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Abstract

Biology has made great progress in identifying and measuring the building blocks of life.
The availability of high-throughput methods in molecular biology has dramatically accel-
erated the growth of biological knowledge for various organisms. The advancements in
genomic, proteomic and metabolomic technologies allow for constructing complex mod-
els of biological systems. An increasing number of biological repositories is available on
the web, incorporating thousands of biochemical reactions and genetic regulations.

Systems Biology is a recent research trend in life science, which fosters a systemic
view on biology. In Systems Biology one is interested in integrating the knowledge from
all these different sources into models that capture the interaction of these entities. By
studying these models one wants to understand the emerging properties of the whole
system, such as robustness.

However, both measurements as well as biological networks are prone to consider-
able incompleteness, heterogeneity and mutual inconsistency, which makes it highly non-
trivial to draw biologically meaningful conclusions in an automated way. Therefore, we
want to promote Answer Set Programming (ASP) as a tool for discrete modeling in Sys-
tems Biology. ASP is a declarative problem solving paradigm, in which a problem is
encoded as a logic program such that its answer sets represent solutions to the problem.
ASP has intrinsic features to cope with incompleteness, offers a rich modeling language
and highly efficient solving technology.

We present ASP solutions, for the analysis of genetic regulatory networks, determining
consistency with observed measurements and identifying minimal causes for inconsis-
tency. We extend this approach for computing minimal repairs on model and data that
restore consistency. This method allows for predicting unobserved data even in case of
inconsistency.

Further, we present an ASP approach to metabolic network expansion. This approach
exploits the easy characterization of reachability in ASP and its various reasoning meth-
ods, to explore the biosynthetic capabilities of metabolic reaction networks and generate
hypotheses for extending the network.

Finally, we present the BioASP library, a Python library which encapsulates our ASP
solutions into the imperative programming paradigm. The library allows for an easy inte-
gration of ASP solution into system rich environments, as they exist in Systems Biology.
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1 Introduction

This thesis investigates the application of the declarative problem solving paradigm of
Answer Set Programming (ASP) to the field of Systems Biology. In this chapter, we
give a short introductions to both fields, Systems Biology as well as ASP. We present the
scientific contribution of this thesis. Finally, an overview on the organization of the thesis
is given.

1.1 Systems Biology

This section provides a brief introduction to Systems Biology [71, 76], a recent research
trend in life science, which fosters a systemic view on biology. Biology has made great
progress in identifying and measuring the building blocks of life. The advancements in
genomic, proteomic and metabolomic technologies allow for constructing complex mod-
els of biological systems. Systems Biology is interested in integrating the knowledge
from all these different sources into models that capture the interaction of these enti-
ties. By studying these models one wants to understand the emerging properties of the
whole system, such as robustness. The research in Systems Biology is mainly hypothesis
driven. It starts with a biological question and the creation of a model representing the
phenomenon. The creation of the model can be done automatically by data driven meth-
ods or by hand. The model represents a set of assumptions and hypotheses that can be
tested “in silico” via simulations, or by confrontation with experimental results. Inaccu-
rate models will be revealed by inconsistent behavior that contradicts known biological
facts or experimental results. Inconsistent models need to be modified and the consistent
models can be used for predictions. These predictions can be used to design further “in
vivo” experiments, which again are used for testing the the model. The cycle of model-
ing, in silico testing, prediction, in vivo verification and further refinement of the model
leads gradually to biological models that are evermore correct.

The availability of high-throughput methods in molecular biology has dramatically ac-
celerated the growth of biological knowledge for various organisms. These methods
allow for gathering multiple orders of magnitude more measured data than was procur-
able before. Furthermore, there is an increasing number of biological repositories on the
web, such as KEGG [75], Biomodels [80], Reactome [74], MetaCyc [17] and others,
incorporating thousands of biochemical reactions and genetic regulations.

In Systems Biology Ordinary Differential Equations (ODEs) are a widely used tech-
nique for quantitative modeling. Here, a system is presented as a set of time-dependent
functions whose values represent concentrations of the systems entities like genes, pro-
teins and metabolites. Such a system of ODEs allows the smooth simulation of the system
under a given parameter set. But ODE approaches rely on the availability of production
rates and kinetic parameters, which for many biological systems are unknown. Measure-
ments as well as biological models are prone to considerable incompleteness, hetero-



geneity and mutual inconsistency, which makes it highly non-trivial to draw biologically
meaningful conclusions in an automated way. This is where qualitative modeling meth-
ods come into play, they have the advantage that they do not rely on detailed quantitative
information, but still they allow to study qualitative properties of the system.

There exist several approaches to qualitative modeling in Systems Biology. Petri Nets
are used to model biological pathways, genetic regulations, metabolic and signaling net-
works [68, 67, 8]. Petri Nets are a natural representation to describe networks that con-
veys the intuitive understanding of biochemical reactions. They allow the modeling of
concurrent reactions, which collaborate in the synthesis of compounds or compete for
resources. Petri Nets can be used for simulating the behavior of large networks, which
allows to gain statistical results from the model. On smaller models, the Petri Net ap-
proach can be used to compute system invariant properties. For example, ¢-invariants can
be used to identify sub networks, which describe basic systems behaviors.

Furthermore, there exists a variety of formal methods that are used for the discrete
modeling of different aspects of biological systems. Flux Balance Analysis [14] allows
to determine the flux rates in a metabolic network such that a biological relevant vari-
able like the growth rate is maximized. Temporal logics [37] and Timed Automata [2]
allow the modeling of temporal aspects in biological systems. With the Process Calcu-
lus [91] one can model systems of concurrently working agents that interact, communi-
cate and synchronize with each other. These methods allow for high level descriptions to
model specific problems. For computation these high level descriptions are often mapped
into well established constraint solving techniques that offer highly efficient solving en-
gines, like SAT [10], Constraint Programming [94], Integer Linear Programming [98] and
ASP [4]. Other approaches use these techniques directly to encode of biological prob-
lems like haplotype inference [85, 35], protein structure prediction [3] and the analysis of
gene regulatory as well as metabolic networks [22, 102]. While the direct encoding of-
fers more flexibility for expressing system properties, it also requires a deeper insight into
the used formalism. In this work, we will focus on ASP for the modeling of biological
problems.

1.2 Answer Set Programming

This section provides a brief introduction to Answer Set Programming (ASP) [4], a
declarative problem solving paradigm from the field of logic programming and knowl-
edge representation. ASP offers a rich modeling language [107, 44] along with highly
efficient inference engines [81, 114, 82, 48, 28] based on Boolean constraint solving
technology [56, 46, 28]. ASP has been used in many application areas, such as plan-
ning [26, 84], model checking [69], hardware design [33], product configuration [101],
music composition [12] and bio-informatics [109, 110, 108, 29, 30, 35].

The basic idea of ASP is to encode a problem as a logic program such that its answer
sets represent solutions to the problem. In ASP, a problem encoding is a set of logic
programming rules including universally quantified first order variables. In a first step,
a grounder [59] transforms the logic program into an equivalent propositional logic pro-
gram. In a second step, the propositional program is processed by an answer set solver,
which searches for answer sets. ASP allows for solving search problems from the com-



plexity class NP and with the use of disjunctive logic programs from the class X%, In
view of our applications, we take advantage of the elevated expressiveness of disjunctive
programs, capturing problems at the second level of the polynomial hierarchy [32]. A
disjunctive logic program P is a finite set of rules of the form

Q15 ... 5Q0 <= QUity -y Gy NOL A1y -« ., NOL Ay (1.1)

where a; is an atom for 1 < ¢ < n. A rule r as in (1.1) is called a fact if | = m =
n =1, and an integrity constraint if | =0. Let head(r) = {a1,...,a;} be the head of r,
body(r) = {ais1, ..., am, N0t ayyy1, - . ., ot a, } be the body of r, as well let body(r)*t =
{ai11, ..., an} and body(r)” = {amy1,- -, an}-

An interpretation is represented by the set of atoms that are true in it. A model of a
program P is an interpretation in which all rules of P are true according to the standard
definition of truth in propositional logic. Apart from letting ‘;” and ’,” stand for disjunc-
tion and conjunction, respectively, this implies treating rules and default negation ‘not’
as implications and classical negation, respectively. Note that the (empty) head of an
integrity constraint is false in every interpretation, while the empty body is true in every
interpretation. Answer sets of P are particular models of P satisfying an additional sta-
bility criterion. Roughly, a set X of atoms is an answer set, if for every rule of form (1.1),
X contains a minimum of atoms among ay, ..., a; whenever a;,1, ..., a,, belong to X
and no a1, - . ., a, belongs to X. However, the disjunction in heads of rules, in general,
is not exclusive. Formally, an answer set X of a program P is a C-minimal model of

{head(r) < body(r)* | r € P, body(r)" N X =0} .

For example, program {a; b . ¢;d < a, not b. < b.} has answer sets {a, ¢} and {a, d}.

Although answer sets are usually defined on ground (i.e., variable-free) programs, ASP
allows for non-ground problem encodings, where schematic rules stand for their ground
instantiations. Grounders, such as gringo [44] and Iparse [107], are capable of combining
a problem encoding and an instance (typically a set of ground facts) into an equivalent
ground program, which is then processed by an ASP solver. We follow this methodology
and provide encodings for the problems considered in this thesis.

1.3 Scientific Contributions

We want to promote ASP with its intrinsic incompleteness-tolerating capacities and its
rich modeling language as an appropriate tool to cope with these issues. Therefore, we
present ASP approaches addressing problems from the field of Systems Biology, in par-
ticular the analysis of gene regulatory and metabolic networks. Systems Biology is a
complex research field, where many different modeling approaches find its application.
To foster the use of ASP within such an environment it must be easily integratable with
existing applications. To this end, we present the BioASP library, which provides a
generic way to encapsulate ASP solution into the imperative programming paradigm of
Python [111] and allows for an easy integration with existing applications.
In summary, the main contributions of this thesis are:

1. We provide an ASP framework for the analysis of gene regulatory networks in-



cluding consistency checking, diagnosis, prediction, minimal repair and prediction
under inconsistency.

2. We present an ASP approach to metabolic network expansion that represents the
bio-synthetic capabilities of metabolic networks and allows for the hypothesis gen-
eration of possible extensions.

3. We provide the BioASP Library, a Python library that encapsulates the ASP tools
and allows for an easy integration of ASP solution into standard Python functions.

The work on genetic regulatory networks has been conducted jointly with Philippe
Veber, Martin Gebser and Carito Guiziolowski. Philippe introduced us to the topic of
consistency checking on genetic regulatory networks and provided invaluable biological
insight, Martin is responsible for the disjunctive encoding and the corresponding proofs
and Carito provided us with the biological data and her view on the concept of repairs.
The work on metabolic network expansion is inspired by the work of Nils Chistian who
investigates a stochastic approach to metabolic network expansion and provided us with
sample data. Finally, the BioASP library emerged out of a work started by Philippe Veber
and is today hosted as an open source project [11]. Further contributions were made by
Peter Schiiller and Arne Konig, who wrote a web service based on the BioASP library.

Part of the results presented in this thesis have been published in [54, 51, 41, 96, 53],
coauthored by the author of this thesis.

Further, the author has contributed to research beyond the work that is presented here.
These contributions are mainly in the field of ASP including subjects, such as the ground
instantiation of logic programs [52, 42, 45], incremental ASP solving [43], multithreaded
ASP solving [57, 58] and belief revision [24, 23].

1.4 Organisation of This Thesis

In Chapter 2, we provide an ASP framework for the analysis of genetic regulatory net-
works. We begin with giving a brief introduction into the biological background of ge-
netic regulation. Then, we give a mathematical formalization for representing genetic
regulatory networks as influence graphs and define a consistency notion for influence
graphs. We develop an ASP formulation for checking the consistency and extend this
approach to identifying minimal representations of conflicts. Further, we extend the ap-
proach and propose a framework for repairing genetic regulation networks and corre-
sponding measurements. We then use the repair framework to allow for predicting unob-
served variations even from inconsistent models and data. Finally, we present results of
an empirical evaluation of our approach along with a case study on yeast.

Chapter 3 presents an ASP approach to metabolic network expansion. To begin with,
we give an brief introduction to the topic of metabolism and metabolic reactions contin-
ued by a mathematical formal representation of metabolic networks and the metabolic
network completion problem. We then develop an ASP formulation for solving the
metabolic network completion problem and extend this solution for solving the inverse
scope problem. Finally, we present the results of our empirical evaluation and conclude
the chapter with a discussion.



In Chapter 4, we present the BioASP library. We outline the system architecture of
the BioASP library and give detailed descriptions of the functionalities provided by the
application programming interface (API). Further, we then present applications that are
built on top of the BioASP library. We show how the library is applied to solve the
specific biological problems described in the previous chapters.

Finally, we conclude this thesis in Chapter 5. Proofs of formal results are given in the

Appendix.






2 Regulatory Networks as Sign
Consistency Models

In this chapter, we deal with the analysis of high-throughput measurements in molecular
biology, like microarray data or metabolic profiles. Up to now, it is still common practice
to use expression profiles merely for detecting over- or under-expressed genes under spe-
cific conditions, leaving the task of making biological sense out of a multitude of gene
identifiers to human experts. However, many efforts have also been made to better uti-
lize high-throughput data, in particular, by integrating them into large-scale models of
transcriptional regulations or metabolic processes [38, 77].

One possible approach consists of investigating the compatibility between experimental
measurements and knowledge available in reaction databases. This can be done by using
formal frameworks, for instance, the ones developed in [61] and [99]. In what follows,
we rely upon the so-called Sign Consistency Model (SCM) due to [99]. SCM imposes
constraints between experimental measurements and a graph representation of cellular in-
teractions, called an influence graph [103]. Such a graph provides an over-approximation
of the actual biological model, where an “influence” is modeled by a causal rule. This
methodology is particularly well-suited for dealing with incomplete knowledge (missing
reactions, lacking kinetic details) or unreliable (noisy data) information.

Building on the SCM framework, we develop declarative techniques based on ASP to
detect and explain inconsistencies in large data sets, propose repairs for models and data,
and compute predictions under minimal repair.

The framework we develop is configurable, so that biological experts may selectively
investigate critical parts of biological networks and/or measurements. Apart from mod-
eling the aforementioned biological problems in ASP, our major concern lies with the
scalability of the approach. To this end, we designed a suite of artificial yet biologically
meaningful benchmarks indicating that an ASP-based approach scales well on the con-
sidered class of applications and applied our methods to the real-world gene-regulatory
networks and experimentally derived data sets of yeast and Escherichia coli. Notably, to
the best of our knowledge, the functionalities we provide go beyond the ones of the only
comparable approach [63]. To begin with, we give a brief introduction into the biological
background of genetic regulation, the transcription of genes, activator and repressors in
Section 2.1. Section 2.2 gives the mathematical formalization for representation of ge-
netic regulatory networks as influence graphs and defines consistency for such an influ-
ence graph. In Section 2.3, we develop an ASP formulation for checking the consistency
between experimental profiles and influence graphs. We further extend this approach in
Section 2.4 to identifying minimal representations of conflicts if the experimental data is
inconsistent with an influence graph. Also, we describe a connectivity property that is
used to further refine the presented encoding. Section 2.5, extends our basic approach
and proposes a framework for repairing genetic regulation networks and corresponding
measurements. We discuss the interest of different repair operations wrt several criteria:



biological meaning, minimality measures and computational cost. In Section 2.6 we use
the repair framework to allow for predicting unobserved variations even from inconsis-
tent models and data. Section 2.7 is dedicated to an empirical evaluation of our approach
along with an exemplary case study on yeast. We evaluate the effect of different repair op-
erations, both quantitatively and qualitatively, by considering the well-studied organism
Escherichia coli along with published experimental data. Finally, Section 2.8 concludes
the chapter.

2.1 Biological Background

Gene expression is the process by which information from a DNA sequence is used to
synthesize functional gene products, the proteins. Regulation of gene expression gives
a cell control over its structure and function. It is the basis for cellular differentiation,
versatility and adaptabillity. The process of gene expression has two phases, transcrip-
tion and translation. In the transcription phase, RNA-polymerase attaches to the DNA
sequence to create a complementary mRNA copy of the gene. In the translation phase,
this mRNA is decoded by a ribosome to synthesize functional structures, the proteins.
The control which genes should be turned on or off is executed by transcription factors
(TFs). One way to regulate a genes expression is the initiation of transcription, here a
molecule RNA-polymerase attaches to the promotor region of the DNA sequence (gene)
and begins transcription along all the DNA strand. The RNA-polymerase transcription
can be regulated by TFs that are proteins or protein-complexes. They can be activators,
which enhance the interaction between RNA and a particular promotor, encouraging the
expression of the gene, or repressors, which bind to non-coding sequences of the DNA
strand, impeding the progress of RNA-polymerase along the strand, thus, impeding the
expression of the gene. Such regulatory processes can be presented as a regulatory net-
work.

The technological revolution of the last years established high-throughput methods that
allow to measure simultaneously the mRNA concentration of thousands of genes. Fur-
thermore, an increasing number of web data bases allow access to thousands of biochem-
ical reactions and genetic regulations in various organisms. This motivated the develop-
ment of new methods to exploit these vast amounts of observations and confront it with
the available knowledge, to gain deeper insight into the genetic controls of a cell.

2.2 Mathematical Formalism

A regulatory network is traditionally described as a system of differential equations of the
dx

form % = F(X, P), where X is the state vector of concentrations for the constituents
(mRNAs, proteins, or metabolites), and P denotes a set of control parameters, inputs of
the system. The particular form of the vector function F' is unknown as we have only
incomplete information, and quantitative details like kinetic parameters for biochemical
reactions are often unavailable. Following [62], an influence graph is a common represen-
tation for biochemical systems where arrows show activations or inhibitions. Influence
graphs [103] are a common representation for a wide range of dynamical systems. In

the field of genetic networks, they have been investigated for various classes of systems,



cAMP-CRP

Figure 2.1: Simplified model of lactose operon in Escherichia coli, represented as an influence graph. The
vertices represent either genes, metabolites, or proteins, while the edges indicate the regulations
among them. Edges with an arrow stand for positive regulations (activations), while edges with
a tee head stand for negative regulations (inhibitions). Vertices G and L. are considered to be
inputs of the system, that is, their signs are not constrained via their incoming edges.

ranging from ordinary differential equations [104] to synchronous [92] and asynchronous
[93] Boolean networks. Influence graphs have also been introduced in the field of quali-
tative reasoning [79].

Definition 2.1 (Influence Graph) An influence graph is a directed graph (V, E, o), where
V' is a set of vertices, E a set of edges, and 0 : E — {+,=} a (partial) labeling of the
edges.

We represent a regulatory network as an influence graph whose vertices are the state

and control variables of the system and whose edges express the effects of variables on

each other. Therefore, there is an edge ;7 — ¢ € E iff % # 0, which means the
J

production rate of ¢ depends on X;. Furthermore, we assume that the sign of g?,
J

constant, that is, the influence graph is independent of the state. The edges are labelled
by o(j,1) = sign(g)%_ ). An example influence graph is given in Figure 2.1 it represents
a simplified model of the lactose operon in Escherichia coli.

A steady-state X7 of the system is a solution to the following equation: (X P) =
0 for a fixed P. In SCM, experimental profiles are supposed to come from steady state
shift experiments, where a system, initially in a steady state eql, is perturbed using con-
trol parameters P, and eventually settles in a new steady state eq2. Measuring the changes
of X;, we represent the sign of the variations as a partial labeling i : V' — {+,=} of the
corresponding influence graph (i) = sign(X:* — X ). One can easily enhance this
setting to also considering null (or more precisely, non-significant) variations, by exploit-
ing the concept of sign algebra [79].

Given an influence graph (as a representation of a regulatory system) and a labeling of
its vertices with signs (as a representation of experimental profiles), we now describe the
constraints that relate both. Informally, for every non-input species i, its variation ()
ought to be explained by the influence of at least one predecessor j of i, j # i in the

I




Species | L L; G LacY LacZ Lacl A cAMP-CRP
g} - - - - - + - +
Lo + + - + - +
K3 + 7 ? ? + 2 ?
o ? ? 002 - ? +

Table 2.1: Some vertex labelings (reflecting measurements of two steady states) for the influence graph
depicted in Figure 2.1; unobserved values indicated by question mark ‘?’.

influence graph. Thereby, the influence of j on i is given by the sign u(j)o(j,7) € {+,-},
where the multiplication of signs is derived from that of numbers. Sign consistency
constraints can then be formalized as follows.

Definition 2.2 (Sign Consistency Constraints) Ler (V, E, o) be an influence graph and
w: V. — {+,=} a (partial) vertex labeling.

Then, (V, E, o) and 1. are consistent, if there are some total extensions o' : E — {+,-}

of o and 1! © V. — {+,=} of  such that (i) is consistent for each non-input vertex
i € V, where /(i) is consistent, if there is some edge j— i in E such that p'(i) =
1 ()’ (3,9)-
Note that labelings ¢ and y of vertices and edges, respectively, are admitted to be partial.
This occurs frequently in practice where the kind of an influence may depend on environ-
mental factors or experimental data may not include all elements of a biological system.
In order to decide whether a partially labeled influence graph and a partial experimen-
tal profile are mutually consistent, we thus consider the possible totalizations of them.
If at least one total edge and one total vertex labeling (extending the given labelings)
are such that the signs of all non-input vertices are explained, it is sufficient for mutual
consistency.

Table 2.1 gives four vertex labelings for the influence graph in Figure 2.1. Total labeling
(1 1s consistent with the influence graph: the variation of each vertex (except for input
vertex L.) can be explained by the effect of one of its regulators. For instance, in f,
LacY receives a positive influence from cAMP-CRP as well as a negative influence from
Lacl, the latter accounting for the decrease of LacY. The second labeling, j, is not
consistent: LacY receives only negative influences from cAMP-CRP and Lacl, and its
increase cannot be explained. Partial vertex labeling p3 is consistent with the influence
graph in Figure 2.1, as setting the signs of L;, LacY, LacZ, A, and cAMP-CRP to +, —, —,
—, and +, respectively, extends p3 to a consistent total labeling. In contrast, 4 cannot be
extended consistently.

2.3 Checking Consistency

We now address how to check whether an experimental profile is consistent with a given
influence graph. Note that, if the profile provides us with a sign for each vertex of the
influence graph, the task can be accomplished simply by checking whether each non-
input vertex receives at least one influence matching its variation. However, as soon as
the experimental profile has missing values (which is very likely in practice), the problem
becomes NP-hard [113]. In fact, a Boolean satisfiability problem over clauses C1, ..., C,,
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Figure 2.2: An influence graph (left) along with two experimental profiles (middle and right), in which
increases (decreases) have been observed for vertices colored green (red), and vertex d is an

input.
vertex(a). vertex(b). vertex(c). vertex(d). vertex(e).
edge(a,b).  observedE(a,b,+). edge(c,e).  observedE(c,e,-).

. — Jedge(a,d). observedE(a,d,~). edge(d,b).  observedE(d,b,+). 2.1
g edge(a,e).  observedE(a,e,-). edge(d,c). observedE(d,c,+). ’
edge(b,a).  observedE(b,a,+). edge(d,e).  observedE(d,e,+).

edge(b,c).  observedE(b, c,+).

input(c).
m, = 2.2)
observedV (b, +).  observedV(c,-). observedV(d,-). observedV(e,+).

Figure 2.3: Facts representing the influence graph and experimental profile p; (middle) from Figure 2.2 in
I1, and I, , respectively .

and variables z1, ..., x, can be reduced as follows: introduce unlabeled input vertices
Z1,...,%,, non-input vertices C1,...,C,, labeled +, and edges z; — C; labeled + (-)
if z; occurs positively (negatively) in C;. It is not hard to check that the labeling of
Ch,...,Cy by + is consistent with the obtained influence graph iff the conjunction of
Ci,...,C,, is satisfiable.

We next provide a logic program such that each of its answer sets matches a consistent
extension of vertex and edge labelings. Our encodings as well as instances are available
at [11]. The program for consistency checking is composed of three parts, described in
the following subsections.

2.3.1 Problem Instance

We now explain how we represent an influence graph as well as an experimental profile
as a set of ground facts. For each species ¢, we introduce a fact vertex(i), and for each
edge j —i, a fact edge(j,i). If s € {+,—} is known the sign of an edge j — 1, it is
expressed by a fact observedE(j,1,s). For an experiment the measured variation of a
species 7 is expressed by a fact observedV (i, s). We assume that, for a given species i (or
regulation j — 7) and an experimental profile p, an instance contains at most one of the
facts observedV (i,+) and observedV (i,-) (or observedE(j,i,+) and observedE(j,i,-)),
but not both of them.

11



Example 2.1 The facts describing the influence graph and the experimental profile p,
shown in Figure 2.2 are provided in Figure 2.3. Note that experimental profile ps (cf.
right in Figure 2.2) is inconsistent with the given influence graph. It necessitates labeling
vertex a with — in order to explain the observed increase of d, while such a decrease
of a cannot be explained. However, there were no such inherent inconsistencies, e.g., if
increases of c had been observed in p, and ps. O

2.3.2 Generating Solution Candidates

As mentioned above, our goal is to check whether an experimental profile is consistent
with an influence graph. If so, it is witnessed by total labelings of the vertices and edges,
which are generated via the following rules:

labelV (V, +); labelV (V, =) « vertex(V').

labelE(U,V,+); labelE(U,V, =) «— edge(U, V). (2:3)

Moreover, the following rules ensure that known labels are respected by total labelings:

labelV(V, S) < observedV(V, S, P).

labelE(U,V,S) < observedE(U, V., S). 24

Note that the stability criterion for answer sets demands that a known label derived via
arule in (2.4) is also derived via (2.3), thus, excluding the opposite label. In fact, the dis-
junctive rules used in this section could actually be replaced with non-disjunctive rules via
“shifting” [55],' given that our first encoding results in a so-called head-cycle-free (HCF)
[9] ground program. However, similar disjunctive rules are also used in Section 2.4 where
they cannot be compiled away. Also note that HCF programs, for which deciding answer
set existence stays in NP, are recognized as such by disjunctive ASP solvers [81, 28].
Hence, the purely syntactic use of disjunction, as done here, is not harmful to efficiency.

Given the facts in (2.1) and(2.2) combined with the rules in (2.3) and (2.4), the resulting
program admits two answer sets. The first one, including labelV (a, +) and the second one
including labelV(a,-). On the remaining atoms, both answer sets coincide by contain-
ing the atoms in (2.1) along with labelV (b, +), labelV (c,-), labelV(d, =), labelV (e, +),
labelE(a, b, +), labelE(a, d,-), labelE(a, e,-), labelE(b, ¢, +), labelE(c, e,-), labelE(d, b, +),
labelE(d, c,+) and labelE(d, e, +).

