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Chapter 1

Introduction

General remarks & Motivation

The renowned economist Edward Glaeser proclaimed the “Triumph of the city”, arguing

that urban agglomerations make people “richer, smarter, greener, healthier, and happier”

(Glaeser, 2011). This assertion is empirically supported by a large body of literature sug-

gesting a positive correlation between population density and, for example, wages, patent

intensity, and lower energy use (Ahlfeldt and Pietrostefani, 2019). Nevertheless, cities come

at the cost of entailing severe diseconomies such as higher congestion, pollution, and traffic

accidents (Glaeser, 1998). In the year 2018, about 55% of the world population was residing

in urban areas, a share that is expected to grow to 68% by 2050 (United Nations, 2019).

Consequently, the majority of people not only enjoy the benefits of metropolitan areas, but

face the corresponding disadvantages. These are scientifically less well studied (Ahlfeldt and

Pietrostefani, 2019). A deeper understanding of the interplay between cities, their costs,

and policies that may transform urban life in response to current and future challenges is

therefore pivotal.

This dissertation empirically assesses diseconomies of cities, and explores policies that offer

possible solutions to them. Across chapters, the emphasis shifts from a causal relationship

between urban agglomerations and air quality to the consequences of policy measures that

are designed to transform cities toward greater sustainability. The policy interventions

considered relate to the advancement and promotion of modes of transport beyond motorized

1
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private vehicles and their impact on air pollution or underlying causes such as congestion.

Air quality The importance of assessing (poor) air quality and its influencing factors in

urban areas are illustrated by various examples. Historically, the “Great Smog of London” in

the winter of 1952 provides a well-known instance of the detrimental effects of high pollutant

concentrations on health related outcomes. According to the most recent studies, the event

led to excess mortality of 50-300% (Bell and Davis, 2001). Such high pollutant concentrations

are often caused by thermal inversions that result in lower wind speeds. As a consequence,

industrially and domestically emitted pollutants, e.g. from coal or wood-fired ovens, do

not disperse in space. In the case of London in 1952, this led to pollutant concentrations

3-5 times higher in comparison to the standard levels at that time (Anderson, 2009). The

London fog was not the first of its kind. Another prominent incident happened in 1930

in Meuse Valley, Belgium. It was triggered by industrial pollution combined with weather

inversion as well and resulted in a tenfold increase in expected deaths (Firket, 1936). The

earliest established links between bad air quality and mortality reach back to times as early

as the 17th century (Brimblecombe, 2012).

However, not only relatively short exposure to extremely high pollution concentrations lead

to serious health damage and even death. A large range of scientific research shows that also

lower pollution concentrations result in adverse health effects (Pope III and Dockery, 2006;

Mayer, 1999). Numerous studies have quantified the relationship between air pollution and

health related outcomes like cardiovascular diseases, low birth weight and infant mortality

(e.g. Currie and Walker, 2011; Knittel et al., 2016; Margaryan, 2021).

Policymakers recognized the importance of poor air quality to human health and for the

quality of life long ago. In England, the first legislation in this regard was put into effect

with the “Smoke Abatement Act” of 1273 (Fowler et al., 2020). Over the past several

decades, there have been increasingly more regulatory measures on national and international

levels to curb air pollution. One prominent example is the 1963 Clean Air Act and its

subsequent amendments in the United States, which set emission standards and provided

control mechanisms to ensure compliance. Such interventions have been largely successful in

reducing emissions of highly hazardous pollutants like Sulphur Dioxide (SO2) (Godish and

Fu, 2019). On international level, the World Health Organization has set and constantly
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updated guidelines regarding both short-term and long-term exposure to certain levels of

pollutants. These are intended to indicate pollution concentrations that should be prevented

in order to diminish negative health effects and often taken as guidelines by governments

(World Health Organization, 2021).

Despite such efforts, poor air quality still imposes a large burden on health and the economy.

Welfare costs worldwide are projected to rise from 3.8 trillion in 2015 to about 30.9 trillion

US Dollars in 2060 due to air pollution. Most of these costs are caused by health impacts

(OECD, 2016). Thus, further actions are needed to address these challenges.

Policy interventions Accordingly, general regulatory measures, such as the Clean Air

Act, are commonly complemented by policy instruments that target behavioural aspects

and directly or indirectly affect emissions. One focus of policy makers lies on the transport

sector. This is important since air pollution is an unintended negative external effect of

driving, which often is not taken into account by the polluter. The link between motorized

traffic and poor air quality and consequent negative health effects has been empirically

demonstrated repeatedly and shows the high welfare costs of motorized private transport.

(Currie and Walker, 2011; Knittel et al., 2016; Margaryan, 2021).

Following economic theory, the first best solution to address the social costs of driving

would be to internalize the external effects of traffic, e.g. through a Pigouvian tax. There

were several attempts across various nations to implement a pricing scheme. For instance, a

congestion charge has been shown to improve air quality in London (Green et al., 2020), while

an electronic road pricing scheme has been shown to improve congestion levels in Singapore

(Santos et al., 2004). Additionally, there exist quantity-based measures in a multitude

of countries, like driving restrictions for certain types of cars (Fageda et al., 2022). One

example of such regulations are low emission zones in Germany, that caused improvements

in air quality by restricting the access of particulate emitting cars to city centres (Gehrsitz,

2017). However, the implementation of an effective road pricing or quantity scheme requires

the comprehension of associated damages (Vickrey, 1969) and often is not very popular in

the public opinion (Jaensirisak et al., 2005). Therefore, the focus of policy makers often

concentrates on second best solutions that affect the mobility behaviour of citizens. This

includes incentives to redirect car users to alternative modes of transport such as trains,
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subways, and more recently also bicycles.

A growing body of literature finds that infrastructural changes towards improving the public

transport sector indeed positively impacts air quality. The emphasis mostly lies on extensions

or the creation of subway systems (Chen and Whalley, 2012; Gendron-Carrier et al., 2022).

In contrast, the effects of different pricing schemes for public transport have hardly been

studied except for one analysis about price increases (Yang and Tang, 2018). Another way

to reduce air pollution, other than acting directly on the public transportation system, is

to improve congestion levels (Anderson, 2014; Bauernschuster et al., 2017). The reason why

highly congested streets lead to poorer air quality is stop-and-go driving, which triggers

the excess consumption of fuel and thereby additionally increases Carbon dioxide (CO2)

emissions (Treiber et al., 2008). The reduction of congestion moreover bears positive effects

for other outcomes like accidents and improved travel times (Green et al., 2016). Time spent

in traffic jams is significant, especially in cities. In London, for example, the average motorist

spent almost 150 extra hours on the roads due to congestion in the year 2021 (INRIX, 2021).

Due to such economic costs and the detrimental effects on the environment, congestion is

an interesting outcome to consider on its own.

While public transportation networks and their effects have been extensively analysed, there

is hardly any evidence on the effects of improvements for cyclists. Among the few exceptions

are Hamilton and Wichman (2018), who show that the provision of bicycle sharing improves

congestion within cities. Regarding road safety, Li et al. (2017) find that cycle superhighways

decrease per-cyclist accidents. However, scientific research on bicycle infrastructure and its

effects is still in its infancy.

Contribution and outline

This dissertation is comprised of four main chapters, which are distinctive, self-contained

studies. Each of them uses a variety of methodological tools to empirically assess the respect-

ive research question. Apart from the individual chapter’s specific contribution, which will

be detailed below, the work generally adds to topics of urban environmental problems and

policy interventions in the transportation sector in three fundamental ways: Firstly, it con-

tains the first peer-reviewed publication that causally quantifies the influence of population



Chapter 1. Introduction 5

Table 1.1: Overview of Chapters

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Title Population

density and air
quality

Urban pollution:
A global
perspective

Ticket to
paradise? The
effect of a public
transport
subsidy on air
quality

The causal
effect of cycling
infrastructure
on traffic and
accidents:
Evidence from
pop-up bike
lanes in Berlin

Co-Author(s) Rainald Borck Rainald Borck Niklas Gohl
Primary
outcome(s)

Air pollution Air pollution Air pollution Traffic speed &
volume,
accidents

Geographical
focus

Germany World Germany Berlin

Data Ground-level air
pollution,
weather,
administrative
regional
information

Satellite &
administrative
measures: air
pollution,
weather,
economic,
agricultural &
trade data

Linked data
from various
sources:
Ground-level air
quality, gasoline
prices, weather

Measurements
of traffic volume
& speed,
accidents,
construction
sites, speed
limit changes

Methodology OLS, IV, Long-
differences,
LPM & Probit
models

Descriptives,
Within-country
estimates, IV,
Spatial first
differences

Difference-in-
Differences

Two-way fixed
effects, event
study design,
synthetic
control groups

density and agglomeration size on air quality and then extends this knowledge to a global

scale. Secondly, using a quasi-experimental approach, it fills a research gap by assessing the

effect of a large-scale price reduction for public transport on air quality. Thirdly, it contains

novel empirical evidence about the effect of new bike lanes that replace an existing car lane

regarding several aspects of road dynamics. Table 1.1 provides a stylized overview about

the key facts of analyses on the individual chapters.

In the following, I will describe content and contribution of each individual chapter in more

detail.
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Chapter 2 - Population density and urban air quality Despite the fact that air

pollution is a serious problem in many cities, the actual effect of population density and ag-

glomeration size on air quality had not been causally quantified. There are few publications

in fields other than economics that have established a link between urban agglomerations

and air pollution (Gudipudi et al., 2016; Oliveira et al., 2014). In this chapter (co-authored

with Rainald Borck), we aim to fill this gap by estimating the effect of population density

on ground-level pollution, more precisely on Nitrogen Dioxide (NO2), Particulate matters

with aerodynamic diameter of 10 micrometer or less (PM10), Particulate matters with aero-

dynamic diameter of 2.5 micrometer or less (PM2.5), Ozone (O3), and an Air Quality In-

dex (AQI), which is an aggregate measure subsuming different pollutants that is standard

in the literature.

Theoretically, the effect of density may affect pollution in two directions. On the one hand,

more people produce more emissions due to commuting and housing. On the other hand,

densely populated areas potentially benefit from a countervailing effect as densely built-up

houses are more energy efficient than stand-alone houses. In addition, commutes to work in

cities may be shorter and there are more alternative modes of commuting such as bicycles

or subways.

In order to identify the effect, we use German panel data spanning from 2002 to 2015, and

resort to a variety of methodological approaches. Firstly, we run Ordinary Least Squares

(OLS) estimations, which are, however, likely to be biased e.g. due to omitted variable bias

or reverse causality. Thus, in a second step we estimate long difference and fixed effects

models, which allows to control for unobserved heterogeneity that is constant over time.

Thirdly, we use an Instrumental Variable (IV) approach, accounting for endogeneity caused

by reverse causality as well as unobserved time-varying determinants affecting emissions

and density jointly, both of which cannot be solved by the fixed effects approach. Similar to

Combes et al. (2010), we use soil quality as well as historical population data as instruments.

In various robustness checks, we confirm the validity of our main results. We supplement the

paper by testing whether densely populated areas have more days with extreme pollutant

concentrations as defined by the World Health Organization (WHO), which tend to pose

elevated risks on health. In order to do so, we use a Linear Probability Model (LPM) as

well as Probit regressions.
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Our preferred estimates stem from IV regressions and suggest an increase of pollution with

population density with an elasticity of about 0.12 as measured for the AQI. This approx-

imately corresponds to the average of the elasticities estimated for the single pollutants and

implies that a one standard deviation increase of population density affects the AQI to in-

crease by about 5%. Moreover, agglomerated areas suffer significantly more from extreme

values above WHO thresholds than less densely populated locations. The empirical results

are in line with our theoretical model, which is an extension of the monocentric city model.

Chapter 3 - Urban pollution: A global perspective The aim of the second chapter

(co-authored with Rainald Borck) is to enhance the knowledge from Chapter 2 by analysing

the effect of agglomeration size and population density on air pollution exposure using a

global data set. Consequently, it provides a more holistic view and additionally circumvents

problems that may arise when analysing single countries, like institutional peculiarities.

The data stems from a large variety of sources including satellite measurements, privately

supplied information, and administrative authorities. The study contributes to a small, yet

growing literature on questions surrounding agglomerations and air pollution worldwide.

One of the main objectives is to highlight heterogeneities between countries. Thus, we

want to know for instance which country characteristics influence the gradient between

population measures and air quality. This is important, since the relationship between air

quality and population patterns is likely to hinge on geographic or institutional factors, like

environmental policies, that vary by region. One focus thereby lies on differences between

city forms, which may be sprawling or densely built.

While we conduct instrumental variable regressions in order to justify that the outcomes

resemble those from ordinary least squares, the main analyses use predominantly the latter

in order to make use of the entire dataset. Within country regressions provide us with

population-pollution gradients for almost all countries worldwide. Thereby, we are able to

differentiate between an entire country using gridded data spanning the whole world and

city differences using a global dataset of functional urban areas.

We document that about 75 percent of the world population faces particulate matter concen-

trations above WHO thresholds that are considered harmful to health, the largest proportion
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of whom live in cities. We then estimate the average pollution-population elasticity to be

about 0.03 for PM2.5 and 0.16 for NO2. In combination with Chapter 2 this means that the

gradient in Germany lies slightly above the worldwide average. Interestingly, we find that

on a global scale, the effects are driven more by agglomeration size than population density.

Moreover, the gradient is determined by larger commuting zones rather than by the popula-

tion in urban centres. By means of a counterfactual simulation, we show that redistributing

the population among cities of equal size in each country can lead to substantially lower

pollution exposure and, consequently, lower health care costs for citizens.

Chapter 4 - Ticket to paradise? The effect of a public transport subsidy on air

quality Chapter 4 is joint work with Niklas Gohl. We identify the causal effect of a large

scale price subsidy for public means of transportation on air quality. More precisely, we use

the implementation of the 9-Euro-Ticket (9ET), which reduced monthly public transport

prices by up to 90% in Germany as a quasi-natural experiment in order to causally estimate

its effects on an Air Quality Index (AQI) as well as on the pollutants NO2, PM10 and

PM2.5 separately. To the best of our knowledge, this is the first study to estimate the

effect of a substantial ticket price reduction in the public transport sector on air quality.

Thereby, we contribute to the knowledge about external effects of traffic and how these can be

addressed, especially in spatially constrained cities that do now allow for large infrastructural

interventions.

We employ a Difference-in-Differences (DiD) approach to estimate the effects of this large

and national-wide price adaptation on air quality. Our treatment group is the month of

June, which was treated in the year 2022 unlike in preceding years. The control group is

provided by the month May, which shares similar characteristics compared to June. Thus,

the implicit assumption is that developments in air quality between May and June of 2022

should have been the same compared to prior years in the absence of treatment.

We find an improvement in air quality, as suggested by the AQI, by about eight percent.

The effect is largest in urban areas, during working days, and where the provision of public

transport is well established. We additionally estimate that the effect size slightly falls over

time and that air pollution increases again after the end of the policy measure in September,

2022. Based on our estimates and using prior findings about the relation between air quality
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and health, we document that a reduced fare price for public transport is likely to improve

health-related outcomes. Monetizing those leads us to conclude that they have the potential

to amortise the actual costs of the intervention.

Chapter 5 - The causal effect of cycling infrastructure on traffic and accidents:

Evidence from pop-up bike lanes in Berlin. In the last chapter of the dissertation, I

analyse the effects of new cycling infrastructure on congestion, traffic volume, and accidents.

New bike lanes have become a measure by local authorities all around the globe (e.g. in New

York, London, Bogotá, Paris and many others) to make cities more attractive for cyclists and

non-motorized use. Despite this global trend, analysing the effects of such infrastructural

projects is still on the fringe of academic research.

Since cities are limited in space, building new cycling infrastructure often requires the trans-

formation of street lanes that were formerly used by cars. Such an intervention may then

affect road dynamics and lead to unintended consequences. This chapter considers conges-

tion and accidents as outcomes due to their large negative impact on city life. Congestion

leads to time losses for commuters, wasted fuel consumption and as a consequence an in-

crease in CO2 emissions and air pollution (Knittel et al., 2016; Schrank et al., 2015; Treiber

et al., 2008; Vickrey, 1969). Thus, even though air quality is not separately considered in

this study, the analysed outcomes are closely related to it. Additionally, accidents lead to

substantial external costs (Edlin and Karaca-Mandic, 2006).

In order to causally assess the effects of interest, I apply variations of the classical difference-

in-differences approach. The main outcomes rely on two-way fixed effect estimations, which

condense the main effects into single, easy to interpret estimates and allow for the utiliza-

tion of the most granular data available. These are supplemented by an event study design

in order to track heterogeneities in the outcomes and to verify the common trend assump-

tion. Synthetic control group estimations provide robustness tests whenever applicable. For

identification, I use Pop-Up Bike Lanes (PUBLs), which were installed unexpectedly and

allocated quasi-randomly. Due to their easy-to-implement and low-cost nature, PUBLs are

especially interesting to look at, since they may be considered a viable way of constructing

new cycling infrastructure in the future.
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The results suggest an increase of congestion, as measured by a decrease of average vehicle

speed, by 8-12 percent. In peak traffic hours, the effect is even larger. Since vehicle volumes

are not significantly different between treatment and control streets, it is likely that the

status quo bias causes motorists to stick to their accustomed routes. In combination with

fewer space for vehicles, this leads to more congestion. Regarding absolute accidents, I do not

find any effect, independent from cars or bikes being involved. However, different research

suggests an increase of cycling caused by PUBLs (Kraus and Koch, 2021), which would mean

an improvement of per-cyclist accident rates. Overall, I find that cycling infrastructure that

replaces existing car lanes does not come without costs. Nevertheless, in perspective they

seem to be moderate.



Chapter 2

Population density and urban air

quality1

Abstract

We use panel data from Germany to analyse the effect of population density on urban air

pollution (nitrogen oxides, particulate matter, ozone, and an aggregate index for bad air

quality [AQI]). To address unobserved heterogeneity and omitted variables, we present long

difference/fixed effects and instrumental variables estimates, using historical population and

soil quality as instruments. Using our preferred estimates, we find that the concentration

increases with density for NO2 with an elasticity of 0.25 and particulate matter with elasticity

of 0.08. The O3 concentration decreases with density with an elasticity of −0.14. The AQI

increases with density, with an elasticity of 0.11−0.13. We also present a variety of robustness

tests. Overall, the paper shows that higher population density worsens local air quality.

1Co-authored with Rainald Borck. This paper has been published in a slightly different version as
“Population density and urban air quality.” Regional Science and Urban Economics, 86, 103596.

11
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2.1 Introduction

Are bigger and more densely populated cities better or worse places to live? Over the last

centuries, the world has become more and more urbanized, as agglomeration benefits have

drawn households to bigger cities. The urban economics literature on these agglomeration

benefits is huge. Yet, in order to predict equilibrium and optimal sizes of cities, robust

evidence is needed on the costs as well as the benefits of agglomeration, and much less seems

to be known about the costs.2 Kahn (2010) documents that in the United States (US),

larger cities have longer commuting times, higher pollution levels and higher crime rates.

We follow this line of research and analyse a particular element of the cost of agglomeration,

namely the impact of population density on air pollution. As we document below, there is

hardly any evidence that credibly estimates the causal effect of density on pollution. We

aim to fill this gap.

Air pollution is an acute phenomenon in many cities worldwide. Megacities in developing

countries suffer from particularly high pollution levels. But even in developed countries,

where urban air pollution has fallen over the last decades, high pollution levels keep occur-

ring. Cities in Germany and other European Union countries have been subject to a variety

of legal proceedings against transgressions of pollution thresholds. Therefore, the relation

between urban structure and pollution concentration is an essential policy issue.

Air quality is an important element for life in the city. Polluted air causes severe health

problems, most notably heart diseases, strokes, chronic obstructive pulmonary disease, lung

cancer, and respiratory infections. According to the World Health Organization (WHO),

air pollution caused 600,000 premature deaths in Europe alone in 2010 and costs European

economies US$ 1.575 trillion per year (World Health Organization, 2015). The European

Environment Agency estimates that in Germany, Particulate matters with aerodynamic

diameter of 2.5 micrometer or less (PM2.5) caused 66,000 premature deaths in 2013.3 Such

numbers illustrate the potential economic benefits of using policies to reduce air pollution.

The first best policy would be to internalize pollution externalities, e.g. through Pigouvian

taxes or pollution licenses. In the absence of first-best prices, the effect of urban structure

on pollution is obviously relevant to social welfare.

2Ahlfeldt and Pietrostefani (2019) synthesize research on the benefits and costs of population density.
3See https://www.eea.europa.eu/themes/air/country-fact-sheets/germany.

https://www.eea.europa.eu/themes/air/country-fact-sheets/germany
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The pollutants we study are produced in a variety of industrial and non-industrial activities.

Nitrogen oxides are produced by various combustion processes, predominantly by traffic

with a share of about 38%. Other sources are agriculture, as well as power generation plants

and different industries. Particulate matter is also emitted by various industrial processes

as well as the combustion of fossil fuels for heating or power generation.4 In addition,

particulates arise from the dispersion of dust on the streets and tire wear of cars. Ground

level ozone is created by chemical reactions between oxygen and Nitrogen Oxides (NOX)

(emitted for instance by cars) as well as Volatile Organic Compounds (VOC)5. Human

activity is therefore the major source of bad air quality.

Adverse health effects are the main reason to worry about pollutant exposure (World Health

Organization, 2003). For particulate matter, all levels of exposure may lead to negative

health effects, but long-term threshold levels of 20 (PM10) and 10 (PM2.5) Microgram per

cubic meter (µg/m3) were set by the WHO in order to highlight concentrations, that are

particularly harmful. The resulting diseases are mostly related to the respiratory tract and

lung.6 While for Nitrogen Dioxide (NO2) older studies focus primarily on inflicted health

impacts in animals (World Health Organization, 2006), more recent ones also find significant

effects in humans (Costa et al., 2014). Nitrogen dioxide is moreover an important precursor

for several other pollutants including Ozone (O3), which have been shown to negatively

affect health (World Health Organization, 2006). Ground-level ozone is linked to breathing

problems, asthma, reduced lung function and respiratory diseases (Mücke, 2014).

The effect of city size or population density on air quality has only recently become the

subject of research in economics and other disciplines, and the findings have partly been

contradictory (see the next section). In addition, much of the empirical literature uses cross-

sectional data, sometimes from several countries, which thwarts the causal interpretation of

estimated coefficients. In this paper, we estimate the effect of population density on ground-

level pollution (NO2, PM10, PM2.5, O3, and an air quality index – [AQI]) for German cities,

using rich panel data from 2002 to 2015. We focus on these four pollutants for several reasons.

4There are also natural sources such as volcanoes, dust storms or wildfires.
5These are produced for instance in paints or in gasoline exhaust fumes, but are also emitted naturally

by trees in forests.
6See e.g. Pope III and Dockery (2006) for a summary of the health effects of particulate matter. For

one among many recent studies, see Lagravinese et al. (2014).
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As discussed above, particulate matter and ozone have been identified to be particularly

damaging to human health. Nitrogen dioxide has been the source of ongoing discussions

about driving bans in Germany and other European countries.7 It is interesting to study

the effect of population density on these pollutants for two reasons: first, they may affect

health differently (see above), and second, they may be differently affected by population

density, which is indeed what we find (see below). Since in addition to individual pollutants,

city residents and policy makers will be interested in overall air quality, we also study the

effect of density on the aggregate AQI, which is also an indicator of local health risk from

pollution (Van den Elshout et al., 2012).

We start by presenting Ordinary Least Squares (OLS) estimates. However, these may be

biased due to omitted variables or reverse causality. Consequently, we additionally estim-

ate Long Differences (LD) (and Fixed Effects (FE)) regressions to control for unobserved

heterogeneity that affects density and pollution. Lastly, we run Instrumental Variable (IV)

regressions using historical population measures as well as soil quality as instruments for

current population density (see Combes et al., 2010). According to our preferred estimates

from the IV regressions, population density increases NO2 and PM10 concentrations with

elasticities of 0.25 for NO2 and 0.08 for PM10. The effect of density on smaller particu-

lates (PM2.5) is less precisely estimated, which is due to the more recent and less extensive

measuring net. However, if we consider PM2.5 measured by satellite data, we find a density

elasticity of 0.08 for these smaller particulates as well. For O3, we find a negative density

effect with an elasticity of -0.14.8 The AQI index for bad air quality increases with dens-

ity, with an elasticity of 0.11 for background and 0.13 for traffic stations. In summary, we

find that population density worsens air quality in German cities. We perform a variety of

robustness checks, which confirm our main findings.

The rest of the paper is structured as follows. The next section reviews the related literature.

Section 2.3 presents some theoretical considerations on the link between population density

and pollution concentration. Section 2.4 presents the data and Section 2.5 the estimation

7Other pollutants like Sulphur Dioxide (SO2) are associated primarily with industrial production and
their importance has subsided over the last decades. For most other pollutants, there is no developed
measuring system.

8While NO2 is a chemical precursor of O3, the preconditions for ozone formation are more favourable
outside of cities, see Footnote 43 below. This explains why we find that denser cities have higher NO2 but
lower O3 concentrations.
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methods. Our regression results are shown in Section 2.6, and the last section concludes.

2.2 Related literature

We contribute to the growing literature that examines the interaction of city structure and

environmental pollution. On the theoretical side, Borck and Pflüger (2019) analyse the

channels through which population size affects pollution. In general, pollution may increase

or decrease with population size (see also the model in the next section). Larson and Yezer

(2015) simulate the implications of city size and density for energy use. They find that

per-capita energy use falls when population density increases as a consequence of urban

amenities like greenbelts or relaxed building height limits.9

On the empirical side, several recent contributions have looked at the relation between city

size or density and pollution. Some papers have looked at household energy consumption

and mostly found that residents of denser cities consume less energy per capita (Glaeser and

Kahn, 2010; de Thé et al., 2021). Potential reasons are that residents of densely populated

cities may consume less fuel due to the availability of public transport systems and possibly

shorter commutes. Reduced residential energy consumption may be attributed to smaller

dwellings and more energy-efficient high-rise apartment buildings. Indeed, per capita fuel

consumption and auto-mobile utilization have been found to be significantly lower in more

densely populated cities due to the availability of public transport and shorter commutes

to work on average (Newman and Kenworthy, 1989; Karathodorou et al., 2010). Research

predominantly analysing the role of public transport shows that its availability improves air

quality (Bauernschuster et al., 2017; Borck, 2019).

Looking at global rather than local emissions, several studies have examined the relation

between city size and CO2 emissions with conflicting results, e.g. Gudipudi et al. (2016) and

Oliveira et al. (2014). Both of these papers use cross-sectional data. Borck and Tabuchi

(2019) use panel data from US metropolitan areas. They find that per capita CO2 emissions

decrease with city size.

Another set of papers examines the effect of population size and other explanatory factors

9For papers that study population density and pollution in a welfare maximization framework, see Borck
and Brueckner (2018) and Schindler et al. (2017).



16 2.2. Related literature

on air quality. Population size has been found to be positively correlated with pollution for

particulates (Glaeser, 1998) and NOX (Lamsal et al., 2013; Sarzynski, 2012). Population

density, however, has been found to be negatively correlated with NOX (Sarzynski, 2012;

Ewing et al., 2003; Hilber and Palmer, 2014) and PM10 (Hilber and Palmer, 2014). On the

contrary, Ahlfeldt and Pietrostefani (2019) and Carozzi and Roth (2020) found a positive

effect of population density on particulate (PM2.5) concentration with an elasticity of around

0.13. These papers use different samples and methods, but with the exception of Hilber and

Palmer (2014) and Carozzi and Roth (2020), all are based on cross-sectional OLS estimates.

To our knowledge, the only two papers other than ours that seriously tackle causality are

the unpublished paper by Carozzi and Roth (2020) and the now defunct working paper by

Hilber and Palmer (2014). While Carozzi and Roth (2020) use IV estimates with geological

instruments and Fixed Effects (FE), Hilber and Palmer (2014) only use FE regressions. FE

estimations, however, may be biased if there are time varying omitted variables that affect

both density and pollution. The only paper besides ours that also uses instrumental vari-

ables is Carozzi and Roth (2020), who study the effect of population density on particulate

pollution in US cities. The instruments they use – aquifers, earthquake risk, and soil drain-

age capacity – differ slightly from ours. Moreover, their main analysis is based on satellite

data while ours is based on local monitor readings. The latter presumably measure pollution

more accurately and also exist for a variety of other pollutants besides particulates. Still,

the placing of monitors may be non-random. This could bias the estimates, which we try

to account for in our estimation procedure.10 Even if the method is similar, the two pa-

pers present estimates from the US and Germany, two countries with different city systems,

energy use and pollution patterns.11 Finally, our paper takes into account more pollutants

than only PM2.5 (namely PM10, NO2, O3 and overall air quality measured by an index), so

the findings of the studies can be viewed as complementary.

10To mitigate the latter problem, we will include some station characteristics, such as distance to city
centre, station type and distance to main roads in our regressions (see below). Interestingly, Carozzi and
Roth (2020) also use monitor reading data as a sensitivity check and find a slightly reduced effect of density
on pollution. We also rerun our main regressions using satellite data and find results that are similar to
those obtained with the monitor data, see Section 2.6.2.

11European and American cities differ along a number of dimensions. For historical reasons and different
policies (for instance, planning policies, energy taxation, public transport investment), city structure, pop-
ulation density, commuting behaviour including distances and mode shares, housing patterns and energy
usage all differ between the US and Europe (Nivola, 1999; Gordon and Cox, 2012). Therefore, whether and
how density affects energy use and pollution differently is an open question.
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In summary, we think that many existing contributions to the literature have only limited

value in identifying causal effects of population on pollution. In fact, in a survey of the

economics of density, Ahlfeldt and Pietrostefani (2019) argue that pollution is one of the

areas where more evidence on the effects of density is needed.

2.3 Theoretical considerations

In this section, we present results from a simple urban economic model of city structure

and pollution, building on Borck and Brueckner (2018), Borck and Pflüger (2019), Borck

and Tabuchi (2019) and Larson and Yezer (2015). We combine central aspects from these

models, and extend them insofar as here we focus on pollutant concentration instead of

emissions. More details are in Appendix 2.A. Consider a circular open monocentric city

with N workers who commute to the Central Business District (CBD) for work. Households

have utility v(c, q,P) over consumption, c, square meters of housing floor space, q, and

pollution concentration P (see below). A household who lives at x km from the CBD incurs

commuting costs tx and pays land rent p(x). Mobility ensures that all households attain the

same utility level throughout the city.

Housing is produced by profit maximizing developers using capital and land under perfect

competition. They pay land rent r(x) at distance x and an invariant price i per unit of

capital. In equilibrium, land rent at the city border, r(x̄) must equal the opportunity cost

of land rA. Let γ be the share of land in the city that is available for housing development

at each distance x. We will use this parameter to induce a change in population density: as

more land is available for housing, developers build more housing at each distance from the

CBD, which leads to increasing densities.12

Let u be the outside utility residents can obtain in the rest of the economy. Then, population

in the city adjusts through migration such that city residents obtain the same utility u

everywhere. This canonical model produces a city where in the city centre buildings are tall,

dwellings small and population density high.

We assume that emissions equal the sum of emissions from commuting and residential en-

12More precisely, the increased availability of land leads to buildings that are lower, but since more space
is available for housing, more will be built in total at each distance from the CBD.
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ergy.13 Commuting emissions are assumed to be proportional to the sum of total commuting

distances for all households, weighted by the emissions intensity of commuting; likewise,

residential emissions are assumed proportional to total residential energy demand (itself as-

sumed proportional to housing floor space), weighted by the emissions intensity of energy

use. Pollution concentration in a city is the sum of total emissions divided by land area.14

Suppose now that we increase γ, the share of land available for housing. For instance, gov-

ernment might use zoning policies to increase the floor-area-ratio. As a result, more housing

will be built and population density increases. Since increased housing supply reduces rents,

residents’ utility would rise, which induces in-migration from the outside economy to restore

utility to the reservation level u. In the new equilibrium, the city boundary decreases, as

in-migration is not strong enough to offset the increased housing supply. Since the city

population has increased, its average density also increases. See Appendix 2.A for details.

What happens to pollution concentration? Total emissions rise, as more housing is built

which increases residential energy use. Moreover, since there are more residents, aggregate

commuting rises due to in-migration. In sum, aggregate emissions increase. Furthermore,

since the city’s land area decreases, pollution concentration increases. Hence, the model

predicts that cities with higher population density will have a higher pollutant concentration.

However, this model ignores some possible countervailing forces. First, due to their higher

density, bigger cities tend to have a more extensive supply of public transit due to economies

of scale and density. Since transit typically produces lower emissions per person kilometre

than automobiles, this would tend to decrease traffic emissions, all else equal (Bauernschuster

et al., 2017; Borck, 2019). In this vein, de Thé et al. (2021) find that denser cities have

better transit networks and lower car-related emissions. Second, in denser cities households

especially in the city centre tend to live in high-rise buildings that are more energy efficient

than the detached single family homes that dominate in sparsely populated cities (see Borck

and Brueckner, 2018). In Appendix 2.A, we show, however, that while including these two

forces in a stylized way attenuates the density-pollution relation, it does stay positive for

13Borck and Pflüger (2019) in addition consider emissions from industrial and agricultural production,
and intercity goods transport. Note also that we abstract from congestion, see e.g. Larson and Yezer (2015).

14This assumption is for simplicity. In reality, how emissions diffuse over space and time is obviously a
more complicated process.
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realistic parameter values.15

In summary, we predict that, unless energy efficiency or public transit shares increase very

strongly with density, higher population density should be associated with higher pollution

concentration.

The model also highlights some issues in the estimation of the relation between pollution

and density. There may be unobserved shifters of density that could be correlated with

pollution. For instance, cities might have differing land use and environmental policies. If

we cannot observe these policies and they are correlated with density, the estimation would

be biased. Secondly, density is endogenous. As the model shows, density reacts to changes

in exogenous parameters, such as agricultural land rent, but also to shocks to pollution

concentration, which affects residents’ utility and therefore leads to migration into or out of

the city. We will address these issues in our estimation below.

The empirical literature has – largely descriptively – shown positive as well as negative cor-

relations between density and pollution. To shed more light on this question, we empirically

examine the relation between density and pollution for a panel of German communities in

the next sections.

2.4 Data

We use administrative panel data from Germany for the period 2002–2015. While we have

hourly data collected by monitoring stations for our pollutants of interest in Germany, the

regional data we use, in particular population density, is available on a yearly basis for the

roughly 400 German districts (Landkreise).

2.4.1 Emission data

We obtained hourly emission data from the Federal Environmental Agency (FEA) (Umwelt-

bundesamt) for the years 2002–2015. This data is collected via a network of measurement

15In particular, in our parametrization, we assume that both commuting and residential emissions are
constant elasticity functions of average density. As long as these elasticities are not lower than −1, we find
that pollution increases with density. In their survey, Ahlfeldt and Pietrostefani (2019) suggest values of
−0.07 for both.
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stations throughout Germany for different pollutants.16 Measurement stations are special

monitors that lie either at streets and transport axes and measure pollution caused mainly

by vehicles (traffic stations), or are dispersed throughout cities to record the overall level of

city pollution at representative places (background stations). There are also stations close

to industrial sites (industrial stations), but these are less numerous than traffic and back-

ground stations. The FEA classifies the areas in which the stations are located into rural,

urban and suburban areas, which we explicitly control for in our analysis. Pollutants taken

into account in this paper are Nitrogen Dioxide (NO2), particulate matter with diameter

less than 10 µg/m3 (PM10), particulates with diameter of less than 2.5 µg/m3 (PM2.5), and

ozone (O3). We also follow common practice and construct an Air Quality Index (AQI) from

the single pollutant concentrations as described in more detail below.

The availability of average hourly emissions enables us to control for differences in emission

patterns, for example due to differences between peak and off-peak periods and workdays

versus weekends. We account for such temporal heterogeneities by including indicator vari-

ables for each day of week and each hour of day in the regressions. Furthermore, hourly

emission data can be matched to weather information in more detail than lower frequency

data, so we are better able to control for weather effects on emissions. The specific match-

ing approach and the importance of taking into account weather variables are explained in

Subsection 2.4.2 and in Appendix 2.C.

We have an unbalanced panel of stations and keep only stations with more than two years of

observations such that we can apply long difference and fixed effects estimations.17 In order

to rule out the possibility that results are driven by seasonal forces that differently affect

stations, we add a month dummy to our set of control variables.

We furthermore delete outliers from the sample. These are particulate matter values above

500 µg/m3. Such high concentrations only occur if there is a large fire or another idiosyn-

cratic source of pollution (for instance New Year’s eve fireworks).

16Below, we also compare our main outcomes to those with pollution measures obtained from satellite
data. See Section 2.6.2 for the results and Appendix 2.C for a description of the satellite data.

17We repeated our OLS and IV regressions without this restriction, but results were not affected.
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Air pollution thresholds. In addition to average pollution concentration levels, we will

also look at instances of transgressions of official thresholds.

Thresholds set by the European Union (EU) have entered into force in 2005 (PM10) and 2010

(NO2). Global guidelines by the World Health Organization (WHO) were updated in 2005.18

Threshold values and their transgressions may be of particular interest, as they are based on

evidence of the health effects of pollution. If health related problems increase non-linearly

after the threshold is crossed, analysing these transgressions is of particular interest. Even

if there are no non-linear health effects, there is a public interest in complying with them,

since official bodies can be sued if the limits are exceeded. This has happened in the recent

past in Germany and other EU countries.19

The guideline values for pollutant concentrations published by the WHO are 20 µg/m3 for

the annual mean concentration of PM10, and 50 µg/m3 for the 24-hour mean concentration.

PM2.5 is more aggressive to human health, so the threshold values are lower. The WHO

recommends the annual mean pollution level to lie below 10 µg/m3 and the 24-hour mean

to be lower than 25 µg/m3. For NO2, the guidelines contain an annual mean value of 40

µg/m3 and an one-hour mean value of 200 µg/m3.20

Air quality index. We calculate the annual Air Quality Index (AQI), following Van den

Elshout et al. (2012). As is common practice, we calculated the AQI for traffic and back-

ground stations separately, as they use different sub-indices for their computations. For

traffic stations, the index is the average of the NO2 and PM10 concentrations divided by 40,

and a subindex, which takes into account the number of days where the PM10 concentration

is above 50 µg/m3.21 For background stations, the index additionally contains an ozone

18The WHO has updated the guidelines in 2021 to lower thresholds (see
https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-
lives-from-air-pollution), after the publication of our study in the Journal Regional Science and Urban
Economics. I stick to the 2005 guideline for the dissertation since over the period analysed the old thresholds
were in place.

19See e.g. https://www.right-to-clean-air.eu/recht-und-klageverfahren/deutschland/klagen-und-urteile/.
20The guidelines set by the EU are less strict but binding for its member states. The EU has published

an annual threshold of 40 µg/m3 and an 1-hour threshold of 200 µg/m3 for NO2. The latter is allowed
to be exceeded up to 18 times per year. For PM10, there is an annual threshold value of 40 µg/m3, while
the 24-hour-mean should lie below 50 µg/m3 with an allowance of 35 exceedances annually. For PM2.5

there is only an annual threshold of 25 µg/m3. For a full list of air quality standards in the EU, see
https://ec.europa.eu/environment/air/quality/standards.htm.

21The maximum number of days with average daily values above 50 µg/m3 allowed by the EU is 35 at

the moment. The value of this sub-index is log(Nr. of days+1)
log(36) . See Van den Elshout et al. (2012) for a brief

https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution
https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution
https://www.right-to-clean-air.eu/recht-und-klageverfahren/deutschland/klagen-und-urteile/
https://ec.europa.eu/environment/air/quality/standards.htm
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subindex which accounts for the number of days with an 8-hour average value greater than

or equal to 120 µg/m3.22 The higher the total AQI, the worse is the overall air quality. An

index of less than or equal to one indicates compliance with EU standards on average, while

an index above one indicates that air quality is worse on average than mandated by EU

guidelines.23

2.4.2 Weather data

Ambient concentration of emissions is affected by weather conditions. As Auffhammer et al.

(2013) argue, it is necessary to include a high amount of available weather variables in a

regression, since they are themselves correlated over time and space.24 Particulate matter

for example is literally washed away on very rainy days or blown out of the city on very

windy ones. The concentration of NO2, in contrast, depends more on temperature and sun-

light as it is decomposed into its elements more quickly by chemical processes on very hot

days. Accordingly, the formation of O3 occurs mainly on hot and sunny days in summer, as

it requires the oxygen atoms of NO2 as a crucial precursor.25 The German Meteorological

Service (Deutscher Wetterdienst (DWD)) provides data from its various weather and precip-

itation stations. We thus have hourly data on temperature, air pressure, rainfall, snowfall,

sunshine, and wind. While Auffhammer and Kellogg (2011) and Wolff (2014) control for

daily weather, we are able to match hourly weather variables with hourly emissions. The

matching of emission monitors and weather stations is described in Appendix 2.C.

2.4.3 Other control variables

We include various additional control variables in our regressions. An important determinant

of recorded pollution concentration levels is the physical location of a monitoring station.

discussion why the subindex is calculated like this.
22The subindex is calculated as #days with 8-hour average≥120

25 , because the EU target is not to exceed 25
days a year with values above 120.

23Since the AQI is an annual index by district, we do not control for station characteristics or weather
variables.

24It might be that some weather variables are themselves affected by population density, for instance, if
denser cities are hotter or more or less windy. Therefore, we also ran regressions without weather controls.
However, we do not find that weather changes our results, which is why we control for it in all presented
estimations.

25As Auffhammer and Kellogg (2011) note, ozone creation needs a certain amount of NO2 and of other
VOC. If climatic preconditions are not given, NO2 levels therefore stay high. Furthermore, at great heat,
plants are less able to absorb ozone, which increases ozone concentration in the air on very hot days.
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We are able to control for a set of station-specific factors such as the distance to the CBD,26

whether the station lies in an urban or a suburban area, the station type (traffic, background,

or industry, see Section 2.4.1), and the distance to the closest major road (Bundesstraße or

a street of similar size).27

In Germany, over the course of the past two decades, many cities introduced Low Emission

Zones (LEZ) (Umweltzonen). Those zones were established in order to lower high levels of

particulate matter by restricting access to the city to cars with particulate filters.28 Using

maps, we assign to each monitoring station an indicator for whether or not it lies in a LEZ.

Including the emissions zone indicator makes sense as policy schemes that differ between

cities affect city level pollution. For instance, Gehrsitz (2017) and Wolff (2014) found that

such badges significantly lower PM10-levels (but not other pollutants) within cities after their

introduction.

In order to control for economic drivers of pollution, we can control for district level Gross

Domestic Product (GDP), unemployment rate and average private household income within

a district. Moreover, we collected the vote share for the Green Party to capture the po-

tential sorting of ‘green’ households into cities. Another variable that we control for in the

robustness section is the area of green space in a district. Green space may affect pollution

in several ways. On the one hand, plants can absorb particles and thus mitigate pollution,

and green space may lower temperatures which can also affect pollutant concentrations; on

the other hand, plants and trees can generate VOC, which then react with NO2.
29 As a

consequence, O3 concentrations may rise, while NO2 concentrations may fall. We also have

a measure of the number of public transit users as a share of total inhabitants per year.30

Lastly, we can also control for the presence of coal-fired power stations in a district and the

distance of a monitoring station to a coal-fired power station.31 Since burning coal leads to

26Our main geographic units are districts, which often contain several cities or towns. Therefore, we define
the CBD as the centroid of the most densely populated municipality within a district. For district–free cities
(independent towns), the CBD is defined as the centroid of the city.

27To construct the distance, we use maps provided by the Federal Office of Cartography and Geodesy
(see http://www.geodatenzentrum.de/geodaten/).

28There are three different levels of LEZ: green, yellow and red with green being the most and red the
least restrictive. Thus, these zones differ in the requirements of the quality of the particle filters of cars. We
have the exact dates at which a red, yellow or green low emission zone was implemented.

29Natural sources of VOC are e.g. broadleaf trees and conifer, which produce VOC via evaporation.
30This data can be obtained on request from the German Federal Statistical Office.
31Since we do not have exact geo-coordinates of the power stations, we calculate the distance of the

http://www.geodatenzentrum.de/geodaten/
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high pollution levels, this might take out some variation that is caused by the presence of

coal mines.

Some of our potential control variables may be ‘bad controls’, since they are themselves

affected by density. We therefore choose to include such variables only in robustness checks

(see Section 2.5 below). We can also think of some of these as mediating variables through

which the effect of density works on pollution. We address this issue in more detail in

Sections 2.5 and 2.6.2.

2.4.4 Descriptives

Table 2.1: Descriptives

NO2 PM10 PM2.5 O3

Overall Stations 623 533 147 409
Background 360 290 80 340
Industrial 43 45 15 26
Traffic 220 198 52 43

Districts 269 247 109 251
Urban Districts 88 85 51 72

Labour Market Regions 128 125 77 126
Functional Urban Areas 63 61 38 53
Stations in LEZ 93 94 26 34
Whole Sample

Mean Pollution 28.42 23.20 14.83 47.24
S.D. Pollution 15.52 5.964 2.963 10.10
Mean Pop. density 2590.2 2543.6 2383.0 2249.0
S.D. Pop. density 1337.6 1325.7 1322.5 1262.2

Note: Own calculations. The table shows descriptive data for each pollutant separately. Station specific
pollution data is provided by the FEA upon request. Labour Market Regions are defined by Kosfeld and
Werner (2012) and Functional Urban Areas by (Moreno-Monroy et al., 2019). LEZ are low emission zones.
The table lists the number of all stations that were in the sample at least once between 2002 and 2015.
Pollution/population means and standard deviations are calculated for the year 2015.

Table 2.1 presents monitoring stations in our sample and how they are distributed. The

coverage of monitoring stations varies widely with NO2 being measured by the most ex-

tensive net of monitoring stations (623), while PM2.5 is measured by only 147 monitors, as

monitoring of this pollutant only started in the mid 2000s with an extending network since

monitoring station to the centroid of the closest postal code region accommodating a coal-firing power
plant. Postal code regions are relatively small administrative units with an average size of about 65 km2.
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then. The number of monitoring stations within the samples is also reflected in the number

of districts, which are our main regional unit of analysis. In Germany, there are currently

401 districts including urban districts.32

In addition to using districts, we use Labour Market Regions (LMRs)33 as defined by Kosfeld

andWerner (2012) and Functional Urban Areas (FUAs) fromMoreno-Monroy et al. (2020) to

check whether results are driven by the geographical delineation of cities. Both definitions

are metropolitan regions containing several districts with large commuting flows between

them. As the table suggests, there are many LMRs and FUAs with at least one monitoring

station for NO2, while PM2.5 stations only exist in about half of each defined area delineation.

To get a first visual impression of the pollution patterns and the way pollution is recorded,

Figure 2.1 shows annual mean concentration levels of NO2 and PM10 in 2015 and the distri-

bution of monitoring stations in each district. Analogous maps for PM2.5 and O3 are shown

in Figure 2.D.1. The small districts in the maps are mostly urban municipalities, which

are more densely populated than other parts of the country. These areas also show high

concentrations of pollution. Furthermore, the historical industrial regions in West Germany

and the automotive centre around Stuttgart show high values of PM10 and NO2. The fig-

ures reveal pollution patterns that are clearly not related to high population densities. For

instance, PM10 shows high concentration levels in less urbanized districts in East Germany.

These high levels might be caused by the proximity to coal-fired power stations in these

areas. We will control for the presence of coal fired power plants in the robustness section

of the paper.34 Another possibility is the proximity to the Polish and Czech borders, where

pollution standards are likely still lower than in Germany.35

Figure 2.2 depicts scatter plots for the four pollutants (logged mean pollution on district

level) against logged population density. The figure shows that density is positively correl-

32The German administrative system distinguishes between districts (Landkreise) and district-free cities
or urban districts (kreisfreie Städte). The latter are entities where the ‘district’ consists of a single (large)
city, while Landkreise contain several jurisdictions.

33There are 141 LMRs of which we cover up to 128 in our analyses; the regions not covered do not contain
a monitoring station for any pollutant.

34It is not immediately clear whether this variable should be included in the regressions: on the one hand,
the energy mix might itself be driven by population, so one might want to leave the presence of coal fired
power plants out. On the other hand, part of the location of these plants may be driven by the exogenous
presence of coal mines. We therefore include coal fired power plants only in the robustness section; as will
be seen, including this variable does not affect our results.

35See e.g. https://deutsch.radio.cz/streit-um-eu-grenzwerte-fuer-luftverschmutzung-8166941.

https://deutsch.radio.cz/streit-um-eu-grenzwerte-fuer-luftverschmutzung-8166941
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Figure 2.1: Monitoring stations and concentration levels in 2015 (NO2)

(a) Sample of NO2 stations
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Figure 2.1: Monitoring stations and concentration levels in 2015 (PM10)

(b) Sample of PM10 stations

Note: Own calculations. The maps show average district-level pollution concentrations in 2015 for NO2

and PM10 respectively. Pollution concentrations are relatively low in green coloured districts and relatively
high in red coloured ones. Turquoise dots represent measuring stations that are marked as “urban” stations,
black triangles lie in “suburban” districts and black squares depict “rural” stations. Grey coloured districts
do not contain measuring stations.
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Figure 2.2: Scatter plots of log(Pollution) with log(Population density) and linear fits

(a) NO2 (b) PM10

(c) PM2.5 (d) O3

(e) AQI at background stations (f) AQI at traffic stations

Note: Own calculations. The graph depicts raw correlations and a linear fit of plotting the log of district-
level mean concentrations of the respective pollutant against logged population density on district level for
the most recent year in the data, 2015.
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ated with NO2 and particulates, although for the latter there is more noise. On the other

hand, ozone concentration is negatively correlated with population density. Below, we will

analyse whether those results hold up in multivariate regressions.

2.5 Estimation

2.5.1 Basic regressions

We now turn to estimating the model. While the pollution monitor readings are hourly

data, our main variable of interest, population density, is available only annually. Therefore,

and in order to reduce computational burdens, we first regress hourly pollution on hourly

weather data, as well as time indicators. Following Auffhammer et al. (2013), the extensive

set of weather and weather-interaction variables includes the hourly level of precipitation,

sunshine, wind-speed, cloudiness, air pressure, and temperature at weather stations, as

well as quadratic terms for precipitation, temperature, and wind, and a cubic temperature

variable. We also interact temperature with wind and add hourly lags for temperature and

precipitation. We include as further controls an indicator for day of week to take into account

different patterns between days, an indicator for hour of day in order to control for special

pollution patterns throughout the day (e.g. increased traffic during rush hours), and an

indicator for the month of year for seasonal effects. We then take the residuals from this

regression and aggregate them by year and district.

We proceed with these residuals by regressing pollution outcomes on a set of control variables

using a simple OLS framework. Our first regression equation is

ln(Yidt) = β + ρ ln(Ddt) + γXidt + αt + ϵidt. (2.1)

Our dependent variable, Yidt, is the residual concentration level (for a particular pollutant)

in year t at station i in district d. Population density Ddt is available in yearly intervals at

the district level. Our main parameter of interest is then ρ, which measures the elasticity of

pollution concentration with respect to population density. Control variables X are attrib-

utes of the monitoring station like the station area (urban, suburban or rural), the distance

to the next large road, and station type (background, traffic, or industrial). Therefore, we
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explicitly control for the location of a measuring station and its type. We also control for

the distance of an emission station to the centre of the most densely populated municipality

within a district. Effectively, our measure of pollution is then the pollutant concentration at

the CBD. This should be a representative measure of city pollution. We also include year

dummies αt in order to control for business cycles and other time varying effects.

We can add economic controls at the district level like GDP, mean household income, and

the unemployment rate. We are also able to take into account whether the station lies

within an environmental zone with a red, yellow or green badge. The share of green party

voters is used as a control for the sorting of households with ‘green’ preferences into low-

or high-emission cities. There is moreover the concern that the presence of coal-fired power

plants might cause bad air quality in some regions. Therefore, we constructed an indicator

equalling one if such a power plant is located within the same district as the monitoring

station. Additionally, we have a continuous measure of the distance between a measuring

station and the closest coal-fired power plant.

In choosing whether to include control variables, we face two issues. On the one hand,

leaving important drivers out of the regression will lead to omitted variable bias. On the

other hand, some of these variables may be endogenous and therefore constitute “bad con-

trols” that should be left out of the regression. For instance, income may be affected by

density through agglomeration effects (even though the large empirical literature tends to

find modest agglomeration economies, e.g. Combes et al., 2010). This also holds for most

other potential controls. Green voting clearly may differ with a district’s urbanity and also

responds to local pollution. Coal fired power plants may be present in densely populated

districts with large energy demand. The presence of LEZ and the share of transit users are

also likely affected by population density. Therefore, we choose to present our basic regres-

sions with controls only for the urban/suburban/rural indicator, station type, distance to

major street, and distance to the CBD. As a sensitivity check, we analyse in Sec. 2.6.2 how

our results change when we successively add controls.

We cluster standard errors on the labour market region-year level in our OLS regressions.

According to Cameron and Miller (2015, p. 333), the consensus is to be conservative and

avoid bias by using “bigger and more aggregate clusters when possible, up to and including
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the point at which there is concern about having too few clusters”. When using clusters at

district-year level, significance of the results does not change. However, we prefer spatial

clustering by labour market regions as otherwise we have very few observations (monitoring

stations) within some clusters.

OLS estimates would be unbiased and consistent if population density is not correlated with

the error term, conditional on controls. However, this seems unlikely. For instance, densely

populated cities may differ from less densely populated ones in their geography, industrial

structure, or other unobserved variables that affect emissions.36 Therefore, we also estimate

Long Differences (LD) and Fixed Effects (FE) regressions of the form

∆ ln(Yidt) = ρ∆ ln(Ddt) + γ∆Xidt +∆αt +∆ϵ̃idt, (2.2)

where ∆ lnY ≡ lnYT − lnYF . We run a LD estimation where t = F represents the year

2002 and t = T is 2015. In other regressions, we include all years in the sample to estimate

FE. Our main LD regressions control for unobserved heterogeneity at the district level, but

we also consider long differences at the station level (see Appendix 2.D). In addition to the

controls described above, we again add year dummies αt to the estimation. Unlike LD, fixed

effects regressions take into account all years in the sample. However, we prefer the LD

estimator, since the yearly within variation of population density is small. Nevertheless, the

results of FE regressions differ only slightly in the size of the estimated coefficients.

Long difference estimation will be unbiased if the unobserved heterogeneity affecting density

and pollution is time invariant. However, if there are unobserved time varying factors that

affect emissions and are correlated with density changes over time, the LD estimates will be

biased. For instance, it may be that household sorting leads to large cities getting ‘greener’

over time, which could be reflected by more use of bicycles instead of cars. In this case,

density may still be correlated with the error term. Moreover, density and pollution may be

simultaneously determined. For example, households may migrate out of very polluted cities,

which leads to endogeneity of population density. Moreover, because variations in density

and pollution are relatively small within short time periods, fixed effects estimates can be

36For instance, Stuttgart, one of the most densely populated cities, lies in a valley which makes it prone
to high pollution concentrations.
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imprecise. This is why we additionally estimate Instrumental Variable (IV) regressions:

ln(Ddt) = B0 +B1Xidt +B2Zdt + ηidt (2.3)

ln(Yidt) = Γ + ρ ̂ln(Ddt) + A1Xidt + ϵ̂idt. (2.4)

In the first stage regression (2.3), density is regressed on one or more instrumental variable(s)

Z. The IV estimations will be valid if the instrument strongly predicts density but is not

correlated with the error term in the second-stage regression (2.4).

