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ARTICLE INFO ABSTRACT

Article history: Background: Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received

Received 12 April 2022 tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely
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Available online 30 September 2022 ethods: The aim of the present study was to overcome previous limitations by pooling raw data from a
large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA)

as a potential marker of central NA release.
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Results: While a meta-analytic approach using summary statistics did not yield any significant effects,
linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased
sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential
confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity.
Conclusion(s): Vagal activation via taVNS increases sAA release compared to sham stimulation, which
likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the
benefits of data pooling and data sharing in order to allow stronger conclusions in research.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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pharmacoresistant epilepsy [2—4], depression [5] and chronic pain
[6]. Given its non-invasive nature, taVNS has also more recently
been used in non-clinical settings to modulate various affective and
cognitive processes, such as emotion recognition, fear extinction,
cognitive control, and attention (cf. [7,8]). The effects of taVNS have
been suggested to be related to the modulation of distinct brain-
stem, subcortical and cortical regions, and their associated neuro-
transmitter systems (cf. [9]). Indeed, previous animal studies have
shown that vagal afferents modulate serotonergic [10,11], dopa-
minergic [12,13], cholinergic [14] and noradrenergic [15,16]
signaling. The exact neural mechanisms possibly mediating the
effects of taVNS are, however, not fully understood yet.

One of the hypothesized working mechanisms by means of
which taVNS may exert some of its effects is through the activation
of the locus coeruleus-noradrenaline (LC-NA) system. Afferent fi-
bers of the vagus nerve forward information of the adrenergic
release from the adrenal gland to the brain [17], where they project
to the nucleus tractus solitarii (NTS) [18,19]. The NTS sends excit-
atory projections to the nucleus paragigantocellularis (PGi; [20]),
which, in turn, is linked to the noradrenergic brainstem nucleus LC
[21,22]. The LC-NA system projects to several brain regions through
an extended neuronal network including frontal and medio-
temporal regions [23] and modulates behavior by tonic and
phasic firing [24], thus exerting influence on perception, attention,
motivation and memory processes [25]. Impairments in the LC-NA
system have further been associated with cognitive decline in aging
and some degenerative disorders, such as Alzheimer's disease
[26,27].

Evidence for such a modulatory vagal influence on the LC-NA
system activity comes from different lines of research. Animal
studies showed increased LC-firing rates after invasive vagal nerve
stimulation [10,15,16,28,29] and reduced firing after vagotomy [30].
Various processes mediated by the LC-NA system have further been
shown to be improved by invasive vagal stimulation in animals,
including extinction learning [31,32], memory retention [33] and
inhibitory avoidance learning [34], as well as in humans (see for
verbal recognition memory [35,36]; but see [37]).

Further evidence comes from studies relating vagal activity to
pupil dilation [38—41] and to the attention-related P300 amplitude
of the event-related potentials (ERPs) [42,43], both representing
physiological markers of LC-NA system activity (see for pupil dila-
tion [44—47]; see for P300 [48,49]; see for review [50]). For
instance, invasive vagal stimulation was found to increase resting
pupil diameter in epileptic patients [39], an effect also found in
animal data [38,40] (see for review [51]). With regard to the P300
amplitude, De Taeye and colleagues [43] observed that epileptic
patients who responded favorably to invasive vagal stimulation
showed an increase in P300 amplitude during stimulation. This
effect was also found in depressive patients in an earlier study by
Neuhaus and colleagues [42].

In light of the substantial evidence towards a modulatory role of
invasive vagal stimulation on LC-NA system activity (mostly in
animals and human clinical contexts), recent studies have investi-
gated whether non-invasive taVNS shows a similar impact on the
LC-NA activity in healthy humans. Initial brain imaging studies
confirmed enhanced functional LC activation during taVNS
compared to active sham stimulation in healthy participants
[52—57]. Other studies, but not all, showed a modulatory effect of
taVNS on various cognitive and affective processes potentially
associated with noradrenergic signaling, with respect to fear
extinction (see for positive effects [58—60]; but see for no effects
[61,62]), memory (see for positive effects [63—65]; but see for no
effects [37,66]), cognitive control (see for positive effects [67—71];
but see for no effects [72]) and attention (see for positive effects
[73,74]; but see for no effects [75]).
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Despite the promising indications for taVNS-related behavioral
improvements, there is current uncertainty regarding the relation
between NA markers and taVNS-mediated vagal activation due to a
number of non-replicable or merely subtle findings (cf. [7,51]). The
modulatory effects of taVNS on pupil dilation [76—78] have not
consistently been replicated [71,75,79—81] and studies on the ef-
fects of taVNS on the P300 amplitude have also yielded mixed re-
sults. Whereas some studies found an increase of the P300 during
taVNS compared to sham stimulation [73,82,83], others found an
increase only in response to specific stimuli [84], or found no dif-
ferences between stimulation conditions [70,79,85]. Other at-
tempts of finding reliable physiological markers include for
instance vagally-mediated heart rate variability, which, however,
did not show to be affected by taVNS (see for review [86]).

