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Abstract
Visual perception is a complex and dynamic process that plays a crucial role in how we
perceive and interact with the world. The eyes move in a sequence of saccades and fixa-
tions, actively modulating perception by moving different parts of the visual world into
focus. Eye movement behavior can therefore offer rich insights into the underlying cog-
nitive mechanisms and decision processes. Computational models in combination with
a rigorous statistical framework are critical for advancing our understanding in this
field, facilitating the testing of theory-driven predictions and accounting for observed
data. In this thesis, I investigate eye movement behavior through the development of
two mechanistic, generative, and theory-driven models. The first model is based on
experimental research regarding the distribution of attention, particularly around the
time of a saccade, and explains statistical characteristics of scan paths. The second
model implements a self-avoiding random walk within a confining potential to repre-
sent the microscopic fixational drift, which is present even while the eye is at rest,
and investigates the relationship to microsaccades. Both models are implemented in
a likelihood-based framework, which supports the use of data assimilation methods
to perform Bayesian parameter inference at the level of individual participants, anal-
yses of the marginal posteriors of the interpretable parameters, model comparisons,
and posterior predictive checks. The application of these methods enables a thorough
investigation of individual variability in the space of parameters. Results show that
dynamical modeling and the data assimilation framework are highly suitable for eye
movement research and, more generally, for cognitive modeling.
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1 Introduction
All models are wrong but some are useful

G. E. P. Box

Molecules diffuse along a chemical gradient; a neuron transmits an electrical charge to
its neighbor; cells connect to form a network structure; and somehow from this pro-
cess emerges cognition, creativity, emotion, and behavior. Understanding information
processing in the complex system that is the brain has been a major scientific drive
in the last centuries. The question of how humans and other intelligent animals pro-
duce complex behaviors has fascinated scientists and thinkers. Modern cognitive- and
neurosciences seek to find the relations between behavior, cognition, neural activity in
the nervous system, and the environment.

Complex cognition and behavior rely on a continual interaction between perception
and action. This is particularly apparent in the case of visual perception. Eye move-
ments shift the visual input over the receptors in the eye, bringing different parts of
the visual world into the center of focus. These movements occur at both macroscopic
and microscopic levels, such that the signal that enters the eye is constantly changing.
The decision processes that underlie eye movement behavior are determined by both
high-level cognition and low-level features and are the result of a constant integration
of perception and action. This interplay is a core component of visual perception,
not an inconvenient necessity that has to be accounted for in the processing of the
signal. It is in good agreement with the idea that the architecture of the brain re-
sponds to changes in signal rather than to static signals. At the level of microscopic
eye movements, shifts are related to preventing response fatigue of receptors and im-
proving visual acuity. Macroscopic eye movements offer insight into cognitive decision
processes, perception, and action planning.

As in many other scientific disciplines, models are of central importance for advanc-
ing our understanding of the brain. A model is an informative representation of a
system that may be derived bottom-up from data, or top-down from theory. The first
case subsumes much of statistical modeling, where models describe the relationship of
observable variables. Theory-driven models, on the other hand, represent hypotheses
by formulating laws and axioms in a normative way and relating them to observable
data. In the case of computational models this typically means a concrete implemen-
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1 Introduction

tations which may depart from, extend, or refine the theory in order to accommodate
the implementation requirements and aims. Computational modeling is powerful tool
to understand which predictions arise from theories and to which extent the current
state of knowledge can account for the observed data.

Within this thesis, I investigate eye movement behavior by developing two mech-
anistic, theory-driven models. I begin the thesis with an introduction to the field of
scientific modeling and the applied modeling framework. In the following chapter I in-
troduce some of the core concepts of eye movement research, including different types
of movement and existing models. The introduction is followed by the three examples
of eye movement modeling.

First, I develop a model of scan paths, which implements findings about the dis-
tribution of visual attention to show that statistical characteristics of eye movement
trajectories can be explained by first order principles. Specifically, I show that a func-
tional redistribution of attention around the time of the saccade has an impact on the
fixation selection process (Schwetlick, Rothkegel, Trukenbrod, et al., 2020a). The pre-
sented implementation is likelihood-based and allows Bayesian statistical inference of
parameters at the level of individual subjects. These results are presented in Chapter
2. In Chapter 3, I further extend the model to make predictions of fixation durations
in addition to fixation locations by introducing a spatiotemporal likelihood function.
I then apply this extended SceneWalk model to the question of how different tasks
influence the choice of fixation locations (Schwetlick, Backhaus, & Engbert, 2022a).

The second model, presented in Chapter 4, focuses on microscopic eye movement
and proposes a relationship between different types of movement. Specifically, the
model is a self avoiding random walk within a confining potential, which represents
slow, meandering fixational drift. I show that the fitted parameters of this likelihood-
based model are distinct for individual subjects. Additionally, I use the latent model
parameters to investigate the interaction of fixational drift and microsaccades.

Chapter 5 discusses the results, the merits of the applied modeling framework and
provides an overarching discussion. The results show that dynamical modeling is
highly suitable for the field of eye movement research. Specifically in all three examples
it is possible to fit parameters to a model for individual subjects. Furthermore, the
parameters of the model are interpretable and allow a thorough investigation of the
individual variability in the space of parameters.

1.1 Modeling as a tool for understanding the brain

Real-world systems often depend on highly complex mechanisms and interactions;
the brain is a model1 exemplar of this. Studying such a system directly may only

1 The semantics of the word model depend on the context and the field. Usage ranges from the scaled
down version of a building that an architect might make; to comparing atoms to oranges in first
year chemistry; to a person showing off clothes for a brand; to the computational implementation
of a complicated scientific theory. Their commonality is that, on one level or another, they are
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1.1 Modeling as a tool for understanding the brain

be possible under certain limitations and the observable data may be multi-causally
determined and difficult to interpret. Scientific models are a way of studying complex
systems indirectly, usually by using the model to predict outcomes and compare them
to empirical data. In the following paragraphs I will outline the value of models,
predictions, and their interaction with empirical data.

First, in a complex system observable data is often also complex and influenced by
many factors and mechanisms. Explaining the relationships between observed data
and determining causes and effects is a core objective of scientific research and also an
essential component of model-building. However, in the field of psychology and cog-
nitive science, laws and theories in the traditional sense are rare. Instead, findings are
usually thought of as effects that tend to characterize phenomena rather than explain
them (Bechtel & Abrahamsen, 2010; Cummins, 2010). When ideas and hypothe-
ses about underlying mechanisms are put forward, they are typically not formalized.
However, formalizing a model is an important step in building a functional under-
standing of the system and considering the implications of the proposed mechanism.
An algorithmic or mathematical description, while not a guarantee of scientific rigour,
requires concrete details that can be glossed over in verbal descriptions and provides
more tools to evaluate its value (Bechtel & Abrahamsen, 2005). Moreover, when a
theory exists, it is only through models that interpret these concepts concretely that
it may be tested (Cartwright, 1999).

The predictions of models are also valuable as strong tests of the underlying theories.
When the mechanism underlying the phenomenon can be adequately described by a
model, the predicted outcomes should match the empirically measured outcomes. Any
observed deviance from the prediction can be interpreted as a part of the phenomenon
that is not sufficiently understood or implemented. Predicted and true outcomes may
be compared using posterior predictive checks, as outlined in Section 1.2.4. When
a model can explain (parts of) data, it gives credibility to the proposed mechanism.
(Bechtel & Abrahamsen, 2010). On the other hand, failure to predict certain effects
or edge cases, may inspire ideas about how to improve the model and scientific under-
standing.

When many mechanisms interact, their behavior may be different than the sum of
their parts. Complex interactions are not always easy or possible to predict. Such
emergent behaviors can be important for understanding the behavior of a system.
When a model exhibits a behavior that was not explicitly built-in, but which nonethe-
less aligns with the data, this may be considered a strong confirmation about the
proposed mechanisms. In contrast, it is also possible, using a model, to identify which
of the proposed parts and mechanisms are necessary and which superfluous to pro-
duce the target behavior, by constructing model versions with and without certain
components (see Bechtel and Abrahamsen, 2010 and for another application of this
approach Schmittwilken and Maertens, 2022).

Furthermore, models are an opportunity to study systems under manipulations that

intended as representations of some real-world system.
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1 Introduction

are impractical or impossible to explore empirically. It is usually possible to change
the parameters of a model much more easily than to setup a sufficiently large scale
empirical study. In a similar vein, particularly in the life sciences where individual
variation tends to be large, the response of a model given parameter differences, may
be valuable in understanding the size and robustness of the observed effects.

Lastly, predictions of real-world phenomena have a practical real-world value, e.g.,
when you bring an umbrella after seeing the weather forecast. Such models may
be used to predict earthquakes, assist drivers, or divine stock markets. In order to
have such a practical purpose, application models must fulfill different criteria than
purely scientific ones. Predictions need to be robust outside of idealized laboratory
conditions, which may include a limited availability of data. In the modern world
computational models are ubiquitous in almost every area of life, underlying everything
from computer vision to production chains and advertisement. More relevant for the
scientific context are models that may serve as a baseline for further experiments; a
model of the reflective properties of the eye underlies the video-based eye tracking
devices in our lab (SensoMotoric Instruments, 2016; YutaItoh, 2016); complicated
models of conductivity underlie the analysis of every EEG and MRI recording (Næss
et al., 2021).

Ontologies of models are many and varied. Model-types may be classified by their
description-level (e.g., verbal, mathematical, algorithmic, diagrammatic), by their
structure (e.g., agent-based, dynamical, concrete, neural network), purpose (e.g., pre-
dictive, procedural), or their inspiration (e.g., theory-driven, data-driven). These (and
other) dimensions are continuous and a model can fall anywhere along the spectrum
(Gershenfeld, 1999). For the purposes of this thesis I will focus on models that can be
expressed mathematically and implemented computationally. Specifically, I explore
the advantages of theory-driven, dynamical mechanistic modeling in cognitive science.

1.1.1 Dynamical mechanistic modeling
Cognition is an active and dynamic process in a biological, neurophysiological system.
An emphasis on these features, dynamics and biological plausibility, are fundamen-
tal to researching and understanding behavior. The first aspect reflects the fact that
perception and internal processing, and action are not independent and they change
dynamically over time (Van Gelder & Robert, 1995). The latter refers to the idea that
biological and neurophysiological findings should provide the boundary conditions for
behavioral explanations. Mechanistic models explain behavior at the level of how the
component parts of a system work together to produce an effect (Bechtel & Abraham-
sen, 2005). A model that can show that observed behavior emerges from biologically
plausible, dynamical mechanisms is a strong test of the underlying assumptions.

A popular analogy in cognitive science is that the brain is like a computer, in that it
receives input, processes information, and produces output behavior (Newell, Simon,
et al., 1972). However, biological systems can not be fully described as input/output
machines. Instead, as stated by Van Gelder and Robert (1995), “cognitive processes
and their context unfold continuously and simultaneously in real time”. The con-

4



1.1 Modeling as a tool for understanding the brain

sequence of taking this observation seriously is that efforts to understand cognition
should also emphasize the dimension of time. Dynamical models are popular in other
areas of science to describe everything from fluid flow to solar systems and have great
potential in cognitive science. An early example of a dynamical model in cognitive
science is the Haken, Kelso, Bunz model (1985), which models phase transitions in
human finger movements using coupled non-linear oscillators. The range of dynam-
ical models in cognitive science include models for movement preparation (Erlhagen
& Schöner, 2002), decision-making (Busemeyer & Townsend, 1993) and sensorimotor
integration (Churchland, 1989) (a collection of further models can be found in Port
and van Gelder, 1995).

In a dynamical model every model state can be represented numerically and evolves
over time according to some rule. The current state of the model depends uniquely
on the rule and the previous states. The rule for the evolution over time (i.e., the rate
of change) is usually stated as a (set of) differential equation(s) (Gershenfeld, 1999).
A key feature of this architecture is that the model can be evaluated for any point in
time to investigate the model states. When constructed mechanistically, the model
states and parameters represent interpretable quantities. Thus, model predictions
are available that may be compared to the corresponding empirical observations at
the corresponding time. Dynamical models allow us to leverage the full information
available in behavioral data, including dependencies in the data over time (Van Gelder
& Robert, 1995).

The argument for mechanistic modeling follows the idea that observable behavior is
produced and constrained by the underlying (biological) system. Researchers typically
seek to to understand how and why a phenomenon is produced. An explanation that
is firmly grounded in the properties of the component parts, has several advantages.
It can show whether the proposed orchestration of components is capable of produc-
ing the observed behavior, allows exploration about which components are strictly
necessary and how alterations to the structure change the outcome. Most impor-
tantly, mechanistic modeling is tightly coupled with experimental research: models
can be built on the existing knowledge, investigate conclusions, and uncover aspects
of the data that are not fully understood. An impressive case in point for mechanistic
modeling is made by the field of circadian rhythm research (see Bechtel and Abraham-
sen, 2010). Research of the circadian system is notable because modeling approaches
have leveraged the mechanistic modeling framework in a remarkably effective way. In
one example, experimental researchers carefully identified a negative feedback loop of
how, in multiple steps the transcription of a gene influences concentrations of proteins
which then slow the transcription. A model of this loop showed that it indeed leads
to the kind of periodic behavior that would be expected from a circadian timekeeping
mechanism (Goldbeter, 1995).

A key feature of cognition, perception, and action is that they unfold continuously
over time within a biological system. Investigating these processes within their natural
framework, instead of isolated from it, has proven to be a compelling line of research
(Bechtel & Abrahamsen, 2010; Port & van Gelder, 1995). Dynamical, mechanistic
modeling approaches are therefore of particular interest and usefulness for broadening
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our scientific understanding of such processes. A second important advantage of dy-
namical, process oriented, biologically plausible models is that, as they are grounded
in empirical evidence, specific assumptions can be tested against empirical data. Thus,
within this framework is particularly well-suited as the basis for modeling behavior
that is shaped by the underlying cognitive processes. In this thesis I use this approach
to develop models of human eye movement.

1.1.2 Symbolic cognitive modeling
Aside from dynamical models, there are also other forms of procedural cognitive mod-
eling. ACT-R (Adaptive Control of Thought - Rational), a symbolic model of higher
level cognition, was originally developed by J. R. Anderson and Bower (1973). It
uses explicit rules and symbols to represent and manipulate information, allowing for
the simulation of high-level cognitive processes such as decision-making and problem-
solving. ACT-R is based on the idea that the mind is composed of a number of
“modules” that are specialized for different kinds of tasks, such as perception, mem-
ory, and decision-making. Each module has a set of rules or procedures that it follows
to perform its task and these rules are activated by the contents of working memory
(Ritter et al., 2018). Within its modules, ACT-R also uses connectionist approaches,
for example to analyze input patterns in the perception modules or to store informa-
tion in the memory modules. It is now widely recognized that a comprehensive model
of cognition will likely require a combination of both symbolic and connectionist ap-
proaches.

ACT-R can be used to model a variety of different problems, although it is primarily
a model of learning. This generality comes with advantages and disadvantages. On
one hand, using a general framework allows results to be more easily interpreted and
integrated within other results in the same context. On the other hand, in order to
model something specific and new the general framework may need to be extended
and adapted where otherwise it may be more straight-forward to focus on the core
concepts in a stand-alone model. A dynamical model, when defined and optimized
in a statistically rigorous way, is more parsimonious in terms of its structure and
still confers most of the advantages like comparability and the ability to integrate
into other systems, in addition to placing the emphasis on the specific features under
investigation.

1.1.3 Data-driven modeling
A different approach to mathematical modeling prioritizes descriptiveness over proce-
dural analysis. Data-driven modeling has surged in popularity as resources like com-
puting power and immense data sets have become available (Maass et al., 2018). In
contrast to theory-driven model development, which starts by developing a theoretical
framework and then analyzes the data, data-driven research seeks to exploratively ex-
tract scientifically interesting insights from data (Kelling et al., 2009) usually without
an underlying theory. A statistical analysis like linear regression, for example, clearly
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falls into this category: two variables are related to each other, but typically without
explicitly proposing any functional relationship. Advances in statistical methods allow
complex, data-driven techniques including multivariate analyses, linear mixed effects
modeling and fitting distributions, as well as neural network modeling.

Statistical modeling forms the basis for many experimental scientific disciplines. It
encompasses a suite of tools to get numerical confirmation about the significance of
study outcomes. A danger of modeling in this context, especially in the fields of psy-
chology and cognitive science (see the replication crisis, Collaboration, 2015), is that
standardized model recipes used without careful scrutiny of requirements may lead to
unjustified conclusions. The blind application of statistical modeling and especially
the heavy reliance on p-values has been criticized (Matthews, 2000). However, sta-
tistical modeling is by no means limited to the application of "Hypothesis Testing
recipes" (Kaplan, 2009). Custom statistical models may rely on fitting distributions
to data, exploring data using clustering or dimensionality reduction, and can be ex-
traordinarily useful to understand the relationship between observable variables and
to start building theories about the underlying structures (Engbert, 2021).

The difference to theory-driven models, like the dynamical, mechanistic models dis-
cussed in this thesis, is clear. It is more broadly applicable and often requires fewer
custom procedures. On the other hand, data-driven modeling does not explicitly have
an emphasis on understanding the processes that drive the observed behavior and
relies on deliberate and strong experimental design to be able to make statements
about the relationships between variables. The role of data-driven modeling can not
be underestimated, particularly in the stage of approaching a phenomenon and devel-
oping hypotheses, as well as after model development, for concisely testing outcomes.
However, a procedural approach is indispensable for gaining a deeper understanding
about the underlying processes and investigating functional hypotheses.

1.1.4 Neural networks and connectionism
Another direction at the intersection of data-driven and procedural modeling is neu-
ral network modeling. Simply stated, neural networks are constructed by imposing
a layered architecture of connected “Neurons”, where each connection applies some
mathematical transformation. The connections are parameterized with weights and
biases. Fitting a neural network involves finding appropriate values for all of these
parameters using a loss function (Nielsen, 2015). This basic approach has been much
developed recent years, due to the success of this method to perform complicated
operations. Applications range from computer vision models that can determine the
content of a scene (e.g., Simonyan & Zisserman, 2014), to language models that can
generate strings of words that are often indistinguishable to human-produced sentences
and texts (Brown et al., 2020). The impressive ability of neural network models to
perform such tasks relies on immense amounts of computing time and data to find
appropriate values for the many thousands of parameters necessary to represent the
complexity of the problem. A caveat of this approach, particularly for brain research,
is that while neural networks perform well as input/output machines, the analysis of
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their internal states is far from trivial.
A popular aspect of neural network research is the intersection with cognitive sci-

ence: already the term “neural network” places the approach in relation to neurons in
the brain. It is tempting, therefore, to interpret neural networks as models of the brain,
e.g., to find that neural networks detect similar features or develop similar activity
patterns as measured by electrophysiology (e.g., Cadena et al., 2019). However, com-
putational neural networks behave differently from biological neural networks in many
ways (Funke et al., 2020; Geirhos et al., 2018). This becomes particularly apparent
with respect to robustness to noise (Geirhos et al., 2017).

In Chapter 5, I discuss some preliminary results from using neural networks and
dynamical, mechanistic models to compare and contrast their respective advantages
and disadvantages. I suggest that a joint approach is mutually beneficial to both
fields. Neural networks usually do not mirror biological properties of individual units,
nor is it clear that artificial neural networks learns concepts in any way similar to
biological neural networks. However, their highly versatile nature for solving a variety
of problems makes them an interesting tool also for scientific use cases and it is valuable
to explore this potential.

1.2 The modeling framework
The main part of this thesis is comprised of two different theory-based models of dif-
ferent levels of eye movement data. The presented modeling framework relies on 3
components: the model and its implementation, the parameters and their estimation,
and posterior predictive checks. The first step in any modeling research project, de-
signing and building an appropriate model, is an art with much freedom of choice.
Even when formalized theories exist to back a model, implementation details tend to
play a significant role (Cartwright, 1999). The model implementation represents the
hypothesized structure or mechanisms which, in the ideal case, provide a parsimonious
description of reality and are able to reproduce the observed data.

Other aspects, usually numerical parameters, are variable. A parameter inference
step may be used to find the best-fitting value and adjust the model to its full potential.
In cognitive science this step has occasionally been skipped in favor of hand-tuning a
version of the model that produces the desired result, as was the case in the original
publication of both the models presented in this thesis. One alternative approach to
parameter inference is based on minimizing the error that the model produces based on
some performance metrics chosen by the researcher. However, as the following section
outlines, the most informative results may be obtained when the parameter inference
step is firmly grounded in a statistically rigorous framework, e.g., by maximizing the
probability of the observed data under the model, i.e., the likelihood of the model
given the data (Myung, 2003).

The quality of the resulting fitted model should ideally be assessed on a test data
set which is separate from the training data set used for parameter inference. Model
quality is determined by how well the model predicts the target data. This may be
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Figure 1.1 The likelihood-based cognitive modeling framework. This figure was originally pub-
lished in a review paper by Engbert et al. (2022). The figure shows that a dynamical cognitive
model takes sequential data as its input to update the internal model state. Thus each subsequent
model state depends on the previous states. The model can compute the likelihood of the model
given the data (a), which may be used to conduct statistical parameter inference (b) and objective
model comparisons (c). Using the model in a generative way enables a comparison between ex-
perimental and simulated data, which we refer to as posterior predictive checks (d).

measured generally by the model likelihood on the test set, but may also include more
specific performance measures, relating to specific aspects of the data. The following
section describes the modeling framework used throughout this thesis. The concrete
case of likelihood-based dynamical cognitive models, which will be discussed in detail,
is summarized in Figure 1.1. In a short review paper on the same subject we provide
some additional examples (Engbert et al., 2022).

1.2.1 Likelihood-based modeling

Two popular ways of measuring how well a given model M with parameters θ describe
some data X are (a) performance metrics and (b) statistical likelihood. Both are
important for a comprehensive understanding of a model and are not interchangeable.
In the context of parameter inference, the former is associated with minimizing a loss
function, e.g., least-square estimation (LSE) and the latter with probabilistic methods
such as Bayesian parameter inference and maximum likelihood estimation (MLE).
As we will see, the likelihood-based approach is preferable for estimating parameters
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whenever available because it is part of a rigorous statistical framework. In the context
of model evaluation, it is fruitful to use both model likelihood and performance metrics.

Parameter inference based on performance metrics relies on a loss function, a metric
that quantifies the difference between the experimental data and the model predic-
tions. The precise nature of this loss function is highly dependent on the concrete
use case, but requires the choice and formulation of specific metrics that represent the
characteristic features of the target data. These metrics may be summary statistics or
statistical tendencies. In order to infer optimal parameters, the model is used to simu-
late data, which is then compared to the experimental data using the chosen metrics.
The more similar the characteristics of simulated and target data are, the better the
model is considered to be. Using this approach to characterize the similarity between
simulated and target data in a single value, it is possible to fit parameters, e.g., using
a least-squares estimation.

Although this has been a popular choice in the field of psychology it has some
significant drawbacks. First and foremost it relies heavily on the selected performance
metrics. This choice is at least somewhat arbitrary and imposes strong constraints on
what is considered important in the data (Kümmerer et al., 2015; Schütt et al., 2017).
Moreover, it may involve implicit assumptions about the data, e.g., LSE assumes
that the noise must be Gaussian. Fitting to specific performance metrics also reduces
the informativeness of that metric in the later evaluation of the model: the model
has been adapted to produce a specific behavior, potentially at the cost of other
aspects that are invisible to the procedure. Furthermore, it lacks statistical rigour
for testing hypotheses and does not enable estimating confidence intervals for the
parameter inference. However, comparing model-simulated data with experimental
data is an important component of the model analysis. Particularly in the case of
procedural models, it is highly relevant to ascertain whether the intended behavior is
being produced by the model and how the predictions differ.

An alternative approach uses the model likelihood. The likelihood of a model is
defined as the probability P (X|θ) of observing some data X given a model with
parameters θ and is most commonly written as L(θ|X).2 Not all models are designed
to compute a likelihood. Probabilistic, likelihood-based models have the advantage
of allowing statistically rigorous parameter inference using a Bayesian framework and
allowing objective model comparisons.

1.2.2 Data assimilation
The models discussed in this thesis are both procedural, dynamical models that rely on
time-ordered data. Methods to estimate parameters, compare and analyze dynamical
models are well-established in other scientific disciplines (e.g., weather forecasting, see
Asch et al., 2016) and are collectively referred to as Data assimilation (Reich & Cotter,
2015).

2 This formulation emphasizes that the likelihood is a function of the parameters, which is a more
natural conceptualization for parameter inference.
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The observations are given as a time-ordered sequence of n eventsXn = (x1, . . . , xn).
The probability of each event xi in the sequence depends upon the sequence of pre-
ceding observations Xi−1 = (x1, . . . , xi−1) , i.e., PM (xi | Xi−1, θ). The likelihood of
the model parameters θ ∈ Θ given the data Xn is defined as the joint probability of a
sequence of events Xn,

L (θ | Xn) = PM (x1 | θ)
n∏

i=2

PM (xi | Xi−1, θ) . (1.1)

1.2.3 Parameter inference

Parameter inference is the process by which a researcher explores the range of values
which its parameters may assume and finds which parameter values allow the model
to best represent the data. Here, we focus on likelihood-based models, i.e., models
that can compute the likelihood L(θ|Xn) of some parameters θ given the data Xn.

In a Bayesian framework, we can compute the posterior distribution over the pa-
rameters using Bayes’ Rule,

P (θ | Xn) =
L(θ | Xn)P (θ)∫

Θ
L(θ∗ | Xn)P (θ∗)dθ∗

, (1.2)

where θ is a vector of all model parameters and P (θ) is a vector of priors for the pa-
rameters. The posterior represents the full marginal distribution for each parameter.
P (θ | Xn) is usually intractable, but there exist methods to approximate it. One key
property of the posterior distribution is that the normalization term in the denomina-
tor, also known as the marginal likelihood or model evidence, does not influence the
shape of the distribution, as it is not a function of θ. This makes it possible to use
sampling algorithms to approximate the posterior distribution with just the likelihood
and the priors, even when the marginal likelihood is difficult to compute.

A popular class of algorithms for sampling from a target distribution are Markov
Chain Monte Carlo (MCMC) methods 3. These algorithms are widely used for ap-
proximating the posterior distribution of the parameters of a statistical model given
the data. There are many different MCMC algorithms available, each with its own
strengths and limitations. The choice of algorithm often depends on the specific prob-
lem being solved. At a very basic level, MCMC samplers iteratively draw samples from
the target distribution, using a Markov Chain to explore the parameter space. The
samples are statistically correlated and the distribution of the samples converges to
the target distribution as the number of samples increases. A notable method within
MCMC algorithms is the Metropolis-Hastings algorithm (Hastings, 1970; Metropo-
lis et al., 1953). Starting from an arbitrary point in the parameter space and each
subsequent sample is generated by drawing from a proposal distribution (a probabil-

3 MCMC methods construct a Markov Chain, i.e., a sequence of random variables where the next
state depends only on the current state, in order to sample from probability distributions.
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ity distribution used to generate candidate values for the next state of the Markov
Chain) and accepting or rejecting the point based on the target distribution. MCMC
algorithms typically require a large number of samples to accurately approximate
the target distribution. There are techniques for accelerating the convergence of the
Markov Chain, such as using a more efficient proposal distribution or adapting the
proposal distribution based on the samples generated so far. The details and compar-
isons of different performant algorithms for this process are outside the scope of this
thesis. For the parameter inference of all the models developed in this thesis, I used
an adaptive metropolis sampler.

MT-DREAM, i.e., multi-try differential evolution adaptive metropolis (Laloy &
Vrugt, 2012), is a convenient choice for the parameter inference for the presented
class of dynamical cognitive models (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b;
Seelig et al., 2020). First, it does not rely on any specific requirements, aside from
the model likelihood which represents the target distribution. Second, the algorithm
has been implemented and optimized as a Python package (Shockley et al., 2018),
which has been shown to be fairly computationally performant. The MT-DREAM
sampling algorithm implements three core principles: Adaptive Metropolis, multiple
trial Metropolis, and differential evolution.

Adaptive Metropolis refers to the choice of proposal distribution, where instead of
using a symmetrical Gaussian proposal distribution, as in classical Metropolis Hastings
methods, the covariance of the proposal distribution is the covariance of the past
(accepted) samples. The multiple-try aspect of MT-DREAM refers to the generation
of multiple samples from the proposal distribution at once. This results in a lower
rejection rate of samples and contributes to faster convergence. Lastly, MT-DREAM
implements a method called differential evolution, which was first described by (Storn
& Price, 1997). Differential evolution uses the the parallel sampling chains, modifying
the acceptance/rejection of each sample dependent on the current state of the parallel
chains (Braak, 2006).

A key advantage of Bayesian parameter inference is that access to the full marginal
distribution for each parameter affords further valuable information. The marginal
distributions for each parameter reflect the uncertainty of the estimate and can also
give important information about characteristics of the model and the interdependence
of parameters. Other methods of parameter inference simplify the parameter inference
process by finding a point estimate for the parameters instead of approximating the full
posterior distribution. Common point approximations are the Maximum A Posteriori
(MAP) and the Maximum Likelihood (ML). Both are used to obtain a point estimate
for the parameters that maximizes the likelihood.

In a Bayesian framework the MAP is defined as the maximum of the posterior
distribution

argmax
θϵΘ

(P (θ | Xn)) = argmax
θϵΘ

(P (X|θ)P (θ)) . (1.3)
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In a frequentist framework, the maximum likelihood is written as

(θ̂) = argmax
θϵΘ

L(θ|X ) . (1.4)

This is equivalent to the MAP with a uniform prior distribution P (θ). As described
previously, in the case of complex models it is usually not feasible to analytically derive
this maximum. Instead, it is necessary to numerically find the maximum by iteratively
evaluating the model with varying parameters. As this is a computationally intensive
but also highly relevant problem in many fields, there exist a plethora of algorithms
that implement this process in various ways. One such algorithm is grid search, which
works by dividing the parameter space into a finite number of grids and evaluating
the model at each grid point. This approach quickly becomes computationally un-
feasible, as the parameter space grows. Greedy optimization is another approach,
which involves making a sequence of locally optimal decisions in the hope of finding a
global optimum. The expectation maximization (EM) algorithm works by iteratively
improving the estimates of the model parameters by using the expected value of the
complete data log likelihood, which may include missing data. When the likelihood
is continuously differentiable gradient-based optimization algorithms, such as gradient
descent and conjugate gradient, offer another alternative. These algorithms make use
of the gradient of the likelihood function and can often find the MLE more efficiently
than other methods such as grid search or greedy optimization, especially when the
objective function is smooth and has a single global optimum.

1.2.4 Model evaluation and posterior predictive checks
Once values or distributions for the free parameters of a model have been found, the
model can be evaluated. The first measure to understand how well a given model
represents the data is the model likelihood measured on a separate test data set. It
is an important metric that allows fair comparisons to other models evaluated on
the same data and gives an indication of how much of the variance in the data can
be explained by the model, particularly when an appropriate comparison model is
available.

However, the modeling framework also affords a more detailed analysis of the model
predictions. These analyses are collectively referred to as posterior predictive checks.
As stated by Kruschke (2014), “A posterior predictive check is an inspection of patterns
in simulated data that are generated by typical posterior parameters values.” For
assessing the quality of a mechanistic model it is important not only that the model
likelihood is high, but also that the estimated parameters which represent concrete
interpretable quantities take on realistic values and the behavior is in good accordance
with the empirically observed behavior.

The precise procedure of conducting posterior predictive checks depends highly on
the research in question. Typically, the model is used in a generative way to simu-
late data. Then, a series of appropriate characteristics of the experimental data must
be identified, which, ideally, should be present in the simulated data as well. While
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ad-hoc metrics of specific aspects of the data should be viewed critically as a basis
for parameter inference (Schütt et al., 2017), they are highly informative as a part
of posterior predictive checks. When simulated data exhibits trends that were not
explicitly built into the the model, it provides strong evidence for the proposed mech-
anisms in the model. Conversely, when certain statistical features of the empirical
data are not present in the simulated data it can reveal potential for model extensions
or modifications.

Posterior predictive checks, in the cases presented in this thesis, are often com-
parisons of statistical tendencies and distributions in the data, but may also include
summary statistics. The goal, primarily, is to investigate whether the simulated data
are typical in the space the experimental data. The results of posterior predictive
checks serve to guide intuitions about which aspects of the model qualitatively suc-
ceed or fail. This intuition is valuable to generate ideas about how to address potential
shortcomings in order to better capture the trends in the data.

1.3 Eye movement and vision
Vision is probably the most complex sense available to us. Every second 108 − 109

bits of information enter the eyes (Kelly, 1962). Our typically seamless perception of
the visual world belies the complexity of the signal analysis and filtering required to
exploit visual information at this rate. This process begins with the architecture of the
eye, including the receptor distribution; continues in early processing of information
in the first layers of neurons which already relay summarized signals; and becomes
ever more complex in later layers of the brain, detecting first contrasts and edges and
eventually coherent visual representations. Visual attention, which usually coincides
with the center of the visual field, is directed at relevant parts of the visual display
in turn (Findlay & Gilchrist, 2003; Henderson & Hollingworth, 2003). Attention is
guided by both bottom-up features of the scene, as well as top-down features of the
task or prior knowledge.

The following section illuminates some of the fundamental principles of eye move-
ment. As discussed above, the aim of this thesis is to build principled models of
cognition where the internal workings of the model are associated with the proposed
biological mechanism. The state of the experimental research is fundamental to the
building of such models.

1.3.1 Fundamentals
Light entering the eye is first refracted by the transparent, curved cornea and aqueous
humor. It travels through the lens which refracts and focuses the light, such that the
focal point, after passing through the vitreous humor lands on the retina, i.e., a layer
of photoreceptor cells. Muscles in the iris control the size of the pupil, i.e., how much
light is let in, and a separate set of muscles deforms the lens to allow adjusting the
focus to different viewing distances.
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Figure 1.2 Labelled cross section of the eye. The eye focuses light onto the retina through the
cornea and the lens. The retina contains photoreceptor cells that convert light into electrical signals
that are sent to further visual processing areas in the brain via the optic nerve.

In the retina, photoreceptor cells turn the external stimulus into electrical signals
in the nervous system. Photoreceptors can be divided into two categories: Rods are
highly sensitive to light and contribute to vision primarily in low light conditions.
Cones are more adapted to brighter conditions and are specialized to one of three
bandwidth-ranges of light. This specialization enables color vision.

The first filtering mechanism of early visual processing is the distribution of photore-
ceptors in the retina. Receptor density concentrically decreases toward the periphery,
limiting high visual acuity to the central fovea. It has been approximated that if
acuity of the entire visual field were as high as in the fovea, the brain would need
to be some hundreds of thousands times larger and weigh 10 tons to handle the in-
formation inflow (Findlay & Gilchrist, 2003). In the center of the visual field each
individual photoreceptor connects to a single ganglion cell, which then transmits the
information via the optic nerve into the visual processing centers of the brain. In the
periphery of the visual field, a single ganglion cell may receive input from multiple
photoreceptors, effectively summing their signal. Dedicated areas in the visual cortex
are also proportional to this difference in sensitivity (Bear et al., 2007; Strasburger
et al., 2011).

The foveated architecture of the retina requires active sampling of the environment
by moving the eyes in order to build a complete visual representation. The eyes explore
the visual world in a sequence of ballistic jumps, saccades, and periods of relative
stability known as fixations. Other types of eye movement include smooth pursuit
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which occurs in response to movement in the environment and vestibulo-ocular eye
movements which correct reflexively for head movement. Movements in the human
eye are controlled by six extraocular muscles, four in the cardinal directions and two
oblique (Spencer & Porter, 2006). The bulk of eye movement research focuses on
fixations and saccades.

1.3.2 Scan paths
Sequences of fixations and saccades are known as scan paths. The high-resolution
fovea is directed at different areas of the visual world in turn. Studying the selection
process of fixation locations can reveal much about the underlying visual processing.
The concept of visual attention is of high relevance in this context. During typical
viewing the locus of visual attention and the eye position coincide, in what is known
as overt attention (Findlay & Gilchrist, 2003). The rarer case is when visual attention
and fixation position are not aligned, as covert attention. This is typically only the
case when intentionally not moving the eyes, but is also relevant briefly before and
after a saccade.

A passive interpretation of vision asserts that the eyes sample the visual world
in order to build an internal model, which may serve as a basis for action planning
(Aloimonos & Rosenfeld, 1991; Marr, 1982). On the contrary the current prevailing
theory is that a rich internal model is superfluous. The constant availability of the
real world as a rich reference allows an active vision interpretation, where the eyes
simply move to the elements of interest as they become relevant (Findlay & Gilchrist,
2003; O’Regan, 1992). Although active vision, and eye movement, is widely accepted
to play a formative role in visual perception, much of vision research focuses on static
paradigms. Active vision emphasizes the interplay between perception and action and
is therefore a highly compatible with the dynamic modeling framework presented in
this thesis.

1.3.3 Saccades
Saccades occur at a rate of 2-5 saccades per second, although this number is highly de-
pendent on the task and on inter-individual variation. The same is true of the typical
distance a saccade covers, i.e., the saccade amplitude: during reading a typical sac-
cade covers 1-2° visual angle, whereas during scene perception this distance is around
4°, as reported by (Rayner, 1998). The typical saccade amplitude varies from one
experimental paradigm to the next, with influences including the size of the presented
stimulus (von Wartburg et al., 2007), the task (Backhaus et al., 2020), and the image
feature distribution in the image.

The actual saccade movement is fast and precise, minimizing the reduction of visual
input during the movement and allowing a seamless perceptual experience and quick
reactions to visual stimuli. In order to achieve this, the saccade motor program is
stereotyped and (semi-) ballistic in nature (Harris & Wolpert, 2006). The prepara-
tion of a saccade to an experimentally defined location takes about 150 ms (Rayner
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Figure 1.3 Main Sequence of saccades. There is a characteristic linear relationship between the
logarithmic saccade amplitude and the logarithmic peak velocity of the saccade. Events colored in
orange represent regular saccades while events colored in green are considered microsaccades.

et al., 2009). During the first part of the preparation (first 100 ms) saccades may be
modified or even canceled; then, a point of no return is reached, where the saccade
is inflexible to further changes (Becker & Jürgens, 1979). As such, saccades have a
stereotypical velocity and movement profile. One characteristic is that the logarithm
of the distance travelled is linearly related to the logarithm of the maximum move-
ment speed. This relationship, known as the Main Sequence, is shown in Figure 1.3
(Collewijn et al., 1988). Saccades that cover less than 1° of visual angle are typically
considered microsaccades (see Section 1.3.5).

The classical interpretation of saccades posits that during the movement no vi-
sual information can be registered, a phenomenon called saccadic suppression (Matin,
1974). More recent research suggests that the reduction in visual processing during
saccades is more the consequence of an absence of appropriate information than a
deliberate suppression. When the stimulus is stabilized on the retina, or happens to
be appropriate for the velocity during the saccade, visual perception is possible during
saccades (Castet & Masson, 2000). For example, certain moving sine gratings, may
appear as monotonous surfaces during fixation but can be perceived during saccades
(Castet & Masson, 2000; Mathôt et al., 2015).

Despite the fact that the eyes move around sampling potentially disjointed areas
of the environment, the final perception of the visual world is smooth and seamless.
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In order to maintain this illusion of constancy and coherence, saccade planning must
include assembly of inputs relative to previously viewed locations. While naturally dur-
ing fixations visual attention and fixation location are aligned (Findlay & Gilchrist,
2003), around the time of a saccade studies have measured increased processing in
other locations. For example just before a saccade, processing at the upcoming target
location is enhanced (Deubel & Schneider, 1996; Irwin & Gordon, 1998; Kowler &
Blaser, 1995). In what may be called predictive attentional targeting, covert attention
precedes the eyes to their target (Posner, 1980) as early as 150 ms before saccade
onset (Rolfs et al., 2011). Furthermore for 100-200 ms after the execution of a sac-
cade, processing benefits may be measured in the retinotopic position that the target
was in, before saccade execution (Golomb et al., 2008). This retinotopic attentional
trace indicates that visual attention moves retinotopically with the saccade (Marino &
Mazer, 2016). Thus, the visual system anticipates and predicts the changes in input
information and reallocates resources to anticipate changes in input and to allow the
visual experience to be seamless.

1.3.4 Fixations
The process of choosing each fixation location in the sequence relies on processing
the available information and identifying the most interesting or promising target.
Research as early as 1935 (Buswell, 1935; Yarbus, 1967) showed that some areas are
more likely to be fixated than others. This choice depends on a variety of attentional
biases.

Bottom-up, or stimulus influences on the choice of fixation locations include image
features such as edges and luminosity (Itti et al., 1998; Mannan et al., 1997; Tatler
et al., 2005). They may reflect evolutionary preferences for certain statistical aspects
of an image (Itti & Koch, 2001) and are well-understood to form the basis for visual
processing. Luminance and color differences, for example, are responded to by ganglion
cells in very early layers of visual processing (Kolb et al., 2001; Polyak, 1941; Purves
et al., 1997). In the primary visual cortex cells may be found that respond to specific
orientations and spatial frequencies (Blakemore & Campbell, 1969; De Valois et al.,
1982; Schütt et al., 2017). The degree of complexity increases in later processing stages
of the visual system, from basic features, to the detection of edges and contrasts, to
meaningful objects and relationships between objects. Positive correlations have been
found that relate fixation positions and image statistics (e.g., Hallett, 1978; Privitera
& Stark, 2000; Reinagel & Zador, 1999; Tatler et al., 2005; Theeuwes et al., 1998).

Top-down influences like task requirements, experience and cognition also strongly
influence the choice of fixation position (Backhaus et al., 2020; Castelhano et al.,
2009; DeAngelus & Pelz, 2009; Hayhoe et al., 2003; Yarbus, 1967). One memorable
study compared expected and unexpected objects in a scene, i.e., a picture of a farm
containing a tractor or an octopus. The unexpected object was fixated more frequently
and for longer, despite controlling for feature saliency (Loftus & Mackworth, 1978).

Some other attentional biases are independent of the image and of the task (Foul-
sham & Kingstone, 2010; Foulsham et al., 2008; Schütt et al., 2017; T. J. Smith &

18



1.3 Eye movement and vision

Henderson, 2009; Tatler, 2007). A prominent example is the central fixation bias:
the center of an image receives more and longer fixations, particularly in the first few
fixations (Rothkegel et al., 2017). Further biases include a preference for the cardinal
directions and a variety of sequence effects, like a preference to continue along the
saccade vector rather than change direction (Rothkegel et al., 2018; Rothkegel et al.,
2016; T. J. Smith & Henderson, 2009; Tatler & Vincent, 2009).

