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ABSTRACT 

Laser cutting is a fast and precise fabrication process. This makes laser 
cutting a powerful process in custom industrial production. Since the 
patents on the original technology started to expire, a growing 
community of tech-enthusiasts embraced the technology and started 
sharing the models they fabricate online. Surprisingly, the shared 
models appear to largely be one-offs (e.g., they proudly showcase what a 
single person can make in one afternoon). For laser cutting to become a 
relevant mainstream phenomenon (as opposed to the current tech 
enthusiasts and industry users), it is crucial to enable users to reproduce 
models made by more experienced modelers, and to build on the work 
of others instead of creating one-offs. 

We create a technological basis that allows users to build on the 
work of others—a progression that is currently held back by the use of 
exchange formats that disregard mechanical differences between 
machines and therefore overlook implications with respect to how well 
parts fit together mechanically (aka engineering fit). 

For the field to progress, we need a machine-independent sharing 
infrastructure. 

In this thesis, we outline three approaches that together get us closer 
to this: 

(1) 2D cutting plans that are tolerant to machine variations. Our 
initial take is a minimally invasive approach: replacing machine-specific 
elements in cutting plans with more tolerant elements using mechanical 
hacks like springs and wedges. The resulting models fabricate on any 
consumer laser cutter and in a range of materials.  

(2) sharing models in 3D. To allow building on the work of others, 
we build a 3D modeling environment for laser cutting (kyub). After users 
design a model, they export their 3D models to 2D cutting plans 
optimized for the machine and material at hand. We extend this 
volumetric environment with tools to edit individual plates, allowing 
users to leverage the efficiency of volumetric editing while having 
control over the most detailed elements in laser-cutting (plates) 



 

ii 

(3) converting legacy 2D cutting plans to 3D models. To handle 
legacy models, we build software to interactively reconstruct 3D models 
from 2D cutting plans. This allows users to reuse the models in more 
productive ways. We revisit this by automating the assembly process for 
a large subset of models.  

The above-mentioned software composes a larger system (kyub, 
140,000 lines of code). This system integration enables the push towards 
actual use, which we demonstrate through a range of workshops where 
users build complex models such as fully functional guitars. By 
simplifying sharing and re-use and the resulting increase in model 
complexity, this line of work forms a small step to enable personal 
fabrication to scale past the maker phenomenon, towards a mainstream 
phenomenon—the same way that other fields, such as print (postscript) 
and ultimately computing itself (portable programming languages, etc.) 
reached mass adoption. 
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ZUSAMMENFASSUNG 

Laserschneiden ist ein schnelles und präzises Fertigungsverfahren. 
Diese Eigenschaften haben das Laserschneiden zu einem starken 
Anwärter für die industrielle Produktion gemacht. Seitdem die Patente 
für die ursprüngliche Technologie begannen abzulaufen, nahm eine 
wachsende Gemeinschaft von Technikbegeisterten die Technologie an 
und begann, ihre Modelle online zu teilen. Überraschenderweise 
scheinen die gemeinsam genutzten Modelle größtenteils Einzelstücke zu 
sein (z.B. zeigten sie stolz, was eine einzelne Person an einem 
Nachmittag entwickeln kann). Damit das Laserschneiden zu einem 
relevanten Mainstream-Phänomen wird, ist es entscheidend, dass die 
Benutzer die Möglichkeit haben Modelle zu reproduzieren, die von 
erfahrenen Modellierern erstellt wurden, und somit auf der Arbeit 
anderer aufbauen zu können, anstatt Einzelstücke zu erstellen. 

Wir schaffen eine technologische Basis, die es Benutzern ermöglicht, 
auf der Arbeit anderer aufzubauen—eine Entwicklung, die derzeit 
gehemmt wird durch die Verwendung von Austauschformaten, die 
mechanische Unterschiede zwischen Maschinen außer Acht lassen und 
daher Auswirkungen darauf übersehen, wie gut Teile mechanisch 
zusammenpassen (aka Passung). 

Damit sich das Feld sich weiterentwickeln kann, brauchen wir 
eine maschinenunabhängige Infrastruktur für gemeinsame Nutzung. 

In dieser Dissertation präsentieren wir drei Ansätze, die uns zu 
diesem Ziel näherbringen: 

(1) 2D-Schnittpläne, die gegenüber Maschinenvariationen 
tolerant sind. Unser erster Ansatz ist ein minimalinvasiver Ansatz: Wir 
ersetzen maschinenspezifische Elemente in Schnittplänen durch 
tolerantere Elemente unter Verwendung mechanischer Hacks wie 
Federn und Keile. Die resultierenden Modelle können auf jedem 
handelsüblichen Laserschneider und in einer Reihe von Materialien 
hergestellt werden. 

(2) Teilen von Modellen in 3D. Um auf der Arbeit anderer 
aufbauen zu können, erstellen wir eine 3D-Modellierungsumgebung für 
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das Laserschneiden (kyub). Nachdem die Benutzer ein Modell 
entworfen haben, exportieren sie ihre 3D-Modelle in 2D-Schnittpläne, 
die für die jeweilige Maschine und das vorhandene Material optimiert 
sind. Wir erweitern diese volumetrische Umgebung mit Werkzeugen 
zum Bearbeiten einzelner Platten, sodass Benutzer die Effizienz der 
volumetrischen Bearbeitung nutzen und gleichzeitig die detailliertesten 
Elemente beim Laserschneiden (Platten) steuern können.  

(3) Umwandlung von legacy 2D-Schnittplänen in 3D-Modelle. 
Um mit legacy Modellen umzugehen, entwickeln wir Software, um 3D-
Modelle interaktiv aus 2D-Schnittplänen zu rekonstruieren. Dies 
ermöglicht Benutzern, die Modelle auf produktivere Weise 
wiederzuverwenden. Wir behandeln dies erneut, indem wir den 
Rekonstruierungsprozess für eine große Teilmenge von Modellen 
automatisieren. 

Die oben genannte Software ist in ein größeres System integriert 
(kyub, 140.000 Codezeilen). Diese Systemintegration ermöglicht es, den 
tatsächlichen Gebrauch voranzutreiben, was wir in einer Reihe von 
Workshops demonstrieren, in denen Benutzer komplexe Modelle wie 
voll funktionsfähige Gitarren bauen. Durch die Vereinfachung der 
gemeinsamen Nutzung und Wiederverwendung und die daraus 
resultierende Zunahme der Modellkomplexität wird diese 
Arbeitsrichtung und das daraus resultierende System letztendlich 
(teilweise) dazu beitragen, dass die persönliche Fertigung über das 
Maker-Phänomen hinausgeht und sich zu einem Mainstream-
Phänomen entwickelt – genauso wie andere Bereiche, z.B. als Druck 
(Postscript) und schließlich selbst Computer (portable 
Programmiersprachen usw.), um eine Massenakzeptanz zu erreichen. 
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1  
INTRODUCTION 

Laser cutters are fast and precise fabrication machines. Maiman built the 
first research prototype in 1963 using radiation in a ruby [76], and the 
first CO2 based functional cutter was built a year later at Bell labs in 1964 
[87]. The initial decades of use took place exclusively in industrial and 
research contexts. As the technology matured and the machines became 
more accessible, a new class of users started to embrace the power of the 
technology around the 2000s, mostly for hobbyist use cases [46]. These 
“tech enthusiasts” have since created millions of models for laser cutting.  

In contrast to the industrial users before the 2000s, tech enthusiasts 
started sharing their models widely on online repositories (e.g., 
thingiverse [117], GrabCAD [44], myMiniFactory [79]), mostly to 
showcase what they made and to allow others to reproduce the models. 
Surprisingly, these models are largely one-offs made by single 
individuals and, as we will explain later, it is hard to reproduce these 
models for anyone other than the original modeler. For laser cutting to 
become a mainstream phenomenon and thus become relevant to other 
users than tech-enthusiasts [13], it is crucial that non-experts can 
download and reproduce models created by experts, and that those 
experts build on the work of others to create more advanced and useful 
models. This progression is currently held back by machine-dependent 
exchange formats. The central thesis of this work therefore is: 

For laser cutting to progress into a mainstream phenomenon, we 
need a machine-independent (aka portable) sharing infrastructure. 

In this chapter we first analyze the underlying problem of the 
current sharing infrastructure, we then outline three approaches to 
progress the field that are presented in detail in this thesis and 
summarize the contributions. Finally, we conclude with an outline of the 
thesis. 
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1.1 WHAT IS HOLDING BACK PORTABILITY? 
We begin by taking a closer look at the underlying challenge. Models are 
currently shared in the form of 2D cutting plans; vector drawings the 
laser traces when cutting. When traversing the paths in the cutting plan 
the laser removes material, the amount of material removed when 
cutting is called “kerf” or the width of the cut. As studied in-depth by 
Uslan [122] kerf depends on the laser used, the material, the thickness of 
the material, the state of the machine, the air flow within the machine, 
and various other parameters that may vary within the same day of 
cutting.  

The width of the cut is reasonably harmless when cutting 2D shapes 
or engraving objects using the laser cutter. However, when creating 
models that either consist of more than one piece (e.g., consisting of 
multiple pieces such as 3D constructions or models embedding non-
laser cut components), variations in cut width causes severe problems. 
The canonical way to combine multiple pieces is by embedding joints, 
mounts, or mechanisms in the cutting plans. As we present below, these 
rely on tight tolerances and thus fail to operate reliably when the cut 
width varies. 

Figure 1 shows how embedding a plastic arcade button requires the 
designer to add a mount to the model. The commonly accepted solution 
is to create a hole that has the same shape as the button but is a tiny bit 
smaller than the button. This type of mount is called a press fit mount. 
When forcing the button into such a press fit mount, the tightness of the 
hole causes the plywood to stretch a tiny bit to accommodate the button. 
This means that the plywood now acts as a spring, and the stretching of 
that spring holds the button in place.  

 
Figure 1: (a) A key design element in laser cutting is the press-fit where a physical object is forced 
into a slightly smaller opening. (b) The opening now acts as spring, securely holding the object. 

Unfortunately, when other users try to reproduce such a model, they 
switch to their laser cutter and their material, which introduces variation 
in the size and stiffness of the mount, this commonly causes the mount 
to fail. As shown in Figure 2, (a) some user’s lasers produce a thinner cut 
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than the original model was designed for. This makes it impossible to 
assemble the model, as the button does not fit into the mount anymore. 
(b) other users’ lasers produce a wider cut. This causes the button to fall 
out of the mount. (c) This user tries to reproduce the model from acrylic. 
Acrylic is more brittle than plywood. The hole size that worked fine with 
plywood now causes the material to pop when the user forces the button 
in. 

 
Figure 2: The carefully tuned press fit from Figure 1 fails when fabricated on different laser cutters. 
(a) On machines with smaller kerf, it cannot be inserted completely. (b) On machines with wider 
kerf, it is loose and falls out. (c) When cut from brittle material, it breaks the model. 

The mount for a button is a somewhat simplified version of 
connecting laser-cut joints. Joints manifest themselves just like mounts 
by compressing material, however the same spring tends to be repeated 
along the surface of the plates resulting in a firm, homogenous fit. As a 
result, they are even more subject to failure under variations in kerf. 

While joints and mounts exert a constant force, a bearing for 
example should hold its axle in place without applying any force to the 
axle. In Mechanical Engineering this is referred to as “loose fit” [60], 
achieving this in a laser-cut model requires the size of the opening to be 
tuned properly. As shown in Figure 3, without proper tuning, a bearing 
that is too loose introduces slack. This slack tends to cause mechanical 
issues.  

 
Figure 3: (a) When fabricated on a machine with smaller kerf, this bearing gets too tight. This causes 
friction or even prevents users from inserting the axle. (b) On machines with wider kerf, bearings 
are subject to slack, potentially causing adjacent mechanisms to jam. 
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Unfortunately, tuning tends to get lost when manufacturing a model 
on a different machine—as is the case when sharing a model, and the 
resulting models are again subject to slack and/or jamming. 

This problem affects a range of mechanisms, including three of the 
four primary types of mechanisms with moving parts [5] shown in 
Figure 4. Red highlighting indicates areas where kerf-related problems 
occur. 

 
Figure 4: Three out of four elementary classes of mechanisms [5] are subject to kerf-related issues. 
Susceptible surfaces are marked in red. (a) The revolute pair includes mechanisms that operate like 
the bearing shown before, (b) a prismatic pair allows a rod with rectangular cross section to slide 
forth and back, and (c) a pair of gears. (d) Only cam/follower mechanisms remain unaffected, as 
they are typically spring-loaded. 

We conclude that the existing sharing infrastructure built on 
machine-dependent 2D cutting plans falls short when models are more 
complex than a single 2D shape. They will fabricate fine once but sharing 
those cutting plans inevitably leads to dysfunctional models.  

1.2 PORTABLE LASER CUTTING 
In this thesis, we create a technological basis that allows users to 
reproduce models made by others and build on the work of others. We 
approach this in three steps: (1) converting machine dependent 2D 
cutting plans to cutting plans that are tolerant to machine variations, 
(2) sharing cutting plans in 3D instead of 2D, making it easier to build 
on the work of others and (3) converting legacy 2D cutting plans to 3D. 
We built software tools to facilitate each of these steps. 

1.2.1 2D cutting plans that are tolerant to machine variations 

Our initial approach is to patch the existing machine-dependent 2D 
cutting plans. As identified before, the problems occur when there are 
elements like joints, mounts, or mechanisms in cutting plans. We 
propose novel mechanical variations of these elements that support a 
much broader range of tolerances, by using springs (for joints and 
mounts) or wedges (for mechanisms). The resulting software tool 
identifies problematic elements in 2D cutting plans and swaps them out 
for our elements that are tolerant to machine variations. The tool outputs 
2D cutting plans that fabricate on a range of materials and all typical 
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laser cutters, but still in the same format, so they can be shared on the 
same platforms as before. As shown in Figure 5, the modified models 
fabricate on any consumer laser cutter and in a range of materials.  

 
Figure 5: Models made using modified 2D cutting plans fabricate reliably on any typical lasercuter 
and in a range of materials, modified using our software tools SpringFit [101] and KerfCanceler 
[97]. The models in the background show the original (machine-dependent) version. 

1.2.2 sharing models in 3D 

Machine-independent cutting plans allow users to reliably reproduce 
models made by others, but it does not help users build on the work of 
others as we set out to do. To accommodate this, we built a 3D modeling 
environment for laser cutting. Representing models in 3D as shown in 
Figure 6 allows our software to generate machine-optimized joints, 
mounts, and mechanisms when users export models to 2D cutting plans 
(to fabricate on their laser cutter). Users then share 3D models and use 
the 3D environment to modify models made by others. We extend this 
volumetric environment with tools to edit individual plates, allowing 
users to leverage the efficiency of volumetric editing while having 
control over the most detailed elements in laser-cutting (plates). 

 
Figure 6: Representing models for laser cutting in 3D, allows users to export the model to 2D 
cutting plans that are optimized for their machine and material at hand. It furthemore makes it 
easier to create 3D modifications to the cutting plans when modifying models made by others. 
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1.2.3 converting legacy 2D cutting plans to 3D models 

Despite our attempt to create a new 3D modeling environment, there are 
still a lot of models represented in 2D formats, and entire 
engineering/design careers hinge around working with these formats. 
We suspect 2D cutting plans continue to remain the standard while that 
is the case. And as a result, the field of laser cutting fails to really move 
forwards. We therefore revisit this issue by reconstructing the legacy 2D 
cutting plans into 3D models, which users can modify using our 3D 
modeling environment.  

 
Figure 7: We reconstruct 2D cutting plans into 3D models as shown here at the example of a VR 
headset represented as 2D plates and the resulting 3D assembled model. We built an automatic 
pipeline to achieve this, and we provide an interactive fallback for models that turn out to be 
challenging.  

We first extend our 3D modeling environment with the ability for 
users to interactively reconstruct 2D cutting plans. Our algorithm 
analyses the geometry of the 2D cutting plan in a 5-step pipeline, upon 
which users load the cutting plan in the 3D environment and puzzle 
together the plates. Based on high success rates, we revisit the analysis 
algorithm by turning it into an automatic pipeline using a heuristics-
based beam-search algorithm. The interactive workflow continues to 
serve as a fallback for the subset of models which cannot be 
automatically reconstructed. 

1.3 CONTRIBUTIONS 
3D laser-cut models that work across typical laser cutters. The main 
contribution of this thesis is that sharing models in 3D allows for 
machine-independent fabrication, and furthermore allows others to 
make high-level parametric changes to models. The existing 2D cutting 
plans did not allow for this as they make implicit reference to specific 
machines and materials. To accomplish this high-level goal, we make 
the following contributions: 
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A pipeline to detect machine-dependent features in cutting plans. 
We contribute a software-pipeline to detect joints, mounts, material 
thickness, and structure in 2D cutting plans. We use this to either modify 
existing problematic features or to present the plates in a 3D editor for 
users to assemble into a 3D model. 

An algorithm to “upgrade” legacy models. We contribute an 
algorithm to convert 2D cutting plans into 3D models automatically. 
This allows users to make parametric changes to legacy 2D cutting plans 
and share models with users that operate different laser cutters. 

Novel mechanisms that counter-act kerf. We identify that kerf 
affects mechanical elements that require precision to operate such as 
joints, mounts, and mechanisms. We contribute with new variations of 
these elements based on springs and wedges, which fabricate in a range 
of materials and on all typical laser cutters. 

Software. We contribute a series of software tools and systems to 
demonstrate the above-mentioned contributions. We integrate the bulk 
of these tools into a 3D modeling environment for laser-cutting, called 
kyub, comprised of over 140,000 lines of code to demonstrate practical 
impact of the work. 

1.4 STRUCTURE OF THIS THESIS 
We begin this thesis by reviewing the related research on personal 
fabrication, portability, and the role of laser cutting (chapter 2). 
Afterwards, we dedicate one chapter to each of the three steps of making 
models for laser cutting portable: making 2D cutting plans tolerant to 
machine-variations (chapter 3), representing laser-cut models in 3D 
instead of 2D (chapter 4), converting legacy 2D cutting plans to 3D 
models (chapter 5). We conclude this dissertation with a discussion of 
the benefits and limitations of portable laser cutting and provide our 
view on the future of personal fabrication and the resulting challenges 
(chapter 6). 
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2  
RELATED WORK 

In this chapter we look at existing software support for laser cutting, 
interoperability of exchange formats for other fabrication processes, 
functional (non-geometric) specifications of fabrication models, and we 
look at the exchange practices of hobbyist fabrication communities. We 
start out with a short dive into the history of portability in the field of 
computing. 

2.1 SHORT HISTORY OF PORTABLE COMPUTING 
Baudisch and Mueller [13], observe an analogy between the history of 
computing and the state-of-art in fabrication. They use this as a predictor 
of personal fabrication as the next phase, after the current phase in which 
tech-enthusiasts reign the field (analogous to say, the homebrew 
computer club in the late 70s [39]).  

If that analogy held up, one would assume a much more advanced 
state of fabrication, as orders of magnitude more hobbyists are 
fabricating now, compared to the few who joined computer clubs back 
then. The observation that users still largely create and share hard-to-
reproduce one-offs indicates that we may be on a different, less 
favorable, track. To understand what lead to this difference, we narrow 
in on the history of computing before the adoption of hobbyists. 

2D cutting plans form an abstraction away from G-Code or actual 
machine code. There has been a long period since the introduction of the 
first computer, where commands were written in highly machine-
specific assembler code and no program would run on other machines 
than what they were written for. Initially purely academically Böhm [19] 
described an abstract programming language L that could be compiled 
back to machine code using the language itself. Soon thereafter Hopper 
coined the term compiler and demonstrated the first practical example 
for the A0 programming language [52].  
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The “high-level” languages described above, analogous to the 2D 
cutting plan, form an abstraction over machine code, but do not compile 
across computer architectures. Strong et al., [113] described this problem 
of machine-specific languages and how they keep the evolution of 
computing back. The first cross-platform compiler was written in 
COBOL and demonstrated in 1961 by compiling a program to run on the 
UNIVAC II as well was the RCA 501 architectures [69]. In the wake of 
this, McIlroy introduced the notion of re-usable software components 
[58] at the first international conference on software engineering. And 
finally, with the introduction of the Portable C Compiler [111] in 1973 
software as complex as operating systems were written in those high-
level languages that compile to many different machines.  

With this degree of portability and abstraction, the hobbyists who 
embraced computing back in the late 70s had a technical basis to build 
on the work of others and run their code across different platforms. A 
crucial difference to the fabrication tech-enthusiasts we see now. 
Therefore, the analogy with computing and its related promise of 
mainstream adoption, does not add up unless we go back and address 
the problem of portability first. 

2.2 SOFTWARE SUPPORT FOR LASER CUTTING 
As stated in the introduction, editing 2D cutting plans for laser cutting 
is hard and requires substantial domain knowledge about the machines 
and materials at hand [13]. As a result, researchers have explored several 
tracks to make laser cutting more accessible: reducing the barrier to 
interface with the materials and machines, embedding the required 
domain knowledge in design tools and systems, and proposing alternate 
workflows for laser cutting to bypass such design challenges.  

2.2.1 reducing the barriers to interface with materials and 
machines 

Uslan [122] studied mechanical properties of laser cutting and identified 
that kerf is caused by a combination of many factors such as the air 
circulation, the material, the material structure, the type of laser, the 
cleanliness of the lens and more. Yildrim et al., [137] confirm that users, 
including professionals struggle with the lack of control over these 
parameters when using fabrication equipment. Controlling either of 
those dimensions therefore increases the reliability of the laser cutter. 
SensiCut [32] supports users with more accurate data about the specific 
material inside the machine, they equip laser cutters with a speckle 
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sensor to automatically identify material properties before the cutting 
process. This additional information allows for better kerf control and 
prevents users from cutting harmful materials. Kerfmeter [63] attaches a 
motor and camera to the laser cutter to provide an automatic kerf 
calibration routine before cutting.  

Others have focused on building software support for later stages in 
the laser cutting process, Fabricaide [107] lets users preview the nesting 
of plates, and material consumption while modeling. This feedforward 
in the fabrication workflow allows users to prevent unanticipated 
situations. PacCAM [103] provides an interface for the nesting itself. In a 
later stage of the fabrication process where users assemble individual 
pieces into a 3D model, Roadkill [2] reduces effort and increases the 
speed of the assembly process, and Daedelus in the dark [24] makes this 
process accessible to visually impaired users. 

2.2.2 embedding the required domain knowledge in design 
tools and systems 

Researchers have been building design tools and systems to reduce the 
effort of hard and time-consuming challenges in the modeling process. 
Elements that require high precision such as joints, mounts, and 
mechanisms are hardest to design as a user in conventional 2D editors, 
while software tools excel at providing the required precision. 
Kim et al., [64] showed that users face challenges when adjusting 
models for machine-precision, beyond just laser cutting. Joinery [140] 
therefore generates joints in 2D cutting plans automatically. MetaSVG 
[136] encodes data about joints in svg files, allowing the joints to adjust 
to variations in kerf or material thickness. And sketch-n-sketch [49], 
independent of the specific laser cutting domain, allows users to 
manipulate SVG files using a parametric design language.  

A major milestone was the shift towards 3D modeling for laser 
cutting, specifically with FlatFab [29] focused on intersecting plates, 
while FreshPressModeler [26] generates enclosed structures from 3D 
models. CutCAD [49] lets users still manipulate the model in 2D while 
previewing the result as a 3D visualization. CODA [125] aids with 
alignment of 3D models in general-purpose editors. In the context of 
furniture, DESIA [127] converts 3D models to interlocking structures 
and SketchChair [104] lets users model using a sketch-based interface. 
Finally, Laser Origami [81] uses 2D cutting plans as input but produces 
2.5D models by bending material within the machine, and LamiFold [70] 
achieves that for mechanisms by laminating plates after cutting. 
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2.2.3 alternative fabrication workflows 

A completely different approach to abstract away from 2D cutting plans 
is the idea of interactive fabrication [129]. In ultimate form this takes 
away the role of models as an engineered effort and facilitates walk-up 
use of fabrication equipment. Constructable [82] is an early practical 
example of this where users walk up to a laser cutter and instead of 
sending a 2D cutting plan, they use laser pointers to directly specify 
what they want to make on the machine. RoMa [92] brings this form of 
interactive turn taking to 3D printing using AR to preview results, and 
FormFab [83] is the first true interactive fabrication workflow in that it 
performs real-time deformation while the user uses their hands in 3D as 
input. 