2.3.3 Testing Solution Candidates

We now check whether generated total labelings satisfy the sign consistency constraints
stated in Definition 2.2, requiring an influence of sign s for each non-input vertex ¢ with
variation s. We thus define receive(i, s) to indicate that i receives an influence of sign s:

receive(V,+) « labelE(U,V,S),labelV (U, S).

receive(V,=) « labelE(U,V, S),labelV(U,T),S # T. 2:5)

! Alternatively, one could also use cardinality constraints (cf. [107]), which would however preclude a comparison with dlv in
Section 2.7.
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Inconsistent labelings, where a non-input vertex does not receive any influence match-
ing its variation, are then ruled out by integrity constraints of the following form:

— labelV(V,S), not receive(V, S), not input(V'). (2.6)

Starting from the answer sets described in the previous subsection, the included atoms
labelE(b, a, +) and labelV (b, +) allow us to derive receive(a, +) via a ground instance of
the second rule in (2.5), while receive(a,-) is not derivable. If we include the rules in 2.5
and 2.6 to the program, only the solution candidate containing labelV(a,+) remains an
answer set. In contrast, since receive(a,—) is underivable, the solution candidate contain-
ing labelV (a,-) violates the following ground instance of (2.6):

— labelV(a,-), not receive(a,=), not input(a).

That is, the solution candidate with labelV (a,—) does not pass the consistency test.

2.3.4 Soundness and Completeness

By letting 7((V, £, 0), ) denote the set of facts representing the problem instance in-
duced by an influence graph (V, £, o) and a vertex labeling p, and P the logic program
consisting of the rules given in (2.3), (2.4), (2.5), and (2.6), respectively, we can show the
following soundness and completeness results.

Theorem 2.1 (Soundness) Let (V, E, o) be an influence graph and i : V- — {+,-} a
(partial) vertex labeling.
If there is an answer set of Pc UT((V, E,0), 1), then (V, E,c) and p are consistent.

Theorem 2.2 (Completeness) Ler (V, E, o) be an influence graph and p : V- — {+,-}
a (partial) vertex labeling.
If (V, E, o) and u are consistent, then there is an answer set of Pc UT((V, E, o), ).

The following correspondence result is immediately obtained from Theorem 2.1 and 2.2.

Corollary 2.3 (Soundness and Completeness) Let (V, E, o) be an influence graph and
w:V — {+,=} a(partial) vertex labeling.
Then, (V, E,0) and y are consistent iff there is an answer set of Pc UT((V, E, o), ).

2.3.5 Input Reduction

It is likely in practice that biological networks include simple tractable substructures or
that parts of experimental observations are easily explained. Dealing with such particular
cases before doing complex computations like checking consistency is therefore advis-
able. Given an influence graph (V, E, 0) and a partial vertex labeling ;. capturing experi-
mental data, we below describe conditions to identify vertices that can always be labeled
consistently. Such vertices can then be marked as (additional) inputs to exclude their
sign consistency constraints from consistency checking and to make explicit that they
cannot cause any inconsistency. Any of the following conditions is sufficient to identify
a vertex ¢ as effectively unconstrained:

1. There is a regulation i — 7 in £ such that o(i,4) = +, that is, ¢ supports its variation.

13



Figure 2.4: A partially labeled influence graph with uncritical vertices surrounded by dots.

2. There is a regulation j — i in E such that o(7, 9) is undefined. In fact, undetermined
regulations are used in practice to model influences that vary, e.g., relative to en-
vironmental conditions. Any variation of the target : of such a regulation can be
explained by assigning the appropriate label to j — ¢ (w.r.t. the label of 7).

3. There are regulations j — i, k — 7 in E such that p(j)o(j,7) =+ and u(k)o(k,i)=-.
That is, any variation of 7 is already explained by the given observations.

4. An observed variation (7) of i is explained if there is some regulation j — i in £
such that 1(j)o(j,4) = p(i). Any further regulations targeting i can be ignored.

5. If for all regulations ¢ — k in F/, we have that £ is an input, then the variation of ¢
is insignificant for its targets. In this case, if ¢ is unobserved (u(¢) is undefined) and
target of at least one regulation j — ¢ in E, we can assign an appropriate label to ¢
(w.r.t. the labels of j and j — ) without any further conditions.

6. There is a regulation j — i in F such that j is unobserved (1(j) is undefined), an
input, and all targets k # i of j (j — k belongs to F) are inputs. Without any further
conditions, we can assign an appropriate label to j for explaining the variation of <.

The reduction idea is to mark a vertex ¢ as additional input, if it meets one of the above
conditions. Since the two last conditions inspect inputs, they may become applicable to
further vertices once inputs are added. Hence, checking the conditions and adding inputs
needs to be done exhaustively. As we see below, this can easily be encoded in ASP.

Reconsidering the influence graph and partial observations in Figure 2.5, we see that
vertex b receives an influence from d matching its observed increase. Thus, the fourth
condition applies to already explained vertex b. Moreover, vertex e is unobserved and
does not regulate anything. That is, the fifth condition applies to e, and its variation can
simply be picked from influences it receives from a, ¢, and d. After establishing that e
can be labeled consistently, we find that d does not regulate any critically constrained
vertex. Applying again the fifth condition, we notice that the variation of d is actually
insignificant.

Figure 2.4 shows the situation resulting from the identification of uncritical vertices
by iteratively applying the above conditions. The fact that only a and d are critically
constrained tells us that only they can be the cause of inconsistency.
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The aforementioned idea to mark uncritical vertices as input can be encoded as follows:

obs(V') « observedV (V. S).

(V;
get(V,+) — observedE(U V,S), observedV (U, S).
get(V,=) < observedE(U, V. S), observedV(U,T), S # T.
input(V') < observedE(V,V, +).
input(V') < edge(U, V'), not observedE(U, V., +), not observedE(U,V,-).
input(V') «— get(V,+), get(V,-).
input(V') < observedV (V, S), get(V, S).
input(V') «— edge(U, V'), input(W) : edge(V, W), not obs(V').
input(V') « edge(U, V), input(W) : edge(U, W) : W # V. input(U), not obs(U).

Auxiliary predicates obs and get are used to exhibit whether either variation has been ob-
served for a vertex and whether a particular influence is received for certain, respectively.
The last six rules check the described conditions (in the same order) and mark a vertex
as input if one of them applies. Importantly, the above rules are stratified and thus yield
a unique set of derived input vertices. This allows us to perform the reduction efficiently
within grounding, without deferring to any procedural implementation external to ASP.

The situation shown in Figure 2.4 is reflected by the reduction encoding deriving atoms
input(b), input(c), and input(e) from an instance (cf. Section 2.3.1) corresponding to the
depicted influence graph and observed variations. Consistency checking can then focus
on the remaining non-input vertices a and d.

2.4 ldentifying Minimal Inconsistent Cores

In view of the usually large amount of data, it is crucial to provide concise explana-
tions whenever an experimental profile is inconsistent with an influence graph (i.e., if the
logic program given in the previous section has no answer set). To this end, we adopt a
strategy that was successfully applied on real biological data [64]. The basic idea is to
isolate minimal subgraphs of an influence graph such that the vertices and edges cannot
be labeled consistently. This task is closely related to extracting Minimal Unsatisfiable
Cores (MUCs) [25] in the context of Boolean satisfiability (SAT). In allusion, we call a
minimal subgraph of an influence graph whose vertices and edges cannot be labeled con-
sistently a Minimal Inconsistent Core (MIC), whose formal definition is as follows. We
note that verifying a MUC is DP-complete [25, 89], and the same applies to MICs in view
of the reduction of SAT described in Section 2.3. However, solving a decision problem
is not sufficient for our application because we also need to provide MIC candidates to
verify. As regards checking inconsistency of an (a priori unknown) MIC candidate, we
are unaware of ways to accomplish such a co-NP test in non-disjunctive ASP without
destroying the candidate at hand.

Definition 2.3 (Minimal Inconsistent Core) Let (V, E, o) be an influence graph and s :
V' — {+,-} a (partial) vertex labeling.
Then, a subset W of V' is a Minimal Inconsistent Core (MIC), if

1. for all total extensions o' : E — {+,=} of o and i : V. — {+,=} of p, there is
some non-input vertex v € W such that i/ (i) is inconsistent, and
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Figure 2.5: A partially labeled influence graph and a MIC consisting of ¢ and d.

2. for every W' C W, there are some total extensions o' : E — {+,-} of 0 and
w:Vo— {+ =} of u such that ' (i) is consistent for each non-input vertex i € W'.

To encode MICs, we make use of three important observations made on Definition 2.3.
First, the inherent inconsistency of a MICs vertices stipulated in the first condition must
be implied by the MIC and its external regulators, while vertices not connected to the MIC
cannot contribute anything. Moreover, the second condition on proper subsets prohibits
the inclusion of an input vertex in a MIC, as it could always be removed without affecting
inherent (in)consistency of the remaining vertices variations. Finally, for establishing
consistency of all proper subsets of a MIC, it is sufficient to consider subsets excluding
a single vertex of the MIC, given that their consistency carries forward to all smaller
subsets.

For illustration, consider the influence graph and the MIC in Figure 2.5. One can check
that the observed simultaneous increase of b and d is not consistent with the influence
graph, but the reason for this might not be apparent at first glance. However, once the
MIC consisting of a and d is extracted, we see that the increase of b implies an increase
of a, so that the observed increase of d cannot be explained. Note that the elucidation of
inherent inconsistency provided by a MIC takes its vertices along with their regulators
into account, the latter being incapable of jointly explaining the variations of all vertices
in the MIC.

We next provide an encoding for identifying MICs, where a problem instance, that is,
an influence graph along with an experimental profile, is represented by facts as specified
in Section 2.3.1. The encoding then consists of three parts: the first generating MIC
candidates, the second asserting inconsistency, and the third verifying minimality.

2.4.1 Generating MIC Candidates

The generating part comprises rules in (2.4) for deriving known vertex and edge labels.
In addition, it includes the following rules:

active(V'); inactive(V') «— vertex(V'), not input(V).
edgeMIC(U, V') < edge(U, V'), active(V').

vertexMIC(U) — edgeMIC(U, V).

V)

-)

-)

vertexMIC(V') « active(V'). 27

labelV(V, +); labelV(V, =) « vertexMIC(V').
labelE(U,V,+); labelE(U, V — edgeMIC(U, V).
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The first rule permits guessing non-input vertices forming a MIC candidate. Such ver-
tices are marked as active. The subgraph of the influence graph consisting of the active
vertices, their regulators, and the connecting edges provides the context of the MIC can-
didate.In Definition 2.3, (in)consistency is checked only for the (non-input) vertices in a
MIC, while other vertices variations do not need to be explained. Hence, guessing un-
observed vertex (and edge) labels can be restricted to vertices belonging to or connected
to the MIC, which reduces combinatorics. The vertices and edges contributing to this
subgraph are identified via vertexMIC and edgeMIC. The guessing of (unobserved) ver-
tex and edge labels is restricted to them in the last two rules of (2.7). Finally, note that
the rules in (2.4) propagate known labels also for vertices and edges not correlated to the
MIC candidate, viz., to the active vertices. This does not incur additional combinatorics;
rather, it reduces derivations depending on MIC candidates.

2.4.2 Testing for Inconsistency

By adapting the methodology used in [32], the following subprogram makes sure that the
active vertices cannot be labeled consistently, taking (implicitly) into account all possible
labelings for them, their regulators, and connecting edges:?

opposite(U, V') «— labelE(U,V, =), labelV (U, S), labelV(V, S).
opposite(U, V') « labelE(U, V., +), labelV (U, S), labelV(V,T),S # T.
bottom — active(V'), opposite(U, V) : edge(U, V).
< not bottom.

(2.8)
labelV(V, +

labelV(V, -
labelE(U, V, +
labelE(U,V,-

— bottom, vertex(V').
— bottom, vertex(V').

— bottom, edge(U, V).
«— bottom, edge(U, V).

— — —

In this (part of the) encoding, opposite(U, V') indicates that the influence of regulator U
on V' is opposite to the variation of V. If all regulators of an active vertex V" have such an
opposite influence, the sign consistency constraint for V' is violated, in which case atom
bottom along with all labels for vertices and edges are derived. Note that the stability
criterion for an answer set X imposes that bottom and all labels belong to X only if the
active vertices cannot be labeled consistently. Finally, integrity constraint <— not bottom
necessitates the inclusion of bottom in any answer set, thus, stipulating an inevitable sign
consistency constraint violation for some active vertex.

Reconsidering our example in Figure 2.5, the ground instances of (2.7) permit guess-
ing active(a) and active(d). When labeling a with + (or assuming labelV(a,+) to be
true), we derive opposite(a, d) and bottom, producing in turn all labels for vertices and
edges. Furthermore, setting the sign of a to — (or labelV(a,-) to true) makes us derive
opposite(b, a), which again gives bottom and all labels for vertices and edges. We have
thus verified that the sign consistency constraints for a and d cannot jointly be satisfied,
given the observed increases of b and d. That is, active vertices a and d are sufficient to
explain the inconsistency between the observations and the influence graph.

%In the language of gringo (and Iparse), the expression opposite(U, V) : edge(U, V') used below refers to the conjunction of all
ground atoms opposite(3, 1) for which edge(7, 7) holds.
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2.4.3 Testing for Minimality

It remains to be verified whether the sign consistency constraints for all active vertices are
necessary to identify an inherent inconsistency. This test is based on the idea that, exclud-
ing any single active vertex, the sign consistency constraints for the other active vertices
should be satisfied by appropriate labelings, which can be implemented as follows:

labelV’ (W, V, +); labelV’ (W, V, =) «— active(W), vertexMIC(V).
labelE”(W, U, V, +); labelE’(W, U, V, =) < active(W), edgeMIC(U, V).
labelV’(W,V, S) « active(W), observedV (V, S).
labelE’(W,U, V., S) < active(W), observedE(U,V, S). (2.9)
receive (W V +) « labelE’(W, U, V., S),labelV’(W, U, S),V # W.
receive’ (W, V,=) « labelE’(W,U,V,S), labelV’(W,U,T),V # W,S # T.
— labelV’(W, V. S), active(V'),V # W, not receive’ (W, V., 5).

This subprogram is similar to the consistency check encoded via the rules in (2.3), (2.4),
(2.5), and (2.6). However, sign consistency constraints are only checked for active ver-
tices, and they must be satisfiable for all but one arbitrary active vertex 1. In fact,
labelings such that the variations of all active vertices but 11 are explained witness the
fact that W cannot be removed from a MIC candidate without re-establishing consis-
tency. As W ranges over all (non-input) vertices of an influence graph, each active vertex
is taken into consideration. Regarding computational complexity, recall from Section 2.3
that checking consistency is NP-complete. As a consequence, one cannot easily identify
conditions to select a particular witness for consistency of a MIC candidate minus some
vertex W, and so we do not encode any such conditions. This leads to the potential of
multiple answer sets comprising the same MIC but different witnesses, in particular, if
many vertices and edges belong to the context of the MIC.

For the influence graph in Figure 2.5, it is easy to see that the sign consistency con-
straint for a is satisfied by setting the sign of a to +, expressed by atom labelV’(d, a, +)
in the ground rules obtained from the above encoding part. In turn, the sign consis-
tency constraint for d is satisfied by setting the sign of a to —. This is reflected by atom
labelV’(a, a,-), allowing us to derive receive’(a,d,+). That is, the ground instance of
the above integrity constraint containing labelV’(a, d, +) is satisfied. The fact that atoms
labelV’(d, a,+) and labelV’(a,a,-), used for explaining the variation of either a or d,
respectively, disagree on the sign of a also shows that jointly considering a and d yields
an inconsistency.

2.4.4 Soundness and Completeness

Similar to Section 2.3.4, we can show the soundness and completeness for our MIC ex-
traction encoding Pp, consisting of the rules in (2.4), (2.7), (2.8), and (2.9), respectively.

Theorem 2.4 (Soundness) Let (V, E, o) be an influence graph and j : V- — {+,-} a
(partial) vertex labeling.
If X is an answer set of Pp UT((V, E,0), 1), then {i | active(i) € X} is a MIC.

Theorem 2.5 (Completeness) Let (V, E, o) be an influence graph and i : V- — {+,=}
a (partial) vertex labeling.
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IfW C V is a MIC, then there is an answer set X of Pp U 1((V, E,0), i) such that
{i | active(i) € X} =W.

The following correspondence result is immediately obtained from Theorem 2.4 and 2.5.

Corollary 2.6 (Soundness and Completeness) Let (V, E, o) be an influence graph and
w:V — {+,=} a (partial) vertex labeling.

Then, W C V is a MIC iff there is an answer set X of Pp U T((V, E,0), 1) such that
{i | active(i) € X} =W.

As mentioned above, several answer sets may represent the same MIC because witnesses
needed for minimality testing are not necessarily unique.

2.4.5 Exploiting Strongly Connected Components for MIC Extraction

In what follows, we introduce a connectivity property of MICs that can be used to fur-
ther refine the encoding presented in Section 2.4. Incorporating additional background
knowledge into the problem encoding is straightforward (as soon as such knowledge is
established). In practice, ancillary (and actually redundant) conditions may significantly
narrow and thus speed up both the grounding and the solving process.

MIC Connectivity Property. For analyzing interactions within a MIC, we make use of a
graph described in the following. Let (V, F, o) be an influence graph and i : V' — {+,-}
be a (partial) vertex labeling, and let D () denote the set of vertices labeled by p. For a
set W C V of vertices, we define a graph (V[IW], E[W]) by:

VW] = WU{j|(j—i) € EiecW)}
EW] ={(—-) |- el ieWiu{(i—j)|(—i)eEieW,j¢ D(u)}.

The construction of (V [W], E[W]) is based on the idea that a regulator j of some i € W
is connected to ¢ via its sign consistency constraint, and a connection in the opposite
direction applies if j is unlabeled by p. In fact, given some total extensions ¢’ : £ —
{+,-} of 0 and ¢/ : V — {+,=} of pu, we can check a matching influence of j on i
by 1/ (1) = (' (7)o’ (j,4) or equivalently by 1/(7) = p'(i)o’(j,4). That is, provided that
() is undefined, /(7) constrains p'(j) by contraposition whenever ¢ does not receive
a matching influence from any other regulator than j. This observation motivates the
inclusion of inverse edges from vertices in W to regulators unlabeled by 1 in E[WV].

For illustration, the right-hand side of Figure 2.6 shows graph (V[{a, d}], E[{a,d}])
resulting from the partially labeled influence graph on the left-hand side. The single
regulator b of a is labeled, and thus there is no inverse edge from a to b in E[{a,d}|.
On the other hand, a is an unlabeled regulator of d, and so E[{a, d}| includes an inverse
edge from d to a. The addition of this edge turns the subgraph of (V'[{a,d}], E[{a,d}])
induced by a and d into a strongly connected component. In view that a and d belong to a
MIC (as discussed in Section 2.4), we below show that this connectivity is not by chance.

Theorem 2.7 (MIC Connectivity) Let (V, E,0) be an influence graph and i : 'V —
{+,-} a (partial) vertex labeling.

If W C V is a MIC, then all vertices in W belong to the same strongly connected
component in (VW] E[W]).
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Figure 2.6: A partially labeled influence graph and the graph (V[{A,D}], E[{A,D}]).

Optimized MIC Encoding. We now apply Theorem 2.7 to improve the basic MIC ex-
traction encoding (cf. Section 2.4) in two aspects: adding (redundant) constraints for
search space pruning and adding positive body literals for reducing grounding efforts.
The following rules pave the way by determining the (non-trivial) strongly connected
components in (V, E[V]) as an over-approximation of the ones in (V' [W], E[W]) for any
W CV:

edges(U, V') « edge(U, V), not input(V).
edges(V,U) «— edge(U, V'), not input(V'), not observedV (U, +), not observedV (U, -).
reach(U, V') «— edges(U, V).
reach(U, V') «— edges(U, W), reach(W, V'), vertex(V').
cycle(U, V') « reach(U, V), reach(V,U),U # V.

(2.10)
The first rule simply collects edges whose targets are not input, while the second rule
adds edges in the inverse direction for unobserved regulators. Reachability w.r.t. the so
obtained graph is determined via the third and the fourth rule. Finally, predicate cycle
indicates whether two (distinct) vertices reach each other in (V, E[V]) relative to an in-
fluence graph (V, E/, o) and a (partial) vertex labeling p. In fact, if two vertices belong to
aMIC W C V, then mutual reachability in (V[W], E[IV]) implies the same in (V, E[V]),
in view that V[W] C V and E[W] C E[V]. Conversely, if two vertices do not reach each
other in (V, E[V]), then they cannot jointly belong to any MIC.

The over-approximation of potential MICs provides an easy means to prune the search
space by adding the following integrity constraint:

— active(U), active(V'), U < V, not cycle(U,V). (2.11)

The constraint makes the fact explicit that distinct vertices of a MIC must reach each
other in (V, E[V]), and it immediately refutes MIC candidates that do not satisfy this
condition.

After making use of Theorem 2.7 to narrow search, we now shift the focus to ground-
ing. As a matter of fact, the quadratic space complexity of the minimality test’s ground in-
stantiation, as encoded in (2.9), is a major bottleneck in scaling. The knowledge about po-
tential pairwisely connected vertices in MICs, represented by integrity constraint (2.11),
also allows us to include positive body literals in order to restrict the scope of minimality
tests:
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labelV’' (W, V, +); labelV’(W,V, =) < active(W ), active(V'), cycle(V, W ).
labelV’ (W, U, +); labelV’ (W, U, =) <« active(W), edgeMIC(U, V'), cycle(V, W).
labelE”(W, U, V, +); labelE’ (W, U, V,=) < active(W), edgeMIC(U, V), cycle(V,W).
labelV’(W, V., S) «— active(W), observedV (V. S), cycle(V,W).
labelV’(W, U, S) < active(W), observedV (U, S), edge(U, V'), cycle(V, W).
labelE’(W,U,V,S) < active(W), observedE(U,V, S), cycle(V,W).
receive’ (W, V., +) « labelE’(W,U,V, S), labelV’(W, U, S).
receive’(W,V,=) « labelE’(W,U, V. S), labelV’(W,U,T),S # T.
— labelV’(W, V., S), active(V'), cycle(V, W), not receive’(W, V. S).
(2.12)
In comparison to (2.9), the extra condition cycle(V, W) in the bodies of the first three
rules establishes that labels used for testing minimality are guessed only for pairs W
and V' of vertices that can potentially jointly belong to a MIC. The same restriction is
used in the next three rules forwarding observed vertex and edge labels, but now limited
to vertices that can jointly belong to a MIC and to their respective regulators. Finally, the
last two rules and the integrity constraint perform the same test as in (2.9) for a restricted
set of pairs W and V. (The fact that cycle(V, W) implies V' # W in labelE’(W, U, V, S)
also allows us to drop this condition, used in (2.9), from the bodies of the rules defining
receive’.)

The complete optimized MIC encoding consists of the original rules in (2.4), (2.7),
and (2.8), (2.10) and (2.11) as add-ons, and (2.12) as a replacement for (2.9). As regards
the computational impact, we note that the optimized encoding needs less than two sec-
onds for grounding and finding all MICs on the case study in Section 2.7.3, which took
more than a minute with the unoptimized encoding.

A second version of the optimized encoding is obtained by tightening the consideration
of connected vertices in (V[W], E[W]) relative to a MIC candidate 1¥/. This can be
achieved by adding condition active(V) to the rules in (2.10) defining the edges predicate.
In this way, the static reachability information encoded in (2.10), which is completely
evaluated by grounder gringo, is turned into a dynamic relation computed during search.
As it turns out, there is no significant performance difference between these two versions
of the optimized MIC extraction encoding on the case study in Section 2.7.3. Hence, more
real examples are needed to reliably compare their grounding and solving efficiency.

2.5 Repair

The natural question arising now is how to repair networks and data that have been found
to be inconsistent, that is, how to modify network and/or data in order to re-establish their
mutual consistency. A major challenge lies in the range of possible repair operations,
since an inconsistency can be explained by missing interactions or inaccurate information
in a network as well as by aberrant data. However, once consistency is re-established,
network and data can be used for predicting unobserved variations.

To this end, we extend our basic approach and propose a framework for repairing large-
scale biological networks and corresponding measurements in order to allow for predict-
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Figure 2.7: An influence graph (left) along with two experimental profiles (middle and right), in which
increases (decreases) have been observed for vertices colored green (red), and vertex d is an
input.

ing unobserved variations. We detail how reasoning modes can be used for efficient
prediction under minimal repairs, complying with the objective of minimal change.

Our goal is to provide ASP solutions for reasoning over influence graphs and exper-
imental profiles, in particular, if they are inconsistent with each other. To this end, we
identify below several operations, called repairs, which can be applied to re-establish
consistency.

In what follows, we provide logic program representations of repair in the input lan-
guage of ASP grounder gringo [45]. After describing the format of instances, repair
operations, and our repair encoding, we consider minimal repairs. Finally, we explain the
usage of minimal repairs for prediction (under inconsistency).

2.5.1 Problem Instance

In order to compute correction that respect more than just a single experimental profile,
we have to adjust the fact representation of experimental profiles given in Section 2.3.1.
We need to uniquely identify experimental profiles, and relate each input parameters
and each observations to a single experimental profile. Hence, each experimental pro-
file is declared via a fact exp(p); and its observed variations and inputs are specified by
facts observedV (p,i,s) with s € {+,—} and input(p, j), respectively. The fact repre-
sentation of an influence graph is like described in Section 2.3.1. We assume that, for a
given species ¢ (or regulation j — ¢) and an experimental profile p, an instance contains
at most one of the facts observedV (p,i,+) and observedV (p,i,-) (or observedE(j,i,+)
and observedE(j,i,-)), but not both of them.

Example 2.2 The facts describing the influence graph (11,) and experimental profiles
(IL,, and 11,,,) shown in Figure 2.7 are provided in Figure 2.8. Note that experimental
profile p; (cf. middle in Figure 2.7) and ps (cf. right in Figure 2.7) are inconsistent with
the given influence graph. Both necessitate labeling vertex b with — in order to explain
the observed decrease of c. With py, such a decrease of b is unexplained; with p,, it
can be explained by labeling a with —, which in turn leaves the observed decrease of e
unexplained. However, there were no such inherent inconsistencies, e.g., if increases of c
had been observed in p, and p,. O
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vertex(a). vertex(b). vertex(c). vertex(d). vertex(e).
edge(a,b). observedE(a,b,+) edge(a,d).  observedE(a,d,-).

o - edge(a,e). observedE(a,e,—-). edge(b,a).  observedE(b,a,+). 2.13)
9 7 )edge(b,c). observedE(b,c,+). edge(c,e).  observedE(c,e,-). '
edge(d,b).  observedE(d,b,+). edge(d,c).  observedE(d,c,+).

edge(d,e). observedE(d,e,+).
I _ {exp(pl). input(p1,d). } 2.14)
P observedV (p1,d,+).  observedV(pi,c,=). observedV(pi,a,+). ’
o - {exp(pg). input(pz, d). } 2.15)
p2 observedV (pa,d,+).  observedV(ps,c,=).  observedV(ps,e,-). '

Figure 2.8: Facts representing the influence graph and experimental profiles from Figure 2.7 in II,, II,, ,
and 1I,,,, respectively.

2.5.2 Repair Operations

Repairs are operations on an influence graph (model) or experimental profiles (data) that
can be applied to make model and data mutually consistent. Consistency of the repaired
model/data is then witnessed by consistent total labelings of vertices and edges.