Fixation duration differs between individuals (Henderson, 2003) and with the given
task and stimulus. The average fixation duration has a mean length of 300 ms and
their distribution resembles a right-skewed Gamma distribution (Henderson, 2011;
Henderson & Hollingworth, 1998). Fixation durations are typically interpreted as an
indication of ongoing information processing (Rayner et al., 2009). A discussion in the
literature surrounds whether they are controlled indirectly or directly (Henderson &
Smith, 2009; Trukenbrod & Engbert, 2014). Direct control refers to the influence of
current visual input on the length of a fixation (Rayner, 1995), while indirect control
refers to factors such as an autonomous timer that independently triggers a saccade
after a random time interval (Engbert & Kliegl, 2001; Nuthmann & Henderson, 2010).
Finally, in mixed control, a combination of direct and indirect factors determine fixa-
tion durations (Henderson & Pierce, 2008).

1.3.5 Fixational eye movement
Even during the relatively stable fixations the eyes are not still. A family of micro-
scopic eye movements perturb the fixation position: Tremor, Drift, and Microsaccades
(see Martinez-Conde et al., 2004). The current state of understanding posits that these
movements prevent image fading due to neural adaptation (Kowler, 2011; Martinez-
Conde et al., 2004; Martinez-Conde et al., 2006), i.e., a reduction in the firing rate of
neurons due to continued exposure to a stimulus. Additionally, visual acuity, partic-
ularly for fine spatial vision, is also related to fixational eye movement (Rucci et al.,
2007).

Tremor is the smallest amplitude movement with amplitudes of only 0.1 to 0.5 min-
arc and frequencies of around 90 Hz (e.g., Adler & Fliegelman, 1934; Higgins & Stultz,
1953; Ratliff & Riggs, 1950). Even using state of the art video-based technology, it is
difficult to accurately measure tremor. It is likely to originate in low-level but central
areas connected to the extra-ocular muscle motor units and is correlated between the
eyes (Spauschus et al., 1999).

The second category of fixational eye movement is drift. The eyes meander in a
seemingly random way around the fixation position. Their trajectory may be described
as a self-avoiding random walk (Engbert et al., 2005). Drift movement, like tremor
movement, is difficult to measure accurately and this may be the reason why early
studies found no correlation between the eyes (Krauskopf et al., 1960; Yarbus, 1967).
Following studies (Spauschus et al., 1999) did report binocular coherence and (Thiel
et al., 2006) showed significant phase synchronization of the movement. Note that the
movement is not necessarily identical in both eyes, but is coordinated with regard to
velocity and movement direction. Drift movements are also associated with enhanced
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visual acuity for fine spatial vision, providing a more effective way to sample high-
frequency image content (Rucci et al., 2007).

Lastly fixational eye movements include microsaccades. Microsaccades occur at a
rate of 1-2 per second and are similar to regular saccades in all but amplitude: they are
significantly different from drift movements regarding their velocity, typically occur in
both eyes (Engbert & Kliegl, 2003) and their movement profile is well-described by
the Main Sequence (Zuber et al., 1965), as shown in Figure 1.3). A typical definition
considers all saccades of less than 1° of visual angle a microsaccade. Microsaccades
occur spontaneously and mostly involuntarily, although the rate and direction may be
altered by various circumstances. For example evidence shows that they preferentially
occur in the direction of covert attention (Engbert & Kliegl, 2003). In an oddball
paradigm, the rarer stimulus (or oddball) has been found to inhibit microsaccades
(Valsecchi et al., 2006). A more functional interpretation is that microsaccades are
corrective for drift (Martinez-Conde et al., 2004) or blinks (Costela et al., 2014).

Like drift, microsaccades are related to visibility. While perceived fading does not
causally trigger microsaccades (Poletti & Rucci, 2016), periods of perceived fading of
a peripheral stimulus is associated with a decrease in probability, rate, and magnitude
of microsaccades while transitions toward visibility are associated with an increase
(Martinez-Conde et al., 2006). Drift by itself already effectively prevents perceptual
fading (Collewijn & Kowler, 2008), however while prevention of fading may be achieved
by just drift, microsaccades are much more effective at restoring vision after fading
(McCamy et al., 2014; McCamy et al., 2012). An additional layer of complexity is
added by the fact that peripheral receptive fields are considerably larger than foveal
receptive fields; while drift alone may effectively prevent foveal fading, microsaccades
may be necessary to prevent peripheral fading. Microsaccades have also been found
to contribute to the disambiguation of latency and brightness, as well as helping to
synchronize and modulate the summation of neurons with neighboring receptive fields
(Martinez-Conde et al., 2004). Thus, the role of microsaccades for visual perception
seems to be related to low level visual processing, fixational control, and attentional
processes.

Broadly we can identify two major research questions to study visual processing.
First, on a microscopic level: how do features get extracted and combined from pho-
toreceptor activity and how do eye movements contribute? Second, taking such feature
extraction as a basis: which components contribute to the active sampling that is eye
movement to decide when and where to look? The following chapter will give an
overview about the modeling literature in these fields.

1.4 Modeling macroscopic gaze behavior on natural scenes
Due to its complexity and high relevance for interacting with the world, the field of
vision science comprises a vast number of models that describe parts of the visual
processing stream, at various levels and with various goals. As eye movements dras-
tically control visual input, understanding the processes that guide eye movement is
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a promising approach to understanding visual perception. Models range from highly
specialized domains like reading (Engbert et al., 2005; Reichle et al., 1998), driv-
ing (Chapman et al., 2002; Land & Lee, 1994; Underwood et al., 2003; Underwood
et al., 2007), viewing faces (Haxby et al., 2002; Peterson & Eckstein, 2012, 2013),
or playing chess (Reingold & Sheridan, 2011) to more general contexts (Adeli et al.,
2016; Engbert, Trukenbrod, et al., 2015; Itti & Koch, 2000; Treisman & Gelade, 1980;
Trukenbrod & Engbert, 2014; Tsotsos et al., 1995). Eye movements are also regarded
as an observable (overt) consequence of covert visual attention. Therefore, models of
attention and models of eye movement are often presented jointly.

In the first part of this thesis I focus on models of eye movement in response to
photographs of natural scenes in a laboratory environment. The reason for this focus
is twofold. First, there exists a large literature researching scene viewing behavior in
this context. This also means that expertise and high quality experimental data are
available. Second, viewing static scenes restricts the types of eye movement that can
be observed to fixations and saccades. When eye movements are recorded in more
complex circumstances, e.g., when the participant performs other actions (Land et al.,
1999) or in response to moving video stimuli, the range of observable eye movement
types expands to include vergence and accomodation eye movements, as well as motion
tracking, and defocus (Meese et al., 2006). These types of movement are experimen-
tally less thoroughly studied and add a large amount of complexity to the model and
to the computations.

1.4.1 Modeling fixation locations
Eye movements on photographs are characteristic in the sense that some areas are more
likely to be looked at than others (Buswell, 1935; Yarbus, 1967). By recording people’s
eye movements and aggregating them over time, it is possible to compute a fixation
density map (see Figure 1.4), which shows the preferred regions. A purely qualitative
examination already reveals the unsurprising fact that people, in the absence of a
task, look at regions in the image that contain interesting content such as objects or
faces. These regions of interesting content are often referred as salient and the spatial
distribution of salient regions as a saliency map. Initially the term visual saliency was
used to refer mostly to low-level image features like edges (Itti et al., 1998). Later,
the concept was expanded to include higher-level features such as objects or faces
(Kümmerer et al., 2018).

The last years have seen a range of models that aim to compute, on the basis of
image information, where these preferred regions are likely to be. The first models
of this kind were based on research that correlated fixated locations with spatial fea-
tures such as higher spatial contrast (Mannan et al., 1996, 1997) and other similar
properties (Krieger et al., 2000; Parkhurst & Niebur, 2003; Reinagel & Zador, 1999).
Simultaneously, in visual search research it was remarked that certain features would
make a target visually “pop out” from among a range of distractors. In Feature In-
tegration Theory, Treisman and Gelade (1980) hypothesized that the visual attention
system operates in two steps. First, maps of basic features are computed in parallel
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over the whole display. Then, attention moves and serially focuses on specific areas
to understand more complex conjunctions of features. This theory was implemented
computationally (Itti et al., 1998) in a model that extracts image features (color, in-
tensity and edges, enter-surround differences). While this model was not intended to
represent eye movements (it posited covert shifts in attention), it turned out to predict
above-average model-saliency for fixated locations (Parkhurst et al., 2002). There is
ever-growing range of models that predict saliency and fixation locations (Harel et al.,
2006; Kienzle et al., 2009). The MIT/Tuebingen Saliency Benchmark (Judd et al.,
2012; Kümmerer et al., 2018) keeps a list of these models and their performance.
Overall the results show that purely feature-based models struggle to make accurate
predictions of fixation locations (Bylinskii et al., 2016) and that adding higher level
features is beneficial (Einhäuser, Spain, et al., 2008; Judd et al., 2009). Most notably
the DeepGaze II model (Kümmerer et al., 2017), is a deep neural network that pre-
dicts fixation locations with unrivalled accuracy, using an image classification network
as a basis which includes high- and low level features. For a more extensive overview
of saliency models see, e.g., Borji and Itti (2013), Borji et al. (2013), and Kümmerer
et al. (2018).

The level at which a model extracts information from an image to determine its
interestingness, has recently been subject to much debate. High level features like faces
and objects tend to heavily overlap with low level image features such as edges and
contrasts, making it difficult to disentangle satisfactorily. At one end of the spectrum
are purely feature-based models of classical saliency (e.g., Harel et al., 2006; Itti et al.,
1998). These classical models have a strong link to early visual processing (Itti & Koch,
2000; Li, 2002). On the other hand theories of top-down guidance of behavior claim
that the major influences are task while viewing the scene (Einhäuser, Rutishauser,
et al., 2008; Henderson et al., 2007; Matthis et al., 2018; Pelz & Canosa, 2001),
expectations (Cornelissen & Võ, 2017; Henderson et al., 1999; Loftus & Mackworth,
1978) or gist extraction (Torralba et al., 2006). Top-down influences are not as easily
formalized and models that include these ideas directly are rare (a simplified but
noteworthy exception is presented by Torralba et al., 2006). However, generally, the
inclusion of high level features improves predictions (Borji et al., 2013; Judd et al.,
2009; Kümmerer et al., 2017). In the DeepGaze II model (Kümmerer et al., 2017), a
deep neural network, the feature extraction network is based on a training that favors
high level features and object. This approach has proven to be highly successful in
predicting fixation locations.

Another approach has proposed to omit low level influences all together, construct-
ing fixation predictions from image patches rated for their meaningfulness (Henderson
& Hayes, 2017, 2018). The authors claim that this metric predicts fixations better
than state of the art saliency models, a result that has been heavily challenged (Pedzi-
wiatr et al., 2021a, 2021b). Effectively, the question that is proving hard to answer
is whether people fixate areas including interesting things, which happen to be highly
correlated with image features, or whether eye movements tend to fall on areas with
many image features, because this is a good strategy for finding areas which will turn
out to have meaning. This chicken-or-egg problem remains as an open research ques-
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Figure 1.4 Real and simulated eye movement trajectories. Moving from the top left to the bot-
tom right: the plain image; the experimentally computed fixation density map of the image; a real
eye movement trajectory recorded from a person (black); a random trajectory, based on a uniform
probability (yellow); A trajectory based on a static saliency model (blue); A simple dynamic model
combining static saliency with a local focus (green).
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tion and may require different research approaches to resolve. It seems unlikely that
a satisfying consensus can be found by evaluating fixation locations alone.

1.4.2 Modeling dynamical and sequence effects
A fact that is often ignored in the research of fixation locations and image saliency,
is that vision is not a static process. As the eyes move over a scene, the relevance of
the existing static image features changes dynamically. High fidelity information is
available only at close range to the current fixation position, so the knowledge about
the image at any point in time is incomplete. The choice of fixation location there-
fore depends on a range of biological limitations and attentional control mechanisms.
While a static saliency model may be performant for predicting locations, the actual
sequence of eye movements is not well-represented. Figure 1.4 shows fixation sequences
generated by a random model, a state of the art saliency model and an empirical scan
path. The qualitative differences are immediately apparent. However, this can hardly
be considered a shortcoming of the saliency model, which performs its intended pur-
pose of identifying salient regions very well. It does, however, limit its capability for
describing or explaining human behavior. In order to adequately describe sequences
of eye movements more constraints are necessary.

Each eye movement involves a decision about when and where to move, presumably
to maximize the relevant information to be gained. Early research on the neurophys-
iology of eye movements indicates that the decisions about when and where to move
are partially independent systems (Carpenter, 2000; Findlay & Walker, 1999b). How-
ever, increasing evidence shows that, behaviorally, fixation duration and location are
related. For example, regions that are fixated more frequently also tend to be fixated
for longer periods of time (Einhäuser & Nuthmann, 2016) and fixations that precede a
saccade to a highly salient locations tend to be shorter (Tatler et al., 2017). Further-
more, there is a tendency to maintain the direction of saccadic movement, especially
after short fixations (T. J. Smith & Henderson, 2009). More time-related effects exist
at the level of the sequence: there is evidence for an overall coarse-to-fine strategy
(Over et al., 2007; Trukenbrod et al., 2019), a central fixation bias at the beginning
of a sequence (Rothkegel et al., 2017; Tatler, 2007), an inhibition of return followed
by a facilitation of return (T. J. Smith & Henderson, 2009). Thus, the dimension of
time, i.e., both the duration and order of fixations, is crucial to understanding visual
processing.

Taking these results seriously has led to the development of models of fixation se-
quences. Even a simple model of local saliency, i.e., that constrains each saccade
length by weighting a saliency map relative to the current location significantly im-
proves predictive power (Parkhurst et al., 2002). Implementing more of the systematic
attentional processes and biases described above into sequence models has proven to
be a promising step toward generating more realistic scan paths. One example of this
shows that the concept of saccadic flow, i.e., a combination of systematic biases, can
be linked to the saliency at the following location (Clarke et al., 2017). Models of scan
paths typically focus on specific aspects of the eye movement and optimize for those
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specific metrics, such as saccade distributions (e.g., Boccignone and Ferraro, 2004)
or fixation durations (e.g., Nuthmann & Henderson, 2010). When modeling a spe-
cific task, such as visual search, metrics such as search efficiency become additionally
available as model performance metrics (Zhou & Yu, 2021).

However, as discussed in Section 1.2.1, the full potential of the modeling approach
is best explored when applying rigorous statistical inference. An early example was
presented by Brodersen et al. (2008), who used a Bayesian modeling framework to
construct a rise-to-threshold model of eye movement and learning in response to arti-
ficial stimuli. A later, methodologically important advancement suggested a Hamilto-
nian Markov Chain Monte Carlo approach to modeling scan paths using feature-level
saliency, semantic content, and spatial position, and is notable as one of the first mod-
els of scan paths to use an explicit likelihood function (Liu et al., 2013). Another
example uses Hidden Markov Models and variational inference to represent individual
differences in the scan paths of different subjects (Coutrot et al., 2017). From the
large range of models of fixation sequences developed in recent years, I will highlight
five models in the following paragraphs, that are particularly relevant in the context
of this thesis.

A notable example of a model that predicts scan path statistics was published by
Le Meur and Liu (2015). The model takes a static saliency map (computed using a
model by Harel et al., 2006) as a basis and combines it with distributional assumptions
about saccade amplitude and directions which are fitted to the experimental data.
Fixation locations are generated from this target selection map, under inclusion of an
inhibition of return mechanism which is active over 5 fixations. This model reproduces
saccade amplitude and angle distributions and performs highly in a saliency model
comparison. An extended version of the model also fitted differences between semantic
visual categories (Le Meur & Coutrot, 2016). A caveat of this model is that the model
inference, i.e., the fitting of distributional assumptions, is not standardized, and that
the underlying assumptions are more data-driven than theory-driven.

A different approach is implemented in the LATEST model (Tatler et al., 2017),
which combines spatial and temporal aspects of eye movement. The proposition of
the model is that fixation durations are related to the extraction of visual informa-
tion, triggering a movement when the evidence for new location outweighs the present
location. Thus, each event duration is modeled in a process-oriented way, based on
a rise-to-threshold process (Reddi & Carpenter, 2000). The accumulation rate is tied
directly to data-driven distributional assumptions. The LATEST model demonstrates
that information accumulation processes fitted exclusively to durations can make valid
predictions for fixation locations. The fitting procedure for this model is based on lin-
ear mixed effects modeling.

Another model that combines spatial and temporal eye movement control is the
WALD-EM model (Kucharsky et al., 2021). It combines information accumulation
using a drift-diffusion component (P. L. Smith & Ratcliff, 2004) and a spatial likelihood
based on systematic attentional tendencies in the data. This model is particularly
notable for the use of a combined spatiotemporal likelihood function and statistically
rigorous parameter fitting. WALD-EM successfully reproduces a number of scan path
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statistics and individual differences.
A model that explicitly represents the dynamic spread of attention is presented

by Zanca et al. (2020). Their model uses differential equations inspired by the laws
of mechanical physics. The four free parameters of the model are fitted using the
normalized saliency at the fixated locations as a performance metric. This model is of
interest because it predicts both saliency and scanpaths, and therefore does not rely
on precomputed saliency maps. It has also been applied to predict eye movements
on videos in addition to static photographs, demonstrating a noteworthy flexibility of
application.

In this thesis I implemented and extended the SceneWalk model, a dynamical model
of fixation sequences, which will be discussed in great detail in Chapter 2 and 3.
SceneWalk sets itself apart by (1) being based on first order principles that are known
about the physiology of the visual system, such as foveation and theories about the
deployment of attention around the time of a saccade, and (2) by being a dynamical
model, in the sense that the predictions evolve continuously over time instead of
discretely. The premise is to explore whether these mechanistic constraints produce
the statistical tendencies found in human eye movement data.

1.5 Modeling microscopic fixational eye movement
Fixational eye movements form the ubiquitous basis for all of visual perception. In
contrast to macroscopic eye movements, fixational eye movements are to a much lesser
extent under conscious control and its function is less clearly understood. A critical
discussion concerns whether fixational movement has a functional role for visual per-
ception. The alternative view posits that it is a necessary nuisance caused by imperfect
muscular control or by the need to prevent visual fading, which needs to be corrected
for further down the processing stream without additional benefits.

1.5.1 Models of fixational drift
During fixations the eyes drift smoothly and randomly around the fixation position.
This fixational drift resembles Brownian motion over short periods of time (Burak et
al., 2010; Engbert et al., 2011; Pitkow et al., 2007). This movement is characterized by
increasing variance over time, which can be shown by calculating the the mean square
displacement (MSD) at different time intervals. While Brownian motion has a linear
increase in MSD, fixational drift exhibits a tendency towards persistence (Metzler &
Klafter, 2000). Over longer intervals, the drift becomes antipersistent, meaning that it
does not deviate further from the fixated location (Engbert & Kliegl, 2004). Modeling
of fixational drift has proved to be an effective means of investigating its origin and
role in visual processing.

The earliest model of fixational eye movement was proposed by Eizenman et al.
(1985). The authors suggested a Poisson process representing random neural firing of a
motor unit generates ocular tremor. Fixational drift is explained as a secondary, cyclo-
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stationary process, which emerges from the summation of signals from different motor
units firing at distinct frequencies. This model proposes that the motion frequencies
found in tremor and drift are consistent with their origin in the individual motor units.
However, more recent work on fixational eye movements places their origin higher up
the chain of command, in the oculomotor integrator. The authors Ben-Shushan et
al. (2022) developed a model based on the physiology of the primate visual system,
using experimentally obtained estimates for parameters such as number of neurons,
their tuning curves, and their spiking variability. The results of the model and the
presented experimental findings are consistent with an upstream source of fixational
drift upstream jointly informing the oculomotor neurons.

Experimentally, it has been found that fixational eye movements are not only as-
sociated with the prevention of visual fading (Kowler, 2011) but also play a role in
enhancing visual acuity (Rucci et al., 2007). As fixational eye movements perturb
the visual input, at a minimum mathematical models of visual perception need to
account for fixational drift (Burak et al., 2010; Pitkow et al., 2007). More recent
research shows that combining the edge detection properties of retinal neurons and
fixational eye movements can lead to more robust edge detection than the neuronal
properties alone (A. G. Anderson et al., 2020; Schmittwilken & Maertens, 2022). In
the presence of fixational eye movements the features of the stimulus move over the
individual receptors. This is in good agreement with the finding that neurons respond
best to changes in signal and, specifically, that the visual system responds best to
luminance transients. Moreover, the temporal component transports valuable infor-
mation regarding orientation. A model with no orientation components, nonetheless
accurately performs the edge detection task in the inclusion of a movement component
(Schmittwilken & Maertens, 2022). These results indicate that fixational drift is not
a nuisance factor to account for but a functional component in high acuity vision.

Models relating to contributions of drift to visual acuity typically assume a simple
random drift. However, as presented above, experimentally measured fixational drift
contains some systematic statistical properties such as the transition from persistent
to anti-persistent movement and the distribution of angles. These properties can be
used to predict more realistic drift trajectories and may point towards the mechanisms
causing fixational drift. A recent paper by A. G. Anderson et al. (2020) proposes a
Bayesian modeling approach that integrates the inference of the movement and the
stimulus. The authors present experimental eye movement data, collected in response
to a set of pattern stimuli. The model aims to simultaneously predict the movement
and the stimulus pattern. It assumes that retinal cells are arranged in a grid and
the patterns are projected onto these cells. The cells fire at some rate representing
the way the pattern falls on the retina. In order to determine the stimulus from the
spike rate, the authors propose a Bayesian formulation that computes the probability
of the stimulus given the observed pattern of spikes. Using alternating steps, the
stimulus and the movement estimates are fixed, inferring first one, then the other.
The underlying idea is that the pattern cannot be estimated without accounting for
movement and the movement can not be understood without a representation of the
pattern. In the model there is no efference copy of the movement. The model results
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are consistent with the idea that drift motions benefit high acuity vision, mainly by
averaging over the inhomogeneities in the retinal receptors and receptor density.

A generative model of fixational eye movement was proposed by Engbert et al.
(2011). The SAW model is a self-avoiding random walk inside a constraining poten-
tial. The self avoidance is implemented by activating visited locations on a grid and
preferentially moving to less active locations. These activations decay according to a
differential equation, which represents the memory of the process. The SAW model is
able to reproduce the persistent and anti-persistent properties of fixational drift. The
addition of neurophysiological delays was shown to also reproduce the characteristic
oscillations found in the displacement autocorrelation (Herrmann et al., 2017). This
model does not depend on any stimulus properties and focuses solely on accurately
modeling the statistical properties of the movement. In Chapter 4 I implemented the
SAW model and applied a likelihood-based parameter inference for each individual
subject in a data set in order to investigate interindividual differences in behavior.

Another model of fixational drift that implements a self-avoiding random walk was
suggested by Roberts et al. (2013). This model chooses each step direction from a
continuous distribution that is weighted by the density of recent movement directions.
The authors motivate the self-avoiding mechanism as a way avoid neural adaptation.
Stronger neural responses to the novel transient stimuli are caused by the movement.
The model shows the expected persistent behavior at short time scales, but has no
mechanism that would account for the change to anti-persistent behavior.

1.5.2 Microsaccade models
Microsaccades, like drift, have been suggested to contribute to the prevention of fad-
ing. The relative contribution of the types of movement is debated, but it has been
suggested that drift continually prevents fading and microsaccades effectively reverse
it (McCamy et al., 2014). Microsaccades have also been found to contribute to visual
acuity by precisely repositioning the eye (Ko et al., 2010) and contributing to edge de-
tection, as suggested by mathematical model of microsaccadic displacement (Donner
& Hemilä, 2007).

The exact mechanism responsible for triggering microsaccades is still not fully un-
derstood. Several mathematical models have been proposed over the years to explain
the generation of microsaccades, but a comprehensive understanding of this process
remains elusive. Microsaccade occurrence, which is highly individually variable, can
be understood as a Poisson Process with individually different rates (Engbert & Mer-
genthaler, 2006). A common idea, which has also found experimental support (Otero-
Millan et al., 2013), is that microsaccades exist on the same continuum as regular sac-
cades. The same underlying circuits in the brain are responsible for executing saccades
of all sizes (Martinez-Conde et al., 2013). However, large saccades and microsaccades
do show distinct descriptive properties and functional characteristics (Mergenthaler &
Engbert, 2010).

In a theoretical model proposed by Rolfs et al. (2008) for the generation of sac-
cades and microsaccades, a motor map in the Superior Colliculus represents activa-
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tion coding for both fixation and saccades. The central site represents fixation and
activation in the peripheral regions triggers saccades with amplitudes proportional to
the distance. The activity at the central, fixation-related site in the map predicts the
frequency, amplitude, and direction of microsaccades. An alternative model with a
neurophysiological focus (Otero-Millan et al., 2011) suggests that a circuit composed
of omnipause and long-lead burst neurons driven by activity and in the superior col-
liculus triggers both microsaccades and saccades. The model operates based on the
reciprocal inhibition between the omnipause and long-lead burst neurons, triggering
an eye movement whenever the long-lead burst neurons overcome the inhibition from
the omnipause neurons. Thus, this work suggests a common triggering mechanism for
regular saccades and microsaccades.

Other evidence suggests that that microsaccades are related fixational drift. Po-
tential triggering mechanisms that have been proposed include low retinal image slip,
i.e., a reduction in fixational drift (Engbert & Mergenthaler, 2006). With respect to
the SAW model, Engbert et al. (2011) also propose a mechanism for for generating
microsaccades based on the activation in the SAW model. In Chapter 4, I investigate
this idea further by investigating the relationship of internal model activation states
and microsaccades.

The following chapters present two different models of eye movement behavior.
Chapter 2 and 3 report on the implementation and extension of the SceneWalk model
of scan paths. The addition of attentional mechanisms around the time of a saccade
is shown to improve scan path predictions. Additionally, we discuss insights from
leveraging the potential of the Bayesian parameter inference to fit individual subjects
and tasks. Chapter 4 presents a likelihood-based implementation of the SAW model
of fixational eye movement. We discuss results from individual subjects and investi-
gate the connection between fixational drift and microsaccades. These models of eye
movement behavior serve as examples for the application of the described modeling
framework to the field of cognitive modeling.

29





2 Modeling perisaccadic attention

Modeling the effects of perisaccadic
attention on gaze statistics during

scene viewing
Lisa Schwetlick, Lars Oliver Martin Rothkegel, Hans Arne Trukenbrod,

Ralf Engbert
University of Potsdam

Abstract

How we perceive a visual scene depends critically on the selection of
gaze positions. For this selection process, visual attention is known
to play a key role in two ways. First, image-features attract visual
attention, a fact that is captured well by time-independent fixation
models. Second, millisecond-level attentional dynamics around the
time of saccade drives our gaze from one position to the next. These
two related research areas on attention are typically perceived as sep-
arate, both theoretically and experimentally. Here we link the two
research areas by demonstrating that perisaccadic attentional dy-
namics improve predictions on scan path statistics. In a mathemati-
cal model, we integrated perisaccadic covert attention with dynamic
scan path generation. Our model reproduces saccade amplitude dis-
tributions, angular statistics, intersaccadic turning angles, and their
impact on fixation durations as well as inter-individual differences
using Bayesian inference. Therefore, our result lend support to the
relevance of perisaccadic attention to gaze statistics.
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2.1 Introduction
Visual perception in humans is the result of complex signal processing of visual input
in the brain. Information enters the eyes at a rate of about 108 to 109 bit/s (Kelly,
1962). In order to handle this enormous amount of input, the visual system relies
on foveation and selective attention (Yantis & Abrams, 2014). These two mecha-
nisms reduce the information available at any given point in time to enable the brain
to efficiently process the relevant aspects of visual information. Foveation refers to
the decrease of visual acuity from the region extending about 2◦ around the point
of fixation (the fovea) to the periphery of the visual field. During natural viewing,
regions of interest are sequentially moved into the high resolution foveal area by sac-
cadic eye movements (Findlay & Gilchrist, 2003; Henderson & Hollingworth, 2003).
Natural vision is therefore an active process, determined by sequential choices of fix-
ation locations. The resulting scan path (Noton & Stark, 1971a) is characterized by
pronounced spatial correlations (Trukenbrod et al., 2019). Selective attention is the
second key bottleneck of visual processing with a rate of about 100 bit/s (Zhaoping,
2014), prioritizing selected image regions at the cost of others. Under natural viewing
conditions fixation position and visual attention are closely linked and coincide at the
same location most of the time during viewing (Findlay & Gilchrist, 2003).

Experimentally, however, the locus of visual attention and fixation position can
diverge, a condition referred to as covert attention (Posner, 1980; Posner & Cohen,
1984). Research on saccade dynamics in highly controlled experimental setups in-
dicates that attention, as measured by processing benefits, precedes the fixation to
the next saccade target (Deubel & Schneider, 1996; Hoffman & Subramaniam, 1995;
Kowler & Blaser, 1995). Current models of eye movements and visual attention are
typically based on the plausible simplification of directly equating location of attention
and fixation position (Engbert, Trukenbrod, et al., 2015; Itti & Koch, 2001; Schütt
et al., 2017; Tatler et al., 2017). Here we propose that perisaccadic covert attention
shifts are an important factor in eye movement guidance.

The field of modeling eye movement behavior has primarily focused on predicting
where fixations are placed in an image (Itti & Koch, 2000; Koch & Ullman, 1985;
Kümmerer et al., 2017). The most advanced models are able to predict fixation density
maps that closely resemble the empirical fixation densities they are based on (Bylinskii
et al., 2015). The step from modeling static fixation densities to predicting scan paths
reveals that bottom-up image information, while important, can not comprehensively
explain the fixation selection process. This is illustrated by the fact that even a model
that comprises no image information at all outperforms some static saliency models(Le
Meur & Coutrot, 2016; Tatler & Vincent, 2009). Thus, scan path dynamics also play
an important role. The ability of a model to predict human-like behavior can be much
improved (Schütt et al., 2017) by adding basic dynamic mechanisms to the static
image-based predictions (Le Meur & Liu, 2015; Rothkegel et al., 2016; Tatler et al.,
2017; Tatler & Vincent, 2009).

Theoretical (Engbert, Trukenbrod, et al., 2015; Itti & Koch, 2001) and experimental
work (Rothkegel et al., 2016) agree that two essential components in explaining dy-
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namic scan paths are attentional selection and inhibitory tagging of previously fixated
locations. The former refers to the combination of foveation and the attentional field,
which defines a limited area from which information can be extracted. The attentional
field is often represented as a Gaussian distribution, with its peak representing the
fovea. Thus, as a first-order approximation, visual input is given by a Gaussian blob
defined by the fixation position in a given scene. The second component keeps track
of fixation history in order to drive exploration in scan paths and prevent continuous
return to the same high-saliency regions (Klein, 2000). In behavioral experiments,
inhibition of return has been widely found as a component of human visual behavior
(Klein & MacInnes, 1999), electrophysiology (Hopfinger & Mangun, 1998), and, more
recently, as a neural process in the frontal eye field (Mirpour et al., 2019).

Attentional selection and inhibitory tagging have been previously implemented in a
dynamical model for scan path generation (Engbert, Trukenbrod, et al., 2015; Schütt
et al., 2017). The SceneWalk model(Engbert, Trukenbrod, et al., 2015) serves as a
platform for the current work on the analysis of the role of attention around the time
of saccade. Conceptually the model comprises two independent streams, activation
and inhibition, which are computed on discrete 128× 128 grids mapped to the image
dimensions. The activation stream is implemented as a Gaussian aperture around
the current fixation location (see Eq. 2.1) convolved with a saliency map. This local
saliency then evolves over time using a differential equation (see Methods for math-
ematical details), meaning that past fixations can influence the current activation
stream. The inhibition stream implements fixation tagging by Gaussian maps cen-
tered around the fixation location and similarly evolving over time using a differential
equation such that past fixations retain some influence over the current inhibition
stream. The size of the Gaussian window σA/F , as well as the decay parameters ωA/F

and other free model parameters are jointly obtained from the parameter inference
(see Methods). As illustrated in Fig. 2.1, activation and inhibition maps are subtrac-
tively combined to yield a priority map (Bisley & Mirpour, 2019), i.e., the 2D fixation
probability map for the selection of the upcoming saccade target.

In the current context of perisaccadic processes, it is important to note that the
strongest impact on mean fixation duration is generated by the variation in saccadic
turning angles (Tatler et al., 2017). Continuing to move along the previous saccade’s
vector is associated with much shorter fixation durations than when the saccade direc-
tion changes by 90◦ or more (see the 80 ms effect in Fig. 2.6A). Therefore, we primarily
seek to explain this coupling between fixation duration and saccade angle. Thus, we
simplify our analysis by assuming random timing of fixation durations (assuming a
gamma-distribution) and investigate the coupling with target selection under different
turning angles. In future work the temporal control in the model could be extended
to include other metrics (e.g., local saliency) for predicting fixation durations.

In this article we investigate a neurophysiologically plausible implementation of
attentional dynamics and inhibitory principles. We extend the SceneWalk model (En-
gbert, Trukenbrod, et al., 2015) of eye-movement control by adding the concept of
attentional shifts around the time of a saccade. Large-scale numerical simulations are
carried out to estimate model parameters from experimental data using Bayesian data
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Figure 2.1 Attentional processing streams in a conceptual scan path model. Visual attention
and inhibitory tagging are largely independent processing streams which evolve neural activations
via time-dependent input and decay. Constraining a saliency map (black and white color map) by a
Gaussian aperture can approximate the extent of visual attention (orange colormaps), as shownon
the left. Inhibitory tagging, shown in blue color maps, keeps track of previously visited locations,
as shown on the right. The X marks the current fixation position. Combining the activation and
inhibition streams yields a priority map from which fixation positions can be selected.

assimilation (Schütt et al., 2017). These covert perisaccadic attentional shifts turn out
to improve model performance on a variety of eye movement statistics.

2.2 Results
The current work investigated the potential role of perisaccadic attention on human
saccade statistics. In the next paragraph, we explain our theoretical model, before we
describe experimental paradigm and experimental data.

2.2.1 Integrating perisaccadic attention with gaze control
Before the saccade is executed toward a target, performance benefits in accuracy and
speed can be measured at the target location. This has frequently been interpreted
as attention being allocated to the part of the image that is about to be fixated as
part of saccadic planning. In Figure 2.2A (leftmost), we see that during a fixation,
the fixation location and the center of attention are coaligned. Once the upcoming
target location is selected from the priority map uij(t) but before the saccade occurs
(Fig. 2.2A, second from left), attention already moves to the upcoming saccade target,
decoupling fixation (red 3-pointed star) and attention (green 5-pointed star). The con-
cept that covert attention shifts precede saccadic eye movements is well-established in
the literature (Deubel & Schneider, 1996; Irwin & Gordon, 1998), with clear evidence
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for this predictive attentional targeting as early as 150 ms before saccade onset (Rolfs
et al., 2011).

Furthermore, attention has been shown to move retinotopically with the saccade
(Marino & Mazer, 2016). Thus, just after a saccade similar processing benefits can
be found in a location along the saccade vector, which aligns with the retinotopic
position of the target before the saccade (Golomb et al., 2008), a phenomenon called
retinotopic attentional trace (RAT). The pre-allocated attention peak moves with the
saccade such that it lands shifted along the saccade vector away from the saccade tar-
get. Figure 2.2A (third from left) shows that immediately after a saccade, attention
is shifted to the same retinotopic position as the previous pre-saccadic shift and thus
spatiotopically shifted in the same direction as the saccadic movement. Experimen-
tally, the influence of the shift lasts about 100 to 200 ms (Golomb et al., 2008). After
this interval the locus of activation moves to coincide with the fixation position again
(Fig. 2.2A, rightmost panel). An alternative representation of the temporal progres-
sion of persaccadic processes in the model is available in the supplementary material
(Fig. S2).

If we consider the added activation along the saccade vector as a component in
saccade selection, this is in good agreement with the experimental finding of shorter
fixation durations before forward saccades. The post-saccadic RAT is therefore the
second part of the attentional decoupling that begins before saccade onset. Behavioral
evidence for attentional shifts during a saccade (Deubel & Schneider, 1996) as well
as neurophysiological correlates for post-saccadic retinotopic enhancements have been
found (Golomb et al., 2010). Below we suggest that attentional shifts are a likely
explanation for a systematic effect on saccade statistics observed during scan path
formation. Figure 2.2B illustrates the influence of perisaccadic attentional shifts on
the activation maps. The streams evolve over time (Eq. 2.4, 2.5). Each successive map
consists of the previous map and the current new information in a ratio determined
by the decay function. The model, thus, has infinite memory, although depending
on the strength of the decay parameters, previous fixation’s influence may decrease
rapidly fixation targets are selected from the priority map (Eq. 2.6) at time tfix− τpre,
where tfix is the duration of the fixation and τpre is the duration of the pre-saccadic
shift. Once the upcoming target is selected, attention moves to its location; after
saccade execution, the post-saccadic attentional shift occurs; lastly, attention and
fixation position are realigned when entering the main fixation phase (for details of
the implementation see Materials).

In the experiments, 35 human observers viewed 30 natural color images (see Materi-
als). We will compare simulations for the baseline model (Engbert, Trukenbrod, et al.,
2015; Schütt et al., 2017) which includes only local saliency and inihibition evolving
over time with the extended model that includes perisaccadic attention mechanisms.
Model parameters for both models were estimated independently for each participant.
For model fitting, fixation sequences of 2/3 of the images were used as training data,
while all subsequent analyses were carried out on the remaining test images for each
participant. The following section details some characteristic eye movement statistics
found in experimental data.
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Figure 2.2 Timeline for processing around the time of saccade. (a) Attention and fixation po-
sition. Leftmost panel: During fixations, locus of attention (green 5-pointed star) and fixation po-
sition (red 3-pointed star) are aligned. Second panel from left: Immediately before a saccade,
the upcoming fixation location has already been selected; attention moves to the target location
(green), while fixation position remains at launch-site of the saccade. Third from left: After saccade
execution, fixation position has been updated and, simultaneously, attention has shifted along the
retinotopic activation trace (RAT) of the current fixation position before the saccade. Rightmost:
During the fixation’s main phase, the locus of attention and the fixation are realigned. (b) The
activation (red-orange) and inhibition (blue-green) streams evolve over time during each of three
model phases in each fixation. When a new fixation location is to be selected the streams are sub-
tracted to yield a priority map (pink-purple). The activation map consists of a Gaussian aperture
around a phase-dependent point in the image and image information as well as influences from
past states of the model. The inhibition stream consists of a Gaussian aperture around the current
fixation location and past states of the model.
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2.2.2 Saccade amplitude distribution

The distribution of saccade amplitudes generated during a scene viewing experi-
ment varies across participants and images. Overall, both the baseline and the ex-
tended models reproduce the qualitative shape of the saccade amplitude distribution
(Fig. 2.3A) (Bahill et al., 1975; Bruce & Tsotsos, 2009; Tatler et al., 2011; Tatler,
Vincent, et al., 2008). The experimentally observed saccade amplitude distribution is
right-skewed, reflecting that amplitudes tend to be smaller than computer-generated
saccades obtained by random sampling from the static 2D fixation density (Engbert,
Trukenbrod, et al., 2015; Trukenbrod et al., 2019). Previously, we suggested this drop
in saccade amplitudes is caused by the foveated visual system, which preferentially
selects saccade targets from within attentional span. Therefore, inter-individual dif-
ferences in mean saccade amplitudes should correlate with the size of the attentional
span σA, which is defined as the standard deviation parameter of the Gaussian-shaped
attentional blob (see Eq. 2.1). In Figure 2.3B, we show the expected correlation be-
tween σA and mean of saccade amplitude across participants, indicating that a larger
area does indeed lead to longer saccades.

This statistic is perhaps the most prominent and intuitive. Previous modeling stud-
ies, like our baseline model, have been able to capture it as well as the extended model.
The result we show here confirms that our addition of more complex mechanisms has
not come at the cost of the more basic effects.

Additionally the improved fitting procedure allows both models to be fit separately
for each subject. With model parameters estimated for each participant using the
training images, the predicted mean saccade amplitudes for test images were compared
to experimentally observed mean saccade amplitudes. We found good agreement be-
tween predicted and experimentally observed mean saccade amplitudes (Fig. 2.3C)
indicated by a high correlation (r = 0.91). Our model is able to explain the inter-
individual differences in the data via parameter variation.

2.2.3 Absolute and relative saccade angle distributions

Saccade angles are another important characteristic of human eye movement behavior.
The absolute angle distribution reports the directions of saccades relative to the im-
age frame. Interestingly, there is a strongly image-dependent tendency, which varies
mostly with the distribution of image features. On average the distribution shows
characteristic peaks in the four cardinal directions (Foulsham et al., 2008; Gilchrist
& Harvey, 2006). Figure 2.4A shows that, the baseline model does not show the
pronounced pattern found in experimental data. Comparatively the extended model
shows a clear improvement with distinct peaks at 0◦, 90◦, 180◦, 270◦, and 360◦. The
extended model implements a mechanism for an oculomotor potential (see Equations
2.14 and 2.15), which preferentially weights the activation in the cardinal directions
(Engbert et al., 2011) before it is combined with the inhibition stream.

The saccade turning angle distribution characterizes the relationship of consecutive
saccades. In the experimental data there is a clear bias towards forward saccades,
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a b

c

Figure 2.3 Saccade amplitude distribution and inter-individual differences. (a) The saccade am-
plitude distribution for experimental data (black line), the baseline SceneWalkmodel (blue, dashed
line) and the extended model (yellow, dotted line). Shading represents the 95% confidence inter-
val between subjects. (b) Size parameter σA of the attentional span and is positively correlated
simulated mean saccade amplitude. (c) A high correlation is observed between experimental and
simulated data on test images, using parameter estimates for each participant obtained for train-
ing data.
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a b

Figure 2.4 Saccade angle distributions. (a) Absolute angle distribution in the empirical and sim-
ulated data. Empirical data show a strong tendency for saccading in the cardinal directions. This is
strongly image dependent and not specifically considered in the models. The shading shows the
95% confidence interval between subjects. (b) Saccadic turning angle distribution in the empirical
and simulated data. The angle shown is the divergence from the previous saccade direction. Em-
pirically we find a tendency to continue along the previous saccade vector or completely reverse
it. The extendedmodel partly shows this behavior. The shading shows the 95% confidence interval
between subjects.

which follow the same vector of motion, and a secondary preference for return saccades,
which reverse the saccade vector. Therefore, we should expect clear peaks at 0◦ and
180◦ in the corresponding turning angle distribution (Rothkegel et al., 2018; Rothkegel
et al., 2016; T. J. Smith & Henderson, 2009; Tatler & Vincent, 2009). Figure 2.4B
shows the results of the baseline and extended models in comparison to experimental
data. The baseline model produces a u-shaped distribution without any indication of
a forward bias. There is an increased probability of turning by about 180◦, since the
edges of the image represent hard constraints. This effect is large enough to overshadow
the effects of return saccades that directly return to the previous fixation location (of
which there are comparatively few). The extended model does develop a peak for
forward saccades, showing better qualitative agreement with the experimental data,
although the bias towards forward saccades is clearly weaker than in the experiment.
The model’s slightly muted responses could be caused by a number of factors, not
least of which is the fact that the chosen general purpose likelihood procedure does
not specifically target this metric. The indirect fitting of parameters supports the
existence of the directional biases but may capture them only partially in the presence
of other variance in the data.

