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Identifying interpretable gene-biomarker
associations with functionally informed
kernel-based tests in 190,000 exomes

Remo Monti1,2, Pia Rautenstrauch2,3, Mahsa Ghanbari2, Alva Rani James1,
Matthias Kirchler 1,4, Uwe Ohler 2,5,7, Stefan Konigorski 1,6,7 &
Christoph Lippert 1,6,7

Here we present an exome-wide rare genetic variant association study for 30
blood biomarkers in 191,971 individuals in the UK Biobank. We compare gene-
based association tests for separate functional variant categories to increase
interpretability and identify 193 significant gene-biomarker associations.
Genes associated with biomarkers were ~ 4.5-fold enriched for conferring
Mendelian disorders. In addition to performing weighted gene-based variant
collapsing tests, we design and apply variant-category-specific kernel-based
tests that integrate quantitative functional variant effect predictions for mis-
sense variants, splicing and the binding of RNA-binding proteins. For these
tests, we present a computationally efficient combination of the likelihood-
ratio and score tests that found 36% more associations than the score test
alone while also controlling the type-1 error. Kernel-based tests identified 13%
more associations than their gene-based collapsing counterparts and had
advantages in thepresenceof gain of functionmissense variants.We introduce
local collapsing by amino acid position for missense variants and use it to
interpret associations and identify potential novel gain of function variants in
PIEZO1. Our results show the benefits of investigating different functional
mechanisms when performing rare-variant association tests, and demonstrate
pervasive rare-variant contribution to biomarker variability.

Large biobanks that combine in-depth phenotyping with exome
sequencing for hundreds of thousands of individuals promise new
insights into the genetic architecture of health and disease1. Whilst
common-variant association studies have detected tens of thousands
of loci associated with heritable traits, the underlying functional
mechanisms remain largely unknown due to linkage disequilibrium
and the fact that the majority of loci lie in non-coding regions of the
genome2. Furthermore, effect sizes of common variants tend to be

small, as variants with large detrimental effects are selected against,
which limits their frequency3,4.

Association studies using whole exome sequencing (WES) do not
face these issues to the same extent, as they largely contain more
interpretable loci where an enrichment for large effect sizes is
expected5. However, themajority of genetic variants identified byWES
are extremely rare, and the vast number of these variants poses chal-
lenges for rare-variant association studies (RVAS), given the burden of
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multiple testing and low statistical power due to low allele
frequencies6,7. For these reasons, variants in RVAS are typically
grouped into sets that correspond to functional units, such as genes,
before association testing6–9. Not only does this strategy aggregate
signal and thereby increase statistical power, but it also lessens the
burden ofmultiple testing. Burden tests, for example, collapse variants
within genes into a single variable prior to association testing, i.e.,
perform gene-based variant collapsing6,10. Alternatively, kernel-based
tests aggregate groups of variants into a so-called kernel-matrix that is
tested using a score test8 or the likelihood-ratio test (LRT)9 without the
need for collapsing. Among these, the LRT has higher statistical power
when effect sizes are large, but is computationally more expensive11,12.

While gene-based variant collapsing performs best in the pre-
sence of many causal variants with effect sizes that point in the same
direction (e.g., increasing risk for disease), kernel-based tests have
advantages in cases of opposing effects and fewer causal variants7. To
increase the fraction of causal variants, exome-wide RVAS that use
variant collapsing have defined qualifying variants based on annota-
tions such as allele frequencies or variant effect predictions and
excluded all other observed variants from the association tests6,13–16.
These studies have mostly focused on non-synonymous variants,
where software tools identify protein-truncating variants and

distinguish between benign and potentially deleterious missense
variants17–20.

Here, we perform an extensive RVAS using exome sequencing
data fromtheUKBiobank21. For approximately 190,000 individuals, 30
quantitative biomarkers provide objectively quantifiable measures
related to the health status of individuals22, making them attractive
phenotypes for genome-wide association studies23. We go beyond the
collapsing tests for coding variants described above and explore the
use of kernel-based association tests anddeep learning-derived variant
effect predictions for gene-regulatory variants, namely for splicing24

and the binding of RNA-binding proteins (RBPs)25.
Specifically, we use quantitative functional variant effect predic-

tions to group and weigh variants in gene-based association tests and
increase interpretability. The greater flexibility of kernel-based tests
allowed us to design variant category-specific tests and combine col-
lapsing and non-collapsing approaches in the same tests. For kernel-
based tests, we show that a computationally efficient combination of
the score test and the restricted likelihood-ratio test (RLRT) can
identify 36% more significant associations compared to the score test
alone. We find 193 significant gene-biomarker associations in total, the
majority of which confirm associations previously reported to GWAS
databases (87%)26,27.

We find that including participants from diverse ancestries iden-
tifies 14% more associations than limiting to participants with strict
inferred European genetic ancestry, while increasing the sample size
by 17%. Associations with biomarkers frequently occurred in genes
linked to Mendelian disorders, and comparisons to other association
studies confirmed their plausible disease relevance. Finally, we inter-
pret associations that were only found for specific functional variant
categories or associations for which weighted gene-based variant
collapsing and kernel-based tests gave vastly different results. This
provided additional biological insights and highlighted the benefits of
a diverse testing strategy for RVAS.

Results
Data description and workflow
We performed an RVAS of 30 quantitative serum biomarkers in UK
Biobank 200k WES release21. These biomarkers contain established
disease risk factors, diagnostic markers, and markers for phenotypes
otherwise notwell assessed in theUKBiobank cohort. They can roughly
be grouped into cardiovascular, bone and joint, liver, renal, hormonal,
and diabetes markers (Table 1). After removing related individuals and
restricting the analysis to those with no missing covariates, 191,971
participants with diverse genetic ancestry remained. About 15,702,718
rare (MAF <0.1%) variants were observed in this subset and passed
quality criteria, including pruning variants with large deviations from
the observed EuropeanMAF in other ancestries (Methods). Themedian
sample size for the biomarkers was 181,784 and ranged from 15,997
(Rheumatoid factor) to 182,742 (Alkaline phosphatase). About 191,260
participants had at least one measured biomarker.

We used functional variant effect predictions to group and weigh
variants and performed functionally informed gene-based association
tests. Specifically,we chose to investigate strict protein lossof function
variants (pLOF, e.g., frame shift or protein-truncating variants), mis-
sense variants, splice-altering variants, and variants predicted to
change the binding of RNA-binding proteins (Fig. 1, Methods), the
latter two originating from deep learning models24,25.

We treated these categories separately during association testing
to increase interpretability, resulting in multiple tests per gene, which
we refer to as separate models. Specifically, we adapted either kernel-
based tests, weighted gene-based variant collapsing, or both types of
association test depending on the variant effect category (Methods).
Tests were performed using a combination of score tests and restric-
ted likelihood-ratio tests. We make variant effect predictions for all
variants in the UK Biobank 200k exome release available (https://

Table 1 | UK Biobank blood biomarkers analyzed in this study

category biomarker short N sign. genes

bone and joint Alkaline phosphatase ALP 182,742 10

bone and joint Calcium 168,054 3

bone and joint Rheumatoid factor 15,997 0

bone and joint Vitamin D 174,473 4

cardiovascular Apolipoprotein A ApoA 167,050 18

cardiovascular Apolipoprotein B ApoB 181,808 6

cardiovascular C-reactive protein CRP 182,320 3

cardiovascular Cholesterol 182,735 9

cardiovascular HDL cholesterol HDL 168,043 20

cardiovascular LDL direct LDL 182,420 6

cardiovascular Lipoprotein A 146,249 13

cardiovascular Triglycerides TG 182,587 12

diabetes Glucose 167,916 3

diabetes Glycated hemoglobin HbA1c 182,494 9

hormonal IGF-1 181,759 7

hormonal Oestradiol 30,343 0

hormonal SHBG 166,521 6

hormonal Testosterone 165,211 1

liver Alanine aminotransferase ALT 182,675 5

liver Albumin 168,139 4

liver Aspartate aminotransferase AST 182,096 2

liver Direct bilirubin 154,963 6

liver Gamma glutamyltransferase GGT 182,655 7

liver Total bilirubin 181,998 8

renal Creatinine 182,639 7

renal Cystatin C 182,720 7

renal Phosphate 167,808 3

renal Total protein 167,931 5

renal Urate 182,538 8

renal Urea 182,612 1

Biomarker categories, biomarker names, their abbreviations used in the text (short), sample size
(i.e., participants non-missing phenotype and complete covariates, N) and number of distinct
genes significantly associatedwitheachbiomarker (sign. genes) aftermultiple testingcorrection
(FWER ≤ 0.05).
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github.com/HealthML/ukb-200k-wes-vep), as well as our analysis
pipeline (https://github.com/HealthML/faatpipe) and software used to
perform association tests (https://github.com/HealthML/seak).

Functionally informed association tests
Protein loss of function. We predicted the effects of genetic variants
on protein-coding genes using the Ensembl variant effect predictor17

and found 463,479 pLOF variants with a median of 20 pLOF variants
per gene (Fig. 2, Methods). For pLOF variants, we assumed a large
fraction of potentially causal variants, and that variants within the
same gene should, by and large, affect the phenotype in the same
direction. For these reasons, we performed gene-based variant col-
lapsing tests (Methods) and found 88 significant associations origi-
nating from 53 distinct genes.

