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1. Deterministic Time SeriesModelling
To be subject of a separate textbook.

2. Stationary Stochastic Processes

2.1. De€finitions

A set of random variables X(t) where te ® < R (real numbers) isreferred to as a stochastic
process. A discrete stochastic process is defined as a sequence of random variables X(t) where
t=ty,to, ..., tr,...,shortly .., X1, X2, ..., Xr... or X

The mathematical expectations E(X;) can differ from time to time and form a mean function
depending on time

u(t) = My = E[Xt] (2.1)

The same way the variances var(X;) form the variance function, depending on time too:

O'Z(t) = O-tz = E[(X, _:ut)z] : (2.2

Generally, there is a certain variance at each point of time. Principally, thisis not the same as
variability of empirical data during the run of the process over time.

The autocovariance
Tut, = COV(th , th) = E[(th - lutl)(xtz — M, )] (2.3)

generally dependson each t; and t..

One finite realization Xy, Xy, ..., X7 Of a discrete stochastic process ... Xi, Xp,...Xr... iscaled a
time series. In this chapter we shall consistently distinguish between stochastic processes and
time series generated by them. Processes are marked by capitals. Small letters mark time
series. Exceptions are residual processes belonging to models for stochastic processes and not
having any independent practical content. They are designed by small letters such as a, u and
&, too. The strict distinction is necessary for correctly deducing properties of time series from
those of stochastic processes. When practically modelling empirical time series later on, this
distinction can be more or less neglected.

A stochastic process X; is called strongly stationary, if the joint probability distribution of all
variables
Xt » Xt .., Xy isthe same as that
1 2

n
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X; isweakly stationary, if

Mean M= = const

Variance o= o’ = const

Autocovariance Y =y ., =y; with 7=t,—-t, (Lag)
tl;t2 t1 t2

Being a function of only the lag 7, the autocovariance
@) =7, =El(X, )X, — )] (20

is called autocovariance function. For =0 it is equal to the variance.

By standardization with ¢ = yo the autocorrelation function of a stationary stochastic process
is obtained:

_}r 1 -
P, _7/—0 with 1<p. <1. (25)

A time series xp, X2, ..., X7 that is one realization of a stationary stochastic process X; is called
stationary as well.

In practical analytical work stationarity of atime series means

. no trend

. no systematic change of variance

. no strictly periodic fluctuations

. no systematically changing interdependencies between the elements of the time series

Economic time series consisting of data observed in practice such as gross national product
for a sequence of years usually are not stationary.

2.2. Ergodicity

A fundamental obstacle to estimating the distribution parameters of a stochastic processis that
generaly the sample size is n = 1, because usualy here exists only one time series for a
process. Thus a sensible estimation virtually is not possible. The stochastic process to be
examined itself is unknown. Its stationarity or nonstationarity can be found only by analyzing
this one existing time series. But on the other hand: Many analysis methods for time series
assume stationarity. This leads to the sort of circular conclusion, that the property to be found
firstly has to be assumed to exist.

A solution can be found by using the notion of ergodicity: thisis the behaviour of alarge class
of stationary processes, where the arithmetic mean over time periods converges to the
mathematical expectation x. Ergodicity makes it possible to estimate x, ¢%, A1) of the
underlying process by using one time series only.

Approaches for recognizing the stationarity of atime series are various.
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. Graphical representation of the time series and visual check for trend, i.e. for changing
mean, increasing or decreasing variance and strong periodicities

. Examination of the empirical autocorrelation

. Testsfor adeterministic trend, e.g. t-test of aleast squares estimation

. Tests for a stochastic trend, e.g. unit root test.

2.3. Special Cases

A process is called a normal process if the joint distribution of X; , X; , ..., X; isann-
1 2 n

dimensiona normal distribution. In this case, from weak stationarity follows strong
stationarity.

White noise is a purely random process i.e. a series of independent identically distributed
random variables & (iid). The most important properties of white noise are
M, = E(a) = const = u

o’ =const =07

Yir, =0 fUr t #t,

(2.6)

Stationarity immediately follows from this. White noise plays an important role in modelling
for the representation of the error or innovations part in a data generating stochastic process.

Example 2.1

Let us consider two white noise processes
Xi= &
and Y;= 3+15a
where a; is white noise with zero mean and unit variance. Obviously Y; has the mean 4 =3 and
the variance 1.5.

Figure 2.1 displays two independent realizations for each process generated by normally

In order to find out whether or not a time series x; represents white noise it is useful to test its
empirical autocorrelation r, (see section 4.1) by the Box-Pierce Q-statistic:

P
_ 2
Q—Tkzzl,ff (2.7)

Under the null hypothesis that X, is white noise Q follows ax*— distribution with p degrees of
freedom. In the case of example ( 2.1) Q assumes values between 1 and 14 for 7= 1 to 16,
respectively. The values do not exceed the corresponding 1% critical values of %2 Thus the
null hypothesis of white noise cannot be rejected distributed random numbers for a;.
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Cheervations

Figure 2.1: Plots of white noise realizations with means 0 and 3, respectively.
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3. ARMA Processes

3.1. MA Modds

Consider a process that is nothing more than a linear combination of two white noise elements
following one after the other:

xt =a _61 a,_, (3.2)

where a; is white noise with ¢z = 0. Then X; is called a first order moving average process
MA(D).

Here the white noise term sometimes is referred to as “innovations’ or, more dramaticaly, as

“shocks’ becauseit isthe only new, i.e. previously unknown, information entering the process
in every point of time.

A moving average process of order q [ MA(q)] isaprocess X; with
Xi=a —=6,8,-...—6,a, (32)

where a; is white noise with 1=0.

By introducing the lag or backshift operator L with

L(Xt) = Xt—l
LZ(Xt) = Xt—Z (3_3)
Lk(xt) = Xt—k

an MA(q) process can be written shorter if we substitute
a't—k = Lk (a'[) (3.4)
And use the operator function:

©,(L)=1-6,L-6,L°—..—6,L°.

(3.5)
Then the MA(Q) process ( 3.2) is simply defined by
Xt = Gq (L)a‘t (3.6)
An MA(q) process has the following properties:
E[X,]=0

q
var[X,]=0%Y 6 2 (37)

i=0

0 7>(Q

yt,t+r = O-zzei 0i+r T= 01]1"" q -
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The mean, the variance and the covariance do not depend on time. Therefore a MA process is
weakly stationary.

Example 3.1:

MA(2) processes.

Figure 3.1 shows two time series generated by the MA(2) processes
X! =a +0,75a_, +0,4a,_,,

X?=a —075a_, -04a,_,,

respectively. The white noise innovations a; are represented by zero mean normal random
numbers. It is visible from the graph that the process X;* with negative coefficients (i.e.6 > 0!)
Is more oscillating than the first one.

- 10 I

Observations

Figure 3.1: MA(2) time series

A second generation by each process with other random numbers a; delivers time series
different from the former ones in detail but similar to them in the general shape (figure 3.2).
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Figure 3.2: MA(2) time series generated by the same processes

3.2. AR Models

An autoregressive process of order p (AR(p)) isa stochastic process X; with
Xt =@, + ¢1Xt—1 + ¢2Xt—2 +.o.t ¢pxt—p &

(3.9)
where a; iswhite noise with u, = 0. The intercept ¢y is often set to zero.
By using the lag operator function
O (L)=1-¢L-¢,L°—..—¢p L° (310)

it can be shortly written
O, (L)X, =¢,+3& (3.11)

An AR processis not in every case stationary. If we know the representation ( 3.9) or ( 3.11)
of the process, what is called the characteristic equation is helpful in finding whether the
process is stationary or not.

The characteristic equation is defined as
1-¢z—¢,2° —..—9,2° =0
ie. @ (2=0 (3.12)

where z is assumed a complex variable. The following necessary and sufficient condition for
stationarity of an AR process can be proved:

Xz
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If and only if all (complex) solutions (roots) of the characteristic equation lie outside the unit
circle i.e. |z|> 1, the AR processis stationary.
Particularly, if |z|=1, what is called aunit root, the processisjust nonstationary.

Example 3.2:
Let X;= 1.1 X1 + & bean AR(1) process with zero mean white noise a;.

Its characteristic equation is 1 — 1.1 z = 0 with the root z = 0.91, which lies inside the unit
circle: | z| < 1. Thusthe process is nonstationary.

This is obvious also without solving the characteristic equation because the coefficient 1.1
generates a permanent increase of the following values. Figure 3.3 displays the graphs of two
independent realizations of this process.

But the process X;= 0.8 X.; + & has the characteristic equation 1-0.8 z= 0 with the root
z=1.25i.e.|z|> 1. Itisstationary. Its values move around zero, what is visible from figure
3.4.

20—

60— s Xl

20

-20 4+~

Chzrvations

Figure 3.3: Two realizations of one nonstationary process.
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Figure 3.4: Two realizations of one stationary AR process.

Example 3.3
In order to present a unit root process a random walk is generated:
Xe= Xer+ &

Figure 3.5 shows two readlizations. A random walk is nonstationary as the solution of the
characteristic equation z-1=0 is z =1 and lies on the unit circle. It isa“unit root”. Later will be
proved that despite X; has a constant expectation its variance would be dependent on time.

2 7 12 17 22 27 32 37 42 47 62 a7 62 67 72 77 g2 a7 92 97 100

Chasrvations

Figure 3.5: Two realizations of one random walk with zero mean.
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3.3. ARMA Models

A mixture of AR and MA processes of orders p and g, respectively, is caled an
autoregressive moving average process [ARMA(p,q)]:

Xi=¢+ 0 X1+, X ,+.. ¢, X, +& -6,8 ,—..—6,a_, (313)
or
X=X _'"_¢pxt—p =8, —6,8,, —...—6an_q (3.19)

Here the single error term a; of an AR process is substituted by an MA(q) process.

The ARMA(p,q) can be written shortly:

(Dp(L)Xt :¢O +®q(|—)at (3_15)

where @ (L)and ©,(L)are the lag operator functions of the corresponding AR(p) and
MA(q) processes, respectively, and ¢, is mostly assumed to be zero.

Example 3.4

Figure 3.6 displays the graph of a time series. Here the data generating process is
ARMA(1,2):

Xi = 0.8Xi1 + &+ 0.24a.1+ 0.4,

/on

R I S P S A S B S A B

3 8 13 18 ye| B ke B £ 48 50
Observations

Figure 3.6: Graph of an ARMA(1,2) process
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Under very general conditions, a stationary ARMA process ® (L)X, =¢, +0,(L)a, can be
transformed in an infinite AR process aswell asin an infinite MA process:

Xi=@o+a —pia —P,a.,—...
or X, =¢,+%¥()a (3.16)

. _1_ _ 2_
with (L) =1-y, L-y, L —.. (3.17)

Theinfinite lag polynom ¥(L) is determined by

0,(L) _

D, (L)

Particularly, stationary AR processes can be represented by infinite MA processes and most

MA processes (under an invertibility condition) by infinite AR processes. In practical time
series analysis, the representation with as few as possible parameters should be chosen.

