is based on the temperature time-series and may have the best
correction for the phase of the temperature-induced velocity changes and 2. the amplitudes
of the velocity changes is more consistent with the sinusoidal correction.

Building a state variable model: We look for an equation that is homogeneous to the
velocity changes and choose a form that is mathematically viable with the logarithmic
evolution of the recovery. A general equation for the velocity variations dv/dt can be
expressed as

dv

dt
(t) = A exp [−Bv(t)]− C (5.3)

where A, B and C are constants with A and C having the same dimension than dv/dt.
Taking A = C, we can simplify this expression such as

dv

dt
(t) = A (exp [−Bv(t)]− 1) . (5.4)

Note that the expression (5.4) has the same form than an Arrhenius equation (Snieder
et al., 2016), classically used to model thermal-induced processes and creep rates. Based on
the dimension of the constant A, we further parametrise (5.4) to highlight a timescale τ :

dvτ
dt

(t) = v∗

τ

(
exp

[
−vτ (t)− v∞

v∗

]
− 1

)
, (5.5)

in which v∞ is the steady state velocity value in the absence of earthquakes, v∗ is a
characteristic velocity and vτ is the velocity associated with a certain relaxation time τ . We
consider several contacts or flaws with different characteristic timescales τ , which affect the
velocity changes. The total observed velocity change v(t) is a function of these voids. The
contribution of each vτ to the total observed velocity changes v(t) depends on the density
of the associated voids/contacts and their respective sizes. For the sake of simplicity, we
take in this paper the average of all vτ dynamics present in the system:

v(t) = 1
N

N∑
i=1

vτi
(t) (5.6)

To show the logarithmic evolution of our framework, we now derive the expression of
the solution of (5.5) for initial condition v0 = vτ (0) < v∞, and denote by ∆ = v∞ − v0 the
size of the initial velocity drop. Letting w(t) = exp(−(vτ (t)− v∞)/v∗), there holds
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dw

dt
(t) = − 1

v∗
dvτ
dt

(t)× w(t) = −1
τ

(w(t)− 1)× w(t) (5.7)

which in turn yields ∫ t

0

dw

w(w − 1) = −
∫ t

0

dt

τ
= − t

τ
. (5.8)

The LHS of the above display can be expressed as
∫ t

0

dw

w(w − 1) =
∫ t

0

( 1
w − 1 −

1
w

)
dw =

[
log

(
w − 1
w

)]t
0

= log
(
w(0)(w(t)− 1)
(w(0)− 1)w(t)

)
(5.9)

Letting ξ0 = (w(0)−1)/w(0), we finally find that w(t)−1 = ξ0e
−t/τw(t), which immediately

gives w(t) = (1− ξ0e
−t/τ )−1. Expressing w back as a function of vτ finally yields

vτ (t) = v∞ − v∗ log
(
1− (1− e−∆/v∗)e−t/τ

)
. (5.10)

5.5.2 Supplementary Figures
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Figure 5.4: Fitting of recoveries with the relaxation function R(t) a. The black line shows
the interpolated average velocity recovery observed after Tocopilla and Iquique earthquakes.
The blue line shows the best R(t) fit with τmax = 3887 d. b. Fitting of all aftershocks-
induced recoveries. The dashed lines indicate the fits. The pre-event velocity before the
earthquakes are indicated in colours.
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the colours are indicated on the lower plot. b. The coloured lines indicate the residuals of
the data after correction by the models shown on plot a. The raw data is indicated in gray.
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Chapter 6

Conclusions
This dissertation has taken us on a journey from the monsoon-drenched Nepal Himalayas
to the seismically active Atacama desert. I explored the time-dependent evolution of the
shallow subsurface of these environments, constrained its key forcings and tracked its
dynamics with seismic ambient noise.

