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ASYMPTOTIC SOLUTIONS OF THE DIRICHLET PROBLEM

FOR THE HEAT EQUATION AT A CHARACTERISTIC POINT

A. ANTONIOUK, O. KISELEV, V. A. STEPANENKO, AND N. TARKHANOV

Abstract. The Dirichlet problem for the heat equation in a bounded domain

G ⊂ Rn+1 is characteristic, for there are boundary points at which the bound-

ary touches a characteristic hyperplane t = c, c being a constant. It was I.G.
Petrovskii (1934) who first found necessary and sufficient conditions on the

boundary which guarantee that the solution is continuous up to the charac-

teristic point, provided that the Dirichlet data are continuous. This paper
initiated standing interest in studying general boundary value problems for

parabolic equations in bounded domains. We contribute to the study by con-
structing a formal solution of the Dirichlet problem for the heat equation in a

neighbourhood of a characteristic boundary point and showing its asymptotic

character.
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Introduction

The problem we consider in this paper goes back at least as far as [Gev13] who
proved the existence of a classical solution to the first boundary value problem
for the heat equation in a non-cylindrical plane domain. By classical is meant
“continuous up to the boundary,” and a boundary point is called regular if any
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weak solution of the problem is continuous up to the point, provided the boundary
data are continuous. The domain is assumed to be bounded by an interval [a, b]
of the x -axis and two curves x = X1(t) and x = X2(t) in the upper half-plane
through (a, 0) and (b, 0), respectively. The Dirichlet data are posed on the interval
and both lateral curves. All points of the interval [a, b] are characteristic. The
interval [a, b] may shrink up to a point (say (0, 0)) in which case the origin is the
only characteristic point.

The theory of [Gev13] applies in particular to the plane domains G consisting of
all (x, t) ∈ R2, such that |x| < 1 and f(|x|) < t < f(1), where f(r) is a C1 function
on (0, 1] satisfying f(r) > 0, f′(r) 6= 0 for all r ∈ (0, 1] and f(0+) = 0. The boundary
point (0, 0) proves to be regular if f−1(t) satisfies the Hölder condition of exponent
larger than 1/2. When applied to the function f(r) = rp, this obviously implies
0 < p < 2. Note that for 1 < p < 2 the origin is a true (i.e., smooth) characteristic
point at the boundary while for 0 < p < 1 this is a cuspidal (i.e., singular) boundary
point.

The paper [Gev13] exploited the fundamental solution of the heat equation and
integral equations of potential theory. A more careful analysis led Petrovskii in
[Pet34] to an explicit necessary and sufficient condition for a boundary point to
be regular. This latter paper initiated an extensive literature devoted to general
boundary value problems for parabolic equations, see [Mik63], [Kon66], etc. Men-
tion that the classical paper [Slo58] was actually motivated by the first boundary
problem for the heat equation in a bounded domain G ⊂ Rn. On the other hand,
[Kon66] made essential use of function spaces of Slobodetskii [Slo58]. Unfortu-
nately, [Kon66] suffers several drawbacks which, however, do not affect the main
result of this seminal paper.

The most cited paper of Kondrat’ev is [Kon67] studying boundary value problems
for elliptic equations in domains with conical points on the boundary. Asymptotics
of solutions of general boundary value problems for elliptic equations in domains
with cusps remains still a challenge for mathematicians, see [KS10].

According to the MathSciNet of the AMS there has been merely 8 citations
to the paper [Kon66] while this latter already contains all of the techniques of
[Kon67], especially the asymptotics of solutions at conical points. At the end of
the ’90s Kondrat’ev called the last author’s attention to the paper [Kon66] saying
“Here are cusps.” In spite of the fact that [Kon66] deals with C∞ boundaries the
analysis near characteristic boundary points reveals Fuchs-type operators typical
for conical singularities, provided that the contact degree of the boundary and
characteristic plane is at least the anisotropy quotient (2 for the heat equation).
If the contact degree is less than the anisotropy quotient, the analysis close to the
characteristic point requires pseudodifferential operators typical for cuspidal points
on the boundary, cf. [Gev13] discussed above.

The structure of asymptotics at a conical point is completely determined by the
spectrum of the problem frozen at the singular point. To an eigenvalue λn of multi-
plicity µn there correspond eigenfunctions |x|−ıλn(log |x|)j with j = 0, 1, . . . , µn−1.
Each horizontal strip of finite width in the complex plane contains finitely many
values λn, and the set of all λn is infinite. The expansions of solutions over these
basic functions fail usually to converge, and so the series should be thought of as
asymptotic.
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Moreover, in the absence of embedding theorems the concept of asymptotic in the
sense of Poincaré does not apply. We are thus led to asymptotic expansions related
to certain filtrations on function spaces, a purely algebraic concept, which is a true
substitution for Poincaré’s asymptotics, see for instance [Len83] and elsewhere.

In mathematics, a (descending) filtration is an indexed set Fn of subspaces of a
given vector space F , with the index n running over entire numbers, subject to the
condition that Sn+1 ⊂ Sn for all n. Let F−∞ be the union of the Fn. Given any
f ∈ F−∞, by

f ∼
∞∑

n=nf

fn (0.1)

with fn ∈ Fn is meant that

f −
N∑

n=nf

fn ∈ FN+1

holds for every N ≥ nf . We intend to develop this generalisation of Poincaré’s
asymptotics in a forthcoming publication.

As filtration Kondrat’ev used in [Kon66] weighted Slobodetskii spaces, where the
weight functions are powers of the distance to the characteristic point. Analysis on
manifolds with point and more general singularities has since exploited weighted
function spaces.

In [AB96], [AB98] the first boundary problem is studied for the heat equation in a
bounded plane domain with cuspidal points at the boundary at which the tangent
coincides with a characteristic t = c, where c is a constant. The paper [AT12]
contributed to the study of the first boundary problem for the 1D heat equation in
a bounded plane domain by evaluating the first term of the asymptotic of a solution
at the characteristic point. The goal of the present paper is to explicitly compute
full asymptotic expansions and extend these results to higher order equations in
many variables.

Our scheme of construction of asymptotic series for a solution near a charac-
teristic point consists in the following. In Section 1 we resolve singularities at the
characteristic point by blowing-up this point to a segment of the x -axis containing
the origin. The domain G close to the origin blows up to a half-strip. In Section 2
we construct a formal solution of the transformed problem in the half-strip. This
is actually a formal Puiseux series in fractional powers of t unless p = 2. In Section
3.1 we construct a formal solution in the case p = 2, which reveals immediately
asymptotic expansions on manifolds with conical points. In Section 4 we show how
these expansions are generalised to higher dimensions. To prove the asymptotic
character of formal solution we need an existence theorem which is a part of Fred-
holm theory for the first boundary problem for the heat equation. To this end
we describe in Section 5 a change of variables which transforms the characteristic
point to the point at infinity along the t -axis. In Section 6 we discuss the Fredholm
property of the first boundary problem for the heat equation. When the Fredholm
property has been proved one obtains real solutions of the problem which expand
as formal series. In this case one introduces the difference between the real solution
and a partial sum of the formal series and substitutes this remainder to the equa-
tions. This yields a nonhomogeneous problem for the remainder, and the formal
solvability might testify to the possibility of estimating the remainder. We follow
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this way to show in Section 7 the asymptotic character of formal solution in the
sense (0.1). In the last Section 8 we present some explicit computations for an
inverse parabolic equation.

Needless to say that our results go far beyond the first boundary value problem
for the heat equation and extend to general boundary value problems for parabolic
equations in bounded domains.

Part 1. Formal solution of the heat equation in the plane

1. Blow-up techniques

Consider the first boundary value problem for the heat equation in a bounded
domain G ⊂ R2. The boundary of G is assumed to be C∞ except for a finite num-
ber of singular points. A boundary point is called characteristic if the boundary
is smooth at this point and the tangent is orthogonal to the t -axis. Since G is
bounded, there are at least two characteristic points on the boundary unless it has
a singularity at a characteristic point. In this paper we restrict our discussion to
characteristic points which may moreover bear boundary singularities. By the local
principle of [Sim65] it is sufficient to study the problem only in a small neighbour-
hood of any characteristic (singular) point. Thus, the domain G looks like that of
Figure 1 with n = 1, i.e. it is bounded by a curve t = |x|p, with p > 0 an arbitrary
real number, from below and by a horizontal segment from above. This is a typical
domain for problems of such a type. As usual, no conditions are posed on the upper
segment, see [TS72].