To begin with, we use the following rules to define admissible repair operations:

rep(add_e(U,V)) «— rep_a,vertex(U),vertex(V),U # V, not edge(U, V).
rep(flip-e(U,V,S)) < rep-e,edge(U, V), observedE(U,V, S).

rep(inp_v(V')) — rep_g,vertex(V'), exp(P), not input(P, V). (2.16)
rep(inp.v(P,V)) « rep_i,vertex(V'), exp(P), not input(P,V).

rep(flip v(P V., S)) < rep_v,vertex(V'), exp(P), observedV(P,V,S).

Note that particular operations are identified with function terms inside of predicate
rep, which enables us to deal with repairs in a general way whenever knowing particular
repair types is unnecessary. Otherwise, the meanings of the function terms are as follows:

Term Target | Meaning

add_e(U,V') | model | Introduce an edge from U to V'

flip_e(U,V,S) | model | Flip the sign S of the existing edge from U to V'
inpv(V) model | Treat vertex V' as an input in all experimental profiles
inp.v(P,V) data | Treat vertex 1 as an input in experimental profile P
flipv(P,V,S) | data | Flip the sign S of vertex V' in experimental profile P

These repair operations are inspired by existing biological use cases. To repair a model by
adding new edges makes sense when the model is incomplete (which is often the case in
practice). Flipping the sign of an edge is a way to curate the model; it means that in some
experiment the effect of a regulator (activator or inhibitor) should be corrected. Turning a
vertex into an input can be used to indicate missing (unknown) regulations or oscillations
of regulators. Revising experimental observations puts the dataset into question and may
help to identify aberrant measurements (frequent in microarray data).

Which repair operations ought to be permitted or omitted requires background knowl-
edge about the model and data at hand. By offering a variety of operations, our frame-
work is flexible and may be adjusted to particular situations. In (2.16 the declaration of
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admissible repair operations is governed by atoms rep_a, . .., rep_v. Depending on the
requested repair types, such atoms are to be provided as facts. It would also be possi-
ble to restrict repair operations to particular edges or vertices, respectively, based on the
availability of biological expert knowledge.

Finally, note that the rules (2.16) filter some redundant repairs. An edge between dis-
tinct vertices can be introduced only if there is none in the model. Flipping the sign of
an edge or vertex is possible only if a sign is provided in the model or data, respectively.
Making a vertex input, globally or in a particular experimental profile, requires it to not
already be input in an arbitrary or the considered profile.

2.5.3 Repair Encoding
With admissible repairs at hand, the next rules encode the choice of operations to apply:

app(R) < rep(R), not app(R).
app(R) < rep(R), not app(R). (2.17)
« app(inp-v(V')), app(inp-v(P,V)).

Note that the integrity constraint above denies repair applications where a vertex is made
input both globally and also in a particular experimantal profile. In such a case, the latter
operation would be redundant. In general, the question of declaring a vertex as input
either globally or local to an experiment depends on the intention whether to repair the
model or data; however, simultaneously applying similar operations is futile.

The rest of the repair encoding is about identifying witnesses for the consistency of the
repaired model/data. To this end, we first declare available signs and their complement
relation?:

sig(+).  sig(-). opp(S,=S) «— sig(S). (2.18)

The next rules take care of labeling edges and also incorporate repairs on them:

labelE(U,V,S) «— edge(U, V), observedE(U,V, S), not app(flip_e(U, V., 5)).
labelE(U, V,T) «— app(flip-¢(U,V, S)),opp(S,T).

labelE(U,V,S) < app(add_e(U,V)),opp(S,T), not labelE(U,V,T).
labelE(U,V,S) «— edge(U,V'),opp(S,T), not labelE(U,V,T).

(2.19)

The first rule is to preserve (known) signs of edges if not flipped by a repair; otherwise,
the second rule is used to derive the opposite sign instead. For edges introduced by repairs
and unlabeled edges in the model, respectively, the last two rules encode the choice of
a sign, making sure that any answer set comprises a total edge labeling given by ground
atoms over predicate labelE.

Using the same methodology as with edges, but now relative to experimental profiles,
the following rules deal with vertex labels and repairs on them:

labelV (P, V,S) «— vertex(V'), exp(P), observedV(P,V,S), not app(flip_v(P,V,S)).
labelV(P,V,T) — app(flip-v(P,V, S)),opp(S,T).
labelV(P,V,S) «— vertex(V'),exp(P),opp(S,T), not labelV(P,V,T).

(2.20)

3Note that gringo interprets arithmetic functions like ‘~’. For instance, it evaluates — to +.
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In analogy to the rules in (2.19), the first rule maintains signs given in experimental
profiles, while the second applies repairs flipping such signs. Ground instances of the
third rule direct choosing signs of unobserved vertices, not yet handled by either the first
or the second rule. As a consequence, the instances of labelVin an answer set provide a
total vertex labeling.

Finally, we need to check whether the variations of all non-input vertices are explained
by the influences of their regulators. This is accomplished as follows:

receive(P,V,SxT) <« labelE(U,V,S),labelV(P,U,T), not input(P,V).
— labelV(P,V,S), not receive(P,V,S),
not input(P, V'), not app(inp_v(V')), not app(inp_v(P,V)).

(2.21)

First, observe that the influence of a regulator U on V' is simply the product of the signs of

the edge and of U. Based on this, the integrity constraint denies cases where a non-input

vertex V/, neither a given input of a profile P nor made input globally or in P by any

repair, receives no influence matching its variation S. That is, a non-input vertex must

not be unexplained in a profile. Conversely, any answer set comprises consistent total

vertex and edge labelings wrt the repaired model/data.

Example 2.3 Reconsider the influence graph, described by 11, in (2.13), and experimen-
tal profiles, represented as 11,,, and 11,,, in (2.14) and (2.15), shown in Figure 2.7. Let 11
be the encoding consisting of the rules in (2.16)—(2.21). Then, I1UI1,UIl,, U{rep_v.} ad-
mits two answer sets comprising app(flip-v(p1, c,-)) as single repair operation to apply,
viz., the sign of c is flipped to +. Edge labels are as determined in 11, and the consistent
total vertex labelings given by ground atoms over predicate labelVare shown in Row I:

a|lb|c| d| e
L+ |+ |+ |+ |+

So witnessing labelings require increases of a, b, ¢, and d, while e may either increase or
decrease.
Similarly, there are two answer sets of for 11 U1l, U IL,, U {rep_v.} flipping c to +:

a | b | c|d|e
po | H-|H-| + | + |-

Here, ¢ as well as d must increase and e decrease, and the variations of a and b are
variable but must comply with each other.

When looking at model repairs using program I1 U I1, U IL, UIL, U {rep_g.}, where
we may globally make vertices input, we get two answer sets applying only the repair
operation expressed by app(inp_v(c)). The witnesses for p, and py are shown in Row II1.

alblc| d]| e
polH |+ =]+ |+
po |+ |+ | =] + | -

We have that p; and p necessitate the same signs for a, b, ¢, and d wrt the repaired model.
Moreover, with p,, e can either increase or decrease, while it must decrease with p,.
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2.5.4 Minimal Repairs

Typically, plenty of repairs are possible, in particular, if several repair operations are ad-
mitted by adding multiple control atoms rep_a, . . ., rep_v as facts. However, one usually
is only interested in repairs that make few changes on the model and/or data.

Repairs that re-establish consistency by applying a minimum number of operations can
easily be selected among candidate repairs by using the #minimize directive available in
Iparse’s and gringo’s input languages [107, 45]. The respective statement is as follows:

#minimize{app(R) : rep(R)}. (2.22)

It means that the number of instances of predicate app in answer sets, with argument R
ranging over the ground instances of “domain predicate” rep, is subject to minimization.
Note that (2.22) does not explicitly refer to the types of repair operations whose applica-
tion is to be minimized.

Example 2.4 As discussed in Example 2.2, the experimental profiles in 11, and I1,,, are
inconsistent with the influence graph represented by 11,. When augmenting program
ITUII, UIL, UIL,, U{rep_g.} from Example 2.3 with the statement in (2.22), the answer
sets comprising app(inp_v(c)) as the only repair operation to apply, along with the cor-
responding witnesses given in Example 2.3, yield a cardinality-minimal and thus optimal
repair. O

Although we do not detail them here, we note that alternative minimality criteria, such
as weighted sum or subset inclusion, can also be used with the repair encoding in (2.16)—
(2.21). While augmenting the #minimize statement in (2.22) with weights for atoms is
straightforward, encoding subset-based minimization is more sophisticated. An encoding
of the subset-minimality test is thus deferred to the appendix.

In fact, cardinality-minimal repairs may sometimes be too coarse and suppress further
structurally interesting repairs being subset-minimal.

Example 2.5 The previous example resulted in cardinality-minimal answer sets compris-
ing app(inp_v(c)) as the single repair operation to apply. As a consequence, answer sets
containing both app(inp_v(a)) and app(inp_v(b)) as applied repair operations are ig-
nored because they fail to be cardinality-minimal. However, such answer sets exist, and
the following vertex labelings are their witnesses:

al|b|c|d e
pl+ | = =]+ |+
po |+ | = | =]+ ] -

Note that the increase of a and the decrease of b are both unexplained by these witnesses.
Hence, neither app(inp_v(a)) nor app(inp_v(b)) can be dropped without losing consis-
tency, so that the repair at hand is subset-minimal. O

Example 2.5 shows that minimizing cardinality can miss subset-minimal repairs. In fact,
any cardinality-minimal repair is also subset-minimal, while the converse does not hold
in general. Regarding computational complexity, we have that cardinality-minimization
is usually accomplished with algorithms devised for problems in A% (see, e.g., [100]),
while algorithms usable for subset-minimization typically still handle ¥’ -hard problems
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(cf. [81, 28]). The different complexities of solving methods suggest that cardinality-
minimization is presumably more efficient in practice than subset-minimization. This is
also confirmed by our experiments, whose results based on cardinality-minimization are
presented below, while subset-minimization turned out to be too costly for an extensive
empirical investigation.

2.6 Prediction under Repairs

For large real-world biological networks and measurements, there can be plenty witness-
ing vertex and edge labelings after re-establishing consistency via repairs. To not get lost
in manifold scenarios, it is thus reasonable or even mandatory to focus on their common
consequences. We therefore present the identification of consequences shared by all con-
sistent vertex and edge labelings under minimal repairs as the ultimate application of our
method, and we call this task prediction. Due to the capability of repairing, our approach
enables prediction even if model and data are mutually inconsistent, which is often the
case in practice. Importantly, enumerating all consistent total labelings is unnecessary.
In fact, cautious reasoning [49], supported by ASP solver clasp [48], allows for comput-
ing the intersection of all (optimal) answer sets while investigating only linearly many of
them.

For prediction, an input program II is composed of an instance (cf. Figure 2.8), a def-
inition of admissible repair operations (rep_a, . . ., rep_v), the repair encoding in (2.16)—
(2.21), and the #minimize statement in (2.22) (or alternatively the subset-minimality test
in the appendix). Predicted signs for edges and vertices are then simply read off from
instances of predicates labelE and labelV in the intersection of all optimal answer sets
of 11, that is, answer sets comprising a minimum number of instances of predicate app.
Though we mainly target at prediction wrt mutually inconsistent model and data, we note
that prediction under consistency, where the unique minimal set of repair operations to
apply is empty, is merely a particular case of prediction under repairs.

2.7 Empirical Evaluation and Application

For assessing the feasibility of our approach, we performed various benchmarks includ-
ing artificially created and real biological datasets. We first evaluate our approach to
consistency checking and diagnosis on a parameterized suite of randomly generated in-
stances, aiming at structures similar to those found in biological applications. Then we
tested our approach on the real-world data of genetic regulations in yeast. For validating
our approach to repair, we used the regualatory network of Escherichia coli and confront
this model with datasets of corresponding experiments.

2.7.1 Checking Consistency

We first evaluate our approach to consistency checking on randomly generated instances,
aiming at structures similar to those found in biological applications. Instances are com-
posed of an influence graph, a complete labeling of its edges, and a partial labeling of
its vertices. Our random generator takes three parameters: (i) the number « of vertices
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claspD | claspD | claspD | cmodels dly gnt
« | Berkmin | VMTF | VSIDS

500 0.14 0.11 0.11 0.16 | 046 | 0.71
1000 0.41 0.25 0.25 0.35 192 | 3.34
1500 0.79 0.38 0.38 053 | 435| 7.50
2000 1.33 0.51 0.51 0.71 8.15 | 13.23
2500 2.10 0.66 0.66 0.89 | 13.51 | 21.88
3000 3.03 0.80 0.79 1.07 | 20.37 | 31.77
3500 3.22 0.93 0.92 1.15 | 21.54 | 34.39
4000 4.35 1.06 1.06 1.36 | 30.06 | 46.14

Table 2.2: Run-times for consistency checking with claspD, cmodels, dlv, and gnt.

in the influence graph, (ii) the average degree (3 of the graph, and (iii) the proportion
of observed variations for vertices. To generate an instance, we compute a random graph
with « vertices (the value of « varying from 500 to 4000) under the model by Erdés-
Rényi [36]. Each pair of vertices has equal probability to be connected via an edge,
whose label is chosen independently with probability 0.5 for both signs. We fix the av-
erage degree 3 to 2.5, which is considered to be a typical value for biological networks
[73]. Finally, |ya] vertices are chosen with uniform probability and assigned a label with
probability 0.5 for both signs. For each number « of vertices, we generated 50 instances
using five different values for v, viz., 0.01, 0.02, 0.033, 0.05, and 0.1. All instances are
available at [11].

We used gringo (2.0.0) [44] for combining the generated instances and the encoding
given in Section 2.3 into equivalent ground programs. For checking consistency by com-
puting an answer set (if it exists), we ran disjunctive ASP solvers claspD (1.1) [28] with
“Berkmin”, “VMTF”, and “VSIDS” heuristics, cmodels (3.75) [56] using zchaff, dlv
(BEN/Oct 11) [81], and gnt (2.1) [72]. All runs were performed on a Linux machine
equipped with an AMD Opteron 2 GHz processor and a memory limit of 2GB RAM.

Table 2.2 shows average run-times in seconds over 50 instances per number « of ver-
tices, including grounding times of gringo and solving times. We checked that grounding
times of gringo increase linearly with the number « of vertices, and they do not vary
significantly over ~. For all solvers, run-times also increase linearly in a.* For fixed o
values, we found two clusters of instances: consistent ones where total labelings were
easy to compute, and inconsistent ones where inconsistency was detected from preas-
signed labels. This tells us that the influence graphs generated as described above are
usually (too) easy to label consistently, and inconsistency only occurs if it is explicitly
introduced via fixed labels. However, such constellations are not unlikely in practice (cf.
Section 2.7.3), and isolating MICs from them, as done in the next subsection, turned out
to be hard for most solvers. Finally, greater values for v led to an increased proportion of
inconsistent instances, without making them much harder.

4Longer run-times of claspD with “Berkmin” in comparison to the other heuristics are due to a more expensive computation of
heuristic values in the absence of conflict information. Furthermore, the time needed for performing “Lookahead” slows down
dlv as well as gnt.
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gringo claspD claspD claspD
@ Berkmin VMTF VSIDS
50 0.24 1.16 (0) 0.65 (0) 0.97 (0)
75 0.55 | 39.11(1) 1.65 (0) 3.99 (0)
100 0.87 | 41.98 (1) 3.40 (0) 4.80 (0)
125 1.37 1547 (0) | 47.56 (1) 10.73 (0)
150 2.02 | 54.13(0) | 48.05(0) 15.89 (0)
175 277 | 3098 (0) | 116.37(2) | 23.07 (0)
200 3.82 | 42.81(0) | 52.28(1) | 24.03(0)
225 494 | 99.64(1) | 30.71(0) | 41.17(0)
250 5.98 | 194.29 (3) | 228.42(5) | 110.90 (1)
275 7.62 | 178.28 (2) | 193.03 (4) | 51.11 (0)
300 9.45 | 241.81 (2) | 307.15(7) | 124.31 (0)

Table 2.3: Run-times for grounding with gringo and solving with claspD.

2.7.2 Minimal Inconsistent Cores

We now investigate the problem of finding a MIC within the same setting as in the pre-
vious subsection. Because of the elevated size of ground instantiations and problem
difficulty, we varied the number « of vertices from 50 to 300, thus, using considerably
smaller influence graphs than before. We again use gringo for grounding, now taking the
encoding given in Section 2.4. As regards solving, we restrict our attention to claspD
because all three of the other solvers showed drastic performance declines.

Table 2.3 shows average run-times in seconds over 50 instances per number « of ver-
tices. Timeouts, indicated in parentheses, are taken as maximum time of 1800 seconds.
We observe a quadratic increase in grounding times of gringo, which is in line with the
fact that ground instantiations for our MIC encoding grow quadratically with the size
of influence graphs. In fact, the schematic rules in Section 2.4.3 give rise to « copies
of an influence graph. Considering solving times spent by claspD for finding one MIC
(if it exists), we observe that they are relatively stable, in the sense that they are tightly
correlated to grounding times. This regularity again confirms that, though it is random,
the applied generation pattern tends to produce rather uniform influence graphs. Finally,
we observed that unsatisfiable instances, i.e., consistent instances without any MIC, were
easier to solve than the ones admitting answer sets. We conjecture that this is because
consistent total labelings provide a disproof of inconsistency as encoded in Section 2.4.2.

As our experimental results demonstrate, computing MICs is computationally harder
than just checking consistency. This is not surprising because the related (yet simpler)
decision problem of verifying a MUC is DP-complete [25, 89] and thus more complex
than just deciding satisfiability. With our declarative technique, we spot the quadratic
space blow-up incurred by the MIC encoding in Section 2.4 as a bottleneck. However,
there are approaches aiming at a reduction of grounding efforts, and some of them have
been presented in Sections 2.3.5 and 2.4.5.

2.7.3 Biological Case Study

In the following, we present the results of applying our consistency checking and diag-
nosis approach to real-world data of genetic regulations in yeast. We tested the gene-
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Figure 2.9: Some MICs obtained by comparing the regulatory network of yeast with a genetic profile.

regulatory network of yeast provided in [60] against genetic profile data of snf2 knock-
outs [106] from the Saccharomyces Genome Database’. The regulatory network of yeast
contains 909 genetic or biochemical regulations, all of which have been established ex-
perimentally, among 491 genes.

Comparing the yeast regulatory network with the genetic profile of snf2, we found the
data to be inconsistent with the network, which was easily detected using the approach of
Section 2.3. Applying our diagnosis technique from Section 2.4, we obtained a total of 19
MICs. While computing the first MIC took less than a second using gringo and claspD
(regardless of the heuristic used), the computation of all MICs was considerably harder.
Using “VMTF” as search heuristic on top of the enumeration algorithm [47] inherited
from clasp [46], claspD had found all 19 MICs in about 30 seconds, while another 40
seconds were needed to decide that there is no further MIC. With “VSIDS”, finding the
19 MICs took about the same time as with “VMTEF”, but another 80 seconds were used
to verify that all MICs had been found. Finally, using “Berkmin” heuristic, 12 MICs had
been found before aborting after 30 minutes. The observation that search heuristics matter
tells us that investigations into the structure of biological problems and particular methods
to solve them efficiently can earn considerable benefits. Notably, by exploiting additional
background knowledge, the optimized encoding presented in Section 2.4.5 requires less
than two seconds (regardless of heuristics) for grounding and finding all 19 MICs. In fact,
its ground instantiation contains only 8481 atoms and 10843 rules, compared to 47260
atoms and 56522 rules with the basic encoding in Section 2.4. In addition to problem
size, also the difficulty drops dramatically: from 23345 conflicts down to 270 conflicts,
encountered with “VMTF” heuristic during search for all answer sets. Furthermore, we
note that the potential existence of multiple answer sets encompassing the same MIC did
not emerge on the yeast network and snf2 knock-out data. That is, we obtained 19 answer
sets, each one corresponding one-to-one to a MIC.

Six of the computed MICs are exemplarily shown in Figure 2.9. While the first three
of them are pretty obvious, we also identified more complex topologies. However, our
example demonstrates that the MICs obtained in practice are still small enough to be

5http://www.yeastgenome.org
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Figure 2.10: Subgraph obtained by connecting the six MICs given in Figure 2.9.

understood easily. For finding suitable corrections to the inconsistencies, it is often even
more helpful to display the connections between several overlapping MICs. Observe that
all six MICs in Figure 2.9 are related to gene ume6. Connecting them yields the subgraph
of the yeast regulatory network in Figure 2.10.

The most obvious problem in Figure 2.10 is that the observed increase of ume6 is
incompatible with its four targets. This suggests that either the observation on ume6 is
incorrect or that some regulations are missing or wrongly modeled. In the first hypothesis
though, one should note that the current model cannot explain a decrease of ume6: this
would imply an increase of sin3 and in turn an increase of rebl, but then there would
be no explanation left for the variation of Asc82 and rapl. So, in either case, our model
should be revised. This is not a great surprise: our literature-based network, although
very reliable, was presumably far from being complete.

Regarding the biological background, note that ume6 is a known regulator of sporula-
tion in yeast: in case of nutritional stress, yeast cells stop dividing and produce spores
by meiosis. These spores are reproductive structures better adapted to extreme condi-
tions. ume6 is known as a key inhibitor of early meiotic genes: upon entry in meiosis,
this inhibitory effect is released and the target genes are expressed. Notably, a knock-
out of ume6 causes the expression of meiotic genes during vegetative growth (hence its
name, Unscheduled Meiotic Expression) as well as almost complete failure of sporulation
[115]. ume6 seems to have activation capabilities as well, though in that case the effect
is believed to be indirect [18].

In the current view, ume6 switches from inhibitor to (indirect) activator at the beginning
of meiosis: Ume6p (the protein corresponding to the gene ume6) has a repressive effect
when it forms a complex with Sin3p (note that sin3 is in our network) and Rdp3p, which
is degraded upon entry in meiosis [86]. This molecular mechanism can be interpreted in
our model and one possible result is given in Figure 2.11. At least for negative targets, we
now have a plausible explanation: the real effector of the inhibition on Asf1, spol2, topl,
and ume® itself is the complex Ume6p-Sin3p, whose variation is unobserved but depends
on the variation of ume6 and sin3. The variation of the targets can be explained if the
protein complex decreases, which is in turn possible if sin3 decreases. Regretfully sin3
is not observed in our data, but we note that a decrease of this gene is fully compatible
with the rest of the network, that is, if we suppose a decrease of rebl. Now concerning
ino2, our network should be updated with more recent evidence: as reviewed in [18], ino2
has several additional regulators, such as opil and pahl (see Figure 2.11). The observed
variation of pahl is not useful to explain that of ino2, but opil is definitely a plausible
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Figure 2.11: Local correction of the network based on our diagnosis method and literature research.

candidate.

Here we illustrated one main usage of our diagnosis technique: identifying poorly mod-
eled regions of a regulatory network that are incompatible with a given data set. This is
definitely a key asset if one wants to build a large-scale regulatory database and check
its coherence with newly produced data on a regular basis. Given new data, our diagno-
sis method produces human-understandable representations of possible incompatibilities
with the current model, which serve as the basis for a targeted literature research. With
this data-driven approach, a network can then be improved with considerably less effort
than with a random traversal of publications, for a much more coherent result.

2.7.4 Repair

For validating our approach, we use the transcriptional network of Escherichia coli, ob-
tained from RegulonDB [39].

In the corresponding influence graph, the label of an edge depends on whether the
interaction was determined as activation, inhibition, dual, or complex in RegulonDB.
Overall, the influence graph consists of 5150 interactions between 1914 genes. We con-
front this model with datasets corresponding to the Exponential-Stationary growth shift
study in [16] and the Heatshock experiment in [1]. For each of them, the extracted data
yields about 850 significant variations (+ or —) of Escherichia coli genes. Since the data
is highly noisy, not surprisingly, it is inconsistent with the RegulonDB model. We gen-
erated data samples by randomly selecting 3%, 6%, 9%, 12%, or 15% of the whole data
(about 850 variations with either experiment). We use these samples for testing both
our repair modes as well as prediction (of omitted experimental data). All experiments
were run with grounder gringo (2.0.3) and solver clasp (1.2.1) on a Linux PC equipped
with AthMP+1900 processor and 4GB main memory, imposing a maximum time of 600
seconds per run. Below, we report runtime results for (cardinality-minimal) repair.

We first tested the feasibility of our repair modes on consistent as well as inconsistent
samples (depending on the random selection). Table 2.4 provides average runtimes and
numbers of timeouts in parentheses over 200 samples per percentage of selected measure-
ments; timeouts are included as 600s in average runtimes. We ran experiments admitting
the following repair operations and combinations thereof: flipping edge labels denoted
by e (flip_e), making vertices input denoted by i (inp_v), and flipping preassigned varia-

32



Exponential-Stationary growth shift

Repair 3% 6% 9% 12% 15%
e 6.58 (0)| 844 (0)| 11.60 (0)| 14.88 (0)| 26.20 (0)
i 2.18 (0)| 2.15 (0)| 221 (©O) 223 (O 221 (0
v 141 (0)| 140 (O0)| 140 (O 141 O 137 (0
e i 73.16 (6)[202.66 (23)[392.97 (87)|518.50(143)|574.85(179)
e v | 2853 (0)| 85.17 (0)|189.27 (12)|327.98 (33)|470.48 (88)
\ 209 (0)| 214 ()| 245 (O) 3.08 (0) 6.06 (0)
e v |133.84 (8)|391.60 (76)|538.93(151)|593.33(193)|600.00(200)

Heatshock

Repair 3% 6% 9% 12% 15%
e 25.54 (4)| 42776 (8)| 50.46 (5)| 69.23 (6)| 84.77 (6)
i 210 (0)| 213 () 213 () 205 () 2.08 (0)
v 1.41 (0)| 147 ()| 142 (O 137 (0) 139 (0)
e i 120.91(21) | 374.69 (91)|553.00(169) | 593.20(197) | 595.99(198)
e v | 67.92 (3)]|236.05 (31)]|465.92(107)|579.88(179)|596.17(197)
v 227 (0)| 494 (0)| 60.63 (8)[257.68 (56)|418.93(123)
e v [232.29(26) | 542.48(152)|593.88(195) | 600.00(200) | 600.00(200)

Table 2.4: Repair Times.

tions denoted by v (flip_v). Note that the two modes to make vertices input (globally or
locally) fall together here, and we used only the local repair operation in 1 while skipping
tests with the other, equivalent one. Moreover, we do not include results on the adding
edges repair (add_e), where the bottleneck is grounding since the potential addition of
arbitrary edges turns the influence graph into a huge clique at the encoding level. To
avoid this, edges that can possibly be added by repairs should be restricted to a (smaller)
set of reasonable ones, which requires biological knowledge, e.g., regulations known for
organisms related to the investigated one.

In view that clasp applies a branch-and-bound approach to search for a cardinality-
minimal repair, we observe that the average runtimes shown in Table 2.4 are directly
correlated to the number of admissible repair operations. The fewest repairs are admitted
with v, given that only about 25-130 observed variations are included in the samples
of varying percentage. All vertices of the influence graph can potentially be made input
with i, but when run in isolation or together with v, it still performs relatively well.
Finally, as signs are available for almost all edges of the influence graph, permitting to
flip each of them in e explains long runtimes and many timeouts obtained with it, in
particular, on its combinations with i. However, the tight correlation between number of
admitted repairs and runtime suggests that our method could significantly benefit from
the inclusion of biological knowledge to restrict scopes of repairs.