Beyond the specifics of laser cutting, Carpentry Compiler [130] is more 
broadly focused on woodwork, it creates an assembly-level 
representation of carpentry models and allows users to make parametric 
changes. While exporting to assembly instructions using a variety of 
more and less manual fabrication tools. LaserFactory [84] aims to extend 
laser cutters with more broad fabrication workflows consisting of 
multiple operations like pick-and-place or soldering into a single 
workflow. Similar to how Katakura et al., [62] let 3D printers extend 
their capabilities by fabricating a range of new tools.  

2.3 INTEROPERABILITY OF EXCHANGE FORMATS 
Beyond laser cutting researchers and professional users have struggled 
to create more interoperable exchange formats. There is a wealth of 
representations and formats around to capture 3D structures, often 
targeted at assemblies of parts or 3D printed structures. Attene et al., [8] 
provide an overview of representations and the trade-offs between them, 
their high-level categories are representations based on volumes, 
surfaces, primitives, and procedural generation. This variety of 
representations forces users to balance upfront how to represent objects 
for their given use-case [45]. There are interchange formats like STEP 
[93], which in principle support the full range of representations, but in 
turn require a definition and maintenance of the content in all different 
representations and then allow switching between representations. 

There are tools to convert between representations, especially 
converting from shape models as composed in general purpose 3D 
modeling environments to fabrication-aware representations. These are 
typically one-way conversions making it hard or impossible to reverse 
the process. In the context of laser-cutting, the most common conversion 
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tool is Slicer for Fusion360 [10] (discontinued since 2020). This tool 
allowed users to convert 3D models to a range of different typical 
structures of plates approximating the initial shape. Slices [28] is a 
specialized version of this achieving an even stronger relation between 
the initial volume and resulting plate structure. Fresh Press Modeler [26] 
and the follow-up publication on bevel joints [116] achieves such 
conversion specifically for volumetric and watertight models. 
Furthermore, Platener [15] and CoFiFab [114] convert generic shape 
models to partially laser-cut and partially 3D printed structures for fast 
fabrication and iteration. 

Outside of the laser-cutting domain, there are various conversion 
tools [43] however the process tends to be lossy, making features that 
exist in another mode undiscoverable, and typically the conversion 
comes at a cost of expressivity, or even require fixing of models that 
break in the process [91]. For example, Wu et al., [131] recover structure 
of meshes that may result from poor 3D scans. InverseCSG [33] converts 
primitive models based on triangular boundary representations to a 
CSG tree, enabling powerful volumetric editing. Other approaches aim 
to identify higher level structures in the models such as Fish et al., [38] 
who represent shape families, Tulsiani et al., [119] who machine-learn 
using primitive volumes in models to identify abstract shapes, and Grass 
[72] detects shape patterns allowing for high-level parametric operations. 
Finally, Shape-up [20] presents a geometry processing framework using 
projection operators that works reliably across polygonal meshes, 
volumetric meshes, point clouds and other discrete geometry 
representations. 

2.4 FUNCTIONAL SPECIFICATIONS OF FABRICATION MODELS 
Outside of the field of laser cutting, researchers have investigated 
capturing models using high-level properties besides their geometry. 

Researchers express functionality in shape-models by extending 
them with micro- and meso-level data. Mesh2Fab [134] achieves 
material-specific fabrication by changing the shape to adjust for material 
stiffness. They use example models made using wood and metal, the 
software suggests variations based on the material options. In Deformable 
Characters [110] users specify a starting shape and target poses for a 
character to take, the system computes the material composition and 
required machine operations to fabricate the result. OmniAD [77] 
captures meso-level data in the form of aerodynamic properties in the 
models, initially based on a data-driven approach in Pteromys [121]. 
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Others have varied structures within materials to achieve similar 
functional properties. Bickel et al., [17] adjust the material structure to 
support a desired deformation profile. They demonstrate this at the 
example of a shoe sole, after measuring the deformation of various 
materials, they represent this in the modeling environment and then use 
that data to create an abstract representation that varies its material 
structure based on the desired deformation. And Metamaterial 
Mechanisms [55] use that capability to embed entire mechanisms within 
the material itself.  

Spec2Fab [25] is a reducer-tuner model to capture properties like 
deformation, optical properties, surface finish, color representation and 
other higher-level parameters in models for multi-material 3D printing. 
Foundry [123] extends this idea with a hierarchical model of materials to 
further capture the variety of material properties and their respective 
outcomes. And OpenFab [124] provides a rendering pipeline for multi-
material fabrication where they express the material behavior in the 
form of “shaders” (they call fablets) that can be applied to existing 
models to experiment with different material properties. Taxon [71] 
expands on that idea in more experimental fabrication processes by 
capturing the model in a formal language and interfacing directly with 
fabrication machines.  

Such functional specifications not only allow for less machine-
specific workflows, but also open the space for interesting new 
applications. Zhang et al., [138] use functional descriptions of 
mechanisms to embed them in new shapes. Where Grafter by Roumen et 
al., [102] remix mechanisms to be into more advanced mechanical 
models, allowing some initial building on the work of others. 
Funkhouser et al., in Modeling by Example [41] demonstrate how to turn 
modeling into a search problem using large amount of data about parts 
and connectivity. Which later is extended in Design and Fabrication by 
Example [105] by customizing models on a functional level using 
mechanism templates. Finally, Schulz et al., [106] allow users to evaluate 
design trade-offs in real-time by parametrizing the search space of 3D 
model designs using abstracted properties of models.  

2.5 SHARING AND REMIXING OF 3D  MODELS IN HOBBY COMMUNITIES 
Flath et al., [37] studied sharing and remixing behavior on thingiverse 
and highlight the impact of the thingiverse customizer (a tool in the 
browser to modify other people’s parametric models). They show how 
an increase in remixing and building on the work of others lead to a 
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massive increase in the number of models being shared on the platform. 
Alcock et al., [6] agree that the customizer is powerful but add that it 
lacks expressivity and ease-of-use. Grafter [102] is a software tool 
targeted to facilitate such forms of online remixing in the context of 3D 
printed mechanisms, and the PARTS framework [49] enables users to 
specify mechanical parametric models, which again fosters remixing 
and modifying other people’s models. Buehler et al., [21] demonstrate 
how building on the work of others and remixing enabled a growing 
online community to create a range of assistive technology devices. 

ShapeAssembler [61] drives this one step further by developing a 
domain specific language that describes how geometry is connected and 
what is structurally sound assembly. They use this language to train a 
neural network on available shape repositories to then allow users to 
edit models by synthesizing assemblies as users modify parameters of 
the “program of the 3D model”.  

In observing the maker community, Hudson et al., [54] identified 
the need for better tools for remixing and customizing. And related to 
that, Stemasov et al., [112] argue for remixing and customization as a 
sweet spot between modeling and simply downloading models made 
by others and that this a key enabler for making personal fabrication 
truly ubiquitous. We have seen this play out in other fields as well such 
as the open-source software community [68].  
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3  
2D CUTTING PLANS TOLERANT TO 
MACHINE VARIATIONS 

As introduced in the introduction, different laser cutters and materials 
lead to a variation in the amount of material removed when cutting. 
Constructions of advanced 3D models using laser cutters are held 
together by joints and mounts, and some gain mechanical functionality 
from mechanisms. These components heavily rely on precise tolerances 
and thus fail under variations in kerf. 

In this chapter we introduce a tool that replaces kerf-dependent 
elements (joints, mounts, and mechanisms) with elements that are much 
more tolerant to variations in kerf, leveraging mechanical hacks. We first 
present the mechanical hack for joints and mounts, we then continue 
with mechanisms, and present an overarching software architecture of 
the tool. 

3.1 MOUNTS AND JOINTS THAT FABRICATE ON ANY TYPICAL LASER 
CUTTER  
We have made the model shown in Figure 8c kerf-independent 
automatically using our simple web-based software tool we call 
“SpringFit” [101]. It takes 2D cutting plans as input (e.g., svg), locates 
mounts and joints and replaces them with spring-based mounts and 
joints, and produces the same type of 2D cutting plans as output. 
SpringFit thereby makes models fabricate reliably on a range of 
materials and any consumer laser cutter. 
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Figure 8: (a) this model fails to assemble when fabricated on a different laser cutter than it was 
designed for. (b) springFit tackles this by replacing traditional mounts and joints with cantilever-
based mounts and joints. (c) the entire model after processed with springFit fabricates reliably on 
any laser cutter and in a range of materials. 

3.1.1 Mounts and Joints based on Cantilever Springs 

To address the problem for mounts and joints highlighted in the 
introduction, we propose replacing press fit-based mounts and joints 
with a different type of mounts and joints based on cantilever springs [14].  

The model shown in Figure 8b features a mount based on a 
cantilever spring (generated by springFit) that holds the button in place. 
A cantilever spring is a long and thin element that is connected to the 
laser cut model at one end, while the tip at the free end makes physical 
contact with the object it is supposed to hold, here the button. This 
spring is curved to accommodate the shape of the button; cantilever 
springs generated by our system are otherwise straight. 

As shown in Figure 9, the user mounts the button by inserting it into 
the mount (this works best if done at an angle, so that the button holds 
the cantilever spring back until fully inserted). 

 
Figure 9: (a) A cantilever spring-based mount. (b) The button is best inserted by sliding it in at an 
angle and optionally spinning it against the direction of the spring. (c) Done. 

Figure 10 shows the resulting benefit of using cantilever-based 
mounts: these mounts continue to work irrespective of what machine 
they are fabricated on and what material they are made of. They 
fabricate reliably on (a) a machine of small kerf, (b) a machine of wide 
kerf, (c) from different material. (d) They even allow inserting a slightly 
bigger button. 
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Figure 10: The use of cantilever-based mounts and joints allows one and the same models to 
fabricate reliably (a) on machines with small kerf, (b) with wide kerf (here simulated by eroding the 
model by 0.2mm), and (c) different material, and (d) even slightly different sized buttons (this one 
is 0.3mm bigger in diameter). 

3.1.2 Why it works 

Figure 11 illustrates why cantilever springs succeeds where press fits fail. 
(a) The springs formed by a press fit require the surrounding material to 
compress. Such “compression-based” springs are very stiff, i.e., even a 
small compression requires a large force. Implementing a certain desired 
force thus requires a very specific diameter, while minor changes in 
diameter easily result in a force of zero or a force large enough to break 
the model. 

(b) Cantilever springs, in contrast, act by bending material, which 
makes them much less stiff. Obtaining a certain desired force can thus 
be achieved with a wider range of diameters. Since the cantilever 
tolerates comparably large changes in diameter, switching to a different 
fabrication machine or material is less of an issue. 

 
Figure 11: (a) Traditional press fit-based mounts and joints are very stiff, thus only a tiny range of 
“deflection” allows it to stay in the desired force range. (b) The cantilever solution affords a 
substantially bigger range of deflection. 

Cantilever springs make it easy to tune their stiffness. As illustrated 
by Figure 12, we can increase (a) a spring’s stiffness by a factor of 8 either 
(b) by doubling its diameter or (c) by cutting its length in half (as both 
parameters affect stiffness cubed). 
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Figure 12: We can increase (a) a spring’s stiffness by a factor of 8 either (b) by doubling its diameter 
or (c) by cutting its length in half. 

As shown in Figure 13, the combination of thickness and length 
allows tuning the spring’s desired tolerance. (a) This cantilever spring 
was designed to allow for typical variation in kerf (e.g., 0.1mm at 10N). 
(b) This longer (yet thicker) cantilever spring is as stiff as the previous 
spring but accommodates 7.5x more variation of up to 1.5mm, allowing 
users to even swap out the button for an (up to 1.5mm) larger button, 
such as the one from Figure 10d.  

 
Figure 13: (a) This short and thin cantilever spring and (b) this long and thick cantilever spring are 
equally stiff. The latter one can deform further though, thus accommodates, for example, larger 
variations in kerf. 

3.1.3 Cantilever-based notch-, f inger- and mortise-tenon 
joints 

While so far, we have talked only about mounts, we have created 
cantilever-based equivalents for press-fit joints as well. Figure 14 shows 
cantilever-based (a) finger joints (c) notch joint (aka cross joint) and (e) 
mortise-tenon joints and how they are assembled. Many models 
combine multiple joint types, such as the model shown in Figure 8 
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Figure 14: Cantilever spring versions of (a) finger joints and (b) how they assemble. (c,d) notch joints 
or cross joints and (e,f) mortise-tenon joints. 

To simplify assembly, finger-joints generated by springFit provide 
rounded corners, as shown in Figure 15. 

 
Figure 15: the rounded edge helps to push the spring smoothly when assembling. 

3.1.4 Classification and conversion Algorithm 

SpringFit proceeds in two automatic steps. First, it analyzes the cutting 
plan at hand to locate press fit-based mounts and joints, i.e., mounts, 
finger joints, cross joints, and mortise-tenon joints. Second, it replaces 
these mounts and joints with cantilever-based counterparts. It thereby 
computes optimal springs for each individual mount and joint. In a third 
manual step, a user can come in and override the suggested joints and 
mounts using a simple browser UI (as shown in Figure 22). 

SpringFit’s mount and joint classifier 

As a first overview, Figure 16 illustrates the criteria springFit's joint 
classifier uses to locate (a) a circular mount (b) a cross joint, (c) a finger 
joint, or (d) a mortise-tenon joint in the svg file it is processing. 
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Figure 16: SpringFit's joint classifiers. 

As shown in Algorithm 1, springFit uses the joint classifiers of 
Figure 16 to detect which segments in the svg represent what type of 
joint. It relies on the heuristic to find material thickness m, by plotting all 
line segments in a histogram ranging from 0 to 30mm with 100 equal 
bins. The most frequently occurring dimension is considered m. After 
classification, the SpringOptimizer (see 3.1.6 Cantilever Spring 
design) provides springFit with the optimal spring parameters for the 
given force, tolerance, and spring types. A final pass creates the actual 
output file in which the identified spring elements are exchanged for 
actual spring geometry. 

Algorithm 1: spring placement 

Input: labeled SVG file D 
press-fit force F 
tolerance t 

Output: SVG file d* 
lineLengths ← new array() 
for each element ∈ D do 
 add element.length to lineLengths  
m = max(bucket_sort (lineLengths from 1 to 10mm)) 
for each class ∈ D do 
 if class is labeled(“press-fit”) 
 for each element ∈ class 

if element= “circle” or “rectangle” then 
   delete element 
   insert mount-element 
  if element = “path” then 
  for each segment ∈ path 

if segment.lentgh = m and 
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    segment[-2].length = m 
if segment[-2].angle = segment.angle = 90 or 
-90 then 

replace segment with “fingerjoint” 
if segment[-1].length = segment [-3].length 
then 

replace segment with “crossjoint” 
spring = SpringOptimizer(springTypes,F,t) 
for each element ∈ D do 
 if element.type = “fingerjoint” then 
   insert spring.finger to element 
 if element.type = “crossjoint” then 
   insert spring.cross to element 
 if element.type = “mount” then 
   insert spring.mount to element 
 add element to d* 

export d* 

Generating mounts 

As illustrated by Figure 17, springFit generates round mounts to make 
sure that any matching object will be held at three points forming an 
equilateral triangle. (1) SpringFit finds the inscribed equilateral triangle 
in the circle, (2) scales it down to fit the minimal required circle (by using 
the given tolerance requirement), (3) translates that circle until it 
intersects with the original cutout, and (4) overlaps these two circles so 
the final cutout will have shape reminiscent of an oval. 

 
Figure 17: Mounts generated by springFit have the shape of the black shape shown here. It allows 
holding round physical objects at three points that together form an equilateral triangle. The red 
circle and the blue circle illustrate this for two specific diameters. 
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Cross joints 

As illustrated by Figure 18, springFit classifies cross-joints by locating 
pairs of opposing line segments of the same length in the model with a 
segment of material thickness in between and straight angles. 

The feature detector finds a cross joint in the model shown in Figure 
18. First, (a) the path is split in segments (the dashes are the start of a 
new segment). (b) springFit loops through segments until one is found 
with length m (material thickness). (c) it then loops 2 more segments and 
checks whether element n-1 and n-3 have the same length (d) if so, it 
checks whether the angles are both 90° (or 270°) and uses the direction 
of the angles to determine how the spring will be inserted. 

 
Figure 18: Notch joint classification. 

SpringFit modifies this joint by inserting a cantilever spring next to 
the slit. It rounds the edges to prevent more brittle materials from 
cracking at sharp corners. The spring for cross joints lines up with the 
cutout. 

Finger joints 

SpringFit locates finger joints as illustrated by Figure 19. (a) springFit 
loops through the segments (b) until a segment with length m is found. 
(c) it considers two segments forwards. springFit checks whether the nth 
segment has also length m (d) and confirms by checking the angles. It 
again uses the direction of the angles to determine how the spring will 
be inserted. 

 
Figure 19: Finger joint classification. 
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SpringFit’s finger joint classifier shown in Figure 16c, identifies two 
parallel edges of “material thickness” length and a 90-degree connector 
between them as well as 90-degree connections on both other sides of 
the segment. The replacing cantilever spring has the three core 
properties of length, displacement, and thickness, are generated by 
springFit’s spring optimizer (more detail in Section 3.1.6 Cantilever 
Spring design). 

Mortise-tenon joints 

SpringFit classifies and converts mortise-tenon-joints as a side effect of 
mount and finger joint classification and conversion. One side of the 
joint is equivalent to a finger joint. The other side is a rectangular 
cutout—these are recognized and processed as rectangular mounts. 

3.1.5 technical evaluation of conversion 

To validate the functionality of springFit, we ran it on 14 models, which 
we downloaded from Thingiverse. We picked these models as to show 
the maximum variety of joints and mounts. 

We used 7 of these models to test our claim of material-independence 
by converting models and then fabricating them from both plywood and 
acrylic. We used the other 7 models to test our claims of machine-
independence by fabricating them on two laser cutters that deferred 
quite substantially in terms of kerf (0.12 vs. 0.20mm).   

Results 

Eight of the fourteen models converted in fully automated fashion, 
Figure 20 shows four of them. 

 
Figure 20: Four of the models we converted and fabricated as part of the first technical evaluation. 
(thingiverse IDs on the label) 
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SpringFit completed the conversion also for the other six models; the 
results, however, required manual fixing. (1) Three models had 
produced intersecting cantilever springs, which we resolved by 
manually deleting one or more springs (springFit allows for this, as 
shown in Figure 22). (2) Two models contained parts that were too small 
to contain the cantilever springs as shown in Figure 21. (3) One model (a 
heart shaped box) could not be converted because it contained bent 
fingers as shown in Figure 21c, springFit was unaware of this joint type. 

 
Figure 21: Models springFit could not convert (a,b) two of the models that contained parts too 
small to hold the required cantilever springs. (c) a model with non-straight finger joints. 

All three issues are solvable in the long run. Future versions of 
springFit should address them by adding a better “routing algorithm” 
for the cantilever springs, by folding cantilever springs into the available 
space (similar to how springFit already produces curved springs), and 
by adding additional joint classifiers. 

SpringFit identified all mounts and joints contained with 4% false 
positives. We inserted on average 105 springs per model (with the 
arcade of Figure 17c as extreme outlier with 477 springs). On average 4.1 
springs were placed at cutouts that are not press-fit (and thus have been 
removed in the UI). The model with the most redundant springs was a 
Theremin model which has a lot of holes for bolts that are not press-fit 
(14 springs (27%) are not needed).  

Users may choose to simply leave them (they generally do not really 
affect the model’s functionality) or choose to remove them in the UI. For 
familiar models, the simple interaction shown in Figure 22 typically 
takes only a few clicks. 
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Figure 22: (a) SpringFit falsely classified this cutout as a press-fit and consequently created a 
cantilever spring for it. Leaving it in does not affect functionality. Alternatively, a mouse click in 
springFit reverts this mount to (b) the original version. 

3.1.6 Cantilever Spring design 

At the lowest level, springFit is about cantilever spring design. When 
converting models, springFit calls the function 
generateSpring(force,tolerance) that generates optimal 
springs for the mount or joint at hand. 

The first objective of cantilever design is to create a spring with a 
well-defined holding force. Holding forces for small buttons and joints 
may range anywhere from 1 to 5N. We made 5N the default in springFit, 
but users can override it. 

The second parameter springFit optimizes for is the amount of 
tolerance the spring offers, i.e., the size difference between the smallest 
and the largest object this mount/joint will be able to hold. This 
parameter defines the deflection that the spring-fit will be able to accept. 
For example, when the user defines 1mm of tolerance, the system will 
generate a spring that exerts the desired holding force around ±1mm 
from the original point of fit. 

The generateSpring function takes these two input parameters 
and minimizes the size of the spring. It has to conform 3 additional 
constraints: (1) the material should not break, (2) the force needs to be 
consistently applied within the given tolerance and (3) the resulting 
spring should be able to fabricate (not too small, not too big). 

Design parameters and constant stress springs 

As described in section 3.1.2 “why it works”, the stiffness of a cantilever 
can be varied by changing its shape. SpringFit specifies the stiffness k in 
the F=kd relationship of the cantilever by using the shape parameters, l: 
length, t: thickness and d: deflection. 
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The smallest possible spring is one that has no redundant material. 
This happens when the stress of the spring is distributed evenly across 
the material as shown in Figure 23. To achieve this, springFit uses the 
constant stress cantilever model. Similar to Shin et al. [108]. 

 
Figure 23: Design for a constant-strength cantilever. (a) Compared to usual ‘bar’ cantilever, (b) the 
constant-stress cantilever has constant bending stress along its length induced by input force at 
the end and thus is more space efficient. 

Force/deflection relationship for cantilever springs 

Next, springFit needs to know how the shape parameters influence each 
other and the required spring behavior. This is defined by the force-
deflection relationship. 

To acquire the force-deflection relationship for a cantilever, we use 
the Euler-Bernoulli beam theory [1]. The deflection of a cantilever 𝑑 
under the bending moment 𝑀 is described by the elastic curve equation 
for the path along 𝑥: 

𝒅"(𝒙) = 	−
𝑴
𝑬𝑰 (1) 

E is the Young’s modulus of the material, and I is its moment of 
inertia of a cross-section which is a shape dependent value which can be 
calculated as I=mt3/12. The bending moment M is calculated by 
multiplying the distance from the point of force F to the point of interest 
(in case of a straight cantilever this will be M=Fx). 

For curved springs with radius R and angle θe, springFit uses 
Castigliano’s method [22] to derive the deflection. With the given elastic 
energy in the cantilever U, we calculate the deflection at the end. 

𝜔 =	
𝜕𝑈
𝜕𝐹

(2) 

F is the force applied at the end of the cantilever. To calculate the 
elastic bending energy stored in the spring, we integrate given the path 
C and small element 𝑑𝑠  of the cantilever. We neglected 
tension/compression energy here. 

𝑈 = .
𝑀!

2𝐸𝐼
𝑑𝑠

"
(3) 
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Thus, we can derive F=kd relationship resulting from solving 
equations (1)-(3). Table 1 shows the equations, which shows how much 
deflection can be caused by force F, given the shape of cantilever. 

Table 1: The calculations based on the cantilever dynamics model for each cantilever design we 
used in by springFit. I0 here means moment of inertia of section at x=l. 

shape constant-stress deflection d thickness t 

straight  2𝐹𝑙#

3𝐸𝐼$
 3

6𝐹𝑥
𝑏𝜎%

 

curved 𝐹𝑅#

𝐸𝐼$
8𝑠𝑖𝑛𝜃&. √𝑠𝑖𝑛 𝜃 𝑑𝜃

'"

$
 3

6𝐹𝑅
𝑏𝜎%

𝑠𝑖𝑛𝜃	 

Optimization and criteria 

SpringFit aims produces the smallest possible springs as this minimizes 
aesthetic and structural impact in the model. Since there are multiple 
parameter configurations that lead to the same stiffness (see Figure 12), 
springFit uses an optimization algorithm to pick the optimal design.  

We write these criteria as an objective function L that penalizes for 
size of the spring (sizeof(𝜋)). For springs to work across materials, we 
choose the minimum value of Young’s modulus E and maximum stress 
𝜎()*  from given set of materials specified by users (default are the 
typical materials used for laser cutting cardboard, plywood, acrylic), the 
parameter s is a safety factor to compensate for slight variations within 
the material (e.g., grains of the wood). We have a lower bound for the 
force (otherwise it would not be press-fit) Following these criteria, the 
optimization problem of the cantilever design 𝜋 with design parameters 
length, thickness, and deflection π: {l,t,d} can be described as follows: 

𝜋∗ = argmin
,
𝐿(𝜋)

s. t.