Missense. We defined 1,834,082 high-impact missense variants based
on PolyPhen-218 and SIFT19 (Methods). 18,420 genes contained at least
one high-impact missense variant, with a median of 73 high-impact
missense variants observed per gene.

We hypothesized that missense variants in the same gene might
have both trait-increasing and trait-decreasing effects, and that there
might be fewer causal variants. Therefore, we did not only perform
weighted variant collapsing tests for these variants, but also kernel-
based association tests. We designed a missense-specific kernel that
collapses variants locally by amino acid position,whichaffected 20%of
variants. We further used the Cauchy Combination Test (CCT)28 to
dynamically incorporate pLOF variants in these tests (Methods).
Combining missense and pLOF variants has been shown to increase
the number of discoveries in RVAS, due to many missense variants
leading to a loss of function13,15,16. We identified 146 significant asso-
ciations using gene-based variant collapsing, and 160 using kernel-
based association tests, with an overlap of 121. The total of 185 asso-
ciations identified by either model originated from 101 distinct genes.

Splicing. We located 737,795 potentially splice-altering rare single
nucleotide variants in 17,158 genes by cross-referencing against pub-
lished SpliceAI variant effect predictions24 (Methods). The median
number of variants per genewas 30.Wehypothesized that these splice
variants could have complex downstream consequences and decided
to compare both weighted gene-based variant collapsing and kernel-
based association tests. For kernel-based tests, we used the weighted
linear kernel8. As for missense variants, we dynamically incorporated
pLOF variants in these tests to increase power.

We identified 75 significant associations with gene-based variant
collapsing in 44 distinct genes, whereas kernel-based tests identified
88 significant associations in 51 genes. As our definition of pLOF var-
iants included variants that directly hit annotated splice donor/
acceptor sites, there was a considerable overlap of 95,842 variants
between these annotations (21% of all pLOF variants). We therefore
expected (and found) large overlaps (69, 74%) in the significant asso-
ciations for pLOF and splice variants.

RBP-binding. Splicing is only one of several eukaryotic post-
transcriptional regulatory mechanisms mediated by interactions of
RNA-bindingproteins (RBPs)with their target RNAs. As theUKBiobank
WES data also contain variants in non-protein-coding parts of mRNAs,
namely in introns (41.43%) andUTRs (11.32%),we reasoned thatwemay
be able to identify variants with regulatory effects mediated by dif-
ferential binding of RBPs. Specifically, we investigated if changes in the
binding of RBPs predicted by DeepRiPe25 could be associated with
biomarker levels. The six RBPs QKI, MBNL1, TARDBP, ELAVL1,
KHDRBS1, and HNRNPD were selected based on their binding pre-
ferences (introns, exons)29, the high performance of the model to
predict genuine target sites for these RBPs, and the reported presence
of clear binding sequence motifs. We predicted variant effects for
theseRBPs and identified 370,880 variants with large predicted effects
in 17,394 genes, with a median of 12 variants per gene (Methods).

As we expected a low number of causal variants and potentially
opposing effect sizes, we only performed kernel-based association
tests and identified nine significant associations in nine distinct genes.

Integrative analysis overview
Merging the results from all models yielded a total of 193 associations
originating from 117 distinct genes (Supplementary Data 1, 212 asso-
ciations if counting genes with shared exons separately). We found at
least one significant association for all but two biomarkers (oestradiol
and rheumatoid factor) (Fig. 2 and Supplementary Figs. 1–3). For the
majority of associations (174; 82%), tests combining missense and
protein LOF variants gave the smallest p values.

We calculated the genomic inflation factor λGC across all tests that
were performed genome-wide, and did not find evidence of inflated
type I error levels (Supplementary Fig. 8 and Supplementary Data 5).
λGC ranged from 0.84 to 1.06 for gene-based variant collapsing tests
(median = 0.97) and from 0.92 to 1.08 for kernel-based tests (med-
ian = 1.01). Of the 117 distinct genes, 43 (37%) were associated with
more than one biomarker, and a few genes had five ormore significant
associations: ANGPTL3, APOB, JAK2, GIGYF1, and G6PC. Many of the
genes we found to be associated with biomarkers had either been
implicated in diseases related to those biomarkers (e.g., LRP2 with
renal markers30) or are mechanistically related to the biomarkers
themselves (e.g., cystatin C with its own gene, CST).

80% of genes (±5kb) contained single variants associated with the
same biomarkers identified by a study using imputed genotypes and a
larger sample size on the same data23. Yet, 97% of gene-phenotype
associations remained significant after conditioning on the most sig-
nificant variants identified by that study (considering variants ±500 kb
around the gene start positions). We therefore conclude that most
associations we observed are largely independent of the signals cap-
tured by array-based genotypes of (mostly) common variants.

Including all ancestries increases the power for biomarker traits
We repeated our analysis restricting to 164,148 individuals of strict
inferred European ancestry (Methods). While 175 associations were
significant in both analyses, 37 were only identified in the analysis with
all ancestries (AA) and 11 were only significant in the analysis with EUR
individuals (Fig. 3 and Supplementary Data 3). The majority of hits
significant in one analysis but not in the other were close to the sig-
nificance threshold. Outliers such as the associations of ALD16A1 with

Fig. 1 | Rare-variant association testing pipeline. Exome sequencing measures
exon-proximal genetic variants. All variants are subjected to functional variant
effect prediction (VEP). Qualifying variants are determined based on the variant
effect predictions andminor allele frequencies (MAF<0.1%) and categorized based
on their predicted functional impacts (protein loss of function, missense, splicing,
RBP-binding). Finally, we test the different categories of qualifying variants in gene-
based association tests against 30 biomarkers using gene-based variant collapsing
and kernel-based tests.
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Urate could all be explained by hard thresholds for variant inclusion
and strong signals from single variants. Both the type of association
test and variant category that produced the lowest gene-trait p values
were largely consistent in both analyses (Fig. 3).

Clinical relevance of biomarker associations
Genes identified by biomarker associations were highly enriched for
those involved in Mendelian disorders (odds ratio 4.47, p value
3.08 × 10−16, one-sided Fisher’s exact test), as determined by querying
the Online Mendelian Inheritance in Man database (OMIM, https://
omim.org/). Seventy-four out of 125 (59.2%) distinct (i.e., non-over-
lapping) genes identified had at least one OMIM entry. Our results
show that changes at the biomarker level are detectable even in the 27
genes for which only recessive disorders were listed.

We further examined whether rare variants in these genes were
associated with binary or continuous traits at larger sample sizes by
comparing with two studies published at the time of writing15,16 (Sup-
plementary Data 4). Twenty-one out of 125 genes associated with
biomarkers were also associated with one or more binary traits,
whereas 14 geneswere associatedwith non-hematological quantitative
traits in either study (Table 2).

Often such cases couldbe placed in a plausible causal context. For
example, we found variants in SLC22A12, ABCG2, and ALDH16A1 to be
associated with increased levels of urate, a causal factor for gout,
which they were also associated with. Another example are genes
associated with the growth hormone IGF-1 (IGFALS, GH1, GHRH, and
PAPPA2), which are also associated with anthropometric traits (e.g.,
sitting height). We identified patterns of biomarker associations for
GIGYF1 consistent with Type II diabetes (T2D), and an association with

T2D was confirmed at larger sample sizes15,16 and other independent
studies31–33. Six out of seven biomarker associations for JAK2were only
identified by kernel-based tests, and the gain of function variant driv-
ing these associations (V617F or rs7737549334) was also associatedwith
myeloproliferative neoplasms. In other cases, trait-biomarker rela-
tionships were not readily apparent, such as the association of variants
in SYNJ2 with lower levels of γ-glutamyltransferase and increased risk
of hearing loss.

Separating variant effect categories during association testing and
comparing kernel-based to gene-based collapsing tests allowed us to
further interpret our results, as illustratedwith several examples below.

Combining variant annotations yields six associations for G6PC
We found five associations for G6PC, three of which were only found
when combining protein LOF and missense variants with gene-based
variant collapsing tests (alkaline phosphatase, SHBG, and urate). Var-
iants in G6PC cause Glucose-6-phosphatase deficiency type Ia35,36, an
autosomal recessive disease categorized by growth retardation,
enlarged kidneys and liver, low blood glucose, high blood lipid, and
uric acid levels. Consistent with signs of inflammation and impaired
kidney and liver function, we found elevated levels of alkaline phos-
phatase (p = 1.15 × 10−9), γ-glutamyltransferase (p = 2.64 × 10−11), and
C-reactive protein (p = 1.62 × 10−13) in individuals with predicted high-
impact missense or pLOF mutations in G6PC. We further identified a
significant association with decreased levels of sex hormone-binding
globulin (SHBG, p = 2.88 × 10−9), which is primarily produced in the
liver37. All p values above are those given by gene-based weighted
variant collapsing tests combining missense and pLOF variants, which
gave the lowest p values for all these associations. While glucose-6-

Fig. 2 | Association tests overview. a Histograms of the number of qualifying
variants per testedgene for thedifferent variant categories. Ranges are truncated at
300 variants, which affected 730 genes formissene, 84 for splice, 7 for pLOF, and 15
for rbp. b Bar plot of the number of significant genes found by testing qualifying
variants in thedifferent categories. Tests for splice andmissense variants (left) were
dynamically combined with pLOF variants, i.e., two p values, one arising from a test

including only missense/splice variants and one combining those variants with
pLOF variants were combined using the Cauchy combination test. c Bar plot
showing 193 significant gene-biomarker associations for 28 biomarkers (x-axis).
Bars in panels (a) and (b) are colored by the variant-type (or a combination thereof)
which gave the lowest p value (lead annotation).
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phosphatase deficiency type Ia is a rare recessive disease, our findings
show that altered biomarker levels indicative of mild symptoms are
detectable in heterozygous carriers ofmissenseandLOFvariants in the
G6PC gene, a pattern which was consistent for many of the
identified genes.