In addition, we tested our approach also by selecting the 100% of the samples (con-
taining all 850 observations). The test on the 100% of the samples were run on a faster
machine than the tests for the other samples, therefore these times only show the rela-
tion between the different repair modes. The results show a continuation of the trend.
The application of single repair modes e, i, v return within 10 minutes, the combina-
tion of repair modes always take longer than 10 minutes. Repairing the data by flip-
ping observation with v performs the best taking 0.6 seconds with minimal 40 repairs
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Exponential-Stationary growth shift

Repair 3% | 6% | 9% | 12% | 15%
e 13.27(0)[ 12.19(0)] 14.76(0)] 15.34 (0)] 25.90 (1)
i 6.18(0)| 5.26(0)| 4.77(0)| 4.60 (0)| 4.42 (0)

v | 4.6400)| 4.450) 4.390)| 4.40 (0)| 4.30 (0)
e 1 35.25(0)| 97.66(1)]293.80(3)|456.55 (3)|550.33 (1)
e v | 14350)] 26.17(0)| 90.17(3)|200.25(13) | 363.36(16)

iv| 6430)| 5750)| 627(0)] 6.69 (0) 8.61 (0)

e 1 v | 42.51(0)|248.30(1)|468.71(2)|579.58 (0) — (0
Heatshock
Repair 3% | 6% | 9% | 12% | 15%
e 25.77(0)| 37.18(0)| 29.09(0)| 36.23 (0)| 41.88 (0)
i 6.57(0)| 5.93(0)| 5.17(0)| 4.86 (0)| 4.54 (0)

v | 4.86(0)| 5.06(0)| 5.34(0)| 542 (0)| 5.52 (0)

e 1 85.47(0) | 293.28(1) | 524.19(3) | 591.81 (0)|594.74 (0)
e v | 23.32(0)|111.99(0)|338.95(0) | 545.56 (2)|591.23 (0)
i v | 6910) 6.630) 30.33(0)|176.14 (1)|371.95 (0)

e i v |101.82(1)|466.91(0)[585.64(0)|] — ()] — (0)

Table 2.5: Prediction Times.

on the Exponential-Stationary growth shift study and 0.5 seconds and 34 repairs on the
Heatshock experiment. Repairing the influence graph by making vertices input with i
performs second best with 1 second for 42 repairs on the Exponential-Stationary growth
shift study and 1 second for 94 repairs on the Heatshock experiment. The reparation
by flipping signs of the edges remains last with 27.3 second and also 42 repairs on the
Exponential-Stationary growth shift study. On the Heatshock experiment the runtime for
reparation by flipping edges exceeded 10 minutes.

2.7.5 Prediction under Repair

In the second step, done after computing the minimum number of repairs needed, we per-
formed prediction by computing the intersection of all answer sets comprising a cardinality-
minimal (and sometimes empty) repair. To this end, we used the cautious reasoning ca-
pacities of clasp (option ——caut ious) along with options ——opt-value and ——opt-all
for initializing the objective function with the minimum number of repairs and enumerat-
ing all optimal answer sets, respectively. Runtime results are presented in Table 2.5, using
the same notations for repair operations as in Section 2.7.4, but taking average runtimes
only over those of the 200 samples per percentage where a cardinality-minimal repair was
computed before the timeout (as the optimum is not known otherwise). We observe that
the runtimes for prediction are in line with the ones for computing a cardinality-minimal
repair, and maximum time is only rarely exceeded on the samples with known optimum.
This shows that prediction is successfully applicable if computing a cardinality-minimal
repair is feasible.

In what follows, we analyze quantity and quality of the predictions we obtained. To
this end, we determined the following numbers for each run: N vertices without variation
given in the sample, P newly predicted vertices (variation not given in the sample), V'
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Exponential-Stationary growth shift
Repair 3% 6% 9% 12% | 15%
e 15.00 | 18.51 | 20.93 | 22.79 | 23.94

i 15.00 | 18.51 | 20.93 | 22.79 | 23.93

v | 1490 | 18.37 | 20.86 | 22.73 | 23.77
e 1 14.92 | 18.61 | 20.55 | 21.96 | 22.80
e v | 1489 | 1833 | 21.07 | 22.52 | 23.74

i v | 14.89 | 18.33 | 20.79 | 22.59 | 23.66
e i v | 1458 | 19.00 | 20.29 | 21.13 | —

Heatshock
Repair 3% 6% 9% 12% 15%
e 15.47 | 19.54 | 21.87 | 23.17 | 24.78

i 1548 | 19.62 | 21.89 | 23.20 | 24.80
v | 15.32 | 19.59 | 21.37 | 22.13 | 23.79

e i 15.37 | 19.62 | 22.83 | 23.44 | 24.05
e v | 15.33 | 19.21 | 21.00 | 22.65 | 24.90
i v | 1541 | 1947 | 21.36 | 21.81 | 23.55

e i v | 15.01 | 19.11 | 22.52 | — —

Table 2.6: Prediction Rate.

newly predicted vertices having the same variation as in the whole dataset, and W newly
predicted vertices having the opposite variation in the whole dataset. Based on this, the
prediction rate is obtained via the formula (P*100)/N, and the prediction accuracy is
given by (V*100)/(V+W). That is, the prediction rate reflects the amount of newly
predicted vertices, while the prediction accuracy measures in how many cases variations
available in the whole dataset (but not in the sample) have been recovered. Average
prediction rates over samples where both repair and prediction terminated are shown in
Table 2.6, the accuracies of the computed predictions are shown in Table 2.7. Note that
some averages result from few instances only (many timeouts reported in Table 2.5); such
results should be interpreted with care.

We first notice that in both experiments, Exponential-Stationary growth shift and Heat-
shock, the prediction rates are significant, varying from about 15 to 24 percent. As it
can be expected, prediction rates increase with the size of samples, in particular, for the
transition from 3% to 6% of preassigned vertices. However, while the size of the sam-
ples increase linearly, the prediction rates do not. This may mean that the prediction rate
may reach a plateau related to the topology of the network as it was also observed in
[112]. Interestingly, we do not observe any significant decrease of prediction rates when
admitting multiple repair operations simultaneously. This suggests that predicted varia-
tions are rather insensitive to the repair operations used for re-establishing consistency,
given that the application of repairs is governed by cardinality-minimality. Comparing
individual operations e, i, and v with each other, we observe that v (flipping variations)
yields a slightly lower prediction rate than the others, in particular, on the larger samples
of Heatshock.

As regards prediction accuracies, they are consistently higher than 90 percent, mean-
ing that predicted variations and experimental observations correspond in most cases. As
with prediction rates, accuracies increase with sample size, while the choice of admissi-
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Exponential-Stationary growth shift
Repair 3% 6% 9% 12% | 15%
e 90.93 | 91.98 | 92.42 | 92.70 | 92.81

i 90.93 | 91.98 | 92.42 | 92.70 | 92.81

v | 90.99 | 92.05 | 92.44 | 92.73 | 92.89
e 1 91.09 | 91.90 | 92.57 | 93.03 | 93.19
e v |90.99 | 9203 | 9250 | 92.82 | 92.94

i v |90.99 | 92.03 | 9242 | 92.71 | 92.87
e i v |91.35]9229 | 9252 | 93.04 | —

Heatshock
Repair 3% 6% 9% 12% 15%
e 91.87 | 92.93 | 92.92 | 92.83 | 92.71

i 91.93 | 92.90 | 92.94 | 92.87 | 92.76
v | 92.29 | 93.27 | 93.88 | 94.27 | 94.36
e i 91.99 | 92.49 | 91.16 | 93.62 | 94.44
e v | 92.30 | 93.37 | 93.66 | 94.36 | 94.35
i v 9224|9334 | 93.90 | 94.26 | 94.38

e i v |9226|93.04 | 91.78 — —

Table 2.7: Prediction Accuracy.

ble repair operations does not exhibit much impact. This indicates that filtering repairs by
cardinality-minimality makes the qualitative results largely independent of repair types,
at least on the datasets we consider here. Also note that edge labels (activation or inhibi-
tion) are well-curated in RegulonDB, which both enables and explains the obtained high
accuracies. Despite of this, we still observe that individual operation v yields higher accu-
racy than e and 1. Interestingly, this gap is greatest for the larger samples of Heatshock,
where v also has a lower prediction rate. This demonstrates that prediction quantity and
quality can diverge, and an appropriate compromise certainly depends on the application
at hand.

The observation that repair operation v yields better prediction accuracy than e (flip-
ping edge labels) or i (making vertices input), particularly with Heatshock, suggests
that repairing the data is more appropriate than repairing the model wrt the datasets we
consider.

Finally, we compared prediction accuracies to the ones obtained when using a differ-
ent kind of repair method: iteratively removing inconsistent subnetworks (cf. [54]) until
the remaining network is found to be consistent. Repair results, that is, networks, ob-
tained in such a way depend on the order of removing inconsistent subnetworks, while
the technique presented here is fully declarative. The alternative repair method achieved
prediction accuracies between 65 and 73 percent on Exponential-Stationary growth shift
and from 76 to 80 percent on Heatshock data. The higher accuracies of our declarative
technique show that a firm repair concept pays off in prediction quality.
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2.8 Discussion

We have provided an approach based on ASP to investigate the consistency between
experimental profile and influence graphs. In case of inconsistency, the concept of a MIC
can be exploited for identifying concise explanations, pointing to unreliable data and/or
missing reactions.

Further, we have introduced repair-based reasoning techniques for computing minimal
modifications of biological networks and experimental profiles to make them mutually
consistent. Finally, we provided an approach to predict unobserved data even in case
of inconsistency under the Sign Consistency Model. We evaluated our approach on real
biological examples and showed that predictions on the basis of minimal repairs were,
for one, feasible and, for another, highly accurate. This is of practical relevance because
genetic profiles from DNA microarrays tend to be noisy and available biological networks
far from being complete.

Given that the framework is configurable, it can be adjusted to varying tasks that occur
in practice. As illustrated in Section 2.7, it enables a meaningful analysis of partially
unreliable experimental data, and reasonable conclusions from it can be drawn automati-
cally. Our repair method could be exploited to indicate and correct spurious parts of such
generated models.
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3 Metabolic Network Expansion

In this chapter, we investigate the reconstruction of metabolic networks. The reconstruc-
tion of a metabolic network for an organism is an iterative process that usually starts
with the genome sequence and the identifcation of the protein-coding genes. The cor-
relation of genome and metabolism is then done by searching gene databases, such as
KEGG (http://www.genome. jp/kegg) and GeneDB (http://www.genedb.
orq), for particular genes by inputting enzyme or protein names. The result is a first
draft network that usually suffers from substantial incompleteness with lots of miss-
ing reactions. Usually the draft network is further refined by confronting it with gas
chromatography—mass spectrometry (GC-MS) data from experiments. These metabo-
lite profiles give hints to the biosynthetic capabilities of the metabolic networks, unfort-
nately these measured datasets are far from complete and often contain unreliable data.
Therefore, many networks are only partially defined and only few metabolites can be
identified without ambiguity. Moreover, traditional formal approaches to biosynthesis
(cf. [95, 78, 13, 97, 116]) require kinetic information, which is rarely available.

We address this problem and propose a qualitative approach based on ASP. This ap-
proach benefits from the intrinsic incompleteness-tolerating capacities of ASP and allows
us to take advantage of its rich modelling language and highly efficient implementations.
Our approach is endorsed by recent complexity results, showing that the reconstruction
of metabolic networks and related problems are NP-hard [87, 88].

Our approach builds upon a formal method for analyzing large-scale metabolic net-
works developed in [31, 65]. The basic idea is that a reaction operates only if its reactants
are either available as nutrients or can be provided by other metabolic reactions. Starting
from some nutrients, referred to as seeds, this allows for expanding a metabolic network
by successively adding operable reactions and their products. The set of metabolites in
the resulting network is called the scope of the seeds and represents all metabolites that
can principally be synthesized from the seeds by the analyzed metabolic network.

Mapping the principles of this approach into ASP allows us to address various bio-
logically relevant problems. A primary problem deals with the completion of genome-
scale metabolic networks. When building a metabolic network, as for the recently se-
quenced green alga Chlamydomonas reinhardtii (nttp://www.goforsys.de), the
initial core draft is done by appeal to genomic information. Then, experimental data,
in particular, measured metabolites, are taken to define the functionality of the overall
network. The above methodology can then be used to check whether a drafted network
provides the synthesis routes to comply with the required functionality. If this fails, the
draft network can be completed by importing reactions from metabolic reference network
stemming from other organisms until the obtained network provides the measured func-
tionality (cf. [20]). Another important problem concerns the determination of seed com-
pounds needed for the synthesis of certain other compounds. As demonstrated in [66],
solving this problem is important for indicating (minimal) nutritional requirements for
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sustaining maintenance or growth of an organism.

Both problems have a combinatorial nature and thus give rise to a multitude of so-
lutions. We address this problem by taking advantage of the various reasoning modes
provided by ASP. On the one hand, we use ASPs optimization techniques for finding
cardinality or subset minimal solutions, respectively. On the other hand, we exploit con-
sequence aggregation for finding metabolites common to all (optimal) solutions or at least
one of them, respectively. Moreover, the aforementioned problems are often subject to
additional constraint, aiming at the avoidance of side products or producing target prod-
ucts by staying clear from certain seeds, respectively. Finally, the elaboration tolerance
of ASP greatly supports the process of drafting metabolic networks involving continuous
validation and increasing functionalities stemming from measured data.

To begin with, we give a brief introduction into the biological background of metabolism,
enzymes and chemical reactions in Section 3.1. Section 3.2 gives a mathematical formal
representation of metabolic reaction networks and defines the notion of a scope as well
as completion. In Section 3.3, we develop an ASP formulation for solving the metabolic
network completion problem. Section 3.4 extends this approach for solving the inverse
scope problem. In Section 3.5, we show results of our empirical evaluation of our ap-
proach on the metabolic networks of Escherichia coli. Finally, we conclude this chapter
with a discussion in Section 3.6.

3.1 Biological Background

Metabolism is the entirety of chemical processes that happen in a living oganism, from
the uptake and transport, to the chemical transformation and disposal of substances. The
metabolism transforms chemicals in order to build structures and maintain vital function-
alities of the organism. Metabolism can be divided into two categories, catabolism which
breaks down chemical components to harvest energy, and anabolism which uses energy
to construct vital structures of the organism. The metabolism determines which sub-
stances are nutritious for an organism, and which are poisonous. Metabolic reactions that
constitute a specific biological function or process are grouped into metabolic pathways.
Figure 3.1 shows the example of the Glycolysis pathway.

An important role in the metabolism play the enzymes, they are special proteins that
catalyse chemical reactions that require energy and would not occure by themselves. En-
zymes allow the regulation of the metabolism and to adjust to changes in the environment.
The synthesis of enzymes are mostly regulated on the genome level here is the connec-
tion between genetic regulation and metabolic responses. Therefore, by identifying pro-
tein coding sequences in the genome of an organism, one can infer possible reactions
of its metabolism. Only few metabolites can be measured directly through methods like
GC-MS, and kinetic details like reactions speeds are rarely known. This is why we need
intelligent methods to fill the gaps in our knowledge on metabolism.

3.2 Mathematical Formalism

A common way to reason about the metabolism of an organism is in terms of a metabolic
network. Metabolic networks are composed of a set of chemical reactions, they lack ki-
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Figure 3.1: Glycolysis. A typical illustration of a metabolic pathway.

netic information like reaction speed, and are often simplified such that information on
ubiquitous chemicals, co-factors and catalysing enzymes have been removed. The chemi-
cal reactions are directed such that one set of metabolites called reactants are transformed
into another set of metabolites, the products of the reaction. Reversible reactions are usu-
ally represented by two reactions with opposite directions. Following [88], metabolic
networks are commonly represented as a directed bipartite graph.

Definition 3.1 (Metabolic Network) A metabolic network is a directed bipartite G =
(RU M, E), where R and M are sets of nodes standing for reactions and metabolites,
respectively.

Given such a metabolic network G, we sometimes refer to its components by R(G),
M(G), and E(G). Whenever (m,r) € E form € M and r € R, the metabolite m is
called a reactant of reaction r; for (r,m) € E, metabolite m is called a product of r.
More formally, for (R U M, E') and r € R define reac(r) = {m € M | (m,r) € E} and
prod(r) ={m e M | (r,m) € E}.

The biosynthetic capabilities of the underlying metabolism are approximated by the
scope. The concept of a scope can be expressed in terms of reachability. Given a
metabolic network (RUM, E') and a set M’ C M of seed metabolites, a reaction r € R is
reachable from M’ if reac(r) C M’, that is, if all its reactants are reachable. Moreover,
a metabolite m € M is reachable from M’, either if m € M’ or if m € prod(r) for some
reaction r € R being reachable from M’'. Therefore, we can define the scope of a set of
seed compounds as follows.

Definition 3.2 (Scope) Given a metabolic network (R U M, E) and a set M' C M of
seed metabolites, the scope of M', written ¥(guns,py(M') or simply ¥(M'), is the set of
all metabolite nodes reachable from M.

Figure 3.2 illustrates the scope of a metabolic network given a set of seed metabolites.
Note that the scope of a set of metabolites can be computed in polynomial time.

In the metabolic network expansion, we are given a metabolic network along with two
sets of metabolites (seeds and target), and a reference network. The goal is to extend
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Figure 3.2: Given the seed metabolites m1, m2 and m12, the scope of this network is {m1l, m2, m3, m4,
m5, m6, m12, m13}.

the draft network with reactions from the reference network such that all targets metabo-
lites can be reached from the seeds. Given the definition of scope, we can render more
precisely the aforementioned biological problem.

Definition 3.3 (Completion) Given a metabolic network (RU M, E) along with two sets
S, T C M of (seed and target) metabolites, and a reference network (R U M', E'). A
completion is a set of reactions R C R'\ R such that T C ¥ (S) where

G = (RUR")YU(MuUM"),EUE"),
M" = {me M |reR" mée reac(r)Uprod(r)}, and
E" = {(m,r)€ E'|re R" m € reac(r)} U{(r,m) € E' | r € R",m € prod(r)} .

Two optimization variants of this problem are obtained by finding cardinality or subset
minimal sets of reactions. Further refinements may also optimize on the distance between
seeds and targets or minimize forbidden side products.

Example 3.1 (Completion) Consider the metabolic network G4 = (RUM, E) as shown
in Figure 3.2, a set S = {ml,m2,ml12} of seeds, a set T = {m10,mb} of target
metabolites. The scope T C Y, (S) = {ml, m2, m3, m4, mb, m6, m13} contains the
target md but not the target m10.

Given the reference network G, = (R'U M', E") where

R' = {r7,r8,1r9,r10 },
M = {ml,m5 m7,m8 ml10,m12,m13,m15 } and
E" = {(m1,r10),(r10,m7), (r10,m8), (m13,r7), (r7,m5),
(m12,78), (r8,m15), (m15,79), (r9, m10) }.
There exist 2 subset minimal completions R} = {r10} and R = {r8,1r9} such that
all targets are in the scope of the expanded network. The completions ar shown in Fig-

ure 3.3. The reaction 17 is in no minimal completion as it does not expand the scope of
the network, and completions R is the only cardinality minimal completion.
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Figure 3.3: Given the seed metabolites m1, m2 and m12, the completions {r10} and {r8, r9} can repair the
production pathway for target m10.

3.3 Metabolic network completion

We now address how to solve the metabolic network completion problem by means of
ASP. Given a metabolic draft network, sets of seed and target metabolites, and a reference
network, we compute minimal completions for the draft network, that restore its capa-
bility to produce the target metabolites from the given seeds. We next provide a logic
program such that each of its answer sets matches a minimal completion of the metabolic
network. The logic program is composed of three parts, described in the following sub-
sections.

3.3.1 Problem Instance

We now explain how we represent a metabolic network as well as seed and target metabo-
lites as a set of ground facts. A complete instance of a metabolic network completion
problem consists of a metabolic draft network GG; along with a set S of seeds, a set 7" of
targets, and a reference network G

Given a metabolic network G,, = (R U M, E) where n is the name of the network, we
introduce for each reaction r € R a fact reaction(r, n), for each reactant m = reac(r) an
fact reactant(m, r), and for each product p = prod(r) a fact product(p, r). If the network
is our current draft network we also introduce the fact draft(n) For each seed metabolite
m € S we introduce a fact seed(m), and for each target m € T a fact target(m) respec-
tively. In the following, we let 7(Gg4, G-, T, S) denote the set of facts representing the
problem instance induced by metabolic networks G4, G, seeds .S and targets 7.

Example 3.2 The metabolic network problem from Example 3.1, which is illustrated in
Figure 3.3 consitute the following logic programming instance 7(G,,, G, T, S).
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draft(d).

reaction(rl, d). reaction(r2,d). reaction(r3, d). reaction(r4, d). reaction(r5, d).
reaction(r6, d).

reactant(m2,rl). reactant(m7,r2). reactant(m8,r2). reactant(m3,r3). reactant(m4,r3).
reactant(mb6,r4).  reactant(m9,r4). reactant(m9,r5). reactant(ml2,r6).

product(m4, rl).  product(m3,rl).  product(m9,72). product(m5,73).  product(m6,r3).

(G, G T, S) = product(m10,r4). product(m10,r5). product(ml1l,r5). product(m13,r6).

reaction(r7,r). reaction(r8,r). reaction(r9,1). reaction(r10, )
reactant(m13,r7). reactant(ml12,r8). reactant(ml15,r9). reactant(ml,r10).
product(mb,r7).  product(m15,r8). product(m10,79). product(m7,710). product(m8,r10).

seed(ml). seed(m?2). seed(m12).

target(m5). target(m10).

3.3.2 Scope and Potential Scope

The scope of the seed metabolites in the draft network GG; can be determined by the
following rules.

dscope(M) «— seed(M).
dscope(M) <« product(M, R), reaction(R, N),draft(N), (3.1)
dscope(M’) : reactant(M', R).

The first rule declares all seed metabolites M € S as producible. The second rule defines
recursively that a product M of a reaction R is producible, whenever all reactants M’
of R are available. Together with the encoding of draft network GG; and seeds S as
described in Section 3.3.1, the set of rules in (3.1) results in a single answer set X such
that dscope(m) € X iff m € 3¢, (S) form € M(Gy).

While drafting a metabolic network of an organism biologists are regularly confronted
with experiments that show that a certain metabolite can be measured, although it is not
producible by the current draft network. To this end, they incorporate metabolic reactions
known from metabolic networks of other organisms. In analogy to the rules in (3.1),
the (potential) scope of the seed metabolites in the draft network G,; augmented by the
reference network (G, can be determined as follows.

pscope(M) «— seed(M).
pscope(M) <« product(M, R), reaction(R, N), (3.2)
pscope(M') : reactant(M', R).

Note that dropping the qualification draft(N') from (3.1) makes us use all available reac-
tions. As before, given the logic encoding of the problem instance, the set of rules in (3.2)
induces a single answer set X such that pscope(m) € X iff m € X¢ ¢, (S) form € M
where G4 U G,. stands for the pairwise union of GG; and G,.

While the scope of the draft network in (3.1) gives a lower limit on the metabolites
producible from the seeds by the draft network, the potential scope obtained from the
augmented network in (3.2) constitutes an upper limit. Note that targets outside the po-
tential scope cannot be explained.
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3.3.3 Metabolic Network Completion.

The goal of metabolic network completion is to extend the draft network with reactions
from the reference network, so that the target metabolites can be synthesized by the aug-
mented network from the seeds. The reactions of interest belong to the reference network
but not the draft network. The following choice rule captures all candidate reactions.

{xreaction(R) : reaction(R, N) : not draft(N)}. (3.3)

The condition reaction(R, N) : not draft(\N) guarantees that all chosen reactions belong
to R(G,) \ R(G4). In fact, the instance encoding from Section 3.3.1 and the choice rule
in (3.3) give a set of answer sets being in a one-to-one correspondence to the subsets of
R(G,) \ R(Ga).

The (extended) scope of the seed metabolites in the draft network GG, extended by
reactions from G, is defined as follows.

xscope(M) «— seed(M).
xscope(M) «— product(M, R), reaction(R, N), draft(N),

xscope(M') : reactant(M', R). (3.4)
xscope(M) «— product(M, R), xreaction(R),

xscope(M') : reactant(M', R).

Finally, we have to make sure that an extended scope is able to produce all target metabo-
lites. This is addressed by the following integrity constraint. !

— target(M), not xscope(M). (3.5)

Given the above rules, each of its answer set corresponds to a completion of the draft
network and vice versa.

Theorem 3.1 Let G, and G, be metabolic networks and let S and T be sets of metabo-
lites.

If X is an answer set of logic program® 7(Gg4, G, S, T) U {(3.3), (3.4), (3.5)}, then
{r | xreaction(r) € X} is a completion of G4 from G, wrt (S, T') and vice versa.

3.3.4 Refined Metabolic Network Completion.

Although the above encoding is formally adequate, it suffers from too many uninteresting
completions that makes it fail to scale on large metabolic networks comprising several
thousand metabolites. We address this problem by some refinements reducing the set of
candidate reactions.

At first, we restrict the choice in (3.3) to “interesting” reactions.

— xreaction(R), not ireaction(R). (3.6)

The qualification expressed by ireaction( R) requires that a reaction of interest must lead

!In practice, this constraint is extended by pscope( M) to ignore non-producible targets.
2Recall that a rule with variables stands for the set of all its ground instantiations.
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to some target metabolites.

ireaction(R) «— interesting(M),
product(M, R), reaction(R, N).

interesting(M) «— target(M ), not dscope(M). 3.7)
interesting(M) <« reactant(M, R), ireaction(R),
not dscope(M).

With the first rule we declare a reaction as interesting if it produces interesting metabo-
lites. The second rule defines all target metabolites that cannot be produced by the draft
network as interesting, and the third rule states that metabolites needed by interesting
reactions and not producible by the draft network are interesting. This concept provides a
significant reduction of the set of candidate reactions in view of the given target metabo-
lites.

Second, we further restrict the choice in (3.3) to “operable” reactions.

— xreaction(R), not oreaction(R).
oreaction(R) <« xscope(M) : reactant(M, R), (3.8)
reaction(R, N), not draft(N).

The integrity constraint enforces that each extending reaction is operable, that is, satisfies
oreaction(R). The following rule defines a (candidate) reaction as operable, if all its
reactants are producible by the current network extension.

The next result shows that the above refinements preserve soundness.

Proposition 3.1 Let G, and G, be metabolic networks and let S and T be sets of metabo-
lites.

If X is an answer set of T(G4, G, S, T)U{(3.1),(3.3), (3.4), (3.5), (3.6), (3.7), (3.8) },
then
{r | xreaction(r) € X} is a completion of G, from G, wrt (S,T).

A further natural way to reduce the number of solutions is to concentrate on network
completions containing the fewest number of reactions. In ASP, this can be accomplished
by the following minimize statement.

minimize {xreaction(R) : ireaction(R) : not reaction(R, N)}. (3.9)

Interestingly, our refinements are satisfied by such minimal completions, so that we get a
soundness and completeness result under optimization.