The statistical preference of observers to maintain current saccade direction has
been referred to as saccadic momentum (Luke et al., 2014; Rothkegel et al., 2018;
T. J. Smith & Henderson, 2009; Wilming et al., 2013). Here we propose that the
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Figure 2.5 Joint probability of saccade turning angle and saccade amplitude normalized to the
previous saccade. (a) Legend for the joint probability plot. The coordinate system is normalized
relative to the previous saccade. (b) The experimental probability shows the return and forward
peaks. (c) The extended model captures these characteristic properties qualitatively. (D) In the
baseline model, neither the return peak nor the forward peak can be found.

experimental effect is at least partially due to attentional enhancement in the current
saccade direction, which generates a peak in the attention map that produced the
forward bias.

2.2.4 Joint probability of intersaccadic angle and amplitude

More generally, we can identify potential dependencies of saccade turning angle and
saccade amplitude by visualizing the corresponding joint probability (Fig. 2.5). As
discussed above, compared to all other directions, there is a pronounced tendency for
saccades to either maintain or completely reverse the direction of the previous saccade.
This effect is well documented in the literature (Rothkegel et al., 2018; Rothkegel et
al., 2016; T. J. Smith & Henderson, 2009; Tatler, Vincent, et al., 2008; Tatler &
Vincent, 2009) and is independent of a variety of other factors such as image content.
The values on the axes in Figure 2.5 are relative to direction and amplitude of the
previous saccade. In this normalized coordinate space, the previous saccade moved
from position (−1, 0) to position (0, 0). The plotted density indicates the probability
of the following saccade to be executed in a direction and with an amplitude relative
to the previous saccade. Figure 2.5B reveals that there are two clear peaks in the
experimental data, i.e., the return peak to the normalized launch site (−1, 0) of the
previous saccade and the forward peak that is related to the saccadic momentum
effect discussed above. It is important to note that the experimental return peak is
not particularly high, but it is distinct since surrounding 2D regions do not exhibit a
high fixation density.

In our extended model (Fig. 2.5C), the mechanism responsible for the forward sac-
cades is the attentional shift before and after a saccade (Eq. 2.9 - 2.11). The distinctive
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shape of the return saccade peak, we suggest, is the result of the combination of a slow,
global inhibition of return and a directed smaller facilitation of return (Eq. 2.12) (see
Materials). The former is implemented as the model’s inhibition stream, while the lat-
ter is implemented as reduction in decay speed in the attention map, localized at the
previous fixation location. The baseline model cannot produce the return and forward
peak, since it lacks the mechanistic principles for coupling subsequent saccades.

2.2.5 Intersaccadic angle and fixation duration and saccadic amplitude
The next two analyses correspond to the interdependence of fixation duration and
saccade amplitude, and saccadic turning angles. Both have a distinctive shape in
the data, showing that forward saccades tend to be shorter and preceded by shorter
fixations, while changing direction takes longer and evokes longer saccades. Pilot
simulations indicated that the effect reported in this section are not due to the addition
of the oculomotor potential.

The new model notably improves the fit of the dependence of fixation duration on
the turning angles (see Fig. 2.6). While previously there was no temporal component
in the model the added phases of shifted activation enable the model to dynamically
respond to the duration of a fixation. In the model, each fixation begins with the post-
saccadic shift phase. In terms of the attention activation map, this means that there is
more activation along the previous saccade vector. After this phase the influence of the
shift diminishes. Thus, when the fixation is short, there is still a lot of influence from
the shift, increasing the chance of producing a forward saccade. When the fixation is
long, the influence of the post saccadic shift has subsided, allowing for activation from
other salient locations to guide the saccade.

2.2.6 Likelihood-based comparison
Since our approach includes the likelihood computation of the baseline and extended
models, we can make use of the models’ likelihood functions for model comparison
(Schütt et al., 2017). This approach entails evaluating the model likelihood given the
empirical test data and computing the average log-likelihood per fixation of all scan
paths. We then compare this metric to previous models (Kümmerer et al., 2015).

The overall likelihood of the model given the data is larger for the extended model
than for the original model (Fig. 2.7). In general, improved likelihood indicates im-
proved predictive power of a model. The additions to the baseline model discussed in
the current study, though theoretically well-founded, were extensive and considerably
increased the model complexity. Conceivably adding these mechanisms could have
led to improved scan path dynamics but worsened overall likelihood predictions, or
else made the model volatile or unstable. In general, the likelihood is an objective
measure of overall model performance(Schütt et al., 2017). As we have seen, the ex-
tended model performs much better than the baseline model at a number of qualitative
eye-movement effects, while the improvement in general model likelihood is relatively
small. Effects such as the impact of saccade turning angles on saccade amplitude
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a b

Figure 2.6 Average saccade amplitude and fixation duration are related to the change in sac-
cade direction (saccadic turning angle). (a) Fixation duration is shortest for saccade moving for-
ward. Results from the extended model are in good agreement with experimental data. (b) Sac-
cade amplitude is smallest for forward saccades and largest for return saccades. While the baseline
model reproduces this effect qualitatively, the extended model produces a better fit to the exper-
imental data.

are strong and important for biological plausibility of the model. At the same time,
however, the impact on the overall likelihood is limited, since their contribution to 2D
fixation density is small. In combination, the large improvements in eye-movement
statistics and relative improvements in likelihood across model variants allow a strong
conclusion in favor of the proposed model extension.

2.3 Discussion

Moving from models of static fixation probabilities to the generation of scan paths
has recently begun to attract interest in the field of attention modeling (Engbert,
Trukenbrod, et al., 2015; Le Meur & Liu, 2015; Schütt et al., 2017; Tatler et al.,
2017; Zelinsky, 2008). The success of saliency-based visual attention modeling (Itti
& Koch, 2001; Kümmerer et al., 2017; Kümmerer, Wallis, et al., 2014; Schütt et al.,
2019) over the last 30 years makes a strong case for the use of priority maps (Bisley
& Mirpour, 2019) as a core component in scan path generation. In addition to image
and task influences biologically represented in priority maps, scan paths on scenes are
also characterized by a number of statistical characteristics, e.g., saccade angles and
modulations of fixation duration or saccade amplitude by saccadic turning angles. Our
modeling study lends support to the fact that attentional dynamics around the time
of saccade exert a fundamental influence on the behavioral statistics of scan paths.

Previous research on visual attention shows that processing resources are covertly al-
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Figure 2.7 General model likelihood of models fitted on the training data given the test data.
Density sampling draws fixations directly from the empirical fixation distributionwithout dynamics.
Local saliency produces scan paths by picking from the fixation density filtered through a Gaussian
window, with no dynamics. The baseline model and the extended model are the dynamic models
described in this article.

located away from the current fixation location just before (Deubel & Schneider, 1996;
Irwin & Gordon, 1998; Rolfs et al., 2011) and just after (Golomb et al., 2008; Golomb
et al., 2010; Rolfs et al., 2011) a saccade is produced. In this study, we added shifts of
covert attention to a dynamical model of scan path generation (Engbert, Trukenbrod,
et al., 2015; Schütt et al., 2017) and find improved agreement with gaze statistics
observed in experimental data. Most importantly, the characteristic distribution of
saccadic turning angles with a clear bias towards forward and return saccades and the
influences of saccadic turning angle on fixation durations and saccade amplitudes can
be explained partly by covert attention shifts around the time of a saccade. The im-
portance of covert attention and perisaccadic mechanisms is apparent throughout the
visual system, both at the macroscopic as well as at the microsaccade levels (Engbert,
2012; Tian et al., 2016, 2018).

The first generation of computational models in scene viewing were static models
which predicted fixation locations on any given image based on statistical image fea-
tures. The strength of these static models lies in producing densities that resemble
empirical fixation density maps. Recently, the predictive power of some models has
become close to perfect and approached the gold standard (Kümmerer et al., 2017;
Kümmerer et al., 2015). However, by design these models do not take temporal dy-
namics within a scan path and the inhomogeneity of the retinal acuity into account.
From this perspective, it is not surprising that static models predict fixation density,
but not sequences of fixations (Foulsham & Underwood, 2008; Rothkegel et al., 2016;
Schütt et al., 2017). This simple fact points to the interesting observation that eye
movements in scene viewing are guided in large part, but not exclusively by observer-

43



2 Modeling perisaccadic attention

and image-specific factors. Human eye movements are influenced by oculomotor and
attention systems, producing pervasive systematic statistical tendencies in experimen-
tal data.

Previously published dynamic models outperform static models substantially (Le
Meur & Liu, 2015; Schütt et al., 2017). The most evident feature of the human visual
system which indisputably influences scan path dynamics is foveation. Accordingly,
even a minimal model like weighting a saliency map by the distance to a current
fixation location significantly improves model performance (Parkhurst et al., 2002).
The SceneWalk model (Engbert, Trukenbrod, et al., 2015), which served as a baseline
for our study, incorporates foveated saliency in its activation stream. A further advance
in the modeling of scan paths has been the addition of inhibitory fixation tagging (Itti
et al., 1998; Klein, 2000; Posner et al., 1985). The baseline model implements such an
inhibition stream as a second component shaping the priority map (Bisley & Mirpour,
2019) by difference of activation.

The fact that long fixations often occur in frequently fixated areas (Einhäuser &
Nuthmann, 2016) implies that fixation duration and target selection are related. The
LATEST model (Tatler et al., 2017) combines the prediction of scan paths and fixation
durations by interpreting scan paths as a continuous series of stay (maintain fixation)
or go (saccade) decision (Carpenter & Reddi, 2001; Ratcliff & McKoon, 2008; Reddi
& Carpenter, 2000). Each individual location on a weighted saliency map influences
two LATER units (Noorani & Carpenter, 2016), i.e., one for normal and long latencies
and one for short latencies. These units accumulate evidence from each location in
the image until one reaches a threshold depending on the current location, trigger-
ing a saccade. The accumulation rate of each location in the image is controlled by
image-content factors like image features and semantic interest, as well as by oculo-
motor factors like the change in saccade direction and target eccentricity. Coupling
of experimental data and model is achieved by statistical linear mixed-effects model-
ing. Thus, the LATEST model makes little attempt at explaining the origin of the
factors that influence the rate of evidence accumulation, instead focusing on the spe-
cific selection mechanism and its relationship with fixation duration. By contrast, the
extended SceneWalk model is based on mechanistic assumptions derived from neural
and cognitive knowledge about the contributing factors to fixation selection. Param-
eters are based on statistically rigorous likelihood approach that evaluates the model
assumptions given the data.

Generally, the value of a model must be quantified in terms of predictive power
and explanatory value. For the models discussed here, we carried out comparisons of
simulated scan paths and human eye movement data. A number of metrics have been
proposed for such a comparison (Cerf et al., 2008; Jarodzka et al., 2010; Mannan et al.,
1996). Critically, however, the choice of individual statistics has a crucial influence
on the outcome and there is, in most cases, no rigorous justification for the used
metric. A solution to this is to evaluate dynamical scan path models using a likelihood
approach (Schütt et al., 2017), which provides a statistically well-founded and reliable
measure for the predictive quality of a dynamical model. In this article we relied on
Bayesian data assimilation (Reich & Cotter, 2015) as a statistically rigorous framework
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for testing whether the model architecture accurately represents the data generation
process. This approach turned out to be particularly fruitful for strongly theory-
guided models. Using general likelihood to estimate parameters of the model lends
credibility to the theoretical foundations from eye movement literature implemented
by the model.

In addition to better predicting human scan paths during scenes viewing, the in-
tegration of biologically-inspired attentional dynamics into models of eye guidance
unifies two very disparate fields of eye movement research. The research into covert
attention shifts and perisaccadic effects is typically concerned with processes that oc-
cur on a highly detailed level in very controlled experimental setups. By contrast scene
viewing literature usually operates at a higher level, on which the minutia of saccade
programming or covert attention are typically passed over. Thus, influences arising
from the microscopic level of eye movement control can explain effects we observe at
the macroscopic level.

2.4 Methods
Experiment Experimental data for this study were collected in a larger corpus study
on scene viewing which is described in detail elsewhere (Rothkegel, Schütt, et al.,
2019; Schütt et al., 2019). Images and fixation data from this corpus experiment can
be downloaded from an Open Science Foundation repository (see below(Rothkegel,
Schütt, et al., 2019)). The corpus consists of eye movement data from 105 participants
viewing 90 images of natural or urban landscapes from 6 different categories for a fixed
duration (10 s). Each category contained 15 images. Images were chosen such that
the most interesting image parts either fell on the left, right, upper, lower or, central
image side (Fig. S1 provides some examples). The last category were images with
natural patterns, minimizing the influence of particularly salient objects. During the
viewing subjects were given no task except to freely view the images.

In this study we used Experiment 3 from the corpus study (Rothkegel, Schütt, et al.,
2019; Schütt et al., 2019), in which participants viewed color images. This subset of
data contains the eye movements of 35 participants, who viewed 30 images from each
category without a task. We further split the data set into test and training data by
randomly choosing 1/3 of the images (10 from each category) for each participant.

For saccade detection we applied a velocity-based algorithm (Engbert & Mergen-
thaler, 2006; Engbert & Kliegl, 2003). Saccades had a minimum amplitude of 0.5◦ and
exceeded an average velocity during a trial by six (median-based) standard deviations
for at least six data samples (12 ms). The epoch between two subsequent saccades was
defined as a fixation. After preparation, 312, 267 fixations and saccades were detected
for further analysis.

Baseline Model The original SceneWalk model (Engbert, Trukenbrod, et al., 2015)
was implemented on a 128 × 128 grid, where (x, y) give the physical coordinates in
degrees. For each fixation in the scan path we start by computing simple 2-D Gaussians
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centered at current fixation position (xf , yf ) for both the inhibition and the attention
pathway, each with an appropriate standard deviation σA/F (A denotes the attention
stream, F denotes the fixation stream to generate inhibitory tagging).

GA/F (x, y) =
1

2πσ2
A/F

exp

(
−(x− xf )

2 + (y − yf )
2

2σ2
A/F

)
(2.1)

Both the inhibition Fij(t) and the activation Aij(t) streams evolve over time under
current visual input and decay (due to limited of visual memory), i.e.,

dAij(t)

dt
= ωA

(
Sij GA(xi, yj;xf , yf )∑
kl SklGA(xk, yl;xf , yf )

− Aij(t)

)
(2.2)

dFij(t)

dt
= ωF

(
GF (xi, yj;xf , yf )∑
klGF (xk, yl;xf , yf )

− Fij(t)

)
, (2.3)

where the input to the activation maps is the Gaussian-weighted local saliency
SklGA(xk, yl;xf , yf ) and the input to the inhibition map is a Gaussian blob at current
fixation position.

The differential equations that determine the temporal evolution of the activation
maps, Eq. 2.2 for the attention map and Eq. 2.3 for the fixation/inhibition map, can be
integrated analytically to provide a closed solution for the activation changes during
fixation, i.e.,

A(t) =
GAS∑
GAS

+ e−ωA(t−t0)

(
A0 −

GAS∑
GAS

)
, (2.4)

and
F (t) =

GF∑
GF

+ e−ωF (t−t0)

(
F0 −

GF∑
GF

)
, (2.5)

where we dropped the indices i, j for simplicity. In the equations, the term e−ωA/F (t−t0)

determines the speed of decay of the past states of the map.

Next, both activation maps were combined to compute the priority map uij(t),

uij(t) =
(Aij(t))

γ∑
kl (Akl(t))

γ − CF
(Fij(t))

γ∑
kl (Fkl(t))

γ . (2.6)

Mathematically, the two maps are shaped by exponent γ before subtraction, and
a weight parameter CF for inhibition is introduced. We expect γ ≈ 1, equivalent to
Luce’s choice rule (Luce & Raiffa, 1989).

As subtraction can cause negative activation, in the next step we take only the
positive component of the map,

u∗ij(uij) =
uij, if uij > 0
0, otherwise (2.7)
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Phase Start End F center A center
Post-saccadic shift 0 τpost fixn remap

Main (no shift) τpost tfix − τpre fixn fixn
Pre-saccadic shift tfix − τpre tfix fixn fixn+1

Table 2.1 Model Phases: onset times and locations aroundwhich theGaussians in both streams
are centered. Parameter tfix indicates the fixation’s duration, parameters τpre, τpost are the phase
durations, and parameters fixn+1, fixn, and remap are the locations.

and, finally, add noise ζ

π(i, j) = (1− ζ)
u∗ij∑
kl u

∗
kl

+ ζ
1∑
kl 1

(2.8)

to obtain the probability map π(i, j) for the selection of saccade targets. This process
is repeated for each fixation in a sequence, where the current state information is
combined with the past activation maps to produce a continuously evolving prediction
of the next fixation.

The model structure reveals the following parameters: (1, 2) σA and σF , which are
the standard deviations of the current fixation’s attention and inhibition Gaussians
respectively, (3, 4) ωA and ωF , which are the speed at which past states of the model
lose influence over the current, (5) γ, the shaping parameter for the Gaussians, (6) the
coupling factor CF , which is the weight of the inhibition pathway, and (7) the noise
parameter ζ determining the background noise for the probability map π(i, j).

Pre-saccadic attentional shifts Once a new fixation location is chosen the center of
attention moves to the upcoming fixation location, while the center of the inhibition
map remains at the current fixation location (see Table 2.1). In the model, the pre-
saccadic shift is implemented by moving the attentional Gaussian to center around
the next fixation location, while the inhibition remains in the same position for a time
τpre. The inhibition stream is calculated for the entire fixation duration using Eq. 2.5,
therefore, we have

Gpre
A (x, y) =

1

2πσ2
A

exp

(
−(x− xf+1)

2 + (y − yf+1)
2

2σ2
A

)
, (2.9)

and then continue computations using Eqs. 2.4-2.5 with Gpre
A instead of GA for the

duration of τpre. When the pre-saccadic phase terminates, the saccade is executed.

Post-saccadic attentional shifts The center of the post-saccade attention peak is de-
termined by extending the vector of the preceding saccade by a shift amplitude η,
i.e.,

(xs, ys) = (xn, yn) +
(xδ, yδ)√
x2δ + y2δ

· η , (2.10)
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where the saccade direction is given by the vector (xδ, yδ) with xδ = xn − xn−1 and
yδ = yn − yn−1. Thus, the attentional Gaussian is centered at the shifted location

Gpost
A (x, y) =

1

2πσ2
post

exp

(
−(x− xs)

2 + (y − ys)
2

2σ2
post

)
(2.11)

during the post-saccadic phase. Temporal evolution of activation maps continues
based on Eqs. 2.4-2.5 with Gpost

A instead of GA for a duration of τpost. Meanwhile
the inhibition stream evolves with the center of inhibition in the same location as the
fixation position.

After the post-saccadic shift phase, the cycle is completed and another main phase
follows. The attention center moves to each of the three locations in turn via discrete
steps as shown in Table 2.1. We have chosen this discrete approximation with constant
durations of pre- and post-saccadic shifts to compute activation changes in all fixation
phase efficiently. Neurophysiological support for our discrete approximation has been
found (Golomb et al., 2010), indicating that attention does not move smoothly over
space from location n to location n + 1 but instead selectively starts building up at
the target location n+ 1.

Facilitation of Return To account for Facilitation of Return (FoR) we implement a
selectively slower decay of the attention map in a spatial window centered at the
previous fixation location. Different from the overall decay rate ωA, we define a reduced
decay rate ωFoR for a window x−ν < xf−1 < x+ν and y−ν < yf−1 < y+ν around the
previous fixation location (xf−1, yf−1), where ν is the size of the window. Therefore,
reduced decay of activation in the attention map, Eq. 2.4, is given by

A(t) =
GAS∑
GAS

+ e−ωFoR(t−t0)

(
A0 −

GAS∑
GAS

)
(2.12)

for the spatial window defined above.
In addition to the strongly attention-related mechanisms above, we added the fol-

lowing two less dynamic and more general biases.

Center Bias The original SceneWalk model initiates its activation maps with uniform
distributions. While it is difficult accurately know the initial state of the visual system
when viewing images, previous work has shown that the central fixation bias has a
strong influence on the first fixation. Starting the model with a central activation
improves the predictions of the model (Rothkegel et al., 2017). In line with this
finding, we also initiated the model with central activation. The evolution equation
for the first fixation is

A(t) =
GfixS∑
GfixS

+ e−ωcb(t−t0)

(
A0CB

− GfixS∑
GfixS

)
(2.13)
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Oculomotor Potential Research into the oculomotor system has revealed a marked
preference for saccades in the cardinal directions. In order to implement this tendency
in the model we introduced an additive occulomotor component. A plus-shaped ocu-
lomotor map centered on the current fixation position is generated

OMP =
(
(x− xf )

2 · (y − yf )
2
)χ
, (2.14)

where the factor χ determines the steepness of the slopes. The oculomotor map is
added to the combined map uij, before the normalization and the addition of noise
(Eq. 2.7, 2.8)

uOMP = u+

(
ψ ·
∣∣∣∣− OMP∑

(OMP )

∣∣∣∣) . (2.15)

Additional model parameters The implementation of the extended SceneWalk model
gives rise to several new parameters. To the 7 parameters of the original model we add
(a) ωcb, the decay speed of the center bias, (b, c) σcbx and σcby , the size of the center
bias, (d, e) τpre and τpost, the durations of the attention shift phases, (f) η, the distance
of the post-saccadic shift, (g) σpost the size of the shifted Gaussian, (h, i) ωFoR, the
attention decay at the previous fixation position and ν, the size of the facilitation
window, and (j, k) the steepness χ and factor ψ of the oculomotor potential.

Estimated and fixed model parameters We implemented a fully Bayesian approach to
parameter inference (Schütt et al., 2017) using numerical computation of the models’
likelihood functions and advanced Monte Chain Monte Carlo (MCMC) techniques.
Details are given in the next section. For a discussion of the full results including
marginal posterior densities see below (Section entitled Detailed results on parameter
estimation).

In Table 2.2 we report point estimates for all parameters as averages over partic-
ipants. The full estimates for each participant can be found in the Supplementary
Materials (Table S2 and Table S3. These point estimates were computed from the
posterior densities by determining the highest posterior density region for an alpha
of 0.5 (i.e., the highest 50% of the density are in this region), assuming a unimodal
distribution. The reported credibility intervals the lower and upper bounds of the
highest density interval. The point estimate for the parameter represents the center
of the highest posterior density interval.

Some of the model parameters could be constrained by the physiological literature
and some of the parameters had to fixed in order to improve convergence of the
parameter estimation. The latter case was checked by large-scale pilot simulations
with different model versions using a separate data set. In Table S1 we list all fixed
model parameters.

First, we separated the time scales of attention and inhibition stream by one order
of magnitude, i.e., ωF = ωA/10. We assume ωF is slower to decay by a magnitude
than ωA, to enable long term inhibition of return and fast build-up of activation for
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Parameter Baseline
SW Mean

Baseline SW +/- Extended
SW Mean

Extended SW +/-

ωA 14.802 2.555 9.996 2.391
σA 7.482 1.165 7.320 1.004
σF 4.629 1.041 6.834 2.626
γ 0.935 0.095 0.956 0.102

log(ζ) -1.132 0.131 -1.727 0.260
χ - - 0.059 0.028
η - - 0.415 0.105

log(ψ) - - -0.613 0.192
Table 2.2 Maximumposterior density estimates of themodel parameter estimations of all sub-
jects and credibility intervals (see text).

attentional capture. Second, we set CF = 0.3, where the numerical value was obtained
from pilot simulations indicating that the relative influence of the inhibition stream
must be smaller (but not negligible) compared to the corresponding influence of the
attention stream.

In the extended model, some of the additional parameters need further discussion.
First, we set σCB = 4.3 and ωCB = 1.5 as described in (Rothkegel et al., 2017), for a
typically sized center bias and an attention decay that is slower than the regular ω. The
center bias parameters are difficult to estimate, since their influence is mainly limited
to the first fixation. Second, we fixed ωFoR = ωA/10, representing an approximate
value for decay slower by a magnitude and the size of the facilitation of return window
to be approximately the size of the fovea, i.e., 2◦ of visual angle. As before, only
a relatively small amount of fixations are influenced by this mechanism, making it
difficult to identify the numerical value reliably. Third, we set the times for post- and
pre-saccadic attentional shifts to τpre = 0.1 s and τpost = 0.05 s, where the numerical
values are determined by pilot simulations. Due to their small magnitude, values for
ζ and ψ were estimated in the log scale.

Bayesian parameter inference Parameter inference of the dynamical models discussed
here was implemented in the general framework of data assimilation (Reich & Cotter,
2015) using a fully Bayesian estimation procedure (Rabe et al., 2021; Schütt et al.,
2017; Seelig et al., 2020). In this statistical inference we used the computation of the
models’ likelihood functions. Given a fixation sequence f1 . . . fi−1, where each fixation
fi is determined by its coordinates fi = (xi, yi), the likelihood of the model specified
by a set of parameters θ can be computed as a product of probabilities, i.e.,

LM(θ|data) = PM(f1) ·
n∏

i=2

PM(fi|f1, . . . , fi−1, θ) , (2.16)
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where PM(f1) is the probability of the initial fixation starting at time t = 0 and the
conditional probabilities PM(fi|f1 . . . fi−1, θ) can be read off from the models priority
map π(i, j).

For scaling and numerical reasons the log-likelihood is usually used. Thus, the sum
of the scan path’s log-likelihood per fixation for the entire data set gives one value
that characterizes model performance. As suggested by (Schütt et al., 2017), taking
the log2 of the likelihood enables the use of the unit bit. A null model, in which the
probability of choosing each point a 128 × 128 pixel image is the constant, would be
log2(1/128

2) = −14. A hypothetical model which, unrealistically, perfectly predicts
the data would have a log-likelihood of 0. It is important to note that for model
comparison we can take the mean log-likelihood per fixation while for the parameter
estimation the non-normalized sum log-likelihood of a scan path is the appropriate
measure.

Based on the likelihood LM(θ|data) and a prior distribution P (θ), the posterior
distribution is computed via Bayes’ rule as

P (θ|data) = L(θ|data)P (θ)∫
Ω
P (θ)L(θ|data)dθ

, (2.17)

where typically a Markov Chain Monte Carlo (MCMC) approach is needed to compute
the posterior density numerically. For our parameter estimations we used the imple-
mentation of the DREAM Algorithm that is published as PyDream (Laloy & Vrugt,
2012). Each estimation ran three chains of 20,000 iterations. Since the DREAM esti-
mation procedure requires a large number of model evaluations, the computing time of
the likelihood function in critical for the baseline SceneWalk model and, in particular,
for the extended SceneWalk model. We therefore implemented parallel computations
of the likelihood for fixation sequences. The priors, loosely based on pilot estimations
on a separate dataset, were chosen to be broad and relatively uninformative.

Inter-individual differences in behavior are a main source of variance in eye move-
ment data. Here we took advantage of these differences by testing model generaliz-
ability. We implemented individual independent model fitting for each participant by
running a DREAM parameter estimation for each participant separately. The advan-
tage of using this method is that when simulating data, we obtain an upper limit for
the variance of parameters between individual participants.

2.5 Data availability

The experimental data used in this study represent a subset of the Potsdam Corpus
on Spatial Frequency Search in Natural Scenes (Rothkegel, Schütt, et al., 2019), which
is publicly available via the Open Science Framework (osf.io/caqt2).
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2.6 Code availability
Source code used for numerical simulations, analyses, and plotting as well as other
project-related files are made available (osf.io/qsx4w).
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A dynamical scan path model for
task-dependence during scene viewing

Lisa Schwetlick, Daniel Backhaus, Ralf Engbert
University of Potsdam

Abstract

In real-world scene perception human observers generate sequences of
fixations to move image patches into the high-acuity center of the visual
field. Models of visual attention developed over the last 25 years aim
to predict two-dimensional probabilities of gaze positions for a given
image via saliency maps. Recently, progress has been made on models
for the generation of scan paths under the constraints of saliency as
well as attentional and oculomotor restrictions. Experimental research
demonstrated that task constraints can have a strong impact on view-
ing behavior. Here we propose a scan path model for both fixation
positions and fixation durations, which includes influences of task in-
structions and interindividual differences. Based on an eye-movement
experiment with four different task conditions, we estimated model pa-
rameters for each individual observer and task condition using a fully
Bayesian dynamical modeling framework using a joint spatial-temporal
likelihood approach with sequential estimation. Resulting parameter
values demonstrate that model properties such as the attentional span
are adjusted to task requirements. Posterior predictive checks indicate
that our dynamical model can reproduce task differences in scan path
statistics across individual observers.

Published in Psychological Review, 2022

53



3 Modeling Task influences

3.1 Introduction
From the early days of eye movement research into the present, the question of how
task influences the decisions on and the order of fixation locations has been of cen-
tral interest. One of the first eye movement studies, the seminal but anecdotal work
by Yarbus (1967) suggests qualitative differences in scan paths when looking at the
same image under different task instructions. Yarbus concluded that both the fixation
density and sequences of fixated locations (i.e., scan paths) sensitively depend on task
requirements. Within the large body of subsequent work (see below) on this topic,
a variety of methods for investigating the role of task for active vision (Findlay &
Gilchrist, 2003) have been proposed. Comparisons of eye movement measures demon-
strate that spatial fixation locations as well as fixation durations are influenced by
task (Castelhano et al., 2009). It was also noted that differences between tasks can
be larger than the interindividual differences between observers (DeAngelus & Pelz,
2009).

In this paper we study a theoretical model to investigate the research question of
how task demands modulate scan path generation. Modeling scan path generation
provides crucial constraints on underlying cognitive, attentional, and motor processes
(e.g., Engbert, Trukenbrod, et al., 2015; Le Meur & Liu, 2015; Schwetlick, Rothkegel,
Trukenbrod, et al., 2020b; Tatler et al., 2017). Here we develop and analyze a math-
ematical model of scan path generation across tasks. First, we advance our earlier
dynamical model (Engbert, Trukenbrod, et al., 2015; Schwetlick, Rothkegel, Truken-
brod, et al., 2020b) to include the control of fixation durations in addition to fixation
positions. Second, the model will be fitted to experimental scan paths from individual
observers using Bayesian inference for dynamical models (Engbert et al., 2022; Schütt
et al., 2017). Third, with this detailed account of scan path generation, we model
task-dependence across four different viewing conditions from an earlier experimental
study (Backhaus et al., 2020).

3.1.1 Task differences in scene viewing
Early reports by Buswell (1935) and Yarbus (1967) lend support to the idea that eye
movement patterns depend on the viewer’s instruction and not just on image content
and features. Such effects of top-down task impact on viewing behavior have been
replicated by follow-up experimental studies (Castelhano et al., 2009; DeAngelus &
Pelz, 2009; Mills et al., 2011). Related work included investigations of eye movements
during everyday tasks like preparing a cup of tea (Land et al., 1999) or a sandwich
(Hayhoe et al., 2003). During such tasks, gaze control supports general motor control
by either moving relevant information to the central visual field (Ballard et al., 1997;
Land & Tatler, 2009) or by selecting object information needed later during the task to
prepare future movements (Pelz & Canosa, 2001). Important examples include driving
(Land & Hayhoe, 2001), cycling (Vansteenkiste et al., 2014), walking (Matthis et al.,
2018; Rothkopf et al., 2007), and ball games (Land & Furneaux, 1997; Land & McLeod,
2000). These experimental designs move away from the typical lab-based scene viewing
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paradigm and contribute to a more ecologically valid account of eye guidance. In the
typical scene viewing paradigm where no task is given, participants are free to choose
their own objective or task, which is hidden from the researcher’s access (Tatler et
al., 2011). Given the relevance of specific viewing strategies to different tasks, scene
viewing without clear task instruction might thus be difficult to interpret.

The rise of modern machine learning techniques motivated purely data-driven re-
search on scan path patterns to identify task from experimental fixation sequences.
Initially, work on this topic generated mixed results (see Boisvert & Bruce, 2016, for
a detailed review). Based on scan path visualization of their underlying data, Greene
et al. (2012) found that neither human experts nor any of three proposed pattern
classifiers were able to reliably infer which task the observer was performing. The
same experimental data were later reanalyzed by Borji and Itti (2014). As a result,
the classifier could be improved significantly, showing 35% accuracy for a four-task
classification data set, where the reanalysis included more spatial data in the form
of low resolution fixation density patterns. Performance was further boosted by ac-
counting for inter-individual and image differences (Kanan et al., 2014). Furthermore,
a classifier trained using a hidden Markov model approach indicated that additional
diagnostic information for successful task prediction is contained in the scan path
dynamics (Haji-Abolhassani & Clark, 2014).

Experimental results agree that the given task significantly affects gaze character-
istics. Specifically, Castelhano et al. (2009) found that both number of fixations and
fixation durations varied with task and that fixated areas were qualitatively different
between tasks. Other studies also found effects of task on temporal (e.g., fixation
duration) as well as spatial (e.g., saccade amplitude) measures (Bonev et al., 2013;
Mills et al., 2011). Search tasks have also been found to lead to an extended range of
fixation locations compared to free viewing material (Tatler, 2007). However, finding
systematic differences for the type of task, such as free viewing or search has yielded
inconsistent results. While Mills et al. (2011) found shorter fixation durations for
search tasks compared to free viewing, results disagree about saccade amplitude with
more recent findings by Backhaus et al. (2020). Because of the variety of tasks and
stimuli in experimental paradigms, however, it can be expected that comparisons of
results across studies is not straightforward and do not always lead to full agreement.

Taken together, experimental work as well as machine-learning classification paint
a consistent picture that individual differences, spatial selection, and aggregate eye
movement measures are specific for tasks. Classification success depends highly on
the particular set of features selected and on the type of classification algorithm used.
A number of studies used features of varying abstraction, from the very basic saccade
amplitude and fixation duration to global or local image features (Boisvert & Bruce,
2016) or transition probabilities between identified regions of interest (Coutrot et al.,
2017). In the next sections we discuss the role of process-oriented models in scene-
viewing research, with a particular focus on scan path generation.
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3.1.2 Theoretical models of visual attention during scene viewing

Human eye movements in natural scene viewing are guided by visual attention (Itti &
Koch, 2001), which is modulated by image-dependent features. Basic research showed
that saccadic eye movements follow the locus of attention (Deubel & Schneider, 1996;
Kowler & Blaser, 1995). This tight coupling of attention and saccades is exploited in
experimental work, where gaze positions are typically equated with the locus of visual
attention (Henderson, 2003). It should be noted, however, that there are pronounced
deviations between visual attention and gaze position around the time of saccade
(Deubel & Schneider, 1996; Kowler & Blaser, 1995). For example, we recently showed
in a mathematical modeling study that effects of perisaccadic attention can explain
effects of saccade statistics in scene viewing (Schwetlick, Rothkegel, Trukenbrod, et al.,
2020b) within the SceneWalk model (Engbert, Trukenbrod, et al., 2015, see below).
The following section discusses primarily image-computable models for the spatial,
time-averaged distribution of fixation positions as a proxy for visual attention, which
constitute a large part of the literature on the topic.

Past modeling work shows that image-dependent influences contribute strongly to
predictions of the overall gaze positions when viewing natural scenes. Relevant im-
age features include local luminance contrast and edge density (Mannan et al., 1997;
Parkhurst & Niebur, 2003; Reinagel & Zador, 1999; Tatler et al., 2005). Much of the
early modeling work to predict fixations involved the detection of these features in
images to generate an activation map, in which high activation represents areas rich
in features relevant for the viewing task.

In 1985, Koch and Ullman proposed a model that (i) simultaneously computes vari-
ous feature maps for color, intensity, edges, and feature popout detected by biologically
plausible components such as center-surround receptive fields and that (ii) integrates
these maps into a master map called saliency map. This idea was later implemented as
a computational model (see Itti & Koch, 2001, for an overview). More feature-based
saliency models followed, adding other spatial features or statistics (e.g., Bruce and
Tsotsos, 2009; Harel et al., 2006; Tatler et al., 2006; Torralba et al., 2006).

One way of evaluating saliency models is to compare the generated saliency maps
to empirical fixation densities from eye movement experiments (Parkhurst et al., 2002;
Tatler et al., 2005). Linking the two concepts is the assumption that attention and eye
movement are closely related (Henderson, 2003), as discussed above. In order to be
able to compare a two-dimensional density and a series of fixation locations, metrics of
different sophistication have been proposed (Kümmerer et al., 2015), including AUC
score (Tatler et al., 2005) and Kulback-Leibler divergence (Le Meur & Liu, 2015).
The popular MIT/Tübingen Saliency Benchmark4 employs seven such metrics, each
emphasizing different aspects and yielding different results. More recently, Kümmerer
et al. (2015) suggested to use the concept of information gain based on statistical model
likelihood applied to saliency modeling, as a statistically well-founded alternative to
ad-hoc metrics.

4 See https://saliency.tuebingen.ai
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Beyond simple feature-based attention, processes of target selection can also include
higher level concepts such as objects or contextual guidance (Nuthmann & Hender-
son, 2010; Torralba et al., 2006). A long-standing debate exists between the more
top-down interpretation that emphasizes cognitive relevance and meaning (Henderson
et al., 2007; Henderson & Hayes, 2017; Henderson et al., 2019; Henderson & Smith,
2009) and the traditional saliency oriented approach (Pedziwiatr et al., 2021a). The
distinction is not as clear-cut as some discussions suggest, however, as clusters of
low-level image features are also indicative of objects. Research does show that incor-
porating information about object locations into saliency models makes them more
accurate (Kümmerer, Theis, et al., 2014). Thus, eye movements are driven both by
basic features detected by low-level vision as well as more advanced levels of cognitive
processing (Schütt et al., 2019).

Using deep learning techniques and neural network architectures, recent models of
general visual saliency achieved considerably improved prediction accuracy (Bylinskii
et al., 2015; Kümmerer et al., 2017) compared to earlier approaches. Neural network
models are trained using experimental fixation data, which represent image-driven
as well as meaning- and task-dependent influences. Correspondingly, although the
outcomes are referred to as saliency maps, models trained using this data-driven ap-
proach produce descriptions of eye movements which can no longer be dissociated into
particular layers of cognition.

It is also worth noting that almost all experimental data used in this data-driven
approach are acquired from participants who viewed pictures without a specific task.
The underlying assumption is that simple picture viewing results in the most natural
behavior. This was criticized by Tatler et al. (2011): “It seems more likely that free
viewing tasks simply give the subject free license to select his or her own internal
agendas” (p. 4).

Besides the viewing task, another aspect of ecologically valid, real-world conditions
is the possibility of body movement (Backhaus et al., 2020; Matthis et al., 2018). In
order to evaluate whether typical lab restrictions, e.g., head stabilization on a chin
rest, limit the generalizability of results (Tatler et al., 2011). Backhaus et al. (2020)
suggested the use of mobile eye-tracking which permitted natural posture and postural
fluctuations (Collins & De Luca, 1995), with the general finding that task effects are
robust with respect to changes in body posture while viewing images.

Modeling of visual attention during scene viewing often focuses exclusively on the
spatial aspect of where fixations are placed on an image. Next, we discuss how time-
ordered fixation sequences are generated and which factors influence scan path dynam-
ics via biologically inspired mechanisms—including the timing of saccades (Henderson,
2003).

3.1.3 Biologically inspired models of scan path generation
During active vision (Findlay & Gilchrist, 2003), our gaze continually explores the
visual environment by producing saccadic movements. Findlay and Walker (1999a)
proposed an influential conceptual model for generating saccades, which claims validity
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for a variety of experimental paradigms and situations. A fundamental assumption
in the model is that two partially separate pathways exist for temporal and spatial
control processes. Both pathways are composed of a hierarchy of levels from automatic
to higher-level cognitive control, where each level has high biological plausibility. This
basic architecture turned out to be successful in a variety of cognitive tasks, such as
reading (Engbert et al., 2002; Engbert et al., 2005; Rabe et al., 2021; Seelig et al.,
2020) and scene viewing (Engbert, Trukenbrod, et al., 2015; Schwetlick, Rothkegel,
Trukenbrod, et al., 2020b). Thus, there is theoretical support for the existence of
separate pathways for to spatial and temporal control of gaze.

As discussed in the previous section, significant progress has been made on models
that predict the spatial control of gaze position, often termed visual saliency modeling
(Itti & Koch, 2001). These models aim at predicting the 2D density of fixations on
a given scene. From the beginnings of the research tradition, biological plausibility
played an important role for the development of these models (Koch & Ullman, 1985).
However, initially there was little interest in making use of saccade statistics that were
more detailed than the spatial density of fixations.

While the role of scan paths (Yarbus, 1967) and sequential effects in sequences
of saccades (Noton & Stark, 1971a, 1971b) was noted early on, it was only much
later that the dissatisfaction with purely saliency-based models stimulated interest
in scan path generation (Zelinsky, 2008). For example, Tatler and Vincent (2009)
demonstrated that adding oculomotor principles to models could significantly improve
the predictive power in spatial selection. Thus, effects of the previous fixation location
on the selection of the upcoming gaze position were identified as an important modeling
goal (Le Meur & Liu, 2015) for understanding principles of human gaze control.

The success of mathematical models to reproduce human gaze positions stimulated
interest in theoretical models for fixation durations (Henderson, 2003). Since each
fixation is bounded by two saccades, effects of oculomotor preparation and execution
are highly relevant to the statistics of fixation durations and saccade timing. Nuth-
mann and Henderson (2010) proposed a random-walk model for timing of saccades
(CRISP) to explain data from an experimental paradigm with delayed scene onsets.
Similarly, Tatler et al. (2017) used a activation-based rise-to-threshold unit (Reddi &
Carpenter, 2000) for the generation of saccadic onset-times in their model (LATEST).
The LATEST model (Tatler et al., 2017) is a combined model of spatial and tempo-
ral control. This approach represents of mixture of process-oriented (LATER unit;
Reddi & Carpenter, 2000) and data-driven modeling (spatial aspects). As a result,
the LATEST model demonstrates important effects on the integration of spatial and
temporal control of saccades. However, the data-driven components of LATEST offer
limited insight into the biological processes that generate the behavior.