(L) =

Example 3.5:

Consider the MA(1) process

Xi=a —6a, (3.19)
From Xi1= ap1 - Oa2

follows 1= Xt Ga

and from Xio= o - O3

follows a2= XeotOas

and so further. By successive substitution of a;.;, a., and so on in ( 3.18) we obtain:

X, =a,-0X,,-0°X,_,—..

(3.19)
i.e. an infinite AR process, which converges under the invertibility condition | 6| <1.
Example 3.6:
Let us consider the stationary AR(1) process
X, =¢X_ +a  with |¢|<1 (320)

By backshifting the whole process we obtain
X =¢X,+a,

and ( 3.20) becomes X, = a, +¢a,_, +9°X, ,.

Further back shifting gives X, , =¢X, ; +a,_,.

By successive substitution of these lagged elements of X, an infinite moving average process
Is produced:

X, =a +pa_ +o’a_, +.. (321)

Because of | ¢ | < 1 this representation converges.
ARMA processes have a more complex structure than pure AR or MA processes of the same

behaviour, but they have less parameters. Parsimony is one of their advantages compared with
fitted AR or MA processes.
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4. Autocorrelation and Spectrum

4.1. Autocorrelation Function

According to ( 2.5) the autocorrelation function of a stationary process X;is

k1
P —7/—0 —_E[(Xt _:u)(xtﬂ' —,U)] : (4.2

Yo

The graph of p, is called correlogram. The shape of the correlogram and other functions is
characteristic for special ARMA processes. Therefore such functions are used in time series
analysis for finding the type and order of a process and the corresponding model.

For an AR(p) process the correlogram is a mixture of exponential and sinuous curves.

Example 4.1:
Let X; be an AR(1) process without constant and | 1l <1
From X, =¢, X, +a
and th = (¢1Xt—l & )2 = ¢12Xt2—l +20, X8, + 312
follows y, = E(X/)= @2y, +0+c?
and by re-arranging
o;
1-— ¢12 (4.2

Yo =

For calculating y; we consider

X =@ X, +a,
and X Xia = (@ X+ )Xy = X+ X,
Thus we obtain

2
o

Y = E(tht—l):¢l E(Xt%1)+0: 1 2 ¢,

A2
1

From this follows p;=¢. In an analogous procedure we find p, = ¢7.
Generaly, ageometrically decreasing sequence will be obtained:

_ 2k
P =9 (43)
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Figure4.1: Autocorrelation function of an AR(1) process with ¢, >0

L; H ” 0 0 m 0_n_=_-
dpprTeee

1.1

Figure 4.2: Autocorrelation function of an AR(1) process with ¢; <0

Example 4.2
Now, the autocorrelation of the MA(1) process X, = a, —6,a, , isexamined.

From X? =a’ -20,a, +(0,a_,)°
follows

Yo =E(X}) = (L+67)0 with o2 =var(a)=E(a?) »

from X_, =a_-0a_,

and Xt Xt—l = (at - 9131—1 )(at—l - 9131—2 ) =aa_; — 0131 a_,— 91312—1 + 01231—131—2
weobtain y, =E(X,X,,)=0-0-0,062+0



H. G. Strohe, Time Series Analysis, Universitdt Potsdam 15

and dividing this by the variance y:

_ _01
(1+02) (45)

P1

From X, X, =(a —-6:a,)(a_, -6,a5) =aa_,-0aa_;-6a,a ,+ elza‘t—la‘t—3
follows because of the independence of the &, a.;...:

V2= E(thtfz) =0,

All following autocovariances 74, 7,... and autocorrelations are equal zero, too.

The generalization of this result to processes of higher order gives us the opportunity to
recognise the order g of an MA(Q): it is determined by the highest number g of autocorrelation
coefficients significantly differing from zero, while all following values are zero or closeto it.

1.1

1.1 O, 0O onm =] |

Figure 4.3: Correlogram of an MA(1) process with #,<0

Figure 4.4 Correlogram of an MA(1) process with #,>0
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Suitable estimators for the autocovariance function of an ergodic process on the base of one
time series x; are

T-7
2 (6 = X)X, = X)
_ _ t=1
C:=7: = T (4.6)

or

T-1
D (% = X) (X, = %)
_ t=1
B T - 1 (47)

C. =7

Both estimators are mentioned here because they are used in different text books and
computer packages and have slightly different properties for short time series only.

The estimator for the autocorrel ation function is the sample autocorrelation function

~ b C

.= = =

T p‘l’

i

Yo Si (48)

with s, being the sample standard deviation of the time series x;.

Example 4.3:
Let x; be atime series generated by the process
Xt =0.8 Xi.1 + & with a{~N(O,1)

Figure 4.5 shows the sample autocorrel ation function of x;,

Autocorrelation function of X, sample from 3to 50

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Order of lags

Figure 4.5: Sample autocorrel ation function of one realisation of the AR(1) process
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The Box-Pierce statistic ( 2.7) results in values from 35 to 114 for 7 =1 to 16, respectively.
This allowsto regject the null hypothesis of white noise on the 1% significance level.

Example 4.4.
Now, z is atime series generated by the MA(2) process
Zi=a+ 0.25a.; + 0.4a., with a;~N(0,1).

Figure 4.6 displays the sample autocorrelation function. The values of the function beyond the
lag 7=2 are closeto zero. Thisindicates the MA(2) process.

Autocorrelation function of Z, sample from 3 to 50

|

T 1

8 3 10 1 12 13 14 15 16 18
Order of lags

Figure 4.6: Sample correlogram of an MA(2) process.

4.2. Partial Autocorreation Function

Another diagnostic function is the partia autocorrelation function (PAC) of a stationary
stochastic process.
For calculating this function we assume X; approximated by an AR(t) process:

(r) _ (1) (7)
Xt _¢1T Xt—l +"'+¢‘[‘l’ Xt—r (4.9

Then the last coefficient ¢, is referred to as partial autocorrelation coefficient of X; for the

lag 7.
The series ppart(f) = ¢, With varying 7 iscalled partial autocorrelation function (PAC).

For an AR(p) process Ppart(T) is equal zero beyond thelag 7= p.
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1.1

1.1

Figure 4.7: Partia autocorrelation function of an AR(1) process with ¢;<0

1.1

[ | n =] Do oo =] |

Figure 4.8: Partial autocorrelation function of an AR(1) process with ¢,>0

On the other hand, for an MA(q) process the PAC is an exponentially decreasing sequence.

18
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- Hﬂﬂﬂﬂﬂﬂﬂﬂinnnn:

Figure 4.9: Partial autocorrelation function of an MA(1) process with 6,<0

Figure 4.10: Partia autocorrelation function of an MA(1) process with 8,>0

The value of the PAC for a time series given at a selected lag 7 can be estimated by OLS
fitting an AR(7) model and taking the estimated highest order coefficient (577.

Example 4.5:

Let x be a time series generated by the AR(1) process X; = 0.8Xi.1 + & with unit variance
white noise a;. The linear regression of x; on x.1 gives the estimated coefficient 0.791 with the
standard error 0.023. OLS regression on X1 and %, produces the estimation of ¢, in table 4.1.
Then the regression of X; on X1, X2, X3 resultsin table 4.2 and so on.
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Table4.1: OLSregression of X

kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhhkhkkhhkhkhhkhkkhhkhkkhhkkhkhkkhkhkkikkk*k*x

Regressor Coefficient Standard Error
Xe-1 .89002 15171
Xe-2 -.057163 15181

kkhkkhkkkhkkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkhkkkikkk*k*x

Table4.2: OLSregression of X

kkhkkhkkkkhkkhkkhkkkhhkkhkhhkkkhhkhkhhkkhhkkhhkkhhkk,kkk,kkk,*,*%x

Regressor Coefficient Standard Error
Xe-1 .88283 .15609
Xt-2 .0029261 .21856
Xt-3 -.063269 16234

kkhkkhkkkkhkkkhkkhkkhkkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkkhkhkkikkkikkk*k*x

Thus the first three values of the PAC estimated are

prar(1) = 0.791

Prart(2) = -0.057

Prart(3) =-0.063

It is recognizable that the graph of ppart would drop down to approximately zero after the lag
1. Thisischaracteristic for AR(1) processes.

4.3. Spectral Density

The spectra density or the power spectrum is the Fourier transform of the autocovariance
function or of the autocorrelation function, e.g.

p(f)=2(y, + 2;71 cos 274 7); (4.10)

where f =% is the frequency and P the period length of a supposed periodic component
within the process.
The value p(f) can be interpreted as the amplitude of this periodic cyclewith 0< f < % .

The lower limit f=0 means an infinite period length, e.g. the trend component, and the
maximum frequency f=0.5 means extremely short oscillations.

The function p(f) as a whole distributes the variance to variations with frequencies between 0

and Y5

by
0'x2:7’o:jp(f)df- (4.12)
0

On the base of one empirical time series the estimator for the spectral density is the sample
spectral density:

.
p(f) =2(c, + 2; g,C, CoS27f7) (412)
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where the empirical sample autocovariances are weighted by a suitable ‘window’ g in order
to obtain consistent estimations. Computer programs offer several spectral windows, mostly
those by Parzen, Hannen or Bartlett.

Some programs use the , circular frequency” w=2xf instead of the frequency f. Then the
special density is defined for «w=0to v=3.14.

If the spectrogram, i.e. the plot of the spectral density over al frequencies under
consideration, shows for a specia frequency f or » a high pique then the process contains a

periodical component of the period length P :% and the share of the variance covered by

this component totals to the share of the area concentrated under this pique. Therefore an
important application field of spectral analysisisthe analysis of cyclical variations.

|j: f

Figure4.11: Spectral density of an AR(1) process with ¢;>0

Figure 4.11 shows the typical spectral density function of an AR(1) process with positive
coefficient. The spectral power is concentrated at the frequency zero, i.e. the behaviour of the
process is interpreted by the spectrum as an infinitely long periodic movement. In the same
way, the oscillations of a process with negative ¢; occur in the spectrogram as a pique at the

frequency f :% or w = © what means the dominance of periodic oscillations with the

minimum length of 2 time units (see figure 4.12).
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Figure 4.12: Spectral density of an AR(1) process with ¢;<0

The spectral shapes of the corresponding MA(1) processes are similar, but the spectral power
is not so sharply concentrated at the points O or */, respectively. That means the variations
concentrated in MA processes are distributed over a broader what is called band width than in
AR processes.

Figure 4.13: Spectral density of an MA(1) process with 6,>0.
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Figure 4.14: Spectral density of an MA(1) process with 4,<0.