Proposition 3.2 Let G, and G, be metabolic networks and let S and T’ be sets of metabo-
lites.

If X is an answer set of T(Gy, G, S, T)U{(3.1), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) }U
{(3.9)}, then {r | xreaction(r) € X} is a minimum completion of G from G, wrt (S, T)
and vice versa.

Sometimes reactions can be associated with confidence levels, for instance, obtained
from the proximity of their host organism to the organism addressed by the draft network.
This allows us to prefer among the minimum completions those composed of reactions
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with higher confidence levels; this is accomplished by adding the following statement.

mazximize{xreaction(R) = L:ireaction(R): not reaction(R, N ): confidence(R, L)}.

3.3.5 Reasoning Modes.

Given the above ensemble of rules, the reasoning modes of ASP solvers allow us to an-
swer a variety of additional biologically relevant questions. What target metabolites are
producible by the draft network? What new metabolites can be produced by adding reac-
tions from other pathways? What is the minimal number of reactions that must be added
to explain a target metabolite? What are the minimum or minimal extended scopes?
Which reactions belong to all extended scopes, or even all minimum extended scopes?
The latter are accomplished by a combination of optimization and cautious reasoning.
We return to these question in Section 3.5 and show how they are realized. The next
section shows how certain seeds or side-products can either be avoided or minimized.

3.4 Inverse Scope Problem

In this section, we address a problem similar to metabolic network completion, the inverse
scope problem. In the inverse scope problem, a metabolic network is given and a the
goal is to determine nutrition sets (seed metabolites) such that a set of desired (target)
metabolites can be produced.

Definition 3.4 (Nutrition Set) Given a metabolic network (R U M, E) along with a set
T C M of target metabolites, a nutrition set is a set of metabolites S C M such that

T C Y(rum,e)(S)

Again, two optimization variants of this problem are aiming at finding a cardinality or
subset minimal solution.

Example 3.3 Consider the metabolic network G = (R U M, E) as shown in Figure 3.4
and a set T' = {m10, mb} of target metabolites. There exist 4 subset minimal nutrition
sets, Sy = {m12}, Sy = {m11,m13}, S3 = {m1,m9, m13}, and Sy = {m7,m9, m13},
with Sy being the only cardinality minimal nutrition set.

Furthermore, two variations of the inverse scope problem can be distinguished [88].
The first variant restricts the domain of the available seed metabolites. In addition to
(RUM, E)and T C M, we are given a set of (forbidden) metabolites F* C M. Then, the
goal is to find a set of (seed) metabolites S C (M \ F') such that 7" C ¥(5). Apart from
optimizing the required seed metabolites, one may also minimize undesired metabolites
rather then excluding them. The second variant adds an additional constraint on the
avoidance of side products. In addition to (R U M, E) and T, F C M, we are given
another set of (forbidden) metabolites / C M. Then, the goal is to find a set of (seed)
metabolites S C (M \ F) such that T C %(S) and 3(S) N E = (. As above, the
optimization variants can also take side products into account.

We next provide a logic program such that each of its answer sets matches a minimal
nutrition set of the metabolic network for the given target metabolites.
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Figure 3.4: Given the target metabolites m10 and m35, the minimal nutrition sets are {m12},{m11,m13},
{m1,m9,m13},{m7,m9,m13}.

3.4.1 Basic Setting

An instance of an inverse scope problem consists of a metabolic draft network G, along
with a set ' of target metabolites. Reactions, targets, and seeds are represented as shown
in Section 3.3.1. In the following, we let 7(G4, T') denote the set of facts representing
the problem instance. By appeal to the encoding of the basic scope in (3.1), we can then
express our task similar to the completion problem by exchanging the roles of reactions
and seed metabolites.

{seed(M) : not target(M), reactant(M, R)}. (3.10)
— target(M), not pscope(M). (3.11)

Similar to (3.3), the choice construct in (3.10) captures the seed candidates, while the
integrity constraint in (3.11) together with the rules in (3.2) makes sure that all target
metabolites can by synthesized from the seeds chosen in (3.10).

The next proposition shows that our encoding is sound and complete.

Proposition 3.3 Let GG, be a metabolic network and let S and T be sets of metabolites.
If X is an answer set of logic program 7(G4,T) U {(3.1), (3.10), (3.11) }, then T C
Y({m | seed(m) € X}) and vice versa.

3.4.2 Refined Setting

As above, some refinements lend themselves for reducing the putative seed metabolites.
— seed(M), not imetabolite(M). (3.12)
A metabolite of interest, viz imetabolite( M), must lead to at least one target metabolite.

imetabolite(M) «— target(M).
imetabolite(M) <« reactant(M, R), ireaction(R). (3.13)
ireaction(R) <« imetabolite(M), product(M, R), reaction(R, N).

The first rule defines target metabolites as interesting. The second one extends this to
metabolites being reactants of interesting reactions. Similar to (3.7), the last rule states
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that interesting reactions are those that produce interesting metabolites.

Although the last refinement eliminates (uninteresting) solutions, it preserves minimum
ones. Hence, cardinality minimum solutions to the inverse seed problem are obtained by
simply adding the following optimization statement.

minimize{seed(M)}.

3.4.3 Avoiding Side or Seed Metabolites

The elaboration of biosynthetic capacities is often subject to further restrictions, for in-
stance, avoiding seed metabolites or certain side products. This has led to the definition
of the two variants of the inverse scope problem defined in Section 3.4.

Both problems are easily addressed in ASP, once a metabolite, m, is declared as being
forbidden, viz. forbidden(m):

— seed(M), forbidden(M).
— pscope(M), forbidden(M ).

While the first constraint eliminates forbidden metabolites from the seeds, the second
rules out unwanted side products.

The complete exclusion of certain metabolites is sometimes to restrictive. To this end,
one may replace one or both of the previous integrity constraint by appropriate minimiza-
tion statements:

minimize{seed(M) : forbidden(M)}.
minimize{pscope(M) : forbidden(M)}.

Recall that the order of the two statements determines their precedence.

3.4.4 Reasoning Modes

The inverse scope problem usually leads to numerous solutions. Cautious reasoning al-
lows us to compute the ultimately essential seeds belonging to all solutions. Also, brave
reasoning is of interest because often solutions are similar, so that the union of all seeds in
a solution form a pool of potentially relevant nutrients. Finally, in view of the numerous,
often unrelated combinatorial sources, an important role is played by projective solution
enumeration [50] for eliminating redundant solutions.

3.5 Empirical Evaluation

For validating our approach, we investigate the metabolic network of Escherichia coli
(E.coli). This choice is motivated by the fact that E.coli is a well studied organism, whose
metabolic network is of moderate size, consisting of 3645 reactions and 1556 metabolites.
Our experiments consider furthermore 94 seed metabolites and 28 target metabolites. The
targets and seeds were chosen by our biological partners in view of the fact that E.coli is
able to grow when glucose is the only carbon source. Hence, its metabolic network must
be able to synthesize all necessary precursors for high-level processes, from glucose and
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inorganic material [19]. That is why the targets contain all 20 amino acids, the nucleotide
phosphates ATP, CTP, GTP and UTP as well as the deoxy forms dATP, dGTP, dUTP and
dTTP; and the seeds are only glucose and inorganic metabolites. In fact, all considered
targets could be produced by the original E.coli network. This setup allows us to control
and vary our experiments by producing draft networks through eliminating reactions from
E.coli’s original network.

All experiments® were run with ASP grounder gringo (2.0.2) and ASP solver clasp
(1.2.0) on a Linux PC with a Core2DuoE6400 processor and 2GB memory. The compu-
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tation time was limited to 600 seconds, timeouts are shown throughout as “-”.

3.5.1 Metabolic network completion

For our experiments on network completion, biologist provided us with draft networks.
The draft networks have been created with biological background knowledge, by remov-
ing 50, 100 and 200 reactions from the original E.coli network. Also, derived reactions
have been removed by the biologists. This means, for example, that for reversible reac-
tions also the inverse reactions were removed, and for reactions that are generalizations,
all subsumed special cases were removed as well. The resulting networks failed to pro-
duce 7, 10, and 20 targets, respectively. As reference network, we have chosen the entire
MetaCyc* database containing 13882 reactions. This set of reactions spans the search
space specified in (3.3) for metabolic network completion.

In the first set of experiments, we proceed in two steps. First, we compute for each
draft network and each target, the minimum number of reactions that need to be added to
complete the network. Then, we compute all solutions satisfying this optimality criterion.
In fact, in view of the large set of candidate reactions in the reference network, this
approach turned out to be superior to a single step approach, enumerating all optimal
solution through clasp’s branch and bound algorithm. Rather, we invoke clasp with the
option ——restart-on-model that restarts after each minimum solution. This makes
clasp converge much faster to an optimum solution. Once this is found, clasp is invoked
again for enumerating all solutions satisfying the optimality criterion.

Table 3.1 summarizes our first set of experiments. The columns headed by E.coli-50,
E.coli-100, and E.coli-200, respectively, provide results obtained on the aforementioned
draft networks obtained by removing 50, 100 and 200, respectively, reactions from the
original E.coli network. The first column identifies the chosen target metabolite. Then,
for each draft network, the columns labeled ¢,,; show the time in seconds for comput-
ing the minimum number of reactions that need to be added to produce the target. The
columns labeled opt provide the minimum number of reactions. The columns ¢,; show
the time in seconds for computing all optimal solutions and the column #opt gives the
number of optimal solutions.

For targets that could not be produced by the draft network, the results are either shown
in boldface or are timeouts. For target metabolites whose production pathways are not
disturbed, the computation time is insignificant. We observe six timeouts, while search-
ing for an optimal completion on the E.coli-50 network. These six target metabolites
could not be produced by the draft network in general. Interestingly, those metabolites

3Instances and encodings are available at: http://www.cs.uni-potsdam.de/bioasp
“http://metacyc.org
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E.coli-50 E.coli-100 E.coli-200
T topt | Opt ta | #opt topt | Opt ta | #opt topt | opt ta | #opt
1 0.14 0| 0.17 1 0.19 0| 0.16 1 || 368.72 1 2.17 7
2 0.18 0| 0.17 1 0.18 0| 0.16 1 || 368.52 1 2.22 7
3 0.16 0| 0.16 1 0.17 0| 0.18 1 || 195.34 7 | 304.35 | 135
4 0.20 0| 0.17 1 0.21 0] 0.18 1 42.89 3| 20.40 35
5 0.18 0| O0.16 1 0.18 0| 0.14 1 0.15 0 0.15 1
6 0.16 0| 0.16 1| 159.07 2| 253 6 || 226.41 7 - -
7 0.16 0| 0.18 1 0.21 0| 0.16 1 - - - -
8 0.15 0| 0.14 1 0.17 0] 0.15 1 46.39 3| 29.59 35
9 0.16 0| 0.19 1 0.14 0] 0.15 1 0.15 0 0.14 1
10 0.18 0| 0.17 1 0.14 0| 0.16 1 0.14 0 0.17 1
11 0.18 0| 0.18 1 0.15 0| 0.15 1 26.58 1 2.18 7
12 0.14 0| O0.16 1 0.15 0| 0.16 1 - - - -
13 - - - - || 105.15 4 | 12.35 1 - - - -
14 0.17 0| 0.18 1 0.15 0| 0.17 1 0.16 0 0.14 1
15 0.13 0| 0.19 1 0.16 0] 0.17 1 0.18 0 0.16 1
16 0.15 0| 0.16 1 0.16 0| 0.18 1| 367.10 1 2.20 7
17 0.20 0| 0.16 1 - - - - - - - -
18 - - - - - - - - - - - -
19 - - - - 80.63 2| 518 3 - - - -
20 - - - - - - - - - - - -
21 0.18 0| 0.17 1 0.15 0] 0.15 1 0.16 0 0.15 1
22 0.16 0| 0.17 1 0.19 0| 0.16 1 0.14 0 0.15 1
23 0.17 0| 0.14 1 0.16 0| 0.15 1 || 353.70 1 2.17 1
24 || 37.87 3| 21.28 4 3.92 6 | 29.78 5 - - - -
25 - - - - - - - - - - - -
26 - - - - - - - - - - - -
27 0.15 0| 0.17 1 0.14 0| 0.18 1 46.07 3| 37.08 35
28 0.16 0| 0.19 1 - - - - 0.16 0 0.13 1

Table 3.1: computing optimal completions for E. coli networks

cannot be produced by all three draft networks, giving us the hint that the pathways for
this metabolites are very fragile. Comparing the results for E.coli-50 and E.coli-100, we
see that for two targets, the experiments on E.coli-50 timeout, while they could be solved
in time on E.coli-100. For E.coli-200, we see 10 experiments timeout, 10 computing
the optimal value in time, and for 9 experiments clasp finishes computing all optimal
solutions in time. This suggests that pathways, which can be disturbed by removing few
reactions, are very fragile and hard to reconstruct, while more robust pathways, which
are only disturbed when removing lots of reactions, are more easily repaired. For tar-
get metabolites whose production pathways are not disturbed, the computation time is
insignificant

In our second experiment, we investigate the scalability of our approach in view of the
size of the reference network, taking into account the entire set of target metabolites. We
created subsets of the MetaCyc network, choosing 10 random samples of 5000, 6000,
7000, 8000, and 9000 reactions. We fixed the draft network by removing 200 reactions
from the E.coli network and tried to complete its completion relative to the differently
large reference networks. Note that the joint explanation of all 28 targets is much more

51



difficult than just explaining a single target. This is because the restrictions to interesting
reactions introduced in Section 3.3 become less effective when aiming at multiple targets.
On the other hand, the identification of a minimum completion producing a maximum set
of target is a highly significant question in synthetic biology.

As above, our experiments use a multi-step process. In a first step, we use clasp to
compute for each reference network the minimum number of reactions needed to com-
plete the network. Once we have computed the optimal value, we continue by computing
the reactions essential to all 28 targets, that is, the reactions contained in every answer
set satisfying the optimality criterion. This is accomplished by computing the cautious
consequences using the option ——cautious of clasp. These reactions are essential for
the joint production of all target metabolites. Finally, we use clasp as before to enumerate
all optimal solutions.

The first line gives the size of the investigated reference network. The columns labeled
with i identify the instance of the reference network. The column ¢,,, gives the compu-
tation time for computing the minimum number of reactions needed for a completion.
Column ¢, shows the time needed to compute the essential reactions, that is, all reactions
that are in all minimum completion. The columns labeled with ¢,; show the time needed
to compute all optimal solutions. The columns labeled with #opt show how many optimal
solution have been found. All times are given in seconds.

We observe that the problem is easily handled up to a size of 6000 reactions; all such
problems can be solved under a second. Starting with 7000 reactions, we start to obtain
computational more demanding problems, and finally a lot of timeouts at size 9000. No-
tably, our experiments are restricted by a timeout of 10 minutes; existing approaches to
network completion usually run simulations over the period of a day. Of course, we have
to extend the timeout in a production mode as well. Interestingly, the successful runs
show that finding the optimal number of solutions takes most of the computation time; an
issue we want to address in the future by biological domain-specific heuristics.

3.5.2 Inverse scope problem

Finaly, we evaluate our approach to the inverse scope problem. As above, we consider
the complete E.coli network and try to compute for every target the minimum number
of seeds needed to produce it. Once accomplished, we enumerate all minimum sets of
seeds.

Again, we first solve the optimality problem and use clasp to compute the minimum
number of seeds needed to produce the target metabolite; and in a second step we re-
launch clasp to compute all optimal solutions.

The first column denotes the target metabolite for whose production the seeds are com-
puted. The second column shows the time in seconds for computing the minimum num-
ber of seeds. The third one gives the minimum number of seeds. The fourth column
shows the time in seconds for computing all optimal solutions, and the fifth one shows
the number of optimal solutions.

The results show that most of the targets can be produced by providing one or two
seeds only. Interestingly, we found that only groups of three seeds are needed to produce
all 28 targets. We also checked with the cautious reasoning mode for essential seeds,
belonging to all minimum solution but none were found. We further used clasp with
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option ——brave to compute the union of all reactions occurring in optimal solutions
and found a set of 136 different metabolites, from which all minimum sets of seeds are
taken. Since we are only discriminating the targets among the seeds in (3.10), we were
surprised to find many seeds among the reactants of the reactions producing the targets.
However, for more meaningful results, we need more biological knowledge, to exclude
more metabolites as seeds.

3.6 Discussion

The easy characterization of reachability is one of the key features of ASP. We have ex-
ploited this to provide a simple yet powerful account of metabolic network synthesis,
a crucial application in the elaboration and design of bioprocesses. The distinguishing
feature of our ASP-based approach lies in the unique combination of ease of modelling
and powerful reasoning modes, supported by efficient solver technology. In fact, existing
qualitative approaches to network synthesis are based on stochastic simulations based on
hidden Markov models (cf. [20]), taking several hours to obtain results from the relative
frequencies of compounds in the simulations. Unlike this, our approach is complete and
thus allows for proving rather than estimating the production of metabolites. Moreover,
the various reasoning modes, including the enumeration of optimal solutions as well as
cautious and brave reasoning with respect to all or optimal solutions only, respectively,
are indispensable in a biological application due to the large number of possible solutions.
For instance, cautious reasoning relative to optimal solutions makes us discover the es-
sential nutritions for producing a target metabolite. These reasoning modes together with
the high-level specification of metabolic networks make our approach attractive to biolo-
gists, given that they can easily elaborate and explore their model “in silico* by means of
ASP.

From the perspective of ASP, our application fostered the development of new rea-
soning modes that were implemented within the ASP solver clasp. For one thing, clasp
allows for optimization techniques not available in any other ASP solver. Of particu-
lar interest is the ——restart-on-model option that restarts after finding a solution
(instead of backtracking). This led to a significant increase in converging to an optimal
solution. To a turn, we then exploit the options ——opt-all and ——opt-value for
enumerating all optimal models. Even though the latter can also be addressed by adding
an appropriate constraint to the underlying ASP program, the options allow us to leave
the underlying program untouched. For another thing, clasp allows for computing all
brave and cautious consequences by means of a linear number of calls to a solver (in-
ternally computing one answer set) rather then enumerating the entire set of answer sets.
This is accomplished by consecutive refinements of an internal constraint by appeal to the
incremental solving techniques introduced in [43]. This feature is also unique to clasp,
although a-priori given brave and cautious queries can be decided by other ASP solvers,
like dlv [81], as well. Although, to the best of our knowledge, our application is novel
in the field of ASP in particular and declarative programming in general, there has been
an increasing interest in using ASP and/or LP technology for addressing biological prob-
lems over the last years. Among them, we find [6, 29, 35] as well as [90] building upon
abductive logic programming.
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5000 6000
i| topt | opt te | tau | #opt i| topt | opt te | tau | #Hopt
1| 025 51019 | 0.21 72 1| 024 41020 | 0.20 6
2| 0.23 81 0.16 | 0.19 36 2 | 0.28 410231 0.19 3
3] 0.20 510.16 | 0.20 3 311346 | 16 | 0.46 | 043 50
4| 0.14 | 11| 0.20 | 0.17 12 4 | 0.17 71021 | 0.22 6
51 0.18 0.16 | 0.14 24 51 0.19 210211 0.23 4
6 039 | 11 | 0.26 | 0.26 24 6| 054 | 17| 0.26 | 0.28 28
7 || 0.18 0.18 | 0.15 2 7 | 0.23 51021021 8
8 || 0.18 910221023 60 811029 | 19| 0.18 | 0.26 55
9 027 | 15 0.19 | 0.20 16 9 | 043 91023 0.27 24
10 || 0.15 310.16 | 0.14 6 10 || 0.18 310.16 | 0.18 30
7000
i topt || opt te tan | #opt
1 105.16 27 | 3.24 | 3.33 | 160
2 _
3 10.82 19 | 2.15 | 1.86 48
4 0.38 51036 | 038 | 168
5 0.83 14 | 0.46 | 0.44 27
6 0.58 71042 | 1.15 10
7 0.30 2 1027|023 3
8 16.12 14 | 0.38 | 0.54 88
9 58.00 17 | 1.39 | 0.89 | 300
10 11.20 18 | 9.40 | 8.28 80
8000 9000
i topt || opt te ta | #opt i topt || opt te tan | #opt
1 265.14 15 | 274.56 | 251.34 | 672 1 12.34 17 7.45 8.95 18
2 1.07 7 0.25 0.30 5 2 -
3 5.16 13 1.23 1.13 4 3 28.05 12 | 11.32 | 13.99 88
4 1.50 8 0.36 0.35 10 4 -
5 0.68 13 0.87 0.98 12 5 -
6 78.49 20 | 48.91 49.67 | 288 6 | 410.76 30 3.88 3.79 14
7 195.66 8 1.77 1.58 40 7 271.02 16 | 11.13 | 28.61 | 2976
8 5.98 15 3.44 3.63 24 8 -
9 9.08 11 0.53 0.59 8 9 -
10 0.89 11 0.48 0.42 12 10 -

Table 3.2: Completion with 5000,. ..

,9000 reactions.




T topt | Opt tay | #opt
1 2.40 1 14.82 6
2 0.45 1 35.76 12
3 0.38 1 16.02 6
4 28.21 1 25.42 4
5 19.41 2 - -
6 4.30 2 | 187.06 50
7 1.29 2 | 166.73 63
8 15.79 1 17.24 4
9 13.45 1 13.98 4
10 0.89 1 17.00 5
11 0.53 1 25.92 9
12 7.28 1 14.78 4
13 4.78 1 9.88 4
14 | 13.23 1 7.67 4

Table 3.3: Computing minimal seeds for E.coli targets.

T topt | Opt tan | #opt
15 0.32 1| 29.58 11
16 0.32 1] 31.16 11
17 | 14.05 1| 24.46 1
18 0.28 1| 19.66 3
19 | 10.44 2 - -
20 | 23.33 1| 27.58 5
21 | 14.23 1 6.90 4
22 0.37 1] 49.79 11
23 - - - -
24 - - - -
25| 17.19 1| 21.36 4
26 0.55 1| 33.24 5
27 | 19.85 1] 1522 4
28 - - - -
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4 The BioASP Library

In the previous chapters, we have shown some of the challenges that modern biology
poses to today’s bioinformatics. By means of ASP, we invented methods coping with
incompleteness, heterogeneity, and mutual inconsistency of data and models. We have
shown that ASP is an excellent tool for solving a variety of biological questions. In this
chapter, we present the BioASP library, which implements the methods for analyzing
metabolic and gene regulatory networks, consistency checking, diagnosing, and repair-
ing biological data and models. In particular, it allows for computing predictions and
generating hypotheses about required expansions of biological models. To accomplish
this, the library combines expert knowledge of both the biological application and the
ASP paradigm. With the BioASP library, we offer our practical experience via easy-to-
use Python functions, thus enabling ASP non-experts to solve biological questions with
ASP.

Solving biological questions often requires combining several computational steps and
thus integrating ASP with traditional programming paradigms. Raw input data in various
formats needs to be parsed and preprocessed. The optimal solution of a problem needs
to be determined, and eventually one needs to compute the intersection of all optimal
solutions. Sometimes, also different ASP solvers have to be combined in a chain of
computations. For example, one first checks the consistency of a biological model using
the solver clasp [48] and then computes minimal diagnoses with the solver claspD [28].
Here, the different computational complexities of the involved tasks (NP versus NP')
lead to distinct adequate solving approaches. Moreover, the solution to one subproblem
may be needed as input to solve a second subproblem. Last but not least, obtained results
must be visualized in a user-friendly way. To accommodate such complex application
scenarios, we created the library BioASP, written in Python. It provides functionalities for
parsing inputs in several formats and transforming them into ASP facts. It encapsulates
the grounder gringo [44, 45] as well as the solvers clasp and claspD into Python objects.
In particular, these objects can be fed with logic programs describing different tasks,
be launched with dedicated parameter settings, and return results for further processing.
Thus, the BioASP library provides a framework for the convenient use of ASP within the
imperative programming paradigm of Python.

We will outline the system architecture of the BioASP library in Section 4.1, and
give detailed descriptions of the functionalities provided by the application program-
ming interface (API). In Section 4.2, we then present some applications built on top of
the BioASP library and show how the library is applied to solve the specific biological
problems described in the previous chapters. Finally, we conclude with a discussion in
Section 4.3.
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4.1 System Architecture

The BioASP library originates from our research in Systems Biology, where ASP has
proven to be an effective tool for modeling and solving a variety of questions. However,
to produce solutions based on ASP, it is often necessary to integrate it with existing envi-
ronments and traditional programming paradigms. Python is a flexible and extensible sci-
entific programming language used in various applications. For example, the BioPython
project [21] provides solutions for transforming biological inputs into Python-utilizable
data structures and offers interfaces to common bioinformatics programs. It implements
tools to work with sequence data, performs standard machine learning tasks, and inte-
grates with BioSQL, a sequence database schema also supported by the BioPerl [105]
and BioJava [70] projects.

In order to make the power of ASP accessible within an existing rich system environ-
ment, BioASP provides classes encapsulating ASP tools: the grounder gringo as well as
the solvers clasp and claspD. For the library to work, it is required that binaries of these
systems are installed. For correct functioning of the library, we have to make sure that
the right versions of gringo, clasp and claspD are used such that all required features are
provided and that the command line switches work as expected. Therefore, we ship the
BioASP Library containing its own set of binaries of gringo, clasp and claspD.

In our biological applications, we are confronted with data in different formats, such
as the Systems Biology Markup Language (SBML), and the BioQuali [63] format. The
BioASP library provides functionalities to parse and transform these formats into ASP
facts. For their implementation, BioASP utilizes the library /ibSBML [15] as well as the
tool PLY, an implementation of lex and yacc parsing tools for Python.

As illustrated in Figure 4.1, the BioASP library consists of three main modules: the
data, asp and the query module. In the following, we will describe these modules and the
functionalities they provide.

4.1.1 The asp module

The asp module constitutes the core component of the BioASP library. It provides the
classes Term and TermSet. These classes allow us to represent ASP atoms and sets of
atoms. They grant easy access to the arguments of an atom including nested function
symbols. We can join sets of atoms and write them to a file in a gringo readable format.
Further, the asp module provides the classes GringoClasp, GringoClaspD and Gringo-
ClaspOpt that encapsulate the grounder gringo as well as the solvers clasp and claspD.
These classes can be instantiated with dedicated parameter settings, and their objects can
be used to solve logic programs in the input format of gringo. When such a solving pro-
cess is finished, the result is returned as TermSets containing the atoms of the answer sets.
For optimization problems a tuple containing the found optima is returned.

In the following, we give descriptions for the most important classes provided by the
asp module. These functions and classes can be used by a Python program after importing
the asp module like:

from bioasp import asp.

The class Term constitutes a basic element of the asp module, the representation of an
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Figure 4.1: Architecture of the BioASP Library.

ASP atom. Instances of Term are used everywhere throughout the BioASP library from
the representation of input facts to the resulting atoms of an answer set.

class asp.Term(predicate, arguments=[])
Constructs a Term object, the basic representation of an ASP atom. The argument

predicate sets the predicate name and the argument arguments sets the argument list
of the atom.

Instances of Term provide the following methods.