A recent paper that contributed to the conceptual advancement in the field of eye-
movement modeling was published by Kucharsky et al. (2021). In this theoretical
study, a model for fixation durations from the broad class of information accumula-
tion or drift-diffusion models (P. L. Smith & Ratcliff, 2004) was extended by a spatial
component. The integrated model termed WALD-EM was successful in modeling
many aspects of saccade statistics and distributions of fixation durations. Most im-
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portant for theory building, a combined spatiotemporal likelihood function was used,
which provides the basis for rigorous statistical inference.

Statistical, functional, and mechanistic modeling in cognitive science take on vastly
different roles (Bechtel & Abrahamsen, 2010). While statistical models are mainly de-
scriptive, functional and mechanistic models are process-oriented and propose specific
interactions between different subsystems. Thus, specific assumptions can be tested
against experimental data, so that the plausibility of biologically-inspired mechanisms
can be tested (Engbert, 2021). The more grounded in experimental evidence and
the more mechanistic the model, the more compelling are the conclusions are about
the explanation of an observed effect (Bechtel & Abrahamsen, 2010). Moreover, in
mechanistic, generative models it is possible to interpret the model parameters with
respect to the processes in the visual, attentional, and oculomotor systems. Within
this class of models we developed the SceneWalk model (Engbert, Trukenbrod, et al.,
2015; Schütt et al., 2017; Schwetlick, Rothkegel, Trukenbrod, et al., 2020b), which is
in agreement with the framework proposed by Findlay and Walker (1999a).

In the SceneWalk model, fixation selection is based on a time-dependent priority
map that is influenced by the current gaze position, time-independent fixation density,
and previously fixated locations. More recently, Schwetlick, Rothkegel, Trukenbrod,
et al. (2020b) added perisaccadic attentional processes that improved the model’s per-
formance with respect to a variety of scan path metrics including complex effects such
as modulations of the mean fixation durations by saccade turning angle. With respect
to task influences discussed in the current work, we expect that differences in scan
paths across tasks will be reflected in differences of the numerical values of model pa-
rameters across tasks. The ability of dynamical process-oriented models to reproduce
differences in behavior via parameter adaptation supports the underlying mechanisms
by demonstrating generalizablity. Our assumptions of how parameter values vary be-
tween tasks is based on prior experimental work showing that repeated viewing of
the same natural scenes induce differences in saccade statistics (e.g., distribution of
saccade lengths). These differences are compatible, in the model, with a smaller per-
ceptual span during second viewing of the same image compared to the first viewing
(Trukenbrod et al., 2019).

3.1.4 The role of saliency for dynamics
Due to intense research, the scientific literature on modeling of static saliency (2D
fixation density) has grown enormously, while scan path modeling is a comparatively
new field of quantitative modeling. In this paper we use the SceneWalk model of
eye movement dynamics (Engbert, Trukenbrod, et al., 2015; Schwetlick, Rothkegel,
Trukenbrod, et al., 2020b) to investigate the principles of task-dependent scan paths.
In order to generate scan paths, the model relies on activation maps which approximate
visual saliency. As a stable upper bound, in earlier studies we used experimental
fixation densities. Alternatively, the model could also be combined with a saliency
model and generate eye movements from computer-generated saliency maps.

The aim of the current study is to investigate the modulation of underlying processes

59



3 Modeling Task influences

of static and dynamic components of eye guidance caused by task variation. It is
important to note that the term saliency map has been used to describe different
concepts in the literature. As discussed above, visual saliency initially referred to
very low-level image features like edges (Itti & Koch, 2001). This early concept of
saliency is completely devoid of higher level influences such as task. Later, however,
the concept of saliency was expanded to include all influences that improve predictions
on visual attention as indicated by gaze (Kümmerer, Theis, et al., 2014). It is clear that
if complex models are fitted to empirical fixation densities, then higher-level factors
such as task are difficult to separate from low-level vision. Recently, there has been
much discussion about the importance of high level image features versus meaning
as a main predictor of eye movements (Henderson & Hayes, 2017, 2018; Henderson
et al., 2019; Pedziwiatr et al., 2021a, 2021b). While this discussion is clearly relevant
to the distinction between top-down and bottom-up influences in vision (Schütt et al.,
2019), the focus of the current work is on the interaction between saliency, task, and
the dynamics of scan path generation.

As discussed above there is empirical evidence that viewing strategies during scene
viewing depend on the given task. One possibility is that the main cause for this
difference is an adjustment of the prioritization of visual information. Based on this
assumption, elements in the visual display are weighted by attention according to
their importance to the task. This hypothesis requires the input saliency for the
eye movement model to be separate task-specific saliency maps for each image and
task. As an alternative hypothesis we might consider differences between tasks to be
attributed to the tuning of saccade dynamics to particular tasks. Here, task-specific
weighting of image features can be neglected and the eye movement model uses the
same general purpose saliency input per image for all tasks. To represent this idea,
we use a general fixation density from a free viewing task as a basis for task-specific
model parameter estimation and validation. It seems likely that task-specific saliency
effects as well as task-specific eye movement effects will play a role.

Here we present the results for two alternative models using general and using task-
specific fixation densities as input to the eye movement model. We then compare the
resulting performance of both models. The general fixation density in the model is
related to the task-independent interpretation of saliency. The saliency map that is
passed into the model is constructed using experimentally recorded scan paths from a
separate free-viewing experiment using the same images (Backhaus & Engbert, 2022b).
The task-specific saliency version of the model is identical, with the difference that
separate fixation densities were constructed using gaze data from only one of four
different task conditions.

With concurrent models for the same experimental data, model inference has be-
come an increasingly important topic in cognitive modeling. Recently, the numerical
tools and the computation power have become available to carry out rigorous pa-
rameter inference and model comparisons (Schütt et al., 2017; Schwetlick, Rothkegel,
Trukenbrod, et al., 2020b), in particular, if the likelihood function for the model can
be computed or approximated. In the next section, we discuss statistical inference for
dynamical models.
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3.1.5 Bayesian parameter inference for dynamical models

Dynamical models of eye-movement control generate specific predictions for sequential
dependencies of fixations over time. As a consequence, the full potential of statistical
inference for dynamical models unfolds if model predictions are evaluated based on
fixation sequences (Engbert et al., 2022). This approach requires sequential predictions
for upcoming fixations, advanced computational methods, and sufficient computing
time (Schütt et al., 2017). Many state-of-the-art methods for parameter inference
in cognitive models, however, are based on ad-hoc performance metrics (Engbert,
Trukenbrod, et al., 2015; Le Meur & Liu, 2015; Tatler et al., 2017; Zhou & Yu,
2021). Often (but not always), such ad-hoc metrics ignore the sequential structure
of scan paths. In these cases, researchers choose relevant metrics and compute a loss
function that indicates how closely simulated data resemble experimental data based
on the pre-defined metrics. Model parameters are obtained by optimization of the loss
function when model parameters are varied. As a result, model inference is subjective
(i.e., dependent on the choice of the loss function) and difficult to generalize, since
arbitrary metrics will optimize the model to reproduce some aspects of the model
while ignoring others.

A statistically well-founded alternative is based on the likelihood function LM(θ|data)
of a model M with parameters θ given an experimental data set (Myung, 2003). The
likelihood is defined as the conditional probability PM for observing the data in the
context of model M specified by parameters θ, i.e.,

LM(θ|data) = PM(data|θ) . (3.1)

If numerical computation of the likelihood, Eq. (3.1) is possible, then rigorous statisti-
cal inference on model parameters and comparisons between different models are also
possible, including Bayesian inference (Gelman et al., 2013). In static saliency model-
ing, the use of the likelihood (Kümmerer et al., 2015) is straightforward: the saliency
map is interpreted as a fixation probability and the probability of each experimentally
observed fixation position is evaluated on this probability map. In dynamical scan
path modeling the process is more elaborate as explained in the following (Engbert
et al., 2022; Schütt et al., 2017).

A fixation fi in a scan path F = {f1, f2, f3, ..., fN} is given by its spatial position
(xi, yi) and its fixation duration Ti. Thus, a fixation fi = (xi, yi, Ti) is a 3-tuple.
Because of the sequential nature of the scan path, the likelihood can be decomposed
into a product of conditional probabilities, i.e.,

LM(θ|F) = LM(θ|f1, f2, f3, ..., fN) (3.2)

= PM(f1|θ)
N∏
i=2

PM(fi|f1, f2, ..., fi−1; θ) , (3.3)

where the generative model is used to estimate the probability PM(fi|f1, f2, ..., fi−1; θ)
of the ith fixation when enforcing the previous fixations f1, f2, ..., fi−1 and PM(f1|θ) is
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the first fixation that is typically known and experimentally controlled (Schütt et al.,
2017; Seelig et al., 2020), so that PM(f1|θ) = 1.

In Bayesian inference, we specify a prior probability P (θ) over the model parameters
and use the likelihood LM(θ|F) to compute the posterior probability P (θ|F) using
Bayes’ theorem,

P (θ|F) =
LM(θ|F)P (θ)∫

Ω
LM(θ|F)P (θ)dθ

. (3.4)

The integral in the denominator in Eq. (3.4) is typically intractable for realistic cogni-
tive models. Therefore, the posterior probability P (θ|F) is estimated numerically via
Markov Chain Monte Carlo methods (Gilks et al., 1996). We will discuss the specific
numerical procedures for parameter estimation in the methods sections.

3.1.6 The current study

The research goal of this study was to carry out model-based analyses of task ef-
fects on scan path generation. The starting point for our modeling work will be the
SceneWalk model for scan path generation during scene viewing (Engbert, Truken-
brod, et al., 2015; Schütt et al., 2017; Schwetlick, Rothkegel, Trukenbrod, et al.,
2020b). Recently, we included peri-saccadic attentional effects, which reproduced cor-
relations between saccade turning angles with saccade lengths and fixation durations
(Schwetlick, Rothkegel, Trukenbrod, et al., 2020b). This variation of the SceneWalk
model can reproduce systematic variations in mean fixation durations. However, the
peri-saccadic principles do not represent an explicit timing mechanism for saccades as
proposed by Nuthmann and Henderson (2010) (see also Laubrock et al., 2013; Tatler
et al., 2017).

Since explicit timing effects can be expected in task-dependent scene viewing, here
we developed a further version of the model that includes a mechanistic timer. As
shown by the LATEST model (Tatler et al., 2017), the saliency value at fixation exerts
a negative effect on the decision rate, which translates into prolonged mean fixation
durations for fixation location with higher saliencies compared to lower saliences. In
order to investigate a coupling between temporal and spatial information in the Sce-
neWalk model (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b), we introduce a tim-
ing mechanism that enables the local saliency to influence mean fixation durations.
This addition combines fixation durations and fixation locations into one coherent
model, improving our general framework for generating fixation sequences. Coupling
parameters for the spatial and temporal components are estimated from experimental
data.

The structure of the manuscript is as follows. We start with a detailed explana-
tion of the SceneWalk model and its underlying activation dynamics with activation
and inhibition pathways (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b). Next,
we extend the model to include the explicit timing mechanism for saccade genera-
tion. The likelihood function of the extended model can be decomposed into a spatial
and a temporal component. We discuss the specific approach for numerical Bayesian
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inference. After the introduction to the model, we describe the experiment on nat-
ural scene-viewing which included a task manipulation (Backhaus et al., 2020). The
Results show parameter estimation and posterior predictive checks that indicate the
goodness-of-fit for various dependent variables. Based on the posterior estimates of
the model parameters, we run a statistical analysis across participants and tasks that
highlight how the model explained task effects. For the different model variations,
we present results from likelihood-based model comparisons. A statistical analysis is
also applied to generated scan path data and compared to experimental data, which
confirm adequacy of the model fits. Finally, we discuss our results with respect to task
dependence on scene-viewing and saliency modeling, inter-individual differences, and
more general aspects on process-oriented modeling.

3.2 SceneWalk: A framework for dynamical scan-path
modeling

The SceneWalk model (Engbert, Trukenbrod, et al., 2015; Schütt et al., 2017) imple-
ments two largely independent processing streams: one activatory and one inhibitory
(see Figure 3.1). Both streams are grounded in theoretical (Itti & Koch, 2001) and
experimental work (Rothkegel et al., 2016), showing that they represent the two main
factors contributing to fixation selection.

The activation stream combines information about image features with a mecha-
nism for foveation and thereby yields an approximation of the information that can be
extracted from an image at a particular fixation location. Image features include edge
and contrast information as well as more high level information such as objects. This
information is passed to the SceneWalk model in the form of a normalized fixation
probability map. The SceneWalk model is solely a model of dynamics and requires a
saliency map to be provided as input for each image. This map could be computed by
one of the implemented saliency models (e.g. Kümmerer et al., 2015) that follow the
general modeling approach (Itti & Koch, 2001). For the later interpretation of results,
strengths and weaknesses of the saliency models must be separated from shortcomings
of the scan path model. Therefore, we will use the experimentally observed fixation
density estimate, which represents the theoretical upper limit for the performance of
the salience model. Mismatches between data and model output are therefore pre-
dominantly caused by the scan path model, although the time-averaging assumption
for the fixation density is another approximation that may contribute. The second
component of the activation stream is related to the visually attended region. When
attention is aligned with the current fixation position, the decreasing receptor density
of the retina towards the periphery leads to a decline in visual acuity, which we imple-
ment as a Gaussian window centered around the current fixation. For attention shifts
to the periphery, discussed below, we keep the Gaussian window approximation to im-
plement an attentional spotlight on an upcoming target (Engbert et al., 2011; Itti &
Koch, 2001; Shulman et al., 1979; Tsotsos, 1990). The convolution of saliency and the
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Gaussian window results in the input to the activation stream (Engbert, Trukenbrod,
et al., 2015).

The inhibition stream of the SceneWalk model is responsible for fixation tagging,
i.e., keeping track of fixated regions and preventing the continuous return to the same
high saliency regions (Bays & Husain, 2012; Klein, 2000). Evidence from visual search
(Posner et al., 1985) and also scene viewing (Bays & Husain, 2012; Klein & MacInnes,
1999; Rothkegel et al., 2016) and electrophysiology (Hopfinger & Mangun, 1998; Mir-
pour et al., 2019) shows the relevance of inhibition of return for scan path statistics.
The input to the inhibition stream for fixation tagging is also implemented as a Gaus-
sian centered at the current fixation location (see Figure 3.1).

The two separate streams evolve continuously over time. Among the previous mod-
eling results, we found that the build-up of activation in the inhibition stream is slower
than the activation stream (Engbert, Trukenbrod, et al., 2015). As a consequence, in-
hibitory tagging evolves slowly, so that refixations of recently fixated scene regions
are still possible (T. J. Smith & Henderson, 2009). In the activation stream of the
most recent version of the model (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b),
we added a directed, smaller facilitation of return (Luke et al., 2013; T. J. Smith &
Henderson, 2009) in addition to the slow, global inhibition of return. The interplay of
both mechanisms results in a slower decay of activation at the previous location and
briefly enables precisely directed return saccades. Thus inhibition of return, attention,
and facilitation of return can coexist by separating their temporal dependence. The
extended model is described in more detail in the following section. The combination
of the activation and inhibitory streams yields a priority map for saccade targeting
(Bisley & Mirpour, 2019), which the model uses as the 2D fixation probability map
for the selection of the upcoming saccade target. In the following, we discuss the
dynamical behavior of both activation and inhibition streams as well as its combina-
tion to generate a priority map, which depends on fixation history and indicates the
time-dependent probability of the target selection process.

3.2.1 Activation dynamics of attention and inhibitory fixation tagging

The most recent version of the SceneWalk model (Schwetlick, Rothkegel, Truken-
brod, et al., 2020b) implements the two-stream architecture discussed above as well
as perisaccadic attentional mechanisms, which are related to saccade preparation and
execution. As in the original model (Engbert, Trukenbrod, et al., 2015; Schütt et al.,
2017), the activation and inhibition streams evolve over time and are combined math-
ematically to yield a moment-to-moment priority map (Bisley & Mirpour, 2019), from
which target locations are selected probabilistically.

The model is implemented on a 128×128 grid, where (x, y) give the physical coordi-
nates in degrees of visual angle. The inhibition/fixational tagging pathway is defined
as a 2-D Gaussian centered around the current fixation position (fx, fy). It evolves
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Figure 3.1 Two-stream architecture of visual attention and inhibitory tagging. The current fix-
ation position is marked by the symbol “x”. The streams evolve neural activations independently
over time depending on the fixation position, input and decay. The activation stream receives as
input a saliency map (black and white color map) which is convolved with a Gaussian aperture
to approximate the visual attention span (orange color maps). The blue color maps represent in-
hibitory fixation tagging, which keeps track of previously visited locations. When both maps are
combined the result is a priority map we interpret as the fixation selection probability.

over the duration of the fixation according to the differential equation

dFij(t)

dt
= ωF

(
GF (xi, yj;xf , yf )∑
klGF (xk, yl;xf , yf )

− Fij(t)

)
, (3.5)

where F , denotes the fixation-based inhibition stream, GF is the Gaussian-shaped
activation window with standard deviation parameter σF , and ωF is the parameter for
the speed of decay.

The activation stream is implemented as a separate ODE, with its own separate time
scale. It similarly includes a Gaussian window around the fixation location, emulating
the decrease of visual acuity towards the periphery, and includes information about
visual saliency, which must be passed to the model. The differential equation for the
activation stream is given by

dAij(t)

dt
= ωA

(
Sij GA(xi, yj;xf , yf )∑
kl SklGA(xk, yl;xf , yf )

− Aij(t)

)
, (3.6)

where A, denotes the activation stream, GA is the Gaussian-shaped activation window
with size σA, centered around the appropriate location for each phase, S is the saliency
map of the image, and ωA is the parameter for the speed of decay. The computation
of numerical solutions of the of ODEs given by Eqs. (3.5-3.6) for all grid points (i, j)
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Figure 3.2 Temporal sequence of the three phases peri-saccadic attention. In the SceneWalk
model, each fixation is split into three phases. During the main phase (yellow color) attention and
fixation location are aligned, so that the activatory (red, solid line) and the inhibitory (blue, dashed
line) Gaussian inputs are both centered around the current fixation position. The main phase is
followed by a pre-saccadic shift (rose color) , where the attention precedes the eye position to the
selected location. After each saccade (black line) a brief post-saccadic shift (purple color) causes
the attention to be shifted further along the saccade vector, before fixation position and attention
once again align at the new fixation position.

is discussed in Appendix B.2.

The extended model version (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b)
adds changes around the time of saccade to the model, where the temporal aspect is
illustrated in Figure 3.2. Each fixation is split into three distinct phases: main phase,
pre-saccadic shift, and post-saccadic shift. The rationale behind the extension is that
before each saccade, attention precedes the eye to the target location. After a saccade
has been executed, research shows evidence for a brief shift to account for the post-
saccadic retinotopic attention trace. Thus, in the extended model, the center of the
attentional Gaussian does not always align with the fixation position (overt attention),
but instead the two decouple around the time of saccade. Previous work has shown
that these components of saccade generation improve important statistical properties
of the predicted scan path (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b).

The saccade direction is given by the vector (xδ, yδ) with xδ = xn − xn−1 and
yδ = yn − yn−1. Therefore, the location of the post-saccadic shift is determined by

(xs, ys) = (xn, yn) +
(xδ, yδ)√
x2δ + y2δ

· η , (3.7)
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i.e., the target region of the shift corresponds to a point along the previous saccade
vector, where η determines the shift amplitude relative to the previous saccade length.

The peri-saccadic extension of the model requires that the differential equations for
the evolution of activations are applied to the three phases for each saccade, since the
center of the activation stream is in a different position at each step (see Figure 3.2).

In order to select the next fixation target a priority map is computed, by combining
both streams. The exponent γ shapes this priority map, making it more deterministic,
the higher the exponent becomes,

uij(t) =
(Aij(t))

γ∑
kl (Akl(t))

γ − CF
(Fij(t))

γ∑
kl (Fkl(t))

γ . (3.8)

Negative values of uij indicate excess inhibitory activations, which render the sac-
cade targeting probability zero. Thus, for computation of the saccade probability is
based on the positive values u∗ij, defined as

u∗ij =

{
uij if uij > 0
0 otherwise (3.9)

Finally, since zero fixation probability does not exist in real experiments, a noise term
ζ is added to warrant fixation in regions with uij < 0 with low probability, i.e., the
target selection probability at position (i, j) is given by

π(i, j) = (1− ζ)
u∗ij∑
kl u

∗
kl

+ ζ
1∑
kl 1

. (3.10)

The extended model also includes mechanisms for center bias and facilitation of
return, for which we provide detailed mathematical equations in the Appendix.

3.2.2 Temporal control of fixation durations and coupling to local saliency

Because of the dynamical nature of the activation maps in the SceneWalk model,
saccadic selection probabilities (or the priority map) change over time during fixations.
Therefore, we clearly expect the model to predict interactions of temporal and spatial
aspects of saccade preparation. This theoretical expectation is in good agreement
with the results of statistical parameter fitting in the LATEST model (Tatler et al.,
2017), which demonstrates various correlations between spatial and temporal aspects
of saccade selection.

We assume that fixation durations are controlled by a continuous-time discrete-state
random walk process (see also Laubrock et al., 2013; Nuthmann & Henderson, 2010).
The distribution of fixation durations T generated by this random walk is a Gamma
distribution, which can be written as

g(T ) =
bq

Γ(q)
T q−1e−bT , (3.11)
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with free parameters rate b and shape q. The mean fixation duration is given as
µT = q/b and its variance is σ2

T = q/b2. It is important to note that our model
does not critically depend on the assumption of a Gamma distribution. The broad
class of information accumulation or drift-diffusion models (P. L. Smith & Ratcliff,
2004) generates qualitatively very similar distributions. The WALD-EM model by
Kucharsky et al. (2021) assumes a WALD (inverse Gaussian) distribution, which gives
a comparable goodness-of-fit to the experimental data. Thus, the total duration of
each fixation is generated by sampling from the Gamma distribution. According to the
most recent version of the SceneWalk model (Schwetlick, Rothkegel, Trukenbrod, et
al., 2020b), a fixation is subdivided into post-saccadic, main, and pre-saccadic phases.
The full duration is therefore split into the three phases. The post- and pre-saccadic
phases have fixed durations, which is an assumption inspired by experimental work on
predictive allocation and remapping of attention (Rolfs et al., 2011). Specifically, the
duration of the shifts were set to τpre = 0.05 s for the pre-saccadic shift and τpost = 0.1 s
for the post-saccadic shift, corresponding to the approximate durations found in the
literature (Golomb et al., 2008; Rolfs et al., 2011).

An interesting and important question is if and how local saliency and mean fixation
duration are related. Here we assume that mean fixation duration T̄i at fixation
location xi parametrically depends on the logarithm of the local saliency log s(xi).
We assume that the shape parameter q of the distribution is constant, while the rate
parameter b varies in relation to current input. Therefore, we will try to estimate the
parameters tα and tβ for a linear relationship between parameter b and the logarithm
of the local saliency, i.e.,

b = tα + tβ log s(xi) . (3.12)

In principle, we assume that the model’s activation value at location xi should be
used in Eq. (3.12), not local saliency. For simplicity, the current version of our model
uses the (logarithm of the) local saliency as an approximation for the average local
activation.

In the following sections we will refer this, most recent, version of the model (with
timing mechanism and attentional shifts) as SceneWalk. Previous versions of the
SceneWalk model are not subject of this paper.

3.2.3 Full likelihood function for fixation positions and fixation durations

Previous versions of the SceneWalk model did not explicitly model saccade timing.
With the gamma-distributed random-walk process for saccade triggering, we follow
a strategy similar to the LATEST model (Tatler et al., 2017). In this section, we
derive the full likelihood function of the model by including fixation durations in the
likelihood function. A similar approach has been developed in the WALD-EM model
(Kucharsky et al., 2021), who used a combined spatiotemporal likelihood. As discussed
below, the spatial and temporal likelihood can be factorized, so that the log-likelihood
sums up from spatial and temporal contributions.
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3.2 SceneWalk: A framework for dynamical scan-path modeling

A fixation i is determined by position xi and fixation duration Ti, i.e., fi = (xi, yi, Ti).
A scan path is a fixation sequence FN = {f1, f2, ..., fN} of N fixations. For an experi-
mentally observed (or simulated) sequence of N fixations, the log-likelihood lM(θ|data)
under model M specified by parameter vector θ is given by

lM(θ|data) =
N∑
i=1

logPM(fi|Fi−1, θ) , (3.13)

where Fi−1 is the fixation sequence up to fixation i−1. The probability PM(fi|Fi−1, θ)
can be decomposed into a spatial (fixation location xi) and temporal (fixation duration
Ti) part, i.e.,

P (fi|Fi−1, θ) = P spat(xi, yi|Fi−1, θ) · P temp(Ti|xi, yi,Fi−1, θ) . (3.14)

Therefore, the log-likelihood can be written as

lM(θ|data) =
N∑
i=1

(
logP spat

M (xi, yi|Fi−1, θ) + logP temp
M (Ti|xi, yi,Fi−1, θ)

)
. (3.15)

With the general procedure for sequential likelihood computation given by Eq. (3.2),
we can write the log-likelihood of a full fixation sequence FN as

lM(θ|FN) =
N∑
i=2

logPM(fi|Fi−1;θ) . (3.16)

Therefore, this spatio-temporal log-likelihood expands on and replaces the original,
purely spatial likelihood function described in Schwetlick, Rothkegel, Trukenbrod, et
al. (2020b).

3.2.4 Computational Bayesian inference of the SceneWalk model
With the computation of the model’s likelihood function described in the previous
section, Bayesian parameter inference can be implemented on a computer (Schütt et
al., 2017). The advantage of the Bayesian framework is that we estimate not only
point estimates for each parameter, but have access to the full posterior distribution
over the model parameters. This is particularly desirable in models with a complex
likelihood structure, where posteriors may be multi-modal or when we are interested
in how much the data constrains the parameters (Gelman et al., 2013; Schad et al.,
2021). Past studies have yielded promising results when applying Bayesian methods
to dynamical cognitive models (e.g. Kucharsky et al., 2021; Rabe et al., 2021; Schütt
et al., 2017; Seelig et al., 2020). For example, model parameters could be estimated
for single participants, which was impossible before.

The most common numerical method for computation of the posterior is using
Markov Chain Monte Carlo (MCMC) sampling (Gilks et al., 1996). A version of
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this general approach is a random walk that samples higher density regions of the
target distribution more frequently than lower density regions (Brooks et al., 2011).
Beginning in a random location, the algorithm selects a candidate point according to
a proposal distribution around the current location. This point can then be accepted
or rejected based on the likelihood value at that location. It is important to note
that even low probability points can be accepted. Thus, the algorithm proportionally
samples the target distribution (Brooks et al., 2011).

In the present study, we applied the differential evolution adaptive Metropolis
(DREAM) algorithm (Vrugt & Braak, 2011), which is a general-purpose MCMC sam-
pler with excellent performance on complex, multimodal problems. The DREAM
algorithm runs multiple Markov Chains in parallel, which can exchange information
about past states. The latest version MT-DREAM(ZS) combines the strengths of
multiple-try sampling, snooker updating, and sampling from an archive of past states
(Laloy & Vrugt, 2012). These improvements help to optimize the convergence rate
and also reduce the probability of individual chains running out of bounds or getting
caught in local maxima. Recently, we applied the DREAM(ZS) algorithm successfully
to the previous model version (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b).

For the purposes of examining the differences between tasks, we split the data into
a training and a test set. Thus, for each participant and task a randomized subset of
3/4 of the trials are considered training data and 1/4 is considered test data. For the
parameter inference, we use training data. The sequential likelihood for each fixation
in the training data is calculated for each point in the parameter space sampled by
the estimation algorithm.

We estimate a subset of all model parameters that turned out to be critical for
reproducing the most important statistics in experimental scan paths during previous
studies (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b). An overview of all fitted
model parameters is given in Table 3.1. Priors were informed by the previous work
with the model on other data sets. We used truncated Gaussian distributions as
priors and kept them relatively uninformative in order to allow the data to constrain
the model freely for each subject. The prior parameters are also reported in Table 3.1.

3.3 Experiment
With the theoretical extension of the SceneWalk model to generate fixation durations
via explicit timing of saccades we set out to investigate a model-based explanation
of task effects during scene viewing. The experimental data are taken from a re-
cently published paper that report results from a paradigm with different viewing
tasks (Backhaus et al., 2020). The experimental study includes eye-tracking data
from 32 participants with normal or corrected-to-normal vision in a scene viewing
experiment. Participants were asked to solve four different tasks while viewing 30
natural images.

Here, we focus on a basic description of the viewing tasks. For more details about the
original experiment see Appendix Section B.1. Participants were required to count the
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Parameter Description Eq. Range Mean SD

ωA Speed of decay of the activation
stream

(3.6) 0 ... 100 10 12

σA Standard deviation of the Gaus-
sian activation (°)

(3.6) 0 ... 30 7 5

σF Standard deviation of the Gaus-
sian inhibition (°)

(3.5) 0 ... 30 4 4

γi Exponent regulating determinism
in target selection

(3.8) 0 ... 5 1 3

log10 ζ Noise parameter for target selec-
tion

(3.10) −10 ... 0 −2 2

η Size of the post-saccadic shift rel-
ative to saccade length

(3.7) 0 ... 4 0.5 2

tα Timing intercept (3.12) 0 ... 5 3 5
tβ Factor for the coupling of saliency

and timer
(3.12) −4 ... 0 −0.4 3

q Shape parameter for the timing
distribution

(3.11) 0 ... 15 3 3

Table 3.1 Model parameters for numerical inference. Range, mean, and standard deviation (SD)
specify the truncated Gaussian priors for each parameter.

number of people in the scene images (Count People). Each image contained between 0
and 9 people; in some cases people were well hidden in the pictures. Another count task
was to determine the number of animals shown in the image (Count Animals). Again,
the number could vary between 0 and 9 animals. Since animals can appear in very
different shapes and places compared to humans, the authors assumed that counting
animals is the more difficult task. Both counting tasks share some characteristics of
search tasks (Backhaus et al., 2020), because of the necessary detection of object type
before counting.

The remaining two tasks investigated by Backhaus et al. (2020) are more unspecific
with respect to the relevant scene regions, since in these tasks, participants were asked
to guess the time of the day an image was taken (Guess Time) and to guess the country
where the image was taken (Guess Country). The authors expected that light and
illumination, the actions shown in the image (e.g., having lunch) but also clothing
could give clues to the time of day or country of origin. These less specific viewing
tasks might be looked upon as mildly constrained free-viewing tasks, while the more
specific counting tasks might be considered as approximations to search tasks. Across
all participants, the four tasks were performed for each image. While each individual
participant solved all four tasks, only two of the tasks were solved for the same image
in a randomized order.

The experimental data were used to explore how different task instructions influence
model parameters. It is important to note that our approach required that time-
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ordered scan paths for each trial are available, i.e., a sequence of N fixations, FN =
{f1, f2, ..., fN}, to evaluate the model. Each fixation i is a combination of fixation
location xi and fixation duration Ti. For the scan path FN , the log-likelihood is
computed using Eq. (3.13). In order to limit the variability in scan path lengths we
limited the maximum number of fixations per trial to 20, i.e., we removed the last
fixations of a trial where necessary.

Experimental data were split into a training and a test sets. For the fixation densities
that serve as input saliency maps to the SceneWalk model we used different data for
general and task specific densities. The task specific saliency maps were estimated from
all fixation sequences obtained from the corresponding task condition. The general
saliency maps were computed based on experimental data from a separate study in
which the same images were shown in a free-viewing paradigm (Backhaus & Engbert,
2022b).

3.4 Results
The key motivation for the current study was a model-based analysis of the influence
of task on viewing behavior in natural scenes. Results from statistical model inference
may be investigated at three different levels. First, we analyze the parameter values
(obtained from the training data), which translate into process assumptions as they
possess specific interpretations in our mechanistic model. For example, numerical
values must fall within a range that is defined by its interpretation. Second, the
model likelihood for the test data set indicates the quality of the fit and will be used
to compare model variants. Third, we compare model-generated data to experimental
data. In Bayesian analysis, this step is termed posterior predictive checks (Schad et al.,
2021). Related analyses are highly indicative of which behavior the model captures
well and which aspects might be caused by yet unidentified mechanisms. Capturing
interindividual differences will be an important criterion for our model. The workflow
for our dynamical modeling study is summarized in Figure B.1 in Appendix Section
B.3.

3.4.1 Parameter estimation
In order to fit the parameters of the model to the task-dependent scene-viewing study
(Backhaus et al., 2020), we implemented a Bayesian workflow as proposed by Schad
et al. (2021), for which the likelihood computation for each scan path, Eq. (3.16), is an
essential prerequisite. For MCMC sampling we used the PyDREAM implementation
(Shockley et al., 2018) of the DREAM(ZS) algorithm (Laloy & Vrugt, 2012). Based
on priors for model parameters (see Table 3.1) informed by previous studies (Schütt
et al., 2017; Schwetlick, Rothkegel, Trukenbrod, et al., 2020b), PyDREAM generates
samples converging to the posterior distribution over the model parameter space. We
ran 3 chains of 20,000 iterations for 9 parameters for each of 32 participants in each
of 4 tasks. These numerical computations were carried out for both the model variant
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with task-dependent saliency input maps and for the model variant with one general-
purpose saliency input for all tasks. Thus, we report data from 256 model fits of 9
parameters each. As suggested by Vrugt and Braak (2011) we verified the convergence
of the estimation using the Gelman-Rubin R̂ statistic5 (see Appendix Section B.4,
Figure B.2).

Due to a combination of the number of models, model parameters, and number of
iterations for each scan path, we conducted parameter estimations on a medium-size
multi-core system. The sequential nature of scan paths computations allows paral-
lelization of the iterations between scan paths but not within. One likelihood evalu-
ation, i.e., one iteration in the MCMC sampling algorithm, can be computed within
about 10 seconds. One model (out of the total 256), using 28 CPUs, with three parallel
chains of 20,000 iterations required an approximate computing time of 55 hours.

In the Bayesian approach, the posterior density contains all information about the
model parameters. Figure 3.3 shows the marginal posteriors of all estimated model
parameters (Tab. 3.1) for task-specific saliency maps, as this is our baseline model. The
parameters in most cases converge to a distinct posterior distribution, which encode
individual differences. As an example, σA and σF should be noted as parameters where
the differences between the participants are explained as differences in attentional span
variability.

We now discuss important effects of the task on the SceneWalk model parameters
using task-specific and general saliency model variants, as reported in Table 3.2. Note
that in Figure 3.3 as well as in Table 3.2 we report general population-level trends,
although the models were fitted individually for each subject and task. To give overall
interpretation of results, we averaged the marginal posteriors and report maximum
posterior density measures of this average. It is important to note that these approxi-
mations are not equivalent to parameters fitted generally to the whole population and
disregard correlations between parameters. This measure is used solely descriptively;
all further analyses and statistics were conducted using the full marginal posteriors
for each model fits.

The parameters σA and σF represent the sizes of the Gaussian-shaped inputs for
the activation and inhibition streams, respectively. Both are smaller in the Count
conditions than in the Guess conditions, indicating a more localized focus in the Count
conditions. In fact the Count Animals condition is characterized by the smallest
values for both parameters. Locations of animals in the photographs are very diverse,
requiring detailed inspection and making the task the most difficult of the four.

Parameter ζ is the noise term. It is larger in the Count conditions, indicating that
the data is less predictable in those conditions than in the Guess conditions (note that
ζ is plotted as − log(ζ) and is therefore negative; smaller values have larger negative
values). This could again be interpreted as the result of the more directed viewing
behavior in count tasks.

5 Full details of the implementation of the model, the inference, and a variety of checks and to ensure
correct behavior are included in the OSF repository.
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Figure 3.3 Marginal posteriors for all estimated model parameters across the four tasks. The
panels visualize the marginal posteriors for all estimated model parameters using task-specific
saliency maps. The columns indicate the four tasks; rows represent the 9 estimated model param-
eters. Each grey line is one subject. The colored lines correspond to data from arbitrarily selected
participants, so that results for some participants can be compared across different parameters
and tasks. The black lines represent averages over all participants, i.e., a kernel density estimate
computed jointly for the samples of all models which shows the trend and spread of parameter
values. The dotted lines visualize the prior distributions. Vertical red lines mark the 50% highest
posterior density interval.
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Table 3.2 Point estimates for each parameter by task. The reported point estimates for each
parameter and model are the center of the 50% maximum posterior density interval, averaged
over subjects.
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The coupling of local saliency (or empirical fixation density) and mean fixation
duration is an important new component of the SceneWalk model. For all of the four
task conditions, the coupling parameter tβ, Eq. (3.12) turns out to be negative with
zero outside the credibility interval. Thus, for higher saliency at position xi compared
to position xj, i.e., 0 < s(xj) < s(xi) < 1, we have log s(xj) < log s(xi) < 0. Since
tβ < 0, the rate parameter b will be larger at position xj compared to position xi.
Finally, since the mean fixation duration µ = q/b, we obtain a longer mean fixation
duration at the high-saliency position xi compared to the low-saliency position xj.
Therefore, in our model, image patches of higher saliency will be fixated longer on
average. This is in good agreement with the results obtained for the LATEST model,
where the decision rate is negatively correlated with saliency (Tatler et al., 2017).

3.4.2 Likelihood for general versus task-specific saliency
The model likelihood informs about the overall adequacy of the model for explaining
the experimental data. An important theoretical question is related to the relative
performances of the model variants with general and task-specific saliency maps. For
example, are task-specific effects primarily due to task-specific saliency maps or can
we find task-specific parameters in scan path generating processes? To answer these
questions, we fitted two model variants, one model variant where the input saliency
map was computed from the experimental fixation density of a free viewing task and
another model variant where each fixation sequence was obtained from task-specific
experimental data.

Mathematically, the new model offers an interesting perspective with respect to
saccade timing and spatial target selection. We introduced the extended model with an
explicit saccade timing mechanism. Based on the model formulation, we showed that
the likelihood function can be decomposed into a spatial and a temporal component,
Eq. (3.15). Since saccade timing and spatial target selection should be looked upon
as partially independent systems (Findlay & Walker, 1999a), we investigate these two
likelihood components separately (see Fig. 3.4).

Figure 3.4 reports spatial and temporal likelihood components based on the test
data. We represent the values as information gain in bit per fixation compared to a
random null model. The spatial null model is random selection of points from the grid
according to the assumption of complete spatial randomness (Illian et al., 2008) with
log-likelihood log( 1

1282
). The corresponding temporal null model is based on the as-

sumption of a constant probability for saccade onset, which gives a Poissonian waiting
time distribution with a rate λ corresponding to the average number of fixations per
trial found in the data.

We observe that the models with both task-specific saliency and general saliency
can be fitted equally well with respect to the temporal likelihood (Figure 3.4a). Even
though tβ the parameter that couples saliency and durations, is non-zero, the added
information of task-specific saliency maps do not improve the temporal likelihood of
the model.

In the spatial likelihood, the task-specific saliency maps generate an advantage for
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the model (Figure 3.4b), which can be expected, since the task-specific saliency map
is based on specific experimental fixation densities. Sampling from the saliency map
is often used to measure for model performance in static models. It is interesting to
note that both SceneWalk model versions significantly outperform random sampling
from the saliency map. Furthermore, the extended SceneWalk model that uses only
general saliency maps outperforms a model that samples randomly from the task-
specific saliency map. This result suggests that the dynamical mechanisms in fixation
selection are as task-specific as the saliency map.

To analyze the modeling results statistically, we calculated a set of linear mixed mod-
els (LMMs) including three fixed-effects (Bates et al., 2015): Factor Model (Density
Sampling vs. SceneWalk), Factor Saliency (general vs. task specific saliency), and the
interaction of both (i.e., the interaction Model:Saliency). As variance components, we
estimated a separate intercept for each subject and for each image. For this analysis we
consider values |t| > 2 as significant, which produces the following result. Firstly, we
find an effect for Factor Model βModel = 0.34 bit/fix (using SceneWalk improves the
information gain by 0.34 bit/fix over Density Sampling). Secondly, we find an effect
for Factor Saliency βSaliency = 0.25 bit/fix (task-specific saliencies improves the infor-
mation gain by 0.25 bit/fix over general saliencies). Lastly there is no effect for the
interaction. Inspection of residuals of the model fit identified 11 outliers out of the total
of 1700 data points. We tested a refitted model without the outliers, which did not af-
fect the profile of significant effects. In an additional LMM, we calculated a treatment
contrast to statistically validate the difference between ’Task-specific Saliency–Density
Sampling’ vs. ’General Saliency–SceneWalk’. All comparisons with our baseline ’Task-
specific Saliency–Density Sampling’ turned out to be significant. The comparison of
our main interest revealed a significant difference of β = 0.09 bit/fix with t = 2.80.
This significance is compatible with the idea that task dependent scan path dynam-
ics contribute reliably to the model beyond the static task differences (i.e., fixation
densities).

3.4.3 Posterior predictive checks: Fitting scan path statistics
Posterior predictive checks refers to the investigation of data generated by the model
after parameters have been identified. Model-simulated data may be compared to
experimental data in a variety of metrics beyond the model likelihood. As has been
shown in previous work (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b), the Sce-
neWalk model is capable of fitting a variety of metrics of scan path dynamics, beyond
mean fixation durations and mean saccade amplitudes as well as their distributions.
One important measure of scan path generation is the distribution of turning angles,
specifically as a function of saccade amplitude and fixation duration. Here, the poste-
rior predictive checks are important in order to ascertain that our changes to the model
architecture did not degrade the fit of scan path statistics with respect to the previous
model version (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b). In Figure 3.6 we
show that the model fits achieved for this data are well-fitted to the experimental
distribution from the test data.
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a b

Figure 3.4 Spatial and temporal likelihoods for model variants. Comparison of the model like-
lihood gain for general and task-specific model variants. (a) The temporal likelihood gain of the
SceneWalk model is computed as the difference between the model likelihood and a statistical
model (Poisson waiting time distribution). (b) The spatial likelihood gain of the SceneWalk model
is obtained as the difference to complete spatial randomness. As a baseline model, we compare
the numerical results against a density sampling model (grey, hatched bars) without any dynamics.
The combination of the SceneWalk model and the general saliency model outperforms the task-
specific density sampling. To improve the visibility of the effects, we omit outlier points in the box
plot.The full results of the linear mixed model are supplied in the Appendix (Table B.1).
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(a) (b)

Figure 3.5 Correlation between experimental and model-generated saccade statistics.
(a)Mean saccade amplitude with experimental data plotted along the vertical axis and simulated
data plotted along the horizontal axis. Each grey cross ("+") represents experimental and simulated
data for an individual observer in a specific task condition. The colored crosses indicate individual
observers with the same color mapping as in Figure 3.3. The red line gives the regression line.
Histograms at the top and right side of the panel visualize the distributions of saccade amplitudes
for simulated and experimental data, respectively. (b) The analogous plot for fixation durations of
individual observers in specific task conditions.

