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“Júlio de Mesquita Filho” (UNESP/ Guaratinguetá) Theme:
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Abstract

Particles in Saturn’s main rings range in size from dust to even kilometer-sized
objects. Their size distribution is thought to be a result of competing accretion
and fragmentation processes. While growth is naturally limited in tidal envi-
ronments, frequent collisions among these objects may contribute to both accre-
tion and fragmentation. As ring particles are primarily made of water ice at-
tractive surface forces like adhesion could significantly influence these processes,
finally determining the resulting size distribution. Here, we derive analytic ex-
pressions for the specific self-energy Q and related specific break-up energy Q⋆

of aggregates. These expressions can be used for any aggregate type composed
of monomeric constituents. We compare these expressions to numerical experi-
ments where we create aggregates of various types including: regular packings
like the face-centered cubic (fcc), Ballistic Particle Cluster Aggregates (BPCA),
and modified BPCAs including e.g. different constituent size distributions. We
show that accounting for attractive surface forces such as adhesion a simple ap-
proach is able to: a) generally account for the size dependence of the specific
break-up energy for fragmentation to occur reported in the literature, namely the
division into “strength” and “gravity” regimes, and b) estimate the maximum ag-
gregate size in a collisional ensemble to be on the order of a few meters, consistent
with the maximum aggregate size observed in Saturn’s rings of about 10m.





Chapter 1

Introduction

It was Galileo Galilei who, in the year of 1610, first observed the remarkable shape of

Saturn. He was not able to explain the observed formation, but his discovery raised the

interest of the scientific community in the Saturnian system. In 1655 Christian Huy-

gens suggested that the peculiarly shaped planet seen by Galileo was actually a solid

ring - the first piece of the Saturn puzzle was solved. The idea of a ring was supported

by Giovanni Cassini, and later also by Laplace, Maxwell, Keller and Campell, their

studies and calculations showed that the true structure of the rings was that of a myriad

of particles and not a solid ring. Because of its ring system, Saturn is a bright spot

on the firmament and nowadays, using a binocular telescope, one can see its elliptical

silhouette from Earth (Schlingloff, 2005).

All four giant gas planets in our Solar System have rings, but the Saturnian system

is extraordinary and has been fascinating scientific minds from earlier centuries until

today. Saturn’s rings have a far greater mass than the rings of any other ringed planet

and although structural phenomena can be observed in the rings of the other planets,

it is only Saturn’s rings that show the complete diversity of these structures (Cuzzi
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1. INTRODUCTION

et al., 2010). The rings are extremely thin in comparison to their other dimensions,

spanning about 140000km across while being only about 10m thick. A myriad of

particles form this complex ring system, together with a huge number of satellites (see

Fig. 1.1). Furthermore, the physics involved in shaping Saturn’s rings has parallels

with the processes active in protoplanetary disks (Cuzzi et al., 2010), electing this

system to be considered as “natural laboratory” in order to study dynamical processes

of planet-formation.

Figure 1.1: This image shows Saturn, its ring structure and satellites to relative scale unless
otherwise noted (Artwork by David Seal, P-46507BC NASA images).

For the last three decades our knowledge about Saturn’s system has increased enor-

mously, mostly due to the flybys of the spacecrafts Pioneer 11 and the twins Voyagers

I and II, but also due to the observations done by Hubble Space Telescope (Murray and

Dermott, 1999; Dougherty et al., 2009). Today research into the dynamics and kinetics
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of planetary rings, specifically the magnificent rings of Saturn, is strongly supported

by the successful Cassini spacecraft1. Cassini is the fourth space probe to visit Saturn

and the first to orbit the planet (see Fig. 1.2 - a marvelous view taken by the space

probe).

Figure 1.2: This image is a marvelous panoramic view created from Cassini data in September
2006. It was taken at high phase angle, i.e., the sun is almost directly behind Saturn, and
therefore the dust particles brighten substantially. Working outward from the planet, the rings
are divided in two groups: D, C, B, and A, the major ring groups; F, G, the fainter and narrower
rings, and the big dust E ring (PIA08329 from NASA images).

New discoveries by these missions have increased the ongoing debate about the forma-

tion of planetary rings. There are two major theories about their origin, so far neither

of them could be singled out. One scenario regards the ring particles to be remnants

from the formation of the giant planets and their satellites (accretion). In this case

they would be the witnesses of Saturn’s birth about 4.5 billion years ago: the single

pieces being remnants of satellites that failed to form (Esposito, 2002). The alternative

theory considers the destruction of a parent body ( e.g a satellite, or a comet, or an

asteroid ), a strong collisional impact could have led to the disruption of the impactor

1Cassini-Huygens Mission, launch 1997 - arrived at Saturn in 2004. In 2008 a two-year extension
was announced, at which point it was renamed to Cassini Equinox Mission. The second extension was
in February 2010 with the Cassini Solstice Mission continuing until 2017.
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1. INTRODUCTION

and the debris formed the planetary rings. The discovery of the building-sized moon-

lets in Saturn’s A ring by Tiscareno et al. (2006) and Sremčeivć et al. (2007) tends to

favor the latter scenario rather than a co-genetic origin with Saturn, since bodies of this

size can hardly have accreted inside the rings due to the tidal work – as argued by e.g.

Sremčević (2007), Spahn and Schmidt (2006) and others. For both cases the solution

to the puzzle of ring origin must consider the recycling of ring material (Dougherty

et al., 2009). The origin of the rings is still subject of discussion and remains open.

Ring particles are believed to be aggregates of smaller particles arranged into transient

elongated clumps (see Fg. 1.3). Different ring regions may have been formed from

different progenitor bodies and therefore could be of different ages (Porco et al., 2007;

Dougherty et al., 2009). It has long been known that water ice constitutes the bulk of

the ring material. Moreover, Cuzzi et al. (2009) comment that the particle composition

evolves with time due to environmental factors such as irradiation by photons, and/or

collisions with interplanetary meteoroids. Interplanetary debris is primarily non-icy

material silicates and carbon rich organics – so the rings become increasingly “pol-

luted” over their lifetime.

This thesis mainly considers the massive rings of Saturn (A,B,C and Cassini division),

where collisions among the ring particles are frequent and the observed size distribu-

tion is likely to be the result of the balance between coagulation and fragmentation

processes (Longaretti, 1989; Barbara and Esposito, 2002; Spahn et al., 2004; Esposito

et al., 2011).

In general, agglomeration (coagulation)2 of small ring particles (constituents) may cre-

ate larger ones (agglomerate), while fragmentation (fission or disruption) would, natu-

rally, limit this growth. However, fragmentation may occur not only due to collisions

but also due to tidal stresses (Davis et al., 1984). The dense ring perturbed regions

4



Figure 1.3: The particles (blue) are composed mostly of ice, but are not uniform. They clump
together to form elongated, curved aggregates, continually forming and dispersing. They are
the called “Dynamical Ephemeral Bodies”, particles might temporarily aggregate into larger
bodies and are eventually sheared apart again by dynamical forces in the rings or collisions.
(Artwork by Marty Peterson, based on a 1984 image by William K. Hartmann, PIA10081
NASA images.

is favorable to aggregate formations. For example, near the regions of propeller belts

within the ring (Tiscareno et al., 2006; Sremčeivć et al., 2007) or also halos around

strong resonant waves – in both cases, propeller and waves, the perturbed area appears

brighter in reflected light (Hedman et al., 2007). This is because such perturbations

cause larger collisional speeds, delivering smaller ring particles from surface of larger

ones and, in this way, the particle size distribution (Bodrova et al., 2012).

Another hint for aggregates being the building blocks of Saturn’s rings comes from ob-
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1. INTRODUCTION

servations. They show that ring particles (aggregates) are under-dense (≃ 400kgm−3),

e.g. by comparing: (a) the inferred particle size distribution (Zebker et al., 1985;

French and Nicholson, 2000; Marouf et al., 1983) and the surface mass density derived

from density wave analysis (Tiscareno et al., 2007), and (b) simulations and observa-

tions of the self-gravity wakes induced (i) ring brightness asymmetry (French et al.,

2007) and (ii) ring optical depth asymmetry (Salo, 1992, 1995; Colwell et al., 2006,

2007; Hedman et al., 2007; Robbins et al., 2009). pointing to self-gravity wakes whose

generation requires a certain ring mass to promote the gravitational instability.

In regard of the balance between aggregation and fragmentation, another Saturnian

ring that is of interest in this work is the thin and lively F ring, which is strongly stirred

by its shepherd satellites (Murray et al., 2005), Prometheus and Pandora (see Fig. 1.4).

The F ring mainly consists of micrometer sized particles (dust), macroscopic clumps

(approximately centimeter to meter sized objects) (Esposito et al., 2008; Meinke et al.,

2012), and kilometer sized moonlets (Murray et al., 2008). The latter are most likely

transient in nature (Spahn and Sponholz, 1989; Winter et al., 2007; Esposito et al.,

2008; Beurle et al., 2010) and chaotically moving in the F ring region. These Dynamic

Figure 1.4: The dynamism of F ring – this figure shows prominent jets and spirals probably
due to recent collisions.

Ephemeral Bodies (DEB) (Weidenschilling et al., 1984) could emerge from ongoing

6



disruptions and re-accretions on dynamical timescales that give this narrow ring its

lively appearance. While dissipative collisions ensure the thermal stability of a plane-

tary ring (Goldreich and Tremaine, 1978), relative impact speeds and sizes determine

whether coagulation, restitution or fragmentation occurs (e.g. Spahn et al., 2004). The

latter outcome can further be sub-classified to include erosion where part of the mass

is removed (e.g. Dohnanyi, 1969) or a type of erosion where mass is transferred during

a collision with a bouncing outcome (Güttler et al., 2010). Fragmentation, however, is

not caused only by collisions, but also by tidal stresses (Davis et al., 1984). In general,

agglomeration (coagulation) of small ring particles (constituents) may create larger

objects while fragmentation (fission or disruption) would naturally limit this growth.

Small bodies in the Solar System generally show features of strength and their mechan-

ical properties undoubtedly play a major role in their collisional evolution (Holsapple,

2009), where strength (or resistivity) is defined as some measurement of a material

ability to withstand particular stresses, strains or loads. In the case of agglomerates

the resistivity is defined by the contact forces between the constituents. These bonds

are typically broken long before material failure of a single constituent. Seipenbusch

et al. (2007) showed that the bond strength between particles (energy per area) ar-

ranged in larger objects such as agglomerates is a key parameter for understanding

the mechanical properties of these composite materials. Furthermore, the coordina-

tion number (number of contacts per constituent) plays a crucial role in determining

these properties. In asteroids the resistivity can be divided into a strength-dominated

and gravity-dominated regime (Housen and Holsapple, 1990; Love and Ahrens, 1996;

Benz and Asphaug, 1999). Typically, resistivity decreases with increasing object size

until, above a certain transition size, resistivity increases as the body’s own gravita-

tional influence becomes dominant.
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1. INTRODUCTION

Similar to asteroids, ring particles are thought to be (rubble piles) loosely bound ag-

gregates. As the ring’s velocity dispersion in unperturbed regions is small (mms−1 to

cms−1) compared to the orbital velocity (kms−1), impacts are generally low-speed,

this is favorable for aggregation (e.g. Hatzes et al., 1991). A velocity-dependent co-

efficient of restitution has been modeled using collision models based on viscoelastic

particle interactions (Brilliantov et al., 1996). Taking into account surface adhesion,

(Johnson et al., 1971) more recent models are able to consistently model both low-

velocity sticking (aggregation2) and bouncing between individual particles (restitu-

tion) (Albers and Spahn, 2006; Brilliantov et al., 2007) in qualitative agreement with

laboratory experiments (Bridges et al., 1984; Hatzes et al., 1991).