Term.args ()
Returns a list of all arguments of the Term.

Term.pred()
Returns the predicate name of the Term.

Terms usually appear as elements of a TermSet. A TermSet is a simple Python data
structure which allows for easy pre-processing of the data, it can be joined with other
TermSets and finally be written to a file, suitable as input for the grounder gringo.

class asp.TermSet ()

Constructs a TermSet object. A TermSet is an iterable collection of ASP atoms,
it provides the common operations of the Python class Set like union, intersection,
difference etc. Figure 4.2 shows exemplarily the textual representation of a TermSet.

Instances of TermSet also provide the following methods.
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TermSet .to_list ()

Returns a list of all 7erms in the TermSet.

TermSet .to_file (fn=None)

Writes the TermSet to a file, as a set of facts readable by the grounder gringo. The
argument fn sets the file name to which the facts are written. If no file name is given
a temporary file is created. The method returns the name of the file to which the
TermSet was written.

TermSet .exclude_rule ()

C

Returns a string representation of an ASP constraint that states that a solution is not
allowed to contain all the atoms in the 7TermSet.

TermSet ([
reaction("rea03981", "ecoli"),
reactant ("com01126", "rea03981"),
product ("com05702", "rea03981"),
reaction ("rea09430", "ecoli"),
reactant ("com05702", "rea09430"),
reactant ("com00462", "rea09430"),
product ("com03190", "rea09430"),

seed ("com05702"),
target ("com03190"),
target ("com04283"),

reaction ("rea04982", "metacyc"),

reactant ("com03190", "rea04982"),

reactant ("com05702", "rea04982"),

product ("com04283", "rea04982"),
1)

Figure 4.2: A TermSet of ASP facts representing metabolic networks, seeds and targets

lass asp.String2TermSet (s)
Constructs a TermSet object from a string. The argument s is a string of comma
separated atoms in gringo syntax. The string s is parsed and a TermSet representation
is returned.

The classes GringoClasp, GringoClaspD and GringoClaspOpt encapsulate the grounder

gringo as well as the solvers clasp and claspD. They can create solver objects, which en-
able the user to solve ASP problems and return the resulting answer sets as TermSets.

C
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lass asp.GringoClasp (clasp._options=’’, gringo_options='")
Constructs a GringoClasp object. The argument gringo_options sets the command
line parameters for the grounder gringo, such as constant definitions like / ——const
depth=10’. The argument clasp_options sets the command line parameters for
the clasp process, such as  ——heu=vsids’ for setting the search heuristic.

Instances of GringoClasp provide the following method:



GringoClasp.run(programs, nmodels=1)

The run() method launches the grounder gringo to instantiate the logic programs
and pipes gringo’s output into the solver clasp to compute answer sets. Parameters,
command line switches and logic program files are passed to the processes, the
output of clasp is parsed, and finally the computed answer sets are returned as a list
of TermSets. The argument programs sets the list of logic program files, which are
passed to the gringo process. The argument nmodels is passed to the clasp process,
it determines how many models will be enumerated at most.

class asp.GringoClaspOpt (clasp_options=’’', gringo_options=’")

Constructs a GringoClaspOpt object. The argument gringo_options sets the com-
mand line parameters for the grounder gringo, and the argument clasp_options sets
the command line parameters for the clasp process. GringoClaspOpt is designed for
dealing with optimization problems. Like GringoClasp, it encapsulates gringo and
clasp, but it aims at logic programs containing optimization statements [44, 107].
Hence, clasp is here used to compute optimal solutions and the associated optima
are returned by the run function.

Instances of GringoClaspOpt provide the following method:

GringoClaspOpt.run (programs, nmodels=1)

The GringoClasp object launches the grounder gringo and the solver clasp to com-
pute optimal answer sets. Parameters, command line switches and logic program
files are passed to the processes and the computed optima as well answer sets are
returned. The return type is a pair where the first element is a tupel containing the
computed optima and the second element is a list of 7ermSets containing the opti-
mal models. The argument programs sets the list of logic program files which are
passed to the gringo process. The argument nmodels is passed to the clasp process,
it determines how many optimal models will be enumerated at most.

class asp.GringoClaspD (clasp-options=’’, gringo_options='")
Constructs a GringoClaspD object. The argument gringo_options sets the command
line parameters for the grounder gringo and the argument clasp_options sets the
command line parameters for the claspD process.

Due to their computational complexity, some problems are encoded by disjunctive
logic programs. Since GringoClasp cannot handle such programs, the class Gringo-
ClaspD encapsulates gringo and the solver claspD. The class works similarly to
GringoClasp, using gringo to instantiate logic programs but claspD instead of clasp
for computing their answer sets. Therefore, GringoClaspD objects can handle dis-
junctive logic programs.

The generic classes of the asp module can be utilized to solve a variety of problems,
depending on the logic programs passed to the run () method of their objects.

4.1.2 The data module

The data module implements functions to read and write the various biological formats
supported by the BioASP library such as SBML and the BioQuali format. These functions
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mainly parse input files and transform its data into ASP facts, representing the problem
instance at hand. Further, they create a Python data structure 7ermSet containing these
ASP facts.

The parsing functions provided by the data module are application-specific, as the ASP
facts produced by the parsing function must match the atoms used in the logic programs
that encode the biological questions on the input. For example, for our application in
metabolic network expansion the data module provides multiple functions to parse SBML
files, extract information and return corresponding ASP facts. One function parses an
SBML file and interprets the extracted information as a metabolic reaction network. A
second function interprets the SBML file as data on measured target metabolites while a
third function interprets it as data on seed metabolites. If new formats or new questions
are to be addressed, new functions may need to be added to the data module for generating
appropriate facts. In the following, we give a description of the most important functions
provided by the data module.

The data module defines the following functions that parse SBML files. These func-
tions can be called from a Python program after importing the module sbml like:

from bioasp.data import sbml

sbml . readSBMLnetwork (filename, name)
Read an SBML file and return a TermSet containing the ASP fact representation
of the metabolic network. The filename argument is the SBML file and the name
argument is a string used in the ASP facts to identify reactions from this network.

sbml .readSBMLtargets (filename)
Read an SBML file and return a 7ermSet containing the ASP fact representations of
a set of target metabolites. The filename argument is the SBML file.

sbml . readSBMLseeds (filename)
Read an SBML file and return a TermSet containing the ASP fact representations of
a set of seed metabolites. The filename argument is the SBML file.

An exemplary TermSet obtained by these functions, representing metabolic networks,
seeds and targets is shown in Figure 4.2.

The BioQuali format has been designed for the electronic representation and exchange
of gene regulatory networks and variation data of gene expressions. The data module
defines the following functions to parse influence graphs and observations in BioQuali
format. These functions can be called from a Python program after importing the module
bioquali like:

from bioasp.data import biogquali

bioquali.readGraph (filename)
Read a BioQuali graph file and return a 7ermSet containing the ASP fact represen-
tation of the influence graph. The filename argument is the BioQuali graph file.
Figure 4.3 shows the BioQuali graph representation of the influence graph in Fig-
ure 2.10 as well as the obtained ASP facts.
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TermSet ([

rebl —-> hsc82 + obs_elabel (gen("rebl"),gen("hsc82"),1),
rebl -> rapl + obs_elabel (gen("rebl"),gen("rapl"), 1),
rebl -> sin3 + obs_elabel (gen("rebl"),gen("sin3"), 1),
rebl -> topl + obs_elabel (gen("rebl"),gen("topl"), 1),
sin3 -> ume6 - obs_elabel (gen("sin3"),gen ("umeo"),-1),
ume6 —-> ino2 + obs_elabel (gen ("ume6"),gen("ino2"),1),
ume6 —-> hsfl - obs_elabel (gen ("ume6"),gen("hsfl"),-1),
ume6 —-> spol2 - obs_elabel (gen ("ume6"),gen ("spol2"),-1),
ume6 -> topl - obs_elabel (gen ("ume6"),gen("topl"),-1)

1

Figure 4.3: BioQuali format for networks (left) and the 7TermSet containing the ASP facts (right)

bioquali.readSIFGraph (filename)
Read a file in SIF (Simple Interaction File) format and return a TermSet containing
the ASP fact representation of the influence graph. The filename argument is the file
in SIF format.

bioquali.readProfile(filename)
Read a BioQuali observation file and return a TermSet containing the ASP fact rep-
resentations of observed variations. The filename argument is the BioQuali observa-
tion file. Figure 4.4 shows the BioQuali representation of observations as shown in
Figure 2.10 as well as the obtained ASP facts (The name "expl" associated with
experimental observations is obtained from the name of the filename argument).

TermSet ([
hsc82 = - obs_vlabel ("expl",gen("hsc82"),-1),
rapl = - obs_vlabel ("expl",gen("rapl"),-1),
umeo6 = + obs_vlabel ("expl",gen ("umeo"), 1),
ino2 = - obs_vlabel ("expl",gen("ino2"),-1),
hsfl = + obs_vlabel ("expl",gen("hsf1l"),1),
spol2 = + obs_vlabel ("expl",gen("spol2"), 1),
topl = + obs_vlabel ("expl",gen("topl"),1)

1)

Figure 4.4: BioQuali format for observations (left) and the corresponding TermSet (right).

4.1.3 The query module

The query module implements functionalities particular to the biological questions ad-
dressed in Chapters 2 and 3. The provided functions work in a generic way on inputs
given as TermSets. The facts, contained in the 7TermSets, are combined with logic pro-
grams encoding the problem to be solved. Depending on the concrete problem that is to
be solved, an appropriate solver object either of GringoClasp, GringoClaspD, or Gringo-
ClaspOpt is created. Notably, the addressed biological question is taken into account for
picking the parameter setting of such an object. The solver object is then run and param-
eters, logic programs and facts are passed to the solver. Once the solver has computed a
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solution, answer sets can be further processed, e.g., by filtering out atoms derived from
facts and finally the result is returned as a TermSet.

One of the areas for which the query module provides functions is the analysis of gene
regulatory networks and data on the variation of gene expressions from steady state shift
experiments. Here, we rely upon the Sign Consistency Model as described in Chapter 2,
In Chapter 2, we developed the logic programs to detect and explain inconsistencies be-
tween a network and experimental observations and to compute minimal repairs allowing
for prediction under inconsistency. In the following, we give brief descriptions for most
important functions that encapsulated these logic programs and provide their function-
alities. These functions can be used by a Python program after importing the module
influence_graphs like:

from bioasp.query import influence_graphs as ig

ig.is_consistent ( instance )
Returns True if the given instance is consistent and False otherwise. The argument
instance is a TermSet containing the fact representation of a sign consistency prob-
lem like the one shown in Figure 4.3 and Figure 4.4.

The function combines the problem instance with the logic program encoding the
consistency check and uses a GringoClasp object for solving. If this object returns
some answer set, network and observations are mutually consistent, and inconsistent
otherwise.

ig.get_consistent _labelings( instance, nmodels=0 )
Returns a list of TermSets containing an ASP representation of labelings consistent
with the given instance. The argument instance is a TermSet containing the fact
representation of a sign consistency problem and the argument nmodels determines
how many labelings will be enumerated at most.

ig.getminimal inconsistent cores( instance, nmodels=0 )
Returns a list of TermSets each containing a minimal inconsistent core for the given
instance. The argument instance is a TermSet containing the fact representation of a
sign consistency problem and the argument nmodels determines how many minimal
inconsistent cores will be enumerated at most.

The function combines the problem instance with a logic program encoding diag-
nosis and uses a GringoClaspD object for solving. The obtained answer sets, rep-
resenting minimal inconsistent subnetworks, are returned as a list of 7ermSets. For
example, Figure 4.5 exemplarily shows the first part of such a list.

[TermSet ([active ("expl",gen("hsfl")) 1),
TermSet ([active ("expl",gen("ino2")) 1),
TermSet ([active ("expl",gen ("rapl")),

active ("expl",gen("topl™)) 1),

-]

Figure 4.5: Minimal diagnoses as a list of TermSets.
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ig

.guess_inputs( instance )

Returns a TermSet containing the fact representation of input nodes for the given
instance. The argument instance is a TermSet containing the fact representation of a
sign consistency problem.

The BioASP library supports several modes of repairing inconsistent networks and
observations. A repair is understood as a set of modifications on a network and obser-
vations that makes them mutually consistent. Such modifications can be the addition of
regulations, flipping the polarity (activation or inhibition) or the observed variation (in-
crease or decrease) of regulations or species, respectively, and allowing for species with
unexplained variation. Since the adequacy of these modifications is application-specific,
BioASP provides separate functions for different repair modes.

ig

ig.

ig

ig.

ig.

.get _repair options flip obs( instance )

Returns a TermSet containing the fact representation of possible repairs by flipping
the sign of an observation for the given instance. The argument instance is a TermSet
containing the fact representation of a sign consistency problem.

get_repair options_add edge( instance )

Returns a TermSet containing the fact representation of possible repairs by adding
edges to an influence graph for the given instance. The argument instance is a
TermSet containing the fact representation of a sign consistency problem.

.get_repair options flip edge( instance )

Returns a TermSet containing the fact representation of possible repairs by flipping
edges of an influence graph for the given instance. The argument instance is a
TermSet containing the fact representation of a sign consistency problem.

get_repair options make node_input ( instance )

Returns a 7TermSet containing the fact representation of possible repairs of the given
instance by declaring nodes of the influence graph as input. The argument instance
is a TermSet containing the fact representation of a sign consistency problem.

get _repair options make obs input ( instance )

Returns a TermSet containing the fact representation of possible repairs of the given
instance by observed variations in an experiment as input. The argument instance is
a TermSet containing the fact representation of a sign consistency problem.

Figure 4.6, shows exemplarily a set of possible repair operations.

TermSet ([

pos(vilip ("expl",gen("hsc82"),-1),
pos(vilip ("expl",gen("rapl"),-1),
pos(vilip ("expl",gen ("umeoc"), 1),
pos (vilip ("expl",gen("ino2"),-1),
pos (vilip ("expl",gen("hsfl"),1),
pos(vilip ("expl",gen("spol2"),1),
pos(vilip ("expl",gen("topl"),1)

1)

Figure 4.6: A TermSet of ASP facts representing possible repair operations.
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ig

ig.

ig.

ig.
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.get minimum of repairs( instance, repair_options )

Returns the minimal number of repair operations that are needed to restore consis-
tency for the given instance. The argument instance is a TermSet containing the fact
representation of a sign consistency problem and the argument repair_options is a
TermSet containing the fact representation of possible repair operations.

The function combines the problem instance with the possible repair operations
and runs a GringoClaspOpt object to determine the minimum number of repair
operations for making the problem instance consistent.

get minimal repair sets( instance, repair_options, optimum,

nmodels=0 )

Returns a list of TermSets containing an ASP representation of minimal repair sets
that restore consistency for the given instance. The argument instance is a TermSet
containing the fact representation of a sign consistency problem, the argument re-
pair_options is a TermSet containing the fact representation of possible repair op-
erations, the argument optimum determines the size of a minimal repair set and the
argument nmodels determines how many minimal repair set will be enumerated at
most.

This function computes all minimal repair sets by running a GringoClasp object
with the options ——opt-val=0pt and ——opt—-all of clasp being set. It returns
a list of TermSets containing the computed minimal repairs, such as the (singleton)
list shown in Figure 4.7.

[TermSet ([
repair (vilip ("expl",gen("rapl"),-1)),
repair (vflip ("expl",gen ("umeb"), 1)),
repair (vilip ("expl",gen ("hsc82"),-1))1)

]

Figure 4.7: A list containing a minimal repair set as TermSet.

get predictions under consistency( instance )

Returns a TermSet containing an ASP representation of predicted labels and for the
given instance. The argument instance is a TermSet containing the fact representa-
tion of a sign consistency problem.

The function combines the problem instance with a logic program that computes
consistent labelings and runs a GringoClasp object on the input but with the option
—-—cautious of clasp being set. This lets clasp compute the intersection of all
answer sets, which corresponds to the predicted system behavior under the given
observations. The atoms in the intersection, which are not already appear as facts in
the problem instance are predicted and returned as a 7ermSet like the one shown in
Figure 4.8.

get predictions under minimal repair( instance, repair_options,

optimum )
Returns a TermSet containing an ASP representation of labels for the given incon-
sistent instance that can be predicted under all minimal repair sets. The argument



TermSet (

[
vlabel ("expl",gen("rebl"), 1),
vlabel ("expl",gen ("hsc82"),1),
vlabel ("expl",gen("rapl"),1),
vlabel ("expl",gen("sin3"),1),
vlabel ("expl",gen ("umeb"),-1)

1)

Figure 4.8: Predicted variations as a TermSet

instance is a TermSet containing the fact representation of a sign consistency prob-
lem and the argument repair_options is a TermSet containing the fact representation
of possible repair operations and the argument optimum determines the size of a
minimal repair set.

The function runs a GringoClasp object on the same input as used for computing
minimal repairs, but with the option ——caut ious of clasp being set in addition to
—-—opt-val=0pt and ——opt-all. As in the case of consistency, the atoms in
the intersection of all answer sets (comprising a minimal repair) that appear not as
facts in the problem instance are predicted and returned as a TermSet, such as the one
shown in Figure 4.8. Since the returned atoms hold under all minimal repairs relative
to a repair mode, they describe system behavior that can sensibly be predicted even
though the system is not globally inconsistent.

A second biological applications for which the guery module provides functions is
metabolic network expansion as discussed in Chapter 3. In the following, we give brief
description of the most important of these functions. These functions can be used after
importing the module network_expansion like:
from bioasp.query import network_expansion as ne.

ne.get unproducible( draft, targets, seeds )
Returns a TermSet containing the target metabolites that cannot be produced by the
draft network given the seed metabolites. The arguments draft, targets and seeds
are TermSets containing fact representations of the draft network, target and seed
metabolites.

ne.get mimimal completion size( draft, repairnet, targets, seeds)
Returns the minimal size for a completion of a draft network, such that the most
target metabolites can be produced from the given set of seed metabolites. The
arguments draft, repairnet, targets and seeds are TermSets containing fact represen-
tations of the draft network, the repair network, target and seed metabolites.

ne.get _intersection of completions( draft, repairnet, targets,
seeds)
Returns a TermSet containing the fact representation of the reactions that are con-
tained in every completion of the draft network, such that the most target metabolites
can be produced from the given set of seed metabolites. The arguments draft, re-
pairnet, targets and seeds are TermSets containing fact representations of the draft
network, the repair network, target and seed metabolites.
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ne.get_intersection of optimal completions( draft, repairnet,

targets, seeds, optimum)

Returns a TermSet containing the fact representations of the reactions that are con-
tained in every minimal completion of the draft network, such that the most target
metabolites can be produced from the given set of seed metabolites. The arguments
draft, repairnet, targets and seeds are TermSets containing fact representations of
the draft network, the repair network, target and seed metabolites. The argument
optimum determines the size of an optimal completion.

In summary, the functions provided by the BioASP library implement a variety of func-
tions that allow reasoning on gene regulatory networks and metabolic networks. Given
that some functionalities build on top of others, composite tasks can be accomplished by
chaining several function calls. In the following section, we will show how the different
functions provided by the BioASP library are used and work in our applications.

4.2 Applications

In the Chapters 2 and 3, we described biological problems related to gene regulatory
networks and metabolic networks. We developed logic programs to answer various ques-
tions on the biological models and data. In Section 4.1, we then presented the BioASP
library that provides functions to solve the biological questions. We described how the
library encapsulates these logic programs, and the ASP solver technology to provide a
simple API. In this section, we describe two applications that are implemented using the
BioASP library. These applications solve the biological question presented in Chapters 2
and 3. In the following, we will further detail the workflow of these applications.

4.2.1 Diagnosing and Repairing on Gene Regulatory Networks

In this section, we describe an application that is implemented using the BioASP library,
which analysis genetic regulative models and observation data of gene expressions. In
the context of gene regulatory networks, we are interested in checking whether behaviors
observed in experiments can be explained. If experimental observations are inconsistent
with a network, i.e., if they cannot be explained, minimal diagnoses can help to iden-
tify unreliable data or regulations missing in the network. Further, we are interested in
predicting behaviors of unobserved species. Moreover, on the basis of minimal repairs,
behaviors of unobserved species can be predicted even in the case of mutual inconsistency
between network and data. Beyond analyzing available experimental data, the provided
functionalities can be used for experiment planning. In this case, the input describes
the desired behavior of a biological system, and predictions indicate conditions needed to
achieve such behavior. In the following, we will describe the workflow of this application
as shown in Figure 4.9. We will show how this application utilizes the BioASP library to
systematically analyze influence graphs and observed variation data.

For the electronic representation and exchange of gene regulatory networks and varia-
tion data of gene expressions, the BioQuali format has been designed. The first step for
the application is to read such a network file and transform it into ASP facts.
Therefore, the data module of the BioASP library provides the function
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Figure 4.9: Workflow of the “Influence Graph Analyzer” application.

bioquali.readGraph () to parse a network and transform it into ASP facts. Fig-
ure 4.3 shows the BioQuali representation of the influence graph in Figure 2.10.

The next step after reading the input data is to check whether the network is consis-
tent. Note, that the application first checks only the network without any observation
data for consistency. If the network in itself is inconsistent, it will be inconsistent with
any observation data, but we can narrow down the cause of inconsistency to errors in
the network. For consistency checking, the BioASP guery module provides the function
is_consistent (). The function combines a problem instance like the one shown
in Figure 4.3 with the logic program encoding the consistency check and uses a Gringo-
Clasp object for solving. If this object returns some answer set, network and observations
are mutually consistent, and inconsistent otherwise.

If the network in itself is inconsistent, we know that the cause of the inconsistency are
errors in the network. Therefore, it makes sense to diagnose the inconsistent network
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before doing any other analysis. To this end, our application uses the BioASP function
get_minimal_inconsistent_cores () to compute the minimal inconsistent sub
networks. Figure 4.10 exemplarily shows a textual representation of the diagnosis results
as produced by the application.

mic 1:
gen ("ume6") -> gen("hsfl") -
gen ("ume6") = +
gen("hsfl") = +

mic 2:
gen ("umeb") -> gen("ino2") +
gen ("ume6") = +
gen("ino2") = -

mic 3:
gen("rebl") —-> gen("topl") +
gen("rebl") -> gen("rapl") +
gen ("ume6") -> gen("topl") -
gen ("ume6") = +
gen("rapl") = -
gen("topl") = +

Figure 4.10: Textual representation of diagnosis results.

If the network itself is consistent, we continue by adding observation data. Therefore,
our application has to read a file containing observation data in BioQuali format and
transform it into ASP facts. The data module of the BioASP library provides the function
bioquali.readProfile () to parse observations and transform it into ASP facts.
Figure 4.4 shows the BioQuali representation of observations as shown in Figure 2.10.

As the network is consistent, the application now combines the network data with the
data of the observed variations and tests whether network and observations are mutual
consistent. The application joins the TermSet containing the facts representing the graph
as in Figure 4.3 with the 7TermSet containing the facts for the observation data as shown
in Figure 4.4 and uses again the function is_consistent () from the BioASP guery
module for consistency checking.

In the case of consistency, it is possible to compute the predicted variation for unob-
served nodes in the graph. The application utilizes the BioASP function
get_predictions_under_consistency () to compute predictions. Figure 4.11
shows an example of the textual representation of the predictions.

5 predictions found:
Experiment "expl":

gen("rebl") = +
gen("hsc82 ") = +
gen("rapl") = +
gen("sin3") = +
gen ("ume6") = -

Figure 4.11: Textual representation of the predicted variations.

Otherwise, if network and observations are inconsistent, we are interested in what
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causes the inconsistency. As explained before, our application uses the BioASP func-
tion get minimal_inconsistent_cores (). The difference here is that we know
that the cause for the inconsistency is not inherent to the network, but appears as an inter-
play between network and observations. Figure 4.10 shows textual representation of the
diagnosis results as produced by the application.

After diagnosing the inconsistent network and observations, the application uses the
BioASP functionalities to repair inconsistencies. BioASP supports several modes of re-
pairing inconsistent networks and observations. Such modifications can be the addition
of regulations, flipping the polarity (activation or inhibition) or the observed variation (in-
crease or decrease) of regulations or species, respectively, and allowing for species with
unexplained variation. Since the adequacy of these modifications is application-specific,
and BioASP provides separate functions for different repair modes, the applications al-
lows the user to choose interactively which repair mode should be applied. Figure 4.12
shows the dialog for choosing the repair mode.

Which repair mode do you want to perform ?
1] flip observed variations

flip influences

define nodes as input

define observed variations as input
add influences

Choose repair mode 1-5: _

Figure 4.12: Dialog for choosing the repair mode.

Depending on the users choice, the application uses a different function of the BioASP
query module to compute a set of possible repair operations. This function is either
get_repair_options_flip_obs () to get options to repair the data by flipping the
observed variations, get _repair_options_flip_edge (), which returns possible
repairs that flip the sign of influences, get _repair_options_make_node_input ()
returning the possible repairs that declare some nodes in the graph as input,
get _repair_options make_obs_input (), which returns all options for repairs
by declaring observed variations input, or get _repair options_add edge () to
get the possible operations for repairs by adding influences.

Once the set of possible repair operations is computed, the application uses these to
compute sets of repair operations that restore consistency of the network and observa-
tions. As the number of candidate repair sets can be huge, one is usually not interested in
all of them, but only in minimal repair sets, which modify network and observations as
little as possible. Thus, the application calls the get minimum_of_repairs () func-
tion to determine the minimum number of required repairs relative to the set of possible
repair operations. Then the application feeds the resulting optimum into the function
get minimal repair_sets (). Figure 4.13 shows the textual representation of a
minimal set of repair operations that restores consistency.

Finally, the application can use the repair functionalities of the BioASP library to com-
pute predictions from the inconsistent data. Here, a prediction is a system behavior
that holds in all consistent states comprising a minimal repair. Therefore, the applica-
tion uses the function prediction_under minimal_repair () from the BioASP
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Computing all repair sets with size 3 ... done.

repair 1
vilip("expl",gen("rapl"),-1),
vilip("expl",gen ("umeé6"), 1),
vilip("expl",gen("hsc82"),-1)

Figure 4.13: Textual representation of a minimal repair set.

query module. Figure 4.11 shows the textual representation of the predictions under min-
imal repair.

In summary, the application chains several function provided by the BioASP library to
perform consistency checks, diagnosis, repair and prediction on gene regulatory networks
modeled by influence graphs and experimental data that describes observed variations.

4.2.2 Metabolic Network Expansion

The second application built on the BioASP library explores the biosynthetic capabilities
of metabolic networks. In metabolic network expansion, we confront a metabolic draft
network of an investigated organism with experimentally established data to determine
gaps in the network and create hypotheses for possible completions.

Given the metabolic draft network, we confront it with two sets of metabolites, called
seeds and targets. In an experiment the investigated organism was able to synthesize the
target metabolites while feeding only on the seed metabolites. Our application checks
whether the measured targets metabolites can be produced by the investigated draft net-
work. For target metabolites that cannot be produced by reactions in a network, the goal
is to generate hypotheses about required expansions with additional reactions that com-
plete the production pathways for these targets. Candidate reactions that can potentially
be added are obtained from related networks available in web repositories, such as KEGG
and MetaCyc. In this section, we will describe the workflow of this application and how
this application utilizes the BioASP library to analyze metabolic networks.

