

PORTABLE MODELS FOR LASER
CUTTING

By Thijs Roumen, MSc

a dissertation submitted in partial fulfillment
of the requirements for the degree of:

Ph.D.

Computer science, Human Computer Interaction
June 2022

Hasso Plattner Institute
Faculty of Digital Engineering, University of Potsdam

Unless otherwise indicated, this work is licensed under a Creative Commons License Attribution -
NoDerivatives 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by-nd/4.0

Thesis committee
Advisor: Prof. Dr. Patrick Baudisch (Hasso Plattner Institute)
Secondary advisor: Prof. Dr. Christoph Meinel (Hasso Plattner Institute)

Reviewers
Prof. Dr. Patrick Baudisch (Hasso Plattner Institute)
Prof. Dr. Takeo Igarashi (University of Tokyo)
Prof. Dr. Albrecht Schmidt (LMU München)

Members of the committee
Prof. Dr. Felix Naumann (Hasso Plattner Institute)
Prof. Dr. Christoph Meinel (Hasso Plattner Institute)
Prof. Dr. Robert Hirschfeld (Hasso Plattner Institute)

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-57814
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-578141

To Katrien van Beers whom I dearly

missed in every step along the way

i

ABSTRACT

Laser cutting is a fast and precise fabrication process. This makes laser
cutting a powerful process in custom industrial production. Since the
patents on the original technology started to expire, a growing
community of tech-enthusiasts embraced the technology and started
sharing the models they fabricate online. Surprisingly, the shared
models appear to largely be one-offs (e.g., they proudly showcase what a
single person can make in one afternoon). For laser cutting to become a
relevant mainstream phenomenon (as opposed to the current tech
enthusiasts and industry users), it is crucial to enable users to reproduce
models made by more experienced modelers, and to build on the work
of others instead of creating one-offs.

We create a technological basis that allows users to build on the
work of others—a progression that is currently held back by the use of
exchange formats that disregard mechanical differences between
machines and therefore overlook implications with respect to how well
parts fit together mechanically (aka engineering fit).

For the field to progress, we need a machine-independent sharing
infrastructure.

In this thesis, we outline three approaches that together get us closer
to this:

(1) 2D cutting plans that are tolerant to machine variations. Our
initial take is a minimally invasive approach: replacing machine-specific
elements in cutting plans with more tolerant elements using mechanical
hacks like springs and wedges. The resulting models fabricate on any
consumer laser cutter and in a range of materials.

(2) sharing models in 3D. To allow building on the work of others,
we build a 3D modeling environment for laser cutting (kyub). After users
design a model, they export their 3D models to 2D cutting plans
optimized for the machine and material at hand. We extend this
volumetric environment with tools to edit individual plates, allowing
users to leverage the efficiency of volumetric editing while having
control over the most detailed elements in laser-cutting (plates)

ii

(3) converting legacy 2D cutting plans to 3D models. To handle
legacy models, we build software to interactively reconstruct 3D models
from 2D cutting plans. This allows users to reuse the models in more
productive ways. We revisit this by automating the assembly process for
a large subset of models.

The above-mentioned software composes a larger system (kyub,
140,000 lines of code). This system integration enables the push towards
actual use, which we demonstrate through a range of workshops where
users build complex models such as fully functional guitars. By
simplifying sharing and re-use and the resulting increase in model
complexity, this line of work forms a small step to enable personal
fabrication to scale past the maker phenomenon, towards a mainstream
phenomenon—the same way that other fields, such as print (postscript)
and ultimately computing itself (portable programming languages, etc.)
reached mass adoption.

iii

ZUSAMMENFASSUNG

Laserschneiden ist ein schnelles und präzises Fertigungsverfahren.
Diese Eigenschaften haben das Laserschneiden zu einem starken
Anwärter für die industrielle Produktion gemacht. Seitdem die Patente
für die ursprüngliche Technologie begannen abzulaufen, nahm eine
wachsende Gemeinschaft von Technikbegeisterten die Technologie an
und begann, ihre Modelle online zu teilen. Überraschenderweise
scheinen die gemeinsam genutzten Modelle größtenteils Einzelstücke zu
sein (z.B. zeigten sie stolz, was eine einzelne Person an einem
Nachmittag entwickeln kann). Damit das Laserschneiden zu einem
relevanten Mainstream-Phänomen wird, ist es entscheidend, dass die
Benutzer die Möglichkeit haben Modelle zu reproduzieren, die von
erfahrenen Modellierern erstellt wurden, und somit auf der Arbeit
anderer aufbauen zu können, anstatt Einzelstücke zu erstellen.

Wir schaffen eine technologische Basis, die es Benutzern ermöglicht,
auf der Arbeit anderer aufzubauen—eine Entwicklung, die derzeit
gehemmt wird durch die Verwendung von Austauschformaten, die
mechanische Unterschiede zwischen Maschinen außer Acht lassen und
daher Auswirkungen darauf übersehen, wie gut Teile mechanisch
zusammenpassen (aka Passung).

Damit sich das Feld sich weiterentwickeln kann, brauchen wir
eine maschinenunabhängige Infrastruktur für gemeinsame Nutzung.

In dieser Dissertation präsentieren wir drei Ansätze, die uns zu
diesem Ziel näherbringen:

(1) 2D-Schnittpläne, die gegenüber Maschinenvariationen
tolerant sind. Unser erster Ansatz ist ein minimalinvasiver Ansatz: Wir
ersetzen maschinenspezifische Elemente in Schnittplänen durch
tolerantere Elemente unter Verwendung mechanischer Hacks wie
Federn und Keile. Die resultierenden Modelle können auf jedem
handelsüblichen Laserschneider und in einer Reihe von Materialien
hergestellt werden.

(2) Teilen von Modellen in 3D. Um auf der Arbeit anderer
aufbauen zu können, erstellen wir eine 3D-Modellierungsumgebung für

iv

das Laserschneiden (kyub). Nachdem die Benutzer ein Modell
entworfen haben, exportieren sie ihre 3D-Modelle in 2D-Schnittpläne,
die für die jeweilige Maschine und das vorhandene Material optimiert
sind. Wir erweitern diese volumetrische Umgebung mit Werkzeugen
zum Bearbeiten einzelner Platten, sodass Benutzer die Effizienz der
volumetrischen Bearbeitung nutzen und gleichzeitig die detailliertesten
Elemente beim Laserschneiden (Platten) steuern können.

(3) Umwandlung von legacy 2D-Schnittplänen in 3D-Modelle.
Um mit legacy Modellen umzugehen, entwickeln wir Software, um 3D-
Modelle interaktiv aus 2D-Schnittplänen zu rekonstruieren. Dies
ermöglicht Benutzern, die Modelle auf produktivere Weise
wiederzuverwenden. Wir behandeln dies erneut, indem wir den
Rekonstruierungsprozess für eine große Teilmenge von Modellen
automatisieren.

Die oben genannte Software ist in ein größeres System integriert
(kyub, 140.000 Codezeilen). Diese Systemintegration ermöglicht es, den
tatsächlichen Gebrauch voranzutreiben, was wir in einer Reihe von
Workshops demonstrieren, in denen Benutzer komplexe Modelle wie
voll funktionsfähige Gitarren bauen. Durch die Vereinfachung der
gemeinsamen Nutzung und Wiederverwendung und die daraus
resultierende Zunahme der Modellkomplexität wird diese
Arbeitsrichtung und das daraus resultierende System letztendlich
(teilweise) dazu beitragen, dass die persönliche Fertigung über das
Maker-Phänomen hinausgeht und sich zu einem Mainstream-
Phänomen entwickelt – genauso wie andere Bereiche, z.B. als Druck
(Postscript) und schließlich selbst Computer (portable
Programmiersprachen usw.), um eine Massenakzeptanz zu erreichen.

v

ACKNOWLEDGEMENTS

First and foremost, I want to thank Patrick Baudisch for being the most
inspiring person I have had a chance to work with. I vividly recall the
first semester of my PhD where I came home every night with a head
excessively filled with new and amazing ideas, it was that period that
convinced me 100% that I wanted to stay in this academic wonderland.
The countless (3?) semesters after that, Patrick never stopped to impress,
if I can transfer only a fraction of this energy and inspiration to my future
students, I would be eternally grateful!

But besides the academic work and remarkable patience (ranging
from fideo to starting too far back in writing abstracts), Patrick has also
turned into a dear friend over the years. During some of the darker
periods within my PhD, Patrick was always there to support, and in an
unfortunate turn of events, I got a chance later to reciprocate that
support. As a result, we can now make weird puns nobody else seems
to be able stomach, thanks for that! Overall, during the rollercoaster with
many ups and downs which we call PhD, I have become a much better
version of myself, which would never have been possible without
Patrick’s support.

I want to thank my colleagues at the Human Computer Interaction
lab for their unprecedented support, patience, and guidance. I thank
Stefanie Mueller for always radiating positive energy and excitement,
motivating me early-on to really go for this crazy career. Alexandra Ion,
for making me believe in and fight for my ideas and pursuing them even
when they go against the current of the lab (some of these will still come
to fruition in the next years, I promise!). Pedro Lopes for being a great
example and showing that its ok to ignore what the rest of the world
(including R2) thinks because just doing good research will get you there
no matter what! I thank Lung-Pan Chen for trusting me to run his great
TurkDeck project when I was only a rookie PhD student, that must have
taken infinite courage! Robert Kovacs for always being there to support
anyone who needs help, the more complicated the merrier. And
Abdullah Muhammad for being an amazing student, giving me
confidence that I may be able to graduate into an advisor as well. And

vi

of course, to my other lab mates Jotaro Shigeyama, Sebastian Marwecki,
Shohei Katakura, Conrad Lempert, Martin Taraz, Lukas Rambold, and
the many others who came and went for shorter commitments at the lab

Special thanks go to Jack Lindsay, who has made my day countless
times as a great friend. I think there has been no day where we did end
up laughing out (very loud—sorry Alex) loud in the first 30 minutes of
the day. And that would pretty much continue until the end of the day,
while miraculously being extremely productive in the process as well. I
am excited to be moving close to Boston in the distant future to continue
this strike, and I apologize in advance to colleagues at Harvard or
Cornell for the resulting noise!

I want to thank HPI and the research school for providing me with
dream-conditions to do research, the fact that I have absolutely no idea
how to apply for funding proposals and spent more than 80% of my time
fully focused on research is unheard of. Special thanks go to the endless
efforts of Prof. Robert Hirschfeld and Prof. Andreas Polze for running
what later became “our” research school on Service Oriented Systems
Engineering. And the valuable personal and academic feedback they
have provided over the years.

I thank all my co-authors which would add another page to the
acknowledgements if I were to thank them all individually, I therefore
refer to the references and highlight two particularly impactful co-
authors who for some reason could not get enough and kept working
with me through multiple projects: huge thanks Conrad Lempert and
Ingo Apel for your immeasurable contributions to my work!

Finally, I want to thank Anna for always believing in the path I was
traversing even though none of us ever knew where it was going… It
blows my mind that you have always kept seeing the road forwards
while I explored every possible side-road before heading there. It has
been a long ride, but I am infinitely excited to continue this amazing
adventure we call life together! I will probably have to cry, but I cannot
wait to cheer on our rooftop terrace on Roosevelt Island while
overlooking the beautiful campus of Cornell Tech!

vii

PUBLICATIONS

Some ideas and figures presented in this thesis have appeared in the
following publications, specific chapters and publications are listed.

Chapter 3 is composed of these two papers:

Thijs Roumen, Jotaro Shigeyama, Julius Cosmo Romeo Rudolph,
Felix Grzelka, and Patrick Baudisch. 2019. SpringFit: Joints and Mounts
that Fabricate on Any Laser Cutter. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology (UIST '19).
ACM, New York, NY, USA, 727–738.
DOI: https://doi.org/10.1145/3332165.3347930

Thijs Roumen, Ingo Apel, Jotaro Shigeyama, Abdullah Muhammad,
and Patrick Baudisch. 2020. Kerf-Canceling Mechanisms: Making Laser-
Cut Mechanisms Operate across Different Laser Cutters. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and
Technology (UIST’20). ACM, New York, NY, USA, 293–303.
DOI: https://doi.org/10.1145/3379337.3415895

Chapter 4 is composed of these two papers:

Patrick Baudisch, Arthur Silber, Yannis Kommana, Milan Gruner,
Ludwig Wall, Kevin Reuss, Lukas Heilman, Robert Kovacs, Daniel
Rechlitz, and Thijs Roumen. 2019. Kyub: A 3D Editor for Modeling
Sturdy Laser-Cut Objects. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI '19). ACM, New York, NY,
USA, Paper 566, 1–12. DOI: https://doi.org/10.1145/3290605.3300796

Thijs Roumen, Ingo Apel, Thomas Kern, Martin Taraz, Ritesh
Sharma, Ole Schlueter, Jeffrey Johnson, Dominik Meier, Conrad
Lempert, and Patrick Baudisch. 2022. Structure-Preserving Editing of
Plates and Volumes for Laser Cutting. In submission to UIST’22

Finally, chapter 5 is composed of these two papers:

Thijs Roumen, Yannis Kommana, Ingo Apel, Conrad Lempert,
Markus Brand, Erik Brendel, Laurenz Seidel, Lukas Rambold, Carl
Goedecken, Pascal Crenzin, Ben Hurdelhey, Muhammad Abdullah, and

viii

Patrick Baudisch. 2021. Assembler3: 3D Reconstruction of Laser-Cut
Models. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (CHI '21). ACM, New York, NY, USA, Article 672, 1–
11. DOI: https://doi.org/10.1145/3411764.3445453

Thijs Roumen, Conrad Lempert, Ingo Apel, Erik Brendel, Markus
Brand, Laurenz Seidel, Lukas Rambold, and Patrick Baudisch. 2021.
AutoAssembler: Automatic Reconstruction of Laser-Cut 3D Models. In
The 34th Annual ACM Symposium on User Interface Software and Technology
(UIST '21) ACM, New York, NY, USA, 652–662.
DOI: https://doi.org/10.1145/3472749.3474776

ix

DECLARATION

I hereby confirm that
• this dissertation is the result of my own work, it was

prepared without unauthorized help and using only the
given literature,

• this dissertation has not been previously submitted, in part
or whole, to any university or institution for any degree,
diploma, or other qualification

• I am aware of the doctorate regulations of the department
for Digital Engineering of the University of Potsdam from
November 27, 2019

Ich erkläre hiermit, dass
• ich die vorliegende Dissertationsschrift selbständig und

ohne unerlaubte Hilfe angefertigt sowie nur die
angegebene Literatur verwendet habe,

• die Dissertation keiner anderen Hochschule in gleicher
oder ähnlicher Form vorgelegt wurde,

• mir die Promotionsordnung der Digital Engineering
Fakultät der Universität
Potsdam vom 27. November 2019 bekannt ist.

Thijs Roumen

Potsdam, June 15th, 2022

x

xi

TABLE OF CONTENTS

1 introduction ... 21
1.1 what is holding back portability? ... 22
1.2 portable laser cutting .. 24
1.3 contributions .. 26
1.4 structure of this thesis .. 27

2 related work ... 29
2.1 short history of portable computing .. 29
2.2 software support for laser cutting .. 30
2.3 interoperability of exchange formats ... 32
2.4 functional specifications of fabrication models .. 33
2.5 sharing and remixing of 3D models in hobby communities 34

3 2D cutting plans tolerant to machine variations ... 37
3.1 mounts and joints that fabricate on any typical laser cutter 37
3.2 kerf-canceling mechanisms .. 52
3.3 software architecture .. 67
3.4 contributions .. 68
3.5 conclusions ... 68

4 representing laser-cut models in 3D ... 69
4.1 kyub: a 3D modeling environment for laser cutting .. 70
4.2 structure-preserving editing of plates and volumes .. 90
4.3 software architecture .. 105
4.4 contributions .. 108
4.5 conclusions ... 108

5 converting legacy 2D cutting plans to 3D models .. 109
5.1 assembler3: interactive 3D reconstruction ... 110
5.2 autoAssembler: automatic 3D reconstruction ... 126
5.3 a benchmark for laser-cut models .. 143
5.4 software integration into kyub .. 144
5.5 contributions .. 146
5.6 conclusions ... 147

6 conclusions and outlook .. 149
6.1 contribution .. 149
6.2 future outlook: upcoming opportunities and challenges 151

7 references .. 155

xii

LIST OF FIGURES

FIGURE 1: (A) A KEY DESIGN ELEMENT IN LASER CUTTING IS THE PRESS-FIT WHERE A PHYSICAL OBJECT IS FORCED INTO A
SLIGHTLY SMALLER OPENING. (B) THE OPENING NOW ACTS AS SPRING, SECURELY HOLDING THE OBJECT.
 ... 22

FIGURE 2: THE CAREFULLY TUNED PRESS FIT FROM FIGURE 1 FAILS WHEN FABRICATED ON DIFFERENT LASER CUTTERS.
(A) ON MACHINES WITH SMALLER KERF, IT CANNOT BE INSERTED COMPLETELY. (B) ON MACHINES WITH
WIDER KERF, IT IS LOOSE AND FALLS OUT. (C) WHEN CUT FROM BRITTLE MATERIAL, IT BREAKS THE MODEL.
 ... 23

FIGURE 3: (A) WHEN FABRICATED ON A MACHINE WITH SMALLER KERF, THIS BEARING GETS TOO TIGHT. THIS CAUSES
FRICTION OR EVEN PREVENTS USERS FROM INSERTING THE AXLE. (B) ON MACHINES WITH WIDER KERF,
BEARINGS ARE SUBJECT TO SLACK, POTENTIALLY CAUSING ADJACENT MECHANISMS TO JAM. 23

FIGURE 4: THREE OUT OF FOUR ELEMENTARY CLASSES OF MECHANISMS [5] ARE SUBJECT TO KERF-RELATED ISSUES.
SUSCEPTIBLE SURFACES ARE MARKED IN RED. (A) THE REVOLUTE PAIR INCLUDES MECHANISMS THAT
OPERATE LIKE THE BEARING SHOWN BEFORE, (B) A PRISMATIC PAIR ALLOWS A ROD WITH RECTANGULAR

CROSS SECTION TO SLIDE FORTH AND BACK, AND (C) A PAIR OF GEARS. (D) ONLY CAM/FOLLOWER
MECHANISMS REMAIN UNAFFECTED, AS THEY ARE TYPICALLY SPRING-LOADED. 24

FIGURE 5: MODELS MADE USING MODIFIED 2D CUTTING PLANS FABRICATE RELIABLY ON ANY TYPICAL LASERCUTER AND IN

A RANGE OF MATERIALS, MODIFIED USING OUR SOFTWARE TOOLS SPRINGFIT [101] AND KERFCANCELER
[97]. THE MODELS IN THE BACKGROUND SHOW THE ORIGINAL (MACHINE-DEPENDENT) VERSION. 25

FIGURE 6: REPRESENTING MODELS FOR LASER CUTTING IN 3D, ALLOWS USERS TO EXPORT THE MODEL TO 2D CUTTING

PLANS THAT ARE OPTIMIZED FOR THEIR MACHINE AND MATERIAL AT HAND. IT FURTHEMORE MAKES IT
EASIER TO CREATE 3D MODIFICATIONS TO THE CUTTING PLANS WHEN MODIFYING MODELS MADE BY
OTHERS. ... 25

FIGURE 7: WE RECONSTRUCT 2D CUTTING PLANS INTO 3D MODELS AS SHOWN HERE AT THE EXAMPLE OF A VR HEADSET
REPRESENTED AS 2D PLATES AND THE RESULTING 3D ASSEMBLED MODEL. WE BUILT AN AUTOMATIC
PIPELINE TO ACHIEVE THIS, AND WE PROVIDE AN INTERACTIVE FALLBACK FOR MODELS THAT TURN OUT TO
BE CHALLENGING. ... 26

FIGURE 8: (A) THIS MODEL FAILS TO ASSEMBLE WHEN FABRICATED ON A DIFFERENT LASER CUTTER THAN IT WAS DESIGNED
FOR. (B) SPRINGFIT TACKLES THIS BY REPLACING TRADITIONAL MOUNTS AND JOINTS WITH CANTILEVER-
BASED MOUNTS AND JOINTS. (C) THE ENTIRE MODEL AFTER PROCESSED WITH SPRINGFIT FABRICATES

RELIABLY ON ANY LASER CUTTER AND IN A RANGE OF MATERIALS. .. 38
FIGURE 9: (A) A CANTILEVER SPRING-BASED MOUNT. (B) THE BUTTON IS BEST INSERTED BY SLIDING IT IN AT AN ANGLE

AND OPTIONALLY SPINNING IT AGAINST THE DIRECTION OF THE SPRING. (C) DONE. 38
FIGURE 10: THE USE OF CANTILEVER-BASED MOUNTS AND JOINTS ALLOWS ONE AND THE SAME MODELS TO FABRICATE

RELIABLY (A) ON MACHINES WITH SMALL KERF, (B) WITH WIDE KERF (HERE SIMULATED BY ERODING THE
MODEL BY 0.2MM), AND (C) DIFFERENT MATERIAL, AND (D) EVEN SLIGHTLY DIFFERENT SIZED BUTTONS

(THIS ONE IS 0.3MM BIGGER IN DIAMETER). ... 39
FIGURE 11: (A) TRADITIONAL PRESS FIT-BASED MOUNTS AND JOINTS ARE VERY STIFF, THUS ONLY A TINY RANGE OF

“DEFLECTION” ALLOWS IT TO STAY IN THE DESIRED FORCE RANGE. (B) THE CANTILEVER SOLUTION AFFORDS

A SUBSTANTIALLY BIGGER RANGE OF DEFLECTION. .. 39
FIGURE 12: WE CAN INCREASE (A) A SPRING’S STIFFNESS BY A FACTOR OF 8 EITHER (B) BY DOUBLING ITS DIAMETER OR (C)

BY CUTTING ITS LENGTH IN HALF. .. 40
FIGURE 13: (A) THIS SHORT AND THIN CANTILEVER SPRING AND (B) THIS LONG AND THICK CANTILEVER SPRING ARE

EQUALLY STIFF. THE LATTER ONE CAN DEFORM FURTHER THOUGH, THUS ACCOMMODATES, FOR EXAMPLE,
LARGER VARIATIONS IN KERF. ... 40

FIGURE 14: CANTILEVER SPRING VERSIONS OF (A) FINGER JOINTS AND (B) HOW THEY ASSEMBLE. (C,D) NOTCH JOINTS OR
CROSS JOINTS AND (E,F) MORTISE-TENON JOINTS. .. 41

FIGURE 15: THE ROUNDED EDGE HELPS TO PUSH THE SPRING SMOOTHLY WHEN ASSEMBLING. 41
FIGURE 16: SPRINGFIT'S JOINT CLASSIFIERS. ... 42

xiii

FIGURE 17: MOUNTS GENERATED BY SPRINGFIT HAVE THE SHAPE OF THE BLACK SHAPE SHOWN HERE. IT ALLOWS HOLDING
ROUND PHYSICAL OBJECTS AT THREE POINTS THAT TOGETHER FORM AN EQUILATERAL TRIANGLE. THE RED

CIRCLE AND THE BLUE CIRCLE ILLUSTRATE THIS FOR TWO SPECIFIC DIAMETERS. 43
FIGURE 18: NOTCH JOINT CLASSIFICATION. ... 44
FIGURE 19: FINGER JOINT CLASSIFICATION. ... 44
FIGURE 20: FOUR OF THE MODELS WE CONVERTED AND FABRICATED AS PART OF THE FIRST TECHNICAL EVALUATION.

(THINGIVERSE IDS ON THE LABEL) ... 45
FIGURE 21: MODELS SPRINGFIT COULD NOT CONVERT (A,B) TWO OF THE MODELS THAT CONTAINED PARTS TOO SMALL

TO HOLD THE REQUIRED CANTILEVER SPRINGS. (C) A MODEL WITH NON-STRAIGHT FINGER JOINTS. 46
FIGURE 22: (A) SPRINGFIT FALSELY CLASSIFIED THIS CUTOUT AS A PRESS-FIT AND CONSEQUENTLY CREATED A CANTILEVER

SPRING FOR IT. LEAVING IT IN DOES NOT AFFECT FUNCTIONALITY. ALTERNATIVELY, A MOUSE CLICK IN

SPRINGFIT REVERTS THIS MOUNT TO (B) THE ORIGINAL VERSION. ... 47
FIGURE 23: DESIGN FOR A CONSTANT-STRENGTH CANTILEVER. (A) COMPARED TO USUAL ‘BAR’ CANTILEVER, (B) THE

CONSTANT-STRESS CANTILEVER HAS CONSTANT BENDING STRESS ALONG ITS LENGTH INDUCED BY INPUT
FORCE AT THE END AND THUS IS MORE SPACE EFFICIENT. ... 48

FIGURE 24: SPRING STRENGTH EXAMPLE SETUP. LINEAR ACTUATOR THAT MOVES TEST PIECES GENERATED BY SPRINGFIT
INTO A DIGITAL FORCE GAUGE. ... 50

FIGURE 25: (A) FORCE-DEFLECTION DIAGRAM OF GENERATED CANTILEVER SPRINGS WITH INPUT FORCE OF UP TO 10N.
RED DASHED LINE SHOWS THE INPUT MINIMUM FORCE AND GREEN BAND SHOWS THE INPUT
TOLERANCE=0.1MM. (BLUE = ACRYLIC, ORANGE = PLYWOOD) (B) SAME DIAGRAM OF BAR SPRING WITH
10N. ... 51

FIGURE 26: SAME DIAGRAM FOR CURVED CANTILEVER SPRINGS. .. 51
FIGURE 27: THIS LASER-CUT MICROSCOPE (BASED ON THINGIVERSE ID: 31632) CONTAINS THREE TYPES OF MECHANISMS

THAT ALLOW THE MICROSCOPE TO ADJUST FOCUS. BY USING KERF-CANCELING MECHANISMS, THE FOCUS

ADJUSTMENT OPERATES RELIABLY, INDEPENDENT OF HOW MUCH MATERIAL THE LASER CUTTER THAT
PRODUCED THE MICROSCOPE REMOVES (KERF). ... 52

FIGURE 28: ASSEMBLING THE KERF-CANCELING BEARING. .. 53
FIGURE 29: (A) A WEDGE INSET JAMS BY SLIDING IT TO THE RIGHT. A LARGER KERF VALUE REMOVES THE RED REGION, (B)

ALLOWING THE INSET TO SLIDE FURTHER BEFORE IT JAMS. .. 53
FIGURE 30: (A) THE KERF-CANCELING BEARING. (B) WHEN THE MODEL IS CUT WITH MORE KERF, THE INSET GETS SMALLER

WHILE THE CUTOUT GETS WIDER. (C) THE RESULTING INSET FALLS OUT (D), HOWEVER THE SELF-SIMILAR
SHAPE OF THE INSET MAKES THAT IT ALWAYS JAMS WHEN ROTATED IN PLACE, EVEN AS KERF GETS BIGGER.
 ... 54

FIGURE 31: (A) THE KERF CANCELING BEARING CONSISTS OF 2 KEY ELEMENTS: (B) THE JAMMER WHICH IS CHARACTERIZED
BY A SELF-SIMILAR NAUTILUS SHAPE THAT JAMS IN PLACE WHEN ROTATED AND (C) THE INVERTER, WHICH
CONVERTS THE ROTATION OF THE JAMMER BACK TO A BEARING, WHICH ULTIMATELY HOLDS THE AXLE. 54

FIGURE 32: KERF-CANCELING BEARINGS FIT THEIR AXLE UNDER VARIATION OF A WIDE RANGE OF KERF (BY ERODING THE
MODEL). EVEN WHEN CUT ON A MILLING MACHINE WITH MUCH MORE KERF. 55

FIGURE 33: (A) THE INSET HAS TO SPAN 180 DEGREES; HOWEVER, KERF MAKES IT SHORTER. (B) BY EXTENDING THE SPIRAL
AND MAKING THE TIP LESS SHARP, THE INSET REMAINS STABLE AS KERF INCREASES. 56

FIGURE 34: (A) KERF IN A LASER CUTTER IS SLANTED. (B) WHEN CUT FROM THE SAME SIDE, EDGES POORLY ALIGN (C)
FLIPPING ONE SIDE OF THE PLATE RESULTS IN A BETTER FIT. (D) OUR SOFTWARE TOOL FLIPS INSETS BY
DEFAULT TO SUPPORT THIS. ... 56

FIGURE 35: KERF-CANCELING SLIDERS (A-D) ORTHOGONAL, (E-G) AND PARALLEL. (A) THE CUTOUT BETWEEN THE PRONGS
LETS THE SHAPE SLIDE DOWN BY 2X KERF. (B) THE SPIRAL WEDGE ON TOP LOCKS IT IN PLACE. (E) FOR
PARALLEL SLIDERS WE INSERT TWO SIMPLE NAUTILI NEXT TO A THIN BAR (F) THE BAR GIVES WAY AS THE

NAUTILI PUSH BY 1X KERF. .. 57
FIGURE 36: ASSEMBLY OF THE KERF-CANCELING GEAR PAIR. IT JAMS THE GEARS TOWARDS EACH OTHER TO COMPENSATE

FOR THE SHORTER TEETH (A) INSERT THE BEARING WEDGE, (B) THEN ADD A STRAIGHT WEDGE NEXT TO IT,
WHICH (C) JAMS THE WHOLE ASSEMBLY TO THE RIGHT. ... 57

FIGURE 37: A KERF-CANCELING MULTI-STAGE GEARBOX. ... 58
FIGURE 38: CONVERTING THE MICROSCOPE MODEL OF FIGURE 1. ... 59
FIGURE 39: THE USER REMOVES A KERF-CANCELING MECHANISM INSERTED BY KERFCANCELER (B) WITH THE “REMOVE

MECHANISM” TOOL SELECTED; THE USER CLICKS ON A FALSELY LABELED MECHANISM. (C) BY DEFAULT, ALL
CUTOUTS WITH THE SAME DIAMETER NOW HAVE THE MECHANISM SUGGESTION REMOVED (SHOWN IN

GREEN BRIEFLY TO INDICATE THE CHANGE). ... 59

xiv

FIGURE 40: (A) USERS ADD SLIDING MECHANISMS MANUALLY, USING THE “SLIDER TOOL” (B) KERFCANCELER CREATES A
KERF-CANCELING VERSION OF THAT SLIDER (C) BOTH SIMILAR CUTOUTS IN THE MODEL ARE CONVERTED AT

ONCE. .. 60
FIGURE 41: KERFCANCELER EXTENDS A BEARING WITH THE GEAR TOOL TO COMPENSATE FOR THE INCREASED DISTANCE

BETWEEN THE PINION AND THE RACK AS A RESULT OF KERF. .. 60
FIGURE 42: A MODEL PRESENTED TO THE USER (A FIRETRUCK). ALL OUTLINE GEOMETRY IS GREYED OUT TO PUT THE USERS’

EMPHASIS ON THE MECHANISMS GUESSED BY KERFCANCELER. .. 61
FIGURE 43: THESE CIRCLE CUTOUTS IN THE FIRETRUCK ARE OF SIMILAR SIZE. IN THE ENTIRE FIRE-TRUCK MODEL, ONE

CATEGORY TURNED OUT TO BE AROUND 5.05 AND ONE AROUND 4.80MM, KERFCANCELER ASSUMES THE
SMALL OPENING IS PRESS-FIT OPENING AND THE OTHER ONE LOOSE FIT (IT THUS PLACED TWO DIFFERENT
MECHANISMS). .. 62

FIGURE 44: POSSIBLE MODIFICATIONS OF A CIRCLE CUTOUT. (A) THE ORIGINAL CIRCLE (B) A CIRCLE USED AS A MOUNT
(PRESS-FIT) (C) THE CIRCLE USED AS A KERF-CANCELING BEARING AND (D) THE SAME AS C BUT PUSHED TO
THE RIGHT BY “KERF” USING THE WEDGE ON THE LEFT, FOR GEARS. .. 62

FIGURE 45: THE PLACEMENT OF WEDGES FOR A SLIDING MECHANISM, (A) HALF OF THE EDGES OF THE CUTOUT GET A KERF

ADJUSTING WEDGE. (B) THE SAME WORKS FOR NON-RECTANGULAR CUTOUTS. MULTIPLE PLACEMENTS
EXIST (DOTTED LINES). KERFCANCELER, EXCLUDES ALL THAT CAUSE INTERSECTIONS AND PICKS THE BEST
SOLUTION. .. 63

FIGURE 46: EXPERIMENTAL SET-UP. .. 64
FIGURE 47: RESULTS OF THE FRICTION TEST. KERF-CANCELING BASED BEARINGS PERFORM STABLE ACROSS KERF

VARIATIONS AS OPPOSED TO PLAIN BEARINGS. ... 65
FIGURE 48: RESULTS OF MEASURING PLAY OF THE BEARINGS. THE KERF-CANCELING BEARING REMAINS RELATIVELY STABLE,

WHILE PLAY FOR THE PLAIN BEARING ALMOST LINEARLY RELATES TO INCREASING KERF. 65
FIGURE 49: MODELS OF THE TEST SET WE FABRICATED ON OUR LASER CUTTER WITH INCREASED KERF. 66
FIGURE 50: THE MODULAR ARCHITECTURE SHOWN IN THIS DATA FLOW DIAGRAM. (A) SPRINGFIT AND (B) KERFCANCELER

BOTH ARE INTEGRATED INTO THE SYSTEM IN THE FORM OF INDIVIDUAL MODULES. (C) THE OPTIMIZATION
SCRIPTS ARE IMPLEMENTED IN C++ FOR EFFICIENCY AND RUN ON THEIR OWN SERVER. 67

FIGURE 51: A SELECTION OF OBJECTS CREATED USING KYUB, A SOFTWARE SYSTEM THAT ALLOWS USERS TO DESIGN 3D
OBJECTS FOR LASER CUTTING. BY AFFORDING CLOSED BOX STRUCTURES, OBJECTS MADE USING KYUB ARE
VERY STRONG. THIS ALLOWS USERS TO MAKE TABLES, SHELVES, AND CHAIRS THAT CAN HOLD A PERSON.
(ALL SHOWN OBJECTS ARE ASSEMBLED FROM 4MM PLYWOOD SHEETS—PRESSURE FIT, NOT GLUED). . 70

FIGURE 52: KYUB ALLOWS USERS TO CREATE STURDY OBJECTS BY STACKING VOLUMETRIC ELEMENTS, WHICH WE CALL
BOXELS. (A) A SINGLE BOXEL CAN WITHSTAND >500KG OF LOAD, (B) ADDED BOXELS MERGE

AUTOMATICALLY, RESULTING IN A LARGER, YET EQUALLY STRONG STRUCTURE. (C) WHILE KYUB OFFERS
THE AFFORDANCE OF A VOXEL-BASED EDITOR, ITS OBJECTS ARE NOT BOUND TO A GRID; USERS CAN
RESHAPE THEM USING A WIDE RANGE OF DEFORMATION TOOLS. ... 71

FIGURE 53: SOLE USE OF THE ADD BOXEL TOOL ALREADY ALLOWS MAKING SIMPLE OBJECTS, HERE A PICTURE FRAME. (A)
A BOXEL FALLS INTO THE SCENE. (B) THE USER SELECTS ADD BOXEL AND (C) CLICKS THE STAGE, WHICH
PRODUCES A SECOND BOXEL. (D) HOLDING THE ADD BOXEL TOOL, THE USER CLICKS A BOXEL ALREADY ON
STAGE. THIS STACKS A BOXEL ON TOP AND BOTH MERGE AUTOMATICALLY. (E) ADDING ANOTHER SIX

BOXELS (F) COMPLETES THE FRAME. (G) ENGRAVING SIX IMAGES INTO THE LONE BOXEL PREPARES IT FOR
BEING DISPLAYED IN THE FRAME. .. 72

FIGURE 54: AN EXPORTED MODEL FROM KYUB, THE RED LINES ARE WHAT THE LASER CUTTER CUTS. NUMBERS ALONG THE

EDGES TELL USERS WHICH PLATES (NUMBERS IN CENTERS) TO CONNECT TO, WHEN ASSEMBLING THE
MODEL. A ‘^’ INDICATES “THIS SIDE UP”; AN ‘X’ INDICATES PLACEMENT AT THE BOTTOM. 72

FIGURE 55: FOLLOW-UP APPROACHES TO MAKE IT EASIER FOR USERS TO ASSEMBLE MODELS BY MODIFYING (A) JOINTS

[89] AND (B) LAYOUT DURING EXPORT [2]. .. 73
FIGURE 56: A FABRICATED, ASSEMBLED, AND SANDED PICTURE FRAME. .. 73
FIGURE 57: (A) KYUB ALLOWS THE BOXEL-BASED PICTURE FRAME TO BE MANIPULATED USING (B) PUSH/PULL AND

(B) PUSH/PULL EDGE TOOLS. ... 74
FIGURE 58: ADD BOXEL REMAINS APPLICABLE AFTER THE USE OF DEFORMATION TOOLS. 74
FIGURE 59: KYUB INFERS THE GRID, RATHER THAN MAINTAINING IT (A) LAYING DOWN TWO BOXELS, (B) PUSHING IN HALF

A BOXEL AND (C) PULLING OUT HALF A BOXEL ON THE OTHER SIDE RESULTS IN 2X1 BOXEL ARRANGEMENT.
(D) ADDING A BOXEL SNAPS INTO POSITION BASED ON THE CURRENT SHAPE OF THE PART, NOT ITS HISTORY.
 ... 75

FIGURE 60: THE GRID-LIKE BEHAVIOR OF BOXELS IS CRUCIAL IN ALLOWING KYUB USERS TO CREATE PRECISE GEOMETRY ON
LOW-PRECISION INPUT DEVICES [126] (HERE AN IPHONE SE). .. 76

xv

FIGURE 61: PARTS CREATED USING KYUB NATURALLY FIT TOGETHER. (A) PARTS WITH EXTRUDING BOXELS AND PARTS WITH
BOXEL-SHAPED HOLE NATURALLY MATCH AND (B) USERS CAN COMBINE THEM USING THE INSERT TOOL.
(C) THE RESULTING DOWEL JOINTS ALLOW THIS DECORATIVE ROBOT FIGURINE (D, E) TO BE POSED IN
VARIOUS WAYS. .. 77

FIGURE 62: COMBINING THE PARTS OF THE ROBOT FIGURINE WITH A FEW COMPATIBLE ELEMENTS RESULTS IN A SIMPLE

CONSTRUCTION KIT. .. 77
FIGURE 63: NON-RECTILINEAR BOXELS ADD EXPRESSIVENESS TO BOXEL-BASED CONSTRUCTION. (A) HERE WE USE FOUR

90-DEGREE PRISMS TO CREATE A DUCKLING’S HEAD AND (B) ONE EQUILATERAL PRISM TO MAKE ITS BEAK.
(C) RESULTING DUCKLING. .. 78

FIGURE 64: THE BOXEL CONCEPT GOES BEYOND RECTILINEAR BOXES. THE PIECES OF THIS TETRAHEDRON PUZZLE WERE
MADE BY COMBINING A PYRAMID BOXEL WITH TWO TETRAHEDRON BOXELS. 78

FIGURE 65: (A, B) MODELING A CHAIR IN KYUB USING ADD BOXEL (C) THE CLONE TOOL AND (D) THE ATTACH TOOL. ... 79
FIGURE 66: KYUB SUPPORTS CHANGING MATERIAL THICKNESSES. .. 79
FIGURE 67: (A) CHAIR WITH FRONT-TO-BACK REINFORCEMENT, (B) ADDITIONAL REINFORCEMENT SUPPORTING THE LEGS.

