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Bayesian deep learning for error estimation
in the analysis of anomalous diffusion

Henrik Seckler1 & Ralf Metzler 1,2

Modern single-particle-tracking techniques produce extensive time-series of
diffusive motion in a wide variety of systems, from single-molecule motion in
living-cells to movement ecology. The quest is to decipher the physical
mechanisms encoded in the data and thus to better understand the probed
systems. We here augment recently proposed machine-learning techniques
for decoding anomalous-diffusion data to include an uncertainty estimate in
addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-
Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is
used to train models for both the classification of the diffusion model and the
regression of the anomalous diffusion exponent of single-particle-trajectories.
Evaluating their performance, we find that these models can achieve a well-
calibrated error estimate while maintaining high prediction accuracies. In the
analysis of the output uncertainty predictions we relate these to properties of
the underlying diffusion models, thus providing insights into the learning
process of the machine and the relevance of the output.

In 1905 Karl Pearson introduced the concept of the random walk as a
path of successive random steps1. The model has since been used to
describe randommotion in many scientific fields, including ecology2,3,
psychology4, physics5, chemistry6, biology7 and economics8,9. As long
as the increments (steps) of such a random walk are independent and
identically distributed with a finite variance, it will, under the Central
Limit Theorem (CLT)10, lead to normal diffusion in the limit of many
steps. The prime example of this is Brownian motion, which describes
the randommotion of small particles suspended in liquids or gases11–14.
Amongst others, such normal diffusion entails that the mean squared
displacement (MSD) grows linearly in time15–17, 〈r2(t)〉∝K1t.

In practice however many systems instead exhibit a power law
behaviour 〈r2(t)〉∝Kαtα of the MSD18–33, indicating that one or several
conditions of the CLT are not fulfilled. We refer to such systems as
anomalous diffusion. A motion with anomalous diffusion exponent
0 < α < 1 is called subdiffusive, whereas for α > 1 it is referred to as
superdiffusive (including ballistic motion with α = 2). In order to
describe such systems mathematically, many models have been pro-
posed, in whichone ormultiple conditions of the CLT are broken24,25,34.
Some important examples (see the “Anomalous diffusion models”
section for details) of such models are continuous-time random walk

(CTRW)35–37, fractional Brownian motion (FBM)38, Lévy walk (LW)39–42,
scaled Brownianmotion (SBM)43,44 and annealed transient timemotion
(ATTM)45. Sample trajectories for these are shown in Fig. 1.

As each of these models correspond to different sources of
anomalous diffusion, determining the model underlying given data
can yield useful insights into the physical properties of a
system18–22,46,47. Additionally one may wish to determine the para-
meters attributed to these models, the most sought-after being the
anomalous diffusion exponent α and the generalised diffusion coeffi-
cient Kα

18,48. The used experimental data typically consist of single
particle trajectories, such as the diffusion of a molecule inside a
cell7,30–33,47,49, the path of an animal2,3,50 or the movement of stock
prices8,51.

Plenty of techniques have been developed to tackle these tasks,
usually through the use of statistical observables. Some examples
include the ensemble-averaged or time-averaged MSD to determine
the anomalous diffusion exponent and/or differentiate between a non-
ergodic and ergodic model52, the p-variation test53, the velocity auto
correlation for differentiation between CTRW and FBM28, the single
trajectory power spectral density to determine the anomalous diffu-
sion exponent and differentiate between models54,55, the first passage
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statistics56 and the codifference57. Such techniques may struggle when
the amount of data is sparse and, with its rise in popularity, successful
new methods using machine learning have emerged in recent
years58–60.

In an effort to generalise and compare the different approaches
the Anomalous Diffusion (AnDi) Challenge was held in 202061,62. The
challenge consisted of three tasks, among them the determination of
the anomalous diffusion exponent α and the underlying diffusion
model from single particle trajectories. The entries included a wide
variety of methods ranging from mathematical analysis of trajectory
features63,64, to Bayesian Inference65–67, to a wide variety of machine
learning techniques59,68–77. While the best results were achieved by
deep learning (neural networks), this approach suffers from the so-
called Black Box Problem, delivering answers without providing
explanations as to how these are obtained or how reliable they are78. In
particular, outputs are generated even in situations when the neural
network was not trained for the specific type of motion displayed by
the system under investigation. In this work, we aim at alleviating this
problem by expanding the deep learning solutions to include an

estimate of uncertainty in the given answer, as illustrated in Fig. 2. This
is a feature that other techniques like Bayesian Inference can intrinsi-
cally provide65–67.

Such a reliability estimation is a well-known problem in machine
learning. For neural networks the solutions vary from the calibrationof
neural network classifiers79–82, to using an ensemble of neural networks
and obtaining an uncertainty from the prediction spread83, to fully
modelling the probability distribution of the outputs in Bayesian
Neural Networks84. In recent years the latter has been expanded to be
applicable to deep neural networks without resulting in unattainable
computational costs. These Bayesian Deep Learning (BDL) techniques
approximate the probability distribution by various means, for
instance, by using drop out85,86 or an ensemble of neural networks83.
Wehere decidedon using amethodbyMaddox et al. named Stochastic
Weight Averaging Gaussian (SWAG), in which the probability dis-
tribution over the network weights is approximated by a Gaussian,
obtained by interpreting a stochastic gradient descent as an approx-
imate Bayesian Inference scheme87,88. We find that these methods are
able to produce well-calibrated uncertainty estimates, while main-
taining the prediction performance of the best AnDi-Challenge solu-
tions. We show that analysing these uncertainty estimates and relating
them to properties of the diffusion models can provide interesting
insights into the learning process of the machine.

The paper is structured as follows. A detailed analysis of our
results for regression and classification is presented in the “Results”
section. These results are then discussed and put into perspective in
the “Discussion” section. A detailed explanation of the utilised meth-
ods is provided in the “Methods” section. Here we provide a brief
introduction to the different anomalous diffusion models in the sub-
section “Anomalous diffusion models” and the used SWAG method in
the subsection “Uncertainties in deep learning”. Subsequently, the
neural network architecture and training procedure used in our ana-
lysis is presented in the subsection “Neural network architecture and
training”. The Supplementary Information details the reliability
assessment methods and provides Supplementary Figures.

Results
In the following, we employ the methods detailed in the “Methods”
section to construct the Multi-SWAG88 models and use these to
determine the anomalous diffusion exponent α or the diffusionmodel
of computer-generated trajectories. We also provide detailed error
estimates to qualify the given outputs. These estimates consist of a
standard deviation for regression and model probabilities for classifi-
cation. The trajectories are randomly generated from one of the five
diffusion models: continuous-time random walk (CTRW)35–37, frac-
tional Brownian motion (FBM)38, Lévy walk (LW)39–42, scaled Brownian
motion (SBM)43,44 or annealed transient time motion (ATTM)45, as
detailed in the “Anomalous diffusionmodels” section. We evaluate the
performance of the uncertainty estimation for the regression of the
anomalous diffusion exponent (see the “Regression” section) and the

Fig. 1 | Illustration of different diffusionmodels.We show sample trajectories of
normal (a) and anomalous (b) diffusion. All shown trajectories are corrupted by
white Gaussian noise.

Fig. 2 | Illustration of the problemof reliability in deep learning.The illustration
depicts the use of a neural network to predict the anomalous exponent α for two
sample trajectories. Despite receiving severely different inputs, a classical neural
networkmay still predict the same output (anomalous diffusion exponent α = 1) for

both cases. The difference between the outputs only becomes clear when pre-
dicting not just the output itself but a distribution over all possible outputs, as it is
done, for example, in Bayesian Deep Learning.
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classification of the diffusion model (see the “Classification” section).
We find that for both classification and regression the added error
estimate does not diminish performance, such that we can still achieve
results on par with the best AnDi-Challenge competitors. The added
error estimate proves to be highly accurate even for short trajectories,
an observation thatmerits a detailed investigation of its behaviour.We
analyse the error prediction behaviour depending on the diffusion
model, anomalous diffusion exponent, noise and trajectory length in
order to obtain insights into the learning process of the machine. To
differentiate between error predictions due to model uncertainties
and those inherent in each model, we further analyse the predicted
uncertainties for the inference of the anomalous diffusion exponent
with known ground truth diffusion model in the “Single model
regression” section. We show that the observed dependencies can be
attributed to specific properties of the underlying diffusion models.