Following Combes et al. (2010), we take both historical population data and soil quality as

instruments. There is a long tradition of using historical population data, beginning with

Ciccone and Hall (1996). Our instrument for current density is the log of historical popu-

lation density from 1910.37 Historical population data are relevant, since urban population

tends to be strongly persistent over time. The exclusion restriction requires that historical

density be correlated with current emission levels only through its effect on current dens-

ity. We believe this to be the case, since pollution in the early 20th century was driven

largely by industry. Today’s urban pollution is much more driven by auto-mobile traffic,

which was close to non-existent in 1910.38 The German emperor Wilhelm II is purported

to have said around 1900: “I believe in the horse. Automobiles are no more than a transit-

ory phenomenon”.39 Furthermore, industry structures have changed dramatically over time.

Therefore, it seems unlikely that historical population patterns should directly affect current

pollution. We address this concern further below.

In addition to historical population measures, we instrument current population densities

with data on soil characteristics. Some soil types are better suited for the construction of

tall and heavy buildings for a large number of dwellings or offices. Furthermore, households

have historically been attracted to settle in areas with fertile land. Henderson et al. (2018)

37The authors would like to thank Uli Schubert from http://www.gemeindeverzeichnis.de/ for sharing his
data on population in 1910.

38See, e.g. Koh et al. (2013) and Redding and Sturm (2008) who use similar historical data for Germany.
Note that there is no consistent population data for earlier years covering all districts, so instead of using
incomplete data going further back in time we choose 1910 to have a complete IV.

39There is a dispute about the correctness of the quote. While it is referenced in
the Mercedes-Benz-Museum in Stuttgart (see https://commons.wikimedia.org/wiki/File:Mercedes-Benz-
Museum in Stuttgart, Zitat am Beginn des Rundganges.jpg), there is doubt about the historical correct-
ness (see https://falschzitate.blogspot.com/2018/01/das-auto-ist-eine-vorubergehende.html). However, the
latter source claims that the “transitory nature” of cars has demonstrably been stated as early as the 1960s.

http://www.gemeindeverzeichnis.de/gem1900/gem1900.htm?gem1900_2.htm
https://commons.wikimedia.org/wiki/File:Mercedes-Benz-Museum_in_Stuttgart,_Zitat_am_Beginn_des_Rundganges.jpg
https://commons.wikimedia.org/wiki/File:Mercedes-Benz-Museum_in_Stuttgart,_Zitat_am_Beginn_des_Rundganges.jpg
https://falschzitate.blogspot.com/2018/01/das-auto-ist-eine-vorubergehende.html
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argue that agricultural variables are the most important drivers of agglomeration. Therefore,

soil characteristics should be important determinants of historical and current population

patterns. For these variables, the exclusion restriction may be easier to justify (Combes et al.,

2010). First, geology is determined by nature and is thus independent of human economic

activity. Second, since agriculture accounts for less than 2% of current employment in

Germany40, soil characteristics should not be important drivers of current pollution levels.

We return to the issue of instrument exogeneity below and provide some additional tests in

support of it.

Soil characteristics are taken from the European Soil Database (ESDB). For the choice

of variables, we follow Combes et al. (2010) who look at French regions. We consider only

variables that tend not to be influenced by human activity and therefore should be exogenous

to it. In particular, we use soil characteristics that describe the mineralogy of the topsoil and

the subsoil as well as the dominant parent material of the soil. The dominant parent material

describes the bedrock of the soil, which is the underlying geological material. Mineralogy

captures the presence of minerals in the different layers of soil. We also include information

about the topsoil organic carbon content and the soil profile differentiation.41 Lastly, we

include the ruggedness of a district, which is a measure of the average local variance in

elevation within a district (Nunn and Puga, 2012).42 More detail on the soil data can be

found in Appendix 2.C. In all of our instrumental variable regressions we cluster standard

errors at the labour market region level. Since all our instruments are time invariant, clusters

at year level are excluded.

2.5.2 Threshold regressions

To test whether extreme values of PM10, PM2.5 or NO2 correlate with population density,

we run further regressions. We use the same basic approach as in Section 2.5.1, but now

40See e.g. https://www.destatis.de/DE/Themen/Wirtschaft/Konjunkturindikatoren/Lange-
Reihen/Arbeitsmarkt/lrerw13a.html.

41Due to the limited number of observations, we combine the high and medium categories of soil carbon
contents into one category. The categorical values of topsoil mineralogy cannot be combined, as they are
not ordinal. Thus, we replace the value which occurs only once in the dataset with a missing.

42All variables that we consider as instruments have at least one category significant at the 10-percent
level or higher in the first stage regression. Variables with no significant category (water capacity at the
topsoil and the subsoil, depth to rock, soil erodibility class, and hydrological class) are not included in the
regressions. However, including those variables does not alter the quality of the second-stage results, but
leads to the instruments getting weaker and sometimes over-identified.

https://www.destatis.de/DE/Themen/Wirtschaft/Konjunkturindikatoren/Lange-Reihen/Arbeitsmarkt/lrerw13a.html
https://www.destatis.de/DE/Themen/Wirtschaft/Konjunkturindikatoren/Lange-Reihen/Arbeitsmarkt/lrerw13a.html
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our dependent variable is a dummy indicator switching to one when the threshold value

was violated and zero otherwise. Threshold annual mean values indicate constant long-term

exposure to air pollution. However, there could also be elevated pollution concentrations

on individual days during the year, leading to serious health effects. Thus, we furthermore

examine whether densely populated areas tend to have more days with threshold violations

(24-hour means). In order to do so, we created dummy variables which equal one when

a station exceeded a predetermined number of days within a year. The outcome then is

the probability of exceeding the pollution thresholds by a certain number of days within

a year. The limit values we consider are those set by the WHO air pollution guidelines

(see Section 2.4.1), while the number of allowed threshold exceedances are defined by the

EU. The hourly NO2 threshold is allowed to be exceeded on 18 days during a year and the

PM10 threshold on 35 days. For PM2.5, there is no short-term threshold in the EU (unlike the

WHO) and thus no daily violations limit exists. In this case, we resort to the allowed number

of daily exceedances for PM10. Local authorities could try to take short-term measures to

avoid illegal threshold exceedances. Even then, however, they would still be exposed to high

pollution levels, so looking at threshold exceedances just below the limits is of interest. This

is why we examine the probability of transgressing the limit values on a set of days just

below the EU allowances (17, 14, and 9 days for NO2, 34, 29, and 24 days for PM10 and for

PM2.5).

We use Linear Probability Model (LPM) to estimate our outcomes of interest. With this

approach, we can easily apply instrumental variable regressions. The LPM does a decent job

in estimating the probabilities, as the occurrence of transgressing the threshold is relatively

dispersed over the sample. However, we also run Probit regressions to account for potential

non-linearities in the probability of transgressions (see Section 2.6.2).

2.6 Results

2.6.1 Basic results

OLS regressions. We present our basic cross-sectional OLS results in columns (1)

and (5) of Table 2.2 and Table 2.3. The tables present coefficients for our parameter of

interest, log of population density, as well as coefficients of basic controls (distance to CBD,
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distance to major street, whether the station lies in an urban or suburban area – rural is the

reference category –, and the traffic and industrial station dummy – the reference category

being background).

Table 2.2: OLS and IV regressions for NO2 and PM10

NO2 PM10

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV Density 1910 IV Soil IV 1910 & Soil OLS IV Density 1910 IV Soil IV 1910 & Soil

log(pop density) 0.280∗∗∗ 0.191∗∗∗ 0.292∗∗∗ 0.251∗∗∗ 0.0749∗∗∗ 0.104∗∗∗ 0.0662∗ 0.0787∗∗∗

(0.0141) (0.0544) (0.0600) (0.0575) (0.00691) (0.0239) (0.0366) (0.0247)
Distance to CBD -0.00321∗∗∗ -0.00477∗∗∗ -0.00299∗∗ -0.00378∗∗ 0.000947∗∗∗ 0.00115 0.000809 0.000744

(0.000447) (0.00152) (0.00139) (0.00147) (0.000297) (0.000906) (0.000937) (0.000884)
Distance to Street -0.105∗∗∗ -0.102∗∗ -0.103∗∗∗ -0.101∗∗∗ -0.0405∗∗∗ -0.0350∗ -0.0392∗∗ -0.0333∗

(0.0115) (0.0397) (0.0377) (0.0387) (0.00648) (0.0188) (0.0199) (0.0192)
Suburban 0.281∗∗∗ 0.281∗∗∗ 0.283∗∗∗ 0.279∗∗∗ 0.0761∗∗∗ 0.0702∗∗∗ 0.0782∗∗∗ 0.0728∗∗∗

(0.0169) (0.0500) (0.0501) (0.0509) (0.00948) (0.0251) (0.0263) (0.0256)
Urban 0.445∗∗∗ 0.476∗∗∗ 0.443∗∗∗ 0.458∗∗∗ 0.140∗∗∗ 0.119∗∗∗ 0.144∗∗∗ 0.129∗∗∗

(0.0216) (0.0678) (0.0693) (0.0716) (0.0108) (0.0324) (0.0330) (0.0315)
Industrial 0.0898∗∗∗ 0.0890∗∗ 0.0972∗∗∗ 0.0969∗∗∗ 0.136∗∗∗ 0.131∗∗∗ 0.139∗∗∗ 0.134∗∗∗

(0.0128) (0.0368) (0.0330) (0.0345) (0.0127) (0.0364) (0.0372) (0.0374)
Traffic 0.648∗∗∗ 0.656∗∗∗ 0.647∗∗∗ 0.652∗∗∗ 0.255∗∗∗ 0.257∗∗∗ 0.257∗∗∗ 0.260∗∗∗

(0.0124) (0.0402) (0.0385) (0.0402) (0.00672) (0.0186) (0.0182) (0.0187)
N 5575 5301 5547 5273 4648 4407 4620 4379
R2 0.755 0.751 0.754 0.754 0.474 0.463 0.476 0.468
Districts 269 269 269 269 247 247 247 247
Soil Characteristics No No Yes Yes No No Yes Yes
First-stage F-statistic − 318.5 11.79 46.72 − 383.3 10.93 48.64
Hansen p-statistic − − 0.0681 0.0657 − − 0.230 0.427

Note: The table presents OLS and IV model outcomes of regressing the respective pollutant concentration
(NO2 and PM10) on log(population density). Control variables included are: Distance of the pollutant
measurement station to the CBD, distance to a major street, weather variables [precipitation, sunshine,
wind speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour, month), aver-
age district-level GDP, average income, share of green party voters, the unemployment share, a categorical
variable for the station area classification (rural [base category], suburban, urban), station type (background
[base category], traffic, industrial), and whether the station lies within an environmental zone or not. The
instruments used are historical population from 1910, soil characteristics, and a combination of both. Stand-
ard errors in parentheses are clustered at labour market region - year (OLS) and labour market region (IV)
level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As shown by the OLS regression in column (1) of Table 2.2, the density elasticity of NO2

concentration is 0.28 and the estimate is significant at 1%. The mean value of population

density in 2015 was 2590.2 with a standard deviation of 1337.6. Thus, a one standard

deviation increase in population density within a city increases the NO2 concentration by

12.4 percent. For PM10, we find a smaller elasticity of 0.075, which is significant at 1%

(column (5) of Table 2.2). A one standard deviation increase in population density increases

the PM10 concentration by 3.2%.

For PM2.5, the estimated elasticity is 0.035 which is significant at the 5% level (column (1)

of Table 2.3). A one standard deviation increase in population density increases the PM2.5

concentration by 1.48 percent. Note that the coefficient is now lower than the corresponding



36 2.6. Results

Table 2.3: OLS and IV regressions for PM2.5 and O3

PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV Density 1910 IV Soil IV 1910 & Soil OLS IV Density 1910 IV Soil IV 1910 & Soil

log(pop density) 0.0353∗∗ 0.0820 0.0489 0.0204 -0.177∗∗∗ -0.0931∗∗∗ -0.217∗∗∗ -0.143∗∗∗

(0.0161) (0.0579) (0.0658) (0.0519) (0.00945) (0.0317) (0.0503) (0.0342)
Distance to CBD 0.00122∗ 0.00164 0.00137 0.000618 0.00230∗∗∗ 0.00354∗∗∗ 0.00172∗ 0.00279∗∗∗

(0.000651) (0.00158) (0.00166) (0.00149) (0.000315) (0.00102) (0.00102) (0.000982)
Distance to Street -0.0408∗∗ -0.0431 -0.0341 -0.0274 0.0522∗∗∗ 0.0474∗∗ 0.0533∗∗ 0.0495∗∗

(0.0172) (0.0394) (0.0421) (0.0440) (0.00727) (0.0241) (0.0246) (0.0243)
Suburban 0.124∗∗∗ 0.115∗ 0.135∗∗ 0.144∗∗ -0.139∗∗∗ -0.143∗∗∗ -0.135∗∗∗ -0.138∗∗∗

(0.0294) (0.0617) (0.0654) (0.0648) (0.0117) (0.0347) (0.0371) (0.0349)
Urban 0.161∗∗∗ 0.123∗ 0.159∗ 0.180∗∗ -0.193∗∗∗ -0.219∗∗∗ -0.180∗∗∗ -0.204∗∗∗

(0.0330) (0.0745) (0.0820) (0.0735) (0.0138) (0.0431) (0.0484) (0.0443)
Industrial 0.0619∗∗∗ 0.0659 0.0814∗∗ 0.0928∗∗ -0.0754∗∗∗ -0.0501 -0.0855∗∗∗ -0.0651∗∗

(0.0210) (0.0426) (0.0403) (0.0390) (0.0116) (0.0333) (0.0286) (0.0291)
Traffic 0.109∗∗∗ 0.109∗∗∗ 0.117∗∗∗ 0.112∗∗ -0.231∗∗∗ -0.238∗∗∗ -0.232∗∗∗ -0.238∗∗∗

(0.0173) (0.0418) (0.0423) (0.0450) (0.0164) (0.0411) (0.0380) (0.0393)
N 795 758 780 743 3776 3588 3756 3568
R2 0.254 0.227 0.256 0.239 0.445 0.426 0.440 0.440
Districts 109 109 109 109 251 251 251 251
Soil Characteristics No No Yes Yes No No Yes Yes
First-stage F-statistic − 114.5 7.909 25.12 − 385.4 12.88 47.54
Hansen p-statistic − − 0.0447 − − − 0.0124 0.00767

Note: The table presents OLS and IV model outcomes of regressing the respective pollutant concentration
(PM2.5 and O3) on log(population density). Control variables included are: Distance of the pollutant meas-
urement station to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind
speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour, month), average
district-level GDP, average income, share of green party voters, the unemployment share, a categorical vari-
able for the station area classification (rural [base category], suburban, urban), station type (background
[base category], traffic, industrial), and whether the station lies within an environmental zone or not. The
instruments used are historical population from 1910, soil characteristics, and a combination of both. Stand-
ard errors in parentheses are clustered at labour market region - year (OLS) and labour market region (IV)
level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

one for PM10. However, the net of monitoring stations is both more recent and less dense, so

the estimates for PM2.5 are much less precise. Using a z-test, we cannot reject the hypothesis

that the two coefficients are identical. Furthermore, below in the robustness section we re-

estimate the regressions using satellite measurements of pollution concentration. Since these

cover the entire country, the estimates are much more precise. Interestingly, the IV estimate

for PM2.5 with satellite data is 0.08, just like the IV estimate for PM10 using station data.

Ozone concentration is negatively correlated with population density. This is likely due to

the fact that the chemical prerequisites for ozone formation are more favourable outside large

cities.43 The density elasticity of ozone concentration is −0.18. A one standard deviation

increase in population density decreases the O3 concentration by 7.1 percent. This result is

43 This is because Nitrogen Monoxide (NO), which is contained in car exhaust fumes, reacts with ozone
to NO2. Ozone is split into O2 and NO2 such that ozone pollution in city centres is significantly lower.
Moreover, the ozone precursors are transported out of cities by wind and contribute to the formation of
ozone away from their actual sources. See https://www.umweltbundesamt.de/daten/luft/ozon-belastung#
textpart-1.

https://www.umweltbundesamt.de/daten/luft/ozon-belastung# textpart-1
https://www.umweltbundesamt.de/daten/luft/ozon-belastung# textpart-1
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interesting, as it shows that not all pollutant concentrations are higher in denser cities.

So far, we have considered the effect of population density on individual pollutants. For

city dwellers, however, total air quality, which takes into account all pollutants at once and

therefore better indicates imminent health threats, is more interesting.44 To assess overall

air quality effects of density, we resort to the AQI as described in Section 2.4.1. Results in

Table 2.4 show an AQI-density elasticity of 0.14 for both background and traffic stations in

the OLS regressions (see columns 1 and 5). A one standard deviation increase in population

density increases the AQI by 5.8 percent. This is another important finding: we have seen

above that NO2 and PMx concentrations increase, whereas ozone concentration decreases

with density. However, using a common index, we find that overall air quality decreases

with density.

Table 2.4: OLS and IV regressions for the Air quality index

Background Stations Traffic Stations

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV Density 1910 IV Soil IV 1910 & Soil OLS IV Density 1910 IV Soil IV 1910 & Soil

log(pop density) 0.135∗∗∗ 0.0694 0.224∗∗∗ 0.128∗∗∗ 0.135∗∗∗ 0.0912 0.145∗∗ 0.114∗

(0.0128) (0.0436) (0.0730) (0.0399) (0.0162) (0.0840) (0.0684) (0.0596)
Unemployment share -0.269 0.0167 -0.835 -0.388 0.394∗ 0.709 0.285 0.523

(0.187) (0.470) (0.677) (0.485) (0.236) (0.652) (0.634) (0.591)
Av. GDP 0.00360 0.0694 -0.0549 0.0265 -0.0195 0.0191 -0.0253 0.00596

(0.0145) (0.0484) (0.0572) (0.0466) (0.0187) (0.0651) (0.0595) (0.0576)
Av. Income 0.0896∗ 0.129 0.0131 0.0652 0.173∗∗∗ 0.145 0.149 0.110

(0.0524) (0.150) (0.130) (0.137) (0.0630) (0.166) (0.152) (0.162)
Green Voters -0.281∗ -0.0869 -0.745 -0.353 0.916∗∗∗ 1.091∗ 0.911 1.034∗

(0.169) (0.434) (0.608) (0.444) (0.180) (0.593) (0.554) (0.539)
N 2142 2001 2137 1996 1147 1087 1139 1079
R2 0.495 0.481 0.483 0.486 0.365 0.366 0.372 0.379
Depend. Var. log(AQ) log(AQ) log(AQ) log(AQ) log(AQ) log(AQ) log(AQ) log(AQ)
Districts 200 182 195 181 134 120 128 118
First-stage F-statistic 123.1 5.897 13.36 35.52 12.54 19.17

Note: The table presents OLS and IV model outcomes of regressing the background-station and traffic-
station Air Quality Index (AQI) on log(population density). Control variables included are: Average district-
level GDP, average income, share of green party voters, and the unemployment share. Station-specific
controls are ignored since the index is constructed using district-level averages of pollutants. The instruments
used are historical population from 1910, soil characteristics, and a combination of both. Standard errors
in parentheses are clustered at labour market region - year (OLS) and labour market region (IV) level.
Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

IV regressions. We now turn to the IV regression results. To judge the relevance of the

instruments, in Table 2.D.1 we regress population density on each of the instruments and

report the R2. Historical population density is the strongest predictor of current population

44There are several websites, such as https://www.airnow.gov/, that provide up-to-date information on
air quality in different regions and the extent to which it poses a health threat.

https://www.airnow.gov/
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density, while the strength of the explanatory power varies for the geological instruments.

For example, soil differentiation and subsoil mineralogy by themselves explain only about

1-3% of the variation in current population density, while the carbon content in the soil and

the dominant parent material explain between 15 and 28% of the variation. In our main

regressions we will additionally present F -statistics and partial R-squares in order to gauge

the instruments’ relevance.

In Table 2.E.1 we report results from regressions of population density on our instruments

individually and combined. Again, some of the geological instruments by themselves seem

weak, with low values of R2 and F -statistics. However, historical density as well as the

geological instruments combined are strong instruments.45 Therefore, our instruments are

relevant in that they explain a large share of the variation in current population density.

IV results are shown in Tables 2.2 and 2.3. As previously stated, historical density is a

stronger instrument, but the exclusion restriction for soil characteristics is easier to defend.

In the absence of a simple decision criterion, we rely in the remainder of the study on the

results obtained with both sets of instruments; however, using only one of them does not

change the interpretations dramatically in most cases.

The estimation coefficients suggest a density elasticity of 0.25 for NO2, 0.08 for PM10, and

0.02 for PM2.5, although again, the latter is imprecisely estimated. For O3, the IV estimate

is -0.14. Finally, the IV coefficient for the AQI is 0.13 for background and 0.11 for traffic

stations. Thus, a one standard deviation increase of population density increases the NO2

concentration by 11%, and the PM10 concentration by 3.3%. The O3 concentration decreases

by 5.8% for a one-standard deviation increase in density. Last, the AQI increases by 5.5%

for background stations and 4.9% for traffic stations. In general, the IV results using soil

characteristics as instruments are fairly similar to the OLS results, while there is a bit more

variation if we use the historical density instrument. In summary, it seems that the bias from

omitted variables in OLS regressions is small, a point also made by Combes et al. (2010).

The argument for the exogeneity of historical instruments is that agglomeration tends to

persist. Consequently, large and dense cities of the past tend to be large and dense today.

45The results are shown only for the sample of NO2 stations. We repeated these regressions for the
subsamples of stations covering the other pollutants, but results do not differ significantly between them.
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Moreover, if enough time has elapsed, industry structures and other unobserved factors that

might be correlated with current pollution levels should have changed sufficiently over time;

therefore, the assumption that historical density does not affect current pollution other than

through its effect on current density seems plausible. However, there remains concern that

some unmeasured historical characteristic that correlates with past density and persists over

time will influence current pollution. For instance, cities that were large industrial centres

and densely populated in the past may still contain a lot of dirty industry today.

Likewise, places with fertile soil have historically become dense settlements because they

could sustain large populations. The exclusion restriction is that these characteristics do

not affect current pollution directly. Since agriculture makes up less than two percent of

employment46 and contributes around 10% to total air pollution, this seems plausible.47

To address the concern of potentially endogenous instruments, we include two additional

tests. First, we control for historical shares of workers in industry and crafts and agriculture

in our basic IV regressions. Results are in Table 2.D.2. We control for the share of workers in

industry and crafts in the IV estimations with historical density (odd columns), and for the

share of workers in agriculture in the IV regressions with soil instruments (even columns).

We find that the coefficients on population density change only slightly, and to a lesser extent

for the historical instrument.

Second, we regress the current shares of employment in industry, agriculture, and manufac-

turing on past population density. The results are in Table 2.E.2. Interestingly, they show

that cities with high historical density contain less industrial and agricultural employment

today. Thus, it seems like over a century or so, structural change led large centres of in-

dustry to shift into services; likewise, historically dense cities today contain less agricultural

employment. It seems, therefore, that this kind of structural change renders a correlation of

historical population patterns with current pollution unlikely.

Moreover, the over-identification tests for the soil instruments and the combination of soil and

46See e.g. https://www.umweltbundesamt.de/themen/boden-landwirtschaft/umweltbelastungen-der-
landwirtschaft.

47More precisely, agriculture contributes 10% to NOX emissions, 5% to PM2.5 and 15% to PM10

emissions, see https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/quellen-der-
luftschadstoffe.

https://www.umweltbundesamt.de/themen/boden-landwirtschaft/umweltbelastungen-der-landwirtschaft
https://www.umweltbundesamt.de/themen/boden-landwirtschaft/umweltbelastungen-der-landwirtschaft
https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/quellen-der-luftschadstoffe
https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/quellen-der-luftschadstoffe
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historical ones do not seem to indicate instrument endogeneity (see the Hansen p-statistics

in Tables 2.2 and 2.3).

Fixed effects and long differences. Fixed effects regressions may be a proper response

to time invariant unobserved heterogeneity that causes cities to be more or less dense and

more or less polluted at the same time. For instance, if dense cities provide amenities which

attract ‘green’ households and these influence local environmental policies, the correlation

of density and pollution might be driven by household selection. Using fixed effects at

the district level could mitigate this selection bias. However, the variation in density and

pollution within districts over time is much lower than the between variation, so fixed effects

take out a lot of the interesting variation and the coefficient of interest is less precisely

estimated. We present long-difference estimates for the years 2002-2015 as well as district

fixed effects outcomes in Table 2.5. Fixed effects have the advantage of providing more

observations (all years between 2002 and 2015), while the within variation of density and

pollution is lower than for the long differences.

Table 2.5: Long difference and fixed effects estimations from 2002 to 2015

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
FE All years LD 2002-15 FE All years LD 2002-15 FE All years LD 2002-15 FE All years LD 2002-15

log(pop density) 0.337∗∗ 0.356∗∗ -0.0223 -0.101 0.308 0.615 0.254 0.358
(0.133) (0.178) (0.0913) (0.157) (0.228) (1.768) (0.157) (0.228)

Distance to CBD -0.00995∗∗∗ -0.00851∗∗∗ -0.00359∗∗ -0.00225 -0.000513 -0.00113 0.00500∗∗∗ 0.00254
(0.00231) (0.00268) (0.00145) (0.00233) (0.00392) (0.00590) (0.00163) (0.00232)

Suburban 0.345∗∗∗ 0.312∗∗∗ 0.0986∗∗∗ 0.0139 0.0311 0.0575 -0.153∗∗∗ -0.141∗

(0.0589) (0.0877) (0.0364) (0.0616) (0.101) (0.241) (0.0576) (0.0767)
Urban 0.574∗∗∗ 0.536∗∗∗ 0.188∗∗∗ 0.118∗ 0.127 0.168 -0.232∗∗∗ -0.248∗∗∗

(0.0488) (0.0527) (0.0392) (0.0620) (0.102) (0.222) (0.0656) (0.0798)
Industrial 0.131∗∗∗ 0.158∗∗∗ 0.127∗∗∗ 0.0474 0.0542 -0.0122 -0.0875∗ -0.0876

(0.0433) (0.0411) (0.0414) (0.0513) (0.0393) (0.0810) (0.0455) (0.0821)
Traffic 0.717∗∗∗ 0.668∗∗∗ 0.276∗∗∗ 0.262∗∗∗ 0.263∗∗∗ 0.231∗∗ -0.213∗∗∗ -0.223∗∗

(0.0337) (0.0404) (0.0151) (0.0238) (0.0337) (0.104) (0.0468) (0.0869)
N 5575 781 4648 545 795 135 3776 549
R2 0.896 0.897 0.761 0.804 0.794 0.932 0.824 0.834
Districts 269 258 247 235 109 105 251 248

Note: The table presents fixed effects estimations (uneven columns) for all years between 2002 and 2015 as
well as long difference estimations (even columns) considering only the first year (2002) and the last year
(2015) in the sample. Outcome is the respective pollutant and main parameter of interest is log(population
density). Since the composition of measuring stations in the sample may change over time, we include all
controls into the estimations. Control variables included are: Distance of the pollutant measurement station
to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness,
air pressure] and their interactions, time dummies (day of week, hour, month), average district-level GDP,
average income, share of green party voters, the unemployment share, a categorical variable for the station
area classification (rural [base category], suburban, urban), station type (background [base category], traffic,
industrial). Standard errors in parentheses are clustered at labour market region level. Statistical significance
levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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As Table 2.5 shows, the estimated coefficient on population density becomes insignificant in

all but the NO2 regressions. This may be caused by the lower precision of the estimates due

to the lower within variation of population densities. The coefficient in the NO2 regression

is 0.356 in the long difference regression, and 0.337 with district fixed effects, and both

coefficients are significant at the 5 percent level.

We also ran station fixed effects regressions, which are presented in Table 2.D.3. The mag-

nitude of the coefficient in the NO2 estimations is very similar to the one in the OLS and

IV regressions.

The NO2 results point to the important role of car traffic for air pollution in German cities,

since this pollutant is predominately emitted by motorized vehicles. The recent discussion

on threshold violations (see Section 2.6.3) and driving bans for Diesel cars underlines the

political dimension of this debate. In fact, running the long difference regressions by station

type results in a large and significant effect of density on NO2 concentration for traffic

stations only.48 This emphasizes the relevance of car traffic for NO2 pollution.

2.6.2 Additional results and robustness

In this subsection, we perform a number of robustness checks to see how sensitive the results

are to various specifications and to shed light on some interesting issues. First, we examine

how the inclusion of control variables affects the estimates. We then perform estimations

with variations in the definition of city and population density and use satellite data as

alternative pollution measurements. Finally, we discuss several potential mechanisms that

may drive our results.

Inclusion of controls. First, we check how sensitive the results are to the inclusion

of controls. On the one hand, this may give some indication of whether our results are

prone to suffer from omitted variable bias. On the other hand, we have several variables

that may themselves be endogenous, but which may serve as mediating variables through

which density affects pollution. This issue will be separately discussed below. We start with

population density and year fixed effects as the only explanatory variables and successively

add further control variables to the OLS regressions. Results are shown in Tables 2.E.3 to

48Results are not presented here.
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2.E.6. With respect to the NO2 results, we see in column (2) that adding station-specific

control variables (urban/suburban, distance to CBD, distance to major road, station type)

cuts the coefficient on population density in half. Column (3) adds an indicator for the state

(Bundesland) in order to control for state-specific policies. This reduces the coefficient size

further.49

The presence of a coal-fired power plant may be a driving force for air pollution in some

regions since the emitted pollutants may be transported over long distances (Zhou et al.,

2006). When we include an indicator for the existence of a coal-fired power plant in the

district, the coefficient remains basically unchanged (column 4 of Table 2.E.3). In column

(5) we replace the indicator variable with a measure of the distance to the closest coal-

fired power station. While the former captures whether a dirty power plant exists in the

same district as the monitoring station, a distance measure is independent of administrative

boundaries and thus may be better suited to capture the role of such power plants for

pollution. Again, however, the density coefficient is only slightly reduced.

Adding economic variables (log GDP per capita, log of average household income and share

of unemployment in a district) in column (6) lowers the coefficient a little further. The

density estimate remains relatively stable in magnitude across the range of included control

variables, and always remains highly significant. In summary, once we add a basic set of

control variables, which account for station-specific attributes, the coefficient does not change

significantly.

The picture is similar for the PM10 outcomes (Table 2.E.4). Here, in particular adding state

fixed effects reduces the density coefficient; it remains highly significant throughout all of

the specifications though.

For PM2.5 (Table 2.E.5), the density coefficient becomes insignificant as soon as we add

indicators for the presence of coal-fired power plants or when adding state fixed effects

(column 3, and 4).50 However, comparing the sample distributions in Figure 2.1 (Panel b)

49One possible reason for the reduced effect may be that Berlin and Hamburg, Germany’s two largest
cities, are also states and the coefficient captures the within-state effect. Running regressions without these
two states/cities leads to a coefficient of about 0.22 with NO2 as outcome.

50When we control for distance to the next postal code with a coal-fired plant, the coefficient remains
marginally significant.
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and in Figure 2.D.1 (Panel a), we see that the PM2.5 sample fails to cover many of the regions

that are in the PM10 and the NO2 sample. In particular, many of the densely populated

areas like Berlin, the Stuttgart metropolitan area, and parts of the metropolitan areas of

Hamburg and Munich are missing.

For O3, the picture is similar to the NO2 outcomes (Table 2.E.6): adding basic controls cuts

the coefficient in half, but it remains highly significant throughout our specifications (except

when adding state fixed effects in column 3). In contrast to the other pollutants, the density

coefficient is negative, so densely populated cities seem to suffer less from O3 pollution.

City definitions and population density measures. Our next set of results aim to

provide sensitivity checks to particular definitions we make throughout the study. We first

examine whether different spatial units, rather than districts, affect the results before turning

to alternative definitions of population density.

A common definition of a city is based on the economic relations between locations, usually

measured by commuting flows. We therefore rerun our basic regressions for LMR as defined

by Kosfeld and Werner (2012). Similar to other concepts such as Metropolitan Statistical

Areas (MSAs) or Functional Urban Areas (FUAs), LMRs are defined as collections of dis-

tricts with significant commuting flows between them. There are 141 LMRs, of which 128

contain at least one pollution monitor. Results are shown in Table 2.D.4 (the IV regressions

use historical density and soil as instruments). The results are very close to the coefficients

for districts. For PM2.5, both the OLS and IV estimates turn significant.51 Table 2.E.7 con-

tains results using municipalities (Gemeinden) as spatial unit.52 The general pattern that

emerges is that across pollutants, both the OLS and IV coefficients are smaller in absolute

size than those obtained with districts or LMRs.

In order to completely free ourselves from any unit definition, be it a city or some sort of

administrative area, we used Geographic Information System (GIS) software to create buffers

of one and of five kilometres around monitoring stations. Then, we captured population

51Additionally, we ran regressions using the definition of FUAs as described by Moreno-Monroy et al.
(2020). Results obtained with FUAs are very similar to the ones using districts, but are not presented here.

52In Germany, there are between 11.000 and 12.000 municipalities of which only a very small share
contains a pollution measuring station (366 municipalities in our NO2 sample and even less in the samples
with the other pollutants). Furthermore, number and form of municipalities changed quite substantially
over time. From 2000 until 2015, the total number was reduced from about 14.000 to about 11.000.
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density within these buffers.53 In Table 2.E.8 we see that this station specific population

density measure leads to lower estimates the smaller the buffer size. For NO2, PM10, and O3

regressions, the estimate doubles in size when increasing the buffer from 1 to 5 kilometres.

While we cannot say for sure which spatial scale is most appropriate, we think that mu-

nicipalities and similarly smaller sized buffers are not the ‘correct’ units, since taking this

approach neglects the economic density of nearby geographic units which affect pollution,

e.g. through commuting and other economic activities (such as power plants or industrial

spillovers) that produce spillover pollution. In other words, the smaller the spatial unit,

the larger will the disparity between the generation and the local exposure to pollution be.

In our view, the interpretation of linking pollution exposure to economic density is thus

probably best viewed at scales larger than the community level.

The next issue we examine is the definition of population density. So far, our measure of

interest was total district population divided by total built up area. However, some studies

have used other measures of agglomeration (see e.g. Ahlfeldt and Pietrostefani (2019) for a

discussion). We therefore rerun our basic estimations with different density measures, see

Table 2.E.9. In particular, instead of population density we now use population divided by

the entire district area (instead of built up area only), total population in the district or the

total employment per km2 (all in logs).

As is to be expected, the results differ somewhat from our main results quantitatively but

not qualitatively. Using the first alternative population density measure cuts the coefficients

in half for all pollutants. The coefficient on total population is a bit smaller than the one for

density in the case of NO2 but larger for PM10 and PM2.5. Obviously, the population size can

be very high in large districts, while the population density is low. Then, the interpretation of

the coefficient is somewhat different. Looking at employment density opens another angle on

the pollution-density relation. Focusing on population density emphasizes residential energy

use and short-distance commuting, while examining employment density rather addresses

longer-distance commuting and possible agglomeration effects on industrial pollution.

As the third row of each panel in Table 2.E.9 suggests, the coefficients are close to the

53In order to do so, we used population data gridded in 1x1 kilometre raster cells (Breidenbach and Eilers,
2018).
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ones from our baseline results, especially for NO2. The distinction between employment

and residential density should be particularly important for smaller spatial units such as

municipalities. Indeed, labour market regions are constructed by maximizing commuting

flows within the unit, so that the distinction between residential and employment density

becomes unimportant.

Between models (OLS or IV with our different instruments) the coefficients are relatively

stable for almost all of the independent variables we look at.

Heterogeneities. Another interesting question is whether the effect of density on pollu-

tion is driven by traffic or ‘background’ activities such as residential energy use or perhaps

industrial fumes that disperse over the entire city area. Table 2.E.10 presents outcomes

including an interaction of population density with the station type indicator. The dens-

ity coefficient now corresponds to the average effect of population density on pollution at

background stations; it remains positive for NO2 and particulates. Overall, we find that the

density effect on air pollution seems more pronounced at traffic and industrial stations.54

Additionally, we test whether the density effect differs between growing and shrinking cities.

Sluggish responsiveness of infrastructure and housing stock may imply that growing and

shrinking cities have different density-pollution relationships. On the one hand, the gradient

may be steeper in growing cities if the creation of new road infrastructure does not keep up

with increases in traffic, which might lead to congestion and higher pollution. On the other

hand, the effect might be stronger in shrinking cities, if infrastructure and housing stock do

not shrink in par with the population, which could imply higher energy use at given densities

compared to growing urban agglomerations. Figure 2.E.1 shows the density coefficients for

cities where population increased between 2002 and 2015 and those were it decreased. With

the exception of PM2.5, we find that (in absolute terms), the effect of density on pollution

seems to be smaller in growing than in shrinking districts.

Up to now, we have assumed the effect of density to be linear. This need not be the case,

as an increase of density might affect pollution differently depending on the level of it. For

instance, traffic congestion may only pick up if density rises so much that traffic volume

54Results for O3 (not presented here) show that the effect is not significantly different at traffic stations
compared to background stations but is significantly lower at industrial sites.
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outpaces infrastructure supply. Hence, we test for non-linear effects of density in a stylized

way. We divide the sample into five population density quantiles and test whether the

effect is different between them (assuming constant density within quantiles). Results are

shown in Figure 2.D.2. For NO2 and O3, the outcomes indicate that the effect is driven by

denser cities: pollution increases for NO2 and decreases for O3 when moving up the density

distribution. For PM10, the effect of density increases when moving from the first to the

second quantile, but stays constant thereafter; for PM2.5, there is no clear cut relationship

(as before, the estimates are more noisy than for the other pollutants).

Satellite outcomes. As a final robustness check, we rerun our regressions using satellite

data instead of monitor readings as measuring source of pollution. Satellite readings are

available for NO2 and PM2.5. These data have been used in many recent studies (e.g.,

Freeman et al., 2019; Achakulwisut et al., 2019). Compared to on-site monitor readings,

the satellite data contain pros and cons. On the one hand, they are potentially subject to

measurement error, as pollution is not directly measured but retrieved indirectly from related

physical observations (e.g. aerosol optical thickness, which is inferred from atmospheric

reflections that absorb visible and infrared light). On the other hand, the satellite data are

available as grid cells covering the entire country instead of only a subset of districts like the

monitors. The grid sizes are 0.1◦ by 0.1◦ (approximately 10 km x 10 km at the equator) for

NO2 and 0.01◦ by 0.01◦ (1 km x 1 km) for PM2.5. Related to this, monitors may be placed

endogenously in high pollution/high density locations. While these concerns should be

mitigated by our long difference and IV estimates, it is still interesting to check how monitor

and satellite based results match up. The correlation between pollution measurements by

station readings and by satellite data is 0.4 for NO2 and 0.7 for PM2.5.
55

Table 2.D.5 shows the results. Satellite based PM2.5 outcomes are very close to the main

PM10 findings based on monitor readings. They are now precisely estimated, which shows

the upside of the much more complete coverage of satellite data. For NO2, the results are

similar to the baseline, but show a somewhat larger effect of density on emissions.56

Satellite and monitor data may, however, represent different samples and thus not be directly

55More detail on the satellite data is found in Appendix 2.C.
56Carozzi and Roth (2020) also find lower estimates for the PM2.5-density elasticity using in-situ monitor

readings.
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comparable. We therefore align the satellite and the monitoring station samples. That is, we

now keep only grid cells (or districts) containing at least one in-situ monitoring station. OLS

estimates are in Table 2.E.11. It shows a significantly higher density coefficient when using

station readings rather than satellite data. For PM2.5, the difference between satellite and

station estimates is smaller and not significant. Since station-based measurements are more

accurate, we prefer estimates using station data for NO2. Regarding PM2.5 we find satellite

data to be more appropriate, since the network of measuring stations is not well developed.

Overall, the results using satellite data are broadly in line with our baseline estimates.

Discussion of mechanisms. We now turn to potential mechanisms that may be respons-

ible for our findings. Urban economic models like the one presented by Borck and Pflüger

(2019) analyse how urban pollution is driven by industrial and agricultural production, trans-

port, and residential energy use. An alternative mechanism may be the sorting of “green”

residents into cities. We therefore want to discuss what we can learn about potential chan-

nels from our analysis. One by one, we include the following variables. Firstly, we look at the

share of public transport users and car density. Secondly, we consider industrial composition.

Thirdly, we add some variables meant to measure the ‘greenness’ of cities: green space area,

an indicator for environmental zones and the share of green party voters. Lastly, we take

into account housing density. If the population density coefficient changes significantly, the

variable may be viewed as a driver of the density-pollution gradient. Results are in Tables

2.E.12–2.E.15.57

In the first two columns of Tables 2.E.12–2.E.15, we add the number of public transit users

(col. (1)) and number of cars (col. (2)) in a district as controls. Denser districts are likely

to have both more transit users and more cars (although the number of cars per capita is

lower). Intuitively, we find that NO2 and PM10 pollution is positively correlated with the

number of cars and negatively with the number of transit users. Hence, commuting by car

contributes to the positive density effect, while commuting by transit reduces it.58 For O3,

57We repeated the exercise with IV estimates, and the results are very similar to the OLS ones. These
results are not explicitly shown here.

58To get a complete picture, we would have to know how total vehicle kilometres for driving and transit
change with density, as well as the emissions intensity of the two modes. This is beyond the scope of the
paper, but we conjecture that while denser cities have a higher transit shares and lower car density, they still
have more traffic in total, which contributes to pollution even though the average commute may be cleaner
than in less densely populated cities.
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the picture is again the opposite to NO2: O3 is reduced by the number of cars and increased

by the number of transit users.

Next, we look at industry composition. It might be that dense cities are more polluted

because they are specialized in dirty industries. To investigate this mechanism, we add the

employment shares of industry types (industrial production, construction, agriculture, fin-

ancial industries, public sector, and trade) to our regressions. The sectors that are most pol-

luting are industry, construction and agriculture, whereas services and public sector should

be much less polluting. We add the share of ‘dirty’ and ‘clean’ industries in total production

separately as one block each (see cols (3) for ‘dirty’ and (4) for ‘clean’ industries). We can

extract the following: at least for NO2 and PM10, controlling for ‘dirty’ industries increases

the density coefficient, while employment in these industries should be positively correlated

with pollution. In fact, denser cities are less specialized in dirty industries and more in

relatively clean ones. So it seems that the industry composition actually causes pollution to

decrease with density. For the ‘clean’ industry shares, we find small effects on the density

coefficients, so they don’t seem to strongly affect the pollution-density relationship.

We then add variables measuring the ‘greenness’ of cities in a physical sense as well as

concerning preferences of the local population. Our first variable is the total area of green

space in a city. If densely populated cities have less green space, pollution concentration

may be higher than in less densely populated cities, as trees and plants may capture or filter

air pollution and lower temperatures. Conversely, plants and trees emit VOC, which are

precursors to O3. The results are shown in column (5) in the respective tables. Green space

increases O3 and decreases NO2 concentration; this is consistent with the fact that plants

emit VOC, which react with NO2 to form O3. Since, in fact, denser districts have more green

space, controlling for green space slightly increases the density coefficient for NO2, while the

estimate is smaller in the O3 regressions. The effect of green space on PM10 is rather small.

Another indicator for the environmental friendliness of a city is whether or not it contains

a LEZ. City authorities may designate a LEZ within their jurisdiction such that only cars

fulfilling certain environmental requirements, then indicated by specific coloured badges,

may enter. The designation is a political decision and hence may mirror the environmental

preferences of the residents. In column (6) of Tables 2.E.12–2.E.15, we see that LEZs do not
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alter the density coefficient even though they are mostly positively correlated with pollution

concentration.59

Moreover, we consider whether the density effect might be mediated by sorting of households

according to environmental preferences. For instance, families might move to less dense and

greener locations to avoid adverse health effects for their children. Conversely, cities may

attract “green” voters with a strong preference for the environment. We follow the last track

and include the share of green votes in our regressions (col (7)). For particulates and O3, we

find that the share of green voters reduces pollution. Since the green voter share is positively

correlated with density, this reduces the density coefficient. This would imply that selection

of green voters into cities makes denser cities greener.60

Lastly, we look at the number of buildings as a proxy for residential energy use. The

results are in the last column of Tables 2.E.12–2.E.15. Denser districts obviously have

more buildings. As the tables show, buildings are positively correlated with NO2 and PM10

emissions. Hence, more residential energy use in denser cities seems to contribute to higher

pollution.61 Again, the opposite is true for O3.

In summary, we find that the density effect is hardly driven by industry composition or the

composition of the population in denser cities. Dense cities seem to have cleaner industries

and are inhabited by ‘greener’ residents. However, consistent with our simple model, they

have more total commuting and more total residential energy use. Our interpretation of the

results is that denser cities are thus more polluted, even though each resident may produce

lower emissions due to higher transit shares and more efficient energy use.

2.6.3 Threshold results

We now turn to the analysis of threshold violations. These have been the primary focus of

recent policy debates, as cities and national governments in Germany and other European

countries have been sued for violations of legally binding thresholds.

59Of course, this may be due to reverse causality: if pollution is high, political pressure for introducing
an LEZ mounts.

60Interestingly, for NO2, the green vote share seems to positively correlate with pollution. However, once
we control for the vote shares of other major parties (CDU, SPD, the Left and FDP), the outcome mirrors
that for the other pollutants.

61Intuitively, building density is also larger in denser cities. Since this implies a higher energy efficiency
(Borck and Brueckner, 2018), dense buildings flatten the density-pollution gradient.
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Figure 2.3: Histograms of threshold transgressions by deciles of population density
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(b) Transgressions of daily PM10

Note: Own calculations. The graph depicts histograms of population density deciles and transgressions of
WHO thresholds on measuring station level. Population density is divided into 10 equal deciles. The y−axis
in the left thus shows the number of transgressions of the annual threshold of 40 µg/m3 for NO2 in each
decile from 2002 until 2015. The right panel shows the quantity of transgressing the daily PM10 threshold
of 50 µg/m3 per population density decile within the same time frame.

For a first visual impression, Figure 2.3 shows the number of transgressions of the daily mean

threshold of PM10, and the NO2 annual mean by population density decile. The histograms

suggest a clear positive association between density and threshold transgressions.

In Table 2.6, we present results for the probability that the yearly mean was exceeded for

NO2, PM10 and PM2.5. We concentrate on linear probability models (LPM), again using

the historical and the soil IVs in some specifications. For PM2.5, there is no significant

relation between density and annual threshold violations. For NO2 and PM10, all results are

positive and highly significant. The probability that the annual NO2 threshold of 40 µg/m3

is transgressed is significantly higher in more densely populated areas. Coefficients, except

for the one with soil characteristics as instruments, are similar in NO2 and PM10 regressions.

Repeating the estimations with Probit IV models yields similar results, see Table 2.E.16.

Results for the transgressions of daily (PM10 and PM2.5) as well as hourly (NO2) means are

shown in Table 2.7. Thus, the probability of exceeding the one-hour NO2 threshold on more

than 17 days a year is significantly higher in denser areas, even though the point estimate is

relatively small, at 0.026. The lower we set the number of days, the higher the coefficient.

Regarding PM10, the probability of exceeding the threshold for 34 days is also significantly

higher in denser cities with a point estimate of 0.05. For PM2.5, we find an insignificant
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Table 2.6: Probability of transgression of annual thresholds

NO2 PM10 PM2.5

(1) (2) (3) (4) (5) (6)
LPM LPM IV LPM LPM IV LPM LPM IV

log(pop density) 0.148∗∗∗ 0.143∗∗∗ 0.100∗∗∗ 0.0866∗∗∗ -0.0128 -0.0229
(0.0232) (0.0313) (0.0214) (0.0264) (0.0153) (0.0164)

Distance to CBD 0.00143∗ 0.00136 0.00138 0.000820 0.000380 0.0000524
(0.000818) (0.000841) (0.000993) (0.00102) (0.000809) (0.000864)

Suburban -0.0376∗ -0.0311 0.218∗∗∗ 0.207∗∗∗ 0.185∗∗∗ 0.136∗∗∗

(0.0191) (0.0199) (0.0403) (0.0414) (0.0643) (0.0497)
Urban -0.0378 -0.0303 0.275∗∗∗ 0.264∗∗∗ 0.206∗∗∗ 0.158∗∗∗

(0.0244) (0.0285) (0.0459) (0.0474) (0.0710) (0.0558)
Industrial -0.0000506 -0.00415 0.260∗∗∗ 0.255∗∗∗ 0.0395 0.0403∗

(0.0206) (0.0208) (0.0411) (0.0426) (0.0272) (0.0225)
Traffic 0.549∗∗∗ 0.563∗∗∗ 0.311∗∗∗ 0.316∗∗∗ 0.0124 0.0142

(0.0427) (0.0457) (0.0303) (0.0320) (0.0140) (0.0120)
N 5663 5341 4812 4520 795 743
R2 0.494 0.507 0.421 0.421 0.240 0.179
Year FE Yes Yes Yes Yes Yes Yes
Districts 266 245 244 225 108 101

Note: The table presents the effect of log(population density) on a dummy variable of whether the annual
threshold value was transgressed on district level. The thresholds are: 40 µg/m3 for NO2, 10 µg/m3 for
PM2.5, and 20 µg/m3 for PM10. The regressions are performed using Linear Probability Models LPM
and LPM IV. Marginal effects are calculated at means. Control variables are: Distance of the pollutant
measurement station to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind
speed, cloudiness, air pressure] and their interactions, year fixed effects, a categorical variable for the station
area classification (rural [base category], suburban, urban), and station type (background [base category],
traffic, industrial). The instruments are historical population from 1910 and soil characteristics combined.
Standard errors in parentheses are clustered at district level. Statistical significance levels: ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01

effect of density on daily threshold violations (note again, however, the smaller sample size).

As shown in Panel B of Table 2.E.16, using a probit model does not change the results.

In summary, the evidence suggests that threshold violations occur more frequently in more

densely populated cities.

2.7 Conclusion

In this paper, we have used panel data for German districts to estimate the effect of popula-

tion density on air pollution. Our theoretical model predicts that denser cities should have

higher pollution concentrations, although there are some countervailing forces. The evidence
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Table 2.7: Probability of transgressing thresholds by specific number of days

NO2 PM10 PM2.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)
> 17 > 14 > 9 > 34 > 29 > 24 > 34 > 29 > 24

log(pop density) 0.0255∗ 0.0277∗∗ 0.0312∗∗ 0.0503∗∗∗ 0.0625∗∗∗ 0.0546∗∗ -0.0334 -0.00681 -0.00931
(0.0132) (0.0138) (0.0147) (0.0171) (0.0196) (0.0224) (0.0389) (0.0348) (0.0276)

Distance to CBD 0.000295 0.000330 0.000354 0.000840 0.000633 0.000476 0.000367 0.000719 0.00124
(0.000242) (0.000247) (0.000282) (0.000701) (0.000733) (0.000868) (0.00219) (0.00148) (0.00135)

Suburban -0.00563 -0.00595 -0.00730 0.0135 0.0251 0.0519∗ 0.376∗∗∗ 0.316∗∗∗ 0.275∗∗∗

(0.00526) (0.00550) (0.00575) (0.0200) (0.0240) (0.0268) (0.0844) (0.0807) (0.0787)
Urban -0.00938 -0.0100 -0.0117∗ 0.0148 0.0246 0.0579∗ 0.394∗∗∗ 0.341∗∗∗ 0.311∗∗∗

(0.00591) (0.00620) (0.00640) (0.0225) (0.0285) (0.0314) (0.0872) (0.0853) (0.0768)
Industrial 0.00835 0.00858 0.00789 0.114∗∗ 0.129∗∗ 0.167∗∗∗ 0.0623 0.113∗∗ 0.0559

(0.00627) (0.00656) (0.00705) (0.0452) (0.0542) (0.0637) (0.0543) (0.0436) (0.0358)
Traffic 0.0439∗∗ 0.0470∗∗ 0.0592∗∗∗ 0.239∗∗∗ 0.270∗∗∗ 0.306∗∗∗ 0.161∗∗∗ 0.140∗∗∗ 0.0699∗∗

(0.0176) (0.0182) (0.0198) (0.0219) (0.0245) (0.0236) (0.0465) (0.0404) (0.0317)
N 5663 5663 5663 4817 4817 4817 795 795 795
R2 0.053 0.057 0.063 0.268 0.298 0.333 0.311 0.253 0.219
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Districts 269 269 269 247 247 247 109 109 109

Note: The table presents outcomes of the effect of log(population density) on a dummy variable indicating
whether the daily threshold value was transgressed on a pre-specified number of days within the district.
The respective thresholds are: 200 µg/m3 for NO2, 25 µg/m3 for PM2.5, and 50 µg/m3 for PM10. The
number of days (e.g. 17, 14, and 9 for NO2) lie just below the number of exceedances allowed by the EU,
which are 18 for NO2 and 35 for PM10. The regressions are performed using Linear Probability Models
LPM. Control variables included are: Distance of the pollutant measurement station to the CBD, distance
to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness, air pressure] and their
interactions, year fixed effects, a categorical variable for the station area classification (rural [base category],
suburban, urban), and station type (background [base category], traffic, industrial). The instruments used
are a combination of historical population from 1910 and soil characteristics. Standard errors in parentheses
are clustered at district level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

to date has been largely inconclusive. To mitigate concerns about unobserved heterogen-

eity and omitted variables, we have used both long difference regressions and instrumental

variables. Our preferred estimates come from the IV regressions, where we instrument popu-

lation density with historical population and/or soil characteristics. We find that increasing

population density by one percent increases NO2 by 0.25 percent and PM10 by 0.08 percent.

The results for PM2.5 are less precisely estimated using monitoring station readings, but of

similar magnitude to PM10 when considering satellite data. For O3, we find denser cities

to have lower concentrations, with an elasticity of −0.14. Air quality as measured by the

aggregate AQI decreases with population density, with an elasticity of about 0.12 on average.

The study thus contributes to our knowledge about the economic costs of agglomeration.

The benefits of agglomeration due to labour market pooling, spillovers, matching etc. are

by now well documented. However, there is much less robust evidence on the costs of ag-
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glomeration.62 Thus, our study makes some headway towards a more complete picture of

agglomeration benefits and costs. This seems important for urban policies. In Appendix

2.B, we use a simple numerical example to show that, based on our estimates, local pol-

lution may reduce optimal city size by 7%. Knowledge of the elasticity of pollution with

respect to population leads to a more complete understanding of the benefits and costs of

agglomeration.

As far as we know, together with Carozzi and Roth (2020), this is the only study that

seriously tries to estimate the causal effect of population density on pollution. More evidence

from other countries surely will add to a more complete picture about this issue. For instance,

whether or not population and pollution interact differently in developing and developed

countries seems like an interesting and important question. More research on the interaction

of urban structure and pollution thus seems warranted.

62See Combes et al. (2018) for a recent study on the costs of agglomeration implied by high land and
housing prices. The interpretation of these costs is different however, as long as land and housing markets
are competitive.
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Appendices

2.A A model

Consider a circular, open monocentric city where N residents commute to the Central Busi-

ness District (CBD) for work. A household living at x km from the CBD incurs round-trip

commuting costs tx. Household utility is v(c, q) = c1−αqαP−β, where c is non-housing con-

sumption, q consumption of housing floor space in square meters, and P is the concentration

of local pollution in the city. Households are completely mobile in the city, so they achieve

utility level u regardless of their location.