In recent years, salivary alpha-amylase (sAA) has emerged as
promising indirect marker of LC-NA system activity based on
pharmacological studies showing an involvement of noradrenergic
activity in sAA secretion [87—89] (see for review [90]). Although
some studies exploring taVNS effects on sAA level changes
demonstrated increased sAA levels after taVNS compared to sham
stimulation [79,84], supporting sAA as a potential marker of central
NA-enhancement modulated by taVNS, others reported no such
enhancement [64,65,80,81,91,92]. Ultimately, possible reasons for
this lack of replicability regarding physiological markers of LC-NA
system activity might be small sample sizes, the heterogeneity of
stimulation procedures (e.g., stimulation parameters, stimulation
duration [7,8]) or methodological differences in data collection and/
or preprocessing across studies (e.g., in saliva collection for sAA
level changes [93]).

An opportunity to overcome these limitations and accelerate
progress in validating potential relations between reliable NA
markers and taVNS-mediated vagal activation is data pooling. By
increasing overall sample size, the pooling of several independent
studies improves statistical power and the overall generalizability
of results (e.g., by distinguishing generalizable findings from false
positives that emerge from smaller-samples studies; [94]). It
further allows for consideration of within- and between-study
variance to possibly explain some of the heterogeneity in the data
(i.e., based on differences in study characteristics). Data pooling
also enhances the ability to construct predictive models that are
more widely applicable and better powered to identify relevant
predictive factors [95].

Therefore, the aim of the present study was to overcome the
existing limitations by pooling raw data from a large sample of
studies that collected sAA levels in the context of taVNS research.
Our focus on sAA was primarily due to its widespread use across
taVNS laboratories, its inexpensive and non-invasive measurement
and ultimately, its potential to become a clinically meaningful and
reliable marker that might shed further light on the efficacy of
taVNS. In order to explore whether taVNS enhances sAA levels as
putative marker of NA activity in the pooled data, and to investigate
if, and to what extent, different factors (e.g., stimulation parame-
ters, stimulation duration) may modulate the assumed relation
between taVNS and sAA level changes, we conducted linear mixed
model analyses based on a hypothesis-driven approach as well as
on an exploratory approach. Mixed models allow the specification
of fixed and (crossed) random factors (e.g., participants and
studies), they further allow the incorporation of continuous vari-
ables (i.e., yielding for instance fixed effects of linear and quadratic
trends) and their interactions with categorical factors [96]. Mixed
models are also optimal to deal with missing data. Thus, conducting
mixed model analyses with a sample of pooled sAA data may
provide valuable information on the relation between taVNS-
mediated afferent vagal activation and sAA as an inexpensive and
non-invasive index of central noradrenergic activity.
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2. Material and methods
2.1. Sample

Authors of previous and ongoing taVNS studies collecting sAA
data were contacted and invited to participate in the project. We
received data from twelve studies and included ten studies that
applied taVNS as stimulation method [79,84] (Exp. 1b) [79] (Exp. 2)
[64,65,80,91], including three unpublished studies [92,97,98] (see
Table 1 for details about study characteristics). Two studies that
applied auricular acupuncture were excluded from analyses
[99,100].

From all included studies, sAA levels were available for a total of
371 healthy participants. All participants provided informed writ-
ten consent for the experimental protocol, which was approved in
accordance with the declaration of Helsinki. Participant character-
istics are shown in Table 1. Information on participant pre-selection
and data collection for published studies are available in more
detail in each individual publication. All data have been made
publicly available on the Open Science Framework and can be
accessed at https://osf.io/rdpcs.

2.2. Transcutaneous auricular vagus nerve stimulation

In all included studies, taVNS stimulation was conducted using
two titan electrodes attached to a mount and wired either to a
stimulation unit (NEMOS®, VITOS®; see Table 1 for details) or to a
bipolar constant current stimulator (DS5 DIGITIMER; see Table 1 for
details). In the active vagus stimulation condition, the stimulator
electrodes were placed in the left cymba conchae, an area exclu-
sively innervated by the auricular branch of the vagus nerve
[101,102]. For the sham stimulation condition, the electrodes were
positioned in the center of the left ear lobe, an area known to be
free of vagal innervation [101,102]. All studies applied stimulation
on a single day. In studies 1, 2, and 4, stimulation was administered
continuously, whereas in studies 3 and 5—10, stimulation alter-
nated between on and off phases every 30 s. Stimulation intensity
was either adjusted individually for each participant above the

Table 1
Overview study characteristics and stimulation parameters.
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detection threshold and below the pain threshold [101] (studies
1—6 and 10) or was fixed at 0.5 mA for all participants (studies
7-9). Across all ten studies, stimulation intensities varied from
0.1 mA to 5 mA for the sham (earlobe) condition (Mgpgm = 1.20,
SDsham = 0.82) and from 0.25 mA to 4 mA for the vagus (cymba
conchae) condition (Myggys = 1.03, SDyggus = 0.66). All stimulation
characteristics are shown in Table 1.

2.3. Salivary alpha-amylase

Alpha-amylase is a salivary enzyme involved in the digestion of
starch in the oral cavity [103]. It can be measured through saliva
collection in an inexpensive and non-invasive fashion and, as such,
has emerged as a proxy measure of sympathetic arousal, likely
reflecting stress-related changes in the body [90,104—107]. It is
important to note that sAA levels measured during stress might be
influenced by activity of the sympathetic or parasympathetic ner-
vous system or some combination of both [93,108]. In recent years,
however, sAA has been accepted as promising marker of sympa-
thetic nervous system activity based on pharmacological studies
showing an involvement of noradrenergic activity in sAA secretion
[87—89]. For instance, Ehlert and colleagues [87] reported that
administration of yohimbine (i.e.,, an alpha-adrenergic receptor
antagonist) activated sAA via adrenergic mechanisms, thus point-
ing to sAA as marker of the central sympathetic system. More
recently, Warren and colleagues [89] administered atomoxetine, a
highly selective NA transporter blocker that increases central NA
levels, and validated the initial findings by Ehlert and colleagues
[87] (see also [88]; see for review [90]).