In order to quantify the balance between aggregation and fragmentation, we discuss

the resistivity and stability of particle aggregates, which are made of multi-constituents

and are bound together by short-range adhesive contact and long-range gravitational

forces. Adhesive contacts were considered for asteroids by Scheeres et al. (2010) using

a similar approach. Here, we show how adhesion modifies the resistivity of these

fragile bodies studying its influence for different types of aggregates.

This work is an extension of Albers and Spahn (2006), who demonstrated that objects

in the rings as large as 10m could exist, matching the inferred size of ring particles (Ze-

bker et al., 1985). These estimates are based on orbital dynamics including adhesive

forces and collisions – using collisional velocities typical for the ring. However, Albers

and Spahn (2006) restricted their study to binary aggregates (two constituents). Here

we analytically calculate the specific self-energy and resistivity (specific break-up en-

ergy) of N-particle aggregates and compare these to numerically created aggregates of

2Coagulation, aggregation, and agglomeration are widely used throughout this thesis. In principle,
denoting different physical scenarios, they refer to the same thing, i.e. the sticking of grains. Otherwise,
coagulation refers to the merging of two droplets, agglomeration refers to the simple accumulation of
grains without changing their shape and the only “glue” between them is the self-gravity. Aggregation
is similar to agglomeration, but with chemical bonds between the particles (adhesion).
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various types such as regular packings, Ballistic Particle Cluster Aggregates (BPCA),

and modified BPCA including particle size distributions. We then infer their stability

in a collisional regime. We used assumptions for the break-up energy that are qualita-

tively consistent with previous works, but they are simplistic and do not take fully into

account how an aggregate may fracture. We are interested in the energy estimates and

want to offer a tool for quick calculations. A more sophisticated numerical treatment

of aggregates is offered in Perrine et al. (2011), but the authors themselves state the

need for improvement while investigating both the adhesive threshold and the work

done during internal fracture. In this work implications for the size distribution of Sat-

urn’s rings will be discussed. Unless otherwise indicated size refers to the radius of an

object.

First of all, in Chapter 2, an introduction is given on applying kinetic theory to the

ring system. This brief description of kinetics shows which velocity-mass range is

of interest in this study: the fragmentation boundary. Second, the analytic theory and

some preliminary results for fragmentation are presented in Chapter 3. In Chapter 4 the

results obtained with the pure analytic theory are compared to numerically created ag-

gregates of various types such as regular packings (Sec. 4.1), Ballistic Particle Cluster

Aggregates (BPCA), and modified BPCA. First, an algorithm was created to generate

the usual BPCA, followed by irregular packings based upon BPCA. Many aggregates

were generated for each case with different seeds. In a next step, constituent size

distributions were considered in order to model more realistic loose arrangements of

planetary ring aggregates (Sec. 4.2). In Chapter 5, estimates for the collisional veloci-

ties required to break up the aggregates are given, pointing back to the work of Albers

and Spahn (2006). Finally, implications for the size distribution of ring particles will

be discussed in the Chapter 6.

9
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Chapter 2

Kinetic description of Saturn’s rings

In Chapter 1 the importance of the coagulation and fragmentation processes for Sat-

urn’s rings has already been mentioned. These processes are a result of collisions

between the particles. Firstly, we give a brief description of collision dynamics before

a general approach is presented to discuss the evolution of the particle mass and veloc-

ity distribution in the rings. Kinetic theory is usually used to quantify the evolution of

the ring particles in the mass-phase space. The rings are treated as a granular system,

where only binary collisions occur. A generalized kinetic concept, treating the mass-

and the velocity-spectrum of a granular ensemble, has been derived by Spahn et al.

(2004) under assumptions of mass- and momentum conservation of the system. All

collisions result either in i) coagulation, ii) restitution or iii) fragmentation where the

collisional outcome depends on the masses of the collision partners, their mechanical

properties, and their relative velocities. Thus, the collisional outcome can be assigned

to these three different domains in the space of masses and velocities of the colliding

grains as sketched in Fig. 2.1. The borders between the domains (see Fig. 2.1) (co-

agulation, restitution and fragmentation) can be obtained by analyzing the collisions

11



2. KINETIC DESCRIPTION OF SATURN’S RINGS

Figure 2.1: Domain diagram: the masses m (their ratio) and the relative impact speed g be-
tween colliding particles determine the result of a collision: i) coagulation, ii) restitution or iii)
fragmentation.

between ring aggregates, taking into account dissipation and the internal properties of

the collision partners, that is, including adhesion and self-gravity. Albers and Spahn

(2006), Albers (2006) and later Brilliantov et al. (2007) studied the boundaries between

coagulation and restitution for binary ice aggregates. Consequently, crucial aim of this

thesis is to estimate the location of the fragmentation border for aggregates made up

from many smaller adhering constituents. Before we go into the details involved in

this task, we will first present the basics of the kinetic theory.

2.1 Collision dynamics

Under the consideration of icy ring particles, the collisions in the rings are inelastic

and the dissipation of kinetic energy during the impact is usually measured by the

12



2.1 Collision dynamics

coefficient of restitution, 0 ≤ ε < 1 3. In the limit of ε = 0 all kinetic energy of the

motion in the direction perpendicular to impact plane is dissipated – transformed into

heat, internal deformation or formation of cracks in the bulk of the collision partner.

As a result of the dissipation, an aggregate is formed while collision partners rest on

top of each other, provided that the collisional constituents are finally hold together by

adhesion and/or gravity. The adhesive contact is quantified by the surface energy, γ0,

and the contact area formed between the collision partners (Johnson et al., 1971). Such

a sticking occurs at quite low impact speeds and alters the size distribution (towards

larger sizes). The other two possible outcomes of a collision are: restitution and frag-

mentation, depending on the relative velocities and masses of the collision partners,

and their mechanical properties. The restitution leaves the quantity n(m,r) unchanged

and only the velocity distribution f (r,v;m) is modified. In the cases of coagulation

(sticking) and fragmentation the size distribution n(m,r) and the velocity spectrum

f (r,v;m) are both altered. For a common kinetic description it is advantageous to in-

troduce a generalized distribution function F(m,r,v) = n(m,r) f (r,v;m) as described

below (the time t is dropped in the argument list for brevity). In this Section we want

to sketch the collision dynamics for the ii) restitutive case which distinguishes between

the two collisional results: i) coagulation, and iii) fragmentation – both are described

at the end of this kinetics chapter. Prior to collision the relative velocity between both

collision partners is defined by

g = v1 −v , (2.1)

where v and v1 are their velocities.

3Here the simplest case of collisional dynamics is briefly described which only considers transla-
tional degrees of freedom and ε is to the normal coefficient of restitution. For the case of ε = 1, the total
kinetic energy is conserved i.e the collision occurs elastically – but this case is not relevant for planetary
rings.

13



2. KINETIC DESCRIPTION OF SATURN’S RINGS

Their common center of mass moves at a constant velocity

vs =
(mv + m1v1)

(m+m1)
, (2.2)

where m(i) denotes the particle masses. Due to the conservation of total momentum,

the collision cannot change the center of mass motion, but the relative velocities before

and after the collision are modified – see Fig. 2.2. A collision takes place in a plane

defined by the vector g and the unit vector k pointing from the center of the collision

Figure 2.2: Inelastic collision of two particles. This figure shows the geometrical relations
of velocities involved during collision, only translational degrees of freedom are considered.
g and g′ are the relative velocities before and after impact, respectively, where solid vectors
denote the forward (+t) and dashed ones the time reversed collision (t →−t). The magnitude
of the normal component g′ ·k of the relative velocity after impact is reduced by a factor ε, the
coefficient of normal restitution. In case of the time reversed collision, the magnitude of the
normal component g∗ ·k∗ before the impact has to be larger by a factor 1/ε.
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2.1 Collision dynamics

partner centered at r1 to the center of the particle under consideration at r according to

k = (r− r1)/|r− r1|. Given this, the normal component of the relative velocity (g ·k)

will be reduced due to the dissipation occurring in a binary collision as follows

g′ ·k =−εg ·k , (2.3)

with the post-collisional relative velocity g′ (see Fig. 2.2). The particle velocities v and

v1 (before and after collision v′ and v′1) can be written in terms of vs and g using Eqs.

(2.1) - (2.2) to give

v = vs −
m1

m+m1
g (2.4)

v1 = vs +
m

m+m1
g. (2.5)

Thus, the collisional changes of the relative - and the center of mass velocities under

consideration read finally

vs = v′s , (2.6)

and combining Eqs. (2.1) - (2.6) we finally arrive at the post-collisional velocities of

both collision partners

v′ = v +
m1

m+m1
(1+ ε)(g ·k)k (2.7)

v′1 = v1 − m
m+m1

(1+ ε)(g ·k)k . (2.8)
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2. KINETIC DESCRIPTION OF SATURN’S RINGS

2.2 Kinetics

The evolution of a granular gas can be described using the kinetic equations including

the influence of the external forces, f, and interactions between the ring particles, i.e.

direct (contact) collisions and gravitational interactions. First we quantify the num-

ber of particles dN in the phase space volume element d3Vd3RdM by defining the

generalized distribution function F(M,R,V, t) (DF) via the equation

dN = F(M,R,V, t)d3Rd3VdM , (2.9)

where M denotes the particle mass, R, the location vector, V, the velocity vector, and

the time t. In general, the time evolution of the distribution function can be written as

D
Dt

F(M,R,V, t) =
DF
Dt

∣

∣

∣

∣

(c)

+
DF
Dt

∣

∣

∣

∣

(r)

+
DF
Dt

∣

∣

∣

∣

( f )

, (2.10)

with the right hand sides being the collisional changes of the distribution function.

The superscripts of the three terms refer to the three collisional outcomes: coagulation

(c), restitution (r), and fragmentation ( f ). The substantial derivative is defined by

D
Dt

= ∂
∂t +V · ∂

∂R + f
m · ∂

∂V . This change Eq. (2.10) with time, DF
Dt

, is dominated by

gain (G ) and loss terms (L ) in the combined mass-phase-space,

D
Dt

F = G (i)−L (i) , (2.11)

which are caused by the particle’s (aggregate’s) collisions. The gain G measures the

number (rate) of particles which are deflected into the phase space volume d3Vd3RdM

during the (negligibly short) time interval δt (collisional duration). Accordingly, L

denotes the loss rate of particles out of that volume element in the same time interval.
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2.2 Kinetics

In the following we briefly sketch the values characterizing the gain and the loss terms.