��
��t = f(x)

0 - xn
��	xn−1

6
t

t = −∞

Figure 1. Resolution of singularities at a characteristic point

If p > 1, then the origin is a characteristic point of the boundary. If 0 < p ≤ 1,
then the boundary has a singularity at the origin, which is a conical point for p = 1
and a cusp for p < 1. As mentioned, the case p ≥ 2 was treated in [Kon66] in
the framework of analysis of Fuchs-type operators. The paper [AT12] demonstrates
rather strikingly that, for 0 < p < 2, the problem to be considered is specified in
analysis on manifolds with cusps. A modern approach to studying boundary value
problems in domains with cuspidal boundary points is based on the so-called blow-
up techniques, cf. [RST00]. While giving a complete characterisation of Fredholm
problems, the approach falls short of providing asymptotics of solutions at singular
points.

The first boundary value problem for the heat equation in the domain G is
formulated as follows: Write Σ for the set of all characteristic points 0, . . . on the
boundary of G. Given functions f in G and u0 at ∂G \Σ , find a function u on G \Σ
which satisfies

u′t − u′′x,x = f in G,
u = u0 at ∂G \ Σ .

(1.1)
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By the local principle of Simonenko [Sim65], the Fredholm property of problem (1.1)
in suitable function spaces is equivalent to the local invertibility of this problem at
each point of the closure of G. Here we focus upon the characteristic points like the
origin 0.

Suppose the domain G is described in a neighbourhood of the origin by the
inequality

t > |x|p, (1.2)

where p is a positive real number. There is no loss of generality in assuming that
|x| ≤ 1.

We now blow up the domain G at P3 by introducing new coordinates (ω, r) with
the aid of

x = t1/p ω,
t = r,

(1.3)

where |ω| < 1 and r ∈ (0, 1). It is clear that the new coordinates are singular at
r = 0, for the entire segment [−1, 1] on the ω -axis is blown down into the origin
by (1.3). The rectangle (−1, 1)× (0, 1) transforms under the change of coordinates
(1.3) into the part of the domain G nearby 0 lying below the line t = 1.

In the domain of coordinates (ω, r) problem (1.1) reduces to an ordinary dif-
ferential equation with respect to the variable r with operator-valued coefficients.
More precisely, under transformation (1.3) the derivatives in t and x change by the
formulas

∂u

∂t
=

∂u

∂r
− 1

r

ω

p

∂u

∂ω
,

∂u

∂x
=

1

r1/p
∂u

∂ω
,

and so (1.1) transforms into

rQ U ′r − U ′′ω,ω − rQ−1
ω

p
U ′ω = rQF in (−1, 1)× (0, 1),

U = U0 at {±1} × (0, 1),
(1.4)

where U(ω, r) and F (ω, r) are pullbacks of u(x, t) and f(x, t) under transformation
(1.3), respectively, and

Q =
2

p
.

We are now interested in the local solvability of problem (1.4) near the edge
r = 0 in the rectangle (−1, 1)× (0, 1). Note that the equation degenerates at r = 0,
since the coefficient r2/p of the higher order derivative in r vanishes at r = 0. The
exponent Q is of crucial importance for specifying the ordinary differential equation.
If p = 2 then it is a Fuchs-type equation, these are also called regular singular
equations. The Fuchs-type equations fit well into an algebra of pseudodifferential
operators based on the Mellin transform. If p > 2, then the singularity of the
equation at r = 0 is weak and so regular theory of finite smoothness applies. In the
case p < 2 the degeneracy at r = 0 is strong and the equation can not be treated
except by the theory of slowly varying coefficients [RST00].
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2. Formal asymptotic solution

To determine appropriate function spaces in which a solution of problem (1.4)
is sought, one constructs formal asymptotic solutions of the corresponding homo-
geneous problem. That is

rQ U ′r − U ′′ω,ω − rQ−1
ω

p
U ′ω = 0 in (−1, 1)× (0,∞),

U(±1, r) = 0 on (0,∞).
(2.1)

We first consider the case p 6= 2. We look for a formal solution to (2.1) of the
form

U(ω, r) = eS(r) V (ω, r), (2.2)

where S is a differentiable function of r > 0 and V expands as a formal Puiseux
series with nontrivial principal part

V (ω, r) =
1

reN

∞∑
j=0

Vj−N (ω) rej ,

the (possibly) complex exponent N and real exponent e have to be determined. Per-
haps the factor r−eN might be included into the definition of expS as exp(−eN ln r),
however, we prefer to highlight the key role of Puiseux series.

Substituting (2.2) into (2.1) yields

rQ (S′V + V ′r )− V ′′ω,ω − rQ−1
ω

p
V ′ω = 0 in (−1, 1)× (0,∞),

V (±1, r) = 0 on (0,∞).

In order to reduce this boundary value problem to an eigenvalue problem we
require the function S to satisfy the eikonal equation rQS′ = λ with a complex
constant λ. This implies

S(r) = λ
r1−Q

1−Q
up to an inessential constant to be included into a factor of expS. In this manner
the problem reduces to

rQ V ′r − V ′′ω,ω − rQ−1
ω

p
V ′ω = −λV in (−1, 1)× (0,∞),

V (±1, r) = 0 on (0,∞).
(2.3)

If e =
Q− 1

k
for some natural number k, then

rQ V ′r =

∞∑
j=k

e(j −N − k)Vj−N−kr
e(j−N),

V ′′ω,ω =

∞∑
j=0

V ′′j−Nr
e(j−N),

rQ−1 V ′ω =

∞∑
j=k

V ′j−N−kr
e(j−N),
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as is easy to check. On substituting these equalities into (2.3) and equating the
coefficients of the same powers of r we get two collections of Sturm-Liouville prob-
lems

−V ′′j−N + λVj−N = 0 in (−1, 1),
Vj−N = 0 at ∓1,

(2.4)

for j = 0, 1, . . . , k − 1, and

−V ′′j−N + λVj−N =
ω

p
V ′j−N−k − e(j −N − k)Vj−N−k in (−1, 1),

Vj−N = 0 at ∓1,
(2.5)

for j = mk,mk + 1, . . . ,mk + (k − 1), where m takes on all natural values.
Given any j = 0, 1, . . . , k − 1, the Sturm-Liouville problem (2.4) has obviously

simple eigenvalues

λn = −
(π

2
n
)2

for n = 1, 2, . . ., a nonzero eigenfunction corresponding to λn being sin
π

2
n(ω + 1).

It follows that

Vj−N (ω) = cj−N sin
π

2
n(ω + 1), (2.6)

for j = 0, 1, . . . , k−1, where cj−N are constant. Without restriction of generality we
can assume that the first coefficient V−N in the Puiseux expansion of V is different
from zero. Hence, Vj−N = cj−NV−N for j = 1, . . . , k−1. For simplicity of notation,
we drop the index n.