Novel potential gain of function variants in PIEZO1
Our testing strategy allowed us to identify genes in which specific
variant categoriesmight play an important role. One suchexamplewas
PIEZO1, a mechanosensitive cation channel38, which we found asso-
ciated with the diabetes marker HbA1c.

For weighted gene-based variant collapsing tests, we found a
significant negative association of missense variants with HbA1c
(p = 7.47 × 10−29), while the test for pLOF variants was not significant
(p = 0.89, 609 carriers). By far the lowestp value for this genewas given
by the kernel-based test for missense variants (p = 2.8 × 10−108). The
large differences between variant categories and types of association
test lead us to closer investigate the 858 predicted high-impact mis-
sense variants in 7412 individuals for this gene.

We performed single-variant score tests and identified multiple
missense variants with strong negative associations with HbA1c
(Table 3). One of these variants, 16:88719665:G:A or T2127M
(rs587776991) is a gain of function variant that slowsdown inactivation
kinetics of PIEZO1 in patients with dehydrated hereditary stomatocy-
tosis (a disorder of red blood cells), together with other gain of func-
tion variants39–41. Decreased levels of HbA1c had previously been
observed in individuals with red blood cell disorders42–44.

We therefore hypothesized that the other highly significant var-
iants could also potentially be gain of function variants. We grouped
the missense variants within PIEZO1 by the amino acid positions they
affected and performed local variant collapsing. This allowed us to
identify other positions in PIEZO1 (e.g., 2110R or 2474V) that are
potentially sensitive to gain of function mutations (Table 3 and Fig. 4).

When comparing the results of our all-ancestry analysis, which
includes ancestry-based variant pruning, to a versionwhich didnot, we
came across another missense variant (L2277M, 16:88716656:G:T),
which was much more common in individuals with inferred South
Asian ancestry (SAS, MAFSAS = 3.45%) than European ancestry
(MAFEUR = 0.006%, p =0, two-sided Fisher’s exact test), and strongly
associated with decreased levels of HbA1c (β = −0.71 ± 0.06 s.d.,
p = 1.16 × 10−29, score test restricted to individuals of inferred SAS
ancestry, Supplementary Fig. 4). L2277M has been linked to dehy-
drated hereditary stomatocytosis41. This association remained sig-
nificant when conditioning on a recently identified nearby non-coding
variant (16:88784993:C:G, p = 9.1 × 1013)45, yet, not the other way
around (p =0.55). 16:88784993:C:G could therefore be tagging signal
from the potentially causal gain of function variant L2277M. We were
able to replicate this association in individuals with extended EUR
ancestry (p = 2.73 × 10−6, score test, Methods).

Consistent with the role of red blood cell disorders, we also found
associations of RHAG (Rh Associated Glycoprotein) and SPTA1 with
decreased levels of HbA1c. Mutations in RHAG cause overhydrated
hereditary stomatocytosis46, while SPTA1 mutations cause hereditary
elliptocytosis47.
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number of significant gene-biomarker associations (p < 1.61 × 10−8, FWER ≤ 0.05)
identified in either analysis (Supplementary Data 1 and 3). b Scatter plot showing
the smallest p value across variant-effect- and test-types for each gene-biomarker
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While it has been suggested that PIEZO1 stimulates insulin
release48, the decreased levels of HbA1c we observed in individuals with
PIEZO1-variants aremore likely explainedby (perhaps subclinical) forms
of stomatocytosis or other abnormalities in red blood cells resulting
from increased membrane permeability, i.e., a gain of function49.

Position-specific association of ABCA1 variants with inflamma-
tion marker CRP
We found four significant associations of ABCA1with biomarker levels.
Three of these, namely the associations with Apolipoprotein A, HDL
cholesterol, and cholesterol, are directly related to its role as an ATP-
dependent transporter of cholesterol50. In line with previous findings,
in our gene-based variant collapsing analysis we found both pLOF and
high-impact missense variants to be strongly associated with
decreased serum levels of these biomarkers51.

Yet, one additional association with the inflammation marker
C-reactive protein (CRP) was only identified by kernel-based associa-
tion tests (p = 1.33 × 10−27). This prompted us to further investigate the
336 high-impact missense variants observed in ABCA1. Single-variant
score tests and collapsing by amino acid position identified two mis-
sense variants (9:104831048:C:A, 9:104831048:C:G) in one of the
extracellular domains affecting the same amino acid (W590), which
were associatedwith strongly decreased levels of CRP (Fig. 4). The two

variants carried most of the signal in this gene with single-variant p
values of 6.3 × 10−32 for W590L (A allele, 54 carriers) and 8.09 × 10−8 for
W590S (G allele, 12 carriers, score test).

The W590S-variant leads to reduced cholesterol and phospholi-
pid efflux, while retaining expression and ability to bindAPOA152,53. The
other andmore commonvariant,W590L, hasbeenobserved54,55, but to
our knowledge, not experimentally evaluated.

The binding of APOA1 to ABCA1 activates anti-inflammatory
pathways via JAK2 and STAT3 in macrophages56. Because W590S has
been shown to slowdowndissociation ofboundAPOA153, this provides
a plausible causalmechanism for the reduced levels of CRPweobserve
in carriers of theW590S-variant.Wehypothesize thatW590Lmight act
through the same mechanism. This property could set these variants
apart from other missense variants in ABCA1, which have been repor-
ted to abolish the binding of APOA152.

ABCA1 could therefore be a gene in which some variants elicit
both a gain of function (slower dissociation of APOA1) and a loss of
function (decreased cholesterol efflux) with distinct effects on differ-
ent biomarkers.

Unique associations identified by splice predictions
In total, we identified six gene-biomarker associations exclusively
when incorporating SpliceAI variant effect predictions, of which four

Table 2 | Significant genes with non-hematological trait associations in other RVAS

category gene name biomarker analysis p value effect test Nvariant Ncarrier OMIM traits (examples)15,16

bone and joint HSPG2 ALP AA 2.27e-19 m K 1424 10,275 r repair of conjunctiva

bone and joint B4GALNT3 ALP AA 3.91e-14 m gbvc 246 2499 height

bone and joint FLG Vitamin D AA 1.54e-10 p gbvc 350 2448 d,r asthma, eczema

cardiovascular APOB LDL direct (+5) AA 9.69e-159 m K 855 3948 d,r high cholesterol (diag.)

cardiovascular PCSK9 LDL direct (+2) AA 4.58e-88 m gbvc 186 968 d high cholesterol (diag.)

cardiovascular APOC3 Triglycerides (+2) AA 2.18e-74 m K 28 297 m lipid-lowering med

cardiovascular LDLR LDL direct (+3) AA 2.29e-50 m gbvc 214 1303 d,r high cholesterol (diag.)

cardiovascular PDE3B Triglycerides (+1) AA 7.66e-24 m K 225 1510 height, mass

cardiovascular JAK2 HDL (+6) AA 5.22e-19 m K 254 1022 m,s neoplasms

cardiovascular G6PC CRP (+4) AA 1.62e-13 m gbvc 85 828 r arm fat free mass

cardiovascular TM6SF2 Triglycerides (+2) AA 3.10e-13 m gbvc 85 1392 liver fat percentage

cardiovascular SRSF2 HDL EUR* 6.19e-09 m K 10 51 myeloid leukemia

diabetes PIEZO1 HbA1c AA 5.59e-108 m K 1,011 8021 d,r varicose veins, height, mass

diabetes GCK HbA1c (+1) EUR 1.36e-40 m gbvc 53 144 d,r T2D

diabetes GIGYF1 HbA1c (+4) AA 1.14e-10 p gbvc 41 68 T2D, education score Engl.

diabetes HBB HbA1c AA 1.10e-09 m K 33 92 d,r thalassemia

hormonal SHBG SHBG (+1) AA 4.64e-227 m K 105 669 heel bone mineral density

hormonal IGFALS IGF-1 AA 1.14e-78 m K 242 1900 r height, mass

hormonal GH1 IGF-1 AA 1.85e-10 s gbvc 49 470 d,r height, mass

hormonal GHRH IGF-1 AA 2.07e-09 m gbvc 22 117 m height, mass

hormonal PAPPA2 IGF-1 AA 5.38e-09 m gbvc 288 1208 r height, mass

liver UGT1A1 Total bilirubin (+1) AA 2.90e-67 m K 148 864 m,r Gilbert’s syndrome

liver ABCB4 ALT AA 2.30e-10 m gbvc 226 1192 d,r cholelithiasis

liver SYNJ2 GGT AA 1.55e-08 m gbvc 434 3020 hearing loss

renal SLC22A12 Urate (+1) AA 0 m gbvc 151 1044 r gout

renal ALDH16A1 Urate EUR* 4.40e-23 m K 266 2060 gout

renal ABCG2 Urate AA 2.19e-14 m gbvc 170 1575 m gout

renal TNFRSF13B Total protein AA 1.62e-12 m gbvc 76 898 d,r interpol. age when op.

renal ANKRD12 Total protein AA 3.18e-11 p gbvc 53 121 walking pace: slow

renal PKD1 Creatinine EUR* 2.77e-10 m K 1,255 10,695 d cystic kidney disease

Table showing the most significant gene-biomarker associations (FWER ≤0.05) for all genes that were also significantly associated with non-hematological traits (e.g., disease diagnoses or
anthropometric traits) in ref. 15 or ref. 16 in either the all-ancestry analysis (AA) or the EUR-ancestry analysis (EUR). Only example traits are shown in column "traits". The full data are available in
Supplementary Data 4. The numbers in brackets indicate howmany other biomarkers are associated with the same gene in our analysis. effect: the lead variant effect type (m: missense pLOF, p:
pLOF, s: splice + pLOF). test: the test-type which gave the lowest p value. OMIM: If disorders are linked to the gene in OMIM, their inheritance patterns (d: dominant, m: missing, r: recessive, s:
somatic). Associations marked with (*) were not significant in the AA-analysis, see Supplementary Data 1 and 3 for details.
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were only found using kernel-based association tests. Specifically, we
found associations of variants in SLC9A5 with ApoA and HDL choles-
terol, NDUFB8 with Aspartate aminotransferase, GH1 with IGF-1, ECE1
with Alkaline phosphatase, and KDM6B with SHBG.