In Chapter 2, I highlighted the important role of subsurface moisture
saturation in modulating groundwater recharge and discharge generation in
a steep Himalayan catchment. I estimated relative seismic velocity changes to constrain the
groundwater dynamics and combined this analysis with hydrological, meteorological and
geochemical observations and modelling. An annual hydrological cycle with four stages was
demonstrated. During the pre-monsoon season, precipitation is not recharging groundwater
but rather the superficial moisture reservoir. When moisture in the vadose zone reaches
saturation, monsoon rainfalls are efficiently converted into river discharge. Towards the end
of the wet season, the groundwater and the subsurface moisture drop due to precipitation
waning, gravitational loss to the stream and upward loss due to plant transpiration. As a
new dry season commences, runoff and groundwater drainage continue to drop while the
surface moisture is low and vegetation activity ceases. These results show that the soil
layer and the dynamics in the unsaturated zone, often overlooked in steep landscapes, are
particularly important for modulating hydrological fluxes in mountain landscapes. With
the forecasted growth of the population relying on the runoff generated in Himalayan
basins (Viviroli et al., 2020; Yao et al., 2021), understanding the effect of land use change
and potential changes in precipitation annual distribution will be socially relevant . The
modelling in Chapter 2 also showed that processes in the unsaturated zone must be taken
into account in future seismic interferometry studies, especially when monitoring shallow
layers with high frequency signals (4-8 Hz in the study).

The Himalayan ’water towers’ are built through tectonic forces that generate earthquakes,
which can in turn perturb the time-dependent subsurface properties through ground shaking.
In Chapter 3, I used the groundwater model developed in Chapter 2 to correct the velocity
changes for the hydrological effects in order to investigate the long-lasting impact of
the 2015 Mw 7.8 Gorkha earthquake at the same monitored field site. I found that
the velocity recoveries induced by the main shock and its aftershocks can be fitted with a
single relaxation timescale (with the best fit at τmax = 250 days), regardless of the initial
peak ground velocity. Therefore, the relaxation behaviour may exclusively be a function of
the medium properties rather than the ground shaking characteristics. When looking at
the residuals of the relative seismic velocity changes obtained after substracting the effect
of seismic damage and groundwater storage, I constrained an additional timescale of ∼6
months which I attributed to an enhanced permeability in the monitored aquifer caused by
the main shock. Because most of studies are focusing on either the impact of earthquake
damage or groundwater variations, I encourage a more integrated look at seismic velocity
changes to catch these potential interacting effects. Overall, the interferometry results
suggest that the combined sustained subsurface effect of the Gorkha earthquake lasted for
∼1 year, a duration similar to the transient increase of landslide rates observed in the area
(Marc et al., 2019), validating the use of seismic ambient noise to monitor the landscape
hydro-mechanical properties (Marc et al., 2021).
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Groundwater and moisture dynamics impact the relative velocity changes and make the
study of earthquake damage in settings with significant rainfall, complex and challenging.
To isolate the impact of seismic ground shaking on time-dependent subsurface properties, my
research focus shifted to the arid Atacama desert in Chile, a seismically active area but with
a steady, arid climate. In Chapter 4, I constrained the velocity drop and recovery
behavior induced by moderate ground shaking at a sub-hourly time resolution
and the subsurface structure hosting these dynamics. I tested the ergodic property
of the estimation of the seismic velocity changes from ambient noise correlations with 16
co-located stations. This allowed me to decrease the required time-averaging duration
of the correlation functions, essential for retrieving stable velocity changes. To do so, I
replaced the time-averaging with a space-averaging over all the stations to compute a
well-resolved dv/v time-series with a 10-minutes resolution. I found that the amount of
seismic data (long chunks at the same station or short chunks at several stations) used in
the interferometry process is the key controlling factor for the signal to noise ratio in the
dv/v. The technique allowed the observation of a 0.4% velocity drop induced by an event
with ∼1 cm/s of PGV and the subsequent recovery that was recovered to 50% of its initial
drop value after two days. The recovery plotted on a continuous log-linear slope during
the monitored period. In a second step, I used the focal spot imaging technique and a
transdimensional Bayesian inversion to estimate the 1D shear-velocity profile. Importantly,
this analysis shows that the observed relaxation behaviour did not occur in near-surface
soils but instead in hard rocks with a surface layer of VS ∼ 1500 m/s.