While the curves at figures 4.11 to 4.14 display the theoretical spectral density of AR(1) and
MA (1) processes the examples 4.6 and 4.7 present sample spectral densities of time series.

Example 4.6:

Let z be atime series generated by the MA(2) process Z; = a+ 0.25a..1+ 0.4a., where & is
zero mean white noise with variance 2. Two of the spectral density estimators indicate a pique
a o =0.2. But because of the large variation between the different estimators in the area
around zero, this can be assumed as arandom sample effect and it is rather asignal for avery
flat extremum at @ =0.

Various estimates of standardized spectral density of Z

/ Bartlett

Tukey

T \
Il / Parzen
| | | | | | | | | | | | |
T T T T T T T T T T T T

Frequency

Figure 4.15: Spectral density of an MA(2) process
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Example 4.7:

For a stationary time series of quarterly data x; with a dominant seasonality the spectral
density has been estimated. We find the highest peak of the graph in figure 4.16 in the very
centre of the frequency range i.e. at circular frequency o=mn/2. It indicates =% and a period
length P= 4 quartersi.e. one year as previously expected for a seasonal component.

Various estimates of standardized spectral density of X

/ Bartlett

Tukey

Parzen

1%111W““ |

| : : : : |
3 4

Frequency

Figure 4.16: Spectra density of quarterly seasonal time series

Example 4.8:

Figure 4.17 displays the development of the total value OR of monthly incoming orders for
the construction industry in East Germany after the unification of Germany. Besides the
changing trend there seem to be several periodicities. The graph of the spectrum in figure 4.18
confirms the existence of very long waves or atrend by a peak near frequency 0. Furthermore
one can find minor peaks at circular frequencies w equal 0.52 and 2.1 what indicates
periodicities with length 12 and 3 month, respectively.
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Figure4.17: Ordersto East German construction industries

Various estimates of standardized spectral density of OR
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Figure 4.18: Spectral density of the orders to East German construction industries

In order to examine periodic fluctuations more detailed it can be useful to consider the
increase rate of avariable. The increase rate of atime seriesxis

X — X4
X1 (4.13)

that can be approximated by the logarithmic increase rate for comparatively small changes:
_ (&
Aln&—ln&—ln&_l—ln(z). (4.14)

The next figure shows the increase rate AINOR of the order value OR. The trend is eliminated
and the periodicities seem to be amplified.
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Figure 4.19: Growth rate of the orders to the construction industries
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Figure 4.20: Spectral density of the growth rate of the orders

Figure 4.20 and table 4.3 show the spectral density of the growth rates. Surprisingly, now the
highest peak occurs at the circular frequency @ =2.1 i.e. the three month periodicity. That
means the biggest part of the increase variance is produced by regular fluctuations within the
guarters. We find a lower peak at @ =5.2 what indicates an additional 12-month seasonality
with aminor share at the variance.
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Table4.3:
Standardized spectral density functions of AINOR, sample 1991M2 to 2003M 1

kkhkkhkkkkhkkkhhkkkhhkkhhkkhhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkk kkk k%%

Circular Period Bartlett Tukey Parzen
frequency
0.00 Inf. 41414 40327 34745

13090 48.0000 42359 .28945 31183
.26180 24.0000 21619 .22185 47551
39270 16.0000 1.0765 1.1668 1.1293
.52360 12.0000 1.9989 2.0018 1.5528

.65450 9.6000 97483 1.0439 1.0502
.78540 8.0000 .15450 13615 48733
.91630 6.8571 .68276 .63810 .65174
1.0472 6.0000 1.1892 1.1760 .91865
11781 5.3333 10727 .68282 .67360
1.3090 4.8000 .16923 15761 .36567
1.8326 3.4286 .30370 24614 91571
1.9635 3.2000 2.1926 2.6362 2.71224
2.0944 3.0000 5.5038 5.5131 4.2373
2.2253 2.8235 2.8631 3.2895 3.1299
2.3562 2.6667 49168 .56624 1.2268

3.1416 20000 24900 21564 20655

kkhkkhkkkkhkkhkkhhkkkhhkkhhkhkhhkkhhkkhkhhkhkhkkhkhhkhkhhkkhkhhkkhkhkkkhkkk kkxk,k*x*%
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5. Integrated Processes

5.1. Nonstationary time series

If a time series contains a development tendency, the assumption of constant mean or
constant variance is violated. Then this time series would be considered a realisation of a
nonstationary process.

Practically, atime series x; should be subjectively judged for nonstationarity by means of its
graph and its correl ograms. If there are found

- trend

- Strongly deterministic periodicities
- Systematically varying variance

- Changing autocorrelation,

then there would be good reason to assume the underlying process to be nonstationary.
Theoretically it is nongtationary if the mean or the variance or the covariance of the
generating process change by time. As a rule, most processes representing real economic
phenomena prove nonstationary because economics grow or decrease or change in some other
way.

5.2. Differentiation and Integration

On the one hand, most economic time series are nonstationary. On the other hand, many
methods and models demand stationary time series.

In many cases differentiation of the time series is a successful approach to obtaining
stationary time series.

The first differences of a stochastic process are
@A-L)X, =AX, =X, - X,

Or for aseasonal process with period length s:
- LS)Xt =A X =X =X

If thefirst differences of X; are stationary, than X; istermed integrated of first order.
Else further differentiation will lead to the second differences

(1-L)® = A*X, = AX, —AX,,

If this is stationary, than X; is called integrated of second order. If we obtain the first
stationary result after k-fold differentiation, the processis said to be integrated of k-th order.

A time series generated by a k-th order integrated process is said to be integrated of k-th order
aswell.

Example5.1:

Let Xi=a; be white noise. Obvioudly it is at least weakly stationary, because E(a;)) = x and
var(a)=o,’ are constant. As the elements a, a.1,... of the process are defined to be
independent, the covariance
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cov(a,,a,_,) = E([a - u]la,_, — ul) (5.)

would be constantly zero, i.e. not depending on time.

5.3. Random Walk

Theprocess X, =X, +& (52)

with white noise & is referred to as random walk. It is the most elentary case of a
nonstationary process. Its characteristic function has the unit root z=1.

The mean of x; E(X) = E(X%.1)+ E(a) = u is constant.

The nonstationarity can be proved only by considering the variance:

var(X,) = var(X, ,) + var(a,)

= var(X, ) +var(a,) + var(a,)
= (5.3

That means var(X;) depends on time t. This property of X; is what is caled variance
nonstationarity.

Thefirst differences of X; are white noise a; and stationary: Ax= X; - X-1= &. Thus the random
walk isintegrated of first order.

We know: the seemingly very similar process Y;= 0,999Y..; + a withtheroot z= 1,001
outside the unit circle is stationary. Thus one of the most serious problems of time series
anayseisthe distinction between time series x; and y; as random realizations of an unit root
process X; and a stationary process Y;, respectively. Helpful instruments for this purpose are
unit root tests.

5.4. Unit Root Tests

Dickey-Fuller-Test

The most widespread method for checking whether or not a process is stationary was the unit
root test developed by Dickey and Fuller til 1979. The basic idea consists in the assumption
that the processis arandom walk, i.e. nonstationary, and the possible rejection of this
hypothesis. For the Dickey-Fuller-Test the process X; is approximated by an AR(1) process:

X, = (¢0 +) $Xt+a (5.4)

Theintercept (¢o) is set in brackets because it is often assumed zero.
The nontstatitonarity hypothesis to be tested

Ho 1= 1

means X;isaunit root, i.e. nonstationary, whereas the alternative
Hi ¢1<1

means stationarity.



H. G. Strohe, Time Series Analysis, Universitdt Potsdam 30

For easier handling the test the process can be transformed into its 1% differences:

AX =X =X, = (¢0 +)(¢1 DX, +a

AX = (¢0 +)7 Xt (55)
where (¢, 1) =y

The intercept ¢, is often assumed zero
Now the hypotheses show the more common shape of a one-side t-test of aregression
coefficient:

Hy,:7=0
H,: 7<0

Practically, the following steps have to be performed:

1. Backshifting x; to the lagged series ;.1
2. Calculation of the 1st differences A1
3. OLSregression of Ax; (dependent variable)
on X1 (independent variable):
A =(fg+) a+e (56
with the estimates foand g and the residuals e,
4. Calculating the empirical value of the test variable:

emp _ g

sav(g) (57)

If the true intercept ¢p= 0 then t*™ is asymptotically standard normal distributed,
else

5. calculating the critical value: If there is no deterministic trend, the 5% critical values are
approximately

or  oon 274 836
toos = —2,86 T T2 (5.8)

(it isalways negative). Otherwise they can be obtained out of tables (e.g. Eckey).

6.1f t°™ < PF, then the null hypothesis can berejected on the o significance level and X
would be stationary.

Example5.2:
Let y; be aredlisation of awhite noise process with q,z =2and u =0
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For performing a DF-Test the first differences Ay; of the time series are put in a linear
regression relationship on the lagged time series yi.; without an intercept (table 5.1).

Table5.1: Ordinary Least Squares Estimation

kkhkkhkkkhkkkhhkkhkhhkhkhhkkhhkkhhkhkhhhkhkhkkhkhkkhkhhkhkhhkhkhhkhkhhkhkhkkkhkkk kkk,kx**%

Dependent variable is Ay,

49 observations used for estimation from 2to 50

B R R b b b b b b b b b b b b b b b b b b b b b b b b b b b b b R R b b b R b R R R R R R

Regressor Coefficient ~ Standard Error t-Value

Vi1 -1.1353 14202 -7.99

RO b b b b b b b b b b b b b b b b b b b b b b R R R R R R R R R R R b b b b b R R R b b R b b b b b b b b

Because of the lack of an intercept the empirical t-value can be compared with the |eft-sided
5% quantile of the normal distribution, i.e. Zygs = -1.65. The t-value —7.99 indicates rejection
of the zero (nonstationarity) hypothesis. That means the process is to be considered
stationary.

While in the last example the intercept was dropped the next test takes the existence of a
constant ay into consideration:

Example 5.3:

Let us consider the same time series but without having the a-priori knowledge about the zero
intercept. Then we are to include an intercept term in the regression (table 5.2).