Both rates are proportional to the two-particle distribution function

F(2)(m,r,v;m1,r,v1, t) ,

being the probability to simultaneously find two particles at the same location r. The

fact that only r (one space vector instead of r and r1) appear in the list of arguments

means that finite sizes of the aggregates are neglected (collision occurs at a point r

in space). Furthermore, apart from the moment of the collision (which is considered

to be infinitesimally short) we assume that the aggregates are uncorrelated – called

molecular chaos assumption. With these assumptions the two-particle distribution can

simply be factorized

F(2)(m,r,v, t; m1,r1,v1, t) = F(m,r,v, t) ·F1(m1,r1,v1, t). (2.12)

Using the relative g and the center of mass velocities vs, respectively, the gain and loss

terms for particles/aggregates, obeying the phase-space values M,R,V, can be written

as (Spahn et al., 2004)

G
(i)(M,R,V, t) =

∞∫

0

dm

∞∫

0

dm1 (2.13)

∫

R3

d3vs

∫

D i

d3g W (i)
G

(M,V;m,m1,g) F(m,v) F1(m1,v1),

L
(i)(m,R,V, t) =

∞∫

0

dm

∞∫

0

dm1 (2.14)

∫

R3

d3vs

∫

D i

d3g W (c/ f )
L

(M,V;m,m1,g) F(m,v) F1(m1,v1) .
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2. KINETIC DESCRIPTION OF SATURN’S RINGS

The distribution functions F and F1 refer to the states prior to the collision, where

W i
G /L are integration kernels which contain the collision frequency, proportional to

the relative speed |g| of the colliding aggregates and to the cross-section σcross =

(R+R1)
2/4 ∝ (m1/3 +m1/3

1 )2 (approximation for hard spheres). The conservation

of mass and momentum enter the kernels via delta function. Altogether, the integral

kernels W i
G /L measure the transition probability of a collisional outcome (masses M

and velocities V) for given pre-collisional state: masses m,m1 and relative speed g,

in cases of coagulation and fragmentation (indicated by the indices G /L ). In cases,

when long-ranged forces become important – i.e. Coulomb forces, gravity – a “fo-

cusing” factor F enters the kernels, containing e.g., the charge of grains, their masses

(Safronov factor, gravitational focusing), or other particle properties which can alter

the cross-section σcross ∝ (R+R1)
2. The integration domains of coagulation, fragmen-

tation (or restitution) are labeled by D i which depend on the masses of the colliding

particles m, m1 and their relative speed g – i.e. on the collision dynamics. For exam-

ple, coagulation and fragmentation occur for impact speeds of 0 < g < gc(m,m1) and

gf(m,m1) < g < ∞, respectively (see Fig. 2.1), meaning low velocity collisions make

coagulation/sticking quite likely; in contrast: violent, high impact speeds can destroy

the collision partners. In the next Subsections, we shall discuss the kernels of the three

different collision regimes/domains. Firstly, we focus on restitutive collisions, which

deviates somewhat from the other two cases, which will be addressed finally.

2.2.1 Restitution

In case of restitutive collisions between two particles with masses m and m1 the mass

distribution n(m,r) is not affected, because both colliding partners remain intact. In-

stead, both grains experience an exchange in momentum while dissipating mechanical
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2.2 Kinetics

energy in partly inelastic collisions. We factorize the generalized distribution function

as

F(m,r,v) = n(m,r) f (r,v;m) , (2.15)

pointing to an independence of the mass (size) spectrum from the velocity dispersion.

The latter depends on the phase-space state variables (r,v) – the mass m can paramet-

rically enter the distribution function, indicated in the argument list (for brevity we

dropped the time t from the arguments). As a simple example, in equilibrium of a

ideal gas mixture of different (distinct masses) molecules/particles a common temper-

ature T exists but the thermal fluctuating speeds depend on their masses according to

energy equi-partition as 〈∆v2〉 ∝ T/m which is a parameter of the velocity distribution

function. Normalizations and the zeroth moment define the particle number density

of a certain species m as n(m,r) =
∫

d3vF meaning
∫

d3 f = 1. The particle number

density of the whole ensemble is given by n(r) =
∫

dmn(m,r). Next, in order to write

the collisional integral in terms of gain and loss, specifying the probability of a par-

ticle being scattered in or out of the velocity volume element (d3v around v), one has

to consider the initial velocities of the impact partner. These pre-collisional velocities

are denoted by v⋆ and v⋆1 in the gain term before they are scattered into the considered

velocity volume element. It is known that the inelasticity of the collision causes a

symmetry-breaking due to the “loss” of mechanical kinetic energy, therefore the pre-

collisional velocity, g⋆ = v⋆1−v⋆, is not equal to the final velocity, g′, of a conservative

collision. Thus, the pre-collisional normal component changes in accordance with

g⋆ ·k⋆ = −ε−1 g ·k

g⋆ ·k = ε−1 g ·k , (2.16)
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2. KINETIC DESCRIPTION OF SATURN’S RINGS

with k⋆ = −k. In accordance with the Eqs. (2.6) - (2.8) and using vs = v⋆s , the pre-

collisional velocities in the gain term can be written

v⋆ = v +
m1

m+m1
(1+ ε−1)(g ·k)k (2.17)

v⋆1 = v1 −
m

m+m1
(1+ ε−1)(g ·k)k . (2.18)

The so-called Stosszahl-Ansatz introduced by Boltzmann, which means counting the

number of particles scattered in and out of the considered velocity-volume element d3v

around v, directly leads to kinetic equation for the restitutive case (see for instance:

Goldreich and Tremaine, 1978):

DF
Dt

(r)

= n(M,r, t)
∫

D R

dm1 n(m1,r, t)
∫

D R

d3v1 d2kσcross Θ(g ·k)[g ·k]×

×
{

f (M,v⋆, t) f (m1,v⋆1, t)
ε2 − f (M,v, t) f (m1,v1, t)

}

(2.19)

= G (r)−L (r)

The integrals have to be taken over the restituting domain in the masses and velocity

space indicated by the label D R . The Heaviside function Θ(g · k) ensures that only

approaching particles that are going to collide are taken into account. The coefficient

ε−2 in the gain term accounts for the shrinking of the phase space due to dissipation

(violation of the Liouville theorem – phase space is not constant).

To improve understanding, we can consider that the form of the kernel σcross(g ·

k)n(m) f (v)n(m1) f (v1) can be interpreted as a projectile flux (g · k)n(m1) f (v1) ap-

proaching a target with cross-section σcross. This sets the number of collision per unit

time in the cylinder volume (see Fig. 2.3). This collision frequency is weighted by

the number of targets n(m) f (v) which enter the volume (per unit time).This collision
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2.2 Kinetics

Figure 2.3: Collision of two particles of diameter D.

rate has to be summed over all velocities and solid angles d2k, giving the integro-

differential equation (2.20).

For a mono disperse ensemble, n(m1,r, t) = δ(m1 −M)n(r, t), one ends up with the

usual Boltzmann kinetic equation for granular gases.

2.2.2 Coagulation and Fragmentation

Fragmentation and coagulation of ring particles are the alternative outcomes of colli-

sions, modifying the resulting size distribution n(M,r) of the ring particles. Using the

equations (2.13) and (2.14) the fragmentation and coagulation integration kernels can
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2. KINETIC DESCRIPTION OF SATURN’S RINGS

be written as (Spahn et al., 2004)

W (c)
G /L = σcross |g| F δ(mG /L −M) δ

(

vG /L −V
)

, (2.20)

W ( f )
G

−W ( f )
L

=W ( f ) = σcross |g| F [P (M,V|m,m1,g)−

δ(m1 −M)δ(v1 −V)] , (2.21)

where mG = m+m1 and mL = m1, and vG = (mv+m1v1)/(m+m1) and vL = v1.

These distinctions arise from different integration paths for gain (m+m1 = const.=M;

two colliding particles merge into one) and loss (m = const.) terms in the (m,m1)

parameter space. Dirac’s Delta function is denoted by δ(x) and assures conservation

of mass and momentum. Coagulating particles will form an aggregate with mass M =

m+m1 and velocity vs. For simplicity we assume solid spherical particles m ∝ R3,

which then form, as a result of the collision, new solid spherical particles of a different

mass, we deliberately neglect fractal growth (agglomeration) and the impact geometry.

Nevertheless, this does not change the dependencies in Eqs. (2.20) and (2.21), and can

be implemented in more detailed studies accounting for generally observed growth of

fractal shaped bodies (Kempf et al., 1999) in form of m ∝ RDf , where Df denotes the

fractal dimension. In the case of destructive impacts, particles are destroyed, form-

ing post-collisional size and velocity distributions (Eq. (2.21)), e.g. P (M,V|m,m1,g),

i.e. the particle number is increased. In contrast to coagulation, resulting fragments

may cover a broad range of masses and velocities, which are hard to derive from ba-

sic principles, but can be found in extensive experimental studies of fragmentation.

Bearing this in mind, the gain and loss term of fragmentation may be written using a

normalized conditional distribution function P (M,V|m,m1,g) of the generated debris

as in eq. (2.21) and as suggested in Krivov et al. (2000). Summarizing the kinetics of
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2.2 Kinetics

coagulation and fragmentation one may write

D
Dt

F(M,R,V, t) =

∞∫

0

dm

∞∫

0

dm1

∫

R3

d3vs

[∫
D c

d3g(
1
2

W (c)
G

−W (c)
L

)FF1 +
∫
D f

d3gW ( f )FF1

]

. (2.22)

Due to symmetry with respect to an exchange of particles a factor of 1/2 appears

in the coagulation gain term. This Eq. (2.22) can finally be completed by adding

the rhs of Eq. (2.11) so that one arrives at a complete kinetic description of coagu-

lation, restitution, and fragmentation. All contributions D
Dt

(i)
F (with (i) standing for

(c),( f ),and (r)) are crucial in the dynamics of planetary rings. The domains in phase

space, where certain contributions D
Dt

(i)
F dominate, are essentially determined by the

aggregate physics and mechanics, which is the main task of this thesis.
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Chapter 3

Aggregate self-energy, relations and

resistivity

As presented in Chapter 1 and highlighted in Chapter 2, the dynamics involved in the

planetary rings promotes the agglomeration/fragmentation of the particles. Aggregates

in this environment are both collisional targets and projectiles. This situation raises the

question of how far an aggregate can grow. Here, in order to address this problem,

simple equations are used. The aggregate specific self-energy Q, composed of contact

energy and gravitational self-energy, and its specific break-up energy Q⋆ are considered

as an estimate for its resistivity, where details of internal stress-distribution or orbital

motion are not considered. The specific self-energy Q and the specific break-up energy

Q⋆ are calculated for different aggregate configurations. It is shown that the resistivity

of an aggregate may be divided into strength- and gravity regimes with a transition at

a size Rt . Furthermore, it is also shown that a critical aggregate radius size Rcrit exists

in which an object is more likely to be destroyed than others. Moreover, these energy

values, Q and Q⋆, are related to the damage ratio of the aggregates.
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3. AGGREGATE SELF-ENERGY, RELATIONS AND RESISTIVITY

3.1 Specific self-energy Q

The total self-energy of an aggregate is given by the sum of its self-gravity EG and in-

ternal contact energy EA as: ET = EG+EA. The specific self-energy (energy per mass)

of an aggregate is then given by Q = ET/M, where M is its mass. The gravitational

energy between two constituents reads

E(2)
G = − Gm1m2

|~r2 −~r1|
(3.1)

where G denotes the gravitational constant. Thus, E(2)
G is equal to the amount of energy

needed to physically separate two particles to infinity, since gravity is a conservative

force. In contrast to gravity, the collisions of icy adhesive, viscoelastic particles are

irreversible (Albers and Spahn, 2006; Brilliantov et al., 2007). The energy required to

separate two particles (the energy of one “adhesive bond”) contains both the mechani-

cal (elastic) energy of particle deformation uelas as well as adhesive energy uadd which

has dissipative nature (Albers and Spahn, 2006; Brilliantov et al., 2007). Taking into

account both elastic and adhesive contributions the energy of an adhesive bond reads