Most of these associations were mainly caused by single variants.
An exception was the known association of GH1 (growth hormone 1)
with IGF-157, one of the two hits in this subset also found by gene-based

variant collapsing. The interpretation of single highly significant var-
iants driving these associations could not necessarily be narrowed
down to a singlemechanism. For example, the predicted splice variant
in the last exon responsible for the two significant associations of
SLC9A5 (16:67270978:G:A, 29 carriers, Fig. 5a) was also a missense
variant (albeit with low to moderate predicted impact55). ECE1 and
KDM6B lie in proximity to the genes coding for the biomarkers they

Table 3 | Potential PIEZO1 gain of function variants

variant id position weight variant Ncarrier variant p val. βvariant ± position p value βposition ±

16:88736318:C:T 463 0.98 A/T 109 1.52e-10 −0.56 0.09 2.01e-10 −0.56 0.09

16:88736317:G:A 463 1.00 A/V 1 8.97e-01 0.12 0.92 2.01e-10 −0.56 0.09

16:88734895:G:A 610 0.68 L/F 63 4.82e-08 −0.63 0.12 9.55e-08 −0.71 0.13

16:88734894:A:C 610 0.99 L/R 4 7.00e-01 −0.18 0.46 9.55e-08 −0.71 0.13

16:88731880:C:G 1008 0.99 G/R 65 7.20e-14 −0.85 0.11 4.30e-15 −0.88 0.11

16:88731880:C:T 1008 0.99 G/R 3 1.18e-02 −1.33 0.53 4.30e-15 −0.88 0.11

16:88726891:A:C 1175 1.00 F/V 4 4.71e-08 −2.50 0.46 4.71e-08 −2.50 0.46

16:88726565:C:T 1260 0.71 V/I 78 8.03e-08 −0.56 0.10 2.65e-08 −0.68 0.12

16:88726565:C:A 1260 1.00 V/F 1 6.67e-02 −1.68 0.92 2.65e-08 −0.68 0.12

16:88721626:C:G 1772 0.99 R/P 12 3.11e-05 −1.10 0.26 1.61e-08 −1.07 0.19

16:88721627:G:C 1772 0.98 R/G 10 9.12e-04 −0.96 0.29 1.61e-08 −1.07 0.19

16:88721626:C:A 1772 0.98 R/L 1 3.90e-02 −1.89 0.92 1.61e-08 −1.07 0.19

16:88721627:G:A 1772 1.00 R/C 1 4.89e-01 −0.63 0.92 1.61e-08 −1.07 0.19

16:88721423:C:G 1804 0.87 G/A 31 7.92e-11 −1.07 0.16 7.92e-11 −1.15 0.18

16:88719717:G:A 2110 1.00 R/W 9 6.68e-18 −2.63 0.31 5.28e-33 −2.66 0.22

16:88719716:C:T 2110 0.89 R/Q 9 1.03e-16 −2.53 0.31 5.28e-33 −2.66 0.22

16:88719665:G:A 2127 1.00 T/M 22 1.11e-31 −2.29 0.20 1.11e-31 −2.29 0.20

16:88716234:C:T 2365 0.81 G/R 9 3.74e-16 −2.49 0.31 3.74e-16 −2.76 0.34

16:88715751:C:T 2474 0.99 V/M 101 3.77e-08 −0.50 0.09 9.58e-09 −0.52 0.09

16:88715751:C:G 2474 0.88 V/L 2 2.99e-02 −1.41 0.65 9.58e-09 −0.52 0.09

16:88715751:C:A 2474 0.88 V/L 1 8.00e-01 −0.23 0.92 9.58e-09 −0.52 0.09

Variantsaregroupedandorderedbyaminoacidpositionandsingle-variantp values.All variantswithpositionp valuesbelow 10−7 are shown.weight: impact score;Ncarrier numberofcarriers, variantp
val.: single-variantp value (score test);βvariant: variant linear regression effect size (±standard error); positionp value:p valuewhen collapsing variants byposition after weighting (score test); βposition:
position linear regression effect size after weighting and variant collapsing (±standard error). Positions relate to the ENST00000301015 transcript.

Fig. 4 | Local collapsing of missense variants. Dosage box plots showing the
alternative amino acid counts (x-axis) against the covariate-adjusted quantile-
transformed phenotypes (y-axis). Collapsing variants by amino acid position within
significant genes (FWER ≤ 0.05) identified negative associations of PIEZO1 R1772-
variants with HbA1c (p = 1.61 × 10−8), ABCA1 W590-variants with C-reactive protein
(p = 3.43 × 10−38), and HNF4A R136-variants with Apolipoprotein A (p = 1.2 × 10−10). P
values were derived using the score test after weighting and collapsing variants

(Methods). Collapsing together with ClinVar variants with reported conditions
(marked with "*") helps place novel variants into disease context. For all three
associations, collapsedp values were lower than those of the single variants. Center
lines denote the medians. The lower and upper hinges indicate 25th and 75th
percentiles, whiskers extend to the largest/lowest values no further than 1.5 × IQR
away from the upper/lower hinges and black points denote outliers. Maxima and
minima, from left to right: −5.33 to 4.95, −4.05 to 5.69, and −4.7 to 4.5.
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were found associated with (ALPL and SHBG), therefore we could not
exclude transcriptional cis-regulatory effects as the cause of these
associations.

Associations identified by RBP-binding predictions
Out of the nine significant associations we identified usingDeepRiPe
variant effect predictions, the associations of ANGPTL3 with Tri-
glycerides, and AGPAT4, PLG, and LPA with Lipoprotein A had also
been found using other models. The extreme heritability of Lipo-
protein A, which is largely due to variation in the LPA gene58,59,
makes it hard to interpret the associations for the lead genes LPA,
AGPAT4, and PLG, that all lie within a megabase distance to LPA. The
association we observed for ANGPTL3 was largely driven by a single
intronic variant (1:62598067:T:C, Fig. 5), which was predicted to
increase the binding probability of QKI. The same variant on the
opposite strand was also responsible for the association of DOCK7
with triglycerides. However, we determined that ANGPTL3wasmore
likely the causal gene, given the associations of ANGPTL3 with tri-
glycerides we had independently found with other variant cate-
gories and the close proximity of an ANGPTL3 exon.

We further investigated this variant by assessing the binding
probabilities of RBPs beyond the six RBPs in focus here that are
represented in DeepRiPe.We found that the variant was also predicted
to decrease the binding probability of BCLAF1, a factor related to
mRNA processing60, and increase the binding of splice-regulator
HNRNPL (Fig. 5). Using attribution maps25, we found that instead of
strengthening or inserting a QKI binding motif, this variant weakens a
splice donor signal in the presence of upstream binding motifs for the
splicing regulators QKI and HNRNPL (Supplementary Fig. 5). SpliceAI
predicted only a weak upstream donor loss (0.02) for this variant,
which was well below the threshold of 0.1 we used to identify splice-
altering variants, but indicative of the same trend.

The remaining five associations exclusively identified by associa-
tion tests incorporating RBP-binding predictions were those of
ATG16L1 with total bilirubin, SOD2 with Lipoprotein A, SLC39A4 with
Alanine aminotransferase and SHARPINwithAlanine aminotransferase.

Both SHARPIN and SLC39A4 lie within half a megabase of the
Alanine aminotransferase gene (GPT), therefore we could not exclude
potential transcriptional cis-regulatory effects as the true cause for

these associations. Furthermore, single variants carried most of the
signal for both genes.

Common intronic variants of ATG16L1 were previously found to
be associated with Crohn’s disease, inflammatory bowel disease61,62,
and increased bilirubin levels23,63,64. However, the association remained
significant after conditioning on the intronic top variant from a pre-
vious study23.

Combined likelihood-ratio and score tests (sLRT)
In order to benefit from both the speed of the score test8 and the
higher power of the LRT in the presence of large effect sizes11,12, we
investigated the use of a combination of these tests, which we call
the sLRT (score-LRT). The sLRT is a likelihood-ratio test that is
performed only when initial score tests reach nominal significance
at a given cutoff t. If this threshold is not reached, it returns the
score test p value. Throughout our analysis, we used t = 0.1 and
found that it was unlikely that a larger threshold would have iden-
tified many more associations (Supplementary Fig. 6). As the run
time is dominated by the cost of computing the LRT, this test can
achieve a computational speedup factor of roughly 1/t = 10 over the
LRT under the null hypothesis.