On having determined the functions V−N , . . . , Vk−1−N , we turn our attention to
problems (2.5) with j = k, . . . , 2k − 1. Set

fj−N =
ω

p
V ′j−N−k − e(j −N − k)Vj−N−k,

then for the inhomogeneous problem (2.5) to possess a nonzero solution Vj−N it is
necessary and sufficient that the right-hand side fj−N be orthogonal to all solutions
of the corresponding homogeneous problem, to wit V−N . The orthogonality refers
to the scalar product in L2(−1, 1). Let us evaluate the scalar product (fj−N , V−N ).
We get

(fj−N , V−N ) = cj−N−k

(1

p
(ωV ′−N , V−N )− e(j −N − k) (V−N , V−N )

)
and

(ωV ′−N , V−N ) = ω |V−N |2
∣∣∣ 1

−1
− (V−N , V−N )− (V−N , ωV

′
−N )

= −(V−N , V−N )− (ωV ′−N , V−N ),

the latter equality being due to the fact that V−N is real-valued and vanishes at
±1. Hence,

(ωV ′−N , V−N ) = −1

2
(V−N , V−N )

and

(fj−N , V−N ) = −cj−N−k
( 1

2p
+ e(j −N − k)

)
(V−N , V−N ) (2.7)

for j = k, . . . , 2k − 1.
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Since V−N 6= 0, the condition (fj−N , V−N ) = 0 fulfills for j = k if and only if

eN =
1

2p
. (2.8)

Under this condition, problem (2.5) with j = k is solvable and its general solution
has the form

Vk−N = Vk−N,0 + ck−NV−N ,

where Vk−N,0 is a particular solution of (2.5) and ck−N an arbitrary constant.
Moreover, for (fj−N , V−N ) = 0 to fulfill for j = k + 1, . . . , 2k − 1 it is necessary
and sufficient that c1−N = . . . = ck−1−N = 0, i.e., all of V1−N , . . . , Vk−1−N vanish.
This in turn implies that fk+1−N = . . . = f2k−1−N = 0, whence Vj−N = cj−NV−N
for all j = k + 1, . . . , 2k − 1, where cj−N are arbitrary constants. We choose the
constants ck−N , . . . , c2k−1 in such a way that the solvability conditions of the next
k problems are fulfilled.

More precisely, we consider the problem (2.5) for j = 2k, the right-hand side
being

f2k−N =
(ω
p
V ′k−N,0 − e(k −N)Vk−N,0

)
+ ck−N

(ω
p
V ′−N − e(k −N)V−N

)
=

(ω
p
V ′k−N,0 − e(k −N)Vk−N,0

)
+ ck−N

(
fk−N − ek V−N

)
.

Combining (2.7) and (2.8) we conclude that

(fk−N − ek V−N , V−N ) = −ek (V−N , V−N )

= (1−Q) (V−N , V−N )

is different from zero. Hence, the constant ck−N can be uniquely defined in such
a way that (f2k−N , V−N ) = 0. Moreover, the functions f2k+1−N , . . . , f3k−1−N are
orthogonal to V−N if and only if ck+1−N = . . . = c2k−1−N = 0. It follows that
Vj−N vanishes for each j = k + 1, . . . , 2k − 1.

Continuing in this fashion we construct a sequence of functions Vj−N (ω), for
j = 0, 1, . . ., satisfying equations (2.4) and (2.5). The functions Vj−N (ω) are defined
uniquely up to a common constant factor c−N . Moreover, Vj−N vanishes identically
unless j = mk with m = 0, 1, . . .. Therefore,

V (ω, r) =
1

reN

∞∑
m=0

Vmk−N (ω) remk

=
1

rQ/4

∞∑
m=0

Ṽm(ω) r(Q−1)m

is a unique (up to a constant factor) formal asymptotic solution of problem (2.3)
corresponding to λ = λn.

Theorem 2.1. Let p 6= 2. Then an arbitrary formal asymptotic solution of homo-
geneous problem (2.1) has the form

U(ω, r) =
c

rQ/4
exp

(
λ
r1−Q

1−Q

) ∞∑
m=0

Ṽm(ω)

r(1−Q)m
,

where λ is one of eigenvalues λn = −
(π

2
n
)2
.
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Proof. The theorem follows readily from (2.2). �

In the original coordinates (x, t) close to the point 0 in G the formal asymptotic
solution looks like

u(x, t) =
c

tQ/4
exp

(
λ
t1−Q

1−Q

) ∞∑
m=0

Ṽm

( x

t1/p

)(1

t

)(1−Q)m

. (2.9)

If 1−Q > 0, i.e., p > 2, expansion (2.9) behaves in much the same way as boundary
layer expansion in singular perturbation problems, since the eigenvalues are all
negative. The threshold value p = 2 is a turning contact order under which the
boundary layer degenerates.

3. The exceptional case p = 2

In this section we consider the case p = 2 in detail. For p = 2, problem (2.1)
takes the form

r U ′r − U ′′ω,ω −
ω

2
U ′ω = 0 in (−1, 1)× (0,∞),

U(±1, r) = 0 on (0,∞).
(3.1)

The problem is specified as Fuchs-type equation on the half-axis with coefficients
in boundary value problems on the interval [−1, 1]. Such equations have been well
understood, see [Esk80] and elsewhere.

If one searches for a formal solution to (3.1) of the form U(ω, r) = eS(r) V (ω, r),
then the eikonal equation rS′ = λ gives S(r) = λ ln r, and so eS(r) = rλ, where λ
is a complex number. It makes therefore no sense to looking for V (ω, r) being a
formal Puiseux series in fractional powers of r. The choice e = (Q− 1)/k no longer
works, and so a good substitute for a fractional power of r is the function 1/ ln r.
Thus,

V (ω, r) =

∞∑
j=0

Vj−N (ω)
( 1

ln r

)j−N
has to be a formal asymptotic solution of

r V ′r − V ′′ω,ω −
ω

2
V ′ω = −λV in (−1, 1)× (0,∞),

V (±1, r) = 0 on (0,∞),

N being a nonnegative integer. Substituting the series for V (ω, r) into these equa-
tions and equating the coefficients of the same powers of ln r yields two collections
of Sturm-Liouville problems

−V ′′−N −
ω

2
V ′−N + λV−N = 0 in (−1, 1),

V−N = 0 at ∓1,
(3.2)

for j = 0, and

−V ′′j−N −
ω

2
V ′j−N + λVj−N = (j−N−1)Vj−N−1 in (−1, 1),

Vj−N = 0 at ∓1,
(3.3)

for j ≥ 1.
Problem (3.2) has a nonzero solution V−N if and only if λ is an eigenvalue of the

operator

v 7→ v′′ +
1

2
ω v′
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whose domain consists of all functions v ∈ H2(−1, 1) vanishing at ∓1. Then,
equalities (3.3) for j = 1, . . . , N mean that V−N+1, . . . , V0 are actually root functions
of the operator corresponding to the eigenvalue λ. In other words, V−N , . . . , V0 is
a Jordan chain of length N + 1 corresponding to the eigenvalue λ. Note that
for j = N + 1 the right-hand side of (3.3) vanishes, and so V1, V2, . . . is also a
Jordan chain corresponding to the eigenvalue λ. This suggests that the series
breaks beginning at j = N + 1. Furthermore, it follows from the Sturm-Liouville
theory that problem (3.2) has a discrete sequence {λn}n=1,2,... of real eigenvalues.
If

−v′′ − 1

2
ω v′ + λv = 0

on (−1, 1) for some function v ∈ H2(−1, 1) vanishing at ∓1, then

‖v′‖2 + λ‖v‖2 =
1

2
(ωv′, v), (3.4)

where the scalar product and norm are those of L2(−1, 1). By the Schwarz inequal-
ity, we get |(ωv′, v)| ≤ ‖v′‖ ‖v‖. Since

‖v′‖2 + λ‖v‖2 =
1

2
‖v′‖ ‖v‖+

(
‖v′‖ − 1

4
‖v‖
)2

+
(
λ− 1

16

)
‖v‖2

≥ 1

2
‖v′‖ ‖v‖+

(
λ− 1

16

)
‖v‖2,

we conclude that inequality (3.4) fulfills only for the function v = 0 unless λ ≤ 1/16.
Hence,

λn ≤
1

16
for all n = 1, 2, . . .. Each eigenvalue λn is simple whence N = 0.

Theorem 3.1. Suppose p = 2. Then an arbitrary formal asymptotic solution of
homogeneous problem (2.1) has the form U(ω, r) = rλ V0(ω), where λ is one of the
eigenvalues λn.

Proof. The theorem follows immediately from the above discussion. �

In the original coordinates (x, t) near the point P3 in G the formal asymptotic
solution proves to be

u(x, t) = c tλ V0

( x

t1/2

)
.