⎩
⎪
⎨

⎪
⎧𝐿(𝜋) = sizeof(𝜋)

𝜎()* <
𝜎-
𝑠

	𝐹 > 𝐹(./
(4)

 

We obtain the actual values of Young’s modulus 𝐸  and the 
maximum strength 𝜎()*  of the materials from material testing (see 
section 3.1.7 “Technical Evaluation”). For solving the nonlinear 
optimization problem with multiple constraints, we use the COBYLA 
algorithm from the NLopt C++ library (nlopt.readthedocs.io). 
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With help of this procedure, springFit determines the optimal length, 
thickness and deflection of the cantilever that produces required force 
across different materials or kerfs. 

3.1.7 technical evaluation of spring performance 

To verify that (1) cantilever springs made from plywood deliver reliable 
repeatable force and tolerance, (2) to test our claim that a single spring 
design including its dimensions works in plywood and acrylic, and (3) to 
verify the design parameters of our springs, we measured forces and 
tolerances of springFit-generated springs using a testing setup. 

Test set-up   

The set-up we created is shown in Figure 24. It uses a linear actuator to 
automatically push a spring in increments of 0.1 mm against a force 
gauge (SAUTER FK-100). 

 
Figure 24: Spring strength example setup. Linear actuator that moves test pieces generated by 
springFit into a digital force gauge. 

Specimen  

The springs we tested were at least 3mm thick at their base and were 
designed to allow for at least 1mm deflection. We repeated each test with 
10 springs. We generated springs optimized by springFit with two 
different forces. We tested straight and curved cantilever springs, from 
plywood and acrylic (so 2x2x2x10 samples). For plywood test pieces, we 
laser cut the springs along the grain of the material of the outer layers 
which is the easier side to break with the applied force. 

Results  

Figure 25 shows the results for the straight cantilever springs. As the 
diagrams show, the tested springs behaved well, i.e., produced reliable 
and repeatable force, which proves our optimization criterion (1). 
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The straight cantilever springs produced a consistent force of 
around 5[N] largely irrespective of the material (blue line = acrylic vs. 
orange line = plywood). This means that the tested springs were 
functional across materials, which also supports our second criterion (2). 

 
Figure 25: (a) Force-deflection diagram of generated cantilever springs with input force of up to 
10N. Red dashed line shows the input minimum force and green band shows the input 
tolerance=0.1mm. (Blue = acrylic, orange = plywood) (b) Same diagram of bar spring with 10N. 

Figure 26 shows the corresponding results for the curved springs, as 
used in the round mounts shown in earlier figures. As the diagram 
shows, the curved acrylic springs produced a slightly larger deflection 
given the same force compared to the straight cantilever springs. 
Surprisingly, the curved plywood springs were roughly half as stiff as 
their straight counterparts, i.e., they deflected twice as much.  

This was caused by the non-elastic behavior of the curved springs 
breaking the assumption on Castigliano’s method [22]. Since the curved 
springs have larger deflection compared to bar springs, it will likely fail 
to produce the linear elasticity assumed in the cantilever model. 

 
Figure 26: Same diagram for curved cantilever springs. 

In summary, all tested springs behaved well. The stiffness of the 
curved plywood springs was unexpected, but still predictable. This 
allowed us to embody these findings into springFit by tuning our 
models there. This now allows springFit to produce springs of desired 
properties reliably irrespective of materials and shape. More testing 
would be required to find out whether the springs keep their 
characteristics under highly frequent or long term (dis)assembly.  
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3.2 KERF-CANCELING MECHANISMS 
While springFit makes models with joints and mounts machine-
independent, advanced models for laser cutting such as microscopes, 
robots, vehicles, etc. contain mechanisms. These mechanisms rely on 
precision and thus suffer from variations in kerf. 

We present “kerf-canceling mechanisms” [97]. Kerf-canceling 
mechanisms replace laser-cut bearings, sliders, gear pairs, etc. Unlike 
their traditional counterparts, however, they keep working when 
manufactured on a different laser cutter and/or with a different kerf 
value. Kerf-canceling mechanisms achieve this by adding an additional 
wedge element per mechanism (such as the moon-shaped inset in the 
bearing in the center of Figure 27).  

 
Figure 27: This laser-cut microscope (based on thingiverse id: 31632) contains three types of 
mechanisms that allow the microscope to adjust focus. By using kerf-canceling mechanisms, the 
focus adjustment operates reliably, independent of how much material the laser cutter that 
produced the microscope removes (kerf). 

Our software tool KerfCanceler locates certain types of mechanisms 
in SVG files and replaces them with their kerf-canceling counterparts. 
The resulting models function irrespective of the laser cutter or kerf 
values they are fabricated on—making these models particularly 
suitable for sharing. 
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3.2.1 Kerf-canceling bearings 

Kerf-canceling mechanisms, such as kerf-canceling bearings address this 
issue with the help of one additional component: the crescent-shape 
inset shown in Figure 28a. The figure shows how the mechanism is 
assembled by inserting the inset and rotating it clockwise. This jams the 
inset, locking it in place. At this point, the rotation of the inset has 
reduced the diameter of the remaining opening. The specific design of 
the inset causes this opening to always be of the same size, irrespective 
of the kerf value of the machine it was fabricated on. 

 
Figure 28: Assembling the kerf-canceling bearing.  

As illustrated by Figure 31a, the spiral inset consists of two logical 
elements, which we call jammer and inverter. 

The jammer is the shape on the outside of the inset. To illustrate how 
it works, consider a wedge [34]. As illustrated by Figure 29, a wedge-
shaped inset in a wedge-shaped cutout jams when slid towards the 
tapered side of the cutout. If we increased kerf, the inset slides further—
but ultimately it will jam just the same. Note that the distance the inset 
slides is proportional to the kerf of the machine.  

 
Figure 29: (a) A wedge inset jams by sliding it to the right. A larger kerf value removes the red 
region, (b) allowing the inset to slide further before it jams. 

Applying a polar transformation to the wedge produces the spiral 
inset we use in kerf-canceling bearings (Figure 30). The spiral version 
jams when rotated. In analogy to the wedge, the inset’s final orientation 
reflects the kerf value.  
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Figure 30: (a) The kerf-canceling bearing. (b) when the model is cut with more kerf, the inset gets 
smaller while the cutout gets wider. (c) the resulting inset falls out (d), however the self-similar 
shape of the inset makes that it always jams when rotated in place, even as kerf gets bigger. 

The inverter is the shape on the inside of the inset. The key idea 
behind the inverter is that it bears the same shape as the jammer—but 
mirrored. Based on the jammer translating size (= kerf) into rotation, the 
inverter translates rotation back into size. Since its shape is mirrored 
with respect to the jammer, it does so inversely though, i.e., the further 
it is rotated, the more it reduces the opening in its center, i.e., the bearing. 
This allows it to keep the size of the bearing constant. With other words, 
a larger kerf value makes the opening wider, but also leads to additional 
rotation of the jammer, which in turn causes the inverter to narrow the 
opening further, canceling out the effect of kerf. 

 
Figure 31: (a) The kerf canceling bearing consists of 2 key elements: (b) the jammer which is 
characterized by a self-similar nautilus shape that jams in place when rotated and (c) the inverter, 
which converts the rotation of the jammer back to a bearing, which ultimately holds the axle. 
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As illustrated by Figure 32, kerf-canceling bearings produce the 
same fit, irrespective of kerf and thus irrespective of the machine they 
were fabricated on. Even with a simulated kerf of 0.45mm the bearing 
continues to produce the desired fit. This exceeds the most extreme 
typical kerf value in a laser cutting survey by cutlasercut.com [30]. Even 
when executed on a milling machine with a mill bit of 1.5mm, the axle 
fits the resulting bearing well. 

 
Figure 32: Kerf-canceling bearings fit their axle under variation of a wide range of kerf (by eroding 
the model). Even when cut on a milling machine with much more kerf.   

Technical details 

To help readers replicate our designs, we now present the necessary 
technical details. We begin with the jammer. The slope (s) is constant 
s = dr/dθ, the radius thus decreases proportional to the angle θ from the 
center of the spiral. A given point p0 on the contour of the jammer has a 
radius r0 and corresponding angle θ0. Another point on the same contour 
pθ rotated by an angle of θ from r0 is thus rθ = r0-s*θ. We can rewrite this 
to calculate the angle θ between two points, given their radii: θ = (r0-rθ) 
/s. 

The cutout and the jammer have the same slope s. Because of kerf, 
the radius of the inset is k shorter (the red zone in Figure 31b). There is a 
point on the inset with r0-k which, before jamming the inset, is aligned 
with p0. This point jams in the contour where the radius cutout of the 
contour is r0-k. We insert r0-k as rθ in the formula derived above, and 
find that the angle θ is (r0-r0-k) /s = -k/s.  

The inverter has the same slope as the jammer, flipped (-s). A point 
on that spiral can be calculated using: rinv,θ = rinv,0 + s*θ (Figure 31c). If we 
substitute θ with -k/s, we get: rinv,θ = rinv,0 + s*(-k/s), this simplifies to 
rinv,θ = rinv,0 - k. Kerf eroded the inset by k, so the radius from the center is 
k longer for every point, this results in: rinv,θ = rinv,0-k+k or rinv,θ = rinv,0. We 
conclude that the kerf added, combined with the jamming of the inset 
results in a bearing of constant size. 
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Figure 33: (a) The inset has to span 180 degrees; however, kerf makes it shorter. (b) By extending 
the spiral and making the tip less sharp, the inset remains stable as kerf increases.   

Kerf affects the length of the spiral inset, i.e., if kerf gets wider, the 
inset gets shorter. To prevent it from spanning less than 180° (Figure 33a), 
we extend the spiral further than just 180°, by extending it on top (Figure 
33b). To make the length of the inset less susceptible to changes in kerf, 
we round off the bottom tip.  

For even better results, we manufacture the inset mirrored. As 
illustrated by Figure 34, kerf in laser cutting results in a non-straight 
edge. By mirroring the inset in the cutting plan, it gets cut from the other 
side, resulting in a part with the slanted edge facing the opposite 
direction. This allows the slanted edge of the inset to line up with the 
slanted edge of the rest of the mechanism (Figure 34c). An informal 
validation shows that flipping the inset increases the friction force by 
about 60%.  

 
Figure 34: (a) Kerf in a laser cutter is slanted. (b) when cut from the same side, edges poorly align 
(c) Flipping one side of the plate results in a better fit. (d) Our software tool flips insets by default 
to support this. 

3.2.2 kerf-canceling sliders  

We have applied this concept of jammer and inverter to three other types 
of mechanisms. Sliding mechanisms can be orthogonal or parallel to the 
surface of the model. In both forms, the kerf canceling variant narrows 
the slit to counteract kerf. Figure 35 shows kerf-canceling sliding 
mechanisms. We use the principle of the straight wedge (Figure 29). The 
V shape between the two prongs of the inset lets it slide down to narrow 
the slit, a spiral wegde on top locks it in place as shown in Figure 35c.  
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The parallel slider is narrowed down by pushing a thin spring 
towards the slit. The self-similar nautilus wedges responsible for this are 
jammed in the surface and push the spring by 1x kerf from both sides. 

 
Figure 35: Kerf-canceling sliders (a-d) orthogonal, (e-g) and parallel. (a) The cutout between the 
prongs lets the shape slide down by 2x kerf. (b) The spiral wedge on top locks it in place. (e) For 
parallel sliders we insert two simple nautili next to a thin bar (f) the bar gives way as the nautili push 
by 1x kerf. 

3.2.3 kerf-canceling gears  

The kerf-problem with gears (and other mechanisms that interlock into 
each other) is that kerf makes them smaller, resulting in teeth of one gear 
to be further away from those of another. To cancel out kerf, we push 
them towards each other. As shown in Figure 36, we cut a slit around 
the bearing of one gear and add a wedge next to it to push it towards the 
other gear. The resulting translation makes the gears mesh again. To 
keep the bearing in the same plate as its surrounding we do not cut it 
out all the way but keep it connected to the plate with a thin (flexible) 
extension. 

 
Figure 36: Assembly of the kerf-canceling gear pair. It jams the gears towards each other to 
compensate for the shorter teeth (a) Insert the bearing wedge, (b) then add a straight wedge next 
to it, which (c) jams the whole assembly to the right. 
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Multi-stage gearboxes by combining mechanisms 

The kerf-canceling mechanisms described above can be combined to 
implement more exotic kerf-cancellation techniques. Figure 37 shows a 
combination of various wedges to form a complex mechanism: a kerf-
canceling 3-stage gearbox. Both pairs of gears have to be moved towards 
each other. A single pair of gears is solved by moving the axles 1x kerf 
towards one another (Figure 35c). If we naively paired the right and the 
middle axles, the axle on the left would be 3x kerf away from the middle. 

By nesting the gear pair on the left together with the middle, they are 
both moved 1 kerf closer to the gear on the right. Within the nested pair, 
the left gear is moved 2x kerf closer to the middle gear. The nester 
corrects kerf equivalent to the angle of the tip: the angle of the left wedge 
is 2x as narrow as the angle of the middle one making it correct 2x kerf 
as opposed to the 1x of the nested pair. When compared to the same 
gearbox with 0.3mm kerf, the normal one jams frequently whereas the 
kerf-canceled one runs fine. 

 
Figure 37: A kerf-canceling multi-stage gearbox. 

3.2.4 The software tool: KerfCanceler 

Our software tool, kerfCanceler, converts traditional mechanisms in 2D 
cutting plans to kerf-canceling equivalents. The tool takes the commonly 
shared SVG format as input and produces output in the same format, 
allowing users to share the result in existing pipelines/repositories. The 
software is designed to minimize redundant and uninspiring work for 
the designer of the model. It automatically guesses the locations and 
types of mechanisms and then allows users to fix if needed. 
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Walkthrough: converting the microscope of Figure 27 

As shown in Figure 38, the conversion starts by loading a 2D cutting 
plan into the tool, here the microscope from Figure 27. The menu on the 
left offers 8 tools, three modify revolute pairs (bearings, mounts, and 
gear pairs), two tools for prismatic pairs (orthogonal and parallel sliders), 
one utility to set material thickness, a tool to remove suggestions and a 
tool that calls the algorithm of springFit [101] to make joints kerf tolerant.  

 
Figure 38: Converting the microscope model of Figure 1. 

KerfCanceler classifies polygons when a new cutting plan is loaded 
(identifying rotary mechanisms with 93% accuracy, see section 3.2.7). It 
automatically inserts kerf-canceling mechanisms. In this example, 
kerfCanceler added 9 mechanisms automatically.  

Kerf-canceling mechanisms require more space than their 
traditional counterparts, they can intersect with existing geometry in the 
cutting plan. KerfCanceler detects such cases and highlights them in red. 

 
Figure 39: The user removes a kerf-canceling mechanism inserted by kerfCanceler (b) With the 
“remove mechanism” tool selected; the user clicks on a falsely labeled mechanism. (c) By default, 
all cutouts with the same diameter now have the mechanism suggestion removed (shown in 
green briefly to indicate the change).  

The microscope has three circles which are glare-holes, but 
kerfCanceler guessed them to be bearings. The user removes the 
suggestion as shown in Figure 39b, which reverts them back to the 
original circular cutout. kerfCanceler recognizes that all three circles are 
the same size, so the user overrides them in a single click. If the user only 
wants to modify a single entity, it is possible to turn off “group edit”. 
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Figure 40: (a) Users add sliding mechanisms manually, using the “slider tool” (b) KerfCanceler 
creates a kerf-canceling version of that slider (c) both similar cutouts in the model are converted 
at once.  

Sliding mechanisms are rare and hard to identify correctly (any 
polygon could be a cutout for a sliding mechanism). Based on the 
principle of good guesses with little fixing, KerfCanceler does not 
automatically place these. As shown in Figure 40, users apply the “slider 
tool” to manually turn a polygon into a sliding mechanism.  

 
Figure 41: KerfCanceler extends a bearing with the gear tool to compensate for the increased 
distance between the pinion and the rack as a result of kerf. 

The microscope contains a gear (aka pinion), which meshes with the 
rack. The “gear tool” allows users to align these. It inserts the kerf-
canceling mechanism around the already existing bearing (as shown in 
Figure 41b). Initially, the gear is pushed from the right, by clicking 
repeatedly, the user rotates this to match the intended orientation. In the 
first four clicks it rotates by 90-degree steps. After that, granularity goes 
up. 

In a last step, the user calls the springFit [101] algorithm to make 
joints and mounts kerf invariant. It extends the same data structures as 
kerfCanceler. We modified the algorithm to not place springs when they 
overlap with a mechanism (and nullify the fit) as the springFit springs 
tend to occur in abundance. In some models this requires manual fixing. 

This process takes a few minutes, and results in an SVG that is fully 
kerf independent. The model will reproduce on any machine when the 
user shares it with others.  

Once the model is cut, the user jams the insets in place (before 
assembling the model) and continues to assemble the model in a regular 
laser cutting workflow. 
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3.2.5 Classification and Conversion Algorithm 

The algorithm to enable the workflow above proceeds in two automatic 
steps. First, it pre-processes the cutting plan at hand to identify 
mechanisms. Second, it replaces these mechanisms with kerf-canceling 
equivalents.  

Pre-processing  

KerfCanceler normalizes the SVG by breaking all SVG elements into line 
segments. This removes ambiguities (e.g., polylines and paths that do 
the same thing but are defined differently) or document properties like 
layers that don’t influence the laser cutting.  

KerfCanceler runs a parts vs cutout detection. It sorts all closed 
polygons by size. It checks if there is a larger polygon within which the 
given (smaller) polygon is enclosed and continues to do so until all are 
checked. It assumes that the outer cuts are outlines of parts and the inner 
ones are scrap.  

As shown in Figure 42, the user’s attention is pointed towards the 
content kerfCanceler assumes to be relevant. The outlines of the parts 
are greyed out and the cutouts are highlighted (typically the outlines of 
parts are not mechanisms).  

 
Figure 42: A model presented to the user (a firetruck). All outline geometry is greyed out to put 
the users’ emphasis on the mechanisms guessed by KerfCanceler.  

KerfCanceler iterates over the inner geometry to find mechanisms. 
Revolute pairs (e.g., bearings, gears, wheels, cam/followers) manifest 
themselves as circles in the model. KerfCanceler groups circles by 
diameter. As shown in Figure 43, when two similar groups occur, it 
assumes the group with smaller diameter is press-fit and the other group 
is loose fit.  
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Figure 43: These circle cutouts in the firetruck are of similar size. In the entire fire-truck model, one 
category turned out to be around 5.05 and one around 4.80mm, KerfCanceler assumes the small 
opening is press-fit opening and the other one loose fit (it thus placed two different mechanisms). 

Replacing mechanisms with kerf-canceling counterparts 

KerfCanceler then places kerf-canceling mechanisms. At the positions 
where it assumed loose or press fit mechanisms, it inserts the correct 
version. For every circular cutout, it caches three alternatives shown in 
Figure 44a-c: the original circle, a press-fit mount based on cantilever 
springs [101] and a kerf-canceling loose-fit bearing. It displays the one it 
guesses to be the right version. Because these alternatives are generated 
before the user touches them, it allows for interactive response times in 
the web UI. 

 
Figure 44: Possible modifications of a circle cutout. (a) The original circle (b) a circle used as a mount 
(press-fit) (c) the circle used as a kerf-canceling bearing and (d) the same as c but pushed to the 
right by “kerf” using the wedge on the left, for gears. 

KerfCanceler checks for intersections with the model during pre-
processing. It uses the shape of Figure 44c overlaid by b. If this intersects 
with the rest of the SVG model, the mechanism shows up in red, 
otherwise in blue. It does not use the larger kerf-canceling gear-bearing 
of Figure 44d as this is a rare case and would produce many false 
positives. When the user later inserts a gear-pair mechanism, 
kerfCanceler checks the intersections locally resulting in slightly longer 
processing time (up to a second). 
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Figure 45: The placement of wedges for a sliding mechanism, (a) half of the edges of the cutout 
get a kerf adjusting wedge. (b) The same works for non-rectangular cutouts. Multiple placements 
exist (dotted lines). KerfCanceler, excludes all that cause intersections and picks the best solution.  

For guided sliding mechanisms, the wedges do not replace the 
original polygon, but line up on the sides. As shown in Figure 45, 
kerfCanceler places two wedges on each edge. It places the wedges as 
far apart from each other as possible to minimize the risk of jamming the 
slider. For short edges, it places one wedge in the middle of the edge.  

3.2.6 technical evaluation: How well do kerf-canceling 
mechanisms perform? 

We hypothesize that kerf-canceling mechanisms are comparable in 
performance to the original mechanism, and that with increased kerf, 
the kerf-canceling mechanisms outperform the original. We evaluate 
this by measuring the friction and the play of the mechanism and 
compare that to plain bearings, while varying kerf. 

We measure friction by spinning an axle with 2 flywheels, we start 
at 1300rpm (=136.14 rad/s) and measure how long it takes until the shaft 
stops spinning because of angular friction. 

We measure the tilt angle of the axle within each of the bearings. We 
take a photograph with a fixed camera from the side of the bearing, pivot 
the axle and capture both extremes. The angle between these 
corresponds to the maximum range of play. 

Test setup 

We mount the bearing with an 8mm aluminum axle. We attach a 3D 
printed flywheel with 4x 33g steel balls inside, to both ends of the axle. 
The shaft is powered using a Bosch drilling machine via a simple clutch. 
The total inertial moment of the flywheels is 17.4x10-5 kgm2. We use the 
Peaktech 2795 contactless rotation sensor to measure the rotation speed. 
We then calculate the frictional Torque (T) using this basic formula: 

T = I * a  

In which a is the angular acceleration (initial rotation (rad/s)/ time 
(s)) and I the moment of inertia (kgm2). 
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Figure 46: Experimental set-up. 

Test pieces 

We compare the baseline (a plain bearing) to the kerf-canceling bearing. 
All pieces were cut out of 4mm plywood, we simulated kerf from 0 to 
0.4mm in 0.1mm increments. These kerf values we adjusted for the laser 
cutter used, so 0mm kerf means the bearing fully touches the axle. We 
repeated each experiment 3 times and report the average value to 
compensate for noise. 

We used a Trotec speedy 360 flexx laser cutter with a kerf of 0.15mm. 
To reproduce this experiment, we have attached a test piece in the 
appendix of this paper. 

Results 

As shown in Figure 47, Kerf-canceling bearings demonstrated constant 
performance across variations in kerf (between 3.1 and 3.4 mN). Kerf 
heavily affected the plain bearing’s performance. Already at a kerf 
variation of 0.1mm the friction went up substantially (4.7 mN). And in 
particular when reducing the kerf further, the bearing essentially got 
stuck as friction went up by a factor of more than 10. (40.6 mN).  
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Figure 47: Results of the friction test. Kerf-canceling based bearings perform stable across kerf 
variations as opposed to plain bearings. 

Figure 48 shows the results of the play analysis. For the plain bearing, 
the play increases roughly linearly with the kerf. The play for the kerf-
canceling bearings remained stable.  

We found that strong vibrations (e.g., by accidentally misaligning 
the drill bit) can cause the inset to come out. For mechanisms that are 
expected to be exposed to such forces, we recommend adding a dot of 
glue before assembling the mechanism. 

 
Figure 48: Results of measuring play of the bearings. The kerf-canceling bearing remains relatively 
stable, while play for the plain bearing almost linearly relates to increasing kerf. 

Discussion 

Kerf-canceling bearings demonstrate performance independent of the 
kerf, both when it comes to the play and the friction of the mechanisms. 
While plain bearings only perform reliably in a narrow range of kerf. We 
thus conclude that our bearings serve well as kerf-canceling mechanisms. 

3.2.7 software evaluation of kerfCanceler 

To validate the utility of our software, we ran it on 20 models found 
online. For each model, we measured what percentage of mechanisms 
were identified automatically and how many interaction steps were 
required to modify the mechanisms.  
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The models in Figure 49 are a subset of the 20 test models which we 
fabricated to confirm that the generated kerf-canceling mechanisms 
work. 

 
Figure 49: Models of the test set we fabricated on our laser cutter with increased kerf. 

KerfCanceler achieved a 93% recognition rate for the rotary 
mechanisms in the models. It identified false positives in 5 models, 
which contained engraved (decorative) circles, these were falsely 
identified as mechanisms.  

We used the UI to intervene with 2-21 (9 on average) overrides of 
the initial guessed mechanisms. Six models worked based on the 
guessed mechanisms alone. The “group edit” tool reduced the number 
of edits in most models. Pre-processing of models took on average 
5.87ms of time. It took 66s of manual work per model to convert, for a 
user who knows the model’s functionality. 