The household maximizes utility subject to the budget constraint, w = c−tx+pq, where w is

wage income and p the price of housing per square meter. Maximizing utility subject to the

budget constraint gives the household’s optimal housing demand q = αu
1
αP β

α (y − tx)1−
1
α ,

and the bid rent, i.e. the maximum willingness to pay per unit of housing floor space,

p = u−1/α(y − tx)
1
αP− β

α .

Housing floor space is produced by profit maximizing developers, using capital K and land

L as inputs. We assume a Cobb-Douglas production function written in intensive form

h = Sθ, θ > 0, where S ≡ K/L is structural density (capital deployed per unit of land) and

h is the amount of floor space per unit of land. We normalize the price of capital to one.

The developer maximizes profits per unit of land

π = Sθ − S −R,

where R is the land rent paid to (absentee) landowners. Solving the developers’ problem

gives structural density, S = θ
1

1−θu
1

α(θ−1) (y − tx)
1

α−αθP
β

α(θ−1) , and the land rent function at

distance x, R =
(
θ

θ
1−θ − θ

1
1−θ

)
u

1
α(θ−1) (y − tx)

1
α−αθP

β
α(θ−1) .

We consider a small open city. Residents are freely mobile between the city and the rest of

the economy. Letting u be the exogenous utility level that can be attained in the rest of the
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economy, the equilibrium is defined by the two equations

R(x̄, u,P) = RA (2.A.1)∫ x̄

0

γD(x, u,P)2πxdx = N, (2.A.2)

where x̄ is the distance from the city border to the CBD, RA is the agricultural land rent,

and γ denotes the share of developable land at any distance x. D = h(x,u,P)
q(x,u,P)

is the population

density at distance x from the CBD.

Solving (2.A.1) and (2.A.2) gives the endogenous city border x̄ and number of residents N .63

Pollution is composed of emissions from commuting, C, and residential energy use, H,

weighted by the respective emissions factors. Transport emissions are assumed to be pro-

portional to the aggregate commuting distance, and residential emissions are proportional

to total housing floor space in the city. Letting the emissions intensities of commuting and

housing be eC and eH , total emissions are

E = eCC + eHH (2.A.3)

C =

∫ x̄

0

xγD(x)2πxdx (2.A.4)

H =

∫ x̄

0

γh(x)2πxdx. (2.A.5)

Finally, assume for simplicity that the concentration of air pollution is given by total emis-

sions divided by land area.64 Then concentration is given by P = E/(πx̄2).

How then does pollution concentration change with population density? To answer this

question, we vary the parameter γ. For instance, government may increase γ by more liberal

zoning policies (e.g. increasing the floor-area ratio by allowing more housing to be built

per sq. meter of land). When γ increases, the city shrinks spatially as the city border x̄

moves inward, for given population. For given population, this has two effects on residents’

utility: First, utility would increase, since housing has become less scarce. Second, however,

63We use the following parameter values: γ = 0.75, eH = eC = 1, rA = 50, 000, w = 50, 000, t = 500, β =
0.05, θ = 0.75, α = 0.25. These values are similar to those used in Borck and Brueckner (2018).

64In reality, concentration is given by emissions per cubic meter of air, but we can slightly simplify by
assuming all pollution is at ground level and thus concentration equals emissions over land area.
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pollution concentration rises: first, reduced competition for land raises aggregate housing

consumption and residential energy use, and second, since the city shrinks, average and

total commuting distance falls. The combined effect – assuming equal emissions coefficients

on residential and transport emissions – is an increase in emissions, and an increase in

concentration, since total emissions now diffuse over a smaller area.65

In our simulation, we find that residents’ utility increases, as the housing effect dominates

the increase in pollution concentration.66 This will lead to in-migration from the rest of the

economy, which increases the number of residents and the urban boundary x̄, although not

to its previous level. As a result of the increased population level, the effect on pollution

concentration is reinforced, and density rises as well. Our simulation shows that the end

result in the open city is that the increase in γ increases density and pollution concentration.

The positive relation between concentration and density emerging from the model is shown

by the upper blue curve in Fig. 2.A.1.

Extension. We now examine a couple of extensions that affect the relation between

density and pollution. First, denser cities typically have higher mode shares for public

transport because of economies of scale and traffic density. Second, denser cities have taller

buildings that are more energy efficient. We include these two aspects in a simple reduced

form fashion. In particular, we assume that transport emissions fall with average city density

because density shifts transport mode choice towards cleaner public transit. Second, we

assume that because of higher energy efficiency, density reduces the emissions associated

with residential energy use.67

We amend Equations (2.A.4) and (2.A.5) in the following way:

C =

∫ x̄

0

xγD(x)dxD̄−κ (2.A.6)

H =

∫ x̄

0

γh(x)dxD̄−µ, κ, µ > 0, (2.A.7)

65If we increase the emissions coefficient for transport emissions sufficiently, we find that raising γ decreases
aggregate emissions, but concentration still increases.

66This will be true as long as β, the parameter which governs the strength of pollution damage, is not
too large. We choose a value similar to recent literature here, but even a 3-fold increase would not change
our results.

67Borck (2019) contains a model with pollution and mode choice without scale economies. Borck and
Brueckner (2018) use a micro-founded model where energy use is related to a building’s surface, which
implies that more densely populated locations with tall buildings are more energy efficient.
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Figure 2.A.1: Population density and pollutant concentration
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Note: Own calculations. The figure shows the correlation between population density and pollution con-
centration as calculated in a monocentric city model. Both lines are produced with the following parameter
values: γ = 0.75, eH = eC = 1, rA = 50, 000, w = 50, 000, t = 500, β = 0.05, θ = 0.75, α = 0.25. The red line
extends the model assuming that denser cities are more energy efficient and have lower transport emissions.
Equations (2.A.4) and (2.A.5) are then extended by D̄−κ and D̄−µ, where D̄ = N/(πx̄2) is the endogenous
average density and κ = µ = 0.07 are the elasticities of transit mode shares/energy efficiency with respect
to density.

where D̄ = N/(πx̄2) is the (endogenous) average city density, and κ and µ are the density

elasticities of transport emissions and residential energy emissions.

Ahlfeldt and Pietrostefani (2019) find that both transit mode share and energy efficiency rise

with density, with both elasticities being about −0.07. Setting κ = µ = 0.07 produces the

red curve in Fig. 2.A.1. Thus, the relation between density and pollution remains positive

but is flattened compared to the benchmark case where density economies are absent. In

fact, the relation will remain positive as long as κ, µ < 1. Given the estimates in Ahlfeldt

and Pietrostefani (2019), this restriction seems very likely to hold.

2.B Optimal city size

Consider a simplified version of the model above, where we abstract from housing construc-

tion. We modify the model in two respects: first, we assume that there is congestion, which

implies that commuting costs per km are given by t = Nψ. Second, we follow the literat-

ure on agglomeration economies and assume that the wage is given by N δ. Suppose that
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pollution concentration can be described as in our empirical model by the relation C = Nρ.

Solving the model (using α = 1/4) gives the following functional form for utility as a function

of population size:

log u = (δ − βρ) logN − 1

4
log

(
256

27

(
N1+ψ +RA

))
. (2.A.8)

Suppose that β = 0, so households don’t care about pollution. Furthermore, in line with

the large empirical literature on agglomeration, let δ = 0.05 (Combes and Gobillon, 2015),

and, following Duranton and Puga (2019), let ψ = 0.07. Then, maximizing u with respect

to city size gives N∗ = 6235.

Suppose, however, that β = 0.02, and let ρ = 0.15 (between our estimates for PM10 and NO2,

and close to our coefficient for the AQI).68 Then, we find an optimal city size of N∗∗ = 5810,

93% of N∗. Hence, pollution can significantly affect the balance of agglomeration benefits

and costs.

2.C Data

Weather. Since weather and emission stations are usually not at the exact same spot, we

have to match both types of stations such that we get the most accurate information about

the weather at each emission station. Following the approach of Auffhammer and Kellogg

(2011), for each emission station we searched for the ten closest weather and precipitation

stations within a range of 50 kilometres and a maximum station altitude difference of 200

meters.69 Out of those stations, we choose a primary one, which is the closest weather or

precipitation station to the emission station with at least 50 percent of hourly observations

non-missing. All emission stations that could not be assigned a primary station were deleted

from the sample. Throughout a year, there are gaps between recordings such that many

weather and precipitation stations do not have a full record of observations. Such missing

observations were imputed by regressing the non-missing values of, say, sunshine on the

68The value of 0.02 is close to the value used by Borck and Tabuchi (2019) based on a calibration to the
social cost of carbon.

69There are many more precipitation stations in Germany (more than 4000) than stations which provide
information on all other weather variables other than rainfall and snowfall (a little more than 700). This is
why we separately merged precipitation and other weather stations to each emission station.
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sunshine records of all the other adjacent stations. The estimated coefficients of those other

stations were then used to impute values for missing observations.

About 80 percent of particulate matter and nitrogen dioxide emission stations were matched

to the closest available weather station. Less than four percent of PM10–stations and two

percent of NO2–stations were matched to a weather station ranked 5th or higher regarding

the ranking of distance between the two station types. In both cases (PM10 and NO2), less

than one percent of emission stations could not be assigned a weather station.

Historical industry data. To construct the historical data for workers in industry and

crafts, we proceeded as follows. We had maps for administrative units now and in 1925 and

for 1925 the total number of workers in industry and crafts as well as the total population of

a historical district. Due to the fact that administrative assignment changed over time, we

had to assign historical administrative units to current units. If the historical area matched

with current districts by more than 60 percent of the area, those areas were assigned the

recent district. In many cases this is true for more than one historical district. For example,

southern and northern Dithmarschen correspond to the current Dithmarschen. In these

cases, we just summed the number of workers and the number of inhabitants in 1925 and

assigned the sum to the current administrative unit. From these variables we then calculated

the shares of workers in industry and crafts over the whole resident population. A number of

current districts could not be assigned to workers because there were no historical districts

matching by at least 60 percent of the area. This is true for example for Wolfsburg, a city

that was established after 1925 and did not exist back then. Other cases like Mainz or

Worms were larger districts in the past and were assigned as district-free cities after 1925.

In such cases, the recent district almost completely lies within a historical district and we

assigned the value of the respective historical district. As these are only relatively few cities

and districts, we performed this matching by eyeballing the maps and looking which area

fits best to the current district.

Geology. We use the same 12 variables from the European Soil Database (ESDB) used

by Combes et al. (2010).70 The data comes in raster format of 1km×1km rasters, which

70These data can be freely downloaded for research purposes from the European Soil Data Centre (Panagos
et al., 2012).
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we aggregate to the district level. For each district we use for instance the value of the

dominant parent material which occurs most often within the district. Especially in urban

areas like Berlin, we need to impute some of the values because of the lack of information

in the data. In such cases, the dominant value often is described as a non-soil or just

missing. In these cases we use the second most common value occurring within the district.

The variables we use describe the mineralogy of the topsoil and the subsoil as well as the

dominant parent material of the soil at different levels of aggregation. The dominant parent

material describes the bedrock of the soil, which is the underlying geological material. At

the broader level of aggregation, these are e.g. sedimentary rocks, igneous or metamorphic

rocks, while the finer level of aggregation further classifies them. For instance, sedimentary

rocks may consist of different types of limestone (hard, soft, marly, chalky etc.), marlstone

or other types of stones. Mineralogy captures the presence of minerals in the different layers

of soil (the topsoil being usually 5 to 15 cm deep and the subsoil being the intermediate

layer between the topsoil and the bedrock).

We also include information about the water capacity of the topsoil (from low to very high)

and the subsoil (from very low to very high), the depth to rock (from shallow to very deep),

the soil erodibility class (from very weak to very strong), the topsoil organic carbon content

(from low to very high), the soil profile differentiation (no differentiation, low and high

differentiation) and the hydrological class, which consists of four categories describing the

circulation and retention of underground water. The last variable we use is the ruggedness

of a district, which is calculated as the difference between the mean of maximum altitudes of

all the rasters within a district and the mean of minimum altitudes across all rasters within

the same district.

We include the information on mineralogy, hydrological class and parent material as dummies

in the regressions. All other variables, which differ in the quality of a characteristic (e.g.

from low to high) remain in their continuous form. All variables are included as dummies in

the regressions, except for ruggedness, which is the only continuous variable among the soil

characteristics.71

71Note that we do not use water capacity of the topsoil and the subsoil, the depth to rock, the soil
erodibility class, and the hydrological class in our main analyses. However, we also ran regressions including
those variables as instruments and did not find the second stage outcomes to change significantly.
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Satellite data. Gridded ground-level pollution data for NO2 and PM2.5 is obtained from

the Atmospheric Composition Analysis Group (Geddes et al., 2015; Van Donkelaar et al.,

2016). It comes at resolutions of 0.1◦ by 0.1◦ (NO2) and 0.01◦ by 0.01◦ (PM2.5). In order

to get pollution at the district level, we took a map of German districts and calculated

the mean concentration of ground-level pollution per district and year using the gridded

pollution data.

PM2.5 data itself is obtained from different satellite instruments from NASA (MODIS, MISR,

and SeaWIFS), which observe backscattered solar radiation and thereby Aerosol Optical

Depth (AOD).72 These observations are then transformed into ground-level data using

Chemical Transport Models (here GEOS-Chem), which simulate the geophysical relationship

between AOD and PM2.5. Afterwards, those estimations are calibrated using monitoring

stations where possible. This is mostly the case in economically developed areas like the US

or Europe. The resulting dataset provides annual pollution data from 1998 until 2016. An

exact explanation of how the data is produced is provided by Van Donkelaar et al. (2016).

For the construction of ground-level NO2 data, again a chemical transport model is used

and the approach is generally similar to the one explained above. The data set covers the

time span from 1996 through 2012 and is described by Geddes et al. (2015).

72Generally, small particles floating in the atmosphere are called aerosols.
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2.D Additional results and robustness checks

Figure 2.D.1: Monitoring stations and concentration levels in 2015 (PM2.5)

(a) Sample of PM2.5 stations
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Figure 2.D.1: Monitoring stations and concentration levels in 2015 (O3)

(b) Sample of O3 stations

Note: Own calculations. The maps show average district-level pollution concentrations in 2015 for PM2.5

and O3 respectively. Pollution concentrations are relatively low in green coloured districts and relatively
high in red coloured ones. Turquoise dots represent measuring stations that are marked as “urban” stations,
black triangles lie in “suburban” districts and black squares depict “rural” stations. Grey coloured districts
do not contain measuring stations.
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Table 2.D.1: R2 of regressions of population density on instruments

NO2 PM10 PM2.5 O3

Population density in 1910 0.70 0.70 0.70 0.70
Ruggedness 0.07 0.05 0.06 0.03
Soil differentiation 0.03 0.02 0.01 0.01
Soil carbon content 0.24 0.22 0.28 0.21
Dominant parent material 0.15 0.18 0.23 0.16
Topsoil mineralogy 0.04 0.04 0.02 0.03
Subsoil mineralogy 0.03 0.02 0.03 0.02

Note: The table presents the R2 of bivariate regressions of regressing population density on different instru-
ments. Population density in 1910 represents the historical population density instrument. Soil characteristic
instruments are: ruggedness, soil differentiation (3 categories), soil carbon content (4 categories), dominant
parental material (7 categories), topsoil mineralogy (4 categories), subsoil mineralogy (3 categories). For
more details on the instruments see Section 2.C. The regressions are run for each sample of the respective
pollutant in the year 2015. Observation numbers are as follows: 392 in NO2-sample, 331 in PM10-sample,
132 in PM2.5-sample, and 253 in O3-sample.

Table 2.D.2: IV regressions with historical working population as control variable

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
IV Density 1910 IV Soil IV Density 1910 IV Soil IV Density 1910 IV Soil IV Density 1910 IV Soil

log(pop density) 0.178∗∗∗ 0.370∗∗∗ 0.0801∗∗∗ 0.0366 0.0452 -0.00907 -0.0911∗∗∗ -0.295∗∗∗

(0.0569) (0.0579) (0.0273) (0.0410) (0.0545) (0.0619) (0.0329) (0.0495)
Share employed in Ind. 0.0598 0.184∗∗ 0.376∗∗∗ 0.00615

(0.122) (0.0826) (0.145) (0.0997)
Share workers in Agr. 0.376∗∗∗ -0.159∗∗ -0.190 -0.355∗∗∗

(0.102) (0.0727) (0.134) (0.0814)
Distance to CBD -0.00514∗∗∗ -0.00282∗∗ 0.000914 0.000739 0.00199 0.00126 0.00366∗∗∗ 0.00124

(0.00153) (0.00130) (0.000881) (0.000885) (0.00154) (0.00159) (0.000997) (0.000925)
Distance to Street -0.0957∗∗ -0.102∗∗∗ -0.0280 -0.0410∗∗ -0.0313 -0.0366 0.0420∗ 0.0513∗∗

(0.0399) (0.0375) (0.0193) (0.0199) (0.0430) (0.0416) (0.0248) (0.0248)
Suburban 0.280∗∗∗ 0.288∗∗∗ 0.0688∗∗∗ 0.0685∗∗∗ 0.0953 0.116∗ -0.143∗∗∗ -0.142∗∗∗

(0.0507) (0.0518) (0.0247) (0.0256) (0.0583) (0.0692) (0.0363) (0.0370)
Urban 0.474∗∗∗ 0.474∗∗∗ 0.122∗∗∗ 0.131∗∗∗ 0.123∗ 0.161∗∗ -0.221∗∗∗ -0.214∗∗∗

(0.0708) (0.0720) (0.0330) (0.0325) (0.0705) (0.0821) (0.0455) (0.0468)
Industrial 0.0847∗∗ 0.113∗∗∗ 0.115∗∗∗ 0.129∗∗∗ 0.0659∗ 0.0895∗∗ -0.0496 -0.107∗∗∗

(0.0382) (0.0351) (0.0356) (0.0378) (0.0362) (0.0390) (0.0339) (0.0336)
Traffic 0.659∗∗∗ 0.649∗∗∗ 0.254∗∗∗ 0.250∗∗∗ 0.137∗∗∗ 0.123∗∗∗ -0.235∗∗∗ -0.246∗∗∗

(0.0407) (0.0387) (0.0184) (0.0185) (0.0436) (0.0430) (0.0444) (0.0399)
N 5091 5336 4272 4485 747 769 3414 3581
R2 0.751 0.763 0.486 0.489 0.294 0.273 0.420 0.459
Districts 269 269 247 247 109 109 251 251

Note: The table presents second stage IV estimates including historical shares of workers in different sectors
(industry, agriculture, manufacturing) for each pollutant separately. Control variables included are: Distance
of the pollutant measurement station to the CBD, distance to a major street, weather variables [precipitation,
sunshine, wind speed, cloudiness, air pressure] and their interactions, average district-level GDP, average
income, share of green party voters, the unemployment share , a categorical variable for the station area
classification (rural [base category], suburban, urban), station type (background [base category], traffic,
industrial). The instruments used are historical population from 1910, and soil characteristics. Standard
errors in parentheses are clustered at labour market region - year (OLS) and labour market region (IV) level.
Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.D.3: Station fixed effects for all pollutants

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
log(pop density) 0.290∗∗∗ 0.286∗∗ 0.00294 0.0241 0.336∗ 0.338 0.268∗∗ 0.0144

(0.0942) (0.119) (0.0912) (0.109) (0.193) (0.225) (0.106) (0.127)
Av. GDP 0.120∗ 0.0566 -0.108 -0.0858

(0.0624) (0.0548) (0.148) (0.0519)
Av. Income 0.238∗ 0.148 0.00201 -0.152

(0.132) (0.149) (0.533) (0.160)
Unemployment share 0.612∗ 0.452 0.528 0.654∗∗

(0.369) (0.372) (1.061) (0.317)
Green Voters -0.457 -1.328∗∗∗ 0.863 -0.243

(0.333) (0.493) (1.369) (0.364)
LEZ -0.00340 -0.0167∗∗∗ -0.00577 0.00836

(0.00591) (0.00597) (0.00854) (0.00697)
N 5575 4905 4648 4137 795 719 3776 3438
R2 0.094 0.107 0.010 0.028 0.075 0.102 0.040 0.043
Districts 269 269 247 247 109 109 251 251
Controls No Yes No Yes No Yes No Yes
Weather Yes Yes Yes Yes Yes Yes Yes Yes

Note: The table presents station fixed effects estimations for all years between 2002 and 2015 without
(uneven columns) and with (even columns) controls. Outcome is the respective pollutant and main para-
meter of interest is log(population density). Control variables included are: Weather variables [precipitation,
sunshine, wind speed, cloudiness, air pressure] and their interactions, average district-level GDP, average
income, share of green party voters, the unemployment share, and whether the station lies within an envir-
onmental zone or not (may change over time). Standard errors in parentheses are clustered at labour market
region level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.D.4: Estimations with Labour Market Regions

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log(pop density) 0.311∗∗∗ 0.303∗∗∗ 0.0958∗∗∗ 0.109∗∗∗ 0.0718∗ 0.0847∗∗ -0.233∗∗∗ -0.222∗∗∗

(0.0648) (0.0722) (0.0248) (0.0262) (0.0394) (0.0411) (0.0439) (0.0492)
Distance to CBD -0.00670∗∗∗ -0.00672∗∗∗ 0.000140 0.000188 0.000839 0.000872 0.00387∗∗∗ 0.00392∗∗∗

(0.00140) (0.00141) (0.000741) (0.000734) (0.00120) (0.00117) (0.000996) (0.000995)
Distance to Street -0.0971∗∗ -0.0974∗∗ -0.0384∗ -0.0382∗ -0.0347 -0.0343 0.0480∗∗ 0.0479∗∗

(0.0387) (0.0384) (0.0206) (0.0203) (0.0393) (0.0383) (0.0233) (0.0231)
Urban 0.502∗∗∗ 0.503∗∗∗ 0.154∗∗∗ 0.152∗∗∗ 0.167∗∗∗ 0.163∗∗∗ -0.231∗∗∗ -0.232∗∗∗

(0.0602) (0.0605) (0.0298) (0.0294) (0.0591) (0.0580) (0.0407) (0.0404)
Traffic 0.658∗∗∗ 0.658∗∗∗ 0.261∗∗∗ 0.261∗∗∗ 0.110∗∗∗ 0.111∗∗∗ -0.252∗∗∗ -0.251∗∗∗

(0.0364) (0.0362) (0.0173) (0.0172) (0.0413) (0.0401) (0.0361) (0.0360)
N 5575 5575 4648 4648 795 795 3776 3776
R2 0.753 0.753 0.481 0.480 0.268 0.268 0.470 0.470
Labour Market Regions 127 127 124 124 76 76 125 125
Weather Yes Yes Yes Yes Yes Yes Yes Yes
First-stage F-statistic 9081.8 327398.9 132.2 25302.3

Note: The table presents OLS and IV model outcomes of regressing the respective pollutant concentration
on labour market region level on log(population density). Control variables included are: Distance of the
pollutant measurement station to the CBD, distance to a major street, weather variables [precipitation,
sunshine, wind speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour,
month), average district-level GDP, average income, share of green party voters, the unemployment share, a
categorical variable for the station area classification (rural [base category], suburban, urban), station type
(background [base category], traffic, industrial), and whether the station lies within an environmental zone
or not. The instruments used are the combination of historical population from 1910 and soil characteristics.
Standard errors in parentheses are clustered at labour market region - year (OLS) and labour market region
(IV) level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Chapter 2. Population density and urban air quality 67

Table 2.D.5: Satellite data regressions

(1) (2) (3) (4) (5) (6)
OLS IV Density 1910 IV Soil IV 1910 & Soil FE LD

Panel A: NO2

log(pop density) 0.374∗∗∗ 0.418∗∗∗ 0.729∗∗∗ 0.385∗∗∗ -0.00591 -0.133
(0.0109) (0.0158) (0.0237) (0.0141) (0.109) (0.144)

N 4414 4161 4414 4161 4414 803
R2 0.247 0.249 0.059 0.252 0.364 0.338
Districts 402 402 402 402 402 402
Soil Characteristics No No Yes Yes No No
Panel B: PM2.5

log(pop density) 0.0485∗∗∗ 0.107∗∗∗ 0.0598∗∗∗ 0.0823∗∗∗ 0.421∗∗∗ 0.376∗∗∗

(0.00318) (0.00451) (0.00643) (0.00406) (0.0432) (0.0802)
N 6022 5677 6022 5677 6022 803
R2 0.497 0.466 0.496 0.483 0.704 0.641
Districts 402 402 402 402 402 402
Soil Characteristics No No Yes Yes No No

Note: The table presents OLS and IV model outcomes of regressing the respective pollutant concentration
captured by satellites (NO2 and PM10) on log(population density). Columns (5) and (6) show fixed effects
and long difference estimations on district level. The instruments used are historical population from 1910,
soil characteristics, and a combination of both. Standard errors in parentheses are clustered at labour
market region - year (OLS) and labour market region (IV) level. Statistical significance levels: ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 2.D.2: Quantiles of population density using the whole sample

Note: The figure shows coefficients of the effect of log(population density) on the respective pollutant
concentration after dividing the density measure into five equal quantiles. Control variables included in
the respective OLS regressions are: Distance of the pollutant measurement station to the CBD, distance
to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness, air pressure] and
their interactions, time dummies (day of week, hour, month), a categorical variable for the station area
classification (rural [base category], suburban, urban), and station type (background [base category], traffic,
industrial). Standard errors are clustered at labour market region - year level.
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2.E Additional tables and figures

Figure 2.E.1: Interaction effect of population increase and population density

Note: The figure shows the difference of OLS outcomes between growing and shrinking cities when regressing
the respective pollutant on log(population density). Control variables included are: Distance of the pollutant
measurement station to the CBD, distance to a major street, weather variables [precipitation, sunshine,
wind speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour, month), a
categorical variable for the station area classification (rural [base category], suburban, urban), and station
type (background [base category], traffic, industrial). Standard errors are clustered at labour market region
- year level.
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Table 2.E.2: Regressions of current sectoral shares on past population density

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
Agriculture:
log(pop density 1910) -0.00441∗∗∗ -0.00571∗∗∗ -0.00461∗∗∗ -0.00604∗∗∗ -0.00442∗∗∗ -0.00557∗∗∗ -0.00462∗∗∗ -0.00576∗∗∗

(0.000448) (0.000560) (0.000477) (0.000590) (0.000545) (0.000746) (0.000461) (0.000570)
N 209 209 186 186 97 97 191 191
R2 0.417 0.371 0.440 0.396 0.493 0.423 0.415 0.351
Districts 227 227 211 211 105 105 206 206
Manufacturing:
log(pop density 1910) -0.0161∗∗∗ -0.0224∗∗∗ -0.0165∗∗∗ -0.0229∗∗∗ -0.0245∗∗∗ -0.0289∗∗∗ -0.0170∗∗∗ -0.0219∗∗∗

(0.00450) (0.00341) (0.00441) (0.00337) (0.00522) (0.00396) (0.00475) (0.00357)
N 209 209 186 186 97 97 191 191
R2 0.045 0.149 0.049 0.162 0.112 0.278 0.052 0.138
Districts 227 227 211 211 105 105 206 206
Production:
log(pop density 1910) -0.0191∗∗∗ -0.0222∗∗∗ -0.0202∗∗∗ -0.0229∗∗∗ -0.0295∗∗∗ -0.0297∗∗∗ -0.0201∗∗∗ -0.0220∗∗∗

(0.00455) (0.00343) (0.00446) (0.00340) (0.00555) (0.00401) (0.00479) (0.00364)
N 209 209 186 186 97 97 191 191
R2 0.065 0.148 0.074 0.163 0.156 0.291 0.075 0.141
Districts 227 227 211 211 105 105 206 206

Note: The table presents bivariate regressions of the importance of sectoral shares (agriculture, manufac-
turing, production) in 2015 on log(population density) in 1910 for each pollutant-sample separately. The
importance is measured in shares of gross value (uneven columns) or as the share of workers (even columns)
in the respective sector. Standard errors in parentheses are clustered at labour market region level. Statist-
ical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.3: OLS with varying sets of controls (NO2)

(1) (2) (3) (4) (5) (6)
log(pop density) 0.591∗∗∗ 0.280∗∗∗ 0.190∗∗∗ 0.283∗∗∗ 0.240∗∗∗ 0.218∗∗∗

(0.0176) (0.0141) (0.0129) (0.0147) (0.0147) (0.0127)
Distance to CBD -0.00321∗∗∗ -0.00237∗∗∗ -0.00322∗∗∗ -0.00352∗∗∗ -0.00280∗∗∗

(0.000447) (0.000394) (0.000446) (0.000429) (0.000412)
Distance to Street -0.105∗∗∗ -0.0861∗∗∗ -0.105∗∗∗ -0.102∗∗∗ -0.109∗∗∗

(0.0115) (0.00998) (0.0113) (0.0113) (0.0104)
Suburban 0.281∗∗∗ 0.323∗∗∗ 0.280∗∗∗ 0.284∗∗∗ 0.285∗∗∗

(0.0169) (0.0158) (0.0168) (0.0167) (0.0161)
Urban 0.445∗∗∗ 0.507∗∗∗ 0.445∗∗∗ 0.458∗∗∗ 0.500∗∗∗

(0.0216) (0.0183) (0.0215) (0.0213) (0.0195)
Industrial 0.0898∗∗∗ 0.118∗∗∗ 0.0881∗∗∗ 0.0765∗∗∗ 0.113∗∗∗

(0.0128) (0.0125) (0.0138) (0.0129) (0.0135)
Traffic 0.648∗∗∗ 0.667∗∗∗ 0.647∗∗∗ 0.648∗∗∗ 0.638∗∗∗

(0.0124) (0.0118) (0.0124) (0.0124) (0.0119)
Stone coal -0.00863

(0.0148)
Brown coal 0.0373

(0.0228)
Distance to coal plant -0.00145∗∗∗

(0.000181)
Av. GDP 0.0107

(0.0150)
Av. Income 0.413∗∗∗

(0.0517)
Unemployment share -1.031∗∗∗

(0.189)
N 5575 5575 5575 5575 5575 5489
R2 0.305 0.755 0.795 0.755 0.759 0.773
Districts 266 266 266 266 266 264
Weather Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Coal plant in district No No No Yes No No
Distance to coal plant No No No No Yes No
State FE No No Yes No No No

Note: The table presents OLS model outcomes of regressing NO2 pollution on log(population density)
with varying combinations of control variables. Control variables included are: Distance of the pollutant
measurement station to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind
speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour, month), state &
year fixed effects, average district-level GDP, average income, share of green party voters, the unemployment
share, a categorical variable for the station area classification (rural [base category], suburban, urban), station
type (background [base category], traffic, industrial), distance to the most proximate coal plant, whether a
stone coal or a brown coal plant lies within the same district. Standard errors in parentheses are clustered
at labour market region - year level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.4: OLS with varying sets of controls (PM10)

(1) (2) (3) (4) (5) (6)
log(pop density) 0.164∗∗∗ 0.0749∗∗∗ 0.0205∗∗∗ 0.0654∗∗∗ 0.0779∗∗∗ 0.117∗∗∗

(0.00637) (0.00691) (0.00711) (0.00773) (0.00755) (0.00812)
Distance to CBD 0.000947∗∗∗ -0.000584∗∗ 0.000811∗∗∗ 0.000971∗∗∗ 0.000563∗∗

(0.000297) (0.000257) (0.000302) (0.000299) (0.000279)
Distance to Street -0.0405∗∗∗ -0.0139∗∗ -0.0397∗∗∗ -0.0409∗∗∗ -0.0355∗∗∗

(0.00648) (0.00571) (0.00658) (0.00656) (0.00657)
Suburban 0.0761∗∗∗ 0.0868∗∗∗ 0.0755∗∗∗ 0.0757∗∗∗ 0.0929∗∗∗

(0.00948) (0.00930) (0.00949) (0.00953) (0.00967)
Urban 0.140∗∗∗ 0.157∗∗∗ 0.139∗∗∗ 0.139∗∗∗ 0.145∗∗∗

(0.0108) (0.0103) (0.0109) (0.0110) (0.0112)
Industrial 0.136∗∗∗ 0.129∗∗∗ 0.132∗∗∗ 0.137∗∗∗ 0.124∗∗∗

(0.0127) (0.0102) (0.0128) (0.0125) (0.0122)
Traffic 0.255∗∗∗ 0.253∗∗∗ 0.258∗∗∗ 0.255∗∗∗ 0.250∗∗∗

(0.00672) (0.00600) (0.00682) (0.00674) (0.00663)
Stone coal 0.0253∗∗∗

(0.00911)
Brown coal 0.0142

(0.0210)
Distance to coal plant 0.000113

(0.000140)
Av. GDP -0.109∗∗∗

(0.0104)
Av. Income 0.130∗∗∗

(0.0368)
Unemployment share 0.807∗∗∗

(0.123)
N 4648 4648 4648 4648 4648 4570
R2 0.143 0.474 0.592 0.475 0.474 0.502
Districts 242 242 242 242 242 240
Weather Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Coal plant in district No No No Yes No No
Distance to coal plant No No No No Yes No
State FE No No Yes No No No

Note: The table presents OLS model outcomes of regressing PM10 pollution on log(population density)
with varying combinations of control variables. Control variables included are: Distance of the pollutant
measurement station to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind
speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour, month), state &
year fixed effects, average district-level GDP, average income, share of green party voters, the unemployment
share, a categorical variable for the station area classification (rural [base category], suburban, urban), station
type (background [base category], traffic, industrial), distance to the most proximate coal plant, whether a
stone coal or a brown coal plant lies within the same district. Standard errors in parentheses are clustered
at labour market region - year level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.5: OLS with varying sets of controls (PM2.5)

(1) (2) (3) (4) (5) (6)
log(pop density) 0.0912∗∗∗ 0.0353∗∗ 0.00640 0.00683 0.0337∗ 0.0550∗∗∗

(0.0110) (0.0161) (0.0144) (0.0160) (0.0178) (0.0206)
Distance to CBD 0.00122∗ -0.000295 0.000783 0.00121∗ 0.000986

(0.000651) (0.000465) (0.000637) (0.000670) (0.000615)
Distance to Street -0.0408∗∗ -0.0116 -0.0391∗∗ -0.0407∗∗ -0.0373∗∗

(0.0172) (0.0119) (0.0179) (0.0174) (0.0167)
Suburban 0.124∗∗∗ 0.0879∗∗∗ 0.125∗∗∗ 0.123∗∗∗ 0.135∗∗∗

(0.0294) (0.0230) (0.0296) (0.0292) (0.0297)
Urban 0.161∗∗∗ 0.125∗∗∗ 0.161∗∗∗ 0.161∗∗∗ 0.156∗∗∗

(0.0330) (0.0274) (0.0329) (0.0331) (0.0330)
Industrial 0.0619∗∗∗ 0.0511∗∗∗ 0.0460∗∗ 0.0603∗∗∗ 0.0635∗∗∗

(0.0210) (0.0175) (0.0207) (0.0211) (0.0201)
Traffic 0.109∗∗∗ 0.160∗∗∗ 0.115∗∗∗ 0.109∗∗∗ 0.123∗∗∗

(0.0173) (0.0152) (0.0176) (0.0171) (0.0178)
Stone coal 0.0956∗∗∗

(0.0167)
Brown coal 0.189∗∗∗

(0.0275)
Distance to coal plant -0.0000755

(0.000285)
Av. GDP -0.0468∗

(0.0243)
Av. Income 0.0737

(0.0852)
Unemployment share 1.288∗∗∗

(0.374)
N 795 795 795 795 795 773
R2 0.069 0.254 0.568 0.285 0.254 0.286
Districts 107 107 107 107 107 105
Weather Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Coal plant in district No No No Yes No No
Distance to coal plant No No No No Yes No
State FE No No Yes No No No

Note: The table presents OLS model outcomes of regressing PM2.5 pollution on log(population density)
with varying combinations of control variables. Control variables included are: Distance of the pollutant
measurement station to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind
speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour, month), state &
year fixed effects, average district-level GDP, average income, share of green party voters, the unemployment
share, a categorical variable for the station area classification (rural [base category], suburban, urban), station
type (background [base category], traffic, industrial), distance to the most proximate coal plant, whether a
stone coal or a brown coal plant lies within the same district. Standard errors in parentheses are clustered
at labour market region - year level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.6: OLS with varying sets of controls (O3)

(1) (2) (3) (4) (5) (6)
log(pop density) -0.271∗∗∗ -0.177∗∗∗ -0.0854∗∗∗ -0.162∗∗∗ -0.143∗∗∗ -0.128∗∗∗

(0.00998) (0.00945) (0.00936) (0.00983) (0.00931) (0.00900)
Distance to CBD 0.00230∗∗∗ 0.00112∗∗∗ 0.00270∗∗∗ 0.00232∗∗∗ 0.00167∗∗∗

(0.000315) (0.000282) (0.000320) (0.000306) (0.000277)
Distance to Street 0.0522∗∗∗ 0.0305∗∗∗ 0.0496∗∗∗ 0.0503∗∗∗ 0.0532∗∗∗

(0.00727) (0.00702) (0.00722) (0.00724) (0.00707)
Suburban -0.139∗∗∗ -0.177∗∗∗ -0.134∗∗∗ -0.142∗∗∗ -0.144∗∗∗

(0.0117) (0.0127) (0.0117) (0.0116) (0.0115)
Urban -0.193∗∗∗ -0.254∗∗∗ -0.190∗∗∗ -0.204∗∗∗ -0.242∗∗∗

(0.0138) (0.0137) (0.0139) (0.0134) (0.0128)
Industrial -0.0754∗∗∗ -0.0715∗∗∗ -0.0580∗∗∗ -0.0699∗∗∗ -0.116∗∗∗

(0.0116) (0.0128) (0.0121) (0.0110) (0.0124)
Traffic -0.231∗∗∗ -0.265∗∗∗ -0.234∗∗∗ -0.230∗∗∗ -0.218∗∗∗

(0.0164) (0.0146) (0.0165) (0.0156) (0.0141)
Stone coal -0.0319∗∗

(0.0126)
Brown coal -0.157∗∗∗

(0.0312)
Distance to coal plant 0.00131∗∗∗

(0.000148)
Av. GDP -0.0155

(0.0138)
Av. Income -0.247∗∗∗

(0.0572)
Unemployment share 1.401∗∗∗

(0.157)
N 3776 3776 3776 3776 3776 3722
R2 0.260 0.445 0.553 0.450 0.460 0.507
Districts 248 248 248 248 248 247
Weather Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Coal plant in district No No No Yes No No
Distance to coal plant No No No No Yes No
State FE No No Yes No No No

Note: The table presents OLS model outcomes of regressing O3 pollution on log(population density) with
varying combinations of control variables. Control variables included are: Distance of the pollutant measure-
ment station to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind speed,
cloudiness, air pressure] and their interactions, time dummies (day of week, hour, month), state & year fixed
effects, average district-level GDP, average income, share of green party voters, the unemployment share, a
categorical variable for the station area classification (rural [base category], suburban, urban), station type
(background [base category], traffic, industrial), distance to the most proximate coal plant, whether a stone
coal or a brown coal plant lies within the same district. Standard errors in parentheses are clustered at
labour market region - year level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.7: OLS and IV regressions on municipality level

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log(pop density) 0.142∗∗∗ 0.132∗∗∗ 0.0337∗∗∗ 0.0525∗∗∗ -0.00285 0.0140 -0.0750∗∗∗ -0.0664∗∗∗

(0.0117) (0.0135) (0.00541) (0.00751) (0.00826) (0.0131) (0.00677) (0.00807)
Distance to CBD -0.00284∗∗∗ -0.00294∗∗∗ 0.00121∗∗∗ 0.00163∗∗∗ 0.000344 0.000344 0.00183∗∗∗ 0.00198∗∗∗

(0.000697) (0.000705) (0.000363) (0.000409) (0.000550) (0.000608) (0.000433) (0.000459)
Distance to Street -0.126∗∗∗ -0.128∗∗∗ -0.0441∗∗∗ -0.0461∗∗∗ -0.0150 -0.00222 0.0457∗∗∗ 0.0473∗∗∗

(0.0179) (0.0188) (0.00751) (0.00771) (0.0144) (0.0141) (0.0102) (0.0107)
Suburban 0.180∗∗∗ 0.180∗∗∗ 0.00961 -0.00511 0.120∗∗∗ 0.0980∗∗∗ -0.0731∗∗∗ -0.0718∗∗∗

(0.0260) (0.0278) (0.0127) (0.0138) (0.0300) (0.0307) (0.0169) (0.0177)
Urban 0.342∗∗∗ 0.365∗∗∗ 0.0814∗∗∗ 0.0493∗∗∗ 0.183∗∗∗ 0.143∗∗∗ -0.137∗∗∗ -0.152∗∗∗

(0.0367) (0.0400) (0.0153) (0.0181) (0.0330) (0.0376) (0.0208) (0.0226)
Industrial 0.101∗∗∗ 0.103∗∗∗ 0.138∗∗∗ 0.131∗∗∗ 0.0455∗∗ 0.0473∗∗ -0.0642∗∗∗ -0.0553∗∗∗

(0.0190) (0.0194) (0.0160) (0.0167) (0.0222) (0.0226) (0.0161) (0.0144)
Traffic 0.696∗∗∗ 0.701∗∗∗ 0.259∗∗∗ 0.259∗∗∗ 0.114∗∗∗ 0.115∗∗∗ -0.278∗∗∗ -0.278∗∗∗

(0.0167) (0.0173) (0.00854) (0.00879) (0.0152) (0.0149) (0.0215) (0.0219)
N 3070 2874 2644 2477 702 663 1947 1823
R2 0.759 0.760 0.469 0.461 0.222 0.188 0.426 0.428
Municipalities 291 269 269 249 107 99 248 231
First-Stage F-Statistic 151.5 150.6 86.45 123.0

Note: The table presents OLS and IV model outcomes of regressing the respective pollutant concentration
on municipality level on log(population density). Control variables included are: Distance of the pollutant
measurement station to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind
speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour, month), average
municipality-level GDP, average income, share of green party voters, the unemployment share, a categorical
variable for the station area classification (rural [base category], suburban, urban), station type (background
[base category], traffic, industrial), and whether the station lies within an environmental zone or not. The
instruments used are the combination of historical population from 1910 and soil characteristics. Standard
errors in parentheses are clustered at labour market region - year (OLS) and labour market region (IV) level.
Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.8: OLS regressions with Station-specific density in 1km and 5km Buffers

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
1km 5km 1km 5km 1km 5km 1km 5km

log(pop density) 0.0977∗∗∗ 0.175∗∗∗ 0.0268∗∗∗ 0.0407∗∗∗ 0.0375∗∗ 0.0174 -0.0453∗∗∗ -0.0842∗∗∗

(0.0133) (0.0228) (0.00710) (0.0131) (0.0143) (0.0155) (0.0106) (0.0149)
Distance to CBD -0.00577∗∗∗ -0.00192 0.00116 0.00171∗ 0.00116 0.00120 0.00245∗∗ 0.000575

(0.00180) (0.00177) (0.000762) (0.000942) (0.00112) (0.00113) (0.000958) (0.00100)
Distance to Street -0.0850∗ -0.127∗∗∗ -0.0204 -0.0348∗ 0.00756 -0.0158 0.00370 0.0323

(0.0436) (0.0351) (0.0175) (0.0195) (0.0266) (0.0307) (0.0230) (0.0230)
Suburban 0.121∗∗ 0.175∗∗∗ 0.00740 0.0395 0.107∗ 0.146∗∗ -0.0686∗ -0.0845∗∗

(0.0591) (0.0590) (0.0365) (0.0356) (0.0585) (0.0627) (0.0355) (0.0359)
Urban 0.215∗∗∗ 0.241∗∗∗ 0.0480 0.0741∗ 0.119∗ 0.191∗∗∗ -0.0981∗∗ -0.103∗∗

(0.0778) (0.0773) (0.0458) (0.0429) (0.0688) (0.0654) (0.0491) (0.0498)
Industrial 0.153∗∗∗ 0.105∗∗ 0.0839∗∗ 0.0811∗ 0.0670 0.0526 -0.0276 -0.0215

(0.0450) (0.0424) (0.0395) (0.0431) (0.0453) (0.0458) (0.0485) (0.0425)
Traffic 0.674∗∗∗ 0.669∗∗∗ 0.233∗∗∗ 0.231∗∗∗ 0.102∗∗∗ 0.105∗∗∗ -0.318∗∗∗ -0.328∗∗∗

(0.0369) (0.0358) (0.0214) (0.0203) (0.0367) (0.0374) (0.112) (0.0971)
N 382 392 322 331 130 132 243 253
R2 0.750 0.800 0.456 0.474 0.264 0.269 0.434 0.500
Districts 217 225 202 209 102 104 196 204

Note: The table presents OLS and IV model outcomes of regressing the respective pollutant concentration
on log(population density) with 2015 data. Circular buffers of 1 and 5 kilometres around a measuring station
were specified to capture population density within that buffer. Control variables included are: Distance of
the pollutant measurement station to the CBD, distance to a major street, weather variables [precipitation,
sunshine, wind speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour,
month), average municipality-level GDP, average income, share of green party voters, the unemployment
share, a categorical variable for the station area classification (rural [base category], suburban, urban), station
type (background [base category], traffic, industrial), and whether the station lies within an environmental
zone or not. Standard errors in parentheses are clustered at labour market region - year level. Statistical
significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.9: Alternative measures of density

Alternative population density Log of population Log of Employed per area

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Panel A: NO2 Regressions
log(Alt. density) 0.114∗∗∗ 0.100∗∗∗

(0.00596) (0.0233)
log(Population) 0.0967∗∗∗ 0.0891∗∗

(0.00801) (0.0369)
log(Empl. density) 0.213∗∗∗ 0.213∗∗∗

(0.00915) (0.0405)
N 5575 5273 5575 5273 5528 5226
R2 0.746 0.744 0.728 0.727 0.752 0.753
Districts 266 246 266 246 264 244
Panel B: PM10 Regressions
log(Alt. density) 0.0289∗∗∗ 0.0369∗∗∗

(0.00318) (0.0103)
log(Population) 0.0521∗∗∗ 0.0492∗∗∗

(0.00321) (0.0155)
log(Empl. density) 0.0377∗∗∗ 0.0597∗∗∗

(0.00530) (0.0202)
N 4648 4379 4648 4379 4601 4332
R2 0.469 0.462 0.491 0.487 0.460 0.452
Districts 242 224 242 224 240 222
Panel B: PM2.5 Regressions
log(Alt. density) 0.0135∗ 0.0157

(0.00770) (0.0233)
log(Population) 0.0519∗∗∗ 0.0440

(0.00779) (0.0319)
log(Empl. density) 0.00619 -0.00143

(0.0114) (0.0374)
N 795 743 795 743 774 722
R2 0.252 0.239 0.287 0.275 0.252 0.240
Districts 107 100 107 100 105 98
Panel B: O3 Regressions
log(Alt. density) -0.0775∗∗∗ -0.0572∗∗∗

(0.00432) (0.0143)
log(Population) -0.0688∗∗∗ -0.0532∗∗

(0.00551) (0.0239)
log(Empl. density) -0.132∗∗∗ -0.120∗∗∗

(0.00641) (0.0250)
N 3776 3568 3776 3568 3751 3543
R2 0.438 0.430 0.398 0.396 0.439 0.441
Districts 248 231 248 231 247 230

Note: The table presents OLS and IV model outcomes of regressing the respective pollutant concentration
on different measures of density. These are (in logs): population divided by district area (Alt. density);
population; and employment per square kilometre (Empl. density). Control variables included are: Distance
of the pollutant measurement station to the CBD, distance to a major street, weather variables [precipitation,
sunshine, wind speed, cloudiness, air pressure] and their interactions, time dummies (day of week, hour,
month), a categorical variable for the station area classification (rural [base category], suburban, urban),
station type (background [base category], traffic, industrial). The instruments used are a combination of
historical population from 1910 and soil characteristics. Standard errors in parentheses are clustered at
labour market region - year (OLS) and labour market region (IV) level. Statistical significance levels: ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Chapter 2. Population density and urban air quality 79

Table 2.E.10: Interacting population density with station type

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log(pop density) 0.251∗∗∗ 0.205∗∗∗ 0.0531∗∗∗ 0.0529∗ 0.0201 -0.0121 -0.165∗∗∗ -0.124∗∗∗

(0.0162) (0.0678) (0.00720) (0.0289) (0.0171) (0.0491) (0.00946) (0.0343)
Industrial*Density 0.116∗∗∗ 0.134 0.0364∗ 0.0295 0.0536∗ 0.0390 -0.164∗∗∗ -0.189∗∗∗

(0.0256) (0.0822) (0.0196) (0.0653) (0.0289) (0.0481) (0.0178) (0.0479)
Traffic*Density 0.0752∗∗∗ 0.115 0.0701∗∗∗ 0.0764∗∗ 0.0448 0.0920 -0.0352 -0.0746

(0.0228) (0.0766) (0.0114) (0.0353) (0.0338) (0.0798) (0.0324) (0.0775)
Distance to CBD -0.00317∗∗∗ -0.00384∗∗∗ 0.000868∗∗∗ 0.000590 0.00127∗ 0.000402 0.00228∗∗∗ 0.00283∗∗∗

(0.000446) (0.00147) (0.000296) (0.000891) (0.000662) (0.00149) (0.000310) (0.000967)
Distance to Street -0.106∗∗∗ -0.104∗∗∗ -0.0434∗∗∗ -0.0363∗ -0.0410∗∗ -0.0284 0.0529∗∗∗ 0.0517∗∗

(0.0111) (0.0367) (0.00635) (0.0187) (0.0171) (0.0437) (0.00727) (0.0242)
Suburban 0.294∗∗∗ 0.294∗∗∗ 0.0802∗∗∗ 0.0761∗∗∗ 0.132∗∗∗ 0.153∗∗ -0.147∗∗∗ -0.145∗∗∗

(0.0173) (0.0517) (0.00969) (0.0268) (0.0302) (0.0660) (0.0117) (0.0348)
Urban 0.457∗∗∗ 0.476∗∗∗ 0.147∗∗∗ 0.137∗∗∗ 0.170∗∗∗ 0.198∗∗∗ -0.197∗∗∗ -0.210∗∗∗

(0.0224) (0.0746) (0.0109) (0.0320) (0.0334) (0.0726) (0.0137) (0.0443)
Industrial -0.791∗∗∗ -0.925 -0.139 -0.0896 -0.339 -0.200 1.129∗∗∗ 1.324∗∗∗

(0.197) (0.631) (0.144) (0.475) (0.218) (0.376) (0.131) (0.364)
Traffic 0.0574 -0.257 -0.297∗∗∗ -0.343 -0.238 -0.607 0.0416 0.344

(0.180) (0.606) (0.0914) (0.280) (0.267) (0.646) (0.255) (0.613)
N 5575 5273 4648 4379 795 743 3776 3568
R2 0.756 0.755 0.478 0.474 0.257 0.242 0.450 0.444
Districts 266 246 242 224 107 100 248 231

Note: The table presents OLS and IV model outcomes of regressing the respective pollutant concentration
on log(population density). Control variables included are: Distance of the pollutant measurement station
to the CBD, distance to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness,
air pressure] and their interactions, time dummies (day of week, hour, month), a categorical variable for
the station area classification (rural [base category], suburban, urban), station type (background [base
category], traffic, industrial). The instruments used are a combination of historical population from 1910
and soil characteristics. Standard errors in parentheses are clustered at labour market region - year (OLS)
and labour market region (IV) level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.E.11: Comparison of satellite data outcomes with station data results

NO2 PM2.5

(1) (2) (3) (4) (5) (6)
Station means Sat. grid Sat. distr. Station means Sat. grid Sat. distr.

log(pop density) 0.559∗∗∗ 0.391∗∗∗ 0.396∗∗∗ 0.0724∗∗∗ 0.0983∗∗∗ 0.127∗∗∗

(0.0209) (0.0211) (0.0203) (0.00989) (0.0108) (0.00865)
N 3631 3631 2565 779 779 647
R2 0.343 0.240 0.245 0.261 0.265 0.477
Districts 268 268 268 109 109 109
Fixed Effects No No No No No No

Note: The table shows the effect of log(population density) on the respective pollutant (NO2 and PM10)
using OLS with 1. satellite data and 2. monitoring station data. The samples are aligned such that only
districts/grid cells are included that contain at least one monitoring station. Columns 1 and 4 show baseline
regressions with observations of monitoring stations demeaned over districts. Columns 2 and 5: Satellite
grid level regressions. Columns 3 and 6: Regressions with satellite observations demeaned over district.
Standard errors in parentheses are clustered at labour market region - year level. Statistical significance
levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.12: Mechanisms and sample comparison (NO2)

Pub. Transport Cars Branches Green Space LEZ Green Voters Houses

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Regressions including mechanism variable
log(pop density) 0.379∗∗∗ 0.212∗∗∗ 0.398∗∗∗ 0.319∗∗∗ 0.305∗∗∗ 0.268∗∗∗ 0.300∗∗∗ 0.247∗∗∗

(0.0337) (0.0139) (0.0225) (0.0146) (0.0139) (0.0143) (0.0149) (0.0177)
log(Nr. of transit users) -0.0430∗∗∗

(0.00912)
log(Nr. of cars) 0.0424∗∗∗

(0.00809)
Share Empl. Production 0.761∗∗

(0.347)
Share Empl. Manuf. 0.0598

(0.343)
Share Empl. Construction -0.974∗∗∗

(0.337)
Share Empl. Agric. 4.937∗∗∗

(0.657)
Share Empl. Finance -0.563∗∗∗

(0.120)
Share Empl. Public -1.314∗∗∗

(0.0792)
Share Empl. Trade 0.382∗∗∗

(0.127)
Green Space -0.00204∗∗∗

(0.000219)
Env. Zone (red) 0.134∗∗∗

(0.0242)
Env. Zone (yellow) 0.0711∗∗

(0.0327)
Env. Zone (greem) 0.0957∗∗∗

(0.0261)
Green Voters 0.399∗∗

(0.170)
log(Nr. of houses) 0.0388∗∗∗

(0.00909)
N 1554 5405 5528 5528 3583 5575 4965 3219
R2 0.783 0.755 0.769 0.775 0.768 0.757 0.753 0.772
Districts 143 264 264 264 253 266 263 251
Basic Controls Yes Yes Yes Yes Yes Yes Yes Yes
Panel B: Regression without mechanism variables
log(pop density) 0.257∗∗∗ 0.258∗∗∗ 0.282∗∗∗ 0.282∗∗∗ 0.271∗∗∗ 0.280∗∗∗ 0.321∗∗∗ 0.275∗∗∗

(0.0245) (0.0144) (0.0143) (0.0143) (0.0169) (0.0141) (0.0126) (0.0175)
N 1554 5405 5528 5528 3583 5575 4965 3219
R2 0.776 0.753 0.755 0.755 0.764 0.755 0.752 0.770
Districts 143 264 251 264 253 266 263 251
Basic Controls Yes Yes Yes Yes Yes Yes Yes Yes

Note: The table shows the effect of log(population density) on NO2 with varying sets of control variables
using OLS. Panel A contains the regression results of main interest. Panel B shows the corresponding
outcome with the same sample composition as Panel A, but without adding the respective set of controls.
All regressions include the following basic controls: Distance of the pollutant measurement station to the
CBD, distance to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness, air
pressure] and their interactions, time dummies (day of week, hour, month), a categorical variable for the
station area classification (rural [base category], suburban, urban), and station type (background [base
category], traffic, industrial). Standard errors in parentheses are clustered at labour market region - year
level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.13: Mechanisms and sample comparison (PM10)