To assess the effects of taVNS on sAA level changes in our pooled
data, in all included studies, sAA levels (U/ml) were collected before
(i.e., prior to the application of the taVNS device) and after (i.e., after
finalizing the psychological task(s) and removing the taVNS device)
stimulation. Four studies also collected sAA levels during stimula-
tion (studies 4, 7—9). Saliva samples were either collected using
cotton swabs (i.e., 66.31% of participants were instructed to gently
chew the cotton swab in their mouth and then place it into a
sample tube) or by spitting (i.e., 33.69% of participants were

Study Reference N Task Design  Stimulation device Stimulation Duty cycle Stimulation  sAA
length intensity collection
method method

1 Ventura-Bort N = 20, 17f, visual oddball within- NEMOS®, tVNS Technologies GmbH  35min continuous determined  swab
etal (2018) Mgge = 20.4 subject individually  collection

2 Ventura-Bort N = 37, 20f, passive viewing within- NEMOS®, tVNS Technologies GmbH  7min continuous determined  swab
etal. (2021) Mgge = 23 subject individually  collection

3 Ventura-Bort N = 31, 27f, passive viewing within- NEMOS®, tVNS Technologies GmbH  14min 30s on/30s determined swab
et al. (in Mgge = 21.3 subject off individually  collection
prog.)

4 Giraudier N = 62, 50f, visual oddball, serial within- NEMOS®, tVNS Technologies GmbH  80min continuous, determined  spitting
et al. (in Mgge = 23.8 reaction time subject 30s on/30s individually —method
prep.) off

5 Giraudier N = 61, 47f, lexical decision between- NEMOS®, tVNS Technologies GmbH  23min 30s on/30s determined swab
etal (2020) Mgge = 23.4 subject off individually  collection

6 D'Agostini N = 71, 55f, reversal learning between- NEMOS®, tVNS Technologies GmbH, 40min 30s on/30s determined swab
etal. (2021) Mgge = 23.3 subject  DS5 DIGITIMER, Welwyn Garden City, off individually  collection

UK

7 Koenig et al. N = 30, 24f, morphing faces, emotion  within- VITOS®, tVNS Technologies GmbH 28min 30s on/30s fixed at swab
(2021) 14-17 recognition, emotional go/ subject off 0.5 mA collection

years nogo

8 Warren et al. N = 20, visual and auditory oddball, within- NEMOS®, tVNS Technologies GmbH  80min 30s on/30s fixed at spitting
(2019) Mgge = 23.6 task switching subject off 0.5 mA method

9 Warren etal. N=17,0f, task switching within- NEMOS®, tVNS Technologies GmbH  80min 30s on/30s fixed at spitting
(2019) Mgge = 22.1 subject off 0.5 mA method

10 Sommer et al. N = 27, 16f, number categorization within- NEMOS®, tVNS Technologies GmbH  61min 30s on/30s determined  spitting
(in prep.) Mage = 25.6 based dual task subject off individually — method
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instructed to spit out saliva either through a plastic straw or directly
without straw into a sample tube). Of note, sAA levels are sensitive
to sampling techniques because different salivary glands contribute
to different rates of saliva secretion, which influences the quantity
of sAA secreted into oral fluids [93,108]. The swab collection
method requires chewing (i.e., stimulated saliva secretion), which
affects sAA levels independently of central noradrenergic involve-
ment [93]. Therefore, the spitting method is generally favored
when collecting saliva samples. For details about sample storage
and analysis see each individual publication.

2.4. Statistics

All statistical analyses were carried out in the R environment
[109]. Pre- and post-processing of data was conducted using tidy-
verse [110].

2.4.1. Mixed model analysis

To test the effects of taVNS on sAA level changes, we conducted a
series of linear mixed models (LMMs) using Ime4 [111]. A Box-Cox
distributional analysis [112] indicated that a logarithmic trans-
formation brought the typically skewed sAA data [90] in line with
the assumption of normal distribution.

As fixed effects, we specified sequential-difference contrasts
(i.e., a priori defined comparisons between specific conditions and/
or groups; cf. [113]) for time (post vs. pre, post vs. mid), for stimu-
lation (vagus vs. sham) and for the interaction between time and
stimulation respectively. We also included the effect of stimulation
length, the effect of duty cycle (continuous vs. 30s on/30s off), the
effect of stimulation intensity method (fixed at 0.5 mA vs. deter-
mined individually), the effect of sAA collection method (swab
collection vs. spitting method), the effect of stimulation intensity
(group mean-centered) and their associated interactions (included
interactions vary between models). The model predictors gender
(male vs. female) and time of day (i.e., timeslots I-VI based on the
time of the sAA measurement) were only included as fixed effects
in a separate analysis due to a large amount of missing data (lost or
not provided) for those predictors, reducing the total amount of
observations drastically when including them (N = 1092).