We found that the sLRT was able to identify more significant
associations than the score test for missense and splice variants when
performing kernel-based association tests (Supplementary Fig. 7).
However, a large fraction of these additional associations (31% for
splice variants and 48% for missense variants) could also be identified
by gene-based variant collapsing for which the sLRT and score test
gave almost identical results.

Nevertheless, we found the majority of the remaining additional
associations to be plausible and/or previously reported in other
association studies and therefore used the sLRT throughout our ana-
lysis, except for pLOF variants, wherewe only performed a gene-based
variant collapsing test.

While the score test is the locally most powerful test (i.e., for
alternatives that are close to the null hypothesis65), our empirical
results suggest that the restricted LRT finds more associations. Based
on simulations, ref. 11 found that the LRT has higher power if variant
effect sizes are large, which is true for many rare variants observed in
exome sequencing studies.

Fig. 5 | Variantsprioritizedbydeep learningmodels. aDosage boxplots showing
covariate-adjusted quantile-transformed phenotypes against minor allele counts
for variants in SLC9A5 and ANGPTL3/DOCK7. A predicted splice variant
16:67270978:G:A is negatively associated with HDL cholesterol (p = 7.83 × 10−12,
score test), whereas intronic 1:62598067:T:C is negatively associated with Trigly-
cerides (p = 1.37 × 10−25, score test). The numbers in brackets denote the number of
carriers of at least one alternative allele. Center linesdenote themedians. The lower
and upper hinges indicate 25th and 75th percentiles. Whiskers extend to the

largest/lowest values no further than 1.5 × IQR away from the upper/lower hinges
and black points denote outliers. Maxima and minima, from left to right: −5.24 to
5.18, −4.62 to 4.5. b DeepRiPe binding probabilities for 1:62598067:T:C for three
RBPs in HepG2 cells. While predicted probabilities for the reference sequence are
ambiguous, the alternative allele shifts binding probabilities in favor of QKI and
HNRNPL. All RBPs with absolute predicted variant effects above 0.2 and binding
probabilities greater than 0.5 for either reference or alternative alleles are shown.
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Discussion
In our analysis, we combined gene-based variant collapsing and kernel-
based tests under a common framework and performed functionally
informed gene-based tests for rare variants with 30 biomarkers.

Overall, our approach was successful at identifying disease genes
without explicitly using disease diagnoses themselves, even for
recessive diseases (e.g., G6PC and glycogen storage disease Ia35 or
ABCA1 and Tangier disease66), or diseases with mixed inheritance
patterns, while keeping the number of tests low compared to
phenome-wide association studies.

While some of the changes in biomarker levels we detectedmight
be be subclinical, they could interfere with the diagnosis of common
conditions which rely on biomarkers. To prevent misdiagnoses and
enable preventative care, our results could aid the design of targeted
sequencing panels that focus on the genes with the highest impacts.
For example, we found 8% of the participants to harbor at least one
protein LOF variant in any of the significant loci for that variant cate-
gory. In other words, it is fairly common to have at least one uncom-
mon LOF variant with potential effects on biomarker levels.
Genotyping the PIEZO1-L2277M variant in individuals with South Asian
ancestry could improve diagnostics in that population, especially if
patients present with symptoms typical of dehydrated stomatocytosis,
e.g., hemolysis or hyperferritinemia41.

One major contribution of our study was the design and suc-
cessful application of kernel-based tests that incorporate quantitative
functional variant effect predictions for large exome sequencing data.
A previous study had tried to apply kernel-based score tests using
SKAT8 on the 50kWES release, but concluded that resultswere difficult
to reproduce13. In contrast to their approach, we did not re-weigh
variants according to allele frequencies. Furthermore, we showed that
a computationally efficient combination of the restricted LRT and
score test has potentially higher power than the score test alone
(possibly due to the large effect sizes) and identifiedmore associations
than gene-based variant collapsing tests.

Ancestry-based variant pruningwas necessary to prevent inflation
of test statistics for certain biomarkers. This approachworked for us in
practice, but could lose power if causal variants are discarded. Future
studies could focus on integrating themethods we proposewithmore
sophisticated ways to account for confounding that allow for larger
allele frequency differences between individuals of different genetic
ancestry11,67,68.

When comparing gene-based collapsing and kernel-based tests
for missense variants, we found kernel-based tests to have advantages
in the presence of gain of function variants (PIEZO1, ABCA1, and JAK2),
where they identified plausible causal associations missed by gene-
based collapsing tests. These genes likely are examples of a low frac-
tion of causal variants, a regime in which kernel-based tests are sta-
tistically more powerful than gene-based collapsing7.

While we found a large overlap between our associations and
those found in other studies15,16,23, the differences highlight the sensi-
tivity of gene-based tests to qualifying criteria for rare variants (i.e.,
allele frequencies or variant impact predictions), which canmake them
harder to reproduce (Supplementary Data 4). By making our analysis
pipeline public, we hope to increase reproducibility and enable others
to explore different qualifying criteria more easily.

We demonstrated how local collapsing of missense variants by
amino acid position aids interpretation and causal reasoning in the
presence of previously validated variants. Local collapsingwas directly
built into the kernel-based tests we performed for missense variants,
where it affected 20% of variants, a number which will increase with
larger datasets.

We explored the use of deep learning-derived variant effect pre-
dictions for splicing and the binding of RBPs. The restriction to exon-
proximal regions meant we only observed a fraction of the variants
potentially acting through these mechanisms. Associations found by

incorporating splice predictions largely overlapped with those iden-
tifiedwithpLOF variants (which included simple splice donor/acceptor
variants). While we found some associations exclusively with splice
predictions, these were mostly due to single variants and would need
further validation (e.g., SLC9A5). Similar reasoning holds for the asso-
ciations found with predictions for RBP-binding.

We anticipate that deep learning-based predictions will become
more valuable for non-coding regions in whole-genome sequencing
studies, forwhich the approacheswedevelopedwill alsobe applicable.
Deep learning-derived functional annotations have been considered in
other studies in the context of association testing. Proposed methods
include signed LD-score regression69, or the association tests pre-
sented in DeepWAS70. However, these methods have not been
designed for very rare variants.

In future studies, methods like AlphaFold71 could allow specific
testing of effects on protein folding. Methods that allow predicting
residue-residue interactions within proteins could enable the mostly
unsupervised identification of protein domains and their separate
testing72. The methodological advances and practices in this associa-
tion study also apply to those situations and serve as potential base-
lines for functionally informed kernel-based association tests with rare
variants.

Methods
Ethics statement
UK Biobank protocols are overseen by the UK Biobank Ethics Advisory
Committee (EAC). Informed consent was obtained for all participants.
Participants that revoked consent were removed from the analysis.
The original approval for the UK Biobank was granted in 2011 by the
National Research Ethics Service (NRES) Committee North West -
Haydock. The approval was renewed in 2016 and 2021 by the Health
ResearchAuthority, NorthWest -HaydockResearchEthicsCommittee.
This research has been conducted using the UK Biobank resource
under application number 40502.

UK biobank data processing
All 30 blood biochemistry biomarkers (category 17518) from the UK
Biobank were quantile-transformed to match a normal distribution
with mean 0 and unit standard deviation using scikit-learn (v0.22.2)73.
For testosterone, which showed a clear bimodal distribution based on
sex, quantile transformation was performed separately for both sexes.
We performed ancestry scoring as described in ref. 74 based on the
1000 Genomes super populations75, which was used to prune variants
and select participants with similar genetic ancestry.

Sex, BMI, age at recruitment, smoking status, genetic principal
components, and continuous ancestry predictions were used as
covariates (Supplementary Data 2). Smoking status (never, pre-
vious, current) was encoded in three separate binary variables.
Participants with anymissing covariates were excluded.We used the
ukb_gen_samples_to_remove function of the ukbtools R-package
(v0.11.3)76 together with pre-computed relatedness scores (ukbA_r-
el_sP.txt, see UK Biobank Resource 531) to remove closely related
individuals, keeping only one representative of groups that are
related to the 3rd degree or less. After removing 6,293 related
individuals and restricting to those with no missing covariates,
191,971 participants remained. This sample was 55% female (45%
male) and the average age at recruitment was 56.5 years (σ = 8).
Furthermore, the average BMI was 27.37 (σ = 4.76) and our subset
contained 18,529 current and 66,988 previous smokers.

In our analysis, we made use of the PLINK-formatted exome
sequencing genotype data. The final results presented in this manu-
script were derived from the 200kWES release produced by the OQFE
pipeline21. The UK Biobank pipeline already implements quality
filters21,77. Additionally, we removed all variants that violated the
Hardy–Weinberg equilibrium (HWE) assumption (HWE exact test p
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value below the threshold of 10−5) and variants genotyped in less than
90% of participants.

We calculated minor allele frequencies within all unrelated parti-
cipants with complete covariates (see above), and excluded variants
with a study-wide allele frequency above 0.1%. In the analysis including
all ancestries, we additionally performed ancestry-based pruning to
remove variants with large allele frequency differences between
ancestries. This lead to the exclusion of 1,033,382 variants. We found
this step to be critical for preventing test statistic inflation for kernel-
based tests with certain phenotypes. We did not analyze variants on
sex chromosomes.