Table5.2: Ordinary Least Squares Estimation

kkhkkhkkkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkkhhkkhkhkkhkhkhkhkhhkhkhkkhkhhkhkhhkhkhkhkkhkkkikkkk*x*%

Dependent variable is Ay;
49 observations used for estimation from 2to 50

kkhkkhkkkhhkkhkkhhkkhkhhkhkhhkhkhhkhkhhkkhhkhkhkhkkhkhkkhkhhkkhkhhkhkhhkkhkhhkhkhhkhkhhkk kkk,kkxk,*,*x*%

Regressor Coefficient Standard Error t-Vaue
C 49606 25257 1.964
Vi1 -1.1353 14202 -8.46

kkhkkhkkkkhkkkhhkkhkhhkhkhhkhkhhkhkhhkkhhkhkhkhkkhkhkkhkhhkhkhhkkhkhhkkhkhhkhkhhkhkhkkk kkk,kkxk,*,*x*%

Because of the intercept the normal distribution is not applicable. Formula 5.9 gives the 5%
critical value.

toos = —2,86—ﬂ _836 _ —2918
50 2500

The test resultsin favour for stationarity, too.
In the following example the assumption on nonstationarity should not be rejected because we

have chosen and generated by simulation a unit root process:

Example 5.4
A random walk isto be examined. Let x; be arealization of the process
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Xi= Xw.1+a; where a is normal with E(a)=0 and ¢,? =1. For the DF-Test again a regression of
A X 0N X1 Without an intercept is estimated:

Table5.3: Ordinary Least Squares estimation

kkhkkhkkhkkhkkkhkkhkkhhkhkhhkhkkhhkhkkhhkkhhkkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhhkhkhhkkhkhkk kkk,kk**

Dependent variable is Ax;
49 observations used for estimation from 2to 50

kkkhkkkhkkkhhkkhkhhkhkhhkkhhkkhhkkhhhkhhhkhkhhkkhkhhkkhkhhkhkhhkhkhhkhkhhkkhkkk kkk,kx**%

Regressor Coefficient Standard Error
Xe-1 026941 .023797

kkhkkhkkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkhkkhhkkhhkkhhkhkhkhkhkhkhkkhkhkkhkhhkhkhhkhkhhkkhkhkk kkkikk**

The coefficient is positive. Therefore the t-statistic cannot be smaller than any (always
negative) critical value. Thus, nonstationarity cannot be rejected at any significance level.

Augmented Dickey-Fuller Test

In the above examples, fitting the processes by AR(1) was absolutely correct according to our
knowledge of the generating processes. But in praxi, assuming an AR(1) process can be a
gross ssimplification. Better and more general would be to allow for an AR(p) representation
of theerrorsin ( 5.9):

AX, = (@) XL+ AX | +@,AX , +...+ ¢ AX | +E, (510)
with white noise & . The hypotheses to be tested are the same as for the DF-Test

H,:3 =0 (foraunitroot)

H,: y<0 (for stationarity)

Then vy will be estimated by OLS simultaneously with the ¢’ s. The t-test of y is performed in
the same way asin the DF-Test. The critical values for the t-value of the estimate g for y are
equal to those of Dickey-Fuller. Thisimproved unit root test is called Augmented Dickey-
Fuller Test (ADF).

The order p of the AR(p) processin ( 5.13) can be found by the Akaike Information Criterion
in the error variance form

T (5.11)

3 252 2.
AIC, —{1+In(2~7r)}+ln[T)+—p

or in thelikelihood form

Adc& zlmu(np)_ p (Sia

where |ux(T,p) isthe logarithmic likelihood of the model estimated.

Thevalue of p with minimum AIC, or maximum AIC, isto be taken.
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As an alternative, the Schwarz Criterion in its two forms SC, or SC, can be used in an
analogous way

_ 2. ), piInT
SC(,_{1+In(2-7r)}+In( T }

T (5.13)

or

- _P
S, =1.(T,p) 2InT. (514)

Example 5.5:

Let y; be arealization of the ARMA(2,1) process:
Y: = 0.9Y1.1 — 0.3Y1 + & +0.25a;.1

with E(a)= 0 and 0:°= 4.

Table 5.4: Unit root testsfor variable Y.
The Dickey-Fuller Regressions include an intercept but not atrend

kkhkkhkkkkhhkkhkkhhkkhkkhhkhkhhkhkhhkhkhhkkhkhkkhhkkhkhhkkhkhhkkhkhkkhkhhkhkhkkk kkk,kkxk,*,*x*%

46 observations used in the estimation of all ADF regressions

Sample period from 5 to 50

R R b b b b b b b b b b b b b b b b b b b b b b b b b b b b b R R R R R R R R R R R b b b b b b b
Test Statistic  LL AlIC, SC,

DF -2.1556 -132.3946 -134.3946 -136.2233

ADF(1) -3.3536 -127.1521 -130.1521 -132.8951

ADF(2) -25808 -126.7647 -130.7647 -134.4220

ADF(3) -2.0708 -126.4142 -131.4142 -135.9858

R R b b b b b b b b b b b b b b b b b b b b b b b b b b b b b R R R R R R R R R R R b b b b b b b

95% critical value for the augmented Dickey-Fuller statistic = -2.9256
LL =Maximized log-likelihood  AIC. = Akaike Information Criterion
SC, = Schwarz Bayesian Criterion

According to the higher values of both the ACI. and the SC,, the augmented Dickey-Fuller
Test ADF(1) on the base of an AR(1) model for the first differences is to be preferred to the
others. The corresponding value of the test statistic is smaller than the critical value. That
means the zero hypothesis (nonstationarity) is to be rejected on the 5% level. The simple
Dickey-Fuller Test would not alow for this decision.

Example5.6:

Figure 5.1 presents the graph of the daily closing value of the Russian share price index
Moscow Times from 1st July 1997 by 6th May 2003. It can be guessed from the
growing curve that the time series is not stationary. This assumption would be
confirmed by an augmented Dickey-Fuller Test as shown in table 5.5. The Hy of
nonstationarity can neither by DF nor by ADF be rejected. Because of the unanimity
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of the decision of the tests for nonstationarity there is no need for model choice
according to ACI, or C,.

e e N N SO SO
0 — 1 1 t It t Tt 1 1 I 1 I 1t 1 1
1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191 1261 1331 139

Observations

Figure5.1: The Moscow Times share price index from 1st July 1997 by 6th May 2003

Table 5.5: Unit root tests for variable IMT
The Dickey-Fuller Regressions include an intercept but not a trend

B R b b b b b b b b b b b b b b b b b b b b b R b b b R R b b R R R R b R R R R R R R

1391 observations used in the estimation of al ADF regressions.

Sample period from 5 July 1997 by 6 May 2003

EAR R R b b b b b b b b b b b b b b b b b b b b b b b b b b b b b R b R R R R e b b R R R b b b b b b R b b
Test Statistic  LL AIC_ SCL

DF 12822 -7999.2  -8001.2  -8006.4

ADF(1) .58275  -7969.7  -7972.7  -7980.6

ADF(2) .63345 -7969.3 -7973.3  -7983.8

ADF(3) .61590 -7969.3 -7974.3  -7987.4

EAR R R b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b R R R b R R R R R b b b b b b b b b b

95% critical value for the augmented Dickey-Fuller statistic = -2.8641

LL =Maximized log-likelihood  AIC. = Akaike Information Criterion

SC. = Schwarz Criterion

Example 5.7:

It can be proved the same way as in example 5.6 that the natural logarithms of IMT are, too.
But the finance market is more interested in the return drawn out of a share than in the share
price level. The return usualy is measured by the increase rate of the price, particularly by its
logarithmic form ( 4.14). Therefore figure 5.2 displays the daily rate of return AInIMT of the
Moscow Times Index from 2nd July 1997 by 6th May 2003. Obvioudly, the graph does not
show any trend and the time series can be expected to be stationary. Thisis verified by the test
results shown in table 5.6. The test statistics of all test variants considered lie far beyond the
critical value. Thus independently from any model choice, the null hypothesis of
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nonstationarity can be rejected and it can be stated on a high level of significance that the time
series of return rates is stationary. From this follows that InIMT; is integrated of order 1 or

I(1).

0.4
0.3
0.2

0.1

/ DLIMT

00 L, R ‘&‘ ‘l‘ M | ‘V I ,‘\ i 1 Wl I AT A A g

-0.1

-0.2

-0.3

4 | | | | | | | | | | | | | | | | | | | |
-0.4
[ [ [ [ [ [ [ [ [ [ I [ [ [ | [ [ | | |
1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191 1261 1331

Observations

Figure5.2: Thedaily return rate of the Moscow Times Index

Table5.6: Unit root tests for variable AInIMT

The Dickey-Fuller Regressions include an intercept but not atrend
RAR R R b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b R b R R R R R R R R R R R b b b b b b b
1390 observations used in the estimation of all ADF regressions.
Sample period from July 1997 by 6 May 2003
B R R b b b b b b R b b b b b b b b b b R b b b R b b b b R R R R R R R R R R b R b

Test Statistic LL AIC, SC.

DF -38.1617 2510.2 2508.2 2503.0
ADF(1) -25.2673 2512.2 2509.2 2501.3
ADF(2) -20.4274 2512.6 2508.6 2498.1
ADF(3) -19.1745 2515.8 2510.8 2497.7
B R R b b b b b b R b b b b b b b b b b R b R R R R b R b R R R R R R R R R R R b R
95% critical value for the augmented Dickey-Fuller statistic = -2.8641
LL =Maximized log-likelihood  AIC,. = Akaike Information Criterion
SC, = Schwarz Criterion

é. ARIMA models

6.1. Definition

Let X, be a nonstationary process with stationary dth differences, i.e. Y;= (1-L)%% = A%; is a
stationary process but A%*X; is nonstationary. That means X; is integrated of dth order.
If Yiisan ARMA(p,q) process, i.e.

Y, = o +6.Y +"'+¢pY[—p +a, —6,a, _"'_6qatfq (6.1)
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then X; is said to be an ARIMA(p,d,q) process. Often the mean or constant ¢y is dropped i.e.
set to zero.

Most empirical time series can be considered as realizations of ARIMA processes. In other
words. for most time series can be found an ARIMA process, the ARIMA model, that can be
thought as data generating process having generated this special time series. The main task of
time series analysis is to specify the order of the ARIMA(p,d,gq) model according to the
properties of one time series und to estimate by statistical means the parameters of the model
equation and the variance of the error term. As already mentioned, the problem is that
generaly thereis only this one realization of the process.

6.2. Modd identification and parameter estimation.

Modelling atime series usually consists of the following steps:

a) Diagnosis, i.e.
— Checking the time series for stationarity, a precondition of ergodicity
* Graphical inspection of the time series
* Unit root test
— In the case of nonstationarity differentiation and repeated testing these differences
— Estimation of diagnostic functions such as autocorrelation and inspection of their graphs
b) Choice of a set of process types, what is called the identification of the model.
In the result, three primary parameters are to be obtained: d - the order of integration, p and
g —the orders of the AR and MA components, respectively.
During the process of diagnosis the parameter d is easily found as the number of
differentiations necessary for stationarity. For economic time series, d is typicaly 1 but
sometimes 0 or two. More difficult is the search for p and g. Inspection of autocorrelation
function (ACF), partial autocorrelation function () and inverse autocorrelation function
(IAC) would be helpful. Parameter parsimony should be the principle in the case of doubt.