 ... 79
FIGURE 68: (A) WHEN APPLYING THE REINFORCEMENT TOOL TO THIS PART, THE REINFORCEMENT CENTERS ITSELF,

(B) HOWEVER, WHEN ADDING A BOXEL, REINFORCEMENT AUTOMATICALLY SHIFTS BY HALF A PLATE
THICKNESS SO AS TO LINE UP WITH THE LEFT PLATE OF THE ADDED BOXEL, PRODUCING A STURDIER RESULT.
 ... 80

FIGURE 69: HERE A SLOT CUT INTO THE CHAIR REINFORCES THE CHAIR’S SEATING SURFACE AND BACKREST. 80
FIGURE 70: THE CELL STRUCTURE CREATED BY TESSELLATION. THE BIG FINGER JOINTS LOCK THE TWO COPLANAR PLATES

ON THE TOP WHILE SUPPORTED BY A VERTICAL PLATE. ... 81
FIGURE 71: THE TABLE FROM FIGURE 51 IS ASSEMBLED OF SEPARATE CELLS WHICH ARE CAPABLE OF HOLDING A HUMAN

SITTING ON IT. .. 81
FIGURE 72: THE GRID INFERRER. (A) A USER APPLIES THE ADD BOXEL TOOL AT THE SHOWN LOCATION. (B) KYUB TAKES THE

PROJECTION OF THE CLICKED SURFACE AND INFERS ALL POSSIBLE GRIDS TO WHICH THE BOXEL COULD BE
ALIGNED AS SHOWN IN ALGORITHM 1. (C) AFTER WEIGHING THE DIFFERENT GRIDS, IT PLACES THE BOXEL

AND MERGES THE GEOMETRY. ... 82
FIGURE 73: THE RESULTING BOXEL IS MERGED WITH THE ASSEMBLY. THE DASHED SURFACE IS AN EXAMPLE OF A COPLANAR

PLATE THAT IS UNIFIED WITH THE SIDE OF THE ADDED BOXEL. .. 84
FIGURE 74: OBJECTS TESTED ... 85
FIGURE 75: THE TEST APPARATUS. .. 86
FIGURE 76: FORCES REQUIRED TO BREAK THE RESPECTIVE OBJECT. ... 86
FIGURE 77: PARTICIPANT TEAMS CREATED FIGURINES TO FUNCTION AS STORYTELLING PERSONAS. ONE TEAM USED THE

REMAINING TIME TO MAKE AN ADVENT CALENDAR ONE CREATED THE NAME OF THEIR INSTITUTION IN 3D
CHARACTERS. ... 88

FIGURE 78: QUESTIONNAIRE RESULTS. .. 89
FIGURE 79: KYUB IN USE BY PUPILS AROUND BERLIN WITHOUT MODELING OR BUILDING EXPERTISE. (A) AN OVERVIEW OF

SOME OF THE WORKSHOPS CURRENTLY OFFERED TO HIGH-SCHOOLS SUCH AS (B) BUILDING A MODEL OF
THE SCHOOL OF THE FUTURE, (C) CAJONS, (D) BLUETOOTH SPEAKERS, AND (E) UKULELES. 90

FIGURE 80: STRUCTURE-PRESERVING EDITING FOR LASER CUTTING (A) REPRESENTS LASER-CUT 3D MODELS AS VOLUMES,
WHENEVER POSSIBLE. THIS ALLOWS USERS TO MANIPULATE MODELS EFFICIENTLY USING VOLUME-BASED
TOOLS. (D) IT REPRESENTS LASER-CUT 3D MODELS AS A 3D ARRANGEMENT OF PLATES, WHEN USERS

WANT TO MANIPULATE MODELS IN DETAIL USING PLATE-BASED TOOLS. (B) THE KEY TO MAKING
VOLUMETRIC AND PLATE-BASED REPRESENTATIONS WORK WITHIN THE SAME MODEL IS THAT OUR
ARCHITECTURE DEMOTES MODELS REPRESENTED AS VOLUME TO PLATES, WHEN USERS APPLY PLATE-BASED

TOOLS, AND IT (C) PROMOTES MODELS REPRESENTED AS PLATES TO VOLUMES, WHEN USERS APPLY
VOLUME TOOLS ANYWHERE. (E) THIS APPROACH ALLOWS USERS TO MANIPULATE 3D MODELS THAT ARE
COMPLETE PLATE-LIKE ELEMENTS WITH VOLUMETRIC ELEMENTS, RESULTING IN A LEVEL OF COMPLEXITY

NOT POSSIBLE WITH PREVIOUS TOOLS. ... 91
FIGURE 81: STRUCTURE-PRESERVING EDITING ALLOWS USERS TO CREATE MODELS THAT TRADITIONALLY COULD ONLY BE

CREATED AND MANIPULATED BY HAND USING “FABRICATION UNAWARE” MODELING. THESE HYBRID

MODELS CONTAIN PLATES (HIGHLIGHTED IN YELLOW) AND VOLUMETRIC ELEMENTS. 91
FIGURE 82: WE DESIGNED THE TOOLS OF THE PLATE-BASED SUBSYSTEM TO BE CONSISTENT WITH THE VOLUME-BASED

TOOLS PROVIDED BY THE PLATFORM WE BUILT ON KYUB [14]. .. 92
FIGURE 83: VARIOUS ADD PLATE TOOLS ALLOW ARRANGING PLATES IN 3D. THE MOVE TOOL ALLOWS USERS TO FINE-TUNE

THEIR POSITIONING. .. 92

xvi

FIGURE 84: (A) IN CONTRAST TO THE ATTACH TOOL OF THE VOLUMETRIC SUBSYSTEM, (B) THE PLATE-ATTACH TOOL
PROVIDES ADDITIONAL 3D ARRANGEMENT OPTIONS. .. 93

FIGURE 85: SIMPLE MODELS MADE USING PLATE TOOLS ALONE. .. 93
FIGURE 86: PLATE AND EDIT TOOLS ALLOW CREATING A WIDE RANGE OF MODELS, ALBEIT WITH LIMITED EFFICIENCY (VR

HEADSET, ID:638605). ... 93
FIGURE 87: (A) ONCE DEMOTED TO PLATES, MAKING A VR HEADSET 1CM TALLER REQUIRES SIX USER INTERACTIONS.

(B) MAKING THE SAME VOLUMETRIC MODIFICATION IS A SINGLE INTERACTION. 94
FIGURE 88: CONSECUTIVE ADD PLATE TOOLS ALLOW CONSTRUCTING A VOLUME. WHEN APPLYING A VOLUMETRIC

STRETCH TOOL, THE PROMOTER DETECTS THE VOLUME AND STRETCHES THE PLATES ACCORDINGLY. 94
FIGURE 89: (A) THE PROMOTER ALSO IDENTIFIES INCOMPLETE VOLUMES. (B) AND WORKS FOR SLANTED VOLUMES, HERE

TO MAKE A SEPARATE ROOFTOP FOR A DOLLHOUSE. TO APPLY THE PLATE TOOL AFTER, IT GETS DEMOTED

(SEE NEXT SECTION ON DEMOTION). ... 95
FIGURE 90: THE PROMOTER TREATS THE SHOWN 3-PLATE ASSEMBLY THE SAME, IRRESPECTIVE OF WHETHER IT WAS

CREATED BY COMBINING THREE PLATES OR BY REMOVING THREE PLATES FROM A BOX. 95
FIGURE 91: STARTING WITH A VOLUME ALLOWS RE-CREATING THE VR HEADSET FROM FIGURE 86 MORE EFFICIENTLY.

THE PART OF THE MODEL SHOWN IN YELLOW IS DEMOTED TO PLATES TO ALLOW FOR THE PLATE TOOLS TO
APPLY. .. 96

FIGURE 92: VOLUME-TOOLS FIRST, THEN REFINEMENT USING PLATE TOOLS IS AN EFFICIENT AND THUS COMMON

WORKFLOW. .. 96
FIGURE 93: THE WORKFLOWS OF MORE COMPLEX MODELS MAY CONTAIN MULTIPLE INVOCATIONS OF PROMOTER AND

DEMOTER. ... 97
FIGURE 94: (A) THE DATA STRUCTURE OF A VOLUME VS. (B) DATA STRUCTURE IF THE SAME MODEL IS REPRESENTED BY

INDIVIDUAL PLATES. .. 98
FIGURE 95: WHEN COPLANAR EDGES TOUCH IN A CORNER, THEY FORM LARGER VOLUMES WITH THE ADJACENT COPLANAR

EDGES. ... 100
FIGURE 96: (A) THE CONVEX HULL OF OBJECTS WHERE THE CONNECTED COPLANAR EDGES DO NOT SHARE A CORNER. (B) A

PRACTICAL IMPLICATION OF THIS CASE AT THE EXAMPLE OF A DESK ORGANIZER: BECAUSE OF THE PROXY

PRISM ON THE LEFT THE BASE PLATE STRETCHES WITH THE SIDE PLATES. 100
FIGURE 97: INFERRING VOLUMES ON THIS GUITAR STAND, THE YELLOW PLATES ARE ADDED TO THE GROUP. 101
FIGURE 98: THE PROMOTER DETECTS INTERNAL STRUCTURES USING FACE DETECTION 78. 101
FIGURE 99: THREE EXAMPLE MODELS WITH THEIR ASSOCIATED VOLUMES AS INDIVIDUAL CELLS, THE IMAGES BELOW SHOW

HOW STRETCH OPERATIONS APPLIED TO THESE MODELS STRETCH THESE CELLS WHILE KEEPING THE
STRUCTURE OF THE MODEL INTACT. .. 102

FIGURE 100: (A) DETECTED, BUT LESS USEFUL VOLUMES. (B) IN THIS CASE THE VOLUME IS STILL USEFUL WHEN STRETCHED
ALONG THE NORMAL OF THE PLANE. ... 104

FIGURE 101: MODELS RECREATED USING VOLUMETRIC MODELING (KYUB), PLATE-BASED MODELING (FLATFITFAB) AND

OUR SYSTEM. ... 104
FIGURE 102: THE 100 MODELS OF ASSEMBLER3 BENCHMARK FALL IN THREE CATEGORIES: (A) 35 MODELS MADE USING

INDIVIDUAL PLATE TOOLS (B) 12 MODELS MADE USING A WATERFALL WORKFLOW AND (C) 53 MODELS
THAT LARGELY BENEFIT FROM PROMOTION/DEMOTION IN THE MODELING PROCESS. 105

FIGURE 103: HIGH-LEVEL KYUB ARCHITECTURE, THE EDITOR IN FRONT-END AND THE CGAL SERVER AS BACK-END TO
HANDLE EXPENSIVE CSG OPERATIONS. .. 106

FIGURE 104: KYUB’S MODULES AND HIGH LEVEL ARCHITECTURE VISUALISED IN A TREE MAP USING THE NPM PACKAGE

WEBPACK BUNDLE ANALYZER [48]. THE PURPLE AREA CONTAINS THE EDITOR INTERFACE WITH ITS
UNDERLYING DATA STRUCTURES. THE AREA WITH THE BLACK OUTLINE CONTAINS THE MODEL DATA, THIS
IS WHERE STRUCTURE-PRESERVING EDITING MOSTLY FITS INTO THE LARGER ARCHITECTURE. 107

FIGURE 105: THE EXPORT DIALOG IN KYUB. (A) DURING EXPORT USERS SPECIFY THE MACHINE AND MATERIAL SPECIFIC
DIMENSIONS (B) IF THEY DO NOT KNOW THEIR KERF, THE SOFTWARE GENERATES A KERF GAUGE. 107

FIGURE 106: THE PROPOSED WORKFLOW AT THE EXAMPLE OF MODIFYING THE CUTTING PLAN OF A VR HEADSET: (A) THE

2D CUTTING PLAN (B) IS RECONSTRUCTED INTO A 3D MODEL (C) WHICH THE USER THEN MANIPULATES IN
3D. (D) WHEN DONE, KYUB EXPORTS THE MODEL TO A MODIFIED 2D PLAN. 109

FIGURE 107: PIPELINE OF PARSING THE TOP PLATE OF THE VR HEADSET (IN REALITY IT PARSES THE ENTIRE SVG). 111
FIGURE 108: RECONSTRUCTING THE 3D MODEL OF THE VR HEADSET. (A) WHEN ASSEMBLER3 LOADS THE SVG, ALL

PLATES ARE DISPLAYED IN THE 3D MODELING ENVIRONMENT, HERE KYUB [14] (B) THE USER CLICKED THE
ASSEMBLE TOOL ON THE FRONT PIECE. ASSEMBLER3 RESPONDS BY HIGHLIGHTING THIS PLATE (YELLOW

STRIPES) AND BY HIGHLIGHTING JOINT CANDIDATES LOCATED ON THE OTHER PLATES. (C) CLICKING ONE OF
THE SUGGESTED CANDIDATES ASSEMBLES THE PLATE. (D) THE USER REPEATS THIS UNTIL THE MODEL IS

xvii

ASSEMBLED. FROM NOW ON, THE USER USES STANDARD KYUB TOOLS TO INTERACT WITH THE MODEL (E)
TO SEE THE FRONT PLATE, THE USER FLIPS THE MODEL. (F) ONCE RECONSTRUCTED, THE USER CAN APPLY

ARBITRARY PARAMETRIC CHANGES. HERE THE USER ACCOMMODATES FOR FAR-SIGHTEDNESS BY
STRETCHING THE FRONT PLATE. .. 111

FIGURE 109: (A) TO OVERRIDE A SUGGESTION, THE USER USES THE FLOATING MENU ITEM. ASSEMBLER3 PRESENTS

ANOTHER ORIENTATION OF THE PLATE. (B) IN THIS CASE ASSEMBLER3 FLIPS THE PLATE, WHICH LEAVES THE
USER SATISFIED WITH THE RESULT. .. 112

FIGURE 110: WHEN USERS HAVE CONVERTED THE VR HEADSET MODEL TO 3D ONCE, THE 3D MODEL ALLOWS

LEVERAGING EXISTING TOOLS (SUCH AS KYUB [14]) TO PERFORM ANY NUMBER OF MODIFICATIONS
EFFICIENTLY, SUCH AS (A) ADJUSTING THE INTER-OCULAR DISTANCE, (B) MAKING THE HEADSET FIT A
WIDER PHONE BY STRETCHING IT VERTICALLY, (C) OR MAKING THE HEADSET MORE COMFORTABLE TO

WEAR BY REDUCING THE WEIGHT OF THE DEVICE BY DECREASING MATERIAL THICKNESS AND REMOVING
UNNECESSARY MATERIAL. ... 113

FIGURE 111: JOINT DETECTION ON THE VR HEADSET. THE RED LINES ARE FALSE POSITIVES, WHICH WILL GET ADJUSTED
LATER, AND THE BLUE LINES ARE JOINTS THAT WILL RECEIVE A LOW PROBABILITY BECAUSE OF THEIR ODD

SHAPE. ... 116
FIGURE 112: (A) THE IDEAL FINGER JOINT HAS 90-DEGREE ANGLES, A TOP LINE PARALLEL TO THE EDGE AND HAS A BIGGER

WIDTH THAN HEIGHT (B) THIS FINGER JOINT HAS A MUCH LOWER PROBABILITY, IT COULD JUST AS WELL BE

SOME AESTHETIC FEATURE OF THE MODEL? (C) REPETITIONS OF A PATTERN INCREASE ITS PROBABILITY.
 ... 117

FIGURE 113: EACH JOINT VOTES FOR A MATERIAL THICKNESS LABELED “T” IN THIS FIGURE. (A) FINGER JOINT, (B) CROSS

JOINT, AND (C) A MORTISE-TENON JOINT. ... 117
FIGURE 114: ASSEMBLER3 FIRST IDEALIZES NON-IDEAL JOINTS AND THEN HAVES THEM VOTE FOR THE IDEALIZED MATERIAL

THICKNESS BUT WITH AN ADDITIONAL PENALTY TO REDUCE THEIR IMPACT. THE RED OVERLAY REPRESENTS

THE IDEALIZED VERSION OF THE JOINTS ABOVE. .. 117
FIGURE 115: ASSEMBLER3 IMPORTS ENGRAVINGS AS ORNAMENTS ON THE PLATES. ... 118
FIGURE 116: JOINT TYPES (A) CROSS JOINTS, (B) T-JOINTS AND (C) FINGER JOINTS .. 119
FIGURE 117: (A) TWO PLATES OF THE VR HEADSET THAT FIT TOGETHER. (B) ON CLOSER INSPECTION, THE FINGERS OF THE

ONE JOINT DO NOT MATCH THE CUTOUTS OF THE OTHER BECAUSE OF THE MATERIAL REMOVED BY THE
LASER (AKA KERF). HOWEVER, THE CENTERS OF JOINTS HAVE TO ALIGN, SO ASSEMBLER3 HASHES THE SUM

OF THE WIDTH OF A CUTOUT AND A FINGER AS THE SIGNATURE FOR A FINGER JOINT. 119
FIGURE 118: MODELS USED FOR TECHNICAL EVALUATION. .. 121
FIGURE 119: (A) THIS MODEL HAS CROSS JOINTS THAT ASSEMBLE INTO A MORTISE-TENON JOINT, ASSEMBLER3 FAILS TO

PAIR THESE UP. (B) WHEN ALL PLATES ARE AT A NON-STRAIGHT ANGLE WITH EACH OTHER, ASSEMBLER3
CANNOT RECONSTRUCT THE MODEL. (C) LUCKILY, MOST OF THE MODELS WITH PLATES WITH NON-
STRAIGHT ANGLES STILL PROVIDE SUFFICIENT CONSTRAINTS TO BE RECONSTRUCTED. 121

FIGURE 120: MODELS USED TO VALIDATE THE ACCURACY OF THE STEPS OF THE ALGORITHM. 122
FIGURE 121: (A) IN THE BASELINE CONDITION, USERS WERE SHOWN HOW TO MODIFY A BOXEL IN GRAVIT.IO, (B) THEY

WERE SHOWN A VIDEO OF THE SAME WORKFLOW USING ASSEMBLER3. 124
FIGURE 122: RESULTS OF THE EXPERIMENT. .. 125
FIGURE 123: 2D LAYOUTS AS USED BY OUR PARTICIPANTS. GREEN LINES INDICATE PLATES THAT ARE LAID OUT SO THAT

THEIR MATCHING JOINTS LINE UP, AN INDICATOR THAT THEY LEVERAGE THE SPACE IN THE 2D EDITOR TO
HELP THEM RECONSTRUCT THE MODEL IN THEIR HEADS. P5 ALSO SPENT TIME LAYING OUT PATHS BUT

GROUPED BY SIMILARITY IN SHAPE INSTEAD OF MATCHING JOINTS. ... 126
FIGURE 124: AUTOASSEMBLER CONVERTS 2D CUTTING PLANS TO 3D MODELS BY (A) IMPORTING 2D CUTTING PLANS

AND (B) BEAM-SEARCHING THE SPACE OF WAYS TO ASSEMBLE THE PLATES. AUTOASSEMBLER PREFERS

CANDIDATES THAT (1) HAVE NO INTERSECTING PLATES, (2) FIT INTO A SMALL BOUNDING BOX, (3) USE
PLATES WHOSE JOINTS FIT TOGETHER WELL, (4) DO NOT ADD MANY UNPAIRED JOINTS, (5) MAKE USE OF
CONSTRAINTS POSED BY OTHER PLATES, AND (6) CONFORM TO SYMMETRY AXES OF THE PLATES. (C) THIS

ALLOWS USERS TO LOAD THE MODEL INTO A 3D EDITOR (KYUB [14]), (D) WHERE THEY CAN NOW APPLY
PARAMETRIC CHANGES. .. 127

FIGURE 125: THE SEARCH SPACE FOR THE SIMPLE VR HEADSET CONSISTING OF 9 PARTS AND 33 JOINTS AFTER LIMITING

OUR SEARCH TO JOINTS THAT FIT AND ONLY EXPLORING ORIENTATIONS OF PLATES THAT DO NOT LEAD TO
AN IMMEDIATE COLLISION. (LABELS DENOTE THE NUMBER OF JOINTS THAT FIT AT A GIVEN POSITION X THE
NUMBER OF ORIENTATIONS THEY FIT IN). ... 128

xviii

FIGURE 126: THE FIRST STAGE OF SEARCH FOR A VR HEADSET. AUTOASSEMBLER PICKS THE INITIAL PLATE WITH THE MOST
JOINTS, USES THE JOINT-HASH TO FIND WHAT PLATES FIT INTO THE OPEN JOINTS, SCORES THE CANDIDATES

(LABELED ABOVE) AND GENERATES NEW CHILDREN FROM THE BEST CANDIDATES. 128
FIGURE 127: AUTOASSEMBLER ENCOUNTERS A CANDIDATE MODEL MORE THAN ONCE (THE COLORED CANDIDATES),

AUTOASSEMBLER DROPS THE REDUNDANT STATES (MEMOIZATION), BY HASHING VISITED CANDIDATES.
(HERE SHOWN WITH THREE CANDIDATES EACH FOR VISUAL CLARITY). ... 129

FIGURE 128: (A) ADDING THE RED PLATE GIVES IT A MUCH LARGER BOUNDING BOX, AUTOASSEMBLER THUS GIVES (B)
THIS CANDIDATE THE HIGHER SCORE. (C) THE RESULTING MAGAZINE HOLDER. 131

FIGURE 129: (A) THE COMPACTNESS HEURISTIC SUGGESTED MOUNTING THIS BEARING (RED) ON TOP OF THIS TRAIN
WAGON, BUT HERE IT INTERSECTS WITH PLATES MOUNTED ON TOP OF THE WAGON, CAUSING
AUTOASSEMBLER (B) TO FLIP THE BEARING PLATE TO ITS CORRECT POSITION. (C) THE SAME HEURISTIC

FIXES THE OTHER BEARINGS TOO. .. 131
FIGURE 130: (A) ASSEMBLING THIS AMBIGUOUS JOINT EARLY ON FORMS LITTLE OR NO CONSTRAINTS ON OTHER PLATES,

AS A RESULT THE TOP PLATE HERE CAN BE ASSEMBLED IN MANY DIFFERENT WAYS (B) AUTOASSEMBLER
PREFERS TO GREEDILY CONNECT PLATES WITH HIGH PROBABILITIES. THIS ADDS CONSTRAINTS FOR OTHER

PLATES, (C) TO EVENTUALLY MAKE THIS DICE TOWER. .. 132
FIGURE 131: AUTOASSEMBLER PRIORITIZES COMPLETING JOINTS FIRST AS THIS REDUCES THE SEARCH SPACE: (A)

INSERTING THE SIDE PLATE (RED) WOULD ADD FOUR INCOMPLETE JOINTS TO THE MODEL. (B)

AUTOASSEMBLER THEREFORE RATHER ADDS THIS “DIVIDER” PLATE, WHICH ONLY ADDS ONE UNMATCHED
JOINT. (C) LEADING TO THIS DESKTOP ORGANIZER. ... 133

FIGURE 132: (A) THIS CANDIDATE OFFERS TOO FEW CONSTRAINTS TO ORIENT THE RED PLATE CORRECTLY.
(B) AUTOASSEMBLER THEREFORE PRIORITIZES THIS PLATE, WHICH COMPLETES THREE JOINTS. (C) THIS
ADDS CONSTRAINTS THAT COME IN HANDY WHEN EVENTUALLY INSERTING THE MIDDLE PIECE. 133

FIGURE 133: AUTOASSEMBLER PICKS THE BEST FOUR CANDIDATES OF THIS STAGE. TO AVOID PICKING THE FIRST FOUR

CANDIDATES WHICH ARE ALMOST THE SAME, IT SKIPS CANDIDATES THAT SHARE THE SAME CONNECTION
PATTERN WITH A CANDIDATE THAT IS ALREADY PICKED. RESULTING IN THE FOUR CANDIDATES HIGHLIGHTED
IN YELLOW. .. 134

FIGURE 134: EXAMPLES OF SYMMETRIC LASER-CUT MODELS FROM ASSEMBLER3 (A) DOUBLE REFLECTIONAL SYMMETRY,
(B) 6-POINT ROTATIONAL SYMMETRY, (C) DOUBLE REFLECTIONAL SYMMETRY (AND MULTIPLE USES OF
SAME PLATE). .. 134

FIGURE 135: (A) AUTOASSEMBLER DETECTS SYMMETRIES BY HAVING PAIRS OF JOINTS VOTE FOR SYMMETRY AXES (B)
AUTOASSEMBLER USES THE INFORMATION TO PREFER SIMILAR PLATES CONNECTED TO JOINTS ON
OPPOSITE SIDES OF THE SYMMETRY AXIS. (C) RESULTING IN THIS BIRDHOUSE. 135

FIGURE 136: BECAUSE OF THE HORIZONTAL SYMMETRY AXIS, ONLY THESE TWO ORIENTATIONS OF THE SIDE PLATE
PRODUCE A UNIQUE STATE. THE SAME FOR THIS IN-PLATE SYMMETRY IN THE VERTICAL ORIENTATION.
 ... 135

FIGURE 137: CLUSTERING BY SIMILARITY (A) AUTOASSEMBLER CHARACTERIZES EACH INPUT PLATE BY THREE EASY-TO-
COMPUTE METRICS (B) FOR THIS BARREL MODEL, AUTOASSEMBLER CONSIDERS 3 TYPES OF PLATES WITH
19 JOINTS AS OPPOSED TO 12 TYPES OF PLATES WITH 58 JOINTS. .. 136

FIGURE 138: SIX MODELS FROM THE TEST SET THAT ASSEMBLE CORRECTLY IN AUTOASSEMBLER BECAUSE OF THE

SYMMETRY HEURISTICS. ... 136
FIGURE 139: (A) MODELS SUCH AS THIS DINOSAUR REQUIRE DOMAIN KNOWLEDGE, PLACING THEM OUTSIDE THE SCOPE

OF AUTOMATIC ASSEMBLY. (B) THIS TRAIN WAGON HAS MISASSEMBLED PLATES AFTER AUTOMATIC

ASSEMBLY, (C) WITH THE REORIENT TOOL THIS IS QUICK TO FIX. (D) TWO PLATES ARE SWAPPED IN THIS
ORGANIZER. (E) THE “SWAP-PLATE” TOOL LETS USERS SELECT ONE OF THE PLATES, AND (F) BY CLICKING
THE OTHER ONE THEY SWAP IF THEY SHARE COMMON JOINTS. .. 137

FIGURE 140: CLICK SEQUENCES OF THE DISAMBIGUATE TOOL. USERS CLICK A POORLY ASSEMBLED PLATE, WHICH
AUTOASSEMBLER THEN RECONSIDERS. HERE ARE FIVE MODELS THAT ALL WERE FIXED BY 1-4 MANUAL
DISAMBIGUATION OVERRIDES (2.7 ON AVERAGE). ... 138

FIGURE 141: IMPORTING AN SVG MODEL AUTOMATICALLY INTO KYUB. ... 138
FIGURE 142: (A) SUCCESS RATE OF AUTOASSEMBLER ON OUR BENCHMARK WHILE VARYING THE BEAM WIDTH. (B) THIS

MODEL STILL MAKES AN IMPROVEMENT AT A BEAM WIDTH OF 8, BUT THE ASSOCIATED PERFORMANCE LOSS

IS NOT WORTH IT. ... 140
FIGURE 143: DIFFERENT STARTING PLATE METRICS FOR THE TEST-TUBE MODEL. ... 141
FIGURE 144: (A) RESULTS OF VARYING THE STARTING PLATE. (B) SOME MODELS WITH THEIR IDEAL STARTING PLATE

HIGHLIGHTED. .. 141

xix

FIGURE 145: THE OVERALL SUCCESS RATE OF AUTOASSEMBLER IS 97% BASED ON THREE EXTENSIONS OF THE ALGORITHM:
DETECTING SIMILARITIES, SYMMETRIES AND MANUAL DISAMBIGUATION. 142

FIGURE 146: (A) 1-4 CLICKS USING AUTOASSEMBLER’S “RE-ORIENT PLATE” TOOL FIX THE MIS-ORIENTED RED PLATES IN
THESE 12 MODELS. ONE PAIR OF CLICKS EACH USING THE “SWAP TOOL” FIXES THE SWAPPED BLUE PLATES.
(B) THIS BIRDHOUSE AND MINIBAR WOULD REQUIRE USERS TO EXTRACT 6 PLATES AND RE-ASSEMBLE THEM.
 ... 143

FIGURE 147: OVERVIEW OF THE MODELS IN THE BENCHMARK (A) HISTOGRAM OF THE NUMBER OF PLATES PER MODEL
AND (B) TYPES OF JOINTS PER MODEL (2 MODELS CONTAINED ALL TYPES OF JOINTS). 143

FIGURE 148: THE KYUB MODULES VISUALIZED USING THE WEBPACK BUNDLE ANALYZER [48]. THE INTEGRATION OF
ASSEMBLER3 AND AUTOASSEMBLER IN THE BIGGER KYUB SYSTEM. (A) ON THE INFRASTRUCTURE SIDE
(YELLOW) ARE THE MODULES AND DATA STRUCTURES TO SUPPORT THE 4 ANALYSIS STEPS OF THE

ASSEMBLER3 ALGORITHM. (B) THE EDITOR (PURPLE) IS WHERE THE TOOLS TO INVOKE RECONSTRUCTION
ARE AS WELL AS THE ALGORITHM OF AUTOASSEMBLER. ... 145

FIGURE 149: SVGCONTEXT AND ITS UNDERLYING DEPENDENCY GRAPH OF KNOWLEDGE SOURCES. THIS DETERMINES THE

STRUCTURE OF THE 5-STEP PIPELINE OF ASSEMBLER3. THERE ARE TWO CIRCULAR DEPENDENCIES BALANCE
OUT AFTER 2 ROUND-TRIPS ... 145

FIGURE 150: (A) 8 TEAMS OF STUDENTS DESIGNED AND (B) ASSEMBLED (C) THEIR INSTRUMENTS. 150

xx

21

1
INTRODUCTION

Laser cutters are fast and precise fabrication machines. Maiman built the
first research prototype in 1963 using radiation in a ruby [76], and the
first CO2 based functional cutter was built a year later at Bell labs in 1964
[87]. The initial decades of use took place exclusively in industrial and
research contexts. As the technology matured and the machines became
more accessible, a new class of users started to embrace the power of the
technology around the 2000s, mostly for hobbyist use cases [46]. These
“tech enthusiasts” have since created millions of models for laser cutting.

In contrast to the industrial users before the 2000s, tech enthusiasts
started sharing their models widely on online repositories (e.g.,
thingiverse [117], GrabCAD [44], myMiniFactory [79]), mostly to
showcase what they made and to allow others to reproduce the models.
Surprisingly, these models are largely one-offs made by single
individuals and, as we will explain later, it is hard to reproduce these
models for anyone other than the original modeler. For laser cutting to
become a mainstream phenomenon and thus become relevant to other
users than tech-enthusiasts [13], it is crucial that non-experts can
download and reproduce models created by experts, and that those
experts build on the work of others to create more advanced and useful
models. This progression is currently held back by machine-dependent
exchange formats. The central thesis of this work therefore is:

For laser cutting to progress into a mainstream phenomenon, we
need a machine-independent (aka portable) sharing infrastructure.

In this chapter we first analyze the underlying problem of the
current sharing infrastructure, we then outline three approaches to
progress the field that are presented in detail in this thesis and
summarize the contributions. Finally, we conclude with an outline of the
thesis.

INTRODUCTION

22

1.1 WHAT IS HOLDING BACK PORTABILITY?
We begin by taking a closer look at the underlying challenge. Models are
currently shared in the form of 2D cutting plans; vector drawings the
laser traces when cutting. When traversing the paths in the cutting plan
the laser removes material, the amount of material removed when
cutting is called “kerf” or the width of the cut. As studied in-depth by
Uslan [122] kerf depends on the laser used, the material, the thickness of
the material, the state of the machine, the air flow within the machine,
and various other parameters that may vary within the same day of
cutting.

The width of the cut is reasonably harmless when cutting 2D shapes
or engraving objects using the laser cutter. However, when creating
models that either consist of more than one piece (e.g., consisting of
multiple pieces such as 3D constructions or models embedding non-
laser cut components), variations in cut width causes severe problems.
The canonical way to combine multiple pieces is by embedding joints,
mounts, or mechanisms in the cutting plans. As we present below, these
rely on tight tolerances and thus fail to operate reliably when the cut
width varies.

Figure 1 shows how embedding a plastic arcade button requires the
designer to add a mount to the model. The commonly accepted solution
is to create a hole that has the same shape as the button but is a tiny bit
smaller than the button. This type of mount is called a press fit mount.
When forcing the button into such a press fit mount, the tightness of the
hole causes the plywood to stretch a tiny bit to accommodate the button.
This means that the plywood now acts as a spring, and the stretching of
that spring holds the button in place.

Figure 1: (a) A key design element in laser cutting is the press-fit where a physical object is forced
into a slightly smaller opening. (b) The opening now acts as spring, securely holding the object.

Unfortunately, when other users try to reproduce such a model, they
switch to their laser cutter and their material, which introduces variation
in the size and stiffness of the mount, this commonly causes the mount
to fail. As shown in Figure 2, (a) some user’s lasers produce a thinner cut

INTRODUCTION

23

than the original model was designed for. This makes it impossible to
assemble the model, as the button does not fit into the mount anymore.
(b) other users’ lasers produce a wider cut. This causes the button to fall
out of the mount. (c) This user tries to reproduce the model from acrylic.
Acrylic is more brittle than plywood. The hole size that worked fine with
plywood now causes the material to pop when the user forces the button
in.