Generally, posterior predictive checks are necessary for investigating the presence
of important characteristics of the experiments in the model-generated data. The
above examples for the influences of saccadic turning angle on saccade amplitude
and fixation duration are crucial for any scan path model. It is important to note
that fitting the model based on the likelihood function and without a consideration
of specific ad-hoc metrics produces the correct behavior reliably. As an additional
constraint, parameter estimation presented in the current study had access to greatly
reduced amount of data compared to previous studies, due to the fact that the model
was fit to individual observers on the training subset of a data set with limited trials.
We interpret the stable emergence of the critical characteristics of behavior in spite
of this as an assurance that the fitting procedure was successful and the experimental
data support our model hypotheses strongly.

Figure 3.5 shows the correlation of experimental and simulated saccade amplitudes
as well as fixation durations for each subject and task, i.e., for each individual set
of model parameters. We find a high correlation for both measures, indicating that
the model reproduces important summary statistics in the data. Moreover this plot
illustrates the way in which the model is able to capture interindividual differences. A
model fit to a particular participant who experimentally tends to produce longer than
average saccades, will also produce longer saccades when simulating data and vice
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a b

Figure 3.6 Saccade turning angle as function of saccade amplitude and fixation duration. (a)
Plot of the saccade amplitude as a function of the change in saccade direction (i.e., saccade turning
angle). Averages for model variants with general and task-specific saliency (colors) are compared
to experimental data (dashed line). (b) Same plot for fixation duration as the dependent measure.

versa. The same is true for fixation durations. These correlations are an important
measure for the sensitivity of the model with respect to interindividual variation.
Differences between fits (as shown in Figure 3.3) are not caused by noise or fitting
errors but are explaining between-subject variance.

3.4.4 Statistical analysis of model parameters from posteriors
Since in the Bayesian approach we obtain the posterior density over the space of
model parameters as a result of model inference, we will be able to run a detailed
statistical analysis of the parameter variations across tasks and individual observers.
We used linear mixed models (LMMs) to analyze the differences between tasks for
each parameter (Bates et al., 2015). As before, we analyzed both models, i.e., the
general saliency and the task-specific saliency models.

For the statistical analyses, we sampled parameters from the full posterior density.
We ensured the samples were independent by thinning the posterior to every 100th
sample and checked statistical independence by analysis of the autocorrelation func-
tion. A separate LMM was calculated for each parameter and both the general and
specific task models. The results of these analyses are shown in Figure 3.7.

The fixed effect structure is taken from Backhaus et al. (2020), where contrast coding
follows the approach of Schad et al. (2020). We chose a random effect structure with
a varying intercept and a varying slope for each contrast by every subject. We did
not include image as a factor in the random effect part of the LMM, as we did not
model parameters separately for every image. The resulting model, presented in the
model notation of the lme4 R package (Bates et al., 2015; R Core Team, 2019), can
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be written as

DV ∼ 1 + FGC + FC + FG+ (1 + FGC + FC + FG||subject) , (3.17)

where DV represents the dependent variable. The symbol “1” represents the model’s
intercept, FGC denotes the first contrast of both Guess against both Count tasks; FC
is the second contrast of Count Animals against Count People conditions; FG denotes
the third contrast of Guess Time against Guess Country tasks. The correlations of
random effects are not included in the model, which is represented by the double bar
sign || in the formula.

An important requirement of LMMs is that the residuals are normally distributed.
We checked the distributions and calculated an optimal λ-coefficient via the Box-Cox
power transform (Box & Cox, 1964) to re-adjust the experimental data. Even after
transform, model residuals of some parameter estimations deviated from a normal
distribution. However, Schielzeth et al. (2020) addressed the consequences of violations
in distributional assumptions and identified only slightly upwards biases in estimates
of varying effect variance. Thus, we expect our results to be reliable in general.

First, referencing Figure 3.7, we compare fixed effect parameter estimations within
the task-specific saliency variation (blue bars). With this model we make the assump-
tion that saliency of image features changes in response to task and ask the question of
whether this change in weighting is sufficient to explain the change in behavior. In our
analysis, we find differences in parameter values between the two task groups (Guess
and Count) for the parameters σA, σF , γ, ζ and tα, tβ, q. Above, we qualitatively
described the parameters σA, σF , referring to the attentional and inhibitory span, as
well as the noise parameter ζ and timing parameters tα, tβ, and q. In the task-specific
saliency model we also find significant differences between Guess and Count tasks for
γ.

The parameter γ controls the weighting of the selection map (priority map), making
it more or less deterministic. Large values of γ lead to steeper peaks in the priority
map and thus the target selection is more deterministic. Here, we find that count
tasks lead to larger values of γ than guess tasks. We relate this finding to the task
demands. The object search behavior needed for the Count task, particularly when
given a task-specific saliency, is strongly focused on specific targets. The model there-
fore emphasizes peaks in the selection map, driving more precise and focused target
selection by a higher value of the exponent γ compared to guess tasks.

Second, we compare within the task groups. As reported by Backhaus et al. (2020),
the two Count conditions themselves evoke different behavior. Searching for animals
is a more general tasks (they could be any species, so conceivably found on land or in
the air or camouflaged) whereas counting humans is more predictable. Therefore, the
difference between these two tasks also caused significant differences in the parameter
estimates, specifically for parameters σF , tβ, and q. The model parameter σF , which
is responsible for the size of the inhibitory fixation tagging mechanism, is smaller
in the Count Animals condition. We interpret this finding by assuming that more
local inhibition is particularly important for counting animals to permit finely guided
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Figure 3.7 Comparison of parameter estimates between models and the different task condi-
tions. The orange bars refer to the general saliency model; blue to the task specific model. The
hatching highlights the two Guess tasks. Horizontal lines above the bars show the significant fixed
effects as found by a mixed linear model.
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refixations that might be necessary for counting densely packed scene content.
The saccade timing parameters tβ and q are also significantly different between the

two counting tasks. Specifically, parameter tβ determines the influence of the saliency
on the duration (the more negative tβ the stronger the influence of saliency on duration;
see discussion in the section on parameter inference). Beyond the fact that the model
parameters tβ and p reproduce experimental effects on the difference between the two
counting tasks, we would also like to point out that saliency maps are more driven
by people than by animal locations. When the task involves searching for people and
people cause high saliency, it is most likely to find the search target in high saliency
regions. The value of saliency thus influences fixation duration more strongly than in
the Count Animals task—a trend that is visible in both fitted parameters tβ and p.

In the next step we investigated the parameter differences when the model was given
the same, general saliency map for each task. In this condition too, we find differences
between the task groups. Because the saliency itself has smaller explanatory value,
the parameters of the SceneWalk model take on a more cogent role. In addition to the
significances of the task-specific saliency model described above, we also find significant
differences between the task groups in the parameter ωA. This parameter specifies the
speed of the activation decay. Here we find significantly slower decay for Count tasks
than for Guess tasks in the absence of task-specific information. We suggest that this
may be the case because it is more directly useful in search tasks to keep track of
previous locations and significant areas.

The contrast defining the difference between the Count Animals and the Count Peo-
ple conditions is, as in the original analysis by Backhaus et al. (2020), also significant
in some parameters: σF , γ, and η. Parameter σF , the size of the inhibition Gaussian
is smaller for Count Animals condition. This may reflect the size of the objects that
are typically being counted. The greater size of γ and smaller size of η (the length
of the post-saccadic shift) in the Count People condition may be related to similar
factors of the size and typical locations of the searched objects.

3.4.5 Statistical analysis of scan path statistics
In the previous section, we investigated model-based parameter variations across tasks
and observers, which focussed on the models and the meanings of its parameters.
Here, we switch to analyzes of the data, where we compare experimental and model-
generated data with respect to scan path statistics.

Based on the estimated parameters per participant, we generated scan paths using
the SceneWalk model. These simulated data will be compared to experimental scan
paths to investigate whether the statistics of behavior and task differences are repro-
duced by the model. In the experimental study by Backhaus et al. (2020), the authors
investigated how various scan path statistics, such as fixation duration or saccade am-
plitude vary with task. Tasks that can be roughly characterized as less-constrained
free viewing tasks (here: Guess tasks) produce longer saccade amplitudes and longer
fixation durations than tasks with a clear search component (here: Count tasks).

Previous research has also shown that saccade amplitude and attentional span are
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Figure 3.8 Comparison of fixed-effects from linear mixed model analysis. (a) Estimated fixed
effects comparison for saccade amplitude analyses. (b) Estimated fixed effects comparison for
fixation duration analyses. In both panels, grey color shows the LMM estimates for experimental
data, orange color shows the general saliency model, and blue color represents the task-specific
saliency model. The horizontal red line marks the zero value, at which there are no differences in
the specified contrasts. Confidence intervals around the estimated effects are the bootstrapped
shortest 95% intervals.

related and saccade amplitudes tend to be smaller in search tasks (Trukenbrod et al.,
2019). We conducted the same linear mixed model analyses with the original contrast
coding and fixed effect structure reported by Backhaus et al. (2020), but a reduced
random effect structure with only varying intercepts for subjects and images (i.e.,
no varying slopes both on the simulated data and on the experimental data). The
resulting model in the model notation of the lme4 R package (Bates et al., 2015; R
Core Team, 2019), as well as an overview of LMM structures may be found in the
Appendix Table B5.

We found that almost the same contrasts turned out to be significant and the
estimated values are in good agreement in all cases (Figure 3.8). Results for saccade
amplitudes are reported in Table B3; for fixation durations please consult Table B4.
The only exception is between general saliency, task-specific saliency, and experimental
data for the contrast that captures the difference between the two Guess tasks for
fixation duration. Specifically, this contrast is significantly positive for experimental
and task-specific saliency data. The estimate for the simulated data with a general
saliency map, however, can vary to values below zero. Note that the model’s responses
are slightly muted as compared to the human scan paths.
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3.5 Discussion
Visual exploration of natural scenes depends on the given objective. This has been
noted since the beginnings of vision science (Yarbus, 1967). Based on the advances in
modeling of visual attention (Itti & Koch, 2001) and eye-movement control (Schwetlick,
Rothkegel, Trukenbrod, et al., 2020b; Tatler et al., 2017), we investigated the per-
formance of a computational model of scan path generation for an experiment in
scene viewing over four different tasks. We extended the SceneWalk model (Engbert,
Trukenbrod, et al., 2015; Schwetlick, Rothkegel, Trukenbrod, et al., 2020b) by an
explicit saccade timing mechanism and implemented a fully Bayesian framework for
dynamical, process-oriented modeling (Schütt et al., 2017). Specifically, in this ap-
proach, it is possible to estimate model parameters for individual human observers.
Thus, in posterior predictive checks, we were able to carry out a statistical analy-
sis of individual differences across tasks. As a result, we found evidence for specific
adaptations of model parameters to task constraints. The extended SceneWalk model
reproduces task-effects, individual differences across tasks, and demonstrates an over-
all advantage for model variants with task-specific saliency maps.

Overall, our findings suggest that parameters in the generation of scan paths are as
highly adaptive to task requirements as are saliency maps. First, given a specific task,
human observers seem to adjust the control of saccade dynamics. This is psycholog-
ically plausible, since, for example, stronger inhibition of return and smaller saccade
amplitudes might contribute to an effective strategy for fine-grained search behavior
compared to a less-constrained free viewing task. Second, it is also psychologically
plausible that the saliency of certain object features in scene changes with the require-
ments of the task. Looking for a specific object may result in a strategy of ignoring
all features that are unlikely to be associated with that object.

3.5.1 Dynamical modeling of eye-movement control
Our current results are an example for process-oriented, dynamical modeling as tool
not only for predicting human behavior (Engbert et al., 2022), but also for identifying
gaps in our understanding. Over the last decade, major advances were related to model
of visual attention in scene viewing, with the time-independent 2D fixation density as
the modeling target (Itti & Koch, 2001; Koch & Ullman, 1985; Kümmerer et al., 2015;
Pan et al., 2016). Recently, the interest is growing in predicting time-dependent series
of fixations, both in the field of vision science (Engbert et al., 2005; Le Meur & Liu,
2015; Tatler et al., 2017) and in the context of deep learning (Kerkouri et al., 2021;
Kümmerer & Bethge, 2021). In our process-oriented approach the SceneWalk model
implements specific mechanisms inspired by successful experimental research such as
inhibition of return (Klein, 2000; Klein & MacInnes, 1999). Interestingly, in our model
inhibitory tagging is modulated by task, with a smaller spatial size of the inhibitory
tagging parameter for counting compared to guess tasks—a finding that underlines
the flexibility of the contributing attentional processes in eye-movement control.

An important advantage of the process-based approach over more data-inspired
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models (Le Meur & Liu, 2015) or deep learning neural networks (Kümmerer, Theis, et
al., 2014) is that there are fewer model parameters in process-based models, which have
a clear interpretation with respect to their function in the control of eye movements.
Thus, process-oriented models provide insights into how well our current understand-
ing describes the process. Posterior predictive checks, i.e., the comparison of simulated
and experimental data along a variety of metrics reveals the gaps between what is im-
plemented in the model and the underlying process. The addition of the new timing
mechanism in this work is an example of applying this approach. It is inspired by
assumptions from the literature (Tatler et al., 2017), is confirmed by the estimated
parameters (the best fit value for the coupling parameter tβ is non-zero, indicating that
spatial and temporal components are linked), and is validated by posterior predictive
checks. Finally, we applied our model and our framework for parameter inference to
the estimation inter-subject variability and inter-task variance in scan paths.

3.5.2 Model adaptivity: task-specific model parameters
The SceneWalk model produces specific, systematically different parameter estima-
tions when fit on data from a range of tasks. Using considerable computational re-
sources we conducted separate model fitting procedures for each subject and each task
for two model versions. The parameter estimation successfully found an informative
posterior distribution in the majority of cases. These marginal parameter posteriors
reveal pronounced differences in value for the different tasks and subjects. The success
of the estimation is worth noting particularly because the amount of data available for
the number of estimations was comparatively small. This work contributes insights
into the relevance of task and interindividual differences for the process of attention
selection. In the next paragraphs we will discuss the parameter differences in detail.

The two most straight-forwardly interpretable parameters in the model are attention
span σA and the inhibition size σF . The estimated parameter values for both are larger
in Guess tasks than in Count tasks. We propose to interpret this in the following
way. A reduced attentional span enables a detailed inspection of small areas. This
is consistent with the finding that search tasks elicit more and shorter saccades. The
length of the saccades and the estimated attentional span in our model are highly
correlated. For free viewing tasks, a broader attentional span is useful as it allows the
viewer to take a wider perspective and take into account more features, but with less
detail. In fact we find that the smallest attentional span is found in the count animals
condition. This is also the most detail-oriented and difficult task. The inhibition size
is also smaller for count conditions. We propose that this is partially a direct result
of the amount of inhibition needed to counteract the activation and partially due to
a more precise tagging of already-viewed locations. Thus, the parameters reflect the
influence of task on spatial gaze statistics (Backhaus et al., 2020; Mills et al., 2011).

The parameter ωA regulates the speed of the activation decay. The speed of the two
streams, activation and inhibition, is separated by an order of magnitude (ωA/ωF =
10). We find a slight difference between Count and Guess tasks for the parameter ωA

when we fit with one general saliency. Specifically, Count tasks have a systematically
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slower decay than Guess tasks. We would like to put forward the interpretation that
in the case of search tasks the past positions retain more importance. The searcher
needs to keep track of already fixated or found objects as well as inhibit discovered
distractors. However, we find this effect only when the input saliency is general; no
such difference emerges when the saliency map is more informative and task-specific.
A possible explanation is that the information which is available longer due to slower
decay is related to the information which, in the other case, is present in task-specific
saliency maps. That is, the information can either be encoded in the saliency input
map or can be accounted for by slower decay( ωA). In one case the model has to build
that representation itself (general case) and in the other it does not need to as the
information is in the input saliency (specific case).

3.5.3 Temporal control of saccades
In this study, we we provided an important extension of the SceneWalk model to
temporal control of saccades. It is important to note the earlier version of the model
(Schwetlick, Rothkegel, Trukenbrod, et al., 2020b) included saccade-related modula-
tions of fixation duration, but not an explicit timing mechanism. The explicit saccade
timing enables the model to make predictions not just for the spatial selection of fixa-
tion locations and the interaction with fixations, but also for modeling task-dependent,
strategic effects in mean fixation durations.

The new timing mechanism introduces additional variability in the coupling between
spatial and temporal selection. The control of fixation durations in scene-viewing were
studied earlier based on explicit timing mechanisms (Laubrock et al., 2013; Nuthmann
& Henderson, 2010). Most recently, the LATEST model combined temporal with spa-
tial aspects of saccade generation (Tatler et al., 2017). While the dynamical part of
the LATEST model is limited to the saccade timing, it motivated the integration of
a timing component to our fully dynamical framework (Engbert, Trukenbrod, et al.,
2015; Schwetlick, Rothkegel, Trukenbrod, et al., 2020b). We successfully implemented
a coupling of the local saliency at the current fixation location to mean and variance
of the saccade timer. The prior for the spatiotemporal coupling parameter tβ included
the option for this magnitude to be zero, i.e., to infer that saliency has no influence on
duration, effectively decoupling the two components. In accordance with our expecta-
tions and with the results of the LATEST model (Tatler et al., 2017), the credibility
interval tβ did not include zero (numerically, the mean is between 1 and 1.5). Thus,
we obtained clear evidence for longer average fixation durations at image patches with
higher saliency compared to region of lower saliency.

The likelihood function plays an important role for combined modeling of fixation
durations and fixation locations (e.g., Engbert et al., 2022; Schütt et al., 2017). To our
knowledge, the first study using spatiotemporal likelihood inference in scene viewing
was published by Kucharsky et al. (2021), in line with conceptual work for eye move-
ments in reading by Seelig et al. (2020). Kucharsky et al. (2021)’s WALD-EM model
combines a standard information accumulation process for saccade timing with a spa-
tial component. Similar to our results, WALD-EM was demonstrated to successfully
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reproduce several key aspects of eye-movements statistics including interindividual
differences. Different from WALD-EM, our model includes biologically motivated,
perisaccadic attentional processes around the time of saccade to reproduce several ex-
perimentally observed qualitative phenomena such as couplings of fixation durations
and turning angles (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b). Thus, our
approach implements a more complicated internal model structure. Both Kucharsky
et al. (2021)’s WALD-EM and our SceneWalk model demonstrate the superiority of
parameter inference based on a spatiotemporal likelihood function.

3.5.4 Interindividual differences in viewing behavior
An important step forward in dynamical modeling of individual viewing behavior was
achieved by the likelihood-based framework for parameter inference. Experimentally,
it is well known that saccade statistics and visual attention show marked interindi-
vidual differences (Kliegl, 2010; Makowski et al., 2020). In the past, modeling of an
individual observer’s behavior was out of reach, since model fitting based on ad-hoc
statistics required an amount of data that was typically not provided by experimental
studies. As a consequence, model parameters were estimated for data pooled over all of
the participants of an experimental study, which precluded modeling of interindividual
differences.

As parameter fitting algorithms have improved, it has become possible to reduce
the amount of data needed. With the likelihood function available for the SceneWalk
model, parameters could be inferred from experimental data on a single-subject level
(Schwetlick, Rothkegel, Trukenbrod, et al., 2020b). Using the task specific data sets
in this study, we had to further reduce the amount of data available to our fitting
procedure. Fortunately, our MCMC implementation based on the DREAM(ZS) algo-
rithm (Laloy & Vrugt, 2012) produced stable posteriors for each individual observer
and across tasks.

3.5.5 General vs. task-specific saliency maps
As in our previous studies (Engbert, Trukenbrod, et al., 2015; Schütt et al., 2017;
Schwetlick, Rothkegel, Trukenbrod, et al., 2020b), we focus on the investigation of
dynamical principles of scan path generation. Therefore, we used experimental density
maps as an upper bound for visual saliency models. Because of the available amount
of observations, fixation-density maps could be produced from experimental data with
specific task instructions.

One view of task differences in eye-movement control is that the differences mainly
occur due to a saliency weighting of different aspects of the image. We might expect,
therefore, when using task-specific saliency maps, our model of saccade dynamics to
produce very similar parameter estimates for all tasks, since most of the variance
in experimental data will be accounted for by the saliency maps. Interestingly, our
analyses indicated that saccade dynamics strongly contribute to the adaptive behavior
in response to task requirements. Model parameters, e.g., attentional and inhibitory
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span (i.e., the sizes of the activation and inhibition Gaussians) or parameters related
to temporal control of fixation durations turned out to be clearly different between
the investigated tasks.

In addition to this task-specific saliency account, we also identified model parame-
ters in a model variant where the visual saliency was derived from free viewing for all
tasks, which we called the general saliency approach. Here, the underlying assump-
tion is saliency is predominantly image dependent and does not change with task. The
strongest version of this assumption implies that the observed variation in eye move-
ment behavior is caused by the adjustment of the eye dynamics to task constraints.
We found that the model of saccade dynamics still produces reasonable parameter
estimates, however, the overall performance of the model was clearly weaker than
for the model with task-specific saliency. One might argue that the psychologically
plausible assumption would be that adaptation occurs in the saliency map as well as
in the eye-movement dynamics. Nevertheless, it still seems very interesting that the
model with general saliency outperforms density sampling from task-specific saliency
maps. Thus, dynamics contribute significantly to task adaptation. A practical im-
plication of this finding is that in a situation where only general saliency maps are
available, adaptation of the eye-movement control system can significantly improve
model predictions.

Modern models of visual saliency are usually evaluated with respect to scan paths
generated by human observers, and, therefore, will contain both early saliency effect
(Itti & Koch, 2001) and high-level influences from scene semantics (Henderson &
Hayes, 2018). The same is true of the experimental fixation densities which are used
in the SceneWalk simulations. Thus, the question of whether visual saliency is task
dependent, is contingent upon the operational definition of saliency.

3.5.6 Model performance: posterior predictive checks
One of the key improvements presented in the study is the likelihood-based parameter
inference for modeling individual viewing behavior (Engbert et al., 2022). While
likelihood is mathematically rigorous, a maximum-likelihood model’s performance can
still be poor with respect to qualitative effects. Therefore, we carried out extensive
posterior predictive checks, which demonstrated that our model reproduced many of
the scan path statistics on the level of individual observers. Moreover, the model
explained systematic differences of scan path statistics between the tasks found the
in the underlying experimental study (Backhaus et al., 2020). As a dynamical and
generative model, the SceneWalk model is capable of simulating scan paths given
the estimated parameters and the saliency of an image. We simulated data for each
observer and task as well as for both model versions based on general or task-dependent
saliencies. Simulated data were compared to the experimental test data. The good
agreement between the scan path statistics of simulated and experimental data is an
essential component of a psychologically and biologically plausible model. Similarities
and dissimilarities allow conclusions about which components of the process are well-
captured by the model architecture and which still require explanation. In the current
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study, we report good agreement between model-generated and experimental data.
First, we confirm that the same general scan path statistics can be captured well with
the extended model that includes temporal control of fixation duration compared to
the latest version before this extension (Schwetlick, Rothkegel, Trukenbrod, et al.,
2020b). Second, we compare whether the model captures the task differences found in
the experimental data set (Backhaus et al., 2020). The experimental data indicated
pronounced differences between the tasks in fixation duration and saccade statistics
(e.g., amplitudes). Therefore, our results lend theory-based support to the idea that
different viewing strategies are driven by saliency weighting, but also by dynamics of
eye guidance.

Further analyses are required to test the model against additional experimental
data sets covering a broader variation of task type. In the current work, the model’s
performance could be improved in view of the comparison to neural network models
such as DeepGaze (Kümmerer, Theis, et al., 2014). While our model can be fitted to
data from individual observers, interindividual variability will be overestimated due to
differences in the convergence and identifiability of model parameters. Regularization
by hierarchical modeling might be a solution here. Therefore, introducing hierarchi-
cal Bayesian dynamical modeling might be another big step forward for modeling
individual observer’s viewing behavior.

3.5.7 Evaluation of our preregistered hypotheses

Prior to conducting the current study, we preregistered our research plan including the
main hypotheses (Schwetlick, Backhaus, & Engbert, 2020). The first two hypotheses
in the preregistration concerned the task influence on attentional span and inhibitory
fixation tagging. Specifically, we assumed that the attentional span would be larger
in the Guess conditions, which we characterized to be similar to free viewing tasks.
Previous research shows that saccade amplitude and attentional span are related and
that saccade amplitudes tend to be smaller in Count tasks (Trukenbrod et al., 2019).
The results from the estimation of parameter σA finds support for this hypothesis.
Second, we proposed that inhibitory fixation tagging would be more important in
search tasks. In fact we find that in count conditions the inhibitory tagging is more
directed and less global, i.e. that the parameter σF is smaller, resulting in more specific
inhibitory tagging of regions.

The third hypothesis concerns the decay of past states in the model. We expected
for the Count conditions that the decay would be slower compared to the other tasks,
since it might be more important to keep track of visited items. In accordance with
this idea, we find slightly faster decay in Guess tasks than in Count tasks, as specified
by ωA in the general saliency model. In the appendix, we provide some more detailed
summary and evaluation of our predictions and findings.
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3.6 Conclusions
In this work we proposed an advanced model of eye-movement control with appli-
cation to task-dependent viewing behavior. First, we extended a previous model to
include temporal control of fixation durations and the interaction with spatial selec-
tion. Second, we applied rigorous statistical parameter inference that showed markedly
different results across four different viewing tasks. These findings were corroborated
by posterior predictive checks which indicated that these differences also manifest in
data simulated by the model fits. Specifically, the model-simulated data reproduced
the key scan path statistics found in experimental data. Thus, parameter inference
yielded individual parameter estimates not only for tasks but also for each participant
in the experimental data. We conclude that the SceneWalk model explained individual
differences and task influences on behavior in a theoretically coherent framework.
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Bayesian Dynamical Modeling of
Fixational Eye Movements
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Abstract
Humans constantly move their eyes, even during visual fixations, where
miniature (or fixational) eye movements are produced involuntarily. Fix-
ational eye movements are composed of slow components (physiologi-
cal drift and tremor) and fast microsaccades. The complex dynamics
of physiological drift can be modeled qualitatively as a statistically self-
avoiding random walk (SAW model, see Engbert et al., 2011). In this
study, we implement a data assimilation approach for the SAW model to
explain quantitative differences in experimental data obtained from high-
resolution, video-based eye tracking. We present a likelihood function for
the SAW model which allows us apply Bayesian parameter estimation at
the level of individual human participants. Based on the model fits we
find a relationship between the activation predicted by the SAW model
and the occurrence of microsaccades. The latent model activation rela-
tive to microsaccade onsets and offsets using experimental data reveals
evidence for a triggering mechanism for microsaccades. These findings
suggest that the SAW model is capable of capturing individual differences
and can serve as a tool for exploring the relationship between physiolog-
ical drift and microsaccades as the two most important components of
fixational eye movements. Our results contribute to the understanding of
individual variability in microsaccade behaviors and the role of fixational
eye movements in visual information processing.
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4.1 Introduction
The human eye is never truly at rest. At a macro-level the eyes move in a sequence
of fixations and saccades (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b), moving
different aspects of the visual world into the receptor-dense center of the visual field.
Despite the misleading term, even during fixations, the eyes are far from stationary
(Ditchburn et al., 1959; Kowler, 2011; Martinez-Conde et al., 2004; Rucci & Victor,
2015). Microscopic fixational movements constantly shift the visual input over the
receptors in the retina. Three components of fixational eye movement behavior are
distinguished: a slow, meandering physiological drift, a high frequency tremor, and
high velocity microsaccades (Alexander & Martinez-Conde, 2019). The comparatively
small amplitude of tremor movement can not be resolved in current video-based eye
tracking and is therefore neglected in the following.

The function of fixational eye movements, their underlying mechanisms, as well
as the consequences for processing in the visual system have yet to be fully under-
stood. While fixational eye movements are found ubiquitously across species and in
all primates Ko et al., 2016, the generation of fixational eye movements varies between
individuals and is highly characteristic (Cherici et al., 2012; Engbert & Kliegl, 2003,
2004; Poynter et al., 2013). In order to model the individually characteristic spatial
statistics of physiological drift and the relationship to microsaccades we begin with a
short discussion of the two movement components.

During physiological drift, the eyes move smoothly in a pattern that resembles Brow-
nian motion over small time lags (Burak et al., 2010; Engbert, 2006; Pitkow et al.,
2007), i.e., it meanders quasi-randomly, increasing variance over time. However, a
more detailed analysis suggests that fixational eye movements represent an interesting
example of fractional Brownian motion (Metzler & Klafter, 2000). A corresponding
analysis can be carried out by computing the mean square displacement (MSD) at
different time lags (Engbert & Kliegl, 2004; Herrmann et al., 2017). In Brownian mo-
tion, the MSD increases linearly with time lag. In fixational eye movements, however,
a superdiffusive tendency is found over short time scales (≲ 50 ms), which is also
referred to as persistence. Over longer time scales (≳ 100 ms) physiological drift is
found to be anti-persistent . This behavior can be interpreted by assuming that fixa-
tional eye movements maximize movement over short time scales to counteract retinal
fatigue while reducing variance over longer time scale to maintain visual fixation on a
intended region of interest or object (Engbert & Kliegl, 2004).

Microsaccades share their kinematic properties with their larger counterparts, such
as acceleration profile, main sequence (i.e., the linear relationship between log ampli-
tude and log peak velocity; see Bahill et al., 1975), and are generated by the same
neural circuits in the brainstem (Rucci & Poletti, 2015). Microsaccades are distin-
guished mainly by their smaller amplitude, usually thresholded at < 1° (see Poletti
and Rucci, 2016 for a review). Microsaccades occur at a rate which is highly variable
between subjects (Engbert, 2006; Engbert & Kliegl, 2003). Attentional mechanisms
also modulate microsaccades in both their rate, e.g., first, a reduced microsaccade rate
following target onset, and then an increased rate (Engbert & Kliegl, 2003), and their
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direction, e.g., the location of covert attention attracts microsaccades in endogeneous
spatial cueing (Engbert & Kliegl, 2003; Hafed & Clark, 2002). The general patterns of
interactions of microsaccade rates and orientations is more complex (Engbert, 2006),
however, a computational model based on the SAW model has been proposed (Eng-
bert, 2012).

Early accounts of fixational eye movements conceptualized them as the result of
random firing from oculomotor units (Eizenman et al., 1985), or else as a nuisance
component that causes blurring, if not corrected by the visual system (Burak et al.,
2010; Packer & Williams, 1992). More recent evidence points to fixational eye move-
ment being a necessary and useful component of visual exploration in counteracting
receptor adaptation (Martinez-Conde et al., 2004; Rucci & Victor, 2015). First, fixa-
tional eye movements prevent visual fading (Ditchburn et al., 1959; Martinez-Conde
et al., 2006) caused by neural adaptation (Coppola & Purves, 1996; Martinez-Conde et
al., 2004; Martinez-Conde et al., 2006). Although fading prevention may be achieved
by drift alone, microsaccades are much more effective at restoring vision after fading
has set in (McCamy et al., 2014; McCamy et al., 2012). Second, both drift (Boi et al.,
2017; Rucci & Victor, 2015) and microsaccades (Poletti et al., 2013) have been found
to facilitate high acuity pattern vision (Intoy & Rucci, 2020). Specifically, the perfor-
mance of an edge detection model can be improved by the addition of a movement
component (Schmittwilken & Maertens, 2022). In another study, A. G. Anderson et
al. (2020) use a Bayesian model of neurons during early visual processing that simul-
taneously estimates eye motion and object shape. The authors also find drift motions
benefit high acuity vision, mainly by averaging over the inhomogeneities in the retinal
receptors and receptor density. Finally, microsaccades and drift have been found to
be both corrective, i.e., moving the eyes back to the intended fixation position, and
exploratory or error-producing, i.e., moving new details into the center of the visual
field (Engbert & Kliegl, 2004). Microsaccades are typically preceded by a reduction in
drift (Engbert & Mergenthaler, 2006; Sinn & Engbert, 2016). Thus, both microsac-
cades and drift are functionally related and interdependent. It is a research goal of the
current study to analyze the relationship between slow fixational eye movement com-
ponents and microsaccades based on quantitative modeling while taking into account
individual differences observed in experimental data.

The SAW model integrates several of the above properties of fixational eye move-
ment and is biologically plausible (Engbert, 2012; Engbert et al., 2011; Herrmann
et al., 2017). The model describes physiological drift by assuming a self-avoiding
(random) walk (SAW) confined in a movement potential that limits the movements
to reproduce visual fixation. A random walk on a lattice represents the trajectory
of the eye. As the random walk traverses the lattice, visited locations are activated
(see Figure 4.1). The activation represents the memory process that keeps track of
the recently visited locations. This generative model successfully reproduces both the
persistent and anti-persistent statistical properties of ocular drift Engbert et al., 2011.
An extension of the model (Herrmann et al., 2017) implements neurophysiological
delays and thereby matches the characteristic oscillations found in the displacement
autocorrelation. Within the SAW model framework, Engbert et al., 2011 proposed a
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mechanism for generating microsaccades based on the activation in the SAW model.
However, the model has been a qualitative account so far, as it was not attempted to
quantitatively reproduce experimental data from human observers.

In the present work we implement the SAW model in a likelihood-based framework
in order to enable Bayesian parameter inference from fixational eye-movement data.
We estimate model parameters for individual observers and find that the estimated
parameters represent individually characteristic spatial statistics of physiological drift.
Based on the quantitative agreement between simulated and experimental drift move-
ments, we explore the relation to microsaccades. We use the model’s latent activation
to investigate potential mechanisms for triggering microsaccades. Since fixational eye
movements have a strong impact on the spatiotemporal input that the visual system
processes, reproducing these movements from a computer-implemented mathematical
model is essential for a better understanding of visual functioning.

4.2 Results
In a first step we define the SAW model and describe the computation of the model’s
likelihood function. In a second step, we use the likelihood computation to estimate
parameters for individual human participants. Finally, we use the model to generate
data and conduct posterior predictive checks and exploratory analyses concerning the
relationship of drift and microsaccades.

4.2.1 The model
As a theoretical starting point, the SAW model generates a random walk which is
statistically self-avoiding (Freund & Grassberger, 1992). The self-avoiding walk is
implemented on an L×L lattice where nodes are given by (i, j) with i, j = 1, 2, 3, ..., L.
Each node carries some activation at(i, j) at time t, which can be interpreted as neural
firing rates. Initial activation values are set to at=0(i, j) = 10−1 for all (i, j). At time
t = 1, 2, 3, . . . , first, the current activation of each node (i, j) across the field decays,
according to

at+1(i, j) = ϵ · at(i, j) , (4.1)

where ϵ = 1 − (10γ), representing the speed of the process memory decay. Second,
activation is added to the nodes along the walker’s trajectory, i.e.,

at+1(i
⋆, j⋆) = at(i

⋆, j⋆) + 1 . (4.2)

Next, we implement a rule for activating lattice positions (i⋆, j⋆) along the trajectory.
We define an ellipse which is drawn such that the positions at times t and t+1 are the
foci of the ellipse. The parameter ρ represents the size of the minor axis of the ellipse;
the numerical value is set to 12 units (see Fig. 4.1). The lattice positions v⃗⋆ = (i⋆, j⋆)
are defined as all lattice sites within the ellipse, which are activated according to
Eq. (4.2).
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The discretized map {at(i, j)} of neural activations can be interpreted biologically,
since grid cells have been found in entorhinal cortex which keep track of previously
visited locations (Killian et al., 2012).

In principle, the self-avoiding walk can produce persistent motion if parameters are
selected appropriately. However, during visual fixation, human observers are able to
keep the eyes at an intended target. Therefore, the model implements a movement
potential, which confines the random walk and represents a mechanism of fixation
control. As a consequence, the model can produce anti-persistent motion on the longer
time scale. Thus, the self-avoiding motion in a potential could maintain fixation at
the intended location despite the necessity of refreshing the retinal input. The (time-
independent) confining potential u is centered in the lattice and takes the form

u(i, j) = λ

(√
(i− L

2
)2 + (j − L

2
)2
)ν

Lν
. (4.3)

Within this potential, motion is controlled by the sum of the self-generated activation
at(i, j) and the potential u(i, j), i.e.,

qt(i, j) = at(i, j) + u(i, j) (4.4)

In order to chose the next step of the walker, we compute the probability of the next
eye position as πn, consisting of qt(ij), self generated activation and potential, and a
time-independent stepping distribution, which controls the size of the movements, i.e.,

πt(i, j) = qt(i, j)
−η exp

(
−

[(
i

ri

)ϕ

+

(
j

rj

)ϕ
])

. (4.5)

From πt(i, j) we select the eye position at time t+1 using a linear selection algorithm.
As a result, in each time step follows the sequence of, first, relaxation of the current

activation, second, selection of the next eye position under consideration of a stepping
distribution, and, third, increase of the activation values along the current trajectory.
Our model’s behavior is controlled by a number of free parameters. In this study we
selected a subset of parameters for estimation, namely γ the speed of the relaxation,
the size of the stepping distribution ri and rj, the slope of the stepping distribution
ϕ and the slope of the potential λ (i.e. θ = [γ, ri, rj, ϕ, λ]). We set ρ = 12, ν = 3
and η = 1, in order to constrain the model and to obtain numerically stable behavior
during parameter estimation. The parameters selected for estimation are of primary
interest, as their values are interpretable quantities that may give insight into the
biological plausibility of the model.

4.2.2 Likelihood function: sequential computation
The observation that makes the model compatible with a likelihood-based approach is
the fact that the likelihood L at each time for each location on the lattice is given by
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x⃗t

x⃗t−1

ρ

v⃗∗ = (i∗, j∗)a

L
L
L
L

b

Figure 4.1 Illustration of the model activation. a Activation of lattice points within distance ρ
from the eye’s trajectory. b Simulated fixational eye movement trajectories, illustrating the SAW
model. Starting from the position marked by the + and ending at the position marked by the star,
themodel generates activation along the trajectory. Themovement is constrained by an activation
potential centered around the fixation position. The activation profile is initialized by simulating
somemovement causing activation to be visible at locations that have not been visited. Activation
decays gradually over time.

the selection map π. In other words given the time-ordered data Xt = {x1, x2 . . . , xt},
we can calculate the probability of observing the walker in position x at time t given
the model and given all previous positions Xt−1, i.e. PM (xt | Xt−1, θ). The likelihood
of a sequence of t events is therefore given by the product of t conditional probabilities
LM(θ|Xt), which is given by

L (θ | Xn) = PM (x1 | θ)
n∏

i=2

PM (xt | Xt−1, θ) . (4.6)

In order to estimate the parameters of the model, we use Bayes’ theorem to compute
the probability of the parameters θ = [γ, ri, rj, ϕ, λ] given the data as

P (θ | Xn) =
LM(θ | Xn)P (θ)∫

Θ
LM(θ | Xn)P (θ)dθ

. (4.7)

A large literature exists to solve likelihood-based parameter estimation computation-
ally. In order to leverage the full power of the likelihood-based approach we estimate
the full Bayesian posteriors for each parameter using a differential evolution adap-
tive metropolis sampling algorithm (DREAM) (Laloy & Vrugt, 2012; Shockley et al.,
2018). More details are provided in the Methods section.
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Figure 4.2 Parameter inference results.(a) Marginal posteriors for the five estimated parame-
ters; the grey lines represent different participants, colored lines highlight three participants for
comparison. For all five parameters, the posteriors converged to distinct peaks for the different
participants. (b) A box plot based on the sum log likelihood of all trials, sorted by mean log likeli-
hood across participants.

4.2.3 Parameter estimation results

We estimated the values of the free parameters of the SAW model for each subject
independently based on data. The chosen priors (see Appendix for details) were rela-
tively uninformative truncated Gaussians. Figure 4.2 presents the marginal posteriors
for each participant in the study. In the Appendix (Table B2) we present the point
estimates and 98% confidence intervals (Kruschke, 2014) for each parameter.

Biologically plausible models are designed to be grounded in real-world biological
mechanisms and processes. As such, the values of their parameters reflect the known
properties of these mechanisms. It is therefore informative to investigate the param-
eter values themselves, as they permit inferences about concrete aspects of the data
generating process. First, the parameters ri and rj correspond to the widths of the
stepping distribution. The final selection map in the model (Eq. 4.5) and consequently
the resulting predictions for step sizes depend on the stepping distribution containing
ri and rj, as well as the confining potential and activation. We define the step size as
the distance travelled from one measured experimental sample to the next, i.e., 2 ms
as we are using a sampling rate of 500 Hz. As shown in Figure 4.3C the parameters
ri and rj are strongly correlated with the empirical step size distribution.
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Figure 4.3 The fit between step sizes in themodel and in the data.(a) shows the step size distri-
bution, where highlighted lines represent individual subjects. (b) shows the correlation between
simulated and empirical step sizes. (c) shows the correlation between the observed step size and
the parameter value of ri and rj . As expected, the two parameters correspond directly to the
stepping distribution in the data.

The parameter ϕ represents the slope of the stepping distribution. Higher values
are associated with a stronger tendency to move along the cardinal directions. The
estimated values for ϕ range from 0.9 to 1.3, indicating that the preference for car-
dinal directions is stronger in some participants than in others. The model captures
individual differences in the stepping distributions, as demonstrated by the distinct
posteriors obtained for ϕ, ri and rj.

Next, the parameter γ relates to the speed of memory decay in the process, where
smaller, more strongly negative values cause slower decay, i.e., longer memory of the
visited locations, and larger values closer to 0 cause faster memory decay, i.e., shorter
memory. It was bounded in the estimation to a minimum of −4, as smaller value, i.e.
less relaxation, caused the activation in the system to continuously increase, making
the model numerically unstable. We find an average value of γ of 3.75 which indicates
that activation decreases by 25% over the course of a trial duration of 3 s. Parameter
γ accounts for relatively small individual variability. For most of the participants,
estimates indicate a long memory for activation that represented the past trajectory
in the system.

Finally, parameter λ represents the slope of the confining potential. The shape
parameter of the potential function was fixed to 3, fixing the qualitative form to
a steeper gradient than in a quadratic case (Engbert et al., 2011). The slope was
considered a free parameter for the estimation. As the different participants’ data
lead to different decay and stepping parameters, the slope of the potential needs to
accommodate different resulting values of mean system activation.
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4.2.4 Posterior predictive checks

Using the estimated parameters (i.e., the posterior parameter distributions), we simu-
lated artificial data sets of the same size as the experimental test data sets. We know
that the model is, in principle, able to recreate statistical tendencies of ocular drift
found in experimental data on a qualitative level (Engbert et al., 2011). Posterior
predictive checks serve to show that the fitted model reproduces the expected sta-
tistical tendencies, i.e., turning angle- and step size distributions, as well as whether
individual differences are reproduced.