Pub. Transport Cars Branches Green Space LEZ Green Voters Houses

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Regressions including mechanism variable
log(pop density) 0.0545∗∗∗ 0.0213∗∗ 0.145∗∗∗ 0.0632∗∗∗ 0.0584∗∗∗ 0.0697∗∗∗ 0.122∗∗∗ 0.0397∗∗∗

(0.0203) (0.00847) (0.0121) (0.00949) (0.00926) (0.00686) (0.00930) (0.00954)
log(Nr. of transit users) -0.00454

(0.00605)
log(Nr. of cars) 0.0476∗∗∗

(0.00434)
Share Empl. Production 0.313

(0.299)
Share Empl. Manuf. -0.440

(0.296)
Share Empl. Construction 2.073∗∗∗

(0.220)
Share Empl. Agric. 0.647∗

(0.351)
Share Empl. Finance 0.0201

(0.0880)
Share Empl. Public -0.0782

(0.0602)
Share Empl. Trade 0.427∗∗∗

(0.0944)
Green Space 0.000961∗∗∗

(0.000197)
Env. Zone (red) 0.0814∗∗∗

(0.0200)
Env. Zone (yellow) 0.0621∗∗∗

(0.0213)
Env. Zone (greem) -0.00318

(0.0184)
Green Voters -1.374∗∗∗

(0.110)
log(Nr. of houses) 0.0454∗∗∗

(0.00582)
N 1317 4507 4601 4601 3069 4648 4195 2775
R2 0.489 0.492 0.494 0.477 0.481 0.478 0.484 0.500
Districts 138 242 240 240 239 242 240 236
Basic Controls Yes Yes Yes Yes Yes Yes Yes Yes
Panel B: Regression without mechanism variables
log(pop density) 0.0418∗∗∗ 0.0704∗∗∗ 0.0744∗∗∗ 0.0744∗∗∗ 0.0717∗∗∗ 0.0749∗∗∗ 0.0562∗∗∗ 0.0705∗∗∗

(0.0145) (0.00732) (0.00692) (0.00692) (0.00897) (0.00691) (0.00822) (0.00937)
N 1317 4507 4601 4601 3069 4648 4195 2775
R2 0.488 0.473 0.472 0.472 0.475 0.474 0.456 0.483
Districts 138 242 236 240 239 242 240 236
Basic Controls Yes Yes Yes Yes Yes Yes Yes Yes

Note: The table shows the effect of log(population density) on PM10 with varying sets of control variables
using OLS. Panel A contains the regression results of main interest. Panel B shows the corresponding
outcome with the same sample composition as Panel A, but without adding the respective set of controls.
All regressions include the following basic controls: Distance of the pollutant measurement station to the
CBD, distance to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness, air
pressure] and their interactions, time dummies (day of week, hour, month), a categorical variable for the
station area classification (rural [base category], suburban, urban), and station type (background [base
category], traffic, industrial). Standard errors in parentheses are clustered at labour market region - year
level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



82 2.E. Additional tables and figures

Table 2.E.14: Mechanisms and sample comparison (PM2.5)

Pub. Transport Cars Branches Green Space LEZ Green Voters Houses

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Regressions including mechanism variable
log(pop density) -0.0318 -0.0106 0.0634∗∗ -0.0355∗ 0.0223 0.0101 0.0839∗∗∗ 0.0228

(0.0294) (0.0187) (0.0267) (0.0200) (0.0165) (0.0163) (0.0179) (0.0181)
log(Nr. of transit users) 0.00729

(0.00925)
log(Nr. of cars) 0.0533∗∗∗

(0.00997)
Share Empl. Production 0.00941

(0.868)
Share Empl. Manuf. -0.174

(0.860)
Share Empl. Construction 2.070∗∗∗

(0.445)
Share Empl. Agric. -1.208∗

(0.686)
Share Empl. Finance 0.937∗∗∗

(0.197)
Share Empl. Public -0.335∗∗∗

(0.107)
Share Empl. Trade 0.388∗∗

(0.160)
Green Space 0.00183∗∗∗

(0.000491)
Env. Zone (red) 0.188∗∗∗

(0.0417)
Env. Zone (yellow) 0.104∗∗∗

(0.0283)
Env. Zone (greem) 0.0307

(0.0277)
Green Voters -1.608∗∗∗

(0.221)
log(Nr. of houses) 0.0362∗∗∗

(0.0107)
N 377 786 774 774 749 795 741 713
R2 0.330 0.291 0.279 0.300 0.282 0.281 0.292 0.284
Districts 62 107 105 105 107 107 106 107
Basic Controls Yes Yes Yes Yes Yes Yes Yes Yes
Panel B: Regression without mechanism variables
log(pop density) -0.0148 0.0317∗ 0.0315∗ 0.0315∗ 0.0343∗∗ 0.0353∗∗ 0.0206 0.0421∗∗

(0.0218) (0.0162) (0.0162) (0.0162) (0.0163) (0.0161) (0.0162) (0.0167)
N 377 786 774 774 749 795 741 713
R2 0.328 0.261 0.256 0.256 0.267 0.254 0.244 0.271
Districts 62 107 107 105 107 107 106 107
Basic Controls Yes Yes Yes Yes Yes Yes Yes Yes

Note: The table shows the effect of log(population density) on PM2.5 with varying sets of control variables
using OLS. Panel A contains the regression results of main interest. Panel B shows the corresponding
outcome with the same sample composition as Panel A, but without adding the respective set of controls.
All regressions include the following basic controls: Distance of the pollutant measurement station to the
CBD, distance to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness, air
pressure] and their interactions, time dummies (day of week, hour, month), a categorical variable for the
station area classification (rural [base category], suburban, urban), and station type (background [base
category], traffic, industrial). Standard errors in parentheses are clustered at labour market region - year
level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.15: Mechanisms and sample comparison (O3)

Pub. Transport Cars Branches Green Space LEZ Green Voters Houses

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Regressions including mechanism variable
log(pop density) -0.200∗∗∗ -0.132∗∗∗ -0.232∗∗∗ -0.202∗∗∗ -0.171∗∗∗ -0.177∗∗∗ -0.156∗∗∗ -0.140∗∗∗

(0.0220) (0.0108) (0.0156) (0.00977) (0.00999) (0.00957) (0.0128) (0.0118)
log(Nr. of transit users) 0.0163∗∗∗

(0.00548)
log(Nr. of cars) -0.0351∗∗∗

(0.00678)
Share Empl. Production -1.340∗∗∗

(0.396)
Share Empl. Manuf. 0.601

(0.401)
Share Empl. Construction 1.563∗∗∗

(0.257)
Share Empl. Agric. -3.026∗∗∗

(0.406)
Share Empl. Finance 0.430∗∗∗

(0.108)
Share Empl. Public 1.174∗∗∗

(0.0707)
Share Empl. Trade -0.621∗∗∗

(0.105)
Green Space 0.00131∗∗∗

(0.000169)
Env. Zone (red) -0.0845∗∗∗

(0.0208)
Env. Zone (yellow) -0.0350

(0.0303)
Env. Zone (greem) 0.0635∗∗

(0.0272)
Green Voters -0.715∗∗∗

(0.143)
log(Nr. of houses) -0.0256∗∗∗

(0.00772)
N 877 3632 3751 3751 2334 3776 3473 2099
R2 0.473 0.449 0.486 0.512 0.463 0.447 0.452 0.474
Districts 123 247 247 247 232 248 246 232
Basic Controls Yes Yes Yes Yes Yes Yes Yes Yes
Panel B: Regression without mechanism variables
log(pop density) -0.156∗∗∗ -0.163∗∗∗ -0.177∗∗∗ -0.177∗∗∗ -0.155∗∗∗ -0.177∗∗∗ -0.190∗∗∗ -0.155∗∗∗

(0.0176) (0.00948) (0.00944) (0.00944) (0.0102) (0.00945) (0.0107) (0.0108)
N 877 3632 3751 3751 2334 3776 3473 2099
R2 0.467 0.443 0.446 0.446 0.456 0.445 0.447 0.470
Districts 123 247 232 247 232 248 246 232
Basic Controls Yes Yes Yes Yes Yes Yes Yes Yes

Note: The table shows the effect of log(population density) on O3 with varying sets of control variables using
OLS. Panel A contains the regression results of main interest. Panel B shows the corresponding outcome
with the same sample composition as Panel A, but without adding the respective set of controls. All
regressions include the following basic controls: Distance of the pollutant measurement station to the CBD,
distance to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness, air pressure]
and their interactions, time dummies (day of week, hour, month), a categorical variable for the station area
classification (rural [base category], suburban, urban), and station type (background [base category], traffic,
industrial). Standard errors in parentheses are clustered at labour market region - year level. Statistical
significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.E.16: Annual and daily/hourly transgression probabilities (Probit)

NO2 PM10 PM2.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Probit Probit Hist. IV Probit Soil IV Probit Probit Hist. IV Probit Soil IV Probit Probit Hist. IV Probit Soil IV

Panel A: Annual threshold transgressions
log(pop density) 1.477∗∗∗ 1.228∗∗∗ 1.818∗∗∗ 0.476∗∗∗ 0.644∗∗∗ 0.383∗ -0.314 -0.624 -0.652

(0.218) (0.252) (0.281) (0.104) (0.125) (0.213) (0.243) (0.435) (0.616)
N 5663 5383 5635 4812 4560 4786 702 651 695
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Districts 269 269 269 247 247 247 109 109 109
Marginal Effects 0.2006 0.2532 0.1456 0.0948 0.0348 0.1064 -0.0162 -0.0051 -0.0034
Panel B: Transgressing daily/hourly thresholds specific nr. of days

NO2 PM10 PM2.5

> 17 (days) > 14 > 9 > 34 > 29 > 24 > 34 > 29 > 24

log(pop density) 1.141∗∗∗ 1.219∗∗∗ 1.183∗∗∗ 0.373∗∗∗ 0.381∗∗∗ 0.280∗∗ -0.124 -0.0140 -0.00827
N 2125 2125 2125 4812 4812 4812 795 791 791
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Districts 269 269 269 247 247 247 109 109 109
Marginal Effects 0.0528 0.0588 0.0788 0.0510 0.0656 0.0587 -0.0312 -0.0031 -0.0014

Note: The table presents outcomes of the effect of log(population density) on two outcomes on district level.
In Panel A, the dependent variable is a dummy variable indicating whether the annual threshold value was
transgressed. In Panel B the dependent variable is a dummy variable indicating whether the daily threshold
value was transgressed on a pre-specified number of days. The respective thresholds for Panel A are: 40
µg/m3 for NO2, 10 µg/m3 for PM2.5, and 20 µg/m3 for PM10. The respective thresholds in Panel B are:
200 µg/m3 for NO2, 25 µg/m3 for PM2.5, and 50 µg/m3 for PM10. The number of days (e.g. 17, 14, and 9
for NO2) lie just below the number of daily exceedances allowed by the EU, which are 18 for NO2 and 35 for
PM10. The regressions are performed using Probit Models and in the case of annual transgressions also Probit
IV. Control variables included are: Distance of the pollutant measurement station to the CBD, distance
to a major street, weather variables [precipitation, sunshine, wind speed, cloudiness, air pressure] and their
interactions, a categorical variable for the station area classification (rural [base category], suburban, urban),
and station type (background [base category], traffic, industrial). The instruments used are a combination
of historical population from 1910 and soil characteristics. Standard errors in parentheses are clustered at
labour market region level. Statistical significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Chapter 3

Urban pollution: A global

perspective1

Abstract

We use worldwide satellite data to analyse how population size and density affect urban

pollution. We find that density significantly increases pollution exposure. Looking only at

urban areas, we find that population size affects exposure more than density. Moreover,

the effect is driven mostly by population commuting to core cities rather than the core city

population itself. We analyse heterogeneity by geography and income levels. By and large,

the influence of population on pollution is greatest in Asia and middle-income countries.

A counterfactual simulation shows that PM2.5 exposure would fall by up to 36% and NO2

exposure up to 53% if within countries population size were equalized across all cities.

1Co-authored with Rainald Borck.
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3.1 Introduction

Pollution is an important determinant of urban quality of life. Households have flocked to

cities over the last centuries and decades, attracted by various agglomeration economies,

such as higher productivity and wages. However, city life has been and still is, to different

extents, plagued by agglomeration costs stemming from crime, congestion, and pollution.

Besides, urbanization and environmental degradation are not evenly spread throughout the

world. While developed countries were already more than 50% urbanized by 1950, this

threshold has been reached by less developed countries only in 2020.2 Accordingly, the bulk

of the recent and imminent increase in world urbanization will occur in developing regions.

This is also where urban air pollution is most severe. For example, taking the average

PM2.5 concentration value from the WHO air quality database from 2022,3 20 of the 25

dirtiest cities were located in India, China, Bangladesh or Pakistan, with the remaining in

Cameroon, Iran, Mongolia, Madagascar and Afghanistan. Hence, the relationship between

agglomeration and pollution is also a question of socio-economic development. Reigning

in pollution, especially in large cities, will be important as developing countries thrive to

improve their citizens’ well-being. Yet, while there is an extensive literature on the benefits

of agglomeration economies, there is much less research on the corresponding costs (Ahlfeldt

and Pietrostefani, 2019).

In this paper, we contribute to filling this gap. We use global gridded data on air pollution

and population to analyse how agglomeration, in the form of large and densely populated

cities, affects exposure to PM2.5 and NO2 pollution.

In theory, population density might increase or decrease pollution concentration in cities.

Borck and Schrauth (2021) present a model where residents of a monocentric city pollute

due to commuting and residential energy use for heating, electricity, etc. They show that

population density increases pollution concentration. The reason is that larger and more

densely populated cities have more aggregate commuting and that residential energy use

increases as well, even though residents live in smaller dwellings on average.4 However,

2See United Nations (UN) Urbanization Prospects, https://population.un.org/wup/.
3See WHO Air Quality Database from April, 2022, https://www.who.int/data/gho/data/themes/air-

pollution/who-air-quality-database.
4In the model, total pollution increases more than urban area, implying higher pollution concentrations.

https://population.un.org/wup/
https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database
https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database
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there are some countervailing forces. For instance, public transit is more viable in large and

densely populated cities due to economies of density, and denser housing is more energy

efficient. Therefore, the relation between density and pollution is theoretically ambiguous.

Similar opposing forces determine whether cities with larger total population (as opposed

to density) are more polluted (see Borck and Pflüger, 2019; Borck and Tabuchi, 2019).

Further, the relation between population density and pollution is likely to depend on many

factors that vary between regions, such as geography, institutions (environmental policies)

etc. Therefore, an interesting question that we look at is how pollution and its relation with

density varies between regions with different characteristics.

We use 11-16 years (depending on the pollutant) of gridded satellite data to document the

distribution of pollution over space and time. There are several main findings. First, we

show that about 3/4 of the world population and about 79 percent of city dwellers live in

places with particulate pollution above thresholds as recommended by the WHO. Thus it

seems that pollution is especially severe in cities. We go on to estimate the elasticity of

pollution with respect to population density for PM2.5 and NO2. Using OLS regressions

with country fixed effects, we find elasticities of 0.15-0.16 for NO2 and 0.02-0.03 for PM2.5.

To tackle concerns of reverse causality and omitted variables, we also instrument population

density using historical populations from different periods in time. Doing so has only a very

small effect on the estimated elasticities.

We present our results using both grid cells and cities (Functional Urban Areas, FUAs)

as units of observation. Examining cities allows us to explicitly differentiate between the

different effects of agglomeration size versus population density on exposure. For cities, we

find that population size seems to be more important than density. Furthermore, using

the definition of FUAs allows us to differentiate between the core city and its surrounding

commuting zone. In fact, it turns out that pollution exposure is not significantly affected by

core city population, but does rise significantly with population living in FUAs’ commuting

zone.

Moreover, we study how the pollution-density relationship varies over continents and by

income. For the rasterized global data, we find that the pollution-density relation is strongest

in middle income countries and in Asia. For the city data, population/density affect pollution
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most in upper middle and high income countries as well as in Europe and North America.

We also present outcomes on a more local level by estimating the effect of within-city vari-

ations in density. Again, we find positive effects of density on exposure, but the effects are

mostly smaller in size. Additionally, we estimate spatial first difference regressions, where

the estimated elasticities are based on changes between neighbouring grid cells (Drucken-

miller and Hsiang, 2018). The corresponding coefficient estimates turn out to be positive,

but again smaller in size.

Lastly, we perform a simple counterfactual simulation. Using the exposure–population elasti-

city from our city analysis, estimated separately for each country, we ask how each country’s

total exposure would be affected by an equal redistribution of population across cities. We

find that for PM2.5, exposure falls by 36.5% for the country with the largest drop (Indonesia),

which has a large estimated elasticity. Conversely, there are some countries with negative

elasticities, so exposure would rise in this counterfactual by a maximum of 22.5% in Senegal.

The study contributes to a small but growing economic literature on urban pollution gen-

erally, and on the relation between agglomeration and pollution in particular. Empirical

papers in fields other than economics have largely been confined to cross-sectional studies.5

However, omitted variables and reverse causality are difficult to tackle in these settings.

Among the few serious efforts to identify the causal effect of population density on pollution

are Borck and Schrauth (2021) and Carozzi and Roth (2020). Borck and Schrauth (2021) use

panel data from German districts, while Carozzi and Roth (2020) use cross-sectional data

from US metropolitan areas. Both papers instrument density with a variety of historical

and geological instruments. Castells-Quintana et al. (2021) and Aldeco et al. (2019) also

study global pollution. Aldeco et al. (2019) focus on studying the effect of various policies

using a spatial equilibrium model. Castells-Quintana et al. (2021) is also closely related

to our paper, but there are several differences. They study emissions in a global panel of

cities, while we analyse exposure in both cities and raster cells, which allows for a truly

global analysis and lets us study the urban-rural pollution gradient in addition to cross-city

differences. Moreover, we do a variety of heterogeneity analyses, and instead of emissions,

we look at pollution exposure which is more tightly linked to local welfare.

5See, e.g. Sarzynski (2012) and Lamsal et al. (2013). See also Borck and Schrauth (2021) for further
references.
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The paper is organized as follows. The next section presents our data, descriptive analyses

and empirical approach. Section 3.3 shows the results. In Section 3.4, we simulate how

total exposure would change if, within countries, we were to redistribute population equally

among all cities. The last section concludes the paper.

3.2 Data and estimation

3.2.1 Data

Most data sets we use are derived from satellites and are provided as a grid of raster cells

covering the entire world. Those rasterized grid maps come in different resolutions, mostly

between 0.01 and 0.25 decimal degrees. We transform all data to 0.25 degree raster cells,

which is a compromise between the different levels of aggregation of the native data and

moreover alleviates concerns about auto-correlation at finer scales. At the equator, a quarter

degree grid corresponds to 27.8 kilometres into one direction or roughly 775 square kilometres

overall.6 For our analyses, we use the years 2000, 2010 and 2015. In the following, the

different data sets are described in more detail.7

3.2.1.1 Units of observation

In the analyses we use two types of observational units. The first are grid cells spanning the

globe. The second are Functional Urban Areas (FUAs) as defined by Moreno-Monroy et al.

(2020). These FUAs are cities and their surrounding areas with strong internal commuting

links. We view these two data sets as providing complementary results. Hence, defining

cities gets us closer to measuring activity in economically meaningful areas. Conversely,

using all grid cells – even very thinly populated ones – allows us to measure an urban-rural

gradient of pollution. Thus, our paper differs from and complements other papers that have

mostly studied cities only (e.g. Carozzi and Roth, 2020; Castells-Quintana et al., 2021).8

6Moving away from the equator means that equally sized grids cover smaller areas due to the curvature
of the earth. At the 45th degree of latitude for example, which crosses South Dakota, Mongolia, France and
Italy, 0.01 decimal degrees are equal to 787.1 meters in one direction. The value approaches zero at the
poles. Most of human activity takes place between the 50th parallel south and the 60th parallel north.

7The NO2 data is only available from the years 2000 to 2012, of which we use the years 2000 and 2010.
The PM2.5 data is available until 2015.

8Castells-Quintana et al. (2021) also look at the effect of density and polycentricity on pollution at the
country level.
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Raster data. The first units of observations in our analysis are grid cells of a rasterized

world map. The majority of the data we use is provided as raster maps, which then can

be matched to each other geographically. The advantage of looking at grid cells is that

we abstract from defining cities or urban areas and that there is an increasing database of

worldwide data covering a wide range of topics. In addition, it will allow us to measure an

urban-rural pollution gradient since observations take into account any type of inhabited

land and do not depend on city definitions. We use grids of 0.25 decimal degrees and

aggregate all the other raster maps to this size. This leaves us with more than 240,000

cells that fall on land to which we make some minor adjustments.9 The chosen grid size is

a compromise between data that is available at relatively fine grid scale, and data that is

available at coarser levels only. It also mitigates concerns about spatial auto correlations.10

Cities. There are several reasons why we want to define city delineations. First, de-

fining cities allows us to distinguish between city size and density. In a grid with equally

sized grid cells, density would be strictly proportional to population. While basic urban

economic theory also predicts a positive relation between population size and density (e.g.

Brueckner (1987)), in practice the two vary independently, for instance, due to differences in

zoning policies across cities. Since different agglomeration economies and diseconomies may

operate at different spatial scales, population size and density might then affect pollution

differently (Ahlfeldt and Pietrostefani, 2019; Cheshire and Magrini, 2008). Second, some of

the PM2.5 pollution stems from sources not directly attributable to daily human activities

such as volcanoes or wildfires (see e.g. NASA Earth Observatory (2015)). While this may be

interesting in its own right (if it leads to rural areas being dirtier than they would otherwise

be), abstracting from these types of events by focusing on urban areas allows us to concen-

trate on the effect of human activity in cities on pollution. Third, we can conduct between

city analyses to supplement the rural-urban gradient. This type of city size effect helps us

connect the empirical analysis with theoretical considerations about optimal city size (see

9We drop grid cells which cannot be assigned unambiguously to one single country. As a consequence,
about 21,400 grid cells that lie at country borders are dropped from the sample. Furthermore, we harmonize
the country composition of our city and grid cell samples. Thus, all countries which do not contain at least
one Functional Urban Area are dropped.

10For variables available at higher grid resolutions, e.g. 0.1 decimal degrees, we re-project the data to 1
4

degrees using an appropriate function: For continuous variables, we calculate either the mean of all smaller
grids within the respective quarter degree grid (pollution exposure for example is mean exposure within a
quarter degree grid) or sum the values of these finely scaled grids, as appropriate. For categorical variables
we take the modal value within a quarter degree grid.
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e.g. Borck and Tabuchi (2019)). Fourth, we can detect within city differences. Thus, we

can study whether there is a core-periphery gradient of pollution exposure within cities and

we can compare it to between-city effects or the urban-rural gradient of pollution exposure.

Lastly, our historical population instruments consist of geo-coded city locations. Directly

instrumenting urban areas rather than grid cells thus seems more adequate.

We define cities as FUAs following Moreno-Monroy et al. (2020).11 They use population

and travel time data in 2015 to determine unique urban centres and their commuting zones.

Thus, our city definitions do not vary over time. A FUA consists of an urban core with at

least 50,000 inhabitants and the surrounding commuting zone, which is constructed using

travel times. FUAs were originally defined by the Organisation for Economic Co-operation

and Development (OECD) for OECD countries and Colombia. Moreno-Monroy et al. (2020)

use those OECD-defined FUAs to estimate city boundaries for the rest of the world.

Figure 3.1 shows our two main units of analysis and the population distribution as provided

by LandScan for the north-eastern USA. More precisely, the figure visualizes the New York,

Philadelphia, Baltimore and Washington, D.C. area and the area’s FUAs. Grid-cell analyses

consider all the non-white grid cells that fall on land. Densely populated city cores are shown

in red, and less dense suburbs and rural areas are shown in yellow and blue. The greyish

transparent polygons overlaying the population grids depict the resulting FUAs.

Overall, there are 9,031 FUAs in 188 countries and about 245,000 grid cells in 185 coun-

tries. Since the main part of analyses contains within-country effects, we mostly restrict the

samples such that very small countries with very few raster cells or cities are dropped.

3.2.1.2 Air pollution data

The most direct measure of ground-level pollution concentration would be measurements

from in-situ monitors. However, these are not widely available, especially in many lower

income countries. Even among wealthy nations, only selected areas contain monitoring

stations. To get coverage of world wide pollution we use satellite data, which captures air

11The geo-package with the FUA shapefile is publicly available at ht-
tps://ghsl.jrc.ec.europa.eu/download.php.

https://ghsl.jrc.ec.europa.eu/download.php
https://ghsl.jrc.ec.europa.eu/download.php
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Figure 3.1: Grid-cell units, Functional Urban Areas and LandScan population. New York,
Philadelphia, Washington D.C.

Note: The graph depicts a small section of the entire sample. White areas are water surfaces (lakes and
oceans) that are excluded from estimations. The overlying grid squares correspond to the raster units, while
the greyish transparent polygons show single FUAs. Within both observational units, LandScan population
data are shown in different colour gradations. Blue indicates very low population density and red indicates
very high population density.

pollution concentration as vertical column densities in the troposphere. For ground-level

observations, we resort to data sets that use chemical transport models to translate satellite

measures into ground-level pollution.12 The data products are annual means of dust and

sea-salt removed PM2.5 from 2000 until 2015 at 0.01x0.01 decimal degree (dd) resolution and

annual means of NO2 without corrections from 2000 until 2010 at 0.1x0.1 dd resolution.13

For most of our analysis, we use the data that are weighted using Geographically Weighted

12See Hammer et al. (2020) and Van Donkelaar et al. (2016) for PM2.5 and Lamsal et al. (2008) for NO2.
This data is available online (Atmospheric Composition Analysis Group, 2018).

13Satellite measurements of pollution are captured between 8:30 a.m. and 11:00 a.m. local time, depend-
ing on the satellite. The cell size means that a raster contains about one square kilometre at the equator
compared to the 120 km2 NO2 raster cells.
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Regression (GWR), but outcomes are not sensitive to using the non-weighted data.14

This native data serves to construct our pollution measure of interest, which is pollution

exposure (see e.g. Carozzi and Roth (2020) or Aldeco et al. (2019)). Population-weighted

pollution exposure E in grid cell G is then given by:

EG =
∑
i∈G

PG,i ×
NG,i∑
j∈GNG,j

,

where i indexes small grid cells within a large grid cell G.15 Average pollution concentration

in cell i is given by PG,i and population in i is represented byNG,i. Average pollution exposure

is therefore the sum of grid-specific pollution exposure divided by overall population in a

large unit G. We also repeat the analysis with our FUA dataset, where G represents a city

instead of a raster cell.

3.2.1.3 Population density

Present population and density. For measures of population and population density,

we use LandScan data (LandScan, 2018). Population in this data set is provided on a very

fine spatial scale (30 arc-seconds)16, obtained from censuses and other sources worldwide.

The data aims to show where people are located on average over the course of 24 hours.

Thus, it includes place of residence and of work in its estimations.17 However, there is

no information about how exactly the information is implemented in the population grid

estimates. Henderson et al. (2021) provide a “ground-truthing” exercise and conclude that

LandScan data perform well and are suitable for analyses on a global scale.18

14GWR uses in-situ (on the ground) monitors to detect regional biases of satellite optical depth meas-
urements. This bias is estimated and then corrected using different predictors like land cover or elevation
difference (Van Donkelaar et al., 2015). The advantage of GWR is the more accurate representation of
ground-level PM2.5.

15For example, a PM2.5 observation in a cell of 0.01x0.01 dd within a larger grid cell that spans over
0.25x0.25 dd.

1630 arc seconds correspond to a little less than 0.01x0.01 dd, which is about 1km at the equator.
17By contrast, other data sets distribute population obtained from administrative sources equally in

space or use buildings as a proxy for where people live without distinguishing whether those buildings are
commercial or residential ones.

18This finding is confirmed by Galdo et al. (2019) who use machine learning combined with human
judgment to identify urban areas in India and compare their outcomes with LandScan data.
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Historical population measures. We also instrument population or density using his-

torical population data, following a large literature in urban and regional economics since

Ciccone and Hall (1996).

The data comes from Reba et al. (2016), who provide geo-referenced population data world-

wide ranging from 3700 B.C. to 2000 A.D. using historical, archaeological, and census-based

estimates. This data set comprises about 1500 settlements worldwide. We use it to construct

two different instruments. The main instrument will be the population in 1900. This is the

year with most observations in the historic population sample prior to 1914 and represents

the population in industrialized times before the two world wars. The second instrument is

population in the last year of observation before 1750, and thus in pre-industrialized times.

In Section 3.2.3 below, we will come back to the issue of instrument relevance and exogeneity.

In the raster analysis, we assign historical population to single grid cells. Thus, each grid cell

is instrumented with the historical population data of the settlement that lies within this grid

cell. Some grid cells contain several data points. In this case, we sum up the population over

these data points. The drawback of instrumenting with historical population counts is that

the estimation sample is drastically reduced and that there is a concentration of settlements

in economically developed countries. Since using those instruments therefore deprives us

of much valuable information, we mainly present the IV results in order to compare them

with OLS outcomes on a harmonized sample. For most of this study, we will concentrate on

within-country OLS estimates.

3.2.1.4 Controls

We use a number of variables in order to control for potential observable factors that may be

correlated with population density and pollution. Income is an obvious candidate variable

that correlates with population density (Combes and Gobillon, 2015) and affects pollution.

To control for economic development, we therefore use GDP from the dataset provided by

Kummu et al. (2018). It is based on subnational accounts, like states in the U.S. or districts

in Germany. In some specifications we control for the presence of coal-fired and other highly

polluting power plants in a grid cell.19 Since power plants may be close to dense areas, this

may be one channel through which density affects pollution.

19The data is available at https://datasets.wri.org/dataset/globalpowerplantdatabase.

https://datasets.wri.org/dataset/globalpowerplantdatabase
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We also control for a variety of topological and climatological variables that may be cor-

related with density and pollution, such as ruggedness, temperature, wind speed, and pre-

cipitation. We compute ruggedness following Nunn and Puga (2012), which is roughly the

grid-cell average difference in elevation between a point and the terrain surrounding it. Our

ruggedness measure is calculated over land surface only, leaving out water.20 Temperature

and precipitation are taken as long-run averages over the 30 year period between 1960 and

1990 (FAO/IIASA, 2012). Wind data is retrieved from the global wind atlas (Davis et al.,

2019).

In addition to weather, we control for variables that might influence pollution through their

suitability for trade on the one hand and through their climatological impact on the other.

These controls consist of three dummy variables (whether a major river, a large lake, or a

coastline is within 25 kilometres of a grid centroid) and a continuous variable (distance of

grid centroid to coast). In our city-level analysis, we measure the distance of a city border

to the respective first nature characteristic. Data for coastlines, rivers and lakes come from

Natural Earth (2018).21

Moreover, we control for the agricultural suitability of a raster cell or city (compare Hender-

son et al., 2018). Locations that are densely populated due to their fertile soil may also suffer

from high pollution, since agriculture is a strong producer of particulate matter pollution.

We thus take into account land suitability (as continuous variable), and a set of biome indic-

ators. Land suitability for agriculture is based on measures of climate and soil and predicts

the probability of land to be cultivated (Ramankutty et al., 2002). Biomes describe the

ecological system of an area and its dominant natural vegetation. These categories include

for instance “tundras”, “tropical and subtropical dry broadleaf forests”, or “Deserts & Xeric

Shrublands”. The 14 biome indicators we use are taken from Olson et al. (2001).22

20In order to calculate the fraction of water surface we use the world map gridded at 1 km resolution
provided by Lloyd et al. (2017), which is based on a global water mask dummy variable gridded at very high
resolution (Feng et al., 2016).

21We take the “high” resolution datasets from Natural Earth (2018). Rivers are categorized into 10 size
ranks, where 1 are the largest and 10 the smallest rivers. We only consider rivers between the ranks 1-6.
Large lakes are those with a surface area greater than 5,000 square kilometres, excluding unnatural dams.
This leaves us with 29 major lakes.

22Just like Henderson et al. (2018) we combine the categories “tropical and subtropical dry broadleaf
forests” with “tropical and subtropical coniferous forests” as well as “tropical and subtropical grasslands and
savannas and shrublands” with “flooded grasslands and savannas”. Furthermore, we drop areas historically
covered by ice or rocks from the analysis. Doing so does not, however, change our results.



96 3.2. Data and estimation

We want to assess a variety of country features that may influence the relation between

population and pollution. In order to do so, we make use of a large set of national indicat-

ors from the World Bank that contains economic performance, energy use or demographic

characteristics (World Bank, 2019). This data set ranges from 1960 to 2018, which allows

us to calculate for instance means of urbanization rates and their growth, residents of large

agglomerations or energy use over different time periods. In our analysis below, we will

correlate some of these measures with the density-elasticity of pollution.

3.2.2 Descriptive analysis

Human health is vulnerable to pollution. The WHO has set short- and long-run thresholds

to indicate very high pollutant concentration levels that presumably pose major threats to

human health. Short-run refers to the average value over 24 hours for PM10 and one hour for

NO2, while long-run means the annual mean. In our sample, the long-term threshold of 40

µg/m3 for NO2 is not exceeded in a single raster or city, which would seem to suggest that

this pollutant does not constitute a major health threat.23 However, Borck and Schrauth

(2021) show that NO2 levels for both the short- and the long-run thresholds are transgressed

in Germany on a more local level. The respective data is taken from in-situ monitors and

therefore provides a more accurate local measure of air pollution. Indeed, the raster size

we have available for NO2 does not allow for a very local consideration of this pollutant.

Furthermore, we only have available annual means, so we cannot analyse short-run threshold

transgressions.

Things look different for PM2.5-pollution. Table 3.1 shows the share of population that

lives in raster cells or cities where annual mean PM2.5 pollution exceeds the short-run (25

µg/m3) or long-run (10 µg/m3) WHO thresholds. In 2015, out of the 7.26 billion people

in the sample, about 5.52b lived in raster cells with mean PM2.5-levels beyond the long-

term threshold of 10 µg/m3. This corresponds to around 76 percent of the overall world

population. Approximately 39 percent were even permanently exposed to concentrations

beyond 25 µg/m3, which is the WHO 24-hour mean and therefore recommended to be

avoided over periods longer than a day. Note, however, that within a raster cell there is

23The WHO has recently updated its thresholds (for example, the annual thresholds are now 10 µg/m3

for NO2 and 5 µg/m3 for PM2.5.), but we use the thresholds that were published during the period we study.
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Table 3.1: Descriptive statistics

Raster Cities

Mean Min Mean Min
(Std) Max (Std) Max

PM2.5 8.07 0 31.46 .9
(8.51) 104.94 (24.82) 119.57

NO2 .38 0 1.70 0.01
(0.77) 28.7 (2.31) 17.85

Population 29,779 0 435,016 50,079
(158,719) 11,501,275 (1,384,120) 36,471,787

Overall population 7.26 billion 3.93 billion

Share population exposed to:
PM2.5 > 10 µg/m3 76% 79%
PM2.5 > 25 µg/m3 39% 44%

Countries 185 188
Observations 244,649 9031

Note: Own calculations. The table shows descriptives of unweighted pollution provided by Atmospheric
Composition Analysis Group (2018) for the years 2010 (NO2) and 2015 (PM2.5). Population data is shown
for the year 2015 and is taken from LandScan (2018). For the calculation of PM2.5-exposure with values
larger than 10 µg/m3 or 25 µg/m3 we sum the population in grid cells (FUAs) that match a pollution cell
that is higher than the respective value in 2015 and divide it by the overall population in the respective
sample.

variation in pollution concentrations such that not everybody is actually exposed to those

pollution concentrations. Therefore, the actual number of people permanently exposed to

such high concentrations may lie below 75 percent.

If we only consider FUA, there are about 4 billion people living in urban areas (this is in line

with the UN’s estimate of worldwide city population) of whom about 79% live in cities with

long-term mean PM2.5 pollution beyond 10 µg/m3. About 44% are in cities where average

annual urban pollution even exceeds the short-term threshold of 25 µg/m3.

There are marked differences between continents. In Asia, 92 percent of the population face

an annual average PM2.5-pollution beyond 10 µg/m3. In Europe the corresponding number

is 67 percent, in Africa 62 percent, in North-America 37 percent, and in South America 32

percent.24

Figure 3.2 shows the geographical distribution of PM2.5 in 2015 and its change from 2000 to

24These numbers are based on the raster data.
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Figure 3.2: PM2.5 concentration and development over time
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Note: Figure 3.2a shows the worldwide distribution of PM2.5 concentrations in 2015. White/light grey
depicts low and dark grey/black high concentration levels. Figure 3.2b shows developments of PM2.5 levels
between 2000 and 2015. White/light grey areas saw negative, little or no change in pollution concentration;
dark grey/black areas have experienced large increases in PM2.5 pollution.
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Figure 3.3: NO2 concentration and change over time
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Note: Figure 3.3a shows the worldwide distribution of NO2 concentrations in 2010. White/light grey depicts
low and dark grey/black high concentration levels. Figure 3.3b shows changes of NO2 levels between 2000 and
2010. White/light grey areas saw negative, little or no change in pollution concentration; dark grey/black
areas have experienced large increases in NO2 pollution.
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2015. Dark grey/black areas in panel (a) are highly polluted with values close to or larger

than 25 µg/m3 while light grey/white ones may have values close to or below the annual

WHO threshold of 10 µg/m3. In Panel (b), dark grey/black areas have seen an increase

in PM2.5-concentrations between 2000 and 2015, while light grey/white areas experienced

little change or even a decline. Apparently, many of the highly polluted areas in 2015 either

developed into areas with elevated pollution concentrations or became even more polluted

over the course of 15 years. The pollution problem has become much more serious especially

in India and China, but also in Africa south of the equator (net of dust and sea salt). Many

areas in the U.S., especially in the east, have improved their air quality over time, which is

also the case in parts of Western Europe.

Pollution of NO2 is much more concentrated in a few areas as shown in Figure 3.3a. The

highest concentration exposure is found in North-eastern China, Middle Europe, parts of

the United States and parts of Russia. The range of values is much smaller for NO2. The

maximum value reached is 30 µg/m3 in 2010. Figure 3.3b shows the change in NO2 con-

centration levels. Again, dark grey/black areas are those where pollution most strongly

increased from 2000 until 2010. Some parts of the U.S. and Europe have experienced air

quality improvements. In Africa, Australia, and South America, NO2 concentrations barely

changed. Predominantly densely populated metropolitan areas such as Santiago de Chile,

Cairo, or São Paulo seem to have higher pollution levels in 2015 compared to 2010.

We now turn to our regression approach to estimate population effects on pollution exposure.

3.2.3 Estimation

In a first step, we run simple Ordinary Least Squares (OLS) regressions of air pollution

exposure on population (density) and control variables. To mitigate concerns about spatial

autocorrelation, we analyse pollution within relatively large 1
4
decimal degree grids and we

cluster standard errors within three-by-three squares of grid cells times year of analysis

(following Henderson et al., 2018). This clustering approach accounts for the potential

correlation of pollution in space since particulates for instance disperse spatially with the

wind. In a second step, we restrict the sample to cities as defined above.
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The OLS regression equation is:25

ln(EGtS)) = β + ρ ln(DGtS) + γXGtS + αt + ϵGtS, (3.1)

where EGtS is exposure to NO2 or PM2.5 in grid cell/FUA G and year t in country S (in our

baseline regressions we only include the last year of observation, i.e. 2010 for NO2 and 2015

for PM2.5). Our parameter of interest, ρ, measures the elasticity of pollution exposure with

respect to population density DGtS (or population NGtS, depending on the specification).

XGtS is a vector of control variables. As explained above, these contain the log of GDP,

several variables about the suitability for trade (whether the raster/city lies on a river, on a

lake or on the coast) and agriculture (land suitability, and biome indicators), temperature,

precipitation (both as 1960-1990 long term means), wind speed, the presence of dirty power

plants, ruggedness and latitude.

We will compare OLS results to within-country estimates, which include a country dummy

θS. These within-country regressions compare raster cells/cities within a country to each

other. The rationale is to control for any countrywide unobserved geographic or political

features that may be correlated with both pollution and population (density).

Even though country fixed effects already account for a large portion of unobservables, OLS

regressions may still be biased due to reverse causality or omitted variables. Economic theory

and empirical evidence suggests that households would want to move to cleaner areas (Chen

et al., 2022). Hence, population would be endogenous to pollution exposure. Moreover,

within countries, there may be unobservable differences in policies, attitudes, and the like

that are correlated with population measures and pollution. We therefore follow the urban

economics literature in instrumenting population with historical population levels.26

The main assumptions for using historical population data have been widely discussed in the

urban economic literature. First, the distribution of population and economic activity tends

to be persistent over time (see for instance Davis and Weinstein, 2002). This is intuitive,

25Note that in the main analysis, we only look at a cross-section. We keep the time index because we run
fixed-effects panel regressions as a robustness check.

26See, e.g. Combes et al. (2010) for a classic application and discussion of the issues in estimating
agglomeration economies. See Borck and Schrauth (2021) and Carozzi and Roth (2020) for the same approach
in estimating density effects on pollution in Germany and the US.
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since infrastructure and buildings are durable and thus population changes are sluggish.

Therefore, historical population is a good predictor of current agglomerations. Second, the

exclusion restriction states that historical population should affect pollution only through

its effect on current population. The argument is that, if we go back in time far enough,

structural change will have led to a reshaping of local economies such that historic population

levels should be exogenous to current pollution concentrations. Suppose, for instance, that a

city formed close to a river in pre-industrial times in order to benefit from the trade advantage

conferred by the river. It may have grown into a densely populated and highly polluted place

nowadays due to industrial and traffic pollution. Then, the exogeneity assumption would be

satisfied, since today’s agglomeration pattern and its effect on pollution (namely, motorized

traffic and industrial production) differs from the historic one (trade).

In constructing historical instruments, there is a trade-off: on the one hand, the exogeneity

argument forces us to go back sufficiently long in time. On the other hand, availability

constraints force us to use more recent data in order to have a sufficient number of observa-

tions.27 With respect to exogeneity, we believe that population counts prior to 1750 have the

stronger arguments compared to more recent population instruments. Before the industrial

revolution, which started in the second half of the 18th century, air pollution was probably

not a decisive factor for migration decisions, whereas during industrialization, there seems to

be already some evidence of sorting with respect to pollution (Heblich et al., 2021).28 Using

population in 1900, however, provides us with at least twice as many observations than more

historical population counts. We will use population in 1900 as our main instrument, but

outcomes do not differ much using population from pre-industrialized times.29

We instrument population (density) as follows:

ln(DGtS)) = α +B2XGtS +B3ZGtS + ηGtS, (3.2)

27We also experimented with soil quality and other natural causes as instruments like Borck and Schrauth
(2021) and Combes et al. (2010). However, we were not able to find strong instruments that could explain
agglomerations all around the world.

28Heblich et al. (2021) argue that more polluted parts of cities in England were poorer as the rich sorted
into less polluted areas. The authors find that those sorting patterns have persisted until today.

29Borck and Schrauth (2021) analyse German data and show that historically dense places have no more
industrial employment than less dense ones. Since industry was a prime polluter following the industrial
revolution, this lends some credibility to the exclusion restriction.
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where the instrument Z is historical population. The predicted values for population,

ln(D̂GtS), are then used in the second stage instead of actual measures of population in

equation (3.1).

We also present results from long-difference estimations. These regress the changes in ex-

posure between the last and first year of observation on changes in population/density. The

idea here is that there may be some unobserved differences between units that simultan-

eously affect population density and pollution. For instance, sorting of “green” individuals

into large cities might lead to a negative correlation between density and exposure. This

kind of heterogeneity is, given that it is time invariant, differenced out in the long-difference

estimation.

We also estimate city level regressions, using FUAs as units of observation. This approach

compares cities (between city estimates) within countries, but in addition also allows us to

look at within-city effects. In within-city grid-level regressions we estimate

ln(EGtC) = β + ρ ln(DGtC) + αt + θC + ϵitC , (3.3)

where C is the city index. We drop all the city-specific control variables since we now control

for city fixed effects θC and only look at within-city differences.

In addition, we estimate Spatial First Differences (SFD) models, following the approach

proposed by Druckenmiller and Hsiang (2018). This transfers the idea of first differences

in time into physical space. In short, SFD regresses the differences in outcomes between

neighbouring grid cells on the differences in controls between these same cells. Since the

estimation implicitly accounts for any unobserved factors that are common to neighbouring

cells (such as possibly geographic and institutional factors that may be correlated with

population density and pollution), this mitigates omitted variable bias. On the downside,

some interesting variation is lost by only considering variation between neighbouring cells.

Further details are in Appendix 3.C.
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3.3 Results

Before presenting our main outcomes using within-country OLS, we briefly compare OLS

and IV coefficients first. We estimate IV regressions in order to gauge the magnitude and

direction of potential biases. The reason for not using IV results as our favoured outcomes,

as described above, is that we are only able to instrument a small subsample of all observed

units, which moreover is primarily restricted to a developed world sample.30

To compare OLS and IV results, we harmonize the sample to those cities or grid cells for

which the corresponding instrument is available. In all regressions we control for the full

set of trade, agricultural, and weather variables as well as logged GDP, ruggedness, latitude

and an indicator for the presence of a dirty power plant. We show results with population

in 1900 as instrument in Table 3.2.

Table 3.2: IV and OLS regressions

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Raster-level estimations
log(Sum of population) 0.119∗∗∗ 0.0902∗∗∗ 0.0593∗∗∗ 0.0556∗∗∗ 0.435∗∗∗ 0.424∗∗∗ 0.375∗∗∗ 0.387∗∗∗

(0.0219) (0.0263) (0.0195) (0.0168) (0.0266) (0.0356) (0.0328) (0.0318)
N 1022 1022 1022 1022 1024 1024 1024 1024
R2 0.588 0.587 0.853 0.853 0.637 0.637 0.793 0.793
Countries 99 99 99 99 99 99 99 99
Country FE No No Yes Yes No No Yes Yes
Est. method OLS IV OLS IV OLS IV OLS IV
Panel B: FUA-level estimations
log(Sum of population) 0.0701∗∗∗ 0.0720∗∗∗ 0.0475∗∗∗ 0.0480∗∗∗ 0.294∗∗∗ 0.321∗∗∗ 0.274∗∗∗ 0.286∗∗∗

(0.0167) (0.0199) (0.0120) (0.0123) (0.0202) (0.0290) (0.0215) (0.0243)
N 836 836 836 836 836 836 836 836
R2 0.656 0.656 0.884 0.884 0.662 0.661 0.801 0.801
Countries 96 96 96 96 96 96 96 96
Country FE No No Yes Yes No No Yes Yes
Est. method OLS IV OLS IV OLS IV OLS IV

Note: The table presents coefficients of OLS and IV regressions for both raster-level and city-level (FUA)
results. The instrument used is population in 1900. Samples are harmonized such that OLS regressions
only include those raster cells/cities for which we have the instrument available. The first two columns of
each pollutant show results without country fixed effects, while the latter two of each show results including
country FE. All estimations include the following control variables: Trade controls (river, lake, coastline
within 25km and continuous distance to coast measure), agricultural ones (biome indicators, land suitability
for agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP),
and and indicator for a dirty power plant nearby. Standard errors (in parentheses) are clustered within three-
by-three squares of grid cells times year. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p <
0.001.

30The historical population data by Reba et al. (2016) only covers less than 0.7 percent of all inhabited
grid cells in the sample when taking population from 1900 as instrument, and only slightly more than 0.3
percent of all cells when instrumenting with pre-industrial population.
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Table 3.3: First stages with Population instruments

Population 1900 Population 1650-1750

PM2.5 NO2 PM2.5 NO2 PM2.5 NO2 PM2.5 NO2

Population 1900 0.642∗∗∗ 0.624∗∗∗ 0.844∗∗∗ 0.830∗∗∗

(0.0266) (0.0265) (0.0253) (0.0251)
Population 1650-1750 0.479∗∗∗ 0.464∗∗∗ 0.603∗∗∗ 0.584∗∗∗

(0.0605) (0.0608) (0.0826) (0.0826)
N 1022 1024 836 836 357 358 322 322
Countries 99 99 96 96 73 73 70 70
First-stage Statistic 583.5 553.2 1114.4 1096.6 62.76 58.20 53.34 49.91

Note: The table presents first stage results for the population instruments for both raster-level and city-
level first stage regressions. Columns 1/2 and 5/6 depict raster-level first stage results, while columns 3/4
and 7/8 show FUA-level coefficients. The source of historical population is Reba et al. (2016). Population
1900 is the population count in year 1900, while population 1650-1750 takes the last population count
before 1750 observed in the dataset, which we refer to as pre-industrialized population. Standard errors
(in parentheses) are clustered within three-by-three squares of grid cells times year. Statistical significance
indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

The first insight is that the sample size is drastically reduced when considering instrumental

variables. With raster cells as units of observation, only slightly more than 1000 grid cells of

the roughly 200,000 total cells in the whole sample remain. Regarding FUAs, we have historic

population for about 10% of all cities. The comparison of OLS and IV results shows only

very small and insignificant differences as soon as we include country fixed effects (columns

3,4,7, and 8). Using population before industrialization as instrument yields similar results

(see Appendix Table 3.B.1). The population instruments are exactly identified. Table 3.3

shows the first stage regressions. The F-statistic indicates that the instruments are strong.

Hence, it seems like omitted variable bias or reverse causality does not cause large biases in

the estimates.31 In the remainder of the paper we focus on within-country regressions using

the whole sample available for both grid cells and cities.

3.3.1 Raster-level outcomes

We first consider raster-level outcomes. Table 3.4 compares results between simple OLS

and within country regressions using the entire sample for both pollutants, NO2 and PM2.5.

As this will become important in our city-level results, we differentiate between the sum

of population within a grid cell and population density of a cell. All specifications include

31Note, however, that this conclusion holds only for the selective sample of cities where we have long-
lagged historical population.
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Table 3.4: Raster-level OLS regressions

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
log(Sum of population) 0.102∗∗∗ 0.0294∗∗∗ 0.191∗∗∗ 0.157∗∗∗

(0.00172) (0.00149) (0.00233) (0.00275)
log(pop density) 0.0943∗∗∗ 0.0180∗∗∗ 0.184∗∗∗ 0.146∗∗∗

(0.00169) (0.00135) (0.00179) (0.00175)
log(GDP) -0.105∗∗∗ -0.111∗∗∗ 0.0468∗∗∗ 0.0440∗∗∗ 0.217∗∗∗ 0.213∗∗∗ 0.124∗∗∗ 0.121∗∗∗

(0.00541) (0.00543) (0.00672) (0.00673) (0.00526) (0.00511) (0.00876) (0.00877)
Temperature 0.00521∗∗∗ 0.00672∗∗∗ 0.0249∗∗∗ 0.0265∗∗∗ 0.0657∗∗∗ 0.0672∗∗∗ 0.108∗∗∗ 0.110∗∗∗

(0.00107) (0.00107) (0.00101) (0.00101) (0.00118) (0.00116) (0.00151) (0.00147)
Precipitation -0.000918∗∗∗ -0.000975∗∗∗ -0.000286∗∗∗ -0.000348∗∗∗ -0.0000865 -0.000195 -0.00155∗∗∗ -0.00165∗∗∗

(0.000116) (0.000117) (0.0000978) (0.0000975) (0.000135) (0.000131) (0.000143) (0.000136)
Wind speed -0.189∗∗∗ -0.194∗∗∗ -0.118∗∗∗ -0.120∗∗∗ -0.0100∗∗ -0.0134∗∗∗ 0.00931∗∗ 0.00831∗∗

(0.00395) (0.00398) (0.00324) (0.00325) (0.00440) (0.00414) (0.00436) (0.00393)
1(On coast) -0.799∗∗∗ -0.859∗∗∗ -0.688∗∗∗ -0.694∗∗∗ -0.265∗∗∗ -0.348∗∗∗ -0.300∗∗∗ -0.345∗∗∗

(0.0180) (0.0183) (0.0146) (0.0147) (0.0199) (0.0159) (0.0192) (0.0143)
1(Close to lake) -0.360∗∗∗ -0.371∗∗∗ -0.260∗∗∗ -0.254∗∗∗ 0.198∗∗∗ 0.195∗∗∗ 0.131∗∗∗ 0.136∗∗∗

(0.0328) (0.0335) (0.0335) (0.0336) (0.0372) (0.0301) (0.0347) (0.0273)
1(Close to river) 0.0275 0.0330∗ -0.0224∗ -0.0160 -0.118∗∗∗ -0.113∗∗∗ -0.0593∗∗∗ -0.0551∗∗∗

(0.0172) (0.0173) (0.0128) (0.0128) (0.0206) (0.0207) (0.0180) (0.0181)
1(Close to dirty powerplant) 0.0790∗∗∗ 0.105∗∗∗ 0.103∗∗∗ 0.131∗∗∗ 0.310∗∗∗ 0.328∗∗∗ 0.226∗∗∗ 0.243∗∗∗

(0.0190) (0.0191) (0.0139) (0.0139) (0.0242) (0.0242) (0.0214) (0.0211)
Ruggedness -0.00183∗∗∗ -0.00119∗ -0.00324∗∗∗ -0.00309∗∗∗ -0.0151∗∗∗ -0.0143∗∗∗ -0.00680∗∗∗ -0.00617∗∗∗

(0.000702) (0.000703) (0.000658) (0.000660) (0.00103) (0.00101) (0.000965) (0.000934)
Latitude 0.00288∗∗∗ 0.00261∗∗∗ -0.0116∗∗∗ -0.0116∗∗∗ 0.0596∗∗∗ 0.0580∗∗∗ 0.0686∗∗∗ 0.0668∗∗∗

(0.000799) (0.000805) (0.000957) (0.000958) (0.000855) (0.000836) (0.00125) (0.00124)
N 175237 175235 175237 175235 178535 178507 178535 178507
R2 0.386 0.378 0.607 0.606 0.604 0.652 0.675 0.732
Countries 161 161 161 161 160 160 160 160
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of OLS regressions including all relevant controls. Apart from those
that are listed in the table, the estimations additionally account for all biome indicators, and land suitability.
Columns 3,4,7 and 8 additionally include country-fixed effects (Country FE). Standard errors (in parentheses)
are clustered within three-by-three squares of grid cells times year. Statistical significance indicators: ∗ p <
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

our baseline covariates, i.e. weather, GDP, geographical characteristics, suitability for trade

and agriculture, and a dummy for whether there is at least one highly polluting power plant

within a grid cell.

Examining the results shows that the coefficients for both total population and density are

reduced in magnitude when we include country fixed effects to the PM2.5-exposure estim-

ations, while the difference between the estimates is smaller for NO2. In other words, the

within-country effect of density on pollution exposure is much smaller than the overall effect.

This suggests, for PM2.5, that the effect of density is partly driven by certain highly polluted

countries with densely populated grid cells. It might be, for instance, that some countries

have policies that both limit migration to large cities and pollution.

Taking the within-country estimates, our main results show an elasticity of pollution expos-

ure with respect to density of 0.02 in the PM2.5 regressions and 0.15 in the NO2 regressions.
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This implies that doubling population density would result in a 1.3 percent increase in PM2.5

exposure and a 10.7 percent increase in NO2 exposure.