Six models failed to convert. Three of them had too little physical 
space in the model to insert the kerf-canceling mechanisms. Four models 
contained lines that were intended to be engraved, which caused 
intersections. One model showed both problems. These intersections 
won’t break the mechanism but may affect the aesthetics of the model 
depending on how meaningful the original engravings were. So, in total 
17/20 models were converted using our tool with a laser cuttable result.  

We conclude that many models online can be converted to become 
kerf-canceling with only up to three minutes (one minute on average) of 
user effort.  
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3.3 SOFTWARE ARCHITECTURE 
KerfCanceler and springFit together allow making 2D cutting plans more 
tolerant to machine variations, we therefore designed both tools as 
separate software modules with a. similar interface, making it easy to 
integrate both in the same architecture. We implemented this as a 
lightweight Typescript application that runs in the users’ browser. This 
application leverages the fact that SVG is built on the XML standard to 
encode annotated information in the cutting plans, and that XML can be 
directly displayed in the browser.  

Figure 50 displays the architecture in a system sequence diagram. 
Both kerfCanceler and springFit are called under the hood by the central 
browser application. They are run in a headless fashion and interface 
with XML in- and output. The geometric optimization scripts to 
compute the specific dimensions of springs and wedges use the NLopt 
library in C++ (nlopt.readthedocs.io) for performance reasons, they 
therefore run on a separate server and interface using JSON strings as 
exchange format. When users override elements through the UI, the 
client-side application adds annotations to the XML which are then 
parsed separately by the individual geometry generators. The server 
architecture allows each module to be called individually, making it 
easy to access springFit or kerfCanceler (and/or their respective 
optimizers) as separate modules to allow them to be easily integrated in 
other software packages. We demonstrate this with at the example of 
our simple browser interface. 

 
Figure 50: The modular architecture shown in this data flow diagram. (a) springFit and 
(b) kerfCanceler both are integrated into the system in the form of individual modules. (c) the 
optimization scripts are implemented in C++ for efficiency and run on their own server. 
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3.4 CONTRIBUTIONS 
With springFit and kerfCanceler, we make three contributions. First, we 
present and analyze the specific challenges of kerf-dependent models 
for joints, mounts, and mechanisms. Second, we developed mechanical 
solutions to these problems by modifying the 2D cutting plans. And 
third, we present two software plugins that detect joints, mounts, and 
mechanisms in cutting plans and replaces them with kerf-tolerant 
version, as well as an overarching browser interface that allows users to 
modify existing 2D cutting plans to make them fabricate reliably on any 
consumer laser cutter and in a range of materials.  

Our approach is subject to three limitations, kerf-canceling mounts, 
joints, and mechanisms are less robust than their traditional 
counterparts, they require additional space in the cutting plan, and they 
may affect the aesthetics of a model. 

Another limitation of this work is that we have only verified this 
with consumer-grade laser cutters. In theory it should apply to any 
subtractive fabrication process, but we have not verified it with 
specialized equipment that uses variations of the laser frequency or 
modulation that can influence kerf differently. 

3.5 CONCLUSIONS 
With these two papers, we have presented a mechanical solution to 
create kerf-tolerant laser cut models with the help of kerf-canceling 
mechanisms and cantilever-based joints and mounts. The resulting 
cutting plans remain valid across machines and kerf values, which, for 
example, allows users to buy a new laser cutter without invalidating 
cutting plans created earlier. 

Zooming out, kerf-canceling mechanisms address one facet of a 
larger challenge, i.e., the challenge of portability. Today, the majority of 
laser-cut models are shared as 2D cutting plans—and these are 
inherently machine-specific. This is problematic, as this gets in the way 
of collaboration and sharing, which rely on people’s ability to reproduce 
other users’ models, e.g., for the purpose of remixing them.  

Our mechanical solution to kerf thus allows users to reproduce 
models and share in productive ways. However, to address the 
associated cost of aesthetic and structural integrity and the fact that the 
models are still shared in a 2D format, we present an alternative solution 
to the problem in the following chapters. 
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4  
REPRESENTING LASER-CUT 
MODELS IN 3D  

The mechanical solution to create cutting plans that are tolerant to 
machine variations presented in the previous chapter lets users 
reproduce models on most laser cutters and in a range of materials. 
However, in our pursuit of making laser cutting relevant to the “other 
99% of people” (other than current tech enthusiasts), in this chapter we 
show how to make it easier to create laser-cut models, and to make 
changes to models that are made by others, by modeling in 3D using a 
fabrication-aware modeling environment. The development of this 
environment is a much bigger effort than just the research published in 
this thesis, and as of now constitutes over 140,000 lines of code. The 
research in this thesis is what drove the initial development and novel 
aspects of its data structures and modeling paradigm. 

By sharing the models in a 3D representation, we further advance 
portability, as users export the 3D model to a 2D cutting plan that is 
optimized for their laser cutter and material. And then fabricate that 
specific cutting plan on their machine, without inserting additional 
incisions in the models. 

In this chapter we present the development of this 3D modeling 
environment in two phases, first as a primarily volumetric environment 
which affords efficient structural building with laser cutters. We then 
revisit this by extending the environment with support for detailed 
editing by building tools and a subsystem that allows users to 
manipulate individual plates. These systems combined allow users to 
make more advanced models than seen before, and furthermore 
encourage that by letting users build on the work of others in a machine-
invariant workflow. 
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4.1 KYUB :  A 3D  MODELING ENVIRONMENT FOR LASER CUTTING  
Kyub [14] is an interactive editing system for laser cutting called. Kyub 
allows users to create models efficiently in 3D, which it then unfolds into 
the 2D plates laser cutters expect. Unlike earlier systems, such as 
FlatFitFab [29], kyub affords construction based on closed box structures, 
which allows users to turn very thin material, such as 4mm plywood, 
into objects capable of withstanding large forces, such as chairs users can 
actually sit on, as shown in Figure 51.  

 
Figure 51: A selection of objects created using kyub, a software system that allows users to design 
3D objects for laser cutting. By affording closed box structures, objects made using kyub are very 
strong. This allows users to make tables, shelves, and chairs that can hold a person. (All shown 
objects are assembled from 4mm plywood sheets—pressure fit, not glued). 

To afford such sturdy construction, every kyub project begins with 
a simple finger-joint “boxel” (see Figure 52)—a structure we found to be 
capable of withstanding over 500kg of load. Users then extend their 
model by attaching additional boxels. Boxels merge automatically, 
resulting in larger, yet equally strong structures. While the concept of 
stacking boxels allows kyub to offer the strong affordance and ease of 
use of a voxel-based editor, boxels are not confined to a grid and readily 
combine with kyub’s various geometry deformation tools.  
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Figure 52: Kyub allows users to create sturdy objects by stacking volumetric elements, which we 
call boxels. (a) A single boxel can withstand >500kg of load, (b) Added boxels merge automatically, 
resulting in a larger, yet equally strong structure. (c) While kyub offers the affordance of a voxel-
based editor, its objects are not bound to a grid; users can reshape them using a wide range of 
deformation tools. 

4.1.1 3D editing based on boxels 

Figure 53 shows a “hello world” example in which we create a simple 
picture frame, essentially only using kyub’s add boxel tool. (a) Any 
editing experience starts with a boxel dropping from above. This boxel, 
like any object in kyub, is represented in a realistic way, i.e., how it will 
look once laser cut and assembled [1,64]. The boxel bounces off the 
ground and comes to a rest, demonstrating that this is a physics-based 
environment. A cup serves as size reference.  

(b) The user picks the add boxel tool from the menu and clicks into the 
scene. (c) This produces another boxel. (d) The user selects the add boxel 
tool again, but this time clicks onto a boxel already on stage. The new 
boxel automatically aligns itself with the clicked one and both merge 
automatically. This results in a single box the size of two boxels. This 
merging is an important step in that the resulting geometry not only 
features a minimal number of plates, but also makes interlocking plates 
extend across the entire objects; this produces very sturdy structures. 

By double clicking the add boxel tool, the user makes the tool “sticky”. 
(e) Another six clicks cause the add boxel tool to create (f) a simple, but 
stylish picture frame. (g) The user engraves images on each of the six 
sides of the lone boxel and is now ready to showcase it in the picture 
frame. 



REPRESENTING LASER-CUT MODELS IN 3D 

72 

 
Figure 53: Sole use of the add boxel tool already allows making simple objects, here a picture 
frame. (a) A boxel falls into the scene. (b) The user selects add boxel and (c) clicks the stage, which 
produces a second boxel. (d) Holding the add boxel tool, the user clicks a boxel already on stage. 
This stacks a boxel on top and both merge automatically. (e) Adding another six boxels 
(f) completes the frame. (g) Engraving six images into the lone boxel prepares it for being displayed 
in the frame. 

The user now exports the box to the laser cutter using kyub’s export 
menu. Kyub responds by breaking the 3D model down into individual 
plates and by correcting for the specifics of the target machine (kerf 
correction [135]). As shown in Figure 54, it adds engraved marks that tell 
the user which plates to connect when assembling the model. Kyub then 
lays out plates onto sheets (also known as nesting, see also [57, 86]) and 
writes each sheet into a separate .svg file.  

 
Figure 54: An exported model from Kyub, the red lines are what the laser cutter cuts. Numbers 
along the edges tell users which plates (numbers in centers) to connect to, when assembling the 
model. A ‘̂ ’ indicates “this side up”; an ‘x’ indicates placement at the bottom. 
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While these look-up numbers provide sufficient data for users to 
assemble the model, it still presents users with a nasty search problem 
when there are many plates to be assembled. We have therefore revisited 
this 3D-2D export pipeline in two distinct approaches: (1) we 
implemented an optimization algorithm we call FoolProofJoint [89] that 
makes joints explicitly different from one another so users cannot 
misassemble them. And (2) we developed a software tool called 
Roadkill [2] which adjusts the nesting of the plates, so users always 
assemble adjacent plates with one another. And provide visual assembly 
instructions on the plate itself, to further simplify the assembly process. 
While we wrote these papers in the same period as the bulk of this thesis, 
their contributions are adjacent to the objective of portability, for more 
details we refer to the respective papers. 

 
Figure 55: Follow-up approaches to make it easier for users to assemble models by modifying 
(a)  joints [89] and (b) layout during export [2]. 

After exporting, the user sends the .svg file(s) to the laser cutter and 
assembles the fabricated parts. Figure 56 shows the final result, here 
with manually sanded edges. 

 
Figure 56: A fabricated, assembled, and sanded picture frame. 
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Boxels appear to be on a grid—but they are not 

The voxel-like behavior of add boxel suggests boxels be limited to a grid. 
This would be a dramatic limitation, as it would eliminate many of the 
benefits of personal fabrication—which is to create one-off objects that 
fit a specific use case. Fortunately, kyub boxels are not confined to a grid. 

As shown in Figure 57, kyub allows users to manipulate boxel-based 
geometry with a range of deformation tools. For example, (a-b) the user 
may compress the picture frame using the push-pull tool. Or (c) users 
may pull out just one of the edges to give the picture frame a slanted top 
or base. 

 
Figure 57: (a) Kyub allows the boxel-based picture frame to be manipulated using (b) push/pull 
and (b) push/pull edge tools. 

Interestingly, add boxel continues to be applicable after geometry has 
been deformed. In Figure 58, we set boxels to half their usual size and 
then (a-b) apply add boxel to produce two prongs that (c) form a stand 
for our picture frame. Add boxel not only remains applicable, but also 
snaps into an invisible grid, making it easy to align the prongs with the 
frame. 

 
Figure 58: Add boxel remains applicable after the use of deformation tools. 
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Kyub’s secret to achieving this combination of grid and free 
deformation is to not memorize any grid, but to instead re-infer the grid 
with every tool interaction, i.e., kyub analyzes the current geometry and 
determines what grid the user might be trying to refer to. 

Figure 59 further illustrates this. (b) Removing half a boxel on one 
side of a part and (c) adding it back at the other end looks like it might 
lead to a grid aligned half-way. (d) However, boxels added now snap 
into position based on the current shape of the part, not based on its 
history. We describe the underlying algorithm in detail in section “4.1.3 
implementation”. 

 
Figure 59: Kyub infers the grid, rather than maintaining it (a) Laying down two boxels, (b) pushing 
in half a boxel and (c) pulling out half a boxel on the other side results in 2x1 boxel arrangement. 
(d) Adding a boxel snaps into position based on the current shape of the part, not its history. 

Kyub’s ability to maintain grid-like behavior allows it to offer good 
default behavior when placing new geometry. This is key, for example, 
when running kyub on devices with very coarse input capabilities, such 
as touch screens (Figure 60). 

The fact that kyub determines the currently active “grid” only based 
on the object’s current and thus visible geometry generally relieves kyub 
of the necessity to display the grid. This allows kyub to adopt a 
particularly uncluttered and natural look. 
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Figure 60: The grid-like behavior of boxels is crucial in allowing kyub users to create precise 
geometry on low-precision input devices [126] (here an iPhone SE). 

Making things that fit together 

One of the desirable side effects of the boxel-based approach is that 
everything naturally fits together. Figure 61 illustrates this at the 
example of a decorative robot figurine, created by one of the participants 
in our user study (see section 4.1.5 “User Study”). Here the user (a) has 
modeled the foot of the robot and then cuts two holes into it using the 
subtract boxel tool. (b) The fact that boxel-sized extrusions naturally fit 
into boxel-sized holes allows the two parts to form a dowel-like 
connection. Here the user uses the insert tool to try this out in the editor. 
By default, kyub designs all parts with a “fixed fit” (H7/n6) [58] allowing 
parts to be mounted and removed with a light pressing force. (c) The 
dowel connections allow the resulting figurine to be posed (d-e) in a 
variety of ways.  
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Figure 61: Parts created using kyub naturally fit together. (a) Parts with extruding boxels and parts 
with boxel-shaped hole naturally match and (b) users can combine them using the insert tool. 
(c) The resulting dowel joints allow this decorative robot figurine (d, e) to be posed in various ways. 

As illustrated by Figure 62, boxel-based dowel connections allow us 
to create collections of parts that can be combined interchangeably. The 
result is a custom construction kit that allows making a range of different 
models, a rudimentary version of something like a LEGO construction 
kit.  

 
Figure 62: Combining the parts of the robot figurine with a few compatible elements results in a 
simple construction kit.  
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While the shown models are clearly designed around the notion of 
rectilinearity, they also include some non-rectilinear parts. As shown in 
Figure 63, these were made quickly and efficiently by applying non-
rectilinear boxels, here specifically 90-degree prisms and equilateral prisms. 

 
Figure 63: Non-rectilinear boxels add expressiveness to boxel-based construction. (a) Here we 
use four 90-degree prisms to create a duckling’s head and (b) one equilateral prism to make its 
beak. (c) Resulting duckling. 

The concept of non-rectilinear boxels extends past prisms. Figure 64 
shows how we recreated the well-known tetrahedron puzzle by 
complementing (a) a pyramid boxel with (b) two tetrahedron boxels. 
Cloning the resulting shape completes the puzzle and (c) and with a little 
bit of trying out it can be assembled into… a tetrahedron. 

 
Figure 64: The boxel concept goes beyond rectilinear boxes. The pieces of this tetrahedron puzzle 
were made by combining a pyramid boxel with two tetrahedron boxels. 

4.1.2 designing sturdy structures 

As discussed earlier, a key objective behind boxel-based construction is 
to create sturdy structures. The chair shown in Figure 65 is such a 
structure. This particular model was created using the boxel-based 
workflow described above, sped up by using a clone and an attach tool. 
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Figure 65: (a, b) Modeling a chair in kyub using add boxel (c) the clone tool and (d) the attach tool. 

The common approach to designing furniture is to use thicker 
material, such as 12mm plywood [104, 120] and as shown in Figure 66, 
kyub supports arbitrary material thicknesses. We could make the chair 
from 6mm plywood, for example, and even though plates of half 
thickness should carry only an eighth of the weight, the result works 
reliably thanks to the box-based construction. 

 
Figure 66: Kyub supports changing material thicknesses. 

Figure 67a shows how an experienced user can push the design of 
our chair design one step further in order to allow manufacturing it from 
the same 4mm plywood we used in all previous examples. By adding 
two internal plates that extend through the seat and the backrest using 
the reinforcement tool, this design prevents the seat from buckling and 
the backrest from breaking, despite the thin material.  The design shown 
in Figure 67b is even resilient against rocking, as the insides of pairs of 
legs are combined into contiguous U-shaped plates. 

 
Figure 67: (a) Chair with front-to-back reinforcement, (b) additional reinforcement supporting the 
legs. 
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To get the most strength out of internal plates, kyub merges internal 
plates with other plates whenever possible. As shown in Figure 68a, 
internal plates are usually centered, but that would prevent the internal 
plates in Figure 67b from merging with the legs. However, as shown in 
Figure 68b kyub’s internal plates are given some slack, allowing them to 
snap into the plane of the leg. Kyub heavily relies on its grid inferrer for 
this functionality (see section “4.1.3 implementation” for details). 

 
Figure 68: (a) When applying the reinforcement tool to this part, the reinforcement centers itself, 
(b) However, when adding a boxel, reinforcement automatically shifts by half a plate thickness so 
as to line up with the left plate of the added boxel, producing a sturdier result. 

Finally, Figure 69 shows an expert design that solves the challenge 
without any internal plates. Instead, a slot cut into seat and backrest 
using the subtract boxel tool reinforces seat and backrest—and creates 
what we think of as an appealing design element.  

 
Figure 69: Here a slot cut into the chair reinforces the chair’s seating surface and backrest.   

In follow-up work beyond the scope of this thesis we have 
developed an algorithm to detect potential weaknesses in closed-box 
laser-cut structures. Our extension called fastForce [1] places internal 
plates automatically to reinforce such structures while the user is 
modeling. 
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Making large objects using tessellation 

The closed-box structures afforded by kyub are generally strong enough 
to produce sturdy objects even at large scale. While some laser cutters 
allow cutting very large objects in one go, kyub allows owners of smaller 
devices to fabricate large objects as well.  

Kyub achieves this by composing large objects from smaller plates. 
Users configure the maximum plate size available to them and when 
enlarging an object now, kyub breaks down the oversized part into two 
or more cells as shown in Figure 70a. Figure 70b shows the specific wood 
joint kyub creates to hold cells together—a supported lengthening joint) 
Adjacent cells share a single membrane of finger joints; then both cells 
connect into this membrane using butterfly joint-like tabs.  

 
Figure 70: The cell structure created by tessellation. The big finger joints lock the two coplanar 
plates on the top while supported by a vertical plate. 

The joined cells are strong enough to carry human weight even on 
very large designs, such as the 1.80m dining room table shown in Figure 
71, assembled from 40 “A2”-size plates (60 x 40cm; 24” x 16”). 

 
Figure 71: The table from Figure 51 is assembled of separate cells which are capable of holding a 
human sitting on it.  
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4.1.3 Implementation 

Kyub is implemented as a web-based application using JavaScript and 
WebGL. It consists of about 70k lines of code. The server runs in Node.js 
but almost all computation is done on the client, making it easily scalable. 
The architecture of the client is similar to that of a game engine, because 
of the different subsystems at play, such as the physics engine (from 
cannonjs.org) that is continuously running in the background. 

Core to the implementation is the grid inferrer, shown in pseudo code 
in Algorithm 2. As introduced before, it provides alignment when 
adding a boxel to an existing assembly. Figure 72 shows an example, i.e., 
a user adding a boxel to a somewhat irregular “base” geometry.  

 
Figure 72: The grid inferrer. (a) a user applies the add boxel tool at the shown location. (b) Kyub 
takes the projection of the clicked surface and infers all possible grids to which the boxel could be 
aligned as shown in Algorithm 1. (c) After weighing the different grids, it places the boxel and 
merges the geometry. 

When the user releases the mouse button (Figure 72a), kyub passes 
the mouse-up location to the grid inferrer. Implementing the algorithm 
shown below, the grid inferrer traverses all edges in the base geometry 
and extends each edge into a grid. The blue grid shown in Figure 72b, 
for example, resulted from the base geometry’s top edge. The algorithm 
now reduces each grid to the one cell that contains the mouse click 
location. Finally, the algorithm picks the cell that maximizes the number 
of edges supporting this grid, minimizes the distance between these 
edges and the mouse click location, and minimizes the resulting number 
of plates. 
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Algorithm 2: Grid Inferrer 

Input: clicked point P 
2D projection of the outline of the base B 
2D projections of the outline of the connectors C 

Output: connector c*, position p* and rotation r* of object aligned to (and 
placed on) B 
Parameters: CENTER, IGNORE_PROTRUDING, WEIGHTS 
candidates ← new Array() 
for each connector ∈ C do 

for each pair of edges (eB, eC) ∈ edges(B) ⨯ edges(C)  
alignments ← position and rotation to align start or end of eC 
with either start or end of eB respectively 
if CENTER then 

add to alignments the position and rotation to align 
center of eC with the center of eB 

 end 
for each alignment ∈ alignments do 

apply alignment to connector 
G ←create grid by repeating the bounding box (AABB) of 
connector 
candidate ← grid cell of G that contains P  
if IGNORE_PROTRUDING then 

add candidate to candidates if fully overlapping with B 
   else add candidate to candidates 
  end 

end  
candidate.connector ← connector 
candidate.feature_distance ← d(P, eB) 
candidate.mergeable_plates ← the number of coplanar plates after 
placement (see Figure 73)  

end 
end 
deduplicate candidates, count in candidate.duplicates  
normalize candidates’ criteria, so each is within [0,1] 
best ← select the best candidate considering the weights of the criteria 
defined by WEIGHTS 
c* ← best.connector 
r* ← best.rotation  
p* ← best.position 
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Figure 73: The resulting boxel is merged with the assembly. The dashed surface is an example of 
a coplanar plate that is unified with the side of the added boxel. 

Whenever possible, the grid inferrer tries to place added geometry 
such that it stays within the circumference of the base geometry. Kyub 
accomplishes this by calling the grid inferrer with ignore_protruding set 
to true. This will produce the desired result in most cases. If the grid 
inferrer returns no result, however, kyub calls the grid inferrer again, this 
time with ignore_protruding set to false. This allows the grid inferrer to 
also explore configurations, where the added geometry protrudes past 
the edge of the base geometry. This two-pass approach allows kyub to 
make sure that the insert tool works reliably, including such cases as the 
insertion of the arm of the robot in Figure 61.  

4.1.4 technical evaluation 

To validate the strength of closed box structures underlying kyub, we 
conducted a technical evaluation during which we fractured seven types 
of structures by applying appropriate subsets of up to six different types 
of forces and measured the force required. 

To obtain a conservative lower bound of the sturdiness of the tested 
objects, we used the weakest and cheapest material we could find, 
i.e., 4mm 3-layer plywood at a price of roughly 7 Euros/m2. Also, all 
objects were held together by only press fitting them, i.e., without glue. 

Objects tested 

Figure 74 shows the objects we tested. The first four objects allowed us 
to test basic boxel geometry: (a)	a 5cm boxel, (b)	a 35cm stick made from 
7 boxels, (c)	an L-shape made from 3 boxels, (d)	a 3D L-shape made from 
4 boxels. 
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Figure 74: Objects tested 

The next two models allowed us to test reinforcement. (e)	The star 
consisted of 7 boxels but was internally reinforced using three pairs of 
parallel plates. (f) The dumbbell consisted of two 3x3x3 boxels at each 
end, connected by two boxels in the middle. However, we used 
reinforcement to extend the center portion into both 3x3x3 boxels. 

(g) The final model allowed us to test tessellation. This model was 
another 7-boxel stick. However, each plate was subdivided into two 
interlocking plates. 

Procedure  

To administer the test, we mounted test objects into the custom testing 
apparatus as shown in Figure 75. The apparatus was essentially a 
custom vise made from aluminum profiles (from item Inc.). We actuated 
the device by tightening a nut on a threaded rod until the test object 
would break. A properly placed force sensor (forceX 2.30) measured the 
applied forces. 

We used the apparatus to apply (a)	compression along the object’s 
main Cartesian axis, (b)	compression against the object tilted by 45 
degrees, and (c)	compression against the object tilted along two axes. 
(d)	We measured tension by pulling the test object with pairs of straps, 
and	(e) torsion, by holding the test object in place using clamps while 
twisting the opposite end using a lever. (f) Finally, we measured 
buckling, by applying a force to test objects at three points. 
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Figure 75: The test apparatus. 