Fitted primarily by parameters ri and rj, the step size distribution is represented
in Figure 4.3 A. As defined above, the step size is the spatial distance between two
subsequent samples. In order to condense the distribution of step sizes into one sum-
mary value, we computed the mean of each distribution. Thus, Figure 4.3 B shows
the correspondence between the mean true and simulated step sizes. The model fits
the step size very precisely and perfectly captures the differences in the individual
preferred step size.

Next, we investigated the absolute and relative turning angles. There exists a prefer-
ence in both ocular drift and (micro)saccades for movements in the cardinal directions,
which may be caused by the structure of the ocular muscles (Sparks, 2002). This fact
is captured well by the model (Figure 4.4A). The relevant parameter responsible for
this effect is the stepping distribution slope ϕ, which shapes the stepping distribution
to have a stronger or weaker preference for the cardinal directions. In order to as-
certain whether the differences in individual behavior can also be reproduced, we use
the area under the cumulative density function as a summary statistic (see the Meth-
ods section). The result in Figure 4.4B shows that the model is capturing individual
differences. Furthermore, there is also a tendency for movements to be in line with
or orthogonal to the previous movement vector. While this tendency is a lot more
pronounced in the experimental data than in the simulated data, the simulations do
show a qualitative reproduction of the trend (Figure 4.4C). However, it is likely that
the peaks are driven by the preference in absolute angles, as no mechanism for relative
angles was built into the model. We propose that the difference between the simulated
and experimental relative turning angle distributions reveals the part of the relative
turning angle distribution that must be accounted for by an additional, independent
model mechanism.

Empirical ocular drift data, has been found to be persistent at small time lags and
antipersistent at longer timescales. As shown in Figure 4.5A, the persistent trend in
our data is not as pronounced for all participants as in comparable previous studies
(Engbert & Kliegl, 2004; Herrmann et al., 2017). The antipersistent period begins
around 60 to 80 ms after stimulus onset. The data simulated using the fitted param-
eters reflects this behavioral change well. However, it behaves more randomly than
truly antipersistent at short timescales and becomes too strongly persistent at long
timescales. Experience with the model shows that it can produce truly antipersistent
behavior by varying the free parameters. Possible reasons why this trend was insuffi-
ciently captured by the fitted models are that the MSD is a less dominant tendency
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Figure 4.4 Turning angle distributions. (a) and (c) show the absolute and relative turning angles
of one sample to the next. Thin lines represent individual subjects and thicker lines represent the
means. Simulated data is shown in green while experimental data is red. Panels (b) and (d) show
the respective correlations between simulated and experimental data. We characterize the angle
distributions using the area under curve (AUC) of the empirical cumulative density function (ECDF).
For details see the Methods section.

compared to other statistics and that our selection of free model parameters were cor-
related in a way that limited the ability to fit this particular tendency. Alternatively,
the self-avoidance of the model may not be the only cause for early persistence, sug-
gesting a model with an explicit exploration mechanism. Nonetheless the qualitative
change in behavior is clearly present in the simulated data. Accordingly, the corre-
lation between the experimental data and the simulated data show that the present
model fits only account for a small part (roughly 10%) of the individual variation
(4.5B and C).

4.2.5 Investigating microsaccades

Previous work concerning the SAW model has suggested a connection between the
self-avoiding properties of the random walk and microsaccade triggers. A reduction in
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Figure 4.5 Persistent and Anti-persistent behavior. (a) shows the MSD of simulated and ex-
perimental data, where thinner lines represent individual subjects and thicker line represent the
averages of experimental data in red and simulated data in green. Note that the lag is given in ms,
whereas the distance is given in normalized units, in order to visualize the slopes in comparison to
the identity line. (b) and (c) shows the correlation of simulated and experimental data of linear fits
of the Hurst Exponents for the short and long timescale for individual subjects.

movement tends to precede microsaccades (Engbert & Mergenthaler, 2006). Follow-
ing this reasoning, in the model a reduction in movement corresponds to a build-up
of activation in the current position. Thus, we investigated whether the activation
predicted by the model is indeed related to the occurrence of microsaccades. Specif-
ically, we calculated the activation qt(i, j) at times relative to microsaccade onsets
tMS−on and offsets tMS−off using the experimental data. Figure 4.6 shows the average
activation around the time of a microsaccade, which is consistent with the hypothesis
that high levels of activity are related to triggering microsaccades. In order to better
understand the extent of the effect, we randomized the microsaccade onsets within
each subject and computed the same trajectory on the randomized data. We find that
the activation rises more before a microsaccade and drops more steeply compared to
the randomized controls.

4.2.6 Model comparisons
The proposed model comprises three main components: the random walk with a
stepping distribution, the self-activated trace memory, and the potential. In theory,
the combination of both creates an interplay between persistence and fixation control.
In order to better understand the role of each component, we created 3 control models
by removing individual components. Specifically we investigate

1. the full baseline SAW model, that contains all three components

2. a model that is a random walk in a potential (W),

3. a model that is a random walk without a potential(W-NP),
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Figure 4.6 The average activation in the model around the time of a microsaccade. The less
opaque lines represent randomized controls, where microsaccade onsets were randomized over
the trials within one subject. In the data we find a distinct rise in activation before the time of a
microsaccade and a drop in activation after.

4. a model that is a random walk with self-avoidance but without a potential (SAW-
NP).

Note that the latter two models differ from the first two significantly in that they
are not generative and, therefore, are not biologically plausible. In the absence of a
potential it is still possible to compute the likelihood, but it is not possible to usefully
simulate data from them, as there is nothing stopping the walker from simply walking
away. We include them here, because they provide a relevant comparison, however,
these models must be treated as substantially different concerning the conclusions they
permit.

First, we compare the models in terms of their likelihood (Figure 4.7A). Each model
was evaluated on the test data set, using the same parameters wherever applicable.
Our findings show that in the generative models, SAW outperforms the version without
self activation (W). Removing the potential and maintaining the self-avoidance (SAW-
NP) also reduces performance. However, we also find that the non-generative model
without either potential or self-avoidance (W-NP) shows almost identical likelihood to
SAW. This suggests that individually fitted stepping distributions and general random
walk behavior by themselves capture the most predominant features of the data. It is
important to note that the likelihood is a very general measure of model performance-
this model (W-NP) is neither biologically plausible, nor can it capture any additional
statistical properties of the data. Thus, the lesson to be drawn from this finding is
twofold: First, a high likelihood is not always a guarantee of an appropriate model and,
second, that either a potential or self-avoidance by itself are not beneficial to model
performance. Each component, added individually, actually reduces model likelihood.
The fact that their joint effect reestablishes a similar likelihood while simultaneously
making the model more biologically plausible should be considered a success.

To this comparison we add another model: the SAW model without individual
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Figure 4.7 Comparisons of the differentmodel versions. Panel (a) shows the 5 different versions
of the model, including different components. We show that among biologically plausible models
that the proposed mechanisms and the individual fitting procedure confer a likelihood benefit.
Among Non generative models a pure random walk with fitted step sizes, while not biologically
plausible, also achieves a high likelihood score. Panelb shows themodel activation around the time
of a saccade. The activation peak emerges only in the models that contain a confining potential.

parameter fits by subject. We observe that on average, there is a distinct benefit of
fitting individual subjects. However, the averaged parameter model not only reduces
high likelihood values but also the number of very low likelihood values.

Second, using our comparison models, we investigate which components drive the
microsaccade effect. The very clear picture in Figure 4.7 shows that the activation
peak is present only for the two models with a potential. This indicates that the effect
is not driven, as we supposed, by a build-up of self-generated activation but rather by
the potential. This is consistent with the idea that the microsaccades that drive the
effect are related to control of the fixation position.
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4.3 Discussion
Fixational eye movements display a large degree of randomness and both its origin
and purpose have been much debated in the literature. Mathematical modeling ap-
proaches have contributed insights into the neurophysiological origin of the movement
(Ben-Shushan et al., 2022; Eizenman et al., 1985), the desirable or undesirable conse-
quences of the motion on image processing (A. G. Anderson et al., 2020; Schmittwilken
& Maertens, 2022), and the spatiotemporal statistics of the drift trajectories (Burak
et al., 2010; Engbert et al., 2011; Roberts et al., 2013). We performed Bayesian
likelihood-based parameter inference of a self-avoiding random walk model for fixa-
tional drift at the level of individual observers. The estimation of the parameters
converge to distinct marginal posteriors and data simulated on the basis of the fitted
models reproduces individually characteristic behavior. In a second step we propose a
relationship between the microsaccade rate and peaks in the model’s latent activation
state. This intuition is confirmed by an exploratory, data-driven analysis.

4.3.1 Individual variability
Fixational eye movements are controlled by a complex combination of factors, such
as oculomotor control, attention, and cognition. The specific observed patterns vary
greatly by individual both for measures of ocular drift (Cherici et al., 2012) and mi-
crosaccades (Poynter et al., 2013). Our results indicate that the individual variability
in drift can at least partly be captured by the parameters of the SAW model. The
average preferred step size is a particularly pertinent example (ri, rj), but also direc-
tional preferences (ϕ) and potential slope (λ) are different between subjects. These
parametrizations are sufficient to simulate data which mirrors the characteristic fea-
tures of individuals. To our knowledge this is the first paper that models individual
variation of fixational eye movement trajectories.

The variability in drift between individuals has been found to be related to the
individual variability in acuity (Clarke et al., 2021). Individual differences in fixational
eye movement may therefore be related to a range of factors including the precise
acuity of the eye, the tendency to maintain precise fixation (Cherici et al., 2012).
Moreover, attentional preferences found in macroscopic eye movement during facial
feature viewing translate to microscopic eye movement preferences (Shelchkova et al.,
2019).

We find a distinct benefit from using individually fitted data sets over using a
single averaged value for each parameter. This benefit becomes apparent in better
convergence properties of the parameter estimation, as the strong distinct influences
otherwise cause complex, multi-modal posteriors. Moreover, the individual fits cause
a higher overall likelihood and fit of individual characteristics. However, while model
based in averaged parameter values has a lower likelihood, it also reduces the number
of very low likelihood data points. Thus, individuals who’s data can not be easily
fitted, would benefit from a normative influence of other subjects. This suggests the
use of a hierarchical Bayesian modelling approach in future studies.
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4.3.2 The confining potential

The characteristic Mean Square Displacement (MSD) of fixational drift is persistent at
small time lags and anti-persistent at longer lags (Engbert & Kliegl, 2004; Herrmann
et al., 2017). This is consistently the case, when averaging over large amounts of data.
On an individual level, however, this tendency is not always equally pronounced.
While the SAW model reproduces the transition to antipersistent behavior well, it
does not adequately represent the persistent component, with the current data. As, in
principle, self-avoiding random walk models can produce persistent behavior (Engbert
et al., 2011; Roberts et al., 2013), this may be caused by a number of factors including
the selection of fitted free model parameters, the relatively low persistence in the
present data set, or a dominance of other statistical tendencies. Alternatively, it is
possible that the strength of the persistent trend, which the SAW model frames as
the result of self-avoidance, is in fact amplified by an additional explicit exploration
mechanism which remains to be identified.

Exploration, or the explicit persistence, of the trajectory is highly variable, even
between trials. The confining potential in the SAW model is static, representing a
fixed intended fixation position. This is most likely a simplification, as the intention
may change over time. Experimentally, we find a large amount of variation in the
cohesion of the drift. In some trials drift consistently occurs around a specific position.
In others it is evident that two intended fixation positions coincided over the course of
the trial. In yet others, drift consistently maintains its direction away from the starting
point. As the task and stimulus in the experiment was the same for all trials there
is little evidence to explain this variation, aside from random variation or influence of
recent past stimuli. A potential future direction for the model could be to implement
a dynamic confining potential which is centered around a moving average of a number
of recent samples. The limitation underscores the need for more comprehensive and
accurate models to better capture the complex and individual characteristics of ocular
drift behavior.

4.3.3 The relationship between drift and microsaccades

Early hypotheses suggested that microsaccades serve a corrective function for ocular
drift (Cornsweet, 1956; Ditchburn & Ginsborg, 1952; Nachmias, 1959). Experimen-
tally, however, no reliable correlation data confirms this hypothesis, as microsaccades
can be explorative as well as corrective. Specifically at shorter time scales microsac-
cades induce persistent correlations while at longer time scales they tend to reverse
movement to correct the fixation position (Engbert & Kliegl, 2004). Additionally,
studies have shown that during high-acuity observational tasks, participants natu-
rally suppress microsaccades without training (Bridgeman & Palca, 1980; Winterson
& Collewijn, 1976), leading to the conclusion that microsaccades may serve no useful
purpose (Kowler & Steinman, 1980). However, more recent research has demonstrated
that microsaccades can enhance the visibility peripheral stimuli (Martinez-Conde et
al., 2006), facilitate high acuity vision (Intoy & Rucci, 2020; Poletti et al., 2013) and
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are responsive to task demands (Ko et al., 2010), suggesting a direct link between
microsaccade activity and visual perception.

Thus, the role of microsaccades in fixational eye movement and their relationship
with drift is not fully understood. Engbert and Mergenthaler (2006) suggested that
microsaccades are triggered by a reduction in drift movement, i.e., low retinal image
slip. This idea was further explored by the suggestion of a relationship between the
self-avoiding random walk model and microsaccade triggers (Engbert et al., 2011).
Our study provides further evidence supporting this connection. A build-up of acti-
vation in the current position of the SAW model, is associated with the occurrence
of microsaccades. This finding is consistent with previous work indicating that a de-
crease in movement precedes microsaccades (Engbert & Mergenthaler, 2006). Our
data-driven analysis revealed that the activation rises more before a microsaccade and
drops more steeply compared to the randomized controls, which indicates that high
levels of activation are more likely to trigger microsaccades. By comparing model
variations we find that this trend is primarily related to the potential, indicating that
the portion of microsaccades we capture with our analysis are related to fixation con-
trol. However, the exact mechanism behind this relationship and the potential causal
direction between activation and microsaccades requires further investigation.

4.3.4 Other trajectory models
Physiological drift, as the slow component of fixational eye movement, is often modeled
as a random walk (Burak et al., 2010; Kuang et al., 2012). Particularly when it is
considered mainly as a component in a model of visual processing (e.g., Schmittwilken
& Maertens, 2022), this approximation can yield good results. However, the statistical
properties of the trajectories do differ significantly from simple randomness. To better
capture these aspects a self-avoiding random walk has been proposed (Engbert et
al., 2011; Roberts et al., 2013). However the number of models that aim to predict
fixational movement trajectories is very limited. The SAW model used in this paper
is one example. Another self-avoiding random walk model was published by (Roberts
et al., 2013). Instead of an elliptical activation trace Roberts et al. (2013) implement
the self-avoidance by choosing each step direction from a continuous distribution that
is weighted by the density of recent gaze history in each direction. It achieves a
similar result: at short time scales the model is persistent, avoiding previously visited
areas. The memory of the process is limited and parametrized, allowing the authors
insight into the process memory by estimating parameters. Due to the lack of an
constraining potential, this model does not represent the subdiffusive component at
long time scales.

4.3.5 Input dependence
Although initially fixational drift was often characterized as noise produced by the
oculomotor units (Eizenman et al., 1985), more recent evidence from electrophysio-
logical recordings in monkeys shows that fixational drift originates higher up in the
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chain of command than the oculomotor neurons (Ben-Shushan et al., 2022) and is
influenced by attentional processes (Shelchkova et al., 2019). Microsaccades, too, are
influenced by attention and preferentially move in the direction of the attended region
when there is covert attention (Engbert & Kliegl, 2003; Hafed & Clark, 2002). Thus,
drift and microsaccades depend on task and the features of the fixated target (Bowers
et al., 2021). This interplay of perception and action is consistent with the idea of
active vision (Findlay & Gilchrist, 2003), even at the scale of fixational eye movement.

The SAW model is stimulus independent. Other modeling approaches have inves-
tigated the interdependence of fixational eye movements and visual perception. It
can be shown that the visual processing stream is quite capable of dealing with the
hypothesized motion blur caused by the constant displacement of the stimulus over
the receptors (Packer & Williams, 1992). In fact, fixational drift is beneficial for high
acuity vision, presumably because it allows spatial information to be redistributed
into the temporal domain, modulating the input to individual receptors (Clarke et
al., 2021). Image-computable models of edge detection can actually be improved by
introducing drift (Schmittwilken & Maertens, 2022).

Research investigating the role of motion in visual perception typically use a ran-
dom walk and are most likely quite robust to changes in the precise type of motion.
However, the experimentally observed statistical properties of drift differ from simple
random noise. More research is needed to ascertain whether these properties convey
additional benefits to visual processing. In a recent paper A. G. Anderson et al. (2020)
suggested a joint approach to infer movement and stimulus simultaneously. The model
assumes a grid of retinal cells onto which stimulus patterns are projected and that the
visual processing system does not have access to an efference copy of the movement.
Instead they use Bayesian inference to alternatingly estimate the movement and the
stimulus from the spike rate generated by the retinal cells. The authors conclude
that drift is beneficial for high acuity vision as it helps the system to average over
inhomogeneities in the retinal receptors.

Thus, fixational eye movements play an important role for visual processing. In-
tegrating the fact that it is both stimulus-dependent and individually characteristic,
suggests that the movement is optimized to account for individual physiological dif-
ferences. This is consistent with the finding that fixational eye movement and visual
acuity are related (Clarke et al., 2021). A future direction for fixational drift research
may be to implement the idea that drift improves visual acuity in a generative model,
to infer the ideal motion to prevent fading or to enable edge detection. Furthermore,
although visual processing has been found to be quite robust, the development of
more accurate models of fixational eye movement may improve the quality of models
of visual processing.

4.3.6 Conclusion
In conclusion, our study contributed to fixational eye movement research through
the application of mathematical modelling and Bayesian likelihood-based parameter
inference. Our analyses suggest that self-avoiding random walk models can effectively
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capture individual fixational drift behavior, as evidenced by the convergence of distinct
marginal posteriors for each observer. Furthermore, our data-driven analysis indicates
a relationship between microsaccade rate and peaks in the model’s latent activation
state, providing further insight into the underlying neurophysiological mechanisms of
microsaccade triggering. Overall, our results provide a valuable contribution to the
understanding of fixational eye movements and highlight the importance of individual
differences in this behavior.

4.4 Methods

4.4.1 The likelihood-based modelling framework

Biologically motivated, mechanistic models allow researchers to test whether the pro-
posed mechanisms are capable of producing the observed behavior, to identify which
components are essential, and to explore how changes to the system’s structure alter
its output (Bechtel & Abrahamsen, 2010). Historically, the standard approach for
cognitive models involves comparing them to time-independent summary statistics,
e.g., here it may be MSD. The likelihood-based approach offers a number of advan-
tages. First, it is possible to estimate the model parameters from the data in a fully
Bayesian and statistically rigorous way. The value of the model is independent of
any particular ad-hoc metric, the researcher may want to investigate (Schütt et al.,
2017). The model likelihood can further be used as a basis for model comparison.
Lastly, using the estimated parameters to simulate data, it is possible to conduct pos-
terior predictive checks using metrics such as MSD to investigate whether the data
constrains the model in a way that produces the expected behavior (Engbert, 2021).
Thus, likelihood-based parameter inference allows compelling conclusions about the
underlying mechanisms. Another advantage is that Bayesian parameter estimation
provides a natural way to quantify uncertainty in the estimates, through the use of
posterior distributions and credible intervals. This can be especially useful in cases
where the data are noisy or the model is complex.

By independently estimating separate parameters for each experimental subject,
it is possible to investigate individual differences. The parameter estimation yields
a separate posterior distribution for each subject. As the parameters represent in-
terpretable quantities with biological counterparts, the comparisons of the posteriors
can allow interesting insights. Additionally, when a model is capable of representing
individual differences, it speaks to the validity of the model and its parametrization.

4.4.2 Experimental data

The experimental data used for this study were eye movement trajectories recorded
using an Eyelink 2 with a sampling rate of 500 Hz. Participants were seated at a
distance of 50 cm to the monitor and calibrated using a 9-point calibration grid. Each
trial consisted of a fixation task, where participants fixated a cross in the center of a
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white screen for 3 seconds, followed by a scene viewing task. Here, we use only the
enforced fixation data from the first 3 seconds. Out of 50 recruited participants, 48
completed all 40 trials. A further 6 were later excluded due to a large number of blinks.
As the experiment included a rigorous online quality control and the calibrate-ability
of subjects varies, 2 participants aborted the experiment. Trials during which saccades
or blinks were detected were repeated immediately. In order to detect microsaccades
we used a velocity-based algorithm (Engbert, Sinn, et al., 2015). The data set is
publicly available on the Open Science Framework (www.osf.org/fbuxq)

4.4.3 Parameter estimation
Here, we used the DREAMZS algorithm (Laloy & Vrugt, 2012). Rooted in the classical
Metropolis (Hastings) Markov Chain Monte Carlo (MCMC) algorithm, DREAMZS

iteratively explores the parameter space by sampling its position and asymptotically
converges to the true posterior distribution of the parameters. The algorithm includes
several (Markov) chains starting at arbitrary (random) positions in the parameter
space. For each chain new positions are chosen by combining (hence “evolution”)
positions of other randomly chosen chains, including their past states.

In Bayesian parameter estimation, the unknown parameters are treated as random
variables and are assigned a prior probability distribution. This prior distribution
reflects the researcher’s initial beliefs about the likely values of the parameters based
on prior knowledge or experience. We chose relatively broad truncated Gaussian priors,
which did not constrain the estimation very strongly. The truncated tails were chosen
according to experience with the model to prevent numerical problems in the case of
extreme parameter values.

We split this data set into two separate sets: one half (20 subjects) was used for
model development and exploratory analyses. The other half (21 subjects) was used
for the final analyses and model evaluation. Each set contains data from 27 trials for
each subject. We discarded all trials where the movement during fixation exceeded
1.2 degrees of visual angle. Due to the high individual variability in the data this
criterion excluded 7 subjects, because too many trials were affected. The 27 trials
can be split into training and test sets, with a 2/3 to 1/3 split. Each trial was 1500
samples long, i.e. represented a fixation of 3 seconds. This procedure finally yielded
a data set with equal numbers of samples per trial and trials per subject, facilitating
statistical analyses.

4.4.4 Angle distribution comparisons
In order to compare and correlate the angle distributions of individual participants
as well as between simulated and observed data, it was necessary to reduce the angle
distribution to a single summary value. An area under to curve (AUC) metric is a
common solution to this problem. However, in our case the distributions were already
densities, i.e. their AUC was, by definition, equal to 1. Instead we compare the
AUC of the empirical cumulative density function (ECDF). The ECDF is obtained by
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sorting the observations into unique bins and calculating the cumulative probability
for each. By grouping and computing the ECDF AUC of each group, we can compare
the similarity in the peak height of the angle distributions.
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With four parameters I can fit an elephant, and

with five I can make him wiggle his trunk.

John von Neumann

Eye movement and visual perception are complex and dynamic processes that play
a critical role in how we perceive and interact with the world. A vast body of ex-
perimental and theoretical research has advanced our knowledge of visual processing.
Situated within this rich research tradition, the dynamical approach to modeling cog-
nition adopted in this thesis is consistent with the observation that perception and
action are interdependent and unfold dynamically over time. Moreover, the presented
models are mechanistic in the sense that they rely on biologically plausible mecha-
nisms to generate behavior. The modeling framework I describe and apply here builds
upon the extensive literature on dynamical modeling and Bayesian likelihood-based
parameter inference. In the previous chapters I presented two models of human eye
movement within this framework: the SceneWalk model for modeling macroscopic
scan paths and the SAW model for generating fixational eye movements. Both models
were fitted to experimental data independently for each individual subject (and task,
in the case of SceneWalk in Chapter 3) using Bayesian parameter inference. Both
models allow an examination of the temporal dynamics of their respective processes
and were shown to capture important aspects of behavior as well as individual differ-
ences. In the following sections I will discuss the models specifically within the context
of their respective literature and consider possible future research directions. I will
conclude by commenting on the general significance of the presented approach and its
methodological advantages.

5.1 Insights from modeling scan paths
Eye movements are a necessary component of visual perception. As the eyes scan
an image, different areas move into the high acuity fovea. The resulting sequence
of fixations and saccades is closely linked to the concept of visual attention (e.g.,
Schneider & Deubel, 1995) and provides a window into how visual processing functions
in the brain. Broadly, the selection of each subsequent fixation is guided by a range of
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attentional processes (e.g., Tatler, 2007), bottom-up (e.g., Itti et al., 1998; Mannan et
al., 1996), and top-down (e.g., Henderson, 2003) influences. The following paragraphs
discuss the SceneWalk model in the context of these guidance principles.

5.1.1 Distribution of attention
The distribution of attention over time guides fixation selection. Examples of this
are turning angle- and saccade length distributions (Tatler et al., 2017), inhibition of
return (Klein & MacInnes, 1999; Mirpour et al., 2019), and the central fixation bias
(Rothkegel et al., 2016, 2017). The SceneWalk model, at its core, is an implemen-
tation of hypotheses for mechanisms that may cause these systematic statistics such
as saccadic momentum (Rothkegel, Schütt, et al., 2019; T. J. Smith & Henderson,
2009), foveation (Parkhurst et al., 2002), an inhibition stream with distinct temporal
dynamics (Klein, 2000; Klein & MacInnes, 1999), and transient strategical preference
for the center (Rothkegel et al., 2017), respectively. The fact that the model does,
indeed, produce the expected statistical properties in simulated data (as demonstrated
in posterior predictive checks), adds evidence for the implemented mechanisms.

One such mechanism that we integrated into the SceneWalk model are pre- and post-
saccadic attentional shifts. Experimental work shows a tendency toward improved
accuracy and speed when reporting on stimuli at the upcoming fixation location just
before a saccade is executed (Deubel & Schneider, 1996; Irwin & Gordon, 1998; Rolfs
et al., 2011) and that a similar improvement can be observed at the same retino-
topic location after the saccade is executed (Golomb et al., 2008; Marino & Mazer,
2016). The pre-allocation of attention in particular is a necessary component of sac-
cade preparation. Its effect can be measured even when attention is directed away
(Castet & Montagnini, 2007) and when the target is out of saccadic reach (Hanning
et al., 2019). Our implementation of this concept in the SceneWalk model (Chapter
2) led to better model performance and, particularly a better fit of the turning angle
distribution. The successful implementation of this mechanism provides evidence for
the importance of attentional pre-allocation around the time of a saccade and allows
us to explore the consequences for eye movement behavior. This result is particularly
notable because it shows how attentional effects at the microscopic level, which are
primarily subject of neurocognitive and psychophysics research, have a substantial
effect on fixation selection. It highlights how very basic consequences of the physio-
logical, functional architecture of the visual system, as well as movement kinematics
are highly relevant to understanding higher-level decision-making processes.

It is important to note that the implemented attentional mechanisms, for example
these specific pre- and post-saccadic shifts, as well as facilitation of return, were se-
lected because of their pertinent and clear interpretation and implementability and do
not, or indeed can not, represent a full description of all attentional mechanisms. There
is a growing literature about additional attentional influences, which illuminates how
visual attention is continually updated and redistributed in various dynamical ways.
One study found that the sensitivity to features at the current fixation location is
influenced by features at the upcoming fixation location (Kroell & Rolfs, 2022). Fur-
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thermore, the sensitivity to specific spatial frequencies at the target location changes
over time (Kroell & Rolfs, 2021) and the exact extent of the pre-allocated attention
vary depending on grouping of features (Shurygina et al., 2021). These results illus-
trate how, in reality, the shifting attention profile includes a much higher degree of
nuance and dynamics than is included in the SceneWalk model. However, the pre-
sented results support the claim that redistribution of attention around the time of a
saccade is a central component of fixation selection.

The SceneWalk model seems to currently be unique in the fact that it combines a
number of attentional mechanisms to generate a dynamical map of attention during
scene viewing. Individual attentional mechanisms have also been implemented in
models in the field of visual search (e.g., T. J. Smith & Henderson, 2009). In other
scene viewing models similar systematic tendencies are used to evaluate the model,
such as the turning angle distribution (Le Meur & Liu, 2015). However, in these cases
the distribution of angles is explicitly added into the model, such that the fixation
selection is in some way directly proportional to this experimental distribution. The
implementation of a dynamically evolving attention profile is a key strength of the
SceneWalk model, as it captures the complex interplay between attentional processes
and oculomotor behavior that occurs during naturalistic scene viewing.

5.1.2 Spatiotemporal likelihood
Another newly added mechanism in the SceneWalk model is the interdependence of
duration and location. The integration of fixation durations into the SceneWalk model
is a natural extension of its dynamic architecture. Previously, fixation selection de-
pended upon the duration via the evolution of the model over time. In the extended
model the duration is generated using a rise-to-threshold model that depends on the
saliency at the current fixation location. Previous research established there exists a
connection between duration and selection (Tatler et al., 2017). The LATEST model,
as discussed in Chapter 3, selects parameters using only fixation duration information
and finds that the emerging spatial statistics show relevant characteristics. Similarly
the WALD-EM model (Kucharsky et al., 2021) implements fixation durations as a in-
formation accumulation process and, like SceneWalk, uses a spatio-temporal likelihood
approach to fit the model.

Both LATEST and WALD-EM fall into the category of information-accumulation
models. In the SceneWalk model too, fixation durations are controlled by a continuous-
time discrete-state random walk process (Laubrock et al., 2013; Nuthmann & Hender-
son, 2010). This process has the statistical property of generating fixation durations
proportionally to a Gamma distribution. Thus, all three models agree that the in-
formation is accumulated over the course of the fixation and that fixation duration is
therefore related to attentional processing. In our model implementation the accumu-
lated information is represented as saliency at the current location. Ideally, instead
of the saliency, we would use the model activation, as it unfolds dynamically over
time. This would have been very computationally expensive, but would most likely
correspond better to the biological constraints of the visual system.

115



5 Discussion

Overall, the development of joint models of duration and location is an important
step toward an integrated understanding of eye movement behavior. As duration
is typically conceived as a measure of visual processing and attentional allocation,
it is a natural complement to the location-based measures that have dominated the
literature.

5.1.3 Bottom-up influences
Bottom-up, or image-dependent, aspects of fixation guidance are represented in the
SceneWalk model by the underlying saliency map. This saliency map is explicitly not
computed by the model, but instead required. In our work we usually used the exper-
imental fixation density as a best-case estimate of saliency, but it is also possible to
use model-generated saliency maps such as are generated by DeepGaze II (Kümmerer
et al., 2017). As the SceneWalk model mainly focuses on scan path dynamics and
has thus far not been fitted for individual images, its informative value concerning
bottom-up guidance is limited.

It is relevant to note that the meaning of “bottom-up” and even “saliency”, are used
differently depending on the context. Early attempts at modeling considered exclu-
sively low level features in order to represent an account of early visual processing
(Itti et al., 1998). As the field has evolved, models have come to include a variety
of high level factors (Kümmerer et al., 2017). This conveys an improvement for the
prediction of fixations, but no longer maintains the aim of modeling low level visual
processing. Particularly in the field of computer vision it has become common to refer
to any distribution that maps features, relevance, meaningfulness ratings or conspicu-
ity onto the 2D space of an image as a “saliency map”. In fact, these ratings are likely
to have some significant overlap, as features and meaning do tend to occur together.
However, both experimentally determined fixation densities and deep neural network
(DNN) models which are trained using experimental fixations, include both top-down
and bottom-up information. Therefore, the SceneWalk model too, in its current im-
plementation, bases its attention stream on an input that includes both bottom-up
and top-down semantic and task information. A key advantage of the model formula-
tion allows various saliency maps to be used. This opens the door to potential future
research, concerning the impact of low-level versus high-level saliency on dynamical
viewing parameters.

5.1.4 Top down: modeling individual differences
Top-down components of fixation selection refer to influences of observer differences,
task instructions, and other high-level influences. In this thesis I present evidence that
differences in the SceneWalk parameters can represent a tuning to both observers and
tasks (see Section 5.1.5). In the domain of eye movement research it is well-established
that a large part of the variation in the data is due to individual differences (Kliegl,
2010). There is a significant amount of psychological research indicating that macro-
scopic eye movements are unique to each individual. An extensive study involving
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more than 1,000 participants demonstrated that these individual characteristics of eye
movements are highly consistent and idiosyncrasies persist across multiple experimen-
tal sessions (Bargary et al., 2017).

We show that fitting models for individual observers yields stable and distinct pa-
rameters for each subject, even for relatively small data sets. This is a significant
methodological improvement over models that omit parameter inference or rely on
the increased size of grouped data sets. In fact, we found that parameter inference
by subject has some unexpected advantages concerning the convergence. As subjects
differ significantly in their viewing behavior, the reduction of variance actually im-
proved convergence. However, the availability of sufficient appropriate data is a major
bottleneck in modeling interindividual differences. This is particularly problematic in
models with a large number of parameters, such as DNNs. It can also occur in other
modeling approaches, when the fitting procedure is not efficient. This was the case in
previous implementations of the SceneWalk model, which required fitting of parame-
ters using ad-hoc performance metrics (Engbert, Trukenbrod, et al., 2015). Using a
likelihood-based approach, as suggested by Schütt et al., 2017, made the parameter
inference procedure more robust and statistically rigorous, as well as less data-hungry.

The ability of the SceneWalk model to converge to individually different posterior
distributions of the model parameters suggests that the parameters at least partly
capture the causes of individually characteristic behavior. This lends credibility to
the mechanisms implemented in the model and is further supported by the fact that
differences in parameters resulted in simulations that shared the individual charac-
teristics of the behavior. Parameters relating to the fixation durations (tβ, q), to the
saccade amplitude (σ) and to the degree of determinism in the target selection (γ)
were particularly notable for their convergence to distinct peaks for individuals. This
is consistent with the intuition that individuals differ in their processing requirements,
i.e., attentional span or visual processing speed. The individual differences repre-
sented by the SceneWalk model allow for a more nuanced understanding of how visual
attention operates in different individuals.

Eye movement differences between individual subjects are reliable and specific enough
to be used for biometric identification (Jäger et al., 2020; Makowski et al., 2020).
These approaches typically rely on DNN architectures and a large number of parame-
ters to capture the differences. In a recent study, we (Makowski et al., 2020) used the
SceneWalk model parameters as features in a discrimination model. This approach
performed only slightly better than chance, although it was significantly improved
by the addition of a Support Vector Machine (SVM) that uses a Fisher Kernel to
transform the data into a more discriminative feature space. However, unsurprisingly,
models that were specifically designed for the task of discriminating different viewers
turned out to be considerably more performant. In general, it is likely that for the use
case of biometric viewer identification fixational eye movement will turn out to be a
more robust and less easily spoofed metric.

Other theory-based modeling approaches that include individual differences have
also provided valuable insights into gaze behavior. Brodersen et al. (2008) explored
the class of linear rise-to-threshold models of saccadic decision making on the basis

117



5 Discussion

of three separate subjects in a learning task. The authors used likelihood-based pa-
rameter inference and found differences in the models between the subjects, revealing
significant individual differences in the learning profiles and related eye movements.
Coutrot et al. (2017) developed an Hidden Markov Model (HMM) to investigate task-
and individual differences in gaze behavior. Overall, the dynamical modeling of in-
dividual viewing behavior represents a significant advancement of our understanding
of gaze behavior. The presented research using the SceneWalk model fitted a com-
paratively large number of subjects and systematically investigated their individually
specific behavior. Understanding between-subject variation is vital for a more compre-
hensive understanding of the underlying mechanisms, as it may provide an indication
of the axes along which variance emerges.

5.1.5 Top down: task differences
In Chapter 3 we show that the parameters of the SceneWalk model for the same sub-
ject differ when different tasks are given. The observation that different tasks elicit
different viewing behavior is well-established (DeAngelus & Pelz, 2009; Yarbus, 1967).
Inferring task from eye movements has had mixed success- an early failure by both
computational models and human observers (Greene et al., 2012) was later reanalysed
and successfully classified using more advanced models Borji and Itti (2014). Later
work by (Coutrot et al., 2017) used HMMs and found both individual and task dif-
ferences. Although SceneWalk is not an application-oriented classification model, we
also find differences in model parameters within an individual in response to different
task instructions. These differences indicate that there is an attentional weighting and
tuning to produce behavior that is best suited to the task demands.

The structure of the SceneWalk model implies a difference between dynamic as-
pects of scan path generation, implemented in the mechanisms of the model, and
the static aspects, represented by the saliency information that is fed into the activa-
tion stream of the model. This is a simplification, since saliency does not exclusively
represent bottom-up information. A more realistic conceptualization of the saliency
information is that it also dynamically changes over time and is subject to chang-
ing top-down influences. Chapter 3 investigates the role of the underlying saliency,
by using different fixation density maps as a basis: either general saliencies, averaged
over task influences and therefore emphasizing bottom-up information, or task-specific
saliencies, which are computed by task. As expected, the differences between tasks in
the estimated parameter values are greater in the general saliency condition. As the
general saliency does not explain any between-task differences on its own, the model
parameters themselves must explain more variance. However, even when given task-
specific fixation densities, the model produces different parameter estimates. This
suggests that behavioral differences do not rely only on reweighting of certain aspects
in the scene, but that the systematic components attentional spreading are adjusted
in a significant way. Indeed, we found that task-specific parameter fits for dynamic
components using general saliencies outperform a simple local saliency model with
task-specific saliencies. These findings suggest that eye movements are not simply
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determined by a reweighting of bottom-up saliency features, but also by a retuning
of dynamical attentional mechanisms, that suits the demands of the task at hand.
The SceneWalk model can serve as a valuable tool for understanding the dynamics
of visual exploration and the interplay between attentional factors in a wide range of
(naturalistic) settings.

Investigating the role of task is particularly relevant, as the use of the free viewing
paradigm 6 has attracted considerable criticism. Aside from concerns about superfi-
ciality and lack of generalizability of laboratory setups like this, it has been suggested
that when no task is given, participants, may, consciously or unconsciously, simply in-
vent one (Tatler et al., 2011). As an alternative paradigm, one of the key strengths of
visual search is that it is relatively easy to manipulate, making it useful for studying a
wide range of research questions relating to attention control. The systematic nature
of search also allows the identification of efficient versus inefficient approaches and
has prompted theories regarding pop-out, conjunctive, serial, parallel search and more
(see Wolfe, 2015, for a review). COCO-Search18 (Chen et al., 2020) is a notable and
recent data set of goal-directed search fixations on natural scenes, which is intended
to train and benchmark models for attention control in visual search. The authors
present an evaluation of a number of competitive models of visual search on the data.
Recent developments in eye-tracking technology, i.e., more mobile eye tracking setups,
permit a new approach to the transferal of laboratory findings into the real world. It
is clear that the interaction of perception and action extends beyond eye movements,
and that real-world tasks require different viewing behavior than viewing static images
(Matthis et al., 2018). On the other hand, many of the systematic findings from static
scene viewing do translate into less restricted conditions (Backhaus et al., 2020). This
area may be an promising future application of the SceneWalk model.

Overall, modeling both task differences and individual differences within the same
cognitive mechanistic model is a powerful approach for understanding the mechanisms
underlying attention control. The model demonstrates a considerable flexibility and
precision by allowing both the specificity to different behaviors and in different ob-
servers. It may also provide relevant starting points for approaching the question
of inferring task and observer from the data, which has the potential to have a wide
range of applications, ranging from driving assistance and VR performance, to criminal
investigations.

5.1.6 Contributions of other modeling approaches
The SceneWalk model aims to represent the underlying mechanisms that guide eye
movement behavior. More generally, mechanistic models are built upon component
cognitive, neural, and oculomotor assumptions and posit that the model’s mechanisms
correspond to actual processes used by humans during active vision. Other models
of eye movement do not necessarily seek to match the mechanisms of eye movement

6 Typically, in free viewing experiments, participants look at static photographs of scenes, without
any task instructions.
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selection, but rather aim to account for statistical patterns observed in the data.
Throughout this thesis I discussed models across the continuum from hypothesis-based
to hypothesis free models. Notable examples that are discussed at length throughout
the text are LATEST (Tatler et al., 2017), a model by Le Meur and Liu (2015), and
WALD-EM (Kucharsky et al., 2021). Each has its own set of methods, strengths
and weaknesses and provides insight from a distinct perspective. Here I would like to
highlight three further alternative approaches.

First, the Exploration-Exploitation Model by Malem-Shinitski et al. (2020) applies
the idea of the Exploration-Exploitation Dilemma, where a decision is made between
exploiting information near the current gaze position and exploring other patches
within the given scene. The model switches between internal states of local and global
attention. In this model, we assume that the decision for each saccade is based on the
available information. The probability of following the local attention map is higher if
the ratio of priority values of the current and previously fixed locations is high. There
is a dichotomy in modeling data, with one goal being to fit the data as precisely as pos-
sible and on the other hand mimicking the data generating process. The first is likely
to make better predictions but for understanding the process deeply the second kind
is of equal importance. In developing the SceneWalk model we started from the latter
and added the inference procedure as it was necessary. The exploration-exploitation
model of eye movement was designed particularly with the inference method in mind
and thus takes the reverse approach. The exploration-exploitation model is a notable
example of the value of interdisciplinary inspiration for advancing methodological re-
search.

Second, in reality most eye movements do not take place on unmoving photographs
of scenes. While the SceneWalk model is dynamic in the sense that the underlying
process is driven by dynamical factors, the input stimulus remains static. In principle,
in many cases, the same models could be applied to dynamic input. In practice,
the challenges of eye movement prediction on video are considerable and include a
high demand for computational resources. It also necessitates accounting for different
types of eye movement, e.g., smooth pursuit, which does not occur in static scenes.
One model that applies the principles of Bayesian inference is Zanca et al. (2020).
Another example is a model by Roth et al. (2022), which implements many of the
same mechanisms as SceneWalk, except that it is applied to video data. This highly
promising extension of the mechanistic modeling approach is, at the present time still
a work in progress, but represents a vital step in the direction of modeling every-day
natural eye movement behavior.