The metabolic networks, seeds, and target metabolites used in our application are de-
scribed in SBML format. The first task of the application is to parse and transform
such inputs into ASP facts. Therefore, it uses the functions ReadSBMLnetwork (),
ReadSBMLseeds (), and ReadSBMLtargets () provided by the data module of
the BioASP library.

The next step in our application is the identification of unproducible target metabo-
lites. We want to know which of the measured target metabolites cannot be produced
by the draft network. For this, the BioASP function get _unproducible () is used.
Figure 4.14 shows the textual representation of the unproducible target metabolites.

Checking draftnet for unproducible targets ... done.
38 unproducible targets:
" 578272112147217Z__45_ EICOSAPENTAENOATE_CCO__45_ CYTOSOL"
"STEARIC_ACID_CCO__45__ CYTOSOL"
"LYS_CCO__45__CYTOosoL"

Figure 4.14: Textual representation of unproducible target metabolites.
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For those targets that cannot be produced by the draft network, we want to know
whether their production pathway can be restored by adding reactions from the repair
network. Therefore, the application combines draft and repair network and recomputes
the unproducible targets for the combined network. The difference to the unproducible
targets of the draft network are the targets for which we can restore the production path-
ways with reactions from the repair network. Figure 4.15 exemplarily shows the text
output of the application.

Checking draftnet + repairnet for unproducible targets ... done.
still 11 unproducible targets:
"HIS _CCO__45__ CYTOSOL"
"PHE_CCO__45__CYTOSOL"
"ILE_CCO__45__CYTOSsOoL"

27 targets to reconstruct:
"LINOLENIC_ACID_CCO__45__ CYTOSOL"
"OLEATE__45__ CPD_CCO__45__CYTOSOL"
"CPD__45_ 9247_CCO__45__CYTosoL"

Figure 4.15: Textual representation of target metabolites whose production pathways can be restored.

For targets that can only be produced by the draft network when adding the repair
network, the minimal completions that restore production pathways are of interest. As
it is usually a very hard problem to find these minimal completions, the application first
solves some subproblems, whose solutions simplify the main problem.

As next step, the applications computes for each target the reactions, which are es-
sential for the restoration of its production pathway. In other words, those reactions
that are in every completion, which restores the production pathway of the metabo-
lite. A reaction that is essential for the production of one target must also be part of
a solution that restores the production pathways of all targets. Hence, the essential re-
actions can be used to simplify the main problem. The application uses the function
get_intersection of _completions () from the guery module to compute the
essential reactions. Figure 4.16, shows exemplarily the textual representation of essential
reactions.

Computing essential reactions for "LINOLENIC_ACID_CCO__45" ... done.
1 essential reactions found:
"FATTY_ 45  ACID__ 45 SYNTHASE_ 45 RXN"

Computing essential reactions for "OLEATE__ 45__ CPD_CCO__45" ... done.
17 essential reactions found:
" 4 46_ 2 46_ 1 46_ 58__45_ RXN"
"RXN__45__9536"
"RXN__45_ 9537"

Overall 34 essential reactions found.

Figure 4.16: Textual representation of essential reactions.
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Further, the application computes for each target metabolite the minimal size of an
completion that restores its production pathway. The maximum of these minima is a
lower bound for the size of an completion, which restores the production of all target
metabolites. While the sum of all minima approximates an upperbound for the size of
such a completion. The application uses the function get mimimal _completion_size ()
from the BioASP query module, to compute the minimal size of a completion for all tar-
gets.

Computing minimal score for a completion for "LINOLENIC_ACID_CCO__ 45"
minimal score = 6

Computing minimal score for a completion for "OLEATE__45__CPD_CCO__45"
minimal score = 25

Computing minimal score for a completion for "CPD_ _45_ 9247_CCO__45"
minimal score = 20

Lowerbound for minimal completion for all targets = 28
Upperbound for minimal completion for all targets 217

Figure 4.17: Text output for the computation of completion minima.

The application continues by including the information about the essential reactions,
minimal as well as maximal size of a completion to compute the minimal size of a com-
pletion, which restores the production of all target metabolites. Therefore, it uses once
more the function get mimimal _completion_size (). The returned optima is then
fed into the function get minimal _completions () to compute the minimal com-
pletions, which restore the production of all targets. Figure 4.18 shows exemplarily the
textual representation of a minimal completion.

Computing minimal score for a completion to produce all targets ... done.
minimal score = 34
Computing minimal (score=34) completions for all targets ... done.

1: "GLYCERATE_ 45_ DEHYDROGENASE__ 45__ RXN"
"HOMOCITRATE__ 45__ SYNTHASE__ 45 RXN"
"SERINE__ 45 GLYOXYLATE_ 45_ AMINOTRANSFERASE__ 45 RXN"
"HOMOACONITATE_ 45_ HYDRATASE_ 45 RXN"
"RXN__45__ 8", "RXN30__ 45_ 1983"
"ATLARACECAT__45_ RXN"

"RIB5PISOM__ 45 RXN"
"AMINOBUTDEHYDROG__45__ RXN"

"GLYCEROL__ 45__1_ 45 PHOSPHATASE__ 45_ RXN"
"RXN__45__ 961"

"2 46 6__46__ 1 4d46_ 35 45 RXN"

Figure 4.18: Textual representation of a minimal completion.
In summary, the application combines several functions provided by the BioASP li-

brary to perform analysis of metabolic networks, compute producible and unproducible
metabolites and hypothetical completions for the network. Thereby, the application ex-
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emplarily demonstrates, how to solve a biological problem with BioASP by solving sub-
problems, aggregating the results, and using them as input for consecutive computations.

4.2.3 Web Service

The last application we present is a web service based on the BioASP library. This web
service was designed to make our methods easily accessible to a biological audience.
The user of the web service! does not require any locally installed software on the user
side except for a web browser. Also, the web service serves as an example, showing that
the BioASP library eases the creation of integrated applications based on the underly-
ing ASP technology. In the following, we will present the web service and explain its
functionalities.

Figure 4.19 shows the interface of the web service. It provides the possibility to upload
textual representations of biological networks and experimental profiles as shown in the
Figures 4.3 and 4.4. Therefore, the service uses the functions bioquali.readGraph ()
and bioquali.readProfile () from the data module.

File Upload:
Network:
empty
Add to network: )
| Browse.. | File type: [ guess from extension ¢ | (?)

Observations:
empty

Add to observations:
| Browse.. | File type: | guess from extension | (7)

...or load an example
[ update |

[ Guess input nodes (2)

Reasoning:

Consistency Check:

| check consistency |
Diagnosis:

Mode: | find one inconsistency =

| start Diagnosis ]
Prediction:

Mode: | under consistency o

| start Prediction |

Figure 4.19: Web interface for consistency checking and diagnosis.

To allow the user to instantly experience the functionalities of the web service, a num-
ber of predefined examples are provided. Influence graphs representing biological net-
works usually contain vertices that are not subject to any regulation. Such entities are un-
derstood as controlled by external factors, like environmental or particular experimental
conditions. To avoid trivial inconsistencies due to such unregulated and thus unexplain-
able vertices, the web interface provides an option “Guess input nodes” for automatically
declaring all vertices without any predecessor as inputs. To compute these input nodes,
the service uses the function guess_inputs () from the guery module.

'http://data.haiti.cs.uni-potsdam.de/wsgi/app
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Once the user has uploaded the network and observation files, the reasoning function-
alities of the service can be used. These include consistency checking, diagnosis, i.e.,
finding minimal inconsistent cores (MICs), and prediction of variations.

While consistency checking simply results in a positive or negative answer, the ser-
vice offers three diagnosis modes: “find one inconsistency”, “find all inconsistencies”,
and “approximate all inconsistencies”. The first mode aims at finding a single MIC,
and the second at finding all of them. Therefore, the service simply uses the function
get minimal_inconsistent_cores () from the query module. The third diagno-
sis mode, “approximate all inconsistencies”, works by repeatedly calling the function to
find a single MIC, marking the vertices of a computed MIC as inputs before proceeding
to look for further MICs, until no further solution exists. This approach has been used
in previous work [63] and has been integrated into our framework for comparison. How-
ever, the results obtained with the third mode depend on the order in which MICs are
found and their vertices declared to be inputs in future computations.

Once MICs have been computed, the service generates graphical and textual represen-
tations of the computed inconsistencies, as shown in Figure 4.20. If the result consists of
several MICs, it is possible to view overlapping ones in a combined way, thus highlight-
ing regions of inconsistency.

Diagnosis Result YJLO56C

found 19 minimal inconsistencies in 24 minutes and 44 seconds:
"YPRIION" , "YLRIZLC"
s’

", "YALOGIC"

YBRO49C

YOLO04W YMR186W

(YDR207C )
O Join connected inconsistencies ~_ /

", "YLR1Z1C"

N
2
&

"YNL216W"
261"

", "YDR224C"
", "YOLOOAN"
“YALO4GC", "YLRI31C" , " YDR224C"

Output Mode: [ Text ¢ /

| update |
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i)

YIR18ZW )

Join connected inconsistencies
Output Mode: | Graphical ¢ |
| Update |

Figure 4.20: Representation of identified MICs in textual (left) and graphical (right) mode.

Finally, prediction under consistency and inconsistency are featured by the web ser-
vice. While prediction under consistency only returns results when the consistency check
above had a positive result, the web service allows the user to switch the reasoning mode
to prediction under minimal repair. For the first mode the service simply calls the func-
tion get _predictions_under_consistency (), for the second mode the internal
computations are more complex. First, the possible repair options are determined with
get_repair_options make node_input (), then the minimal number of repair
operations that restore consistency is computed via get minimum of repairs() ,
and fed into the function get predictions_under minimal_repair () to finally
predict unobserved variations of entities in the influence graph. Note, prediction under
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minimal repair can also be applied to consistent samples, then the minimal number of
repairs is 0.

The web service shows exemplarily how the BioASP library can be used to built com-
plex applications that integrate ASP solutions with other state of the art technologies.
It provides an easily accessible and visual appealing front-end to our solutions even for
people that do not know ASP.

4.3 Discussion

We presented the BioASP library. We outlined the modular architecture of the library
which facilitates extensibility. Especially the query module is designed for future exten-
sion with further functionalities, to provide access to further ASP solution that solve new
problems. We hope that the library will serve in future as a repository for many ASP
solutions solving a variety of problems. A detailed overview of the library API and the
provided functionalities has been given. The library was initially built with a focus on our
biological applications. In fact, the functionalities provided by the BioASP library exploit
technical know-how of modeling biological problems in ASP and gearing ASP solvers’
parameters to them. Therefore, the library provides many functions to solve the biologi-
cal problems described in this thesis. On a more general level, the library facilitates the
use of ASP solutions inside the imperative programming paradigm of Python [111]. With
the asp module being the core of the library, we encapsulate the ASP tools: the grounder
gringo as well as the solvers clasp and claspD, into Python classes. These classes al-
low for the integration of ASP solutions from various domains into existing frameworks.
Hence, the application of the library is not limited to the field of biology. Nowadays, it is
also used in the context of natural language processing [83] by the AspCcgTk toolkit?.
Further, we presented applications that are built on top of the BioASP library. These
applications range from terminal applications to complex web services. These applica-
tions present the practical outcome of our theoretical work. The applications are tools
for biologists, ready to be used to analyze their data and solve their problems. But, they
also serve as examples on how to use the BioASP library to built applications that solve
complex problems with ASP, and that can easily be integrated with existing solutions.

http://www.kr.tuwien.ac.at/staff/ps/aspccgtk
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5 Conclusions

This thesis was focused on ASP as modeling tool for problems from the field of Systems
Biology. Therefore, we provided ASP solutions to several biologically motivated prob-
lems. In Chapter 2, we provided an ASP based framework to analyze genetic regulatory
networks represented as influence graphs. This approach allows for consistency checking
between experimental profiles and influence graphs and for identifying the causes of the
inconsistency as MICs. MIC identification is a valuable tool for biologist, pointing to
missing regulations and questionable data and guiding the refinement of the investigated
model. Further, we introduced repair-based reasoning techniques for computing minimal
modifications of biological networks and experimental profiles to make them mutually
consistent. We provided and discussed different repair options for repairing models and
data. The choice of the applied repair operations is a highly domain dependent question.
Therefore, the presented framework is very flexible to adjust to different repair methods.
However, the definition of minimal repairs the approach allows for predicting unobserved
data even in case of inconsistency. This is of practical relevance as it enables a meaningful
analysis of partially unreliable experimental data, and allows to draw reasonable conclu-
sions automatically. We evaluated the approach on real biological data and showed that
predictions on the basis of minimal repairs were feasible and also highly accurate.

In Chapter 3, we then presented an ASP approach to analyze biosynthetic capabilities
of metabolic networks. Here, we provided a simple yet powerful account of metabolic
network synthesis, a crucial application in the elaboration and design of bioprocesses.
In this approach we combined the ease of modeling in ASP with the powerful reason-
ing modes, supported by efficient solver technology. Unlike existing approaches that are
based on stochastic simulations, our approach is complete and thus allows for proving
rather than estimating the production of metabolites. The reasoning modes that were
used by our approach, including the enumeration of optimal solutions as well as cau-
tious and brave reasoning with respect to all or optimal solutions only, respectively, have
shown to be indispensable in a biological application due to the large number of pos-
sible solutions. For instance, cautious reasoning relative to optimal solutions makes us
discover the essential nutrition for producing a target metabolite. The high-level spec-
ification of metabolic networks combined with the different reasoning modes make our
approach attractive to biologists, that can easily elaborate and explore their models “in
silico”.

As an important aspect, we want to stress the advantages of using ASP as paradigm for
realizing our applications. On the knowledge representation side, ASP fosters a uniform
problem specifications in terms of a separate encoding and instances given as facts. This
accelerates the development of a problem solution and it keeps solutions comprehensible
in view of the fact that encodings are usually compact. Notably, the task of prediction
benefits from the cautious reasoning capacities of clasp, intersecting all answer sets by
enumerating only linearly many of them. This illustrates the second major advantage of
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ASP, namely, the availability of powerful off-the-shelf inference engines.

As elegance and flexibility in modeling are major advantages of ASP, our current appli-
cation makes it attractive also for related biological questions, beyond the ones addressed
in this thesis. For instance, ongoing work deals with the data driven reconstruction of
genetic regulatory networks and the identification of quantitative trait loci, genes that are
involved in the emergence of certain phenotypes. In turn, challenging applications like
the ones presented here might contribute to the further improvement of ASP tools, as they
might be geared towards efficiency in such domains.

Finally, we presented in Chapter 4 the BioASP library as a framework providing ASP
solutions for applications in Systems Biology. BioASP integrates with traditional pro-
gramming paradigms to make the power of ASP accessible within an existing, rich system
environment. We presented its current functionalities, which includes our ASP solution
for analyzing gene regulatory and metabolic networks. But, the library facilitates the
use of ASP solutions inside the imperative programming paradigm in general. The easy
access to encapsulated ASP tools allows for integrating ASP solution from various do-
mains, not limited to biology. For instance, it has already found application in the field
of natural language processing.

For the future, we envision the BioASP library as repository for many different ASP
solutions, to address further biological applications and extend the BioASP library with
new functionalities. Our goal is to utilize the advancements in the field of knowledge
representation and ASP, to develop new methods for reconstructing and analyzing bio-
logical (genomic and metabolic) models. So far, our methods did not take into account
multi-level observations and knowledge over the system, such as genome annotation and
transcriptomic of metabolic information. It is our future challenge to create frameworks
that intelligently combine these different levels and enable an automated reasoning pro-
cess.
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A Proofs

A.1 Proof of Theorem 2.1 and 2.2

We formalize the representation of instances, as described in Section 2.3.1, by defining a
mapping 7 of an influence graph (V, F, o) and a (partial) vertex labeling p : V' — {+, -}:

7(V,E,0), 1) = {vertex(i). lieV}
U {edge(j, ). | (j—1i) e E}
U {observedE(j,i,s). | (j —1i) € E,o(j,i) = s}
U {observedV(i,s). |ie V,u(i)=s}
U {input (7). | i € V is an input} . (A.1)

By Pr, we denote the encoding containing the schematic rules in (2.3), (2.4), (2.5),
and (2.6).

Proof A.1 (Proof of Theorem 2.1) Assume that X is an answer set of PcUt((V, E, o), ).
Furthermore, let

PX = {(head(r) < body(r)T)8 |
re PcUT((V,E,0),un),(body(r)=0)NX =0,0 : var(r) — U}

where var(r) is the set of all variables that occur in a rule v, U is the set of all constants

appearing in Pc UT((V, E,0), 1), and 0 is a ground substitution for the variables in r.

Then, by the definition of an answer set, we know that X is a C-minimal model of P~.
Given X, we define o' and p' as follows:

o ={(j—i)—s|(j—1) € E labelE(j,i,s) € X}
W= {i—s|ieV,iabelV(i,s) € X}.

We show that o' and 11/ are total labelings of edges and vertices, respectively, such that
W (i) = 1/'(3)0’(4,4) holds for every non-input vertex i € V and some edge j — i in E.

Regarding the uniqueness of labels assigned by o' and 1/, consider the following rules
from (2.3) and (2.4) including predicates labelE and labelV in their heads:

labelV(V, +); labelV(V, -
labelE(U, V., +); labelE(U,V, -
labelV(V, S

labelE(U,V, S

— vertex(V).

— edge(U, V).

«— observedV(V,S).
— observedE(U,V, S).

(A.2)

— — N

Since the given (partial) labelings o and | assign unique labels to the elements of their
domains, facts defining observedE and observedV are of the form observedE(j,i,+). or
observedE(j,i,-). and observedV(i,+). or observedV(i,-)., respectively, and at most
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one of these facts is contained in T((V, E,0), ) for an edge (j —1i) € E or a ver-
texi € V. Because X is a C-minimal model of P, the atoms in the heads of facts
are in X, and all atoms in X over predicates observedE and observedV are derived
from facts in T((V, E,0), 1), in view that these predicates do not occur in the head
of any rule in Pc. Hence, at most one of the atoms labelE(j,1,+) and labelE(7],i,-)
or labelV(i,+) and labelV(i,-), respectively, is derivable for an edge (j —1i) € E or
vertex i € V from a ground instance of the fourth or third rule in (A.2) and then in-
cluded in X. Furthermore, the second and first rule in (A.2) impose that at least one of
labelE(j,i,+) or labelE(j,i,-) and labelV(i,+) or labelV(i,=) belongs to X for every
edge (j — 1) € E and vertex i € V, respectively, while the atom containing the opposite
label cannot belong to a C-minimal model of PX. Hence, there is at most one term s such
that labelE(j,i,s) € X or labelV(i,s) € X for an edge (j —1i) € E or vertexi € V,
respectively, and it holds that s € {+,=}, which allows us to conclude that o' and ' are
total labelings.

As regards extending o and i, we have that fact observedE(j, i, s). or observedV(i, s).
belongs to T((V, E,0), 1) if 0(j,1) = s or u(i) = s, respectively, is given. This implies
that labelE(j,i,s) € X or labelV(i,s) € X, respectively, as the fourth or third rule
in (A.2) would be unsatisfied otherwise. Thus, o'(j,i) = sifo(j,i) = s, and i’ (i) = s if
p(i) = s.

It remains to be shown that 1/ (1) is consistent for each non-input vertex i € V. To this
end, we note that the integrity constraint

— labelV(V, S), not receive(V, S), not input(V').

from (2.6) necessitates receive(i,r) € X if (/' (i) = r (that is, if labelV(i,r) € X) for
a non-input vertex i € V. Otherwise, PX would contain an unsatisfied ground instance
in view that input(i) € X exactly if fact input(i). is included in 7((V, E, o), u). How-
ever; any ground instances of the integrity constraint contributing to P~ do not contain

atoms over predicate receive. Such atoms can only be derived using the following rules
from (2.5):

receive(V,+) < labelE(U,V, S), labelV(U, S).
receive(V,=) « labelE(U,V,S),labelV(U,T),S # T.

Since X is a C-minimal model of P~, receive(i,+) € X or receive(i,~) € X is possible
only if labelE(j,i,s) € X and labelV(j,t) € X such that s = t or s # t, that is, if
o'(j,i) = s and p'(j) = t such that (/' (7)o'(j,i) = + or (/ (7)o’ (j, i) = = respectively.
As labelV(i,r) is accompanied by receive(i, 1) in X for each non-input vertex i € V, this
allows us to conclude that 1/ (i) = r implies p'(j)o'(j,1) = r for some regulator j of i.
Hence, we have that 1/ (i) is consistent for each non-input vertexi € V.

Proof A.2 (Proof of Theorem 2.2) Assume that (V, E,0) and | are consistent. Then,
there are total extensions o' : E — {+,=} of o and 1/ : V' — {+,=} of u such that, for
each non-input vertex i € V, we have /(i) = (' (7)o’(j,1) for some edge j — i in E.
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We consider the following set X of atoms:

X = {vertex(i), labelV(i,s) |i €V, /(i) = s}
U {edge(j, i), labelE(j, i, s) | (j —1) € E,0'(j,i) = s}
U {receive(i, ts) | (j—1i) € E,0'(j,1) = s, 4/ (j) = t}
U {observedE(j,1, s) | (j—1i) € E,0(j,1) = s}
U {observedV(i, s) | i€V, u(i) = s}
U {input(7) | i € Visaninput} .

For showing that X is an answer set of Po U T((V, E,0), 1), we need to verify that X is
a C-minimal model of

PX = {(head(r) < body(r)™)8 |
re PoUT((V,E,0),un), (body(r)=0)NX =0,0: var(r) — U}

where var(r) is the set of all variables that occur in a rule r, U is the set of all constants
appearing in Pc UT((V, E,0), 1), and 0 is a ground substitution for the variables in r.

To start with, we note that X includes an atom vertex(i), edge(j, 1), observedE(j, i, s),
observedV(i, s), and input(i), respectively, exactly if there is a fact with the atom in the
head in T((V, E, 0), 1). Each of these facts belongs also to PX, is satisfied by X, but not
by any set Y of atoms excluding at least one of the head atoms. Furthermore, since o’
and ' are total mappings, we have that |{labelE(j,i,+),labelE(j,i,—)} N X| = 1 and
|{labelV(i,+),labelV(i,=)} N X| = 1 for every (j —1i) € E and i € V, respectively.
Hence, X, but no subset Y of X excluding at least one atom over predicates labelE and
labelV, satisfies all ground instances of the following rules from (2.3) in P :

labelV(V, +); labelV(V, =) «— vertex(V).
labelE(U, V., +); labelE(U,V,=) < edge(U, V).

In addition, since o' and y' extend o and y, respectively, all ground instances of the
following rules from (2.4) in PX are satisfied by X :

labelV(V,S) < observedV(V,S).
labelE(U,V, S) « observedE(U,V, S).

Since labelE(j,1,s) € X and labelV(j,t) € X if 0'(j,1) = s and ji/'(j) = t, respectively,
we have that receive(i,ts) € X exactly if there is a ground instance of the rules

receive(V,+) < labelE(U,V, S), labelV(U, S).
receive(V,=) « labelE(U,V, S),labelV(U,T),S # T.

from (2.5) in P~ such that labelE(j, 1, s), labelV(j, t) € X occur in the body and receive(i, ts)
in the head. Hence, no subset Y of X excluding any atom over predicate receive is a
model of PX. Finally, since 1i/'(i) = 1/'(j)o'(j, 1) for each non-input vertex i € V and
some j—i in E, labelV(i,r) € X implies that receive(i,r) € X. That is, the ground
instances of the integrity constraint

— labelV(V, S), not receive(V, S), not input(V).
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from (2.6) that contribute to P are satisfied by X.

We have now investigated all rules in P UT((V, E, o), 1) and shown that their ground
instances in P are satisfied by X. Furthermore, we have checked for all atoms in X that
they cannot be excluded in any model Y C X of PX. That is, X is indeed a C-minimal
model of P~ and thus an answer set of Po UT((V, E, ), p).

A.2 Proof of Theorem 2.4 and 2.5

This appendix provides proofs for soundness and completeness of the MIC extraction
encoding in Section 2.4. We use 7((V, E, o), j1) as defined in (A.1) to refer to the facts
representing an influence graph (V) F, o) and a (partial) vertex labeling p : V' — {+,-}.
By Pp, we denote the encoding consisting of the schematic rules in (2.4), (2.7), (2.8),
and (2.9).

As an auxiliary concept, for any subset W C V, we say that o/ : F — {+ -} and
WV — {+ =} are witnessing labelings for W' if the following conditions hold:

1. o/ and y/ are total,

2. if 0(j,1) is defined, then o' (j, 1) = o (7, 1),

3. if u(2) is defined, then p' (i) = p(i), and

4. 1/ () is consistent (relative to ¢”) for each non-input vertex i € W.
The above conditions make sure that ¢’ and 1 are total extensions of ¢ and u, respec-
tively, such that the variations of vertices in W are explained. Comparing Definition 2.3,

the first condition requires the absence of witnessing labelings for a MIC W/, while the
second condition stipulates the existence of witnessing labelings for each W' C W.

Proof A.3 (Proof of Theorem 2.4) Assume that X is an answer set of PpUT((V, E, o), ).
Furthermore, let

PX = {(head(r) < body(r)T)8 |
re PpUT((V,E,0), 1), (body(r)=0)NX =0,6: var(r) — U}

where var(r) is the set of all variables that occur in a rule r, U is the set of all constants

appearing in Pp U T((V, E,0), 1), and 0 is a ground substitution for the variables in r.
Then, by the definition of an answer set, we know that X is a C-minimal model of PX.

Let W = {i | active(i) € X }. We have to show that the following conditions hold:

1. There are witnessing labelings for each W' C W.

2. There are no witnessing labelings for W.

We below consider these conditions one after the other.
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Condition 1. Let W' = W \ {k} for any k € W. Furthermore, define o' and /' as
follows:

={(j—i)—s|(j—1i) € E,labelE’(k,j,i,s) € X}
U{(j—1i)—+|(j—1) € E, labelE’(k,j,i,+) & X, labelE’(k,j,i,-) ¢ X}

w {i—s|ieV iabelV'(k,i,s) € X}
{i—+]|i€V iabelV’'(k,i,+) ¢ X, labelV’(k,i,-) ¢ X} .

0./

C

We show that o' and ' are witnessing labelings for W',

Regarding the uniqueness of labels assigned by o' and 1/, consider the following rules
from (2.9) including predicates labelE’ and labelV’ in their heads:

labelV’ (W, V. +); labelV’ (W, V, -
labelE”(W, U, V, +); labelE’ (W, U, V, -

labelV’(W, V., S
labelE" (W, U, V, S

,vertexMIC(V').
,edgeMIC(U, V).
,observedV(V,S).
,observedE(U, V., S).