Regression
In order to quantify the performance of our Multi-SWAG88 models we
test them on a new set of computer-generated trajectories using the
andi-datasets package. For the general prediction of the anom-
alous diffusion exponent α we obtain results comparable to the best
participants in the AnDi-Challenge59,62,63,65–77. The achieved mean aver-
age error for different trajectory lengths in Fig. 3a shows an expected
decreasing trend with trajectory length.

To analyse the performance of the error prediction we use a
reliability diagram79–81 in Fig. 3b. The figure depicts the observed root

mean squared error (RMSE) from the ground truth exponent as a
function of the predicted root mean variance (RMV) (see Supplemen-
tary Information for detailed definitions). Grouping together predic-
tions within a range of 0.02, we see results close to the ideal of
coinciding predictions and observations. As is to be expected, longer
trajectories show smaller predicted errors, yet, the higher errors for
very short trajectories of only 10 time steps are still predicted
remarkably well. The results of the reliability diagram can be sum-
marised using the Expected Normalised Calibration Error (ENCE)82,
which calculates the normalised mean deviation between observed
and predicted uncertainty. Figure 3c shows a low ENCE between 0.6%
and 2.3%, which increases with trajectory length. This increase can be
attributed to the decrease in predicted standard deviations, which
results in a higher normalised error due to the fact that the unnor-
malised expected calibration error (ECE) only shows a slight decrease
with trajectory length, as can be seen in Fig. 3d.

In order to better understand how the network obtained these
predictions, it proves useful to observe the frequency of predicted
standard deviations in Fig. 3e. The histograms there show how often
which error is predicted for different ground truth models.

For very short trajectories (T = 10) we observe a split of the pre-
dictions into two peaks. This observation can be attributed to the
different priors of the ground truth models. If the network can con-
fidently identify the trajectory as belonging to one of the only sub-/
superdiffusive models (CTRW/LW/ATTM), it can predict (and achieve)
a smaller error due to the reduced range of possibleα-values. From the

Fig. 3 | Performance evaluation for the regression of the anomalous exponent
α. aMean absolute error (MAE), b reliability diagram and expected (c) normalised
and (d) non-normalised calibration error (ENCE/ECE)82 achieved byMulti-SWAG
(see Supplementary Information for detailed definitions). Results are plotted for
different trajectory lengths T by averaging over 105 test trajectories each. TheMAEs
(a) show a decreasing trend with trajectory length, with results close to those
achieved in the AnDi-Challenge, reaching an MAE of 0.14 for T = 500. To judge the
error prediction performance, the reliability diagram (b) depicts the observed root
mean squared error (RMSE) as a function of the predicted root mean variance
(RMV), showing that even for very short trajectoriesT = 10 an error prediction close
to the ideal (grey line) is achieved. The reliability diagram can be summarised in a
single value using the ECE/ENCE. The ENCE/ECE characterises the mean difference

betweenpredicted andobserved errors, either normalised to obtain a relative error
(ENCE) or as an absolute (ECE). As visible in (b), we obtain good error predictions
with an ENCE between 0.6 and 2.3% depending on the trajectory length. The
increase in ENCE with trajectory lengths can be attributed to the decrease in MAE
(and therefore predicted errors), while the unnormalised ECE only shows a slight
trend of decreasing with trajectory length. The low ECE for T = 10 is due to the high
number of trajectories predicted with near maximal error. e Predicted error his-
togram for inferring the anomalous diffusion exponent α when the underlying
model is unknown. The figure shows the distribution of the error as predicted by
Multi-SWAG trained on all models. Each subplot shows the results for a different
trajectory length T, as obtained from predictions on 105 trajectories.
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different heights of this second peak, we can also conclude that, for
very short trajectories, LW is easier to identify than CTRW or ATTM.
This is likely due to the fact that LWs have long structures without a
change in direction, that can be fairly easily identified, while CTRWs
with long resting times will be particularly camouflaged by the noise
and ATTMs without jumps in the diffusivity will be indistinguishable
from normal diffusion. Other than identifying the model the network
does not seem to gain much information from these short trajectories
as the two peaks are close to themaximumpredicted errors onewould
expect with respect to the priors. FBM trajectories, however, are an
exception to this, as one may already see a small amount of very low
predicted errors, which will be further studied in the “Single model
regression” section.

When increasing the trajectory lengths we see lower error
predictions for all models. Both FBM and SBM achieve lower pre-
dicted errors than the other three models, despite the larger range
of α, which may be attributed to the fact that they do not rely on
hidden waiting times, in contrast to the other three models. While
we see FBM’s accuracy increasing faster than SBM’s at the beginning
for T = 100, we obtain similar predicted errors for the two models
for T = 500. This may be caused by SBM being highly influenced by
noise (see “Singlemodel regression”) and thus easier to be confused
with ATTM, since both feature a time-dependent diffusivity. The
errors introduced by model confusion can also be observed in the
persisting second peak. As we will see below, this peak can be
understood as a property of ATTM. An ATTM trajectory with no

jumps in diffusivity, which will occur more often for very sub-
diffusive trajectories (small α), will be indistinguishable from nor-
mal diffusion with α = 1, thereby introducing a large error. Due to
the uncertainty in the underlying model this predicted error is also
present for both FBM and SBM, both exhibiting ordinary Brownian
Motion for α = 1.

Analogously to the other models the predicted error for LW and
CTRW reduces with increased trajectory length. CTRW shows less
error than LW for T = 100, whichmay be attributed to the smaller prior
used for the CTRW trajectories 0.05 ≤ α ≤ 1 compared to LW 1 < α ≤ 2.
For T = 500 this difference vanishes, as the importance of different
priors decreases with better accuracy, and we even see a slightly lower
predicted error for LW.

Single model regression. In order to differentiate between errors
originating from the model uncertainty and errors specific to an indi-
vidual model, it proves useful to perform a regression of the anom-
alous diffusion exponent α on only a single diffusion model with
networks trained on only that model. As before we are able to obtain
small ENCEs below 3%, as seen in Fig. 4. Due to this low calibration
error the achievedMAEs in Fig. 4 largely resemble the predicted errors
in the histograms in Fig. 5, which will be discussed in detail in the
following. In addition, we analyse the change in predicted errors with
respect to the ground truth exponent and the noise, using the histo-
grams in Fig. 6a–e for trajectories of length T = 100, as well as Sup-
plementary Fig. S1 for lengths T = 10 and 500.

Fig. 4 | Performance evaluation for regression when the underlying model is
known. aMean absolute error (MAE) and b expected normalised calibration error
(ENCE)82 achieved by the Multi-SWAG models trained on only one model, plotted
for different trajectory lengths T by averaging over 5 × 104 (FBM, SBM) or 4 × 104

(ATTM, LW, CTRW) test trajectories each. The ENCE characterises the mean dif-
ference between predicted and observed errors. As was the case for the unknown
ground truthmodel (Fig. 3), we can achieve a small calibration error below 3%. The
MAE shows the expected results with regards to the histograms in Fig. 5.

Fig. 5 | Predicted error histogram for inferring the anomalous diffusion expo-
nent when the underlying model is known. The figure shows the distribution of
the error as predicted by neural networks trained individually for each model. The

histograms are obtained from predictions on 5 × 104 (FBM/SBM) or 4 × 104 (ATTM/
LW/CTRW) trajectories.
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FBM. As one expects, due to the larger prior, FBM’s error predictions
for very short trajectories (T = 10) are larger than the three exclusively
sub- or superdiffusive models. Compared to SBM and the perfor-
mances for unknown ground truth models in Fig. 3e, these errors are,
however, remarkably low, showing that, while the correlations for very
short trajectories were not noticeable enough to identify them as FBM
above, they are enough to significantly improve the performancewhen
they are known to be FBM trajectories. Additionally one may also
notice a small percentage of trajectories assigned with very low pre-
dicted error, which can also be seen for longer trajectories but is less
noticeable. As before, we see that the predictions quickly improve for
longer trajectories and ultimately reach better results than for ATTM,
LW, or CTRW.