Results 

Figure 76 shows the main results, i.e., amount of force or torque required 
to fracture the respective objects. “>500kg” means that the test object was 
still intact when we exceeded the 500kg value range of our measuring 
device. “>140kg” indicates that the test object was still intact when our 
test apparatus started to collapse when applying tension to the dumbbell 
model.  
 

 compression 
tension torsion 

buckle 
from top tilted …2D 

 
>500 kg  

 

>500 kg  49Nm 135kg 

 
 293 kg  

 
 91kg  

 
>500kg >500kg 398kg  

 

 >140kg 40Nm 230kg 

 

>500 kg  38Nm 188kg 

Figure 76: Forces required to break the respective object. 
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4.1.5 User study 

We evaluate the usability of our system with a user study in which non-
engineer participants designed 3D models using kyub, then cut and 
assembled them. Participants filled in a questionnaire about their 
experience. We hypothesize that participants find kyub easy to learn and 
use. 

Task 

We asked all teams to create a roughly foot-high “persona” figurine for 
future “design thinking” sessions.  

Format 

While users spent only 90 minutes with kyub, we conducted our 
evaluation as part of a two half-day’s workshop on laser cutting, a 
format that gave us time to learn about participants’ experience. 
Participants were in the same space at the same time, as well as several 
team members. They worked in self-selected teams of two. 

During the first day, we gave participants a 2h introduction to the 
traditional process of laser cutting. During this period participants 
created their first laser cut designs i.e., figurines to serve as personas for 
future design thinking activities, which they drew directly in Adobe 
Illustrator or Inkscape. Participants added notch joints manually by 
overlaying rectangles of appropriate width taken from a template onto 
their designs. 

We then showed a demo of kyub and gave participants 90 minutes 
to design their own models in kyub. 

We laser cut the objects offline, and participants reconvened a week 
later for the second half-day session during which they assembled their 
models and learned more about personal fabrication. Finally, 
participants filled in a questionnaire. 

Participants 

We recruited 18 participants (8 female) with an average age of 35 years. 
They were part of the design curriculum at an affiliated institution. Few 
participants (four) had used a laser cutter before. The workshops took 
place in two rounds, one with 10 participants and one with 8. 
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Results 

All teams succeeded at modeling their personas. Figure 77 shows the 
resulting designs. Two teams who finished early made additional 
models, i.e., an advent calendar and the name of their institution in 3D 
characters. 

All participants reported high satisfaction with the models they had 
made using kyub (6.4/7 on a Likert scale).  

Participants rated their enjoyment of using kyub high (5.8/7). 
Participants report being pleased with the sturdiness of the models 
(6.6/7). Participants strongly agreed that kyub had helped them create 
models they could not make before (6.5/7) and strongly indicated that it 
would be time-consuming to make these models without kyub (6.9/7). 

 
Figure 77: Participant teams created figurines to function as storytelling personas. One team used 
the remaining time to make an advent calendar one created the name of their institution in 3D 
characters. 

Participants liked the physics simulation in the editor (6.1/7) but said 
they felt it would be useful to temporarily disable it. P7 explained 
“gravity helped me model, but once it tipped over it was hard to get it 
back up”. 



REPRESENTING LASER-CUT MODELS IN 3D 

89 

 
Figure 78: Questionnaire results. 

In general, participants found it easy to get started using kyub (6.1/7). 
Interestingly, some participants credited the physics engine for this. P3: 
“because everything looks and behaves like the final result, including 
gravity, it was very easy to understand what was going on”. P1: “I just 
loved how that cube fell in the scene at first, it encouraged me to try 
things out and model in a playful way with this editor as opposed to 
Blender which I used before!”). 

Three participants mentioned appreciating the modularity of kyub. 
Five participants reported that their favorite feature was the realistic 
look and feel of the editor. Three mentioned that they liked it best that 
kyub afforded the creation of sturdy objects. 

The overall excitement during the workshop was high and two of 
the teams approached us later asking for permission to use the software 
for making prototypes of their regular projects.  

4.1.6 Practical use 

Kyub is a system that has been live for several years with over 500 beta 
testers and used for workshops in high schools, Figure 79 shows some 
of these workshops. To support this, numerous developers have 
contributed to the system and extended it beyond its mere academic 
publication. It has served as a platform for various bachelor projects 
[16,31,35,40] and master theses [66, 109].  
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Figure 79: Kyub in use by pupils around Berlin without modeling or building expertise. (a) An 
overview of some of the workshops currently offered to high-schools such as (b) building a 

model of the school of the future, (c) cajons, (d) bluetooth speakers, and (e) ukuleles. 

4.2 STRUCTURE-PRESERVING EDITING OF PLATES AND VOLUMES 
Kyub as presented thus far, is great at efficient and structural editing, 
but it lacks support for more complex models that are not based on 
closed-box structures. We therefore revisited this project by creating a 
system which gives control over the detailed elements of laser cutting, i.e., 
individual plates and the associated joints, yet at the same time also 
allows for efficient editing by means of volumetric tools while preserving 
the structure of plates in the model.  

As shown in Figure 80, our system consists of four functional groups: 
(1) We started with a fabrication-aware 3D editor capable of handling 
volumetric models (kyub [14]). This subsystem represents 3D models as 
a single volume. (2) We added a second subsystem that represents laser-
cut models as an arrangement of plates in 3D. This allowed us to add 
tools that allow manipulating individual plates. (3) We unified these 
two subsystems by adding a demotion mechanism that breaks volumes 
down into multiple plates, to allow users to apply plate tools to volumes, 
as well as (4) a promotion mechanism, which infers volumetric 
substructures from sets of plates, to allow users to apply volume-based 
tools to plate structures.  
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Figure 80: Structure-preserving editing for laser cutting (a) represents laser-cut 3D models as 
volumes, whenever possible. This allows users to manipulate models efficiently using volume-
based tools. (d) It represents laser-cut 3D models as a 3D arrangement of plates, when users want 
to manipulate models in detail using plate-based tools. (b) The key to making volumetric and 
plate-based representations work within the same model is that our architecture demotes models 
represented as volume to plates, when users apply plate-based tools, and it (c) promotes models 
represented as plates to volumes, when users apply volume tools anywhere. (e) This approach 
allows users to manipulate 3D models that are complete plate-like elements with volumetric 
elements, resulting in a level of complexity not possible with previous tools.   

As illustrated by Figure 81 our approach allows users to create and 
manipulate 3D models that are neither all-plate nor all-volume, resulting 
in a level of complexity not possible with previous tools. 

 
Figure 81: Structure-Preserving Editing allows users to create models that traditionally could only 
be created and manipulated by hand using “fabrication unaware” modeling. These hybrid models 
contain plates (highlighted in yellow) and volumetric elements. 

4.2.1 the plate-based subsystem  

We start by presenting our plate-based subsystem. As illustrated by 
Figure 82, we designed these tools to be consistent with the volume-
based tools provided by the platform we built on: kyub [14]. 
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Figure 82: We designed the tools of the plate-based subsystem to be consistent with the volume-
based tools provided by the platform we built on kyub [14].  

This consistency across subsystems allows for a reduced user 
interface: as illustrated by Figure 82, it allows us to overload the edit 
functions for plates onto the same functions that manipulate volumes. 

In addition to the volume-inspired tools shown above, we added 
tools that help to arrange plates in 3D. The workflow shown in Figure 
83 adds plates at right angles or stacks them onto existing plates. The 
move tool and rotate tool allow users to fine-tune the arrangement.  

 
Figure 83: Various add plate tools allow arranging plates in 3D. The move tool allows users to 

fine-tune their positioning. 

The attach tool shown in Figure 84 also extends to plates but presents 
additional options to users on how to arrange plates in 3D after attaching. 
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Figure 84: (a) In contrast to the attach tool of the volumetric subsystem, (b) the plate-attach tool 
provides additional 3D arrangement options. 

The plate tools shown above allow constructing a range of basic 
models, such as the ones shown in Figure 85.  

 
Figure 85: Simple models made using plate tools alone. 

The same tools also allow somewhat more complex models, such as 
the VR headset shown in Figure 86. However, this workflow already 
hints at the limited efficiency of a purely plate-based workflow. 

 
Figure 86: Plate and edit tools allow creating a wide range of models, albeit with limited efficiency 

(VR headset, id:638605). 



REPRESENTING LASER-CUT MODELS IN 3D 

94 

4.2.2 promotion  

The inefficiency of a purely plate-based workflow becomes obvious 
when we try to modify the model from Figure 86. As illustrated by 
Figure 87, making the headset taller now requires users to stretch five 
plates, move the top plate, doing so in the right order, and getting the 
resulting alignment right. This is obviously not desirable.  

What we want instead is to pull up the top plate and have the rest 
of the model follow its lead as shown in Figure 87b. We get this type of 
volume-based operation naturally from models that live in the volume-
based subsystem. Naturally, we want this type of functionality also for 
models that originated in the plate-based subsystem. 

 
Figure 87: (a) Once demoted to plates, making a VR headset 1cm taller requires six user 
interactions. (b) Making the same volumetric modification is a single interaction. 

We address this by adding what we call the promoter. The promoter 
is invoked whenever users apply a volume-based tool. The promoter 
now checks the clicked model: if it is already in volumetric 
representation, it is done and simply invokes the tool. If the model is in 
plate-based format, however, the promoter searches the model for 
volume-like substructures, translates them into a volumetric 
representation (the promotion), and then applies the tool. 

As illustrated by Figure 88, this allows volumetric structures created 
from plates to be manipulated using volumetric tools, here “stretch”. 

 
Figure 88: Consecutive add plate tools allow constructing a volume. When applying a volumetric 
stretch tool, the promoter detects the volume and stretches the plates accordingly. 
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But the promoter does more. As illustrated by Figure 89a, it 
identifies volumes also when these are incomplete, and when they are 
part of slanted models (Figure 89b). 

 
Figure 89: (a) The promoter also identifies incomplete volumes. (b) And works for slanted volumes, 
here to make a separate rooftop for a dollhouse. To apply the plate tool after, it gets demoted (see 
next section on demotion). 

The key benefit of the promotion mechanism is that it relieves users 
from the burden to know about how a structure originated, as two 
structures that look the same can now be treated the same way. Figure 
90 shows a three-plate corner created by removing plates from a box, as 
well as a three-plate corner created by assembling plates. With the help 
of the promoter, running in the background hidden from the user, either 
one can be stretched using the stretch tool, producing the same result. 

 
Figure 90: The promoter treats the shown 3-plate assembly the same, irrespective of whether it 
was created by combining three plates or by removing three plates from a box.  
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4.2.3 demotion  

Going back to the headset, the workflow shown in Figure 86  clearly is 
not the most efficient way of creating this 3D model. As illustrated by 
Figure 91, the tools from the volume-based subsystem get users started 
much faster. However, eventually users need to use plate tools to get the 
details right, such as the divider between the eyes and the overextended 
plates. 

We enable this scenario with the counterpart to the promoter, the 
demoter. As shown in Figure 91, when users try to apply a plate tool to a 
model that lives in the volume-based subsystem, the demoter breaks the 
plates that are touched by the plate into plates, allowing individual 
plates to be moved or stretched. 

 
Figure 91: Starting with a volume allows re-creating the VR headset from Figure 86 more efficiently. 
The part of the model shown in yellow is demoted to plates to allow for the plate tools to apply. 

We found this demoter-based workflow, i.e., volume-based tools 
first, then refinement using plate-based tools to be efficient and the basis 
for many common models (Figure 92). The promoter, however, is 
equally crucial for this approach to modeling, as it allows making late 
modifications, rather than enforcing a strict “waterfall” process. 

 
Figure 92: Volume-tools first, then refinement using plate tools is an efficient and thus common 

workflow. 

Figure 92 shows some models that were created using this general 
“top-down” approach from volume to plates. Most of these models were 
created by starting with a volumetric element, then adding details using 
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the plate tools, e.g., for structural reasons (e.g., guitar, chair), to mount 
components inside volumes (e.g., cajon, speaker), or to create small scale 
structures on a larger model (e.g., race car, airplane). The workflows of 
more complex models, such as the one shown in Figure 93, may contain 
multiple invocations of promoter and demoter.  

Figure 93 shows the workflow of modeling the guitar of Figure 80 
using multiple promotion and demotion invocations. (a) Users start to 
shape the model with volumetric tools (b) the demoter turns the neck 
into plates as the user deletes plates and inserts a stack (c) the neck is 
promoted to a volume when stretching it longer, to then be demoted 
again as the user modifies detailed plates (d) to make the head, the 
stretch tool uses the promoter, and to add individual plates the demoter 
turns it back into plates (e) finally the promoter allows the head plate to 
be stretched into a volume and (f) the user finishes the model by adding 
a sound hole, bridge, fretboard and tuners. 

 
Figure 93: The workflows of more complex models may contain multiple invocations of promoter 
and demoter. 
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4.2.4 algorithm and data structures 

In this section we present the mechanisms of promotion and demotion. 
To understand demotion, we take a closer look at the data structure of 
plates and volumes. As volumes inherently consist of plates, we can 
break them down relatively easily. To reconstruct a volume, especially 
when the volume is incomplete, we present the promoter algorithm. 

Volume-based vs. plate-based data structures 

The promoter and demoter transition the representation of models 
between volume-based and plate-based data structures. 

As shown in Figure 94a, data structures in the volumetric subsystem 
consist of a single Mesh per model, which has its own coordinate system 
(Transform) and operates on a series of linked surfaces (and related 
edges). Individual plates on the other hand have their own coordinate 
systems, allowing them to be manipulated without interfering with 
other plates.  

 
Figure 94: (a) The data structure of a volume vs. (b) data structure if the same model is represented 
by individual plates. 

As shown in Figure 94b, the moment a Mesh is “damaged”, e.g., by 
removing a plate, it cannot easily be represented as a Mesh. The linked 
EdgeCycles no longer form a fully linked chain, which breaks some of 
the assumptions the volumetric tools use when operating on Meshes. 
Our system demotes it to a set of plates, as illustrated by going through 
the EdgeCycles and assigning them their own Transforms. The 
cycles remain connected but no longer share MeshPoints or a common 
Transform. This gives the plate tools the ability to move them away 
from one another. 
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This may seem benign at first, but the demotion means that the 
volumetric tools no longer apply, as they operate on that single 
coordinate system and assume full connectedness of the EdgeCycles, 
turning what could have been a single volume interaction into a long 
sequence of primitive plate interactions. 

This discussion of data structures extends beyond kyub in that 
fabrication-aware modeling environments for laser cutting would have 
some representation of plates and how they come together in terms of 
volumes. While it is possible to maintain both formats in parallel, the 
volumetric representation remains incomplete upon removal of plates 
so either the data structure or the resulting volumetric tools are required 
to handle this.  

Promoter Algorithm 

At the heart of the presented system lies the promoter. Its purpose is to 
generate a volumetric description of the model, that tools utilize for 
volumetric editing operations, such as stretching. 
In the example shown in Figure 95, three “plates” are missing to turn the 
model into a volume. The promoter constructs proxy planes by finding 
connected edges across two coplanar plates. The L shape on the top of 
the model, for example, consists of two edges connected at one corner. 
These edges are coplanar and stretch across two plates. The promoter 
constructs a proxy plane through these edges and repeats these steps for 
all connected coplanar edges.  

When multiple such connected coplanar edges share a corner, the 
promoter inserts a proxy edge into the model at the intersection between 
the proxy planes. When both corners of the edge are shared with other 
connected edges, the promoter constructs all three planes and inserts a 
proxy corner at the point where these planes intersect. Finally, it inserts 
edges between the proxy corner and the edges of the model, resulting in 
a closed volume.  
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Figure 95: When coplanar edges touch in a corner, they form larger volumes with the adjacent 
coplanar edges. 

When there are no shared corners between sets of connected 
coplanar edges, there is too little information for the algorithm to locate 
a proxy corner in 3D. Instead, as shown in Figure 96, the promoter runs 
the 2D QuickHull algorithm [11] (which runs in O(n log(n))) on the 
constructed plane and inserts result as edges into the model. In this case 
forming a basic prism, which can then be used by the volumetric tools. 
(b) The desk organizer model shows this using a real-world example: 
After the promoter found the rectilinear volumes, there is a single plate 
sticking out. Because the convex hull algorithm includes this as a volume 
as well, it stretches along when users make the model wider. 

 
Figure 96: (a) The convex hull of objects where the connected coplanar edges do not share a 
corner. (b) a practical implication of this case at the example of a desk organizer: because of the 
proxy prism on the left the base plate stretches with the side plates. 

Before the algorithm handles the cases presented thus far, it looks 
for closed volumes in the overall model. The previous cases therefore 
typically constitute of the last few plates that were not part of a volume 
yet. As shown in Figure 97, to detect volumes, the promoter iterates over 
the edges in the model and groups plates together when an edge 
connects exactly two adjacent plates. This effectively results in a flood 
fill for simple, closed volumes, such as the guitar stand of Figure 97. 
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Figure 97: Inferring volumes on this guitar stand, the yellow plates are added to the group. 

With full control over plates and volumes, it is possible to construct 
models which have plates within a volume. To respect these, the 
promoter runs 2D face detection (based on Muller et al. [78]) on the 
planes before detecting closed volumes. As demonstrated in Figure 98, 
internal plates within the volume are identified as additional faces, 
which results in an edge within the top plate that connects to three plates 
instead of two. This ensures that the internal plate is not simply 
discarded, but rather causes the volume to be split into two cells when 
executing the flood fill algorithm, such that volumetric tools behave 
accordingly. For example, in a stretching operation, the union of the 
volumes is used, but after stretching, the individual cells restore the 
internal plate. 

 
Figure 98: The promoter detects internal structures using face detection 78. 

A special case of volumes are stacks of plates. Unlike any of the other 
plates in models, they are not connected using joints but instead glued 
on top of each other by users. Because there is no internal structure 
within a stack (it is all inherently filled with plate), the promoter simply 
creates a volume composed of the edges of the stack.  
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Figure 99 shows how the algorithm detected volumetric cells in 
three example models, and how volumetric stretch operations modify 
the cells yet keep the overall structure intact. 

 
Figure 99: Three example models with their associated volumes as individual cells, the images 
below show how stretch operations applied to these models stretch these cells while keeping the 
structure of the model intact. 

The explanation of the algorithm so far followed a bottom-up 
explanation; however, the actual algorithm proceeds in the opposite 
order, as shown in Algorithm 1. The algorithm recursively inserts proxy 
planes until all edges of the model are included in a volume. These 
planes in the next iteration are included as if they were actual plates 
often resulting in additional or bigger volumes to be found. This 
approach makes it easy to cache volumes as each tool interaction on the 
model only requires computing volumes on the newly added plates, 
extending the previously inferred volume.  

Algorithm 3: promoter  

Input: List of Edges in the model  
Output: Constructed Volume, Cells 
Internal data structures: Edges contain a Pointer to their Plate and what 
Edges on other Plates they connect to, Plates contain a Transform which 
orients them in 3D space and an EdgeCycle which is a linked list of the 
related Plates. CoplanarEdges contain pointer to the Edges they belong 
to. 
// find all coplanar edges in the graph and store as coplanarEdges 
coplanarEdges <- getCoplanarEdges(Edges) 
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cycles <- [] 
for plane in coplanarEdges: // run face detection [78] to split up edges at 
internal plates, propagate the reference to edges 

cycles.add (faceDetection(plane), plane.Edges) 
clusters <- [] 
for cycle in cycles: // flood fill closed cycles that share 2 plates along an edge 

for edge in cycle: 
if connecting two plates, add as cluster, remove from cycles 

// handle non closed volumes and internal plates 
while there are still cycles: // internal plates, add to both adjacent clusters 

for edge in cycle: 
if edge connects > two plates, add duplicate of cycle to clusters, 
remove from cycles 
// check if the cycle connects other cycles and insert proxy edges 
if edge connects to other cycle construct two planes through the 
points in both cycles and add proxy edge at the intersection, add 
to clusters, remove cycle from cycles 

// non-closing edges, use convex hull [11] to construct proxy edges into the 
cycle add to clusters 
clusters.Add(2DQuickHull(cycle)), remove cycle from cycles 

cells <- [] 
for cluster in clusters: // construct cells  

if cluster contains proxy edges, insert corners at intersection between 
edges or proxy edges, generate proxy planes 
cell <- new Volume from linked list of plates in cluster, unify 
transforms of plates 
cells.add(cell) 

// create the encompassing volume 
Volume <-- union all cells 
return Volume,cells 

A limitation of this algorithm are models without clear corners 
because edges are all curved. Typical examples are skeleton structures 
with curved “ribs”, the algorithm instead considers every point a corner 
and creates a lot of proxy faces. These produce the right volume, but no 
currently implemented volumetric tool uses that. More expressive 
fabrication-aware versions of volumetric operations like Interactive 
Images [141] and symmetry preserving editing [73] support this, but that 
falls beyond the scope of this paper. As shown in Figure 100b, curved 
edges perform fine when stretching along the normal of the plane.  
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Figure 100: (a) Detected, but less useful volumes. (b) in this case the volume is still useful when 
stretched along the normal of the plane.  

4.2.5 technical evaluation: re-creating 100 models 

To evaluate structure-preserving editing, we used our system to try and 
recreate the 100 models from the (assembler3 benchmark [98], originally 
from thingiverse [117]). the models from this benchmark were originally 
created using generic modeling software, thus exhibit a wide variety of 
construction methods. 

We attempted to recreate these models using three systems, i.e., (1) 
volume-based (original, non-modified kyub [14]), (2) plate-based 
(FlatFitFab [29]), and (3) volume + plate (the structure-preserving 
system presented above). 

Results 

Figure 101 shows the number of models we managed to recreate with 
each of the three approaches.  

 
Figure 101: Models recreated using volumetric modeling (kyub), plate-based modeling 

(FlatFitFab) and our system. 

As shown in Figure 102, the models exhibited different modeling 
workflows: (c) we recreated 53 models with multiple usages of the 
demoter/promoter, alternating between plate and volumetric 
workflows, (b) for 12 models we could use a waterfall process where the 
process is entirely volumetric (if done efficiently) with at the end plate 
tools demoting the model exactly once, (a) and we made the remaining 
35 models using plate tools only like the ones shown in Figure 85.  
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Figure 102: The 100 models of assembler3 benchmark fall in three categories: (a) 35 models made 
using individual plate tools (b) 12 models made using a waterfall workflow and (c) 53 models that 
largely benefit from promotion/demotion in the modeling process. 

All 13 models we could not recreate using our tools all fall in that 
last category; they do not benefit from promotion/demotion but would 
require a different set of plate tools. Six of them contain plates that are 
mapped to a polar coordinate system, our tools operate on a cartesian 
coordinate system, making it hard/impossible to recreate those. The 
other seven contain highly expressive plates, our system allows for 
curvature, but such detail is better done achieved using tools optimized 
for expressiveness (e.g., FlatFitFab [29]).  

4.3 SOFTWARE ARCHITECTURE 
As outlined in Figure 103, kyub is a typescript application that runs in 
user’s browsers, most of its operations run client-side based on three.js 
[118]. The notable exceptions are CSG (Constructive Solid Geometry) 
operations such as creating unions of volumes or splitting geometry, 
which run on a separate CSG server for performance reasons. These 
operations take place asynchronously during modeling to not stall the 
interaction flow of users for this round-trip. The CSG server interfaces 
with CGAL (written in c++) [23] through an API implemented in node.js 
[85] and communicates with the front via POST requests, using .off 3D 
models. 2D user dialogs in kyub take place via angular.js [7] menu items.  
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Figure 103: High-level kyub architecture, the editor in front-end and the CGAL server as back-end 
to handle expensive CSG operations. 

Kyub’s architecture consists of individual node.js modules allowing 
for easy extendibility of the functionality of kyub. To give a sense of the 
breadth of the system, Figure 104 illustrates the scope of kyub modules 
as of now, structure-preserving editing contributes to highlighted area 
as well as in the implementation of some individual tools.  
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Figure 104: Kyub’s modules and high level architecture visualised in a tree map using the NPM 
package webpack bundle analyzer [48]. The purple area contains the editor interface with its 
underlying data structures. The area with the black outline contains the model data, this is where 
structure-preserving editing mostly fits into the larger architecture.  