As random factors, we included participant (N = 371) and study
(N = 10) with a total amount of 1556 observations. The selected
random-effect structure included theoretically relevant variance
components and correlation parameters and was supported by the
data (cf. [114]). We included random intercepts for participant and
study and allowed the effect of time (post vs. pre) and the effect of
stimulation (vagus vs. sham) to vary across subjects (random slope),
constraining random intercept and random slope to be indepen-
dent. We further allowed the effect of time (post vs. pre) to vary
between studies, constraining uncorrelated random intercept and
random slope within studies. The random slope time (post vs. mid)
did not significantly improve model fit and was excluded from all
models. The random-effect structure was identical for all models.

Parsimonious model selection followed the general recom-
mendations by Bates et al. [114] and was performed without
knowledge or consideration of fixed-effect estimates. In a maximal
to minimal-that-converges modeling process, fitted models were
processed with random-effects principal component analysis to
obtain loadings of the variance-covariance matrix of the random
effects (i.e., an iterative reduction of random-effects structure
complexity was performed).

For assessment of relative differences in goodness of fit, we used
the log-likelihood and, for model comparisons, the y?-distributed
likelihood ratio and its associated p-value. P-values for fixed effects
were calculated using Satterthwaite's approximations [115]. Final
models were estimated with restricted maximum likelihood.
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Pairwise post hoc comparisons were computed using Ismeans [116]
with Tukey-adjusted p-values. The report of results followed the
recommendations by Meteyard & Davies [117].

2.4.2. Meta-analysis

In addition to LMMs, we performed a meta-analysis of the
current studies. We therefore calculated Hedges'g [118] as effect
sizes based on standardized mean differences (SMDs) using metafor
[119] and meta [120]. Effect sizes were calculated for the sAA in-
crease under taVNS (Apost-pre) compared to sham (Apost-pre) on
the log-sAA data. Cohen's d and Cohen's dz [121] have been
uploaded as additional effect size estimates on the Open Science
Framework and can be accessed at https://osf.io/rdpcs. A statistical
power-analysis for the meta-analysis followed the recommenda-
tions by Valentine and colleagues [122].

2.4.3. Test-retest reliability

Test-retest reliability of SAA levels (pre vagus vs. pre sham) was
tested using an intra-class correlation (ICC) coefficient using psych
[123] and included all data from studies employing a within-
subject design (Nparn’cipants = 233, Nstudies = 8).

2.4.4. Bayesian evidence synthesis

A Bayesian approach (protocol by Scheibehenne et al. [ 124]) was
also performed. Results of this analysis, however, did not reveal
additional information and were therefore not included in this
paper (results can be found on the Open Science Framework
(https://osf.io/rdpcs) where the project was pre-registered on
March 2, 2021).

3. Results
3.1. Mixed models

3.1.1. Model selection

Overall, we explored a variety of modeling approaches in order
to identify the most appropriate and best-performing predictive
models and consequently, specified three models of increasing
complexity that were supported by the data. See Supplement A for
details about the model selection approaches.

3.1.2. The core model

As fixed effects in M1, we included the sequential-difference
contrasts for time, for stimulation and their associated interaction.
The model output from M1 showed no main effect of time on sAA,
b = 0.08, SE = 0.05, p = 0.150, and no main effect of stimulation,
b =0.06, SE = 0.03, p = 0.067. Interestingly, the interaction between
time and stimulation was significant, b = 0.12, SE = 0.04, p = 0.005,
showing increased sAA levels for vagus, b = 0.16, SE = 0.05,
p = 0.048, as opposed to sham stimulation, b = 0.03, SE = 0.05,
p 0.966 (Myqgus,. =447 U/ml, Myggus,, =4.63 U/ml,
Msham,,, = 4.50 U/ml, Mgpam,,, = 4.52 Ujml). The model output
from M1 is displayed in Table 2.

3.1.3. The full model

As fixed effects in M2, we specified a priori defined comparisons
for time, for stimulation and for the interaction between time and
stimulation. We also included the effect of stimulation length, the
effect of duty cycle, the effect of stimulation intensity method, the
effect of SAA collection method, the effect of stimulation intensity and
the interaction between time, stimulation and duty cycle. Similarly
to the output of M1, the output from M2 showed a significant
interaction between time and stimulation, b = 0.16, SE = 0.05,
p = 0.001, revealing increased sAA levels for vagus, b = 0.19,
SE = 0.06, p = 0.017, as opposed to sham stimulation, b = 0.01,
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Table 2
The core model M1 with Nopservations = 1556, Nparticipants = 371, Nstudies = 10.
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Fixed Effects

Est (U/ml) SE (U/ml) 95% CI t p
Intercept 4.54 0.12 4.26—4.81 37.26 <0.001
Time (post - pre) 0.08 0.05 -0.03 - 0.19 1.58 0.150
Stimulation (vagus - sham) 0.06 0.03 —0.00 — 0.11 1.84 0.067
Time X Stimulation 0.12 0.04 0.04-0.21 2.81 0.005
Random Effects
Variance S.D. Correlation
Participant (Intercept) 0.52 0.72
Study (Intercept) 0.13 0.36
Time || Participant 0.09 0.30
Stimulation || Participant 0.10 0.31 —0.39
Time || Study 0.02 0.13
Model Fit
R? Marginal Conditional
0.003 0.813

SE = 0.06, p = 0.994 (see Fig. 1A) (see also Fig. S1 in Supplement B),
and a significant interaction between time, stimulation and duty
cycle, b =0.19, SE = 0.10, p = 0.050, showing a stronger sAA increase
for vagus than for sham with continuous stimulation as opposed to
interval stimulation (see Fig. 1B). No further significant effects were
found (0.05 < ps < 1). The model output of M2 is displayed in
Table 3.