¢) Estimation of the parameters for all versions by suitable methods such as
* Ordinary Least Squares (OLYS)
* Maximum Likelihood (ML)
» Minimum squared forecast errors
* Marquardt algorithm

d) Choice of the most suitable model among a number fitted ones
» Model check
» Analysis of residuals. They should be white noise
 Consideration of the best fit and the most parsimonious representation. Again on the
base of the residuals the Akaike Information Criterion or the Schwarz Criterion areto
be calculated for each model and compared in order to find the optimum.

Diagnostic functions can give useful hints to the type of underlying process but they are not
unambiguous. In example 6.1 for time a series x; and its 1st and 2nd differences ACF and
PAC are estimated in order to answer the question for the order of the underlying ARIMA
process.
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Example6.1:
Let ustry to answer the question: What type of model is being indicated by the following
diagnostics of atime series?

Levels ACF

121
1.07
0.8t

06T

04 : : : : : : :
0 5 10 15 20 25 30 35
Lag

Figure 6.1: Sample autocorrelation function of the original time series

Figure 6.1 suggest an AR(1) process with ¢; close to 1 or a nonstationary process because the
ACF is decreasing very slowly. Figure 6.2 indicates stationary AR(1) first differences because
there is an almost exponentially decreasing autocorrelation (compare figure 4.5). Figure 6.3
let us guess MA(O) i.e. white noise second differences because ACF is sharply falling down
after lag 7= 0 and then moving around zero. But Box-Pierce statistics Q reject the hypothesis
of white noise (table 6.1).

1st Diff. ACF

04 1 1 1 1 f y |
0 5 10 15 20 25 30 35
Lag

Figure 6.2: Sample autocorrelation function of the 1st differences



H. G. Strohe, Time Series Analysis, Universitdt Potsdam

2nd Diff. ACF

Lag

Figure 6.3: Sample autocorrelation function of the 2nd differences

Table 6.1; Box-Pierce statistic of the 2nd differences

T Q-Staa Prob T Q-Stat Prob

63.087 0.000 19 99.236 0.000
71.862 0.000 20 99.370 0.000
78.373 0.000 21 100.57 0.000
78.448 0.000 22 100.88 0.000
78.682 0.000 23 100.98 0.000
78.951 0.000 24 101.76 0.000
79.169 0.000 25 102.91 0.000
79.278 0.000 26 103.54 0.000
81.352 0.000 27 106.32 0.000
10 86.908 0.000 28 110.14 0.000
11 91571 0.000 29 113.31 0.000
12 95.272 0.000 30 116.30 0.000
13 95.852 0.000 31 117.49 0.000
14 95.873 0.000 32 117.55 0.000
15 96.190 0.000 33 117.56 0.000
16 97.872 0.000 34 117.56 0.000
17 97.878 0.000 35 119.12 0.000
18 97.959 0.000 36 121.40 0.000

CoO~NOUIA WNPF
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Figure 6.4: Sample partial autocorrelation functions of the original time series

From figure 6.4 could be concluded that the levels of X; are AR(1) (or AR(2)) because their
PAC disappears beyond 7=1 (or 2). An AR(1) process can be taken for the 1st differences
despite the negative pique at 7=2. In the same way PAC of the 2nd differences reflect MA(O)
i.e. white noise. Figure 6.5 confirms the assumption of AR(1) first differences.

1st Diff. PAC

1,2

14
0,8
0,6
0,4 1
0,2

0 : : f\/\\/v_//\/\/\ ‘
S VATV 20 25 30 35

-0,2 A

-0,4

Figure 6.5: Sample partial autocorrelation function of the 1st differences



H. G. Strohe, Time Series Analysis, Universitdt Potsdam 40
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Figure 6.6: Sample partial autocorrelation function of the 2nd differences

To sum up, there are three options for model choice:

1. An nonstationary ARIMA(1,0,0) with ¢ > 1 or perhaps ARIMA(2,0,0).
2. An ARIMA(1,1,0) because of AR(1) first differences.

3. An ARIMA(0,2,0) because of possible white noise second differences.

Decision between the cases can be done by unit root tests in practice. But here we know the
data generating process: it isan ARIMA(1,1,0), namely Y; = 0.97Y:.1 + & where Y; = AX; and
a, ~ N(0,)), i.e. case 2. On the other hand, this means that also the following relationship is

valid: Xi=1.97X;.1 -0.97X.o+a;, what corresponds with casel. And finally by rounding up the
coefficient of Y;=0.97Y;1+ a;to unity we obtain the case 3.

If the underlying processis a pure AR(g) or MA(p) with small p or g then this can be easily
recognised by inspecting ACF and PAC. For mixed ARIMA(p,q) processes or AR(p) and
MA(qg) with high orders p and q it would be difficult to give an reliable rule for model
identification on the base of atime series and its sample diagnostic functions.

Anyway, after the difficult choice of suitable p and g the estimation of the more specific
parameters ¢, 6 and ¢.? is the next complex problem.

In the case of an AR process, there are among others the following options for estimating the
parameters of an AR(p) model:

1. Ordinary last squares regression of x; depending on X1, X-2,...X-p With certain
deteriorated properties of the test statistics because of the lagged regressors.

2. Maximisation of the log-likelihood function (ML estimation).
The differenceto OLS isfor long time series negligible.

3. Solving the Y ule-Walker equations.

The Yule-Walker equations are an equations system describing linear relationships between
AR coefficients and the autocovariances of the zero-mean AR(p) process
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Yo =Pyt Doy, + ot ¢pyp +0'§

V1= 000 T @yt Py (62)

When substituting sample covariances for the y the solutions gz;j of ( 6.2) arethe Yule-Walker
estimators for the ¢. They are consistent.

In the case of a pure MA(Q) process software packages usually offer nonlinear least squares
methods of parameter estimation. Such as the Conditional-Sum-of-Squares estimation (CSS):
Here the missing white noise data a; are generated as ex-post forecasting errors under the
condition of minimum sum of squares.

Example 6.2:
For an MA(1) process X, =a —6,a,_, eror data & =X +6,4_, are generated with a

= ~ T
coefficient 6, to be estimated under the condition S(6,) = Zétz = Min that is a nonlinear
1

function of the parameter 6, and isto minimizein an iterative process.

If there is amoving average term in the ARMA model, an Ordinary Least Squares estimation
such as in the AR case is not possible. Therefore the parameter estimation for ARMA(p,q)
parameters mostly follows the same principle as that for MA processes but is extremely more
complex, e.g. there is the problem of the choice of initial values for x; because of the lagged
regressors. Analogously to the example 6.2 the conditional sum of squares

~ ~ ~ ~ T
SAPyseer @301 0,) = 2312 (6.3)
t=p+g+l

is to be minimized, where the error data & are estimated by the provisional model itself.
What is called nonlinear least squares estimation is the iterative procedure

.| (@ , s
[Akllz[Ak]—[DkaPDkak (6.4)

®k+l ®k

where (i)k and (:)k are the vectors of the kth iteration of the estimated AR and MA
coefficients respectively. D, denotes the (T-p-q)x(1+p+qg) matrix of the derivatives of the
estimated disturbances a, with respect to the parameters ¢ and §. Computer programs offer

several options for the choice of initial values (i)oand (:)0.

Another broadly used option offered by computer program packages is the maximum
likelihood (ML) estimation. Here the autoregression coefficients of an AR(p) model are
iteratively calculated by ML estimation under the condition that the model errors are MA(Q).
Initial values can be given or estimated such as with the nonlinear LS estimation.
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Example 6.3:

Wetry to find suitable models for the daily Moscow Times share priceindex (IMT).

As shown in example 5.6, this time series is nonstationary. By augmented Dickey-Fuller-Test
it can easily be demonstrated that the first differences are stationary (table 6.2). Consequently,
the Moscow Times Index itself isfirst order integrated.

Table6.2: Unit root tests for variable AIMT
The Dickey-Fuller Regressions include an intercept but not atrend

B R R R b b b b b b b b b b b b b b b b b R R R R b R R b R R R R b R R R R R b R R R R R

1390 observations used in the estimation of al ADF regressions.

Sample period from 6 to 1395

RO R R b b b b b b b b b b b b b b b b b b b b b b b b R R R R R R R R R b b R b b R b R b b b b b b b b
Test Statistic  LL AIC_ SCL

DF -45.7675  -7964.6  -7966.6  -7971.8

ADF(1) -295211 -7964.3 -7967.3 -7975.1

ADF(2) -229344  -7964.2  -7968.2  -7978.7

ADF(3) -20.3820 -79629  -7967.9  -7981.0

RO R b b b b b b b b b b b b b b b b b b b b b b b b b b b R b R R R R b b R b b R R b b b b b b b b b e

95% critical value for the augmented Dickey-Fuller statistic = -2.8641

LL =Maximized log-likelihood  AIC. = Akaike Information Criterion

SC, = Schwarz Criterion

In the following search for an ARIMA(p,1,9) Model of IMT we concentrate on the recent
time, i. e. only on the last period from 3™ August 2002 by 6™ May 2003. The sample
autocorrelations function for this period gives some hints about the possible types of the
model. According to the steep decrease after lag two it could be an MA(2) model for AIMT.
But the sample PAC (figure 6.8) has almost the same shape. Thus an AR(2) model could be as
good. If we takeinto consideration also minor peaks of the diagnostic functions one could
also try models of order 10 and mixed

mode

DIMT ACF

Figure 6.7: Autocorrelation function of the first differences of the Moscow Times Index
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Figure 6.8: Partial autocorrelation function of the first differences of the Moscow Times

Index

Our first trial is to deal with such a mixed one, namely an ARIMA(2,1,2) for IMT. The
constant term can be dropped because of missing significance. The symbols AR(1), MA(2)
etc. in table 6.3 to table 6.9 does not mean the model with this denomination but only the
corresponding coefficient of the indicated order. Considering the values of the t-statistic in
table 6.3 and the following we can decide about the significance of the corresponding model
coefficient: shortly, it is called significant on the 5% level if the absolute value of the t-
statistic exceeds the two sided 5% critical value of the standard normal distribution, i.e. 1.96.

We have tried to obtain significant coefficients only.

Table6.3: ARIMA(2,1,2)

Dependent Variable: AIMT
Method: Least Squares
Date: 11/17/03 Time: 21:54
Sample: 1200 1395
Included observations: 196

Convergence achieved after 21 iterations

Backcast: 1198 1199

Variable Coefficient  Std. Error t-Statistic Prob.

AR(1) -0.727445  0.040086 -18.14692 0.0000

AR(2) -0.831707  0.046215 -17.99662 0.0000

MA(1) 0.778122  0.009785  79.52184  0.0000

MA(2) 0.983501  0.019035 51.66710 0.0000
R-squared 0.102555 Mean dependent var 2.931173
Adjusted R-squared 0.088533 S.D. dependent var 75.95919
S.E. of regression 72.51885 Akaike info criterion (c) 11.42577
Sum squared resid 1009725. Schwarz Criterion () 11.49267
Log likelihood _-1115.725  Durbin-Watson stat ~1.938888
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The next trial is dedicated to a simpler type, the ARIMA(0,1,2) where the constant and &;

have been restricted to zero because of nonsignificance.
Table6.4: ARIMA(0,1,2), restricted

Convergence achieved after 5 iterations

Variable Coefficient  Std. Error t-Statistic Prob.