(see Appendix A for details)

E(2)
A =−1

5
γπa2

eq,

where a2
eq = (6πγDs2

eff)
2/3 is the radius of the contact area formed between the con-

stituents, seff = s1s2/(s1 + s2) denotes the effective particle size and γ is twice the

surface free energy γ0. This equation can be re-written as

E(2)
A =−1

5

(

36π5γ5D2 s4
eff

)1/3
. (3.2)
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3.1 Specific self-energy Q

The bulk material constants, Young’s modulus Y and Poisson ratio ν, have been com-

bined into a single constant D= 3(1−ν2)/2Y , implicitly assuming that all particles are

made of the same material. Throughout this study we use G = 6.6710−11 m3kg−1s−2

and material constants commonly used for icy particles: ρ = 0.910×103 kg m−3,

γ0 = 0.357N m−1, Y = 7 × 109 Pa and ν = 0.25 (e.g. Chokshi et al., 1993;

Dominik and Tielens, 1997; Brilliantov et al., 2007). We are aware that the surface

adhesion γ is currently the most uncertain value and subject of ongoing debate. We

therefore use an additional, lower, estimate γ0 = 0.1N m−1 (Wada et al., 2008)4 in

order to account for these uncertainties in our results. For convenience, we define

A(ij) = (36π5γ5D2)1/3/5 ≈ 4.45(γ5D2)1/3 with [A(ij)] = Nm−1/3. Consider an aggre-

gate of size R made of N constituent particles of radius5 s, therefore the total self-

energy of this aggregate reads

ET = −G
2

N

∑
i=1

N

∑
j=1

mim j

|~ri −~r j|
− A(ij)

2

N

∑
i=1

N

∑
j=1

Ci j

(

sis j

si + s j

)4/3

, (3.3)

where Ci j is unity if particle i and j are in contact and zero otherwise. The specific

self-energy reads Q = ET/∑N
i=1 mi. The gravitational self-energy is expressed as

EG = −G
2

∫ R

0

∫ R

0

ρ(~r)ρ(~r′)
|~r−~r′| d3r d3r′ , (3.4)

assuming that the individual constituents are much smaller than the actual aggregate –

corresponding to a mean field representation, 〈s〉 ≪ R. In the limit of a homogeneous

sphere one obtains EG = −3GM2/(5R). Both self-gravity EG and contact energy EA

do not depend only on the aggregate size but also on the internal size distribution and

4Recently another γ0 value of 0.19N m−1 was suggested by Gundlach et al. (2011)
5Aggregates made of different sizes constituents are described by a constituent size distribution

f (s). Samples (numerical models) of those aggregates are presented in Chapter 4. Here we treat the
aggregates of monomeric constituents.
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3. AGGREGATE SELF-ENERGY, RELATIONS AND RESISTIVITY

arrangement of constituents - the aggregate packing style. Bulk and surface properties

of an aggregate generally differ and the total self-energy, equivalent to Eq. (3.3), may

be written as ET = E(bulk)
G +E(bulk)

A −Esurface. In the limit of large aggregates R → ∞,

we have E(bulk)
A /M → constant, E(bulk)

G /M → ∞, and Esurface/M → 0, thus the surface

contribution in the total energy of the body decreases with the size. We will discuss this

in more depth in Chapter 4. We further define the global filling factor of an aggregate

as the ratio of total constituent volume and aggregate volume: f = ∑i s3
i /R3. In the

case of regular, crystal-like packings as the face-centered cubic (fcc), these energies

may be expressed using the bulk specifications of the particular crystal structure listed

in Table 3.1. In particular, the total number of contacts C and total number of particles

Table 3.1: Regular packing characteristics of single unit cell: number of constituents N̂, bulk
coordination number CN , bulk filling factor f , and volume scaling factor v̂ where the volume
of the unit cell is V̂ = v̂s3 and s is the constituent size (check Fig. 4.2).

Packing N̂ CN v̂ f

fcc 4 12 16
√

2 0.74
bcc 2 8 64

9

√
3 0.68

N of equal radius size s0 can be directly calculated from the bulk coordination number

CN (number of contacts of a single constituent) as C = N CN/2 and N = Nu N̂ where

Nu is the number of unit cells and N̂ the number of constituents in a single unit cell.

Further, the number of unit cells is Nu = 4πR3/(3V̂ ) where V̂ = v̂ s3
0 is the volume of

a unit cell. The filling factor f then reduces to f = (4π/3)(N̂/v̂) and the aggregate

mass can be written as M = 4πρ f R3/3. Hence, the total contact energy is the sum

over all binary contacts given by Eq. (3.2) and reads

EA =−ACN f R3 s−5/3
0 . (3.5)
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3.1 Specific self-energy Q

where A= A(ij)/(4 ·21/3). This equation is valid for any aggregate made of equal-sized

spheres. Using Table 3.1 we obtain for fcc packings E(fcc)
A ≈ 8.8AR3 s−5/3

0 . Similarly,

E(bcc)
A ≈ 0.6E(fcc)

A . We combine Eqs (3.4) and (3.5) and write the total specific self-

energy

Q = QG +QA = −4π
5

Gρ f R2 − 3
4π

ACN

ρ
s−5/3

0 , (3.6)

which depends on average properties such as filling factor, coordination number, and

constituent size. As expected from a short range interaction, QA is independent of

the actual aggregate size. Fig. 3.1 shows the specific self-energy in Eq. (3.6) for fcc

aggregates as a function of radius R. Different horizontal lines correspond to different

sizes of the monomer constituents, or different γ values.

Regular packed aggregates typically show high self-energies due to their dense pack-

ing (high interconnectivity) resulting in both larger gravitational and adhesive contri-

butions. In general, the self-energy is primarily determined by the internal arrange-

ment or packing style, parameterized by the average coordination number and filling

factor. As seen in Fig. 3.1 the specific self-energy can be divided into a strength-

dominated and gravity-dominated regime with a transition occurring at size Rt where

QA(Rt) = QG(Rt). Solving this equation yields

R2
t =

15
16π2

A
G

CN

ρ2 f
s−5/3

0 . (3.7)

An aggregate made of icy cm-sized fcc-arranged particles has Rt between 1 and 5m

(cf. Fig. 3.1(b)). Similar to Q, the transition size Rt primarily depends on constituent

size and adhesive strength. Generally, stronger adhesion and smaller constituent sizes

yield larger transition sizes. Objects larger in size than Rt lie in the gravity regime,

29



3. AGGREGATE SELF-ENERGY, RELATIONS AND RESISTIVITY

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

10-1 100 101 102

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Q
 [e

rg
/g

]

Q
 [J

/k
g]

Aggregate Radius [m]

gravity
adhesion

fcc s = 0.001m
    s = 0.01m
    s = 0.1m

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

10-1 100 101 102

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Q
 [e

rg
/g

]

Q
 [J

/k
g]

Aggregate Radius [m]

gravity
adhesion

fcc γ = 0.74 [N m-1],s=0.01m
fcc γ = 0.20 [N m-1],s=0.01m

Figure 3.1: The specific self-energy for fcc aggregates (CN = 12, f = 0.74) using Eq. (3.6)
for (a) various constituent sizes s0 and (b) different adhesion strengths. The transition from
strength-dominated to gravity-dominated self-energy occurs at the intersection of the gravity
and adhesion lines – at transition radius Rt .

and their own gravitational field is sufficient to hold them together. Aggregates smaller

then Rt are dominated by their internal strength from adhesive bonds and so they are

in the strength regime. This division into a strength-dominated and gravity-dominated
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3.2 Specific break-up energy Q⋆

regime directly translates to an aggregate resistivity and there are implications for the

probability of fragmenting an aggregate, which will be discussed in the next section.

3.2 Specific break-up energy Q⋆

The previous derivations show that energy must be provided in order to break an ag-

gregate, to create new surfaces, or – at least – to rearrange individual constituents.

Impacts of external objects or between the aggregates and tidal stresses due to the

nearby planet are the sources of energy required to these processes (see discussion in

Chapter 5). Any configurational changes of the aggregate leads to changes in the ef-

fective contact surface, including broken bonds and newly created surfaces. As these

processes are generally irreversible, a fraction of this impact energy will inevitably be

dissipated in the form of heat. Total energy is conserved and

∑
i

Efragment = ET +WA +WG +generated heat , (3.8)

where WA denotes the work done to create new surfaces and WG is the work done

to physically separate the fragments within their own mutual gravitational field, and

Efragment and ET are the respective self-energies. In the following we will assume

a final fragmentation outcome and disregard dissipative processes (meaning that all

processes are adiabatically slow). For the sake of simplicity, we concentrate on impacts

that fragment the aggregate and exclude reconfiguration. Also, we concentrate on the

energy necessary to split an aggregate and neglect any kinetic energy that fragments

might have (fragments are considered to be at rest). Further, since our main goal is

to estimate the effects of collisions within planetary rings, which are typically low-

velocity collisions, no shock wave generation during impacts is taken into account
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3. AGGREGATE SELF-ENERGY, RELATIONS AND RESISTIVITY

(quasi-static approximation). We then obtain the expression

Q⋆(R) =
WA(R)+WG(R)

M
. (3.9)

In the literature, the specific energy required to break-up is typically referred as Q⋆

and is defined as the threshold energy required to break an object so that the largest

fragment remaining is half the mass of the original target object (e.g. Love and Ahrens,

1996; Krivov et al., 2005). We approximate WG by the gravitational self-energy as

given in Eq. (3.4) and estimate that this approach is accurate to within 10%. In order

to estimate the work WA required to create a new surface area S we define an average

adhesion energy density as

γ̄ =
EA

V
. (3.10)

In the bulk of a regular packed aggregate of radius R with monomers of size s0 it reads

γ̄ = − 3
4π

ACN f s−5/3
0 . (3.11)

Breaking the aggregate by simply disconnecting existing bonds along will form a rup-

ture surface with the average thickness as wide as the radius of an individual constituent

s0. Thus, WA = γ̄Ss0. In agreement with the literature we let the largest fragment con-

tain half of the mass of the original aggregate. In one of the extreme cases this will

create two equal-sized fragments and two new surfaces with area of Smin = πR2 corre-

sponding to a minimum work required W min
A , equivalent to “splitting the aggregate in

halves”.