In the all-ancestry analysis 15,701,695 variants passed these filters,
of which 45.87% were singletons. 12,793,493 were considered for the
EUR ancestry analysis (42.2% singletons). We directly use UK Biobank
variant identifiers (which include chromosome and 1-based hg38
positions) to name variants in order to facilitate comparisons.

Variant effect prediction and annotation
Protein loss of function and missense. We predicted effects for all
genetic variants that passed basic filtering using the Ensembl Variant
Effect Predictor17 (VEP, v101; cache version 97), including scores from
Polyphen-218 (v2.2.2) and SIFT19 (v5.2.2). All variants marked as spli-
ce_acceptor_variant, splice_donor_variant, frameshift_variant, stop_-
gained, stop_lost, or start_lostwere considered protein loss of function
(pLOF) variants as in ref. 13.We further annotatedmissense variants by
calculating impact scores (averages between deleterious-probabilities
given by PolyPhen-2 and SIFT), which were used to filter and weigh
variants in the association tests. Specifically, Missense variants were
included if their impact score was at least 0.8 or if they affected amino
acid positions forwhich another variantwith an impact scoreof at least
0.8 was observed.

Splicing. We retrieved published pre-computed variant effect pre-
dictions produced by the SpliceAI deep learning model24 for single
nucleotide polymorphisms. SpliceAI predicts the consequences of
genetic variants for nearby splice sites, specifically splice donor loss/
gain or splice acceptor loss/gain. We used the splice-site-proximal
masked delta scores (v1.3). In the masked files, scores corresponding
to the strengthening of annotated splice sites and weakening of non-
annotated splice sites are set to 0, as these are generally less patho-
genic.We included splice variants in the association tests if at least one
of the four SpliceAI delta scores was greater or equal to 0.1. The
maxima over the different delta scores for every variant were used to
weigh variants in the association tests (details below).

RBP-binding. We predicted the effects of all genetic variants on the
binding of 6 RNA-binding proteins (RBPs) using a modified version of
the DeepRiPe deep neural network25 in which predictions are purely
sequence-based (implemented in keras with tensorflow backend, see
Data availability statement). We predicted the differences in binding
by subtracting the predictions for the reference alleles from those for
the alternative allele78, and used these variant effect predictions to
filter and weigh variants during the association tests (details below).
Variants were included into the association tests if at least one pre-
dicted effect on any of the RBPs had an absolute value greater or
equal to 0.25.

Ancestry scoring and ancestry-based variant pruning
We used GenoPred74 to perform ancestry scoring of all UK Biobank
participants. GenoPred uses an elastic netmodel based on the first 100
genetic principal components of the 1000 Genomes genetic data and
super population assignments79 to predict the genetic ancestry of
individuals.

In the analysis, including all ancestries, we performed ancestry-
based variant pruning, as follows. We limited the analysis to

participants with complete covariates and to variants with a study-
wideMAF below0.1%within those individuals.We then defined groups
of individuals based on the ancestry prediction model. An individual
was assigned to one of the five ancestry groups defined in the 1000
Genomes reference if the predicted probability for that ancestry was
greater than 0.5. 182,288 participants were identified as having pre-
dominantly European ancestry (EUR), 4302 South Asian ancestry
(SAS), 3775 African ancestry (AFR), 1126 East Asian ancestry (EAS), and
308 admixed American ancestry (AMR). About 172 individuals could
not be placed in any of these groups, as all probabilities were below
0.5. These predictions were used to group individuals with similar
genetic ancestry according to the 1000 Genomes and do not reflect
ethnicity.

We then performed two-sided Fisher’s exact tests to identify
variants with large deviations from the study-wide EUR allele fre-
quency in any of the other super populations and excluded variants
withp < 10−5 from the analysis. Variants selectivelymissing in any of the
super populations were excluded.

The predictions from the ancestry prediction model were also
used to define the group of participants which were used for the EUR-
only analysis, where we applied a more stringent cutoff of
Pr(EUR) > 0.995.

Statistical models and tests
LetN(μ;Σ) denote amultivariateNormal distributionwithmeansμ and
a variance-covariance matrix Σ. We wish to jointly test the association
of m genetic variants with a quantitative trait y for a sample of N
observations (i.e., participants) while controlling for q covariates.
Within the linear mixed model framework, y can be modeled as
follows8,9:

y ~NðXα;σ2
eIN + σ2

gKg Þ, ð1Þ

where X is the N × q covariate design matrix (fixed effect) and α is the
vector of fixed-effect parameters, which together determine the mean
values of y. The variance-covariance matrix of y is composed of the
independently distributed residual variance (IN scaled by σ2

e) and the
kernel-matrix Kg (scaled by σ2

g), which captures the genetic similarity
between individuals. Kg is a function of the N ×m matrix of mean-
centered minor allele counts G (random effect) of the genetic variants
we wish to test.

Any valid variance-covariancematrix can be substituted for Kg. In
order to use efficient algorithms for estimating the parameters σ2

e and
σ2
g and performing association tests, we require Kg to be factored as a

quadratic form9,11:

Kg = ϕðGÞϕðGÞT , ð2Þ

where the function ϕ transforms G into intermediate variables before
performing the test. Finding an appropriate functionϕdepends on the
underlying biological assumptions and the available prior information.
Gene-based variant collapsing approaches are a special case, in which
the function ϕ returns an N × 1 vector (a single variable) as output.
Therefore kernel-based tests and variant collapsing methods can be
treated under the same statistical framework. In our analysis, ϕ is a
function that transforms G taking variant effect predictions and, for
missense and RBP-variants, variant positions into account.

Regardless of the choiceof kernel (andhenceϕ) the statistical test
is defined by the null hypothesis H0 : σ2

g =0, and the alternative
hypothesis H1 : σ

2
g >0 (i.e., a one-sided test). Both a score test and

likelihood-ratio test (LRT) have been described for this application.
While the score test is often chosen in statistical genetics applications
due to its speed and software availability, the LRT has been shown to
have higher power when effect sizes are large but is computationally
more demanding8,11,12.
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In order to avoid computing the LRT for all genes but still profit
from a potentially higher power, we performed score tests genome-
wide and only performed the restricted LRT if score tests (within the
specific variant category) reached nominal significance, an approach
which we call the score-LRT (sLRT, see sections below). The sLRT
returns the p value for the score test if nominal significance was not
reached, otherwise it returns the p value for the likelihood-ratio test.

We sampled RLRT test statistics using fast exact algorithms
described in ref. 80, and fit parametric null distributions to the pooled
test statistics across genes in order to calculate p values11. Null dis-
tributionparameters are available in SupplementaryData 1.Wedid this
separately for different variant-effect and test-types. Thismethod gave
highly similar p values to using gene-specific null distributions (Sup-
plementary Figs. 9–12), but is faster as it requires fewer test statistics to
be simulated per gene and fewer distributions to be fit. Furthermore,
using the pooled distribution does not change the bound of the FWER
compared to using gene-specific null distributions to calculatep values
(see sections below).

We applied the statistical framework above to performboth gene-
based variants collapsing tests and kernel-based association tests,
corresponding to different functionsϕ as detailed below. Additionally,
for splice and missense variants, tests using only those variant cate-
gories and tests combining these variant categories with pLOF variants
were integrated into single tests using the Cauchy combination test28.
We adjust p values for the total number of 3,091,910 tests in the all-
ancestry analysis using Bonferroni correction (FWER ≤ 0.05), which
lead to a cutoff of 1.6171 × 10−8.

Variant weight calculation
All association testsweperformed incorporated variantweights,which
were derived from variant effect predictions. All variant weights we
used are numbers between 0 and 1. For protein LOF variants, all
weights were set to 1. Formissense variants, we calculated the weights
as follows:

wi =
ð1� si,SIFTÞ+ si,Polyphen

2
ð3Þ

wherewi is theweight for variant i. si,SIFT and si,Polyphen denotes the SIFT
and Polyphen scores for variant i, respectively (potentially averaged
across different transcript variants). This score can be interpreted as
the average of the predicted probability of the variant being deleter-
ious predicted by the two methods.

For splice variants, the weight wi for specific variant i, was set to
the maximum of its four SpliceAI delta scores.

Regarding the predictions for the binding of RBPs, we proceeded
as follows: While the experiments for the RBP QKI had been replicated
in three cell lines, those for the other 5 RBPs had only been performed
in a single cell line. As every replicate is a separate model output, this
resulted in a total of eight predictions for every genetic variant. We
predicted the binding probability of each RBP to sequences centered
on the major and minor alleles, while applying 4 bp shifts around the
center. We averaged four predictions across these small shifts to
reduce variability. Finally, we calculated variant effect predictions vij
for each variant i and RBP-replicate j by subtracting the prediction for
the reference allele (pij,ref) from the prediction for the alternative allele
(pij,alt)78:

vij =pij,alt � pij,ref ð4Þ

These variant effect predictions are numbers between −1 and 1,
where the sign denotes a gain of binding (+) or a loss of binding (−).
They were used to determine variant weights and variant similarities
during association testing (see below), where we set the weight wi of
variant i to the largest absolute value of vi.

Gene-based variant collapsing tests
In gene-based variant collapsing, all qualifying variants overlapping a
specific gene are collapsed into a single variable prior to association
testing, i.e.,ϕ(G) in (2) returns anN× 1-vector.Wemodified theapproach
in ref. 13 by incorporating variant effect predictions as weights. Within a
specific gene, any participant could carry 0 or more qualifying variants,
where each variant i has a weight wi (derived from variant effect pre-
diction, see above). Specifically, the collapsed score is the largest weight
of any of the variants observed for a specific participant, or 0 if no
qualifying variants were observed for that participant. This score makes
three assumptions: additive effects are negligible (or unrealistic), var-
iants with larger weights dominate over those with smaller weights and
all variants affect the quantitative trait in the same direction.