Figure 2: The carefully tuned press fit from Figure 1 fails when fabricated on different laser cutters.
(a) On machines with smaller kerf, it cannot be inserted completely. (b) On machines with wider
kerf, it is loose and falls out. (c) When cut from brittle material, it breaks the model.

The mount for a button is a somewhat simplified version of
connecting laser-cut joints. Joints manifest themselves just like mounts
by compressing material, however the same spring tends to be repeated
along the surface of the plates resulting in a firm, homogenous fit. As a
result, they are even more subject to failure under variations in kerf.

While joints and mounts exert a constant force, a bearing for
example should hold its axle in place without applying any force to the
axle. In Mechanical Engineering this is referred to as “loose fit” [60],
achieving this in a laser-cut model requires the size of the opening to be
tuned properly. As shown in Figure 3, without proper tuning, a bearing
that is too loose introduces slack. This slack tends to cause mechanical
issues.

Figure 3: (a) When fabricated on a machine with smaller kerf, this bearing gets too tight. This causes
friction or even prevents users from inserting the axle. (b) On machines with wider kerf, bearings
are subject to slack, potentially causing adjacent mechanisms to jam.

INTRODUCTION

24

Unfortunately, tuning tends to get lost when manufacturing a model
on a different machine—as is the case when sharing a model, and the
resulting models are again subject to slack and/or jamming.

This problem affects a range of mechanisms, including three of the
four primary types of mechanisms with moving parts [5] shown in
Figure 4. Red highlighting indicates areas where kerf-related problems
occur.

Figure 4: Three out of four elementary classes of mechanisms [5] are subject to kerf-related issues.
Susceptible surfaces are marked in red. (a) The revolute pair includes mechanisms that operate like
the bearing shown before, (b) a prismatic pair allows a rod with rectangular cross section to slide
forth and back, and (c) a pair of gears. (d) Only cam/follower mechanisms remain unaffected, as
they are typically spring-loaded.

We conclude that the existing sharing infrastructure built on
machine-dependent 2D cutting plans falls short when models are more
complex than a single 2D shape. They will fabricate fine once but sharing
those cutting plans inevitably leads to dysfunctional models.

1.2 PORTABLE LASER CUTTING
In this thesis, we create a technological basis that allows users to
reproduce models made by others and build on the work of others. We
approach this in three steps: (1) converting machine dependent 2D
cutting plans to cutting plans that are tolerant to machine variations,
(2) sharing cutting plans in 3D instead of 2D, making it easier to build
on the work of others and (3) converting legacy 2D cutting plans to 3D.
We built software tools to facilitate each of these steps.

1.2.1 2D cutting plans that are tolerant to machine variations

Our initial approach is to patch the existing machine-dependent 2D
cutting plans. As identified before, the problems occur when there are
elements like joints, mounts, or mechanisms in cutting plans. We
propose novel mechanical variations of these elements that support a
much broader range of tolerances, by using springs (for joints and
mounts) or wedges (for mechanisms). The resulting software tool
identifies problematic elements in 2D cutting plans and swaps them out
for our elements that are tolerant to machine variations. The tool outputs
2D cutting plans that fabricate on a range of materials and all typical

INTRODUCTION

25

laser cutters, but still in the same format, so they can be shared on the
same platforms as before. As shown in Figure 5, the modified models
fabricate on any consumer laser cutter and in a range of materials.

Figure 5: Models made using modified 2D cutting plans fabricate reliably on any typical lasercuter
and in a range of materials, modified using our software tools SpringFit [101] and KerfCanceler
[97]. The models in the background show the original (machine-dependent) version.

1.2.2 sharing models in 3D

Machine-independent cutting plans allow users to reliably reproduce
models made by others, but it does not help users build on the work of
others as we set out to do. To accommodate this, we built a 3D modeling
environment for laser cutting. Representing models in 3D as shown in
Figure 6 allows our software to generate machine-optimized joints,
mounts, and mechanisms when users export models to 2D cutting plans
(to fabricate on their laser cutter). Users then share 3D models and use
the 3D environment to modify models made by others. We extend this
volumetric environment with tools to edit individual plates, allowing
users to leverage the efficiency of volumetric editing while having
control over the most detailed elements in laser-cutting (plates).

Figure 6: Representing models for laser cutting in 3D, allows users to export the model to 2D
cutting plans that are optimized for their machine and material at hand. It furthemore makes it
easier to create 3D modifications to the cutting plans when modifying models made by others.

INTRODUCTION

26

1.2.3 converting legacy 2D cutting plans to 3D models

Despite our attempt to create a new 3D modeling environment, there are
still a lot of models represented in 2D formats, and entire
engineering/design careers hinge around working with these formats.
We suspect 2D cutting plans continue to remain the standard while that
is the case. And as a result, the field of laser cutting fails to really move
forwards. We therefore revisit this issue by reconstructing the legacy 2D
cutting plans into 3D models, which users can modify using our 3D
modeling environment.

Figure 7: We reconstruct 2D cutting plans into 3D models as shown here at the example of a VR
headset represented as 2D plates and the resulting 3D assembled model. We built an automatic
pipeline to achieve this, and we provide an interactive fallback for models that turn out to be
challenging.

We first extend our 3D modeling environment with the ability for
users to interactively reconstruct 2D cutting plans. Our algorithm
analyses the geometry of the 2D cutting plan in a 5-step pipeline, upon
which users load the cutting plan in the 3D environment and puzzle
together the plates. Based on high success rates, we revisit the analysis
algorithm by turning it into an automatic pipeline using a heuristics-
based beam-search algorithm. The interactive workflow continues to
serve as a fallback for the subset of models which cannot be
automatically reconstructed.

1.3 CONTRIBUTIONS
3D laser-cut models that work across typical laser cutters. The main
contribution of this thesis is that sharing models in 3D allows for
machine-independent fabrication, and furthermore allows others to
make high-level parametric changes to models. The existing 2D cutting
plans did not allow for this as they make implicit reference to specific
machines and materials. To accomplish this high-level goal, we make
the following contributions:

INTRODUCTION

27

A pipeline to detect machine-dependent features in cutting plans.
We contribute a software-pipeline to detect joints, mounts, material
thickness, and structure in 2D cutting plans. We use this to either modify
existing problematic features or to present the plates in a 3D editor for
users to assemble into a 3D model.

An algorithm to “upgrade” legacy models. We contribute an
algorithm to convert 2D cutting plans into 3D models automatically.
This allows users to make parametric changes to legacy 2D cutting plans
and share models with users that operate different laser cutters.

Novel mechanisms that counter-act kerf. We identify that kerf
affects mechanical elements that require precision to operate such as
joints, mounts, and mechanisms. We contribute with new variations of
these elements based on springs and wedges, which fabricate in a range
of materials and on all typical laser cutters.

Software. We contribute a series of software tools and systems to
demonstrate the above-mentioned contributions. We integrate the bulk
of these tools into a 3D modeling environment for laser-cutting, called
kyub, comprised of over 140,000 lines of code to demonstrate practical
impact of the work.

1.4 STRUCTURE OF THIS THESIS
We begin this thesis by reviewing the related research on personal
fabrication, portability, and the role of laser cutting (chapter 2).
Afterwards, we dedicate one chapter to each of the three steps of making
models for laser cutting portable: making 2D cutting plans tolerant to
machine-variations (chapter 3), representing laser-cut models in 3D
instead of 2D (chapter 4), converting legacy 2D cutting plans to 3D
models (chapter 5). We conclude this dissertation with a discussion of
the benefits and limitations of portable laser cutting and provide our
view on the future of personal fabrication and the resulting challenges
(chapter 6).

28

RELATED WORK

29

2
RELATED WORK

In this chapter we look at existing software support for laser cutting,
interoperability of exchange formats for other fabrication processes,
functional (non-geometric) specifications of fabrication models, and we
look at the exchange practices of hobbyist fabrication communities. We
start out with a short dive into the history of portability in the field of
computing.

2.1 SHORT HISTORY OF PORTABLE COMPUTING
Baudisch and Mueller [13], observe an analogy between the history of
computing and the state-of-art in fabrication. They use this as a predictor
of personal fabrication as the next phase, after the current phase in which
tech-enthusiasts reign the field (analogous to say, the homebrew
computer club in the late 70s [39]).

If that analogy held up, one would assume a much more advanced
state of fabrication, as orders of magnitude more hobbyists are
fabricating now, compared to the few who joined computer clubs back
then. The observation that users still largely create and share hard-to-
reproduce one-offs indicates that we may be on a different, less
favorable, track. To understand what lead to this difference, we narrow
in on the history of computing before the adoption of hobbyists.

2D cutting plans form an abstraction away from G-Code or actual
machine code. There has been a long period since the introduction of the
first computer, where commands were written in highly machine-
specific assembler code and no program would run on other machines
than what they were written for. Initially purely academically Böhm [19]
described an abstract programming language L that could be compiled
back to machine code using the language itself. Soon thereafter Hopper
coined the term compiler and demonstrated the first practical example
for the A0 programming language [52].

RELATED WORK

30

The “high-level” languages described above, analogous to the 2D
cutting plan, form an abstraction over machine code, but do not compile
across computer architectures. Strong et al., [113] described this problem
of machine-specific languages and how they keep the evolution of
computing back. The first cross-platform compiler was written in
COBOL and demonstrated in 1961 by compiling a program to run on the
UNIVAC II as well was the RCA 501 architectures [69]. In the wake of
this, McIlroy introduced the notion of re-usable software components
[58] at the first international conference on software engineering. And
finally, with the introduction of the Portable C Compiler [111] in 1973
software as complex as operating systems were written in those high-
level languages that compile to many different machines.

With this degree of portability and abstraction, the hobbyists who
embraced computing back in the late 70s had a technical basis to build
on the work of others and run their code across different platforms. A
crucial difference to the fabrication tech-enthusiasts we see now.
Therefore, the analogy with computing and its related promise of
mainstream adoption, does not add up unless we go back and address
the problem of portability first.

2.2 SOFTWARE SUPPORT FOR LASER CUTTING
As stated in the introduction, editing 2D cutting plans for laser cutting
is hard and requires substantial domain knowledge about the machines
and materials at hand [13]. As a result, researchers have explored several
tracks to make laser cutting more accessible: reducing the barrier to
interface with the materials and machines, embedding the required
domain knowledge in design tools and systems, and proposing alternate
workflows for laser cutting to bypass such design challenges.

2.2.1 reducing the barriers to interface with materials and
machines

Uslan [122] studied mechanical properties of laser cutting and identified
that kerf is caused by a combination of many factors such as the air
circulation, the material, the material structure, the type of laser, the
cleanliness of the lens and more. Yildrim et al., [137] confirm that users,
including professionals struggle with the lack of control over these
parameters when using fabrication equipment. Controlling either of
those dimensions therefore increases the reliability of the laser cutter.
SensiCut [32] supports users with more accurate data about the specific
material inside the machine, they equip laser cutters with a speckle

RELATED WORK

31

sensor to automatically identify material properties before the cutting
process. This additional information allows for better kerf control and
prevents users from cutting harmful materials. Kerfmeter [63] attaches a
motor and camera to the laser cutter to provide an automatic kerf
calibration routine before cutting.

Others have focused on building software support for later stages in
the laser cutting process, Fabricaide [107] lets users preview the nesting
of plates, and material consumption while modeling. This feedforward
in the fabrication workflow allows users to prevent unanticipated
situations. PacCAM [103] provides an interface for the nesting itself. In a
later stage of the fabrication process where users assemble individual
pieces into a 3D model, Roadkill [2] reduces effort and increases the
speed of the assembly process, and Daedelus in the dark [24] makes this
process accessible to visually impaired users.

2.2.2 embedding the required domain knowledge in design
tools and systems

Researchers have been building design tools and systems to reduce the
effort of hard and time-consuming challenges in the modeling process.
Elements that require high precision such as joints, mounts, and
mechanisms are hardest to design as a user in conventional 2D editors,
while software tools excel at providing the required precision.
Kim et al., [64] showed that users face challenges when adjusting
models for machine-precision, beyond just laser cutting. Joinery [140]
therefore generates joints in 2D cutting plans automatically. MetaSVG
[136] encodes data about joints in svg files, allowing the joints to adjust
to variations in kerf or material thickness. And sketch-n-sketch [49],
independent of the specific laser cutting domain, allows users to
manipulate SVG files using a parametric design language.

A major milestone was the shift towards 3D modeling for laser
cutting, specifically with FlatFab [29] focused on intersecting plates,
while FreshPressModeler [26] generates enclosed structures from 3D
models. CutCAD [49] lets users still manipulate the model in 2D while
previewing the result as a 3D visualization. CODA [125] aids with
alignment of 3D models in general-purpose editors. In the context of
furniture, DESIA [127] converts 3D models to interlocking structures
and SketchChair [104] lets users model using a sketch-based interface.
Finally, Laser Origami [81] uses 2D cutting plans as input but produces
2.5D models by bending material within the machine, and LamiFold [70]
achieves that for mechanisms by laminating plates after cutting.

RELATED WORK

32

2.2.3 alternative fabrication workflows

A completely different approach to abstract away from 2D cutting plans
is the idea of interactive fabrication [129]. In ultimate form this takes
away the role of models as an engineered effort and facilitates walk-up
use of fabrication equipment. Constructable [82] is an early practical
example of this where users walk up to a laser cutter and instead of
sending a 2D cutting plan, they use laser pointers to directly specify
what they want to make on the machine. RoMa [92] brings this form of
interactive turn taking to 3D printing using AR to preview results, and
FormFab [83] is the first true interactive fabrication workflow in that it
performs real-time deformation while the user uses their hands in 3D as
input.

Beyond the specifics of laser cutting, Carpentry Compiler [130] is more
broadly focused on woodwork, it creates an assembly-level
representation of carpentry models and allows users to make parametric
changes. While exporting to assembly instructions using a variety of
more and less manual fabrication tools. LaserFactory [84] aims to extend
laser cutters with more broad fabrication workflows consisting of
multiple operations like pick-and-place or soldering into a single
workflow. Similar to how Katakura et al., [62] let 3D printers extend
their capabilities by fabricating a range of new tools.

2.3 INTEROPERABILITY OF EXCHANGE FORMATS
Beyond laser cutting researchers and professional users have struggled
to create more interoperable exchange formats. There is a wealth of
representations and formats around to capture 3D structures, often
targeted at assemblies of parts or 3D printed structures. Attene et al., [8]
provide an overview of representations and the trade-offs between them,
their high-level categories are representations based on volumes,
surfaces, primitives, and procedural generation. This variety of
representations forces users to balance upfront how to represent objects
for their given use-case [45]. There are interchange formats like STEP
[93], which in principle support the full range of representations, but in
turn require a definition and maintenance of the content in all different
representations and then allow switching between representations.

There are tools to convert between representations, especially
converting from shape models as composed in general purpose 3D
modeling environments to fabrication-aware representations. These are
typically one-way conversions making it hard or impossible to reverse
the process. In the context of laser-cutting, the most common conversion

RELATED WORK

33

tool is Slicer for Fusion360 [10] (discontinued since 2020). This tool
allowed users to convert 3D models to a range of different typical
structures of plates approximating the initial shape. Slices [28] is a
specialized version of this achieving an even stronger relation between
the initial volume and resulting plate structure. Fresh Press Modeler [26]
and the follow-up publication on bevel joints [116] achieves such
conversion specifically for volumetric and watertight models.
Furthermore, Platener [15] and CoFiFab [114] convert generic shape
models to partially laser-cut and partially 3D printed structures for fast
fabrication and iteration.

Outside of the laser-cutting domain, there are various conversion
tools [43] however the process tends to be lossy, making features that
exist in another mode undiscoverable, and typically the conversion
comes at a cost of expressivity, or even require fixing of models that
break in the process [91]. For example, Wu et al., [131] recover structure
of meshes that may result from poor 3D scans. InverseCSG [33] converts
primitive models based on triangular boundary representations to a
CSG tree, enabling powerful volumetric editing. Other approaches aim
to identify higher level structures in the models such as Fish et al., [38]
who represent shape families, Tulsiani et al., [119] who machine-learn
using primitive volumes in models to identify abstract shapes, and Grass
[72] detects shape patterns allowing for high-level parametric operations.
Finally, Shape-up [20] presents a geometry processing framework using
projection operators that works reliably across polygonal meshes,
volumetric meshes, point clouds and other discrete geometry
representations.

2.4 FUNCTIONAL SPECIFICATIONS OF FABRICATION MODELS
Outside of the field of laser cutting, researchers have investigated
capturing models using high-level properties besides their geometry.

Researchers express functionality in shape-models by extending
them with micro- and meso-level data. Mesh2Fab [134] achieves
material-specific fabrication by changing the shape to adjust for material
stiffness. They use example models made using wood and metal, the
software suggests variations based on the material options. In Deformable
Characters [110] users specify a starting shape and target poses for a
character to take, the system computes the material composition and
required machine operations to fabricate the result. OmniAD [77]
captures meso-level data in the form of aerodynamic properties in the
models, initially based on a data-driven approach in Pteromys [121].

RELATED WORK

34

Others have varied structures within materials to achieve similar
functional properties. Bickel et al., [17] adjust the material structure to
support a desired deformation profile. They demonstrate this at the
example of a shoe sole, after measuring the deformation of various
materials, they represent this in the modeling environment and then use
that data to create an abstract representation that varies its material
structure based on the desired deformation. And Metamaterial
Mechanisms [55] use that capability to embed entire mechanisms within
the material itself.

Spec2Fab [25] is a reducer-tuner model to capture properties like
deformation, optical properties, surface finish, color representation and
other higher-level parameters in models for multi-material 3D printing.
Foundry [123] extends this idea with a hierarchical model of materials to
further capture the variety of material properties and their respective
outcomes. And OpenFab [124] provides a rendering pipeline for multi-
material fabrication where they express the material behavior in the
form of “shaders” (they call fablets) that can be applied to existing
models to experiment with different material properties. Taxon [71]
expands on that idea in more experimental fabrication processes by
capturing the model in a formal language and interfacing directly with
fabrication machines.

Such functional specifications not only allow for less machine-
specific workflows, but also open the space for interesting new
applications. Zhang et al., [138] use functional descriptions of
mechanisms to embed them in new shapes. Where Grafter by Roumen et
al., [102] remix mechanisms to be into more advanced mechanical
models, allowing some initial building on the work of others.
Funkhouser et al., in Modeling by Example [41] demonstrate how to turn
modeling into a search problem using large amount of data about parts
and connectivity. Which later is extended in Design and Fabrication by
Example [105] by customizing models on a functional level using
mechanism templates. Finally, Schulz et al., [106] allow users to evaluate
design trade-offs in real-time by parametrizing the search space of 3D
model designs using abstracted properties of models.

2.5 SHARING AND REMIXING OF 3D MODELS IN HOBBY COMMUNITIES
Flath et al., [37] studied sharing and remixing behavior on thingiverse
and highlight the impact of the thingiverse customizer (a tool in the
browser to modify other people’s parametric models). They show how
an increase in remixing and building on the work of others lead to a

RELATED WORK

35

massive increase in the number of models being shared on the platform.
Alcock et al., [6] agree that the customizer is powerful but add that it
lacks expressivity and ease-of-use. Grafter [102] is a software tool
targeted to facilitate such forms of online remixing in the context of 3D
printed mechanisms, and the PARTS framework [49] enables users to
specify mechanical parametric models, which again fosters remixing
and modifying other people’s models. Buehler et al., [21] demonstrate
how building on the work of others and remixing enabled a growing
online community to create a range of assistive technology devices.

ShapeAssembler [61] drives this one step further by developing a
domain specific language that describes how geometry is connected and
what is structurally sound assembly. They use this language to train a
neural network on available shape repositories to then allow users to
edit models by synthesizing assemblies as users modify parameters of
the “program of the 3D model”.

In observing the maker community, Hudson et al., [54] identified
the need for better tools for remixing and customizing. And related to
that, Stemasov et al., [112] argue for remixing and customization as a
sweet spot between modeling and simply downloading models made
by others and that this a key enabler for making personal fabrication
truly ubiquitous. We have seen this play out in other fields as well such
as the open-source software community [68].

36

37

3
2D CUTTING PLANS TOLERANT TO
MACHINE VARIATIONS

As introduced in the introduction, different laser cutters and materials
lead to a variation in the amount of material removed when cutting.
Constructions of advanced 3D models using laser cutters are held
together by joints and mounts, and some gain mechanical functionality
from mechanisms. These components heavily rely on precise tolerances
and thus fail under variations in kerf.

In this chapter we introduce a tool that replaces kerf-dependent
elements (joints, mounts, and mechanisms) with elements that are much
more tolerant to variations in kerf, leveraging mechanical hacks. We first
present the mechanical hack for joints and mounts, we then continue
with mechanisms, and present an overarching software architecture of
the tool.

3.1 MOUNTS AND JOINTS THAT FABRICATE ON ANY TYPICAL LASER
CUTTER
We have made the model shown in Figure 8c kerf-independent
automatically using our simple web-based software tool we call
“SpringFit” [101]. It takes 2D cutting plans as input (e.g., svg), locates
mounts and joints and replaces them with spring-based mounts and
joints, and produces the same type of 2D cutting plans as output.
SpringFit thereby makes models fabricate reliably on a range of
materials and any consumer laser cutter.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

38

Figure 8: (a) this model fails to assemble when fabricated on a different laser cutter than it was
designed for. (b) springFit tackles this by replacing traditional mounts and joints with cantilever-
based mounts and joints. (c) the entire model after processed with springFit fabricates reliably on
any laser cutter and in a range of materials.

3.1.1 Mounts and Joints based on Cantilever Springs

To address the problem for mounts and joints highlighted in the
introduction, we propose replacing press fit-based mounts and joints
with a different type of mounts and joints based on cantilever springs [14].

The model shown in Figure 8b features a mount based on a
cantilever spring (generated by springFit) that holds the button in place.
A cantilever spring is a long and thin element that is connected to the
laser cut model at one end, while the tip at the free end makes physical
contact with the object it is supposed to hold, here the button. This
spring is curved to accommodate the shape of the button; cantilever
springs generated by our system are otherwise straight.

As shown in Figure 9, the user mounts the button by inserting it into
the mount (this works best if done at an angle, so that the button holds
the cantilever spring back until fully inserted).

Figure 9: (a) A cantilever spring-based mount. (b) The button is best inserted by sliding it in at an
angle and optionally spinning it against the direction of the spring. (c) Done.

Figure 10 shows the resulting benefit of using cantilever-based
mounts: these mounts continue to work irrespective of what machine
they are fabricated on and what material they are made of. They
fabricate reliably on (a) a machine of small kerf, (b) a machine of wide
kerf, (c) from different material. (d) They even allow inserting a slightly
bigger button.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

39

Figure 10: The use of cantilever-based mounts and joints allows one and the same models to
fabricate reliably (a) on machines with small kerf, (b) with wide kerf (here simulated by eroding the
model by 0.2mm), and (c) different material, and (d) even slightly different sized buttons (this one
is 0.3mm bigger in diameter).

3.1.2 Why it works

Figure 11 illustrates why cantilever springs succeeds where press fits fail.
(a) The springs formed by a press fit require the surrounding material to
compress. Such “compression-based” springs are very stiff, i.e., even a
small compression requires a large force. Implementing a certain desired
force thus requires a very specific diameter, while minor changes in
diameter easily result in a force of zero or a force large enough to break
the model.

(b) Cantilever springs, in contrast, act by bending material, which
makes them much less stiff. Obtaining a certain desired force can thus
be achieved with a wider range of diameters. Since the cantilever
tolerates comparably large changes in diameter, switching to a different
fabrication machine or material is less of an issue.

Figure 11: (a) Traditional press fit-based mounts and joints are very stiff, thus only a tiny range of
“deflection” allows it to stay in the desired force range. (b) The cantilever solution affords a
substantially bigger range of deflection.

Cantilever springs make it easy to tune their stiffness. As illustrated
by Figure 12, we can increase (a) a spring’s stiffness by a factor of 8 either
(b) by doubling its diameter or (c) by cutting its length in half (as both
parameters affect stiffness cubed).

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

40

Figure 12: We can increase (a) a spring’s stiffness by a factor of 8 either (b) by doubling its diameter
or (c) by cutting its length in half.

As shown in Figure 13, the combination of thickness and length
allows tuning the spring’s desired tolerance. (a) This cantilever spring
was designed to allow for typical variation in kerf (e.g., 0.1mm at 10N).
(b) This longer (yet thicker) cantilever spring is as stiff as the previous
spring but accommodates 7.5x more variation of up to 1.5mm, allowing
users to even swap out the button for an (up to 1.5mm) larger button,
such as the one from Figure 10d.

Figure 13: (a) This short and thin cantilever spring and (b) this long and thick cantilever spring are
equally stiff. The latter one can deform further though, thus accommodates, for example, larger
variations in kerf.

3.1.3 Cantilever-based notch-, f inger- and mortise-tenon
joints

While so far, we have talked only about mounts, we have created
cantilever-based equivalents for press-fit joints as well. Figure 14 shows
cantilever-based (a) finger joints (c) notch joint (aka cross joint) and (e)
mortise-tenon joints and how they are assembled. Many models
combine multiple joint types, such as the model shown in Figure 8

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

41

Figure 14: Cantilever spring versions of (a) finger joints and (b) how they assemble. (c,d) notch joints
or cross joints and (e,f) mortise-tenon joints.

To simplify assembly, finger-joints generated by springFit provide
rounded corners, as shown in Figure 15.

Figure 15: the rounded edge helps to push the spring smoothly when assembling.

3.1.4 Classification and conversion Algorithm

SpringFit proceeds in two automatic steps. First, it analyzes the cutting
plan at hand to locate press fit-based mounts and joints, i.e., mounts,
finger joints, cross joints, and mortise-tenon joints. Second, it replaces
these mounts and joints with cantilever-based counterparts. It thereby
computes optimal springs for each individual mount and joint. In a third
manual step, a user can come in and override the suggested joints and
mounts using a simple browser UI (as shown in Figure 22).

SpringFit’s mount and joint classifier

As a first overview, Figure 16 illustrates the criteria springFit's joint
classifier uses to locate (a) a circular mount (b) a cross joint, (c) a finger
joint, or (d) a mortise-tenon joint in the svg file it is processing.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

42

Figure 16: SpringFit's joint classifiers.

As shown in Algorithm 1, springFit uses the joint classifiers of
Figure 16 to detect which segments in the svg represent what type of
joint. It relies on the heuristic to find material thickness m, by plotting all
line segments in a histogram ranging from 0 to 30mm with 100 equal
bins. The most frequently occurring dimension is considered m. After
classification, the SpringOptimizer (see 3.1.6 Cantilever Spring
design) provides springFit with the optimal spring parameters for the
given force, tolerance, and spring types. A final pass creates the actual
output file in which the identified spring elements are exchanged for
actual spring geometry.

Algorithm 1: spring placement

Input: labeled SVG file D
press-fit force F
tolerance t

Output: SVG file d*
lineLengths ← new array()
for each element ∈ D do
 add element.length to lineLengths
m = max(bucket_sort (lineLengths from 1 to 10mm))
for each class ∈ D do
 if class is labeled(“press-fit”)
 for each element ∈ class

if element= “circle” or “rectangle” then
 delete element
 insert mount-element
 if element = “path” then
 for each segment ∈ path

if segment.lentgh = m and

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

43

 segment[-2].length = m
if segment[-2].angle = segment.angle = 90 or
-90 then

replace segment with “fingerjoint”
if segment[-1].length = segment [-3].length
then

replace segment with “crossjoint”
spring = SpringOptimizer(springTypes,F,t)
for each element ∈ D do
 if element.type = “fingerjoint” then
 insert spring.finger to element
 if element.type = “crossjoint” then
 insert spring.cross to element
 if element.type = “mount” then
 insert spring.mount to element
 add element to d*

export d*

Generating mounts

As illustrated by Figure 17, springFit generates round mounts to make
sure that any matching object will be held at three points forming an
equilateral triangle. (1) SpringFit finds the inscribed equilateral triangle
in the circle, (2) scales it down to fit the minimal required circle (by using
the given tolerance requirement), (3) translates that circle until it
intersects with the original cutout, and (4) overlaps these two circles so
the final cutout will have shape reminiscent of an oval.

Figure 17: Mounts generated by springFit have the shape of the black shape shown here. It allows
holding round physical objects at three points that together form an equilateral triangle. The red
circle and the blue circle illustrate this for two specific diameters.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

44

Cross joints

As illustrated by Figure 18, springFit classifies cross-joints by locating
pairs of opposing line segments of the same length in the model with a
segment of material thickness in between and straight angles.

The feature detector finds a cross joint in the model shown in Figure
18. First, (a) the path is split in segments (the dashes are the start of a
new segment). (b) springFit loops through segments until one is found
with length m (material thickness). (c) it then loops 2 more segments and
checks whether element n-1 and n-3 have the same length (d) if so, it
checks whether the angles are both 90° (or 270°) and uses the direction
of the angles to determine how the spring will be inserted.

Figure 18: Notch joint classification.

SpringFit modifies this joint by inserting a cantilever spring next to
the slit. It rounds the edges to prevent more brittle materials from
cracking at sharp corners. The spring for cross joints lines up with the
cutout.

Finger joints

SpringFit locates finger joints as illustrated by Figure 19. (a) springFit
loops through the segments (b) until a segment with length m is found.
(c) it considers two segments forwards. springFit checks whether the nth
segment has also length m (d) and confirms by checking the angles. It
again uses the direction of the angles to determine how the spring will
be inserted.

Figure 19: Finger joint classification.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

45

SpringFit’s finger joint classifier shown in Figure 16c, identifies two
parallel edges of “material thickness” length and a 90-degree connector
between them as well as 90-degree connections on both other sides of
the segment. The replacing cantilever spring has the three core
properties of length, displacement, and thickness, are generated by
springFit’s spring optimizer (more detail in Section 3.1.6 Cantilever
Spring design).

Mortise-tenon joints

SpringFit classifies and converts mortise-tenon-joints as a side effect of
mount and finger joint classification and conversion. One side of the
joint is equivalent to a finger joint. The other side is a rectangular
cutout—these are recognized and processed as rectangular mounts.

3.1.5 technical evaluation of conversion

To validate the functionality of springFit, we ran it on 14 models, which
we downloaded from Thingiverse. We picked these models as to show
the maximum variety of joints and mounts.

We used 7 of these models to test our claim of material-independence
by converting models and then fabricating them from both plywood and
acrylic. We used the other 7 models to test our claims of machine-
independence by fabricating them on two laser cutters that deferred
quite substantially in terms of kerf (0.12 vs. 0.20mm).

Results

Eight of the fourteen models converted in fully automated fashion,
Figure 20 shows four of them.

Figure 20: Four of the models we converted and fabricated as part of the first technical evaluation.
(thingiverse IDs on the label)

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

46

SpringFit completed the conversion also for the other six models; the
results, however, required manual fixing. (1) Three models had
produced intersecting cantilever springs, which we resolved by
manually deleting one or more springs (springFit allows for this, as
shown in Figure 22). (2) Two models contained parts that were too small
to contain the cantilever springs as shown in Figure 21. (3) One model (a
heart shaped box) could not be converted because it contained bent
fingers as shown in Figure 21c, springFit was unaware of this joint type.

Figure 21: Models springFit could not convert (a,b) two of the models that contained parts too
small to hold the required cantilever springs. (c) a model with non-straight finger joints.

All three issues are solvable in the long run. Future versions of
springFit should address them by adding a better “routing algorithm”
for the cantilever springs, by folding cantilever springs into the available
space (similar to how springFit already produces curved springs), and
by adding additional joint classifiers.

SpringFit identified all mounts and joints contained with 4% false
positives. We inserted on average 105 springs per model (with the
arcade of Figure 17c as extreme outlier with 477 springs). On average 4.1
springs were placed at cutouts that are not press-fit (and thus have been
removed in the UI). The model with the most redundant springs was a
Theremin model which has a lot of holes for bolts that are not press-fit
(14 springs (27%) are not needed).

Users may choose to simply leave them (they generally do not really
affect the model’s functionality) or choose to remove them in the UI. For
familiar models, the simple interaction shown in Figure 22 typically
takes only a few clicks.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

47

Figure 22: (a) SpringFit falsely classified this cutout as a press-fit and consequently created a
cantilever spring for it. Leaving it in does not affect functionality. Alternatively, a mouse click in
springFit reverts this mount to (b) the original version.

3.1.6 Cantilever Spring design

At the lowest level, springFit is about cantilever spring design. When
converting models, springFit calls the function
generateSpring(force,tolerance) that generates optimal
springs for the mount or joint at hand.

The first objective of cantilever design is to create a spring with a
well-defined holding force. Holding forces for small buttons and joints
may range anywhere from 1 to 5N. We made 5N the default in springFit,
but users can override it.

The second parameter springFit optimizes for is the amount of
tolerance the spring offers, i.e., the size difference between the smallest
and the largest object this mount/joint will be able to hold. This
parameter defines the deflection that the spring-fit will be able to accept.
For example, when the user defines 1mm of tolerance, the system will
generate a spring that exerts the desired holding force around ±1mm
from the original point of fit.

The generateSpring function takes these two input parameters
and minimizes the size of the spring. It has to conform 3 additional
constraints: (1) the material should not break, (2) the force needs to be
consistently applied within the given tolerance and (3) the resulting
spring should be able to fabricate (not too small, not too big).

Design parameters and constant stress springs

As described in section 3.1.2 “why it works”, the stiffness of a cantilever
can be varied by changing its shape. SpringFit specifies the stiffness k in
the F=kd relationship of the cantilever by using the shape parameters, l:
length, t: thickness and d: deflection.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

48

The smallest possible spring is one that has no redundant material.
This happens when the stress of the spring is distributed evenly across
the material as shown in Figure 23. To achieve this, springFit uses the
constant stress cantilever model. Similar to Shin et al. [108].

Figure 23: Design for a constant-strength cantilever. (a) Compared to usual ‘bar’ cantilever, (b) the
constant-stress cantilever has constant bending stress along its length induced by input force at
the end and thus is more space efficient.

Force/deflection relationship for cantilever springs

Next, springFit needs to know how the shape parameters influence each
other and the required spring behavior. This is defined by the force-
deflection relationship.

To acquire the force-deflection relationship for a cantilever, we use
the Euler-Bernoulli beam theory [1]. The deflection of a cantilever 𝑑
under the bending moment 𝑀 is described by the elastic curve equation
for the path along 𝑥:

𝒅"(𝒙) = 	−
𝑴
𝑬𝑰 (1)

E is the Young’s modulus of the material, and I is its moment of
inertia of a cross-section which is a shape dependent value which can be
calculated as I=mt3/12. The bending moment M is calculated by
multiplying the distance from the point of force F to the point of interest
(in case of a straight cantilever this will be M=Fx).

For curved springs with radius R and angle θe, springFit uses
Castigliano’s method [22] to derive the deflection. With the given elastic
energy in the cantilever U, we calculate the deflection at the end.

𝜔 =	
𝜕𝑈
𝜕𝐹

(2)

F is the force applied at the end of the cantilever. To calculate the
elastic bending energy stored in the spring, we integrate given the path
C and small element 𝑑𝑠 of the cantilever. We neglected
tension/compression energy here.

𝑈 = .
𝑀!

2𝐸𝐼
𝑑𝑠

"
(3)

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

49

Thus, we can derive F=kd relationship resulting from solving
equations (1)-(3). Table 1 shows the equations, which shows how much
deflection can be caused by force F, given the shape of cantilever.

Table 1: The calculations based on the cantilever dynamics model for each cantilever design we
used in by springFit. I0 here means moment of inertia of section at x=l.

shape constant-stress deflection d thickness t

straight 2𝐹𝑙#

3𝐸𝐼$
 3

6𝐹𝑥
𝑏𝜎%

curved 𝐹𝑅#

𝐸𝐼$
8𝑠𝑖𝑛𝜃&. √𝑠𝑖𝑛 𝜃 𝑑𝜃

'"

$
 3

6𝐹𝑅
𝑏𝜎%

𝑠𝑖𝑛𝜃	

Optimization and criteria

SpringFit aims produces the smallest possible springs as this minimizes
aesthetic and structural impact in the model. Since there are multiple
parameter configurations that lead to the same stiffness (see Figure 12),
springFit uses an optimization algorithm to pick the optimal design.

We write these criteria as an objective function L that penalizes for
size of the spring (sizeof(𝜋)). For springs to work across materials, we
choose the minimum value of Young’s modulus E and maximum stress
𝜎()* from given set of materials specified by users (default are the
typical materials used for laser cutting cardboard, plywood, acrylic), the
parameter s is a safety factor to compensate for slight variations within
the material (e.g., grains of the wood). We have a lower bound for the
force (otherwise it would not be press-fit) Following these criteria, the
optimization problem of the cantilever design 𝜋 with design parameters
length, thickness, and deflection π: {l,t,d} can be described as follows:

𝜋∗ = argmin
,
𝐿(𝜋)

s. t.