The time-dependent changes at the focus of Chapter 4 are a small piece of a larger
damage and recovery cycle induced by successive subduction earthquakes in Chile. In
the final research chapter of this dissertation, I addressed the predictability of the
relaxation timescales induced by these multiple seismic events. I processed 13
years of ambient noise data at the station PATCX , which is one of the 16 stations used in
Chapter 4. After correcting for seasonal thermal strain variations, I analysed the velocity
drop and recovery induced by the 2007 7.7 Mw Tocopilla and the 2014 8.3 Mw Iquique
earthquakes and their aftershocks. When normalised by the amplitude of the initial velocity
drop, both long-term recoveries collapse on the same line, suggesting that a constant
relaxation timescale is at play, analogous to the finding in Chapter 3. I further investigated
the recoveries of all aftershocks and showed that the initial velocity level before the drop
onset controls the timescale of relaxation. I tentatively attributed this dynamics to the
superposition of different populations of voids and contacts in the subsurface. Each of
these populations can be modelled with a classic state variable equation, similar to friction
or contact dynamics. In essence, the relaxation dynamics are a function of the medium,
rather than the initial strain perturbation. This conclusion supports the preliminary results
of Chapter 3 and has important consequences not only for the prediction of earthquake
damage, but also for material science and the monitoring of man-made civil structures.
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Chapter 7

Synthesis
In this Chapter, I synthesize the new avenues and future work related to my doctoral
research (Chapter 2 to 5) and more generally to seismic interferometry (abbreviated as SI).

7.1 Coupled dynamic subsurface properties and
internal parameters

The evolution of relative seismic velocity changes as a probe into subsurface properties
integrates thermomechanical and hydrological processes. It is rather tempting to express
the velocity changes δv as a simple linear system such as:

δv = δvH + δvEQ + δvT, (7.1)
where δvH, δvEQ and δvT are the changes respectively induced by hydrology, earthquake

damage and temperature variations. This approach has been taken in most of this
dissertation but as suggested in Chapter 3, these components are not independent. Common
frameworks to link the non-linear interactions between these effects are lacking but a few
directions can be envisioned.

7.1.1 A physical framework to link the variations
With SI, I investigated the relaxation (or slow dynamics) phenomenon in the Earth’s
subsurface induced by co-seismic ground shaking (δvEQ in eq. 7.1). This topic is not only
of interest for geophysicists but important to different branches of material science and
civil engineering: Damage induced by earthquakes are not only sustained by the subsurface
but also in man-made structures (Astorga et al., 2018). In Chapter 5, the suggested
predictability of slow dynamics through an empirical approach questions the relevance
of finding a unified physical description of the phenomena across materials and scales. I
argue that this pursuit is relevant as a physical description would allow to link δvEQ to
specific transient surface observations (landslides, permeability, stream discharge . . . ) and
the hydrological component δvH. Moreover, it may eventually permit human manipulation
of slow dynamics and the design of more resilient materials.

Slow dynamics and transient permeability are the expression of the behaviour of different
types of contacts and voids embedded in volumetrically deforming bulks (from granular
assemblies to crystalline rocks). The wide variety of these contact and bulk types suggests
that a universal physical equation for relaxation and its effects may be out of reach. I
propose that some alternatives could be derived.