Functionally informed kernel-based tests
The kernels we used in this analysis follow the general form:

Kg =GWSWGT, ð5Þ

where W is an m ×m diagonal matrix containing the square roots of
variant weights on the diagonal and the m ×m matrix S captures
similarities between the genetic variants.G is the n ×mmatrix ofmean-
centered minor allele counts of the qualifying variants within the gene
to be tested. S can be interpreted as the variance-covariancematrix of
regression coefficients of intermediate variables GW. We useW and S
to incorporate variant effect predictions (and other variant annota-
tions) into the association tests.

While a shared regression coefficient (S= 1m1
T
m) might be a poor

assumption in some cases, so can completely independent regression
coefficients (S = Im). The former, when substituted into (5), has been
referred to as the weighted counting burden test, whereas the latter is
commonlycalled theweighted linear kernel81. Inour analysis,wedefineS
basedon available prior knowledge and typeof variant effect prediction.

Missense. For the analysis of missense variants, we introduce the
locally collapsing kernel. Local collapsing aggregates groups of var-
iants into single variables before performing the association test.
“Local” refers to the fact that the groups are defined by the proximity
of variants in the DNA-, RNA-, or amino acid sequence. We grouped
variants if they affect the same exact amino acid position of a specific
gene. Once the groups are defined, local collapsing can be expressed
as a matrix multiplication: S =CCT and the kernel (5) becomes:

Kg =GWCCTWGT ð6Þ

Here C is them-variants by g-groups collapsing matrix. Therefore
GWC is the n × g weighted locally collapsed genotype matrix (where
the columns now represent amino acid positions instead of single
genetic variants). The columns of C define the group assignments and
directionality of variant effects. For every variant i from 1 to m with
(potentially signed) variant effect vi and group j from 1 to g, cig = sgn vi
if variant i belongs to group j, else cig = 0. In our case, variant effect
predictionswereunsigned (all positive). The assumptions of the locally
collapsing kernel are that variants within groups share a common
regression coefficient once they have been scaled by and aligned with
the direction of their variant effect predictions.

RBP-binding. Sometimes there are no clearly defined groups of variants
ormultiple (potentially directional) variant effect predictions need to be
accounted for at once, and therefore, variants can’t easily be collapsed.
Given what we know about the location of variants and their predicted
effects, wemight still make assumptions about S. As long as S is positive
definite, we can find a suitable square root L so that LLT = S using the
Cholesky decomposition. In the association tests involving directional
predictions for the binding of RNA-binding proteins we calculated S by
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forming the element-wise product of twom×m matrices:

S =LLT =Q � R ð7Þ
WhereQ captures the similarity of variants based on their variant

effect predictions and R captures the similarity of variants based on
their positions. Specifically, let vi be the vector of variant effect pre-
dictions for variant i. Then the element qij of Q is the cosine similarity
between vi and vj. We chose to model the position-dependent simi-
larity with a Gaussian kernel. If xi is the chromosomal position of var-
iant i, ri,j = expð�γðxi � xjÞ2Þ, where we set γ = � logð0:5Þ

502 . At this value of
γ two variants that are 50bpaparthave a similarity of0.5,which decays
rapidly as the distance increases. As bothQ and R are positive definite
matrices, so is Q ∘R. This kernel makes the assumption that variants
that are in close proximity and have aligned variant effect predictions
should affect the phenotype in the same direction.

Score- and likelihood-ratio test implementation
In order to use efficient algorithms for estimating the parameters σ2

e
and σ2

g in (1) and performing association tests, we require Kg to be
factored as a quadratic form as shown in (2)9,11. The function ϕ in (2)
transforms the genotype matrix G into intermediate variables before
performing the test.

The test statistic of the score test approximates the change of the
log-likelihoodof amodelwhen includingKgover the nullmodel, which
does not include Kg (σ2

g =0)
8. We calculated test statistics using fast

algorithms described in11 and applied Davies’ method for the calcula-
tion of p values82with accuracyof 10−7 and 106 iterations.WhereDavies’
method returned p values of 0, or in the rare cases where Davies’
method returned invalid (negative) p values, we used saddle point
approximation instead83.

The test statistic of the restricted likelihood-ratio test is twice the
difference between the log restricted likelihood of the alternative
model and the null model9. We used FaST-LMM’s LMM class84 to fit the
null and alternative models using restricted maximum likelihood and
then calculated test statistics. To generate a null distribution we
sampled 100 test statistics for every LR test, using our own port of
RLRsim80 in Python (as part of the seak package, see Code availability
statement). Finally, we fit a parametric null distribution πχ20 + ð1�
πÞaχ2d with free parameters π, a, and d to the pooled simulated test
statistics using log-quantile regression on the 10% of largest test
statistics11, and used this distribution to calculate p values as described
in ref. 9 (Supplementary Data 1). We used separate null distributions
for all variant-type to test-type and phenotype combinations (see
details below).

We compared this approach to using gene-specific null distribu-
tions (i.e., fitting a separate null distribution for every test and gene,
similar to the method described in ref. 12), and found that they pro-
duced highly similar results (Supplementary Figs. 9–11).

To this end, we performed two analyses: First, we looked at genes
close to or below the genome-wide significance threshold. We com-
pared the Pearson correlation of the log10 p values derived from the
genome-wide pooled or gene-specific null distributions for genes with
association p values below 10−6.5 in any of the initially performed tests.
We did this separately for the different variant categories and test-
types based on 250,000 gene-specific samples from the null dis-
tribution. Second, for every phenotype and variant category, we ran-
domly sampled 100 genes with p values above 10−6.5 (in any of the
previously performed tests for that variant category) and cumulative
minor allele counts of at least 5, and repeated the comparison (again
based on 250,000 samples per test).

For associations close to or below the significance threshold, the
average r2 was 0.999 for kernel-based tests and 0.999 for gbvc tests.
For non-significant associations, average r2 values were 0.9897 for
kernel-based tests, and 0.999 for gbvc tests. We conclude that the

pooled null distribution is a good approximation of the individual
gene-level null distributions. An example illustrating this approach is
shown in Supplementary Fig. 12.

Gene-based testing procedure summary
We performed gene-based tests for all protein-coding genes in the
Ensembl 97 release. For all pLOF variants we performed gene-based
variant collapsing using the score test genome-wide.

For missense variants, we performed both weighted gene-
based variant collapsing and kernel-based association tests using
the sLRT. For the kernel-based tests with missense variants, we
designed a kernel that collapses variants by amino acid position
(local collapsing) and weighs them by their impact score. Addi-
tionally, in cases where either missense-variant score test used in
the sLRT was nominally significant (p < 0.1), we combined missense
and protein LOF variants for joint tests. For these joint tests, we
investigated both the use of joint weighted gene-based variant
collapsing and a kernel-based test that combines collapsing of pLOF
variants with local collapsing of missense variants by concatenation
(detailed description below). The p values of the combined tests
were integrated using the Cauchy combinationmethod28 (individual
p values are reported in Supplementary Data 1).

For predicted splice variants, we followed the same strategy as for
missense variants, however, we used the weighted linear kernel8

without local collapsing instead. Finally, in the association tests,
including variants predicted to change the binding of RBPs, we only
performed kernel-based association tests using the sLRT. For this
purpose, we designed a kernel that can take into account both variant
positions and the direction of variant effects (as described above).

Because some of the genes in the Ensembl 97 release share exons,
we encountered cases inwhich thesegenes shared associations caused
by the same variants. We do not report these as distinct genes in the
main text or abstract, but include the full list of 212 associations in
Supplementary Data 1.

sLRT detailed description
Missense. For missense variants, we iterated over all genes and
performed score tests using gene-based variant collapsing and
kernel-based tests (locally collapsing kernel), i.e., the diagonal ele-
mentswii ofW in (5) contained the square roots of the impact scores
of variants. If either score test p value was nominally significant
(p < 0.1) we also performed the following steps: (1) Calculation of
restricted likelihood-ratio test statistics (sLRT), (2) gene-based var-
iant collapsing combining both missense and loss of function var-
iants in a joint test, (3) concatenation of the collapsed pLOF variable
to the locally collapsed weighted matrix of missense variant minor
allele counts (GWC, Equation (6)) and a joint kernel-based RLRT. For
all likelihood-ratio tests, we simulate 100 gene-specific test statistics
from the null distribution each.

Once all genes were processed for a specific phenotype, we fit
separate null distributions to the pooled simulated test statistics for
each of the four groups of likelihood-ratio tests: collapsed missense
variants (gbvc), jointly collapsed pLOF and missense variants
(gbvc), locally collapsed missense variants (kernel-based), locally
collapsed missense variants concatenated with collapsed pLOF
variants (kernel-based). P values were then calculated for all tests
based on those distributions. Finally, the p values for the two kernel-
based tests, and the two gbvc tests were combined using the Cauchy
combination test, resulting in a single kernel-based and a single
gbvc test per gene.