⎩
⎪
⎨

⎪
⎧𝐿(𝜋) = sizeof(𝜋)

𝜎()* <
𝜎-
𝑠

	𝐹 > 𝐹(./
(4)

We obtain the actual values of Young’s modulus 𝐸 and the
maximum strength 𝜎()* of the materials from material testing (see
section 3.1.7 “Technical Evaluation”). For solving the nonlinear
optimization problem with multiple constraints, we use the COBYLA
algorithm from the NLopt C++ library (nlopt.readthedocs.io).

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

50

With help of this procedure, springFit determines the optimal length,
thickness and deflection of the cantilever that produces required force
across different materials or kerfs.

3.1.7 technical evaluation of spring performance

To verify that (1) cantilever springs made from plywood deliver reliable
repeatable force and tolerance, (2) to test our claim that a single spring
design including its dimensions works in plywood and acrylic, and (3) to
verify the design parameters of our springs, we measured forces and
tolerances of springFit-generated springs using a testing setup.

Test set-up

The set-up we created is shown in Figure 24. It uses a linear actuator to
automatically push a spring in increments of 0.1 mm against a force
gauge (SAUTER FK-100).

Figure 24: Spring strength example setup. Linear actuator that moves test pieces generated by
springFit into a digital force gauge.

Specimen

The springs we tested were at least 3mm thick at their base and were
designed to allow for at least 1mm deflection. We repeated each test with
10 springs. We generated springs optimized by springFit with two
different forces. We tested straight and curved cantilever springs, from
plywood and acrylic (so 2x2x2x10 samples). For plywood test pieces, we
laser cut the springs along the grain of the material of the outer layers
which is the easier side to break with the applied force.

Results

Figure 25 shows the results for the straight cantilever springs. As the
diagrams show, the tested springs behaved well, i.e., produced reliable
and repeatable force, which proves our optimization criterion (1).

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

51

The straight cantilever springs produced a consistent force of
around 5[N] largely irrespective of the material (blue line = acrylic vs.
orange line = plywood). This means that the tested springs were
functional across materials, which also supports our second criterion (2).

Figure 25: (a) Force-deflection diagram of generated cantilever springs with input force of up to
10N. Red dashed line shows the input minimum force and green band shows the input
tolerance=0.1mm. (Blue = acrylic, orange = plywood) (b) Same diagram of bar spring with 10N.

Figure 26 shows the corresponding results for the curved springs, as
used in the round mounts shown in earlier figures. As the diagram
shows, the curved acrylic springs produced a slightly larger deflection
given the same force compared to the straight cantilever springs.
Surprisingly, the curved plywood springs were roughly half as stiff as
their straight counterparts, i.e., they deflected twice as much.

This was caused by the non-elastic behavior of the curved springs
breaking the assumption on Castigliano’s method [22]. Since the curved
springs have larger deflection compared to bar springs, it will likely fail
to produce the linear elasticity assumed in the cantilever model.

Figure 26: Same diagram for curved cantilever springs.

In summary, all tested springs behaved well. The stiffness of the
curved plywood springs was unexpected, but still predictable. This
allowed us to embody these findings into springFit by tuning our
models there. This now allows springFit to produce springs of desired
properties reliably irrespective of materials and shape. More testing
would be required to find out whether the springs keep their
characteristics under highly frequent or long term (dis)assembly.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

52

3.2 KERF-CANCELING MECHANISMS
While springFit makes models with joints and mounts machine-
independent, advanced models for laser cutting such as microscopes,
robots, vehicles, etc. contain mechanisms. These mechanisms rely on
precision and thus suffer from variations in kerf.

We present “kerf-canceling mechanisms” [97]. Kerf-canceling
mechanisms replace laser-cut bearings, sliders, gear pairs, etc. Unlike
their traditional counterparts, however, they keep working when
manufactured on a different laser cutter and/or with a different kerf
value. Kerf-canceling mechanisms achieve this by adding an additional
wedge element per mechanism (such as the moon-shaped inset in the
bearing in the center of Figure 27).

Figure 27: This laser-cut microscope (based on thingiverse id: 31632) contains three types of
mechanisms that allow the microscope to adjust focus. By using kerf-canceling mechanisms, the
focus adjustment operates reliably, independent of how much material the laser cutter that
produced the microscope removes (kerf).

Our software tool KerfCanceler locates certain types of mechanisms
in SVG files and replaces them with their kerf-canceling counterparts.
The resulting models function irrespective of the laser cutter or kerf
values they are fabricated on—making these models particularly
suitable for sharing.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

53

3.2.1 Kerf-canceling bearings

Kerf-canceling mechanisms, such as kerf-canceling bearings address this
issue with the help of one additional component: the crescent-shape
inset shown in Figure 28a. The figure shows how the mechanism is
assembled by inserting the inset and rotating it clockwise. This jams the
inset, locking it in place. At this point, the rotation of the inset has
reduced the diameter of the remaining opening. The specific design of
the inset causes this opening to always be of the same size, irrespective
of the kerf value of the machine it was fabricated on.

Figure 28: Assembling the kerf-canceling bearing.

As illustrated by Figure 31a, the spiral inset consists of two logical
elements, which we call jammer and inverter.

The jammer is the shape on the outside of the inset. To illustrate how
it works, consider a wedge [34]. As illustrated by Figure 29, a wedge-
shaped inset in a wedge-shaped cutout jams when slid towards the
tapered side of the cutout. If we increased kerf, the inset slides further—
but ultimately it will jam just the same. Note that the distance the inset
slides is proportional to the kerf of the machine.

Figure 29: (a) A wedge inset jams by sliding it to the right. A larger kerf value removes the red
region, (b) allowing the inset to slide further before it jams.

Applying a polar transformation to the wedge produces the spiral
inset we use in kerf-canceling bearings (Figure 30). The spiral version
jams when rotated. In analogy to the wedge, the inset’s final orientation
reflects the kerf value.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

54

Figure 30: (a) The kerf-canceling bearing. (b) when the model is cut with more kerf, the inset gets
smaller while the cutout gets wider. (c) the resulting inset falls out (d), however the self-similar
shape of the inset makes that it always jams when rotated in place, even as kerf gets bigger.

The inverter is the shape on the inside of the inset. The key idea
behind the inverter is that it bears the same shape as the jammer—but
mirrored. Based on the jammer translating size (= kerf) into rotation, the
inverter translates rotation back into size. Since its shape is mirrored
with respect to the jammer, it does so inversely though, i.e., the further
it is rotated, the more it reduces the opening in its center, i.e., the bearing.
This allows it to keep the size of the bearing constant. With other words,
a larger kerf value makes the opening wider, but also leads to additional
rotation of the jammer, which in turn causes the inverter to narrow the
opening further, canceling out the effect of kerf.

Figure 31: (a) The kerf canceling bearing consists of 2 key elements: (b) the jammer which is
characterized by a self-similar nautilus shape that jams in place when rotated and (c) the inverter,
which converts the rotation of the jammer back to a bearing, which ultimately holds the axle.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

55

As illustrated by Figure 32, kerf-canceling bearings produce the
same fit, irrespective of kerf and thus irrespective of the machine they
were fabricated on. Even with a simulated kerf of 0.45mm the bearing
continues to produce the desired fit. This exceeds the most extreme
typical kerf value in a laser cutting survey by cutlasercut.com [30]. Even
when executed on a milling machine with a mill bit of 1.5mm, the axle
fits the resulting bearing well.

Figure 32: Kerf-canceling bearings fit their axle under variation of a wide range of kerf (by eroding
the model). Even when cut on a milling machine with much more kerf.

Technical details

To help readers replicate our designs, we now present the necessary
technical details. We begin with the jammer. The slope (s) is constant
s = dr/dθ, the radius thus decreases proportional to the angle θ from the
center of the spiral. A given point p0 on the contour of the jammer has a
radius r0 and corresponding angle θ0. Another point on the same contour
pθ rotated by an angle of θ from r0 is thus rθ = r0-s*θ. We can rewrite this
to calculate the angle θ between two points, given their radii: θ = (r0-rθ)
/s.

The cutout and the jammer have the same slope s. Because of kerf,
the radius of the inset is k shorter (the red zone in Figure 31b). There is a
point on the inset with r0-k which, before jamming the inset, is aligned
with p0. This point jams in the contour where the radius cutout of the
contour is r0-k. We insert r0-k as rθ in the formula derived above, and
find that the angle θ is (r0-r0-k) /s = -k/s.

The inverter has the same slope as the jammer, flipped (-s). A point
on that spiral can be calculated using: rinv,θ = rinv,0 + s*θ (Figure 31c). If we
substitute θ with -k/s, we get: rinv,θ = rinv,0 + s*(-k/s), this simplifies to
rinv,θ = rinv,0 - k. Kerf eroded the inset by k, so the radius from the center is
k longer for every point, this results in: rinv,θ = rinv,0-k+k or rinv,θ = rinv,0. We
conclude that the kerf added, combined with the jamming of the inset
results in a bearing of constant size.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

56

Figure 33: (a) The inset has to span 180 degrees; however, kerf makes it shorter. (b) By extending
the spiral and making the tip less sharp, the inset remains stable as kerf increases.

Kerf affects the length of the spiral inset, i.e., if kerf gets wider, the
inset gets shorter. To prevent it from spanning less than 180° (Figure 33a),
we extend the spiral further than just 180°, by extending it on top (Figure
33b). To make the length of the inset less susceptible to changes in kerf,
we round off the bottom tip.

For even better results, we manufacture the inset mirrored. As
illustrated by Figure 34, kerf in laser cutting results in a non-straight
edge. By mirroring the inset in the cutting plan, it gets cut from the other
side, resulting in a part with the slanted edge facing the opposite
direction. This allows the slanted edge of the inset to line up with the
slanted edge of the rest of the mechanism (Figure 34c). An informal
validation shows that flipping the inset increases the friction force by
about 60%.

Figure 34: (a) Kerf in a laser cutter is slanted. (b) when cut from the same side, edges poorly align
(c) Flipping one side of the plate results in a better fit. (d) Our software tool flips insets by default
to support this.

3.2.2 kerf-canceling sliders

We have applied this concept of jammer and inverter to three other types
of mechanisms. Sliding mechanisms can be orthogonal or parallel to the
surface of the model. In both forms, the kerf canceling variant narrows
the slit to counteract kerf. Figure 35 shows kerf-canceling sliding
mechanisms. We use the principle of the straight wedge (Figure 29). The
V shape between the two prongs of the inset lets it slide down to narrow
the slit, a spiral wegde on top locks it in place as shown in Figure 35c.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

57

The parallel slider is narrowed down by pushing a thin spring
towards the slit. The self-similar nautilus wedges responsible for this are
jammed in the surface and push the spring by 1x kerf from both sides.

Figure 35: Kerf-canceling sliders (a-d) orthogonal, (e-g) and parallel. (a) The cutout between the
prongs lets the shape slide down by 2x kerf. (b) The spiral wedge on top locks it in place. (e) For
parallel sliders we insert two simple nautili next to a thin bar (f) the bar gives way as the nautili push
by 1x kerf.

3.2.3 kerf-canceling gears

The kerf-problem with gears (and other mechanisms that interlock into
each other) is that kerf makes them smaller, resulting in teeth of one gear
to be further away from those of another. To cancel out kerf, we push
them towards each other. As shown in Figure 36, we cut a slit around
the bearing of one gear and add a wedge next to it to push it towards the
other gear. The resulting translation makes the gears mesh again. To
keep the bearing in the same plate as its surrounding we do not cut it
out all the way but keep it connected to the plate with a thin (flexible)
extension.

Figure 36: Assembly of the kerf-canceling gear pair. It jams the gears towards each other to
compensate for the shorter teeth (a) Insert the bearing wedge, (b) then add a straight wedge next
to it, which (c) jams the whole assembly to the right.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

58

Multi-stage gearboxes by combining mechanisms

The kerf-canceling mechanisms described above can be combined to
implement more exotic kerf-cancellation techniques. Figure 37 shows a
combination of various wedges to form a complex mechanism: a kerf-
canceling 3-stage gearbox. Both pairs of gears have to be moved towards
each other. A single pair of gears is solved by moving the axles 1x kerf
towards one another (Figure 35c). If we naively paired the right and the
middle axles, the axle on the left would be 3x kerf away from the middle.

By nesting the gear pair on the left together with the middle, they are
both moved 1 kerf closer to the gear on the right. Within the nested pair,
the left gear is moved 2x kerf closer to the middle gear. The nester
corrects kerf equivalent to the angle of the tip: the angle of the left wedge
is 2x as narrow as the angle of the middle one making it correct 2x kerf
as opposed to the 1x of the nested pair. When compared to the same
gearbox with 0.3mm kerf, the normal one jams frequently whereas the
kerf-canceled one runs fine.

Figure 37: A kerf-canceling multi-stage gearbox.

3.2.4 The software tool: KerfCanceler

Our software tool, kerfCanceler, converts traditional mechanisms in 2D
cutting plans to kerf-canceling equivalents. The tool takes the commonly
shared SVG format as input and produces output in the same format,
allowing users to share the result in existing pipelines/repositories. The
software is designed to minimize redundant and uninspiring work for
the designer of the model. It automatically guesses the locations and
types of mechanisms and then allows users to fix if needed.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

59

Walkthrough: converting the microscope of Figure 27

As shown in Figure 38, the conversion starts by loading a 2D cutting
plan into the tool, here the microscope from Figure 27. The menu on the
left offers 8 tools, three modify revolute pairs (bearings, mounts, and
gear pairs), two tools for prismatic pairs (orthogonal and parallel sliders),
one utility to set material thickness, a tool to remove suggestions and a
tool that calls the algorithm of springFit [101] to make joints kerf tolerant.

Figure 38: Converting the microscope model of Figure 1.

KerfCanceler classifies polygons when a new cutting plan is loaded
(identifying rotary mechanisms with 93% accuracy, see section 3.2.7). It
automatically inserts kerf-canceling mechanisms. In this example,
kerfCanceler added 9 mechanisms automatically.

Kerf-canceling mechanisms require more space than their
traditional counterparts, they can intersect with existing geometry in the
cutting plan. KerfCanceler detects such cases and highlights them in red.

Figure 39: The user removes a kerf-canceling mechanism inserted by kerfCanceler (b) With the
“remove mechanism” tool selected; the user clicks on a falsely labeled mechanism. (c) By default,
all cutouts with the same diameter now have the mechanism suggestion removed (shown in
green briefly to indicate the change).

The microscope has three circles which are glare-holes, but
kerfCanceler guessed them to be bearings. The user removes the
suggestion as shown in Figure 39b, which reverts them back to the
original circular cutout. kerfCanceler recognizes that all three circles are
the same size, so the user overrides them in a single click. If the user only
wants to modify a single entity, it is possible to turn off “group edit”.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

60

Figure 40: (a) Users add sliding mechanisms manually, using the “slider tool” (b) KerfCanceler
creates a kerf-canceling version of that slider (c) both similar cutouts in the model are converted
at once.

Sliding mechanisms are rare and hard to identify correctly (any
polygon could be a cutout for a sliding mechanism). Based on the
principle of good guesses with little fixing, KerfCanceler does not
automatically place these. As shown in Figure 40, users apply the “slider
tool” to manually turn a polygon into a sliding mechanism.

Figure 41: KerfCanceler extends a bearing with the gear tool to compensate for the increased
distance between the pinion and the rack as a result of kerf.

The microscope contains a gear (aka pinion), which meshes with the
rack. The “gear tool” allows users to align these. It inserts the kerf-
canceling mechanism around the already existing bearing (as shown in
Figure 41b). Initially, the gear is pushed from the right, by clicking
repeatedly, the user rotates this to match the intended orientation. In the
first four clicks it rotates by 90-degree steps. After that, granularity goes
up.

In a last step, the user calls the springFit [101] algorithm to make
joints and mounts kerf invariant. It extends the same data structures as
kerfCanceler. We modified the algorithm to not place springs when they
overlap with a mechanism (and nullify the fit) as the springFit springs
tend to occur in abundance. In some models this requires manual fixing.

This process takes a few minutes, and results in an SVG that is fully
kerf independent. The model will reproduce on any machine when the
user shares it with others.

Once the model is cut, the user jams the insets in place (before
assembling the model) and continues to assemble the model in a regular
laser cutting workflow.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

61

3.2.5 Classification and Conversion Algorithm

The algorithm to enable the workflow above proceeds in two automatic
steps. First, it pre-processes the cutting plan at hand to identify
mechanisms. Second, it replaces these mechanisms with kerf-canceling
equivalents.

Pre-processing

KerfCanceler normalizes the SVG by breaking all SVG elements into line
segments. This removes ambiguities (e.g., polylines and paths that do
the same thing but are defined differently) or document properties like
layers that don’t influence the laser cutting.

KerfCanceler runs a parts vs cutout detection. It sorts all closed
polygons by size. It checks if there is a larger polygon within which the
given (smaller) polygon is enclosed and continues to do so until all are
checked. It assumes that the outer cuts are outlines of parts and the inner
ones are scrap.

As shown in Figure 42, the user’s attention is pointed towards the
content kerfCanceler assumes to be relevant. The outlines of the parts
are greyed out and the cutouts are highlighted (typically the outlines of
parts are not mechanisms).

Figure 42: A model presented to the user (a firetruck). All outline geometry is greyed out to put
the users’ emphasis on the mechanisms guessed by KerfCanceler.

KerfCanceler iterates over the inner geometry to find mechanisms.
Revolute pairs (e.g., bearings, gears, wheels, cam/followers) manifest
themselves as circles in the model. KerfCanceler groups circles by
diameter. As shown in Figure 43, when two similar groups occur, it
assumes the group with smaller diameter is press-fit and the other group
is loose fit.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

62

Figure 43: These circle cutouts in the firetruck are of similar size. In the entire fire-truck model, one
category turned out to be around 5.05 and one around 4.80mm, KerfCanceler assumes the small
opening is press-fit opening and the other one loose fit (it thus placed two different mechanisms).

Replacing mechanisms with kerf-canceling counterparts

KerfCanceler then places kerf-canceling mechanisms. At the positions
where it assumed loose or press fit mechanisms, it inserts the correct
version. For every circular cutout, it caches three alternatives shown in
Figure 44a-c: the original circle, a press-fit mount based on cantilever
springs [101] and a kerf-canceling loose-fit bearing. It displays the one it
guesses to be the right version. Because these alternatives are generated
before the user touches them, it allows for interactive response times in
the web UI.

Figure 44: Possible modifications of a circle cutout. (a) The original circle (b) a circle used as a mount
(press-fit) (c) the circle used as a kerf-canceling bearing and (d) the same as c but pushed to the
right by “kerf” using the wedge on the left, for gears.

KerfCanceler checks for intersections with the model during pre-
processing. It uses the shape of Figure 44c overlaid by b. If this intersects
with the rest of the SVG model, the mechanism shows up in red,
otherwise in blue. It does not use the larger kerf-canceling gear-bearing
of Figure 44d as this is a rare case and would produce many false
positives. When the user later inserts a gear-pair mechanism,
kerfCanceler checks the intersections locally resulting in slightly longer
processing time (up to a second).

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

63

Figure 45: The placement of wedges for a sliding mechanism, (a) half of the edges of the cutout
get a kerf adjusting wedge. (b) The same works for non-rectangular cutouts. Multiple placements
exist (dotted lines). KerfCanceler, excludes all that cause intersections and picks the best solution.

For guided sliding mechanisms, the wedges do not replace the
original polygon, but line up on the sides. As shown in Figure 45,
kerfCanceler places two wedges on each edge. It places the wedges as
far apart from each other as possible to minimize the risk of jamming the
slider. For short edges, it places one wedge in the middle of the edge.

3.2.6 technical evaluation: How well do kerf-canceling
mechanisms perform?

We hypothesize that kerf-canceling mechanisms are comparable in
performance to the original mechanism, and that with increased kerf,
the kerf-canceling mechanisms outperform the original. We evaluate
this by measuring the friction and the play of the mechanism and
compare that to plain bearings, while varying kerf.

We measure friction by spinning an axle with 2 flywheels, we start
at 1300rpm (=136.14 rad/s) and measure how long it takes until the shaft
stops spinning because of angular friction.

We measure the tilt angle of the axle within each of the bearings. We
take a photograph with a fixed camera from the side of the bearing, pivot
the axle and capture both extremes. The angle between these
corresponds to the maximum range of play.

Test setup

We mount the bearing with an 8mm aluminum axle. We attach a 3D
printed flywheel with 4x 33g steel balls inside, to both ends of the axle.
The shaft is powered using a Bosch drilling machine via a simple clutch.
The total inertial moment of the flywheels is 17.4x10-5 kgm2. We use the
Peaktech 2795 contactless rotation sensor to measure the rotation speed.
We then calculate the frictional Torque (T) using this basic formula:

T = I * a

In which a is the angular acceleration (initial rotation (rad/s)/ time
(s)) and I the moment of inertia (kgm2).

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

64

Figure 46: Experimental set-up.

Test pieces

We compare the baseline (a plain bearing) to the kerf-canceling bearing.
All pieces were cut out of 4mm plywood, we simulated kerf from 0 to
0.4mm in 0.1mm increments. These kerf values we adjusted for the laser
cutter used, so 0mm kerf means the bearing fully touches the axle. We
repeated each experiment 3 times and report the average value to
compensate for noise.

We used a Trotec speedy 360 flexx laser cutter with a kerf of 0.15mm.
To reproduce this experiment, we have attached a test piece in the
appendix of this paper.

Results

As shown in Figure 47, Kerf-canceling bearings demonstrated constant
performance across variations in kerf (between 3.1 and 3.4 mN). Kerf
heavily affected the plain bearing’s performance. Already at a kerf
variation of 0.1mm the friction went up substantially (4.7 mN). And in
particular when reducing the kerf further, the bearing essentially got
stuck as friction went up by a factor of more than 10. (40.6 mN).

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

65

Figure 47: Results of the friction test. Kerf-canceling based bearings perform stable across kerf
variations as opposed to plain bearings.

Figure 48 shows the results of the play analysis. For the plain bearing,
the play increases roughly linearly with the kerf. The play for the kerf-
canceling bearings remained stable.

We found that strong vibrations (e.g., by accidentally misaligning
the drill bit) can cause the inset to come out. For mechanisms that are
expected to be exposed to such forces, we recommend adding a dot of
glue before assembling the mechanism.

Figure 48: Results of measuring play of the bearings. The kerf-canceling bearing remains relatively
stable, while play for the plain bearing almost linearly relates to increasing kerf.

Discussion

Kerf-canceling bearings demonstrate performance independent of the
kerf, both when it comes to the play and the friction of the mechanisms.
While plain bearings only perform reliably in a narrow range of kerf. We
thus conclude that our bearings serve well as kerf-canceling mechanisms.

3.2.7 software evaluation of kerfCanceler

To validate the utility of our software, we ran it on 20 models found
online. For each model, we measured what percentage of mechanisms
were identified automatically and how many interaction steps were
required to modify the mechanisms.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

66

The models in Figure 49 are a subset of the 20 test models which we
fabricated to confirm that the generated kerf-canceling mechanisms
work.

Figure 49: Models of the test set we fabricated on our laser cutter with increased kerf.

KerfCanceler achieved a 93% recognition rate for the rotary
mechanisms in the models. It identified false positives in 5 models,
which contained engraved (decorative) circles, these were falsely
identified as mechanisms.

We used the UI to intervene with 2-21 (9 on average) overrides of
the initial guessed mechanisms. Six models worked based on the
guessed mechanisms alone. The “group edit” tool reduced the number
of edits in most models. Pre-processing of models took on average
5.87ms of time. It took 66s of manual work per model to convert, for a
user who knows the model’s functionality.

Six models failed to convert. Three of them had too little physical
space in the model to insert the kerf-canceling mechanisms. Four models
contained lines that were intended to be engraved, which caused
intersections. One model showed both problems. These intersections
won’t break the mechanism but may affect the aesthetics of the model
depending on how meaningful the original engravings were. So, in total
17/20 models were converted using our tool with a laser cuttable result.

We conclude that many models online can be converted to become
kerf-canceling with only up to three minutes (one minute on average) of
user effort.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

67

3.3 SOFTWARE ARCHITECTURE
KerfCanceler and springFit together allow making 2D cutting plans more
tolerant to machine variations, we therefore designed both tools as
separate software modules with a. similar interface, making it easy to
integrate both in the same architecture. We implemented this as a
lightweight Typescript application that runs in the users’ browser. This
application leverages the fact that SVG is built on the XML standard to
encode annotated information in the cutting plans, and that XML can be
directly displayed in the browser.

Figure 50 displays the architecture in a system sequence diagram.
Both kerfCanceler and springFit are called under the hood by the central
browser application. They are run in a headless fashion and interface
with XML in- and output. The geometric optimization scripts to
compute the specific dimensions of springs and wedges use the NLopt
library in C++ (nlopt.readthedocs.io) for performance reasons, they
therefore run on a separate server and interface using JSON strings as
exchange format. When users override elements through the UI, the
client-side application adds annotations to the XML which are then
parsed separately by the individual geometry generators. The server
architecture allows each module to be called individually, making it
easy to access springFit or kerfCanceler (and/or their respective
optimizers) as separate modules to allow them to be easily integrated in
other software packages. We demonstrate this with at the example of
our simple browser interface.

Figure 50: The modular architecture shown in this data flow diagram. (a) springFit and
(b) kerfCanceler both are integrated into the system in the form of individual modules. (c) the
optimization scripts are implemented in C++ for efficiency and run on their own server.

2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS

68

3.4 CONTRIBUTIONS
With springFit and kerfCanceler, we make three contributions. First, we
present and analyze the specific challenges of kerf-dependent models
for joints, mounts, and mechanisms. Second, we developed mechanical
solutions to these problems by modifying the 2D cutting plans. And
third, we present two software plugins that detect joints, mounts, and
mechanisms in cutting plans and replaces them with kerf-tolerant
version, as well as an overarching browser interface that allows users to
modify existing 2D cutting plans to make them fabricate reliably on any
consumer laser cutter and in a range of materials.

Our approach is subject to three limitations, kerf-canceling mounts,
joints, and mechanisms are less robust than their traditional
counterparts, they require additional space in the cutting plan, and they
may affect the aesthetics of a model.

Another limitation of this work is that we have only verified this
with consumer-grade laser cutters. In theory it should apply to any
subtractive fabrication process, but we have not verified it with
specialized equipment that uses variations of the laser frequency or
modulation that can influence kerf differently.

3.5 CONCLUSIONS
With these two papers, we have presented a mechanical solution to
create kerf-tolerant laser cut models with the help of kerf-canceling
mechanisms and cantilever-based joints and mounts. The resulting
cutting plans remain valid across machines and kerf values, which, for
example, allows users to buy a new laser cutter without invalidating
cutting plans created earlier.

Zooming out, kerf-canceling mechanisms address one facet of a
larger challenge, i.e., the challenge of portability. Today, the majority of
laser-cut models are shared as 2D cutting plans—and these are
inherently machine-specific. This is problematic, as this gets in the way
of collaboration and sharing, which rely on people’s ability to reproduce
other users’ models, e.g., for the purpose of remixing them.

Our mechanical solution to kerf thus allows users to reproduce
models and share in productive ways. However, to address the
associated cost of aesthetic and structural integrity and the fact that the
models are still shared in a 2D format, we present an alternative solution
to the problem in the following chapters.

69

4
REPRESENTING LASER-CUT
MODELS IN 3D

The mechanical solution to create cutting plans that are tolerant to
machine variations presented in the previous chapter lets users
reproduce models on most laser cutters and in a range of materials.
However, in our pursuit of making laser cutting relevant to the “other
99% of people” (other than current tech enthusiasts), in this chapter we
show how to make it easier to create laser-cut models, and to make
changes to models that are made by others, by modeling in 3D using a
fabrication-aware modeling environment. The development of this
environment is a much bigger effort than just the research published in
this thesis, and as of now constitutes over 140,000 lines of code. The
research in this thesis is what drove the initial development and novel
aspects of its data structures and modeling paradigm.

By sharing the models in a 3D representation, we further advance
portability, as users export the 3D model to a 2D cutting plan that is
optimized for their laser cutter and material. And then fabricate that
specific cutting plan on their machine, without inserting additional
incisions in the models.

In this chapter we present the development of this 3D modeling
environment in two phases, first as a primarily volumetric environment
which affords efficient structural building with laser cutters. We then
revisit this by extending the environment with support for detailed
editing by building tools and a subsystem that allows users to
manipulate individual plates. These systems combined allow users to
make more advanced models than seen before, and furthermore
encourage that by letting users build on the work of others in a machine-
invariant workflow.

REPRESENTING LASER-CUT MODELS IN 3D

70

4.1 KYUB : A 3D MODELING ENVIRONMENT FOR LASER CUTTING
Kyub [14] is an interactive editing system for laser cutting called. Kyub
allows users to create models efficiently in 3D, which it then unfolds into
the 2D plates laser cutters expect. Unlike earlier systems, such as
FlatFitFab [29], kyub affords construction based on closed box structures,
which allows users to turn very thin material, such as 4mm plywood,
into objects capable of withstanding large forces, such as chairs users can
actually sit on, as shown in Figure 51.

Figure 51: A selection of objects created using kyub, a software system that allows users to design
3D objects for laser cutting. By affording closed box structures, objects made using kyub are very
strong. This allows users to make tables, shelves, and chairs that can hold a person. (All shown
objects are assembled from 4mm plywood sheets—pressure fit, not glued).

To afford such sturdy construction, every kyub project begins with
a simple finger-joint “boxel” (see Figure 52)—a structure we found to be
capable of withstanding over 500kg of load. Users then extend their
model by attaching additional boxels. Boxels merge automatically,
resulting in larger, yet equally strong structures. While the concept of
stacking boxels allows kyub to offer the strong affordance and ease of
use of a voxel-based editor, boxels are not confined to a grid and readily
combine with kyub’s various geometry deformation tools.

REPRESENTING LASER-CUT MODELS IN 3D

71

Figure 52: Kyub allows users to create sturdy objects by stacking volumetric elements, which we
call boxels. (a) A single boxel can withstand >500kg of load, (b) Added boxels merge automatically,
resulting in a larger, yet equally strong structure. (c) While kyub offers the affordance of a voxel-
based editor, its objects are not bound to a grid; users can reshape them using a wide range of
deformation tools.

4.1.1 3D editing based on boxels

Figure 53 shows a “hello world” example in which we create a simple
picture frame, essentially only using kyub’s add boxel tool. (a) Any
editing experience starts with a boxel dropping from above. This boxel,
like any object in kyub, is represented in a realistic way, i.e., how it will
look once laser cut and assembled [1,64]. The boxel bounces off the
ground and comes to a rest, demonstrating that this is a physics-based
environment. A cup serves as size reference.

(b) The user picks the add boxel tool from the menu and clicks into the
scene. (c) This produces another boxel. (d) The user selects the add boxel
tool again, but this time clicks onto a boxel already on stage. The new
boxel automatically aligns itself with the clicked one and both merge
automatically. This results in a single box the size of two boxels. This
merging is an important step in that the resulting geometry not only
features a minimal number of plates, but also makes interlocking plates
extend across the entire objects; this produces very sturdy structures.

By double clicking the add boxel tool, the user makes the tool “sticky”.
(e) Another six clicks cause the add boxel tool to create (f) a simple, but
stylish picture frame. (g) The user engraves images on each of the six
sides of the lone boxel and is now ready to showcase it in the picture
frame.

REPRESENTING LASER-CUT MODELS IN 3D

72

Figure 53: Sole use of the add boxel tool already allows making simple objects, here a picture
frame. (a) A boxel falls into the scene. (b) The user selects add boxel and (c) clicks the stage, which
produces a second boxel. (d) Holding the add boxel tool, the user clicks a boxel already on stage.
This stacks a boxel on top and both merge automatically. (e) Adding another six boxels
(f) completes the frame. (g) Engraving six images into the lone boxel prepares it for being displayed
in the frame.

The user now exports the box to the laser cutter using kyub’s export
menu. Kyub responds by breaking the 3D model down into individual
plates and by correcting for the specifics of the target machine (kerf
correction [135]). As shown in Figure 54, it adds engraved marks that tell
the user which plates to connect when assembling the model. Kyub then
lays out plates onto sheets (also known as nesting, see also [57, 86]) and
writes each sheet into a separate .svg file.

Figure 54: An exported model from Kyub, the red lines are what the laser cutter cuts. Numbers
along the edges tell users which plates (numbers in centers) to connect to, when assembling the
model. A ‘̂ ’ indicates “this side up”; an ‘x’ indicates placement at the bottom.

REPRESENTING LASER-CUT MODELS IN 3D

73

While these look-up numbers provide sufficient data for users to
assemble the model, it still presents users with a nasty search problem
when there are many plates to be assembled. We have therefore revisited
this 3D-2D export pipeline in two distinct approaches: (1) we
implemented an optimization algorithm we call FoolProofJoint [89] that
makes joints explicitly different from one another so users cannot
misassemble them. And (2) we developed a software tool called
Roadkill [2] which adjusts the nesting of the plates, so users always
assemble adjacent plates with one another. And provide visual assembly
instructions on the plate itself, to further simplify the assembly process.
While we wrote these papers in the same period as the bulk of this thesis,
their contributions are adjacent to the objective of portability, for more
details we refer to the respective papers.

Figure 55: Follow-up approaches to make it easier for users to assemble models by modifying
(a) joints [89] and (b) layout during export [2].

After exporting, the user sends the .svg file(s) to the laser cutter and
assembles the fabricated parts. Figure 56 shows the final result, here
with manually sanded edges.

Figure 56: A fabricated, assembled, and sanded picture frame.

REPRESENTING LASER-CUT MODELS IN 3D

74

Boxels appear to be on a grid—but they are not

The voxel-like behavior of add boxel suggests boxels be limited to a grid.
This would be a dramatic limitation, as it would eliminate many of the
benefits of personal fabrication—which is to create one-off objects that
fit a specific use case. Fortunately, kyub boxels are not confined to a grid.

As shown in Figure 57, kyub allows users to manipulate boxel-based
geometry with a range of deformation tools. For example, (a-b) the user
may compress the picture frame using the push-pull tool. Or (c) users
may pull out just one of the edges to give the picture frame a slanted top
or base.

Figure 57: (a) Kyub allows the boxel-based picture frame to be manipulated using (b) push/pull
and (b) push/pull edge tools.

Interestingly, add boxel continues to be applicable after geometry has
been deformed. In Figure 58, we set boxels to half their usual size and
then (a-b) apply add boxel to produce two prongs that (c) form a stand
for our picture frame. Add boxel not only remains applicable, but also
snaps into an invisible grid, making it easy to align the prongs with the
frame.

Figure 58: Add boxel remains applicable after the use of deformation tools.

REPRESENTING LASER-CUT MODELS IN 3D

75

Kyub’s secret to achieving this combination of grid and free
deformation is to not memorize any grid, but to instead re-infer the grid
with every tool interaction, i.e., kyub analyzes the current geometry and
determines what grid the user might be trying to refer to.

Figure 59 further illustrates this. (b) Removing half a boxel on one
side of a part and (c) adding it back at the other end looks like it might
lead to a grid aligned half-way. (d) However, boxels added now snap
into position based on the current shape of the part, not based on its
history. We describe the underlying algorithm in detail in section “4.1.3
implementation”.

Figure 59: Kyub infers the grid, rather than maintaining it (a) Laying down two boxels, (b) pushing
in half a boxel and (c) pulling out half a boxel on the other side results in 2x1 boxel arrangement.
(d) Adding a boxel snaps into position based on the current shape of the part, not its history.

Kyub’s ability to maintain grid-like behavior allows it to offer good
default behavior when placing new geometry. This is key, for example,
when running kyub on devices with very coarse input capabilities, such
as touch screens (Figure 60).

The fact that kyub determines the currently active “grid” only based
on the object’s current and thus visible geometry generally relieves kyub
of the necessity to display the grid. This allows kyub to adopt a
particularly uncluttered and natural look.

REPRESENTING LASER-CUT MODELS IN 3D

76

Figure 60: The grid-like behavior of boxels is crucial in allowing kyub users to create precise
geometry on low-precision input devices [126] (here an iPhone SE).