Of course, Theorem 3.1 can be proved immediately, for the homogeneous problem
(2.1) admits a separation of variables. Namely, set U(ω, r) = R(r)Ω(ω). Substi-
tuting this into equation (3.1) yields

rR′Ω − Ω ′′ − ω

2
Ω ′R = 0,

which is equivalent to

rR′ = λR,

Ω ′′ − ω

2
Ω ′ = λΩ .

Then R(r) = rλ, where the parameter λ is determined from the boundary value
problem for Ω . The function Ω can be described in terms of parabolic cylinder
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functions, see [AS64]. To transform the equation for Ω to the equation of parabolic
cylinder, set

Ω(ω) = exp
(ω2

8

)
y(ω).

Then y satisfies

y′′ +
((ω

4

)2
+ λ− 1

4

)
y = 0.

Two linearly independent solutions of this equation are called functions of parabolic
cylinder.

4. Generalisation to higher dimensions

The explicit formulas obtained above generalise easily to the evolution equation
related to the b th power of the Laplace operator in Rn, where b is a natural number.
Consider the first boundary value problem for the operator ∂t+(−∆)b in a bounded
domain G ⊂ Rn+1. Note that the choice of the sign (−1)b is explained exceptionally
by our wish to deal with parabolic (not backward parabolic) equation.

The boundary of G is assumed to be C∞ except for a finite number of charac-
teristic points. These are those points of ∂G at which the boundary touches with a
hyperplane in Rn+1 orthogonal to the t -axis. As above, we restrict our attention to
analysis of the first boundary problem near a characteristic point like 0 in Figure
1.

The first boundary value problem for the evolution equation in G is formulated
as follows: Let Σ be the set of all characteristic points of the boundary of G. Given
any functions f in G → R u0, u1, . . . , ub−1 on ∂G \ Σ , find a function u on G \ Σ
satisfying

u′t + (−∆)bu = f in G,
∂jν u = uj at ∂G \ Σ ,

(4.1)

for j = 0, 1, . . . , b − 1, where ∂ν is the derivative along the outward unit normal
vector of the boundary. We focus upon a characteristic point 0 of the boundary
which is assumed to be the origin in Rn+1.

Suppose the domain G is described in a neighbourhood of the origin by the
inequality

t > f(x), (4.2)

where f is a smooth function of x ∈ Rn \ 0 homogeneous of degree p > 0. We blow
up the domain G at 0 by introducing new coordinates (ω, r) ∈ D × (0, 1) with the
aid of

x = t1/p ω,
t = r,

(4.3)

where D is the domain in Rn consisting of those points ω ∈ Rn which satisfy
f(ω) < 1. Under this change of variables the domain G nearby 0 transforms into
the half-cylinder D× (0,∞), the cross-section D×{0} blowing down into the origin
by (4.3).

In the domain of coordinates (ω, r) problem (4.1) reduces to an ordinary differ-
ential equation with respect to the variable r with operator-valued coefficients. It
is easy to see that under transformation (4.3) the derivatives in t and x change by
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the formulas

u′t = u′r −
1

p

1

r
(ω, u′ω),

u′xk =
1

r1/p
u′ωk

for k = 1, . . . , n, where (ω, u′ω) =

n∑
k=1

ωk
∂u

∂ωk
stands for the Euler derivative. Thus,

(4.1) transforms into

rQ U ′r + (−∆ω)bU − 1

p
rQ−1 (ω,U ′ω) = rQF in D × (0, 1),

∂jν U = Uj at ∂D × (0, 1)
(4.4)

for j = 0, 1, . . . , b− 1, where U(ω, r) and F (ω, r) are pullbacks of u(x, t) and f(x, t)
under transformation (4.3), respectively, and

Q =
2b

p
.

We are interested in the local solvability of problem (4.4) near the base r = 0
in the cylinder D × (0, 1). Note that the equation degenerates at r = 0, since
the coefficient rQ of the higher order derivative in r vanishes at r = 0. The the-
ory of [RST00] still applies to characterise those problems (4.4) which are locally
invertible.

To describe function spaces which give the best fit for solutions of problem (4.4),
one constructs formal asymptotic solutions of the corresponding homogeneous prob-
lem. That is

rQ U ′r + (−∆ω)bU − 1

p
rQ−1 (ω,U ′ω) = 0 in D × (0,∞),

∂αω U = 0 on ∂D × (0,∞)
(4.5)

for all |α| ≤ b− 1.
We assume that p 6= 2b. Similar arguments apply to the case p = 2b, the only

difference being in the choice of the Ansatz, see Section 3. We look for a formal
solution to (4.5) of the form U(ω, r) = eS(r) V (ω, r), where S is a differentiable
function of r > 0 and V expands as a formal Puiseux series with nontrivial principal
part

V (ω, r) =
1

reN

∞∑
j=0

Vj−N (ω) rej ,

where N is a complex number and e a real exponent to be determined.
On substituting U(ω, r) into (2.1) we extract the eikonal equation rQS′ = λ for

the function S(r), where λ is a (possibly complex) constant to be defined. For
Q 6= 1 this implies

S(r) = λ
r1−Q

1−Q
up to an inessential constant factor. In this way the problem reduces to

rQ V ′r + (−∆ω)bV − 1

p
rQ−1 (ω, V ′ω) = −λV in D × (0,∞),

∂αωV = 0 on ∂D × (0,∞)
(4.6)

for all |α| ≤ b− 1.
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Analysis similar to that in Section 2 shows that a right choice of e is e = (Q−1)/k
for some natural number k. On substituting the formal series for V (ω, r) into (4.6)
and equating the coefficients of the same powers of r we get two collections of
problems

(−∆)bVj−N + λVj−N = 0 in D,
∂α Vj−N = 0 at ∂D

(4.7)

for all |α| ≤ b− 1, where j = 0, 1, . . . , k − 1, and

(−∆)bVj−N + λVj−N =
1

p
(ω, V ′j−N−k)− e(j −N − k)Vj−N−k in D,

∂α Vj−N = 0 at ∂D
(4.8)

for all |α| ≤ b− 1, where j = k, k + 1, . . . , 2k − 1, and so on.
Given any j = 0, 1, . . . , k− 1, problem (4.7) is essentially an eigenvalue problem

for the strongly nonnegative operator (−∆)b in L2(D) whose domain consists of all
functions of H2b(D) vanishing up to order b−1 at ∂D. The eigenvalues of the latter
operator are known to be all positive and form a nondecreasing sequence λ′1, λ

′
2, . . .

which converges to ∞. Hence, (4.7) admits nonzero solutions only for a discrete
sequence

λn = −λ′n < 0

where n = 1, 2, . . ..
In general, the eigenvalues {λn} fail to be simple. The generic simplicity of the

eigenvalues of the Dirichlet problem for self-adjoint elliptic operators with respect
to variations of the boundary have been investigated by several authors, see [PP08]
and the references given there. We focus on an eigenvalue λn of multiplicity 1, in
which case the formal asymptotic solution is especially simple. By the above, this
condition is not particularly restrictive.

If λ = λn, there is a nonzero solution en(ω) of this problem which is determined
uniquely up to a constant factor. This yields

Vj−N (ω) = cj−N en(ω), (4.9)

for j = 0, 1, . . . , k−1, where cj−N are constant. Without restriction of generality we
can assume that the first coefficient V−N in the Puiseux expansion of V is different
from zero. Hence, Vj−N = cj−NV−N for j = 1, . . . , k−1. For simplicity of notation,
we drop the index n.