By studying the dependence of the predicted error on the ground
truth exponent in Figs. 6a and S1, we can attribute the low error pre-
dictions to the very super-/subdiffusive trajectories, for which corre-
lations are apparent. This feature occurs despite of the fact that for
short trajectories only the superdiffusive trajectories contribute,
which is likely causeddue to anticorrelations in short trajectories being
similar to noisy trajectories. Concerning the dependence on noise we
only see a slight increase in the predicted accuracy for lower noise

regardless of the trajectory length, although the possibility of high
noise likely influences the predictions, as explained above.

SBM. Similar to FBM, due to the large prior, SBM trajectories start with
high error predictions for very short trajectories in Fig. 5. In contrast to
FBM, however, these predictions are much higher, since a change in
diffusivity will be hard to detect for few time steps.When increasing the
lengths, the predictions improve, getting close to those for FBM for
T = 500. Similar to above, we also observe a noticeably broad distribu-
tion of errors, this time however to the right side of the peak. We can
explain this broadness by examining the noise dependence of the pre-
dictions in Fig. 6b (and S1).We see a large difference between predicted
errors depending on noise. For example, for length T = 100 we obtain a
mean predicted standard deviation of ≈0.032 for low noise (snr = 10)
and ≈0.082 for high noise (snr = 1), more than doubling the error. We
can attribute this effect to the influence of static noise on a trajectory,
whose increments increase/decrease over time for super-/subdiffusive
trajectories. This will effectively hide part of the data under high noise,
reducing the number of effectively useful data points.

When observing the dependence of the predicted error on the
ground truth exponent in Fig. 6b we can see better predictions for the

Fig. 6 | Predicted error histogram for known ground truth model, split by
exponent andnoise for trajectories of lengthT = 100. Each of the figures [a FBM,
b SBM, c ATTM, d CTRW, e LW] shows the results for one of the five different

ground truth models, obtained from predictions on 5 × 104 (FBM/SBM) or 4 × 104

(ATTM/LW/CTRW) trajectories.
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more pronouncedly sub- and superdiffusive cases for length T = 100,
showing that despite the fact that part of these trajectories are hidden
under the noise, the large increase/decrease in diffusivity still makes
these trajectories easier to identify. One should also keep in mind that
while these will be very noisy at one end, they will also be less noisy at
the other end. The network does, however, assign a lower predicted
error for subdiffusive trajectories than for superdiffusive ones, for
which the difference increases for larger snr. This may indicate, that
the subdiffusive decrease in diffusivity (∝ 1/t1−α→ 1/t for α→0) is easier
to identify than the superdiffusive increase (∝ tα−1→ t for α→ 2). The
former will have a larger portion of the trajectory hidden under the
noisewith a steep visible decrease at the beginning,while the latterwill
increase more slowly, leading to a smaller hidden portion but also
making the non-hidden part less distinct and the transition between
more ambiguous.

ATTM. In Fig. 5 we see a behaviour for ATTM similar to what was dis-
cussed in the previous section. This time the histogram starts for short
trajectories as a single peak close to the maximum prediction possible
with respect to the prior.With increasing length the peak splits into two
peaks, where the second peak, as discussed above, originates from
subdiffusive ATTM trajectories with few or no jumps in the diffusivity.
This second peak decreases in volume for very long trajectories, since
observing no jumps becomes rarer and it becomes easier to identify the
still occurring, albeit small, jumps in normal-diffusive (α = 1) ATTM tra-
jectories. The secondpoint should alsobe the reasonwhy the right peak
is less pronounced than in the case of unknown underlying model in
Fig. 3e, as it is easier to confuse subdiffusive ATTM with normal-
diffusive FBM/SBM than with normal-diffusive ATTM.

For the α-dependence in Figs. 6c and S1 we can see that, as
expected, the right peak is more pronounced for sub- and normal-
diffusive trajectories. For length T = 500 (Fig. S1) we also see that the
lowest errors originate from close to normal-diffusive trajectories, as
thesewill exhibitmore jumps and thereby allow to identifymorewaiting
times. As for the influence of the noise, in Fig. 6c (S1) we see a slight
increase of the uncertainty with higher noise, as well as the right peak
being more pronounced for higher noise, likely due to the fact that the
noise obscures the smaller jumps occurring in normal-diffusive ATTM.

CTRW. As seen in Fig. 5 CTRW shows a single peak, whose location
shifts to lower predicted errorswith increasing trajectory length.When
examining the dependence on the ground truth α value and noise in
Figs. 6d and S1, one can see that an increase in the noise will have little
effect on the predictions, only leading to a slight increase in the

predicted error. The largest difference is observed for very short tra-
jectories in Fig. S1, likely for the fact that the low noise here allows one
to detect the very few jumps in the short trajectories. The exponent α,
however, has a higher influence on the error predictions. One can
observe that the predicted errorwill be smaller for exponents closer to
normal diffusion, arguably as more jumps occur in this case.

LW. The LW evaluation in Fig. 5 exhibits similar behaviour to the
CTRW, showing a single peak shifting toward lower predicted errors.
As discussed above the predictions for LW are slightly worse than for
CTRW in the beginning, which we attribute to the difference in the
prior. In Figs. 6e and S1, we see little to no influence of the noise on the
error predictions. From these figures one may also obtain a similar,
though much less pronounced, behaviour in dependence of the
ground truth α as for CTRW. As was the case there we see lower pre-
dictions for exponents close to normal diffusion, as more hidden
waiting times can be observed. Interestingly in Fig. S1 we see that for
long trajectories the predicted error will also be reduced for very
superdiffusive trajectories. Inpart, this can be attributed to the distinct
ballistic α = 2 LW, but should also be caused by the noise as super-
diffusive LW with a few very long jumps is, in contrast to CTRW with
few jumps, not highly influenced by noise.

Classification
Complementing the discussion of the regression in section “Regres-
sion”, we now evaluate the trained Multi-SWAG models for classifica-
tion on the test data set. The achieved accuracies depicted inFig. 7a are
in line with the best-performing participants of the AnDi-
Challenge59,62,63,65–77. As one would expect the achieved accuracy
increases with trajectory length, starting from 44.9% for T = 10 and
reaching 91.7% for T = 500. In Fig. 7b, we also see a very good perfor-
mance for error prediction, the expected calibration erroronly ranging
from 0.3 to 0.6 percentage points. The ECE generally shows a
decreasing trendwith increasing trajectory length, although very short
trajectories of T = 10 also achieved a low ECE, likely due to a high
number of trajectories predicted with very low confidences. Remark-
ably even the confidences of the lower-ranked predictions, relating to
those models that were not assigned the highest confidence, achieve
similarly low ECEs in Fig. 7c.

To further analyse the performance and error prediction, we
show the confusion matrices in Fig. 8a and the mean predicted
confidences in Fig. 8b. The confusion matrices depict how often a
model is predicted given a specific ground truth models, thereby
showing how often andwithwhichmodel eachmodel is confused. As

Fig. 7 | Performance evaluation for the classification of the diffusion model.
a Total accuracy and b expected calibration error (ECE)80,81 (see Supplementary
Information for detailed definitions) achieved byMulti-SWAG, plotted for different
trajectory lengths T by averaging over 105 trajectories each. The ECE describes the
difference one may expect between the predicted confidence and the observed
accuracy. As before we achieve a low calibration error between 0.3% and 0.6%. The
classification accuracy improves the longer the trajectory, achieving results similar

to the best scoring models in the AnDi-Challenge62. c Expected calibration error
(ECE)80,81 achieved for lower-ranked predictions, meaning those models that were
not assigned the highest confidence. A prediction of rank i corresponds to the
outputwith the ith highest confidence. Even these predictions show lowcalibration
errors below 0.5%. The vanishing ECE for the 4th and lower-ranked predictions of
long trajectories are caused by them being correctly assigned a 0% probability.
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such matrices do not consider the predicted confidences and have
already been thoroughly examined in other works59,62,63,65–77, we will
focus our investigation on the second Fig. 8, which illustrates the
mean predicted confidences of each model for different ground
truth models in dependence of the true anomalous diffusion expo-
nent α. Note that while the mean confidence will in part reflect the
predictions in the confusion matrix, this quantity also provides

additional, complementary information, as the confusionmatrix only
considers the models with the highest membership score. In the
following we analyse the results for different ground truth models.