3.14. The iterative model

We specified a final model M3 based on an iterative modeling
approach. As fixed effects in M3, we specified a priori defined
comparisons for time, for stimulation and for the interaction be-
tween time and stimulation. We also included the effect of sAA
collection method and the interaction between time, stimulation and
duty cycle. The model showed no main effect of time on sAA,
b = 0.08, SE = 0.05, p = 0.148, and no main effect of stimulation,
b = 0.06, SE = 0.03, p = 0.051. As in M1 and M2, we found a

significant interaction of time and stimulation, b = 0.16, SE = 0.05,
p = 0.001, indicating increased sAA levels for vagus, b = 0.19,
SE = 0.06, p = 0.017, compared to sham stimulation, b = 0.01,
SE = 0.06, p = 0.994. No further significant effects were found (0.05
< ps < 0.09). The model output of M3 is displayed in Table 4.

3.2. Model comparison

3.2.1. Best-performing model

The comparison between M1, M2 and M3 revealed significant
evidence for a difference in goodness of fit, showing that the full
model M2 is the best-performing model as opposed to M1,
x*(2) = 7.65, p = 0.022, and M3, x%(4) = 9.82, p = 0.043.

3.2.2. Effects in the random structure
The random-effect structure was identical for all models and
revealed a negative, medium high correlation between slope of
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Fig. 1. A: Interaction between time and stimulation, B: Interaction between time, stimulation and duty cycle, C: Effect of time of day for vagus compared to sham stimulation.
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Table 3
The full model M2 with Nopservations

1556, Nyarticipants = 371, Nstudies = 10.

Brain Stimulation 15 (2022) 1378—1388

Fixed Effects

Est (U/ml) SE (U/ml) 95% CI t p

Intercept 5.04 0.49 3.82-6.26 10.27 <0.001
Time (post - pre) 0.08 0.05 -0.03 - 0.19 1.59 0.148
Stimulation (vagus - sham) 0.06 0.03 —0.00 — 0.12 1.91 0.057
Time X Stimulation 0.16 0.05 0.07-0.26 3.38 0.001
Stimulation intensity method (fixed at 0.5 mA - determined individually) 0.43 0.23 -0.13 - 1.00 1.84 0.112
sAA collection method (swab collection - spitting method) 0.05 0.50 -1.19 - 1.28 0.09 0.928
Stimulation intensity —0.05 0.04 —0.13 — 0.02 -1.34 0.180
Stimulation length —-0.01 0.01 —-0.03 - 0.01 -1.12 0.308
Duty cycle (continuous - 30s on/30s off) -0.16 0.15 -0.47 - 0.14 -1.08 0.284
Time X Stimulation X Duty cycle 0.19 0.10 0.00—0.38 1.96 0.050

Random Effects

Variance S.D. Correlation
Participant (Intercept) 0.53 0.73
Study (Intercept) 0.07 0.26
Time || Participant 0.09 0.30
Stimulation || Participant 0.09 0.31 -0.38
Time || Study 0.02 0.13

Model Fit
R? Marginal Conditional

0.148 0.829

stimulation and slope of time in all models (see Tables 2—4), i.e.,
participants with higher difference between measurements (pre
and post stimulation) over both conditions showed a larger stim-
ulation main effect (higher sAA levels in taVNS session) over both
time points.

3.3. Additional model predictors

3.3.1. Gender and time of day in the full model

Adding gender and time of day to the best-performing model M2
(with a total amount of 1092 observations, 285 participants and 6
studies due to a large amount of missing data for those predictors)
did significantly contribute to goodness of fit, y%(6) = 15.10,
p = 0.019. However, neither the associated interaction between
time, stimulation and gender, x*(1) = 0.80, p = 0.371, nor the
interaction between time, stimulation and time of day, x*(5) = 4.92,
p = 0.426, significantly improved model fit. Similar to the output of
M2, the interaction between time and stimulation was significant
when adding gender and time of day as fixed effects, b = 0.18,
SE = 0.06, p = 0.002, revealing increased sAA levels for vagus
compared to sham stimulation. The model further showed a

Table 4
The iterative model M3 with Nopservations = 1556, Nparticipants = 371, Nstudies = 10.

significant main effect of stimulation, b = 0.09, SE = 0.04, p = 0.029,
which, however, seemed to be driven by the significant interaction
between time and stimulation. Moreover, a significant difference for
time of day, b = 0.32, SE = 0.12, p = 0.007, showing significantly
lower sAA levels for time of day I (i.e., early morning) as compared
to later during the day, was significant (Mimeofdayr = 3.98 U/ml,
Mtimeofdayn = 4.30 U/ml, Mtimeofdayn = 4.39 U/ml, Mtimeofdaylv = 4.32
U/ml, Mimeofdayv = 4.50 U/ml, Mtimeofdayvi = 4.33 U/ml) (see Fig. 1C).
No further significant effects were found (0.10 < ps < 0.80).