MA(2) 0.193886 0.070392  2.754370 0.0064
R-squared 0.032978 Mean dependent var 2.931173
S.E. of regression 74.69618 S.D. dependent var 75.95919
Akaike info criterion () 11.46982  Schwarz Criterion (o) 11.48655
Log likelihood _ -1123.043_ Durbin-Watson stat 1.900061

For completeness and because of the similarity between ACF and PAC, the ARIMA(2,1,0)
model type will be analysed as well. After two steps of zero restricting nonsignificant
coefficients we obtain the also very parsimonious model in table 6.5.

Table6.5: ARIMA(2,1,0)

Convergence achieved after 2 iterations

Variable Coefficient  Std. Error t-Statistic Prob.

AR(2) 0.159330 0.070053  2.274417 0.0240
R-squared 0.024384 Mean dependentvar  2.931173
S.E. of regression 75.02736 S.D. dependent var 75.95919
Akaike info criterion (6) 11.47867 Schwarz Criterion (o) 11.49540
Log likelihood ~-1123.910  Durbin-Watson stat ~ 1.903325

As mentioned above, there is a certain chance of improving the models estimated by
extending them to higher orders corresponding to peaks in the ACF and PAC right from t=2,
particularly at T=10. For this purpose the model is to subject to some restrictions, here to zero
restrictions for the coefficient most remote from significance as is indicated by smallest
absolute t-value. This way we can set to zero or exclude AR(3) to AR(9) and, after the next
estimations not shown here, MA(3) to MA(9). We skip the procedure of numerous
estimations and excluding nonsignificant coefficients one after the other and present only the
final highly restricted results in table 6.6 to table 6.9. The coefficients in all four variants are

significant at the 5% level.

Table 6.6: ARIMA(10,1,0), restricted

Convergence achieved after 3 iterations

Variable Coefficient  Std. Error t-Statistic Prob.

AR(2) 0.167751 0.069113  2.427189  0.0161

AR(10) -0.171843 0.065995 -2.603864  0.0099
R-squared 0.057330 Mean dependentvar  2.931173
S.E. of regression 73.93952 S.D. dependent var 75.95919
Akaike info criterion () 11.45452  Schwarz Criterion (o) 11.48797
Log likelihood -1120.543  Durbin-Watson stat ~_ 1.908686
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Table6.7: ARIMA(0,1,10), restricted

Convergence achieved after 11 iterations

Variable Coefficient Std. Error  t-Statistic Prob.
MA(2) 0.160845 0.069857  2.302493  0.0224
MA(10) -0.165091 0.071934 -2.295052  0.0228
R-squared 0.049384 Mean dependentvar  2.931173
S.E. of regression 74.25048 S.D. dependent var 75.95919
Akaike info criterion () 11.46292  Schwarz Criterion (o) 11.49637
Log likelihood _ -1121.366_ Durbin-Watson stat ~ 1.889381
Table6.8: ARIMA(10,1,2), restricted
Convergence achieved after 6 iterations
Variable Coefficient  Std. Error t-Statistic Prob.
AR(10) -0.156193 0.067173 -2.325237  0.0211
MA(2) 0.186053 0.070843  2.626275  0.0093
R-squared 0.059239 Mean dependentvar  2.931173
S.E. of regression 73.86460 S.D. dependent var 75.95919
Akaike info criterion () 11.45250 Schwarz Criterion (c) 11.48595
Log likelihood _ -1120.345_ Durbin-Watson stat ~ 1.899561
Table6.9: ARIMA(2, 1, 10)
Convergence achieved after 10 iterations
Variable Coefficien ~ Std. Error  t-Statistic Prob.
t
AR(2) 0.144618  0.070392  2.054453  0.0413
MA(10) -0.209273  0.072653 -2.880442  0.0044
R-squared 0.050544 Mean dependent var 2.931173
S.E. of regression 74.20519 S.D. dependent var 75.95919
Akaike info criterion () 11.46170 Schwarz Criterion (o) 11.49515
Log likelihood -1121.246_ Durbin-Watson stat ~_ 1.888897

45

Before continuing the search for the best of the seven models estimated the decision criteria
should be considered more detailed.

When comparing different models for the same time series we are to target competing aims:

- in the case of any kind of least square estimation minimizing the error variance among the
set of models estimated and at the same time minimizing the number of model parameters,

- or in the case of ML estimation maximizing the likelihood among the set of models and at
the same time minimizing the number of model parameters.

Usually we would obtain a better fit of the model to be estimated if we choose higher orders p
and g of the ARMA mode. The price for this seemingly gain of accuracy is a loss of
simplicity and parsimony. Therefore usually it is impossible to reach both aims by the same
model selected. A compromise between best fit and lowest number of parameters is to be
found. As known from section 5.4 useful instruments for finding such a compromise are the
Akaike Information Criterion and the Schwarz Criterion (often caled Schwarz-Bayes
Criterion SBC).
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Again here the Akaike Information Criterion has got two forms

_ ~2 p+q
AIC, = {1+In27z}+|naa+2—_r to be minimized (6.5)

or

AIC, =1(T,pa)-p-Q to be maximized (6.6)

with 0x being the error variance and Imax(T,p,q) the logarithmic likelihood of the ARMA
model with p and q coefficients (not necessarily equal to the real order of the model!)
estimated for time series with length T.

The corresponding two shapes of the Schwar z Criterion are:

_ ~2 , Pt(Q
X, ={1+In2x} +Inc +—T InT to be minimized (6.7)

_ _p+q
C, =1, (T, p.0) 5 InT to be maximized (6.8)

The Schwarz Criterion is more parsimonious concerning the number of parameters

Example 6.3: (continued)

Table 6.10 assembles the values of the error variance oriented Akaike Information Criterion
AIC, of the models for the Moscow Times Index estimated in the first part of this example.
Here p and g indicate the order of the model independently from the number of effectively
estimated coefficients. Table 6.11 shows the corresponding values of the Schwarz Criterion
SCs.

Table 6.10: AIC,
p |0 2 10
q
0 11.479... 11.455
2 11.470 11.426 11.453
10 11.463 11.462

Table 6.11: SCq
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P |0 2 10
q
0 11.495 11.488
2 11.487 11.493 11.486
10 11.496 11.495

The ARIMA(10,1,2) model for AIMT proved best concerning the smallest values of both AIC
and SC criteria. Its model equation is

AIMT; = -0.156193 AIMT.10 + & + 0.186053 a2 (69)

or for the levels of the original time series:

IMT; = IMTi.q - 0.156193 IMTt.10 + 0.156193 IMT¢.11 + & + 0.186053 a;.» (610)

But because it would be difficult to explain the meaning of the AR(10) term it could be
sufficient to choose the best model among the ARIMA(2,1,2) and smaller models. By both
criteriathen ARIMA(0,1,2) would be chosen:

AIMT; = a + 0.193886a;.,

(6.12)
or IMT; = IMTy; + & + 0.1938864a;., (612)
400
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Figure 6.9: MA(2) model for the stationary increase AIMT; of the Moscow Times Index
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6.3. Multiplicative ARIMA models— Seasonality

Seasonalities in time series can be dealt with by seasonal differences:
e.g. for seasonal period length s=12, i.e. for monthly data:

Xt = AlZZt = (1_ le)zt = Zt - Zt—12

(6.13)
or by seasonal lagsin ARMA models.
Simple examples are the seasonal AR(1) model
Xi=¢1 Xip+a, (6.14)
and the seasonal MA (1) model
Xy =28 -0,3_, (6.15)
Model ( 6.14) can be written as
% 12 _
-0, L)X, =2 (6.16)

If for a periodical monthly time series x; the residuals &, prove free of seasond effects the

assumed underlying stationary process a; itself can be subject a second ARMA(p,q)
modelling:

®,(L)a, =0,(L)e, where & iswhite noise
or, substituting ( 6.16),

D, (L)(1-¢; L? )X, =0,(L), (6.17)

If we take as examplesfor @ (L)and @, (L) the functions
q)z(l-) = LO_¢1 L-¢, L

0,(L)=L"-6,L

then ( 6.17) assumes the form

O, (L)(1- ¢1* L X, =0,(L)e,

or

(LO_ ¢ L—9, LZ)(]-_ ¢; le)xt = (LO_ 6, L)gt

This results after multiplying the operator terms to

(I—O_ ¢1 L- ¢2 L2_ ¢£ L12+ ¢1¢f L13+ ¢2¢£ Ll4)xt = (LO_ 91 L)gt .

or explicitly to

Xi =g X1+, X, + ¢: X2~ ¢1¢: Xz~ ¢2¢: X =& —0i6,

Because the operator functions @ (L) and @;(L*) =1-¢ "L** to be executed one after the
other can be formaly multiplied like arithmetical terms this kind of model is called
multiplicative.

More generally, both parts of the “multiplication” can be full ARIMA models. Then the
combined model is termed as a seasonal ARIMA(p,d,q)x(P,D,Q)s model, where P, D, Q
denote the orders of the seasonal model for the period length s.
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Then the differenced process A‘A°X, =(1-L)‘(1-L°%)° X, =Y, is assumed to be a
stationary ARMA process

D, (L)L (L)Y, =0, (L)O4 (L), (6.18)

where

@ (L)=1-¢ L—..—¢,L"

QL (LY) =1-¢; L°—...— ¢ L¥

0,(L)=1-6,L-..—6,L"

05 (L%) =1-6; L°~...— 05 L®

If we use instead of the symbol A again the operator 1-L and introduce again the original

process under consideration x; we find for the general multiplicative seasonal
ARIMA(p,d,g)x(P,D,Q) process X; with the seasonality s the representation

@, (L)P5 (L)1~ L%)° (1-L)* X, = 0,(L)0, (L%)a (619)

Example 6.4:

In example 4.8 we introduced the nonstationary time series of monthly incoming orders for
the construction industries in East Germany OR. This time seriesis first order integrated 1(1).
For the stationary first differences AOR a seasonad ARMA(3,3)%(0,1)1 is estimated. The
coefficients and the standard error can be found in table 6.2. The model for the levels ORisa
seasonal ARIMA(3,1,1)%(0,0,1)12

Table6.12;

Dependent Variable: AOR

Method: Least Squares

Sample(adjusted): 1991:05 2003:01

Included observations: 141 after adjusting endpoints
Convergence achieved after 11 iterations

Variable Coefficient  Std. Error t-Statistic Prob.