The export pipeline enables a high degree of portability. Until 
exporting, all ModelData is represented in a machine-independent 
form, it consists of PhysicalObjects, like plates, which are connected 
using Joints, but it is only when the user exports that these data 
structures are converted to machine-specific SVG paths. As shown in 
Figure 105a, in the export dialog users specify the machine’s kerf and 
plate dimensions. In the likely case that users do not know their 
machine’s kerf, kyub exports a gauge as shown in Figure 105b to 
measure this. The export pipeline uses the SVGnest library [115], 
building on the algorithm of López-Camacho et al., [75] to lay out the 
pieces on the plate size, and it adjusts the geometry of all joints based on 
the kerf value specified by users. This allows users to share 3D models 
with others as it leaves the machine and material properties generic until 
users invoke the export dialog, upon which it produces a model 
optimized for the user’s specific machine and material. 

 
Figure 105: The export dialog in kyub. (a) during export users specify the machine and material 
specific dimensions (b) if they do not know their kerf, the software generates a kerf gauge. 

model data structures 
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4.4 CONTRIBUTIONS 
With kyub and its extension of structure-preserving editing, we 
contribute with a system that lets users create advanced laser-cut models.  

Kyub affords construction based on closed box structures, which 
allows users to make objects capable of withstanding large forces, such 
as chairs users can sit on. Users construct such models by stacking boxels.  

We then integrate volumetric and plate-based modeling paradigms 
into kyub to allow users to edit laser-cut models in structure-preserving 
fashion. To accomplish this, we add three elements, i.e., (a) a subsystem 
for plate-based editing structurally similar to volume-based editing to 
allow for a tight integration, (b) a demotion mechanism from volumes 
to plates, and (c) a promotion mechanism from plates to volumes. It is 
the combination of these four elements that addresses the challenge. 

The presented system allows creating models previously only 
possible with general-purpose 3D or 2D editors, but with the efficiency 
of fabrication-aware tools, as we demonstrate by recreating models from 
the assembler3 benchmark [98], as well as complex models, such as 
acoustic guitars shown in Figure 80e and models shown in Figure 81. 

Limitations of our system include that our current set of plate tools 
does not offer tools for free-form editing (as offered, for example, by 
FlatFitFab [29]) and offers only limited control over alignment, precision, 
and symmetry. The system is built on the assumption of rigid materials. 

4.5 CONCLUSIONS 
With kyub and structure-preserving editing we create an environment 
in which users can create advanced 3D models for laser cutting. It is also 
a great step forwards in terms of portability: when fabricating such 3D 
models designed by others, users simply export the model to 2D upon 
which the kyub exporter generates joints and mounts optimized for the 
material and machine at hand.  

Moreover, the 3D models allow users to make parametric changes 
to existing models, allowing them to build on the work of others and 
increase the complexity of models shared online. The guitar shown in 
Figure 80, in that sense, is not about one guitar, but in the context of 
structure-preserving editing a starting point that allows users to create 
a wide-range of custom guitars efficiently. This therefore presents a 
paradigm shift away from the historical machine-specific and hard-to-
modify 2D cutting plans and towards 3D formats.  
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5  
CONVERTING LEGACY 2D 
CUTTING PLANS TO 3D MODELS 

The 3D representation and editing methods presented in the previous 
chapter allow users to create, share, and modify models without having 
to worry about the underlying machines or materials used to fabricate 
them. However, large numbers of high-quality models exist in 2D 
cutting plans and entire sharing communities and industries are 
centered around these models. As long as that is the case, the chance to 
have real-world impact with 3D models is inherently limited.  

As illustrated by Figure 106, we propose a workflow to overcome 
these legacy issues by reconstructing 2D cutting plans into 3D models. 
These 3D models allow users to make 3D parametric changes to their 
models using software like the 3D modeling environment proposed in 
the previous chapter. And that environment then in turn exports a 2D 
cutting plan that is optimized for the laser cutter and material of the user.  

 
Figure 106: The proposed workflow at the example of modifying the cutting plan of a VR headset: 
(a) the 2D cutting plan (b) is reconstructed into a 3D model (c) which the user then manipulates in 
3D. (d) when done, kyub exports the model to a modified 2D plan. 
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The resulting workflow allows re-use of models made by others 
independent of the laser cutter at hand. And as users will be sharing the 
3D models instead of 2D cutting plans, it becomes easier to build on the 
work of others to enable the community to increase the quality and 
complexity of models shared online. We implemented this workflow in 
two stages: first we developed a 5-step analysis algorithm followed by 
an interactive reconstruction process, we captured this in a software tool 
we call assembler3 [98]. 

We revisited assembler3 by building an automated pipeline using a 
heuristics-based beam-search algorithm we call autoAssembler [100], that 
allows a large subset of laser cut models to be automatically 
reconstructed. We integrated both approaches into kyub, in which the 
automated pipeline is the default process, and the interactive workflow 
serves as a fallback for users. 

5.1 ASSEMBLER3 :  INTERACTIVE 3D  RECONSTRUCTION 
Assembler3 is an interactive software tool that implements the “mental” 
workflow shown in Figure 124 as an actual, software-based workflow. (a) 
Assembler3 allows users to modify 2D cutting plans by (b) rearranging 
them into a 3D model, at which (c) users can now apply parametric 
manipulations using existing 3D editors, before (d) converting back to 
2D for cutting. In our study, this workflow allowed participants to apply 
parametric modifications 10x faster (2:22min on average) than the 
traditional workflow of rewriting the 2D cutting plan directly. 
Participants rated the task easy (2/7) and all exported cutting plans 
assembled into functional models. In a technical evaluation, we 
furthermore demonstrate the utility of this workflow by reconstructing 
100 of 105 models found in online repositories. 

5.1.1 assembler3  workflow 

The main step implemented by assembler3 is the reconstruction of a 3D 
model from a 2D cutting plan. 

While we present our algorithm in full detail in section 5.1.3 “the 
algorithm of assembler3”, Figure 107 provides a preview. Assembler3 
reconstructs a model, such as (a) this plate of the VR headset, by 
performing the following steps: (b) plate detection determines what are 
plates and what is scrap using the nesting order of paths and assigning 
plate vs scrap in alternating order. (c) Joint detection identifies joint 
candidates by detecting patterns of left/right turns in the paths. 
(d) Material thickness detection has every joint candidate vote for a 
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material thickness, the dimension most commonly voted for by the joints 
determines the material thickness. (e) Joint matching and, for fast 
retrieval, storage in a hash. (f) Interactive reconstruction in a 3D 
environment (kyub).  

 
Figure 107: Pipeline of parsing the top plate of the VR headset (in reality it parses the entire SVG). 

Figure 108 illustrates the last step, i.e., interactive reconstruction in 
(a) the 3D environment. (b) The main interaction is the user attaching 
two plates to each other using the assemble tool. Here the user has selected 
a plate, which causes it to highlight in yellow. Assembler3 responds by 
highlighting candidate joints that could be paired up with the selected 
plate. This response is instantaneous, as all matches were precomputed 
and stored in an efficient-to-retrieve format (joint hash). 

 
Figure 108: Reconstructing the 3D model of the VR headset. (a) When assembler3 loads the SVG, 
all plates are displayed in the 3D modeling environment, here kyub [14] (b) The user clicked the 
assemble tool on the front piece. Assembler3 responds by highlighting this plate (yellow stripes) 
and by highlighting joint candidates located on the other plates. (c) Clicking one of the suggested 
candidates assembles the plate. (d) The user repeats this until the model is assembled. From now 
on, the user uses standard kyub tools to interact with the model (e) to see the front plate, the user 
flips the model. (f) Once reconstructed, the user can apply arbitrary parametric changes. Here the 
user accommodates for far-sightedness by stretching the front plate. 
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As shown in Figure 108c the user then clicks on a target plate to 
assemble the selected plate with, assembler3 responds by attaching the 
joint candidate to the target plate. The user repeats this step until all 
plates are assembled into the 3D model. 

Sometimes, there are multiple ways how a plate can be attached, 
including rotations around up to three degrees of freedom. To keep the 
interaction flowing, assembler3 picks a default placement. Assembler3 
does so considering the following heuristics: (1) maximizing the 
probabilities that each of the involved joints actually is a joint, as 
determined during SVG parsing, (2) picking results that are free of 3D 
intersection, (3) maximizing the number of joints that will be completed 
by the attachment operation (such as co-aligned joints elsewhere on the 
plates). 

In our technical evaluation, assembler3 got orientations right at first 
attempt for 78.6% of cases. 

As illustrated by Figure 109, in those cases where assembler3 gets the 
default orientation wrong, successive clicking of the “floating menu” 
attached to the assembly allows users to cycle through other orientations 
in order of descending score, until the correct one has been found (on 
average 1.7 clicks in our evaluation). This score is determined using the 
same heuristics as for the default orientation and it skips orientations 
that produce the same outcome because of symmetrical parts. 

 

 
Figure 109: (a) To override a suggestion, the user uses the floating menu item. Assembler3 presents 
another orientation of the plate. (b) In this case assembler3 flips the plate, which leaves the user 
satisfied with the result.  

Whenever combining two plates assembler3 replaces the joints 
originally contained in the 2D cutting plan with joints in the format of 
the surrounding 3D editor, so as to allow joints to accommodate the 
parametric changes about to happen. 

Once the conversion to 3D is complete, assembler3 allows users to 
apply any 3D editing tools to the model. In Figure 124e, the user uses 
this to accommodate the design for the user’s far-sightedness. 
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After reconstructing a model once, other users can leverage that 
effort by now applying any number of additional modifications, such as 
the changes shown in Figure 110. Users may also store and share the 
model in 3D format, which lowers the bar for others to build on this 
model, contribute to it, and help it achieve complexity.  

 
Figure 110: When users have converted the VR headset model to 3D once, the 3D model allows 
leveraging existing tools (such as kyub [14]) to perform any number of modifications efficiently, 
such as (a) adjusting the inter-ocular distance, (b) making the headset fit a wider phone by 
stretching it vertically, (c) or making the headset more comfortable to wear by reducing the weight 
of the device by decreasing material thickness and removing unnecessary material. 

Note how the 3D reconstruction process seamlessly integrates into 
the regular 3D editor environment. Initially, we had expected that 3D 
reconstruction would have to result in a more wizard/process-funnel 
like design—a workflow limiting users to back-and-forth navigation 
along certain process steps. However, once we had fully automated the 
2D processing steps, such as material thickness reconstruction, we found 
the opportunity to implement 3D reconstruction as a set of tools, most 
prominently assemble tool and the floating menu. 

The benefit of this integration is that it invites users to tackle plates 
in any order, fix mistakes recognized late by disassembling selectively 
using the “extract plate” tool, use the editor environment to perform any 
other modeling activities along the way, start parametric manipulations 
before the import is even complete, or even to reconstruct models only 
partially for the purpose of remixing rather than full reconstruction. 

5.1.2 surveying sharing practice 

In a short survey, we find that there is surprisingly little 
remixing/customizing of laser-cut models shared on thingiverse. Flath 
et al [37] conducted an in-depth survey of thingiverse models in 2017, in 
which they found 54.7% of all models to be remixed. We repeated their 
analysis filtered by the search terms “laser cut”, “lasercut”, and/or 
“laser-cut”, and find a mere 17% of models to be based on work of others 
(open-source script to reproduce our analysis [94]). We thus conclude 
that there is a lack of remixing of laser-cut models compared to other 
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practice on the platform. Flath et al furthermore draw attention to the 
“thingiverse customizer” (a tool to easily make parametric 
modifications to 3D models) as a catalyst for remixing of 3D models. We 
believe that assembler3 could play a similar role in the context of laser-
cut models. 

We find furthermore anecdotal evidence of a desire to make 
parametric modifications laser-cut models in the comments to models 
that are shared. The most popular modifications are changes in material 
thickness. A strong example is thing 24561, which has these two (out of 
16) comments: 

“Hi, can you please help me scale this dragon into a 3mm thickness 
template and share with us …” 

“Hi, am new here and I would like to cut this dragon on a 3mm 
acrylic. Please could you help guide me on how to scale it?? …” (other 
comments are in the vein of “great model”) 

Thing 286 mentions the problem in their own description, and a 
comment to thing 691869 indicates a failed attempt at modifying the 
thickness. Other thingiverse designers share multiple thickness files to 
circumvent the problem. 

In current-day sharing, assembler3 could thus already play an 
important role as a tool to reduce the hurdle of varying material 
(thickness) of models. However, if the boost of the thingiverse 
customizer is any indicator, a tool for customizing models can go a long 
way to structurally change how users make and share models on the 
platform. 

5.1.3 the algorithm of assembler3   

To allow readers to replicate assembler3, we now provide a detailed 
description of its algorithm.  

Assembler3 uses a five-step algorithm: (1) normalizing the SVG and 
detecting plates, (2) detecting joints (3) detecting material thickness and 
(4) joint matching and hashing the joints for fast retrieval, and (5) 
rendering the plates in a 3D editor (kyub), to allow users to reconstruct 
the model. Algorithm 4 provides an overview of the first 4 steps.  
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Algorithm 4: ParseSVG 

Input: 2D cutting plan svg,  
Output: list of plates, hash of joints jointHash, and material thickness 
Internal data structures: lines, closedPaths, votes <-- Lists  
lines, closedPaths <-- linearize (svg) 
sort closedPaths by area, descending 
for each path ∈ closedPaths 
 path.children = closedPaths after path that are enclosed in path 
end 
for each path ∈ closedPaths 
 if path.nesting MOD 2 = 0 then 
  add path with path.children as cutouts to plates 
 end 
end 
for each plate ∈ plates 
 add to plate.joints, jointHash <--  detectJoints (plate.path)  
 for each joint ∈ plate.joints 
  add joints.assumedThickness to votes 
 end 
end 
thickness = max (frequency(votes,interval 0.1)) 
updateJointProbabilities (thickness) 

return plates, jointHash, thickness 

Plate detection 

Assembler3 segments the cutting plan into plates and cutouts. It achieves 
this by determining the nesting order of paths and assigns them 
alternatingly to plate or cutout. The outer path will produce a plate, if 
there is another path enclosed within this, it is a cutout etc. To be able to 
do so, assembler3 breaks down geometry to line segments (cutting paths 
in SVG can be polygons, polylines, paths, etc). Assembler3 then iterates 
over closed paths to detect if there is any smaller path enclosed within.  

In some 2D cutting plans, designers optimize the path the laser cuts 
by re-using paths between plates. The laser then cuts in one line, two 
edges of different plates. Naively, assembler3 would not be able to 
determine that both are plates. To detect this issue, assembler3 checks if 
there are any points where more than two-line segments come together. 
If this is the case, assembler3 traverses the path once with clockwise turns 
and then with counterclockwise turns and assigns both to be plates. 
Similar to constructing a doubly connected edge list [80]. 
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While pathological cases can be constructed that the algorithm will 
not properly recognize (specifically cases where waste material, such as 
the inner cutout of the ocular pieces, would be used as parts) assembler3 
achieved a 100% success rate in recognizing plates in our technical 
evaluation.  

Joint detection 

Assembler3 now detects joints. To illustrate, Figure 111, shows the joint 
“candidates” assembler3 finds in the VR headset. Note that this initial set 
of joint candidates contains several incorrect candidates, here shown in 
red. This is expected at this stage, as assembler3 will remove these 
incorrect candidates after material thickness detection. 

 
Figure 111: Joint detection on the VR headset. The red lines are false positives, which will get 
adjusted later, and the blue lines are joints that will receive a low probability because of their odd 
shape. 

Assembler3 detects line paths in the 2D cutting plans that may or 
may not be joints. It does so by looking for paths that form certain 
patterns of left and right turns. As illustrated by Figure 112a, finger 
joints, for example, follow the pattern left/right/right/left.  

Assembler3 then estimates the probability of a given path actually 
being a joint. One factor it considers, is how close a joint is to the 
idealized shape of that joint. As shown in Figure 112 at the example of a 
finger joint, assembler3 expects certain characteristic properties. Finger 
joints, for example, it expects to feature 90-degree angles, top and edge 
to be parallel, and widths to be larger than heights. However, since the 
2D cutting plan might be hand-drawn, assembler3 will also accept 
imperfect renditions; it will assign these lower “joint probabilities” 
though. The feature shown in Figure 112b, for example, follows the “left, 
right, right, left” pattern of a finger joint, but the width/height ratio is off 
and the lines are not parallel, assembler3 is still willing to consider it a 
finger joint, but with a low probability. (c) Furthermore, assembler3 
increases that probability when it detects repetitions of a pattern. 
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Figure 112: (a) The ideal finger joint has 90-degree angles, a top line parallel to the edge and has 
a bigger width than height (b) this finger joint has a much lower probability, it could just as well be 
some aesthetic feature of the model? (c) repetitions of a pattern increase its probability. 

While, as mentioned, assembler3‘s joint candidate list contains a lot 
of false positives at this stage, the algorithm captures 98% of joints 
contained in models (see section 5.1.4 ‘technical evaluation’).  

Material thickness detection 

Assembler3 derives the material thickness from the collected joints. It 
achieves this by having all joints “vote”. In this voting process, each joint 
votes for a thickness based on its shape, the most frequently mentioned 
length wins. Figure 113 shows examples of three types of joints and 
illustrates which line segment is considered as vote for material 
thickness. 

 
Figure 113: Each joint votes for a material thickness labeled “t” in this figure. (a) finger joint, (b) cross 
joint, and (c) a mortise-tenon joint.  

To allow assembler3 to extract voting information from imprecise 
(hand-drawn) joints, assembler3 replaces joints with an idealized version 
of that joint, as shown in Figure 114. The idealized joint then votes with 
reduced weight. 

 
Figure 114: Assembler3 first idealizes non-ideal joints and then haves them vote for the idealized 
material thickness but with an additional penalty to reduce their impact. The red overlay represents 
the idealized version of the joints above. 

Sorting votes in to buckets (buckets using 0.10mm intervals, picked 
in reference to the precision of common laser cutters) allows assembler3 
to determine the bucket with the most votes quickly, and thus determine 
material thickness.  
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Note that the joint candidate list still contains an unknown 
percentage of false positives—these false positives represent some other 
design considerations that look at least a bit like joints and are thus 
allowed to vote. The reason we still have these design features in at this 
stage is that material thickness detection and joint detection are mutually 
dependent: knowing a joint makes it trivial to tell the material thickness; 
and knowing the material thickness makes it all but trivial to tell what 
is a joint. Assembler3 resolves this mutual dependency by starting with 
joint detection, but casting a wide net, and delaying the filtering i.e., only 
now that material thickness is known, assembler3 uses this information 
to filter, i.e., it reduces the joint candidate set to those candidates the 
relevant dimensions of which are the material thickness.  

The algorithm works despite the mutual dependency because actual 
joints all point to material thickness, while design features tend to point 
to random line segment lengths. This causes joints to outweigh the design 
features in almost all cases, allowing assembler3 to achieve a 99% success 
rate in detecting material thickness. For details, see “technical 
evaluation”.  

2D cutting plans tend to contain ornamental features next to the 
functional joints. Now the joints are known, assembler3 discriminates 
between lines that are part of joints and lines that serve ornamental 
purposes. In SVG files, this is typically denoted using color as the laser 
cutter uses that information to decide what will be cut and what will be 
engraved (e.g., burn on the material without cutting for aesthetic 
purposes). Joints will have to be cut, otherwise the model cannot be 
assembled, so colors without any functional joints are likely ornamental. 
Assembler3 uses that information to disambiguate the colors in the 
cutting plan. Assembler3 assigns the color(s) used for joints as ‘cutting’. 
It assumes other colors to be engraved and will import these as 
decorative ornaments on the plates as shown in Figure 115.  

 
Figure 115: Assembler3 imports engravings as ornaments on the plates. 
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Joint matching and storing matches in a hash 

Assembler3 is now just one step away from showing plates and joints to 
the user who will then try to reconstruct the 3D model. Users will click 
a plate and assembler3 will respond by highlighting possible matches. 
This requires Assembler3 to know which joints can be matched with 
which other joints. 

In this section we present how assembler3 precomputes matches and 
stores them in an efficient data structure, i.e., a hash that allows it to look 
up matches quickly. This hash is key to allow Assembler3 to perform 
reconstruction at interactive rates. 

The general objective of joint matching is to identify all other joints 
that can be fit into the joint at hand: finger joints map to finger joints or 
t-joints, cross joints map to themselves. As shown in Figure 116, 
assember3 determines whether two joints fit by checking what types of 
joints match (finger, cross, t-joint) and then comparing their respective 
shapes (signature) to determine which joints interlock.  

 
Figure 116: Joint types (a) cross joints, (b) t-joints and (c) finger joints 

To make the hash robust to variations in the amount of material the 
laser removes (aka kerf), for finger joints and t-joints, assembler3 defines 
the signature by the sum of a cavity and a protrusion of each joint. As 
shown in Figure 117, the centers of the features have to align 
(independent of kerf) otherwise the joints do not fit. This furthermore 
guarantees that the joint with opposite finger/cavity signature ends up 
in the same cell of the hash. In the case of cross-joints, the signature is 
made up from the depth of the joint and the material behind that. 

 
Figure 117: (a) Two plates of the VR headset that fit together. (b) On closer inspection, the fingers 
of the one joint do not match the cutouts of the other because of the material removed by the 
laser (aka kerf). However, the centers of joints have to align, so assembler3 hashes the sum of the 
width of a cutout and a finger as the signature for a finger joint. 
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For a given joint, assembler3 looks up that joint in the hash. It will 
find the joint itself and all other joints that share the same signature (aka 
collisions), i.e., ones it could possibly match with. If there is only one 
matching joint, assembler3 returns it in O(1). If there are more collisions, 
assembler3 retrieves an ordered list of joints from the hash. In the case of 
finger and t-joints, the list is ordered by the number of repetitions of their 
pattern. A binary search lets assembler3 get to the right candidate. In the 
case of cross-joints the list is ordered by joint probability.  

Supporting users in assembling the model 

Finally, assembler3 presents the parsed SVG data to the user in the 3D 
editor. It renders each plate recognized in the plate detection step and 
gives it the thickness determined in the material thickness detection step. 
While not shown to the user yet, each plate knows which joints it 
contains and each joint knows what other joints it wants to match with.  

Assembler3 lets users assemble the model interactively. It does so by 
highlighting matching joints on user-selected plates, as presented in 
section 5.1.1. This is the only step in the algorithm that depends on kyub 
functionality, up to this point all data structures and implementation 
apply to any 3D modeling environment for laser-cutting (assuming it 
has a notion of plates and joints). Kyub as of the moment of publication 
is the only 3D editor that could handle and make advanced 
modifications to the models. Particularly with the help of the promotion 
and demotion mechanisms presented in the previous chapter. 

5.1.4 technical evaluation 

To validate the technical aspects of our algorithm, we ran assembler3 on 
105 models found online and assessed the results. We drilled down and 
evaluated the success rate of the steps and performance of our algorithm. 

Coverage: assembler3  allows assembling 95.2% of models 

To determine what percentage of 2D cutting plans on the Internet can be 
reconstructed using assembler3, we found models online and attempted 
to reconstruct these. We selected the models by (1) searching things for 
“lasercut” “laser-cut” and “laser cut” on thingiverse and grabCAD, to 
ensure the models fabricate, we filtered models that have “makes”. 
(2) We then excluded models that were single-part, or that contained 
features not yet supported by assembler3: living hinges, moving 
mechanisms, stacked/glued/bolted plates and joints that connect more 
than one other joint. This left us with about 40% of models. (3) We 
randomly selected 105 models of this collection. 
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Result: assembler3 managed to reconstruct 100/105 models (95.2% 
coverage) they are presented in Figure 118. Models varied in thickness 
from 1mm to 12mm and used a wide variety of construction techniques, 
e.g., skeletons, grids of cross joints, outside finger joints and more.  

 
Figure 118: Models used for technical evaluation. 

Out of the five models that failed, four failed because their finger 
joints came in at odd angles. See the model shown in Figure 119b: all 
vertical plates of this lighthouse are tilted inwards by 10 degrees, 
assembler3 could handle that if they did not also connect sideways at a 
45 degree angle (see Figure 119c). We plan to extend assembler3 with a 
more advanced constraint solver to also handle such cases.  

Figure 119a shows the last model that could not be assembled, it 
consisted of cross joints that assembled into t-joints. They come in 
sideways and then lock in place. Assembler3 does not check for this 
combination. Based on these observations, we are planning on 
extending our joint matching logic in future versions of assembler3. 

 
Figure 119: (a) This model has cross joints that assemble into a mortise-tenon joint, assembler3 fails 
to pair these up. (b) when all plates are at a non-straight angle with each other, assembler3 cannot 
reconstruct the model. (c) luckily, most of the models with plates with non-straight angles still 
provide sufficient constraints to be reconstructed. 
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Success rate of the individual steps of our algorithm 

To validate the accuracy of each of steps in the algorithm, we compared 
the outcome of each step to their “ground truth” using 10 selected 
models shown in Figure 120. We hand-annotated all features in these 
models and compared it to the data collected in each of the steps of the 
algorithm of assembler3.  