ATTM. ATTM trajectories generally show the worst classification per-
formance of the range of models studied here. For very short trajec-
tories (T = 10)we see that themean confidence splits among allmodels

Fig. 8 | Analysis of theclassificationbehaviour. aConfusionmatrices for different
trajectory lengths. The entries indicate the relative frequency ofmodel predictions
(row) given a ground truth model (column). The matrices are obtained fromMulti-
SWAG predictions on a total of 105 test trajectories for each length. b Mean con-
fidences for different ground truth (gt) models in dependence of the ground truth

anomalous diffusion exponent α. From the figure one can infer the confidence for
the different models shown as coloured bars as assigned by Multi-SWAG. The
illustrations are plotted for different trajectory lengths by averaging over a total of
105 trajectories for each length, translating to 2 × 104 trajectories for each ground
truth model and length.
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with the lowest probabilities being assigned to the exclusively super-
diffusive LW. Reflecting the confusionmatrix, the confidences for SBM
are the highest, likely due to both SBM and ATTM featuring a time-
dependent diffusivity. For longer trajectories, we see the confidence
for FBM and SBM rise for lower α, which, as explained above, can be
attributed to that fact that ATTM without jumps is indiscernible from
ordinary Brownian motion. The confusions for CTRW, which are most
present for moderately subdiffusive to normal-diffusive trajectories,
can be attributed to the fact that both models feature hidden waiting
times and that short periods of high diffusivity in ATTM appear similar
to jumps in CTRW.

CTRW. Reflecting the high accuracies in the confusion matrices, we
observe high confidence for CTRW for longer trajectories (T ≥ 100).
For very subdiffusive trajectories we see an increase in the predicted
probability for FBM, which can be explained by the fact that CTRWs
without jumps solely consist of noise, which corresponds to an FBM
trajectory with α =0. We can also observe a similar confusion beha-
viour between ATTM and CTRW as was described for ATTM. For very
short trajectories (T = 10) the confidences for CTRW are relatively high
as compared to the other ground truthmodels, and they increasewith
higher anomalous diffusion exponent, which we attribute to the
increase in jump frequencywith higher α. Here confidences formodels
other than CTRW are split between ATTM, FBM and SBM with only
small confidences assigned to the solely superdiffusive LW.

FBM. Similarly to what we described in the “Regression” section, for
shorter trajectories, we see a large difference in FBM confidences for
very sub- and superdiffusive α. We there hypothesised this difference
to be caused by the inability to discern very subdiffusive trajectories
from noise. This can be confirmed here, as subdiffusive trajectories
show the highest confusion with CTRW, which without jumps solely
consists of noise. For very short trajectories we see an increase in LW
confidencewith increasing α, likely due to highly correlated, very short
FBM trajectories looking similar to LW trajectories without jumps. For
longer trajectories one can observe low FBMconfidence at and around
α = 1, which is caused by FBM’s convergence to normal diffusion and
leads to split uncertainties between FBM, SBM and ATTM. One should
note that the ATTM confidences here would not correspond to a
normal-diffusive ATTM but rather to a strongly subdiffusive ATTM
without jumps in diffusivity, as is evidenced by the mean confidences
for ATTM ground truth trajectories.

LW. In accordance to the high accuracies observed in the confusion
matrices, the mean confidences for LW are high even for relatively
short trajectories. These high confidences occur, as LW is easily iden-
tifiable even with few jumps. In fact the increase in confidence with
rising anomalous diffusion exponent suggests that LW trajectories are
easier to identify when fewer jumps occur, which is in contrast to
ATTM/CTRW, which both feature a decrease inmodel confidence with
fewer jumps. One should also note the jump in confidence caused by
ballistic LW (α = 2).

SBM. As was the case for FBM, for longer SBM trajectories we see the
same confusion pattern between SBM, ATTM and FBM at and around
normal diffusion α = 1. However, we also see relatively high assigned
confidences for ATTM for subdiffusive trajectories, which we again
attribute to both models featuring time-dependent diffusivities. We
see low confidence for SBM for very short trajectories, likely due to a
change in diffusivity not being noticeable for so few data points.

In Supplementary Fig. S2a–c, we include error histograms similar
to those used for regression. These resemble the already discussed
behaviour and indicate in addition that the distribution of predicted
errors often features a large number of trajectories predictedwith high
confidences of 95% to 100%.

Discussion
The AnDi-Challenge demonstrated the power of a rich arsenal of suc-
cessful machine learning approaches to analyse anomalous diffusion
trajectories. These proposedmodels, however, all suffered from a lack
of explainability due to the Black Box problem, providing answers
without explanation, which also leads to an uncertainty in the relia-
bility and usefulness of the approaches for real-world systems.

Here we expanded the successful machine learning solutions fea-
turing in the AnDi-Challenge by adding a reliability estimate to the
predictions of the machine. This estimate was obtained by modelling
aleatoric and epistemic uncertainties in the model, the latter by using a
Bayesian machine learning techniques called Multi Stochastic Weight
Averaging Gaussian. We showed that the resulting model is able to
provide accurate error estimates even for very uncertain predictions
when tested on separate, but identically distributed, test data sets. It
was also demonstrated that these uncertainty predictions provide an
additional tool to understand how machine learning results are
obtained. By analysing the prediction behaviour with respect to diffu-
sionmodel, noise, anomalous diffusion exponent and trajectory length,
we were able to relate its cause to the properties of the underlying
anomalous diffusionmodels. This analysis also indicated that a network
trained to predict the anomalous diffusion exponent will already learn
to differentiate between the anomalous diffusion models. In our study,
we also introduced the mean confidence diagrams and showed that
they provide vital information complementary to confusion matrices.

For future works testing theMulti-SWAGmodels on diffusion data
whose dynamics are not included in the training set will be an inter-
esting field of study. Suchdatamay include trajectories generatedwith
different diffusionmodels, a subordinationor superposition ofmodels
or with changing models. Results here will indicate, what behaviour
one should expect when using these models on experimental data, as
such data will rarely exactly follow the theoretical models. Naturally
though this can and should not replace the need to test the developed
methods here as well. Similarly, it might be of interest to analyse the
results obtained when applying these methods to "poisoned” (faulty)
test data, e.g., when non-Gaussian errors contaminate the data, non-
trained stochastic mechanisms are included, or the analysed time
series have missing points. As one would expect, this leads to a higher
predicted error due to the epistemic uncertainty, as described in the
“Uncertainties in deep learning” section. Quantifying such errors sys-
tematically will be an interesting question for the future. We also
mention that applying the used BDL methods to the feature-based
approaches for decoding anomalous diffusion data brought forth
recently60,75–77 and analysing error prediction performance as well as
the impact of the different features on these error predictions, could
also provide interesting insights. Another interesting avenue could be
provided by the third task of the AnDi-Challenge, which consisted of
predicting the change point of a diffusion trajectory switchingmodels
and/or exponent. Recent studies suggest that sequence to sequence
networks, predicting trajectory properties at each time step, are suited
to solve this task62. HereBDLmight provide an advantage in addition to
the error estimate, as one would expect the predicted uncertainty to
maximise at the change point and thereby simplify its determination.

Methods
Anomalous diffusion models
For comparability, the models considered in this work are the same as
those in the AnDi-Challenge61,62. The trajectories are generated from
one of the 5 models below, all producing an MSD of the form
〈r2(t)〉∝Kαtα. Examples for each model are shown in Fig. 1.