AR(3) 0.984586  0.018048  54.55340 0.0000

MA(1) -0.087409  0.044901 -1.946723 0.0536

MA(3) -0.875578  0.044068 -19.86861 0.0000
SMA(1) 0.223344  0.092243  2.421250 0.0168
R-squared 0.473244  Durbin-Watson stat 1.996023
Adjusted R-squared 0.461709 S.D. dependent var 17.90197
S.E. of regression 13.13438 Akaike info criterion () 8.016302
Log likelihood -561.1493  Schwarz Criterion (o) 8.099955

Thus we have found for the representation ( 6.19) of OR the following details with s=12, d=1,
D=0, p=3, P=0, g=3 and Q=1:
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®,(L) =1-0.985L°
@ =1

@,(L) =1+0.087L'+0.876L°
@:(L)=1-0.223L2.

Then (6.19) is
(1-0.985L°%)(1- L)OR = (1+0.087L+0.876L°%)(1-0.223L"%)a,

or writing it explicitly:

OR =OR_, +0.8950R _, —0.9850R , +a, +0.087a, , + 0.876a,_, —0.223a,_,, —
—0.087-0.223a,_,, —0.876-0.223a,

The last equation can be easily used as aforecast formula.
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7. Forecasting

7.1. Forecasting ARMA processes

Let us consider the stationary ARMA model
O(L)X, =0(L)a

(7.1)
transformed into the infinite MA representation (random shock model)

X, =¥(L)a =a +y,a_,+y,a_,+.. (72)
or for t=T+h

Xoh = ;l//i A i (7.3

Let T now be the origin for forecasting over a time horizon h taking into consideration that
there is no information for the time points T+1, T+2, ...T+h. The forecasting formula can be
reduced to

XT(+h) =Vhar VWt ee = E(XT+h|XT ) XT—l’ XT—Z'") (7.4)

where )ZT (+n designsthe h-step forecast on the base of the knowledge of the processtill t=T.

The corresponding forecast error is

~ h-1
€riny = Xron = Xrpny = Zl//i Arp
i=0

Because of E(a,

E(el'(+h)
therefore the estimator XT(+h) being unbiased.

i) =0fori=0,1,...h-1the conditional expectation of the forecast error is
X1, Xs 4, Xq50) =0,

The forecast error variance
2
var (€y.n) = UaZ‘//i (7.5)
i=0

allows the calculation of limits for forecast intervals, if a special distribution of the white
noise & is assumed, e.g. anormal distribution.

In practical forecasting the true ARMA parameters ¢, and 6; are substituted by estimated
values ék and éj and the random shocks a; by the residuals &, of the model fitted or the error
er+h.i Of previous forecasts.
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Example 7.1:

The AR(1) model X =gy +& X, +a, |p]<1

can be transformed for t = T+h to X;,, =@, + & X1 + a7,y
what givesthe recursive forecast formula

XT(+h) =@+ ¢1XT(+h—l)

If we substitute
XT(+h—1) =@, + ¢1XT(+h—2)
and so further, we obtain the final formula

Xrim = Got6,+07 + .48 + 41X 79

In the long run this expression asymptotically tends to the expectation of X:

!me )ZT(+h) = ﬁ =E(X) =4,
1

Furthermore it is easy to proof that in this example the coefficient of the representation ( 7.2)
are (compare example 3.6)

V; :¢1|

Therefore the forecast error variance ( 7.5) is
1_ ¢2h
2 1
Tl
In the long run this variance tends to the variance of the process X, namely o5 .

Var(eT(+h) ) = 0-2(1+ ¢12 + ¢l4 + ...+ ¢12(h_l) ) =0

Example7.2:
For the AR(2) model X, =¢,+¢, X, +¢,X,,
the equivalent forecast formulae immediately follow:
one-step forecast: XT(+1) =0y + O X; + P, X1,
two-step forecast: X, =@ + @ X7 (g + 0, X
h-step forecast: X,y =@ + @ X1 iny T 0. X1(np fOrh=3

Equally to the result in example 7.1, the expectation of this forecast tends to the process
mean:

b,
————=E(X,) = uy
g —p,  CWI=H

lim X,y =
N—oo

and
limvar(e; .,) = 0.
N—eo
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Example 7.3:
For the MA(1) model X, =a, —6,a,,

the forecast formulae obviously are

XT(+1) = HlaT

and )A(mh) =0 for h>2.

Because of
=1
l//lz_el
vy, =0fori=2

the forecast error variance according to ( 7.5) resultsin
Var(er(+1)) = Oﬁ

and  var(e ) =0i(1+67)=0y for h>2.

53

That means the forecast intervals have a constant width independent on the forecast horizon h.

In the same way, we obtain for the MA(2) process

Xi=a —6a_,-6,a,,
the forecast formulae

)ZT(+1) =-0,a; —0,a; ;
)2T(+2) =—0,3;
)A(mh) =0 for h>3
and the forecast error variance
Var(er(+1)) = O-i
var(er,,) =03 (1+6;)

andforh>3 var(e;,) =0.(1+67 +6;) =05

Example 7.4:
For the ARMA (1,1) model X, =¢,+¢, X, ,—6,a,,
again we easily find the forecast formulae

Xy =0 + O X —0ia;

and Xigm =@ + A X1y forh22

. . é
with — lim X, =1—°= E(X)=u,

%1
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and the forecast error variance

var(er ) = o§[1+ S+t
i=1 )

2
with  limvar(e;,,) = o 1+ M]: o2
hee 1_¢l )

Aswe have seen in all examples considered in this section, the forecast error of these ARMA
modelsislimited by the value of the process variance ox in the long run.

Thiswill change in the case of nonstationary processes, that means here: ARIMA processes.

7.2. Forecasting ARIMA processes

As defined in section 6.1, the nonstationary process X; is called an ARIMA(p,d,q) process if
the d-th differences Y, = A’ X, = (L- L) X, isastationary ARMA (p,q) process:

Yo =6+ 0V +'"+¢th*9 +a —6,a,, _'"_6qat*q

or  O(L)Y, =4¢,+0(L)a, (7.7)

with @(L) =L°-¢ L'—...— ¢, LP
and O(L)=L"-6,L'-..—6,L°

The forecast of this ARIMA process Y; can be carried out as a two-stage procedure:
Firgt, the stationary ARMA process X; is extrapolated the way shown in section 7.1.
Secondly the differentiation is reversed into integration i.e. summation of the forecasted

increments YT(+h) A th)ln order to obtain firstly Ad‘le(+h), then in the same way

A"PX o andfinaly Xo oy, -

The estimation of the forecast error variance and consequently the width of the forecast
interval is to be performed analogously by repeated summation of the error variances of the
ARMA process X;.

Another option is the construction of individual one-stage forecast formulae.
For this purpose the equation ( 7.7) is modified by substituting the differences

‘X, =(@1-L)* X, for Y

O(L)A-L)* X, = ¢, +O(L)a, (78

By multiplying the operator functions on the left hand side and solving the equation for X; we
obtain a model formula that can be extrapolated for t=T+h and in this way transformed into

an h-step forecast formula for )A(mh) with theorigin T.

Example 7.5:
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ARIMA (0,1,0) models
If X; isarandom walk without drift (constant)

where AX, =a,,
e @-L)X, =4,
or X=X, +a,

then the extrapol ation formula can be written as
Xin = Xpna +&

That means on the base of the last known redlisation at t=T the forecast formulais reduced to
the simple constant relationship

XT(+h) =X+

for al forecast horizons h >1 but with increasing error variance:
var(er.,) = ho;

If X; isarandom walk with shift
Xt = Xt—l+¢0+a‘t

then the forecast formula
XT(+h) =X+ h¢0
corresponds to asimple linear trend line.

The error variance is the same as in the above case of ¢, =0, that means in both cases, the
width of the forecast interval increases proportionally with v/h .

Example 7.6:
The ARIMA (0,1,1) model (1-L) X, =¢, —6,a,_, + &,

Thisbecomesfort= T+h
Xin =00 = Xisna — 618000 T &

or in the shape of a h-step forecast with origin T on the base of information prior T+1
Xi@n = Xy +hey —6,a;
I.e. the forecast curveislinear in h.

From this forecast error variance
var(er,,) =o: 1+ (h-1)(1-6,)?)
can be derived.

Example7.7:
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The ARIMA (1,1,0) model (1— ¢, L)A1— L)X, = ¢, + 2,

gives explicitly fort=T+h
T+h ¢O + (1+ ¢1) XT+h 1 ¢1XT+h—2 + aT+h

and the iterative forecast for h>3
XT(+h) P + (1+ ¢1) XT(+h -1) ¢1XT(+h—2)

with the starti ng forecasts
Xy =@ + AL+e)X; =9 X1,
T(+2) ¢o + (1+ ¢1) XT(+1) ¢1 T

Without further details should only be mentioned that the forecast error variance is a rather
complex function of ¢ that tends to infinity in the long run.

Example 7.8:
From the ARIMA (1,1,1) model (1-¢, L)1-L)X, =¢, +(1—-6,L)a

with the presentati onfort= T+h,
T+h ¢o + (1+ ¢1)XT+h 1 ¢1XT+h—2 +ar., _6laT+h—l’

the forecast formulafor h=3 follows;
T(+h) ¢o + (1+ ¢1) XT(+h -1) ¢1 T(+h-2)
with XT(+1) =@y +(1+¢) X =9 X - 03

and Xrpg =@ + L+ ¢1)XT(+1) ¢ X¢

Example 7.9:

For the Moscow Times Index (IMT) we had specified and estimated in example 6.3 and
equation ( 6.12) among othersthe ARIMA(0,1,2) model
IMT, = IMT,_, +a, +0.1%a, ,. (79

That meansfort = T+h
IMT;,, = IMT;,, , +a8;,,+0.1%a,, ,
or for aone-step forecast from the origin T

IMT, ,,, = IMT, +0.194a, , (7.10
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and for atwo-step forecast
IMT, () = IMT;,, +0.194a, = IMT; +0.194(a, +a_,)

The latter forecast will not vary for any h>2:

IMT; (., = IMT; +0.194(a; +a;,) (7.11)

While the forecast equals to a constant for h>2 the forecast error variance increasesto infinity
with growing forecast horizon h:

var(er ) =0z (2+(h—2)(1+0.194)?) (7.12)

This relationship follows from the general formulafor the forecast error variance

2 - 2
var(er,n) =0, g),‘//f (7.13)
with y; being the coefficients of the infinite MA representations of a process with the lag

o(L)
(1-L)

polynom W(L). In the case of this example W¥(L) must be equal to the model operator

or W(L)(1-L) = O(L)
e (W, L+, L'+y, L%+..)1-L)=1L"-4,L?

By multiplying the terms in brackets and equalling the coefficients of the same powers of L
on both sides of the equation we obtain

Yo=1
y, =1
y,=1-6,

w,,=1-6, with 6,=-0.194

Substituting ¥ in ( 7.13) we obtain ( 7.12).
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Figure 7.1: Forecast of the Moscow Times share price index.