On taking the functions V−N , . . . , Vk−1−N for granted, we now turn to problems
(2.5) with j = k, . . . , 2k − 1. Set

fj−N =
1

p
(ω, V ′j−N−k)− e(j −N − k)Vj−N−k,

then for the inhomogeneous problem (4.8) to admit a nonzero solution Vj−N it is
necessary and sufficient that the right-hand side fj−N be orthogonal to all solutions
of the corresponding homogeneous problem, to wit V−N . The orthogonality refers
to the scalar product in L2(D). Let us evaluate the scalar product (fj−N , V−N ).
We get

(fj−N , V−N ) = cj−N−k

(1

p
((ω, V ′−N ), V−N )− e(j −N − k) (V−N , V−N )

)
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and, by Stokes’ formula,

((ω, V ′−N ), V−N ) =

∫
∂D

|V−N |2(ω, ν) ds−
n∑
k=1

∫
D

V−N
∂

∂ωk
(ωkV−N ) dω

= −n‖V−N‖2 − ((ω, V ′−N ), V−N ),

the latter equality being due to the fact that V−N is real-valued and vanishes at
∂D. Hence,

((ω, V ′−N ), V−N ) = −n
2
‖V−N‖2

and

(fj−N , V−N ) = −cj−N−k
( n

2p
+ e(j −N − k)

)
‖V−N‖2 (4.10)

for j = k, . . . , 2k − 1.
Since V−N 6= 0, the condition (fj−N , V−N ) = 0 fulfills for j = k if and only if

eN =
n

2p
. (4.11)

Under this condition, problem (4.8) with j = k is solvable and its general solution
has the form

Vk−N = Vk−N,0 + ck−NV−N ,

where Vk−N,0 is a particular solution of (4.8) and ck−N an arbitrary constant.
Moreover, for (fj−N , V−N ) = 0 to fulfill for j = k + 1, . . . , 2k − 1 it is necessary
and sufficient that c1−N = . . . = ck−1−N = 0, i.e., all of V1−N , . . . , Vk−1−N vanish.
This in turn implies that fk+1−N = . . . = f2k−1−N = 0, whence Vj−N = cj−NV−N
for all j = k + 1, . . . , 2k − 1, where cj−N are arbitrary constants. We choose the
constants ck−N , . . . , c2k−1 in such a way that the solvability conditions of the next
k problems are fulfilled.

More precisely, we consider the problem (4.8) for j = 2k, the right-hand side
being

f2k−N =
(1

p
(ω, V ′k−N,0)− e(k−N)Vk−N,0

)
+ ck−N

(1

p
(ω, V ′−N )− e(k−N)V−N

)
=
(1

p
(ω, V ′k−N,0)− e(k−N)Vk−N,0

)
+ ck−N

(
fk−N − ekV−N

)
.

Combining (4.10) and (4.11) we conclude that

(fk−N − ek V−N , V−N ) = −ek (V−N , V−N )

= (1−Q) (V−N , V−N )

is different from zero. Hence, the constant ck−N can be uniquely defined in such
a way that (f2k−N , V−N ) = 0. Moreover, the functions f2k+1−N , . . . , f3k−1−N are
orthogonal to V−N if and only if ck+1−N = . . . = c2k−1−N = 0. It follows that
Vj−N vanishes for each j = k + 1, . . . , 2k − 1.

Continuing in this manner we construct a sequence of functions Vj−N (ω), for
j = 0, 1, . . ., satisfying equations (4.7) and (4.8). The functions Vj−N (ω) are defined
uniquely up to a common constant factor c−N . Moreover, Vj−N vanishes identically
unless j is an integer multiple of k, i.e., j = mk with m = 0, 1, . . .. Hence it follows
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that

V (ω, r) =
1

reN

∞∑
m=0

Vmk−N (ω) remk

=
1

rn/2p

∞∑
m=0

Ṽm(ω) r(Q−1)m

is a unique (up to a constant factor) formal asymptotic solution of problem (4.6)
corresponding to λ = λn. Summarising, we arrive at the following generalisation of
Theorem 2.1.

Theorem 4.1. Let p 6= 2b. Then an arbitrary formal asymptotic solution of ho-
mogeneous problem (4.5) has the form

U(ω, r) =
c

rn/2p
exp

(
λ
r1−Q

1−Q

) ∞∑
m=0

Ṽm(ω)

r(1−Q)m
,

where λ is one of eigenvalues λn = −λ′n.

Thus, the construction of formal asymptotic solution U of general problem (4.1)
follows by the same method as in Section 2.

In the original coordinates (x, t) close to the point 0 in G the formal asymptotic
solution looks like

u(x, t) =
c

tn/2p
exp

(
λ
t1−Q

1−Q

) ∞∑
m=0

Ṽm

( x

t1/p

)(1

t

)(1−Q)m

. (4.12)

The computations of this section extend obviously both to eigenvalues λn of higher
multiplicity and arbitrary self-adjoint elliptic operators A(x,D) in place of (−∆)b.
Mention that under small perturbations of A(x,D) the eigenvalues of multiplicity
µ break down into µ simple eigenvalues. When solving nonhomogeneous equations
(4.8), one chooses the only solution which is orthogonal to all solutions of the cor-
responding homogeneous problem (4.7). This special solution actually determines
what is known as Green operator. However, formula (4.12) becomes less transpar-
ent. And so we omit the details.

Part 2. Proof of asymptotic character

5. Resolution of singularities at infinity

Throughout this part we will assume that 0 < p < 2, i.e., Q = 2/p is greater than
1. As mentioned in the Introduction, this case is not included in the treatise [Kon66]
and it was first studied in [AT12]. For 1 < p < 2, the origin is a characteristic
boundary point of the domain G. For 0 < p < 1, the origin is a cuspidal point at
the boundary.

We are actually interested in the local solvability of problem (1.4) near the edge
r = 0 in the rectangle (−1, 1)× (0, 1). Note that the equation degenerates at r = 0,
since the coefficient rQ of the higher order derivative in r vanishes at r = 0. If
Q = 1, the equation is of Fuchs type and is studied within the framework of Mellin
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calculus. In order to handle this degeneration in an orderly fashion for Q > 1, we
find a change of coordinates s = δ(r) in the interval (0, 1), such that

rQ
d

dr
=

d

ds
.

Such a function δ is determined uniquely up to an inessential constant from the
equation δ′(r) = r−Q and is given by

δ(r) =
r1−Q

1−Q
(5.1)

for r > 0. Note that δ(0+) = −∞. Problem (1.4) becomes

U ′s − U ′′ω,ω +
1

2−p
1

s
ωU ′ω =

(δ(1)

s

) 2
2−p

F in (−1, 1)× (−∞, δ(1)),

U = U0 at {±1} × (−∞, δ(1)),
(5.2)

where we use the same letter to designate U and the push-forward of U under the
transformation s = δ(r), and similarly for F .

The advantage of reducing the problem in the half-cylinder [−1, 1] × [0,∞) to
that in the infinite cylinder [−1, 1] × (−∞,∞) lies in the fact that it allows one
to exploit the Fredholm theory of pseudodifferential operators with slowly varying
symbols, see [Gru70]. More precisely, the operator of boundary value problem (5.2)
can be written as pseudodifferential operator

AU (s) =
1

2π

∫ ∞
−∞

eısσa(s, σ)Û(σ)dσ

for s < 0, where

a(s, σ) =
(
ıσ −

( ∂

∂ω

)2
+

1

2− p
1

s
ω
∂

∂ω
r′

)
(5.3)

is a symbol with values in the Sturm-Liouville boundary value problems on the
interval [−1, 1] (r′ standing for the restriction to the boundary), and Û the Fourier
transformation of U in the variable s. An important property of a(s, σ) is that it
is slowly varying at s → −∞ which means that, for each α ≥ 0 and β ≥ 1, the
derivative Dβ

sD
α
σa(s, σ) tends to zero in a suitable norm as s → −∞, see [Gru70],

[RST00].
It is now straightforward that the inverse change of variables r = δ−1(s) pushes

the Fourier operators near s = −∞ forward to operators near r = 0 on the half-axis
r ≥ 0. These latter are based on an abstract Fourier transform corresponding to a
group structure on R>0.

We now rewrite the series for formal solutions of homogeneous problem (2.1) in
the new coordinates (ω, s). On substituting (5.1) into Theorem 2.1 we get imme-
diately

U(ω, s) = c ((1−Q)s)
1
4

Q
Q−1 exp(λs)

∞∑
m=0

Ṽm(ω)

((1−Q)s)m
(5.4)

for s in a neighbourhood of −∞, where λ is one of eigenvalues λn = −
(π

2
n
)2
.