Making things that fit together

One of the desirable side effects of the boxel-based approach is that
everything naturally fits together. Figure 61 illustrates this at the
example of a decorative robot figurine, created by one of the participants
in our user study (see section 4.1.5 “User Study”). Here the user (a) has
modeled the foot of the robot and then cuts two holes into it using the
subtract boxel tool. (b) The fact that boxel-sized extrusions naturally fit
into boxel-sized holes allows the two parts to form a dowel-like
connection. Here the user uses the insert tool to try this out in the editor.
By default, kyub designs all parts with a “fixed fit” (H7/n6) [58] allowing
parts to be mounted and removed with a light pressing force. (c) The
dowel connections allow the resulting figurine to be posed (d-e) in a
variety of ways.

REPRESENTING LASER-CUT MODELS IN 3D

77

Figure 61: Parts created using kyub naturally fit together. (a) Parts with extruding boxels and parts
with boxel-shaped hole naturally match and (b) users can combine them using the insert tool.
(c) The resulting dowel joints allow this decorative robot figurine (d, e) to be posed in various ways.

As illustrated by Figure 62, boxel-based dowel connections allow us
to create collections of parts that can be combined interchangeably. The
result is a custom construction kit that allows making a range of different
models, a rudimentary version of something like a LEGO construction
kit.

Figure 62: Combining the parts of the robot figurine with a few compatible elements results in a
simple construction kit.

REPRESENTING LASER-CUT MODELS IN 3D

78

While the shown models are clearly designed around the notion of
rectilinearity, they also include some non-rectilinear parts. As shown in
Figure 63, these were made quickly and efficiently by applying non-
rectilinear boxels, here specifically 90-degree prisms and equilateral prisms.

Figure 63: Non-rectilinear boxels add expressiveness to boxel-based construction. (a) Here we
use four 90-degree prisms to create a duckling’s head and (b) one equilateral prism to make its
beak. (c) Resulting duckling.

The concept of non-rectilinear boxels extends past prisms. Figure 64
shows how we recreated the well-known tetrahedron puzzle by
complementing (a) a pyramid boxel with (b) two tetrahedron boxels.
Cloning the resulting shape completes the puzzle and (c) and with a little
bit of trying out it can be assembled into… a tetrahedron.

Figure 64: The boxel concept goes beyond rectilinear boxes. The pieces of this tetrahedron puzzle
were made by combining a pyramid boxel with two tetrahedron boxels.

4.1.2 designing sturdy structures

As discussed earlier, a key objective behind boxel-based construction is
to create sturdy structures. The chair shown in Figure 65 is such a
structure. This particular model was created using the boxel-based
workflow described above, sped up by using a clone and an attach tool.

REPRESENTING LASER-CUT MODELS IN 3D

79

Figure 65: (a, b) Modeling a chair in kyub using add boxel (c) the clone tool and (d) the attach tool.

The common approach to designing furniture is to use thicker
material, such as 12mm plywood [104, 120] and as shown in Figure 66,
kyub supports arbitrary material thicknesses. We could make the chair
from 6mm plywood, for example, and even though plates of half
thickness should carry only an eighth of the weight, the result works
reliably thanks to the box-based construction.

Figure 66: Kyub supports changing material thicknesses.

Figure 67a shows how an experienced user can push the design of
our chair design one step further in order to allow manufacturing it from
the same 4mm plywood we used in all previous examples. By adding
two internal plates that extend through the seat and the backrest using
the reinforcement tool, this design prevents the seat from buckling and
the backrest from breaking, despite the thin material. The design shown
in Figure 67b is even resilient against rocking, as the insides of pairs of
legs are combined into contiguous U-shaped plates.

Figure 67: (a) Chair with front-to-back reinforcement, (b) additional reinforcement supporting the
legs.

REPRESENTING LASER-CUT MODELS IN 3D

80

To get the most strength out of internal plates, kyub merges internal
plates with other plates whenever possible. As shown in Figure 68a,
internal plates are usually centered, but that would prevent the internal
plates in Figure 67b from merging with the legs. However, as shown in
Figure 68b kyub’s internal plates are given some slack, allowing them to
snap into the plane of the leg. Kyub heavily relies on its grid inferrer for
this functionality (see section “4.1.3 implementation” for details).

Figure 68: (a) When applying the reinforcement tool to this part, the reinforcement centers itself,
(b) However, when adding a boxel, reinforcement automatically shifts by half a plate thickness so
as to line up with the left plate of the added boxel, producing a sturdier result.

Finally, Figure 69 shows an expert design that solves the challenge
without any internal plates. Instead, a slot cut into seat and backrest
using the subtract boxel tool reinforces seat and backrest—and creates
what we think of as an appealing design element.

Figure 69: Here a slot cut into the chair reinforces the chair’s seating surface and backrest.

In follow-up work beyond the scope of this thesis we have
developed an algorithm to detect potential weaknesses in closed-box
laser-cut structures. Our extension called fastForce [1] places internal
plates automatically to reinforce such structures while the user is
modeling.

REPRESENTING LASER-CUT MODELS IN 3D

81

Making large objects using tessellation

The closed-box structures afforded by kyub are generally strong enough
to produce sturdy objects even at large scale. While some laser cutters
allow cutting very large objects in one go, kyub allows owners of smaller
devices to fabricate large objects as well.

Kyub achieves this by composing large objects from smaller plates.
Users configure the maximum plate size available to them and when
enlarging an object now, kyub breaks down the oversized part into two
or more cells as shown in Figure 70a. Figure 70b shows the specific wood
joint kyub creates to hold cells together—a supported lengthening joint)
Adjacent cells share a single membrane of finger joints; then both cells
connect into this membrane using butterfly joint-like tabs.

Figure 70: The cell structure created by tessellation. The big finger joints lock the two coplanar
plates on the top while supported by a vertical plate.

The joined cells are strong enough to carry human weight even on
very large designs, such as the 1.80m dining room table shown in Figure
71, assembled from 40 “A2”-size plates (60 x 40cm; 24” x 16”).

Figure 71: The table from Figure 51 is assembled of separate cells which are capable of holding a
human sitting on it.

REPRESENTING LASER-CUT MODELS IN 3D

82

4.1.3 Implementation

Kyub is implemented as a web-based application using JavaScript and
WebGL. It consists of about 70k lines of code. The server runs in Node.js
but almost all computation is done on the client, making it easily scalable.
The architecture of the client is similar to that of a game engine, because
of the different subsystems at play, such as the physics engine (from
cannonjs.org) that is continuously running in the background.

Core to the implementation is the grid inferrer, shown in pseudo code
in Algorithm 2. As introduced before, it provides alignment when
adding a boxel to an existing assembly. Figure 72 shows an example, i.e.,
a user adding a boxel to a somewhat irregular “base” geometry.

Figure 72: The grid inferrer. (a) a user applies the add boxel tool at the shown location. (b) Kyub
takes the projection of the clicked surface and infers all possible grids to which the boxel could be
aligned as shown in Algorithm 1. (c) After weighing the different grids, it places the boxel and
merges the geometry.

When the user releases the mouse button (Figure 72a), kyub passes
the mouse-up location to the grid inferrer. Implementing the algorithm
shown below, the grid inferrer traverses all edges in the base geometry
and extends each edge into a grid. The blue grid shown in Figure 72b,
for example, resulted from the base geometry’s top edge. The algorithm
now reduces each grid to the one cell that contains the mouse click
location. Finally, the algorithm picks the cell that maximizes the number
of edges supporting this grid, minimizes the distance between these
edges and the mouse click location, and minimizes the resulting number
of plates.

REPRESENTING LASER-CUT MODELS IN 3D

83

Algorithm 2: Grid Inferrer

Input: clicked point P
2D projection of the outline of the base B
2D projections of the outline of the connectors C

Output: connector c*, position p* and rotation r* of object aligned to (and
placed on) B
Parameters: CENTER, IGNORE_PROTRUDING, WEIGHTS
candidates ← new Array()
for each connector ∈ C do

for each pair of edges (eB, eC) ∈ edges(B) ⨯ edges(C)
alignments ← position and rotation to align start or end of eC
with either start or end of eB respectively
if CENTER then

add to alignments the position and rotation to align
center of eC with the center of eB

 end
for each alignment ∈ alignments do

apply alignment to connector
G ←create grid by repeating the bounding box (AABB) of
connector
candidate ← grid cell of G that contains P
if IGNORE_PROTRUDING then

add candidate to candidates if fully overlapping with B
 else add candidate to candidates
 end

end
candidate.connector ← connector
candidate.feature_distance ← d(P, eB)
candidate.mergeable_plates ← the number of coplanar plates after
placement (see Figure 73)

end
end
deduplicate candidates, count in candidate.duplicates
normalize candidates’ criteria, so each is within [0,1]
best ← select the best candidate considering the weights of the criteria
defined by WEIGHTS
c* ← best.connector
r* ← best.rotation
p* ← best.position

REPRESENTING LASER-CUT MODELS IN 3D

84

Figure 73: The resulting boxel is merged with the assembly. The dashed surface is an example of
a coplanar plate that is unified with the side of the added boxel.

Whenever possible, the grid inferrer tries to place added geometry
such that it stays within the circumference of the base geometry. Kyub
accomplishes this by calling the grid inferrer with ignore_protruding set
to true. This will produce the desired result in most cases. If the grid
inferrer returns no result, however, kyub calls the grid inferrer again, this
time with ignore_protruding set to false. This allows the grid inferrer to
also explore configurations, where the added geometry protrudes past
the edge of the base geometry. This two-pass approach allows kyub to
make sure that the insert tool works reliably, including such cases as the
insertion of the arm of the robot in Figure 61.

4.1.4 technical evaluation

To validate the strength of closed box structures underlying kyub, we
conducted a technical evaluation during which we fractured seven types
of structures by applying appropriate subsets of up to six different types
of forces and measured the force required.

To obtain a conservative lower bound of the sturdiness of the tested
objects, we used the weakest and cheapest material we could find,
i.e., 4mm 3-layer plywood at a price of roughly 7 Euros/m2. Also, all
objects were held together by only press fitting them, i.e., without glue.

Objects tested

Figure 74 shows the objects we tested. The first four objects allowed us
to test basic boxel geometry: (a)	a 5cm boxel, (b)	a 35cm stick made from
7 boxels, (c)	an L-shape made from 3 boxels, (d)	a 3D L-shape made from
4 boxels.

REPRESENTING LASER-CUT MODELS IN 3D

85

Figure 74: Objects tested

The next two models allowed us to test reinforcement. (e)	The star
consisted of 7 boxels but was internally reinforced using three pairs of
parallel plates. (f) The dumbbell consisted of two 3x3x3 boxels at each
end, connected by two boxels in the middle. However, we used
reinforcement to extend the center portion into both 3x3x3 boxels.

(g) The final model allowed us to test tessellation. This model was
another 7-boxel stick. However, each plate was subdivided into two
interlocking plates.

Procedure

To administer the test, we mounted test objects into the custom testing
apparatus as shown in Figure 75. The apparatus was essentially a
custom vise made from aluminum profiles (from item Inc.). We actuated
the device by tightening a nut on a threaded rod until the test object
would break. A properly placed force sensor (forceX 2.30) measured the
applied forces.

We used the apparatus to apply (a)	compression along the object’s
main Cartesian axis, (b)	compression against the object tilted by 45
degrees, and (c)	compression against the object tilted along two axes.
(d)	We measured tension by pulling the test object with pairs of straps,
and	(e) torsion, by holding the test object in place using clamps while
twisting the opposite end using a lever. (f) Finally, we measured
buckling, by applying a force to test objects at three points.

REPRESENTING LASER-CUT MODELS IN 3D

86

Figure 75: The test apparatus.

Results

Figure 76 shows the main results, i.e., amount of force or torque required
to fracture the respective objects. “>500kg” means that the test object was
still intact when we exceeded the 500kg value range of our measuring
device. “>140kg” indicates that the test object was still intact when our
test apparatus started to collapse when applying tension to the dumbbell
model.

 compression
tension torsion

buckle
from top tilted …2D

>500 kg

>500 kg 49Nm 135kg

 293 kg

 91kg

>500kg >500kg 398kg

 >140kg 40Nm 230kg

>500 kg 38Nm 188kg

Figure 76: Forces required to break the respective object.

REPRESENTING LASER-CUT MODELS IN 3D

87

4.1.5 User study

We evaluate the usability of our system with a user study in which non-
engineer participants designed 3D models using kyub, then cut and
assembled them. Participants filled in a questionnaire about their
experience. We hypothesize that participants find kyub easy to learn and
use.

Task

We asked all teams to create a roughly foot-high “persona” figurine for
future “design thinking” sessions.

Format

While users spent only 90 minutes with kyub, we conducted our
evaluation as part of a two half-day’s workshop on laser cutting, a
format that gave us time to learn about participants’ experience.
Participants were in the same space at the same time, as well as several
team members. They worked in self-selected teams of two.

During the first day, we gave participants a 2h introduction to the
traditional process of laser cutting. During this period participants
created their first laser cut designs i.e., figurines to serve as personas for
future design thinking activities, which they drew directly in Adobe
Illustrator or Inkscape. Participants added notch joints manually by
overlaying rectangles of appropriate width taken from a template onto
their designs.

We then showed a demo of kyub and gave participants 90 minutes
to design their own models in kyub.

We laser cut the objects offline, and participants reconvened a week
later for the second half-day session during which they assembled their
models and learned more about personal fabrication. Finally,
participants filled in a questionnaire.

Participants

We recruited 18 participants (8 female) with an average age of 35 years.
They were part of the design curriculum at an affiliated institution. Few
participants (four) had used a laser cutter before. The workshops took
place in two rounds, one with 10 participants and one with 8.

REPRESENTING LASER-CUT MODELS IN 3D

88

Results

All teams succeeded at modeling their personas. Figure 77 shows the
resulting designs. Two teams who finished early made additional
models, i.e., an advent calendar and the name of their institution in 3D
characters.

All participants reported high satisfaction with the models they had
made using kyub (6.4/7 on a Likert scale).

Participants rated their enjoyment of using kyub high (5.8/7).
Participants report being pleased with the sturdiness of the models
(6.6/7). Participants strongly agreed that kyub had helped them create
models they could not make before (6.5/7) and strongly indicated that it
would be time-consuming to make these models without kyub (6.9/7).

Figure 77: Participant teams created figurines to function as storytelling personas. One team used
the remaining time to make an advent calendar one created the name of their institution in 3D
characters.

Participants liked the physics simulation in the editor (6.1/7) but said
they felt it would be useful to temporarily disable it. P7 explained
“gravity helped me model, but once it tipped over it was hard to get it
back up”.

REPRESENTING LASER-CUT MODELS IN 3D

89

Figure 78: Questionnaire results.

In general, participants found it easy to get started using kyub (6.1/7).
Interestingly, some participants credited the physics engine for this. P3:
“because everything looks and behaves like the final result, including
gravity, it was very easy to understand what was going on”. P1: “I just
loved how that cube fell in the scene at first, it encouraged me to try
things out and model in a playful way with this editor as opposed to
Blender which I used before!”).

Three participants mentioned appreciating the modularity of kyub.
Five participants reported that their favorite feature was the realistic
look and feel of the editor. Three mentioned that they liked it best that
kyub afforded the creation of sturdy objects.

The overall excitement during the workshop was high and two of
the teams approached us later asking for permission to use the software
for making prototypes of their regular projects.

4.1.6 Practical use

Kyub is a system that has been live for several years with over 500 beta
testers and used for workshops in high schools, Figure 79 shows some
of these workshops. To support this, numerous developers have
contributed to the system and extended it beyond its mere academic
publication. It has served as a platform for various bachelor projects
[16,31,35,40] and master theses [66, 109].

REPRESENTING LASER-CUT MODELS IN 3D

90

Figure 79: Kyub in use by pupils around Berlin without modeling or building expertise. (a) An
overview of some of the workshops currently offered to high-schools such as (b) building a

model of the school of the future, (c) cajons, (d) bluetooth speakers, and (e) ukuleles.

4.2 STRUCTURE-PRESERVING EDITING OF PLATES AND VOLUMES
Kyub as presented thus far, is great at efficient and structural editing,
but it lacks support for more complex models that are not based on
closed-box structures. We therefore revisited this project by creating a
system which gives control over the detailed elements of laser cutting, i.e.,
individual plates and the associated joints, yet at the same time also
allows for efficient editing by means of volumetric tools while preserving
the structure of plates in the model.

As shown in Figure 80, our system consists of four functional groups:
(1) We started with a fabrication-aware 3D editor capable of handling
volumetric models (kyub [14]). This subsystem represents 3D models as
a single volume. (2) We added a second subsystem that represents laser-
cut models as an arrangement of plates in 3D. This allowed us to add
tools that allow manipulating individual plates. (3) We unified these
two subsystems by adding a demotion mechanism that breaks volumes
down into multiple plates, to allow users to apply plate tools to volumes,
as well as (4) a promotion mechanism, which infers volumetric
substructures from sets of plates, to allow users to apply volume-based
tools to plate structures.

REPRESENTING LASER-CUT MODELS IN 3D

91

Figure 80: Structure-preserving editing for laser cutting (a) represents laser-cut 3D models as
volumes, whenever possible. This allows users to manipulate models efficiently using volume-
based tools. (d) It represents laser-cut 3D models as a 3D arrangement of plates, when users want
to manipulate models in detail using plate-based tools. (b) The key to making volumetric and
plate-based representations work within the same model is that our architecture demotes models
represented as volume to plates, when users apply plate-based tools, and it (c) promotes models
represented as plates to volumes, when users apply volume tools anywhere. (e) This approach
allows users to manipulate 3D models that are complete plate-like elements with volumetric
elements, resulting in a level of complexity not possible with previous tools.

As illustrated by Figure 81 our approach allows users to create and
manipulate 3D models that are neither all-plate nor all-volume, resulting
in a level of complexity not possible with previous tools.

Figure 81: Structure-Preserving Editing allows users to create models that traditionally could only
be created and manipulated by hand using “fabrication unaware” modeling. These hybrid models
contain plates (highlighted in yellow) and volumetric elements.

4.2.1 the plate-based subsystem

We start by presenting our plate-based subsystem. As illustrated by
Figure 82, we designed these tools to be consistent with the volume-
based tools provided by the platform we built on: kyub [14].

REPRESENTING LASER-CUT MODELS IN 3D

92

Figure 82: We designed the tools of the plate-based subsystem to be consistent with the volume-
based tools provided by the platform we built on kyub [14].

This consistency across subsystems allows for a reduced user
interface: as illustrated by Figure 82, it allows us to overload the edit
functions for plates onto the same functions that manipulate volumes.

In addition to the volume-inspired tools shown above, we added
tools that help to arrange plates in 3D. The workflow shown in Figure
83 adds plates at right angles or stacks them onto existing plates. The
move tool and rotate tool allow users to fine-tune the arrangement.

Figure 83: Various add plate tools allow arranging plates in 3D. The move tool allows users to

fine-tune their positioning.

The attach tool shown in Figure 84 also extends to plates but presents
additional options to users on how to arrange plates in 3D after attaching.

REPRESENTING LASER-CUT MODELS IN 3D

93

Figure 84: (a) In contrast to the attach tool of the volumetric subsystem, (b) the plate-attach tool
provides additional 3D arrangement options.

The plate tools shown above allow constructing a range of basic
models, such as the ones shown in Figure 85.

Figure 85: Simple models made using plate tools alone.

The same tools also allow somewhat more complex models, such as
the VR headset shown in Figure 86. However, this workflow already
hints at the limited efficiency of a purely plate-based workflow.

Figure 86: Plate and edit tools allow creating a wide range of models, albeit with limited efficiency

(VR headset, id:638605).

REPRESENTING LASER-CUT MODELS IN 3D

94

4.2.2 promotion

The inefficiency of a purely plate-based workflow becomes obvious
when we try to modify the model from Figure 86. As illustrated by
Figure 87, making the headset taller now requires users to stretch five
plates, move the top plate, doing so in the right order, and getting the
resulting alignment right. This is obviously not desirable.

What we want instead is to pull up the top plate and have the rest
of the model follow its lead as shown in Figure 87b. We get this type of
volume-based operation naturally from models that live in the volume-
based subsystem. Naturally, we want this type of functionality also for
models that originated in the plate-based subsystem.

Figure 87: (a) Once demoted to plates, making a VR headset 1cm taller requires six user
interactions. (b) Making the same volumetric modification is a single interaction.

We address this by adding what we call the promoter. The promoter
is invoked whenever users apply a volume-based tool. The promoter
now checks the clicked model: if it is already in volumetric
representation, it is done and simply invokes the tool. If the model is in
plate-based format, however, the promoter searches the model for
volume-like substructures, translates them into a volumetric
representation (the promotion), and then applies the tool.

As illustrated by Figure 88, this allows volumetric structures created
from plates to be manipulated using volumetric tools, here “stretch”.

Figure 88: Consecutive add plate tools allow constructing a volume. When applying a volumetric
stretch tool, the promoter detects the volume and stretches the plates accordingly.

REPRESENTING LASER-CUT MODELS IN 3D

95

But the promoter does more. As illustrated by Figure 89a, it
identifies volumes also when these are incomplete, and when they are
part of slanted models (Figure 89b).

Figure 89: (a) The promoter also identifies incomplete volumes. (b) And works for slanted volumes,
here to make a separate rooftop for a dollhouse. To apply the plate tool after, it gets demoted (see
next section on demotion).

The key benefit of the promotion mechanism is that it relieves users
from the burden to know about how a structure originated, as two
structures that look the same can now be treated the same way. Figure
90 shows a three-plate corner created by removing plates from a box, as
well as a three-plate corner created by assembling plates. With the help
of the promoter, running in the background hidden from the user, either
one can be stretched using the stretch tool, producing the same result.

Figure 90: The promoter treats the shown 3-plate assembly the same, irrespective of whether it
was created by combining three plates or by removing three plates from a box.

REPRESENTING LASER-CUT MODELS IN 3D

96

4.2.3 demotion

Going back to the headset, the workflow shown in Figure 86 clearly is
not the most efficient way of creating this 3D model. As illustrated by
Figure 91, the tools from the volume-based subsystem get users started
much faster. However, eventually users need to use plate tools to get the
details right, such as the divider between the eyes and the overextended
plates.

We enable this scenario with the counterpart to the promoter, the
demoter. As shown in Figure 91, when users try to apply a plate tool to a
model that lives in the volume-based subsystem, the demoter breaks the
plates that are touched by the plate into plates, allowing individual
plates to be moved or stretched.

Figure 91: Starting with a volume allows re-creating the VR headset from Figure 86 more efficiently.
The part of the model shown in yellow is demoted to plates to allow for the plate tools to apply.

We found this demoter-based workflow, i.e., volume-based tools
first, then refinement using plate-based tools to be efficient and the basis
for many common models (Figure 92). The promoter, however, is
equally crucial for this approach to modeling, as it allows making late
modifications, rather than enforcing a strict “waterfall” process.

Figure 92: Volume-tools first, then refinement using plate tools is an efficient and thus common

workflow.

Figure 92 shows some models that were created using this general
“top-down” approach from volume to plates. Most of these models were
created by starting with a volumetric element, then adding details using

REPRESENTING LASER-CUT MODELS IN 3D

97

the plate tools, e.g., for structural reasons (e.g., guitar, chair), to mount
components inside volumes (e.g., cajon, speaker), or to create small scale
structures on a larger model (e.g., race car, airplane). The workflows of
more complex models, such as the one shown in Figure 93, may contain
multiple invocations of promoter and demoter.

Figure 93 shows the workflow of modeling the guitar of Figure 80
using multiple promotion and demotion invocations. (a) Users start to
shape the model with volumetric tools (b) the demoter turns the neck
into plates as the user deletes plates and inserts a stack (c) the neck is
promoted to a volume when stretching it longer, to then be demoted
again as the user modifies detailed plates (d) to make the head, the
stretch tool uses the promoter, and to add individual plates the demoter
turns it back into plates (e) finally the promoter allows the head plate to
be stretched into a volume and (f) the user finishes the model by adding
a sound hole, bridge, fretboard and tuners.

Figure 93: The workflows of more complex models may contain multiple invocations of promoter
and demoter.

REPRESENTING LASER-CUT MODELS IN 3D

98

4.2.4 algorithm and data structures

In this section we present the mechanisms of promotion and demotion.
To understand demotion, we take a closer look at the data structure of
plates and volumes. As volumes inherently consist of plates, we can
break them down relatively easily. To reconstruct a volume, especially
when the volume is incomplete, we present the promoter algorithm.

Volume-based vs. plate-based data structures

The promoter and demoter transition the representation of models
between volume-based and plate-based data structures.

As shown in Figure 94a, data structures in the volumetric subsystem
consist of a single Mesh per model, which has its own coordinate system
(Transform) and operates on a series of linked surfaces (and related
edges). Individual plates on the other hand have their own coordinate
systems, allowing them to be manipulated without interfering with
other plates.

Figure 94: (a) The data structure of a volume vs. (b) data structure if the same model is represented
by individual plates.

As shown in Figure 94b, the moment a Mesh is “damaged”, e.g., by
removing a plate, it cannot easily be represented as a Mesh. The linked
EdgeCycles no longer form a fully linked chain, which breaks some of
the assumptions the volumetric tools use when operating on Meshes.
Our system demotes it to a set of plates, as illustrated by going through
the EdgeCycles and assigning them their own Transforms. The
cycles remain connected but no longer share MeshPoints or a common
Transform. This gives the plate tools the ability to move them away
from one another.

REPRESENTING LASER-CUT MODELS IN 3D

99

This may seem benign at first, but the demotion means that the
volumetric tools no longer apply, as they operate on that single
coordinate system and assume full connectedness of the EdgeCycles,
turning what could have been a single volume interaction into a long
sequence of primitive plate interactions.

This discussion of data structures extends beyond kyub in that
fabrication-aware modeling environments for laser cutting would have
some representation of plates and how they come together in terms of
volumes. While it is possible to maintain both formats in parallel, the
volumetric representation remains incomplete upon removal of plates
so either the data structure or the resulting volumetric tools are required
to handle this.

Promoter Algorithm

At the heart of the presented system lies the promoter. Its purpose is to
generate a volumetric description of the model, that tools utilize for
volumetric editing operations, such as stretching.
In the example shown in Figure 95, three “plates” are missing to turn the
model into a volume. The promoter constructs proxy planes by finding
connected edges across two coplanar plates. The L shape on the top of
the model, for example, consists of two edges connected at one corner.
These edges are coplanar and stretch across two plates. The promoter
constructs a proxy plane through these edges and repeats these steps for
all connected coplanar edges.

When multiple such connected coplanar edges share a corner, the
promoter inserts a proxy edge into the model at the intersection between
the proxy planes. When both corners of the edge are shared with other
connected edges, the promoter constructs all three planes and inserts a
proxy corner at the point where these planes intersect. Finally, it inserts
edges between the proxy corner and the edges of the model, resulting in
a closed volume.

REPRESENTING LASER-CUT MODELS IN 3D

100

Figure 95: When coplanar edges touch in a corner, they form larger volumes with the adjacent
coplanar edges.

When there are no shared corners between sets of connected
coplanar edges, there is too little information for the algorithm to locate
a proxy corner in 3D. Instead, as shown in Figure 96, the promoter runs
the 2D QuickHull algorithm [11] (which runs in O(n log(n))) on the
constructed plane and inserts result as edges into the model. In this case
forming a basic prism, which can then be used by the volumetric tools.
(b) The desk organizer model shows this using a real-world example:
After the promoter found the rectilinear volumes, there is a single plate
sticking out. Because the convex hull algorithm includes this as a volume
as well, it stretches along when users make the model wider.

Figure 96: (a) The convex hull of objects where the connected coplanar edges do not share a
corner. (b) a practical implication of this case at the example of a desk organizer: because of the
proxy prism on the left the base plate stretches with the side plates.

Before the algorithm handles the cases presented thus far, it looks
for closed volumes in the overall model. The previous cases therefore
typically constitute of the last few plates that were not part of a volume
yet. As shown in Figure 97, to detect volumes, the promoter iterates over
the edges in the model and groups plates together when an edge
connects exactly two adjacent plates. This effectively results in a flood
fill for simple, closed volumes, such as the guitar stand of Figure 97.

REPRESENTING LASER-CUT MODELS IN 3D

101

Figure 97: Inferring volumes on this guitar stand, the yellow plates are added to the group.

With full control over plates and volumes, it is possible to construct
models which have plates within a volume. To respect these, the
promoter runs 2D face detection (based on Muller et al. [78]) on the
planes before detecting closed volumes. As demonstrated in Figure 98,
internal plates within the volume are identified as additional faces,
which results in an edge within the top plate that connects to three plates
instead of two. This ensures that the internal plate is not simply
discarded, but rather causes the volume to be split into two cells when
executing the flood fill algorithm, such that volumetric tools behave
accordingly. For example, in a stretching operation, the union of the
volumes is used, but after stretching, the individual cells restore the
internal plate.

Figure 98: The promoter detects internal structures using face detection 78.

A special case of volumes are stacks of plates. Unlike any of the other
plates in models, they are not connected using joints but instead glued
on top of each other by users. Because there is no internal structure
within a stack (it is all inherently filled with plate), the promoter simply
creates a volume composed of the edges of the stack.

REPRESENTING LASER-CUT MODELS IN 3D

102

Figure 99 shows how the algorithm detected volumetric cells in
three example models, and how volumetric stretch operations modify
the cells yet keep the overall structure intact.

Figure 99: Three example models with their associated volumes as individual cells, the images
below show how stretch operations applied to these models stretch these cells while keeping the
structure of the model intact.

The explanation of the algorithm so far followed a bottom-up
explanation; however, the actual algorithm proceeds in the opposite
order, as shown in Algorithm 1. The algorithm recursively inserts proxy
planes until all edges of the model are included in a volume. These
planes in the next iteration are included as if they were actual plates
often resulting in additional or bigger volumes to be found. This
approach makes it easy to cache volumes as each tool interaction on the
model only requires computing volumes on the newly added plates,
extending the previously inferred volume.

Algorithm 3: promoter

Input: List of Edges in the model
Output: Constructed Volume, Cells
Internal data structures: Edges contain a Pointer to their Plate and what
Edges on other Plates they connect to, Plates contain a Transform which
orients them in 3D space and an EdgeCycle which is a linked list of the
related Plates. CoplanarEdges contain pointer to the Edges they belong
to.
// find all coplanar edges in the graph and store as coplanarEdges
coplanarEdges <- getCoplanarEdges(Edges)

REPRESENTING LASER-CUT MODELS IN 3D

103

cycles <- []
for plane in coplanarEdges: // run face detection [78] to split up edges at
internal plates, propagate the reference to edges

cycles.add (faceDetection(plane), plane.Edges)
clusters <- []
for cycle in cycles: // flood fill closed cycles that share 2 plates along an edge

for edge in cycle:
if connecting two plates, add as cluster, remove from cycles

// handle non closed volumes and internal plates
while there are still cycles: // internal plates, add to both adjacent clusters

for edge in cycle:
if edge connects > two plates, add duplicate of cycle to clusters,
remove from cycles
// check if the cycle connects other cycles and insert proxy edges
if edge connects to other cycle construct two planes through the
points in both cycles and add proxy edge at the intersection, add
to clusters, remove cycle from cycles

// non-closing edges, use convex hull [11] to construct proxy edges into the
cycle add to clusters
clusters.Add(2DQuickHull(cycle)), remove cycle from cycles

cells <- []
for cluster in clusters: // construct cells

if cluster contains proxy edges, insert corners at intersection between
edges or proxy edges, generate proxy planes
cell <- new Volume from linked list of plates in cluster, unify
transforms of plates
cells.add(cell)

// create the encompassing volume
Volume <-- union all cells
return Volume,cells

A limitation of this algorithm are models without clear corners
because edges are all curved. Typical examples are skeleton structures
with curved “ribs”, the algorithm instead considers every point a corner
and creates a lot of proxy faces. These produce the right volume, but no
currently implemented volumetric tool uses that. More expressive
fabrication-aware versions of volumetric operations like Interactive
Images [141] and symmetry preserving editing [73] support this, but that
falls beyond the scope of this paper. As shown in Figure 100b, curved
edges perform fine when stretching along the normal of the plane.

REPRESENTING LASER-CUT MODELS IN 3D

104

Figure 100: (a) Detected, but less useful volumes. (b) in this case the volume is still useful when
stretched along the normal of the plane.

4.2.5 technical evaluation: re-creating 100 models

To evaluate structure-preserving editing, we used our system to try and
recreate the 100 models from the (assembler3 benchmark [98], originally
from thingiverse [117]). the models from this benchmark were originally
created using generic modeling software, thus exhibit a wide variety of
construction methods.

We attempted to recreate these models using three systems, i.e., (1)
volume-based (original, non-modified kyub [14]), (2) plate-based
(FlatFitFab [29]), and (3) volume + plate (the structure-preserving
system presented above).

Results

Figure 101 shows the number of models we managed to recreate with
each of the three approaches.

Figure 101: Models recreated using volumetric modeling (kyub), plate-based modeling

(FlatFitFab) and our system.

As shown in Figure 102, the models exhibited different modeling
workflows: (c) we recreated 53 models with multiple usages of the
demoter/promoter, alternating between plate and volumetric
workflows, (b) for 12 models we could use a waterfall process where the
process is entirely volumetric (if done efficiently) with at the end plate
tools demoting the model exactly once, (a) and we made the remaining
35 models using plate tools only like the ones shown in Figure 85.

REPRESENTING LASER-CUT MODELS IN 3D

105

Figure 102: The 100 models of assembler3 benchmark fall in three categories: (a) 35 models made
using individual plate tools (b) 12 models made using a waterfall workflow and (c) 53 models that
largely benefit from promotion/demotion in the modeling process.

All 13 models we could not recreate using our tools all fall in that
last category; they do not benefit from promotion/demotion but would
require a different set of plate tools. Six of them contain plates that are
mapped to a polar coordinate system, our tools operate on a cartesian
coordinate system, making it hard/impossible to recreate those. The
other seven contain highly expressive plates, our system allows for
curvature, but such detail is better done achieved using tools optimized
for expressiveness (e.g., FlatFitFab [29]).

4.3 SOFTWARE ARCHITECTURE
As outlined in Figure 103, kyub is a typescript application that runs in
user’s browsers, most of its operations run client-side based on three.js
[118]. The notable exceptions are CSG (Constructive Solid Geometry)
operations such as creating unions of volumes or splitting geometry,
which run on a separate CSG server for performance reasons. These
operations take place asynchronously during modeling to not stall the
interaction flow of users for this round-trip. The CSG server interfaces
with CGAL (written in c++) [23] through an API implemented in node.js
[85] and communicates with the front via POST requests, using .off 3D
models. 2D user dialogs in kyub take place via angular.js [7] menu items.

REPRESENTING LASER-CUT MODELS IN 3D

106

Figure 103: High-level kyub architecture, the editor in front-end and the CGAL server as back-end
to handle expensive CSG operations.

Kyub’s architecture consists of individual node.js modules allowing
for easy extendibility of the functionality of kyub. To give a sense of the
breadth of the system, Figure 104 illustrates the scope of kyub modules
as of now, structure-preserving editing contributes to highlighted area
as well as in the implementation of some individual tools.

REPRESENTING LASER-CUT MODELS IN 3D

107

Figure 104: Kyub’s modules and high level architecture visualised in a tree map using the NPM
package webpack bundle analyzer [48]. The purple area contains the editor interface with its
underlying data structures. The area with the black outline contains the model data, this is where
structure-preserving editing mostly fits into the larger architecture.

The export pipeline enables a high degree of portability. Until
exporting, all ModelData is represented in a machine-independent
form, it consists of PhysicalObjects, like plates, which are connected
using Joints, but it is only when the user exports that these data
structures are converted to machine-specific SVG paths. As shown in
Figure 105a, in the export dialog users specify the machine’s kerf and
plate dimensions. In the likely case that users do not know their
machine’s kerf, kyub exports a gauge as shown in Figure 105b to
measure this. The export pipeline uses the SVGnest library [115],
building on the algorithm of López-Camacho et al., [75] to lay out the
pieces on the plate size, and it adjusts the geometry of all joints based on
the kerf value specified by users. This allows users to share 3D models
with others as it leaves the machine and material properties generic until
users invoke the export dialog, upon which it produces a model
optimized for the user’s specific machine and material.

Figure 105: The export dialog in kyub. (a) during export users specify the machine and material
specific dimensions (b) if they do not know their kerf, the software generates a kerf gauge.

model data structures

REPRESENTING LASER-CUT MODELS IN 3D

108

4.4 CONTRIBUTIONS
With kyub and its extension of structure-preserving editing, we
contribute with a system that lets users create advanced laser-cut models.

Kyub affords construction based on closed box structures, which
allows users to make objects capable of withstanding large forces, such
as chairs users can sit on. Users construct such models by stacking boxels.