Figure 7.1 displays the forecasts of the levels II\7ITT(+h) = IMTFOREC of the Moscow Times

Index on the base of the data till T=1395 for 6" May 2003 with forecast horizonsh=1,2,...,15.
The dotted lines below and above the forecast line indicate the one-sigma forecast limits
corresponding to ( 7.12). The forecast values themselves remain constant after the first step of
h while the width of the forecast interval increases. As expected, this model would not be a
particular efficient tool for long-term forecasting the Russian finance market. But a repeated
one-step calculation according to ( 7.10) on the base of the newest daily data would improve
the forecast quality effectively.
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8. ARCH and GARCH Processes

Usually econometricians assume the autocorrelations of model disturbances to be zero. But in
the last decade the interest of researchers increasingly focused on systematically changing
errors and error variances because in time series of exchange rates and stock market return
had been found sections of small error changing with sections of large errors or low with high
volatility, respectively.

8.1. Conditional Heter oscedasticity

Volatility is usually measured by the variance o;* of atime series or a stochastic process.

Homoskedasticity of a model such as an AR model means that the error or disturbance term
has a constant variance. The antonym is Heteroskedasticity, i.e. variability of the error
variance.

Conditional Heteroskedasticity (CH) means that the conditional error variance i.e. the
variance under the condition of information given depends on time. It can occur in spite of
general homoskedasticity (unconditional).

The variance of the model disturbances a; is
_ 2y 2
var(a) =E(a’) =0, (8.1)

The corresponding conditional variance on the base of the knowledge of the last vaue is
defined as

var(aa, ;) = E(a’[a, ;) (82)

8.2. The ARCH/GARCH M odel

The ARCH(1) model isthe simplest example for an ARCH process, i.e. an autoregressive
conditional heteroscedasticity process.

Let Xt = ¢o + ¢1Xt—1 + U,

(8.3)
be an AR(1) process with an error term u; and the properties
E(u,)=0
E(u, |u,,)=0
U = (Jo +AU%) +a”
with 4;<1 and a; being white noise. Then the conditional variance of the error is
h =var(u, |u, ) =EU’|u_,) =4, + LU, (84

Obvioudly it depends on the last value of u and is not constant. That means varying
conditional variance, i.e. conditional Heteroskedasticity occurs.

But the unconditional variance is constant:
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2 2
E(ut ) = lo + /11 E(ut—l)

= ozﬂil (ﬂi<1) (85)
Ao
=1_A1

That means the process ( 8.3) proves homoscedastic despite its conditional heteroscedasticity.

= const

An AR model can be tested for ARCH(1) in the following way

Fit X; by an AR model with the error term u.
Cdculateresiduals U, as estimatesfor u.

- Calculate alinear regression for G2 with regressor G2, and the coefficient 4;.

- Test the coefficient 4y by t-, F-, x*-test with the null hypothesis Ho: 41=0.
If A, significantly differs from zero the model is ARCH(1).

Let beagain
Xt = ¢0 + ¢1Xt71 + U,
But now we assume

----- - - (86)

Then X; is considered as being an ARCH(q) process.
A time series can be tested for ARCH(q) by extending the regression in the above described
test to a multiple one.

The generalized autoregressive conditional heteroskedasticity model (GARCH (p,q))describes
a process where the conditional error variance on al information €2, available at time't
hI2 = Var(ut|Qt—1 )
Is assumed to obey an ARMA (p,q) model:
2

2 2 2 2 2
W =ap + oy +. ol + Bl + BoUl, +.t+ Bul, (87)

Example 8.1:

Here we try to model the return of the Moscow Times Index over the whole period from 1997
to 2003. In example 5.3 this return was defined as AInIMT. Table 8.1 shows the result of
estimating of an ARCH (1) which coincides with a GARCH(0,1)
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Table8.1;

GARCH(0,1) assuming anormal distribution
converged after 59 iterations
EAR R R b b b b b b b b b b b b b b b b b b b b R b b b b b b b b b b b b b b b R b R R R b R b b b b b b b b b b R R R R b b b b b b b b b
Dependent variable is Aln;
1393 observations used for estimation from 3 to 1395

kkhkkhkkkkhkkkhhkkhkkhhkhkhhkhkhhkkhhhkhkhhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhkkhkhhkkhkhhkkhkhkkhkhhkhkhkkk,kk*,k,x**%

Regressor Coefficient ~ Standard Error T-Ratio[ Prob]

AInIMT¢., 12158 034727 3.5012[.000]

EAR R R R b b b b b b b b b b b b b b b b b b b b R b b b b b b b b b b b R R R R b R R R b R b b b b b b b b b b R R R R b b b b b b b b b R
R-Squared -.020937 DW-statistic 2.2945

S.E. of Regression 040219 F-stat. F( 1,1391) *NONE*

Mean of Dependent Variable .0012655  S.D. of Dependent Variable .039790

Residual Sum of Squares  2.2500 Equation Log-likelihood 2634.8

AlIC, 2632.8 SC, 2627.6

kkhkkhkkhkkhkkhkkhhkkhkkhhkhkkhhkhkkhhkkhhkkhkhkhkhkhkhkhkhhkhkhhkhhhkhkkhhkhkhhkkhhkhkkhkhkhkhkhkhkhkhhkhkhkkhkhkkhkkhkhkk kkk,kkx**%

Parameters of the Conditional Heteroscedastic Model
EAR R R b b b b b b b b b b b b b b b b b b b b R b b b b b b b b b b b b b b b R b R R R b R b b b b b b b b b b R R R R b b b b b b b b b
Dependent variable is the squared error e
Coefficient Asymptotic Standard Error
Constant .0010248 4987E-4
€11 34542 052786

kkhkkhkkkkhkkkhhkkhkhhkhkhhkkhhkkhkhkkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhkhkkhkhhkhkhhkkhkhhkkhkhkkhkhkkk,kkk,k,x**%

In contrast to the last examples, here the likelihood versions of the Akaike Information and
Schwarz Criteria that are to be maximized were used.

An interesting modification of ARCH or GARCH models is the ARCH/GARCH model in
mean (ARCH-M or GARCH-M)

Here the conditional variance h? of (8.8) is enclosed as an explicate term in the general model
equation for X;

eg. X, =g+ X4+ Vhtz +U, (88)
In the case of asset return modelling, the GARCH-M model gives many opportunities to study
the influence of the volatility of the process, represented by h?, and the risk of the assets
under condition.



H. G. Strohe, Time Series Analysis, Universitdt Potsdam 62

Subject index

Akaike Information Criterion (AIC)
32ff,, 42ff, 50, 61
Autoregressive (AR)
e Modéll 8ff, 19, 33, 40ff, 47f, 52,
59f
e Process 8ff, 29, 32, 36ff, 50, 59
Autoregressive condotional
heteroscedasticity (ARCH) 59ff
ARIMA 35ff
e forecasting ARIMA processes
54ff
e multiplicative ARIMA model
48ff, 54
Autoregressive Moving Average
(ARMA) 6, 11ff, 33, 35, 41, 45ff
e forecasting ARMA processes
51ff
autocorrelation 2f, 15, 21, 40
autocorrelation function (ACF) 3, 13ff,
37ff, 44
o partia 17ff
e inverse 36
autocovariance 2f, 15ff, 20f, 40
Box-Pierce statistic 17, 38
coefficient 15, 17
Conditional -Sum-of-Squares estimation
(CSS) 41
correlogram 13, 17
covariance 7, 28, 41
DF-Test 31, 32
Dickey-Fuller (DF) 29ff
e Augumentet Dickey-Fuller Test
(ADF) 32ff, 42
e Dickey-Fuller Regressions 33ff, 42
e simple Dickey-Fuller Test 33
ergodicity 3, 36
estimator 16, 20, 23, 41, 51
forecast formula 50ff
o forecastinterval 51, 53ff, 58
h-step forcast 51ff
one-sigmaforecast 58
one-stage forecast formulae 54
one-step forecast 52, 56
e two-step forecast 52, 57
Fourier transform 20

Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) 59ff
Homoskedasticity 59, 60
Least Square Estimation (LS estimation)
4,41, 45
likelihood 32, 45, 61
e logarithmic likelihood 32ff, 40ff,
50, 61
e maximum likelihood (ML) 36, 40f,
45
Marquardt algorithm 36
ML 36, 40, 41, 45
Moscow Times Index (IMT) 33ff, 42f,
46ff, 56, 58, 60f
Moving Average (MA) 6ff, 11ff, 22f,
36ff, 48, 50f, 53, 57
nonstationary process 9, 28f, 35, 37, 54
null hypothesis 4, 17, 30, 34, 60
Ordinary Least Squares (OLS) 19f, 30ff,
36, 40f
partial autocorrelation (PAC) 17ff, 36,
39f, 43
power spectrum 20
random shock model 51
Schwarz Bayes Criterion (SBC) 33ff,
42ff, 50, 61
Seasonalities 48f
spectral density 20ff
spectral power 21f
spectrogram 21
stationary process 2f, 13, 29, 35, 49
stochastic process 2ff, 8, 17, 28, 59
time series 2ff, 7f, 11ff, 16ff, 28ff, 45ff,
59f
trend 3f, 20, 24f, 28, 30, 33ff, 42, 55
t-test 4, 30, 32
e t-vaue 31f, 44
unit root test 4, 9f, 29ff, 40ff
variance 2ff, 7, 10, 15, 19ff, 26, 28f, 36,
52, 54, 59, 61
e conditional variance 59, 61
o (forecast) error variance 32, 45f,
51ff
e Uunit variance 4, 19
white noise 4ff, 17, 19, 23, 28ff, 32,
36f, 39ff, 49, 51, 59
Y ule-Walker equations 40



	Titlepage
	Table of Contents
	1. Deterministic Time Series Modelling
	2. Stationary Stochastic Processes
	2.1. Definitions
	2.2. Ergodicity
	2.3. Special Cases

	3. ARMA Processes
	3.1. MA Models
	3.2. AR Models
	3.3. ARMA Models

	4. Autocorrelation and Spectrum
	4.1. Autocorrelation Function
	4.2. Partial Autocorrelation Function
	4.3. Spectral Density

	5. Integrated Processes
	5.1. Nonstationary time series
	5.2. Differentiation and Integration
	5.3. Random Walk
	5.4. Unit Root Tests

	6. ARIMA models
	6.1. Definition
	6.2. Model identification and parameter estimation
	6.3. Multiplicative ARIMA models – Seasonality

	7. Forecasting
	7.1. Forecasting ARMA processes
	7.2. Forecasting ARIMA processes

	8. ARCH and GARCH Processes
	8.1. Conditional Heteroscedasticity
	8.2. The ARCH/GARCH Model

	Subject index