Looking at the other coefficients, we find that once we control for country fixed effects, grid

cells with higher GDP are more polluted.32 Pollution exposure rises with temperature. By

contrast, precipitation and wind speed are negatively correlated with it. Exposure is also

strongly affected by dirty power plants.

Using the log of pollution exposure leads to the treatment of all zero observations as missing.

To avoid this, we repeat the estimation by replacing all zero values to the minimum non-

zero values observed in the data.33 Interestingly, the pollution-density elasticity for both

pollutants becomes significantly higher (0.2 for PM2.5 and 0.24 for NO2 in the regressions

with country fixed effects, see Table 3.B.2).

That the elasticity is so much lower when we exclude grid cells with zero outcome points

to a significant non-linearity in the effect of (log) density on (log) exposure. To address

this question from a slightly different angle, we now present non-linear regressions, where

we include categorical variables for large and densely populated areas instead of continuous

ones. We thus attempt to more directly measure an urban-rural gap. In order to do so,

we categorize grid cells with less than 50,000 inhabitants and those with density below 100

persons per sq. km as ‘rural’.34 The results are shown in Table 3.B.3. The urban-rural gap

is clearly evident: Going from rural to urban raster cells significantly increases pollution

exposure. We redo the exercise with 4 instead of only 2 categories (see Table 3.B.4). There

is some variation in the effects; still, we find that the effect of going from what we call ‘rural’

to ‘urban’ is larger than the effect of going from one urban category to the next (e.g. from

low to moderate density). In summary, there is an urban-rural gap in pollution exposure

which trumps the effect of increasing density within urban areas.

32Interestingly, the coefficient on GDP is negative in the PM2.5 regression without country fixed effects.
This suggests that around the world, grid cells in higher income regions tend to be less exposed to pollution,
but this effect is driven by the fact that these grid cells are predominantly located in less polluted high
income countries.

33This follows Henderson et al. (2018), who use the approach of setting observations with a zero for night
lights to the minimum value in the sample in their estimates presented as main results.

34This follows the density category ‘extremely low’ as suggested by
https://www.yourarticlelibrary.com/population/population-density-classification-of-the-spatial-
distribution-of-population-density/19853.

https://www.yourarticlelibrary.com/population/population-density-classification-of-the-spatial-distribution-of-population-density/19853
https://www.yourarticlelibrary.com/population/population-density-classification-of-the-spatial-distribution-of-population-density/19853
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In the remainder of the raster-level results, we will mainly report within-country effects and

focus on population density, which makes results more comparable to previous literature.

The main estimates in Table 3.4 assume a homogeneous relationship between pollution and

population in the entire world. In order to check whether this relationship changes with

geography, country income, and the like, we now consider various interactions to analyse the

heterogeneity of this effect.

Heterogeneity and robustness. We now turn to analysing heterogeneities in the

pollution-density gradient across continents and countries at different stages of development.

Figure 3.4 shows the results of running within-country regressions by country income groups

and by continents, where income groups follow the World Bank classification into low, lower

middle, upper middle, and high income. Population density is a significant determinant

of pollution over all income groups and continents, but to a different extent. Figure 3.4a

exhibits that the strongest within-country effects of density are found in low middle income

countries regarding PM2.5-exposure and in upper middle income countries for NO2. Hence, it

seems like the density effect is to some extent non-linear in income, and middle-income coun-

tries tend to have a stronger effect of density on pollution than both low and high-income

countries. A potential reason is that density is not “dirty” (Carozzi and Roth, 2020) in low

income countries, because there is little dirty activity such as driving and heating, whereas

in high income cities, cleaner transport modes (e.g. public transportation) and residential

energy use (heating and cooking with electricity or “modern fuels”) may mitigate the effects

of density.35 In contrast, middle income country agglomerations may be dirtier than low

income ones because there is more driving and residential energy use, but technologies for

these activities are not as clean as in high income country cities.

Figure 3.4b shows differences by continent. For NO2, the density effect is smallest in Africa

and largest in Asia. In Figure 3.5 and 3.6, we further show the density coefficients for each

country from individual within-country regressions on world maps. The maps show some

interesting ramifications. The NO2 density elasticities in Figure 3.5 suggest that China and

India – where most of the biggest and most polluted cities in the world are located – seem to

have the strongest effect of density on NO2 pollution exposure in Asia. In North America,

35See Borck and Mulder (2022) for a model with dirty and clean energy use as well as transport modes
in developing countries.
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Figure 3.4: Heterogeneity of density effect by subgroup

(a) By income group

(b) By continent

Note: The graphs show coefficients of separate regressions for each of the respective subgroups. The y−axes
represent the coefficient sizes. All estimations include within-country fixed effects, and all the control
variables from our standard estimations (compare Table 3.4). Income group definitions are taken from the
World Bank.
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Figure 3.5: Density coefficients for NO2 by country

Note: The map shows a graphical representation of the effect of population density on NO2, where regressions
are performed for each country individually. Dark colours represent coefficients at the upper end of the
density-pollution gradient, light colours show those at the lower end. All relevant control variables are
included in the estimations.

Figure 3.6: Density coefficients for PM2.5 by country

Note: The map shows a graphical representation of the effect of population density on PM2.5, where regres-
sions are performed for each country individually. Dark colours represent coefficients at the upper end of
the density-pollution gradient, light colours show those at the lower end. All relevant control variables are
included in the estimations.



Chapter 3. Urban pollution: A global perspective 111

Mexico and the US have larger effects than Canada, while within Europe countries from the

south seem to have higher elasticities than countries in the north.

Figure 3.6 shows the country-specific density elasticities for PM2.5. In Asia and Europe,

most of the countries that have large density elasticities for NO2 also have large elasticities

for PM2.5, while the density effect in the Americas seems to be smaller for PM2.5 than for

NO2.

The LandScan data distribute population to grid cells using certain grid characteristics,

but the exact algorithm is not known. While Henderson et al. (2021) provide a ground-

truthing exercise, it might still be the case that the data generation biases the results. As

a robustness check, we therefore run the regressions using administrative areas as units of

observations36. In these data, where population is smoothly distributed among all grid cells

within an administrative unit.37 We present the results in Table 3.B.5. Again, they hardly

differ from our previous results.38

Lastly, we run long-difference regressions of pollution changes between the last and first year

in our sample on population or density changes in the same period. Thus, we control for

any time-invariant unobserved heterogeneity between administrative units that might affect

both population and pollution. For instance, it might be that within countries, population

sorting leads to residents of dense cities being ‘greener’ on average, which would bias our

estimates (downwards in this case). Analysing long differences within rasters differences

out these time invariant unobserved heterogeneities. Results are shown in Table 3.B.6.39

In the long-difference estimates, all the variables that are time-constant drop out, so the

only explanatory variable left besides the population data is GDP. As the Table shows, the

long-difference estimates again show a positive and significant effect of both population and

density on both pollutant-exposure measures. The magnitudes are now reversed, however:

36We use gridded population of the world (Gridded Population of the World (ver-
sion 4) (GPW)) data on administrative (Global Administrative Areas (GADM)) level, see
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11.

37This obviously introduces other biases. Nonetheless, it is reassuring to find that the results do not seem
to be driven by biases in the computation of grid specific density.

38Using the gridded GPW data without aggregating it to GADM level does not change the results either
(results not shown here).

39These estimates are also based on the GPW data on the GADM level. The reason is that the quality of
LandScan data significantly improved over time and therefore comparisons over time should not be made,
as stated by the data provider itself (see https://gistlandscan01.ornl.gov/frequently-asked-questions).

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://gistlandscan01.ornl.gov/frequently-asked-questions
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it seems that population changes now affect NO2-exposure more strongly than PM2.5. A

potential explanation is that the variation in the cross section as well as over time is much

lower for NO2 than for PM2.5. This implies that a given change in population over time

affects changes in NO2 less than those in PM2.5.

Channels. An interesting question in interpreting the findings is what mechanisms could

be responsible for the observed relationship between density and pollution exposure (see also

Borck and Schrauth, 2021; Carozzi and Roth, 2020). While a complete investigation is made

difficult by the scarcity of available data at a worldwide scale, we nonetheless try to shed

some light on these channels here. We follow the analysis in Borck and Schrauth (2021)

and leave out some sets of explanatory variables. We then compare the density coefficient

with and without these variables. The direction of change of the coefficient then allows

us to determine how these variables affect pollution directly and indirectly through their

correlation with density.

We report the results of leaving out, one by one, different groups of our explanatory variables

in Table 3.B.7. Column (1) shows the baseline regression results, col. (2) leaves out GDP,

(3) the weather variables, (4) the trade variables (closeness to river, lake or coast) and (5)

the agricultural variables (land suitability and biomes).

As can be seen in the table, the density coefficient rises in all columns compared to the

baseline. For both pollutants, we find the largest increase when we leave out weather and

agricultural suitability. This seems to imply that the density effect is driven most by the fact

that dense areas are located, on average, in areas that have weather that is conducive to high

pollution exposure (such as hot, dry areas with little wind). Moreover, dense areas seem,

on average, to be located in places with a first nature that is advantageous to agriculture,

which tends to increase pollution. Higher income and suitability for trade apparently drive

the density effect to a lesser extent.

Raster-level outcomes and country characteristics. We now look at how the

pollution-density relation changes with country characteristics to get additional insights.

Figure 3.7 ranks all country-specific coefficients and plots them by their size.40 All coeffi-

40We excluded the lowest and the highest 2.5% of the sample as outliers, thus removing 5 percent of
country coefficients.



Chapter 3. Urban pollution: A global perspective 113

cients plotted come from regressions including control variables as presented in Table 3.4.

The green hollow diamond and the red hollow triangle show the coefficients for Germany

(DEU) and the US, in order to compare them to prior papers in the field (Carozzi and Roth,

2020; Borck and Schrauth, 2021). Both coefficients are somewhat smaller than the ones in

those papers. Both Carozzi and Roth (2020) and Borck and Schrauth (2021) run extensive

tests to more credibly estimate a causal effect within one country; however, the samples differ

from the one used here. In particular, Borck and Schrauth (2021) study German counties

and Carozzi and Roth (2020) US CBSA. This difference notwithstanding, we think it is

reassuring to see that the magnitude of the coefficients is roughly in line with previously

estimated ones from studies that are better able to address causality issues than we are.41

About 70% of PM2.5 coefficients and 75% of NO2 coefficients lie in a range between 0 and

.3. About 82% of PM2.5 coefficients and about 85% of NO2 coefficients are positive, where

about half of the cases with negative coefficients have negative ones for both pollutants. It

is interesting to briefly look at the outliers, i.e. countries with the 2.5 percent highest and

Figure 3.7: Distribution of country-specific density coefficients

(a) PM2.5 (b) NO2

Note: The graphs show the distribution of the population density / pollution exposure gradient, when
running estimations for each country in the world separately. The coefficients are obtained from regressions
for each country separately, controlling for trade variables (river, lake, coastline within 25km and continuous
distance to coast measure), agricultural ones (biome indicators, land suitability for agriculture), weather
(wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP), and an indicator for a
dirty power plant nearby. The green hollow diamond is the coefficient for Germany (DEU), and the red
hollow triangle the one for the United States (USA). These are highlighted in order to compare them with
findings by Borck and Schrauth (2021) and Carozzi and Roth (2020) respectively. Outliers (2.5% highest
and lowest coefficients) are excluded from the graphical representation.

41See also Ahlfeldt and Pietrostefani (2019).
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lowest (negative) coefficients. In most instances, these turn out to be small island states such

as Jamaica, Malta, East Timor (downward) or Bahamas, Barbados, Cap Verde (upwards).

Figure 3.B.1 in Appendix 3.B shows simple scatter plots between the country-specific dens-

ity elasticity estimates of our within-country regressions and urbanization patterns (where,

again, the density coefficients stem from regressions with all basic controls described above).

In general, most of the correlations seem insignificant for PM2.5, while we do find some

interesting correlations for NO2. As the figure shows, the more people live in urban areas,

the stronger is the density effect on pollution, while the effect of the urbanization rate is

also positive but somewhat weaker. This suggests that density is more likely to increase

NO2 pollution when many people live in cities, which underlines the non-linear effects de-

scribed above. It also links the paper’s results to the theory of city systems; indeed it seems

like total exposure will be reduced by shifting individuals from denser to less dense regions

(Borck and Tabuchi, 2019). Moreover and interestingly, the density coefficients are negat-

ively correlated with renewable energy use (figure not shown). Intuitively, when energy use

is relatively clean, packing residents densely together does not produce as much pollution as

when countries rely largely on fossil fuels.

In the next subsection, we examine regression results when we explicitly consider cities

defined as functional urban areas.

3.3.2 City-level outcomes

We now present results from regressions on the FUA sample. We use different variables to

analyse the effect of population on pollution: (i) logged mean population density within a

city polygon, and (ii) the logged total population. In addition, we can differentiate between

the core city population (log(Pop urban centre)) and that of the surrounding commuting area

(log(Pop commuting)). This allows us to move in the direction of considering mechanisms

for the relation we study. Sprawling cities with many commuters and single family homes

might have different pollution levels compared to dense cities with high-rise buildings and

without much long-distance commuting.

Table 3.5 compares the effects of population density with those of total city population and

additionally differentiates between population in the urban centre with the amount of people
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Table 3.5: Within-country regressions for FUAs

PM2.5 NO2

(1) (2) (3) (4) (5) (6)
log(pop density) -0.00435 0.00227

(0.0134) (0.0102)
log(Sum of population) 0.0791∗∗∗ 0.0947∗∗∗

(0.00512) (0.00535)
log(Pop urban center) 0.00963 0.0402∗∗∗

(0.00790) (0.0109)
log(Pop commuting) 0.0752∗∗∗ 0.112∗∗∗

(0.00725) (0.00815)
log(GDP) 0.0547∗∗∗ 0.0397∗∗ 0.0362∗∗ 0.331∗∗∗ 0.312∗∗∗ 0.313∗∗∗

(0.0163) (0.0161) (0.0159) (0.0242) (0.0236) (0.0239)
Temperature 0.0130∗∗∗ 0.0148∗∗∗ 0.0151∗∗∗ 0.000608 0.00355 0.00275

(0.00278) (0.00273) (0.00268) (0.00389) (0.00380) (0.00387)
Precipitation -0.000334 -0.000294 -0.000274 -0.00208∗∗∗ -0.00204∗∗∗ -0.00205∗∗∗

(0.000208) (0.000206) (0.000199) (0.000162) (0.000161) (0.000169)
Wind speed -0.0697∗∗∗ -0.0679∗∗∗ -0.0649∗∗∗ -0.00759 -0.00511 -0.00472

(0.00799) (0.00788) (0.00766) (0.00950) (0.00935) (0.00973)
1(On coast) -0.384∗∗∗ -0.429∗∗∗ -0.437∗∗∗ 0.0457∗∗ -0.00609 -0.0175

(0.0225) (0.0226) (0.0221) (0.0231) (0.0225) (0.0225)
1(Close to lake) -0.265∗∗∗ -0.282∗∗∗ -0.259∗∗∗ 0.192∗∗∗ 0.179∗∗∗ 0.179∗∗∗

(0.0701) (0.0693) (0.0642) (0.0591) (0.0570) (0.0600)
1(Close to river) 0.0560∗∗∗ 0.0362∗∗ 0.0363∗∗∗ 0.0621∗∗∗ 0.0371∗∗ 0.0277

(0.0146) (0.0145) (0.0140) (0.0173) (0.0170) (0.0178)
1(Close to dirty powerplant) 0.140∗∗∗ 0.0773∗∗∗ 0.0663∗∗∗ 0.502∗∗∗ 0.429∗∗∗ 0.391∗∗∗

(0.0138) (0.0139) (0.0136) (0.0207) (0.0205) (0.0206)
Ruggedness -0.000298∗∗∗ -0.000280∗∗∗ -0.000286∗∗∗ -0.000511∗∗∗ -0.000486∗∗∗ -0.000532∗∗∗

(0.0000287) (0.0000281) (0.0000287) (0.0000354) (0.0000354) (0.0000378)
Latitude 0.0126∗∗∗ 0.0134∗∗∗ 0.0138∗∗∗ 0.00918∗∗∗ 0.0109∗∗∗ 0.0103∗∗∗

(0.00178) (0.00176) (0.00175) (0.00248) (0.00245) (0.00249)
N 8871 8871 8249 8861 8861 8219
R2 0.688 0.699 0.726 0.786 0.795 0.790
Countries 136 136 136 134 134 134
No. of cities 8871 8871 8249 8861 8861 8219
Controls Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes

Note: The table presents coefficients of OLS regressions with FUAs as units of observations. All estimations
include the following control variables: Trade controls (river, lake, coastline within 25km), land suitability
for agriculture, temperature, precipitation as well as ruggedness, latitude log(GDP), and country-fixed
effects (Country FE). Standard errors (in parentheses) are robust. Statistical significance indicators: ∗ p <
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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living in commuting zones. Interestingly, for both pollutants, the effect of population density

is not significant, while total population positively affects pollution. The coefficients indicate

that a 1% increase in total population increases PM2.5 exposure by 0.08 percent and NO2

exposure by 0.095 percent. Compared to raster-level results, the population coefficient is

larger for PM2.5 and smaller for NO2. Hence, it seems that density per se does not drive

higher pollution exposure; rather, the relation seems to be driven by the way that large

populations are organized spatially within cities.

To elaborate on this theme, in columns (3) and (6), we distinguish between core city and

commuting population. For PM2.5, we find that the coefficient of core city population is

insignificant, while that on commuting population is positive and significant. For NO2,

both are significant, but the coefficient on commuting population is about three times as

large. Consequently, it seems that large cities per se are not more polluted than smaller

ones. Rather, pollution seems to be significantly higher in cities with a large fraction of

people commuting into the city from satellite cities. These findings thus shed more light

on the link between density, population distribution and pollution exposure. It seems that,

when we only look at cities, large and dense development does not need to be bad for the

environment. This may be due to the fact that these urban features promote the use of

clean public transport and energy efficient buildings, which may partly offset the increased

pollution exposure stemming from a high concentration of polluting activities.42

Figures 3.B.2 and 3.B.3 again show the distribution of coefficients by continents and income

groups. For PM2.5, there is no clear trend by income. For NO2, however, the population

effect is strongest among upper middle and high income countries. The upper panel of Figure

3.B.3 shows that for PM2.5, there are no pronounced differences in the density effect between

continents. For NO2, the population and density effects are lowest in Africa and Asia. The

effect of commuting population is also lowest in Africa.

City level outcomes and country characteristics. Just as for the raster-level results,

we repeat the exercise of relating the country-specific population-pollution coefficients to

country characteristics, such as urbanization rates and income. We again present scatter

42See Brownstone and Golob (2009) for the effect of density on driving, Borck and Brueckner (2018) for
the link between density and energy efficiency, and Carozzi and Roth (2020) on the interpretation of higher
exposure due to the density of economic activity.
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plots, where each point shows the country-specific coefficient of population on pollution

exposure. Figure 3.B.4 shows the plots. The correlations for NO2 again seem to be stronger

than for PM2.5. We find that agglomeration seems to affect pollution more the higher the

urbanization rate and the share of population living in large agglomerations of more than 1

million people.

3.3.3 Local-level outcomes

Within city regressions. Table 3.6 shows the results of within-city regressions, that

is, we compare raster cells that lie within the same FUA. Since we control for city fixed

effects, all FUA-level variables are absorbed by them, so there are no additional control

variables. The table shows that the population effect for PM2.5 is about the same as in the

baseline raster results. For NO2, however, the coefficient is much lower. This may be due

to the smaller variation within cities, or the fact that densely populated raster cells tend to

lie in polluted cities. Beyond that, the smaller variation within cities for NO2 is somewhat

mechanically caused by the larger size of the grid cells.

Table 3.6: Within City regressions

PM2.5 NO2

(1) (2)
log(pop density) 0.0215∗∗∗ 0.0425∗∗∗

(0.000351) (0.000839)
N 66118 66127
R2 0.995 0.971
Countries 187 175
City FE Yes Yes

Note: The table presents coefficients of within-FUA-effects. Each pollution cell is matched to a population
cell. Since the within-city-fixed effects capture all relevant control variables we use in other tables, no
additional variables are controlled for. Standard errors (in parentheses) are robust. ∗ p < 0.05, ∗∗ p <
0.01, ∗∗∗ p < 0.001.

Figure 3.B.5 shows differences of results by income groups and by continents. Within cities,

the pollution-population gradient steadily increases with income. Hence, different from

what we observed before, higher income countries seem to have especially strong pollution

in densely populated areas within cities. Looking at differences by continents, American

cities exhibit the highest and African cities the lowest pollution-population gradient.
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Spatial First Differences. Table 3.C.1 in the Appendix shows the results from Spatial

First Differences (SFD) regressions. Again, we find that for both pollutants, the results

remain positive and significant. This result is reassuring. The SFD estimate differences out

any unobserved heterogeneity that is common to neighbouring cells. The result thus further

lends credence to the relationship between density and pollution exposure at a local level.

However, the effect of density on pollution is much smaller when we consider differences

between neighbouring cells than when we compare the entire sample, especially for NO2.

Intuitively, the variation in pollution exposure and density is much smaller between neigh-

bouring cells than in the entire sample, which likely explains the smaller effects.

3.4 Counterfactual simulation

In order to quantify the effects of the population exposure relation by country, we present

results from a counterfactual simulation in this section, where we compute the country-

specific change in exposure from equalizing population across all cities in a country. We do

this counterfactual with the FUA sample. We thus assume that a country’s population is

given by its population living in FUAs. The counterfactual then answers the question: what

would be the effect on total exposure if all cities had the same population?

Let country S have MS cities with population Ni and total population NS =
∑MS

j=1 ni. We

want to compute the effect of redistributing population equally among cities within a country.

Consequently, all cities have identical counterfactual population N ′
i = NS/MS. From our

estimates, we predict current total exposure for city i as Ẽi = N1+ρ
i , where ρ is the estimated

exposure-population elasticity. Total exposure is then E =
∑

j Ẽj.
43

Now consider a counterfactual where city i’s population is changed to N ′
i = NS/MS, so all

cities are equally large. The counterfactual exposure in city i is E ′
i = N ′

i
1+ρ = (NS/MS)

1+ρ.

The proportional counterfactual change in city i is Êi = E ′
i/Ẽi = N̂1+µ

i , where N̂i =
N/MS

Ni

is the proportional change in population.

Total counterfactual exposure in the country is E ′ =
∑

j E
′
j. We can then compute the

43Note that we do not use our usual control variables in these estimates, so their influence is subsumed
in the effect of city population. Redoing the counterfactual with controls does not have a large effect on the
results.
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percentage change in exposure, ∆E = Ê − 1 = E ′/E − 1.

We estimate ρ for all countries with at least 15 FUAs in our sample. We report the estimates

of ρ along with total population, number of cities and the counterfactual change in exposure,

∆E, for the 10 countries with the smallest and largest change in Table 3.7 for PM2.5 and in

Table 3.8 for NO2.

Table 3.7: Counterfactual change in exposure for PM2.5

Country Population (mill.) # cities ρ ∆E Rank

A: 10 lowest ranked
Indonesia 139.491 249 0.240 -36.494 1
Haiti 4.024 21 0.215 -31.816 2
Peru 16.998 41 0.194 -30.862 3
Nigeria 87.799 351 0.182 -30.166 4
Togo 2.953 15 0.205 -27.798 5
Vietnam 38.426 99 0.174 -27.086 6
D.R. Congo 23.493 125 0.159 -26.751 7
Malaysia 19.432 31 0.240 -22.821 8
Sudan 11.219 72 0.131 -22.080 9
Philippines 46.653 67 0.123 -21.646 10

B: 10 highest ranked
Colombia 28.753 85 -0.020 2.932 67
Tunisia 4.824 24 -0.035 3.586 68
Ecuador 9.361 29 -0.057 5.551 69
Yemen 6.285 23 -0.073 7.622 70
Venezuela 21.008 65 -0.129 9.436 71
Mozambique 5.143 48 -0.067 9.994 72
Uganda 5.300 21 -0.070 10.360 73
Angola 11.281 46 -0.072 13.524 74
Tanzania 10.234 40 -0.109 14.669 75
Senegal 6.291 29 -0.188 22.535 76

Note: Own calculations. The simulation is computed using the FUA–sample outcomes. ρ is the estimated
within-country population elasticity of exposure. ∆E is the percentage change in exposure in the counter-
factual relative to the baseline.

Since total exposure is convex in population if and only if ρ > 0, all countries with a positive

estimated population elasticity would benefit from a reduction in total exposure induced by

population smoothing. It is apparent from Tables 3.7 and 3.8 that the countries with the

largest percentage drop in total exposure are those with the largest population elasticity.

There are, however, some differences in the composition of countries. For PM2.5, we see the
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Table 3.8: Counterfactual change in exposure for NO2

Country Population (mill.) # cities ρ ∆E Rank

A: 10 lowest ranked
Peru 16.438 41 0.365 -53.175 1
China 567.218 1539 0.408 -46.429 2
Thailand 16.893 37 0.292 -45.821 3
Japan 105.882 88 0.298 -44.340 4
Guatemala 5.372 34 0.302 -43.668 5
Indonesia 133.417 249 0.269 -40.361 6
Iran 50.591 165 0.277 -38.800 7
Argentina 27.907 64 0.230 -37.419 8
Chile 12.235 31 0.275 -36.070 9
Australia 15.575 20 0.419 -34.052 10

B: 10 highest ranked
Guinea 2.659 17 -0.024 3.059 66
Benin 2.934 21 -0.040 4.122 67
D.R. Congo 18.242 125 -0.023 4.476 68
Togo 1.924 15 -0.045 5.078 69
Burkina Faso 2.689 32 -0.031 5.558 70
Uganda 4.291 21 -0.042 6.011 71
North Korea 10.764 80 -0.073 6.400 72
Tanzania 7.210 40 -0.053 6.429 73
Cote d’Ivoire 6.953 35 -0.076 12.491 74
Ghana 8.090 51 -0.137 26.080 75

Note: Own calculations. The simulation is computed using the FUA–sample outcomes. ρ is the estimated
within-country population elasticity of exposure. ∆E is the percentage change in exposure in the counter-
factual relative to the baseline.

largest drops in total exposure in countries in East Asia/Pacific and Sub-Saharan Africa,

plus two in Latin America/Caribbean. The countries with the largest increase in exposure

(where the population elasticity is negative) tend to be lower income countries in Latin

America/Caribbean and Sub-Saharan Africa, plus two in Middle East/North Africa.

For NO2, the countries with the largest percentage drop in total exposure tend to be in East

Asia/Pacific and Latin America/Caribbean, while the ones with increases in exposure are

almost all in Sub-Saharan Africa, with the exception of North Korea.
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3.5 Conclusion

This paper has studied the effect of population and population density on pollution exposure

using worldwide gridded data. We find that population density increases exposure. Using

city-level data, we find that population size, rather than density, increases exposure. Further,

the reason seems not to be a large core city population, but rather a large population

commuting into the core city. Lastly, we find positive but smaller effects of density on

pollution exposure at more local levels.

We also document heterogeneities of the density effects across countries. Using the entire

rasterized data as observational units, the influence of population seems largest in Asia and

in middle-income countries. In the FUA sample, population affects pollution most in upper

middle and high income countries as well as in Europe and North America.

Finally, we study how reallocating population among cities within countries affects exposure.

For most countries, exposure would fall if population were equalized across cities, since total

city exposure is convex in city population. This allows us to connect the paper to the

literature on optimal city size (Borck and Tabuchi, 2019). Using country specific exposure-

population elasticities, we could in principle study how the distribution of optimal city size

is determined by the trade-off between agglomeration benefits and costs, stemming from the

increase in exposure.

Some avenues for future research suggest themselves. First, it would obviously be of interest

to study how differences in the population-pollution elasticities between countries are shaped

by institutional determinants, urban structure, and other factors. Second, although we have

tried to come close to estimating causal effects, we think it would be fruitful to merge

this more descriptive global evidence with the more causal national evidence as in Borck

and Schrauth (2021) and Carozzi and Roth (2020). As more data becomes available for

more countries and longer time periods, more robust evidence on the agglomeration costs of

pollution will certainly be forthcoming.
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Appendices

3.A Ground-level pollution data

Pollution data as measured by satellites comes in the form of Aerosol Optical Depth (AOD),

which deduct pollution concentration from the intensity of light that is reflected into space.

However, this measure is not the same as ground-level pollution concentration, which reflects

actual pollution exposure. As we are interested in actual exposure, we use ground-level

pollution as described by Hammer et al. (2020) for PM2.5. They deduct their estimates by

using a GEOS-chem chemical transport model, relating measures from ground-level monitors

with satellite measured AOD. The PM2.5-data comes in two versions: one that applies

Geographically Weighted Regression (GWR) and one that does not. If GWR is applied, then

the correlation of ground-monitor measurements with AOD measurements is even higher

than without the GWR application (with a slope of up to .97 using GWR compared to

one of 0.90 without GWR). We stick to the data product, which is closest to ground-based

monitors, which are the GWR products.
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3.B Additional tables and figures

Table 3.B.1: IV and OLS regressions with population before 1750 as IV

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Raster-level estimations
log(Sum of population) 0.172∗∗∗ 0.251∗∗∗ 0.0822∗∗∗ 0.111∗∗∗ 0.380∗∗∗ 0.498∗∗∗ 0.304∗∗∗ 0.371∗∗∗

(0.0262) (0.0600) (0.0226) (0.0356) (0.0299) (0.0891) (0.0378) (0.0799)
N 357 357 357 357 358 358 358 358
R2 0.580 0.445 0.879 0.837 0.765 0.489 0.890 0.815
Countries 73 73 73 73 73 73 73 73
Country FE No No Yes Yes No No Yes Yes
Est. method OLS IV OLS IV OLS IV OLS IV
Panel B: FUA-level estimations
log(Sum of population) 0.116∗∗∗ 0.207∗∗∗ 0.0816∗∗∗ 0.0339 0.300∗∗∗ 0.333∗∗∗ 0.298∗∗∗ 0.258∗∗∗

(0.0240) (0.0530) (0.0234) (0.0333) (0.0281) (0.0607) (0.0365) (0.0564)
N 322 322 322 322 322 322 322 322
R2 0.598 0.578 0.876 0.873 0.768 0.767 0.887 0.886
Countries 70 70 70 70 70 70 70 70
Country FE No No Yes Yes No No Yes Yes
Est. method OLS IV OLS IV OLS IV OLS IV

Note: The table presents coefficients of OLS and IV regressions for both raster-level and city-level (FUA)
results. The instrument used is population between 1650 and 1750. Samples are harmonized such that
OLS regressions only include those raster cells/cities for which we have the instrument available. The
first two columns of each pollutant show results without country fixed effects, while the latter two of each
show results including country FE. All estimations include the following control variables: Trade controls
(river, lake, coastline within 25km and continuous distance to coast measure), agricultural ones (biome
indicators, land suitability for agriculture), weather (wind speed, temperature, precipitation) as well as
ruggedness, latitude, log(GDP), and and indicator for a dirty power plant nearby. Standard errors (in
parentheses) are clustered within three-by-three squares of grid cells times year. Statistical significance
indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3.B.2: Raster-level OLS regressions with non-zero pollution

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
log(Sum of population) 0.278∗∗∗ 0.242∗∗∗ 0.253∗∗∗ 0.258∗∗∗

(0.00348) (0.00401) (0.00698) (0.00730)
log(pop density) 0.251∗∗∗ 0.206∗∗∗ 0.238∗∗∗ 0.239∗∗∗

(0.00345) (0.00390) (0.00672) (0.00691)
log(GDP) -0.0581∗∗∗ -0.0767∗∗∗ 0.0340∗∗ 0.0228 0.322∗∗∗ 0.312∗∗∗ 0.229∗∗∗ 0.220∗∗∗

(0.00767) (0.00773) (0.0148) (0.0149) (0.0179) (0.0178) (0.0382) (0.0382)
Temperature -0.00297∗ 0.00199 0.0220∗∗∗ 0.0279∗∗∗ 0.0873∗∗∗ 0.0904∗∗∗ 0.173∗∗∗ 0.177∗∗∗

(0.00179) (0.00180) (0.00233) (0.00233) (0.00525) (0.00524) (0.00727) (0.00725)
Precipitation 0.000235 0.0000804 0.000832∗∗∗ 0.000623∗∗∗ -0.00748∗∗∗ -0.00765∗∗∗ -0.00747∗∗∗ -0.00767∗∗∗

(0.000167) (0.000168) (0.000186) (0.000186) (0.000678) (0.000678) (0.000755) (0.000755)
Wind speed -0.180∗∗∗ -0.196∗∗∗ -0.114∗∗∗ -0.130∗∗∗ -0.259∗∗∗ -0.268∗∗∗ -0.273∗∗∗ -0.282∗∗∗

(0.00637) (0.00648) (0.00680) (0.00689) (0.0200) (0.0199) (0.0213) (0.0213)
1(On coast) -1.425∗∗∗ -1.593∗∗∗ -1.329∗∗∗ -1.461∗∗∗ -0.998∗∗∗ -1.115∗∗∗ -0.756∗∗∗ -0.867∗∗∗

(0.0335) (0.0347) (0.0342) (0.0354) (0.0932) (0.0932) (0.0890) (0.0885)
1(Close to lake) -0.934∗∗∗ -0.969∗∗∗ -0.869∗∗∗ -0.888∗∗∗ 0.189∗ 0.159 0.338∗∗∗ 0.308∗∗∗

(0.0836) (0.0859) (0.0819) (0.0839) (0.0984) (0.0993) (0.105) (0.105)
1(Close to river) -0.0731∗∗ -0.0562 -0.103∗∗∗ -0.0845∗∗ -0.00942 0.00141 -0.0592 -0.0493

(0.0367) (0.0369) (0.0364) (0.0365) (0.0444) (0.0444) (0.0427) (0.0428)
1(Close to dirty powerplant) -0.227∗∗∗ -0.138∗∗∗ -0.259∗∗∗ -0.163∗∗∗ 0.0922 0.138∗∗ -0.0389 0.00367

(0.0258) (0.0262) (0.0252) (0.0253) (0.0668) (0.0668) (0.0582) (0.0582)
Ruggedness -0.00243∗ -0.000409 0.00137 0.00238∗ -0.158∗∗∗ -0.157∗∗∗ -0.131∗∗∗ -0.130∗∗∗

(0.00128) (0.00128) (0.00138) (0.00138) (0.00820) (0.00820) (0.00781) (0.00780)
Latitude -0.000609 -0.000914 -0.0145∗∗∗ -0.0157∗∗∗ 0.0551∗∗∗ 0.0537∗∗∗ 0.0918∗∗∗ 0.0896∗∗∗

(0.00115) (0.00116) (0.00190) (0.00190) (0.00353) (0.00353) (0.00641) (0.00641)
N 180489 180453 180489 180453 181663 181629 181663 181629
R2 0.276 0.260 0.310 0.296 0.196 0.196 0.271 0.271
Countries 161 161 161 161 161 161 161 161
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of OLS regressions including all relevant controls. Apart from those
that are listed in the table, the estimations additionally account for all biome indicators, and land suitability.
Columns 3,4,7 and 8 additionally include country-fixed effects (Country FE). All pollution observations that
are zero are replaced by the minimum pollution value in the sample. Standard errors (in parentheses) are
clustered within three-by-three squares of grid cells times year. Statistical significance indicators: ∗ p <
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 3.B.3: Raster-level OLS regressions - urban-rural gradient

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
Urban population 0.710∗∗∗ 0.294∗∗∗ 0.988∗∗∗ 0.761∗∗∗

(0.0109) (0.00792) (0.0151) (0.0153)
Urban pop density 0.717∗∗∗ 0.265∗∗∗ 1.012∗∗∗ 0.774∗∗∗

(0.0117) (0.00855) (0.0159) (0.0156)
N 175390 175388 175390 175388 179484 179466 179484 179466
R2 0.370 0.366 0.605 0.604 0.211 0.215 0.261 0.266
Countries 177 177 177 177 171 171 171 171
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of estimations using population (density) categories instead of continu-
ous population density or the sum of population. All estimations include the following control variables:
Trade controls (river, lake, coastline within 25km and continuous distance to coast measure), agricultural ones
(biome indicators, land suitability for agriculture), weather (wind speed, temperature, precipitation) as well
as ruggedness, latitude, log(GDP), and and indicator for a dirty power plant nearby. Columns 3,4,7 and 8 in-
clude country-fixed effects (Country FE). Standard errors (in parentheses) are clustered within three-by-three
squares of grid cells times year. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3.B.4: Raster-level OLS regressions with population categories

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
50k to 100k 0.473∗∗∗ 0.211∗∗∗ 0.760∗∗∗ 0.560∗∗∗

(0.0109) (0.00778) (0.0144) (0.0136)
100k to 500k 0.820∗∗∗ 0.334∗∗∗ 1.083∗∗∗ 0.861∗∗∗

(0.0132) (0.00972) (0.0182) (0.0180)
500k to 1m 1.144∗∗∗ 0.533∗∗∗ 1.367∗∗∗ 1.219∗∗∗

(0.0252) (0.0178) (0.0378) (0.0305)
>1m 1.123∗∗∗ 0.569∗∗∗ 1.767∗∗∗ 1.637∗∗∗

(0.0364) (0.0269) (0.0614) (0.0521)
Low Density 0.553∗∗∗ 0.196∗∗∗ 0.822∗∗∗ 0.608∗∗∗

(0.0116) (0.00853) (0.0150) (0.0142)
Moderate Density 0.792∗∗∗ 0.278∗∗∗ 1.084∗∗∗ 0.851∗∗∗

(0.0166) (0.0118) (0.0215) (0.0198)
High Density 1.024∗∗∗ 0.436∗∗∗ 1.340∗∗∗ 1.065∗∗∗

(0.0216) (0.0160) (0.0298) (0.0244)
Very High Density 1.064∗∗∗ 0.496∗∗∗ 1.535∗∗∗ 1.382∗∗∗

(0.0279) (0.0217) (0.0425) (0.0366)
N 175390 175388 175390 175388 179484 179466 179484 179466
R2 0.376 0.371 0.607 0.605 0.212 0.216 0.262 0.268
Countries 177 177 177 177 171 171 171 171
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of estimations using population (density) categories instead of continu-
ous population density or the sum of population. The population categories are: 0 to 50.000 (50k) [base
category], 50k-100k, 100k-500k, 500k-1million or more than 1 million inhabitants. The density categories
are: very low density [base category], low density, moderate density, and very high density. All estimations
include the following control variables: Trade controls (river, lake, coastline within 25km and continuous
distance to coast measure), agricultural ones (biome indicators, land suitability for agriculture), weather
(wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP), and and indicator for a
dirty power plant nearby. Columns 3,4,7 and 8 include country-fixed effects (Country FE). Standard errors
(in parentheses) are clustered within three-by-three squares of grid cells times year. Statistical significance
indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3.B.5: GADM-level OLS regressions

PM2.5 NO2

(1) (2) (3) (4) (5) (6) (7) (8)
log(Sum of population) 0.108∗∗∗ 0.0289∗∗∗ 0.143∗∗∗ 0.114∗∗∗

(0.00203) (0.00162) (0.00257) (0.00323)
log(pop density) 0.112∗∗∗ 0.0569∗∗∗ 0.245∗∗∗ 0.207∗∗∗

(0.00172) (0.00144) (0.00194) (0.00214)
log(GDP) -0.0276∗∗∗ -0.0374∗∗∗ 0.101∗∗∗ 0.0933∗∗∗ 0.363∗∗∗ 0.357∗∗∗ 0.228∗∗∗ 0.202∗∗∗

(0.00403) (0.00391) (0.00522) (0.00516) (0.00463) (0.00405) (0.00679) (0.00590)
Temperature -0.00859∗∗∗ -0.0120∗∗∗ -0.0163∗∗∗ -0.0163∗∗∗ -0.00983∗∗∗ -0.0232∗∗∗ -0.0115∗∗∗ -0.0113∗∗∗

(0.000839) (0.000803) (0.000920) (0.000882) (0.00119) (0.000982) (0.00150) (0.00129)
Precipitation -0.000105∗∗∗ -0.000118∗∗∗ 0.0000690∗∗∗ 0.0000710∗∗∗ -0.000141∗∗∗ -0.000152∗∗∗ -0.000141∗∗∗ -0.000132∗∗∗

(0.00000828) (0.00000828) (0.00000847) (0.00000819) (0.00000881) (0.00000760) (0.0000103) (0.00000893)
Wind Speed -0.181∗∗∗ -0.172∗∗∗ -0.0778∗∗∗ -0.0683∗∗∗ 0.0270∗∗∗ 0.0588∗∗∗ -0.0175∗∗∗ 0.0167∗∗∗

(0.00314) (0.00311) (0.00311) (0.00305) (0.00398) (0.00344) (0.00388) (0.00348)
1(On coast) -0.380∗∗∗ -0.385∗∗∗ -0.178∗∗∗ -0.192∗∗∗ -0.164∗∗∗ -0.222∗∗∗ -0.128∗∗∗ -0.175∗∗∗

(0.0102) (0.0101) (0.00760) (0.00749) (0.0116) (0.0101) (0.0104) (0.00906)
1(Close to lake) -0.0936∗∗∗ -0.00463 0.0964∗∗∗ 0.0928∗∗∗ -0.327∗∗∗ -0.223∗∗∗ 0.0621∗∗ 0.0536∗∗

(0.0306) (0.0297) (0.0196) (0.0190) (0.0336) (0.0279) (0.0306) (0.0268)
1(Close to river) -0.00559 0.110∗∗∗ -0.0176∗∗ 0.00774 -0.136∗∗∗ 0.0472∗∗∗ -0.134∗∗∗ -0.0376∗∗∗

(0.0107) (0.0106) (0.00690) (0.00676) (0.0136) (0.0110) (0.0115) (0.00985)
1(Dirty power plant in district) 0.0452∗∗∗ 0.188∗∗∗ 0.103∗∗∗ 0.0881∗∗∗ 0.00618 0.145∗∗∗ 0.129∗∗∗ 0.0837∗∗∗

(0.0127) (0.0126) (0.00956) (0.00928) (0.0162) (0.0138) (0.0147) (0.0126)
N 44933 44933 44933 44933 44560 44560 44560 44560
R2 0.397 0.407 0.760 0.769 0.637 0.722 0.775 0.823
Countries 154 154 154 154 152 152 152 152
Country FE No No Yes Yes No No Yes Yes

Note: The table presents coefficients of estimations using population data by global administrative areas
(GADM) rather than LandScan data. All estimations include the following control variables: Trade controls
(river, lake, coastline within 25km), land suitability for agriculture, temperature, precipitation as well as rug-
gedness, latitude, and log(GDP). Columns 3,4,7 and 8 include country-fixed effects (Country FE). Standard
errors (in parentheses) are robust. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 3.B.6: GADM-level long differences regressions

PM2.5 NO2

(1) (2) (3) (4)
log(Sum of population) 0.146∗∗∗ 0.0591∗∗∗

(0.0115) (0.00759)
log(pop density) 0.147∗∗∗ 0.0597∗∗∗

(0.0115) (0.00763)
N 90396 90396 90010 90010
R2 0.136 0.136 0.087 0.087
Countries 159 159 157 157

Note: The table presents coefficients of long differences estimations on sub-national administrative level
comparable to NUTS-3 regions. This corresponds to districts in Germany. All estimations include the
following control variables: Trade controls (river, lake, coastline within 25km), land suitability for agriculture,
temperature, precipitation as well as ruggedness, latitude, and log(GDP). Columns 3,4,7 and 8 include
country-fixed effects (Country FE). Standard errors (in parentheses) are robust. Statistical significance
indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.



Chapter 3. Urban pollution: A global perspective 127

Table 3.B.7: Raster-level OLS regressions with varying sets of control variables

(1) (2) (3) (4) (5)
Panel A: PM2.5 Estimates
log(Sum of population) 0.0294∗∗∗ 0.0357∗∗∗ 0.0481∗∗∗ 0.0326∗∗∗ 0.0517∗∗∗

(0.00149) (0.00144) (0.00148) (0.00147) (0.00134)
N 175237 175274 175237 175237 175237
R2 0.607 0.605 0.589 0.582 0.592
Countries 161 162 161 161 161
Country FE Yes Yes Yes Yes Yes
Panel B: NO2 Estimates
log(Sum of population) 0.157∗∗∗ 0.172∗∗∗ 0.209∗∗∗ 0.173∗∗∗ 0.222∗∗∗

(0.00275) (0.00262) (0.00263) (0.00261) (0.00244)
N 178535 178579 178535 178535 178535
R2 0.675 0.666 0.614 0.665 0.606
Countries 160 161 160 160 160
Country FE Yes Yes Yes Yes Yes

Note: The table presents coefficients of OLS regressions including different sets of control variables. The first
column of each panel is the reference outcome as presented in Table 3.4, that includes all control variables.
Column 2 excludes GDP, column 3 excludes weather variables (temperature, wind, precipitation), and
column 4 does not take into account trade-specific controls (distance to lake, river, coast). Finally, column 5
excludes the biome indicators. Standard errors (in parentheses) are clustered within three-by-three squares
of grid cells times year. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Figure 3.B.1: Country-specific density effects and urbanization

(a) Urban Population total (PM2.5) (b) Urban Population total (NO2)

(c) Urbanization rate (PM2.5) (d) Urbanization rate (NO2)

(e) Large Agglomerations (PM2.5) (f) Large Agglomerations (NO2)

Note: Scatter plots of the country-specific population density effect on pollution exposure correlated with
different World Bank indicators as specified by each subtitle. The coefficients are obtained from regressions
for each country separately, controlling for trade variables (river, lake, coastline within 25km and continuous
distance to coast measure), agricultural ones (biome indicators, land suitability for agriculture), weather
(wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP), and an indicator for a
dirty power plant nearby. Outliers (2.5% highest and lowest coefficients) are excluded from the graphical
representation.
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Figure 3.B.2: Population/density effect by income

(a) PM2.5

(b) NO2

Note: Coefficients of different population measures on pollution exposure by subgroups. The coefficients are
obtained from regressions for each subgroup separately, controlling for trade variables (river, lake, coastline
within 25km and continuous distance to coast measure), agricultural ones (biome indicators, land suitability
for agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP),
and an indicator for a dirty power plant nearby.
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Figure 3.B.3: Population/density effect by continent

(a) PM2.5

(b) NO2

Note: Coefficients of different population measures on pollution exposure by subgroups. The coefficients are
obtained from regressions for each subgroup separately, controlling for trade variables (river, lake, coastline
within 25km and continuous distance to coast measure), agricultural ones (biome indicators, land suitability
for agriculture), weather (wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP),
and an indicator for a dirty power plant nearby.
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Figure 3.B.4: Country-specific population effects and urbanization

(a) Urban Population total (PM2.5) (b) Urban Population total (NO2)

(c) Urbanization rate (PM2.5) (d) Urbanization rate (NO2)

(e) Large Agglomerations (PM2.5) (f) Large Agglomerations (NO2)

Note: Scatter plots of the country-specific population density effect on pollution exposure correlated with
different World Bank indicators as specified by each subtitle. The coefficients are obtained from regressions
for each country separately, controlling for trade variables (river, lake, coastline within 25km and continuous
distance to coast measure), agricultural ones (biome indicators, land suitability for agriculture), weather
(wind speed, temperature, precipitation) as well as ruggedness, latitude, log(GDP), and an indicator for a
dirty power plant nearby. Outliers (2.5% highest and lowest coefficients) are excluded from the graphical
representation.
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Figure 3.B.5: Population effect within city by sub-sample

(a) PM2.5 by income (b) NO2 by income

(c) PM2.5 by continent (d) NO22 by continent

Note: Coefficients of population on pollution exposure by subgroups within cities. The coefficients are
obtained from regressions for each subgroup separately. The results stem from within-city estimations,
comparing pollution exposure of small grid cells within cities.
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3.C Spatial First Differences

The SFD estimation considers only differences between neighbouring cells. The crucial

assumption to hold in this context is that

E[yi|xi−1] = E[yi−1|xi−1]∀ {i, i− 1},

which states that pollution y in adjacent neighbouring grid cells i and i−1 would be equal if

they had the same population density xi−1. The authors refer to this as the Local Conditional

Independence Assumption (LCIA).

We estimate the following equation:

∆yi = ∆xiβSFD + θc +∆ϵi,

where ∆ is the difference operator. To make sure that the LCIA assumption holds, we add

country fixed effects θc to our regressions. In a nutshell, we then compare neighbouring cells

within countries.

Since there are neighbouring cells in North-South and in East-West direction, we will always

run two separate regressions: one for horizontal neighbours (East-West direction) and one

for vertical neighbours (North-South). We consider the SFD results as a lower bound on the

density effects, since it does not allow to account for many potentially important differences

between non-neighbouring cells.
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Table 3.C.1: Spatial first differences

NO2 PM2.5

(1) (2) (3) (4) (5) (6) (7) (8)
WE NS WE NS WE NS WE NS

log(pop density) 0.0313∗∗∗ 0.0613∗∗∗ 0.0313∗∗∗ 0.0368∗∗∗ 0.0266∗∗∗ 0.00986∗∗∗ 0.0203∗∗∗ 0.00596∗∗∗

(0.00149) (0.00225) (0.00127) (0.00137) (0.00179) (0.00188) (0.00169) (0.00182)
log(GDP) 0.0409∗∗∗ 0.277∗∗∗ -0.00301 0.0829∗∗∗

(0.0149) (0.0180) (0.0138) (0.0143)
Temperature 0.0453∗∗∗ 0.0741∗∗∗ -0.00588∗∗∗ -0.00111

(0.00308) (0.00323) (0.00186) (0.00205)
Precipitation -0.000344∗ 0.00159∗∗∗ 0.000798∗∗∗ -0.000262∗

(0.000197) (0.000265) (0.000144) (0.000159)
Wind Speed -0.0257∗∗∗ -0.0341∗∗∗ -0.127∗∗∗ -0.105∗∗∗

(0.00416) (0.00389) (0.00403) (0.00405)
1(Close to river) 0.0199∗ -0.00441 -0.00935 0.00519

(0.0121) (0.0138) (0.0130) (0.0134)
1(Close to lake) 0.0696∗∗∗ 0.0348 -0.107∗∗∗ -0.0808∗∗

(0.0233) (0.0315) (0.0259) (0.0368)
1(On coast) 0.00119 -0.0371∗∗∗ -0.313∗∗∗ -0.245∗∗∗

(0.00976) (0.00971) (0.0155) (0.0156)
Ruggedness -0.00428∗∗∗ -0.00130∗∗∗ 0.000767∗ -0.000117

(0.000530) (0.000459) (0.000443) (0.000425)
N 162268 163530 159674 160907 158506 159646 156380 157456
R2 0.019 0.060 0.177 0.204 0.009 0.004 0.063 0.025
No. of grids 162268 163530 159674 160907 158506 159646 156380 157456

Note: The table presents coefficients of Spatial first differences regressions including different sets of control
variables. For all control variables, coefficients are provided in the table. WE stands for West-East meaning
that neighbouring raster cells in the West to East direction are subject to within-analyses. NS stands for
North-South such that vertical neighbours are compared to each other. Standard errors (in parentheses)
are clustered within three-by-three squares of grid cells times year. Statistical significance indicators: ∗ p <
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.



Chapter 4

Ticket to paradise? The effect of a

public transport subsidy on air

quality.1

Abstract

This paper provides novel evidence on the impact of public transport subsidies on air pollu-

tion. We obtain causal estimates by leveraging a unique policy intervention in Germany that

temporarily reduced nationwide prices for regional public transport to a monthly flat rate

price of 9 Euros. Using DiD estimation strategies on air pollutant data, we show that this

intervention causally reduced a benchmark air pollution index by more than eight percent.

Our results illustrate that public transport subsidies - especially in the context of spatially

constrained cities - offer a viable alternative for policymakers and city planers to improve

air quality, which has been shown to crucially affect health outcomes.

1Co-authored with Niklas Gohl.
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4.1 Introduction

The UN’s Sustainable Development Goals emphasize the importance of air quality within

cities and explicitly list the improvement of urban air quality as a key measure to make

agglomerations safer, healthier, more resilient and sustainable.2 Key contributing factors to

air pollution, particularly in cities, are car traffic and congestion. Indeed, research demon-

strates that reduced congestion and traffic can lead to better air quality and subsequently

improved health outcomes (Margaryan, 2021; Knittel et al., 2016; Currie and Walker, 2011).

Frequently proposed measures to reduce automobile use and thereby air pollution include

the extension of public transport supply and the reduction of its cost, ultimately encouraging

a modal switch towards publicly provided means of transportation. This paper leverages a

unique policy intervention in Germany to causally estimate how lowering public transport

prices impacts air quality.

In June 2022, Germany introduced the “9-Euro-Ticket” (9ET), temporarily reducing regional

public transport fares to a flat rate price of 9 Euros per month from June until August. This

policy intervention is unusual in the sense that it temporarily and relatively suddenly reduced

public transport fares for a whole country. Further, the implied price drop was substantial -

in Berlin, for example, the price of the monthly standard ticket, which normally is 86 Euros,

experienced a decrease of about 90%.3 The aim of the ticket’s introduction was twofold.

First, mitigating the rising costs of living was a key objective of policymakers, who adopted

the measures in the first half of 2022 as part of a relief package. Second, it was considered a

potential means to promote environmentally friendly mobility by incentivising a reduction

in car use and thereby carbon emissions and pollution (Spiegel Online, 2022).

In order to causally analyse whether this substantial reduction in public transport prices

indeed has an impact on air pollution, we adopt a Difference-in-Differences (DiD) approach.

More precisely, the empirical setting compares changes in air pollution between months

May and June in non-treatment years before 2022 to changes in pollution in the same two

months in 2022. We construct a state of the art Air Quality Index (AQI) and show that

it decreases by more than eight percent as a consequence of the introduction of the ticket.

Further, we document substantial effect heterogeneity and show that the effect is largest in

2See Goal 11 at https://sdgs.un.org/goals.
3See https://www.bvg.de/de/tickets-und-tarife/alle-tickets/zeitkarten/monatskarte.

https://sdgs.un.org/goals
https://www.bvg.de/de/tickets-und-tarife/alle-tickets/zeitkarten/monatskarte
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urban areas, during work days and in areas with high levels of public transport provision.

Ultimately, back-of-the-envelope calculations show that potential health benefits associated

with a reduction in air pollution have the potential to exceed the costs of the intervention.

Our results are in line with recent findings that descriptively document a modal switch in

response to the introduction of the subsidy. The 9ET itself was sold over 52 million times

and survey evidence on individuals’ mobility patterns clearly documents a strong increase in

the use of public transport and a decrease in other modes of transportation in response to the

ticket’s introduction (DLR, 2022; VDV, 2022). For example, in a survey of 6,000 individuals

by the German Public Transport Association, ten percent of 9ET owners said they avoided

at least one of their daily car journeys by using the ticket (VDV, 2022). Further, studies on

the 9ET’s impact on traffic flows support that car traffic was indeed reduced: following the

introduction of the ticket, the level of congestion in many German cities decreased between

May and June 2022, while the amount of train travel increased (Süddeutsche Zeitung, 2022;

German Federal Office for Statistics, 2022).

Expanding on this descriptive evidence, our paper is, to the best of our knowledge, the first

to causally demonstrate that cheaper public transport can mitigate negative externalities

of automobile travel such as air pollution. Thus, in the absence of effective first best road

pricing systems that internalize the externalities of traffic, large subsidies on ticket prices

might be a viable second best solution.