In reality, however, the actual crack surface has variable roughness and is enlarged due
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3.2 Specific break-up energy Q⋆

to the arrangement of individual constituents. Depending on the energy input, multiple

rupture lines may occur that allow for the creation of multiple fragments. The newly

created surface area can then be calculated using a fragment size distribution f (R̃) as

S =
∫ R̃max

R̃min

πR̃2 f (R̃)dR̃ . (3.12)

Without loss of generality, we assume that fragments are distributed according to a

power-law f (R̃) = α R̃−p; the numerical constant α may be obtained from mass con-

servation (i.e. here conservation of volume) to give R3 =
∫ R̃max

R̃min
αR̃3−pdR̃. Then, by

simple relation WA/S = W min
A /Smin and Eq. (3.12) the required work to create multi-

ple fragments is calculated as

WA = W min
A RF (p, R̃min, R̃max) , (3.13)

where

F (p 6∈ [3,4], R̃min, R̃max) =
4− p
3− p

(R̃3−p
max − R̃3−p

min )

(R̃4−p
max − R̃4−p

min )
, (3.14)

F (p = 3, R̃min, R̃max) =
1

R̃max − R̃min
log

[

R̃max

R̃min

]

, (3.15)

F (p = 4, R̃min, R̃max) =

(

1

R̃min
− 1

R̃max

) (

log

[

R̃max

R̃min

])−1

. (3.16)

Finally, we obtain

Q⋆(R; p, R̃min, R̃max) = −3
5

GM
R

+W min
A

R
M
F (p, R̃min, R̃max) . (3.17)

We fix the size (radius) of the largest fragment R̃max to correspond to half of the aggre-

gate mass (e.g. Love and Ahrens, 1996) and further assume that the largest fragment
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has the internal density of the aggregate ρagg. Then, R̃max = R/ 3
√

2. The smallest pos-

sible fragment size R̃min is equal to the size of the smallest constituent, in this case

R̃min = s0. Equation (3.17) can then be written as

Q⋆(p,s0,R) = −4π
5

Gρ f R2 − 9
16π

ACN

ρ
s−2/3

0 F (p,s0,R/
3
√

2) . (3.18)

In the case of splitting the aggregates in half we may write

Q⋆(halves) = −αGR2 −αAR−1 (3.19)

αG =
4π
5

Gρ f (3.20)

αA =
9

16π
ACN

ρ
s−2/3

0 (3.21)

where [αG] = s−2 and [αA] = Jmkg−1. Figure 3.2(a) shows results for various fragment

size distribution slopes using Eq. (3.18) for fcc aggregates. Following Love and Ahrens

(1996) specific impact energies above Q⋆
min typically yield more numerous and smaller

fragments; lower specific energies only cause cratering and spallation but leave the

target essentially intact. Naturally, the upper limit for Q⋆ is Q, the total self-energy of

an aggregate, resulting in the total disruption of the aggregate. For cases populating

the area between the limiting curves Q⋆ and Q less than 50% of the original bonds are

left intact. The related damage ratios (DR), defined in Moreno-Atanasio and Ghadiri

(2006) as the ratio of broken contacts to the initial number of contacts, are shown in

Fig. 3.2(b). Comparing Fig. 3.2(a) and 3.2(b) it is revealed, as expected that, with

higher damage ratios the number of fragments increase. With 100% damage done

the aggregate is completely destroyed as Q⋆ = Q. Moreover, Fig. 3.2(a) suggests that

aggregates of a certain critical size Rcrit are more vulnerable to being damaged than

others. At this Rcrit the energy required to break-up Q⋆ assumes a global minimum
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Figure 3.2: Different input energies lead to different fragmentation outcomes ranging from
two fragment halves (each with half the mass) to total disruption (Q⋆ = Q): (a) Eq. (3.18) is
computed using s0 = 1cm, (b) related damage ratios in percent of broken contacts (Moreno-
Atanasio and Ghadiri, 2006).

(see Fig. 3.3), and one can conclude that this is the size where aggregates are most
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likely to be destroyed, so we infer from Eq. (3.18)

R3
crit =

αA

2αG
=

3
8

s0R2
t . (3.22)

In Figure (3.3) we illustrate the critical and threshold radius for fcc aggregates with

s0 = 1cm. Average bulk properties of aggregates may be used together with the mean-
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Figure 3.3: Specific energies for fcc aggregates with particle sizes s0 = 1cm The total energy
Q given by Eq. (3.6) is the sum of the specific adhesive and gravitational self-energies and
correspond to the horizontal line. In order to break an aggregate into two equal-sized halves we
calculate the minimum specific energy Q⋆ using Eq. (3.18) - the downwards sloping line. We
mark the location of transition Rt and critical radius Rcrit. The first marks the transition between
the strength-dominated and gravity-dominated regime. The latter marks which aggregate size
is most vulnerable to destruction and is defined as the global minimum of Q⋆(R). Even if the
case of break an aggregate into two halves can be considered artificial and may not really reflect
the rupture of aggregate like bodies, this approach is in qualitative agreement with Love and
Ahrens (e.g. 1996).

field equations Eqs. (3.7) and (3.22) to calculate the expected transition and critical

radii for various packing styles. Figure 3.4 shows the results in function of constituent

size. The border of the gray-shaded area marks the minimum size of an aggregate,
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3.2 Specific break-up energy Q⋆

taken to be the characteristic radius of an aggregate consisting of two constituents par-

ticles in contact, Rbinary =
√

5/3 s0 (see Chapter 4). Aggregates larger than the transi-

fcc packing
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Figure 3.4: Strength- and gravity-dominated regimes: Variability with surface free energy
is comparable to variability across different aggregate packing styles. Different fragmenta-
tion outcomes described by the power-law distributions above yield Q⋆

min within the transition
regime. Critical Rcrit (dashed line) and transition radius Rt (dotted line) mark its boundaries.
The gray-shaded are mattes non-existing aggregates.

tion radius lie within the gravity-dominated regime and those smaller than the critical

size within the strength-dominated regime (see Fig. 3.4(a)). The transition regime con-

stitutes part of the strength regime, where different fragment size distributions yield

slightly different Q⋆, whereas aggregates at the critical radius are most vulnerable to
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destruction as this yield only two fragment halves (cf. Fig. 3.2). Figure 3.4(b) shows

the dependence on the surface free energy γ within our chosen minimum and maximum

value. Different packing styles, expressed by their internal filling factor and corre-

sponding coordination numbers, are illustrated in Fig. 3.4(c). The resulting variability

in both Rcrit and Rt is comparable to their variability with γ. In Chapter 4, Sec. 4.2 we

will directly identify amorphous packing styles of more realistic aggregates with the

average bulk properties used here (cf. Figs. 4.5 and 4.6). Interestingly, in this way we

obtain a qualitatively similar division into strength and gravity regime as reported by

e.g., Love and Ahrens (1996) and Benz and Asphaug (1999).
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Chapter 4

Aggregate Models - numerical

The theory presented in Chapter 3 deals with the resistivity of aggregates. In this

chapter the analytical expressions derived for regularly packed aggregates in Secs. 3.1

and 3.2 will be compared to a more realistic random arrangement of particles. In

order to carry out this comparison aggregates of various packing styles are created

numerically. As before, all aggregates are made of one material type. Regularly and

randomly packed aggregates are considered: Firstly, aggregates built of equal-sized

monomers arranged in close regular packings including face-centered cubic (fcc) and

body-centered cubic (bcc) structure; secondly, amorphous configurations like ballistic

particle cluster aggregates (BPCA). We investigate classic BPCAs and various modifi-

cations to their configuration, including the standard modifications BAM1 and BAM2

(ballistic aggregates with one or two migrations, see below for details – Shen et al.,

2008). Different constituent size distributions and aggregate density constraints are

also considered. Using various numerical approaches their specific self-energy Q and

specific break-up energy Q⋆ will be numerically computed. Finally, these will be com-

pared to the analytical results in the previous Chapter.
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4. AGGREGATE MODELS - NUMERICAL

In order to better describe the size of both crystal-like and fractal-like agglomerates,

which may feature both irregular surfaces and irregular shapes, we employ the charac-

teristic radius Rc, related to the gyration radius Rg, which is commonly used in polymer

and proto-planetary science (e.g. Mukai et al., 1992; Lobanov et al., 2008). Let ~ri, si,

and mi be the location, size, and mass of the i-th constituent, then M = ∑N
i mi and

~rc = ∑N
i (mi~ri)/M denotes the total mass and center of mass of the aggregate. Then,

Rg =

√

∑i mi(~ri −~rc)2

M
and (4.1)

Rc =

√

5
3

Rg . (4.2)

Here the characteristic radius Rc denotes the radius of a homogeneous sphere with a

gyration radius equivalent to that of the aggregate. In general, Rc describes the actual

size of an agglomerate including close-packings, classic BPCAs, and those with inter-

nal size distributions as well. In Fig. 4.1 we illustrate the characteristic and gyration

radii by a classic BPCA with 5000 particles.

(a) (b) (c)

Figure 4.1: We use the characteristic radius Rc to describe the aggregate radius consistently
referred to as R. It is based on the gyration radius Rg– see equations (4.1) and (4.2). These
are illustrated by a BPCA made of 5000 mono-sized particles: (a) the actual aggregate, (b)
aggregate and corresponding sphere of gyration radius Rg, and (c) aggregate and corresponding
sphere of characteristic radius Rc.
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4.1 Regular Packings

4.1 Regular Packings

We arrange individual particles into larger agglomerates using the characteristic bulk

properties of regular packings (listed in Table 3.1) and the corresponding lattice struc-

tures. Figure 4.2 shows examples of fcc and bcc aggregates. These organized, crystal-

(a) (b)

Figure 4.2: Aggregates composed of close-packed equal spheres: (a) face-centered cubic (fcc)
and (b) body-centered cubic (bcc) configuration. These regular, crystal-like arrangements yield
high coordination numbers and thus high filling factors (cf. also Table 3.1)

like packings of single-sized constituents achieve relatively high coordination numbers

which results in both high filling factors (high internal density) and high connectivity.

This implies an extended strength regime and generally larger self-energies Q. As

discussed in Chapter 3, Sec. 3.1 high coordination number directly affect aggregate

properties like resistivity. The analytical mean field calculations (Eq. (3.3)) used the

bulk coordination number given in Table 3.1, the effects of the free aggregate surfaces

– surface energy and surface tension – were neglected. The consequence of this sim-

plification as a function of aggregate size radius (R) is demonstrated in Fig. 4.3 by

comparing numerical and analytical calculations of the adhesive self-energy for vari-

ous aggregate sizes. The exact numerical computation of the self-energy, taking into

account surface effects, is achieved by implementing the most general Eq. (3.3) and

then dividing by the aggregate mass M. In Fig. 4.3 we have plotted the adhesive con-

tribution to the self-energy Q. The relative error of using the mean-field equation is

about 15% for 1m aggregates with s0 = 10cm and it vanishes for larger aggregates.
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Figure 4.3: Comparison of the analytical and numerical specific adhesive self-energy (2nd term
in Eq. (3.18)) for fcc agglomerates made of 10cm-sized constituents. The discrepancy due to
neglected surface effects vanishes with R → ∞.

To address the question of how much energy is required to split an aggregate we will

follow two different approaches: 1) a semi-analytical and 2) a purely numerical ap-

proach. We will then compare these two results with those obtained from Eq. (3.18).

For simplicity, we will concentrate on splitting an aggregate into halves and therefore

consider only a single fracture plane.

1. The semi-analytical approach: We first numerically calculate the adhesion self-

energy EA as defined in the second term of Eq. (3.3). Then we apply the analyt-

ical approach outlined in Eq. (3.10) in Chapter 3, Sec. 3.2, where we introduced

an adhesion energy density γ̄. Using γ̄, we then calculate the specific break-up

energy for the surface area S = πR2 and crack width s0.

2. The purely numerical procedure: Mimicking a cracked surface we define a plane

which intersects the center of mass of the aggregate. We then identify which

bonds intersect that plane and declare these to be broken. Finally, we count the

number of bonds broken.
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Figure 4.4 shows a comparison between the analytical, semi-analytical, and purely nu-

merical approach to obtain an aggregate specific break-up energy. Both semi-analytical

and numerical approaches are within 10− 15% of the analytical estimates for aggre-

gates where R/〈s〉 ≈ 10. If R/〈s〉< 10 accuracy drops to within 70% as the aggregates

comprises merely ∼ 500 or fewer individual particles. Naturally, the accuracy im-

proves as R → ∞ and thus N → ∞. The constituent size typically used in the following

sections is about 1cm while aggregates are grown to at least decimeter size and beyond.