Formula (5.4) demonstrates rather strikingly that the solutions of homogeneous
problem (5.2) are relevant perturbations of solutions of ordinary differential equa-
tions with constant coefficients without source term. Therefore, the natural setting
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of problem (5.2) is constituted by functions of exponential type in s. More pre-
cisely, the local ring of functions corresponding to problem (5.2) at the singular
point s = −∞ consists of those functions which admit asymptotic expansions of
the form

U(ω, s) ∼ sN exp(λs)

∞∑
m=0

Vm(ω)

sm

near s = −∞, where N ≥ 0 and λ are real numbers and Vm(ω) differentiable
functions on [−1, 1].

6. Fredholm property of the first boundary problem

In this section we present the results of [AT12] in the particular case f(r) = rp,
where 0 < p < 2.

For those pseudodifferential operators whose symbols are slowly varying at the
point s = −∞, the paper [RST00] gives a criterion of local solvability at −∞. How-
ever, this criterion does not apply immediately to problem (5.2), for [RST00] deals
with classical polyhomogeneous symbols while our problem requires quasihomoge-
neous symbols. However, the approach of [RST00] still works in the anisotropic
case if the derivatives in s are counted with weight factor 2. The details are left to
an interested reader.

Using transformations rather standard in the Sturm-Liouville theory we reduce
problem (5.2) to a simpler form. Introduce

q(ω, s) = exp
(
− 1

2−p
1

s

ω2

2

)
which is a bounded differentiable function with positive values in the half-strip
[−1, 1]× (−∞, δ(1)). A trivial verification shows that (5.2) transforms to the prob-
lem

U ′s −
1

q
(qU ′ω)

′
ω = F̃ in (−1, 1)× (−∞, δ(1)),

U = U0 at {±1} × (−∞, δ(1)).

On replacing the unknown function by U =
1
√
q
v we finally arrive at the boundary

value problem

v′s − v′′ω,ω + cv =
√
q F̃ in (−1, 1)× (−∞, δ(1)),

v =
√
qU0 at {±1} × (−∞, δ(1)),

(6.1)

where

c(ω, s) = −1

2

1

2− p
1

s
+

1

4

p− 1

(p− 2)2
ω2

s2
,

cf. [CH68, v. I, p. 250].
Our approach to solving problem (6.1) is fairly standard in the theory of linear

equations. On choosing a proper scale of weighted Sobolev spaces in the strip
C = [−1, 1] × R and taking the data v0 =

√
qU0 in the corresponding trace spaces

on the boundary ω = ±1 of C we can assume without loss of generality that v0 ≡ 0.
We think of (6.1) as a perturbation of the problem with homogeneous boundary
conditions

v′s − v′′ω,ω =
√
q F̃ in C,

v = 0 at ∂C. (6.2)
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This is exactly the first boundary value problem for the heat equation in the cylinder
C which is nowadays well understood, cf. for instance Chapter 3 in [TS72]. If

g =
√
q F̃ vanishes, problem (6.2) possesses infinitely many linearly independent

solutions of the form

vn(ω, s) = cn exp
(
−
(π

2
n
)2
s
)

sin
π

2
n(ω + 1) (6.3)

with n a natural number. In order to eliminate the solutions with n large enough
it is necessary to pose growth restrictions on v(ω, s) for s → −∞. As but one
possibility to do that we mention Sobolev spaces with exponential and powerlike
weight factors, see [RST00]. Since the coefficients of the operator are stationary, the
Fourier transform in s applies to reduce the problem to a Sturm-Liouville eigenvalue
problem on the interval (−1, 1), see Chapter 5 in [CH68, v. 1]. Instead of the
Fourier transform one can use orthogonal decompositions over the eigenfunctions,
which leads immediately to formal solutions of the unperturbed problem at the
point s = −∞.

On returning to problem (6.1) we observe that it differs from the unperturbed
problem by the multiplication operator v 7→ cv. If the unperturbed problem is
Fredholm and the perturbation v 7→ cv is compact, then the perturbed problem is
Fredholm as well. The local version of this assertion states that if the unperturbed
problem is invertible and the perturbation v 7→ cv is small, then the perturbed
problem is also invertible. Since c(ω, s)→ 0 uniformly in ω ∈ [−1, 1], as s→ −∞,
the operator v 7→ cv is compact in natural scales of weighted Sobolev spaces, to be
introduced.

We write the ordinary differential equation with operator-valued coefficients of
(6.1) in the form

v′s + C(s)v = g (6.4)

where

C(s) = −
( d

dω

)2
+ c(ω, s)

is a continuous function on (−∞, δ(1)) with values in second order ordinary differ-
ential operators on (−1, 1). We think of C(s) as unbounded operator in L2(−1, 1)
whose domain consists of all v ∈ H2(−1, 1) satisfying v(−1) = v(1) = 0. As but
one result of the theory of Sturm-Liouville boundary value problems we mention
that C(s) is closed.

As usual in the theory of ordinary differential equations with operator-valued
coefficients, we associate the operator pencil a(s, σ) = ıσ + C(s) with (6.4). It
depends on parameters s ∈ (−∞, δ(1)) and σ ∈ C. By the above, a(s, σ) stabilises
to an operator pencil a(−∞, σ) independent of s, as s → −∞. More precisely, we
get

a(−∞, σ) = ıσ −
( d

dω

)2
.

For each integer k ≥ 1, the symbol a(−∞, σ) acting from H2k(−1, 1)∩
◦
H(−1, 1)

to H2(k−1)(−1, 1) has a bounded inverse everywhere in the entire complex plane C
except for the discrete set

σn = −ıλn = ı
(π

2
n
)2

with n ∈ N. It is worth pointing out that a(−∞, σ)−1 = RC(−∞)(−ıσ), the resol-
vent of C(−∞) at −ıσ.
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Lemma 6.1. There exists a constant c with the property that, for all complex
σ lying away from any angular sector containing the positive imaginary axis, the
inequality

‖v‖2H2k(−1,1) + |σ|2k‖v‖2L2(−1,1)

≤ c
(
‖a(−∞, σ)v‖2H2(k−1)(−1,1) + |σ|2(k−1)‖a(−∞, σ)v‖2L2(−1,1)

)
is fulfilled whenever v ∈ H2k(−1, 1) ∩

◦
H1(−1, 1) with k ≥ 1.

Proof. The operator pencils s(−∞, σ) with this property are said to be anisotropic
elliptic. See [AV64] for a more general estimate. �

By a solution of (6.4) is meant any function v(s) with values in H2(−1, 1) sat-
isfying v(−1) = v(1) = 0, which has a strong derivative in L2(−1, 1) for almost all
s < δ(1), and which fulfills (6.4).

Formula (5.4) suggests readily a scale of Hilbert spaces to control the solutions
of problem (6.1). For any k = 0, 1, . . . and γ ∈ R, we introduce Hk,γ(−∞, δ(1))
to be the space of all functions on (−∞, δ(1)) with values in H2k(−1, 1), such that
the norm

‖v‖Hk,γ(−∞,δ(1)) :=
(∫ δ(1)

−∞
e−2γs

k∑
j=0

‖v(j)(s)‖2H2(k−j)(−1,1)ds
)1/2

is finite, cf. Slobodetskii [Slo58]. In particular, H0,γ(−∞, δ(1)) consists of all
square integrable functions on (−∞, δ(1)) with values in L2(−1, 1) with respect to
the measure e−2γsds.

Recall that the numbers σn are usually referred to as eigenvalues of the operator
pencil a(−∞, σ), for there are nonzero functions vn in H2(−1, 1) vanishing at ∓1
and satisfying a(−∞, σn)vn = 0. The functions vn are called eigenfunctions of
a(−∞, σ) at σn. The following theorem fits well the abstract theory of [MP72].
However, [MP72] is a straightforward generalisation of the asymptotic formula of
Evgrafov [Evg61] for solutions of first order equations to equations of an arbitrary
order. Our results go thus back at least as far as [Evg61] while we refer to the more
available paper [MP72].