Lastly, the DeepGaze III model (Kümmerer & Bethge, 2021) is situated firmly at
the data-driven end of the hypothesis continuum. Recent advances in the use of deep
neural network (DNN) models for predicting fixation sequences (see also Shao et al.,
2017) have demonstrated that these models are capable of capturing a variety of scan
path statistics and achieve high levels of prediction performance. DNN models rely
on large data sets of eye movement data in order to optimize the many thousands of
parameters that are the weights and biases of each component neuron. The quote at
the beginning of this chapter puts this into perspective. John von Neumann’s elephant
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Figure 5.1 Fixation-level comparison between DeepGaze III and SceneWalk. The leftmost plot
shows the density of likelihood values of both models. The more performant model, DeepGaze III
displays a distinct shift to the right due to its higher predictiveness. The middle frame shows the
resulting density when the likelihood gain of SceneWalk is subtracted from that of DeepGaze III
for each event. The Third panel shows a correlation between the likelihood gain under SceneWalk
and DeepGaze III. The areas marked in yellow highlight all the events for which DeepGaze III has a
higher likelihood gain, i.e., predicts better.

represents a data set, which can be fitted more closely the more parameters are added.
In the case of neural networks a similar principle applies—it is hardly surprising that
SceneWalk, with its handful of free parameters, is outperformed by a DNN such as
DeepGaze III. However, this does not diminish the value of the dynamical approach,
as both approaches have their individual advantages and shortcomings. In fact, using
both methods to complement each other has yielded fruitful results in an exploratory
attempt, as described in the following section.

5.1.7 Contrasts and synergies of mechanistic models and neural networks
A model like SceneWalk is an implementation of known or assumed mechanisms. The
behavior of the model is highly interpretable and it therefore offers a strong test of
these hypothesized mechanisms. In order to fit the small number of free parameters, a
comparatively small data set is sufficient. DeepGaze III on the other hand captures the
data more closely but, on its own, provides little insight into the underlying processes.
In a presentation for the Vision Science Society meeting 2022, I presented some re-
search into how a synthesis of the two modeling approaches provide interesting insights
into fixation selection. The presented idea posits that the DNN, with its superior per-
formance, can serve as an effective estimate for how well the data can be predicted and
how much of the variation in the data is individual or random variation. Meanwhile,
the biologically-inspired models help to understand which mechanisms were learned
by DNNs.

Both SceneWalk and DeepGaze III can be fitted using maximum likelihood estima-
tion and both models compute likelihood predictions for each fixation. We investigated
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Figure 5.2 Correlation between saccade length and associated likelihood. The panels from left
to right show the DeepGaze III model, SceneWalk, and the version of SceneWalk that wasmodified
in the context of this study. Compared to DeepGaze III, SceneWalk has a stronger correlation, indi-
cating less accurate prediction of long saccades. In the modified version this is slightly improved.

Figure 5.3 Marginal Posteriors for σA in blue on the left in the original model, and σA of the
modifiedmodel in the center, and ϵ on the right. Both parameters of the modifiedmodel converge
well, and their values enable a stronger concentrated attention in the center, while simultaneously
permitting longer, exploratory saccades.
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the fixations where the models diverge most in their prediction performance (Figure
5.1). This analysis revealed that long, explorative saccades in particular are often not
predicted well by the SceneWalk model (see Figure 5.2). A qualitative case-by-case
analysis reveals that these saccades occur often in images where multiple highly salient
regions are at some distance to each other. The Gaussian window implemented as part
of the SceneWalk attention stream effectively prohibits these long saliency-based sac-
cades. Based on this observation we developed a modified SceneWalk model, using a
function with heavier tails to represent the attentional window. Specifically, we added
an additive parameter ϵ to the Gaussian Window GA (Equation 2.1), effectively rais-
ing the distribution, before convolving the attention Gaussian with the saliency. We
re-fitted the parameters and found that the modified parameters σA and ϵ converged
to distinct posteriors. The tail-offset parameter ϵ was clearly non-zero, providing
strong evidence for modification. The size parameter σA in the new model was smaller
and had lower variance, indicating that that attention can be more localized when
long saliency-dependent saccades are possible under the model (see Figure 5.3). The
modified model had a slightly improved model likelihood but effectively reduced the
divergence between the model predictions, specifically for long saccades.

This explorative research allows us to use the advantages of different types of mod-
eling to advance the field of visual perception. The preliminary conclusion is that an
integration of hypothesis-based and hypothesis-free modeling is a promising approach
for understanding eye movement behavior. DeepGaze III captures a large part of the
inter-observer consistency in the data through its large number of parameters. Sce-
neWalk represents explicit knowledge; it explains only the variance which we have
understood to a point where we can formulate it into a mechanistic model. The differ-
ence in model performance gives an indication of the remaining explainable variance
(see Figure 5.4).

In order to explore this research direction further, we found a major hindrance
to be the lack of appropriate data sets. Training DNNs requires large amounts of
data, preferably with a large number of different images. SceneWalk on the other
hand requires fewer data, as it has fewer parameters. It does, however, require long
sequences, in order to be able to benefit from sequence effects. We found no open
data sets that fulfilled the criteria of both models to an appropriate standard. In an
ongoing effort we have preregistered an experiment and are currently collecting a large
data set to serve this purpose: high data quality, long sequences and many images.
More detail about the DAEMONS study may be found the Appendix E.

5.1.8 Future directions for the SceneWalk model
The SceneWalk model has been a useful tool for understanding attention control and
search behavior in natural scenes. However, the potential for extension and modifica-
tion remains large. There are several ways in which the model could be improved to
better reflect the complex processes underlying attention control. In addition, model
comparisons and integration with other approaches such as the one described in Sec-
tion 5.1.7 remain to be explored in detail. The following paragraphs outline some
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All the variability in the data

Predictable (DeepGaze)

Predicted by understood mechanisms (SceneWalk)

Explainable variability that we don't 
understand or implement yet

Inter-observer/inter-trial 
consistency

Figure 5.4 Conceptual visualization of the variance in eye movement data and the parts ex-
plained by the DeepGaze III and SceneWalk models. The difference between the performance of
the models represents variance that is consistent over observers but not yet understood explicitly.

ideas that may represent future directions for the SceneWalk model.
Evidence suggests that the relative influence of bottom-up, top-down and systematic

influences changes over the viewing duration (Schütt et al., 2019). While the first
fixation is primarily guided by bottom-up factors, later parts of the scan path are
predominantly influenced by higher-level factors. The SceneWalk model currently has
a single set of parameters that characterize the behavior across the complete viewing
duration. The only component of the SceneWalk model that is time dependent in this
way, is the central fixation bias and its decay, which is added to only the first fixation
in a sequence. In order to better reflect the complex processes underlying attention
control, a future direction of the SceneWalk model could include fitting parameters
that change over the viewing duration, perhaps using a hierarchical Bayesian approach.

As we showed in Section 5.1.7, the SceneWalk model predicts short saccades more
consistently than long saccades. This indicates the absence of an effective Exploration-
Exploitation mechanism. The use of a more heavy-tailed distribution for attention is
a first step towards addressing this problem. This could be extended by assuming a
set of distributions with a range of sizes and weights. An alternative approach takes
inspiration from the Exploration-Exploitation paradigm (Malem-Shinitski et al., 2020)
allowing the model to switch or vary between a broader and narrower focus over time.

The set of tasks that were modeled using SceneWalk, i.e., counting and guessing
tasks performed on photographs of natural scenes, are only a few examples of the
possible applications. SceneWalk could also applied to experiments that vary body
posture (Backhaus & Engbert, 2022a). Another interesting future direction for Sce-
neWalk could be to investigate the significant viewing differences between viewing
familiar and unfamiliar images (Kaspar & König, 2011a; Kaspar & König, 2011b). We
collected an extensive appropriate data set for this purpose, which has been partially
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published (Schwetlick, Backhaus et al., 2020).

5.2 Insights from modeling fixational eye movement
While the purpose of macroscopic eye movements is well-understood, i.e., information
is acquired during fixations and saccades shift the high acuity fovea to attended regions,
the purpose of fixational eye movements is more contentious. The leading hypothesis
is that the principal job of fixational eye movements is to counteract visual fading
due to neural adaptation (Coppola & Purves, 1996; Martinez-Conde et al., 2004;
Martinez-Conde et al., 2006). Moreover, fixational eye movement has also been found
to contribute to high acuity vision (Intoy & Rucci, 2020) and is related to attentional
processes as well as oculomotor control (Engbert & Kliegl, 2003; Hafed & Clark, 2002).
In Chapter 4, we implemented a dynamical model of ocular drift as a likelihood-based
model and explored the statistical properties of the trajectories as well as individual
differences. The model also shows evidence of a relationship between ocular drift and
microsaccades. In the following section I embed our findings into the literature and
discuss the implications.

5.2.1 Individual differences
There is considerable individual variation in observed fixational eye movements, both
in terms of ocular drift and microsaccades (Cherici et al., 2012; Poynter et al., 2013).
This individual variability is often disregarded by taking population averages in an
attempt to understand the common generating process. However, investigating the
differences between individuals and the axes along which they occur, can also provide
valuable insights. Differences in the expression of certain tendencies could be related to
other features of the individual’s visual system, as in the case of visual acuity (Cherici
et al., 2012). Additionally, differences may imply the structure of the underlying
mechanisms. Systematic variation in a specific property indicates that this property
must be represented in the system.

In Chapter 4, we showed that the parameters of the SAW model, are able to partly
capture and replicate these individual differences. To our knowledge, this study rep-
resents the first attempt to model individual variation in fixational eye movements
at this level of detail. We find that the parameters of the model converge to dis-
tinctly different values for the different participants and that using these parameters
in posterior predictive checks also allows the model to generate individually charac-
teristic data. The success of the model in capturing individual variation lends support
to its biological plausibility. We conclude that the implemented model mechanisms,
i.e., self-avoidance mechanism, a stepping distribution and a confining potential, are
a plausible basis for generating the observed fixational eye movement behavior and
individual differences.

Individual differences in fixational eye movements have been found to be consistently
characteristic to a point where they can be used in biometric identification. This
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identification application is discussed for macroscopic eye movements in Section 5.1.4.
Typically, viewer identification extracts and uses macroscopic eye movements, i.e.,
fixations and saccades. Jäger et al. (2020) find that a DNN model which takes the
raw eye movement signal improves classification performance and speed. This can
be interpreted as further evidence for the highly characteristic nature of fixational
eye movements. It should be noted, however, that the amount of data and thereby
extractable variance, is also much increased when considering millisecond-level data,
as compared with fixation-level data. Potential future research could analyse the
resultant DNN to investigate which of features it identifies as particularly important
for the classification. Analysis of fitted DNNs is not trivial, but promising advances in
this field can further our understanding of the relevant axes along which individuals
differ.

In conclusion, our investigation of individual differences in fixational eye movements
sheds light on the variability that exists between individuals in terms of ocular drift
and microsaccades. The success of the model in capturing individual variation lends
support to its biological plausibility and potential relevance for understanding the
nature and function of fixational eye movements. Overall, our findings highlight the
importance of considering individual differences in the study of fixational eye move-
ments.

5.2.2 The relationship of drift and microsaccades
The relationship between different kinds of fixational eye movement remains a topic of
debate. Chapter 4 provides evidence supporting the connection of fixational drift and
microsaccade triggers: a build-up of activation at the current position of the model
is associated with the occurrence of microsaccades. However, the exact mechanism
behind this relationship and the potential causal direction between activation and
microsaccades requires further investigation. In this section I discuss how the SAW
model and its findings about microsaccades relate to three hypothesized functions of
fixational eye movement: fading prevention, fixation control and visual acuity.

Prevention of fading has long been recognized as a primary role of fixational eye
movement. Early studies considered fixational eye movements necessary due to the
properties of retinal neurons, despite the additional complexity it introduces to the
visual processing stream. More recent work revealed that later stages of visual pro-
cessing also benefit from it (Rucci & Victor, 2015). In their role as a fading prevention
mechanism, it has been suggested that microsaccades and drift fulfill subtly different
but complementary roles. Drift continously prevents fading. By contrast, microsac-
cades restore vision once fading has occurred (McCamy et al., 2012). Consistent with
this idea, Engbert and Mergenthaler (2006) found that microsaccades are associated
with low retinal image slip, i.e., that drift motion is slower before microsaccade onset.
The authors propose that this slowdown causally triggers microsaccades in order to
prevent fading.

While early hypotheses suggested that microsaccades serve a corrective function for
ocular drift (Cornsweet, 1956), studies have shown that microsaccades can be explo-
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rative as well as corrective (Engbert & Kliegl, 2004). Both drift and microsaccades
serve a function for precisely repositioning the eye for high acuity vision (Intoy &
Rucci, 2020). In the SAW model the eye is constrained by a potential, with higher
activation at greater distances to the intended fixation position. The idea that mi-
crosaccades are associated with higher activation in the model is consistent with the
concept of corrective microsaccades. In fact, the model comparisons suggest that the
activation increase before microsaccades is primarily related to the confining potential.

Recent research has demonstrated that microsaccades enhance the visibility of pe-
ripheral stimuli, facilitate high acuity vision, and are responsive to task demands (Intoy
& Rucci, 2020; Ko et al., 2010; Rucci et al., 2007). Similarly drift movements were
found to improve visual acuity, both in direct experimental studies (Intoy & Rucci,
2020) and by showing the benefit of introducing motion to models of feature detection
(Schmittwilken & Maertens, 2022). These findings imply two interpretations. Both
are consistent with the active vision framework and they are not mutually exclusive.
First, motion benefits low level feature extraction. Second, an active cognitive control
of fixational eye movements based on intention, task, and attention guide the move-
ment in a top-down way. The SAW model represents the spatial characteristics of drift
motion, but is stimulus-independent and does not implement any top-down control.
Relating to the former statement, experimental work also shows that the individual
drift motion is related to the visual acuity of the individual (Cherici et al., 2012).
The individual variability captured by the SAW model may be related to individual
differences in physiology and visual acuity. On the other hand, the role of active cog-
nitive control in fixational eye movements may partly counteract the more systematic
components. For example, the microsaccade rate has been found to decrease in high
acuity vision tasks (Bridgeman & Palca, 1980) or else to be tuned to optimize task
performance (Intoy & Rucci, 2020; Ko et al., 2010). As a result, situational influences
of top-down control modulate the essential components of fixational eye movement.

5.2.3 Future directions in fixational eye movement research
The many recent publications studying fixational eye movements cited in this thesis
reflect a growing interest in its functional role in visual processing. Advancements in
eye-tracking technology are allowing researchers to study fixational eye movements in
greater detail, leading to a better understanding of their nature and function. Addi-
tionally, instead of being viewed as the noisy result of the oculomotor system, or an
inconvenient necessity for fading prevention, fixational eye movement is being recog-
nized as a potentially significant contributor to vision. This shift in perspective has
prompted increased attention particularly from researchers in the field of computer
vision. A functional role in the human visual system may have significant implications
for the development of computer vision technologies.

Recent research has shown the benefit of fixational eye movements particularly for
high acuity vision (Intoy & Rucci, 2020; Rucci et al., 2007). It is likely that further
research in this direction will find more specific correspondences between movement
and perception. Presently, the scientific consensus has shifted from claiming that any
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movement is a nuisance, to the idea that any movement can be an advantage. The
logical next step is to ask whether the specific observed spatial statistics of ocular drift,
is advantageous. A model presented by A. G. Anderson et al. (2020) uses Bayesian
inference to simultaneously infer the movement and the stimulus. A generative version
of this model may provide interesting insights into how movement may assist the per-
ception. Another approach may be to use a model that successfully implements drift
to the benefit of some sub-process of the visual system, like edge-detection (Schmit-
twilken & Maertens, 2022), and compare the effect of different sorts of movement (e.g.,
generated by the SAW model) on the model performance.

Experimental findings concerning the role of fixational eye movements for visual
acuity as well as research into its relationship with attention (Engbert & Kliegl, 2003)
emphasize the functional connection between perception and action. The movement
depends on the stimulus, and the perception of the stimulus depends on the movement,
in a highly integrative way. Therefore, a caveat of the SAW model is that it represents
drift movement in the absence of specific input. A future extension of the model could
include stimulus information, in a similar way as in the SceneWalk model. Another
approach may be to fit the SAW model to different stimuli or different tasks, in order
to analyze to which extent the stimulus dependence is systematic.

Lastly, the presented work establishes a strong base for researching the relationship
between ocular drift and microsaccades, as discussed in Section 5.2.2. A combined
model of drift and microsaccades based on a common activation representation would
provide a cohesive framework for understanding what drives fixational eye movement
and allow a more concrete investigation of the causal relationships. Overall, the ap-
plication of the dynamical modeling framework offers many variations which will con-
tribute to our understanding of visual processing.
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At least I know I’m bewildered about the really
fundamental and important facts of the universe.

Sir Terry Pratchett

6.1 Dynamical cognitive modeling

In this thesis I developed two models of human eye movement using a dynamical,
process-oriented, and biologically plausible approach. Dynamical models have been
shown to be effective in modeling a wide range of cognitive processes, from move-
ment preparation to decision-making, and sensorimotor integration. A key advantage
of this approach is that it allows for investigating the underlying mechanisms that
produce and constrain observable behavior. Specifically, it highlights the relevance of
microscopic physiological-, neural-, and kinematic properties for high-level behavior.
This is particularly apparent in Chapter 2, which presents a substantial improvement
including low-level attentional mechanisms in the model.

Additionally, cognitive processes typically contain a large amount of individual vari-
ation. The presented approach allows us to investigate vision at the level of individual
subjects, by analyzing the differences in the fitted parameters of the model (Chapters
2, 3, and 4). Moreover, the same methods may be applied to modeling differences in
conditions within subject, to better understand variation caused, for example, by task
(Chapter 4).

The suitability of the dynamical data assimilation approach is exemplified by two
models of different types of eye movement by explicitly representing the action space
and using differential equations to define its evolution over time. The resulting model
predictions can be compared to the corresponding empirical observations, providing
an opportunity to test the specific assumptions against the data. In this section, I
evaluate the methodology and highlight its particular suitability for modeling cognitive
processes.
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6.1.1 Dynamic modeling for dynamic processes

Conceptualizing eye movements as an active and dynamic process is crucial to under-
standing visual perception and its underlying mechanisms. The interaction of percep-
tion, i.e., the processing of signals that begin in photoreceptor cells in the retina, and
action, i.e., the motion of the eyes which moves input across the retina, is a complex
and dynamical process which cannot be separated. Movement is not just a quirk of
the visual system, but a core component, which takes a variety of roles, from fading
prevention to scene exploration. The precise visual input to the cells is constantly
changing, while simultaneously cognition in the brain evolves, partly in response to
the input and partly because other sensations and thoughts may occur in parallel.
Thus, vision is an active process, which must be modeled and understood under these
constraints.

The dynamical modeling framework and the associated data assimilation techniques
applied in this thesis allow us to leverage the full information present in time-ordered
data. Data assimilation involves using a mathematical model in order to estimate
the current state of a system and its future behavior. This approach emphasizes the
dynamical nature of the process and provides insights into the time-course of cogni-
tive processes involved in visual processing, decision-making, and attention allocation.
The advantages are two-fold: First, taking into account the dynamical nature of the
system in the model architecture allows us investigate specific mechanisms that pro-
duce and constrain observable behavior. Second, we use each event in the sequence
to provide better predictions of future events and to understand the implications of
dependencies over time. Overall, this allows for a more detailed understanding of the
cognitive mechanisms underlying eye movements and can lead to the development of
more accurate models.

6.1.2 Likelihood and Bayesian parameter inference

Models in the field of Psychology and, to a lesser extent in cognitive science, have
historically lacked a consistent and statistically rigorous framework (Bechtel & Abra-
hamsen, 2010; Cummins, 2010). When mathematical models are suggested, frequently
the proof of concept is deemed sufficient, or else the parameter fitting process is un-
documented (e.g., in Itti et al., 1998, or Boccignone and Ferraro, 2004). Parameter
fitting procedures, where used and communicated, typically involve the use of a loss
function (e.g., Engbert, Trukenbrod, et al., 2015; Jarodzka et al., 2010). The loss
is defined as a metric that quantifies the fit between simulated- and experimentally
observed data using a broad range of statistics (Le Meur & Baccino, 2012). The very
serious disadvantage of this is that the choice of the statistics is arbitrary and differ-
ent authors will likely apply different criteria, making an fair comparison of models
difficult. It is likely that each model will perform well in the specific metrics it was
fitted to and not others (Schütt et al., 2017).

Instead, as suggested by Schütt et al. (2017), in the work presented in this thesis
we use the likelihood, i.e., the probability of the model given the data, as a global
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and unbiased metric, in order to find parameters for the proposed models. It provides
a global measure of how well the model fits the experimental data. As described
in Section 1.2.1, likelihood-based modeling is at the center of the data-assimilation
framework, opening the doors to rigorous parameter inference and model comparisons.

For both models presented in this thesis likelihood computation is straightforward:
both models are deterministic and were implemented with likelihood computation
in mind. For more complex models, approximate methods can be used to preserve
the benefits of the likelihood approach (Seelig et al., 2020). In the context of static
saliency prediction and model benchmarking, Kümmerer et al. (2015) apply a post-hoc
likelihood approximation to models that are not explicitly likelihood-based. Here we
use a Bayesian approach to compute full marginal posteriors for each parameter. As
compared to an individual point estimate, a posterior distribution contains valuable
information about the parameter variability and how well the data constrains the
model with regard to specific components.

In a dynamical model, the likelihood is computed for each event in the time-ordered
sequence, where each model state is based on the preceding events. In order to infer
parameters, the event-likelihoods are summed to obtain the likelihood of the whole
dataset. Additionally, this event-level information can itself be used as an analysis tool:
in Section 5.1.7 we qualitatively analyse specific situations where model performance
is particularly good or bad to draw inspiration for missing mechanisms.

It is important to keep in mind that the model likelihood is a very general measure
of performance, which does not address specific statistical properties. Therefore, it
is necessary to use other statistical methods and metrics in addition to likelihood
to identify which aspects of the data are well-modeled and which are not. Overall,
this thesis demonstrates the value of a mechanistic, biologically plausible approach to
understanding the underlying processes that give rise to human eye movements.

6.1.3 Individual differences
A key feature of the results presented here using a likelihood-based cognitive modeling
framework is its ability to capture individual differences through variation in model
parameters. Individual variation has a dominant influence on eye movement data
and on experimental data in cognitive science in general (Bargary et al., 2017; Kliegl,
2010). However, for models of general cognitive function individual differences are
rarely considered. One reason for this may be that non-optimal fitting procedures
have high data requirements and are very computationally expensive. The presented
work addresses both challenges and successfully captures individual differences, and
even task differences within individuals.

The amount of data needed to fit a model varies greatly with the number of pa-
rameters, with the quality of the model, and the fitting method. Compared to many
data-driven models, such as DNNs, dynamical models tend to have a limited number
of parameters. Combined with an optimized and highly parallelized computational
implementation, as well as an equally optimized fitting algorithm, we found the fit-
ting of models at the individual level to be feasible. However, it is important to note
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that the work in this thesis is based on many thousands, if not millions, of hours of
computing time on powerful compute-clusters. Thus, the computational challenges of
modeling individual variation can be addressed but should not be underestimated.

Modeling individual differences can provide important insights into the nature of the
underlying data-generating processes. As we model behavior in a hypothesis-driven
way, the behavioral differences between subjects translate to interpretable differences
in the space of parameters. Using the model to generate data, shows that individual
differences in behavior can be captured by the model in both the SceneWalk and
SAW models. The variation captured by the model is capable of causally explaining
individual differences in behavior. This reinforces the biological plausibility of the
model, as it shows that the variation between individuals corresponds to parameterized
mechanisms in the model. By capturing the idiosyncrasies of individual behavior, we
can gain insights into the structure and function of the visual system at a level of
detail that is not possible when considering only population averages.

Here, we fitted individual models by simply separating the data sets and running the
appropriate fitting procedures one-by-one. Another method for integrating over dif-
ferences between participants are hierarchical Bayesian models. A hierarchical model
typically implements the individual differences in parameters following an additional
model for the distribution of parameters. A first advance into using hierarchical mod-
els in the context of the SceneWalk model was made by Schütt et al. (2017). A model
comparison of an averaged- versus an individually fitted SAW model indicates that a
hierarchical approach may be beneficial. Hierarchical Modeling stabilizes the parame-
ter estimates, particularly for subjects where the model is not well-constrained by the
data. Implementing such an approach for the current version of SceneWalk or for the
SAW model, could be an interesting next step for investigating individual differences,
particularly where sufficiently large data sets are not available.

6.2 Final conclusion
Due to its complexity and high relevance for interacting with the world, the field of
vision science is relevant not only for understanding perception and action, but also
for applications of machine vision. In this thesis I applied dynamical modeling and
the data assimilation framework to the field of eye movement research. As the na-
ture of visual perception is fundamentally tied to eye movement and the underlying
decision-making processes, dynamical modeling is a particularly suitable approach.
The way perception and action change and interact over time is represented in dy-
namical models as a set rules for how model states evolve over time. As a result,
the current state is computed by taking into account all past states. In the pre-
sented examples, these rules are implemented in a biologically plausible way, yielding
a process-oriented, hypothesis-driven model which allows a detailed exploration of the
processes underlying eye movement.

In conclusion, cognitive dynamical modeling and the related statistical and mathe-
matical methods presented here are highly seminal. Although the scope of this thesis is
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limited, it may serve as an example of how data assimilation techniques can be applied
to models of vision and to cognitive models in general. Certainly, further development
of these methods will greatly benefit our understanding of how basic mechanisms of
perception and action interact to produce rich, complex and creative behavior.
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A Appendix for Paper 1

A.1 Supplementary methods

1.1.1 Example images used in the experiment

The images used as stimuli in this study represent a subset of the Potsdam Corpus on
Spatial Frequency Search in Natural Scenes (Rothkegel, Schütt, et al., 2019). Exam-
ples are given in Figure A.1.

Left Right Center

Bottom Top Pattern

Figure A.1 Six sample images from the scene viewing corpus. The first images are representative
for categories of left, right, central, bottom, and top focus. The bottom right image provides an
example for a natural pattern.

1.1.2 Model phases

In Figure A.2 we show an alternative visualization of the temporal progression in the
model.
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Figure A.2 Fixation-phases of the activation and inhibition streams in the extended SceneWalk
Model. The blue line shows the location aroundwhich the fixation-based inhibition stream’s Gaus-
sian aperture is centered. The red line represents the center of the activation stream. During each
fixation, the model implements three phases. While the inhibition stream remains on the fixated
location, the center of the activation stream shifts around the time of each saccade.

1.1.3 Fixed model parameters

In addition to the results on estimated model parameters we report the fixed model
parameters in Table A.1.

A.2 Supplementary results

1.2.1 Results on systematic tendencies

In addition to the measures of scan path statistics reported in the Results we also
investigated model performance with respect to two further statistics. First, as a
measure of how fixations spread over an image over time we investigated the mean lag
distance, defined as the distance between two fixations, separated by x other fixations
(Fig. A.3A). Empirical data indicate that the distance between fixation n and n + x
separate quickly for 3 to 5 fixations before reaching peak distance and returning to
chance-level distance. We interpret this overshoot-type behavior as an indication of
inhibitory tagging as one of the key driving mechanisms during scene exploration. The
general tendency is present in the baseline model. While the extended model improves
the fit to experimental data, the overshoot in the distance is not present. From this
result, we might conclude that the inhibitor component is currently too weak in both
mathematical models.

Second, an important systematic bias in eye movements is the central fixation ten-
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Parameter Baseline SceneWalk Extended Model

ωA/ωF 10 10
CF 0.3 0.3
τpre – 0.05
τpost – 0.1
ν – 2

σpost – 2
ωCB – 1.5
σCBx – 4
σCBy – 3

ωA/ωFoR – 10

Table A.1 Fixed model parameters for baseline and extended model.

dency. Specifically, the first fixation in a scan path tends to be closer to center of
the scene than subsequent fixations (Bindemann, 2010; Rothkegel et al., 2017; Tatler,
2007; van Renswoude et al., 2019). Figure A.3C shows the distance to the image center
over fixations. We added a center bias to the model by initializing the model in the
attention stream with a centered Gaussian activation map (Rothkegel et al., 2017).
The characteristic dip on the second fixation (i.e., the first freely chosen fixation) is
reproduced exactly by the new model.

Furthermore, the central fixation tendency is stronger when the initial saccade la-
tency was shorter than on average (Rothkegel et al., 2017). Here we analyzed the
dependence of the central fixation bias on the initial saccade latency (Figure A.3B).
Note that this analysis includes the full data set (i.e., the analysis is not limited to
the test data) to produce more stable results. As a result, a larger latency before the
first saccade is systematically related to a reduced central fixation bias compared to
shorter fixations. The changes to the model improve the dynamic dependency of this
measure.

1.2.2 Individual differences
Using separate by-participant estimates, it is possible to examine how well the fitted
model parameters capture inter-individual differences. For this analysis we compared
the subject-specific experimental data to data simulated with the subject’s set of pa-
rameters. We expect that subjects with high expression of a statistic should also show
a higher degree of that statistic in simulated data. the specific model parameters fitted
for each participant show good agreement between experimental and simulated data,
and explain inter-individual differences, which we quantified by the corresponding
correlation coefficient.

In Figure 3 we show the correlation of mean saccade amplitude in experimental and
simulated data. Correspondingly, Figure A.4A shows the correlations for the mean
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a b c

Figure A.3 Model performance on additional statistics. (a) Mean distance between a fixation
and subsequent fixations in experimental and simulated data. (b)Modulation of the the first fixa-
tion’s mean distance to the image center by initial saccade latency. (c) The distance to the image
center of each fixation in the sequence. The empirical tendency to move close to the center at
fixation 2 is well-replicated by the extended model.

a b c

Figure A.4 Correlations between experimental and simulated data across participants. (a)
Mean lag distance at fixation 5. (b) Number of fixations per square degree that land within the
area expected to contain forward saccades. (c) Number of fixations per square degree that land in
the area expected to contain return saccades.

lag distance metric. We chose the distance at fixation 5 as our correlation measure,
which on average is the point of peak distance in the experimental data. Both saccade
amplitude and inhibition show good agreement between experimental and simulated
data, suggesting that the model parameters capture the inter-individual differences
adequately. The correlation is particularly interesting given that the mean lag distance
peak is not strongly present in the simulated data.

Mean saccade amplitude (Fig. 3C) is closely related to the activation stream and
lag distance to the inhibition stream. Thus, as the two most fundamental mechanisms
in the model, the fact that they are well-represented in the individual model fits lends
support to our model.

In Figure A.4 B and C we show correlations between empirical and simulated data
concerning the amount of forward and return saccades. These metrics represent the
two most important new model components. The values we compare are the number
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of fixations per square degree that fall within a defined window for each peak. While
there is more variation between subjects in the case of forward saccades, the magnitude
of each tendency is well-represented by the model fit. The positive correlation of these
measures shows that the model extension capture the relevant aspects in the data and
account for inter-individual differences.

In general it is important to note that interindividual differences play a large role in
eye movement behavior, particularly also concerning different participant groups such
as children and/or patients (Helo et al., 2014; Le Meur et al., 2017). In future work
our new by-subject estimation procedure could be applied to corresponding data.

1.2.3 Parameter recovery analysis
As an indicator for the reliability of our numerical simulations and, in particular, of
our statistical inference, we investigated the parameter inference on simulated data
with known parameters. We simulated data using parameter point estimates for one
representative participant. Simulated data were then fed back to parameter inference,
as outlined above (see Methods). In Figure A.5 we report the posteriors over parame-
ters in comparison to the true numerical values (χ was not included in this analysis).
Thus, the combination of model simulations and the estimation procedures can recover
values from the experimental data reliably. These analyses strengthen the credibility,
stability, and robustness of our mathematical modeling approach.

Figure A.5 Model parameter recovery analysis. Panels report posteriors for estimated model
parameters obtained from simulated data. The three curves represent three estimation chains of
the DREAM algorithm. The green, dotted line is the parameter value from which data was gen-
erated. The red lines show the recovered parameter values: the maximum posteriori value (solid
line) and the 50% credibility interval (dotted line). Black lines show the prior.
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1.2.4 Detailed results on parameter estimation
Based on the statistical methods described in the previous section, we obtained the
parameter point estimates reported in Table 2 averaged across participants (see Tables
A.2 and A.3).

As the parameter estimation was conducted in a fully Bayesian framework, we have
also access to the full posterior likelihood distribution of each parameter. In Fig. A.6
we show the marginal posterior distributions of each parameter of the model for all
subjects. The marginal posterior distributions can serve as a tool to understand how
well the parameters constrain the data.

For each parameter, we link the interpretation of the marginal posteriors to the
function of the corresponding parameter in the model. The speed of the decay of the
attention stream ωA controls the duration of the memory of the process for allocation
to past target locations. The numerical value ωA = 10.12 is indicates a half life of
70 ms of the previous map’s influence (i.e., exp(−10.12 · 0.070) = 0.49). The Gaussian
of the attention and inhibition streams are specified by parameters σA = 7.3 and
σF = 6.9, resp., which are corresponding to standard deviation parameters of the
Gaussian function in units of degrees of visual angle. The marginal posteriors of both
parameters are largely overlapping. The exponent γ ≈ 1 indicates that the weighting
of the corresponding activation maps is negligible. Finally, the shift parameter η is
clearly smaller than one, as expected.

There are two indicators lend support to the stability of our parameter estimations
using the baseline SceneWalk model and the extended model in combination with the
DREAM method. Firstly, the three chains which we ran for each subject resemble each
other quite closely. Also, while the parameter estimates vary between participants,
in most cases they do not differ dramatically (see Fig. A.7). Secondly, we conducted
recovery analyses of the estimated parameters, where a parameter estimation is run
on simulated data. The dream algorithm was able to identify the parameter values
from the simulated data (see parameter recovery).

1.2.5 Individual parameter estimates
Each subject’s data was individually fitted to both the baseline model and the extended
model. In Table A.2 we report the results of parameter estimation of the baseline model
(SceneWalk). Table A.3 gives the estimated parameters for the extended model. For
each estimated parameter we computed the point estimate and the corresponding 50%
credibility interval.
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Figure A.6 Marginal posteriors of the estimated model parameters as calculated by fitting the
model to the training data using PyDream.

165



A Appendix for Paper 1

Figure A.7 Posterior density of individuals and chains of the model fit using DREAM. The dif-
ferent colors show chains belonging to one subject. The black line is the prior. The consistency
of the chains within each subject indicates that we achieved a reliable fit. All chains are markedly
different from the posterior, allowing us to update our beliefs.
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Subject γ γ +/- ωA ωA +/- σA σA +/- σF σF +/- log(ζ) log(ζ) +/-

0 0.927 0.025 24.368 1.702 7.551 0.141 5.566 0.264 -1.053 0.041
1 0.911 0.026 12.819 0.825 7.919 0.134 3.144 0.103 -1.172 0.057
2 1.082 0.023 17.484 1.154 6.406 0.101 5.111 0.208 -1.162 0.044
3 0.752 0.019 15.499 0.919 6.605 0.101 3.760 0.212 -1.402 0.072
4 1.409 0.030 44.364 2.301 9.069 0.183 0.061 0.014 -1.974 0.270
5 1.070 0.020 12.667 0.921 8.067 0.175 4.651 0.232 -1.343 0.058
6 0.963 0.020 14.522 0.791 5.137 0.085 3.333 0.181 -1.178 0.047
7 1.091 0.026 11.743 0.660 4.054 0.064 3.744 0.128 -1.056 0.031
8 0.741 0.014 18.658 1.272 5.595 0.090 5.228 0.178 -1.104 0.045
9 0.990 0.019 10.869 0.631 5.632 0.072 3.728 0.098 -1.697 0.077
10 0.960 0.027 12.875 0.925 6.161 0.097 5.844 0.224 -1.651 0.083
11 1.141 0.027 21.191 1.683 8.478 0.145 6.282 0.267 -1.091 0.041
12 0.935 0.021 14.712 1.112 4.923 0.090 3.760 0.228 -1.093 0.040
13 0.867 0.020 13.251 0.840 4.893 0.078 4.288 0.154 -1.366 0.050
14 0.810 0.018 15.372 0.929 7.214 0.109 4.275 0.190 -1.608 0.098
15 1.245 0.026 16.038 1.688 7.659 0.159 8.140 0.803 -1.106 0.035
16 0.982 0.029 21.626 2.352 4.775 0.077 5.497 0.234 -1.028 0.033
17 0.913 0.018 13.101 0.996 7.977 0.136 5.982 0.255 -1.896 0.136
18 0.978 0.020 16.447 1.258 8.533 0.166 6.587 0.333 -1.225 0.051
19 0.917 0.018 12.971 0.879 6.828 0.120 4.256 0.164 -1.199 0.050
20 0.958 0.033 13.985 1.574 8.016 0.177 7.987 0.502 -1.040 0.041
21 0.943 0.014 8.820 0.802 6.920 0.136 6.137 0.483 -1.496 0.062
22 1.367 0.029 15.801 0.892 8.700 0.135 3.196 0.110 -0.971 0.035
23 0.952 0.038 13.998 1.466 6.886 0.153 16.378 1.585 -1.045 0.044
24 1.167 0.021 15.325 1.163 6.360 0.104 5.206 0.277 -1.266 0.044
25 1.067 0.018 16.058 1.094 7.538 0.116 5.264 0.250 -1.384 0.054
26 1.229 0.030 8.680 0.869 9.245 0.269 5.290 0.271 -1.213 0.079
27 0.859 0.018 18.938 1.356 4.884 0.098 4.240 0.210 -1.525 0.085
28 1.196 0.019 20.110 1.568 8.180 0.142 5.410 0.199 -1.170 0.043
29 1.463 0.036 13.326 2.919 10.551 0.243 16.203 1.534 -1.076 0.036
30 0.920 0.019 15.208 0.947 7.034 0.122 3.822 0.132 -1.201 0.051
31 0.231 0.011 43.633 3.538 2.939 0.091 3.158 0.179 -0.977 0.045
32 0.862 0.023 16.398 1.213 3.920 0.070 2.775 0.122 -1.294 0.048
33 1.067 0.024 14.702 1.038 5.711 0.076 3.825 0.155 -1.261 0.045
34 0.944 0.032 24.298 2.569 9.347 0.227 6.307 0.349 -0.898 0.043
Table A.2 Estimated parameter values of the baseline SceneWalkmodel for all participants (see
Table A.1 for fixed parameters).
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Table A.3 Estimated parameter values of the extended SceneWalk model for all participants
(see Table A.1 for fixed parameters).

168



B Appendix for Paper 2

B.1 Experimental details

2.1.1 Methods

The eye tracking setup included a mobile eye tracker in a lab with a wide projector
screen. Subjects received credit points or a monetary compensation of 10,00e for
their participation. To increase compliance with the task, we offered participants an
additional incentive of up to 3,00e for correctly answering questions after each image
(a total of 60 questions). The experiment was carried out in accordance with the
Declaration of Helsinki. Informed consent was obtained for experimentation from all
participants. The experiment data originally published by Backhaus et al. (2020) are
freely available via OpenScienceFramework (OSF, https://osf.io/gxwfk/).

2.1.2 Data preprocessing

In our laboratory, we developed a processing workflow for the preprocessing of mobile
eye-tracking data. Eye movement recordings from our mobile eye tracker are pro-
vided in head-centered coordinates. We presented 12 different QR codes around the
stimulus material during the experiment. In the video output from the mobile eye
tracker, we detected the QR codes using the Pupil Labs software Pupil Player version
1.7.42 (Kassner et al., 2014). The stimulus area within the QR codes is defined as a
rectangle. Using a projective transformation provided by the image processing tool-
box from MATLAB (The MathWorks, Natick/MA), we converted data points from
head-centered coordinates (indicating points in the video frames) to image-centered
coordinates (referring to the stimulus images).

After truncating the data to the relevant time segments of the stimulus presentation,
we used a velocity-based saccade detection algorithm (Engbert & Mergenthaler, 2006;
Engbert & Kliegl, 2003). For more detailed information on how to fit the parame-
ters to our measurement device, please see Backhaus et al. (2020), where a number
of filter criteria are described in detail. These criteria produce reliable data points,
when working with the SMI Eye Tracking Glasses (SMI-ETG 2W; SensoMotoric In-
struments, Teltow, Germany). After preprocessing, a total of 40,182 fixations and
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47,425 saccades were retained for further analyses and modeling.

2.1.3 Most important results

The original experiment by Backhaus et al. (2020) reports statistics, from which we
summarize the most relevant effects in the following. The authors looked at temporal
and spatial eye movement parameters and compared the 4 different tasks using linear
mixed models. The contrasts of the linear mixed models were chosen in such a way
that the differences between the task groups (Guess conditions/free viewing vs. Count
conditions/search) as well as the differences between the two specific tasks within
a type could be compared (Guess time vs. Guess country; Count people vs. Count
animals).

The authors report variations in fixation durations induced by the experimental task
manipulations. On average, fixation durations are shorter in Count tasks compared
to Guess tasks. Particularly short fixation durations occur in difficult Count tasks;
Couting animals involves more challenging search components than counting people.
Results also showed differences in saccade amplitudes between task types: Count
tasks lead to shorter saccade amplitudes than Guess tasks. For saccade amplitudes,
unlike fixation durations, no differences were found within task types. Backhaus et
al. (2020) report that the tasks produced differences in gaze behavior on other spatial
parameters. In Count tasks, participants disengaged faster and further from the image
center (after generating the initial tendency to fixate the image center) compared to
Guess conditions (Rothkegel et al., 2017; Tatler, 2007).

With respect to the image-dependent 2D density of fixations, gaze in the Count peo-
ple condition focused on comparatively fewer salient locations while fixation locations
in the Count animals condition were most distributed across the image. The Guess
tasks induced distributions between these two extremes. Thus, there was a strong
influence of the task on image-dependent saliency.

B.2 SceneWalk model specification

In the main text, we introduced the basic components of the SceneWalk model in its
most recent version (Schwetlick, Rothkegel, Trukenbrod, et al., 2020b). We provide
additional mathematical details in this appendix. As explained in the main text, the
SceneWalk model comprises two largely independent processing streams, activation
and inhibition, which when combined are interpreted as the fixation probability π
at each grid point i, j at time t. In the original formulation of the model (Engbert,
Trukenbrod, et al., 2015), the center of both the activation and the inhibition stream
align with the current fixation position (fx, fy). The differential equations that define
the temporal evolution of the activations of the two streams are given in Eq. (3.6) for
the activation stream and in Eq. (3.5) for the inhibitory stream in the main text.

Over time intervals with constant input (i.e., during fixation, a closed-form solution
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can be found by integrating analytically, i.e., for the activation

A(t) =
GAS∑
GAS

+ e−ωA(t−t0)

(
A0 −

GAS∑
GAS

)
, (B.1)

and
F (t) =

GF∑
GF

+ e−ωF (t−t0)

(
F0 −

GF∑
GF

)
, (B.2)

for the inhibition, where we dropped the indices i, j for simplification of the notation.
It is important to note that the assumption of constant input is an approximation
because of the presence of miniature eye movement produced involuntarily during
fixation (e.g., Engbert & Mergenthaler, 2006).