We then integrate volumetric and plate-based modeling paradigms
into kyub to allow users to edit laser-cut models in structure-preserving
fashion. To accomplish this, we add three elements, i.e., (a) a subsystem
for plate-based editing structurally similar to volume-based editing to
allow for a tight integration, (b) a demotion mechanism from volumes
to plates, and (c) a promotion mechanism from plates to volumes. It is
the combination of these four elements that addresses the challenge.

The presented system allows creating models previously only
possible with general-purpose 3D or 2D editors, but with the efficiency
of fabrication-aware tools, as we demonstrate by recreating models from
the assembler3 benchmark [98], as well as complex models, such as
acoustic guitars shown in Figure 80e and models shown in Figure 81.

Limitations of our system include that our current set of plate tools
does not offer tools for free-form editing (as offered, for example, by
FlatFitFab [29]) and offers only limited control over alignment, precision,
and symmetry. The system is built on the assumption of rigid materials.

4.5 CONCLUSIONS
With kyub and structure-preserving editing we create an environment
in which users can create advanced 3D models for laser cutting. It is also
a great step forwards in terms of portability: when fabricating such 3D
models designed by others, users simply export the model to 2D upon
which the kyub exporter generates joints and mounts optimized for the
material and machine at hand.

Moreover, the 3D models allow users to make parametric changes
to existing models, allowing them to build on the work of others and
increase the complexity of models shared online. The guitar shown in
Figure 80, in that sense, is not about one guitar, but in the context of
structure-preserving editing a starting point that allows users to create
a wide-range of custom guitars efficiently. This therefore presents a
paradigm shift away from the historical machine-specific and hard-to-
modify 2D cutting plans and towards 3D formats.

109

5
CONVERTING LEGACY 2D
CUTTING PLANS TO 3D MODELS

The 3D representation and editing methods presented in the previous
chapter allow users to create, share, and modify models without having
to worry about the underlying machines or materials used to fabricate
them. However, large numbers of high-quality models exist in 2D
cutting plans and entire sharing communities and industries are
centered around these models. As long as that is the case, the chance to
have real-world impact with 3D models is inherently limited.

As illustrated by Figure 106, we propose a workflow to overcome
these legacy issues by reconstructing 2D cutting plans into 3D models.
These 3D models allow users to make 3D parametric changes to their
models using software like the 3D modeling environment proposed in
the previous chapter. And that environment then in turn exports a 2D
cutting plan that is optimized for the laser cutter and material of the user.

Figure 106: The proposed workflow at the example of modifying the cutting plan of a VR headset:
(a) the 2D cutting plan (b) is reconstructed into a 3D model (c) which the user then manipulates in
3D. (d) when done, kyub exports the model to a modified 2D plan.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

110

The resulting workflow allows re-use of models made by others
independent of the laser cutter at hand. And as users will be sharing the
3D models instead of 2D cutting plans, it becomes easier to build on the
work of others to enable the community to increase the quality and
complexity of models shared online. We implemented this workflow in
two stages: first we developed a 5-step analysis algorithm followed by
an interactive reconstruction process, we captured this in a software tool
we call assembler3 [98].

We revisited assembler3 by building an automated pipeline using a
heuristics-based beam-search algorithm we call autoAssembler [100], that
allows a large subset of laser cut models to be automatically
reconstructed. We integrated both approaches into kyub, in which the
automated pipeline is the default process, and the interactive workflow
serves as a fallback for users.

5.1 ASSEMBLER3 : INTERACTIVE 3D RECONSTRUCTION
Assembler3 is an interactive software tool that implements the “mental”
workflow shown in Figure 124 as an actual, software-based workflow. (a)
Assembler3 allows users to modify 2D cutting plans by (b) rearranging
them into a 3D model, at which (c) users can now apply parametric
manipulations using existing 3D editors, before (d) converting back to
2D for cutting. In our study, this workflow allowed participants to apply
parametric modifications 10x faster (2:22min on average) than the
traditional workflow of rewriting the 2D cutting plan directly.
Participants rated the task easy (2/7) and all exported cutting plans
assembled into functional models. In a technical evaluation, we
furthermore demonstrate the utility of this workflow by reconstructing
100 of 105 models found in online repositories.

5.1.1 assembler3 workflow

The main step implemented by assembler3 is the reconstruction of a 3D
model from a 2D cutting plan.

While we present our algorithm in full detail in section 5.1.3 “the
algorithm of assembler3”, Figure 107 provides a preview. Assembler3
reconstructs a model, such as (a) this plate of the VR headset, by
performing the following steps: (b) plate detection determines what are
plates and what is scrap using the nesting order of paths and assigning
plate vs scrap in alternating order. (c) Joint detection identifies joint
candidates by detecting patterns of left/right turns in the paths.
(d) Material thickness detection has every joint candidate vote for a

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

111

material thickness, the dimension most commonly voted for by the joints
determines the material thickness. (e) Joint matching and, for fast
retrieval, storage in a hash. (f) Interactive reconstruction in a 3D
environment (kyub).

Figure 107: Pipeline of parsing the top plate of the VR headset (in reality it parses the entire SVG).

Figure 108 illustrates the last step, i.e., interactive reconstruction in
(a) the 3D environment. (b) The main interaction is the user attaching
two plates to each other using the assemble tool. Here the user has selected
a plate, which causes it to highlight in yellow. Assembler3 responds by
highlighting candidate joints that could be paired up with the selected
plate. This response is instantaneous, as all matches were precomputed
and stored in an efficient-to-retrieve format (joint hash).

Figure 108: Reconstructing the 3D model of the VR headset. (a) When assembler3 loads the SVG,
all plates are displayed in the 3D modeling environment, here kyub [14] (b) The user clicked the
assemble tool on the front piece. Assembler3 responds by highlighting this plate (yellow stripes)
and by highlighting joint candidates located on the other plates. (c) Clicking one of the suggested
candidates assembles the plate. (d) The user repeats this until the model is assembled. From now
on, the user uses standard kyub tools to interact with the model (e) to see the front plate, the user
flips the model. (f) Once reconstructed, the user can apply arbitrary parametric changes. Here the
user accommodates for far-sightedness by stretching the front plate.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

112

As shown in Figure 108c the user then clicks on a target plate to
assemble the selected plate with, assembler3 responds by attaching the
joint candidate to the target plate. The user repeats this step until all
plates are assembled into the 3D model.

Sometimes, there are multiple ways how a plate can be attached,
including rotations around up to three degrees of freedom. To keep the
interaction flowing, assembler3 picks a default placement. Assembler3
does so considering the following heuristics: (1) maximizing the
probabilities that each of the involved joints actually is a joint, as
determined during SVG parsing, (2) picking results that are free of 3D
intersection, (3) maximizing the number of joints that will be completed
by the attachment operation (such as co-aligned joints elsewhere on the
plates).

In our technical evaluation, assembler3 got orientations right at first
attempt for 78.6% of cases.

As illustrated by Figure 109, in those cases where assembler3 gets the
default orientation wrong, successive clicking of the “floating menu”
attached to the assembly allows users to cycle through other orientations
in order of descending score, until the correct one has been found (on
average 1.7 clicks in our evaluation). This score is determined using the
same heuristics as for the default orientation and it skips orientations
that produce the same outcome because of symmetrical parts.

Figure 109: (a) To override a suggestion, the user uses the floating menu item. Assembler3 presents
another orientation of the plate. (b) In this case assembler3 flips the plate, which leaves the user
satisfied with the result.

Whenever combining two plates assembler3 replaces the joints
originally contained in the 2D cutting plan with joints in the format of
the surrounding 3D editor, so as to allow joints to accommodate the
parametric changes about to happen.

Once the conversion to 3D is complete, assembler3 allows users to
apply any 3D editing tools to the model. In Figure 124e, the user uses
this to accommodate the design for the user’s far-sightedness.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

113

After reconstructing a model once, other users can leverage that
effort by now applying any number of additional modifications, such as
the changes shown in Figure 110. Users may also store and share the
model in 3D format, which lowers the bar for others to build on this
model, contribute to it, and help it achieve complexity.

Figure 110: When users have converted the VR headset model to 3D once, the 3D model allows
leveraging existing tools (such as kyub [14]) to perform any number of modifications efficiently,
such as (a) adjusting the inter-ocular distance, (b) making the headset fit a wider phone by
stretching it vertically, (c) or making the headset more comfortable to wear by reducing the weight
of the device by decreasing material thickness and removing unnecessary material.

Note how the 3D reconstruction process seamlessly integrates into
the regular 3D editor environment. Initially, we had expected that 3D
reconstruction would have to result in a more wizard/process-funnel
like design—a workflow limiting users to back-and-forth navigation
along certain process steps. However, once we had fully automated the
2D processing steps, such as material thickness reconstruction, we found
the opportunity to implement 3D reconstruction as a set of tools, most
prominently assemble tool and the floating menu.

The benefit of this integration is that it invites users to tackle plates
in any order, fix mistakes recognized late by disassembling selectively
using the “extract plate” tool, use the editor environment to perform any
other modeling activities along the way, start parametric manipulations
before the import is even complete, or even to reconstruct models only
partially for the purpose of remixing rather than full reconstruction.

5.1.2 surveying sharing practice

In a short survey, we find that there is surprisingly little
remixing/customizing of laser-cut models shared on thingiverse. Flath
et al [37] conducted an in-depth survey of thingiverse models in 2017, in
which they found 54.7% of all models to be remixed. We repeated their
analysis filtered by the search terms “laser cut”, “lasercut”, and/or
“laser-cut”, and find a mere 17% of models to be based on work of others
(open-source script to reproduce our analysis [94]). We thus conclude
that there is a lack of remixing of laser-cut models compared to other

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

114

practice on the platform. Flath et al furthermore draw attention to the
“thingiverse customizer” (a tool to easily make parametric
modifications to 3D models) as a catalyst for remixing of 3D models. We
believe that assembler3 could play a similar role in the context of laser-
cut models.

We find furthermore anecdotal evidence of a desire to make
parametric modifications laser-cut models in the comments to models
that are shared. The most popular modifications are changes in material
thickness. A strong example is thing 24561, which has these two (out of
16) comments:

“Hi, can you please help me scale this dragon into a 3mm thickness
template and share with us …”

“Hi, am new here and I would like to cut this dragon on a 3mm
acrylic. Please could you help guide me on how to scale it?? …” (other
comments are in the vein of “great model”)

Thing 286 mentions the problem in their own description, and a
comment to thing 691869 indicates a failed attempt at modifying the
thickness. Other thingiverse designers share multiple thickness files to
circumvent the problem.

In current-day sharing, assembler3 could thus already play an
important role as a tool to reduce the hurdle of varying material
(thickness) of models. However, if the boost of the thingiverse
customizer is any indicator, a tool for customizing models can go a long
way to structurally change how users make and share models on the
platform.

5.1.3 the algorithm of assembler3

To allow readers to replicate assembler3, we now provide a detailed
description of its algorithm.

Assembler3 uses a five-step algorithm: (1) normalizing the SVG and
detecting plates, (2) detecting joints (3) detecting material thickness and
(4) joint matching and hashing the joints for fast retrieval, and (5)
rendering the plates in a 3D editor (kyub), to allow users to reconstruct
the model. Algorithm 4 provides an overview of the first 4 steps.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

115

Algorithm 4: ParseSVG

Input: 2D cutting plan svg,
Output: list of plates, hash of joints jointHash, and material thickness
Internal data structures: lines, closedPaths, votes <-- Lists
lines, closedPaths <-- linearize (svg)
sort closedPaths by area, descending
for each path ∈ closedPaths
 path.children = closedPaths after path that are enclosed in path
end
for each path ∈ closedPaths
 if path.nesting MOD 2 = 0 then
 add path with path.children as cutouts to plates
 end
end
for each plate ∈ plates
 add to plate.joints, jointHash <-- detectJoints (plate.path)
 for each joint ∈ plate.joints
 add joints.assumedThickness to votes
 end
end
thickness = max (frequency(votes,interval 0.1))
updateJointProbabilities (thickness)

return plates, jointHash, thickness

Plate detection

Assembler3 segments the cutting plan into plates and cutouts. It achieves
this by determining the nesting order of paths and assigns them
alternatingly to plate or cutout. The outer path will produce a plate, if
there is another path enclosed within this, it is a cutout etc. To be able to
do so, assembler3 breaks down geometry to line segments (cutting paths
in SVG can be polygons, polylines, paths, etc). Assembler3 then iterates
over closed paths to detect if there is any smaller path enclosed within.

In some 2D cutting plans, designers optimize the path the laser cuts
by re-using paths between plates. The laser then cuts in one line, two
edges of different plates. Naively, assembler3 would not be able to
determine that both are plates. To detect this issue, assembler3 checks if
there are any points where more than two-line segments come together.
If this is the case, assembler3 traverses the path once with clockwise turns
and then with counterclockwise turns and assigns both to be plates.
Similar to constructing a doubly connected edge list [80].

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

116

While pathological cases can be constructed that the algorithm will
not properly recognize (specifically cases where waste material, such as
the inner cutout of the ocular pieces, would be used as parts) assembler3
achieved a 100% success rate in recognizing plates in our technical
evaluation.

Joint detection

Assembler3 now detects joints. To illustrate, Figure 111, shows the joint
“candidates” assembler3 finds in the VR headset. Note that this initial set
of joint candidates contains several incorrect candidates, here shown in
red. This is expected at this stage, as assembler3 will remove these
incorrect candidates after material thickness detection.

Figure 111: Joint detection on the VR headset. The red lines are false positives, which will get
adjusted later, and the blue lines are joints that will receive a low probability because of their odd
shape.

Assembler3 detects line paths in the 2D cutting plans that may or
may not be joints. It does so by looking for paths that form certain
patterns of left and right turns. As illustrated by Figure 112a, finger
joints, for example, follow the pattern left/right/right/left.

Assembler3 then estimates the probability of a given path actually
being a joint. One factor it considers, is how close a joint is to the
idealized shape of that joint. As shown in Figure 112 at the example of a
finger joint, assembler3 expects certain characteristic properties. Finger
joints, for example, it expects to feature 90-degree angles, top and edge
to be parallel, and widths to be larger than heights. However, since the
2D cutting plan might be hand-drawn, assembler3 will also accept
imperfect renditions; it will assign these lower “joint probabilities”
though. The feature shown in Figure 112b, for example, follows the “left,
right, right, left” pattern of a finger joint, but the width/height ratio is off
and the lines are not parallel, assembler3 is still willing to consider it a
finger joint, but with a low probability. (c) Furthermore, assembler3
increases that probability when it detects repetitions of a pattern.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

117

Figure 112: (a) The ideal finger joint has 90-degree angles, a top line parallel to the edge and has
a bigger width than height (b) this finger joint has a much lower probability, it could just as well be
some aesthetic feature of the model? (c) repetitions of a pattern increase its probability.

While, as mentioned, assembler3‘s joint candidate list contains a lot
of false positives at this stage, the algorithm captures 98% of joints
contained in models (see section 5.1.4 ‘technical evaluation’).

Material thickness detection

Assembler3 derives the material thickness from the collected joints. It
achieves this by having all joints “vote”. In this voting process, each joint
votes for a thickness based on its shape, the most frequently mentioned
length wins. Figure 113 shows examples of three types of joints and
illustrates which line segment is considered as vote for material
thickness.

Figure 113: Each joint votes for a material thickness labeled “t” in this figure. (a) finger joint, (b) cross
joint, and (c) a mortise-tenon joint.

To allow assembler3 to extract voting information from imprecise
(hand-drawn) joints, assembler3 replaces joints with an idealized version
of that joint, as shown in Figure 114. The idealized joint then votes with
reduced weight.

Figure 114: Assembler3 first idealizes non-ideal joints and then haves them vote for the idealized
material thickness but with an additional penalty to reduce their impact. The red overlay represents
the idealized version of the joints above.

Sorting votes in to buckets (buckets using 0.10mm intervals, picked
in reference to the precision of common laser cutters) allows assembler3
to determine the bucket with the most votes quickly, and thus determine
material thickness.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

118

Note that the joint candidate list still contains an unknown
percentage of false positives—these false positives represent some other
design considerations that look at least a bit like joints and are thus
allowed to vote. The reason we still have these design features in at this
stage is that material thickness detection and joint detection are mutually
dependent: knowing a joint makes it trivial to tell the material thickness;
and knowing the material thickness makes it all but trivial to tell what
is a joint. Assembler3 resolves this mutual dependency by starting with
joint detection, but casting a wide net, and delaying the filtering i.e., only
now that material thickness is known, assembler3 uses this information
to filter, i.e., it reduces the joint candidate set to those candidates the
relevant dimensions of which are the material thickness.

The algorithm works despite the mutual dependency because actual
joints all point to material thickness, while design features tend to point
to random line segment lengths. This causes joints to outweigh the design
features in almost all cases, allowing assembler3 to achieve a 99% success
rate in detecting material thickness. For details, see “technical
evaluation”.

2D cutting plans tend to contain ornamental features next to the
functional joints. Now the joints are known, assembler3 discriminates
between lines that are part of joints and lines that serve ornamental
purposes. In SVG files, this is typically denoted using color as the laser
cutter uses that information to decide what will be cut and what will be
engraved (e.g., burn on the material without cutting for aesthetic
purposes). Joints will have to be cut, otherwise the model cannot be
assembled, so colors without any functional joints are likely ornamental.
Assembler3 uses that information to disambiguate the colors in the
cutting plan. Assembler3 assigns the color(s) used for joints as ‘cutting’.
It assumes other colors to be engraved and will import these as
decorative ornaments on the plates as shown in Figure 115.

Figure 115: Assembler3 imports engravings as ornaments on the plates.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

119

Joint matching and storing matches in a hash

Assembler3 is now just one step away from showing plates and joints to
the user who will then try to reconstruct the 3D model. Users will click
a plate and assembler3 will respond by highlighting possible matches.
This requires Assembler3 to know which joints can be matched with
which other joints.

In this section we present how assembler3 precomputes matches and
stores them in an efficient data structure, i.e., a hash that allows it to look
up matches quickly. This hash is key to allow Assembler3 to perform
reconstruction at interactive rates.

The general objective of joint matching is to identify all other joints
that can be fit into the joint at hand: finger joints map to finger joints or
t-joints, cross joints map to themselves. As shown in Figure 116,
assember3 determines whether two joints fit by checking what types of
joints match (finger, cross, t-joint) and then comparing their respective
shapes (signature) to determine which joints interlock.

Figure 116: Joint types (a) cross joints, (b) t-joints and (c) finger joints

To make the hash robust to variations in the amount of material the
laser removes (aka kerf), for finger joints and t-joints, assembler3 defines
the signature by the sum of a cavity and a protrusion of each joint. As
shown in Figure 117, the centers of the features have to align
(independent of kerf) otherwise the joints do not fit. This furthermore
guarantees that the joint with opposite finger/cavity signature ends up
in the same cell of the hash. In the case of cross-joints, the signature is
made up from the depth of the joint and the material behind that.

Figure 117: (a) Two plates of the VR headset that fit together. (b) On closer inspection, the fingers
of the one joint do not match the cutouts of the other because of the material removed by the
laser (aka kerf). However, the centers of joints have to align, so assembler3 hashes the sum of the
width of a cutout and a finger as the signature for a finger joint.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

120

For a given joint, assembler3 looks up that joint in the hash. It will
find the joint itself and all other joints that share the same signature (aka
collisions), i.e., ones it could possibly match with. If there is only one
matching joint, assembler3 returns it in O(1). If there are more collisions,
assembler3 retrieves an ordered list of joints from the hash. In the case of
finger and t-joints, the list is ordered by the number of repetitions of their
pattern. A binary search lets assembler3 get to the right candidate. In the
case of cross-joints the list is ordered by joint probability.

Supporting users in assembling the model

Finally, assembler3 presents the parsed SVG data to the user in the 3D
editor. It renders each plate recognized in the plate detection step and
gives it the thickness determined in the material thickness detection step.
While not shown to the user yet, each plate knows which joints it
contains and each joint knows what other joints it wants to match with.

Assembler3 lets users assemble the model interactively. It does so by
highlighting matching joints on user-selected plates, as presented in
section 5.1.1. This is the only step in the algorithm that depends on kyub
functionality, up to this point all data structures and implementation
apply to any 3D modeling environment for laser-cutting (assuming it
has a notion of plates and joints). Kyub as of the moment of publication
is the only 3D editor that could handle and make advanced
modifications to the models. Particularly with the help of the promotion
and demotion mechanisms presented in the previous chapter.

5.1.4 technical evaluation

To validate the technical aspects of our algorithm, we ran assembler3 on
105 models found online and assessed the results. We drilled down and
evaluated the success rate of the steps and performance of our algorithm.

Coverage: assembler3 allows assembling 95.2% of models

To determine what percentage of 2D cutting plans on the Internet can be
reconstructed using assembler3, we found models online and attempted
to reconstruct these. We selected the models by (1) searching things for
“lasercut” “laser-cut” and “laser cut” on thingiverse and grabCAD, to
ensure the models fabricate, we filtered models that have “makes”.
(2) We then excluded models that were single-part, or that contained
features not yet supported by assembler3: living hinges, moving
mechanisms, stacked/glued/bolted plates and joints that connect more
than one other joint. This left us with about 40% of models. (3) We
randomly selected 105 models of this collection.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

121

Result: assembler3 managed to reconstruct 100/105 models (95.2%
coverage) they are presented in Figure 118. Models varied in thickness
from 1mm to 12mm and used a wide variety of construction techniques,
e.g., skeletons, grids of cross joints, outside finger joints and more.

Figure 118: Models used for technical evaluation.

Out of the five models that failed, four failed because their finger
joints came in at odd angles. See the model shown in Figure 119b: all
vertical plates of this lighthouse are tilted inwards by 10 degrees,
assembler3 could handle that if they did not also connect sideways at a
45 degree angle (see Figure 119c). We plan to extend assembler3 with a
more advanced constraint solver to also handle such cases.

Figure 119a shows the last model that could not be assembled, it
consisted of cross joints that assembled into t-joints. They come in
sideways and then lock in place. Assembler3 does not check for this
combination. Based on these observations, we are planning on
extending our joint matching logic in future versions of assembler3.

Figure 119: (a) This model has cross joints that assemble into a mortise-tenon joint, assembler3 fails
to pair these up. (b) when all plates are at a non-straight angle with each other, assembler3 cannot
reconstruct the model. (c) luckily, most of the models with plates with non-straight angles still
provide sufficient constraints to be reconstructed.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

122

Success rate of the individual steps of our algorithm

To validate the accuracy of each of steps in the algorithm, we compared
the outcome of each step to their “ground truth” using 10 selected
models shown in Figure 120. We hand-annotated all features in these
models and compared it to the data collected in each of the steps of the
algorithm of assembler3.

Figure 120: Models used to validate the accuracy of the steps of the algorithm.

Table 2 shows the accuracies the different steps achieve. The overall
success rate of 97% of the manual assembly is the key result, this is the
percentage of detected features which are required to reconstruct 3D
models.

Step False positives Success rate
Step 1: plate detection 0 100%
Step 2: joint detection 61 98% (352/356)
Step 3: material detection - 99%
Overall success rate =

product of above
 97%

Table 2: Success rate of algorithm steps.

Step 1, plate detection worked flawless for the tested models.

Step 2, joint detection achieved 98% of true positives. It still detected
61 false positives, which results in a bigger search space than needed,
but models still assemble. The 2% of false negative joints would never
show up as suggestions and thus have potential to result in models that
cannot be assembled. Both models, #3 and #8, which suffered from this
actually did assemble nonetheless, because of constraints imposed by
other joints.

Step 3, assembler3 was 98.99% accurate in detecting the material
thickness. The two erroneous models were off by 0.1mm, which was
caused by rounding errors. The reconstructed models still worked
properly (we exported and fabricated both models).

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

123

To verify the accuracy of the default placements of plates, we
assembled each of the models and counted how often we needed to
override initial placements with the floating menu item. Assembler3 got
the first placement right in 78.6% of the clicks. When the initial
orientation was wrong, it took on average 1.7 clicks to get to the correct
orientation.

Performance of the algorithm

To measure the performance of assembler3, we used the same 10 models
as used to verify the accuracy. We profiled each step in the algorithm to
measure the performance of (1) parsing the SVG and generating the hash,
(2) suggest matching plates when the user clicks a joint (3) and
assembling plates after the user selected a target plate. We ran the
performance test on an Intel Core i5-8400 CPU @ 2.80 GHz (6-core) 16GB
RAM. We repeated each test 1000 times to account for typical variations
in performance.

Model #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
of plates 8 29 8 16 5 6 8 6 12 13
of joints 18 55 35 66 10 24 35 20 20 52
parse SVG 12.54

(12.05)
525.96
(101.3)

34.22
(72.25)

65.30
(13.60)

174.77
(223.5)

49.33
(11.62)

27.49
(47.78)

12.83
(6.96)

87.65
(187.9)

77.51
(9.45)

match 1.72
(3.00)

6.65
(10.54)

5.13
(16.66)

5.59
(11.90)

6.59
(23.98)

2.05
(4.42)

4.60
(10.07)

2.47
(2.39)

11.59
(7.78)

11.41
(27.37)

assemble 3.12
(1.69)

3.43
(2.79)

4.88
(8.26)

4.21
(5.91)

10.50
(50.88)

3.50
(3.36)

3.99
(5.44)

3.19
(2.97)

9.50
(9.42)

6.09
(16.22)

Table 3: Average performance of assembler3 when assembling each model 1000 times. Times are
in ms (stndev in parentheses)

The steps where the user interacts with the model are all efficient
(average of 12ms for every model), the parsing of the SVG initially takes
107ms on average, this only occurs when importing the model initially.
Model #2 (dinosaur) took longer (526ms) to parse. The reason is the
linearization breaks down curved lines of the dinosaur into a large
amount of small line segments.

5.1.5 user study: assembler3 is 10x faster than the traditional
workflow

To verify the claim that assembler3 is easier and faster than the
traditional mental reconstruction workflow, we ran a user study in
which participants manually reconstructed the virtual reality headset
from Figure 124 and stretched the model to accommodate for far-
sightedness.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

124

Task

Participants’ task was to modify the VR headset as shown in Figure 107,
i.e., stretch the distance between the lenses and the screen in order to
accommodate a lens with a bigger focal range. To illustrate the objective,
we provided participants with a picture of the before and after
configuration of the headset (Figure 107). Participants were allowed to
have a look at these pictures any time during the experiment.

Interface conditions

Participants completed the task in two interface (within subjects)
conditions in counter-balanced order.

In the 2D condition, participants modified the 2D cutting plan using
a 2D editing software (gravit.io, runs in a web browser). For training,
participants were shown a 4min demo video that demonstrated the
relevant editing functionality at the example of extending a box.

In the assembler3 condition, participants modified the 2D cutting plan
by converting the headset’s 2D cutting plan to 3D using assembler3,
modifying the model in kyub, and exporting it back to a new 2D cutting
plan. For training, participants were shown a 1 min demo video showing
the process of assembling a box and stretching it using assembler3,
Figure 121 shows a shot of these videos.

In both conditions, participants were allowed to review the demo
video until they felt they got the workflow. They were also allowed to
revisit the video during the actual task.

Figure 121: (a) In the baseline condition, users were shown how to modify a boxel in gravit.io, (b)
they were shown a video of the same workflow using assembler3.

Participants

We recruited 13 participants (2f/11m, average age of 21 years) from our
institution.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

125

Procedure

We presented both interface conditions to participants in counter-
balanced order. In each condition, participants were given up to 30
minutes to complete the task. If they felt they could not complete the
task, they were allowed to abort earlier by notifying the experimenter.

Results

Figure 122 summarizes the task times and error rates of the 13 individual
participants.

Figure 122: results of the experiment.

Participants performed 10.0x faster when modifying the model
using assembler3 (on average 2:22 min vs 24:45 min in 2D condition).
This confirms our main hypothesis.

As shown in the diagram, the majority of the time in the
assembler3 condition went into moving and scaling the model, 51s on
average was used to reconstruct the model. In the 2D condition, users
spent on average 4:51 minutes to lay out the model before editing any
plate. P5, P12 and P13 did not manage to complete the 2D condition in
the given 30 minutes. 11/13 of participants had errors in the model they
modified in 2D (on average 2 errors per participant), which would cause
the model to not fabricate (typical errors were joints not fitting, cutouts
that were moved or stretched t-joints). In the assembler3 condition one
participant had an error (the nose piece was flipped, which the
participant didn’t notice—the model would still assemble and fabricate
though).

Participants rated the assembler3 condition as easy (a median of 2/7
on “assembling and modifying the model was easy/hard”) while they
rated a median of 6/7 for the 2D condition. One participant, P10,
considered the 2D workflow easier than the workflow with assembler3,
mostly because it took P10 a while to figure out how to use the stretch
tool after completing the assembly.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

126

In the 2D condition, 7/13 participants re-layouted paths (see Figure
123) so as to better reflect the 3D nature of the assembly, as shown in
Figure 122; they spent on average 7:08 minutes to do so. Those who
spent time laying out the model made 1.5 errors on average, vs 2.5 for
those who didn’t change the layout.

Figure 123: 2D layouts as used by our participants. Green lines indicate plates that are laid out so
that their matching joints line up, an indicator that they leverage the space in the 2D editor to help
them reconstruct the model in their heads. P5 also spent time laying out paths but grouped by
similarity in shape instead of matching joints.

We asked participants about their experience using both tools. P7
commented that “the 3D editor essentially builds the model itself and is
easy to change”. P8 said “it was a huge relief to do this in 3D” after
having struggled for a long time in 2D. P4 mentioned that “the 2D
software itself was great but that it’s really hard to find out how to
connect the plates”. On an interesting sidenote, P10, who was extremely
fast in 2D mentioned “I prefer to edit in 2D because it helps me learn
about the model”. This is both a weakness and a strength of
assembler3 as it takes the burden of learning about the model away from
the user.

Discussion

We conclude that (1) assembler3 enabled 11/13 participants to make
modifications to the model who were not able to do this without and (2)
assembler3 achieves a speed-up of 10x and (3) the workflow with
assembler3 results in 26x less errors.

5.2 AUTOASSEMBLER : AUTOMATIC 3D RECONSTRUCTION
As shown in the previous section, the pipeline of assembler3 is
performant and effective in reconstructing a broad variety of structures.
The weakest link of the algorithm obviously is the semi-automatic
assembly step at the end of the process. It comes at a cost of time for the
user and requires technical understanding of the underlying models, as
users need to puzzle together the individual pieces and thus know how
to assemble them. A task which is trivial for original designers of these
models, but when customizing a model found online, this can be
arbitrary hard.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

127

In many cases, the knowledge the assembler3 algorithm derives from
the 2D cutting plan, proves to be sufficient to reconstruct models
automatically. We therefore built an extension of assembler3,
autoAssembler [100], since the search space of combining plates is
exponential in the number of joints, exhaustive search is impractical for
any non-trivial model. AutoAssembler thus pursues only the most
“promising” subset of candidates (aka beam search) as illustrated in
Figure 124. It considers candidates as promising if they (1) contain no
intersecting plates, (2) fit into a small bounding box, (3) use plates whose
joints fit together well, (4) the plates do not add many unpaired joints,
(5) make use of constraints posed by other plates, and (6) conform to
symmetry axes of the plates. The algorithm presents the resulting best
candidate assembly to users when they import a model, so they can
bypass the manual process and directly modify the 3D assembly if that
assembly looks good.

Figure 124: AutoAssembler converts 2D cutting plans to 3D models by (a) importing 2D cutting
plans and (b) beam-searching the space of ways to assemble the plates. AutoAssembler prefers
candidates that (1) have no intersecting plates, (2) fit into a small bounding box, (3) use plates
whose joints fit together well, (4) do not add many unpaired joints, (5) make use of constraints
posed by other plates, and (6) conform to symmetry axes of the plates. (c) This allows users to load
the model into a 3D editor (kyub [14]), (d) where they can now apply parametric changes.

5.2.1 the autoAssembler algorithm

When assembling a model, automatically or by hand, one explores a
space of possible solutions that is factorial in the number of joints. Even
if we reduced the search space by (1) limiting our search to joints that fit,
(2) eliminating orientations that lead to intersections between the new
plate and what has been assembled already, and (3) adding a method
that looks up matching joints for the joint at hand in constant time, the
search space remains too large for exhaustive search (see Figure 125).
We achieve (3) using the joint hash from assembler3, which achieves this
by storing geometric profiles of joints in a hash table—the joint and its

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

128

counterpart share that profile, when looking up the profile of a joint in
the hash table, it returns its counterpart as a collision in the table in
constant time.

Figure 125: The search space for the simple VR headset consisting of 9 parts and 33 joints after
limiting our search to joints that fit and only exploring orientations of plates that do not lead to an
immediate collision. (Labels denote the number of joints that fit at a given position x the number
of orientations they fit in).

AutoAssembler therefore limits the search to the more promising
candidates at each stage (beam search [18]). To this end, autoAssembler
starts with an empty model and recursively tries to add one plate each
time. The time-complexity of beam search is O(dk) where depth d is the
number of plates and k is the beam width (the number of candidates
autoAssembler picks to generate children for, at each stage) multiplied
by the maximum fanout at each stage. The fanout in principle is
proportional to the depth. Worst case complexity thus is quadratic,
however the joint hash table mentioned before reduces the fanout to the
joints with the same signature. If all joints have a unique counterpart
(ideal case) the complexity is linear, in practice the complexity sits
between these bounds. In our technical evaluation, a beam width of 4
proved sufficient for achieving the aforementioned success rate (79% +
18% = 97%), allowing for overall very fast execution (median of 0.30s).

Figure 126: The first stage of search for a VR headset. AutoAssembler picks the initial plate with the
most joints, uses the joint-hash to find what plates fit into the open joints, scores the candidates
(labeled above) and generates new children from the best candidates.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

129

As shown in Figure 126, performing beam search, autoAssembler
selects the four highest scoring candidates to generate the candidates for
the next round, detailed in pseudo code in Algorithm 5.

Algorithm 5: Find best candidate
Input: starting plate, detected plates and joints in 2D cutting plan (using the assembler3 algorithm)
Output: best assembled model
Internal data structures: candidates are assemblies of one or more plates, their children are the same
assembly with one additional plate. Empirically determined maximum beam width
MAX_BEAM_WIDTH=4
// These candidates have two plates, (see Figure 126 for examples)
currentCandidates = children of the candidate, which only contains the starting plate
// Based on heuristics in the next section, score each candidate
score(currentCandidates)
while there is at least one currentCandidate and not all plates are used {
 // AutoAssembler groups candidates that use the same plates, but not using the same joint
or

orientation, see heuristic “minimize candidates that are highly similar”
groups = group currentCandidates together, which have the same “connection pattern”
currentCandidates = Highest scoring candidate from each group
// If there are more states than the maximum beam width, limit them based on score
currentCandidates = currentCandidates limited to MAX_BEAM_WIDTH
// Generate children by adding a plate to the current candidates in different orientations
currentCandidates = children of currentCandidates
// Based on heuristics in the next section, score each candidate
score(currentCandidates)
}

return currentCanddiate with highest score

As part of the search process, as illustrated by Figure 127,
autoAssembler eliminates duplicate candidates. It achieves this by
storing previously visited candidates (memoization) in a hash.

Figure 127: autoAssembler encounters a candidate model more than once (the colored
candidates), autoAssembler drops the redundant states (Memoization), by hashing visited
candidates. (Here shown with three candidates each for visual clarity).

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

130

How autoAssembler picks promising candidates: The heuristic
function

The main contribution of autoAssembler is the specific way it selects the
candidates it pursues, i.e., how it assesses the potential of each candidate
(its heuristics function [18]). It computes a weighed sum to prefer
candidates (1) that have no intersecting plates, (2) that fit into a small
bounding box, (3) that use joints that can be unambiguously matched,
(4) that do not add a large number of unmatched joints, (5) that make
use of constraints posed by other plates, and (6) that conform to
symmetry axes of the plates. We developed these heuristics based on our
observation of common patterns in laser-cut models and by manually
evaluating candidates in our engineering team. As autoAssembler
calculates a score for all candidates at every stage, the implicit objective
for these heuristics is that they are efficient to compute.