Our research adds to a large body of literature that shows a positive impact of public transit

provision on air quality. Anderson (2014) and Bauernschuster et al. (2017) use unexpected

public transport strikes as a quasi-natural experiment and find a temporary increase in

congestion and in air pollution respectively. Other studies examine the effect of building

or extending new subway lines, showing that they improve air quality (Chen and Whalley,

2012; Gendron-Carrier et al., 2022). For Germany, Lalive et al. (2018) find a positive effect

of railway expansions on air quality. A second strand of literature develops and calibrates

quantitative equilibrium models to quantify welfare effects of public transport investments.

For instance, Parry and Small (2009) and Basso and Silva (2014) document significant

welfare gains from subsidizing public transport. Borck (2019), in a counterfactual analysis,

shows that subsidies reduce air pollution, albeit only modestly due to offsetting long term



138 4.1. Introduction

equilibrium effects such as residential relocation. In contrast, causal reduced form evidence

on the effect of public transport pricing on air quality is, to the best of our knowledge, scarce

and limited to the study of price increases. Yang and Tang (2018), using a synthetic control

group approach paired with DiD analysis, find that an increase in Beijing’s public transport

fare led to a short run increase in air pollution of approximately 16 percent.

Fully understanding how public transport prices and in particular a price reduction via

subsidized tickets impact traffic patterns and consequently air quality is crucial. Price ad-

justments, as opposed to infrastructural interventions, might offer an easier to implement

measure for policymakers to reduce air pollution - especially in spatially constrained cities

where extending existing networks or constructing new ones might not be an option.

A priori the effect of a public transport price reduction on air pollution is not clear. If

individuals switch from car travel to public transport - as suggested by the aforementioned

survey evidence - there might indeed be a fall in air pollution. However, if new passengers are

predominantly individuals, who replace walks and bike trips with public transport or seek to

avoid crowded trains, there might be no effect at all. Conclusive and causal evidence directly

studying the impact of a public transport subsidy does not exist. Our paper closes this gap

by providing evidence that a price reduction indeed can reduce air pollution. Further, in

contrast to previous research on the relation of public transport and air quality we provide

evidence for a whole country, Germany, and not only selected cities.

Overall, our results may have important policy and health implications: they show that

subsidizing public transportation might be a viable option to reduce air pollution particularly

in cities, thereby contributing to the UN’s sustainability goal of creating more resilient,

safer and healthier urban agglomerations. For instance, reductions in air pollution have

been shown to substantially reduce cardiovascular diagnoses (Margaryan, 2021) and improve

infant health (Knittel et al., 2016).

The remainder of the paper is structured as followed. Section 4.2 provides the relevant in-

stitutional background. Section 4.3 introduces the different data sources used for estimation

and presents the estimation approach. Section 4.4 presents and discusses the results and

Section 4.5 concludes.
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4.2 Institutional Background

The 2021 general election in Germany resulted in a new coalition government of Social

Democrats (SPD), the Greens and the Liberals (FDP). The creation of a sustainable mobility

sector was one of the topics highlighted in the new government coalition agreement.4 Since

2022, and particularly the start of the war in Ukraine on February 24th, living costs -

especially in the form of energy prices - increased drastically. This prompted the government

to pass a set of relief measures aiming to mitigate such costs and prices. The 9ET was part

of the second relief package with the objective, among other things, of maintaining public

transport affordable. Additionally, in particular the co-governing Green party frequently

emphasised the ticket’s potential to reduce carbon emissions and provide a more sustainable

alternative for the mobility sector, as stipulated by the coalition agreement (Spiegel Online,

2022).

On February 23rd, 2022, as a consequence of rising energy and fuel prices in previous months,

the ruling coalition parties decided upon a first relief package consisting of several measures

such as temporary tax cuts. Following the outbreak of war in Ukraine a day later and the

associated even stronger rise in gas and oil prices, a second relief package was passed in the

German Bundestag. This second set of relief measures included a reduction of the energy

tax on fuel in order to support people commuting by cars. Figure 4.A.1 in the Appendix

depicts the development of gasoline and diesel prices in Germany in 2022. It shows the steep

increase in price of all types of fuel after the start of the Ukraine war. After reaching a

peak at the beginning of March, the prices stabilized at moderately lower levels until June

1st. The reduction in energy tax that took effect from then on implied a temporary drop

in fuel prices. However, diesel regained pre-tax prices just after a few days. Overall, prices

for all types of fuel remained at a relatively high level especially compared to pre-war times.

Crucially, in our identification strategy presented in the following section we can control for

daily fuel prices to account for these patterns and the tax cut.

In order to additionally compensate users of public transportation, the relief package also

included the 9ET. For a total price of nine Euros a month, it allows its holders to use most

types of public transportation like buses, subways, and regional trains all over Germany. The

4See https://cms.gruene.de/uploads/documents/Koalitionsvertrag-SPD-GRUENE-FDP-2021-2025.pdf.

https://cms.gruene.de/uploads/documents/Koalitionsvertrag-SPD-GRUENE-FDP-2021-2025.pdf
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ticket was available from June 1st, 2022 until the end of August of 2022.5 One of the aims of

subsidizing public transportation, in addition to relieving the financial burden on citizens,

was to encourage its utilization and thereby promote sustainable modes of transportation.

Just before June 1st, about seven million tickets and by the end of June approximately 21

million tickets had been sold (Handelsblatt, 2022; Süddeutsche Zeitung, 2022). Factoring

in the roughly 9 million regular subscribers to monthly or yearly tickets whose fare is auto-

matically reduced to 9 Euros from June to August, more than thirty million 9ETs were in

circulation by the end of June.

4.3 Data and Empirical Approach

In order to analyse the 9ET’s impact on air pollution, we collect pollution measurements for

four key pollutants and data on covariates that have been shown to influence air pollution,

such as weather conditions and holidays. Crucially, we also collect data on fuel prices

allowing us to fully account for the tax cut in fuel prices that was simultaneously introduced

with the 9ET. The remainder of this section firstly presents our different data sources before

introducing the empirical approach.

4.3.1 Data

Air pollution data We use air pollution data for months May until September from 2018

to 2022. The data is provided as hourly measures by the Federal Environmental Agency

(FEA) (Umweltbundesamt, 2022).6 We observe whether a measuring station is located close

to a street (traffic station) or in residential areas (background station). While the former

provides information on air quality in relation to traffic, the latter rather indicates the general

quality of the air in an area. We make use of this differentiation in our estimations: in the

main specification we exclusively focus on air pollution concentrations measured by traffic

stations, in order to test whether it is indeed the reduction in car traffic that reduced air

pollution following the 9ET. In a heterogeneity check, we exclusively focus on background

5For more information on the relief packages, see https://www.bundesfinanzministerium.de/Content/DE
/Standardartikel/Themen/Schlaglichter/Entlastungen/schnelle-spuerbare-entlastungen.html.

6The FEA API provides the data: https://www.umweltbundesamt.de/daten/luft/luftdaten/doc.

https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Schlaglichter/Entlastungen/schnelle-spuerbare-entlastungen.html
https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Schlaglichter/Entlastungen/schnelle-spuerbare-entlastungen.html
https://www.umweltbundesamt.de/daten/luft/luftdaten/doc
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stations, where we expect the potential effect of the ticket to be smaller.7 Further, the data

includes information on whether the station lies in rural, suburban or urban areas.

In order to assess air quality we look at the pollutants nitrogen dioxide (NO2), particulate

matter with diameter less than 10 (PM10) micrometers or smaller than 2.5 (PM2.5) micromet-

ers, as well as ozone (O3). These we use to construct the AQI, commonly used by national

and international authorities in order to assess pollution levels and provide information on

potential health impacts at local levels. For the construction of the AQI, we follow a bench-

mark European air quality index (Van den Elshout et al., 2014), which is based on the core

pollutants NO2, PM10, and PM2.5 for traffic stations (our key outcome) and additionally O3

for background stations. The index itself takes on values between 0 and 100, and is then

further classified into four categories from very low pollution (index number 0-25) to high

pollution (index numbers 75-100).8

Fuel prices We collect data on local fuel prices. Since 2013, fuel stations have been obliged

to report each and every change of fuel prices (specifically for diesel and gasoline) in real

time to the Market Transparency Office for fuels (“Markttransparenzstelle für Kraftstoffe”)

run by the German Cartel Office.9 We aggregate all fuel prices to district level by taking

the daily mean of all stations within each administrative entity.10

Meteorology When analysing air quality data, it is critical to control for current weather

conditions. Wind and rain tend to improve air quality, since they clean the air e.g. from

pollutants such as particulates. We use weather data aggregated to daily levels to control

for mean temperature, mean wind speed and total precipitation levels. In order to do so, we

acquired measurements from about 3.000 stations from the German Meteorological Service

(DWD Climate Data Center (CDC), 2022). Since measurement stations are independently

located from air quality measuring stations, we follow the approach by Auffhammer and

7In our data set, 411 ground-level stations measure the concentration of NO2, 360 stations measure PM10

and 273 PM2.5. One of the reasons why there are fewer monitoring stations for PM2.5 is that the coverage
of this pollutant started relatively late compared to the other pollutants and the measuring network is still
being expanded.

8For a technical description for the construction of the AQI see Table 4 in Van den Elshout et al. (2014).
9For more information see https://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-

Fuels/mtufuels node.html;jsessionid=4E22F5632D11B1D267F456C94321D7C6.2 cid390
10The price data is provided on the following website: https://creativecommons.tankerkoenig.de/.

https://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-Fuels/mtufuels_node.html;jsessionid=4E22F5632D11B1D267F456C94321D7C6.2_cid390
https://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-Fuels/mtufuels_node.html;jsessionid=4E22F5632D11B1D267F456C94321D7C6.2_cid390
https://creativecommons.tankerkoenig.de/
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Kellogg (2011) to match each air quality station to the nearest weather station.11 Through

this method, we are able to match about 99 percent of pollution observations to the weather

variables of interest.

Further controls We control for a variety of potential economic and traffic-related vari-

ables. In particular, the German Federal Office for Statistics has provided us with district

level data on the total mileage of regional and local trains as well as on the bus services per

capita. We use this information in our heterogeneity analysis to check whether effects differ

across districts with low and high levels of public transport provision.

Furthermore, we know whether a day falls on a weekend, a public holiday or on school

vacations.12 In order to be able to differentiate between effects in urban areas including

their commuting zones, we resort to OECD definitions of Functional Urban Areas (FUAs).13

Those are constructed based on commuters’ daily movements and they consist of a city

centre to which people commute to as well as the surrounding commuting zone (Dijkstra

et al., 2022). In Germany, there are 96 FUAs in total.

4.3.2 Empirical Approach

We employ a DiD design using month June as the treatment group and May as the control

group. For the pre-treatment period we focus on pollution measurements from years 2018

and 2019. We explicitly exclude 2020 and 2021 because there could be confounding factors

that affect air pollution results in those years due to changes in COVID 19 restrictions in

May and June 2020 and 2021, respectively.14 We focus on working days outside of school

11The approach conducts the following steps: After calculating Vincenty distances, we identify the ten
closest weather stations to each pollution station within a 75 kilometre distance and a maximum elevation
difference of 200 meters. Then, the “primary station” is chosen as the closest meteorology station with more
than 50 percent of non-missing observations and matched to the pollution data. Following, missing values
are filled by regressing non-missing weather observations of primary stations on weather measurements of
the nine other closest stations and using the predicted values from these regressions. Missing values still
remain in the case that one of the nine stations had a missing observation. In this case the above step is
repeated using the eight closest stations. The number of stations is then subsequently lowered. For a more
thorough description see Auffhammer and Kellogg (2011).

12Information about state-level holidays and vacations are retrieved from http://www.feiertage-api.de/
and https://ferien-api.de/ respectively.

13Shapefiles are provided by the OECD at https://www.oecd.org/regional/regional-statistics/functional-
urban-areas.htm.

14For example, in most federal states in-class teaching only restarted in late May/June in 2021 and mid
and late May in 2020

http://www.feiertage-api.de/
https://ferien-api.de/
https://www.oecd.org/regional/regional-statistics/functional-urban-areas.htm
https://www.oecd.org/regional/regional-statistics/functional-urban-areas.htm
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holidays, as unusual traffic patterns are common during these.15 Further, there is more

construction work during school holidays, which can directly affect air quality and traffic.16

Equation 4.1 describes the approach in more detail.

psymd = αs + γyf + ηmf + ζd + βPostm · κ2022 +X ′
symdθ + ϵsymd (4.1)

psymd is the logarithm of the AQI measured at station s, in year y for month m, at day of

the week d. We regress this outcome on station level fixed effects, αs, controlling for all

potential time invariant station-specific observables and unobservables such as the number

of lanes the station is placed at or the distance to rail tracks. Further, we include federal

state specific year fixed effects, γyf , to control for general differences across years in each

federal state f and federal state specific month fixed effects ηmf to account for differences in

treatment and control months within each federal state. We also control for day-of-the-week

fixed effects, ζd. This allows us to only compare pollutant levels at the same day of the

week with one another. This is necessary as there are pollution trends across days of the

week and thus comparing pollutant levels on a Wednesday and a Friday might falsely pick

up a difference in pollution between years that can simply be attributed to these trends.17

We then include a dummy variable Postm that equals one if the 9ET was in effect in the

month of observation. Interacting the Post indicator with an indicator variable for the year

2022, i.e. κ2022, then gives the DiD estimate for coefficient β. This setup allows us to test

whether there indeed is a change in air quality between May and June in 2022, i.e. the year

when the 9ET was introduced, that goes beyond the changes observed between these two

months in previous years that were not subject to such a policy intervention. In addition, we

control for a matrix of covariates, X ′, including linear and squared daily weather conditions

in the vicinity of each pollution station such as wind speed, precipitation and temperatures,

as these have been shown to influence pollution levels (see e.g. Auffhammer and Kellogg,

2011). Further, we control for daily average fuel prices and interact the fuel prices with the

year fixed effects in order to account for different effects across years. Controlling for fuel

15There are peaks of traffic within and outside of cities at varying days, especially the beginning and the
end of the respective holiday.

16In addition, the school vacations begin at different times every year and in each state, which makes
controlling for the described patterns difficult.

17For example, on Fridays there may be a higher tendency to work from home.
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prices is crucial as a fuel tax cut was introduced jointly with the 9ET (see Section 4.2).

As detailed above, fuel prices fell only moderately in response to the tax cut compared to

the yearly trend (see Figure 4.A.1). In the robustness checks of the paper we also present

specifications excluding the first days in June and the last days in May to account for the

temporary fall in gasoline prices and potential anticipation effects, which could entail that

individuals drove less before June in order to wait for a fall in gas and public transport

prices. In our main specifications, the error term ϵsymd is clustered at the district level.

The DiD approach identifies the causal effect of the 9ET on air pollution as long as pollutant

levels in control month May and treatment month June would have developed parallelly in

the absence of treatment and conditional on the observed covariates and fixed effects. In the

following section we check this assumption by carefully examining pre-trends, i.e. average air

pollution levels in May and June in the years before 2022. In addition, we provide placebo

tests together with our main results. In those, the reform date is shifted forward to 2019,

thereby explicitly testing for common pre-trends.

The focus of the main analyses is explicitly on the months May and June, since the common

trend assumption is likely to hold only for months close to each other, i.e. months that share

similar characteristics. In order to present time patterns of the subsidy’s impact, we will

subsequently provide estimates including June, July and August as part of the treatment

group. However, we consider these estimates mainly of suggestive nature, since days in

May and July/August do not necessarily show common trends in air pollution, especially

since the bulk of summer vacations in most states fall in July/August and vacation patterns

change over the years.

4.4 Results

Descriptive Results We can check the identifying assumption by comparing pre-trends,

i.e. air quality before 2022 for treatment (June) and control month (May). More precisely,

we compare average values for a given day of the week in May and June before and after

the introduction of the 9ET. Figure 4.1 shows the day of the week specific average for the

logarithm of the AQI for the pre-policy period, i.e. 2018-2019 (left), and the post policy

period (right), i.e. the year 2022, respectively. The graph illustrates that when assessing
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Figure 4.1: Day of the week averages for log(AQI).

Note: Own calculations. Day of the week averages for log(AQI) before and after the introduction of the
9-Euro-ticket for treatment (June) vs. control month (May), excluding school and public holidays. Average
working day values and differences for May and June before and after the reform are displayed in the
graph’s textboxes. The p-values are derived from a two-sided t-test on the difference between both values.
Corresponding values for weekends are 2018/19: June= 3.411, May= 3.400, Diff= −0.011, p-value= 0.39;
2022: June= 3.331, May= 3.169, Diff= −0.162, p-value= 0.00.

pre-trends it is crucial to only compare pollutant levels at the same day of the week with

one another, as there are clear general patterns in the average pollutant levels for a certain

day of the week. For example, there generally appears to be a greater level of pollution in

the middle of the week and lower levels over weekends.

Figure 4.1 supports our identifying assumption: during the pre-treatment period, AQI val-

ues for treatment and control months behaved relatively similarly and followed a parallel

trajectory throughout the week, albeit at slightly different levels. The corresponding average

values for working days depicted in the textbox show that on average pollution on working

days in June is 0.03 log points lower than in May. Looking at the post treatment period, i.e.

the year 2022, we can see that average pollution for the control month May follows a roughly
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similar weekly trajectory as in the pre-treatment period, albeit at an overall lower level. Un-

like prior years, average pollution in the treatment month falls substantially compared to

the control month. In particular, during the week there appears to be a sharp decline in

the log of the AQI in 2022, which suggests an improvement in air quality. This is further

confirmed by comparing the average log values of the AQI for working days, i.e. Monday

to Friday, in May and June in the post-treatment period, as presented in the textbox: on

average, air pollution is 0.14 log points smaller in June than in May 2022 - a remarkable

difference compared to the pre-treatment period.

In contrast, weekend average values in June in comparison to May visibly increase across pre-

and post-treatment years. In 2018/19 average pollution on weekends was 0.011 log points

higher in June. However, average pollution on weekends in June 2022 was 0.162 log points

higher than in May 2022. Anecdotal evidence suggests that due to lower public transport

prices for regional trains there was a substantial influx in train travel over weekends (Zeit

Online, 2022). In particular students and young people are said to have used trains in-

creasingly for weekend trips and holidays, leading to newspaper articles about and television

coverage concerning crowded and delayed trains. This potentially had a deterring effect on

travellers who might have switched to car use in order to avoid crowded trains, which could

possibly explain the observed increase on weekends.

Following the visual inspection of the graphs, we expect a negative effect of the 9ET on air

pollution during weekdays and a positive effect during weekends in our main estimation.

Further, we revisit our identification assumption by explicitly testing for common pre-trends

conditional on covariates and fixed effects using a placebo framework solely focussing on the

years 2018/19.

Main Results: Table 4.1 presents the results using log(AQI) as an outcome variable. In

all specifications we control for the full set of fixed effects and covariates described above.

Specification (1) shows the results for the months of May and June. We find a negative

point estimate for the interaction term suggesting that the average AQI fell by more than

eight percent. The estimated effect is significant at the one percent level. Since an index

value of zero indicates the best possible air quality, the result suggests an overall average

improvement in air quality. In specification (2) and (3), we additionally include the months
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July and August. As previously pointed out, these estimates are of suggestive nature to

analyse how the subsidy’s impact developed over time. Point estimates in both specifications

remain negative and in case of specification (2) relatively similar to the main specification.

When including August, there is a clear decrease in absolute size of the point estimate,

suggesting a fall in the 9ET’s impact on pollution. One potential explanation here might be

a switch back from public transport towards other means of transportations after initially

trying public means of transportation in June. However, these results should be interpreted

cautiously and as suggestive evidence since a comparison of May and August within our

setting is not ideal (see Section 4.3.2).

Table 4.1: Main Results: log(AQI)

(1) (2) (3) (4) (5) (6) (7)

Interaction -0.0877∗∗∗ -0.0833∗∗∗ -0.0630∗∗∗ -0.0089 -0.0125 -0.0230 0.0665∗∗

(0.0207) (0.0200) (0.0157) (0.0172) (0.0170) (0.0168) (0.0314)

Covariates Yes Yes Yes Yes Yes Yes Yes
Day of Week FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Station FE Yes Yes Yes Yes Yes Yes Yes

Observed Years 18,19,22 18,19,22 18,19,22 18,19 18,19 18,19 18,19,22
Observed Months May-June May-July May-August May-June May-July May-August August-Sep
Observations 21926 26485 30737 14523 17093 20413 15054

Note: Source: own calculations. Standard errors in parentheses and clustered at district level, significance
levels ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table displays regression results using the log of the AQI as
outcome variable. Column (1) shows the results for a basic DiD approach only including months May and
June. Columns (2)-(4) augment the estimation with subsequently adding additional months. Columns (4)
- (6) implement placebo tests where year 2019 is used as the new policy date. Column (7) shows the effect
of abolishing the 9ET. All specifications control for the full set of covariates and fixed effects.

In column (4)-(6) we repeat the estimations for the years 2018 and 2019 only. Crucially, we

treat year 2019 as if the 9ET was introduced in June 2019. This allows us to run a placebo

test and explicitly examine the common pre-trends assumption. The point estimates are

slightly negative and insignificant in each specification, thereby supporting the notion that

there is no systematic difference between treatment and control months across years previous

to the actual introduction of the ticket.

Lastly, in column (7) we show the outcome of analysing whether the abolishment of the

ticket from August to September resulted in an increase in air pollution.18 Using August

18August and September coincide with the end of school holidays in many federal states. Thus there are
fewer observations stemming from non-holiday days, which we use in our estimation.
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as the treatment group and September as the control group or vice versa might imply that

our estimation will also pick up potential spillover effects, undermining our identification

strategy. For example, if the introduction of the ticket managed to incentivize lasting beha-

vioural change, some individuals might have permanently switched towards public transport.

This in turn would impact air pollution in September as well as August 2022, ultimately

violating the Stable Unit Treatment Value Assumption (SUTVA) commonly needed in DiD

approaches. Nonetheless, we provide these results as suggestive evidence with the aim of

giving additional information on the impact of the end of the 9ET. The positive point es-

timate in column (7), which uses August as the control and September as the treatment

month, confirms that air pollution was significantly lower during the period when the 9ET

was in effect than during the months with regular public transit fares.

All in all the results indicate a substantial fall in the AQI of more than eight percent and

suggest a decrease in the effect over time.

In comparison to other literature studying the relation between public transit and air pollu-

tion our effect size is somewhat smaller. Bauernschuster et al. (2017), for instance, find a 14

percent increase in particle pollution in response to a public transport strike in Germany’s

five largest cities. Yang and Tang (2018) find a short term increase of approximately 16 per-

cent in a Chinese air pollution index for Beijing in response to an increase in public transport

fares. Our estimation in turn focusses on a fall in transport prices. Further, our effects are

potentially less pronounced, as we focus on all of Germany and not just the largest cities or

a single urban agglomeration.

Mechanisms and Heterogeneous Results In a next step, we split our sample along

several dimensions to analyse heterogeneous effects and potential mechanisms. Table 4.2

depicts the results. All specifications control for the full set of covariates and fixed effects

and use observations from months May and June. First, in columns (1)-(4) we split our

sample into the core of a Functional Urban Area (FUA), the total FUA and non-FUA

(rural) areas.19 The effect is driven by a substantial reduction in pollution in core areas.

One potential explanation is that most jobs are situated in core areas. If more individuals

commute to these core areas by public transport there will be less traffic and congestion

19The total FUA includes the core as well as the commuting zone of a FUA.
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there, implying a fall in pollution concentration levels. Another possible explanation is that

there is more supply of public transport in these areas, which would then allow for an easier

switch to public means of transportation.

Table 4.2: Heterogeneous Results

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Core FUA Non Core FUA Non FUA High PT Low PT Weekend Weekday Background St.

Interaction -0.1095∗∗∗ -0.0062 -0.0985∗∗∗ -0.0172 -0.1019∗∗ -0.0836∗∗∗ 0.0101 -0.1244∗∗∗ -0.0241∗∗

(0.0208) (0.0441) (0.0206) (0.0690) (0.0418) (0.0242) (0.0391) (0.0218) (0.0113)

Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day of Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Station FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 18001 3925 19894 2032 5554 16372 6211 15715 42855

Note: Source: own calculations. Standard errors in parentheses and clustered at district level, significance
levels ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table displays regression results using the log of the
AQI as outcome variable. Column (1) shows the results for stations from the core of functional urban
areas, column(2) for stations positioned outside the core. Specification (3) just includes observations from
functional urban areas and specification (4) from outside these areas. (5) solely uses measurements from
stations in districts in the highest 25 percentile of Public Transport (PT) supply and (6) in districts in the
lowest 75 percentiles of public transport kilometres per person. (7) and (8) split the sample into weekends
and weekdays and (9) solely includes measurements from background stations. All specifications control for
the full set of covariates and fixed effects.

In order to generally assess the role of public transport supply, we split our sample into

districts with a relatively high and low level of public transport infrastructure (see columns

(5)-(6)). We can do so by using data on public transport kilometres per population for

districts in Germany. More precisely, we split our sample into districts in the highest 25

percentiles of public transport kilometres per person and the lowest 75 percentiles. The

results show that for both groups we find significant effects. As expected, the effect size is

more pronounced for the group with higher levels of public transportation.

Next, in columns (7)-(8) we confirm what the visual examination above indicated: the effect

is driven exclusively by weekdays. For weekends we find a positive, albeit insignificant effect

when including the full set of covariates and fixed effects.

Lastly, in our data we can differentiate between air quality measured by stations directly next

to roads and background measurements in quieter areas. If there indeed is less traffic due

to more individuals using public transport, the effect at stations directly exposed to traffic

should be stronger. In our main specifications we have so far exclusively focused on traffic

stations. In column (9) of Table 4.2 we repeat our estimation for background stations. Only
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using background stations we would expect a smaller effect size, as these stations are not

directly positioned next to streets. The results confirm this notion, as the point estimates

remains negative and significant, albeit relatively small in absolute size.

Robustness In the Appendix we repeat our main estimation for different standard error

clusters, i.e. at the station specific level and at the station-year level. Tables 4.A.1 and 4.A.2

show the results. Inference and statistical significance do not change across these different

clusters.

Further, as detailed in Section 4.2, a tax cut on gasoline prices was implemented from June,

1st in addition to the 9ET. The corresponding law, however, was already passed on May

19th, 2022. Car owners thus might have waited for June 1st in order to purchase new fuel

and drive again. As a consequence, pollution levels directly before June 1st might have been

slightly dampened and heightened at the beginning of June, leading to a lower estimated

decrease in pollutants after the introduction of the 9ET. In order to analyse these potential

anticipation effects in the run up to June 1st, we repeat our main estimation for the log(AQI)

in a leave-one-out exercise. Here we successively drop the first and last two days in May

and June respectively. The results, presented in Table 4.A.3 in the Appendix, indicate no

substantial difference in the point estimates for the variable of interest, which remains very

similar in size across specifications.

Lastly, we use each pollutant (and its logarithm) that contributes to the AQI as an outcome

variable separately in order to check that it is not simply the construction method of the

AQI that drives the results. Moreover, the calculation of outcomes for individual pollutants

facilitates the interpretation of the results in the following paragraph. Table 4.A.4 in the

Appendix shows the results for PM10, PM2.5 and NO2 respectively. All point estimates are

significant and negative supporting the results in the main specification using the AQI as

the key measure for air quality.

Implications Overall, our results document a decrease in air pollution in response to the

9ET, which might impact further outcomes such as individuals’ health. Indeed, the negative

relationship between air pollution and health hazards is a well established fact (Anderson,

2009). Generally, AQI values below 50 are categorized as an overall “good” air quality



Chapter 4. Ticket to paradise? 151

(Van den Elshout et al., 2014). While the average AQI value in Germany is about 35, and

thus an eight percent increase still leaves us within the range of good air quality, there are

nevertheless numerous studies that find significant health effects even at moderate levels

of air quality deterioration. For instance, the introduction of Low Emission Zones (LEZ)

in Germany lowered PM10 concentrations by about 3 percent or approximately 0.8 µg/m3,

which consequently reduced the number of patients with cardiovascular diagnoses by ap-

proximately 2-3 percent (Margaryan, 2021). According to back-of-the-envelope calculations,

this resulted in economic welfare gains of more than 4.4 billion Euros (Margaryan, 2021).

Assuming the relationship between cardiovascular health problems and PM10 to be linear,

this would imply an even larger effect of the 9ET, as PM10 was reduced by more than 1.5

µg/m3 following the introduction of the ticket (see Table 4.A.4).

Further research suggests a significant impact of pollution reductions on infant health and

mortality, even at levels below common thresholds of concern (Simeonova et al., 2021; Knittel

et al., 2016; Currie et al., 2011). For example, PM10 reductions of 1 µg/m
3 have been shown

to imply ten saved lives per 100,000 births (Knittel et al., 2016). Taking the value of a

statistical life of 1.72 million Euro in Germany, this would imply saved costs of about 200

million Euros per year, given total births of 800,000 and our finding of a 1.5 µg/m3 reduction

in PM10.

While such back-of-the-envelope calculations are based on highly simplified assumptions,

they nevertheless indicate that positive health implications alone could have the potential

to amortise the costs associated with the ticket of approximately 2.5 billion Euro.20 This is

especially the case since the exemplary calculations conducted above ignore a range of further

health hazards caused by pollution, e.g. pulmonary diseases, lung damages, respiratory

distress, or birth defects (for an extensive list of potential health effects only caused by

particulate pollution, see Pope III and Dockery, 2006).

4.5 Conclusion

In this paper, we provide novel causal evidence on the effect of a large scale public transport

subsidy on air pollution. The policy we study is unique in the sense that it reduced public

20The ticket’s cost were estimated based on foregone ticket revenues (Die Bundesregierung, 2022).
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transport fares for a whole country in some areas by as much as 90 percent. To the best of our

knowledge, we are the first to causally study the effects of a public transport subsidy on air

pollution. In doing so, we extend the previous literature, which has focussed predominantly

on price increases (Yang and Tang, 2018), calibrated quantitative models (Borck, 2019) or

leveraged natural experiments such as unexpected public transit strikes (Bauernschuster

et al., 2017) to study the general relationship between public transit and air pollution.

As our key finding, we show that pollution levels fall in response to the policy intervention.

In particular, the AQI decreases by more than eight percent. Further, we document effect

heterogeneity showing that the effects are largest during the week, i.e. when individuals

commute to and from work. We also show that the effects are more pronounced in urban

areas and regions with a well developed public transport network.

Our results are relevant for policymakers and researchers alike. First, our findings suggest

that subsidizing public transportation can indeed incentivize a modal switch, which sparks a

decrease in pollution levels and potentially other outcomes not studied in this paper such as

carbon emissions. Further, the results echo findings of quantitative equilibrium models, e.g.

by Borck (2019), who finds a decrease in pollution in response to lifting public transport fares

all together. Our effect sizes lie in between the relatively small effect of public transport on

air pollution documented in general equilibrium models by Borck (2019) and relatively large

effects found in other papers studying price changes in public transport fares such as Yang

and Tang (2018). The differences in effect sizes is plausible, as we estimate the short-term

impact of the subsidy and can hence not account for long term equilibrium effects, which

might work in offsetting directions.21 Further, we focus on pollution measurements across

Germany, whereas other papers have singled out large urban agglomerations where a stronger

relationship between public transport and air pollution seems plausible, and indeed is also

shown in our heterogeneity analyses. Additionally, our back-of-the-envelope calculations

show that if the 9ET was to be permanent and behavioural adjustments in the modal split

were to remain, the costs of the ticket in theory could be amortised by positive health effects

and their related economic burden.

Overall, the findings thus indicate that subsidizing public transport might be a viable option

21In particular, (Borck, 2019), in his model, emphasizes relocation mechanisms and an increase in housing
consumption and residential emissions.
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to reduce pollution in the short term and given results by Borck (2019) potentially also

in the long term. Thereby, a policy intervention such as the 9-Euro-ticket may indeed

contribute to the UN’s sustainability goal of creating more resilient, safer and healthier

urban agglomerations.
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Appendix

4.A Additional tables and figures

Figure 4.A.1: Development of average gasoline and diesel prices in Germany, 2022

Note: Own illustration. The graph shows the development of gasoline and diesel prices between January,
2022 and July, 2022. Gasoline and diesel data are retrieved from https://creativecommons.tankerkoenig.de/.
The gasoline price is the average of E5 and E10 (indicating ethanol content in gasoline of 5 and 10 percent
respectively) prices.

https://creativecommons.tankerkoenig.de/
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Table 4.A.1: Results for SE Station Clusters

(1) (2) (3) (4) (5) (6) (7)

Interaction -0.0877∗∗∗ -0.0833∗∗∗ -0.0630∗∗∗ -0.0089 -0.0125 -0.0230 0.0665∗∗

(0.0202) (0.0197) (0.0160) (0.0167) (0.0165) (0.0163) (0.0291)

Covariates Yes Yes Yes Yes Yes Yes Yes
Day of Week FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Station FE Yes Yes Yes Yes Yes Yes Yes

Observed Years 18,19,22 18,19,22 18,19,22 18,19 18,19 18,19 18,19,22
Observed Months May-June May-July May-August May-June May-July May-August August-Sep
Observations 21926 26485 30737 14523 17093 20413 15054

Note: Source: Own calculations. Standard errors in parentheses and clustered at station level, significance
levels ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table displays regression results using the log of the AQI as
outcome variable. Column (1) shows the results for a basic DiD approach only including months May and
June. Columns (2)-(4) augment the estimation with subsequently adding additional months. Columns (4)
- (6) implement placebo tests where year 2019 is used as the new policy date. Column (7) shows the effect
of abolishing the 9ET. All specifications control for the full set of covariates and fixed effects.

Table 4.A.2: Results for SE Station-Year Clusters

(1) (2) (3) (4) (5) (6) (7)

Interaction -0.0877∗∗∗ -0.0833∗∗∗ -0.0630∗∗∗ -0.0089 -0.0125 -0.0230 0.0665∗∗

(0.0189) (0.0178) (0.0152) (0.0151) (0.0149) (0.0146) (0.0279)

Covariates Yes Yes Yes Yes Yes Yes Yes
Day of Week FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Station FE Yes Yes Yes Yes Yes Yes Yes

Observed Years 18,19,22 18,19,22 18,19,22 18,19 18,19 18,19 18,19,22
Observed Months May-June May-July May-August May-June May-July May-August August-Sep
Observations 21926 26485 30737 14523 17093 20413 15054

Note: Own calculations. Standard errors in parentheses and clustered at station-year level, significance
levels ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The table displays regression results using the log of the AQI as
outcome variable. Column (1) shows the results for a basic DiD approach only including months May and
June. Columns (2)-(4) augment the estimation with subsequently adding additional months. Columns (4)
- (6) implement placebo tests where year 2019 is used as the new policy date. Column (7) shows the effect
of abolishing the 9ET. All specifications control for the full set of covariates and fixed effects.
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Table 4.A.3: Leave-One-Out Results

(1) (2) (3)

Interaction -0.0877∗∗∗ -0.0876∗∗∗ -0.0829∗∗∗

(0.0207) (0.0213) (0.0211)

Covariates Yes Yes Yes
Year FE Yes Yes Yes
Station FE Yes Yes Yes
Day of Week FE Yes Yes Yes

Observations 21926 21660 21395

Note: Own calculations. Standard errors in parentheses and clustered at district level, significance levels
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Outcome variable is the log of the air quality index. (1) leaves out no
observations before and after the introduction, (2) the first day on each side and (3) the first two days on
each side. All specifications control for the full set of covariates and fixed effects.

Table 4.A.4: Results for Different Air Pollutants

(1) (2) (3) (4) (5) (6)
log(PM10) log(PM2.5) log(NO2) PM10 PM2.5 NO2

Interaction -0.1018∗∗∗ -0.1300∗∗∗ -0.1066∗∗∗ -1.5706∗∗∗ -0.9243∗∗ -2.5090∗∗∗

(0.0251) (0.0400) (0.0204) (0.4303) (0.3513) (0.6609)

Covariates Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Station FE Yes Yes Yes Yes Yes Yes
Day of Week FE Yes Yes Yes Yes Yes Yes

Observations 18186 11118 21043 18186 11118 21043

Note: Own calculations. Standard errors in parentheses and clustered at district level, significance
levels∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Columns (1)-(3) show the logged outcomes for different pollutants
separately, while columns (4)-(6) repeat the exercise using absolute values. All specifications control for the
full set of covariates and fixed effects.



Chapter 5

The causal effect of cycling

infrastructure on traffic and

accidents: Evidence from pop-up bike

lanes in Berlin.1

Abstract

This paper analyses the effects of new bike lanes on traffic volume, congestion, and accidents.

In order to obtain causal estimates, I exploit the quasi-random timing and location of newly

built cycle lanes. Crucially, the new cycling infrastructure replaces existing car lanes thereby

reducing available space for motorized traffic. Using a variety of difference-in-differences style

methods on geocoded data, I show that the construction of pop-up bike lanes significantly

reduced average car speed by 8 to 12 percent and up to 16 percent in peak traffic hours.

The results for car volume are insignificant in most specifications. Ultimately, the data do

not allow for a conclusive judgment of accidents.

1Sole authored.
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5.1 Introduction

Traffic has become progressively worse over the past decades.2 It does not only have a

tremendous environmental impact (Schwela and Zali, 1998) but also affects numerous aspects

of life quality (Gifford and Steg, 2007). More recently, policy makers have aimed to reduce

such negative traffic externalities by building new bicycle paths. In cities around the world,

such as Bogotá, New York, Jakarta, Mexico city, London, Paris, and Berlin, authorities

have worked on improving the local cycling infrastructure.3 One common measure in this

regard was the conversion of car lanes into bike lanes. Among the expected benefits, as

proclaimed by Berlin’s bicycle traffic plan4, are improved local air quality, safer streets, and

more efficient use of public space as motorists switch to bicycles. However, little is known

about the actual, potentially unintended effects on traffic and road dynamics caused by such

infrastructural interventions.

This paper investigates the effects of new bike lanes on traffic volume, congestion and ac-

cidents. Specifically, I consider new cycling infrastructure that results from converting car

lanes into bicycle lanes within a large metropolitan area. The analysis uses Pop-Up Bike

Lanes (PUBLs) in Berlin, which were installed between March and June of 2020, and hence

during the COVID-19 induced lockdowns.5 While the pandemic caused an immediate de-

crease in traffic volume throughout the entire city, the unexpected and quasi-random in-

stallation of the cycling lanes that followed allows for the identification of changes in the

outcomes over time and circumvents endogeneity problems such as reverse causality. My

findings suggest a decrease in average car speed by between 8 and 12 percent, and thus

an increase in congestion on these streets. Absolute accidents are not significantly affected

according to my estimations.

My research is of interest for at least three reasons. First, congestion and accidents hinge

on traffic volume and are among the most severe agglomeration diseconomies (Ahlfeldt

2See for instance https://www.pwc.com/us/en/industrial-products/publications/assets/pwc-mobility-
insights-congestion.pdf

3See e.g.: Bogotá: https://www.c40.org/case-studies/upgrade-of-the-cycle-network.../,
New York: https://rpa.org/work/reports/the-five-borough-bikeway,
Mexico city & Jakarta: https://www.itdp.org/.../cycling-and-mexico-city-better-than-before/.

4https://www.berlin.de/sen/uvk/.../radverkehrsplan/radverkehrsplan.pdf.
5Throughout the paper, I will interchangeably refer to the instalment of PUBLs on a street with the

terms “treatment”, “event”, and “intervention”.

https://www.pwc.com/us/en/industrial-products/publications/assets/pwc-mobility-insights-congestion.pdf
https://www.pwc.com/us/en/industrial-products/publications/assets/pwc-mobility-insights-congestion.pdf
https://www.c40.org/case-studies/upgrade-of-the-cycle-network-in-bogota-dramatically-increases-bike-trips/
https://www.c40.org/case-studies/upgrade-of-the-cycle-network-in-bogota-dramatically-increases-bike-trips/
https://rpa.org/work/reports/the-five-borough-bikeway
https://www.itdp.org/2021/07/26/cycling-and-mexico-city-better-than-before/
https://www.berlin.de/sen/uvk/_assets/verkehr/verkehrsplanung/radverkehr/radverkehrsplan/radverkehrsplan.pdf
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and Pietrostefani, 2019; Shefer and Rietveld, 1997). Congestion is costly in various ways,

especially in the form of time losses, wasted fuel consumption, and as a consequence an

increase in CO2 emissions (Vickrey, 1969; Treiber et al., 2008; Schrank et al., 2015). In

Germany, congestion caused an average time loss per driver of about 40 hours in 2021.6

Additionally, congestion interacts with local pollution, which is a major cost to cities itself

and bears adverse health effects e.g. for infants (Borck and Schrauth, 2021; Currie and

Walker, 2011; Knittel et al., 2016). There is also evidence that congestion may hinder

economic growth in terms of income and employment (Jin and Rafferty, 2017; Hymel, 2009).

Accidents are associated with substantial economic costs such as external insurance costs or

by causing more congestion (Edlin and Karaca-Mandic, 2006). Second, cycling worldwide is

increasingly popular7 and many policy makers’ aim of motivating city dwellers to cycle more

requires the construction of better bike lanes (Yang et al., 2019). Due to the limited space

in large congested cities, such as Berlin8, new infrastructure projects require special care in

planning them. Accordingly, a study based on such a large congested metropolitan region

serves local authorities in their decisions-making process for new infrastructure projects

particularly well. Third, PUBLs are explicitly interesting as an object of study. On the

one hand, they have already been implemented frequently and proved to be easy-to-install

and low-cost interventions. On the other hand, they were placed very suddenly and quasi-

randomly. This allows to identify the causal effects of a policy instrument that is a viable

possibility for future bicycle infrastructure measures.

While, to my knowledge, this is the first paper to empirically assess the effects of new bi-

cycle infrastructure, and explicitly of PUBLs, on its unintended external effects, the paper

connects to a growing amount of research on congestion. Various studies consider different

measures that have been implemented in the past to target it. A congestion charge intro-

duced in London, which levied a toll during prime commuting hours, was found to increase

traffic speed and reduce total miles driven. A consequence of lower traffic levels was improved

air quality and a decrease of the amount as well as the rate of accidents (Green et al., 2016,

6https://inrix.com/press-releases/2021-traffic-scorecard-de/. Studying the effects Economic costs are
calculated based on values of time as suggested in the same study.

7See e.g. https://www.itdp.org/2021/10/26/cycling-is-booming-and-not-just-where-you-think/.
8Berlin is among the most severely affected cities regarding time losses due to congestion in Germany.

Four out of the ten most congested German streets are situated in the capital city. The calculated costs
amounted to more than 800 million Euro in 2021 for this city alone.

https://inrix.com/press-releases/2021-traffic-scorecard-de/
https://www.itdp.org/2021/10/26/cycling-is-booming-and-not-just-where-you-think/
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2020). Apart from such policies, which directly aim to tackle congestion, there is robust

evidence that public transportation and the extension of its network may reduce congestion

and lead to significant social benefits, e.g. due to higher air quality and reduced travel times

(Anderson, 2014; Bauernschuster et al., 2017). Another related strand of research examines

whether an increased road supply could impact traffic. The extension of road infrastructure

was found to proportionately increase the amount travelled in the long run, thereby not

affecting congestion (Duranton and Turner, 2011).

Despite its increasing importance, the role of bicycles in cities and the accompanying ex-

pansion of bicycle infrastructure is still on the fringe of academic research. Among the few

exceptions aiming to identify causal effects of cycling on traffic related outcomes, Hamilton

and Wichman (2018) found that neighbourhoods with bike-sharing stations had significantly

lower congestion levels compared to similar, but untreated neighbourhoods in the Washing-

ton D.C. area, which hints towards a supply-driven change in commuting behaviour towards

more cycling if more bikes are provided. Buehler and Pucher (2012) and Goodman et al.

(2013) also show that a better and safer cycling infrastructure correlates with an increase in

the propensity toward bicycle use. Furthermore, whether cycling routes, or “cycle superhigh-

ways” in this specific case, are safer or not was found to depend on physical characteristics,

e.g. whether cyclists were separated from other forms of travel (Li et al., 2017). Those cycle

superhighways were moreover found to reduce traffic volume without affecting average traffic

speed (Bhuyan et al., 2021).

This paper contributes to and improves upon the existing literature in various ways. To

the best of my knowledge, it is the first study to analyse a reduction of road space for

cars in order to make it available for bikes. It is crucial for policy makers to learn more

about this type of intervention since space in large metropolitan areas is scarce and the

conversion of car lanes into bike lanes is one viable option to accelerate the transformation

of cities towards more environmentally friendly places. Additionally, it connects to the

much discussed “fundamental law of road congestion” (Duranton and Turner, 2011), which

suggests a response of congestion as a consequence of building new infrastructure with an

elasticity of one. To the best of my knowledge, there is no evidence on short to midterm

effects, and the question of what happens to traffic-related outcomes just after a reduction

of lane kilometres. Besides, the substitution of car lanes with bike lanes provides a direct
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alternative in travelling mode on the respective street rather than being a mere extension of

infrastructure. By considering the effects of PUBLs on accidents, I contribute to the strand

of literature, which analyses road safety (Edlin and Karaca-Mandic, 2006; Green et al., 2016;

Shefer and Rietveld, 1997). Specifically, the study links to the question of how enhanced

cycling infrastructure affects the safety of different types of road users (Li et al., 2017).

Furthermore, it is to the best of my knowledge the first paper to use a quasi-experimental

design in order to identify causal effects. In general, it is challenging to estimate the causal

effects of new bike lanes on city-related outcomes due to the fact that their creation often is

meant to be a response to outcomes like road safety or congestion. Thus, city authorities, for

example, seek to reduce street accidents by creating safer cycling infrastructure. This paper

addresses this type of reverse causality by looking at (quasi) randomly built bike lanes. The

choice of roads, except for a few controllable properties, was random and did not depend on

prior road dynamics. Additionally, the roll-out of such lanes is normally very slow. Pop-up

lanes are a chance to circumvent anticipation effects, because of their very fast and sudden

construction. Apart from that, the results of the paper may serve as a valuable contribution

to structural models, which consider infrastructure within cities. For policy makers, the

results may hint towards potential problems accompanied with the sudden rezoning of car

lanes. This allows them to address and tackle relevant problems prior to taking measures.

The paper also helps to contribute to the question of costs and benefits of making a city

more friendly to bikes in terms of new infrastructure.

In order to identify the causal effects and the potential heterogeneity in the development

of the outcomes, I use an event study approach (Clarke and Tapia-Schythe, 2021) and

standard two-way fixed effects models. The accident analyses are extended by a synthetic

control group design (Abadie et al., 2010), which uses observable characteristics of treated

and potential control units in order to determine a suitable comparison group. Besides my

main outcome of an 8 to 12 percent decrease in average car speed, I find that the effect size

increases to about 16 percent in the main business hours of traffic. Moreover, the results

point towards modest changes in car volume. However, these can not be clearly attributed

to PUBL installations. I also test for substitution effects on streets close-by, since the

measures might merely relocate traffic as drivers seek to avoid affected routes. Accordingly,

new cycling lanes increased traffic without affecting congestion on untreated streets in close
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distance to PUBLs. This suggests a new equilibrium with a more equal distribution of cars

on the inner city road network. For accidents, I do not find any significant changes caused

by PUBLs, which might suggest an increase in per-cyclist safety due to the rise of cyclists

in the city (Kraus and Koch, 2021).

The remainder of this study is structured as follows. I first give an overview about important

background knowledge and theoretical considerations in Section 5.2 before describing the

data and providing descriptive analyses in Section 5.3. Section 5.4 details the methodological

approach, and results are presented in Section 5.5. Section 5.6 discusses the results and puts

them into perspective while Section 5.7 concludes.

5.2 Background and Theoretical Considerations

Political premises In Berlin, the coalition government of the three parties SPD, Die

Grüne, and Die Linke (Social-Democrats, the Green Party and the Left Party) has set the

goal of transforming city life by making it more friendly especially to pedestrians, cyclists,

and people using public transport. The goals are written out in the mobility law, which was

passed in July of 2018.9 The law predominately contains plans regarding the city’s traffic

infrastructure and how they are to be implemented. This includes aspects of organization

and funding. For cycle lanes, the aim was to extend the existing infrastructure in order

to make cycling more attractive and to increase the share of cycling in the modal split.

One major aim was to increase the safety of bicycle users and to reduce, and possibly

avoid, cycling accidents. The plan also includes the construction of cycling highways, which

primarily are supposed to connect outer parts of the city with the city centre. More goals of

the plan include using space more efficiently since bikes require less street capacity compared

to cars, to reduce local pollution, and to enhance healthiness by incentivising an increase

in physical activity.10 Since the construction work was planned until 2030, most of the

structural measures had not yet been realized in the time frame considered in this paper.

9MobG BE - Abschnitt 3: Entwicklung des Radverkehrs (development of bicycle traffic)
https://gesetze.berlin.de/perma?d=jlr-MobGBEpG6 is the specific chapter in the law about bicycle traffic.

10Compare https://www.berlin.de/sen/uvk/.../radverkehrsplan/radverkehrsplan.pdf.

https://gesetze.berlin.de/perma?d=jlr-MobGBEpG6
https://www.berlin.de/sen/uvk/_assets/verkehr/verkehrsplanung/radverkehr/radverkehrsplan/radverkehrsplan.pdf
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Figure 5.1: Traffic in Berlin 2019 - 2020

Notes: Own calculation. The graph shows the development of average vehicle volume and average vehicle
speed in Berlin from the beginning until the end of the sampling period. The beginning of the COVID-19
induced lockdown on March 17th, 2020 is depicted by the vertical blue, dashed line.

Pop-up bike lanes during the COVID-19 lockdown in Berlin In March of 2020,

political measures in form of a lockdown were taken in Germany as a consequence of the

COVID-19 pandemic. The lockdown included, among other things, the closure of all stores11,

schools, day care centres for young children, and restaurants. This had an immediate impact

on the dynamics on the streets throughout Berlin. Figure 5.1 shows the development of

car volume and average speed in the city from 2019 to 2020 with an apparent negative

correlation between the total number of cars and speed. Just after the lockdown started on

March 17th 2020, there was a sudden decline of overall traffic and congestion as suggested

by an increase in average speed. This circumstance was taken advantage of by political

decision makers. They justified the establishment of PUBLs in Berlin on the one hand

with the fact, that there would be less traffic disturbances due to the reduced automobile

11Except for those necessary for daily life, like grocery stores.
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Figure 5.2: Time line of PUBL installations
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Notes: Own illustration. The figure shows all installations of pop up lanes after the beginning of the COVID-
19 induced lockdown in March, 2020. All street names in italic font have no observations in the traffic data
set and are therefore not considered in the respective analyses of the effect on volume and speed.

volume and, on the other hand, with the requirement of providing alternatives to public

transport that are less risky in terms of a COVID-19 infection (Bezirksamt Friedrichshain-

Kreuzberg, 2020a). According to statements by the authorities, the political will to enforce

such infrastructural renewals differed between districts. Foremost the local authorities of

Friedrichshain-Kreuzberg (FHKB)12, governed by the Green Party, began setting up PUBLs

in their local district.13 PUBLs are, contrarily to regular bicycle lanes, created spontaneously,

circumventing the otherwise relatively long-lasting decision process of where and how to

build a bicycle lane. While the implementation of regular bike lanes takes two to ten years,

PUBLs are implemented in three to 10 days (Bezirksamt Friedrichshain-Kreuzberg, 2020b).

The reduced time necessary for the implementation is also due to the very simple and cheap

type of construction of the lanes, which only consist of paint and temporary bollards. Two

days after the lockdown came into force, the first PUBL was installed on March 25th in

FHKB.14 Others followed subsequently in different parts of Berlin. Overall, there is a total

of 13 affected streets where PUBLs were installed or later extended on nine different dates

12Four out of eleven PUBLs were not set up in FHKB, but in the districts Charlottenburg-Wilmersdorf,
Neukölln, Pankow and Treptow-Köpenick.

13The following information about the setup of PUBLs were gathered through interviews with the au-
thorities of the Berlin Senate, conducted mainly in May 2021.

14The segment on Hallesches Ufer into one direction.
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between March 25th and July 7th.15 Almost all streets had bike lanes set up into both

directions and mostly of similar length.16 Figure 5.2 shows a time-line of the exact dates of

installation as well as the respective streets. By mid 2021, most of the bike lanes had been

made permanent by replacing the movable bollards with fixed demarcations. Until the end

of the observation period, there has been no further change in treatment status.

Criteria of installation Following Kraus and Koch (2021) and personal interviews with

local authorities, the placement and timing of pop-up bike lanes in Berlin was, conditional

on certain characteristics regarding the affected streets, as good as random. The decision

on where to locate such a lane was primarily driven by the amount of available street space.

Only streets with at least two car lanes were taken into consideration, such that car traffic

was not blocked completely on those roads.17 This characteristic of a minimum lane number

was the only real requirement for installing a PUBL.18 In order to account for the restriction

regarding randomness of placement, the main estimation sample will only contain streets

with two or more lanes. Only in some robustness checks this sample requirement will be

altered. Station fixed effects additionally control for the number of lanes implicitly. The

timing of installation was mostly influenced by the availability of construction firms. Due

to the fact that those were not instantaneously available for setting up all of the bollards

at once, it took some time until all PUBLs had been placed. In addition, anticipating the

first PUBL was not possible since there was no initial press release on the project until the

day of the first installation (see Bezirksamt Friedrichshain-Kreuzberg, 2020a). The quasi-

experimental setup with random timing and placement addresses standard drawbacks when

measuring the effects of such policy interventions like reverse causality (e.g. when bike lanes

are a reaction to lower demand for cars and increased demand for cycling) or omitted variable

bias (e.g. local preferences for more cycling lanes in the city). In Section 5.4, I will go into

15Three of the roads cannot be taken into account in parts of the analysis, as they happened on roads,
which do not have any traffic volume/speed measuring station nearby. One of those roads is “Blaschkoallee”
in Neukölln. This was the last PUBL to be established. Thus, the last date with a change in treatment
status in my sample is June 30th, when the street “Adlergestell” in Treptow-Köpenick received a PUBL.

16Compare Mobycon (2020) for more information about the implementation process in Berlin.
17Effectively, treated streets are a small subset of roads, which were supposed to be equipped with cycling

infrastructure in the future as planned in the aforementioned mobility law (compare the Political premises
paragraph).

18One characteristic of treated streets, which is observed in the data, is that most of them had no prior
bicycle infrastructure. However, this is not true for all PUBL streets. This specific type of sample selection
will be tackled in a robustness check in the results section.
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more detail and address potential threats regarding the identification strategy.

Theoretical considerations Generally, the COVID-19 era led to a change in habits due

to people diverting from different forms of public transportation, like buses or metropolitan

railways, to private means of transport, like cars or bicycles (Tirachini and Cats, 2020). Some

European cities experienced declines in public transport ridership of over 90% following

lockdowns (Vitrano, 2021). Such disruptive shocks to public transport have been found

to increase car utilization and thereby congestion (Bauernschuster et al., 2017; Anderson,

2014). However, since concerns about getting infected with COVID-19 should be evenly

distributed among the population within the city, these effects should be felt on all streets

throughout a city simultaneously. Had PUBL streets not experienced a structural change,

then the lockdown effects should have been the same compared to similar untreated streets.

The question remains which explicit effects are then to be expected by the new cycling

infrastructure.