A first approach into which different contact physics can be ’plugged in’ would be a
first step. In Chapter 5, I modelled seismic velocity time-series using a generic differential
equation with a state variable (eq. 5.5). This type of equation can be parametrised to
represent different types of processes (friction, creep, dislocation in the bulk . . . ) and key
structural parameters (contact length scale, material properties, deformation boundary
conditions . . . ). The challenge of this approach is to scale up the contributions and
interactions of multiple types of contact populations and dynamics in a representative
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volume. New numerical methods such as the combined finite-discrete element method
(K. Gao et al., 2019; Rougier et al., 2020) may integrate the dynamics at the contact scale
and in the bulk. Another original scheme includes the effective medium approach in which
voids (called inclusions in the method) are incrementally added in the representative bulk
(Zimmerman, 1996; Brantut et al., 2019). Finally, energy-based approaches are viable
and have the advantage of making fewer assumptions regarding the material mechanics
(Lieou et al., 2017). These methods would allow to implement the influence of temperature
and study the interaction between the δvEQ and δvT components. However, the transition
from mechanical parameters to meaningful thermo-dynamical variables requires theoretical
developments, which need to be experimentally validated.

7.1.2 Water and internal structures
If the subsurface porosity is responsible for slow dynamics, it is also the host of water
underground. An interesting interaction, yet barely explored so far, is the role of moisture
and groundwater in modulating the postseismic recovery. On the one hand, we have
learnt from Chapter 3 and other studies (Xue et al., 2013; Shokouhi et al., 2020) that
the relaxation phenomenon induces a change in hydraulic properties. On the other hand,
water influences processes that may be involved in relaxation (Bittner & Popovics, 2019,
2021). Examples include fundamental chemical reactions at the contact scale (Sakuma et
al., 2018) or in microcracks (Brantut, 2015) and modulation of friction. These effects have
been touched upon in the laboratory but not in field studies. As illustrated in Chapter 2,
the wetness of the subsurface is highly time-dependent. Is the pace of relaxation modulated
by varying water content ? Certainly, this question can be addressed at field sites with
high hydrological variability and regular seismicity, similar to the Bothe Koshi catchment
described in my Nepalese studies.

The presence of these coupled processes, which influence δv, is therefore dependent on
the internal void structures specific to the probed geomaterial. In the subsurface sampled
with SI, one faces the problem that the characterisation of the rocks and their internal
structures and water content is often limited. For the sole case of groundwater, identifying
and separating the reservoirs controlling the δvH and possibly its impact on relaxation
is challenging. This is illustrated in Chapter 2, in which the velocity changes were not
linked to soil moisture dynamics in the 4-8 Hz frequency band. However, the recent study
of Oakley et al. (2021) showed a clear correlation with soil moisture measurements with
higher frequency bands (up to 100-200 Hz). I present possible tools to disentangle the
hydrological reservoirs at a later point of the synthesis (section 7.3.1).

The water content and void space characterisation are only the first parts of the
subsurface dynamics puzzle. These internal variables are dependent on external forcings.

7.2 External forcing of the subsurface: timing and
amplitudes

The temporal distribution and amplitudes of external forcings such as precipitation or peak
ground shaking can significantly change the average dynamics of the subsurface system. In
the Bothe Koshi catchment, I showed that the precipitation history is a first order control
for mediating the onset of the subsurface saturation and therefore the deeper groundwater
recharge. This saturation determines two distinct hydrological regimes defined in Chapter
2 (coupled and uncoupled), which are likely to play a part in recent hydrological questions.
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For instance, the identification of the reservoir and quantification of the volume used by
transpiration (the ’biological pump’) are major research lines (Evaristo et al., 2015). By
using different seismic frequencies, one may monitor different spatial scales and therefore
track different depths and hydrological pathways and their incoming and outgoing fluxes.
Recent geochemical insights suggest that the water extracted by plants comes from a
reservoir that is disconnected from the one generating discharge (Evaristo et al., 2015).
Following my study presented in Chapter 2, I argue that this partitioning may actually
depend on the moisture volume in the the subsurface. In the pre-monsoon season, the
shallow moisture and groundwater reservoirs were indeed decoupled. Nevertheless, the
plant activity, tracked with NDVI, played a crucial role in modulating the duration of the
moisture build-up towards the saturated stage observed during monsoon. This shows, that
even when decoupled, plants modulate the cycle of groundwater recharge. In the monsoon
stage, I directly attributed the fast drainage of groundwater to a joint effect of gravity and
transpiration, as suggested in other studies (Doody & Benyon, 2011; Koirala et al., 2017).
In its details, the partitioning of water and the separation of plant transpiration from other
hydraulically connected reservoirs seems to be time-dependent, with possible intricacies
due to the depth reach of the ecosystem. With more constraints, SI has the potential
ability to probe these effects without perturbing the fragile soil architecture, and affecting
the observable in the process. With the increasing threats to water security due to climate
change, advancing our knowledge about the water pathways in the shallow subsurface will
be paramount.