AutoAssembler aggregates six heuristics as a weighted sum. Two
additional heuristics (deduplicating symmetric/similar plates and
minimizing highly similar candidates) are procedural in nature as they
operate on the stage (all “current candidates”) rather than scoring
individual candidates. We determined the optimal weights of the
individual heuristics using hyperparameter optimization (see “technical
evaluation” for details):

Table 4: parameter optimization for the heuristic function

parameter weight
compactness of candidates 0.07
intersections between plates 0.63
ambiguity of the joints that are completed 0.88
minimizing the number of unmatched joints 0.95
make use of constraints posed by other plates 0.58
conform to symmetry axes of the plates 0.83
minimize candidates that are highly similar n/a
deduplicating symmetric plates and similar plates n/a

1. Give preference to compact candidates: parts that “stick out” of
a model break off easily. Since designers generally prefer sturdy designs,
laser-cut models tend to be “compact”, i.e., fit into a comparably small
encompassing volume. AutoAssembler therefore is designed to prefer
candidates that fit into smaller bounding boxes. The red plate in Figure
128 for example, could be assembled as shown in (a), but that increases
the spanned volume (calculated using the axis-aligned bounding box as

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

131

this is the cheapest metric to compute). AutoAssembler calculates this
“compactness” using the metric: (1234)5&)3&))

#.%

89:2(&
, as proposed by Parker

et al. [89]. The compactness score of Figure 128b is much higher (the
surface area remains the same, but the denominator is much smaller), so
autoAssembler gives this candidate a higher score. Note that the weight
of this heuristic is very small (0.07) and thus mostly serves as a tiebreaker
for the other heuristics.

Figure 128: (a) Adding the red plate gives it a much larger bounding box, autoAssembler thus
gives (b) this candidate the higher score. (c) The resulting magazine holder.

2. Avoid intersections between plates: laser-cut plates in a model
must not intersect. Computing intersections between plates is an
expensive operation as it requires comparing every outline feature of the
plate to the already existing candidate. To achieve this efficiently,
autoAssembler compares the bounding box of the newly added plate to
plates already present in the current candidate. In the train wagon of
Figure 129, autoAssembler initially prefers to put the wheel mount up
because of the compactness metric, however that causes an intersection,
which forces autoAssembler to assemble this part in another orientation.
Avoiding intersections is not a hard constraint, because the relatively
cheap method of computing intersections comes at a cost of accuracy.

Figure 129: (a) The compactness heuristic suggested mounting this bearing (red) on top of this
train wagon, but here it intersects with plates mounted on top of the wagon, causing
autoAssembler (b) to flip the bearing plate to its correct position. (c) the same heuristic fixes the
other bearings too.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

132

3. Give preference to unambiguous joints: AutoAssembler delays
inserting plates that can be mounted in many different ways as long as
possible, so as to await additional plates to introduce additional
constraints that can help make the decision. AutoAssembler achieves
this by giving preference to joints that have few, or ideally only a single
matching partner joint. More specifically, autoAssembler assigns a
probability to pairs of joints in the joint hash as proposed by assembler3
and it tries to maximize the ratio between the assigned probability and
the sum of the probabilities of all other ways of matching up this joint.
When assembling the dice tower shown in Figure 130, for example,
starting with the ambiguous single finger joint of the red plate creates
many different opportunities for mounting the top plate.
(b) AutoAssembler instead first assembles the unambiguous and long
finger joints, which then pose constraints on the red plate of Figure 130a,
reducing overall ambiguity.

Figure 130: (a) Assembling this ambiguous joint early on forms little or no constraints on other
plates, as a result the top plate here can be assembled in many different ways (b) autoAssembler
prefers to greedily connect plates with high probabilities. This adds constraints for other plates, (c)
to eventually make this dice tower.

4. Minimize the number of unmatched joints: the size of the search
space at every candidate correlates with the amount of unmatched
(unused) joints. AutoAssembler prioritizes plates that add the fewest
incomplete joints. This works because it started out with the plate
having the most joints, otherwise autoAssembler would paint itself into
the corner (e.g., start with a plate with one joint, then close that joint
without opening new ones–done). In the example shown in Figure 131,
for example, autoAssembler therefore does not add (a) the side plate
that brings in multiple new joints but runs with (b) the middle divider,
which only adds one new joint.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

133

Figure 131: AutoAssembler prioritizes completing joints first as this reduces the search space: (a)
inserting the side plate (red) would add four incomplete joints to the model. (b) AutoAssembler
therefore rather adds this “divider” plate, which only adds one unmatched joint. (c) leading to this
desktop organizer.

5. Make use of constraints posed by other plates: AutoAssembler
prioritizes inserting plates whose placement is supported by multiple
plates/joints already in the model. It tries to maximize the number of
completed joints by adding a plate. This avoids situations as shown in
Figure 132, where (a) the nosepiece of this VR headset is under-
constrained: it can be assembled in different orientations that all seem
equally good according to the other metrics. (b) AutoAssembler thus
prioritizes assembling the front plate first, which completes three joints
at once and then later (c) adds the nosepiece as the front plate imposes
additional constraints on that plate.

Figure 132: (a) This candidate offers too few constraints to orient the red plate correctly.
(b) AutoAssembler therefore prioritizes this plate, which completes three joints. (c) This adds
constraints that come in handy when eventually inserting the middle piece.

6. Minimize candidates that are highly similar: as illustrated by
Figure 133, if autoAssembler encounters multiple candidates that differ
only by one or more plates being flipped, it drops all but the highest
scoring one, so as to make room for candidates consisting of a different
subset of plates. As shown in Algorithm 5, candidates are filtered by
“connection pattern”. This is a high-level data structure that describes
what plates are connected, using which joints. This prevents
AutoAssembler from only looking at similar structures with a flipped
plate.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

134

Figure 133: AutoAssembler picks the best four candidates of this stage. To avoid picking the first
four candidates which are almost the same, it skips candidates that share the same connection
pattern with a candidate that is already picked. Resulting in the four candidates highlighted in
yellow.

The algorithm, as described above is functional, but performs poorly
on models containing symmetries, such as the models shown in Figure
134. On such models the search space is cluttered with results that are
the same, but contain different plate connectivity, resulting in problems
similar to the ones in Figure 133. This unnecessarily blows up the search
space and deprioritizes asymmetrical plates in the assembly that end up
defining the structure. This is problematic, as 3D models designed for
laser cutting are commonly symmetrical in nature. Out of the
benchmark of assembler3, for example, 81/100 have reflective
symmetries, and 11/100 have rotational symmetries.

Figure 134: Examples of symmetric laser-cut models from assembler3 (a) double reflectional
symmetry, (b) 6-point rotational symmetry, (c) double reflectional symmetry (and multiple uses of
same plate).

We propose two extensions of the algorithm based on symmetries:
prioritizing symmetric assembly of plates, and deduplicating plates and
orientations when possible.

7. Favor symmetric candidates: AutoAssembler prefers symmetric
assemblies over asymmetric ones. As shown in Figure 135b, when
autoAssembler adds a plate to a symmetrical plate, it verifies whether
there is a similar plate elsewhere in the assembly and if so, it increases
the score of a placement that implements symmetry.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

135

Figure 135: (a) AutoAssembler detects symmetries by having pairs of joints vote for symmetry axes
(b) autoAssembler uses the information to prefer similar plates connected to joints on opposite
sides of the symmetry axis. (c) resulting in this birdhouse.

As shown in Figure 135a, autoAssembler detects symmetries in
three steps: (1) it starts by looking for joints with a similar profile using
the joint hash table, at the same distance to the center of the plate, (2) it
constructs the symmetry axis this pair of joints conforms to, and (3) then
verifies that proposed symmetry axis with the other joints on the plate,
similar to Mitra et al. [78].

8. Deduplicating symmetric plates and similar plates: Symmetric
plates blow up the search space unnecessarily: When encountering a
symmetric plate, such as the one shown in Figure 136, the basic version
of autoAssembler considers inserting it in all possible orientations,
leading to a much bigger search space with a lot of candidates that turn
out to be geometrically identical.

Figure 136: Because of the horizontal symmetry axis, only these two orientations of the side plate
produce a unique state. The same for this in-plate symmetry in the vertical orientation.

A similar issue is caused by multiple identical plates, such as the
ones shown in Figure 137. Again, the basic version of autoAssembler
considers inserting each copy of that plate separately, thereby blowing
up the search space and increasing the risk of beam search dropping
relevant models, as the algorithm is instead pursuing multiple
essentially identical models.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

136

Figure 137: Clustering by similarity (a) autoAssembler characterizes each input plate by three easy-
to-compute metrics (b) For this barrel model, autoAssembler considers 3 types of plates with 19
joints as opposed to 12 types of plates with 58 joints.

AutoAssembler determines that two plates are identical by
comparing their outlines using efficient-to-compute characteristics: the
number and the types of joints, the length of the outline, and the number
of left/right turns along each outline.

For hand-drawn models or models subject to rounding errors these
metrics may differ by some epsilon. To overcome these imprecisions,
autoAssembler uses a density-based clustering algorithm (DBSCAN
[36]), which allows autoAssembler to cluster similar plates, without
knowing in advance how many clusters to look for.

For the model shown in Figure 137, for example, autoAssembler
reduces this model from 12 types of plates featuring 58 joints down to
3 types of plates featuring 19 joints, which heavily reduces the search
space.

Favoring symmetry and similarity detection allows autoAssembler
to correctly reconstruct the six models shown in Figure 138, thereby
increasing autoAssembler’s success rate. It also improves the
algorithm’s performance by a factor of 1.5.

Figure 138: Six models from the test set that assemble correctly in autoAssembler because of the
symmetry heuristics.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

137

Manual disambiguation

Some models do not contain sufficient information to automatically
complete the model. The triceratops shown in Figure 139, for example,
would require domain knowledge of the anatomy of dinosaurs to tell how
to sort the ribs, or at best a visual reference for what to assemble (as a
child may have puzzling the dinosaur together). AutoAssembler does
not have this domain knowledge and consequently it precisely fails to
assemble models of this type—this is a limitation of the system and the
reason we exclude from our analysis these particular type of decorative
models, which are based on cross joints alone.

Models that do not solely rely on cross joints, however, tend to have
only a small number of such ambiguities and these generally do not
derail autoAssembler. The remaining 14 models that autoAssembler did
not automatically assemble, had a few plates that were not captured by
the general heuristics of the algorithm. We address these by
complementing autoAssembler with two manual tools that allow
disambiguating these cases:

1. Clicking a plate using the “reorient plate” tool reorients the
clicked plate by forcing autoAssembler to re-evaluate its orientation.
Users keep clicking until satisfied with the plate’s orientation.

2. Clicking a plate using the “swap plate” tool swaps a plate with
another selected plate if their joints match. Users click on one of the
plates, and then click on the other plate to swap them.

Figure 139: (a) Models such as this dinosaur require domain knowledge, placing them outside the
scope of automatic assembly. (b) this train wagon has misassembled plates after automatic
assembly, (c) with the reorient tool this is quick to fix. (d) Two plates are swapped in this organizer.
(e) The “swap-plate” tool lets users select one of the plates, and (f) by clicking the other one they
swap if they share common joints.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

138

In our technical evaluation, fully automated use of autoAssembler
assembled 79% of all models correctly. The “re-orient” and “swap” tools
allowed fixing an additional 12 of 14 models using 1-4 such clicks,
resulting in a 97% success rate.

Figure 140: Click sequences of the disambiguate tool. Users click a poorly assembled plate, which
autoAssembler then reconsiders. Here are five models that all were fixed by 1-4 manual
disambiguation overrides (2.7 on average).

User interface

Figure 141 shows the interface of autoAssembler in kyub. When users
import an SVG file, the dialog window shows a live preview of
autoAssembler assembling the model. AutoAssembler completes the
import after a median of 0.30s, (see section 5.2.3 Technical Evaluation).
As shown in Figure 141a on the left, users still have the option to import
the individual plates if the result does not look satisfactory. In that case
they revert to the assembler3 tools for the reconstruction process as
demonstrated before.

Figure 141: Importing an SVG model automatically into kyub.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

139

5.2.2 Tuning the algorithm

We ran a series of tests to optimize key parameters of the algorithm. (1)
Weights for the heuristics (2) determine minimum beam widths, and
(3) what plate to start out with.

Test set

We created the test set starting with the test set of the assembler3 project,
from which we extracted the 34 “planar intersection” models, as
discussed above in the “manual disambiguation” sub-section. When
models consisted of multiple assemblies, we split these into separate
files as autoAssembler expects one assembly per model. They can be
loaded into the same kyub scene though but through 2 import sessions.

We measured the success rate by taking the ground truth models
that were manually assembled in assembler3 as a reference. We
automatically verify our test runs by comparing the distance and angle
between plates to these ground truth models. We considered a model to
be a success only when all the dimensions matched perfectly (e.g., there
is no 50% successful assembly).

Procedure

We measured success rate (percentage of models that assembled
correctly) and the run time and repeated every measurement 10 times to
compensate for performance glitches and any potential delays
confounding our measure due to background activities on the machine
(MacBook Air 2020 1.2GHz Quad Core Intel Core i7).

Composition of the heuristic function

To determine the right weights for the parameters of the heuristic
function, we ran a hyperparameter optimization algorithm using the
tree pazen estimator called ATPE, proposed by Wen et al. [128]. We
trained the algorithm by feeding it the parameters of random runs on
the benchmark, and the corresponding candidates. The candidates are
labeled automatically by comparing it to our ground truth distance
matrix. After assessing 1000 candidates the algorithm converges, we
found the optimal parameters presented in Table 4.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

140

The beam width: from 4 on, autoAssembler achieves
maximum success rate

The beam width is the number of candidates autoAssembler selects at
every stage after sorting the states. To achieve the optimal success rate
and performance trade-off, we ran the benchmark with increasing beam
widths until the success rate not increased further. We also did a run
with a beam width of 1, which is equivalent to best first search to see if
the heuristic function alone (without beam search) would yield
sufficiently good results. Results are shown in Figure 142 below.

Figure 142: (a) Success rate of autoAssembler on our benchmark while varying the beam width.
(b) This model still makes an improvement at a beam width of 8, but the associated performance
loss is not worth it.

As shown in Figure 142, after a beam width of 4, the success rate
stabilizes. To verify whether if the success rate had reached an upper
bound, we ran the remaining 18% of models with a beam width of 10 as
well. Apart from the raspberry-pi rack shown in Figure 142b, which after
some more testing improved at a beam width of 8, there was no more
progress. We also see that with a greedy best first search, we could still
achieve a success rate of 48%, which indicates that the heuristic function
alone is rather good at picking the right option, but in many cases, we
do benefit from searching more alternatives.

The median performance per model in each run was 0.11 (beam
width =1), 0.22 (2), 0.22 (3), 0.30 (4), 0.44 (5), increasing the beam width
scales the performance roughly linearly. Therefore, doubling the beam
width (and thus the run time) from 4 to 8 is not worth it, only to save a
single model in our test set.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

141

Start with the plate with most joints

To know what role the starting plate plays in the success rate of the
algorithm, we ran the benchmark with different starting plates: (1) the
plate with the most joints, as this puts the most constraints on the
assembly (2) the biggest plate as this would define most of the shape,
and (3) a random plate (the plate that contains the first path in the SVG),
as a baseline. Figure 143 shows these strategies at the example of a test
tube rack.

Figure 143: Different starting plate metrics for the test-tube model.

The results show that the best solution is to start with the plate with
most joints. To see if there are better options for the models that fail, we
ran detailed tests with those models where we started out every plate.
Some of the broken models get closer to success by picking a different
starting plate, but none were “fixed” by doing so. We thus stick to the
plate with most joints as this is cheap to compute.

Figure 144: (a) Results of varying the starting plate. (b) some models with their ideal starting plate
highlighted.

5.2.3 Technical evaluation: autoAssembler achieves a 97%
success rate.

To evaluate the autoAssembler algorithm, we ran it on the benchmark
of 66 models encoded as 2D cutting plans. To determine how much the
extension of the algorithm contributes to the overall success rate of the
algorithm, we ran the tests in four distinct conditions: (1) the basic
algorithm, (2) the base with detection of similar plates, (3) the fully
extended automatic algorithm with symmetry detection and similarity
detection, and (4) with the manual disambiguation tools.

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

142

We used the same test set and procedure as presented in the
previous section.

Results

As illustrated by Figure 145, the complete algorithm of the eight
heuristics and the symmetry/similarity extensions, combined with the
manual disambiguation tools resulted in a 97% success rate.

Figure 145: The overall success rate of autoAssembler is 97% based on three extensions of the
algorithm: detecting similarities, symmetries and manual disambiguation.

As shown in the diagram, adding the similarity detection alone does
not impact the success rate, which is unsurprising as it only reduces the
search space (and thus contributes to performance). The model that did
get fixed in the process failed before because the search space was overly
populated with candidates that were the same.

Symmetry and similarity handling account for 13%: To assess the
contribution of the symmetry and similarity detection, we ran the
benchmark with each of these steps enabled and disabled. The results
shown in Figure 145 show that the symmetries and similarity detection
combined increase the success rate from 66 to 79%.

Symmetry and similarity detection reduced the runtime from a
median of 0.44s per model to 0.30s per model (a 1.5x performance
improvement).

Manual disambiguation accounts for 18%: As shown in Figure 146,
12 models required tweaking using the manual disambiguation tools,
although the required user effort was minimal with 1-4 clicks required
per model (avg 2.7).

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

143

Figure 146b shows the two failed models: a minibar model and a
birdhouse the entrance of which was flipped inwards. Both can be fixed
using an additional tool to extract 6 plates and manually assemble them.

Figure 146: (a) 1-4 clicks using autoAssembler’s “re-orient plate” tool fix the mis-oriented red plates
in these 12 models. One pair of clicks each using the “swap tool” fixes the swapped blue plates.
(b) this birdhouse and minibar would require users to extract 6 plates and re-assemble them.

5.3 A BENCHMARK FOR LASER-CUT MODELS
For the field of laser-cutting to mature, and to make it easier to build on
our findings, we release the benchmark of models [95] which we used to
evaluate both assembler3 and autoAssembler. In the Structure-
Preserving Editing paper from the previous chapter, we furthermore
demonstrated that the benchmark is useful outside of 3D reconstruction.

We sourced the models from public online repositories using
random sampling within the subset of laser-cut models consisting of
more than one plate and that have been reproduced by at least one other
user, they form a representative set of 100 models that capture the
variety and complexity of models shared online as of now. Figure 147
presents a high-level overview of the models, as shown they are well
distributed across the three main types of laser-cut joints: cross joints,
finger joints, and mortise-tenon joints. We did not categorize external
types of connections between plates such as adhesives (e.g., glue)
because this does not show up in the 2D cutting plans of the models.

Figure 147: Overview of the models in the benchmark (a) histogram of the number of plates per
model and (b) types of joints per model (2 models contained all types of joints).

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

144

The histogram of the number of plates is flat for a long time, because
many models are rather boxy in nature (4, 5, or 6 plates enclosing a boxy
volume). It also clearly indicates that the currently shared models are
not that complex yet, arguably caused by the lack of advanced design
tools like the ones presented in this thesis.

To allow this benchmark to be reusable for researchers independent
of the kyub system we provide for every model a link to the original
source model in 2D, an image of the model assembled and rendered in
kyub using assembler3 and an export of the 3D model in generic .obj
format so other researchers can use the data in their respective modeling
environments. For researchers with access to kyub, we also provide links
to the kyub model to allow them to immediately make parametric edits
to the models.

This benchmark in combination with the beam search algorithm of
autoAssembler furthermore enables the generation of a wealth of
assembled states of these models. The fully assembled models form a
ground truth of “what is a good assembly”, we are currently using this
data to traverse yet another route of automatic assembly using machine
learning. Without the autoAssembler algorithm and benchmark such
approaches were not viable due to lack of data. We see other potential
use cases for researchers in NLP to extract a “grammar” of plate
construction, a specialized version of shape grammars in computer
graphics and architectural design [74], which then allow applications in
3D modeling environments like autocomplete or suggestive interfaces
[56], real-time structural feedback (analogous to squiggly underlines in
word), or even automatic generation of variations and remixes of
models to explore a richer design space [132].

5.4 SOFTWARE INTEGRATION INTO KYUB
As mentioned before, both assembler3 and autoAssembler are integrated
into the import pipeline of kyub. Users either rely on the automation
provided by autoAssembler or revert to the interactive tools if the result
does not look as expected. The reconstruction logic is spread across two
areas of the overall kyub system shown in Figure 103: as illustrated in
Figure 148a, the assembler3 pipeline for processing SVGs is integrated
into the infrastructure modules, this provides the distinct benefit that it
can be invoked in a headless mode independent of the kyub 3D editor.
This allows other tools and systems to use the pipeline as a service which
takes SVG as input and returns what we call an SvgContext (which
can be serialized to JSON) consisting of a set of “knowledge sources”

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

145

that each capture the data of one of the steps of the assembler3 pipeline.
As shown in Figure 148b, the autoAssembler algorithms as well as the
tools and logic for the interactive assembly are integrated in the purple
(editor-side) modules of the broader system.

Figure 148: The kyub modules visualized using the webpack bundle analyzer [48]. The integration
of assembler3 and autoAssembler in the bigger kyub system. (a) On the infrastructure side (yellow)
are the modules and data structures to support the 4 analysis steps of the assembler3 algorithm.
(b) The editor (purple) is where the tools to invoke reconstruction are as well as the algorithm of
autoAssembler.

Figure 149 shows the structure of the SvgContext and its
underlying “knowledge sources”. Each of these modules contains basic
information about the SVG they are used to populate the joint and hash
data structures used in the editor logic to assemble models. Closer
inspection shows that there are two cyclical (dashed) dependencies in
this graph. The clearest example of this are the joints and thickness cross-
dependency, the algorithm first uses the turns in the paths to derive
where joints are, these joints then vote for a material thickness, however
when the thickness is known there is extra data to improve the joint
detection. We found that 2 cycles of cyclical updating resulted in stable
data, as presented before, achieving 99% accuracy on our benchmark.

Figure 149: SvgContext and its underlying dependency graph of knowledge sources. This
determines the structure of the 5-step pipeline of assembler3. There are two circular dependencies
balance out after 2 round-trips

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

146

Finally, looking back at Figure 103, it becomes evident that all tools
in kyub interact on the ModelData of the 3D models, the joints and
machine-specific properties of the model are regenerated on export. In
the current implementation kyub keeps the original imported joints
around during the reconstruction effort. However, when users make
parametric changes to the models, kyub replaces the original joints with
the typical kyub joints (details on the specific algorithm of generating
kyub joints can be found in Yannis Kommana’s master thesis [66]). In
future work we plan to adjust the algorithm so as to respect the specific
geometry of the original joints instead of overriding them.

5.5 CONTRIBUTIONS
In this chapter we make four key contributions:

(1) We start with a 5-step pipeline, we call assembler3, which
processes 2D cutting plans to derive high-level data on the structure of
the model. We then present tools that allow users to interactively
reconstruct a 3D model from this information. Compared the traditional
2D editing workflow this is 10x faster and 26x less error prone.

(2) We release the benchmark of laser-cut models for others to
replicate and build upon the work.

(3) Building on the assembler3 pipeline, we implement
AutoAssembler; a 3D reconstruction algorithm that beam searches the
exponential space of possible ways of assembling parts. Our main
contribution lies in the heuristics that assesses partially assembled
models in order to pick the most promising candidates for subsequent
exploration; our method prefers candidates that (1) have no intersecting
plates, (2) fit into a small bounding box, (3) use plates whose joints fit
together well, (4) do not add many unpaired joints, (5) make use of
constraints posed by other plates, and (6) conform to symmetry axes of
the plates.

(4) We integrate our 3D reconstruction work into the code base of
a 3D editor for laser cutting (kyub), resulting in an integrated system that
allows loading, editing, and writing 2D cutting files.

Our current implementation is limited to three limitations: (1) it
handles a basic set of laser-cut elements—we defer living hinges,
moving mechanisms, stacked/glued/bolted plates and joints that
connect more than one other joint to future versions. (2) In order to work
with kyub, our implementation recreates joints from the SVG in which
some joint design may get lost. Our automatic workflow does not apply

CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS

147

to models where the structure is derived from the shape instead of the
joints, in particular models only consisting of planar sections held
together by cross joints (Figure 139a). As a fallback, users can use the
interactive assembly workflow.

5.6 CONCLUSIONS
We present an approach to convert “legacy” 2D cutting plans to 3D
models for laser cutting. The resulting models are easy to modify using
3D environments like kyub and allow others to reproduce the physical
object using different laser-cutters or materials from the original creator.
The proposed automatic workflow succeeds at reconstructing a subset
of models if they do not solely rely on cross joints. For the other 36% of
models, users fall back to interactive reconstruction. While this involves
manual effort, the interactive workflow is still 10x faster and 26x less
error prone compared to traditionally editing 2D cutting plans in 2D
editors.

Once a laser cut model has been 3D reconstructed this model will
most likely continue its life in this 3D format, making the model easier
to process, share, and remix from this point onward. We think that this
will help the laser cutting community leave the sharing of 2D cutting
plans behind and transition to a 3D format. We anticipate that this will
foster collaboration around models und thus ultimately increase the
level of model complexity the laser cutting community will be able to
achieve.

148

149

6
CONCLUSIONS AND OUTLOOK

In this chapter we expand on the contributions of the individual
chapters and come back to the overall story of making a small step
towards portable models for laser cutting. We discuss the benefits and
impact of the work and highlight future opportunities and challenges to
transition the field towards mainstream adoption of digital fabrication.

6.1 CONTRIBUTION
In this thesis we presented challenges that prevent designers of laser-cut
3D models from building on the work of others and reproducing models
using their materials and machines. We diagnosed that these challenges
are caused by using implicitly machine-specific exchange formats.

We presented two ways of approaching this problem: (1) replacing
machine-specific elements with more generic counterparts so users no
longer need to consider machine and material parameters (within a
reasonable range), and (2) representing and sharing the models using a
higher level of abstraction to only generate machine-specific formats at
fabrication-time, when all machine and material parameters are known.

We contribute with three software systems: (1) a SVG rewriter that
makes 2D cutting plans tolerant to variations of machine and material,
(2) a 3D modeling environment for laser-cutting that allows users to
create, modify, and share models at a higher level of abstraction while
providing fabrication-aware tools to support “good laser cutting”, and
(3) an environment to convert legacy 2D cutting plans to 3D models that
can then be manipulated in 3D environments for laser cutting.

To maximize the potential impact of this work, we integrated our
tools and algorithms in a platform which currently supports 500+ beta-
testers. Moreover, as shown in Figure 79, kyub is currently used in a
range of educational contexts where we begin to see how the complexity
and usefulness of models is rapidly increasing by facilitating building
on the work of others and moving user effort away from dealing with
material and machine specifics and towards higher level design. To

CONCLUSIONS AND OUTLOOK

150

demonstrate the ability to really design more complex models than the
state-of-art in laser cutting, we conducted a workshop in one of our
classes where students designed and built fully functional ukuleles as
shown in Figure 150.

Figure 150: (a) 8 teams of students designed and (b) assembled (c) their instruments.

6.1.1 l imitation: loss of knowledge of materials and machines

Abstracting away from the material and machine at hand will allow
more (lay) users to engage with laser cutters, who will produce more
advanced and useful models. It does come at a cost as well, similar to
how only few software engineers today write assembler code or truly
understand the interaction with bits and transistors within a computing
system, this level of abstraction means a loss of knowledge of the actual
machines and materials at hand. We see this as an inevitable trade-off
with an increase of complexity of models (nobody should have to
reimplement OpenCV when building a simple image manipulating
pipeline). We do not discount the value of that knowledge and
acknowledge that there is certainly a space for applications on the other
side of the trade-off as well: expert tools to design and invent new types
of joints/mechanisms or fabrication routines.

We furthermore believe that using higher level modeling systems
can be used as a vehicle to bring back the material and machine
knowledge when used in carefully constructed workshops. We
demonstrate this potential by bringing our software to schools, teachers
have shown to be very receptive of inclusion of fabrication classes where
pupils not only design but also fabricate and assemble their models and
thus learn various hardware skills in the process.

CONCLUSIONS AND OUTLOOK

151

6.2 FUTURE OUTLOOK : UPCOMING OPPORTUNITIES AND CHALLENGES
The work in this thesis forms a small step towards the more ambitious
goal of allowing users to build on the work of others and increase the
complexity and relevance of models that are shared and fabricated using
laser cutters. In this section we extrapolate the directions we set out to
study and present related opportunities and challenges for future work.

6.2.1 trade-offs between machine and material properties

In this thesis we identified joints, mounts, and mechanisms as being
hard to design and highly machine/material specific, this assumption is
a direct by-product of the level of complexity of models that are
currently designed and made. Advanced models are more than just a
structure of jointed plates, assemblies have other mechanical properties
like weight, structural integrity, compliance, electrical or heat
conductivity, and many more. Analogous to the discussion of functional
properties in 3D models in the related work (chapter 2.4) it would be
interesting to abstract away some of these properties too. Imagine a user
who designed and shared a chair model, another user with a different
material would be able to reproduce a model that holds the same weight
and feels equally compliant when sitting down, these may be more
important factors that reproducing the exact same 3D structure of plates.

Looking back at the development of compilers, each attempt to
virtualize a material or machine property adds a specific rule in the
compiling function from a high-level description to machine code. It is
tempting to formalize such rules, forming an automatic process.
Databases of material properties exist for advanced software packages.
The next step would be to identify relevant substructures that perform
specific mechanical roles in models and formulate compiling functions
with material/machine properties as variable. Resulting functions will
conflict (e.g., no metal chair exists which emulates all properties of a
wooden chair), so a user interface could enable exploring trade-offs.

Pushing this notion further would allow for abstraction of the
fabrication process. In this thesis we looked at laser cutting only, but a
representation of the model independent of whether it would be laser
cut, die stamped, milled, 3D printed, or injection molded could be used
as input into a “machine compiler” that generates joints and connectors
or geometry to support the desired fabrication process. This could
enable interesting applications like upgrading a prototype to a model
for a more advanced manufacturing process when scaling up to
fabricate a small series.

CONCLUSIONS AND OUTLOOK

152

6.2.2 extracting reusable content

The work in this thesis lays a foundation that allows users to build on
the work of others by making parametric edits to models and allowing
users to increase the complexity of models by adding new plates and
volumes. At the current state this is mostly customizing and remixing,
similar to what we have presented in the context of 3D printing with
Grafter [102]. In looking back to the development of reuse in the history
of computing, a crucial step was to determine the right level of
abstraction for reusable components [58]. Rather than reusing entire
models and mechanisms, future work could investigate what the right
granularity of reusable components for laser cut/fabrication models is.
Based on our findings we assume this to be roughly at the level of joints,
mounts, and mechanisms. However, interesting hierarchies and
combinations of these will likely provide more useful than single
cutouts.

6.2.3 designing products as opposed to processes

A key insight we derived during this research is that the current
fabrication workflows describe processes, which makes sense because the
users (either industrial or tech enthusiast) are interested in how to use the
machine at hand to fabricate a desired product. For example: “how do I
make a guitar using a laser cutter”. Those are interesting puzzles for
engineers, but when we think of laser cutting (and personal fabrication)
to transition towards a mainstream phenomenon, these objectives
change. The more relevant question for those users is “how do I get a
custom guitar”: describing a product. Like a search query on Amazon,
which is where they get their products now.

Designing products instead of processes however has some major
implications in how to build future systems for digital fabrication.
Consumer products are almost never made from a single material or
using one fabrication technique alone. This stands in stark contrast to
the way fabrication tools are designed today. It will thus require
developing systems that handle multiple fabrication machines under the
hood as well as generating joints between different materials and
processes. This is domain expertise typically in the hands of Industrial
Designers or Engineers. This will further require expressing fabrication
and assembly workflows in a more formal language so as to have full
control over the machines, Taxon [71] is a promising initial step in that
direction.

CONCLUSIONS AND OUTLOOK

153

Beyond the technical underbelly of how to interface with machines
and materials and adjusting the models, it also requires rethinking the
user facing components and the ecosystem of design. End-users as
stated before are interested in the product and how to customize it, this
requires a different interface from a user who designs the model from
scratch. We expect to see an end-user facing system integrated into
services like Amazon with carefully designed degrees of freedom. The
designer-facing side would allow designing the entire model in its full
complexity while exposing specific degrees of freedom to end-users.

6.2.4 manifestation of fabrication in everyday life

The work in this thesis makes a small contribution to advance the field
towards mass adoption of fabrication, but it will take more than formats
and interfaces for this to happen. Bringing fabrication to educational
contexts will be an important step forwards, and so is transitioning to
interfaces that allow customizing products. It will further require
advances in fabrication hardware and our understanding of what usage
context will be most viable. We ran an early exploration into one such
context for 3D printing focused on mobile fabrication [99], but much more
can and will have to be done to find out if and how fabrication can
become a relevant mainstream technology.

154

155

7
REFERENCES

1. Muhammad Abdullah, Martin Taraz, Yannis Kommana, Shohei
Katakura, Robert Kovacs, Jotaro Shigeyama, Thijs Roumen, and
Patrick Baudisch. 2021. FastForce: Real-Time Reinforcement of Laser-
Cut Structures. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (CHI '21). ACM, New York, NY, USA,
Article 673, 1–12. DOI: https://doi.org/10.1145/3411764.3445466

2. Muhammad Abdullah, Romeo Sommerfeld, Laurenz Seidel, Jonas
Noack, Ran Zhang, Thijs Roumen, and Patrick Baudisch. 2021.
Roadkill: Nesting Laser-Cut Objects for Fast Assembly. In The 34th
Annual ACM Symposium on User Interface Software and Technology
(UIST '21). ACM, New York, NY, USA, 972–984. DOI:
https://doi.org/10.1145/3472749.3474799

3. Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon,
Brian Curless, Steven M. Seitz, and Richard Szeliski. 2011. Building
Rome in a day. Commun. ACM 54, 10 (October 2011), 105–112. DOI:
https://doi.org/10.1145/2001269.2001293

4. Anand Agarawala and Ravin Balakrishnan. 2006. Keepin’ it real:
pushing the desktop metaphor with physics, piles and the pen.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI '06) ACM, New York, NY, USA, 1283-1292. DOI:
http://dx.doi.org/10.1145/1124772.1124965

5. Aftab Ahmad, Kjell Andersson, and Ulf Sellgren. "An optimization
approach toward a robust design of six degrees of freedom haptic
devices." Journal of Mechanical Design 137, no. 4 (2015): 042301.

6. Celena Alcock, Nathaniel Hudson, and Parmit K. Chilana. 2016.
Barriers to Using, Customizing, and Printing 3D Designs on
Thingiverse. In Proceedings of the 19th International Conference on
Supporting Group Work (GROUP '16). Association for Computing
Machinery, New York, NY, USA, 195–199. DOI:
https://doi.org/10.1145/2957276.2957301

7. Angular.js, last accessed March 2022, http://www.angularjs.org

REFERENCES

156

8. Marco Attene, Marco Livesu, Sylvain Lefebvre, Thomas Funkhouser,
Szymon Rusinkiewicz, Stefano Ellero, Jonàs Martínez, and Amit
Haim Bermano. "Design, representations, and processing for
additive manufacturing." In Synthesis Lectures on Visual Computing:
Computer Graphics, Animation, Computational Photography, and Imaging
10, no. 2 (2018): 1-146.

9. Autodesk Fusion 360, laser accessed Jan 2022,
https://www.autodesk.com/products/fusion-360

10. AutoDesk, Slicer for Fusion 360. last accessed March 2022,
https://knowledge.autodesk.com/support/fusion-
360/downloads/caas/downloads/content/slicer-for-fusion-360.html

11. Bradford C. Barber, David P. Dobkin, and Hannu Huhdanpaa. "The
quickhull algorithm for convex hulls." ACM Transactions on
Mathematical Software (TOMS) 22, no. 4 (1996): 469-483.

12. Oliver A. Bauchau, and James I. Craig. "Euler-Bernoulli beam
theory." In Structural analysis, pp. 173-221. Springer, Dordrecht, 2009.
DOI: https://doi.org/10.1007/978-90-481-2516-6_5

13. Patrick Baudisch and Stefanie Mueller. "Personal fabrication."
Foundations and Trends® in Human–Computer Interaction 10, no.
3–4 (2017): 165-293.

14. Patrick Baudisch, Arthur Silber, Yannis Kommana, Milan Gruner,
Ludwig Wall, Kevin Reuss, Lukas Heilman, Robert Kovacs, Daniel
Rechlitz, and Thijs Roumen. 2019. Kyub: A 3D Editor for Modeling
Sturdy Laser-Cut Objects. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI '19). ACM, New York, NY,
USA, Paper 566, 1–12. DOI: https://doi.org/10.1145/3290605.3300796

15. Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting
Chen, and Patrick Baudisch. 2015. Platener: Low-Fidelity Fabrication
of 3D Objects by Substituting 3D Print with Laser-Cut Plates. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). Association for Computing Machinery,
New York, NY, USA, 1799–1806. DOI:
https://doi.org/10.1145/2702123.2702225

16. Joana Bergsiek, Jannis Bolik, Tim Garrels, Paul Methfessel, Antonius
Naumann, Martin Taraz, Robin Wersich. 2019. Enhancing the Kyub
Softwaresystem to Push the Boundaries of Physical Prototyping. In
bachelor thesis at HPI, internal publication.