«— active
«— active

(A.3)

«— active
«— active

— — N ~—
NN /NN
— — N

Since the given (partial) labelings o and | assign unique labels to the elements of their
domains, facts defining observedE and observedV are of the form observedE(j,i,+). or
observedE(j,1,—). and observedV(i,+). or observedV(i,=)., respectively, and at most
one of these facts is contained in T((V,E,0), ) for an edge (j —1i) € E or vertex
i € V. Because X is a C-minimal model of PX, the atoms in the heads of facts are
in X, and all atoms in X over predicates observedE and observedV are derived from
facts in T((V, E,0), p), in view that these predicates do not occur in the head of any
rule in Pp. Hence, at most one of the atoms labelE’(k, j,i,+) and labelE’(k, j,i,=) or
labelV’(k,1,+) and labelV’(k,i,-), respectively, is derivable for an edge (j —1i) € E
or vertex i € V from a ground instance of the fourth or third rule in (A.3) and then
included in X. If either of labelE’(k, j, i, +) and labelE’(k, j,i,-) or labelV’(k,i,+) and
labelV’(k,1,-), respectively, is included in X, then the ground instance of the second or
first rule in (A.3) for k and an edge (j — i) € E or vertex i € V is satisfied, so that the
atom containing the opposite label cannot belong to a C-minimal model of PX. Hence,
there is at most one term s such that o'(j,i) = s or /(i) = s for an edge (j —i) € E
or vertex i € V, respectively, and it holds that s € {+,-}. Furthermore, looking at the
definitions of o' and 1/, it is obvious that both are total, which allows us to conclude
that o’ and 1/ are total labelings.

As regards extending o and i, we have that fact observedE(j, 1, s). or observedV(i, s).
belongstoT((V,E o), ) ifo(j,i) = sor u(i) = s, respectively, is given. Along with the
premise that active(k) € X, this implies that labelE’(k, j,i,s) € X orlabelV’(k,i,s) € X,
respectively, as the fourth or third rule in (A.3) would be unsatisfied otherwise. Hence,
we have ¢'(j,1) = sifo(j,i) = s, and (/' (i) = s if p(i) = s.

It remains to be shown that [/ (i) is consistent for each non-input vertex i € W'. To
establish this, we first consider the following rules from (2.7):

edgeMIC(U, V') « edge(U, V), active(V').
vertexMIC(U) «— edgeMIC(U,V ). (A4)
vertexMIC(V') «— active(V').
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In view that fact edge(j, ). belongs to 7((V, E, ), 1) for every (j —1i) € E, we con-
clude that edge(j,i) € X. Along with active(i) € X for every i € W, it follows that
edgeMIC(j,i) € X for every (j —1i) € E such thati € W, and vertexMIC(i) € X for
every i € W. The last observation and the first rule in (A.3) imply that labelV’(k,i,+) €
X or labelV’(k,i,—) € X for everyi € W. Fori € W/, ie., i # k, the integrity
constraint

— labelV’(W, V. S), active(V'),V # W, not receive’ (W, V., 5).

from (2.9) imposes receive’(k,i,+) € X iflabelV’(k,i,+) € X, and receive’(k,i,-) € X
if labelV’(k,i,—) € X, while any ground instances of the integrity constraint contribut-
ing to PX do not contain atoms over predicate receive’. Such atoms can only be derived
using the following rules from (2.9):

receive’ (W, V,+) « labelE’(W,U,V,S), labelV’(W,U, S),V # W.
receive’ (W, V., =) « labelE’(W,U,V,S), labelV’(W,U,T),V # W,S # T.

Since X is a C-minimal model of PX, receive’(k,i,+) € X or receive’(k,i,—) € X
is possible only if labelE’(k, j,i,s) € X and labelV’(k,j,t) € X such that s = t or
s # t, respectively. Comparing T7((V,E, o), ) and the rules in (A.3), (A.4), as well
as (A.5) reveals that (j —1i) € E is a necessary condition for labelE’(k, j,i,s) € X,
and the same applies to j € V and labelV’(k,j,t) € X. By the construction of o'
and (', labelE’(k, j,i,s) € X implies that o'(j,i) = s and labelV’(k,j,t) € X that
W (j) = t. We conclude that receive’(k,i,+) € X or receive’(k,i,—) € X necessitates
W(j)o'(j,i) = +or ' (j)o'(j,i) = = respectively, for some regulator j of i. Finally,
we have /(i) = + if labelV’(k,i,+) € X (and receive’(k,i,+) € X), and 1/(i) = -
if labelV’(k,i,—) € X (and receive’(k,i,—) € X). This shows that i receives some
influence matching 1 (i), so that (/' (i) is consistent. Since i € W' is arbitrary, o’ and /'
are witnessing labelings for W'.

To conclude the proof of the first condition to verify, we note that witnessing labelings
for W' are also witnessing labelings for all subsets of W'. Hence, it is sufficient to check
the existence of witnessing labelings for sets W' = W \ {k} for any k € W. As shown
above, an answer set X of Pp U T((V,E, o), ) yields witnessing labelings for them.
Hence, the second condition in Definition 2.3 holds for W = {i | active(i) € X }.

Condition 2. We now show by contradiction that there cannot be witnessing labelings
for W. To establish this, we first note that vertices in W cannot be input because, if fact
input(i). belongs to T((V, E, o), 1), then input(i) must be included in X, so that the rule

active(V'); inactive(V') «— vertex(V'), not input(V'). (A.S)

from (2.7) does not contribute a ground instance for i to P~. Since active(i) cannot be
derived from any other ground rule in PX, the fact that X is a C-minimal model of PX
implies that active(i) ¢ X for any input vertex i. Furthermore, the integrity constraint

«— not bottom. (A.6)
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from (2.8) necessitates bottom € X because X cannot be a model of PX otherwise.
Then, we get labelV(i, +), labelV(i,=) € X and labelE(j,i,+), labelE(j,i,—) € X for all
vertices i € V and edges (j — i) € E, respectively, due to the following rules from (2.8):

labelV(V,+) < bottom, vertex(V').

labelV(V,=) < bottom, vertex(V). (A7)
labelE(U, V, +) <« bottom, edge(U, V). ’
labelE(U,V,=) < bottom, edge(U, V).

We now show that the existence of witnessing labelings for W yields a contradiction
to the fact that X is a C-minimal model of P. To this end, assume that o' and |’ are
witnessing labelings for W. Then, let

Y = (X \ ({bottom}
U {labelV(i,s) | labelV(i,s) € X}
U {labelE(j,1, s) | labelE(j,1i,s) € X'}
U {opposite(j,i) | opposite(j,i) € X}))
U {labelV(i,s) |i€ V, /(i) = s}
U {labelE(j,i,8) | (j —1) € E,0'(j,i) = s}
U {opposite(j,i) | (j —1i) € E, /(i) # p/' ()0’ (4, 1)} .

Since bottom € X \'Y and X contains a maximum amount of atoms over predicates
labelV, labelE, and opposite (the atoms over opposite are consequences of the inclusion
of atoms over labelV and labelE), we have that Y C X, and we show that Y is a model
of PX.

Considering the contributions of the facts in 7((V,E, o), ) and the rules in (2.9)
to PX, we observe that the atoms over predicates occurring in them are interpreted the
same in X and Y. Hence, such facts and rules stay satisfied by Y because they were al-
ready satisfied by X. The same applies to the rules from (2.7) repeated in (A.4) and (A.5).
Furthermore, since o’ and i’ are total and extend o and pi, respectively, the contributions
of the following rules from (2.4) and (2.7) to PX are satisfied by Y :

labelV(V,S) < observedV(V, S).
labelE(U,V, S) «— observedE(U V,S).
-)
-)

labelV(V, +); labelV(V, =) «— vertexMIC(V').
labelE(U, V., +); labelE(U, V — edgeMIC(U,V).

Since the integrity constraint in (A.6) does not belong to PX and the rules in (A.7) are
satisfied by Y in view of bottom ¢ Y, it remains to consider the following rules from (2.8):

opposite(U, V') « labelE(U,V, =), labelV(U, S), labelV(V, S).
opposite(U, V') « labelE(U,V, +), labelV(U, S), labelV(V,T),S # T.
bottom «— active(V'), opposite(U, V) : edge(U, V).
The rules defining predicate opposite are such that, in order to satisfy their ground in-

stances in PX, Y must contain opposite(j, i) iflabelE(j, i, 1), labelV(j, s), and labelV(i, t)
belong to Y such that t # sr. This matches the definition of Y, including labelE(j,i,1)

if 0'(4,4) = r, labelV(j, s) if p'(j) = s, labelV(i,t) if /(i) = t, and opposite(j,i) if
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W' (i) #u'(5)a’(4,1). Hence, rules defining opposite in P~ are satisfied by Y. It remains
to be shown that bottom is not derivable from any ground instance of the last rule. In
this regard, recall that W = {i | active(i) € X} = {i | active(i) € Y}, and we
have seen above that active(i) can only belong to X if i is not an input. As o' and |/
are witnessing labelings for W, for every i € W, there is an edge (j —1) € E such
that 1/ (i) = 1/'(j)o’(4,4). By the definition of Y, this implies opposite(j,i) ¢ Y, while
edge(j,1) belongs to X and Y because X andY are models of T((V, E,0), 11). As a con-
sequence, for every i € W, we have {opposite(j,i) | edge(j,i) € Y} € Y, so that the
ground instance for i in P~ of the rule with bottom in the head is satisfied by Y. We have
thus established that Y C X is indeed a model of P, a contradiction to the assumption
that X is a C-minimal model of P~ and an answer set of Pp UT((V, E, o), p).

The above contradiction shows that the second condition to verify, which is the first
condition in Definition 2.3, holds for W = {i | active(i) € X }. The fact that the second
condition in Definition 2.3 holds for W has been shown before. Hence, W is a MIC.

Proof A.4 (Proof of Theorem 2.5) Assume that W = {ky,... k,} is a MIC. Then, the
following conditions hold:

1. There are witnessing labelings o1, i1, . . ., 0p, fin for W\ {k1}, ..., W\ {k,}.
2. There are no witnessing labelings for W.

We consider the following set X of atoms:

X = {vertex(i) eV}
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U {edge(j, i)

U {observedE(j, 1, s)

U {observedV(i, s)

U {input(i)

U {active(i)

U {inactive(i)

U {edgeMIC(j,1)

U {vertexMIC(j)

U {vertexMIC(i)

U {labelE’(k,,, j,i,1)

U {labelE’(k,,, j,i,1)

U {labelV’(ky,, j, s)

U {labelV’(kp,, i, s)
U {labelV’(ky, i, s)

U {receive’(ky, i, sr)

U {receive’(ky,, i, sr)

U {receive’(ky,, i, sr)

U {labelV(i,+), labelV(i,-)
U {labelE(j, i, +), labelE(j,i,-)

U {opposite(3,1)
U {bottom} .

(j—i) € B}
(4 —1) € E,0(j,i) = s}

e V(i) = s}
i € Vis an input}
ieW}

ieV \ W is not an input}

€ B,0(j,i) =71 <m<n}
€E, i€ W, un(j) =s1<m<n}
€W, um(i) =s,1 <m<n}

eV u(i)=s1<m<n}
(j—i) e EieW,

Om(J,1) =7, () = 8,0 7 by 1 < <}
| (j—i) € E.jeWor(j—k) € EforkeW,
U(J:@):Ta/im(J):S,Z#km,lﬁmgn}

| (j—i) € E,
o(j,8) =r,u(j) = 8,0 # kp, 1 <m < n}

K
|
|
K
|
|
|
| (J

HRE

}E]—W;EEZEWO'm(j, i)=r,1<m<n}
| (j—1)
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For showing that X is an answer set of Pp U T((V, E, o), i) (such that {i | active(i) €
X} = W), we need to verify that X is a C-minimal model of

PX = {(head(r) < body(r)T)8 |
re PpUT((V,E o), 1), (body(r)"0)NX =0,6: var(r) — U}

where var(r) is the set of all variables that occur in a rule r, U is the set of all constants
appearing in Pp UT((V, E,0), 1), and 0 is a ground substitution for the variables in r.

To start with, we note that X includes an atom vertex(i), edge(j, 1), observedE(j, i, s),
observedV(i, s), and input(i), respectively, exactly if there is a fact with the atom in the
head in T7((V, E, 0), j1). Each of these facts belongs also to PX, is satisfied by X, but not
by any set Y of atoms excluding at least one of the head atoms.

In view that W cannot contain any input (otherwise, satisfaction of the second condi-
tion in Definition 2.3 would immediately imply violation of the first one), we have that
either active(1) or inactive(i) belongs to X for every non-input vertex i € V. Hence, X
satisfies all ground instances of the rule

active(V'); inactive(V') «— vertex(V'), not input(V').

from (2.7) belonging to P~, while no setY of atoms excluding both active(i) and inactive(i)
for any non-input vertex 1 € V satisfies all of these ground instances.
Considering ground instances of the rules

edgeMIC(U, V') « edge(U, V'), active(V').
vertexMIC(U) «— edgeMIC(U,V ).
vertexMIC(V') «— active(V').

from (2.7), all of them belong to P, are satisfied by X, but not by any set Y of atoms
such that {edgeMIC(j,i) | edgeMIC(j,i) € X} U {vertexMIC(i) | vertexMIC(i) €
X} Z Y and {active(i) | active(i) € X} C {active(i) | active(i) € Y}, while it
has been shown above that {active(i) | active(i) € X} < {active(i) | active(i) € Y}
necessitates {inactive(i) | inactive(i) € Y} € {inactive(i) | inactive(i) € X} forY
being a model of PX. Hence, there cannot be any model Y C X of PX excluding some
atom edgeMIC(j, i) or vertexMIC(i) that belongs to X.

Now turning our attention to atoms of form labelE’(k,, j,i,7) and labelV’(k,,, j, s),
we note that they are included in X if edgeMIC(j,i) € X and vertexMIC(j) € X,
respectively, and 0,,(j,1) = 1, um(j) = s in witnessing labelings o, and (i, for W\
{km}, where 1 < m < n, orifo(j,i) =r,u(j) = s. Then, the fact that active(k,,) € X
and labels assigned by o,, and i, are unique and respect those assigned by o and |
implies that none of the atoms can be removed from X without violating some ground
instance of the rules

«— active
«— active

labelV’ (W, V., +); labelV’ (W, V, =)
labelE’(W, U, V,+); labelE’(W, U, V, =)
labelV’(W,V, S) « active

labelE’(W,U,V, S) < active

W), vertexMIC(V).

W), edgeMIC(U,V).
W)
w

,observedV(V,5).

(
(
(
(W), observedE(U,V, S).

from (2.9) that belongs to PX. However, X satisfies all of these ground instances by its
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construction. We further consider the following rules from (2.9):

receive’ (W, V,+) « labelE’(W,U,V,S), labelV’(W,U, S),V # W.
receive’ (W, V,=) « labelE’(W,U,V,S), labelV’(W,U,T),V # W,S # T.

As shown above, labelE’(k,,, j,i,r) belongs to X if i € W and 0,,(j,i) = r, or if
0(j,i) = om(j,i) = r. Furthermore, labelV’(k,,, j,s) is included in X if j € W or
(j—k) € E;k € Wand py,(j) = s, orif u(j) = pum(j) = s. Comparing the cross
product of these conditions to the definition of X yields that an atom receive’(k,, i, sr)
belongs to X exactly if labelE’(ky,, j,i,r) and labelV’(k,, j, s) are in X and i # k.
Hence, when excluding any of the atoms receive’(ky,, 1, sr) from X, some ground in-
stance of the above two rules belonging to P~ becomes unsatisfied, and so we have that
such atoms cannot be removed from X in order to construct a model Y C X of P¥.
Moreover, the fact that o, and p.,, are witnessing labelings for W' = W \ {k,, } implies
that all ground instances of the integrity constraint

— labelV’(W, V., S),active(V'),V # W, not receive’(W, V. S).

from (2.9) that belong to PX are satisfied by X. In fact, for every i € W', there is
some (j — i) € E such that i,,,(i) = i, (§)0m (7, 7). Since labelE’(ky,, j, i, 0m(j,1)) and
labelV’ (kp, j, bm(J)) belong to X, this implies that each atom labelV’(ky,, i, pum (7)) for
i € W' is accompanied by receive’ (kpy, i, pm (1)) = receive’(kpy,, i, fim(J)om(Jj, 1)) in X,
so that the ground instance for ky,, i, and ji,,(i) of the integrity constraint is not in P~.

Finally, we consider atoms of the form labelV(i, s), labelE(j, 1, s), and opposite(],i)
that belong to X foralli € V and (j —1i) € E, respectively, and s € {+,-}. Since
bottom is also in X, it is clear that the ground instances of the following rules from (2.4),
(2.7), and (2.8), all of which belong to P~, are satisfied by X :

labelV(V, S) < observedV(V, S).

labelE(U, V., S) « observedE(U V,S).
labelV(V, +); labelV(V,=) «— vertexMIC(V).
labelE(U, V., +); labelE(U, V -) « edgeMIC(U, V).
opposite(U, V') «— labelE(U,V, =), labelV(U, S), labelV(V, S).
opposite(U, V') « labelE(U,V,+), labelV(U, S), labelV(V,T),S # T.
bottom — active(V'), opposite(U, V') : edge(U, V).

labelV(V, +) < bottom, vertex(V).

labelV(V, =) « bottom, vertex(V).
labelE(U, V +) < bottom, edge(U, V).
labelE(U, V,=) < bottom, edge(U, V).

As shown above, any model Y C X of PX must necessarily include observedV(i, s)
if u(i) = s, observedE(j,i,s) if 0(j,i) = s, vertexMIC(i) ifi € W or (i—k) €

for some k € W, edgeMIC(j,i) if (j—1i) € E for some i € W, and active(i) zf
1 € W. Proceeding by proof by contradiction, assume that there is a model Y C X
of PX such that labelV (i, s), labelE(j, i, s), or opposite(j,i) is not in'Y for some i € V
or (j —1i) € E, respectively, and s € {+,-}. From the previous considerations and the
first two rules repeated above, we know that labelV(i, s) and labelE(j, i, s) must belong
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toY if u(i) = s or o(j,i) = s, respectively. Furthermore, the third rule necessitates
{labelV(i,+), labelV(i,=)} NY # O for every i € W ori € V such that (i — k) € E
for some k € W, and the fourth rule implies {labelE(j,i,+), labelE(j,i,—=)} N Y # ()
for every (j —1) € E such thati € W. In view of the last four rules, we immedi-
ately conclude that bottom ¢ Y, which in turn implies that, for every i € W, there is
some (j —1i) € E such that opposite(j,i) does not belong to Y. Comparing the rules
defining opposite, the exclusion of opposite(j,i) is possible only if Y does not include
labelE(j,i,r), labelV(j, s), and labelV(i,t) such that t # sr. As we have shown above
that some atoms labelE(j,i,1), labelV(j, s), and labelV(i,t) for r, s, t € {+,=} must be-
long to Y, we can now conclude that t = sr holds and that the atoms over predicates
labelE and labelV in Y define (partial) labelings o' and ' by:

e For every i € W, pick some edge (j —1i) € E such that opposite(j,i) does not
belongtoY, andlet o'(j,i) = riflabelE(j,i,7) € Y, i/'(j) = siflabelV(j,s) € Y,
and ' (i) = t if labelV(i,t) € Y.

As we have seen above, such an edge (j — 1) € E exists for every i € W, and the fact that
t # sr is not obtained for atoms labelE(j, i, 1), labelV(j, s), and labelV(i,t) in' Y implies
that o' and 1 assign unique labels to (j — i), j, and i, respectively. When we totalize
o' and ' by setting o'(j,1) = o(j,1) and /(i) = p(i) if 0(j, 1) or u(i), respectively, is
defined, and o'(j,1) = + as well as (/' (i) = + for all remaining edges in E and vertices
in 'V, we obtain witnessing labelings for W. But this is a contradiction to the fact that W
is a MIC, which allows us to conclude that there cannot be any model Y C X of PX
that omits labelV(i, s), labelE(j, 1, s), or opposite(j,i) for some i € V or (j —1i) € E,
respectively, and s € {+,-}.

To conclude the proof that X is a C-minimal model of PX, note that the integrity
constraint
«— not bottom.

from (2.8) does not contribute any rule to PX because bottom € X. We have now
investigated all rules in PpUT((V, E, 0), 1) and shown that their ground instances in PX
are satisfied by X. Furthermore, we have checked for all atoms in X that they cannot be
excluded in any model Y C X of PX. That is, X is indeed a C-minimal model of P
and thus an answer set of Pp UT((V, E,0), ).

A.3 Proof of Theorem 3.1

We formalize the representation of instances, as described in Section 3.3.1, by defin-
ing a mapping 7 of a metabolic network network completion problem (G4, G,,, T, S) as
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follows:

(draft(d).
reaction(r,d). | r € R(Gy)
reactant(m,r). | r € R(G4), m = reac(r)
product(m,r). | € R(Gg4), m = prod(r)
7(Gq,Gp, T, S) = < reaction(r,n). | r € R(G,) (A.8)
reactant(m,r). | r € R(G,), m = reac(r)
product(m,r). | r € R(G,), m = prod(r)
seed(m). | meS
| target(m). | meT

By P, we denote the encoding containing the schematic rules in (3.1),(3.3),(3.4),(3.5).

Proof A.5 (Proof of Theorem 3.1, Soundness) Assume that X is an answer set of P U
T(Ga, G, T, S). Furthermore, let

PX = {(head(r) < body(r)")0 |
r€ PoUT(Gq, Gy, T, S), (body(r)=0)NX = 0,0 : var(r) — U}

where var(r) is the set of all variables that occur in a rule v, U is the set of all constants

appearing in Pc UT(G4,G,,T,S), and 0 is a ground substitution for the variables in r.
Then, by the definition of an answer set, we know that X is a C-minimal model of P~.

Given X, we define R¢ as follows:
R = {r | xreaction(r) € X }.

We show that R¢ is a completion of G4 from G, wrt (S,T), such that Rc C R(G,) \
R(G4) and T C ¥ (S) where

G = ((R(Ga) U Rc) U (M(Ga) U Me), E(Ga) U Ec)
Mc¢ {m | r e C,ym € reac(r) U prod(r)} , and
Ec = {(m,r)|reC,méereac(r)} U{(r,m) € E(G,) | reC,m & prod(r)} .

Consider the following rules from (3.1):

dscope(M) <« seed(M).
dscope(M) <« product(M, R), reaction(R, N),draft(N), 3.1)
dscope(M') : reactant(M', R).

The first rule declares all seed metabolites M € S as producible. The second rule
defines recursively that a product M of a reaction R is producible, whenever all reac-
tants M' of R are available. Together with the problem encoding (G4, G, T, S), the set
of rules in (3.1) enforce that the atoms in the head are in every C-minimal model such
that dscope(m) € X iff m € X¢,(S) form € M(Gy).

Further, the rule (3.3):

{xreaction(R) : reaction(R, N) : not draft(N)}. (3.3)
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combined with the problem instance 7(G 4, G, T, S), guarantees that all chosen xreaction(R)
reactions belong to R(G,) \ R(Gg). Hence, for every C-minimal model X it holds that
xreaction(r) € X iffr € R(G,) \ R(Gy).

Further, consider the following rules from (3.4):

xscope(M) «—
xscope(M) «—

xscope(M) «—

seed(M).

product(M, R), reaction(R, N ), draft(N),
xscope(M') : reactant(M’, R).
product(M, R), xreaction(R),

3.4)

xscope(M'") : reactant(M', R).

In analogy to the rules from (3.1), these rules define the (extended) scope of G = ((R(G4)U
Re) U (M(Gg) U Me), E(Gg) U E¢). The first two rules declare all seed metabolites
M € S and recursively all products M of a reaction R € R(G,) as producible, whenever
all reactants M’ of R are available. The third rule extends the scope with the products M
of xreactions R € R¢, whenever all reactants M' of R are available. Hence, for every
C-minimal model it must hold that xscope(m) € X iffm € L5 (S) form € M(G4)UMc.

Finally, it remains to be shown that the extended scope contains all targets from T'. To
this end, note that the integrity constraint from (3.5):

— target(M), not xscope(M). (3.5)

necessitates that every target M € T is also in the extended scope M € Y.5(S) and it
holds that T C ¥¢(5).

Hence, every answer set of a logic program Pc UT(Gy, Gy, T, S) represents a solution
to the network completion problem (G4, G, T, S).

Proof A.6 (Proof of Theorem 3.1, Completeness) Assume that R is a completion of
Gafrom G, wrt. (S,T). We consider the following set X of atoms:

(draft(d)

reaction(r,d) | r € R(Gyq)

reactant(m,r) | r € R(Gy), m = reac(r)
product(m,r) | r € R(Gg), m = prod(r)
reaction(r,n) | r € R(Gy)

reactant(m,r) | r € R(Gy), m = reac(r)

X = product(m,r) | r € R(G,,), m = prod(r) (A9)

seed(m) | meS

target(m) | meT

dscope(m) | m e Xg,

xreaction(r) | r € R¢

| xscope(m) | m e X¢

For showing that X is an answer set of Poc UT(Gy, G, T, S), we need to verify that X is
a C-minimal model of

PX = {(head(r) < body(r)™)0 |
r € PoUT(Gq,Gp, T,S), (body(r)~0)NX =0,6 : var(r) — U}
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where var(r) is the set of all variables that occur in a rule r, U is the set of all constants
appearing in Pc UT(G4,G,,,T,S), and 0 is a ground substitution for the variables in r.

To start with, we note that X includes an atom draft(d), reaction(r,n), reactant(m,r),
product(m, ), seed(m), target(m) exactly if there is a fact with the atom in the head in
7(Gy, G, T, S). Each of these facts belongs also to P, is satisfied by X, but not by any
set'Y of atoms excluding at least one of the head atoms.

Furthermore, X satisfies the rules in (3.1) by including atoms dscope(m) for m €
Y, X contains an atom dscope(m) if it contains a corresponding atom seed(m)
or if it includes the atoms product(m,r), reaction(r,d), draft(d), and for every atom
reactant(m’,r) € X exists an atom dscope(m) € X. Hence, no subset of X excluding
atleast one atom over predicate dscope would satisfy all ground instances of (3.1) in P~.

The ground instantiations of the choice rule (3.3) are trivaly satisfied by X, which
includes atoms xreaction(r) such that r € Rc and Rc N R(G4) = (.

In analogy to the rules in (3.1), the rules in (3.4) are satisfied by X including an atom
xscope(m) if m € Y. X contains an atom xscope(m) if X contains a coreponding
atom seed(m) or if X contains the atoms product(m, r), reaction(r,d), draft(d), and for
every atom reactant(m',r) € X exists an atom xscope(m) € X or if X contains the
atoms product(m,r), xreaction(r), and for every atom reactant(m',r) € X exists an
atom xscope(m) € X. Hence, no subset of X excluding atleast one atom over predicate
xscope would satisfy all ground instances of (3.4) in PX.

Finally, all ground instantiations of the integrity constraint (3.5) are satisfied by X. By
the definition of completion in Section 3.2, it holds that T C Y(S). Hence, for each
atom target(m) € X exists an atom xscope(m) € X, m € ¥g.

We have now investigated all rules in Pc\UT(Gq4, Gy, T, S) and shown that their ground
instances in P~ are satisfied by X. Furthermore, we have checked for all atoms in X that
they cannot be excluded in any model Y C X of PX. That is, X is indeed a C-minimal
model of PX and thus an answer set of Po U (G4, G, T, S).
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