For these aggregates we estimate our inaccuracy to be at most 15%.
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Figure 4.4: Comparison of the analytically, semi-analytically, and numerically obtained spe-
cific break-up energy (adhesive part only) needed to split an aggregate into two halves. Results
are shown for fcc aggregates with constituents of 10cm. Both semi-analytical and numerical
approaches are within 10−15% of the analytical estimates.

4.2 Random Packings

Random arrangements of equal hard spheres have been used to model a variety of phys-

ical problems (Mrafko and Duhaj, 1974). In planetary science, these Ballistic Particle
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Cluster Aggregates (BPCA) have widely been used for the study of asteroids and plan-

etary formation (Richardson, 1995; Dominik and Tielens, 1997; Mukai et al., 1992;

Kolokolova et al., 2007; Shen et al., 2008, 2009), employing the standard method to

create randomly arranged aggregates (e.g. Vold, 1959; Mukai et al., 1992). In our im-

plementation of the classical BPCA method we proceed as follows: A seed particle is

placed at the origin of a spherical coordinate system. Further constituents are added

in a “hit and stick” mechanism (Dominik and Tielens, 1997) after following random

ballistic trajectories. These trajectories are determined by drawing from uniformly dis-

tributed spherical angles while randomly choosing a target particle among the current

aggregate constituents. Using this method we obtain rather fluffy aggregates. In order

to achieve higher coordination numbers and thus higher filling factors, we have also

introduced three different modifications to the simple BPCA algorithm:

1. BAM1 – ballistic agglomeration with one migration – requires that each newly

added constituent has at least two contacts. That is, after the constituent reaches

one particle, it “migrates” to the nearest second constituent, by rolling or sliding

over the first.

2. BAM2 – ballistic agglomeration with two migrations – requires that each newly

added constituent has three contacts. This is achieved by performing two BAM1

migrations in sequence along the shortest possible trajectory.

3. DC – density-constrained – requires that a newly added constituent can only be

“accepted” if the whole aggregate matches a minimum density. In particular,

every time a new constituent is added we calculate the radius of a homogeneous

sphere of given density using the current aggregate mass. If the distance between

the contact point of the new constituent and the center of mass of the aggregate

is smaller than this radius, the constituent is accepted, otherwise it is rejected
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and a new particle is chosen randomly. Here we choose a pre-defined aggregate

density ρagg = 400kgm−3 in order to match ring particle densities inferred from

Cassini observations (e.g. Tiscareno et al., 2007; Porco et al., 2007; Robbins

et al., 2009; Colwell et al., 2009). Note that this procedure, unlike BAM1 and

BAM2, is not strictly in the line of the BPCA philosophy as it modifies the pure

random placement with a conditional random placement of particles. One could

consider that this method mimics reorganization of constituents due to mutual

collision and thus describing compaction.

In addition to the geometric modifications listed above (for BAM1 and BAM2 see

also Shen et al., 2008) variable consituent size distribution n(s) is also allowed. We

primarily consider power-law distributions given by

n(s) = N
(1− k)

(smax − smin)
s−k . (4.3)

In the case of monomers of size s0 this distribution simply reads n(s) = N δ(s− s0).

Figure 4.5 shows examples of all the different randomly packed aggregates used in this

work. These include mono-sized classic BPCA (a), density-controlled (b), BAM1 (c)

and BAM2 (d). Further BPCAs with size distributions with k = 0 (uniform) (f), k = 3

(g), and k = 5 (h) using s ∈ [0.001,0.1]m and s ∈ [0.01,0.1]m have been applied. In

the case of mono-sized aggregate we choose cm-sized constituents (s= 0.01m). These

size ranges are motivated by particle size distributions of Saturn’s rings inferred from

Voyager and Cassini observations (Marouf et al., 1983; French and Nicholson, 2000;

Zebker et al., 1985). Figure 4.5 shows one example of each of the packing styles

considered in this study.
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4. AGGREGATE MODELS - NUMERICAL

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: BPCA and modified BPCAs with 25000 constituents each. Top two rows: mono-
sized agglomerates where (a) classic BPCA, (b) CD at 400kg m−3, (c) BAM1, and (d) BAM2.
Bottom two rows: Clusters made of particles with size distribution: (e) k = 0 (uniformly dis-
tributed) between s ∈ [0.1 − 10]cm, (f) k = 0 between s ∈ [1 − 10]cm, (g) k = 3 between
s ∈ [0.1−10]cm, and (h) k = 5 between s ∈ [0.1−10]cm.

46



4.2 Random Packings

Bearing in mind that relative impact velocities in unperturbed planetary rings are in

the order of mms−1, collisions occur at sufficiently low speed to enable aggregation

by adhesion (e.g. Hatzes et al., 1991). Therefore, this “hit and stick”- mechanism of

aggregation (Dominik and Tielens, 1997), where all colliding particles have a probabil-

ity of sticking close to unity, provides an adequate method. However, these collisions

do not involve, or only involve a few internal re-structuring of the aggregates. The

resulting aggregates are fluffy in nature and typically show very low internal densities.

Figure 4.6 shows the internal filling factor f of different aggregates as a function of

distance from the center of mass of aggregate. We mark the characteristic radius for

each of the aggregate examples (vertical lines). Typically, f slowly decreases with

distance from the center, approaching a global average value. These average aggregate

properties are found beyond the characteristic radius, where the filling factor rapidly

drops. “Fingery” structures form the outermost shell of the aggregate (compare also

Fig. 4.1) and are a typical outcome of the “hit and stick” formation process (Dominik

and Tielens, 1997). In the case of classic BPCAs the filling factor is low, f ≈ 0.2.

Even if the aggregate has an internal size distribution (Figs. 4.6(c) and 4.6(d)) the

filling factor is comparable to the classic BPCA (Fig. 4.6(a)). Although one might

expect a denser packing when lowering the smallest size of the size distribution smin,

the random direction of particle placement prevents smaller particles from filling the

gaps. Only modifying the aggregate formation process alters the aggregate properties,

e.g. Fig. 4.6(b) shows BAM1 and BAM2 require multiple particle contacts resulting

in a tighter packing and thus higher filling factors. Similarly, in the case of controlled

internal density (DC) the filling factor is actively determined and therefore matches

the fixed aggregate density with f ≈ 0.4. Directly related to the filling factor are the

average coordination numbers. BPCAs with and without size distribution have co-

ordination numbers of approximately 2, since their formation processes are the same.
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Figure 4.6: Filling factor distributions as a function of normalized distance from the center of
the aggregate Ri/Rn, where Rn is the radial distance of the outermost constituent: (a) BPCA
and DC, (b) BAM1 and BAM2, (c) BPCA with uniform size distributions (s ∈ [1−10]cm and
s ∈ [0.1 − 10]cm), and (d) BPCA with size distributions of slope k = 3 and k = 5 between
s ∈ [0.1− 10]cm. Vertical lines mark the position of the characteristic radius Rc. Here, each
aggregate consists of 30000 particles.

Coordination numbers are only higher if the geometric packing conditions, and thus the

arrangement of constituents, is changed. This is independent from the constituent size

distribution. Thus, BAM1 and BAM2 modified aggregates have by definition CN ≈ 4

and CN ≈ 6, respectively. This is also true for the density-controlled aggregates, where

the only difference in forming them is that more mass is packed into the same volume.
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4.2 Random Packings

In the case of aggregates made of equal-sized particles a higher coordination number

directly implies a higher adhesive self-energy, but this correlation between coordina-

tion number and adhesive self-energy is not necessarily true for aggregates with size

distributions, since bond strength also depends on the effective size of the particles in

contact. Also, we did not find a suitable average constituent size for a given distribution

that would satisfy this proportionality.

We have created aggregates of various sizes for each packing style. Unless using a

designated size distribution we evaluated the aggregates for s0 = 1cm. Specific self-

energies were calculated for each of these according to Eq. (3.3). The specific break-up

energies were inferred using the semi-analytical approach for all BPCAs with equal-

sized constituents and the purely numerical approach for those having an internal size

distribution. Figures 4.7 and 4.8 show the specific energies for all aggregates. Each

cross marks one aggregate. Lines are fitted to the data points.

Despite the generally lower specific adhesion energies, the transition size associated

with the classic BPCA aggregates in Fig. 4.7(a) of Rt ≈ 3.1m is comparable to that of

regular packed aggregates (cf. Fig. 3.3) as their relatively low filling factor f reduces

their self-gravity. This, however, implies significantly smaller break-up energies (on

the order of one magnitude), consistent with what is generally expected for loosely-

packed aggregates. This results in critical sizes around 0.3m. The aggregates types

BAM1 and BAM2 show slightly larger transition and critical sizes given both their

higher coordination number and filling factors (see Figs. 4.7(c) and 4.7(d)). A similar

result is obtained for the DC aggregates in Fig. 4.7(b). Despite having a slightly denser

packing the DC aggregates have a smaller transition size at Rt ≈ 1.8m; this is because

DC has a coordination number of CN ≈ 2, similar to classic BPCAs. The inclusion

of a constituent size distribution generally reduces the specific adhesion energy and
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(b) DC at 400kgm−3
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(c) BAM1
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(d) BAM2

Figure 4.7: The specific energy (self-energy/mass) vs. radius of different BPCAs with equal-
sized constituents. Each cross denotes one aggregate where we split the adhesive and gravita-
tional contributions. Lines are fitted to the data points. All aggregates are made of 1cm-sized
constituents.

consequetly, the critical sizes when compared to the classic BPCA (see Fig. 4.8). As a

consequence, these aggregates are more easily disrupted. In general, aggregates with

internal size distributions have significantly smaller transition sizes. We note that the

DC aggregate has nearly the same Rt as the aggregate with a k = 5 distribution. In

general, however, critical sizes lie within a few decimeters regardless of packing style.

Table 4.1 summarizes these findings.
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4.2 Random Packings

Packing Specification s[cm] CN f Rcrit[m] Rt[m]
BPCA 1 2 0.2 0.30 3.11
BAM1 1 4 0.3 0.36 3.62
BAM2 1 6 0.4 0.37 3.37

DC ρagg = 400kgm−3 1 2 0.4 0.21 1.73
SD k = 0 1-10 2 0.2 0.18 0.50
SD k = 0 0.1-10 2 0.2 0.18 0.50
SD k = 3 1-10 2 0.2 0.22 1.00
SD k = 5 1-10 2 0.2 0.29 1.85

Table 4.1: Properties of various randomly packed aggregates including constituent size range
s, coordination number CN, filling factor f , and critical Rcrit and transition radius Rt.
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(b) Uniform, mm-dm
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(c) k = 3, mm-dm
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(d) k = 5, mm-dm

Figure 4.8: The specific energy (self-energy/mass) vs. radius of different BPCAs with internal
size distribution. Each cross denotes one aggregate where we split the adhesive and gravita-
tional contributions. Lines are fitted to the data points.
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Chapter 5

Ring application – collisional velocities

The specific self-energy of aggregates for a wide range of packings have been calcu-

lated in the preceding Chapters 3 and 4. The self-energy proved to be the determin-

ing factor in calculating the transition size separating the strength and gravitational

regimes. Furthermore, it denotes the limit for a complete disruption of an aggregate.