REFERENCES

157

17. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard
Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010.
Design and fabrication of materials with desired deformation
behavior. In ACM SIGGRAPH 2010 (SIGGRAPH '10). Association for
Computing Machinery, New York, NY, USA, Article 63, 1–10.
https://doi.org/10.1145/1833349.1778800

18. Roberto Bisiani, 1987. Beam search. In Shapiro, S., ed., Encyclopedia of
Artificial Intelligence. John Wiley and Sons. 56–58.

19. Corrando Böhm. Calculatrices digitales du déchiffrage de formules logico-
mathématiques par la machine même dans la conception du programme.
PhD thesis, ETH, Zürich, 1954. Thesis written under supervision of
E. Stiefel and P. Bernays and defended in 1951. Published in Ann.
Math. PuraAppl. 37 (1954), 5-47. DOI: doi.org/10.3929/ethz-a-
000090226.

20. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise,
and Mark Pauly. "Shape-up: Shaping discrete geometry with
projections." In Computer Graphics Forum, vol. 31, no. 5, pp. 1657-
1667. Oxford, UK: Blackwell Publishing Ltd, 2012.

21. Erin Buehler, Stacy Branham, Abdullah Ali, Jeremy J. Chang, Megan
Kelly Hofmann, Amy Hurst, and Shaun K. Kane. 2015. Sharing is
Caring: Assistive Technology Designs on Thingiverse. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI '15). Association for Computing Machinery, New York,
NY, USA, 525–534. https://doi.org/10.1145/2702123.2702525

22. Alberto Castigliano. 1879. Théorie de l'équilibre des systèmes
élastiques et ses applications. Vol. 1. AF Negro, 1879.

23. Computational Geometry Algorithms Library (CGAL), last accessed
March 2022, http://www.cgal.org

24. Ruei-Che Chang, Chih-An Tsao, Fang-Ying Liao, Seraphina Yong,
Tom Yeh, and Bing-Yu Chen. 2021. Daedalus in the Dark: Designing
for Non-Visual Accessible Construction of Laser-Cut Architecture. In
The 34th Annual ACM Symposium on User Interface Software and
Technology (UIST '21). Association for Computing Machinery, New
York, NY, USA, 344– 358. DOI:
https://doi.org/10.1145/3472749.3474754

25. Desai Chen, David I. W. Levin, Piotr Didyk, Pitchaya Sitthi-Amorn,
and Wojciech Matusik. 2013. Spec2Fab: a reducer-tuner model for
translating specifications to 3D prints. In ACM Trans. Graph. 32, 4,
Article 135 (July 2013), 10 pages
https://doi.org/10.1145/2461912.2461994

REFERENCES

158

26. Lujie Chen, and Lawrence Sass. "Fresh press modeler: A generative
system for physically based low fidelity prototyping." In Computers
& Graphics 54 (2016): 157-165.

27. Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-
Or. 2013. 3-Sweep: extracting editable objects from a single photo.
ACM Trans. Graph. 32, 6, Article 195 (November 2013), 10 pages. DOI:
https://doi.org/10.1145/2508363.2508378

28. James McCrae, Karan Singh, and Niloy J. Mitra. 2011. Slices: a shape-
proxy based on planar sections. ACM Trans. Graph. 30, 6, Article 168
(December 2011), 12 pages. DOI:
https://doi.org/10.1145/2070781.2024202

29. James McCrae, Nobuyuki Umetani, and Karan Singh. 2014.
FlatFitFab: interactive modeling with planar sections. In Proceedings
of the 27th annual ACM symposium on User interface software and
technology (UIST '14). ACM, New York, NY, USA, 13-22. DOI:
https://doi.org/10.1145/2642918.2647388

30. CutLaserCut kerf manual
http://www.cutlasercut.com/resources/tips-and-advice/what-is-
laser-kerf. Accessed January 2020.

31. Benjamin Daniel, Jeffrey Johnson, Ole Schluter. 2021. Plate-Based
Modelling for Laser Cutting in Kyub. In bachelor thesis at HPI, internal
publication.

32. Mustafa Doga Dogan, Steven Vidal Acevedo Colon, Varnika Sinha,
Kaan Akşit, and Stefanie Mueller. 2021. SensiCut: Material-Aware
Laser Cutting Using Speckle Sensing and Deep Learning. In The 34th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3472749.3474733

33. Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana
Schulz, Daniela Rus, Armando Solar-Lezama, and Wojciech Matusik.
2018. InverseCSG: automatic conversion of 3D models to CSG trees.
ACM Trans. Graph. 37, 6, Article 213 (November 2018), 16 pages. DOI:
https://doi.org/10.1145/3272127.3275006

34. Heinrich Dubbel, and B. J. Davies. Dubbel-Handbook of mechanical
engineering. Springer Science & Business Media, 2013.

35. Richard Ebeling, Leonard Geier, Ben Hurdelhey, Dominik Meier,
Marcel Schmidberger. 2018. Enhancing the Kyub Software System to
Facilitate Laser Cutting of Complex Objects. In bachelor thesis at HPI,
internal publication.

REFERENCES

159

36. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
"Density-based spatial clustering of applications with noise." In Int.
Conf. Knowledge Discovery and Data Mining, vol. 240, p. 6. 1996.

37. Christoph M. Flath, Sascha Friesike, Marco Wirth, & Frederic Thiesse,
Copy, transform, combine: exploring the remix as a form of
innovation. Journal of Information Technology, 1-20. DOI:
https://doi.org/10.1057/s41265-017-0043-9

38. Noa Fish, Melinos Averkiou, Oliver van Kaick, Olga Sorkine-
Hornung, Daniel Cohen-Or, and Niloy J. Mitra. 2014. Meta-
representation of shape families. ACM Trans. Graph. 33, 4, Article 34
(July 2014), 11 pages. DOI: https://doi.org/10.1145/2601097.2601185

39. Paul Freiberger, Michael Swaine. 1984. Fire in the Valley: The
Making of the Personal Computer. McGraw-Hill, Inc., NY. ISBN:
9780071358927.

40. Lukas Fritzsche, Lukas Heilmann, Bastian König, Jonas Noack,
Milan Proell. 2017. Extending the Kyub Interactive Editor for Laser
Cutting Towards the Fabrication of Large-Scale Objects. In bachelor
thesis at HPI, internal publication

41. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min,
William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David
Dobkin. 2004. Modeling by example. ACM Trans. Graph. 23, 3
(August 2004), 652–663. https://doi.org/10.1145/1015706.1015775

42. Tinsley A. Galyean and John F. Hughes. 1991. Sculpting: an
interactive volumetric modeling technique. In Proceedings of the 18th
annual conference on Computer graphics and interactive
techniques (SIGGRAPH '91). ACM, New York, NY, USA, 267-274.
DOI: http://dx.doi.org/10.1145/122718.122747

43. Jian Gao, Detao Zheng, and Nabil Gindy. "Mathematical
representation of feature conversion for CAD/CAM system
integration." Robotics and Computer-Integrated Manufacturing20, no. 5
(2004): 457-467.

44. GrabCAD, last accessed May 2022, http://www.grabcad.com
45. Salvatore Gerbino. 2003. "Tools for the interoperability among CAD

systems." In Proc. XIII ADM-XV INGEGRAF Int. Conf. Tools and
Methods Evolution in Engineering Design. 2003.

46. Neil Gershenfeld. 2005. Fab: The Coming Revolution on Your
Desktop--from Personal Computers to Personal Fabrication. Basic
Books publisher, ISBN: 9780465027453

REFERENCES

160

47. Saul Greenberg and Bill Buxton. 2008. Usability evaluation
considered harmful (some of the time). In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '08).
Association for Computing Machinery, New York, NY, USA, 111–
120. DOI: https://doi.org/10.1145/1357054.1357074

48. Yuriy Grunin and Vesa Laakso (maintainers) Webpack bundle
analyzer. In npm packages. Last accessed May 2022,
https://www.npmjs.com/package/webpack-bundle-analyzer

49. Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch:
Output-Directed Programming for SVG. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology
(UIST '19). Association for Computing Machinery, New York, NY,
USA, 281–292. https://doi.org/10.1145/3332165.3347925

50. Florian Heller, Jan Thar, Dennis Lewandowski, Mirko Hartmann,
Pierre Schoonbrood, Sophy Stönner, Simon Voelker, and Jan
Borchers. 2018. CutCAD - An Open-source Tool to Design 3D Objects
in 2D. In Proceedings of the 2018 Designing Interactive Systems
Conference (DIS '18). ACM, New York, NY, USA, 1135-1139. DOI:
https://doi.org/10.1145/3196709.3196800

51. Megan Hofmann, Gabriella Hann, Scott E. Hudson, and Jennifer
Mankoff. 2018. Greater than the Sum of its PARTs: Expressing and
Reusing Design Intent in 3D Models. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI '18). ACM,
New York, NY, USA, Paper 301, 12 pages. DOI:
https://doi.org/10.1145/3173574.3173875

52. Grace Murray Hopper. 1952. The education of a computer. In
Proceedings of the 1952 ACM national meeting (Pittsburgh) (ACM
'52). Association for Computing Machinery, New York, NY, USA,
243–249. https://doi.org/10.1145/609784.609818

53. Qi-Xing Huang, Simon Flöry, Natasha Gelfand, Michael Hofer, and
Helmut Pottmann. 2006. Reassembling fractured objects by
geometric matching. ACM Trans. Graph. 25, 3 (July 2006), 569-578.
DOI: https://doi.org/10.1145/1141911.1141925

54. Nathaniel Hudson, Celena Alcock, and Parmit K. Chilana. 2016.
Understanding Newcomers to 3D Printing: Motivations, Workflows,
and Barriers of Casual Makers. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI '16).
Association for Computing Machinery, New York, NY, USA, 384–
396. DOI: https://doi.org/10.1145/2858036.2858266

REFERENCES

161

55. Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs,
Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and
Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology
(UIST '16). Association for Computing Machinery, New York, NY,
USA, 529–539. https://doi.org/10.1145/2984511.2984540

56. Takeo Igarashi and John F. Hughes. 2001. A suggestive interface for
3D drawing. In Proceedings of the 14th annual ACM symposium on User
interface software and technology (UIST '01). Association for Computing
Machinery, New York, NY, USA, 173–181.
https://doi.org/10.1145/502348.502379

57. Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999.
Teddy: a sketching interface for 3D freeform design. In Proceedings of
the 26th annual conference on Computer graphics and interactive
techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 409-416. DOI:
http://dx.doi.org/10.1145/311535.311602

58. Malcolm Douglas McIlroy, J. Buxton, Peter Naur, and Brian Randell.
"Mass-produced software components." In Proceedings of the 1st
international conference on software engineering, Garmisch Pattenkirchen,
Germany, pp. 88-98. 1968.

59. ISO 286-1:2010 - Geometrical product specifications (GPS) - ISO code
system for tolerances on linear sizes - Part 1: Basis of tolerances,
deviations and fits. 2010: International Organization for Standardization
(ISO).

60. ISO, DIN. "286-1: ISO-System für Grenzmaße und
Passungen." Grundlagen für Toleranzen, Abmaße und Passungen (1990).

61. Kenny R. Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang,
Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. 2020.
ShapeAssembly: learning to generate programs for 3D shape
structure synthesis. ACM Trans. Graph. 39, 6, Article 234 (December
2020), 20 pages. DOI: https://doi.org/10.1145/3414685.3417812

62. Shohei Katakura, Yuto Kuroki, and Keita Watanabe. 2019. A 3D
Printer Head as a Robotic Manipulator. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and
Technology (UIST '19). Association for Computing Machinery, New
York, NY, USA, 535–548. https://doi.org/10.1145/3332165.3347885

63. Shohei Katakura, Martin Taraz, Paul Methfessel, Abdullah
Muhammad, Conrad Lempert, and Patrick Baudisch. 2022.
Kerfmeter: Automatic Kerf Calibration for Laser Cutting. In
submission to UIST’22.

REFERENCES

162

64. Jeeeun Kim, Anhong Guo, Tom Yeh, Scott E. Hudson, and Jennifer
Mankoff. 2017. Understanding Uncertainty in Measurement and
Accommodating its Impact in 3D Modeling and Printing. In
Proceedings of the 2017 Conference on Designing Interactive Systems (DIS
'17). ACM, New York, NY, USA, 1067-1078. DOI:
https://doi.org/10.1145/3064663.3064690

65. Ralph Kimball, and B. Verplank E. Harslem. "Designing the Star user
interface." Byte 7 (1982): 242-282.

66. Yannis Kommana. 2019. An Implementation of a 3D Modeling
Ssystem for Sturdy Laser-cut Objects. In master thesis at HPI, internal
publication.

67. Robert Kovacs, Anna Seufert, Ludwig Wall, Hsiang-Ting Chen,
Florian Meinel, Willi Müller, Sijing You, Maximilian Brehm,
Jonathan Striebel, Yannis Kommana, Alexander Popiak, Thomas
Bläsius, and Patrick Baudisch. 2017. TrussFab: Fabricating Sturdy
Large-Scale Structures on Desktop 3D Printers. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (CHI '17).
ACM, New York, NY, USA, 2606-2616. DOI:
https://doi.org/10.1145/3025453.3026016

68. Karim Lakhani, and Eric Von Hippel. "How open source software
works:“free” user-to-user assistance." In Produktentwicklung mit
virtuellen Communities, pp. 303-339. Gabler Verlag, 2004.

69. Harold “Bud” Lawon and Howard Bromberg. “The World’s First
COBOL Compilers”. Computer History Museum Lecutre Series,
Stanford University, June 12 1997.
https://web.archive.org/web/20111013021915/http://www.computer
history.org/events/lectures/cobol_06121997/index.shtml

70. Danny Leen, Nadya Peek, and Raf Ramakers. "LamiFold: Fabricating
Objects with Integrated Mechanisms Using a Laser cutter
Lamination Workflow." 2020. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology (UIST’20), pp.
304-316. 2020.

71. Jasper Tran O'Leary, Chandrakana Nandi, Khang Lee, and Nadya
Peek. 2021. Taxon: A Language for Formal Reasoning with Digital
Fabrication Machines. In The 34th Annual ACM Symposium on User
Interface Software and Technology (UIST '21). Association for
Computing Machinery, New York, NY, USA, 691–709.
https://doi.org/10.1145/3472749.3474779

REFERENCES

163

72. Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and
Leonidas Guibas. "Grass: Generative recursive autoencoders for
shape structures." ACM Transactions on Graphics (TOG) 36, no. 4
(2017): 1-14.

73. Jinjie Lin, Daniel Cohen-Or, Hao Zhang, Cheng Liang, Andrei Sharf,
Oliver Deussen, and Baoquan Chen. 2011. Structure-preserving
retargeting of irregular 3D architecture. ACM Trans. Graph. 30, 6
(December 2011), 1–10. DOI: https://doi.org/10.1145/2070781.2024217

74. Tianqiang Liu, Siddhartha Chaudhuri, Vladimir G. Kim, Qixing
Huang, Niloy J. Mitra, and Thomas Funkhouser. 2014. Creating
consistent scene graphs using a probabilistic grammar. ACM Trans.
Graph. 33, 6, Article 211 (November 2014), 12 pages.
https://doi.org/10.1145/2661229.2661243

75. Eunice López-Camacho, Gabriela Ochoa, Hugo Terashima-Marín,
and Edmund K. Burke. "An effective heuristic for the two-
dimensional irregular bin packing problem." Annals of Operations
Research 206, no. 1 (2013): 241-264.

76. Theodore H Maiman. "Stimulated optical radiation in ruby." (1960):
493-494.

77. Tobias Martin, Nobuyuki Umetani, and Bernd Bickel. 2015. OmniAD:
data-driven omni-directional aerodynamics. ACM Trans. Graph. 34,
4, Article 113 (August 2015), 12 pages.
https://doi.org/10.1145/2766919

78. Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. 2006. Partial and
approximate symmetry detection for 3D geometry. ACM Trans.
Graph. 25, 3 (July 2006), 560–568. DOI:
https://doi.org/10.1145/1141911.1141924

79. MyMiniFactory, last accessed May 2022,
https://www.myminifactory.com

80. David E. Muller, and Franco P. Preparata. "Finding the intersection
of two convex polyhedra." Theoretical Computer Science 7, no. 2 (1978):
217-236.

81. Stefanie Mueller, Bastian Kruck, and Patrick Baudisch. 2013.
LaserOrigami: laser-cutting 3D objects. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '13).
Association for Computing Machinery, New York, NY, USA, 2585–
2592. https://doi.org/10.1145/2470654.2481358

REFERENCES

164

82. Stefanie Mueller, Pedro Lopes, and Patrick Baudisch. 2012.
Interactive construction: interactive fabrication of functional
mechanical devices. In proceedings of the 25th annual ACM symposium
on User interface software and technology (UIST’12). Association for
Computing Machinery, New York, NY, USA, 599–606.
https://doi.org/10.1145/2380116.2380191

83. Stefanie Mueller, Anna Seufert, Huaishu Peng, Robert Kovacs, Kevin
Reuss, François Guimbretière, and Patrick Baudisch. 2019. FormFab:
Continuous Interactive Fabrication. In Proceedings of the Thirteenth
International Conference on Tangible, Embedded, and Embodied
Interaction (TEI '19). Association for Computing Machinery, New
York, NY, USA, 315–323. https://doi.org/10.1145/3294109.3295620

84. Martin Nisser, Christina Chen Liao, Yuchen Chai, Aradhana
Adhikari, Steve Hodges, and Stefanie Mueller. 2021. LaserFactory: A
Laser Cutter-based Electromechanical Assembly and Fabrication
Platform to Make Functional Devices & Robots. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (CHI
'21). Association for Computing Machinery, New York, NY, USA,
Article 663, 1–15. https://doi.org/10.1145/3411764.3445692

85. Node.js, last accessed March 2022, http://www.nodejs.org
86. Thomas Oster, Rene Bohne, and Jan Borchers. "Visicut: An

application genre for lasercutting in personal fabrication." RWTH
Aachen University (2011).

87. Kumar C.N. Patel, "Continuous-wave laser action on vibrational-
rotational transitions of C O 2." Physical review 136, no. 5A (1964):
A1187.

88. Georgios Papaioannou, Tobias Schreck, Anthousis Andreadis,
Pavlos Mavridis, Robert Gregor, Ivan Sipiran, and Konstantinos
Vardis. 2017. From Reassembly to Object Completion: A Complete
Systems Pipeline. J. In Comput. Cult. Herit. 10, 2, Article 8 (March
2017), 22 pages. DOI: https://doi.org/10.1145/3009905

89. Keunwoo Park, Conrad Lempert, Muhammad Abdullah, Shohei
Katakura, Jotaro Shigeyama, Thijs Roumen, and Patrick Baudisch.
2022. FoolProofJoint: Reducing Assembly Errors of Laser Cut 3D
Models by Means of Custom Joint Patterns. In CHI Conference on
Human Factors in Computing Systems (CHI '22). ACM, New York, NY,
USA, Article 271, 1–12. DOI: https://doi.org/10.1145/3491102.3501919

90. Kevin J Parker, Saara Marjatta Sofia Totterman, and Jose Tamez Pe.
"System and method for 4d reconstruction and visualization." U.S.
Patent 6,169,817, issued January 2, 2001.

REFERENCES

165

91. Pieter Pauwels, Davy Van Deursen, Jos De Roo, Tim Van Ackere,
Ronald De Meyer, Rik Van de Walle, and Jan Van Campenhout.
"Three-dimensional information exchange over the semantic web for
the domain of architecture, engineering, and construction." Ai
Edam 25, no. 4 (2011): 317-332.

92. Huaishu Peng, Jimmy Briggs, Cheng-Yao Wang, Kevin Guo, Joseph
Kider, Stefanie Mueller, Patrick Baudisch, and François Guimbretière.
2018. RoMA: Interactive Fabrication with Augmented Reality and a
Robotic 3D Printer. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI '18). Association for
Computing Machinery, New York, NY, USA, Paper 579, 1–12.
https://doi.org/10.1145/3173574.3174153

93. Michael J. Pratt, "Introduction to ISO 10303—the STEP standard for
product data exchange." Journal of Computing and Information Science
in Engineering 1, no. 1 (2001): 102-103.

94. Thijs Roumen, Thingiverse Analysis Script, last accessed August
2020 https://github.com/ThijsRoumen/thingiverse-browser.

95. Thijs Roumen, Benchmark of assembler3 models, to be released
http://www.thijsroumen.eu/data/benchmark-lasercut-models.zip

96. Thijs Roumen, Ingo Apel, Thomas Kern, Martin Taraz, Ritesh
Sharma, Ole Schlueter, Jeffrey Johnson, Dominik Meier, Conrad
Lempert, and Patrick Baudisch. 2022. Structure-Preserving Editing of
Plates and Volumes for Laser Cutting. In submission to UIST’22.

97. Thijs Roumen, Ingo Apel, Jotaro Shigeyama, Abdullah Muhammad,
and Patrick Baudisch. 2020. Kerf-Canceling Mechanisms: Making
Laser-Cut Mechanisms Operate across Different Laser Cutters. In
Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology (UIST’20). ACM, New York, NY, USA, 293–
303. DOI: https://doi.org/10.1145/3379337.3415895

98. Thijs Roumen, Yannis Kommana, Ingo Apel, Conrad Lempert,
Markus Brand, Erik Brendel, Laurenz Seidel, Lukas Rambold, Carl
Goedecken, Pascal Crenzin, Ben Hurdelhey, Muhammad Abdullah,
and Patrick Baudisch. 2021. Assembler3: 3D Reconstruction of Laser-
Cut Models. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (CHI '21). ACM, New York, NY, USA,
Article 672, 1–11. DOI: https://doi.org/10.1145/3411764.3445453

REFERENCES

166

99. Thijs Roumen, Bastian Kruck, Tobias Dürschmid, Tobias Nack, and
Patrick Baudisch. 2016. Mobile Fabrication. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (UIST '16).
Association for Computing Machinery, New York, NY, USA, 3–14.
https://doi.org/10.1145/2984511.2984586

100. Thijs Roumen, Conrad Lempert, Ingo Apel, Erik Brendel,
Markus Brand, Laurenz Seidel, Lukas Rambold, and Patrick
Baudisch. 2021. AutoAssembler: Automatic Reconstruction of Laser-
Cut 3D Models. In The 34th Annual ACM Symposium on User Interface
Software and Technology (UIST '21) ACM, New York, NY, USA, 652–
662. DOI: https://doi.org/10.1145/3472749.3474776

101. Thijs Roumen, Jotaro Shigeyama, Julius Cosmo Romeo Rudolph,
Felix Grzelka, and Patrick Baudisch. 2019. SpringFit: Joints and
Mounts that Fabricate on Any Laser Cutter. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology
(UIST '19). ACM, New York, NY, USA, 727–738.
DOI: https://doi.org/10.1145/3332165.3347930

102. Thijs Roumen, Willi Müller, and Patrick Baudisch. 2018. Grafter:
Remixing 3D-Printed Machines. 2018. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI '18). ACM,
New York, NY, USA, Paper 63, 12 pages. DOI:
https://doi.org/10.1145/3173574.3173637

103. Daniel Saakes, Thomas Cambazard, Jun Mitani, and Takeo
Igarashi. 2013. PacCAM: material capture and interactive 2D packing
for efficient material usage on CNC cutting machines. In Proceedings
of the 26th annual ACM symposium on User interface software and
technology (UIST '13). Association for Computing Machinery, New
York, NY, USA, 441–446. DOI:
https://doi.org/10.1145/2501988.2501990

104. Greg Saul, Manfred Lau, Jun Mitani, and Takeo Igarashi. 2010.
SketchChair: an all-in-one chair design system for end users.
In Proceedings of the fifth international conference on Tangible, embedded,
and embodied interaction (TEI '11). ACM, New York, NY, USA, 73-80.
DOI: http://dx.doi.org/10.1145/1935701.1935717

105. Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-
amorn, and Wojciech Matusik. 2014. Design and fabrication by
example. ACM Trans. Graph. 33, 4, Article 62 (July 2014), 11 pages.
https://doi.org/10.1145/2601097.2601127

106. Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun,
and Wojciech Matusik. 2017. Interactive design space exploration

REFERENCES

167

and optimization for CAD models. ACM Trans. Graph. 36, 4, Article
157 (August 2017), 14 pages. https://doi.org/10.1145/3072959.3073688

107. Ticha Sethapakdi, Daniel Anderson, Adrian Reginald Chua Sy,
and Stefanie Mueller. 2021. Fabricaide: Fabrication-Aware Design for
2D Cutting Machines. In CHI Conference on Human Factors in
Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan.
ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3411764.3445345

108. Sung Ho Shin. 2004 Analytic integration of tolerances in
designing precision interfaces for modular robotics. PhD diss.,
UTexas. http://hdl.handle.net/2152/2195

109. Arthur Silber. 2019. Integrating 2D Elements into 3D Modelling
for Laser Cutters. In master thesis at HPI, internal publication.

110. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd
Bickel, and Markus Gross. 2013. Computational design of actuated
deformable characters. In ACM Trans. Graph. 32, 4, Article 82 (July
2013), 10 pages. https://doi.org/10.1145/2461912.2461979

111. Alan Snyder. A portable compiler for the language C. MIT
CAMBRIDGE PROJECT MAC, 1975.

112. Evgeny Stemasov, Enriko Rukzio, and Jan Gugenheimer, "The
Road to Ubiquitous Personal Fabrication: Modeling-Free Instead of
Increasingly Simple," in IEEE Pervasive Computing, vol. 20, no. 1, pp.
19-27, 1 Jan.-March 2021, DOI: https://10.1109/MPRV.2020.3029650

113. J. Strong, J. Wegstein, A. Tritter, J. Olsztyn, O. Mock, and T. Steel.
1958. The problem of programming communication with changing
machines: a proposed solution. In Communications of ACM 1, 8 (Aug.
1958), 12–18. https://doi.org/10.1145/368892.368915

114. Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-
Wing Fu, and Ligang Liu. 2016. CofiFab: coarse-to-fine fabrication of
large 3D objects. ACM Trans. Graph. 35, 4, Article 45 (July 2016), 11
pages. DOI: https://doi.org/10.1145/2897824.2925876

115. SVGNest, last accessed in May 2022, https://svgnest.com
116. Zhilong Su, Lujie Chen, Xiaoyuan He, Fujun Yang, and

Lawrence Sass. 2018. "Planar structures with automatically
generated bevel joints." Computers & Graphics 72 (2018): 98-105.

117. Thingiverse, last accessed April 2022,
http://www.thingiverse.com

118. Three.js, last accessed April 2022, http://www.threejs.org
119. Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros,

and Jitendra Malik. "Learning shape abstractions by assembling

REFERENCES

168

volumetric primitives." In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2635-2643. 2017.

120. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012.
Guided exploration of physically valid shapes for furniture
design. ACM Trans. Graph.31, 4, Article 86 (July 2012), 11 pages. DOI:
https://doi.org/10.1145/2185520.2185582

121. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo
Igarashi. 2014. Pteromys: interactive design and optimization of free-
formed free-flight model airplanes. ACM Trans. Graph. 33, 4, Article
65 (July 2014), 10 pages. https://doi.org/10.1145/2601097.2601129

122. Uslan, I. CO2 laser cutting: kerf width variation during cutting.
in Proceedings of the institution of mechanical engineers, Part B: Journal of
engineering manufacture 219, no. 8 (2005): 571-577. DOI:
https://doi.org/10.1243%2F095440505X32508

123. Kiril Vidimče, Alexandre Kaspar, Ye Wang, and Wojciech
Matusik. 2016. Foundry: Hierarchical Material Design for Multi-
Material Fabrication. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology (UIST '16). ACM, New York,
NY, USA, 563-574. DOI: https://doi.org/10.1145/2984511.2984516

124. Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and
Wojciech Matusik. 2013. OpenFab: a programmable pipeline for
multi-material fabrication. In ACM Trans. Graph. 32, 4, Article 136
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2461993

125. Tom Veuskens Florian Heller, and Raf Ramakers. "CODA: A
Design Assistant to Facilitate Specifying Constraints and Parametric
Behavior in CAD Models." In Proceedings of the 47th Graphics Interface
Conference on Proceedings of Graphics Interface 2021 (GI'21)

126. Daniel Vogel, and Patrick Baudisch. 2007. Shift: a technique for
operating pen-based interfaces using touch. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI '07).
ACM, New York, NY, USA, 657-666. DOI:
https://doi.org/10.1145/1240624.1240727

127. Ziqi Wang, Peng Song, and Mark Pauly. "DESIA: A general
framework for designing interlocking assemblies." In ACM
Transactions on Graphics (TOG) 37, no. 6 (2018): 1-14.

128. Long Wen, Xingchen Ye, and Liang Gao. "A new automatic
machine learning based hyperparameter optimization for workpiece
quality prediction." Measurement and Control 53, no. 7-8 (2020): 1088-
1098. https://doi.org/10.1177/0020294020932347

129. Karl D.D. Willis, Cheng Xu, Kuan-Ju Wu, Golan Levin, and
Mark D. Gross. 2010. Interactive fabrication: new interfaces for

REFERENCES

169

digital fabrication. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied interaction (TEI
'11). Association for Computing Machinery, New York, NY, USA,
69–72. https://doi.org/10.1145/1935701.1935716

130. Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I.
Lipton, Zachary Tatlock, and Adriana Schulz. 2019. Carpentry
compiler. ACM Trans. Graph. 38, 6, Article 195 (December 2019), 14
pages. https://doi.org/10.1145/3355089.3356518

131. Jianhua Wu, and Leif Kobbelt. "Structure Recovery via Hybrid
Variational Surface Approximation." In Comput. Graph. Forum, vol.
24, no. 3, pp. 277-284. 2005.

132. Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012.
Fit and diverse: set evolution for inspiring 3D shape galleries. ACM
Trans. Graph. 31, 4, Article 57 (July 2012), 10 pages.
https://doi.org/10.1145/2185520.2185553

133. Mingliang Xu, Mingyuan Li, Weiwei Xu, Zhigang Deng, Yin
Yang, and Kun Zhou. 2016. Interactive mechanism modeling from
multi-view images. ACM Trans. Graph. 35, 6, Article 236 (November
2016), 13 pages. DOI: https://doi.org/10.1145/2980179.2982425

134. Yong-Liang Yang, Jun Wang, and Niloy J. Mitra. "Mesh2Fab:
Reforming Shapes for Material-specific Fabrication." arXiv preprint
arXiv:1411.3632 (2014).

135. B. S. Yilbas, "Effect of process parameters on the kerf width
during the laser cutting process." Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture 215,
no. 10 (2001): 1357-1365.

136. Nur Yildirim, Matthew Franklin, Daniel Zeng, John
Zimmerman, and James McCann. metaSVG: A Portable Exchange
Format for Adaptable Laser Cutting Plans. In Graphics Interface 2022.

137. Nur Yildirim, James McCann, and John Zimmerman. 2020.
Digital Fabrication Tools at Work: Probing Professionals' Current
Needs and Desired Futures. Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376621

138. Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and
Bernd Bickel. 2017. Functionality-aware retargeting of mechanisms
to 3D shapes. ACM Trans. Graph. 36, 4, Article 81 (August 2017), 13
pages. https://doi.org/10.1145/3072959.3073710

139. Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes.
2007. SKETCH: an interface for sketching 3D scenes. In ACM

REFERENCES

170

SIGGRAPH 2007 courses(SIGGRAPH '07). ACM, New York, NY, USA,
Article 19. DOI: https://doi.org/10.1145/1281500.1281530

140. Clement Zheng, Ellen Yi-Luen Do, and Jim Budd. 2017. Joinery:
Parametric Joint Generation for Laser Cut Assemblies. In Proceedings
of the 2017 ACM SIGCHI Conference on Creativity and Cognition
(C&C ’17). Association for Computing Machinery, New York, NY,
USA, 63–74. DOI: https://doi.org/10.1145/3059454.3059459

141. Youyi Zheng, Xiang Chen, Ming-Ming Cheng, Kun Zhou, Shi-
Min Hu, and Niloy J. Mitra. 2012. Interactive images: cuboid proxies
for smart image manipulation. ACM Trans. Graph. 31, 4, Article 99
(July 2012), 11 pages. DOI: https://doi.org/10.1145/2185520.2185595

	Title
	Imprint

	ABSTRACT
	ZUSAMMENFASSUNG
	PUBLICATIONS
	TABLE OF CONTENTS
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 WHAT IS HOLDING BACK PORTABILITY?
	1.2 PORTABLE LASER CUTTING
	1.2.1 2D cutting plans that are tolerant to machine variations
	1.2.2 sharing models in 3D
	1.2.3 converting legacy 2D cutting plans to 3D models

	1.3 CONTRIBUTIONS
	1.4 STRUCTURE OF THIS THESIS

	2 RELATED WORK
	2.1 SHORT HISTORY OF PORTABLE COMPUTING
	2.2 SOFTWARE SUPPORT FOR LASER CUTTING
	2.2.1 reducing the barriers to interface with materials and machines
	2.2.2 embedding the required domain knowledge in design tools and systems
	2.2.3 alternative fabrication workflows

	2.3 INTEROPERABILITY OF EXCHANGE FORMATS
	2.4 FUNCTIONAL SPECIFICATIONS OF FABRICATION MODELS
	2.5 SHARING AND REMIXING OF 3D MODELS IN HOBBY COMMUNITIES

	3 2D CUTTING PLANS TOLERANT TO MACHINE VARIATIONS
	3.1 MOUNTS AND JOINTS THAT FABRICATE ON ANY TYPICAL LASER CUTTER
	3.1.1 Mounts and Joints based on Cantilever Springs
	3.1.2 Why it works
	3.1.3 Cantilever-based notch-, finger- and mortise-tenon joints
	3.1.4 Classification and conversion Algorithm
	3.1.5 technical evaluation of conversion
	3.1.6 Cantilever Spring design
	3.1.7 technical evaluation of spring performance

	3.2 KERF-CANCELING MECHANISMS
	3.2.1 Kerf-canceling bearings
	3.2.2 kerf-canceling sliders
	3.2.3 kerf-canceling gears
	3.2.4 The software tool: KerfCanceler
	3.2.5 Classification and Conversion Algorithm
	3.2.6 technical evaluation: How well do kerf-canceling mechanisms perform?
	3.2.7 software evaluation of kerfCanceler

	3.3 SOFTWARE ARCHITECTURE
	3.4 CONTRIBUTIONS
	3.5 CONCLUSIONS

	4 REPRESENTING LASER-CUT MODELS IN 3D
	4.1 KYUB: A 3D MODELING ENVIRONMENT FOR LASER CUTTING
	4.1.1 3D editing based on boxels
	4.1.2 designing sturdy structures
	4.1.3 Implementation
	4.1.4 technical evaluation
	4.1.5 User study
	4.1.6 Practical use

	4.2 STRUCTURE-PRESERVING EDITING OF PLATES AND VOLUMES
	4.2.1 the plate-based subsystem
	4.2.2 promotion
	4.2.3 demotion
	4.2.4 algorithm and data structures
	4.2.5 technical evaluation: re-creating 100 models

	4.3 SOFTWARE ARCHITECTURE
	4.4 CONTRIBUTIONS
	4.5 CONCLUSIONS

	5 CONVERTING LEGACY 2D CUTTING PLANS TO 3D MODELS
	5.1 ASSEMBLER3: INTERACTIVE 3D RECONSTRUCTION
	5.1.1 assembler3 workflow
	5.1.2 surveying sharing practice
	5.1.3 the algorithm of assembler3
	5.1.4 technical evaluation
	5.1.5 user study: assembler3 is 10x faster than the traditional workflow

	5.2 AUTOASSEMBLER: AUTOMATIC 3D RECONSTRUCTION
	5.2.1 the autoAssembler algorithm
	5.2.2 Tuning the algorithm
	5.2.3 Technical evaluation: autoAssembler achieves a 97% success rate

	5.3 A BENCHMARK FOR LASER-CUT MODELS
	5.4 SOFTWARE INTEGRATION INTO KYUB
	5.5 CONTRIBUTIONS
	5.6 CONCLUSIONS

	6 CONCLUSIONS AND OUTLOOK
	6.1 CONTRIBUTION
	6.1.1 limitation: loss of knowledge of materials and machines

	6.2 FUTURE OUTLOOK: UPCOMING OPPORTUNITIES AND CHALLENGES
	6.2.1 trade-offs between machine and material properties
	6.2.2 extracting reusable content
	6.2.3 designing products as opposed to processes
	6.2.4 manifestation of fabrication in everyday life

	7 REFERENCES