We used the locally collapsing kernel in the kernel-based asso-
ciation tests for missense variants as it had given more unique asso-
ciations and overall slightly lower p values for the most significant
genes in initial experiments on the 50k WES release, and was more
interpretable compared to other approaches.
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Splicing. For splice variants, we performed score tests using gene-
based variant collapsing and the linear weighted kernel for all genes.
Again, if either of the two score tests were nominally significant
(p < 0.1), we performed likelihood-ratio tests (sLRT). As we did for
missense variants, we then also performed combined association tests
with protein loss of function variants using both gene-based variant
collapsing and a kernel-based LRT. For the kernel-based test, we con-
catenated the protein LOF indicator variable to thematrix of weighted
minor allele countsGW (Equation (5), where S = Im). In the cases where
a variant was annotated both as a splice variant and pLOF variant, we
treated it as a pLOF variant in the joint tests. As we did for missense
variants, after calculating p values using four separate null distribu-
tions for every phenotype, we combined the two kernel-based tests
and the two gene-based collapsing tests into single tests using the
Cauchy combination test.

RBP-binding. For variants predicted to alter the binding of RBPs we
only performed kernel-based association tests using the kernel in (5),
where we used the largest absolute value of the variant effect pre-
dictions as the weights and calculated S as described above in (7). We
iterated over all genes and performed gene-based score tests.
Because the DeepRiPe variant effect predictions are strand-specific,
we did this independently for genes on the forward or reverse
strands. If the score test for a specific gene was nominally significant
(p < 0.1), we performed the likelihood-ratio test for that gene (sLRT).
If the variants tested also included variants annotated as protein loss
of function variants, we removed them and repeated the tests to
avoid false positives.

Conditional association tests
For significant associations after multiple testing correction, we per-
formed conditional association tests. For every significant gene-
biomarker association, we identified single variants significantly asso-
ciated with the same biomarker within ± 500kb of the gene start
position, based on the summary statistics provided by ref. 23. We then
conditioned on the single variant with the lowest p value (if any) by
incorporating it as a covariate in a gene-specific null model (in case of
ties, the closest variant to the gene start positionwas chosen).We then
fit the alternative model, calculated the model likelihoods and RLRT
test statistics, and simulated 250,000 gene-specific RLRT test statistics
for every alternative model (i.e., combinations of variant- and test-
types). We fit parametric null distributions to these test statistics using
the 10% of largest test statistics (as described above), and calculated p
values based on these null distributions. We then combined the p
values using the CCT (if combined tests with pLOF variants were per-
formed). Conditional p values and the variants that were conditioned
are reported in Supplementary Data 1.

Cross-referencing against GWAS databases
We queried the NHGRI-EBI GWAS Catalog2 and PhenoScanner26,27 in
order to see if single variants within the genes we found significantly
associated with a specific biomarker had already been reported to be
associated with that biomarker. For each gene, we submitted region
queries using the gene boundaries with the gwasrapidd85 (v0.99.11)
and phenoscanner (v1.0) R-packages. For PhenoScanner, we set the p
value threshold to 10−7. Matching our results to those contained in
these databases required us to define a mapping of UK Biobank bio-
markers to the Experimental Factor Ontology (EFO) terms used in
those databases. This mapping is provided in Supplementary Data 2.
Additionally, as EFO terms for PhenoScanner were not always defined,
we performed the following matching: “Apolipoprotein B” (UKB phe-
notype) to “APOB apolipoprotein B” (PhenoScanner trait), “Cystatin C”
to PhenoScanner traits “log eGFR cystatin C”, “Serum cystatin c esti-
mated glomerular filtration rate eGFR”, and “Cystatin C in serum”, and
“Urea” to “Renal function related traits urea”.

PIEZO1-L2277M association tests
Weused the ancestry classifications described above to define a group
of individuals of SAS ancestry, andoneof extended EUR ancestry (both
using a cutoff of >0.5 in the ancestry classificationmodel). This is a less
stringent cutoff than that used in the EUR-analysis for all biomarkers
and increased the number of observed carriers in the EUR-ancestry
group from5 to 21, all heterozygous.We used the samecovariates as in
the all-ancestry analysis.

Genotypes were derived from exome sequencing and we per-
formed association tests using the score test with ancestry-specific
null-models. For the association tests in the SAS group, we performed
conditional tests by conditioning the test statistic on the genotypes of
the 16:88784993:C:G variant, which were also derived from exome
sequencing.

FWER control for the pooled null distribution
For the RLRT we derive p values from pooled gene-specific test sta-
tistics under the null hypothesis and use Bonferroni correction on
these p values to bound the FWER. Below we show why this approach
does not change the bound of the FWER compared to using gene-
specific null distributions to calculate p values, assuming the pooled
distribution is well estimated.

Let Ii be a sample from a random variable. For i from 1 to n, Ii
corresponds to the test statistics for gene i under the null hypothesis.
For a specific value of the test statistic x, the distribution function Fi
returns the p value pi :

FiðxÞ= PrðIi ≤ xÞ=pi ð8Þ

LetM be the randomvariable arising from a uniformmixture of all
In, i.e., M =

Sn
i= 1 Ii, with corresponding distribution function:

FmðxÞ= PrðM ≤ xÞ=pm = ∑
n

i = 1

FiðxÞ
n

= ∑
n

i = 1

PrðIi ≤ xÞ
n

= �pi ð9Þ

I.e., when the mixture components are sampled to the same
proportions, the p value of themixture distribution pm is the average p
value of the mixture components �pi. In this setting, empirically
choosing a single cutoff xm corresponding to a significance cutoff α

n
based on the mixture distribution controls the FWER at the same level
as setting gene-specific cutoffs xi such that all αi = α (the commonly
applied approach).

The bound for family-wise error rate across all genes 1 ton is given
by Boole’s inequality as used in the Bonferroni correction:

FWER= Pr
[n

i = 1

pi ≤
α
n

n o
 !

≤ ∑
n

i= 1
Pr pi ≤

α
n

� �n o
= ∑

n

i = 1

α
n
=α ð10Þ

Notably, tests can also be performed at different significance
levels αi

n . If the average gene-specific alpha ( �αi) is exactly α, the bound
for the FWER remains unchanged:

∑
n

i = 1
Pr pi ≤

αi

n

� �n o
=
!
α ð11Þ

This property has been used in the context of weighted Bonferroni
correction, and relatedproofs apply86. Basedon the formulae above, any
cutoff αm based on themixture distribution corresponds to the average
theoretical cutoff of the mixture components �αi. It follows that

∑
n

i = 1
Pr pm ≤

αm

n

� �n o
= ∑

n

i= 1

αm

n
= ∑

n

i= 1

∑n
i = 1

αi
n

n

( )

= ∑
n

i = 1

αi

n
= �αi =αm ð12Þ

The FWER is controlled at the same level as if we had performed
tests using the gene-specific null distributions and set all αi = α, or in
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fact, any other values αi
n that sum up to α86. Based on our experiments

comparingp values derived fromthegene-specific null distributions to
those derived from the mixture distribution, we show that pi ~ pm, and
therefore αi ~ αm.

Additionally, we prevent false positives due to differences in pi
and pm by performing gene-specific conditional tests for the genes
which reach genome-wide significance using the mixture distribution.
This means our approach may lose power: We can miss genes that
would be significant using gene-specific null distributions, but not
significant based on the mixture distribution.

Software
Here we list software not otherwise mentioned in the manuscript. For
the full list including version numbers consider the Reporting Sum-
mary. Our functional annotation and association testing pipeline
(faatpipe) uses bcftools87, bedtools88, Plink89, samtools87, vcftools90,
htslib91, biopython92, pybedtools93, pyranges94, pysam (https://github.
com/pysam-developers/pysam), and pysnptools (https://github.com/
fastlmm/PySnpTools) to handle genomic ranges and genotype data.

Figures were produced using ggplot295, gplots96, matplotlib97,
seaborn98, and matplotlib_venn (https://github.com/konstantint/
matplotlib-venn).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Variant effect predictions for all variants in the 200k exome sequen-
cing release are made available on github (https://github.com/
HealthML/ukb-200k-wes-vep, v0.0.0, https://doi.org/10.5281/zenodo.
6912352).

Theweights for the DeepRiPemodel used to predict the effects of
variants on RBP-binding are available at https://github.com/HealthML/
faatpipe/tree/master/data/deepripe_models. SpliceAI variant effect
predictions are publicly made available by Illumina at https://
basespace.illumina.com/s/otSPW8hnhaZR.

The Online Mendelian Inheritance in Man (OMIM®) database is
publicly accessible through https://omim.org/. The ClinVar database is
publicly accessible through https://www.ncbi.nlm.nih.gov/clinvar/.
The NHGRI-EBI Catalog of human genome-wide association studies
(GWAS catalog) is publicly accessible through https://www.ebi.ac.uk/
gwas/. Phenoscanner, a database of human genotype-phenotype
associations, is publicly available through http://www.phenoscanner.
medschl.cam.ac.uk/. The 1000 Genomes phase 3 genotypes are pub-
licly available at https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/
working/20140708_previous_phase3/v5_vcfs/.

The genetic, phenotype, and covariate data are protected and
are only available to researchers that have valid and approved
research applications for these data within the UK Biobank (www.
ukbiobank.ac.uk/).

Code availability
A snakemake pipeline that allows reproducing results from this study
is available on github (https://github.com/HealthML/faatpipe, v0.1.0,
https://doi.org/10.5281/zenodo.6912198).

The implementation of statistical tests (score test, RLRT),
including the python port of RLRsim80 is available on github (https://
github.com/HealthML/seak, v0.4.3, https://doi.org/10.5281/zenodo.
6912202).
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