Most of the differences between particular aggregate types are due to differences in

their internal mass density and average coordination number. Further, we have esti-

mated the specific break-up energy and find a good qualitative agreement with lab-

oratory experiments and impact simulations (Love and Ahrens, 1996). We saw that,

in particular, the BPCA and their modifications are aggregates that may resemble the

under-dense fragile structure formations in the rings, representing the reality of them.

Now we shall apply the results from the previous chapters to Saturn’s ring. For this

application it is necessary to emphasize the following: the ring particles seem to be

compacted aggregates with a filling factor of around 0.4 (ice material). It is also likely

that aggregates which are more compact have coordination numbers (CN) higher than

in the BPCA model, but the CN should not be as high as in a crystal-like packing.
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5. RING APPLICATION – COLLISIONAL VELOCITIES

Therefore, these assumptions bring us to conclude that the BAM2 model is a good

match for ring aggregates, which has the CN = 6 and the f = 0.4.

We want to define the critical velocity for collisions needed for fragmentation of both

aggregates. Fragmentation can occur when the kinetic energy of the two impacting

aggregates of radius R1 and R2 is large enough to split both collision partners into two

pieces

Ekin >W (R1)+W (R2) . (5.1)

The Eq. (5.1) is limited for cases of very low collisions velocities (mm/s). Re-ordering

of the constituents forming the aggregate is not considered and adjustments related to

energy dissipation may be addressed by a constant. Despite we neglect some physics

involved (that would indeed mean molecular dynamics simulations), we will show that

the results match the expectation and information we have for particles in the rings.

In Chapter 3, Sec.3.2 we defined the work required to split an aggregate as

W (R) = −Q⋆(R) ·M(R) (5.2)

where Q⋆ is specific break-up energy defined by Eq. (3.18) which can be rewritten as

Q⋆(R) = −αAR−1 −αGR2 , (5.3)

where αA and αG are defined in Eqs. (3.19). The kinetic energy of the impact is given

by

Ekin(M1,M2) =
Meff

2
g2 , (5.4)
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where the effective mass is defined by Meff = M1M2/(M1 +M2) and g is the relative

velocity of the collision partners.

Rewriting Eq. (5.1) considering R1 ∝ M1/3
1 and R2 ∝ M1/3

2 we have

g(R1,R2)
2 > gfrac(R1,R2)

2 = 2(R3
1+R3

2)
[αA(R2

1 +R2
2)+αG(R5

1 +R5
2)]

(R3
1 ·R3

2)
, (5.5)

which gives the critical velocity gfrac(R1,R2) when fragmentation is the dominating in

the outcome of collision.

g 
[c

m
/s

]

10-2 10-1 100 101 102

R1 [m]

10-2

10-1

100

101

102

R
2 

[m
]

 0.1

 1

 10

 100

 1000

Figure 5.1: Contour plot for different critical fragmentation velocities gfrag(R1,R2), see
Eq. (5.5). Constituents with radii s = 1 cm, γ = 0.74N m−1 and CN = 6 have been used.

Figure5.1 shows the contours for different critical fragmentation velocities gfrac(R1,R2).

As one can see, for a given velocity complete fragmentation is only possible for distinct
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5. RING APPLICATION – COLLISIONAL VELOCITIES

region of sizes considering R1 = R2 = R

Rmin =
8αA

g2 < R <
g2

√
8αG

= Rmax . (5.6)

Additionally, one should note, that only agglomerates of similar size can effectively

destroy each other, if this condition is not met the larger body usually survives. Using

γ = 0.2N m−1 instead of γ = 0.74N m−1 would decrease αA and thus Rmin by a factor

of about 10. Likewise, the maximum impact velocity for aggregation to occur gagg

may be found in a similar way. Aside from minimum and maximum sizes in the rings

one may obtain the ring particle size distribution by using these results on threshold

velocities in kinetic calculations (see Chapter 6).

5.1 F ring Analysis

We will now draw some conclusions for Saturn’s F ring, based on our preliminary

considerations. As mentioned in the introduction, this thin, kinky ring is shepherded

and perturbed by the moons Prometheus and Pandora. The perturbations of the moons

induce large relative velocities of the particles of the order ms−1 (e.g. Beurle et al.,

2010). In less perturbed regions one should expect dms−1. The ring has a large amount

of dust particles (1−100µm).

Fig. 5.2 shows the specific splitting energies Q⋆. Additionally, the corresponding spe-

cific kinetic energies are plotted for different collision velocities, where the cross-

ing points with the Q⋆ lines correspond to the minimal and maximal R as given by

Eq. (5.6). Thus, the dust particles can adhere to agglomerates with radii of around

1cm in the less perturbed regions (1dms−1), but will be destroyed in the perturbed
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Figure 5.2: The plot shows the specific splitting energies for the BAM2 aggregates with dif-
ferent constituent sizes (γ = 0.74 N m−1 and CN = 6). Additionally, the kinetic energies are
plotted for different collision velocities. The crossing points correspond to limits of the frag-
mentation zone, where fragmentation of both collision partners can be observed.

regions (1ms−1). Further growing will be limited because of ongoing fragmentation,

and thus, decimeter and meter aggregates should be rare in the F ring. Thus, km sized

aggregates can only be formed due to compression of ring material in the regions per-

turbed by the moons Prometheus and Pandora. If some of the aggregates do grow above

the maximum limit (Rmax > 100m− 1km), they can grow even further, but these are

transient bodies and they are likely disrupted by a gravity encounter with Prometheus.

Thus, in the F ring we expect to observe a three-modal size distribution as observed

(Showalter et al., 1992; Beurle et al., 2010) with micrometer-sized dust, medium sized

centimeter agglomerates (parent bodies for dust; Bodrova et al., 2012) and a few km

or larger sized agglomerates.
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5. RING APPLICATION – COLLISIONAL VELOCITIES

5.2 Dense Rings Analysis

For the inner dense rings the environment differs greatly from that of the F ring. In

this environment tidal forces and impacts between the aggregates lead to their disrup-

tion and formation of transient structures called self-gravity wakes. Particles inside

a single self-gravity wake have very low relative velocities whereas the relative ve-

locity between neighboring self-gravity wakes could be of the order of the Toomre

wavelength times the orbit frequency (Daisaka and Ida, 1999), this is a favorable envi-

ronment for the formation of adhesive bounds. In the following we want to estimate a

critical thermal velocity to treat gravo-adhesive aggregates (sizes R1 and R2) in mutual

collisions. The collisional velocity between two aggregates depends on two factors: (i)

the thermal velocity vth of the ring particles and (ii) on the relative velocity caused by

the shear motion (2/3)Ω(R1+R2). Thus, we estimate the collisional velocity by

g ≈ vth +
2
3

Ω(R1+R2) . (5.7)

Instead of the shear velocity one can also consider the escape velocity, which is of

the same oder of magnitude and has the same dependence R. The thermal velocity

dominates the impacts of small aggregates, whereas the shear is more important for

collisions between larger bodies. Simulations including only restitutive collisions and

different particle sizes have shown a rather weak dependence of the thermal velocity,

vth, on the radius of the particles, therefore, we will consider a size independent thermal

velocity at the moment, for simplicity. However, because the larger particles dominate

the thermal motion of the particle ensemble due to their larger masses, we can relate it

to the size of the large particle

vth ≈
4
3

ΩR2 (5.8)
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with R1 << R2. Substituting Eq. (5.7) into Eq. (5.5) we can calculate the critical

thermal velocity needed to split both collision partners again adhesive and gravitational

resistivity (αA and αG)

vth(R1,R2) >

√

2(R3
1 +R3

2)
[αA(R2

1 +R2
2)+αG(R5

1 +R5
2)]

(R3
1 ·R3

2)
− 2

3
Ω(R1+R2) . (5.9)

In Fig. 5.3 the critical thermal velocity has been plotted for different radii R1 and R2.

Similar to Fig. 5.1 the Fig. 5.3 shows the contours for different critical thermal veloc-
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Figure 5.3: The contour plot shows the critical thermal velocities for fragmentation, see
Eq. (5.9). Constituents with radii s = 1 cm, γ = 0.74N m−1 and CN = 6 have been used.

ities, and again, as one can see, for a given velocity complete fragmentation is only

possible for distinct regions of sizes following Eq. (5.6). Small particles (< Rmin) will

accrete steadily to larger particles. If the aggregate radius is larger than the minimal

radius Rmin it will likely be destroyed by particle of same size or larger. Thus, these
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5. RING APPLICATION – COLLISIONAL VELOCITIES

particles undergo a steady growing and destruction limiting their numbers. Therefore

they are less numerous than the particles with size Rmin. In reality the number density

falls off with a power law n ∝ R−3. The larger particles are under the gravitational

regime where the growth is limited by tidal forces. In this case of self-gravity wakes

Rmax will rather correspond to the wavelength λwake ≈ 20−50m.

There is little known about the agglomerate “constituents” sizes in Saturn’s rings. It

should be between the observed minimal observed ring particle radius of around 1cm

(French and Nicholson, 2000) and the typical regolith grain radius of around 10µm

observed on top of the ring particles (Nicholson et al., 2008). The observed minimal

ring particle aggregate radius is between 1cm and 30cm, which implies constituent

radii larger than 0.1mm and smaller than 1cm for the considered velocity range of

1mm s−1 and 3mm s−1 using our estimates from above. These constituent sizes will

deliver reasonable Rmin in the expected velocity range. However, one should note,

if the thermal velocity of the ring particles exceeds 3mm s−1 constituents of tens of

micrometer deliver good result for Rmin ≈ 50cm. The calculated maximal agglomerate

radii calculated from the assumed thermal velocities are between 8 and 23 meters (for

velocities between 1 and 3mm s−1). These estimates reproduce the correct order of

magnitude for the size range, they are of preliminary character but demonstrate the

relevance of the results gained in this work. As a next step one should apply these

results to kinetic calculations to obtain a size distribution for the particles in the ring.

To achieve this, one must first estimate the maximum impact velocity, gagg, where

aggregation can occur (Spahn et al., 2004; Albers and Spahn, 2006; Albers, 2006).

This relation can be found in the same way as gfrac. Nevertheless this aim, as well as

the self-consistent treatment of self-gravity wakes, are out of the scope of this Thesis.
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Chapter 6

Discussions and conclusions

In this work we have studied the role of contact forces (adhesion) for the aggregation

and fragmentation of aggregates in a granular gas (planetary rings) by calculating their

specific (per mass) binding energies Q⋆ in relation to their gravitational self-energy.

We have investigated several types of aggregates, including regular packed (fcc, bcc)

and randomly build ballistic aggregates (BPCA), also including a constrained den-

sity (DC) as well as reordering of the constituents (BAM1, BAM2). One should note

that the BPCA and fcc aggregates, which have filling factors between 0.2 and 0.74

and coordination numbers between 2 and 12, represent two limit cases for a realistic

aggregate. We can say that the frequent collisions in planetary rings, which pack, re-

organize, and disintegrate particles, lead to neither organized nor very densely packed

aggregates. Therefore, amorphous packing can better represent the aggregates formed

in the ring environment as concluded from Cassini observations.