CTRW. The continuous-time random walk (CTRW) is defined as a
random walk, in which the times between jumps and the spatial dis-
placements are stochastic variables35–37. In our case, we are considering
a CTRW for which the waiting time distribution Ψ(τ) features a power
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law tailΨ(τ)∝ τ−1−α with scaling exponent 0 < α < 1, thereby leading to a
diverging mean waiting time

R1
0 τΨðτÞdτ =1. The spatial displace-

ments follow a Gaussian law.

LW. The Lévy walk (LW) is a special case of a CTRW. As above we
consider power law distributed waiting times Ψ(τ)∝ τ−1−σ, but the dis-
placements are correlated, such that the walker always moves with
constant speed v in one direction for one waiting time, randomly
choosing a new direction after each waiting time. One can show that
this leads to an anomalous diffusion exponent α given by42

α =
2 if 0 < σ < 1 ðballistic diffusionÞ

3� σ if 1 < σ < 2 ðsuperdiffusionÞ:

�
ð1Þ

FBM. Fractional Brownian motion (FBM) is characterised by a long-
range correlation between the increments. It is created by using frac-
tional Gaussian noise for the increments given by

hξ f GnðtÞξ f Gnðt + τÞi∼αðα � 1ÞKατ
α�2 ð2Þ

for sufficiently large τ, where α is the anomalous diffusion exponent
and Kα is the generalised diffusion constant38.

SBM. Scaled Brownian motion (SBM) features the time-dependent
diffusivity K(t) = αKαtα−1, equivalent to the Langevin equation

dxðtÞ
dt

=
ffiffiffiffiffiffiffiffiffiffiffiffi
2KðtÞ

p
ξðtÞ, ð3Þ

where ξ(t) is white, zero-mean Gaussian noise44.

ATTM. Similar to SBM, the annealed transient time motion (ATTM)
features a diffusion coefficient D varying over time. But in contrast to
SBM, the change in diffusivity is random in magnitude and occurs
instantaneously in a manner similar to the jumps in a CTRW. Here we
consider diffusion coefficients sampled from the distribution P(D)∝Dσ

−1 and use a delta distribution of waiting times P(τ)∝ δ(τ −D−γ), with
σ < γ < σ + 1. As shown in ref. 45, this leads to subdiffusion with α = σ/γ.

We use the andi-datasets Python package for the imple-
mentation of these models89. In an effort to simulate conditions closer
to experimental situations, all data are corrupted by white Gaussian
noise with the signal-to-noise strength ratio snr∈ {1, 2, 10}. Given the
trajectory xt, we obtain the noisy trajectory ~xðtÞ= xðtÞ+ ξðtÞ with the
superimposed noise

ξðtÞ∼ σΔx

snr
N ð0,1Þ, ð4Þ

where σΔx is the standard deviation of the increment process Δx(t) =
x(t + 1) − x(t). We consider trajectories generated with anomalous dif-
fusion exponents α∈ {0.05, 0.10, . . . , 1.95, 2}. Note however that only
SBM is applied to the whole range of α values. CTRW and ATTM are
only sub- or normal-diffusive (α ≤ 1), LW is superdiffusive (α > 1) and
ballistic (α = 2) FBM is not considered here. This entails that data sets
with amixture of models cannot be equally distributed with respect to
the anomalousdiffusion exponents andunderlyingmodels at the same
time. In this work, we choose the prior distributions of models and
exponents such that they conform with those used in the AnDi-
Challenge, where the priors were chosen to simulate no prior-
knowledge for the given task. This entails that the data set used for
the classification tasks is equally distributed with respect to models
but not among anomalous diffusion exponents, and vice versa for the
data set used for the regression of α. Subdiffusive trajectories are
therefore overrepresented in the classification data sets, while FBM
and SBM will be overrepresented for regression.

Uncertainties in deep learning
In short, a neural network in deep learning is a function approx-
imator, where the output fθ(xi) of the neural network given inputs xi is
optimised to minimise some loss function L. This is achieved by
fitting the function parameters (weights) θ of the neural network,
usually by utilising the stochastic gradient descent algorithm or a
variation of it90.

In Bayesian Deep Learning, one differentiates between two major
types of uncertainty named aleatoric and epistemic uncertainty91,92.

Aleatoric uncertainty. Aleatoric uncertainty refers to the uncertainty
inherent in the system underlying the data, caused, for example, by
noise or an inherent stochasticity of the system. This kind of uncer-
tainty needs to be included in the output of the neural networkmodel.
We then minimise the negative log-likelihood loss

Lnll = �
X
i

logpð ŷi∣ f θðxiÞÞ, ð5Þ

where ŷi is the target output and fθ(xi) is the prediction of the neural
network given input xi and weights θ93.

For regression problems, the commonly used models output
only a predicted value and optimise the network to minimise either
the mean absolute error or the mean squared error94. In order to
model aleatoric uncertainty we modify the network to output mean
and variance of a Gaussian predictive distribution, instead of just
predicting a single value (while a Gaussian distribution will often not
be a precise approximation, it suffices to obtain well-calibrated
estimates for the standard deviation). When pð ŷi∣ f θðxiÞÞ∼N μi ,σi

ð ŷiÞ,
we minimise the negative log-likelihood, which becomes the Gaus-
sian negative log-likelihood loss

Lgnll =
X
i

1
2

logðσ2
i Þ+

∣∣μi � ŷi∣∣
2

σ2
i

 !
+ const, ð6Þ

where μi and σi are the mean and variance outputs of the neural net-
work for input xi95.

The commonly used models for classification already output an
aleatoric error. We train the model to output membership scores for
each class in a so-called logit vector zi = fθ(xi), from which the class
probabilities can be obtained via a normalised exponential (softmax)
function

pi,k =
exp zi,kP
k exp zi,k

, ð7Þ

where pi,k is the predicted probability of class k given input xi. From the
negative log-likelihood loss we then obtain the cross entropy loss

Lcel = �
X
i,k

ŷi,k logðpi,kÞ, ð8Þ

where ŷi,k is a binary indicator ŷi,k = δjik
of the true class ji of input xi.

Epistemic uncertainty and stochastic weight averaging Gaussian
(SWAG). Epistemic uncertainty refers to the uncertainty caused by an
imperfectmodel, for example due to adifferencebetween training and
test data or insufficient training data. In Bayesian Deep Learning we
model this error by assigning an uncertainty to the inferred neural
network weights. If pðθ∣DÞ is the probability distribution over the
weights θ given data D, we obtain

pð y∣xi,DÞ=
Z

dθpð y∣xi,θÞpðθ∣DÞ: ð9Þ
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In practice this integral is approximated by Monte Carlo (MC)
integration96

pð y∣xi,DÞ ≈
1
M

XM

m= 1

pð y∣xi,θmÞ, ð10Þ

where the weights θm are sampled from the posterior pðθ∣DÞ and M is
the number of MC-samples. Mathematically this posterior is given by
Bayes’ rule97

pðθ∣DÞ= pðD∣θÞpðθÞ
pðDÞ : ð11Þ

However, as calculating the posterior becomes intractable for large
networks and data sets, we need to approximate it. For this purpose
Maddox et al. proposed a method named Stochastic Weight Averaging
Gaussian (SWAG)87, which we will use in a combination with Deep
Ensembles83 leading to Multi-SWAG as proposed by Wilson et al.88. In
SWAG one interprets the stochastic gradient descent (SGD) algorithm,
used to optimise the neural network given a loss function, as
approximate Bayesian inference. SWAG estimates the first and second
moment of the running SGD iterates to construct a Gaussian dis-
tribution over the weights pðθ∣DÞ∼N �θ,ΣðθÞ. Maddox et al. show that
this Gaussian approximation suffices to capture the local shape of the
loss space around the obtainedminimum.When training a pre-trained
neural network for T SWAG updates, the mean value and sample
covariance are given as87

�θ=
1
T

XT

i = 1

θi ð12Þ

Σ=
1

T � 1

XT

i = 1

ðθi � �θÞðθi � �θÞT : ð13Þ

As computing the full covariance matrix is often intractable, SWAG
approximates by splitting it into a diagonal covariance Σdiag, only
containing the diagonal variances, and low-rank covariance Σlow-rank,

which approximates the full matrix by only using the last few update
steps. The diagonal covariance is given as

Σdiag = diagðθ2 � �θ
2Þ, ð14Þ

whereθ2 = 1
T

PT
i= 1 θ

2
i and the squares in θ2i ,

�θ
2
are applied element-wise.