The replacement of car lanes with cycle lanes means a loss of space for cars and a gain of

space for bikes. Following Duranton and Turner (2011), car traffic increases with the extent

of the availability of streets. This means that congestion is unit-elastic with respect to street

space. The authors identified the creation of traffic as a main channel and the diversion from

other streets as a less important one. In general, this elasticity should apply for both, the

creation of new lane kilometres as well as when lane kilometres for cars are reduced. However,

in the case of PUBLs in Berlin, the change of car space provision was accompanied by the

creation of space for bicycles. Making this alternative way of commuting more attractive may

affect the elasticity. Besides, Duranton and Turner (2011) consider long-term developments

between cities and regions, while I look at a shorter time horizon within one city.

In terms of volume, there are two potential effects I would expect in the short run. On the one

hand, PUBL streets may experience a decline in car volume compared to non-PUBL streets.

In order to avoid traffic jams and congestion, there is the incentive to use alternative roads

in the surrounding area, which did not experience the installation of a PUBL. This would

mean a reduction of volume on the respective street. On the other hand, there may be no

will to divert from the accustomed old route, which would be in line with time-inconsistent

preferences or a status quo bias (Mattauch et al., 2016). As a consequence, volume would
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not be affected. In the long run, there also may be behavioural adjustments, e.g. people

adapting their preferred route over time and thereby reducing volume on treated streets

further.

Volume also directly affects average speed. If there is an increase in volume without street

space being changed, then this should lead to more congestion and consequently a decrease

in average speed. The reduction of a car lane without a change of car volume should also

lead to an increase in congestion as the same number of cars now shares a lower number

of lanes. Another possibility is that people adjust the timing of their commute. Thus, the

average speed may not change even though the daily/weekly traffic volume changes, simply

because people are travelling at different times of the day.

Based on these considerations, I would expect vehicle volume on PUBL streets to decrease

slightly or remain unchanged compared to non-treated roads, since car drivers may not be

willing to adapt quickly to the new situation, as suggested by the status-quo bias. Con-

sequently, due to the reduction of space for cars, I assume average speed to decrease and

thereby congestion to increase, especially if volume is only slightly affected.

Additionally, I want to find out in how far the restructuring of road space towards a more

bike-friendly environment affects road safety by looking at the development of accidents. As

mentioned before, this was one of the major reasons to create such bike lanes in the first

place. If car and bike travel are on separate lanes, which was not given prior to the policy

change, collisions between these two modes of travel should decrease. This would mean an

overall decrease in the incidence of accidents. In contrast, the separation of lanes could also

lead to more accidents if motorists now pay less attention to cyclists and overlook them when

taking a turn at an intersection (Summala et al., 1996). Furthermore, pop-up lanes may

nudge new cyclists towards using the newly created ways. This could lead to an increase in

accidents, especially between cyclists as found by Li et al. (2017). If there are more cyclists

on the respective roads, while the total number of accidents is not affected due to sufficient

space for cyclists, this would mean a decline in the rate of cycling accidents. Overall, the

direction of the effect on accidents cannot be predicted clearly.
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5.3 Data and Descriptive Statistics

Traffic measuring stations The outcome measures for traffic volume and average speed

stem from 772 measuring stations throughout the city of Berlin. The recordings show hourly

values of speed and volume of vehicles passing by one station for the years 2019-2020.19 This

allows to detect within day variations as well as short-term developments of traffic within

Berlin. Additionally, it is possible to differentiate between personal cars and lorries. Due

to the fact that all PUBLs in my sample were set up between end of March and end of

June of 202020, I have a post-treatment period of about 40 weeks. The pre-treatment period

contains about 70 weeks. Most measuring stations cover the traffic on multiple lanes of

which I build the mean over all lanes for speed and for volume.21 The information about

the number of lanes is furthermore used for specifying the control group in most analyses.

It allows to compare streets of the same pre-treatment capacity with each other. Figure 5.3

shows a map of Berlin, depicting the network of measuring stations and the PUBLs.

Of the eleven streets, which had a PUBL installation, some lack a traffic measuring station

capturing volume and speed. Thus, I am only able to analyse a subset of affected streets

regarding this outcome, ignoring the effects on five out of eleven treated streets.22 Since all

of the non-considered streets have similar characteristics to the ones in the sample and there

is no correlation of the placement of measuring stations and the creation of PUBLs, I do not

consider this to be a major drawback. Overall, I observe 23 measuring stations located at

treated streets with two or three lanes.

For the analyses, I exclude all measuring stations, which are situated at highways.23 The

reason is that I assume that inner-city traffic might have developed differently from traffic on

the highway, which circles the city. This is because highway traffic may not be substituted

as easily by cycling or different forms of public transportation. Furthermore, the daily time

19The Senate of Berlin also provided me with (incomplete) data for May-July in 2021. However, due to
the fact that many measuring stations drop out and due to gaps in the data between 2020 and 2021, I only
consider the mid-term outcomes in a subsection.

20As described in Section 5.2, the last PUBL was installed on July 7th, 2020. However, for this last
treated street, there exists no measuring station nearby, such that it cannot be taken into account.

21Missing values are ignored in the mean calculation.
22Most of these affected streets are dropped due to non-existing measuring stations. One street has

missing observations in the post-treatment period (the station in Danziger Str.) and therefore is also deleted
from the sample.

23In Berlin, these are named: A100, A111, A113, A114, A115.
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Figure 5.3: pop-up bike lanes and measuring stations in Berlin
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Notes: The figure shows a map of Berlin. Pop-up bike lanes are marked as fat red lines and traffic measuring
stations are depicted by green dots. The city is subdivided into 12 districts, which are outlined by fat black
lines.

frame is limited from 5 a.m. to 8 p.m. and I exclude Saturdays and Sundays as well as legal

holidays from the analyses. I thus concentrate on traffic on workdays and during standard

work hours. Some stations are lacking data e.g. for some hours a day or even for entire

days.24 As a consequence, in the event study analyses, which uses data aggregated to weekly

values, I restrict the sample to stations, which have observations for at least five hours a day

(this results in dropping about 0.04% of all observations) for at least 2 days a week. However,

whenever I base the analysis on hourly data, which allows for hour and date fixed effects,

I use the entire sample. Considering all these restrictions, the main sample remains with

192 measuring stations in the control group. I address the influence of some of the sample

restrictions, like excluding highways from the sample, in the robustness section 5.5.1.4.

24There is also partly erroneous data, which I deleted from the sample. Regarding traffic speed for
example, there were observations with speed being over 1000. While this is a very extreme case, I cut out
observations with speed of either trucks or cars being larger than 100, which is a speed level very unlikely
to be reached within city boundaries with its standard speed limit of 50 kilometres per hour. As a result, I
deleted ≈ 0.0038 percent of the car speed sample and 0.00015 of the truck speed sample.
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Figure 5.4: Development of speed and volume (pooled over cars and trucks) between Treat-
ment and Control group

(a) Volume

(b) Speed

Notes: Figure 5.4a shows the development of vehicles (in logs) from January 2019 until December 2020 by
treatment status. Figure 5.4b shows the development of average speed (in logs) by treatment status. In both
cases, the grey dashed line represents the development of all treated streets, while the solid line shows the
development of untreated streets. The two dashed blue vertical lines in each graph represent the installation
of the first and the last pop-up bike lane in the sample. Streets that were treated, but do not contain a
traffic measuring station, are not considered here.
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Figure 5.4 shows the natural logarithms of total weekly volume and average weekly speed

by treatment status. The vertical blue lines mark the first and the last installation of

a PUBL in the city. The figures already show to some extent the effect of PUBLs and

provide an impression regarding parallel trends between treated and untreated streets prior

to the instalment of new cycling infrastructure. As of volume, we can see that the overall

development was very stable from 2019 to the beginning of 2020. The lockdown led to a

sharp decline of vehicles on the streets of Berlin25 and had returned to pre-pandemic heights

by September of 2020 on untreated streets. Treated streets, however, did not return to

pre-pandemic levels with respect to vehicle volume, but remained on a lower level.26 The

large spikes in the graph are the dates around new year’s eve and to a lower extent during

summer holidays, when traffic is significantly lower all over the city.

While between January of 2019 and March of 2020 overall speed has remained fairly constant

with some minor variation on both treated and untreated streets, the lockdown led to two

different developments. Treated streets experienced a decrease in speed whereas on untreated

streets there initially was a small increase and then a return to normal levels. This is a first

indication that treated streets experienced some sort of congestion despite the overall decline

of vehicles travelling on them.

In summary, the figures show that spikes in traffic, either downward or upward, affected all

streets across the city, even though in parts to different extents. Thus, changes in traffic in

general seem to be caused by city-wide events affecting the overall traffic flow.

Accidents Data on accidents stems from the atlas of accidents (“Unfallatlas”)27, which

locates every accident in Germany with exact point coordinates. For Berlin, this data exists

for the years 2018 to 2020. It is available on a monthly basis and includes information such

as the hour of the accident, day of week, whether people were killed or injured, and also

which means of transport were involved (bike, pedestrian, car, etc.). It also includes lighting

conditions (daylight, dawn, darkness) and road condition (wet, dry, slippery). Due to the

fact that I only have monthly recordings, the post-treatment period starts the month after

25However, the decline is not as sharp as on new years eve.
26The absolute difference in log values stems from the fact that there are much more untreated streets

compared to treated ones.
27The Unfallatlas is freely downloadable at https://unfallatlas.statistikportal.de/.

https://unfallatlas.statistikportal.de/
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the implementation of the PUBLs.

In the accident analyses, I use two different methodological approaches, which require two

different levels of spatial aggregation. First, I run an event study design on street level

within Berlin. Therefore, I match the accidents to Open Street Maps (OSM) information of

Berlin such that every accident is assigned to - if possible - a single street of which I also

know whether it contains a PUBL or not. The aim is to have a data set with single streets

as units of observations, each of which contains the number of accidents, which occurred

there each month.28 Second, I use the synthetic control group design on municipality level

as a more macro-economic approach. For this data set, I take the sum of accidents within a

municipality per month for all of Germany between 2018 and 2020.29 Treated units are then

the different Berlin districts in which PUBLs were installed while potential control units are

recruited from municipalities in Germany outside of Berlin and for which there is data on

the matching variables.30 These matching variables as well as additional control variables

are presented in the following paragraph.31

Matching and control variables Since traffic speed and volume are measured locally

within a time frame of about two years, most characteristics specific to streets and measuring

stations are controlled for by respective fixed effects. Measuring station fixed effects capture

e.g. the influence of nearby alternative modes of transport like subways, and date fixed

effects account for city-wide shocks on the respective day. However, I am as well able to

take into account two time-varying variables on very granular time and spatial scale.

28In order to do so, I lay buffers of different magnitudes around the OSM-lanes and successively match
those buffers to the accident data. This is necessary since the OSM data contains streets as lines and
the accident data contains single coordinates, which hardly ever match exactly. Some accidents cannot be
assigned unambiguously to one street, e.g. when the accident happened on a crossing. In these cases, the
accident is assigned to both streets. However, more than 90 percent of the accidents (the exact number
depends on the year) can be assigned to a single street. In order to combine street segments into entire
streets, I combine the OSM data to street segment data as provided by the city of Berlin (Geoportal Berlin,
2021). Otherwise, single streets would be split into several observations.

29Observations for three out of 16 states drop out of the data set. The respective states are North
Rhine-Westphalia, Mecklenburg-West Pomerania, and Thuringia. The reason is a lack of data for the year
2018.

30I exclude municipalities that also received PUBLs in the observation period. This includes municipalities
in Munich, Hamburg and Düsseldorf.

31In order to lower the computational burden, I limit the control sample to municipalities with less than
25.000 inhabitants and thereby ignore very small and rural regions. However, I assume those not to be
comparable to the treated units of interest. Changing the threshold value to 10.000 has no effects on the
results.
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Firstly, I include georeferenced road construction works.32 The data contains exact dates

when road works took place (mostly a time range of several days or weeks) and is differen-

tiated by status (e.g. approved, finished, in coordination etc.) and limitations to the public

caused by them (for example the closure of a traffic lane or even the entire street). I only

consider construction works, which are finished, approved or ongoing. In most specifications,

I will use a simple dummy variable, which indicates whether some type of road construction

took place or not. In additional analyses I will also account for non-binary limitations to

traffic and the public.

Secondly, I know about changes in the speed limit regime. Few streets, all of which in the

control group, experienced a change in speed limit from a maximum speed of 50 km/h to 30

km/h33 during the observation period. These changes are mandated by the Berlin Senate

and realized by local authorities. Reasons for such measures are noise control, air pollution

prevention, or road safety. I account for those changes using a dummy variable switching

to one on the date of implementation. There are also temporary changes in the speed limit

during a day, e.g. from 6 a.m. until 5 p.m., which mostly happen on streets close to a school

or a kindergarten. Controlling for the latter variation in speed limit is only possible when

using the entire hourly data-set in the two-way fixed effects estimations. In the case of daily

temporary speed limits, a binary variable switching to one in the respective time frame is

included in the estimations. Overall, about 12 percent of the sample is affected by speed

limit changes over time or throughout the day.

I additionally gather information about traffic measuring stations and their surroundings

using OSM and other sources with city-specific data. OSM allows to match the information

whether a traffic measuring station lies within a certain radius (I choose a radius of 50 meter)

to a tram or rail line. Thereby, it is possible to see whether a street directly “competes”

with the rail line. Furthermore, for every measuring station, I match information whether

it lies at a bike lane, which existed prior to the installation of a PUBL.34 While this type

of information is already captured by station fixed effects, the data still makes it possible to

32This information was provided by the Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz
(Senate Office for Environment, Traffic and Climate protection).

33This corresponds to a change of about 31 mph to approximately 19 mph.
34The bicycle infrastructure data comes from a collection of shapefiles covering different topics in Berlin

(https://www.geodaten.tu-berlin.de/menue/downloads/berlin/). I define a station to lie at a cycle lane if it
is within a 15 meter reach.

https://www.geodaten.tu-berlin.de/menue/downloads/berlin/
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split outcomes by street characteristics. For example, PUBLs were predominantly installed

at streets without major cycling infrastructure. I will therefore test whether outcomes are

sensitive to varying control units with respect to their bike-friendliness.

In the analyses of accidents, I furthermore make use of administrative annual data for the

more than 10.000 municipalities in Germany. This data is used foremost in order to match

treatment and control group in the synthetic control group design. I use information about

land use patterns (space available for traffic and for settlements), voting behaviour (per-

centage of Green Party voters, voter turnout), and population. I also retrieve economic

data (unemployment rate), as well as data regarding road safety. All this data is publicly

available on a website for regional data by the Statistical Office.35

Sample adjustments In order to make the control group in my analyses more plausible, I

apply some adjustments to the data set for my main estimations. The installation of PUBLs

aimed at streets with more than one car lane and was realized on streets with either two or

three lanes. This is why in the majority of estimations I exclude one-lane as well as four-lane

streets.36 Furthermore, most treated streets had no prior cycling infrastructure. Thus, in

some estimations I will restrict the sample to streets without any sort of cycle lanes prior to

the PUBL installation.37 For the control group, I exclude all measuring stations, which lie

within a 1 kilometre radius of a treated unit. This is done in order to account for potential

deviation effects of traffic. Thus, if a street is treated, then surrounding streets might be

affected as a consequence, because the drivers search for different, now potentially faster

routes. In this case, the potential control group would be affected by the treatment itself.

In further estimations, I explicitly test for these spillover effects to nearby roads.

35https://www.regionalstatistik.de/genesis/online.
36Four-lane streets only make up less than 0.3 percent of the overall sample, while about 25 percent of

the sample are streets with one lane.
37Unfortunately, there was no list of streets (or the senate was not willing to provide me with such a list),

which indicated streets eligible for PUBLs but not implementing them. In this case, it would have been
possible to take such unselected roads as a control group (compare e.g. Greenstone et al. (2010) for a similar
setup).

https://www.regionalstatistik.de/genesis/online
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5.4 Methodology

I aim to identify the causal effect of bike lanes on several outcomes like traffic volume, average

traffic speed, and accidents. In my analyses, I exploit the (conditional) random timing

and placement of PUBLs in Berlin during the COVID-19 pandemic in 2020. Thus, traffic

measuring stations and streets, where new cycling infrastructure was created, are handled

as treatment groups, while a large number of other streets of similar size and characteristics

are taken into consideration as potential control group. In order to estimate the effects, I

resort to various approaches that are versions of the classical Difference-in-Differences (DiD)

method. Firstly, I use an event study design to analyse the data aggregated to weekly levels.

I primarily use it to test the common trend assumption as well as to identify the development

of the outcomes over time in the post-treatment period. Secondly, I conduct two-way fixed

effects estimations in order to obtain effects in terms of single coefficients. Most importantly,

they allow me to use the entire hourly data set and thereby take into account all relevant

control variables. Lastly, I apply the synthetic control group method in my accident analyses

as a robustness check.

Event study design To provide evidence that the common trends assumption between

untreated and treated units holds, I firstly estimate a flexible event study model, which takes

into account the different timing of implementation and the different streets affected (Clarke

and Tapia-Schythe, 2021). In order to make this assumption more plausible, I impose a

range of sample restrictions as described earlier. For estimation I use the following equation:

Yit = α+
L∑
l

βl(Lead l)it +
K∑
k

γk(Lag k)it + µi + δt +Xitϕ+ ζi(Station× LD) + ϵit. (5.1)

The outcome variable Y is observed for individual monitoring station or street i at time t

(which is either a running week or a running month variable). Station fixed effects are given

by µi. They control for observable (e.g. public transport stops, topography or the number

of lanes) and unobservable factors (e.g. local or political preferences in the area), which are

specific to a monitoring station and its surroundings and that do not change over the time

frame observed. Time fixed effects, measured by δt, account for shocks, which simultan-

eously affect the whole city, and could potentially influence travel mode and prevalence, e.g.
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holidays. The impact of time-varying characteristics X, like construction works, is measured

by ϕ, while ζi captures the effect of a station-specific lockdown dummy that I control for

in the majority of two-way fixed effects specifications. Finally, ϵit represents an unobserved

error term. Leads and Lags in equation 5.1 are dummy variables, representing the number

of periods l and k the unit is away from the event.38 Consequently, the time of opening a

PUBL is normalized such that for each case the opening is at l = 0. One lead or lag variable

is omitted as the baseline difference between treated and untreated units. The maximum

number of Leads L (Lags K) included in the regression are then the total number of weeks

before (after) the treatment. Streets without the implementation of PUBLs serve as pure

control group, such that leads and lags are always zero. These binary variables thus capture

the difference between treated and untreated streets in comparison to their difference in the

base period, which by definition is zero. Without a significant difference between treatment

and control group prior to the base period, the common trend assumption in the respect-

ive time frame most likely holds. The implicit assumption here is that without treatment,

treated and untreated streets would have maintained differences just like in the base line

period. The main advantage compared to a standard two way fixed effects model is that

rather than relying on a single coefficient for post-treatment, this model allows to capture

the development of treatment effects over time via the lag coefficients and to inspect the

common trend assumption.

Two-way fixed effects The main analyses are then conducted with a standard Two-Way

Fixed Effects (TWFE) model in which the lags and leads of Equation 5.139 are replaced by

βPostTreatmentit, where PostTreatmentit = 1 [t ≥ Treatmenti]. In the estimation, all never

treated measuring stations have this treatment indicator always set to zero, while it switches

to one for PUBL units after the beginning of treatment. This estimation provides me with

a single treatment effect pooled over all treated streets. The advantage of using the TWFE

model is that it allows me to use the entire data set and therefore to control for date and

hour fixed effects. It is now furthermore possible to specifically control for temporary speed

limit zones, which are in place e.g. between 6 a.m. and 5 p.m. on certain streets. Using the

hourly data is not possible in the event study design since it does not allow for time gaps

38Thus, (Lead l)it = 1 [t = Eventi − l] for l ∈ {1, ..., L− 1}, and (Lag k)it = 1 [t = Eventi + k] for k ∈
{1, ...,K − 1}.

39
∑L

l βl(Lead l)it +
∑K

k γk(Lag k)it.
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in the observations. This is why I aggregate observations to weekly levels in event study

estimates, which solves the problem of gaps.40

Synthetic control group design When analysing the effects of PUBLs on accidents,

I will furthermore apply the synthetic control group method (Abadie et al., 2010). Due

to the fact that I have geolocated accidents for all of Germany, this allows me to use a

macro-perspective, comparing treated districts of Berlin41 with similar administrative units

all over the country.42 The advantage of using the synthetic controls method is that it does

not require to explicitly choose the control group, but that it uses a data-driven matching

approach. Thus, it determines a weighted combination of those control units in the donor

pool (in my case all German municipalities outside of Berlin) that are closest to the treated

unit in terms of characteristics and pre-treatment developments of the outcome variable. I

use a variety of municipality-specific observables like population, unemployment rate, or the

share of land devoted to traffic infrastructure as matching variables to find a data-driven

control group.

Main threat to identification Some aspects might influence the assumption of random

assignment, which I want to specifically tackle in my analyses. In the following, I describe

the potential problems and how I finally aim to solve them.

First, there is the concern of non-random selection of streets by the responsible authorities

for installing a PUBL in the first place. If bike lanes were randomly assigned to any street

in the city, then selection bias would not pose a problem. However, if streets are chosen

based on their characteristics, e.g. that only streets with minor car traffic are chosen, then

the estimated treatment effect will be biased. The choice where to locate a PUBL was based

on Berlin-wide plans for extending the cycling infrastructure prior to the pandemic. Even

though the plans existed for the whole city, all of the PUBLs were created in only a subset of

districts43. In Section 5.2, I already argue in how far the allocation of PUBLs was random.

40In the robustness section I will address potential problems regarding standard two-way fixed effects.
41With respect to Berlin, I use the terms “district” and “municipality” interchangeably. However, the

main comparison group in the synthetic control group method is composed of municipalities in Germany.
42The measures for car volume and speed are only available for Berlin. Using the synthetic control group

design on such a local scale is rather problematic due to the lack of observable control variables on street
level, which are required for the matching procedure of treatment and synthetic control group. This is why
the use of this method is restricted to the accident analyses.

43Charlottenburg, Friedrichshain-Kreuzberg, Neukölln, Treptow-Köpenick, and Pankow.
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However, some local district governments were more supportive in establishing PUBLs than

others. This may raise the concern that there exist systematic differences between these and

other districts in the city.

Second, in general the district-specific differences should be captured in the estimations

by the measuring station fixed effects. Nonetheless, shocks like the lockdown after the

beginning of the COVID pandemic may lead to different behavioural adaptations in districts

with PUBLs compared to districts without, e.g. with respect to commuting choices. A

potential reason are political preferences and attitudes in certain areas, which may translate

to differential behavioural adaptations regarding home-office or the utilization of public

transportation. For example, if a district is populated with more blue-collar than white-

collar workers, then home-office might be less of an option there compared to other areas of

the city with a differently composed workforce. This may systematically bias the results.

Third, some of the streets lie close to a subway line, while others are further away. As util-

ization of public transport has significantly changed during the Corona-crisis, those streets

might have been affected differently to streets further away from public transport.

The variety of fixed effects included in the estimations, like station fixed effects, should ac-

count for general local political preferences that drive local authorities to be more supportive

of installing PUBLs. In order to control for potential differential developments after the start

of the lockdown and address the other aforementioned concerns, I add an interaction term to

the estimation, which accounts for lockdown × measuring station effects.44 This interaction

term captures effects, which are present on a very local scale (station/street-level) after the

beginning of the lockdown. Thus, it captures e.g. differential developments on streets close

to public transport compared to streets further away from it. At the same time, it also

subsumes district-specific changes due to local commuting preferences. Due to the fact that

some PUBLs were installed right after the beginning of the lockdown, the interaction term

may capture away parts of the actual pop-up lane effect. This is why I consider estimates,

which control for the interaction term, as lower-bound outcomes.

44Lockdown then is a dummy variable and it is defined as the time after March 22nd, 2020. The reason
being is that measures were lifted from time to time and partly reinstated again. Thus, there was no clear-
cut end of the lockdown. In autumn/winter of 2020, measures became increasingly strict again, resulting in
another so-called “hard lockdown” in December of 2020.
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In all estimations, I use standard errors clustered on a time and a spatial dimension. The

former is a running week variable, while the latter consists of 1km × 1km grid cells spanning

the entire city.45 In this manner, I tackle concerns that treatment may be spatially or

temporally correlated, and therefore account for spillover effects. In alternative specifications

in the robustness section, I will also test for different clusters.

5.5 Results

5.5.1 Volume and speed

Figure 5.5 shows the effects of the introduction of a PUBL on traffic volume and on av-

erage speed by a graphical representation of an event study design. Blue dots show the

main estimation coefficients of leads and lags, while Confidence Interval (CI) are depicted

as area shades in light (95% CI) and dark grey (90% CI) respectively. No additional control

variables apart from station and week fixed effects are added in these first estimations in

order to show the “pure” common trend. Adding construction work and speed limit changes

does not change the picture though.46 Both graphs generally show that the common trend

assumption is satisfied, however with some minor drawbacks. Considering average vehicle

speed as outcome variable (Panel (b)) suggests a very stable parallel trend between treated

and untreated streets prior to the PUBL installations. Only a very small number of obser-

vations about one year or more prior to treatment show marginally significant deviations

in this case. Regarding the number of vehicles as outcome, more, but still very few, occur-

rences show significant positive as well as negative differences in the pre-event time frame.

However, they do not change the overall picture suggesting common trends between treated

and untreated units prior to the lockdown. Additionally, one has to bear in mind that the

regressions run here are based on weekly averages of speed and volume, and thereby do

not take into account date or hour fixed effects, which may further adjust for unobserved

45I use the INSPIRE grid for Germany, which is publicly available at
(https://gdz.bkg.bund.de/index.php/default/inspire/sonstige-inspire-themen/geographische-gitter-fur-
deutschland-in-lambert-projektion-geogitter-inspire.html).

46The base period here is chosen to be at five weeks prior to treatment, which is the average number
of weeks between the start of the lockdown and the installation of a PUBL. Whenever the station ×
post-lockdown interaction effect is included in the estimation, the base period is at lead = 1.

https://gdz.bkg.bund.de/index.php/default/inspire/sonstige-inspire-themen/geographische-gitter-fur-deutschland-in-lambert-projektion-geogitter-inspire.html
https://gdz.bkg.bund.de/index.php/default/inspire/sonstige-inspire-themen/geographische-gitter-fur-deutschland-in-lambert-projektion-geogitter-inspire.html


180 5.5. Results

Figure 5.5: Event study outcomes for traffic volume and speed

-300

-200

-100

0

100

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40

Time to Reform in Weeks

Point Estimate 95% CI 90% CI

Estimates based on 19960 observations, with dependent variable mean of weekly volume

(a) Number of vehicles

-10

-5

0

5

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40

Time to Reform in Weeks

Point Estimate 95% CI 90% CI

Estimates based on 19958 observations, with dependent variable Average speed

(b) Average vehicle speed

Note: Own calculations. The two graphs show the results of two separate event study estimations. Outcome
variable Y in Figure 5.5a is the absolute number of vehicles while it is average vehicle speed in Figure 5.5b.
Blue dots represent the main estimation coefficients of leads and lags. Confidence intervals (CI) are depicted
as area shades in light (95% CI) and dark grey (90% CI). The vertical solid black line shows the time of
treatment, which is anchored at 0. Leads and lags are the time before and after treatment in weeks. The
estimations include station and week fixed effects. The sample is restricted to streets with two or three lanes
and all streets within a radius of 1km to a treated street are excluded from the estimations. Standard errors
are clustered at 1km × 1km grid cell level spanning the city times a running week variable.
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differences between treated and untreated streets.47 The main outcomes presented in this

paper moreover include an interaction term, which takes into account station specific de-

velopments after the implementation of a lockdown. Figure 5.A.1 shows the event study

results considering the interaction effect. It again exhibits the validity of the parallel trend

assumption, especially regarding average speed as outcome.

Traffic volume The PUBL introduction exhibits a relatively small, but significant effect

on the number of vehicles compared to the development on control streets when ignoring

the station × post-lockdown interaction. The effect is rather modest with a few gaps to

the downside and is relatively stable in size. In terms of absolute effect size, about 50-100

vehicles per week less are observed on average on treated streets compared to untreated

ones. A negative effect would mean that some drivers do not want to keep using the old

way and rather circumvent these high-traffic areas. The pre-trend assumption holds for

the vast majority of the pre-treatment weeks, even though the few significant differences

may be considered a potential backdrop in the causal interpretation of results. Including the

interaction term, as was done in Figure 5.A.1a, causes the PUBL effect on volume to become

insignificant. This means that it is not possible to attribute the volume effect directly to

the installation of a PUBL, but that the COVID-19 lockdown lead to a slightly differential

development on treated streets compared to untreated ones.

Traffic speed Average speed of vehicles significantly decreased directly after the PUBLs

were installed, which implies an increase in congestion. In absolute terms, average speed

decreased by about 4-5 kilometres per hour (km/h)48, which is about 10% of the maximum

speed allowed on these streets.49 This result is not surprising due to the fact that car

utilization behaviour hardly changed in the beginning, while the number of lanes was reduced

(partly from two lanes to one). The effect size is very stable over time, which is certified

after including the interaction term as presented in Figure 5.A.1b. This suggests that within

the post-treatment time frame observed, there were no major behavioural adaptations of

drivers.

47In order to run the event study design, the data requires to be balanced, which is why all event study
estimates stem from data aggregated to a weekly level.

48This corresponds to about 2.5-3.1 miles per hour.
49In Germany, the standard speed limit within cities is 50 km/h (or 31 mph) with some exceptions.
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Single-coefficient model While the graphical analysis provides an insight into the devel-

opment of the effect over time and allows to track and reaffirm the parallel trend assumption,

I also want to translate these effects into one overall estimate. The advantage of one single

coefficient is that it pins down the results to an overall outcome. As discussed before, the

effect on the outcome is relatively stable over time, which eases the concern that two-way

fixed effects regressions may conceal important heterogeneities.50 Moreover, I am now able

to use the entire data set and therefore to control for date and hour fixed effects in all es-

timations. This means that these estimations additionally control for intra-day commuting

patterns and city-wide shocks, which may have occurred on single days. For example, the few

downward spikes, as observed in Figure 5.A.1a, could be attributable to such daily shocks

affecting treated and untreated streets differently to some extent. Additionally, the full data

set allows to account for temporary speed limit changes throughout the day. While the event

study design presented in Figure 5.5 only includes a subset of control variables in order to

show the “raw” common trend, I now control in most specifications for the interaction term

between a post-lockdown dummy variable and a measuring station indicator. As discussed

in Section 5.4, this is to account for different behavioural adaptations at the local level after

the COVID-19 lockdown went into effect.

Point estimates of these single-coefficient models are shown in Table 5.1. It includes results

for outcomes in absolute values (Panel A) as well as for logged values (Panel B). All even

columns include the station × post-lockdown interaction term, while uneven columns do

not. As before in the event study with heterogeneous timing, I find a significantly negative

effect on speed, and thus more congestion for cars. PUBLs led to an overall decrease of car

speed of about 11 to 12 percent as Panel B shows. This result holds after controlling for

the interaction term. In terms of volume, there is a significant decline of vehicles without

the interaction term, which turns insignificant as soon as the interaction term is included in

the regression. This hints towards a small decline of vehicles on treated streets compared to

untreated ones, which cannot clearly be attributed to the installation of PUBLs. However,

since the cycle lanes were installed only shortly after the lockdown went into effect, it is in

general hard to completely disentangle these two.

50In the robustness section I will account for more concerns about heterogeneous effects in terms of time
and treatment unit.



Chapter 5. The Causal Effect of Cycling Infrastructure 183

Table 5.1: Effect on Volume and Speed

Volume Speed

(1) (2) (3) (4)
Panel A: Outcome in absolute values
1(PU lane) -53.57∗∗∗ -7.476 -4.512∗∗∗ -4.123∗∗∗

(4.876) (7.218) (0.306) (0.536)
N 1546526 1546526 1543453 1543453
R2 0.743 0.755 0.757 0.772
Stations 215 215 215 215
Interaction No Yes No Yes
Panel B: Log-transformed outcome
1(PU lane) -0.0228∗∗∗ -0.00540 -0.113∗∗∗ -0.122∗∗∗

(0.00724) (0.0126) (0.00878) (0.0144)
N 1543493 1543493 1543453 1543453
R2 0.628 0.650 0.585 0.607
Stations 215 215 215 215
Interaction No Yes No Yes

Note: Own calculations. The table presents the coefficients of the treatment effects of separate two-way
fixed effects estimations with vehicle volume and vehicle speed as dependent variables. Panel A shows the
coefficients of interest with outcomes in absolute terms. Panel B shows the same for logged outcome variables.
Even columns include an interaction term between a unique measuring station identifier and a post-lockdown
dummy variable while uneven columns do not. All estimations include station, date, and hour fixed effects, a
dummy whether construction work takes place, and an indicator for a change in speed limits. Stations within
a one kilometre radius of a treated street are excluded and the sample is restricted to streets with two or three
lanes. Standard errors are clustered at 1km × 1km grid cell level spanning the city times a running week
variable. t statistics in parentheses. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 5.B.1 shows outcomes of TWFE estimations using the weekly data set, which was used

in the event study model. It shows that coefficients are very similar or even slightly higher

compared to the regressions based on hourly data, and that inference is hardly different. In

the following, I will mainly show outcomes of single-coefficient models using hourly data in

order to be able to account for the full set of controls.

5.5.1.1 Heterogeneity

Next, I will analyse in how far outcomes differ by treated unit, by time of the day, between

type of vehicles (cars and lorries), and whether there are differences between different street

sizes.

Treated unit Table 5.B.2 presents leave-one-out analyses. This means that I conduct

the main analysis repeatedly, always omitting a different treated measuring station. Such
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analyses may reveal whether results are driven by single streets or stations in the sample. All

estimations include the entire set of control variables as well as the station × post-lockdown

interaction term. With respect to average speed, the table shows that the overall picture

holds. Thus, congestion increases significantly over all specifications. However, one treated

station appears to be out of line in terms of effect size. While the majority of coefficients lie

between .12 and .13, leaving out “Station 15” in the table results in a coefficient of about

.09. Hence, this specific station has a significant larger effect on the size of the overall result

than others. The street where this measuring station is located is Kantstrasse in the western

district of Berlin Charlottenburg. It lies very close to a nearby highway circling the city. A

possible explanation for the difference in effect size is that this specific segment was reduced

to a one-lane street. Narrowing down the space for cars to a single lane may therefore have

a larger effect on speed than limiting a three-lane street to a two-lane one.51 Looking at

volume, there is no single station that drives the results. All estimates remain negative and

insignificant. In the following, I will present results with and without this outlier station if

required.

Time of day Due to the very granular nature of the data, I am able to differentiate traffic

volume and speed by hour of the day. I am thus able to analyse whether the reduction by

one street lane mostly affects commuters in traffic peak hours or also other types of trips.52

In order to do so, I run two types of estimations: i) I clear the sample from all hourly

observations except for the peak hours and ii) I estimate the coefficients for each hour of

the day separately. In both cases, the estimations include the full set of control variables.53

Results for the first approach are presented in Table 5.B.3. Point estimates correspond to the

ones in the main outcomes. This means that in the main traffic peak hours speed and volume

on average do not seem to be differently affected compared to other times of the day. The

second approach enables an even closer look into intra-day variations. To illustrate those,

coefficients of single-coefficient two-way fixed effects regressions for each hour of the day are

depicted in Figures 5.A.2 and 5.A.3. Tables 5.B.4 and 5.B.5 additionally present the exact

51Another potential explanation would have been a change in speed regulation, e.g. from 50 to 30. Even
though this specific street was affected by such a regulation change in 2018, there was no such change on
any treated street during the sample period of this analysis.

52Traffic peak hours are defined as the time frame between 6 a.m. and 9 a.m. in the morning as well as
4 p.m. and 7 p.m. in the evening.

53This includes date fixed effects, measuring station fixed effects, a construction work dummy, and the
station times lockdown-dummy interaction.
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coefficients. Unlike the main analyses, which are restricted to daytime, I now estimate the

model for all 24 hours of the day. Figure 5.A.2 reveals that the difference between treated

and untreated units is significant throughout the day. The effect size, however, varies. In

the night hours (midnight until 5 a.m.), speed is significantly slower by about five to seven

percent. From 6 a.m. onward, when traffic usually starts to pick up, the effect size gradually

increases. The maximum difference is reached in the afternoon with a point estimate of

about −.16. Thus, average car speed is about 16 percent lower to similar streets compared

to times before treatment at the main traffic peak time of the day. Until the evening,

the effect size gradually decreases. As for the volume of vehicles, it is significantly higher

on PUBL streets compared to non-PUBL streets at night hours, but not during the day,

considering outcomes in log terms. Absolute values as presented in Figure 5.A.3, however,

suggest that this difference at night is driven by a very small absolute effect of about 20

vehicles. Due to the significantly lower number of cars on the streets at night hours, the

effects at that time of the day should be handled cautiously. Considering speed, traffic is

relatively free-flowing at night, which explains the smaller effect size.

Cars and Trucks In the data it is possible to differentiate traffic volume and speed by type

of vehicles. I thus analyse whether there are differences in the outcome when differentiating

between cars and trucks.54 Table 5.B.6 shows that the entire result is driven by cars. A

look into the data reveals that only about six percent of vehicles observed on the streets in

the unrestricted sample are trucks. As a consequence, also the variation of observed trucks

is much lower compared to cars. This reduced variation may therefore lack power to detect

significant results.

Street size Apart from differences analysed so far, there may exist heterogeneities regard-

ing different street sizes. For example, streets with two lanes prior to the instalment of a

PUBL may show different results compared to those with three lanes ahead of treatment

because they may be harder or easier to substitute for commuters. Table 5.B.7 shows res-

ults for two- and three-lane streets separately, restricting also the control group to streets

with the respective number of lanes. Apparently, volume is not differently affected on the

different types of streets. The effect size for average speed, however, shows slightly different

54Trucks are defined as vehicles longer than 7.5 meters. This subsumes buses and the majority of delivery
trucks.
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results. Smaller streets are affected more severely compared to larger ones. From a policy

perspective, this speaks for the installation of new cycle lanes on larger streets, while it may

be advisable to spare roads with less space. However, the difference of the effect sizes is

only marginally significant. Taking all aspects into account, heterogeneities of results are, if

existent, rather small.

5.5.1.2 Spillover effects to surrounding streets

Results so far suggest that congestion on treated streets increased while traffic moderately

declined - even though the decrease cannot be unambiguously attributed to the installation

of a PUBL. Thus, even though there are in total modestly less vehicles on the streets, the

remaining ones are slower due to the reduction in space for motorized traffic. Since the

utilization of public transport significantly declined during the lockdown, this might have

put additional pressure on the streets by people changing their preferred mode of transport

from train to car or bike. These people might want to avoid congested streets by choosing

alternative roads close-by. Thus, commuters leaving their old accustomed routes as well as

new car users might divert to roads in the vicinity of PUBL streets. In order to test this

hypothesis, I repeat the main analysis with measuring stations, which lie within different

distance ranges of a PUBL. Thereby, I assign the respective starting date of the treatment

to each nearby station and delete the actually treated streets from the sample.55 Table 5.B.8

shows the corresponding estimates. While speed and therefore congestion seems not to be

affected on the surroundings of treated streets, there is a significant increase of car volume on

streets within a 750 meter and a 1 kilometre radius of PUBL streets. One would expect the

effect size to decrease, the larger the radius drawn to the PUBL. The table suggests otherwise

with the 1km-coefficient being larger than the 750 meter one. However, the difference in effect

size is not significant, which means that streets up to 1km away from a PUBL are equally

affected. Moving further away then shows the expected development with the coefficient

size tending to zero and being insignificant.56 This result suggests that drivers are actually

nudged away to some extent from their accustomed routes. An alternative interpretation is

that former public transit users, who then change to commuting by car, abstain from using

55Since I want to know about the effect on all types of lanes, I abstain from the restriction of limiting the
sample to streets with a specific number of lanes. This explains the larger overall sample size.

56Note that treated stations between the distances are not mutually exclusive. This means that all
stations that are handled as treated in the 750m regressions are also treated in the 1km regressions.
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a relatively congested PUBL street and rather use roads close-by. In any case, this has no

negative affect on the surrounding streets in terms of congestion. Rather, a new equilibrium

with a more equal distribution of traffic seems to be established.

5.5.1.3 Medium run effects

Additionally to the data set running until the end of 2020, the Berlin Senate also provided

me with additional traffic data for the time period between March and May of 2021. The

reason not to include the entire time frame into the main estimations is that many measuring

stations drop out of the observation network in 2021, and therefore the sample becomes less

balanced. Additionally, there are more than three months missing between my observation

period and the data from 2021, which does not allow to track potential developments in

between. Results for the entire sample as well as for the sample without the outlier from the

leave-one-out analysis are presented in Table 5.B.9. All coefficients slightly increase in size.

The volume effect now becomes significant and larger, while the speed effect is only margin-

ally larger, and does not significantly change. Thus, about one year after the installation of

the PUBL, drivers are apparently nudged away to a larger extent from treated streets, which

are still more congested than control streets. The combination of less volume combined with

similar congestion may be explained by an overall city-wide increase in motorized traffic,

which more evenly distributed on the street network compared to pre-treatment times. One

reason for the overall traffic increase potentially is a larger share of workers returning to

offices rather than working at home. Those now re-entering the streets have an incentive to

use roads without a new cycle lane that replaced a car lane.

5.5.1.4 Robustness

I run a variety of tests in order to assess the robustness of the results with respect to aspects

like sample composition, clustering, placebo treatments and variations of control variables.

Standard Errors In my main estimates, I cluster standard errors on 1km × 1km city-

wide grids and weeks in order to account for errors being spatially and temporally correlated.

To test whether statistical significance depends on the definition of standard errors, I alter

this cluster specification by using 1) the twelve local districts of Berlin and weeks, 2) a

station/week cluster, 3) standard errors only clustered on grid level, and 4) standard errors
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only clustered on weekly level. These different types of clustering thus take into account

different variations of spatial clusters and of the time component. This means that the data

then is treated as independent across the respective clusters (Cameron et al., 2011). Results

in Table 5.B.10 show that inference is not affected. The effect on speed is still significant,

at least at a 5 percent level and mostly at a 1 percent level. Excluding the station with the

largest impact on the results (“Station 15” in Table 5.B.2) in Panel B also does not alter

the results, regardless of cluster specification.

Sample adjustments In the main part of the analysis, I make some restrictions to the

sample, e.g. regarding the number of lanes.57 I vary the sample composition to check if and

to what extent different sampling structures may play a role. In the case of significantly

different outcomes, estimates are potentially biased due to sample selection. Results with

different sample restrictions are shown in Table 5.B.11.

Firstly, columns 1 and 2 show the results using the full sample, including one-lane-streets

and four-lane-streets, and the full set of 24 hours. While the volume coefficient is still not

significant, the average speed estimate becomes a little smaller in size. The most likely

reason is that part of the effect is offset in night hours, where there is not much traffic on

the roads in general.

Secondly, I look at the full sample again, but now only for non-night times, i.e. from 5 a.m.

until 8 p.m. as shown in columns 3 and 4. The formerly made presumption regarding speed

and its effect being slightly offset during night hours is confirmed, since the coefficient in

column 4 jumps back to the result found in the main analysis. Taking into account one-lane-

streets and four-lane-streets, however, renders the volume coefficient significant and slightly

larger. Thus, if we consider the entire road network in Berlin as control group, we see that

the volume on treated streets has actually decreased. The effect is driven by one-lane-streets,

which account for about 25 percent of the sample size.

Thirdly, I only consider streets without any type of prior cycling infrastructure. Then,

treated streets are such with a PUBL as the first type of cycling infrastructure and control

streets are such without any type of cycling infrastructure throughout the sampling period.

57I exclude all one- and four-lane streets.
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The reason to look at this sample restriction is twofold. Firstly, almost all treated stations

had no prior cycling infrastructure. Therefore, the control group is even more harmonized in

terms of characteristics. Secondly, while treated streets receive a direct alternative as mode

of transport, bikes do not have an own lane to use in the comparison group. If the volume

effect was now larger compared to the main outcomes, this might indicate that car drivers

were nudged away from using their car and potentially switched to using the bike. The

sample size is considerably smaller in these specifications. While the volume effect remains

insignificant, indicating that the new cycle lanes are not used by former motorists, the

coefficient for average speed becomes slightly larger. Hence, restricting the sample to streets

with very similar characteristics shows a slightly stronger congestion-effect than allowing for

a more generalized set of streets in Berlin to be part of the control group.

Lastly, in my main estimations I exclude all stations, which lie on a highway, thereby only

comparing inner-city streets with each other. The last two columns check whether results

hold in the case of including highways into the control group. Results are very close to

the full-sample outcomes in columns (1) and (2). The size of the sample is now about

twice as large compared to the standard sample and coefficient sizes are similar. Though

economically small, the effect on volume is now positive and significant. One potential reason

is that home office regulations in times of the COVID-19 lockdown had a larger effect on

the highways circling the city and this effect is not entirely subsumed by the post-lockdown

× stations interaction. That would mean that highway travel was significantly reduced

compared to inner-city commuting. However, since I would not consider highways to be

part of an adequate control group, this difference should not be over-interpreted. Overall,

different sample specifications suggest that results are not prone to selection bias.

Placebo tests A common approach in DiD models to assess the robustness of results is

the performance of placebo tests. Table 5.B.12 presents the results of such tests with respect

to treatment timing. Therefore, I deleted all observations in the actual treatment period

starting in mid March, 2020. Then, treatment status was assigned to all treated measuring

stations for three different placebo-treatment dates. The dates were chosen at intervals of

about four months in the time frame between April of 2019 and January, 2020. The table

shows that all placebo treatment effects are insignificant except for volume in the case of
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treatment starting in April of 2019, which was about one year prior to actual treatment. In

this case, the coefficient is marginally significant with an economically very small effect. Due

to the large time interval between actual and placebo treatment as well as the fact that the

pre-trend assumption was more fuzzy in the case of volume, I conclude that placebo tests

generally support the main results.

Construction work control In my main estimations, I have used a construction work

dummy as control variable that switched to one, whenever there was any type of road

construction during the observation period. This means that the dummy does not take

into account what kind of restriction was imposed on road users. However, there are many

different types of construction works and accompanying restrictions. It is likely that imposing

a temporary stopping restriction on a street differently affects the average speed of vehicles

compared to blocking an entire lane. The reason why I use a dummy variable is that it is not

straight-forward to interpret a categorical construction work variable, since there does not

exist a natural order, which tells about the severity of restriction. Table 5.B.13 compares

the results between using a construction work dummy and allowing the type of restriction to

vary. The effect on volume remains insignificant and very small in absolute size. Car speed

is significantly affected with about the same coefficient size. The table also reveals that it

is important to control for construction work, which significantly affects both, volume and

speed.

Concerns about Standard TWFE Standard TWFE estimations assume a constant

treatment effect, which causes a potential bias, when treatment varies over affected unit and

time. This bias is caused by potentially negative weights assigned to the treatment effect

of single treated units, which then compose a weighted sum over all DiD estimations. This

becomes a problem if the average treatment effects are heterogeneous across groups or periods

(De Chaisemartin and d’Haultfoeuille, 2020). With respect to treated units, I show in the

leave-one-out analyses, as presented in Table 5.B.2, that the results are homogeneous except

for one station. Moreover, the initial event study design exhibits not much variation of the

effect over time after treatment. Therefore, when accounting for the outlier, the respective

bias does not seem to weigh heavy. However, I still compute the weights as suggested by

De Chaisemartin and d’Haultfoeuille (2020). All weights in my regressions are positive, which
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suggests that this bias is of no relevance in this setting. Apart from checking the weights,

I also repeat my main analyses without heterogeneous timing, which again addresses the

potential problem when streets are treated at different points in time. Now, all treated

roads are assigned the same pre-treatment and post-treatment period. As a consequence, all

observations between March, 25th and June, 30th are deleted and the treatment indicator

switches to one after that period for all treated measuring stations. Table 5.B.14 shows

results for which I delete all observations between the first and the last treatment date.

Panel A includes all treated traffic monitoring stations, while Panel B excludes “Station

15” from Table 5.B.2 in order to show further results of a more homogeneous set of treated

roads. The effect on volume and speed are very similar to my main outcomes, which suggests

that the staggered timing of treatment in the main analyses does not pose a major problem.

5.5.2 Accidents

To get a first visual impression of the accidents data within Berlin, I plot the monthly mean

development of total accidents by treatment status in Figure 5.A.4a. Since about 40 percent

of overall observations are zeroes and the maximum number of total accidents per street and

month is 20, the monthly mean by treatment status is relatively low and ranges between

approximately .5 and 2. This means that the time variation of accidents is limited. The

development of accident occurrence on treated and non-treated streets seems to be similar

before and after treatment. Panels (b) and (c) of Figure 5.A.4 show that this observation is

independent from the means of transport involved in an accident. Apparently, the occurrence

of accidents is cyclical with a higher incidence in summer months.

Event study design Now I estimate the event study model with accidents, where the out-

come variable includes either all accidents, only those involving bicycles, or those involving

cars. Accidents are aggregated at the street level and are only available on a monthly

basis. Thus, the results depict the differences between PUBL streets and non-PUBL streets

per month. Figure 5.6 shows that the variation of overall accidents between treated and un-

treated streets is relatively small in absolute terms and that there appear to be no treatment-

induced changes. For accidents involving bikes, the variation is even smaller, as Figure 5.A.5

exhibits. Moreover, I fail to detect differences if I take into account the severity of injuries.

This means that there is no change in cases of accidents with fatalities or serious injuries, nor
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in accidents without such victims (results not shown here). Thus, at least in the short term

that observations are available, PUBLs did not lead to a significant change of accidents on

treated streets, regardless of the mode involved or accident severity. However, this develop-

ment does not take into account the number of cyclists on these streets due to a lack of data

available. If there was a significant increase in cyclists, then the possibility of a decline in

per-cyclist accidents is very likely. Repeating the analysis separately for each treated street

or conducting the leave-one-out analysis (not shown here) does not alter these results.

Figure 5.6: Event study outcomes for accidents
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(a) Overall accidents

Note: Own calculations. The graph shows the results of an event study estimation as described in Equation
5.1. The dependent variable is overall accidents. Blue dots represent the main estimation coefficients of
leads and lags. Confidence Interval (CI) are depicted as area shades in light (95% CI) and dark grey (90%
CI). The vertical solid black line shows the time of treatment, which is anchored at 0. Leads and lags are
the time before and after treatment in months. The estimations include street and month fixed effects as
well as controls for road condition at the time of the accident and the type of street (primary, secondary
etc.). Standard errors are clustered at 1km × 1km grid cell level spanning the city times a running month
variable.

Synthetic control group design Green et al. (2016) analysed the effects of a congestion

charge in London on traffic accidents and used the synthetic control group method (Abadie

et al., 2010) to identify the effects of interest. Their unit of treatment was the city of

London while other cities in the country served as synthetic control units. In order to make

my results more robust, I follow their approach using municipality level data for Germany
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as a whole.58 Now, the outcome variable is the number of accidents (and subgroups of

such) per month and municipality.59 Berlin is subdivided into its 12 municipalities and

treatment status is assigned to the month in which the first street within the administrative

unit receives a PUBL. Since I exploit the variation of accidents between municipalities over

time, the outcome of this approach also subsumes potential spillover effects on other streets

rather than only actually treated ones. Due to the fact that treatment months differ between

Berlin’s municipalities, I run the synthetic control group method separately for each treated

entity rather than pooling them into one treatment group.

The respective treatment unit and synthetic control units are matched on various economic

and socio-demographic characteristics, which might influence the decision to use certain

modes of traffic and could influence the amount of accidents in a region. Among those

are the population of the municipality, the share of Green Party voters, the share of space

used for settlements and for traffic respectively, the number of unemployed in the region,

and the annual number of accidents from 2018 to 2020.60 Tables 5.B.15 to 5.B.18 show the

predictor balances between each treated and the corresponding synthetic control group. For

all five municipalities the predictor matches are very close. Thus, in terms of predictors, the

synthetic control groups resemble the treated municipalities.

Actual results on overall accidents by means of a graph are shown in Figure 5.A.6. All sub-

graphs support the conjecture that the synthetic control groups are good matches for the

treated units since the pre-treatment outcomes of both follow parallel paths. Just like in the

event study design, I fail to find significant differences between treated units and controls

after the installation of PUBLs. Figure 5.A.7 complements this finding by showing accidents

involving cars and bikes separately. This means that taking a more macro-economic view

by considering entire treated municipalities leads to the same outcome as the within city

street-level evaluation. This strengthens the finding of PUBLs not having an effect on total

accidents. However, as noted earlier, this ignores the number of cyclists on the streets and

58I only exclude municipalities, which received a PUBL themselves in the observed time frame. This
includes e.g. the cities of Hamburg and Munich.

59The reason not to run a synthetic control group design with traffic data is because I do not have
available traffic data for the whole of Germany, but only for Berlin.

60In Germany, there are more than 10.500 municipalities in about 400 districts. While most variables, like
population, voting behaviour, and land use designation, are available on municipality level, some information
like the unemployment rate, is only publicly available on district level. Since municipalities are administrative
sub-divisions of districts, I assign the numbers of the district to the respective municipality.
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potentially implied decreases (in case of an increase of bicycle users) of per-cyclist accidents.

5.6 Interpretation and discussion

Accidents The results indicate that accidents in absolute terms did not change as a con-

sequence of installing PUBLs. The only comparable paper to identify the effect of bike

lanes on accidents by Li et al. (2017) found a contradictory result with a total increase of

collisions of about 40% in the aftermath of new cycling ways in London. Due to the fact

that Li et al. (2017) have data about the number of cyclists on the treated routes, they are

able to directly estimate an effect on the accident rate, which is not possible in my case. As

a consequence of an increase of total cyclists, the authors do not find a significant impact

of new bike paths on accidents per cyclist. With respect to PUBLs in general, Kraus and

Koch (2021) found an increase of cycling in European cities after the installation of PUBLs

of about 40% on average. The authors only looked at cycling in entire cities, not taking into

account the type of streets specifically affected. If the increase of cyclists transfers to streets

with PUBL, that would mean that accident rates on PUBL streets in Berlin actually have

decreased. One potential reason for the difference between the London case analysed by Li

et al. (2017) and Berlin, that is subject to my study, may lie in the nature of the cycling

lanes. While the lanes I consider are separated from car traffic by physical barriers, many

bike lanes in London are merely indicated by blue paint on the streets. Taking all aspects

into account, my results suggest that cycling has likely become safer on roads with a PUBL.

However, additional research on the matter is required due to the rather small sample size

and thereby limited variation of the accidents data.

Traffic I find a significant reduction of average speed on PUBL streets, which means higher

congestion levels compared to untreated roads. This increase in congestion seems to be

primarily driven by the reduction of space available for cars rather than a significant change

of total traffic on these streets. If anything, traffic on PUBL streets has slightly declined.

In the economic literature, in many cases there is no differentiation between congestion and

traffic volume since higher congestion levels in most instances are caused by an increase in

traffic rather than a change in infrastructure. In theory, both, the increase in car volume as

well as an increase in congestion, may lead to higher levels of local pollution. More cars mean
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more combustion engines to pollute the air, while higher congestion may increase pollution

as a consequence of stop-and-go driving, which leads to higher fuel consumption or increased

tire wear (Tu et al., 2022; Sommer et al., 2018). Since the results found in this paper hint

toward increased congestion with slightly reduced traffic, conclusions about the effects on air

pollution cannot be drawn and the link found e.g. between congestion, traffic pollution, and

infant mortality (Knittel et al., 2016; Currie and Walker, 2011) cannot be applied without

further ado.