We have been able to estimate the resistivity of granular aggregates between strength-

and gravity regimes as observed in material sciences or in asteroidal studies. We have

shown that early in their formation, in the strength regime, the contact forces are those
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ones that support the aggregates the most, i.e. adhesion is the major player for their

resistivity corresponding to the strength regime. In contrast larger boulders are dom-

inantly held together by their mutual gravity (gravitational regime). Consequently,

the energy necessary to disrupt or erode an aggregate is a function of the aggregate

size, in terms of energy per mass (specific energy) we have Q⋆(R). In the strength

regime Q⋆(R) is inversely proportional to the aggregate size (Q⋆(R) ∝ Rζ) and reaches

its minimum before the gravitational specific binding energy dominates (Q(R) ∝ R2,

cf. Fig. 3.2). The exponent ζ depends on the damage ratio of the target aggregate, it

assumes values between −1 and 0, and it is related to the size distribution of fragments

(and to the exponent p in Chapter 3, Sec. 3.2): ζ = −1 corresponds to splitting the

aggregate into two equally sized fragments, whereas ζ = 0 implies total fragmentation

into all individual constituents as the specific fragmentation energy transforms into

the specific adhesive binding energy Q⋆(R) → Q which is independent of the aggre-

gate size R. From this work we conclude that the transition between the strength and

the gravitational regimes is located along Q line, all others measurement for Q⋆ are

intermediate stages of rupture.

Mutual collisions between the aggregates are capable to change the sizes of the com-

posite ring particles (however, aggregates can also be destroyed tidally). This may

occur either through aggregation for impacts at low velocities, or alternatively, due to

fragmentation at higher collision velocities. The collision dynamics and the resistivity

of the aggregates determine these velocity thresholds gagg and gfrag, where gfrag was es-

timated in Chapter 5. We have shown that knowledge of the critical fragmentation ve-

locity provides us with information about the agglomerate size distribution through the

minimal and maximal aggregate radius. The difference of both velocities, gagg −gfrag,

is determined mainly by the dissipation that occurs during collisions between the con-

stituents of both aggregates. This dissipation arises from the viscous deformations and
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from the irreversibility of formation and destruction of single contacts.

Figure 6.1: Maxwellian velocity distribution f (g) of the collisions velocities of the aggregates.
Note, impact speeds of the range of mms−1 up to cms−1 are expected in Saturn’s rings (mean
velocity ≈ 5mms−1).

The Maxwellian velocity dispersion, f (g) (Fig. 6.1), is a possible reasonable estimate

for the impact velocity distribution of the ring particles (neglecting systematic mo-

tions). The lower end and the upper tail of this distribution mark the velocity ranges

where aggregation and fragmentation may occur. The gap between aggregation and

fragmentation velocities marks the range of collisional restitutions for the majority of

the collisions.

Molecular dynamics simulations – including integration of the collision dynamics of

the constituents of two colliding aggregates – would be necessary in order to determine

the domains of fragmentation, restitution and aggregation more precisely. However,

our results already provide enough information in order to undertake kinetic calcula-

tions for the evolution of the size distribution, i.e. the domains of the collision integrals
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6. DISCUSSIONS AND CONCLUSIONS

for coagulation, restitution and fragmentation can now be estimated.

The influence of vth on the balance of fragmentation and coagulation has already been

discussed. However the size distribution of the ring particles as well as the fragmenta-

tion and coagulation processes itself influence the establishment of the particle velocity

distribution. We have not investigated this effect in this work, but it would be worth-

while to do it in future.

The specific binding energy, Q⋆, derived in this paper, is related to the mean specific ki-

netic energy of the ring particles. With the help of Q⋆ we can derive expressions for the

aggregation and fragmentation speeds gagg < g < gfrag, which has been done for gfrag

in Chapter 5. For two colliding aggregates of the same size the fragmentation velocity

is inversely proportional to the aggregate size, gfrag ∝ R−1, the same relation should

also hold for gagg. When a steady size distribution is established the fragmentation and

aggregation rates will minimize. This will occur when the mean kinetic energy ∝ v2
th

approaches the specific binding energy Q⋆. Therefore, we arrive at the hypothesis,

that the mean thermal velocity evolves dynamically, with vth ∝ R−1/2. Other velocity

distributions, which could be gained from equipartition, where vth ∝ R−3/2, or the as-

sumption of a size independent velocity distribution, would result in slopes which are

steep or shallow gradient, which would lead again to enhanced aggregation/fragmen-

tation rates.

Our hypothesis proposes an adaptation of the velocity distribution to the radial depen-

dence of Q⋆. Similar phenomena are known in physics, for example the self-organized

criticality (SOC, Bak et al., 1987). An example of a SOC is the steady dumping of

sand on top of a sand pile, which then triggers a series of avalanches. This guarantees

that the angle of repose at the pile-edges remains within a narrow range around a self-

organized critical value. The slightest disturbances can generate new, even arbitrary
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6.1 Conclusions

small avalanches that maintain the critical angle.

Finally we want to consider a large aggregate in a soup of constituents with a mean

impact velocity, g, where in a certain case we have g ≈ vth. The aggregate will grow

if the kinetic energy of the constituent is smaller than the specific contact energy, Q−

Q⋆(R), for a body of radius R, otherwise higher kinetic energies could lead to a split

off bound constituents. Thus, the aggregate can grow or shrink if g < gc or g > gc,

respectively. The critical velocity, gc, is defined by g2
c/2 = Q−Q⋆ and is an unstable

point where the aggregate would neither grow nor shrink. This is analog to droplet

formation in a supersaturated gas (clouds) known from equilibrium thermodynamics

which leads to a similar relation with µdrop+(2m/ρ)(σ/R)−µgas = 0. Here µ denotes

the chemical potential of droplet and gas together with its surface tension σ/R. Here

µdrop −µgas corresponds to g2
c/2−Q and the surface tension to Q⋆.

Royer et al. (2009) have shown that for adhering granular particles such a surface

tension does also exist. Our numerically designed aggregates already contain this en-

ergetic part, which is easily demonstrated by the investment of energy in order to split

an aggregate (to create new surfaces) owing to the contact adhesion. Of course, this

analogy is quite formal, because in the case of the ring aggregate ensemble dissipation

leads to a quick cooling (T → 0) of the aggregate so that an equal temperature for all

phases is not given here.

6.1 Conclusions

We have analytically and numerically studied the specific binding energies of aggre-

gates held together by gravity and surface contact forces like adhesion and found a

qualitative agreement to previous works (e.g. Love and Ahrens (1996); Davis et al.
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6. DISCUSSIONS AND CONCLUSIONS

(1985). We have also shown that aggregate resistivity actively contributes to deter-

mine the size distribution in planetary rings. In the case of Saturn’s rings we estimate

the upper size cut-off to be on the order of tens of meters which is in quantitatively

good agreement with observations. Further, aggregate sizes, resistivity, and both ag-

gregation and fragmentation threshold velocities provide direct input for parameters

which are crucial in undertaking kinetic studies of the size and velocity distributions

of granular systems such as planetary rings.
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Appendix A

Adhesive-elastic contact energy

The energy required to separate two particles s1 and s2 - the energy of one “adhesive

bond” - comprises both the mechanical (elastic) energy of particle deformation uelas

and the non-mechanical (adhesive) energy uadd. Following Brilliantov et al. (2007) it

may be shown that for the equilibrium contact uelas reads

uelas =
a5

15Ds2
eff

=
65/3

15

(

π5D2γ5s4
eff

)1/3
, (A.1)

where seff = s1s2/(s1 + s2) denotes the effective particle size, γ twice the surface free

energy γ0. The bulk material constants Young’s modulus Y and Poisson ratio ν have

been combined into a single constant D = 3(1−ν2)/(2Y ), implicitly assuming that all

particles are made of the same material. To put the non-mechanical adhesive energy

into mechanical context, we need to consider the interactions between the two particles

on the microscopic, interatomic level. We assume that they interact by the Lennard-
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A. ADHESIVE-ELASTIC CONTACT ENERGY

Jones potential (the particular form of the inter-atomic potential is not important)

uij = 4ε

[

(

σ⋄
rij

)12

−
(

σ⋄
rij

)6
]

, (A.2)

where ε characterizes the interaction strength, σ⋄ is the characteristic size of particles

atoms and rij is the interatomic distance between the i-th atom of the test particle and

j-th atom of the particle of the aggregate. Then the interaction energy between the two

particles is equal to the sum over all atoms i and j, which may be approximated by the

continuum integral over particles’ material. After rigorous analysis we find

uadh =−
2s1∫

d

dz1

2s2∫

d

dz2

a(z1)∫

0

r1dr1

a(z2)∫

0

r2dr2

2π∫

0

dφ
8πεσ6

⋄ρ2
♦

(

(z1 + z2)2 + r2
1 + r2

2 −2r1r2 cosφ
)3 .

(A.3)

Here ρ♦ is the number density of atoms of the particle material, z1 and z2 are the

distances (in normal direction) from the plane of contact, where z1 = z2 = 0, d = 21/6σ⋄

is the equilibrium distance between atoms, and a1/2(z) is the shape of the deformed

spheres (that is, of our particles) around the contact zone. We further assume that the

inter-particle contact corresponds to the equilibrium contact with a(z = 0) = aeq given

by (Brilliantov et al., 2007)

a3
eq = 6πγDs2

eff (A.4)

The integration in Eq. (A.3) is performed over the total particle volume (s1 and s2 are

the particle radii of a pair in contact which define seff).

To obtain an analytical estimate of the integral in Eq. (A.3) we approximate the shape

of the deformed particle a(z) with the relation,

ak(zk)
2 = a2 + s2

k − (sk − zk)
2 for k = 1,2. (A.5)
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This approximation satisfies ak(zk = 0) = aeq and a2
k(zk = sk) = a2

eq + s2
k ≈ s2

k, since

sk ≫ aeq, that is at the heights zk = sk the deformation vanishes.

If we further assume that the equilibrium contact area πa2
eq is much larger than the

atomic area, πσ2
⋄, we may integrate over r1 and over r2 with the acceptable accuracy

from zero to infinity. While keeping only linear terms in the expansion in small pa-

rameter d/s1/2 and assuming for simplicity that s1 = s2 = s we find after rigorous

calculations

uadh =−
AHa2

eq

12D2
0

[

1+
D0

2s
+

3D0s
a2

eq

]

, (A.6)

where D0 = 2d = 2 · 21/6σ⋄ is the equilibrium distance between the centers of atoms

of the two surfaces and

AH = 4εσ6
⋄π2ρ2 (A.7)

is the Hamaker constant (Israelachvili, 2011). Taking into account that the Hamaker

constant is related to the surface tension γ0 as (Israelachvili, 2011)

γsurf =
AH

24πD2
0

, (A.8)

and that the adhesive energy γ, introduced above, is twice the surface tension, γ = 2γ0

(Brilliantov et al., 2007), we finally obtain

uadh =−πa2
eqγ

[

1+
D0

2s
+

3D0s
a2

eq

]

., (A.9)

In the limit of D0/s → 0 this is consistent with the simple estimate πγa2
eq as follows

from thermodynamics. Thus,

E(2)
A = uadh +uelas =−πγa2

eq +
a5

eq

15Ds2
eff

. (A.10)
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A. ADHESIVE-ELASTIC CONTACT ENERGY

Using Eq. (A.4) for aeq, we may write

E(2)
A =−62/3

5

(

π5D2γ5s4
eff

)1/3
= A(ij) s4/3

eff , (A.11)

where A(ij) ≈ 4.45(D2γ5)1/3 with [A(ij)] = Nm−1/3.
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