For the low-rank covariance we first approximate Σ using the running
estimate �θi after i steps:Σ ≈ 1

T�1
PT

i = 1ðθi � �θiÞðθi � �θiÞ
T
= DDT

T�1, whereD is
the deviation matrix consisting of columns Di = ðθi � �θiÞ. Further we
only use the last K columns of D in order to calculate the low rank
covariance matrix. Defining D̂ as the matrix comprised of columns
T −K + 1,…, T of D, we obtain

Σlow�rank =
D̂D̂

T

K � 1
: ð15Þ

Thus one only needs to keep track of �θ, θ2 and D̂ and can sample the
weights used in Eq. (10) from the Gaussian N ð�θ, 12 ðΣdiag +Σlow�rankÞÞ.
The full SWAG procedure is shown in Algorithm 1.

Algorithm 1. SWAG87

θ0 pre-trained weights; η learning rate; T number of training steps; c
moment update frequency; K maximum number of columns in
deviation matrix D̂; M number of Monte Carlo samples in Bayesian
model averaging

Train SWAG
�θ θ0,θ

2  θ2
0 ⊳ initialise moments

for i← 1 to T do
θi  θi�1 � η∇θLðθi�1Þ ⊳ SGD update
if mod(i, c) = 0 then

n← i/c
�θ n�θ+ θi

n+ 1 , θ
2  nθ2 +θ2i

n+ 1 ⊳ update moments
if number of columnsðD̂Þ=K then

remove first column in D̂
append column ðθi � �θÞ to D̂ ⊳deviation matrix

return θSWA =
�θ,Σdiag = θ

2 � �θ
2
, D̂

Test Bayesian Model Averaging
for i← 1 to M do

draw ~θi ∼N θSWA,
1
2Σdiag +

D̂D̂
T

2ðK�1Þ

� �

pðy∣DataÞ+ = 1
M pðy∣~θiÞ

return p( y∣Data)
In Multi-SWAG one combines this SWAG algorithm with deep

ensembles by training multiple SWAG models and taking an equal
amount of samples from each88.

Neural network architecture and training
Inspired by its success in the AnDi-Challenge62 we chose a recurrent
(LSTM98) neural network as depicted in Fig. 9 as our network archi-
tecture. We train separate networks for different trajectory lengths,
but use the same architecture for each. Regardless of the trajectory
length, all networks are trained on a total of 106 trajectories from all 5
models. As stated above, for regression, the data set is equally dis-
tributed with respect to the anomalous diffusion exponents but not
among ground truthmodels, and vice versa for classification. Later we
also train networks on data sets consisting of only a single anomalous
diffusion model and only 3 × 105 trajectories. The neural network
hyper-parameters, consisting of learning rate, weight decay99, batch
size, training length (epoch number) and SWAG moment update fre-
quency, are tuned using a separate validation set of 104 trajectories,
and final performance results are obtained froma third testing data set
varying in size between 4 × 104 and 1 × 105, depending on the task. Data
are generated using the andi-datasets python package89, shorter
trajectories are obtained from the same data set by discarding later
data points. Noise, as specified in Eq. (4), is added after cutting off the
data points beyond the desired length, as otherwise the signal to noise

Fig. 9 | Architecture of the used Neural Network. For both regression and clas-
sification, the network first consists of three stacked long short-term memory
(LSTM) layers98 of sizes 128, 128 and 64. For regression, the last LSTM is directly
fully connected into the output layer returning a mean μ and variance σ, while for
classification the output layer is preceded by another fully connected layer of size
20. The architecture is inspired by the successful applications of recurrent neural
networks during the AnDi-Challenge62,68,71,74.
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ratio (snr) on the long trajectories may not represent the snr of the
shortened trajectories, especially when dealing with models using a
changing diffusivity like SBM.

Before training, the trajectory data sets consisting of time series
of positions xt are pre-processed by conversion to increments Δxt =
xt+1 − xt and normalising these increments to a standard deviation of
unity for each trajectory. Rescaling the data in thismanner speeds up
the training process and, since we are not interested in a prediction
of the diffusion coefficient, which would be altered by this step, it
will not hinder the neural network’s performance.

The networks are trained using the Adam optimiser100 for 65 to 85
epochswith the last 10 to 15 epochs used for SWAG training,where one
epoch corresponds to one full iteration through the training set. The
exact epoch number as well as the other hyper-parameters are fine-
tuned individually for each task and trajectory length using the vali-
dation data set. Once an optimal set of hyper-parameters is found, we
use them to train 20 SWAG models and choose the 5 best-performing
networks for Multi-SWAG, as measured by their achieved loss on the
validation set. (This choice is necessary as some training processes
may get trapped in suboptimalminima.) To obtain the final output, we
sample 10 networks from each SWAG model for a total of 50 Monte
Carlo samples and combine these into a single output of model
probabilities for classification or mean and variance for regression in
accordance to Eq. (10).

Data availability
The data resulting from applying the model on the test data sets are
available at https://github.com/hseckler/BDL-for-AnDi. The training
and test data setswere randomly generated using theandi-datasets
python package89.

Code availability
All software used in this study is available at https://github.com/
hseckler/BDL-for-AnDi.

References
1. Pearson, K. The problem of the random walk. Nature 72, 342

(1905).
2. Okubo, A. Dynamical aspects of animal grouping: swarms,

schools, flocks, and herds. Adv. Biophys. 22, 1 (1986).
3. Vilk, O. et al. Unravelling the origins of anomalous diffusion: from

molecules to migrating storks. Phys. Rev. Res. 4, 033055 (2022).
4. Lüdtke, O., Roberts, B. W., Trautwein, U. & Nag, G. A randomwalk

downuniversity avenue: life paths, life events, andpersonality trait
change at the transition to university life. J. Pers. Soc. Psychol. 101,
3 (2011).

5. Fernández, R., Fröhlich, J. & Sokal, A. D. Random Walks, Critical
Phenomena, and Triviality in Quantum Field Theory (Springer Sci-
ence & Business Media, 2013).

6. Anderson, J. B. Quantum chemistry by random walk. H 2P, H+
3

D3h
1A01, H2

3Σ+
u, H4

1Σ+
g, Be

1S. J. Chem. Phys. 65, 10 (1976).
7. Codling, E. A., Plank,M. J. & Benhamou, S. Randomwalkmodels in

biology. J. R. Soc. Interface 5, 25 (2008).
8. Malkiel, B. G. A random walk down Wall Street: including a life-

cycle guide to personal investing (W. Norton & Co, New
York, 1999).

9. Bouchaud, J.-P. & Potters, M. Theory of Financial Risk and Deriva-
tive Pricing: from Statistical Physics to Risk Management (Cam-
bridge University Press, 2003).

10. Mises, R. V. Fundamentalsätze der Wahrscheinlichkeitsrechnung.
Math. Z. 4, 1 (1919).

11. Einstein, A. Über die von der molekularkinetischen Theorie der
Wärme geforderte Bewegung von in ruhenden Flüssigkeiten
suspendierten Teilchen. Ann. Phys. 322, 549 (1905).

12. von Smoluchowski, M. Zur kinetischen Theorie der Brownschen
Molekularbewegung und der Suspensionen. Ann. Phys. 326,
756 (1906).

13. Sutherland, W. A dynamical theory of diffusion for non-
electrolytes and the molecular mass of albumin. Philos. Mag. 9,
781 (1905).

14. Langevin, P. Sur la théorie du mouvement brownien. C. R. Acad.
Sci. 146, 530 (1908).

15. van Kampen, N. G. Stochastic Processes in Chemistry and Physics
(North Holland, 1981).