Similar to precipitation, seismic ground shaking also modifies the subsurface system
due to modulation of dynamic strain. In chapter 5, I showed the predictability of the
associated non-linear recovery in near-surface geomaterials and its log-linear functional
form across several timescales (from a few minutes to years), in accordance with laboratory
experiments. Notably, I found that the amplitude of the dynamic strain perturbation
controls the amplitude of the material changes (Chapters 3, 4) but is not impacting the
timescale of relaxation. Therefore, the recovery behaviour may be determined only by
internal medium properties rather than external forcings, which suggests that a material
test may be designed in the future, enabling the forecast of near-surface resilience after
earthquakes. This capability may only be enabled in dry environments with low hydrological
variability as Chapter 4 and 5 were conducted in the Atacama desert.

A fundamental temporal scale has not been investigated in this thesis. Seismic velocity
does not drop instantaneously during ground shaking. In fact, the behaviour of materials
during strain perturbation exhibits its own time-dependence, in a phase often called fast
dynamics (as opposed to ’slow’). This initial damage phase has been recently shown
to be correlated with the succeeding relaxation in controlled experiments (Scalerandi
et al., 2019). Consequently, the joint analysis of both stages could bring forward new
insights into damage evolution due to ground shaking and subsequent healing. There are a
few time-dependent observations of the fast damaging phase based on deconvolution of
teleseismic arrivals in borehole arrays (Nakata & Snieder, 2011; Bonilla et al., 2019). These
studies highlight a progressive drop of seismic velocity proportional to the evolution of the
peak dynamic strain, with the onset of a recovery behaviour already occurring before the
end of the perturbation (S. Y. Wang et al., 2021). The nature of the wavefield sampling
the subsurface during this phase (often seismic waves from the earthquake itself) may be
different from the noise wavefield used to observe the relaxation, which makes the fast and
slow stages difficult to link physically using SI alone and begs for new ways of monitoring
the subsurface.
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7.3 Future complementary approaches to seismic
interferometry

7.3.1 Better constraints with forward modelling

The monitoring of freshwater resources with SI techniques is now beyond the proof of
concept stage with other recent publications also validating the approach (Kim & Lekic,
2019b; Mao et al., 2022). However, active seismic measurements and resistivity imaging
techniques still dominate the field of hydrogeophysics, with less emphasis on the time
evolution aspect that SI could bring. To put seismic noise-based monitoring at the forefront,
dv/v time-series need to be better constrained. Indeed, conclusions in SI studies are drawn
a posteriori from seismic velocity observations without any prior expectations (inductive
reasoning). A better understanding of the sensitivity of SI measurements to the dynamics
of different reservoirs is key to targeted deployments and a prior reasoning, essential for
testing hypothesis. I propose that hydrological studies with SI may be advanced towards
this second type of reasoning through the forward computation of seismic wavefield.

This advancement would not be without significant challenges, which consist of 1.
Modelling the ambient noise wavefield while accounting for the sources dynamics and
scattering regime 2. Building a realistic elastic profile based on water storage in soils and
rocks 3. The implementation of coupled pore pressure dynamics solutions and seismic
wave propagation. These tasks may be tackled with existing open-source codes dedicated
to seismic wavefield modelling. For example, AxiSEM 3D (Nissen-Meyer et al., 2014; Leng
et al., 2019) has recently yielded promising results for realistic wavefield simulations in
complex heterogeneous structures at a relatively low computational cost (Haindl et al.,
2021). With this potential modelling approach and coupled field observations, SI could
bring hydrological constraints on the absolute groundwater depth and absolute volumetric
storage at specific locations in a catchment. Given its ease of installation in remote areas
and its non-destructive probing ability, these potential advances would benefit the study of
groundwater dynamics in mountainous environments (as shown in Chapter 2).