3.4. Meta-analysis

There was strong evidence for the null hypothesis across studies,
g = 0.13, 95%CI [ — 0.07, 0.34], t = 1.52, p = 0.164, suggesting no
effect of vagal stimulation on the sAA increase. There was no evi-
dence for homogeneity, 7 = 0.265, 95%CI [0.17, 0.51], > = 92%,
p < 0.01. This meta-analysis, however, was shown to be under-
powered to detect potentially meaningful effects significantly
different from zero, with a power of 0.21. The forest plot of this
analysis is represented in Fig. 2.

Fixed Effects

Est (U/ml) SE (U/ml) 95% CI t ]
Intercept 4.49 0.11 4.24-4.74 41.20 <0.001
Time (post - pre) 0.08 0.05 -0.03 - 0.20 1.59 0.148
Stimulation (vagus - sham) 0.06 0.03 —0.00 — 0.12 1.96 0.051
Time X Stimulation 0.16 0.05 0.07-0.26 3.38 0.001
sAA collection method (swab collection - spitting method) 0.42 0.22 —0.08 — 0.92 1.94 0.087
Time X Stimulation X Duty cycle 0.19 0.10 —0.00 - 0.37 1.95 0.051
Random Effects
Variance S.D. Correlation
Participant (Intercept) 0.53 0.72
Study (Intercept) 0.09 0.31
Time || Participant 0.09 0.30
Stimulation || Participant 0.10 0.31 -0.39
Time || Study 0.02 0.13
Model Fit
R? Marginal Conditional
0.052 0.815
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4. Discussion

Previous work has suggested a modulatory role of taVNS on
cognitive and affective functions, which might be mediated by
activation of the LC-NA system. Reliable effects of taVNS on markers
of LC-NA system activity, however, have not been demonstrated yet
(cf. [7]). The present project, therefore, aimed to shed light on this
recent controversy by pooling raw data from a large sample of
taVNS studies that collected sAA levels as potential marker of
central NA release. We explored a variety of modeling approaches
and observed that taVNS, compared to sham stimulation, increased
sAA levels in all generated predictive models, suggesting a modu-
latory role of taVNS on sAA. When considering potential con-
founders of sAA, we further replicated previous findings on the
diurnal trajectory of sAA activity with lower levels in the morning
and an increase during the course of the day.

The enhancing effect of taVNS (prior compared to post stimu-
lation) on sAA was consistent across all generated predictive
models, suggesting that it is a highly relevant predictor. The release
of central NA has previously been associated with increased sAA
secretion in pharmacological studies [87—89] (see for review [90]).
Consequently, sAA has emerged as a promising marker of sympa-
thetic nervous system activity, orchestrated by the LC-NA system
[125]. The current findings thus suggest that taVNS, through acti-
vation of afferent fibers of the vagus nerve, leads to the activation of
the LC-NA system.

Single studies, however, produced mixed results. In one study,
Ventura-Bort and colleagues [84] reported increased sAA levels
after taVNS but not after sham stimulation based on post hoc
analysis. Similarly, Warren and colleagues [79] replicated this
finding and further found no effects of taVNS on salivary flow rate
(i.e., amount of saliva per minute), ruling out parasympathetic in-
fluence on sAA release (cf. [93]). Nevertheless, there has also been a
growing body of null findings in taVNS studies, challenging the
reliability of sAA as potential NA marker and further questioning
taVNS efficacy. Most recently, D'Agostini and colleagues [81] re-
ported no evidence for a modulating effect of taVNS on sAA in a
sample of 66 healthy participants performing a novelty auditory
oddball task. Similarly, five other studies used in the current data
pooling have added to the inconsistent evidence for a modulating
effect of taVNS on sAA in humans [64,65,80,91,92]. The inconsis-
tency and lack of replicability across taVNS studies may be due to
several reasons. First, as shown in our meta-analysis, most included
studies had relatively low sample sizes and the investigated effects
were small (as indicated by the wide Cl in Fig. 2). This can lead to an
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increase in both false-negative and false-positive findings. Second,
our meta-analysis showed a large heterogeneity between studies,
which most likely is related to differences in study characteristics,
including experimental designs (e.g., experimental tasks), stimu-
lation procedures (e.g., stimulation length, stimulation intensity,
stimulation duty cycle), methodological differences in data collec-
tion (e.g., SAA collection method), preprocessing and/or statistical
analysis. This was further validated by the fact that the meta-
analysis was underpowered (i.e., lack of power in meta-analyses
has been proposed to be potentially caused by high heterogeneity
rather than by the number of studies [126]). It is worth mentioning
that our dataset included taVNS studies that collected sAA, which
predominantly reported no significant effects of taVNS on sAA. By
increasing overall sample size, however, the pooling of these in-
dependent studies led to evidence for a modulating effect of taVNS
on sAA, suggesting that taVNS increases central noradrenergic
release. An important implication of the fact that we find this effect
even though most of the included studies reported null findings is
that the effects of taVNS on sAA are rather delicate. Interestingly,
the overall high variance between participants in sAA levels might
suggest that participants tend to react differently to taVNS. The
assessment of the distributions of sAA increases and decreases for
vagus and sham stimulation, however, did not enable us to
conclusively clarify whether we are looking at a small but gener-
alizable effect or if a small percentage of responders drives the
observed effect (see Fig. S2 and Fig. S3 in Supplement B). As sug-
gested by the meta-analysis and Fig. S3 in Supplement B, the
variability across studies is large. Some studies show an (almost
identical) overlap between vagus and sham stimulation conditions
(e.g., [97]), whereas others show higher values for one of the con-
ditions (see for vagus condition for instance [65]; see for sham
condition for instance [79], Exp. 2). Although not conclusive, we
interpret these results as not pointing towards a few responders.
When looking closely at single distributions of studies showing the
observed effect of vagus stimulation on sAA levels, the effect seems
to be due to a general, small effect (see Refs. [65,79,84,98]), rather
than being driven by a group of responders. Fig. S2 in Supplement B
further highlights that the overall distribution is not characterized
by individual outliers. This needs to be further investigated in
future studies, which should determine statistically valuable sam-
ple sizes in order to confirm meaningful increases of sAA after
taVNS compared to sham stimulation. Based on our analyses,
however, it is not possible to determine such statistically valuable
sample sizes for future studies due to the large heterogeneity of the
data. Although a power analysis revealed that statistical power was