The weighted difference of the activations in the two streams represents the priority
map for target selection (Eq. (3.8). Since the difference will lead negative activations
at locations, we take the part of the map, i.e.,

u∗ij(uij) =

{
uij, if uij > 0
0, otherwise. . (B.3)

The most recent version of the SceneWalk model (Schwetlick, Rothkegel, Trukenbrod,
et al., 2020b) introduced different phases of perisaccadic influences during each fix-
ation. Specifically, before and after a saccade, the center of the activation stream
shifts. A pre-saccadic shift to the upcoming target occurs before saccade onset and
post-saccadic shift in the direction of the saccade vector occurs after the saccade
(Fig. 3.2). Thus, for a time τpre before each saccade, once the next location has been
selected from the priority map with probability π(i, j), the center of the Gaussian
input shifts to the location of the upcoming fixation, i.e.,

Gpre
A (x, y) =

1

2πσ2
A

exp

(
−(x− xf+1)

2 + (y − yf+1)
2

2σ2
A

)
, (B.4)

When the pre-saccadic phase terminates, the saccade is executed. For the purposes
of this work, we neglect saccade durations, as most information is acquired during
fixations. Now, the post-saccadic shift phase begins, during which the center of the
activation Gaussian is determined by Eq. (3.7). The evolution equation is then given
by

Gpost
A (x, y) =

1

2πσ2
post

exp

(
−(x− xs)

2 + (y − ys)
2

2σ2
post

)
. (B.5)

As the inhibition stream always aligns with the fixation location, it can still be
calculated for the entire fixation duration via Eq. (B.2). The result of the phase-
specific activation and inhibition can be combined at any point in time to yield the
fixation selection probability at that time.

Facilitation of return is implemented in the model as a selectively slower decay of
attention ωA at the one back location. It thus occurs more briefly and at a different
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time scale than the inhibition of return implemented in the inhibition stream. The
reduced decay rate ωFoR occurs in a spatial window x − ν < xf−1 < x + ν and
y− ν < yf−1 < y+ ν around the previous fixation location (xf−1, yf−1), where ν is the
size of the window. We then replace ωA in the evolution equation with a matrix that
contains the value of ωA everywhere except in the specified window, where it contains
ωFoR

A(t) =
GAS∑
GAS

+ e−ωFoR(t−t0)

(
A0 −

GAS∑
GAS

)
. (B.6)

As suggested by Rothkegel et al. (2017), starting the model with a central activation
improves the predictions of the model. Initially we instantiated the model with uniform
distributions. The implementation of a transient central fixation bias changes the
evolution equation for the first fixation so that

A(t) =
GfixS∑
GfixS

+ e−ωcb(t−t0)

(
A0CB

− GfixS∑
GfixS

)
. (B.7)

Finally, we implemented an additional bias towards horizontal and verical saccade
directions (Engbert et al., 2011). The oculomotor map is centered at the current
fixation location, i.e.,

POM =
(
(x− xf )

2 · (y − yf )
2
)χ

, (B.8)

where the factor χ determines the steepness of the oculomotor potential. In this
variation, before the normalization and the addition of noise, Eq. (B.3, 3.10), the
oculomotor map is added as

uOM = u+

(
ψ ·
∣∣∣∣ POM

max(POM)
− 1

∣∣∣∣) , (B.9)

where ψ = 10−0.6 is a constant parameter.

B.3 Bayesian inference workflow
In this paper we applied a Bayesian inference workflow to a biologically plausible
generative model. This approach is extremely promising for cognitive modeling for
four reasons illustrated in the infographic in Fig. B.1.

In this framework a model is defined by its likelihood function and parameters. It
can be used to calculate the probability of a given data point. Given a starting point it
can also be used generatively to simulate data. Both the predictive and the generative
parts of the model are necessary components of the proposed workflow and provide
valuable insight into the model’s characteristics.

First, we use the model likelihood to estimate the best values for the model pa-
rameters using Bayesian inference. The Bayesian parameter estimation algorithm re-
peatedly computes the model likelihood given the data, while systematically varying
the parameter values. Thus, it tries to maximize the performance of the model using
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the likelihood given the data. This process yields marginal posterior distributions
for each parameter. These marginal posteriors can be interpreted as a rich source of
information about the parameter as shown in box (c).

Second, we parametrize the model with the values obtained from the estimation
and use it to simulate data. When fitting a model using an ad-hoc loss function, the
model is trained specifically to reproduce whatever the chosen metrics may be. By
contrast, using the likelihood allows for greater generalizability as well as avoiding
overfitting. Simulated data can be compared to experimental data in order to assess
how well the model reproduced trends that it was not directly informed of. To this
end we perform a series of posterior predictive checks, which ascertain whether the
model can actually capture the relevant features found in the data. Thus, they reveal
strengths and weaknesses of the model regarding its plausibility.

Lastly, the model likelihood is relevant also for inter-model comparisons. It is a fair
basis for comparison, in the sense that it provides the same information to each model
with the experimental data. Each model can be fitted and compared in the same way:
estimation algorithms determine the parameters using a training set of experimental
data. Then, using a test set of experimental data, we can calculate and compare their
performance.

B.4 Convergence of parameter estimation
As suggested by the authors of the DREAM algorithm (Vrugt & Braak, 2011), we
used the Gelman-Rubin convergence diagnostic R̂ to determine adequate quiality of
the parameter estimation. The results are illustrated below for for all 256 models
(Figure B.2). We used the value of 1.05 as a threshold to indicate convergence. In
total of the 2304 fitted parameters, 2288 converged and 16 did not converge. At the
level of models, of the 256 fitted models there were only 3 where the posterior did not
converge for one or more parameters.

B.5 Preregistration
This work was preregistered at the Open Science Framework (OSF)7 (Schwetlick,
Backhaus, & Engbert, 2020) using the “Preregistration Template for the Application
of Cognitive Models” (Crüwell & Evans, 2019). Please refer to the OSF repository for
full information on the preregistration. Here we would like to follow up on some aspects
of the preregistration and explain where and why we deviated from the preregistered
research plan.

The hypotheses we stated in the preregistration concerned (a) differences in model
parameters relating to the attention span for the different tasks and (b) the importance
of inhibition for different tasks. For the former hypothesis our findings agreed that the

7 See https://osf.io/79qy8
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Figure B.1 Workflow for likelihood-based Bayesian inference. The workflow summarizes all
steps of Bayesian inference and highlights four core advantages of the proposed workflow. Orange
arrows and lines (a) refer to the statistically rigorous estimation of parameters using the model’s
likelihood function and empirical data. Green arrows and lines (b) show the process of conduct-
ing posterior predictive checks, where the resultant models’ predictions are evaluated against real
world data. Purple arrows and lines (c) explain how the specific parameter posteriors can be inter-
preted in a biologically-founded model. Lastly, blue arrows and lines (d) explain how the method
is useful to establish comparability between competing models.
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Figure B.2 Rhat Convergence. The plot shows the distribution of R̂ values over ourmodels. Each
panel row represent a parameter. The horizontal line indicates the value of 1.05, a common thresh-
old for determining convergence.
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attentional span is greater in Guess task conditions than in Count tasks. As predicted,
the activation Gaussian σA is greater in free viewing-like tasks.

We also find support for the latter hypothesis: In the Count task conditions, the
span for the fixation map σF is smaller than in the Guess tasks, showing at least a
more focused, localized inhibition component. The parameter CF , which is mentioned
as an exploratory analysis target in the preregistration was not included as a free
parameter in the final estimation, as it turned out to be more difficult to identify
given the relatively small amount of data available for each model fit.

The third hypothesis in the preregistration concerns parameter ωA, which controls
the speed of decay. We predicted a smaller value of ωA for Count tasks, as we thought
that keeping track of past fixations would be of greater use. We found this to be
true, but only for models fitted using the general saliency map, not for models using
task-specific saliency. We propose potential reasons for this finding in the discussion.

We also proposed a Markov-order analysis of the model to determine the influence
of past states on the current. This analysis is not included in the current manuscript,
since pilot simulations indicated that the analysis required larger amounts of data per
fit than available from the current study. However, we consider the mathematical
concept promising and aim to include a corresponding analysis in future work. The
same is true for the mean-lag distance analysis proposed in the preregistration.

An important point in the preregistration was the possibility of running model fits
based on individual data sets per task. As this was successful despite the limited data,
the results of the current work are exclusively based on this strategy of fitting data
for individuals and tasks independently. The alternative proposal of fitting models for
each task by pooling across participants was no longer necessary. Additionally, instead
of the proposed 5 free parameters for model fitting, we now successfully estimated 9
free parameters per data set, with 3 free parameters added the model to include the
new temporal control of fixation durations.

B.6 Additional results
The following section provides additional details concerning the statistical analyses
presented in this paper. Specifically, we provide the detailed results of our LMM
analyses. Table B5 summarizes all of the applied LMM model structures.

The first LMM analysis compares the likelihoods of different versions of the Sce-
neWalk model and Density Sampling models. The results can be found in Table B.1.
The second analysis comprises an LMM of the posterior of each of the 9 estimated
parameters for both general and task-specific model variants, i.e., 18 separate models.
Fixed and random effects for each LMM are reported in Table B.2. Finally, Tables B3
and B4 contain the results of the LMMs pertaining to the comparison of simulated
and experimental saccade amplitudes and fixation durations, resp.
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Custom contrast Treatment contrast

β SE t β SE t
Fixed Effects
Intercept 15.10 0.066 228.74 T1 15.07 0.069 218.72
FModel 0.34 0.023 15.01 T2 - T1 0.31 0.032 9.72
FSal 0.25 0.023 11.04 T3 - T1 -0.28 0.032 -8.70
FInter -0.06 0.046 -1.26 T4 - T1 0.09 0.032 2.80

V ar SD V ar SD
Random Effects
Subject: Intercept 0.0327 0.181 0.0327 0.181
Image: Intercept 0.0960 0.310 0.0960 0.310
Residual 0.2205 0.470 0.2205 0.470

Number of obs 1700 1700
Number of groups subject 32 subject 32

image 30 image 30

Table B.1 LMM fit by maximum likelihood - Comparison of the model likelihood gain. |t| > 2
are interpreted as significant effects, FModel: factor model ’Density Sampling’ vs. ’SceneWalk’,
FSal: factor saliency ’General Saliency’ vs. ’Task-specific Saliency’, FInter: Factor for the interaction
of FModel and FSal, T1: ’Task-specific Saliency - Density Sampling’, T2: ’Task-specific Saliency -
SceneWalk’, T3: ’General Saliency - Density Sampling’, T4: ’General Saliency - SceneWalk’, To avoid
zeros in the model likelihood gain, data were linearly transformed by adding 14.
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ωA – Task-specific Saliency ωA – General Saliency
Fixed Effects β SE t β SE t
Intercept 0.760 0.004 204.85 1.053 0.001 1102.15
FGC -0.001 0.006 -0.22 0.006 0.002 2.60
FC -0.014 0.011 -1.20 0.000 0.002 -0.07
FG 0.013 0.007 2.03 -0.006 0.002 -2.59
Random Effects V ar SD V ar SD
Subject: Intercept 0.0004 0.021 0.0000 0.005
Subject: FGC 0.0011 0.033 0.0001 0.012
Subject: FC 0.0041 0.064 0.0002 0.014
Subject: FG 0.0014 0.037 0.0002 0.014
Residual 0.0005 0.022 0.0000 0.006

σA – Task-specific Saliency σA – General Saliency
Fixed Effects β SE t β SE t
Intercept 2.923 0.037 79.17 5.381 0.119 45.11
FGC 0.233 0.062 3.79 0.760 0.209 3.63
FC 0.139 0.076 1.82 0.682 0.226 3.01
FG 0.022 0.058 0.38 0.154 0.234 0.66
Random Effects V ar SD V ar SD
Subject: Intercept 0.0436 0.209 0.4551 0.675
Subject: FGC 0.1214 0.348 1.4028 1.184
Subject: FC 0.1852 0.430 1.6362 1.279
Subject: FG 0.1085 0.329 1.7575 1.326
Residual 0.0352 0.188 0.3657 0.605

σF – Task-specific Saliency σF – General Saliency
Fixed Effects β SE t β SE t
Intercept 4.035 0.069 58.40 4.710 0.103 45.65
FGC 0.626 0.132 4.75 0.778 0.164 4.73
FC 0.449 0.169 2.65 0.836 0.211 3.97
FG 0.217 0.181 1.20 0.448 0.245 1.83
Random Effects V ar SD V ar SD
Subject: Intercept 0.1526 0.391 0.3401 0.583
Subject: FGC 0.5550 0.745 0.8629 0.929
Subject: FC 0.9145 0.956 1.4193 1.191
Subject: FG 1.0450 1.022 1.9103 1.382
Residual 0.3575 0.598 0.6995 0.836

Table B.2 LMM fit by maximum likelihood - Model parameter with our custom contrasts. FGC:
first contrast ’Count’ vs. ’Guess’, FC: second contrast ’Count People’ vs. ’Count Animals’, FG: third
contrast ’Guess Country’ vs. ’Guess Time’, |t| > 2 are interpreted as significant effects.
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γi – Task-specific Saliency γi – General Saliency
Fixed Effects β SE t β SE t
Intercept 1.000 0.000 3338.22 0.996 0.005 183.68
FGC 0.001 0.001 2.38 -0.005 0.010 -0.49
FC 0.000 0.001 -0.41 0.035 0.009 4.02
FG 0.000 0.001 -0.57 -0.003 0.016 -0.17
Random Effects V ar SD V ar SD
Subject: Intercept 0.0000 0.002 0.0009 0.031
Subject: FGC 0.0000 0.003 0.0031 0.056
Subject: FC 0.0000 0.005 0.0024 0.049
Subject: FG 0.0000 0.004 0.0085 0.092
Residual 0.0000 0.002 0.0016 0.039

log10 ζ – Task-specific Saliency log10 ζ – General Saliency
Fixed Effects β SE t β SE t
Intercept 31.770 0.455 69.77 61.388 0.856 71.72
FGC -4.502 0.980 -4.60 -11.040 2.398 -4.60
FC -2.098 1.527 -1.37 -3.719 3.014 -1.23
FG -0.858 0.960 -0.89 -0.482 2.758 -0.17
Random Effects V ar SD V ar SD
Subject: Intercept 6.6174 2.572 23.3713 4.834
Subject: FGC 30.6415 5.535 183.7608 13.556
Subject: FC 74.5076 8.632 290.1551 17.034
Subject: FG 29.3677 5.419 242.8092 15.582
Residual 32.3881 5.691 125.8949 11.220

η – Task-specific Saliency η – General Saliency
Fixed Effects β SE t β SE t
Intercept 0.861 0.006 155.14 0.808 0.007 112.35
FGC -0.005 0.013 -0.42 -0.004 0.016 -0.22
FC -0.017 0.013 -1.29 -0.032 0.017 -1.92
FG 0.002 0.011 0.19 -0.001 0.016 -0.04
Random Effects V ar SD V ar SD
Subject: Intercept 0.0010 0.031 0.0017 0.041
Subject: FGC 0.0052 0.072 0.0085 0.092
Subject: FC 0.0055 0.074 0.0090 0.095
Subject: FG 0.0038 0.062 0.0078 0.088
Residual 0.0013 0.035 0.0018 0.042

Table B.2 (cont’d) LMM fit by maximum likelihood - Model parameter with our custom con-
trasts. FGC: first contrast ’Count’ vs. ’Guess’, FC: second contrast ’Count People’ vs. ’Count An-
imals’, FG: third contrast ’Guess Country’ vs. ’Guess Time’, |t| > 2 are interpreted as significant
effects.
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tα – Task-specific Saliency tα – General Saliency
Fixed Effects β SE t β SE t
Intercept 1.749 0.022 80.28 2.108 0.026 81.29
FGC 0.272 0.044 6.18 0.024 0.060 0.39
FC -0.067 0.060 -1.12 -0.113 0.080 -1.41
FG 0.022 0.052 0.42 0.127 0.069 1.85
Random Effects V ar SD V ar SD
Subject: Intercept 0.0149 0.122 0.0210 0.145
Subject: FGC 0.0606 0.246 0.1121 0.335
Subject: FC 0.1132 0.336 0.2013 0.449
Subject: FG 0.0836 0.289 0.1473 0.384
Residual 0.5813 0.762 0.9381 0.969

tβ – Task-specific Saliency tβ – General Saliency
Fixed Effects β SE t β SE t
Intercept 73.913 0.569 129.87 75.114 0.575 130.71
FGC 0.996 0.904 1.10 -1.094 0.889 -1.23
FC 3.713 0.879 4.22 3.835 0.895 4.29
FG -0.881 1.065 -0.83 -0.558 1.086 -0.51
Random Effects V ar SD V ar SD
Subject: Intercept 10.3581 3.218 10.5603 3.250
Subject: FGC 26.1320 5.112 25.2455 5.024
Subject: FC 24.6481 4.965 25.5472 5.054
Subject: FG 36.2232 6.019 37.7145 6.141
Residual 13.7678 3.711 13.3568 3.655

q – Task-specific Saliency q – General Saliency
Fixed Effects β SE t β SE t
Intercept 2.598 0.028 93.99 2.574 0.028 91.44
FGC 0.017 0.038 0.45 0.074 0.039 1.89
FC -0.178 0.041 -4.39 -0.181 0.042 -4.36
FG 0.053 0.054 0.97 0.046 0.056 0.82
Random Effects V ar SD V ar SD
Subject: Intercept 0.0244 0.156 0.0253 0.159
Subject: FGC 0.0466 0.216 0.0484 0.220
Subject: FC 0.0525 0.229 0.0552 0.235
Subject: FG 0.0948 0.308 0.0992 0.315
Residual 0.0262 0.162 0.0261 0.161

Table B.2 (cont’d) LMM fit by maximum likelihood - Model parameter with our custom con-
trasts. FGC: first contrast ’Count’ vs. ’Guess’, FC: second contrast ’Count People’ vs. ’Count An-
imals’, FG: third contrast ’Guess Country’ vs. ’Guess Time’, |t| > 2 are interpreted as significant
effects.
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Table B3 LMM fit by maximum likelihood – Saccade amplitudes (log-transformed) for our con-
trasts. |t| > 2 are interpreted as significant effects.
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Table B4 LMM fit by maximum likelihood – Fixation durations (log-transformed) for our con-
trasts. |t| > 2 are interpreted as significant effects.
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Table B5 LMMmodel structure. 1: Intercept, FModel: factor model ’Density Sampling’ vs. ’Sce-
neWalk’, FSal: factor saliency ’General Saliency’ vs. ’Task-specific Saliency’, FInter: Factor for the
interaction of FModel and FSal, T1: ’Task-specific Saliency - Density Sampling’, T2: T1 vs. ’Task-
specific Saliency - SceneWalk’, T3: T1 vs. ’General Saliency - Density Sampling’, T4: T1 vs. ’General
Saliency - SceneWalk’, FGC: first contrast ’Count’ vs. ’Guess’, FC: second contrast ’Count People’ vs.
’Count Animals’, FG: third contrast ’Guess Country’ vs. ’Guess Time’, ||: double bar sign represents
that the correlations of random effects are not included in the model, *we choose the minimal
model with only random intercepts for subjects and images to have comparable models between
all subsets of this analysis.
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C Preregistration for Paper 2

C.1 Study information

3.1.1 Title
Modeling task-dependence in natural scene viewing using the SceneWalk model of
scan path generation

3.1.2 Authors
Lisa Schwetlick, Daniel Backhaus, Ralf Engbert

3.1.3 Description
The fixation locations chosen during visual perception of natural scenes depend on the
observer’s objective while viewing the image. Static models of eye movement behavior,
can predict near-perfect predictions of fixation densities, which reflect the different
tasks. The dynamic, temporal component is less well explored, however. Using a
biologically plausible model of scan paths based on neurophysiological assumptions
we want to model experimental data for different viewing tasks. We will investigate
whether we can explain the difference between the tasks by varying model parameters
that directly correspond to the biologically interpretable concepts in the visual system.

3.1.4 Hypotheses
Main Hypothesis: The SceneWalk model can represent differences between task
conditions in scene viewing data 1. in terms of estimated parameter values, and 2. in
terms of differences between generated scan paths

H1) We expect to find a difference between task conditions (Count People, Count
Animals, Guess Time and Guess Country) concerning the attentional span. In free-
viewing-like tasks (Guess Time and Guess Country) participants have an increased
attentional span compared to search-like tasks (Count People, Count Animals). Pre-
vious research has shown that saccade amplitude and attentional span are related
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and saccade amplitudes tend to be smaller in search tasks (Trukenbrod et al., 2019).
Attentional span is most closely related to parameter σA in the model. (directional)

H2) In search-like tasks inhibitory tracking is more important than in free-viewing-
like tasks. We expect parameters that strengthen the inhibition component to be more
pronounced for search-like tasks than for free-viewing-like tasks. Stronger inhibition
drives scene exploration to scan further areas in the scene. The inhibition path is
defined mainly by parameters σI and CF in the model. (directional)

H3) In search-like tasks fixation history is more relevant, as it is necessary to keep
track of previously visited locations. The model’s memory span is determined by
parameter ω. In search-like tasks we therefore expect a smaller value for the parameter
ω. Additionally, the number of past fixations that add a benefit for predicting the next
one can be investigated. We expect the limit to useful past fixations in search-like tasks
to be greater than in free-viewing-like tasks.

C.2 Data description for pre-existing data

3.2.1 Name or brief description of dataset(s)
Name: MBody1 and MBody2

Eye tracking data from a scene viewing experiment using a mobile eye tracker in a lab
with a wide projector screen. In Mbody1, the data set we will model, 32 participants
viewed 30 images twice under 4 different concrete viewing task conditions. The tasks
were:

1. Count People (search-like)

2. Count Animals (search-like)

3. Guess Time (free-viewing-like)

4. Guess Country (free-viewing-like).

In the following questions, we refer to this data set. In order to generate the fixation
density maps needed for the model, we used the fixation data on each image and each
task. Additionally, we generated free viewing fixation densities from a second data set
on the same images: a subset of MBody2, where 32 participants viewed the same 30
images under a less concrete, free viewing instruction.

3.2.2 Is this data open or publicly available?
Yes, for MBody1

3.2.3 How can the data be accessed?
• MBody1: https://doi.org/10.17605/OSF.IO/GXWFK, https://osf.io/gxwfk/

• MBody2: data are not openly available yet.
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C.2 Data description for pre-existing data

3.2.4 Date of download, access, or future access

Not applicable

3.2.5 Data source

Own lab collection - The data were collected in 2017-2018 by Daniel Backhaus in the
Eye Lab of the University of Potsdam, Germany.

3.2.6 Additional information about data source

Not applicable

3.2.7 Codebook

Not applicable

3.2.8 Sampling and data collection procedures

For this study, we used data of 32 students of the University of Potsdam with normal
or corrected to normal vision. On average participants were 22.8 years old (18–36
years) and 31 participants were female. Participants received credit points or a mon-
etary compensation of 10,00 €. To increase compliance with the task, we offered
participants an additional incentive of up to 3,00€ for correctly answering questions
after each image (in sum 60 questions). The work was carried out in accordance with
the Declaration of Helsinki. Informed consent was obtained for experimentation from
all participants.

For further information see https://doi.org/10.1167/jov.0.0.06824, https://arxiv.
org/abs/1911.06085.

3.2.9 Prior work based on the dataset

• Paper published in Journal of Vision, preprint available on https://arxiv.org/
abs/1911.06085, https://doi.org/10.1167/jov.0.0.06824

• Conference Poster Presentation: 20th European Conference on Eye Movements
ECEM 2019

• Scandinavian Workshop on Applied Eye Tracking - SWAET. 2018

3.2.10 Prior research activity

All the research we have done on this data is included in point C.2
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3.2.11 Prior knowledge of the current dataset
DB and RE have experimentally analyzed the data. The data has not previously been
used for modeling and LS is unfamiliar with the data. For experimental results please
see https://arxiv.org/abs/1911.06085, https://doi.org/10.1167/jov.0.0.06824

The core findings concerning task differences relevant to this project are summarized
here:

• Saccade amplitudes: Free-viewing-like tasks produce longer saccade amplitudes
than search like tasks

• Free-viewing-like tasks produce a greater shannon’s entropy.

• Count Animals produces a greater shannon’s entropy than Count People tasks.

• Guess Time task produces a greater shannon’s entropy than Guess Country task

• Count Animals task produces a smaller predictability than Count People task.

• Guess Time task produces a smaller predictability than Guess Country task

C.3 Sampling plan
Not applicable; as in existing data.

C.4 Design plan
Not applicable; as in existing data.

C.5 Variables
Not applicable; as in existing data.

C.6 Data cleaning and preparation

3.6.1 Data exclusion
See https://arxiv.org/abs/1911.06085, https://doi.org/10.1167/jov.0.0.06824

Further, in order to generate the empirical fixation density maps we only used a
subset of MBody2 where participants had a free viewing task. Besides that the same
filter criteria was used as described in the paper. The eye movement data contain
measurement error and noise, most prominently through eye blinks. Blink data points
were removed from the data used in the model.
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C.7 Modeling

3.6.2 Data partitioning for train/test
We will split the data into 4 sets, one for each of the 4 viewing task conditions. Each
of the 4 sets will be split into test and training data randomly such that 75% of the
data of each participant is in the training data set and 25% is in the test data set.

In an exploratory analysis we will compute individual fits for each subject, in which
case the data will be split by individual and by each of the 4 viewing task conditions.
This will result in 32*4=128 data sets. The test and training split will be as described
above.

C.7 Modeling

3.7.1 Mathematical or computational model
We will be modeling the data using the extended SceneWalk model (https://psyarxiv.
com/zcbny/) Short Summary of the Model: The SceneWalk model is a dynamical
model of fixation selection that relies on two separate processing streams. The atten-
tion stream combines visual saliency with a gaussian blob centered around the current
fixation location in order to simulate the decrease in visual accuracy in the peripheral
visual field. The inhibition stream drives eye movement away from the current fixation
location by another gaussian blob around the current fixation location. Both streams
are implemented on a 128x128 grid, evolve independently over time, and are finally
subtracted in order to yield a priority map from which the next fixation is sampled.
In a recent study we extended the SceneWalk model to include mechanisms of perisac-
cadic attention shifts, which allow the model to better capture systematic tendencies
found ubiquitously in scan path data. Specifically the extended model implements
a mechanism of facilitation of return, pre- and post-saccadic attentional shifts and
oculomotor potential.

Parameters: For this study we will estimate the following relevant parameters:

• σA

• σI

• ω

• ζ

• η

All other model parameters will be set to default values determined by previous
work.

Priors: We use Bayesian parameter inference to fit the model. Priors are informed
by the previous study (https://psyarxiv.com/zcbny/).

Data: The model fit is computed on a set of training data. This model predicts
scan path dynamics and requires baseline saliency information to be provided. For this
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purpose we use empirical fixation density maps. In a first step we will train the model
using fixation density maps that are specific to the image and the task (generated from
MBody1 data). In a second step we will explore if scan path dynamics are sufficient
to explain the difference in behavior between tasks by using general fixation density
maps based on free viewing behavior from another study (MBody2).

Implementation: The model implementation can be found at https://github.com/
lschwetlick/SceneWalk_Model

3.7.2 Method of parameter and hyperparameter estimation

Estimation Procedure: The SceneWalk model is a likelihood-based model which
allows us to estimate parameters directly without relying on ad-hoc performance met-
rics. The model definition and selection of parameters to be estimated is informed by
the previous study using the same model. The parameters we do not estimate were
fixed either because they could not be estimated due to their small effect or because
they were found, in separate analyses using different data, to destabilize the model.
The parameters are estimated using the Differential Adaptive Metropolis Sampler in
Python (PyDream; https://github.com/LoLab-VU/PyDREAM).

Separate Fits: We will fit parameters to data from each of the four tasks. In an
exploratory analysis, we will fit each subject and task individually. The uncertainty in
this analysis is whether the dataset will be too small to allow parameters to converge.

C.8 Robustness checks and model testing

3.8.1 Robustness checks and sensitivity analyses

We will verify the robustness of our fits using A qualitative check of convergence. The
posterior chains plots of the DREAM sampler will provide information on whether
the estimated parameters could be constrained by the data. Performing a recovery
analysis of a data set. This analysis involved generating the same amount of data as
used in the fitting from a specific set of estimated parameters and then performing a
parameter estimation on those data. Since the true parameter values for the generated
data are known, we will confirm that the estimation converges to the true value.
By computing the information gain in bit/fixation (Kümmerer et al., 2015). These
robustness checks have previously been successfully run on other data. Additionally,
we have run test estimations with the same amount of data as we will have in the
present study. Therefore if these robustness checks fail, this is an indication that
either the data are too noisy or that some aspect of the data fails to constrain the
model. If the latter is the case, we will consider reducing the number of parameters
estimated by fixing some parameter values. In both cases this choice will be reported
and interpreted in the final paper.
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C.9 Analysis plan

C.9 Analysis plan

3.9.1 Statistical analyses
Testing H1: We will fit the model to the different tasks and compare the parameter
values for σA, the parameter that controls the attentional span in the model. We will
also use the model fits to generate data and compare the mean saccade amplitude of
the empirical and simulated data.

Testing H2: We will fit the model to the different tasks and compare the parameter
values for σI , a parameter that relates to the strength of the inhibition stream. We
will also use the model fits to generate data and compare the mean lag distance of the
empirical and simulated data.

Testing H3: We will fit the model to the different tasks and compare the parameter
values for ω, the parameter that controls the speed of information decay in the model.
Additionally, we will evaluate the model likelihood on the test data using a group
of modified models. The modification adapts the SceneWalk model to be a Markov
process of a fixed order n, where n is in the range (1, 10). The generated priority
maps for fixation selection will include information from exactly n past fixations.
If the model likelihood improves when n is increased, this indicates that more past
information is relevant for predicting the next fixation. We expect, if H3 is true, for
the model likelihood to peak at a lower value of n for the free-viewing-like tasks than
the search-like tasks.

3.9.2 Other analyses
Given the estimated model parameters we will simulate data. We will then compare
the tendencies in the simulated data to the empirical data using the analyses reported
in https://arxiv.org/abs/1911.06085, https://doi.org/10.1167/jov.0.0.06824

3.9.3 Exploratory analyses
In previous analyses the parameter CF could not be fitted in the same estimation
procedure as the other parameters, since it destabilized the model. Here we will try to
estimate CF separately, in a second estimation after the other parameters have been
estimated. After fitting the parameters for the four tasks, we will use the parameter’s
posteriors as priors for a by-subject parameter estimation, implementing a kind of
hierarchical fitting procedure. Estimating parameters for each subject and task will
otherwise be difficult on the given data set, because there is likely not enough data to
constrain the model in the training set or to evaluate it on the test set.
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D Appendix for Paper 3

D.1 Discretization

The model is defined on a 100 × 100 lattice. In order to evaluate experimental eye
movement traces (which are typically given in degrees of visual angle), we discretized
the data. Each data point was multiplied by 350 and then applying the floor function.
This discretization value for the entire data set was chosen by visual inspection, as
it allowed all eye movement traces to stay within the confines of the grid, but also
efficiently used the space. Parameter values from the stepping distribution to the
potential critically depend on the specifics of this discretization.

D.2 Simulated data

Figure D.1 shows some examples of experimental gaze trajectories which illustrate
that the model captures individual differences in the data that can be validated by
visual inspection.

D.3 Parameter recovery

Parameter recovery analyses are an important step in evaluating the stability and
reliability of a mathematical model. This is often done as a first step in model building
to ensure that the model is able to accurately capture the underlying dynamics of the
system being studied. Parameter recovery analyses involves generating synthetic data
with known (“true”) parameter values of the model and then estimating the parameters
from this simulated data. This procedure permits the evaluation of the accuracy and
precision of the parameter estimates, as well as the sensitivity of the estimates to the
choice of estimation method and the quality and amount of data. It is an important
step to assess the overall performance of the model and identify potential issues that
may arise in the estimation process.
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Figure D.1 Some examples of fixational eyemovement traces. The left column shows the exper-
imental data. The right column shows data simulated using the individually fitted models. These
examples qualitatively illustrate the captured statistical properties of the drift movements.
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Figure D.2 Parameter Recovery Analysis. For each parameter we show that a recovery analysis
converges to the correct value. The top row shows the posteriors relative to the priors and reveals
strong convergence in all parameters. The bottom row shows the caterpillar plots of the estimation
procedure, i.e., the parameter value that the three chains assumed in each iteration. The horizontal
line indicated the burn in period.

D.4 Priors
For the parameter estimation we chose truncated Gaussian priors. Table B1 details
the numerical values that define the truncated Gaussian priors.

Potential
Slope: λ

Relaxation:
γ

Stepping
Prior

Radius i: ri

Stepping
Prior

Radius j: rj

Stepping
Prior Slope:

ϕ

mean 2 -2.5 5 5 1.5
sd 2 0.3 5 5 0.5

lower 0.3 -3.8 0.1 0.1 0.5
upper 8 0 15 15 3

Table B1 The parameters that define the prior distributions used during parameter inference.
For each parameterwe report themean, standard deviation, aswell as the upper and lower bounds
of the truncated Gaussians.

D.5 Parameter estimation results
Table B2 gives the detailed point estimates for all estimated parameters for all partic-
ipants, as well as 98% confidence intervals. Note that the participant IDs start at 20,
since we estimated parameters for the final model for participant IDs 20 to 39 only.
The data for participant IDs 1 to 19 were used for model building and are omitted
here to prevent overfitting.
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Subject Potential
Slope: λ

Relaxation: γ Stepping Prior
Radius i: ri

Stepping Prior
Radius j: rj

Stepping Prior
Slope: ϕ

mean +/- mean +/- mean +/- mean +/- mean +/-
20 4.969 0.194 -3.585 0.209 3.304 0.124 2.664 0.083 1.080 0.021
21 4.497 0.162 -3.688 0.110 3.850 0.204 3.378 0.166 1.072 0.032
22 4.917 0.185 -3.727 0.072 3.153 0.106 2.333 0.081 1.062 0.028
23 4.533 0.045 -3.773 0.027 12.06 0.572 8.181 0.376 1.203 0.055
24 4.796 0.179 -3.693 0.104 3.402 0.152 2.644 0.091 1.077 0.030
25 4.563 0.167 -3.757 0.043 5.156 0.254 4.172 0.215 1.010 0.032
26 4.646 0.144 -3.767 0.033 7.301 0.266 4.562 0.195 1.199 0.026
27 5.100 0.163 -3.692 0.105 2.766 0.143 2.171 0.109 0.963 0.031
28 4.940 0.165 -3.700 0.098 3.558 0.171 2.152 0.071 1.052 0.035
29 5.211 0.165 -3.723 0.076 3.353 0.093 2.700 0.077 1.111 0.022
30 4.778 0.217 -3.750 0.050 3.700 0.133 2.193 0.104 0.972 0.028
31 4.621 0.115 -3.771 0.028 7.844 0.296 5.613 0.209 1.191 0.031
32 4.504 0.146 -3.759 0.041 11.30 0.393 6.701 0.223 1.217 0.039
33 4.565 0.223 -3.696 0.103 3.527 0.157 2.499 0.102 1.012 0.028
34 4.922 0.160 -3.720 0.080 4.331 0.207 3.204 0.165 1.085 0.037
35 4.693 0.209 -3.736 0.061 3.418 0.125 2.502 0.087 1.005 0.021
36 4.708 0.132 -3.765 0.035 7.780 0.336 5.351 0.220 1.220 0.037
37 4.223 0.104 -3.755 0.044 8.409 0.286 6.516 0.222 1.211 0.030
38 4.868 0.142 -3.732 0.067 3.914 0.116 2.751 0.091 1.092 0.025
39 5.061 0.091 -3.712 0.084 4.460 0.188 3.176 0.128 1.163 0.035

Table B2 Point estimates and 98% confidence intervals of the 5 estimated parameters for each
subject.
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E.1 Study information

5.1.1 Title
Potsdam Dataset for Eye Movement On Natural Scenes (Potsdam DAEMONS)

5.1.2 Authors
Lisa Schwetlick, Matthias Kümmerer, Matthias Bethge, Ralf Engbert

5.1.3 Description
In this study we will collect experimental data from participants viewing natural
scenes. We want to generate a data set that is useful for both machine learning
applications as well as experimental analysis. Previous data sets from the field of ma-
chine learning, such as MIT1003 (Judd et al., 2009) or CAT200 (Borji & Itti, 2015),
encompass a large number of images seen by a comparatively small number of subjects
for a fairly short amount of time. The eye tracking recordings are often only available
only as ordered scan paths, sometimes omiting fixation durations altogether (Borji &
Itti, 2015). By contrast, data sets from experimental eye movement research tend to
have more subjects and longer fixation sequences but fewer images: having more data
per image allows to quantify effects on a per-image bases more precisely (e.g., the
SpatStat data set (Trukenbrod et al., 2019)). This leads to a comparability problem:
machine learning models, such as Deepgaze III (Kümmerer & Bethge, 2021), which
need large amounts of data with many different image examples can not be trained on
the same data as the procedural models such as SceneWalk (Schwetlick, Rothkegel,
Trukenbrod, et al., 2020b), which require longer sequences and vice versa. Additionally
for evaluation purposes, its often good to have many observers per image. Therefore,
since mechanistic models need less training data, vision science traditionally chooses a
different tradeoff: many subjects on fewer images. For fair comparison and insightful
evaluation we propose to collect a single data set that combines both: Many images
with potentially fewer subjects per image as a training set, and many subjects per
image for insightful evaluations as a validation and test set.
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Figure E.1 The image data set for the DAEMONS study consists of 2400 photographs. One half
was collected from amateur photographers and is unique to this data set. The other half are open
access photographs from the platform Flickr. The images are subdivided into training, test, and
validation data subsets.

We aim to address this gap by collecting a data set which can be used by both
research traditions, and which will enable us to combine and compare insights from
research of the visual system with state of the art machine learning techniques. It will
also be invaluable in establishing a benchmark (see Kümmerer et al., 2018 for static
saliency benchmark) for scan path modeling.

5.1.4 Hypotheses

This is purely a data publication. Our aims are chiefly to establish a useful data set
on which to train models of eye movement.

E.2 Design plan

5.2.1 Study type

Observational Study
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5.2.2 Blinding
No blinding is involved in this study.

5.2.3 Is there any additional blinding in this study?
No.

5.2.4 Stimulus material
For this study we will have a

• Training set (will comprise a large number of images seen by a smaller number
of people)

• Validation set (will be a smaller number of images seen by all people)

The setup will be the following:

• total # training images = 2000

• total # images in validation set = 200

• total # images in test set = 200

• total # images each subject sees = 160

• total # times each training image is seen = 10

• total # times each test/validation image is seen = 50

• total # training images each subject sees = 80

• total # of subjects = 250

We will collect an image data set especially for this study. We initially considered
using an existing image data set which already has a number of semantic labels already
attached to the images. However all existing data sets we found had one or more of
the following issues:

• Insufficient resolution: for a scene viewing data set that holds up to the standards
of experimental cognitive science, it is important that the images are presented
at large resolution (Otero-Millan et al., 2013; von Wartburg et al., 2007)

• Unnatural image material: in order to elicit scene viewing behavior it is im-
portant that images do not include blurred out areas (for example when faces
are blurred for privacy) as is the case, for example, in the mapillary data set
(https://www.mapillary.com/dataset/vistas). Also images with large amounts
of text should occur at most rarely since they would alter the scene viewing
behaviour.
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Thus, we concluded we would have to build our own image data set. We selected the
photographs according to the following criteria:

• minimal size of 1920x1080px

• landscape format

• try to minimize central/photographers bias, unfocused regions (such as is fre-
quent in portraits) and writing

• try to maximize variability both between and within images.

One half of the images are freely available creative commons images taken from the
platform Flickr (https://flickr.com). The other half are images taken by photogra-
phers, where we paid photographers to take pictures and release them into creative
commons. All 2200 images will be published as a coherent data set on Open Science
Framework (https://osf.io).

5.2.5 Study design
250 subjects with normal or corrected to normal vision will participate in the study.
Their eye movements will be recorded as they look at 160 images from the stimulus
data set described above. Each image will be shown for 8 seconds. Participants will
be instructed to blink as little as possible and to carefully investigate the images.
After every 20 images participants will be given a recognition task, where they will
be shown 3 images and have to chose the unknown image between 2 previously seen
images. This is done to ensure attentive participation. Each correct answer will gain
the participant points. At the end of the experiment they will be paid an additional
sum of money according to the number of points they gathered. A calibration of the
eye tracker will be done every 20 trials.

5.2.6 Randomization
The images will be randomized over subjects and the training and validation set are
mixed together. No subject will see any single image twice.

E.3 Sampling plan

5.3.1 Existing data
There is no pre-existing data

5.3.2 Explanation of existing data
None
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E.4 Variables

5.3.3 Data collection procedures
We will collect data using a Eyelink 1000 eye tracker (1000Hz) monocular. The partic-
ipants will have normal or corrected to normal vision and will be paid in either money
or study credits. The data collection will start with a calibration of the eye tracker
which will be repeated every 20 trials to ensure good quality of the data. We will use
binocular tracking to measure the trajectories of both eyes. The images will be pre-
sented at the maximum trackable size for the Eyelink 1000 Desktop mount (32°visual
angle, 95cm distance to the monitor). Each image will be presented for 8 seconds.

5.3.4 Sample size
For the training set we will collect 10 000 fixation sequences on 1000 images. Each
image will be seen by 10 subjects. Given a viewing time of 8 seconds, each fixation
sequence will be between 5 and 15 fixations long.

5.3.5 Sample size rationale
Author M.K. advised about the number of images needed to train a model like (Küm-
merer & Bethge, 2021). Author L.S. developed a design that is feasible from an
experimental perspective. No power analyses were conducted because no single effect
is being investigated, however the data set will be larger than most in the literature
and therefore we expect it to be sufficient also to conduct analyses regarding specific
effects.

E.4 Variables

5.4.1 Measured variables
We will be measuring the coordinates of the eye position in the image at every millisec-
ond. This raw data will be converted into fixations and saccades with the appropriate
measures e.g., fixation duration, saccade amplitude and speed.

E.5 Analysis plan

5.5.1 Data exclusion
Trials during which the subjects do not participate well in the task, e.g., make no eye
movements or close their eyes, will be excluded.

5.5.2 Missing data
Data missing due to blinks will be interpolated where possible and data points removed
if necessary.
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Figure F.1 Number of words in this manuscript over time, by section. The author (yours truly)
experienced alternating phases of high output, editing, and reduced productivity. Note that the
writing of paper #3 occurred in parallel to the writing of this text.
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Figure F.2 Further count metrics, over time, by section. Rows represent the sections; columns
represent the number of figures, citations, and question marks in the text, respectively.
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