Naturally, the joint use of wavefield forward modelling and SI is not only relevant
for hydrological questions but also for constraining any dynamic processes acting in the
subsurface (the other prime example being earthquake damage in this thesis).

7.3.2 Emerging monitoring tools and new processing techniques

Over the last decade, the emergence and capabilities of distributed acoustic sensing (DAS)
has been a hot topic in seismology (Fenta et al., 2021). By interrogating fiber optic cables
with light pulses, one can monitor tiny variations of strain at high spatial resolution. Many
studies have now shown the capability of DAS to monitor subsurface sources of seismic
energy such as volcanic tremors (Jousset et al., 2022) or glacier stick slip (Walter et al.,
2020), and use the passive and active dynamic strain recorded by the cables for imaging
subsurface structures (Jousset et al., 2018). With a frequency response that is relatively
broadband (0.1 to 100 Hz in Jousset et al. (2018)), one can imagine the application of SI
techniques to DAS to monitor seismic velocity changes at an unparalleled spatial resolution.
A recent pilot study applied the method to monitor an aquifer (Rodríguez Tribaldos &
Ajo-Franklin, 2021), and a theory for strain interferometry with DAS has now been derived
(Paitz et al., 2019). If the systematic use of DAS for monitoring subsurface properties
is an exciting perspective, it is associated with a few logistical difficulties. First, fiber
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cables are laborious to install and maintain for long periods of time. The possibility of
using existing ones from telecommunication companies is a solution but their locations may
not be relevant to one’s specific research questions and authorisation needs to be granted.
Another problem arises due to the high amount of data generated by DAS measurements,
which necessitates massive computing power for processing. These points suggest that at
the moment, DAS may only be complementary to the use of seismic stations.

The other recent development for SI comes from machine learning techniques. A first
realm of application encompasses the denoising of correlation functions with deep learning
autoencoders (Viens & Van Houtte, 2020) and the removal of noise source variation effects
from the correlation functions (Steinmann et al., 2022; Yin et al., 2022). Similar to the
ergodic property I tested in Chapter 4, these techniques lead to well-resolved seismic
velocity time-series that are more representative of the medium changes and with less
spurious artefacts. Machine learning can also unravel hidden relationships contained in the
data. The study of Kim et al. (2020) used the sequencer algorithm of Baron and Ménard
(2021) to detect anomalous features in the correlation functions that may correspond
to structures at the core-mantle boundary. With deep learning, one can also discover
governing differential equations in time-series (Champion et al., 2019). This technique is
classically employed in complex system analysis, such as in fluid dynamics (Joshua et al.,
2022) but any dynamic variable can be tested in such algorithms. In Chapter 5, I plotted a
simple phase portrait (dv/dt as a function of v(t)) of the velocity changes (Fig. 5.6). Deep
learning may find an underlying phase space that describes the velocity changes and points
at the right physical description of a particular seismic velocity evolution.

Last few words regarding collaborative efforts
The Earth’s surface is the result of physical, chemical and biological processes. In this
thesis, I merely brushed upon the inherent interdisciplinary approach that one must take
to understand one of its particular systems. There has been a recent growth of critical
zone observatories, intended for understanding the complex interactions in the weathered
shallowest geological layers (T. White et al., 2015). The installation of seismic stations
within such observatories is crucial for calibrating seismic velocity measurements and
understanding the propagation of seismic waves, especially towards high frequency regimes.
In return, SI has matured enough to leave the seismology community and be a part of
larger interdisciplinary collaborations. Ambient seismic noise still contains an enormous
amount of information about the state of the inaccessible substrate on which we live and
its evolution in time. It is time to leave the nest.
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