Theorem 6.2. Suppose in the strip −µ < =σ < −γ there lie exactly N of the eigen-
values σn, and that there are no eigenvalues σn on the lines =σ = −µ and =σ = −γ.
Then the solution v ∈ H1,γ(−∞, δ(1)) of problem (6.4) with g ∈ H0,µ(−∞, δ(1))
has the form

v(s) = c1 s1(s) + . . .+ cN sN (s) +R(s)

where s1, . . . , sN are solutions of the homogeneous problem in H1,γ(−∞, δ(1)) which
do not depend on v, c1, . . . , cN constants, and R ∈ H1,µ(−∞, δ(1)).

Proof. Obviously, c(ω, s)→ c(ω,−∞) in the L2(−1, 1) -norm when s→ −∞. Since
the embedding

H1(−1, 1) ↪→ C[−1, 1]

is continuous, we see that C(s)→ C(−∞) in the norm of L(H2(−1, 1), L2(−1, 1)),
as s→ −∞. Hence the desired conclusion is a direct consequence of Theorem 3 in
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[MP72] with

H0 = L2(−1, 1),

H1 = H2(−1, 1) ∩
◦
H1(−1, 1).

�

Thus, any solution v ∈ H1,γ(−∞, δ(1)) of (6.4) with a “good” right-hand side g
can be written as the sum of several singular functions and a “remainder” which
behaves better at infinity. The singular functions s1, . . . , sN are linearly indepen-
dent and do not depend on the particular solution v. What is still lacking is that
they are not explicit.

By the local solvability of problem (6.1) at s = −∞ is meant that there is a

number S � δ(1), such that for each function F̃ in C with
√
q F̃ ∈ H0,γ(−∞, δ(1))

there is a function v ∈ H1,γ(−∞, δ(1)) satisfying (6.1) for all s < S. Yet another
designation for the local solvability is the local invertibility from the right at the
point s = −∞. For a deeper discussion of local invertibility we refer the reader to
[RST00].

Theorem 6.3. Suppose that γ ∈ R is different from λn for all n = 1, 2, . . .. Then
problem (6.1) is locally solvable at s = −∞.

Proof. Our problems fits into the framework of analysis of pseudodifferential oper-
ators with slowly varying symbols. Hence, the desired assertion follows in much the
same way as Corollary 23.2 of [RST00]. On the other hand, the idea of the proof is
as classical as the construction of Neumann series and can be easily explained. We
write

Av (s) =
1

2π

∫ ∞
−∞

eısσa(−∞, σ)v̂(σ)dσ +
1

2π

∫ ∞
−∞

eısσ(a(s, σ)− a(−∞, σ))v̂(σ)dσ

for s < δ(1). The resolvent a(−∞, σ)−1 exists for all σ on the horizontal line
=σ = −γ. Furthermore, the Fourier transform of each function v ∈ H1,γ(−∞, δ(1))
vanishing close to δ(1) extends to an analytic function in the half-plane =σ ≥ −γ.
Hence, the first summand on the right-hand side is invertible on such functions
v. On the other hand, the second summand is small for s which are sufficiently
close to −∞. Hence, the operator A is invertible on functions v ∈ H1,γ(−∞, δ(1))
with the property that Av vanishes away from a small neighbourhood of −∞, as
desired. �

On changing the coordinates by

ω =
x

t1/p
,

s =
t1−Q

1−Q
,

we pull back the function spaces Hk,γ(−∞, δ(1)) to the original domain G. Theorem
6.3 then yields a condition of local solvability of problem (1.1) at the characteristic
point, see [AT12].
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7. Asymptotic property of formal solution

We now turn to the proof of asymptotic property of the formal solution of the
first boundary value problem for the heat equation at a characteristic point. We
restrict ourselves to n = 2 and to homogeneous problem (2.1) in a G. By (5.4), the
formal solution has the form

U(ω, s) =

∞∑
n=1

exp (λns)Vn(ω, s), (7.1)

where

Vn(ω, s) = cn ((1−Q)s)
1
4

Q
Q−1

∞∑
m=0

Vn,m(ω)

((1−Q)s)m

and λn = −
(
n
π

2

)
.

Obviously, exp(λns) ∈ H1,γ(−∞, S) for some S � δ(1) if and only if γ < λn.
Pick any γ with λn+1 < γ < λn. By Theorem 6.3, the solutions U ∈ H1,γ(−∞, S)
of homogeneous problem (5.2) in the half-strip (−1, 1) × (−∞, S) form an one-
dimensional space. Any solution U of this space is expected to possess a formal
series expansion

U(ω, s) ∼ c ((1−Q)s)
1
4

Q
Q−1 exp (λns)

∞∑
m=0

Ṽm(ω)

((1−Q)s)m

at s = −∞, where c is a suitable constant.
For each N = 0, 1, . . ., we introduce the function

UN (ω, s) = c ((1−Q)s)
1
4

Q
Q−1 exp (λns)

N∑
m=0

Ṽm(ω)

((1−Q)s)m

on (−1, 1) × (−∞, S). These functions belong to Hk,γ(−∞, S) for any natural
number k. We get

AUN = c ((1−Q)s)
1
4

Q
Q−1 exp (λns)

×
( N∑
m=0

−Ṽ ′′m + λnṼm
((1−Q)s)m

+

N+1∑
m=1

1

2−p
ωṼ ′m−1 −

(Q
4

+ (m−1)(1−Q)
)
Ṽm−1

((1−Q)s)m

)

= c ((1−Q)s)
1
4

Q
Q−1 exp (λns)

1

2−p
ωṼ ′N −

(Q
4

+N(1−Q)
)
ṼN

((1−Q)s)N+1
,

the last equality being a consequence of the recurrent equations for Vm which look
like

−Ṽ ′′m + λnṼm = − 1

2− p
ωṼ ′m−1 +

(Q
4

+ (m−1)(1−Q)
)
Ṽm−1 (7.2)

for all m = 0, 1, . . .. We thus conclude that the discrepancy is “small” with number
N .

Since each function Ṽm vanishes at ω = ∓1, we may apply a priori estimates for
solutions of Sturm-Liouville problems (7.2) to evaluate the H2(−1, 1) -norms of Ṽm
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through the L2(−1, 1) -norm of the right-hand sides. On repeating the estimate we
arrive at inequalities

‖Ṽm‖H2(−1,1) ≤ cmm! ‖Ṽ0‖L2(−1,1)

with some constant c, valid for all m = 1, 2, . . .. However, these inequalities are
obviously insufficient to establish the convergence of the formal series expansion for
U .

The main result of Part 2 reads as follows.

Theorem 7.1. Suppose that λn+1 < γ < λn. Then the formal series expansion
(5.4) corresponding to a real solution U ∈ H1,γ(−∞, S) is actually asymptotic in
the sense (0.1).

Proof. Given any nonnegative integer N , set

RN+1(ω, s) = U(ω, s)− c ((1−Q)s)
1
4

Q
Q−1 exp(λns)

N∑
m=0

Ṽm(ω)

((1−Q)s)m

for (ω, s) ∈ [−1, 1] × (−∞, S). Moreover, define a function XN+1(ω, s) from the
equality

RN+1(ω, s) = c ((1−Q)s)
1
4

Q
Q−1 exp(λns)

XN+1(ω, s)

((1−Q)s)N+1
,

which is possible since the coefficient of XN+1(ω, s) does not vanish. Hence it
follows that

U(ω, s) = c ((1−Q)s)
1
4

Q
Q−1 exp(λns)

( N∑
m=0

Ṽm(ω)

((1−Q)s)m
+

XN+1(ω, s)

((1−Q)s)N+1

)
,

and so the theorem is proved if we have established that XN+1(ω, s) is bounded in
a suitable sense in [−1, 1]× (−∞, S).