Standardised Mean

Study g SE Difference SMD 95%-Cl Weight
Ventura—Bort et al. (2018) 0.38 0.1072 — 0.38 [0.17; 0.59] 9.3%
Ventura—Bort et al. (2021) 0.27 0.0545 - 0.27 [0.16; 0.37] 10.4%
Ventura-Bort et al. (in prog.) 0.31 0.0653 —_ 0.31 [0.18; 0.44] 10.2%
Giraudier et al. (in prep.) 0.29 0.0430 - 0.29 [0.21; 0.38] 10.6%
Giraudier et al. (2020) 0.37 0.0667 Lo 0.37 [0.24; 0.50] 10.2%
D'Agostini et al. (2021) 0.08 0.0564 e 0.08 [-0.04; 0.19] 10.4%
Koenig et al. (2021) -0.30 0.0674 — -0.30 [-0.43;-0.17] 10.2%
Warren et al. (Exp. 1b, 2019) 0.35 0.1015 —a— 0.35 [0.15; 0.54] 9.5%
Warren et al. (Exp. 2, 2019) -0.39 0.1199 ——— -0.39 [-0.62; -0.15]  9.0%
Sommer et al. (in prep.) —-0.04 0.0741 — -0.04 [-0.19; 0.10] 10.1%
Random effects model - 0.13 [-0.07; 0.34] 100.0%
Prediction interval [-0.51; 0.78]
Heterogeneity: 1 = 92%, p <0.01
-0.5 0 0.5

Fig. 2. Forest plot of standardized mean difference for all included studies for the sAA increase under taVNS compared to sham stimulation. The diamond shape represents the
average effect and its length symbolizes the confidence interval of the pooled results. The red line below the diamond represents the length of the associated prediction interval.
Note: g, effect estimate; SE, standard error; SMD, standardized mean difference; CI, confidence interval. (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)
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sufficient for conducting linear mixed model analyses in the pre-
sent dataset (see Supplement C), the corresponding estimation of
sample sizes to reach an acceptable power only applies to similarly
heterogeneous datasets and thus, cannot be transferred to single
study designs. The fact that some studies could find significant
effects of taVNS on sAA levels with rather small sample sizes,
however, suggests that this is generally possible and might depend
on specific and possibly yet unknown study characteristics (e.g.,
stimulation length, task).

In order to identify the most appropriate predictive models, we
explored a variety of modeling approaches and consequently, deter-
mined our full model as best-performing model out of the three
developed models. In addition to the already discussed enhancing
effect of taVNS on sAA, this model also showed a significant inter-
action between time, stimulation and duty cycle, possibly indicating
continuous stimulation to be more efficient as opposed to interval
stimulation (30s on/30s off). It has been suggested that interval
stimulation might lead to unwanted rapid decline in NA activity, thus
possibly reducing the modulating effect of taVNS on markers of
noradrenergic activity [81]. Although this is in line with some animal
research showing such decline in NA after invasive vagal stimulation
was turned off [40,127], other electrophysiological studies in rats have
reported enhanced firing rates of LC neurons and NA release after
invasive vagal stimulation delivered in 30s on/30s off cycles
[10,11,28,128]. In humans, the impact of different duty cycles on ef-
fects of taVNS is also not well understood yet. Recent studies showed
for both, continuous and interval stimulation, an improvement in
memory (see for continuous stimulation [65]; see for interval stim-
ulation [64]) and cognitive control (see for continuous stimulation
[70]; see for interval stimulation [67—69,71]). In general, however, the
majority of taVNS studies delivered stimulation in 30s on/30s off
cycles, mostly due to technical reasons (i.e., tVNS Technologies GmbH
has embedded this on/off cycle in their commercial device). This
imbalance across studies is also reflected in our dataset, with three
studies applying continuous stimulation, and eight studies applying
stimulation alternating between on and off phases every 30 s. It must
be mentioned though that the triple interaction observed in the
present data may also be partly driven by differences in experimental
designs. Of note, all studies that applied continuous stimulation also
used emotionally laden (arousing) material (IAPS images [129]),
which also modulates sAA levels (e.g., [130]). Thus, sAA levels may
increase particularly under tonic stimulation and in the context of
emotional arousal. Considering the heterogeneity of our data and the
explorative character of the full modeling approach, the observed
advantage of continuous stimulation, however, should be interpreted
with caution and requires future verification.