One unambiguous external cost factor of PUBLs, which is borne by car drivers, is the price

paid in terms of increased travel times. Based on my estimation coefficients, a driver with

an hypothetical one hour commute to work would need about one hour and five to six

minutes after the installation of cycle lanes on the routes she uses. Given economic time

costs of 9.37e per hour in Germany, which are based on estimated values of travel time

savings (INRIX, 2021), the additional minutes would lead to an increase in time costs to

approximately 10.3e for the hypothetical commuter per one-way trip. This corresponds to

a loss of about 2e per day given that travel times from and to work do not differ. Assuming

about 250 days of work a year, this would add up to costs of about 500e for that specific

driver. However, these back-on-the-envelope calculations are very hypothetical, since this

would require all streets within the city to be equipped with new cycle lanes, which replace

an existing car lane. The longest PUBL, which was installed in Berlin, had a length of about

3.5 kilometres (Kantstr.). If you needed five minutes to pass this specific street before the

establishment of the cycle lane, then a 10-percent decrease in average car speed would lose

you about 30 seconds. The economic costs in this specific case are therefore limited.61

5.7 Conclusion

This paper is among the first to analyse causal effects of bike lanes on multiple outcomes,

which determine some of the most important aspects of life-quality in cities. My source of

exogenous variation are pop-up bike lanes in Berlin and I analyse their effect on congestion,

traffic volume, and accidents. While the number of cars experienced modest but mostly

insignificant declines, I find a significant reduction of average speed by between 8 and 12

61Actually, repeating the calculation with the hypothetical driver, who then loses 60 seconds a day on
Kantstraße, results in yearly costs of only 39e approximately.
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percent. This effect reaches its maximum in peak travel hours with average speed being

slower by 16 percent. The absolute number of accidents was not affected by the installation

of pop-up bike lanes. However, it is likely that the rate of accidents per cyclist has decreased

since prior research suggests an increase in people using bikes in PUBL-cities (Kraus and

Koch, 2021). The actual effect on accident rates remains an open question for future research.

Determining the effects of newly installed cycle lanes on local air quality is also beyond the

scope of this paper, but would be a fruitful amendment to the literature, especially in

the light of calculating a more complete cost-benefit analysis. Overall, economic costs of

increased travel times are rather modest. The balance between costs and benefits depends

on developments in the long run and whether commuters are nudged towards using bikes

instead of motorized traffic.

My findings have to be considered in the light of other consequences of the COVID-19

pandemic. Public transport has experienced a significant decline in trust and a decrease in

ridership numbers (Vitrano, 2021). While some commuters might have replaced the tram or

subway with their bikes, there also may exist the tendency to use the car instead. Street-

specific data on bicycle as well as public transport utilization would allow for a thorough

analysis of the change in the modal split. Moreover, the development of the modal shift in

the long run, after the end of the COVID-19 pandemic, is unclear. Further research should

therefore tackle the question of long-term effects of replacing a car with a bike lane.

On the basis of my research I furthermore conclude that the fundamental law of road con-

gestion, which suggests a unitary elastic relationship between lane kilometres available and

miles driven, does not necessarily apply in the short run. In the original paper by Duranton

and Turner (2011), a change of vehicle lane kilometres does not relieve the streets sufficiently

since over the course of several decades congestion remains stable. My findings indicate that

infrastructural changes do not directly lead to adaptations in commuting behaviour, but

rather require a longer time span to evolve. Consequently, it apparently takes time or dif-

ferent, potentially tougher, measures to disengage motorists from their sticky preferences.



Chapter 5. The Causal Effect of Cycling Infrastructure 197

Appendices

5.A Figures

Figure 5.A.1: Main results including an interaction between Station ID and Lock-down
dummy
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(a) Number of vehicles
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(b) Average speed

Note: Own calculations. The graphs show the results of separate event study estimations for the absolute
number of vehicles (5.A.1a) and average vehicle speed (5.A.1b). Blue dots are the main coefficients of leads
and lags. Confidence intervals are depicted as area shades in light (95% CI) and dark grey (90% CI). The
vertical solid black line shows the time of treatment anchored at 0. Leads and lags are the time before and
after treatment in weeks. The estimations include station and week fixed effects as well as an interaction
variable between each station and a post-lockdown dummy. The sample is restricted to streets with two
or three lanes and all streets within a radius of 1km to a treated street are excluded from the estimations.
Standard errors are clustered at 1km × 1km grid cell level spanning the city times a running week variable.
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Figure 5.A.2: Effects separated by hour of the day - logged outcomes
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Note: Own calculations. The graphs show the results of separate TWFE estimations for each hour of the day
for the logged number of vehicles (5.A.2a) and logged average vehicle speed (5.A.2b). Blue dots represent
the treatment effect of each estimation. Confidence intervals are depicted as area shades in light (95% CI)
and dark grey (90% CI). The estimations include station, and date fixed effects, a construction dummy, a
control for changes in speed regulations, and a station × post-lockdown interaction. The sample is restricted
to streets with two or three lanes and all streets within a radius of 1km to a treated street are excluded
from the estimations. Standard errors are clustered at 1km × 1km grid cell level spanning the city times a
running week variable.

Figure 5.A.3: Effects separated by hour of the day - absolute outcomes
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Note: Own calculations. The graphs show the results of separate TWFE estimations for each hour of the
day for the absolute number of vehicles (5.A.3a) and average vehicle speed (5.A.3b). Blue dots represent
the treatment effect of each estimation. Confidence intervals are depicted as area shades in light (95% CI)
and dark grey (90% CI). The estimations include station, and date fixed effects, a construction dummy, a
control for changes in speed regulations, and a station × post-lockdown interaction. The sample is restricted
to streets with two or three lanes and all streets within a radius of 1km to a treated street are excluded
from the estimations. Standard errors are clustered at 1km × 1km grid cell level spanning the city times a
running week variable.
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Figure 5.A.4: Development of mean accidents by treatment status
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Figure 5.A.4: Development of mean accidents by treatment status

.5

1

1.5

2

M
ea

n 
N

r. 
of

 c
ar

 a
cc

id
en

ts

0 10 20 30 40

Running month variable

PUBL Streets Control Streets

(c) Car accidents

Note: Own calculations. The graphs show the development of average street-level accidents separated by
treatment status. They are presented by types of vehicles involved in the accidents, more precisely by overall
accidents (5.A.4a), bike accidents (5.A.4b), and accidents with cars involved (5.A.4c). The vertical dashed
line represents the timing of the installation of the first PUBL in the city on March, 25th in 2020.
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Figure 5.A.5: Effects on Bike and Car Accidents
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(b) Car accidents

Note: Own calculations. The graphs show the results of separate event study estimations as described
in Equation 5.1. Outcomes are accidents with bicycles involved (Figure 5.A.5a), and accidents with cars
involved (Figure 5.A.5b). Blue dots represent the main estimation coefficients of leads and lags. Confidence
intervals are depicted as area shades in light (95% CI) and dark grey (90% CI). The vertical solid black line
shows the time of treatment, which is anchored at 0. Leads and lags are the time before and after treatment
in months. The estimations include street and month fixed effects as well as controls for road condition at
the time of the accident and the type of street (primary, secondary etc.). Standard errors are clustered at
1km × 1km grid cell level spanning the city times a running month variable.



Figure 5.A.6: Effects on Accidents using synthetic control method
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Figure 5.A.6: Effects on Accidents using synthetic control method
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Note: Own calculations. The graphs show the results of separate synthetic control group estimations
following Abadie et al. (2010). Outcome variable is the total number of accidents. Treated units are the
respective Berlin districts as mentioned in each sub-caption in which a PUBL was installed. The time of
treatment is the month of the first placement of a PUBL within the respective district. The synthetic control
unit consists of potentially all municipalities in Germany outside of Berlin that did not receive a PUBL. The
matching between treatment and control units is based on the respective monthly outcome variable prior
to treatment, traffic space, space used for settlements, population, election participation, the share of green
party voters, the unemployment rate, and the absolute number of accidents from 2018 until 2020.



Figure 5.A.7: Effects on Bike and Car Accidents using synthetic control method
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Figure 5.A.7: Effects on Bike and Car Accidents using synthetic control method
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Note: Own calculations. The graphs show the results of separate synthetic control group estimations following
Abadie et al. (2010). Outcome variables are accidents with bicycles involved in the left panel and those with
cars involved in the right panel (those are not mutually exclusive and may partly contain the same accidents).
Treated units are the respective Berlin districts as mentioned in each sub-caption in which a PUBL was installed.
The time of treatment is the month of the first placement of a PUBL within the respective district. The synthetic
control unit consists of potentially all municipalities in Germany outside of Berlin that did not receive a PUBL.
The matching between treatment and control units is based on the respective monthly outcome variable prior to
treatment, traffic space, space used for settlements, population, election participation, the share of green party
voters, the unemployment rate, and the absolute number of accidents from 2018 until 2020.
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5.B Tables

Table 5.B.1: Effect on weekly Volume and Speed (absolute and logged)

Volume Speed

(1) (2) (3) (4)
Panel A: Outcome in absolute values
1(PU lane) -53.82∗∗∗ 0.550 -5.122∗∗∗ -4.148∗∗∗

(5.354) (7.547) (0.311) (0.538)
N 20196 20196 20194 20194
R2 0.901 0.920 0.816 0.844
Stations 216 216 216 216
Interaction No Yes No Yes
Panel B: Log-transformed outcome
1(PU lane) -0.0292∗∗∗ 0.00788 -0.131∗∗∗ -0.123∗∗∗

(0.00890) (0.0135) (0.00831) (0.0139)
N 20194 20194 20194 20194
R2 0.607 0.664 0.750 0.783
Stations 216 216 216 216
Interaction No Yes No Yes

Note: Own calculations. The table presents the coefficients of the treatment effects of separate two-way
fixed effects estimations with vehicle volume and vehicle speed as dependent variables and data aggregated to
weekly levels. Panel A shows the coefficients of interest with outcomes in absolute terms. Panel B shows the
same for logged outcome variables. Even columns include an interaction term between a unique measuring
station identifier and a post-lockdown dummy variable while uneven columns do not. All estimations include
station fixed effects (FE), date FE, hour FE, a dummy whether construction work takes place, and an
indicator for a change in speed limits. Stations within a one kilometre radius of a treated street are excluded
and the sample is restricted to streets with two or three lanes. Standard errors are clustered at 1km ×
1km grid cell level spanning the city times a running week variable. t statistics in parentheses. Statistical
significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.



Table 5.B.2: Leave-one-out analyses by station

(1) (2)
Volume Speed

Station 1 -0.00500 -0.125∗∗∗

(-0.39) (-8.93)
Station 2 -0.00510 -0.129∗∗∗

(-0.39) (-8.69)
Station 3 -0.00874 -0.124∗∗∗

(-0.67) (-8.15)
Station 4 -0.000635 -0.121∗∗∗

(-0.05) (-8.10)
Station 5 -0.0183 -0.147∗∗∗

(-1.60) (-10.52)
Station 6 -0.00569 -0.120∗∗∗

(-0.45) (-8.23)
Station 7 -0.0114 -0.120∗∗∗

(-0.90) (-8.02)
Station 8 -0.00390 -0.115∗∗∗

(-0.30) (-7.45)
Station 9 -0.00203 -0.123∗∗∗

(-0.15) (-7.86)
Station 10 -0.00577 -0.117∗∗∗

(-0.45) (-7.86)
Station 11 0.00779 -0.133∗∗∗

(0.61) (-8.72)
Station 12 -0.00140 -0.128∗∗∗

(-0.11) (-9.05)
Station 13 -0.00574 -0.124∗∗∗

(-0.45) (-8.34)
Station 14 -0.00648 -0.120∗∗∗

(-0.49) (-7.85)
Station 15 -0.00590 -0.0863∗∗∗

(-0.45) (-6.48)
Station 16 -0.00579 -0.123∗∗∗

(-0.46) (-8.43)
Station 17 -0.00564 -0.122∗∗∗

(-0.45) (-8.36)
Station 18 -0.00556 -0.123∗∗∗

(-0.44) (-8.47)
Station 19 -0.00619 -0.123∗∗∗

(-0.49) (-8.40)
Station 20 -0.00567 -0.119∗∗∗

(-0.45) (-8.40)
Station 21 -0.00506 -0.118∗∗∗

(-0.40) (-8.34)
Station 22 -0.00567 -0.123∗∗∗

(-0.45) (-8.30)
Station 23 -0.00520 -0.123∗∗∗

(-0.41) (-8.33)

Note: Own calculations. The table presents outcomes of leaving out the respective station in the analyses.
Control variables and limitations are the same as in Table 5.1. t statistics in parentheses. Statistical
significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5.B.3: Peak hour results

All Stations No outlier stations

Volume Speed Volume Speed

(1) (2) (3) (4) (5) (6) (7) (8)
ln abs ln abs ln abs ln abs

1(PU lane) -0.00907 -7.060 -0.121∗∗∗ -4.109∗∗∗ -0.0117 -6.540 -0.0851∗∗∗ -2.711∗∗∗

(0.0119) (7.999) (0.0145) (0.540) (0.0124) (8.644) (0.0134) (0.463)
N 771418 772950 771404 771404 767695 769227 767681 767681
R2 0.617 0.740 0.602 0.766 0.618 0.741 0.602 0.767
Stations treated 23 23 23 23 23 23 23 23
Stations Overall 215 215 215 215 214 214 214 214
Interaction Yes Yes Yes Yes Yes Yes Yes Yes

Note: Own calculations. The table presents the coefficients of the treatment effects of separate two-way
fixed effects estimations with vehicle volume and vehicle speed as dependent variables. Only peak traffic
hours between 6 a.m. and 9 a.m. as well as between 4 p.m. and 7 p.m. are considered. Even columns show
outcomes in absolute terms, while uneven columns show outcomes with log-transformed dependent variables.
All estimations include station fixed effects (FE), date FE, hour FE, a dummy whether construction work
takes place, an indicator for a change in speed limits, and an interaction term between a station identifier and
a post-lockdown dummy. Columns 1-4 include all stations of the main sample, columns 5-8 exclude outlier
stations as identified by leave-on-out analyses. Stations within a one kilometre radius of a treated street
are excluded and the sample is restricted to streets with two or three lanes. Standard errors are clustered
at 1km × 1km grid cell level spanning the city times a running week variable. t statistics in parentheses.
Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.



Table 5.B.4: Results by hour of the day (Midnight - 11 a.m.)

Log outcomes Abs. outcomes

(1) (2) (3) (4)
Volume Speed Volume Speed

hour 0 0.170∗∗∗ -0.0786∗∗∗ 18.50∗∗∗ -3.001∗∗∗

(8.00) (-6.93) (4.71) (-6.44)
hour 1 0.158∗∗∗ -0.0765∗∗∗ 11.61∗∗∗ -2.915∗∗∗

(7.11) (-6.94) (4.35) (-6.30)
hour 2 0.172∗∗∗ -0.0677∗∗∗ 7.347∗∗∗ -2.610∗∗∗

(6.88) (-5.96) (3.45) (-5.55)
hour 3 0.106∗∗∗ -0.0495∗∗∗ 3.510 -1.835∗∗∗

(5.39) (-4.86) (1.62) (-4.38)
hour 4 0.0707∗∗∗ -0.0612∗∗∗ -1.335 -2.336∗∗∗

(4.68) (-5.98) (-0.60) (-5.45)
hour 5 0.00323 -0.0612∗∗∗ -22.52∗∗∗ -2.324∗∗∗

(0.30) (-5.80) (-4.38) (-5.11)
hour 6 -0.00452 -0.0992∗∗∗ -21.15∗∗ -3.507∗∗∗

(-0.38) (-7.86) (-2.94) (-7.07)
hour 7 0.00145 -0.0970∗∗∗ -17.59∗ -3.315∗∗∗

(0.10) (-6.51) (-2.03) (-5.75)
hour 8 -0.00224 -0.119∗∗∗ -15.32 -3.979∗∗∗

(-0.13) (-6.95) (-1.54) (-6.39)
hour 9 -0.00199 -0.121∗∗∗ -6.457 -4.084∗∗∗

(-0.13) (-8.04) (-0.71) (-7.33)
hour 10 -0.00640 -0.121∗∗∗ -9.718 -4.031∗∗∗

(-0.44) (-7.69) (-1.32) (-7.04)
hour 11 -0.0103 -0.131∗∗∗ -11.20 -4.378∗∗∗

(-0.67) (-8.05) (-1.51) (-7.43)

Note: Own calculations. The table presents outcomes of running the main analysis for each hour of the
day separately from midnight (hour 0) until 11 a.m. (hour 11). All estimations include station fixed effects
(FE), date FE, hour FE, a dummy whether construction work takes place, an indicator for a change in
speed limits, and an interaction term between a station identifier and a post-lockdown dummy. Columns
1-4 include all stations of the main sample, columns 5-8 exclude outlier stations as identified by leave-on-
out analyses. Stations within a one kilometre radius of a treated street are excluded and the sample is
restricted to streets with two or three lanes. Standard errors are clustered at 1km × 1km grid cell level
spanning the city times a running week variable. t statistics in parentheses. Statistical significance indicators:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5.B.5: Results by hour of the day (12 a.m. - 11 p.m.)

Log outcomes Abs. outcomes

(1) (2) (3) (4)
Volume Speed Volume Speed

hour 12 0.000502 -0.127∗∗∗ -8.404 -4.232∗∗∗

(0.03) (-8.31) (-1.04) (-7.58)
hour 13 0.00918 -0.139∗∗∗ -13.91 -4.537∗∗∗

(0.32) (-8.58) (-1.65) (-7.72)
hour 14 -0.0203 -0.145∗∗∗ -9.566 -4.795∗∗∗

(-1.42) (-8.08) (-1.04) (-7.60)
hour 15 -0.0201 -0.155∗∗∗ -14.65 -5.054∗∗∗

(-1.14) (-7.94) (-1.35) (-7.38)
hour 16 -0.0257 -0.158∗∗∗ -12.44 -5.179∗∗∗

(-1.73) (-8.88) (-1.13) (-8.39)
hour 17 -0.0278∗ -0.137∗∗∗ -7.773 -4.561∗∗∗

(-2.14) (-7.97) (-0.77) (-7.54)
hour 18 -0.0151 -0.125∗∗∗ 4.003 -4.282∗∗∗

(-1.20) (-7.32) (0.43) (-7.14)
hour 19 0.0150 -0.113∗∗∗ 25.17∗∗ -4.008∗∗∗

(1.21) (-7.82) (3.05) (-7.23)
hour 20 0.0415∗∗ -0.104∗∗∗ 26.37∗∗∗ -3.752∗∗∗

(3.15) (-7.59) (3.62) (-7.07)
hour 21 0.0659∗∗∗ -0.0921∗∗∗ 20.90∗∗ -3.406∗∗∗

(3.36) (-7.15) (3.16) (-6.57)
hour 22 0.111∗∗∗ -0.107∗∗∗ 29.11∗∗∗ -3.908∗∗∗

(4.89) (-6.98) (4.15) (-7.09)
hour 23 0.127∗∗∗ -0.0929∗∗∗ 29.04∗∗∗ -3.555∗∗∗

(5.97) (-7.45) (4.35) (-6.99)

Note: Own calculations. The table presents outcomes of running the main analysis for each hour of the
day separately from 12 a.m. (hour 12) until 11 p.m. (hour 23). All estimations include station fixed effects
(FE), date FE, hour FE, a dummy whether construction work takes place, an indicator for a change in
speed limits, and an interaction term between a station identifier and a post-lockdown dummy. Columns
1-4 include all stations of the main sample, columns 5-8 exclude outlier stations as identified by leave-on-
out analyses. Stations within a one kilometre radius of a treated street are excluded and the sample is
restricted to streets with two or three lanes. Standard errors are clustered at 1km × 1km grid cell level
spanning the city times a running week variable. t statistics in parentheses. Statistical significance indicators:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5.B.6: Effects for cars and trucks

Cars Trucks

Volume Speed Volume Speed

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Outcome in absolute values
1(PU lane) -52.26∗∗∗ -10.70 -4.715∗∗∗ -4.290∗∗∗ -1.818 3.497 0.337 0.262

(5.131) (7.457) (0.313) (0.545) (1.785) (2.723) (0.233) (0.350)
N 1546526 1546526 1543307 1543307 1546526 1546526 1536225 1536225
R2 0.735 0.748 0.752 0.767 0.546 0.559 0.558 0.570
Stations 215 215 215 215 215 215 215 215
Interaction No Yes No Yes No Yes No Yes
Panel B: Log-transformed outcome
1(PU lane) -0.0219∗∗∗ -0.0112 -0.116∗∗∗ -0.124∗∗∗ -0.0499∗∗ 0.0249 0.0154∗ 0.00170

(0.00827) (0.0144) (0.00880) (0.0144) (0.0214) (0.0320) (0.00858) (0.0119)
N 1543329 1543329 1543307 1543307 1536335 1536335 1532624 1532624
R2 0.622 0.643 0.579 0.601 0.601 0.618 0.489 0.500
Stations 215 215 215 215 215 215 215 215
Interaction No Yes No Yes No Yes No Yes

Note: Own calculations. The table presents the coefficients of the treatment effects of two-way fixed effects
estimations for cars and trucks separately. Panel A shows the coefficients of interest with outcomes in absolute
terms. Panel B shows the same for logged outcome variables. Even columns include an interaction term
between a unique measuring station identifier and a post-lockdown dummy variable while uneven columns
do not. All estimations include station fixed effects (FE), date FE, hour FE, a dummy whether construction
work takes place, and an indicator for a change in speed limits. Stations within a one kilometre radius of a
treated street are excluded and the sample is restricted to streets with two or three lanes. Standard errors
are clustered at 1km × 1km grid cell level spanning the city times a running week variable. t statistics in
parentheses. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 5.B.7: Different lane samples

Only 2 lanes Only 3 lanes

(1) (2) (3) (4)
Volume Speed Volume Speed

1(PU lane) 0.00195 -0.132∗∗∗ -0.0253 -0.0951∗∗∗

(0.0156) (0.0200) (0.0176) (0.0156)
N 1282105 1282065 261388 261388
R2 0.623 0.614 0.699 0.537
Stations treated 16 16 7 7
Stations Overall 180 180 35 35
Interaction Yes Yes Yes Yes

Note: Own calculations. The table presents the coefficients of the treatment effects of two-way fixed effects
estimations on vehicle volume and speed. Columns 1 and 2 only include two-lane streets in the sample.
Columns 3 and 4 only include three-lane streets. All estimations include station fixed effects (FE), date
FE, hour FE, a dummy whether construction work takes place, an indicator for a change in speed limits,
and an interaction term between a station identifier and a post-lockdown dummy. Stations within a one
kilometre radius of a treated street are excluded. Standard errors are clustered at 1km × 1km grid cell
level spanning the city times a running week variable. t statistics in parentheses. Statistical significance
indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5.B.8: Spillover effects on surrounding stations

750m 1km 1.5km

(1) (2) (3) (4) (5) (6)
Volume Speed Volume Speed Volume Speed

1(PU lane) 0.0809∗∗∗ 0.00526 0.0946∗∗∗ -0.00740 0.0177 -0.00779
(0.0249) (0.0109) (0.0202) (0.00809) (0.0161) (0.00759)

N 2416577 2416351 2416577 2416351 2416577 2416351
R2 0.798 0.621 0.798 0.621 0.798 0.621
Stations treated 54 54 84 84 129 129
Stations Overall 343 343 343 343 343 343
Interaction Yes Yes Yes Yes Yes Yes

Note: Own calculations.The table presents the coefficients of the treatment effects of two-way fixed effects
estimations on vehicle volume and speed for streets surrounding the actually treated ones. Streets within
a radius of 750m, 1km, and 1.5km respectively are now considered as treated units. Streets that actually
received a PUBL are excluded from the estimations. All estimations include station fixed effects (FE), date
FE, hour FE, a dummy whether construction work takes place, an indicator for a change in speed limits, and
an interaction term between a station identifier and a post-lockdown dummy. Standard errors are clustered
at 1km × 1km grid cell level spanning the city times a running week variable. t statistics in parentheses.
Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 5.B.9: Long-term results

All Stations No outlier stations

(1) (2) (3) (4)
Volume Speed Volume Speed

1(PU lane) -0.0268∗ -0.130∗∗∗ -0.0363∗∗ -0.0932∗∗∗

(0.0140) (0.0142) (0.0158) (0.0145)
N 1690820 1690780 1673979 1673939
R2 0.647 0.578 0.647 0.577
Stations 215 215 213 213
Interaction Yes Yes Yes Yes

Note: Own calculations. The table presents the coefficients of the treatment effects of separate two-way fixed
effects estimations on vehicle volume and speed for a sample including the months from March until May of
2021. Columns 1 and 2 include all stations of the main sample, columns 3 and 4 exclude outlier stations as
identified by leave-on-out analyses. All estimations include station fixed effects (FE), date FE, hour FE, a
dummy whether construction work takes place, an indicator for a change in speed limits, and an interaction
term between a station identifier and a post-lockdown dummy. Stations within a one kilometre radius of a
treated street are excluded and the sample is restricted to streets with two or three lanes. Standard errors
are clustered at 1km × 1km grid cell level spanning the city times a running week variable. t statistics in
parentheses. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.



Chapter 5. The Causal Effect of Cycling Infrastructure 213

Table 5.B.10: Different standard error clusters

Station*week Districts*week Grids Week

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Outcomes with all stations
1(PU lane) -0.00540 -0.122∗∗∗ -0.00540 -0.122∗∗∗ -0.00540 -0.122∗∗ -0.00540 -0.122∗∗∗

(0.0115) (0.0131) (0.0138) (0.0142) (0.0301) (0.0469) (0.0103) (0.00791)
N 1543493 1543453 1543493 1543453 1543493 1543453 1543493 1543453
R2 0.650 0.607 0.650 0.607 0.650 0.607 0.650 0.607
Stations treated 23 23 23 23 23 23 23 23
Stations Overall 215 215 215 215 215 215 215 215
Interaction Yes Yes Yes Yes Yes Yes Yes Yes
Outcome Volume Speed Volume Speed Volume Speed Volume Speed
Panel B: Outcomes w/o outliers
1(PU lane) -0.00590 -0.0863∗∗∗ -0.00590 -0.0863∗∗∗ -0.00590 -0.0863∗∗ -0.00590 -0.0863∗∗∗

(0.0122) (0.0117) (0.0141) (0.0108) (0.0314) (0.0346) (0.0107) (0.00713)
N 1536042 1536002 1536042 1536002 1536042 1536002 1536042 1536002
R2 0.650 0.607 0.650 0.607 0.650 0.607 0.650 0.607
Stations treated 23 23 23 23 23 23 23 23
Stations Overall 214 214 214 214 214 214 214 214
Interaction Yes Yes Yes Yes Yes Yes Yes Yes
Outcome Volume Speed Volume Speed Volume Speed Volume Speed

Note: Own calculations. The table presents the coefficients of the treatment effects of separate two-way
fixed effects estimations with varying clusters of standard errors as described in the column headers. Panel
A shows the coefficients of interest with all stations from the main sample. Panel B shows outcomes with
outlier stations as identified by leave-on-out analyses being excluded from the sample. All estimations
include station fixed effects (FE), date FE, hour FE, a dummy whether construction work takes place, an
indicator for a change in speed limits, and an interaction term between a station identifier and a post-
lockdown dummy. Stations within a one kilometre radius of a treated street are excluded and the sample is
restricted to streets with two or three lanes. t statistics in parentheses. Statistical significance indicators:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5.B.11: Results with different samples

Full sample & hours Full sample Cycling Infr. Highways

(1) (2) (3) (4) (5) (6) (7) (8)
Volume Speed Volume Speed Volume Speed Volume Speed

1(PU lane) 0.0206 -0.102∗∗∗ -0.0303∗∗ -0.116∗∗∗ -0.0107 -0.145∗∗∗ 0.0251∗∗ -0.0935∗∗∗

(0.0139) (0.0126) (0.0143) (0.0144) (0.0135) (0.0151) (0.0123) (0.0141)
N 2980500 2980207 2002402 2002210 718615 718609 2962999 2962168
R2 0.849 0.621 0.786 0.630 0.678 0.720 0.847 0.715
Stations treated 24 24 24 24 19 19 23 23
Stations Overall 283 283 283 283 102 102 450 450
Interaction Yes Yes Yes Yes Yes Yes Yes Yes

Note: Own calculations. The table presents the coefficients of the treatment effects of separate two-way
fixed effects estimations with varying sample compositions. Columns 1 & 2 show results with all 24 hours
of the day and the full sample including one and four-lane streets except for stations within a 1km radius of
treated streets. Columns 3 & 4 make the same restrictions, but now only with times between 5 a.m. and 8
p.m. In columns 5 & 6 the sample is restricted to streets without bike lanes prior to treatment. Outcomes in
columns 7 & 8 include observations from highways. All estimations include station fixed effects (FE), date
FE, hour FE, a dummy whether construction work takes place, an indicator for a change in speed limits, and
an interaction term between a station identifier and a post-lockdown dummy. Standard errors are clustered
at 1km × 1km grid cell level spanning the city times a running week variable. t statistics in parentheses.
Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 5.B.12: Placebo tests

Jan2020 Aug2019 Apr2019

(1) (2) (3) (4) (5) (6)
Volume Speed Volume Speed Volume Speed

1(PU lane) -0.00917 -0.0106 -0.00963 -0.00731 -0.0180∗∗ 0.00867
(0.00817) (0.00654) (0.00708) (0.00525) (0.00724) (0.00640)

N 948552 948543 948552 948543 948552 948543
R2 0.650 0.606 0.650 0.606 0.650 0.606
Stations treated 23 23 23 23 23 23
Stations Overall 215 215 215 215 215 215

Note: Own calculations. The table presents the coefficients of the treatment effects of separate two-way fixed
effects estimations with treatment being simulated at different points in time. All estimations include station
fixed effects (FE), date FE, hour FE, a dummy whether construction work takes place, and an indicator for
a change in speed limits. Stations within a one kilometre radius of a treated street are excluded and the
sample is restricted to streets with two or three lanes. Standard errors are clustered at 1km × 1km grid
cell level spanning the city times a running week variable. t statistics in parentheses. Statistical significance
indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5.B.13: Variation in construction work control

Volume Speed

(1) (2) (3) (4)
1(PU lane) -0.00540 -0.00592 -0.122∗∗∗ -0.122∗∗∗

(0.0126) (0.0128) (0.0144) (0.0144)
Construction work control:
Dummy variable -0.0445∗∗∗ -0.0487∗∗∗

(0.00652) (0.00480)
Categorical variable -0.00722∗∗∗ -0.00810∗∗∗

(0.00152) (0.000942)
N 1543493 1543493 1543453 1543453
R2 0.650 0.650 0.607 0.604
Stations 215 215 215 215
Interaction Yes Yes Yes Yes

Note: Own calculations. The table compares the coefficients of the treatment effects of separate two-
way fixed effects estimations with variations of the construction work control. Uneven columns include a
construction work dummy independent from type of construction work. Even columns show results with a
construction work variable, which explicitly controls for type of construction work. All estimations include
station fixed effects (FE), date FE, hour FE, an indicator for a change in speed limits, and an interaction
term between a station identifier and a post-lockdown dummy. Stations within a one kilometre radius of a
treated street are excluded and the sample is restricted to streets with two or three lanes. Standard errors
are clustered at 1km × 1km grid cell level spanning the city times a running week variable. t statistics in
parentheses. Statistical significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5.B.14: Heterogeneous timing

Volume Speed

(1) (2) (3) (4)
Panel A: Outcomes with all stations
1(PU lane) -0.0378∗∗∗ -0.00818 -0.127∗∗∗ -0.117∗∗∗

(0.00808) (0.0274) (0.00991) (0.0400)
N 1328753 1328753 1328739 1328739
R2 0.626 0.652 0.588 0.613
Stations treated 23 23 23 23
Stations Overall 215 215 215 215
Interaction No Yes No Yes
Panel B: Outcomes w/o outliers
1(PU lane) -0.0353∗∗∗ -0.0138 -0.0990∗∗∗ -0.0907∗∗∗

(0.00831) (0.0275) (0.00876) (0.0333)
N 1322325 1322325 1322311 1322311
R2 0.626 0.652 0.589 0.612
Stations treated 22 22 22 22
Stations Overall 214 214 214 214
Interaction No Yes No Yes

Note: Own calculations. The table presents the coefficients of the treatment effects of separate two-way
fixed effects estimations for two samples with homogeneous treatment timing. Therefore, all observations
between the first and the last installation date of a PUBL are deleted from the sample. Panel A shows
results for all treatment stations. Panel B excludes Station 15 from Table 5.B.2. Even columns include
an interaction term between a unique measuring station identifier and a post-lockdown dummy variable
while uneven columns do not. All estimations include station fixed effects (FE), date FE, hour FE, and an
indicator for a change in speed limits. Stations within a one kilometre radius of a treated street are excluded
and the sample is restricted to streets with two or three lanes. Standard errors are clustered at 1km ×
1km grid cell level spanning the city times a running week variable. t statistics in parentheses. Statistical
significance indicators: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5.B.15: Predictor balance (Friedrichshain-Kreuzberg)

Treated Synthetic
Traffic space .2637255 .1923878
Space settlements .6705883 .6443015
Population 290083 290159.5
Election participation .773 .743195
Green Party Voters 21.28861 16.09941
Unemp. rate 9.7 9.403
Accidents 2018 1666 1693.033
Accidents 2019 1675 1709.326
Accidents 2020 1408 1405.261

Note: The table shows the predictor balance between treated unit and synthetic control group of the synthetic
control group method with Friedrichshain-Kreuzberg as treated district.

Table 5.B.16: Predictor balance (Pankow)

Treated Synthetic
Traffic space .1331137 .1409323
Space settlements .5376865 .5178513
Population 409454 409117
Election participation .793 .80261
Green Party Voters 14.6013 13.7961
Unemp. rate 9.7 8.8952
Accidents 2018 1578 1591.279
Accidents 2019 1552 1518.664
Accidents 2020 1350 1409.146

Note: The table shows the predictor balance between treated unit and synthetic control group of the synthetic
control group method with Pankow as treated district.
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Table 5.B.17: Predictor balance (Charlottenburg-Wilmersdorf)

Treated Synthetic
Traffic space .1941568 .1835291
Space settlements .5084248 .5557473
Population 342950 342976.5
Election participation .786 .750991
Green Party Voters 15.35358 14.92943
Unemp. rate 9.7 9.3712
Accidents 2018 2013 2018.721
Accidents 2019 2048 2027.964
Accidents 2020 1644 1660.739

Note: The table shows the predictor balance between treated unit and synthetic control group of the synthetic
control group method with Charlottenburg-Wilmersdorf as treated district.

Table 5.B.18: Predictor balance (Treptow-Köpenick)

Treated Synthetic
Traffic space .0966434 .1098114
Space settlements .3503845 .3659922
Population 273817 273322
Election participation .766 .727015
Green Party Voters 7.744833 8.189585
Unemp. rate 9.7 9.2366
Accidents 2018 1115 1155.677
Accidents 2019 1119 1140.264
Accidents 2020 1128 1092.36

Note: The table shows the predictor balance between treated unit and synthetic control group of the synthetic
control group method with Treptow-Köpenick as treated district.

Table 5.B.19: Predictor balance (Neukölln)

Treated Synthetic
Traffic space .1684843 .1846853
Space settlements .8032495 .7053794
Population 328666 327763.5
Election participation .708 .757145
Green Party Voters 12.85852 11.76067
Unemp. rate 9.7 9.6853
Accidents 2018 1230 1266.639
Accidents 2019 1289 1287.227
Accidents 2020 1116 1121.362

Note: The table shows the predictor balance between treated unit and synthetic control group of the synthetic
control group method with Neukölln as treated district.



Chapter 6

Conclusion and Outlook

This dissertation studies agglomeration diseconomies and policies aimed to solve them. The

first part of the thesis consists of two chapters showing that poor air quality is a non-

negligible cost in urban agglomerations, which is true on a worldwide scale. In the second

part the focal point is then put on policy interventions that aim to transform urban life

in order to reduce costs such as air pollution, traffic accidents, or congestion. With more

than half of the global population living in cities, benefiting from their advantages but also

suffering from their costs, the chapters of this dissertation contribute to important questions

of overall welfare and its future development. In this concluding chapter I discuss limitations

to the analyses and suggest avenues for future research. Subsequently, the findings are put

into perspective across chapters.

The first two chapters of the thesis determine the contemporaneous effect of population

density and agglomeration sizes on air pollution as specific cost factor. While the benefits of

metropolitan areas, such as productivity advantages, better worker-firm matches or know-

ledge spillovers are well documented (e.g. Duranton and Puga, 2004), the economic costs are

relatively unexplored.

In this regard, Chapter 2, by means of IV estimates, causally identifies that air quality

decreases with increasing population density with an elasticity of 0.12. Consequently, densely

populated areas are more polluted, even though residents may produce lower per-capita

emissions. This implies that urban residents are exposed to higher health risks than residents
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of sparsely populated regions. The study explains the possible causes for the results and

elaborates that total commuting and household energy consumption are likely to have the

greatest impact on local pollution, which is in accordance with a theoretical model presented.

These findings suggest that city authorities may be well advised to consider sustainable

public transport options and energy-efficient buildings in urban planning to minimize air

pollution and associated health costs. The backdrop of the analysis is that it considers only

one country, i.e. Germany. Since the historical developments and institutional characteristics

are unequal across countries, and thus the mechanisms influencing the results may differ,

the findings of Chapter 2 are not readily generalizable to other countries and their specific

circumstances.

Chapter 3 aims to address this issue by conducting estimates for the entire world and

showing heterogeneities between countries. It relies on global data derived from satellite

measurements, which provides a truly holistic perspective. The main results document con-

siderable heterogeneity, e.g. across country income groups and continents, with results from

Chapter 2 being higher than the global average. The effects are largest in Asia and middle

income countries. Another interesting finding is that the size of metropolitan areas, and

in particular the number of commuters, is more strongly correlated with pollution exposure

than population density. Sprawling cities thus appear to suffer more from local pollution and

are more likely to contribute to it. Inferring from this, urban planners seem to have another

lever to improve urban air quality, and that is dense rather than sprawling development. In

a counterfactual simulation we moreover demonstrate that countries with large urban-rural

differences in pollution may want to provide incentives for citizens to more equally spread

across cities in order to increase overall social welfare. Despite efforts to incorporate causal

estimates using an IV approach that exploits global historical population data as an instru-

ment, these results are rather suggestive in nature given the small subsample we are able to

instrument. Consequently, more research on causal effects for different countries in different

states of development is required to complete the picture.1 Such single-country studies would

also allow to better elaborate on the channels that cause urban areas to be more polluted,

given that more detailed city-level data is available. Importantly, the focus of the first part

of the dissertation is on local pollution with its health consequences, but it does not deal

1By the time this dissertation was submitted, there was only one other study available as a working
paper that examined the effect of population density on air quality in the US (Carozzi and Roth, 2020).
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with global pollution such as CO2, which is relevant for global warming. For the evaluation

of the role of metropolitan areas for the environment, such considerations should be kept in

mind.

The second part of the thesis is devoted to particular mechanisms that offer scope for im-

proving urban life, for example in the form of better air quality. To this end, the impact

of policies aimed at making predominantly metropolitan areas more sustainable and envir-

onmentally friendly is analysed. The policy measures examined target the transport sector,

more specifically the use of public transport and cycling. By analysing these, the two chapters

directly reference the mechanisms discussed in previous chapters that identified commuting

as a major contributor to environmental problems in cities.

Chapter 4 finds that a substantial reduction in public transportation fares decreases air

pollution, as measured by the AQI, by more than eight percent. The effects are particularly

high in urban areas and those with a well-developed public transport network. Consequently,

commuters appear to be diverted away from automobile travel as the price of alternative

transportation modes decreases. This finding is in line with prior research about quantity

related channels that make public transport more attractive and positively affect air quality

(e.g. Bauernschuster et al., 2017; Gendron-Carrier et al., 2022). Accordingly, reducing fares

seems to be a viable alternative for policymakers to expanding the route network in order to

encourage people to use public transportation, especially in spatially limited metropolitan

areas. However, the examined ticket fare reduction was only temporary and abolished after

three months. Commuters may find switching to public transportation tolerable for a short

period of time, but change their behaviour in the long run, for example, due to overcrowding

at a given supply. Therefore, the question about mid- and long-term developments of a price

reduction remains. Connected to this, an open question is to what extent a combination of

ticket price reduction and increased public transport supply, for instance in the form of a

higher frequency of trains, can deter commuters from using private vehicles and consequently

improve air quality. Since some regions have reduced fares by as much as 90 percent, it

would also be intriguing to know the impact of more moderate ticket price subsidies. As the

expansion of public transportation services has accelerated in recent years2 and the German

2see https://bmdv.bund.de/DE/Themen/Mobilitaet/OEPNV/Oeffentlicher-Personenverkehr-
Kompakt/oeffentlicher-personenverkehr-kompakt.html.

https://bmdv.bund.de/DE/Themen/Mobilitaet/OEPNV/Oeffentlicher-Personenverkehr-Kompakt/oeffentlicher-personenverkehr-kompakt.html
https://bmdv.bund.de/DE/Themen/Mobilitaet/OEPNV/Oeffentlicher-Personenverkehr-Kompakt/oeffentlicher-personenverkehr-kompakt.html
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federal government has announced plans to introduce a 49-euro ticket in 20233, there is

continued leeway to explore these matters.

Finally, Chapter 5 analyses the effects of bicycle lanes on congestion and traffic volumes. It

thus examines a different type of environmentally friendly infrastructure on mechanisms that

tend to cause air pollution. The results indicate a reduction in average vehicle speed and

thus an increase in congestion on roads with new bicycle infrastructure by 8-12 percent and

up to 16 percent during peak hours, compared to roads without changes. Since no effect on

vehicle volumes was identified, the overall impact can be attributed to the reduction in space

available for automobiles. Therefore, installing these new bike lanes at the expense of a car

lane increased the costs of driving on these roads, but possibly lowered air quality given the

documented correlation between congestion and local pollution in the literature (Beaudoin

et al., 2015). Future studies should address the as yet unanswered question of the extent to

which this result actually translates into changes in air pollution. Another subject analysed

in the study that is important for road dynamics and costs are road accidents. While no

impact on the absolute number of traffic collisions was found in this chapter, the question

about the accident rate per cyclist could not be answered conclusively due to the lack of

cyclist data. Detailed road-specific bicycle use data could address this shortcoming. One

overall limitation of the analysis is that it examines short- to medium-term changes in road

dynamics, while long-term results that can shed light on general equilibrium adjustments

would be a fruitful addition to future research. Moreover, the chapter only considers the case

study of Berlin. Whether and to what extent the results change in other circumstances, such

as in urban areas with different public transportation options, remains an open question.

In summary, Chapters 2 and 3 established that air pollution is a substantial cost factor

for metropolitan areas, but subject to heterogeneities, while Chapters 4 and 5 evaluate

policy measures that have the potential to shape cities by addressing these same and other

costs. The combination of the latter findings shows that it will probably take more than one

measure to actually change cities in a sustainable way and make people in urban areas still

“greener, healthier, and happier,” as Edward Glaeser has phrased it (Glaeser, 2011). While

more bike lanes are likely to alleviate the problem of accidents on city streets, motorists

arguably need cheaper and better public transit alternatives to truly have incentives to

3see https://www.bundesregierung.de/breg-de/aktuelles/deutschlandticket-2134074.

https://www.bundesregierung.de/breg-de/aktuelles/deutschlandticket-2134074
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switch their mode of transportation. Future studies will have to show whether these results

will be assessed differently in the long term and to what extent further developments, such as

the expansion and promotion of electro-mobility, can contribute to more sustainable cities.
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Die vorliegende Dissertation stellt empirische Untersuchungen über den Zusammenhang von

städtischem Leben und dessen ökonomische Kosten, insbesondere für die Umwelt, an. Da-

bei werden zum einen bestehende Forschungslücken des Einflusses von Bevölkerungsdichte

auf die Luftqualität geschlossen und zum anderen innovative Politikmaßnahmen im Ver-

kehrsbereich untersucht, die Ballungsräume nachhaltiger gestalten sollen. Im Zentrum der

Betrachtungen stehen Luftverschmutzung, Staus und Verkehrsunfälle, die für Fragen der

allgemeinen Wohlfahrt bedeutend sind und erhebliche Kostenfaktoren für urbanes Leben

darstellen. Von ihnen ist ein beträchtlicher Anteil der Weltbevölkerung betroffen. Während

im Jahr 2018 bereits 55% der Menschen weltweit in Städten lebten, soll dieser Anteil bis

zum Jahr 2050 ungefähr 68% betragen (United Nations, 2019).

Die vier in sich geschlossenen Kapitel dieser Arbeit lassen sich in zwei Abschnitte aufteilen: In

den Kapiteln 2 und 3 werden neue kausale Erkenntnisse über das komplexe Zusammenspiel

von städtischen Strukturen und Luftverschmutzung erbracht. Kapitel 4 und 5 untersuchen

anschließend politische Maßnahmen zur Förderung nicht-motorisierter Verkehrsmittel und

deren Einfluss auf Luftqualität sowie Staugeschehen und Verkehrsunfälle.

Kapitel 2 analysiert den kausalen Zusammenhang zwischen dicht besiedelten Ballungsräumen

und Luftqualität. Es handelt sich um die erste Publikation, die eine Antwort auf diese Frage

gibt. Theoretisch gibt es zwei Möglichkeiten für die Wirkungsrichtung des Gesamteffekts:

Einerseits verursachen mehr Menschen höhere Emissionen, beispielsweise durch das Pen-

deln zur Arbeit oder den Energieverbrauch beim Wohnen. Andererseits haben Menschen

in Ballungsräumen, z.B. aufgrund kürzerer Pendelwege, vermehrt die Möglichkeit umwelt-

freundliche Verkehrsmittel wie Fahrräder oder den Öffentlichen Nahverkehr zu nutzen sowie
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in, im Vergleich zu Einfamilienhäusern, energieeffizienteren Hochhäusern zu leben.

Die Schätzungen der kausalen Effekte basieren auf aktuellen in Deutschland erhobenen Daten

unter Nutzung einer Reihe ökonometrischer Methoden. So berücksichtigen Long Difference

und Fixed Effects Analysen, im Vergleich zur einfachen Kleinste-Quadrate-Schätzung, nicht

beobachtbare Variation, die zeitlich konstant ist. Die in der Studie präferierte Schätzgröße

entstammt der Analyse anhand der Instrumental Variable Methode. Dabei müssen die

gewählten Instrumente einen bedeutenden Einfluss auf die erklärende Variable, in unse-

rem Falle Bevölkerungsdichte, haben, ohne direkt mit der zu erklärenden Variable, also

aktuelle Luftverschmutzung, korreliert zu sein. In der Untersuchung wird argumentiert, dass

diese Eigenschaften sowohl auf historische Bevölkerungsdichte als auch auf die geologische

Beschaffenheit des Untergrunds einer Stadt zutreffen.

Im Ergebnis nimmt die Luftverschmutzung, gemessen an einem Luftqualitätsindex (AQI),

mit der Bevölkerungsdichte mit einer Elastizität von rund 0.12 zu. Dicht besiedelte Bal-

lungsräume sind dementsprechend, trotz eventueller geringerer Pro-Kopf-Emissionen, ver-

schmutzter und die dort lebenden Menschen somit einem höheren Gesundheitsrisiko ausge-

setzt. Die empirischen Ergebnisse stehen im Einklang mit einer Erweiterung des monozen-

trischen Stadtmodells, das in der Studie präsentiert wird.

Kapitel 3 ergänzt die vorherige Studie um eine Analyse von Bevölkerungsindikatoren und

Luftqualität anhand weltweiter Daten. Im Vergleich zu Untersuchungen, die auf einzelnen

Ländern basieren, bietet eine globale Analyse eine ganzheitliche Sicht: Probleme wie geo-

grafische oder institutionelle Eigenheiten einzelner Länder, wie beispielsweise der nationalen

Umweltpolitik, können somit adressiert werden. Ein Hauptanliegen der Arbeit ist die Frage,

inwiefern sich das Stadt-Land-Gefälle von Luftverschmutzung in verschiedenen Ländern un-

terscheidet. Ein weiterer Schwerpunkt liegt auf den Unterschieden zwischen dicht bebauten

und zersiedelten Städten.

Deskriptive Analysen zeigen, dass etwa 75 Prozent der Weltbevölkerung Feinstaubkonzen-

trationen ausgesetzt sind, die von der WHO als gesundheitsschädlich eingestuften werden.

Die Mehrheit der betroffenen Menschen lebt dabei in Städten. Anhand länderspezifischer

Untersuchungen schätzen wir eine durchschnittliche Elastizität der Bevölkerungsgröße zu

PM2.5 von etwa 0,03 und zu NO2 von 0,16. In Kombination mit den Ergebnissen aus Ka-
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pitel 2 bedeutet dies, dass das Stadt-Land-Gefälle von Luftverschmutzung in Deutschland

über dem weltweiten Durchschnitt liegt. Wir stellen außerdem fest, dass die Effekte auf

globaler Ebene eher durch die Größe des Ballungsraums als durch die Bevölkerungsdichte

bestimmt werden. Außerdem wird das Gefälle eher durch größere Pendelgebiete als durch

die Bevölkerung in den städtischen Zentren beeinflusst. Aus diesen Ergebnissen lässt sich

ableiten, dass eine Abkehr vom Vorstadtmodell und eine Verdichtung von Städten einen

Beitrag zur Luftverbesserung leisten kann und somit gesundheitsförderlich wäre.

Die Kapitel 4 und 5 der Dissertation widmen sich politischen Maßnahmen und deren Aus-

wirkungen auf Luftqualität oder damit verbundenen Themen. So stellt sich beispielsweise

die Frage, wie Menschen dazu bewegt werden können, vom Auto auf öffentliche Verkehrs-

mittel umzusteigen, um externe Effekte motorisierten Individualverkehrs in Form von Luft-

verschmutzung zu verringern. Kapitel 4 leistet zu diesem Thema einen Beitrag, indem es

eine groß angelegte Preissubvention für öffentliche Verkehrsmittel und deren Auswirkung auf

Luftqualität untersucht. Die Einführung des 9-Euro-Tickets (9ET), das die monatlichen Prei-

se für öffentliche Verkehrsmittel substantiell verringerte, dient hierbei als quasi-natürliches

Experiment. Als Analysemethode dieser großen und landesweiten Preisanpassung dient der

Difference-in-Differences (DiD)–Ansatz. Die treatment group ist der Monat Juni, der im

Jahr 2022 im Gegensatz zu den vorangegangenen Jahren die Preisanpassung erfuhr. Der

Monat Mai bildet die control group, da er ähnliche Merkmale wie der Juni aufweist. Die

implizite Annahme ist, dass die Entwicklung der Luftqualität zwischen Mai und Juni 2022

im Vergleich zu den Vorjahren ohne Preisveränderung die gleiche gewesen wäre.

Im Ergebnis zeigt die Studie eine Verbesserung der Luftqualität, gemessen anhand des AQI,

um etwa acht Prozent. Am größten ist der Effekt in städtischen Gebieten, an Werktagen und

in Gegenden, in denen das öffentliche Verkehrsmittelnetz gut ausgebaut ist. Die Schätzungen

ergeben zudem, dass der Effekt im Laufe der Zeit leicht abnimmt und dass die Luftverschmut-

zung nach Auslaufen der Maßnahme wieder zunimmt. Die Untersuchung schlussfolgert auf

Grundlage der Schätzungen und unter Verwendung früherer Erkenntnisse über den Zusam-

menhang zwischen Luftqualität und Gesundheit, dass ein ermäßigter Fahrpreis für öffentliche

Verkehrsmittel zu einer Verbesserung gesundheitsbezogener Ergebnisse führt. Diese haben

das Potenzial, die tatsächlichen Kosten der Maßnahme zu amortisieren.
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Obwohl Luftqualität im letzten Abschnitt der Arbeit, Kapitel 5, nicht gesondert betrachtet

wird, ist dessen hauptsächlicher Analysegegenstand, nämlich Staus, eng damit verbunden.

Sie führen neben ökonomisch bedeutenden Zeitverlusten für Pendler, zu verschwenderischem

Kraftstoffverbrauch und in der Folge zu einem Anstieg von Emissionen. Zudem werden Ver-

kehrsunfälle betrachtet, die darüber hinaus erhebliche externe Kosten verursachen. Unter-

suchungsgegenstand der Studie ist die Umwandlung von Autospuren in Fahrradwege und

deren Folgen für das Geschehen auf den Straßen Berlins. Trotz der weltweit zunehmenden

Bedeutung der Fahrradnutzung in großen Städten, befindet sich die Forschung zu den Aus-

wirkungen infrastruktureller Maßnahmen für Fahrräder noch in den Anfängen. Aufgrund ih-

rer einfachen Implementierung und geringen Kosten ist eine solche Umwidmung von Straßen

ein besonders wichtiges Forschungsobjekt, da sie in Städten mit wenig Platz eine praktikable

Möglichkeit für den Bau neuer Fahrradinfrastruktur bietet.

Mein Forschungsansatz nutzt den Umstand, dass ab März 2020 in Berlin auf mehreren Stra-

ßen sogenannte Pop-Up Bike Lanes (PUBLs) installiert wurden, während der Großteil der

Stadt keine neue Fahrradinfrastruktur erhielt. Aufgrund der sehr spontanen Umsetzung der

Maßnahmen, die in Zeiten eines Lockdowns kurz nach Beginn der COVID-19 Pandemie statt-

fanden, war sowohl die zeitliche als auch räumliche Zuordnung der PUBLs so gut wie zufällig.

Alle nicht zufälligen Faktoren, wie z.B. eine Mindestanzahl an vorhandenen Fahrspuren als

Bedingung für die Installation, werden in der Studie adressiert. Zur Bewertung kausaler Ef-

fekte nutze ich als Methoden Variationen des klassischen Difference-in-Differences–Ansatzes,

nämlich Two-Way Fixed Effects, ein Event Study Design und die Synthetic Control Group

Methode.

Die Ergebnisse deuten auf eine Zunahme von Staus hin, die in den Hauptverkehrszeiten

besonders hoch ist. Da sich das Fahrzeugaufkommen auf Straßen mit PUBL im Vergleich

zu solchen ohne nicht signifikant unterscheidet, liegt der Schluss nahe, dass Autofahrer im

untersuchten Zeitraum keinen Anlass sahen, auf andere Verkehrsmittel umzusteigen oder

andere Wege zu nutzen. Die Staus werden dementsprechend durch den verringerten Platz

für Autos verursacht. Gemäß Studienergebnissen kam es zu keinem Anstieg von Verkehrs-

unfällen durch die Maßnahme. Wird allerdings von einer Zunahme des Radverkehrs auf

PUBL-Straßen ausgegangen, was von anderer Forschungsliteratur nahegelegt wird, so hieße

das eine Verbesserung der Unfallraten pro Radfahrer. Insgesamt ist also die Umnutzung von
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Autospuren in Fahrradwege mit Kosten verbunden, allerdings scheinen diese im Ergebnis

moderat auszufallen.
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