For this purpose we substitute U(ω, s) into equations (5.2). On taking into

account recurrent equations (7.2) for Ṽm(ω) we obtain

(XN+1)′s − (XN+1)′′ω,ω +
1

2−p
ω

(1−Q)s
(XN+1)′ω +

(
λn −

(1

4

Q

1−Q
+(N+1)

)1

s

)
XN+1

= − 1

2− p
ωṼ ′N +

(Q
4

+N(1−Q)
)
ṼN

= −Ṽ ′′N+1 + λnṼN+1

(7.3)

for (ω, s) ∈ (−1, 1) × (−∞, S), the boundary conditions X(∓1, s) = 0 being obvi-
ously fulfilled.

Obviously, the remainder RN+1 belongs to H1,γ(−∞, S) for each N . Hence it
follows that

XN+1 =
1

c
((1−Q)s)

− 1
4

Q
Q−1+(N+1)

exp(−λnS)RN+1,



ASYMPTOTIC SOLUTIONS 23

and so XN+1 ∈ H1,γ−λn(−∞, S), which is due to the fact that γ − λn < 0. On the
other hand,

(XN+1)′s − (XN+1)′′ω,ω +
1

2−p
ω

(1−Q)s
(XN+1)′ω +

(
λn −

(1

4

Q

1−Q
+(N+1)

)1

s

)
XN+1

∈ H0,0(−∞, S),

which is a consequence of (7.3).
The principal symbol of operator (7.3) at the singular point −∞ just amounts

to

ã(−∞, σ) = (ıσ+λn)−
( ∂

∂ω

)2
,

where σ ∈ C. The eigenvalues of this operator pencil are σm = ı(λn − λm) for
m = 1, 2, . . .. We now apply Theorem 6.2 with µ = 0 and with γ replaced by
γ − λn. Since γ > λn+1, there exist no eigenvalues σm which lie in the strip
0 < =σ < −γ + λn. Hence it follows that XN+1 actually belongs to the space
H1,0(−∞,−0), as desired. �

8. Local spectrum of a backward parabolic equation

Here we evaluate explicitly the eigenvalues and eigenfunctions of the first bound-
ary value problem for the backward parabolic equation u′t−u′′′′x,x,x,x = 0 in a bounded

domain G ⊂ R2 with a characteristic point at the origin. The authors gratefully ac-
knowledge the help of Vitaly Stepanenko with the cumbersome computations used
in this section.

The first boundary value problem for the backward parabolic equation in G is
formulated as follows: Let Σ be the set of all characteristic points of the boundary
of G. Given any functions f in G and u0, u1 on ∂G \ Σ , find a function u on G \ Σ
satisfying

u′t − u′′′′x,x,x,x = f in G,
∂jν u = uj at ∂G \ Σ ,

(8.1)

for j = 0, 1, where ∂ν is the derivative along the outward unit normal vector of
the boundary. We focus upon a characteristic point 0 of the boundary which is
assumed to be the origin in R2.

By the above, the domain G is described in a neighbourhood of the origin by the
inequality t > |x|p, where p > 0. We blow up the domain G at 0 by introducing
new coordinates (ω, r) ∈ (−1, 1)× (0, 1) with the aid of

x = t1/p ω,
t = r.

Under this change of variables the domain G nearby 0 transforms into the half-
cylinder (−1, 1)× (0,∞).

In the domain of coordinates (ω, r) problem (8.1) reduces to an ordinary dif-
ferential equation with respect to the variable r with operator-valued coefficients.
More precisely,

rQ U ′r − U ′′′′ω,ω,ω,ω −
1

p
rQ−1 ω U ′ω = rQF in (−1, 1)× (0, 1),

∂jν U = Uj at {∓1} × (0, 1)
(8.2)

for j = 0, 1, where U(ω, r) and F (ω, r) are pullbacks of u(x, t) and f(x, t) under
the transformation, respectively, and Q = 4/p. We assume that p 6= 4, i.e., Q 6= 1.
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We look for a formal solution to the homogeneous equation (8.2) (i.e., both F and
Uj vanish) which has the form U(ω, r) = eS(r) V (ω, r), where S is a differentiable
function of r > 0 and V expands as a formal Puiseux series with nontrivial principal
part

V (ω, r) =
1

reN

∞∑
j=0

Vj−N (ω) rej ,

where N is a complex number and e a real exponent to be determined.
On substituting U(ω, r) into (8.2) we extract the eikonal equation rQS′ = λ for

the function S(r), where λ is a (possibly complex) constant to be defined. For
Q 6= 1 this implies

S(r) = λ
r1−Q

1−Q
up to an inessential constant factor. In this way the problem reduces to

rQ V ′r − V ′′ω,ω,ω,ω −
1

p
rQ−1 ωV ′ω = −λV in (−1, 1)× (0,∞),

∂αωV = 0 at {∓1} × (0,∞)

for all |α| ≤ 1.
Analysis similar to that in Section 2 shows that a right choice of e is e = (Q−1)/k

for some natural number k. On substituting the formal series for V (ω, r) into (4.6)
and equating the coefficients of the same powers of r we get two collections of
problems

−V (4)
j−N + λVj−N = 0 in (−1, 1),

∂α Vj−N = 0 at {∓1}
(8.3)

for all |α| ≤ 1, where j = 0, 1, . . . , k − 1, and

−V (4)
j−N + λVj−N =

1

p
(ω, V ′j−N−k)− e(j −N − k)Vj−N−k in (−1, 1),

∂α Vj−N = 0 at {∓1}

for all |α| ≤ 1, where j = k, k + 1, . . . , 2k − 1, and so on.
We restrict our discussion to Sturm-Liouville problem (8.3) for j = 0 merely.

The remaining terms are determined in the same way as in Section 2. Set v = V−N
and solve

−v(4) + λ v = 0 in (−1, 1),
v = v′ = 0 at {∓1}, (8.4)

Note that λ > 0, for (v(4), v) = λ(v, v) and so ‖v′′‖2 = λ‖v‖2 by the Stokes
formula, the scalar product and norm being those of L2(−1, 1). On using the
Ansatz v(ω) = exp(zω) we get the characteristic equation z4 = λ, whose roots are

z0 = 4
√
λ, z1 = ız0, z2 = −z0 and z3 = −ız0. The general solution of the ordinary

differential equation is

v = c0e
z0ω + c1e

ız0ω + c2e
−z0ω + c3e

−ız0ω.

Substituting this formula into the boundary conditions v(∓1) = 0 and v′(∓1) = 0
gives a system of four equations for four undetermined coefficients c0, c1, c2, c3. This
system has a nonzero solution if and only is its determinant D vanishes. A direct
computation shows that

D = ı 8z20 (cosh(2z0) cos(2z0)− 1) = 0.
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If z0 = 0 then λ = 0, which fails to be an eigenvalue. Hence the equation for
eigenvalues reads

cosh(2z0) cos(2z0) = 1, (8.5)

which has infinitely many solutions. The first solution is 2z0 ≈ 1, 6π, i.e., we
get λ1 ≈ (0, 8π)4. For each z0 satisfying (8.5) the rank of the matrix of the
homogeneous linear system for the coefficients c0, c1, c2, c3 is equal to three. Hence,
c1, c2, c3 are multiples of c0, i.e.,

c1 =
(sinh 2z0 cos z0−(cosh 2z0+1) sin z0)+ı(sinh 2z0 sin z0+(cosh 2z0−1) cos z0)

ez0 sin 2z0 − ez0 cos 2z0 + e−z0
,

c2 =
e−z0 cos 2z0 + e−z0 sin 2z0 − ez0
ez0 sin 2z0 − ez0 cos 2z0 + e−z0

,

c3 =
(sinh 2z0 cos z0−(cosh 2z0+1) sin z0)−ı(sinh 2z0 sin z0+(cosh 2z0−1) cos z0)

ez0 sin 2z0 − ez0 cos 2z0 + e−z0

up to a multiplicative real factor c0. In particular, c1 = c3 showing that v is
real-valued. Thus, each eigenvalue λ is simple.

Mention that that the conditions v(∓1) = 0 and v′(−1) = 0 are for all z0, not
only for those satisfying (8.5). However, the evaluation of v′(+1) gives

v′(+1) =
4c0z0

ez0 sin 2z0 − ez0 cos 2z0 + e−z0
(1− cosh(2z0) cos(2z0))

= 0.
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