 
Figure 120: Models used to validate the accuracy of the steps of the algorithm. 

Table 2 shows the accuracies the different steps achieve. The overall 
success rate of 97% of the manual assembly is the key result, this is the 
percentage of detected features which are required to reconstruct 3D 
models.  

Step  False positives Success rate 
Step 1: plate detection 0 100%  
Step 2: joint detection 61 98% (352/356) 
Step 3: material detection - 99%  
Overall success rate = 

product of above  
 97% 

Table 2: Success rate of algorithm steps. 

Step 1, plate detection worked flawless for the tested models. 

Step 2, joint detection achieved 98% of true positives. It still detected 
61 false positives, which results in a bigger search space than needed, 
but models still assemble. The 2% of false negative joints would never 
show up as suggestions and thus have potential to result in models that 
cannot be assembled. Both models, #3 and #8, which suffered from this 
actually did assemble nonetheless, because of constraints imposed by 
other joints.  

Step 3, assembler3 was 98.99% accurate in detecting the material 
thickness. The two erroneous models were off by 0.1mm, which was 
caused by rounding errors. The reconstructed models still worked 
properly (we exported and fabricated both models).  
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To verify the accuracy of the default placements of plates, we 
assembled each of the models and counted how often we needed to 
override initial placements with the floating menu item. Assembler3 got 
the first placement right in 78.6% of the clicks. When the initial 
orientation was wrong, it took on average 1.7 clicks to get to the correct 
orientation.  

Performance of the algorithm 

To measure the performance of assembler3, we used the same 10 models 
as used to verify the accuracy. We profiled each step in the algorithm to 
measure the performance of (1) parsing the SVG and generating the hash, 
(2) suggest matching plates when the user clicks a joint (3) and 
assembling plates after the user selected a target plate. We ran the 
performance test on an Intel Core i5-8400 CPU @ 2.80 GHz (6-core) 16GB 
RAM. We repeated each test 1000 times to account for typical variations 
in performance. 

 
Model #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 
# of plates 8 29 8 16 5 6 8 6 12 13 
# of joints 18 55 35 66 10 24 35 20 20 52 
parse SVG 12.54 

(12.05) 
525.96 
(101.3) 

34.22 
(72.25) 

65.30 
(13.60) 

174.77 
(223.5) 

49.33 
(11.62) 

27.49 
(47.78) 

12.83 
(6.96) 

87.65 
(187.9) 

77.51 
(9.45) 

match 1.72 
(3.00) 

6.65 
(10.54) 

5.13 
(16.66) 

5.59 
(11.90) 

6.59 
(23.98) 

2.05 
(4.42) 

4.60 
(10.07) 

2.47 
(2.39) 

11.59 
(7.78) 

11.41 
(27.37) 

assemble  3.12 
(1.69) 

3.43 
(2.79) 

4.88 
(8.26) 

4.21 
(5.91) 

10.50 
(50.88) 

3.50 
(3.36) 

3.99 
(5.44) 

3.19 
(2.97) 

9.50 
(9.42) 

6.09 
(16.22) 

Table 3: Average performance of assembler3 when assembling each model 1000 times. Times are 
in ms (stndev in parentheses) 

The steps where the user interacts with the model are all efficient 
(average of 12ms for every model), the parsing of the SVG initially takes 
107ms on average, this only occurs when importing the model initially. 
Model #2 (dinosaur) took longer (526ms) to parse. The reason is the 
linearization breaks down curved lines of the dinosaur into a large 
amount of small line segments.  

5.1.5 user study: assembler3  is 10x faster than the traditional 
workflow 

To verify the claim that assembler3 is easier and faster than the 
traditional mental reconstruction workflow, we ran a user study in 
which participants manually reconstructed the virtual reality headset 
from Figure 124 and stretched the model to accommodate for far-
sightedness.  
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Task 

Participants’ task was to modify the VR headset as shown in Figure 107, 
i.e., stretch the distance between the lenses and the screen in order to 
accommodate a lens with a bigger focal range. To illustrate the objective, 
we provided participants with a picture of the before and after 
configuration of the headset (Figure 107). Participants were allowed to 
have a look at these pictures any time during the experiment. 

Interface conditions 

Participants completed the task in two interface (within subjects) 
conditions in counter-balanced order. 

In the 2D condition, participants modified the 2D cutting plan using 
a 2D editing software (gravit.io, runs in a web browser). For training, 
participants were shown a 4min demo video that demonstrated the 
relevant editing functionality at the example of extending a box. 

In the assembler3 condition, participants modified the 2D cutting plan 
by converting the headset’s 2D cutting plan to 3D using assembler3, 
modifying the model in kyub, and exporting it back to a new 2D cutting 
plan. For training, participants were shown a 1 min demo video showing 
the process of assembling a box and stretching it using assembler3, 
Figure 121 shows a shot of these videos. 

In both conditions, participants were allowed to review the demo 
video until they felt they got the workflow. They were also allowed to 
revisit the video during the actual task. 

 
Figure 121: (a) In the baseline condition, users were shown how to modify a boxel in gravit.io, (b) 
they were shown a video of the same workflow using assembler3. 

Participants 

We recruited 13 participants (2f/11m, average age of 21 years) from our 
institution. 
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Procedure 

We presented both interface conditions to participants in counter-
balanced order. In each condition, participants were given up to 30 
minutes to complete the task. If they felt they could not complete the 
task, they were allowed to abort earlier by notifying the experimenter.  

Results 

Figure 122 summarizes the task times and error rates of the 13 individual 
participants.  

 
Figure 122: results of the experiment. 

Participants performed 10.0x faster when modifying the model 
using assembler3 (on average 2:22 min vs 24:45 min in 2D condition). 
This confirms our main hypothesis. 

As shown in the diagram, the majority of the time in the 
assembler3 condition went into moving and scaling the model, 51s on 
average was used to reconstruct the model. In the 2D condition, users 
spent on average 4:51 minutes to lay out the model before editing any 
plate. P5, P12 and P13 did not manage to complete the 2D condition in 
the given 30 minutes. 11/13 of participants had errors in the model they 
modified in 2D (on average 2 errors per participant), which would cause 
the model to not fabricate (typical errors were joints not fitting, cutouts 
that were moved or stretched t-joints). In the assembler3 condition one 
participant had an error (the nose piece was flipped, which the 
participant didn’t notice—the model would still assemble and fabricate 
though). 

Participants rated the assembler3 condition as easy (a median of 2/7 
on “assembling and modifying the model was easy/hard”) while they 
rated a median of 6/7 for the 2D condition. One participant, P10, 
considered the 2D workflow easier than the workflow with assembler3, 
mostly because it took P10 a while to figure out how to use the stretch 
tool after completing the assembly.  
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In the 2D condition, 7/13 participants re-layouted paths (see Figure 
123) so as to better reflect the 3D nature of the assembly, as shown in 
Figure 122; they spent on average 7:08 minutes to do so. Those who 
spent time laying out the model made 1.5 errors on average, vs 2.5 for 
those who didn’t change the layout.  

 
Figure 123: 2D layouts as used by our participants. Green lines indicate plates that are laid out so 
that their matching joints line up, an indicator that they leverage the space in the 2D editor to help 
them reconstruct the model in their heads. P5 also spent time laying out paths but grouped by 
similarity in shape instead of matching joints. 

We asked participants about their experience using both tools. P7 
commented that “the 3D editor essentially builds the model itself and is 
easy to change”. P8 said “it was a huge relief to do this in 3D” after 
having struggled for a long time in 2D. P4 mentioned that “the 2D 
software itself was great but that it’s really hard to find out how to 
connect the plates”. On an interesting sidenote, P10, who was extremely 
fast in 2D mentioned “I prefer to edit in 2D because it helps me learn 
about the model”. This is both a weakness and a strength of 
assembler3 as it takes the burden of learning about the model away from 
the user. 

Discussion 

We conclude that (1) assembler3 enabled 11/13 participants to make 
modifications to the model who were not able to do this without and (2) 
assembler3 achieves a speed-up of 10x and (3) the workflow with 
assembler3 results in 26x less errors.  

5.2 AUTOASSEMBLER :  AUTOMATIC 3D  RECONSTRUCTION  
As shown in the previous section, the pipeline of assembler3 is 
performant and effective in reconstructing a broad variety of structures. 
The weakest link of the algorithm obviously is the semi-automatic 
assembly step at the end of the process. It comes at a cost of time for the 
user and requires technical understanding of the underlying models, as 
users need to puzzle together the individual pieces and thus know how 
to assemble them. A task which is trivial for original designers of these 
models, but when customizing a model found online, this can be 
arbitrary hard.  
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In many cases, the knowledge the assembler3 algorithm derives from 
the 2D cutting plan, proves to be sufficient to reconstruct models 
automatically. We therefore built an extension of assembler3, 
autoAssembler [100], since the search space of combining plates is 
exponential in the number of joints, exhaustive search is impractical for 
any non-trivial model. AutoAssembler thus pursues only the most 
“promising” subset of candidates (aka beam search) as illustrated in 
Figure 124. It considers candidates as promising if they (1) contain no 
intersecting plates, (2) fit into a small bounding box, (3) use plates whose 
joints fit together well, (4) the plates do not add many unpaired joints, 
(5) make use of constraints posed by other plates, and (6) conform to 
symmetry axes of the plates. The algorithm presents the resulting best 
candidate assembly to users when they import a model, so they can 
bypass the manual process and directly modify the 3D assembly if that 
assembly looks good. 

 
Figure 124: AutoAssembler converts 2D cutting plans to 3D models by (a) importing 2D cutting 
plans and (b) beam-searching the space of ways to assemble the plates. AutoAssembler prefers 
candidates that (1) have no intersecting plates, (2) fit into a small bounding box, (3) use plates 
whose joints fit together well, (4) do not add many unpaired joints, (5) make use of constraints 
posed by other plates, and (6) conform to symmetry axes of the plates. (c) This allows users to load 
the model into a 3D editor (kyub [14]), (d) where they can now apply parametric changes. 

5.2.1 the autoAssembler algorithm 

When assembling a model, automatically or by hand, one explores a 
space of possible solutions that is factorial in the number of joints. Even 
if we reduced the search space by (1) limiting our search to joints that fit, 
(2) eliminating orientations that lead to intersections between the new 
plate and what has been assembled already, and (3) adding a method 
that looks up matching joints for the joint at hand in constant time, the 
search space remains too large for exhaustive search (see Figure 125). 
We achieve (3) using the joint hash from assembler3, which achieves this 
by storing geometric profiles of joints in a hash table—the joint and its 
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counterpart share that profile, when looking up the profile of a joint in 
the hash table, it returns its counterpart as a collision in the table in 
constant time. 

 
Figure 125: The search space for the simple VR headset consisting of 9 parts and 33 joints after 
limiting our search to joints that fit and only exploring orientations of plates that do not lead to an 
immediate collision. (Labels denote the number of joints that fit at a given position x the number 
of orientations they fit in). 

AutoAssembler therefore limits the search to the more promising 
candidates at each stage (beam search [18]). To this end, autoAssembler 
starts with an empty model and recursively tries to add one plate each 
time. The time-complexity of beam search is O(dk) where depth d is the 
number of plates and k is the beam width (the number of candidates 
autoAssembler picks to generate children for, at each stage) multiplied 
by the maximum fanout at each stage. The fanout in principle is 
proportional to the depth. Worst case complexity thus is quadratic, 
however the joint hash table mentioned before reduces the fanout to the 
joints with the same signature. If all joints have a unique counterpart 
(ideal case) the complexity is linear, in practice the complexity sits 
between these bounds. In our technical evaluation, a beam width of 4 
proved sufficient for achieving the aforementioned success rate (79% + 
18% = 97%), allowing for overall very fast execution (median of 0.30s). 

 
Figure 126: The first stage of search for a VR headset. AutoAssembler picks the initial plate with the 
most joints, uses the joint-hash to find what plates fit into the open joints, scores the candidates 
(labeled above) and generates new children from the best candidates.  
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As shown in Figure 126, performing beam search, autoAssembler 
selects the four highest scoring candidates to generate the candidates for 
the next round, detailed in pseudo code in Algorithm 5.  

Algorithm 5: Find best candidate 
Input: starting plate, detected plates and joints in 2D cutting plan (using the assembler3 algorithm) 
Output: best assembled model 
Internal data structures: candidates are assemblies of one or more plates, their children are the same 
assembly with one additional plate. Empirically determined maximum beam width 
MAX_BEAM_WIDTH=4 
// These candidates have two plates, (see Figure 126 for examples) 
currentCandidates = children of the candidate, which only contains the starting plate 
// Based on heuristics in the next section, score each candidate 
score(currentCandidates) 
while there is at least one currentCandidate and not all plates are used { 
 // AutoAssembler groups candidates that use the same plates, but not using the same joint 
or 

orientation, see heuristic “minimize candidates that are highly similar” 
groups = group currentCandidates together, which have the same “connection pattern” 
currentCandidates = Highest scoring candidate from each group 
// If there are more states than the maximum beam width, limit them based on score 
currentCandidates = currentCandidates limited to MAX_BEAM_WIDTH 
// Generate children by adding a plate to the current candidates in different orientations 
currentCandidates = children of currentCandidates 
// Based on heuristics in the next section, score each candidate 
score(currentCandidates) 
} 

return currentCanddiate with highest score 

As part of the search process, as illustrated by Figure 127, 
autoAssembler eliminates duplicate candidates. It achieves this by 
storing previously visited candidates (memoization) in a hash. 

 
Figure 127: autoAssembler encounters a candidate model more than once (the colored 
candidates), autoAssembler drops the redundant states (Memoization), by hashing visited 
candidates. (Here shown with three candidates each for visual clarity). 
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How autoAssembler picks promising candidates: The heuristic 
function  

The main contribution of autoAssembler is the specific way it selects the 
candidates it pursues, i.e., how it assesses the potential of each candidate 
(its heuristics function [18]). It computes a weighed sum to prefer 
candidates (1) that have no intersecting plates, (2) that fit into a small 
bounding box, (3) that use joints that can be unambiguously matched, 
(4) that do not add a large number of unmatched joints, (5) that make 
use of constraints posed by other plates, and (6) that conform to 
symmetry axes of the plates. We developed these heuristics based on our 
observation of common patterns in laser-cut models and by manually 
evaluating candidates in our engineering team. As autoAssembler 
calculates a score for all candidates at every stage, the implicit objective 
for these heuristics is that they are efficient to compute. 

AutoAssembler aggregates six heuristics as a weighted sum. Two 
additional heuristics (deduplicating symmetric/similar plates and 
minimizing highly similar candidates) are procedural in nature as they 
operate on the stage (all “current candidates”) rather than scoring 
individual candidates. We determined the optimal weights of the 
individual heuristics using hyperparameter optimization (see “technical 
evaluation” for details): 

Table 4: parameter optimization for the heuristic function 

parameter weight 
compactness of candidates 0.07 
intersections between plates 0.63 
ambiguity of the joints that are completed 0.88 
minimizing the number of unmatched joints 0.95 
make use of constraints posed by other plates 0.58 
conform to symmetry axes of the plates 0.83 
minimize candidates that are highly similar n/a 
deduplicating symmetric plates and similar plates n/a 
 

1. Give preference to compact candidates: parts that “stick out” of 
a model break off easily. Since designers generally prefer sturdy designs, 
laser-cut models tend to be “compact”, i.e., fit into a comparably small 
encompassing volume. AutoAssembler therefore is designed to prefer 
candidates that fit into smaller bounding boxes. The red plate in Figure 
128 for example, could be assembled as shown in (a), but that increases 
the spanned volume (calculated using the axis-aligned bounding box as 
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this is the cheapest metric to compute). AutoAssembler calculates this 
“compactness” using the metric: (1234)5&	)3&))

#.%

89:2(&
, as proposed by Parker 

et al. [89]. The compactness score of Figure 128b is much higher (the 
surface area remains the same, but the denominator is much smaller), so 
autoAssembler gives this candidate a higher score. Note that the weight 
of this heuristic is very small (0.07) and thus mostly serves as a tiebreaker 
for the other heuristics. 

 
Figure 128: (a) Adding the red plate gives it a much larger bounding box, autoAssembler thus 
gives (b) this candidate the higher score. (c) The resulting magazine holder.  

2. Avoid intersections between plates: laser-cut plates in a model 
must not intersect. Computing intersections between plates is an 
expensive operation as it requires comparing every outline feature of the 
plate to the already existing candidate. To achieve this efficiently, 
autoAssembler compares the bounding box of the newly added plate to 
plates already present in the current candidate. In the train wagon of 
Figure 129, autoAssembler initially prefers to put the wheel mount up 
because of the compactness metric, however that causes an intersection, 
which forces autoAssembler to assemble this part in another orientation. 
Avoiding intersections is not a hard constraint, because the relatively 
cheap method of computing intersections comes at a cost of accuracy. 

 
Figure 129: (a) The compactness heuristic suggested mounting this bearing (red) on top of this 
train wagon, but here it intersects with plates mounted on top of the wagon, causing 
autoAssembler (b) to flip the bearing plate to its correct position. (c) the same heuristic fixes the 
other bearings too. 
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3. Give preference to unambiguous joints: AutoAssembler delays 
inserting plates that can be mounted in many different ways as long as 
possible, so as to await additional plates to introduce additional 
constraints that can help make the decision. AutoAssembler achieves 
this by giving preference to joints that have few, or ideally only a single 
matching partner joint. More specifically, autoAssembler assigns a 
probability to pairs of joints in the joint hash as proposed by assembler3 
and it tries to maximize the ratio between the assigned probability and 
the sum of the probabilities of all other ways of matching up this joint. 
When assembling the dice tower shown in Figure 130, for example, 
starting with the ambiguous single finger joint of the red plate creates 
many different opportunities for mounting the top plate. 
(b) AutoAssembler instead first assembles the unambiguous and long 
finger joints, which then pose constraints on the red plate of Figure 130a, 
reducing overall ambiguity. 

 
Figure 130: (a) Assembling this ambiguous joint early on forms little or no constraints on other 
plates, as a result the top plate here can be assembled in many different ways (b) autoAssembler 
prefers to greedily connect plates with high probabilities. This adds constraints for other plates, (c) 
to eventually make this dice tower.  

4. Minimize the number of unmatched joints: the size of the search 
space at every candidate correlates with the amount of unmatched 
(unused) joints. AutoAssembler prioritizes plates that add the fewest 
incomplete joints. This works because it started out with the plate 
having the most joints, otherwise autoAssembler would paint itself into 
the corner (e.g., start with a plate with one joint, then close that joint 
without opening new ones–done). In the example shown in Figure 131, 
for example, autoAssembler therefore does not add (a) the side plate 
that brings in multiple new joints but runs with (b) the middle divider, 
which only adds one new joint.  
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Figure 131: AutoAssembler prioritizes completing joints first as this reduces the search space: (a) 
inserting the side plate (red) would add four incomplete joints to the model. (b) AutoAssembler 
therefore rather adds this “divider” plate, which only adds one unmatched joint. (c) leading to this 
desktop organizer. 

5. Make use of constraints posed by other plates: AutoAssembler 
prioritizes inserting plates whose placement is supported by multiple 
plates/joints already in the model. It tries to maximize the number of 
completed joints by adding a plate. This avoids situations as shown in 
Figure 132, where (a) the nosepiece of this VR headset is under-
constrained: it can be assembled in different orientations that all seem 
equally good according to the other metrics. (b) AutoAssembler thus 
prioritizes assembling the front plate first, which completes three joints 
at once and then later (c) adds the nosepiece as the front plate imposes 
additional constraints on that plate. 

 
Figure 132: (a) This candidate offers too few constraints to orient the red plate correctly. 
(b) AutoAssembler therefore prioritizes this plate, which completes three joints. (c) This adds 
constraints that come in handy when eventually inserting the middle piece. 

6. Minimize candidates that are highly similar: as illustrated by 
Figure 133, if autoAssembler encounters multiple candidates that differ 
only by one or more plates being flipped, it drops all but the highest 
scoring one, so as to make room for candidates consisting of a different 
subset of plates. As shown in Algorithm 5, candidates are filtered by 
“connection pattern”. This is a high-level data structure that describes 
what plates are connected, using which joints. This prevents 
AutoAssembler from only looking at similar structures with a flipped 
plate.  
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Figure 133: AutoAssembler picks the best four candidates of this stage. To avoid picking the first 
four candidates which are almost the same, it skips candidates that share the same connection 
pattern with a candidate that is already picked. Resulting in the four candidates highlighted in 
yellow.  

The algorithm, as described above is functional, but performs poorly 
on models containing symmetries, such as the models shown in Figure 
134. On such models the search space is cluttered with results that are 
the same, but contain different plate connectivity, resulting in problems 
similar to the ones in Figure 133. This unnecessarily blows up the search 
space and deprioritizes asymmetrical plates in the assembly that end up 
defining the structure. This is problematic, as 3D models designed for 
laser cutting are commonly symmetrical in nature. Out of the 
benchmark of assembler3, for example, 81/100 have reflective 
symmetries, and 11/100 have rotational symmetries.  

 
Figure 134: Examples of symmetric laser-cut models from assembler3 (a) double reflectional 
symmetry, (b) 6-point rotational symmetry, (c) double reflectional symmetry (and multiple uses of 
same plate). 

We propose two extensions of the algorithm based on symmetries: 
prioritizing symmetric assembly of plates, and deduplicating plates and 
orientations when possible. 

7. Favor symmetric candidates: AutoAssembler prefers symmetric 
assemblies over asymmetric ones. As shown in Figure 135b, when 
autoAssembler adds a plate to a symmetrical plate, it verifies whether 
there is a similar plate elsewhere in the assembly and if so, it increases 
the score of a placement that implements symmetry.  
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Figure 135: (a) AutoAssembler detects symmetries by having pairs of joints vote for symmetry axes 
(b) autoAssembler uses the information to prefer similar plates connected to joints on opposite 
sides of the symmetry axis. (c) resulting in this birdhouse. 

As shown in Figure 135a, autoAssembler detects symmetries in 
three steps: (1) it starts by looking for joints with a similar profile using 
the joint hash table, at the same distance to the center of the plate, (2) it 
constructs the symmetry axis this pair of joints conforms to, and (3) then 
verifies that proposed symmetry axis with the other joints on the plate, 
similar to Mitra et al. [78].  

8. Deduplicating symmetric plates and similar plates: Symmetric 
plates blow up the search space unnecessarily: When encountering a 
symmetric plate, such as the one shown in Figure 136, the basic version 
of autoAssembler considers inserting it in all possible orientations, 
leading to a much bigger search space with a lot of candidates that turn 
out to be geometrically identical. 

 
Figure 136: Because of the horizontal symmetry axis, only these two orientations of the side plate 
produce a unique state. The same for this in-plate symmetry in the vertical orientation.  

A similar issue is caused by multiple identical plates, such as the 
ones shown in Figure 137. Again, the basic version of autoAssembler 
considers inserting each copy of that plate separately, thereby blowing 
up the search space and increasing the risk of beam search dropping 
relevant models, as the algorithm is instead pursuing multiple 
essentially identical models.  
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Figure 137: Clustering by similarity (a) autoAssembler characterizes each input plate by three easy-
to-compute metrics (b) For this barrel model, autoAssembler considers 3 types of plates with 19 
joints as opposed to 12 types of plates with 58 joints.  

AutoAssembler determines that two plates are identical by 
comparing their outlines using efficient-to-compute characteristics: the 
number and the types of joints, the length of the outline, and the number 
of left/right turns along each outline. 

For hand-drawn models or models subject to rounding errors these 
metrics may differ by some epsilon. To overcome these imprecisions, 
autoAssembler uses a density-based clustering algorithm (DBSCAN 
[36]), which allows autoAssembler to cluster similar plates, without 
knowing in advance how many clusters to look for. 

For the model shown in Figure 137, for example, autoAssembler 
reduces this model from 12 types of plates featuring 58 joints down to 
3 types of plates featuring 19 joints, which heavily reduces the search 
space.  

Favoring symmetry and similarity detection allows autoAssembler 
to correctly reconstruct the six models shown in Figure 138, thereby 
increasing autoAssembler’s success rate. It also improves the 
algorithm’s performance by a factor of 1.5.  