16. Lévy, P. Processus Stochastiques Et Mouvement Brownien (Gau-
thier-Villars, 1948).

17. Hughes, B. D. Random Walks and Random Environments Vol I
(Oxford University Press, 1995).

18. Golding, I. & Cox, E. C. Physical nature of bacterial cytoplasm.
Phys. Rev. Lett. 96, 098102 (2006).

19. Manzo, C. et al. Weak ergodicity breaking of receptor motion in
living cells stemming from random diffusivity. Phys. Rev. X 5,
1 (2015).

20. Krapf, D. et al. Spectral content of a single non-Brownian trajec-
tory. Phys. Rev. X 9, 1 (2019).

21. Stadler, L. & Weiss, M. Non-equilibrium forces drive the anom-
alous diffusion of telomeres in the nucleus of mammalian cells.
New J. Phys. 19, 11 (2017).

22. Kindermann, F. et al. Nonergodic diffusion of single atoms in a
periodic potential. Nat. Phys. 13, 2 (2017).

23. Sokolov, I. M. Models of anomalous diffusion in crowded envir-
onments. Soft Matter 8, 35 (2012).

24. Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered
media: statistical mechanisms, models and physical applications.
Phys. Rep. 195, 4 (1990).

25. Metzler, R. & Klafter, J. The random walk’s guide to anomalous
diffusion: a fractional dynamics approach. Phys. Rep. 339,
1 (2000).

26. Saxton, M. J. Anomalous diffusion due to obstacles: aMonte Carlo
study. Biophys. J. 66, 2 (1994).

27. Saxton, M. J. Anomalous subdiffusion in fluorescence photo-
bleaching recovery: a Monte Carlo study. Biophys. J. 81,
4 (2001).

28. Burov, S., Jeon, J.H.,Metzler, R. &Barkai, E. Singleparticle tracking
in systems showing anomalous diffusion: the role of weak ergo-
dicity breaking. Phys. Chem. Chem. Phys. 13, 5 (2011).

29. Ernst, D., Köhler, J. & Weiss, M. Probing the type of anomalous
diffusion with single-particle tracking. Phys. Chem. Chem. Phys.
16, 17 (2014).

30. Höfling, F. & Franosch, T. Anomalous transport in the crowded
world of biological cells. Rep. Prog. Phys. 76, 4 (2013).

31. Horton,M. R., Höfling, F., Rädler, J. O. & Franosch, T. Development
of anomalous diffusion among crowding proteins. Soft Matter 6,
12 (2010).

32. Tolić-Nørrelykke, I. M.,Munteanu, E. L., Thon, G., Oddershede, L. &
Berg-Sørensen, K. Anomalous diffusion in living yeast cells. Phys.
Rev. Lett. 93, 7 (2004).

33. Leijnse, N., Jeon, J. H., Loft, S., Metzler, R. & Oddershede, L. B.
Diffusion inside living human cells. Eur. Phys. J. Spec. Top. 204,
1 (2012).

34. Metzler, R., Jeon, J. H., Cherstvy, A. G. & Barkai, E. Anomalous
diffusion models and their properties: non-stationarity, non-
ergodicity, and ageing at the centenary of single particle tracking.
Phys. Chem. Chem. Phys. 16, 44 (2014).

35. Montroll, E. W. &Weiss, G. H. Randomwalks on lattices. II. J. Math.
Phys. 6, 2 (1965).

36. Hughes, B. D., Shlesinger, M. F. & Montroll, E. W. Random walks
with self-similar clusters. Proc. Natl Acad. Sci. USA 78, 6 (1981).

Article https://doi.org/10.1038/s41467-022-34305-6

Nature Communications |         (2022) 13:6717 11

https://github.com/hseckler/BDL-for-AnDi
https://github.com/hseckler/BDL-for-AnDi
https://github.com/hseckler/BDL-for-AnDi


37. Weissman, H., Weiss, G. H. & Havlin, S. Transport properties of the
continuous-time random walk with a long-tailed waiting-time
density. J. Stat. Phys. 57, 1 (1989).

38. Mandelbrot, B. B. & van Ness, J. W. Fractional Brownian motions,
fractional noises and applications. SIAM Rev. 10, 4 (1968).

39. Lévy, P. Théorie de l’Addition des Variables Aléatoires (Gauthier-
Villars, 1937).

40. Chechkin, A. V., Metzler, R., Klafter, J. & Gonchar, V. Y. Anomalous
Transport: Foundations andApplications 129–162 (Springer, 2008).

41. Shlesinger, M. F. & Klafter, J. In On Growth and Form
(Springer, 1986).

42. Zaburdaev, V., Denisov, S. & Klafter, J. Lévy walks. Rev. Mod. Phys.
87, 2 (2015).

43. Lim, S. C. & Muniandy, S. V. Self-similar Gaussian processes for
modeling anomalous diffusion. Phys. Rev. E 66, 2 (2002).

44. Jeon, J.-H., Chechkin, A. V. & Metzler, R. Scaled Brownian motion:
a paradoxical process with a time dependent diffusivity for the
description of anomalous diffusion. Phys. Chem. Chem. Phys. 16,
30 (2014).

45. Massignan, P. et al. Nonergodic subdiffusion from Brownian
motion in an inhomogeneous medium. Phys. Rev. Lett. 112,
15 (2014).

46. Meroz, Y. & Sokolov, I. M. A toolbox for determining subdiffusive
mechanisms. Phys. Rep. 573, 1–29 (2015).

47. Cherstvy, A. G., Thapa, S., Wagner, C. E. & Metzler, R. Non-Gaus-
sian, non-ergodic, and non-Fickian diffusion of tracers in mucin
hydrogels. Soft Matter 15, 12 (2019).

48. Makarava, N., Benmehdi, S. & Holschneider, M. Bayesian estima-
tion of self-similarity exponent. Phys. Rev. E 84, 2 (2011).

49. Elf, J. & Barkefors, I. Single-molecule kinetics in living cells. Ann.
Rev. Biochem. 88, 635–659 (2019).

50. Bartumeus, F., da Luz, M. G. E., Viswanathan, G. M. & Catalan, J.
Animal search strategies: a quantitative random-walk analysis.
Ecology 86, 11 (2005).

51. Plerou, V., Gopikrishnan, P., Amaral, L. A. N., Gabaix, X. & Stanley,
H. E. Economic fluctuations and anomalous diffusion. Phys. Rev. E
62, 3 (2000).

52. Metzler, R. et al. Analysis of single particle trajectories:
from normal to anomalous diffusion. Acta Phys. Pol. B 40,
5 (2009).

53. Magdziarz, M., Weron, A., Burnecki, K. & Klafter, J. Fractional
Brownian motion versus the continuous-time random walk: A
simple test for subdiffusive dynamics. Phys. Rev. Lett. 103,
18 (2009).

54. Metzler, R. Brownian motion and beyond: first-passage, power
spectrum, non-Gaussianity, and anomalous diffusion. J. Stat.
Mech. 2019, 11 (2019).

55. Vilk, O. et al. Classification of anomalous diffusion in animal
movement data using power spectral analysis. J. Phys. A 55,
334004 (2022).

56. Condamin, S., Bénichou, O., Tejedor, V., Voituriez, R. & Klafter, J.
First-passage times in complex scale-invariantmedia.Nature450,
7166 (2007).

57. Slezak, J., Metzler, R. & Magdziarz, M. Codifference can detect
ergodicity breaking and non-Gaussianity.New J. Phys. 21, 5 (2019).

58. Muñoz-Gil, G., Garcia-March, M. A., Manzo, C., Martín-Guerrero, J.
D. & Lewenstein, M. Single trajectory characterization viamachine
learning. New J. Phys. 22, 013010 (2020).

59. Granik, N. et al. Single-Particle diffusion characterization by deep
learning. Biophys. J. 117, 185 (2019).

60. Pinholt, H. D., Bohr, S. S. R., Iversen, J. F., Boomsma,W. &Hatzakis,
N. S. Single-particle diffusional fingerprinting: Amachine-learning
framework for quantitative analysis of heterogeneous diffusion.
Proc. Natl Acad. Sci. USA 118, 31 (2021).