When further considering potential confounders of sAA levels by
adding time of day and gender to the best-performing model, we
found decreased sAA levels in the morning as compared to later
during the day. This finding is consistent with previous literature
suggesting that saliva composition varies rhythmically over the day
[106,131,132]. Specifically, animal studies showed that sAA levels are
low at the beginning of the day and increase at the end of the after-
noon [131,133]. In humans, similar effects have been found
[134—136]. More recently, Nater and colleagues [ 132] investigated the
diurnal profile of sAA in a field study with hourly samplings from
morning to evening and confirmed a decrease of sAA in the first hour
after awakening, along with rising levels towards the afternoon and
evening. The authors further examined potentially influencing factors
of sAA and found that the diurnal profile of sSAA was rather robust
against influence factors such as gender. This is consistent with our
results showing a similar diurnal course of sAA (i.e., decreased levels
in the morning and rising levels throughout the day) and no evidence
for an effect of gender. These findings invite to consider potential
confounders for a reliable measurement of sAA. Even though time of
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day did not seem to directly influence stimulation, researchers should
consider scheduling experimental sessions at the same time of day in
within-subject designs and preferably avoid the measurement of sAA
early in the morning (i.e., before 10am) to control for the effects of
circadian influence (cf. [132]). Researchers should also control for
other potentially influencing factors of sAA (e.g., age) to further
investigate which confounders are statistically associated with the
outcome, and if so, these factors should be entered as covariates in
statistical analyses [137].

When interpreting the results of the present study, some limita-
tions should be taken into consideration. First, the validity of our
findings is limited to the noradrenergic pathway as potential working
mechanism of taVNS. Future research may consider alternative
pathways targeted by taVNS, such as serotonergic, dopaminergic and
cholinergic signaling, and their associated physiological markers (cf.
[9]). Ideally, this should include more stable markers with less
potentially confounding factors than sAA. Although an acceptable
test-retest reliability was found for sAA (ICC = 0.79, CI[0.75; 0.83],
p < 0.001), other NA markers could be further explored such as the
P300 ERP component (see for review [50]) or pupil dilation (see for
review [75]). Second, although sAA levels can be measured in a non-
invasive and inexpensive fashion, some methodological concerns of
sAA as index of central noradrenergic activity must be taken into
account. Based on the ongoing debate whether sAA levels measured
during stress reflect purely sympathetic or parasympathetic activity
or some combination of both [93,108], it has been recommended to
collect salivary flow rate as measure of parasympathetic activity
[137]. In the present study, however, we did not investigate the
contribution of salivary flow rate and thus, cannot exclude para-
sympathetic influence on sAA secretion, as this data was not available
for the majority of included studies. Third, all included studies used
tasks that might induce additional levels of stress (arousal), possibly
interacting with the observed taVNS stimulation effects of sAA. Thus,
it remains unclear whether the sole application of taVNS without
such engaging task would also lead to similar increases. Future
research should therefore investigate if and to what extent the effects
of taVNS on sAA levels might be task-dependent. Although our work
emphasizes the advantages of data pooling and data sharing (espe-
cially of raw data) to overcome limitations of single studies (i.e., small
sample size), and to accelerate progress in validating potential re-
lations between reliable NA markers and taVNS-mediated vagal
activation, disadvantages and shortcomings of data pooling should
also be taken into consideration. Mega-analyses require homoge-
neous datasets and the establishment of a common centralized
database [94]. Methodological differences in study characteristics,
stimulation protocols, data collection, preprocessing and/or statistical
analysis across studies therefore reduce comparability. Indeed, our
meta-analysis showed high heterogeneity in the data, which in turn
might explain why we were not able to detect any other effects of
stimulation parameters (e.g., stimulation length, stimulation in-
tensity) on sAA levels. Therefore, it is important to emphasize the
explorative character of the present approach and further research is
certainly necessary.

To summarize, the present findings lead us to conclude that
vagal activation via taVNS increases sAA release compared to sham
stimulation, which likely substantiates the assumption that taVNS
triggers NA release. Future taVNS studies with appropriate sample
sizes, collecting sAA levels, along with other potentially con-
founding factors of sAA, are essential to further validate our find-
ings in other contexts. Given the rather small effect size and the
heterogeneity of our data, there are still numerous open questions
and concerns that need to be addressed. Importantly, the general-
izability of the observed effect of taVNS on sAA release remains
unclear. Future studies need to account for the possibility of inter-
individual differences of participants (i.e., non-responders) and
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should further determine statistically valuable sample sizes in or-
der to confirm meaningful increases of sAA after taVNS compared
to sham stimulation. Accordingly, the question arises as to the
practicality of sAA as an indirect marker of NA system activation in
the context of taVNS research since not all included studies showed
a significant effect of taVNS on sAA. This work particularly em-
phasizes the benefits of data pooling and data sharing in order to
publish more meaningful and valuable data in research and to
further address these open questions together. In this line, we urge
researchers to join forces in the search for essential stimulation
parameters and reliable markers that might shed further light on
the efficacy of taVNS.
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