 
Figure 138: Six models from the test set that assemble correctly in autoAssembler because of the 
symmetry heuristics. 
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Manual disambiguation 

Some models do not contain sufficient information to automatically 
complete the model. The triceratops shown in Figure 139, for example, 
would require domain knowledge of the anatomy of dinosaurs to tell how 
to sort the ribs, or at best a visual reference for what to assemble (as a 
child may have puzzling the dinosaur together). AutoAssembler does 
not have this domain knowledge and consequently it precisely fails to 
assemble models of this type—this is a limitation of the system and the 
reason we exclude from our analysis these particular type of decorative 
models, which are based on cross joints alone. 

Models that do not solely rely on cross joints, however, tend to have 
only a small number of such ambiguities and these generally do not 
derail autoAssembler. The remaining 14 models that autoAssembler did 
not automatically assemble, had a few plates that were not captured by 
the general heuristics of the algorithm. We address these by 
complementing autoAssembler with two manual tools that allow 
disambiguating these cases: 

1. Clicking a plate using the “reorient plate” tool reorients the 
clicked plate by forcing autoAssembler to re-evaluate its orientation. 
Users keep clicking until satisfied with the plate’s orientation.  

2. Clicking a plate using the “swap plate” tool swaps a plate with 
another selected plate if their joints match. Users click on one of the 
plates, and then click on the other plate to swap them. 

  
Figure 139: (a) Models such as this dinosaur require domain knowledge, placing them outside the 
scope of automatic assembly. (b) this train wagon has misassembled plates after automatic 
assembly, (c) with the reorient tool this is quick to fix. (d) Two plates are swapped in this organizer. 
(e) The “swap-plate” tool lets users select one of the plates, and (f) by clicking the other one they 
swap if they share common joints.  
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In our technical evaluation, fully automated use of autoAssembler 
assembled 79% of all models correctly. The “re-orient” and “swap” tools 
allowed fixing an additional 12 of 14 models using 1-4 such clicks, 
resulting in a 97% success rate. 

 
Figure 140: Click sequences of the disambiguate tool. Users click a poorly assembled plate, which 
autoAssembler then reconsiders. Here are five models that all were fixed by 1-4 manual 
disambiguation overrides (2.7 on average).  

User interface 

Figure 141 shows the interface of autoAssembler in kyub. When users 
import an SVG file, the dialog window shows a live preview of 
autoAssembler assembling the model. AutoAssembler completes the 
import after a median of 0.30s, (see section 5.2.3 Technical Evaluation). 
As shown in Figure 141a on the left, users still have the option to import 
the individual plates if the result does not look satisfactory. In that case 
they revert to the assembler3 tools for the reconstruction process as 
demonstrated before. 

 
Figure 141: Importing an SVG model automatically into kyub. 
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5.2.2 Tuning the algorithm 

We ran a series of tests to optimize key parameters of the algorithm. (1) 
Weights for the heuristics (2) determine minimum beam widths, and 
(3) what plate to start out with. 

Test set 

We created the test set starting with the test set of the assembler3 project, 
from which we extracted the 34 “planar intersection” models, as 
discussed above in the “manual disambiguation” sub-section. When 
models consisted of multiple assemblies, we split these into separate 
files as autoAssembler expects one assembly per model. They can be 
loaded into the same kyub scene though but through 2 import sessions. 

We measured the success rate by taking the ground truth models 
that were manually assembled in assembler3 as a reference. We 
automatically verify our test runs by comparing the distance and angle 
between plates to these ground truth models. We considered a model to 
be a success only when all the dimensions matched perfectly (e.g., there 
is no 50% successful assembly). 

Procedure 

We measured success rate (percentage of models that assembled 
correctly) and the run time and repeated every measurement 10 times to 
compensate for performance glitches and any potential delays 
confounding our measure due to background activities on the machine 
(MacBook Air 2020 1.2GHz Quad Core Intel Core i7). 

Composition of the heuristic function  

To determine the right weights for the parameters of the heuristic 
function, we ran a hyperparameter optimization algorithm using the 
tree pazen estimator called ATPE, proposed by Wen et al. [128]. We 
trained the algorithm by feeding it the parameters of random runs on 
the benchmark, and the corresponding candidates. The candidates are 
labeled automatically by comparing it to our ground truth distance 
matrix. After assessing 1000 candidates the algorithm converges, we 
found the optimal parameters presented in Table 4. 
 



CONVERTING LEGACY 2D  CUTTING PLANS TO 3D  MODELS 

140 

The beam width: from 4 on, autoAssembler achieves 
maximum success rate 

The beam width is the number of candidates autoAssembler selects at 
every stage after sorting the states. To achieve the optimal success rate 
and performance trade-off, we ran the benchmark with increasing beam 
widths until the success rate not increased further. We also did a run 
with a beam width of 1, which is equivalent to best first search to see if 
the heuristic function alone (without beam search) would yield 
sufficiently good results. Results are shown in Figure 142 below. 

 
Figure 142: (a) Success rate of autoAssembler on our benchmark while varying the beam width. 
(b) This model still makes an improvement at a beam width of 8, but the associated performance 
loss is not worth it. 

As shown in Figure 142, after a beam width of 4, the success rate 
stabilizes. To verify whether if the success rate had reached an upper 
bound, we ran the remaining 18% of models with a beam width of 10 as 
well. Apart from the raspberry-pi rack shown in Figure 142b, which after 
some more testing improved at a beam width of 8, there was no more 
progress. We also see that with a greedy best first search, we could still 
achieve a success rate of 48%, which indicates that the heuristic function 
alone is rather good at picking the right option, but in many cases, we 
do benefit from searching more alternatives. 

The median performance per model in each run was 0.11 (beam 
width =1), 0.22 (2), 0.22 (3), 0.30 (4), 0.44 (5), increasing the beam width 
scales the performance roughly linearly. Therefore, doubling the beam 
width (and thus the run time) from 4 to 8 is not worth it, only to save a 
single model in our test set.  
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Start with the plate with most joints 

To know what role the starting plate plays in the success rate of the 
algorithm, we ran the benchmark with different starting plates: (1) the 
plate with the most joints, as this puts the most constraints on the 
assembly (2) the biggest plate as this would define most of the shape, 
and (3) a random plate (the plate that contains the first path in the SVG), 
as a baseline. Figure 143 shows these strategies at the example of a test 
tube rack. 

 
Figure 143: Different starting plate metrics for the test-tube model. 

The results show that the best solution is to start with the plate with 
most joints. To see if there are better options for the models that fail, we 
ran detailed tests with those models where we started out every plate. 
Some of the broken models get closer to success by picking a different 
starting plate, but none were “fixed” by doing so. We thus stick to the 
plate with most joints as this is cheap to compute. 

 
Figure 144: (a) Results of varying the starting plate. (b) some models with their ideal starting plate 
highlighted. 

5.2.3 Technical evaluation: autoAssembler achieves a 97% 
success rate. 

To evaluate the autoAssembler algorithm, we ran it on the benchmark 
of 66 models encoded as 2D cutting plans. To determine how much the 
extension of the algorithm contributes to the overall success rate of the 
algorithm, we ran the tests in four distinct conditions: (1) the basic 
algorithm, (2) the base with detection of similar plates, (3) the fully 
extended automatic algorithm with symmetry detection and similarity 
detection, and (4) with the manual disambiguation tools. 
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We used the same test set and procedure as presented in the 
previous section.  

Results 

As illustrated by Figure 145, the complete algorithm of the eight 
heuristics and the symmetry/similarity extensions, combined with the 
manual disambiguation tools resulted in a 97% success rate. 

 
Figure 145: The overall success rate of autoAssembler is 97% based on three extensions of the 
algorithm: detecting similarities, symmetries and manual disambiguation. 

As shown in the diagram, adding the similarity detection alone does 
not impact the success rate, which is unsurprising as it only reduces the 
search space (and thus contributes to performance). The model that did 
get fixed in the process failed before because the search space was overly 
populated with candidates that were the same. 

Symmetry and similarity handling account for 13%: To assess the 
contribution of the symmetry and similarity detection, we ran the 
benchmark with each of these steps enabled and disabled. The results 
shown in Figure 145 show that the symmetries and similarity detection 
combined increase the success rate from 66 to 79%. 

Symmetry and similarity detection reduced the runtime from a 
median of 0.44s per model to 0.30s per model (a 1.5x performance 
improvement). 

Manual disambiguation accounts for 18%: As shown in Figure 146, 
12 models required tweaking using the manual disambiguation tools, 
although the required user effort was minimal with 1-4 clicks required 
per model (avg 2.7). 
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Figure 146b shows the two failed models: a minibar model and a 
birdhouse the entrance of which was flipped inwards. Both can be fixed 
using an additional tool to extract 6 plates and manually assemble them. 

 
Figure 146: (a) 1-4 clicks using autoAssembler’s “re-orient plate” tool fix the mis-oriented red plates 
in these 12 models. One pair of clicks each using the “swap tool” fixes the swapped blue plates. 
(b) this birdhouse and minibar would require users to extract 6 plates and re-assemble them. 

5.3 A BENCHMARK FOR LASER-CUT MODELS 
For the field of laser-cutting to mature, and to make it easier to build on 
our findings, we release the benchmark of models [95] which we used to 
evaluate both assembler3 and autoAssembler. In the Structure-
Preserving Editing paper from the previous chapter, we furthermore 
demonstrated that the benchmark is useful outside of 3D reconstruction.  

We sourced the models from public online repositories using 
random sampling within the subset of laser-cut models consisting of 
more than one plate and that have been reproduced by at least one other 
user, they form a representative set of 100 models that capture the 
variety and complexity of models shared online as of now. Figure 147 
presents a high-level overview of the models, as shown they are well 
distributed across the three main types of laser-cut joints: cross joints, 
finger joints, and mortise-tenon joints. We did not categorize external 
types of connections between plates such as adhesives (e.g., glue) 
because this does not show up in the 2D cutting plans of the models.  

 
Figure 147: Overview of the models in the benchmark (a) histogram of the number of plates per 
model and (b) types of joints per model (2 models contained all types of joints). 
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The histogram of the number of plates is flat for a long time, because 
many models are rather boxy in nature (4, 5, or 6 plates enclosing a boxy 
volume). It also clearly indicates that the currently shared models are 
not that complex yet, arguably caused by the lack of advanced design 
tools like the ones presented in this thesis.  

To allow this benchmark to be reusable for researchers independent 
of the kyub system we provide for every model a link to the original 
source model in 2D, an image of the model assembled and rendered in 
kyub using assembler3 and an export of the 3D model in generic .obj 
format so other researchers can use the data in their respective modeling 
environments. For researchers with access to kyub, we also provide links 
to the kyub model to allow them to immediately make parametric edits 
to the models.  

This benchmark in combination with the beam search algorithm of 
autoAssembler furthermore enables the generation of a wealth of 
assembled states of these models. The fully assembled models form a 
ground truth of “what is a good assembly”, we are currently using this 
data to traverse yet another route of automatic assembly using machine 
learning. Without the autoAssembler algorithm and benchmark such 
approaches were not viable due to lack of data. We see other potential 
use cases for researchers in NLP to extract a “grammar” of plate 
construction, a specialized version of shape grammars in computer 
graphics and architectural design [74], which then allow applications in 
3D modeling environments like autocomplete or suggestive interfaces 
[56], real-time structural feedback (analogous to squiggly underlines in 
word), or even automatic generation of variations and remixes of 
models to explore a richer design space [132]. 

5.4 SOFTWARE INTEGRATION INTO KYUB 
As mentioned before, both assembler3 and autoAssembler are integrated 
into the import pipeline of kyub. Users either rely on the automation 
provided by autoAssembler or revert to the interactive tools if the result 
does not look as expected. The reconstruction logic is spread across two 
areas of the overall kyub system shown in Figure 103: as illustrated in 
Figure 148a, the assembler3 pipeline for processing SVGs is integrated 
into the infrastructure modules, this provides the distinct benefit that it 
can be invoked in a headless mode independent of the kyub 3D editor. 
This allows other tools and systems to use the pipeline as a service which 
takes SVG as input and returns what we call an SvgContext (which 
can be serialized to JSON) consisting of a set of “knowledge sources” 



CONVERTING LEGACY 2D  CUTTING PLANS TO 3D  MODELS 

145 

that each capture the data of one of the steps of the assembler3 pipeline. 
As shown in Figure 148b, the autoAssembler algorithms as well as the 
tools and logic for the interactive assembly are integrated in the purple 
(editor-side) modules of the broader system. 

 
Figure 148: The kyub modules visualized using the webpack bundle analyzer [48]. The integration 
of assembler3 and autoAssembler in the bigger kyub system. (a) On the infrastructure side (yellow) 
are the modules and data structures to support the 4 analysis steps of the assembler3 algorithm. 
(b) The editor (purple) is where the tools to invoke reconstruction are as well as the algorithm of 
autoAssembler. 

Figure 149 shows the structure of the SvgContext and its 
underlying “knowledge sources”. Each of these modules contains basic 
information about the SVG they are used to populate the joint and hash 
data structures used in the editor logic to assemble models. Closer 
inspection shows that there are two cyclical (dashed) dependencies in 
this graph. The clearest example of this are the joints and thickness cross-
dependency, the algorithm first uses the turns in the paths to derive 
where joints are, these joints then vote for a material thickness, however 
when the thickness is known there is extra data to improve the joint 
detection. We found that 2 cycles of cyclical updating resulted in stable 
data, as presented before, achieving 99% accuracy on our benchmark. 

 
Figure 149: SvgContext and its underlying dependency graph of knowledge sources. This 
determines the structure of the 5-step pipeline of assembler3. There are two circular dependencies 
balance out after 2 round-trips   
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Finally, looking back at Figure 103, it becomes evident that all tools 
in kyub interact on the ModelData of the 3D models, the joints and 
machine-specific properties of the model are regenerated on export. In 
the current implementation kyub keeps the original imported joints 
around during the reconstruction effort. However, when users make 
parametric changes to the models, kyub replaces the original joints with 
the typical kyub joints (details on the specific algorithm of generating 
kyub joints can be found in Yannis Kommana’s master thesis [66]). In 
future work we plan to adjust the algorithm so as to respect the specific 
geometry of the original joints instead of overriding them. 

5.5 CONTRIBUTIONS 
In this chapter we make four key contributions: 

(1) We start with a 5-step pipeline, we call assembler3, which 
processes 2D cutting plans to derive high-level data on the structure of 
the model. We then present tools that allow users to interactively 
reconstruct a 3D model from this information. Compared the traditional 
2D editing workflow this is 10x faster and 26x less error prone. 

(2) We release the benchmark of laser-cut models for others to 
replicate and build upon the work. 

(3) Building on the assembler3 pipeline, we implement 
AutoAssembler; a 3D reconstruction algorithm that beam searches the 
exponential space of possible ways of assembling parts. Our main 
contribution lies in the heuristics that assesses partially assembled 
models in order to pick the most promising candidates for subsequent 
exploration; our method prefers candidates that (1) have no intersecting 
plates, (2) fit into a small bounding box, (3)  use plates whose joints fit 
together well, (4) do not add many unpaired joints, (5) make use of 
constraints posed by other plates, and (6) conform to symmetry axes of 
the plates. 

(4)  We integrate our 3D reconstruction work into the code base of 
a 3D editor for laser cutting (kyub), resulting in an integrated system that 
allows loading, editing, and writing 2D cutting files. 

Our current implementation is limited to three limitations: (1) it 
handles a basic set of laser-cut elements—we defer living hinges, 
moving mechanisms, stacked/glued/bolted plates and joints that 
connect more than one other joint to future versions. (2) In order to work 
with kyub, our implementation recreates joints from the SVG in which 
some joint design may get lost. Our automatic workflow does not apply 
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to models where the structure is derived from the shape instead of the 
joints, in particular models only consisting of planar sections held 
together by cross joints (Figure 139a). As a fallback, users can use the 
interactive assembly workflow. 

5.6 CONCLUSIONS 
We present an approach to convert “legacy” 2D cutting plans to 3D 
models for laser cutting. The resulting models are easy to modify using 
3D environments like kyub and allow others to reproduce the physical 
object using different laser-cutters or materials from the original creator. 
The proposed automatic workflow succeeds at reconstructing a subset 
of models if they do not solely rely on cross joints. For the other 36% of 
models, users fall back to interactive reconstruction. While this involves 
manual effort, the interactive workflow is still 10x faster and 26x less 
error prone compared to traditionally editing 2D cutting plans in 2D 
editors. 

Once a laser cut model has been 3D reconstructed this model will 
most likely continue its life in this 3D format, making the model easier 
to process, share, and remix from this point onward. We think that this 
will help the laser cutting community leave the sharing of 2D cutting 
plans behind and transition to a 3D format. We anticipate that this will 
foster collaboration around models und thus ultimately increase the 
level of model complexity the laser cutting community will be able to 
achieve. 



 

148 



 

149 

6  
CONCLUSIONS AND OUTLOOK 

In this chapter we expand on the contributions of the individual 
chapters and come back to the overall story of making a small step 
towards portable models for laser cutting. We discuss the benefits and 
impact of the work and highlight future opportunities and challenges to 
transition the field towards mainstream adoption of digital fabrication. 

6.1 CONTRIBUTION 
In this thesis we presented challenges that prevent designers of laser-cut 
3D models from building on the work of others and reproducing models 
using their materials and machines. We diagnosed that these challenges 
are caused by using implicitly machine-specific exchange formats.  

We presented two ways of approaching this problem: (1) replacing 
machine-specific elements with more generic counterparts so users no 
longer need to consider machine and material parameters (within a 
reasonable range), and (2) representing and sharing the models using a 
higher level of abstraction to only generate machine-specific formats at 
fabrication-time, when all machine and material parameters are known. 

We contribute with three software systems: (1) a SVG rewriter that 
makes 2D cutting plans tolerant to variations of machine and material, 
(2) a 3D modeling environment for laser-cutting that allows users to 
create, modify, and share models at a higher level of abstraction while 
providing fabrication-aware tools to support “good laser cutting”, and 
(3) an environment to convert legacy 2D cutting plans to 3D models that 
can then be manipulated in 3D environments for laser cutting. 

To maximize the potential impact of this work, we integrated our 
tools and algorithms in a platform which currently supports 500+ beta-
testers. Moreover, as shown in Figure 79, kyub is currently used in a 
range of educational contexts where we begin to see how the complexity 
and usefulness of models is rapidly increasing by facilitating building 
on the work of others and moving user effort away from dealing with 
material and machine specifics and towards higher level design. To 
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demonstrate the ability to really design more complex models than the 
state-of-art in laser cutting, we conducted a workshop in one of our 
classes where students designed and built fully functional ukuleles as 
shown in Figure 150. 

 
Figure 150: (a) 8 teams of students designed and (b) assembled (c) their instruments. 

6.1.1 l imitation: loss of knowledge of materials and machines 

Abstracting away from the material and machine at hand will allow 
more (lay) users to engage with laser cutters, who will produce more 
advanced and useful models. It does come at a cost as well, similar to 
how only few software engineers today write assembler code or truly 
understand the interaction with bits and transistors within a computing 
system, this level of abstraction means a loss of knowledge of the actual 
machines and materials at hand. We see this as an inevitable trade-off 
with an increase of complexity of models (nobody should have to 
reimplement OpenCV when building a simple image manipulating 
pipeline). We do not discount the value of that knowledge and 
acknowledge that there is certainly a space for applications on the other 
side of the trade-off as well: expert tools to design and invent new types 
of joints/mechanisms or fabrication routines. 

We furthermore believe that using higher level modeling systems 
can be used as a vehicle to bring back the material and machine 
knowledge when used in carefully constructed workshops. We 
demonstrate this potential by bringing our software to schools, teachers 
have shown to be very receptive of inclusion of fabrication classes where 
pupils not only design but also fabricate and assemble their models and 
thus learn various hardware skills in the process. 
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6.2 FUTURE OUTLOOK :  UPCOMING OPPORTUNITIES AND CHALLENGES 
The work in this thesis forms a small step towards the more ambitious 
goal of allowing users to build on the work of others and increase the 
complexity and relevance of models that are shared and fabricated using 
laser cutters. In this section we extrapolate the directions we set out to 
study and present related opportunities and challenges for future work. 

6.2.1 trade-offs between machine and material properties 

In this thesis we identified joints, mounts, and mechanisms as being 
hard to design and highly machine/material specific, this assumption is 
a direct by-product of the level of complexity of models that are 
currently designed and made. Advanced models are more than just a 
structure of jointed plates, assemblies have other mechanical properties 
like weight, structural integrity, compliance, electrical or heat 
conductivity, and many more. Analogous to the discussion of functional 
properties in 3D models in the related work (chapter 2.4) it would be 
interesting to abstract away some of these properties too. Imagine a user 
who designed and shared a chair model, another user with a different 
material would be able to reproduce a model that holds the same weight 
and feels equally compliant when sitting down, these may be more 
important factors that reproducing the exact same 3D structure of plates. 

Looking back at the development of compilers, each attempt to 
virtualize a material or machine property adds a specific rule in the 
compiling function from a high-level description to machine code. It is 
tempting to formalize such rules, forming an automatic process. 
Databases of material properties exist for advanced software packages. 
The next step would be to identify relevant substructures that perform 
specific mechanical roles in models and formulate compiling functions 
with material/machine properties as variable. Resulting functions will 
conflict (e.g., no metal chair exists which emulates all properties of a 
wooden chair), so a user interface could enable exploring trade-offs. 

Pushing this notion further would allow for abstraction of the 
fabrication process. In this thesis we looked at laser cutting only, but a 
representation of the model independent of whether it would be laser 
cut, die stamped, milled, 3D printed, or injection molded could be used 
as input into a “machine compiler” that generates joints and connectors 
or geometry to support the desired fabrication process. This could 
enable interesting applications like upgrading a prototype to a model 
for a more advanced manufacturing process when scaling up to 
fabricate a small series. 
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6.2.2 extracting reusable content 

The work in this thesis lays a foundation that allows users to build on 
the work of others by making parametric edits to models and allowing 
users to increase the complexity of models by adding new plates and 
volumes. At the current state this is mostly customizing and remixing, 
similar to what we have presented in the context of 3D printing with 
Grafter [102]. In looking back to the development of reuse in the history 
of computing, a crucial step was to determine the right level of 
abstraction for reusable components [58]. Rather than reusing entire 
models and mechanisms, future work could investigate what the right 
granularity of reusable components for laser cut/fabrication models is. 
Based on our findings we assume this to be roughly at the level of joints, 
mounts, and mechanisms. However, interesting hierarchies and 
combinations of these will likely provide more useful than single 
cutouts. 

6.2.3 designing products as opposed to processes 

A key insight we derived during this research is that the current 
fabrication workflows describe processes, which makes sense because the 
users (either industrial or tech enthusiast) are interested in how to use the 
machine at hand to fabricate a desired product. For example: “how do I 
make a guitar using a laser cutter”. Those are interesting puzzles for 
engineers, but when we think of laser cutting (and personal fabrication) 
to transition towards a mainstream phenomenon, these objectives 
change. The more relevant question for those users is “how do I get a 
custom guitar”: describing a product. Like a search query on Amazon, 
which is where they get their products now. 

Designing products instead of processes however has some major 
implications in how to build future systems for digital fabrication. 
Consumer products are almost never made from a single material or 
using one fabrication technique alone. This stands in stark contrast to 
the way fabrication tools are designed today. It will thus require 
developing systems that handle multiple fabrication machines under the 
hood as well as generating joints between different materials and 
processes. This is domain expertise typically in the hands of Industrial 
Designers or Engineers. This will further require expressing fabrication 
and assembly workflows in a more formal language so as to have full 
control over the machines, Taxon [71] is a promising initial step in that 
direction. 
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Beyond the technical underbelly of how to interface with machines 
and materials and adjusting the models, it also requires rethinking the 
user facing components and the ecosystem of design. End-users as 
stated before are interested in the product and how to customize it, this 
requires a different interface from a user who designs the model from 
scratch. We expect to see an end-user facing system integrated into 
services like Amazon with carefully designed degrees of freedom. The 
designer-facing side would allow designing the entire model in its full 
complexity while exposing specific degrees of freedom to end-users.  

6.2.4 manifestation of fabrication in everyday life 

The work in this thesis makes a small contribution to advance the field 
towards mass adoption of fabrication, but it will take more than formats 
and interfaces for this to happen. Bringing fabrication to educational 
contexts will be an important step forwards, and so is transitioning to 
interfaces that allow customizing products. It will further require 
advances in fabrication hardware and our understanding of what usage 
context will be most viable. We ran an early exploration into one such 
context for 3D printing focused on mobile fabrication [99], but much more 
can and will have to be done to find out if and how fabrication can 
become a relevant mainstream technology. 
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