61. Muñoz-Gil, G. et al. The anomalous diffusion challenge: single
trajectory characterisation as a competition. Proc. SPIE
11469, Emerging Topics in Artificial Intelligence 2020,
114691C (2020).

62. Muñoz-Gil, G. et al. Objective comparison of methods to decode
anomalous diffusion. Nat. Commun. 12, 6253 (2021).

63. Aghion, E., Meyer, P. G., Adlakha, V., Kantz, H. & Bassler, K. E.
Moses, Noah and Joseph effects in Lévy walks. New J. Phys. 23,
2 (2021).

64. Meyer, P. G., Aghion, E. & Kantz, H. Decomposing the effect of
anomalous diffusion enables direct calculation of the Hurst
exponent and model classification for single random paths. J.
Phys. A 55, 274001 (2022).

65. Krog, J., Jacobsen, L. H., Lund, F. W., Wüstner, D. & Lomholt, M. A.
Bayesian model selection with fractional Brownian motion. J. Stat.
Mech. 2018, 093501 (2018).

66. Park, S., Thapa, S., Kim, Y., Lomholt, M. A. & Jeon, J.-H. Bayesian
inference of Lévy walks via hidden Markov models. J. Phys. A 54,
48 (2021).

67. Thapa, S. et al. Bayesian inference of scaled versus fractional
Brownian motion. J. Phys. A 55, 19 (2022).

68. Argun, A., Volpe, G. & Bo, S. Classification, inference and seg-
mentation of anomalous diffusion with recurrent neural networks.
J. Phys. A 54, 2 (2021).

69. Bo, S., Schmidt, F., Eichhorn, R. & Volpe, G. Measurement of
anomalous diffusionusing recurrent neural networks. Phys. Rev. E,
100, 1 (2019).

70. Gentili, A. & Volpe, G. Characterization of anomalous diffusion
classical statistics poweredbydeep learning (CONDOR). J. Phys. A
54, 31 (2021).

71. Li, D., Yao, Q. & Huang, Z. WaveNet-based deep neural networks
for the characterization of anomalous diffusion (WADNet). J. Phys.
A 54, 40 (2021).

72. Verdier, H. et al. Learning physical properties of anomalous ran-
dom walks using graph neural networks. J. Phys. A 54, 23 (2021).

73. Manzo, C. Extreme learning machine for the characterization of
anomalous diffusion from single trajectories (AnDi-ELM). J. Phys. A
54, 33 (2021).

74. Garibo-i-Orts, Ò., Baeza-Bosca, A., Garcia-March, M. A. & Con-
ejero, J. A. Efficient recurrent neural network methods for anom-
alously diffusing single particle short and noisy trajectories. J.
Phys. A 54, 50 (2021).

75. Janczura, J., Kowalek, P., Loch-Olszewska, H., Szwabiñski, J. &
Weron, A. Classification of particle trajectories in living cells:
machine learning versus statistical testing hypothesis for frac-
tional anomalous diffusion. Phys. Rev. E 102, 3 (2020).

76. Kowalek, P., Loch-Olszewska, H., Łaszczuk, Ł., Opała, J. & Szwa-
biński, J. Boosting the performance of anomalous diffusion clas-
sifiers with the proper choice of features. J. Phys. A 55, 24 (2022).

77. Loch-Olszewska, H. & Szwabiński, J. Impact of feature choice on
machine learning classification of fractional anomalous diffusion.
Entropy 22, 12 (2020).

78. Szegedy, C. et al. Intriguing properties of neural networks. In Proc.
Int. Conf. Representations (2014).

79. DeGroot, M. H. & Fienberg, S. E. The comparison and evaluation of
forecasters. Statistician 32, 1 (1983).

80. Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of
modern neural networks. In Int. Conf. Machine Learning (2017).

81. Naeini, M. P., Cooper, G., & Hauskrecht, M. Obtaining well cali-
brated probabilities using Bayesian binning. In 29th AAAI Conf.
Artif. Intell. (2015).

82. Levi, D., Gispan, L., Giladi, N. & Fetaya, E. Evaluating and cali-
brating uncertainty prediction in regression tasks. Sensors 22,
5540 (2020).

Article https://doi.org/10.1038/s41467-022-34305-6

Nature Communications |         (2022) 13:6717 12



83. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scal-
able predictive uncertainty estimation using deep ensembles.
Adv. Neural Inf. Process. Syst. 30, 6402 (2017).

84. MacKay, D. J. C. A practical Bayesian framework for back-
propagation networks. Neural Comput. 4, 3 (1992).

85. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation:
representing model uncertainty in deep learning. In Int. Conf.
Machine Learning (PMLR, 2016).

86. Gal, Y. Uncertainty in Deep Learning. PhD-Thesis (Cambridge
University, 2016).

87. Maddox,W. J., Izmailov, P., Garipov, T., Vetrov, D. P. &Wilson, A.G.
A simple baseline for Bayesian uncertainty in deep learning. Adv.
Neural Inf. Process. Syst. 32, 13153 (2019).

88. Wilson, A. G. & Izmailov, P. Bayesian deep learning and a prob-
abilistic perspective of generalization. Adv. Neural Inf. Process.
Syst. 33, 4697 (2020).

89. Muñoz-Gil, G. et al. The Anomalous Diffusion Challenge Dataset.
https://doi.org/10.5281/zenodo.3707702 (2020).

90. Bottou, L. Large-scale machine learning with stochastic gradient
descent. In Proc. COMPSTAT’2010 (2010).

91. Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it
matter? Struct. Saf. 31, 2 (2009).

92. Kendall, A. & Gal, Y. What uncertainties do we need in Bayesian
deep learning for computer vision? Adv. Neural Inf. Process. Syst.
30, 5580 (2017).

93. Nielsen, M. A. Neural Networks and Deep Learning (Determination
Press, 2015).

94. Wang, Q., Ma, Y., Zhao, K. & Tian, Y. A comprehensive
survey of loss functions in machine learning. Ann. Data Sci. 9,
2 (2022).

95. Nix, D. A. &Weigend, A. S. Estimating themeanand varianceof the
target probability distribution. In Proc. 1994 IEEE Int. Conf. Neural
Networks (ICNN’94), Vol. 1 (IEEE, 1994).

96. Metropolis, N. & Ulam, S. The Monte Carlo method. J. Am. Stat.
Assoc. 44, 247 (1949).

97. Kolmogorov, A. N. Foundations of the Theory of Probability
(Chelsea Publishing Co., 1950).

98. Hochreiter, S. & Schmidhuber, J. Long short-termmemory.Neural
Comput. 9, 8 (1997).

99. Krogh, A. & Hertz, J. A simple weight decay can improve gen-
eralization. Adv. Neural Inf. Process. Syst. 4, 950 (1991).

100. Kingma, D. P. & Ba, J. Adam: amethod for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2014).

Acknowledgements
We thank the German Science Foundation (DFG, grant no. ME 1535/12-1)
for support. We also acknowledge the German Science Foundation
(DFG, project no. 491466077) for Open Access support.

Author contributions
H.S. designed and implemented the software and analysed the results.
R.M. designed and supervised the project and analysed the results. All
authors wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34305-6.

Correspondence and requests formaterials shouldbe addressed toRalf
Metzler.

Peer review information Nature Communications thanks the, anon-
ymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-34305-6

Nature Communications |         (2022) 13:6717 13

https://doi.org/10.5281/zenodo.3707702
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41467-022-34305-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Title
	Abstract
	Additional information
	Competing interests
	Funding
	Author contributions
	Acknowledgements
	References
	Code availability
	Data availability
	Methods
	Anomalous diffusion models
	CTRW
	LW
	FBM
	SBM
	ATTM
	Uncertainties in deep learning
	Aleatoric uncertainty
	Epistemic uncertainty and stochastic weight averaging Gaussian (SWAG)
	Neural network architecture and training

	Discussion
	Results
	Regression
	Single model regression
	FBM
	SBM
	ATTM
	CTRW
	LW
	Classification
	ATTM
	CTRW
	FBM
	LW
	SBM




