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Inhaltsangabe 

In dieser Bachelorarbeit implementiere ich den automatischen Theorembeweiser nanoCoP-Ω. Es 

handelt sich bei diesem neuen System um das Ergebnis einer Portierung von Arithmetik-behandelnden 

Prozeduren aus dem automatischen Theorembeweiser mit Arithmetik leanCoP-Ω in das System 

nanoCoP. Dazu wird zuerst der mathematische Hintergrund zu automatischen Theorembeweisern und 

Arithmetik gegeben. Ich stelle die Vorgängerprojekte leanCoP, nanoCoP und leanCoP-Ω vor, auf dessen 

Vorlage nanoCoP-Ω entwickelt wurde. Es folgt eine ausführliche Erklärung der Konzepte, um welche 

der nicht-klausale Konnektionskalkül erweitert werden muss, um eine Behandlung von arithmetischen 

Ausdrücken und Gleichheiten in den Kalkül zu integrieren, sowie eine Beschreibung der 

Implementierung dieser Konzepte in nanoCoP-Ω. Als letztes folgt eine experimentelle Evaluation von 

nanoCoP-Ω. Es wurde ein ausführlicher Vergleich von Laufzeit und Anzahl gelöster Probleme im 

Vergleich zum ähnlich aufgebauten Theorembeweiser leanCoP-Ω auf Basis der TPTP-Benchmark 

durchgeführt.  Ich komme zu dem Ergebnis, dass nanoCoP-Ω deutlich schneller ist als leanCoP-Ω ist, 

jedoch weniger gut geeignet für größere Probleme. Zudem konnte ich feststellen, dass nanoCoP-Ω 

falsche Beweise liefern kann. Ich bespreche, wie dieses Problem gelöst werden kann, sowie einige 

mögliche Optimierungen und Erweiterungen des Beweissystems.
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1 Introduction 

Automated theorem proving is an active research field in computer science with many applications 

[29]. Automated theorem provers are programs capable of solving logic problems without human 

interaction. These programs combine the logical correctness and completeness of mathematical calculi 

with the speed and reliability of computers and have many use cases. They can be used to prove 

mathematical formulas for example from geometry or number theory. The most famous proof by an 

automated theorem prover is the automated proof of the 4-color-theorem [4]. Other domains where 

automated theorem provers can be used include software verification, natural language processing, 

biology, or geography. Model checkers, which are programs that are closely related to automated 

theorem provers, have been used by Intel to verify hardware for over 15 years [10]. Answer set solvers, 

which are also related to automated theorem provers, can be used to plan transportation in logistics, 

for example to plan the movement of robots in automated warehouses [2]. An extensive list of possible 

use-cases for automated theorem provers has been collected by the TPTP library [30]. 

Interactive theorem provers can assist in mathematical research and can utilise automated theorem 

provers. Interactive theorem provers store proof steps and data structures to assist the researcher and 

can check the proof the researcher writes for correctness of the proof upon command. Interactive 

theorem provers can be used in domains of mathematics for which first-order logic is not expressive 

enough and that are thus not available to certain automated theorem provers such as nanoCoP-Ω. It 

is possible to integrate automated theorem provers into this process though: they can be used to fill 

gaps in the proof that the researcher does not wish to prove themselves or they can be run in parallel 

to the researcher’s thought process. Of course, the interactive theorem prover system needs to adjust 

the automated theorem prover’s input to be in first-order logic for first-order provers, and this is not 

possible for all formulas. 

Many problems can be described with first-order logic due to its large expressiveness. However, very 

few use cases can be expressed in first-order logic without arithmetic expressions and equalities. Of 

the 2231 typed first-order logic problems in the TPTP benchmark 74% use equalities and 49% use 

arithmetic1. This illustrates the need for arithmetic handling capabilities in automated theorem 

provers. 

This thesis extends the automated theorem prover for first-order logic nanoCoP [20], which does not 

possess arithmetic handling capabilities and only rudimentary non-arithmetic equality handling 

capabilities, by procedures capable of handling arithmetic expressions and arithmetic equalities. 

nanoCoP is an automated natural non-clausal connection-based prover developed by Jens Otten [20]. 

The new handling procedures are those that were added to the automated clausal connection-based 

 
1 https://tptp.org/cgi-bin/SeeTPTP?Category=Documents&File=TFFSynopsis 
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prover leanCoP in the project named leanCoP-Ω [15]. The goal of adding these procedures to nanoCoP 

was to construct the automated typed first-order logic theorem prover nanoCoP-Ω, which was 

expected to have two major benefits over leanCoP-Ω due to the usage of non-clausal form vs. clausal 

normal form. First, the prover was hoped to be faster. Second, the prover is expected to provide 

human-readable proofs more easily for use within interactive theorem provers. Testing shows that 

nanoCoP-Ω is indeed faster for arithmetic and numeric type problems. As for the latter benefit, the 

current work hopefully provides groundwork for a prover that is suitable for the use in real-world 

applications after some additional iterations in the future. Before this can be done, however, a major 

issue with the prover which was discovered during testing needs to be resolved: the prover is not 

sound for certain typed arithmetic equalities, i.e., it can return false proofs for invalid formulas. 

The thesis is structured as follows. In chapter 2, I introduce the theoretical foundations for logic, 

arithmetic, equalities and the underlying mathematical calculus. In chapter 3 I describe the two provers 

nanoCoP-Ω is based on, as well as the benchmarks used for its evaluation. I then describe how the 

proof procedure must be extended to handle the new challenges presented by arithmetic expressions 

and equalities (chapter 4). Chapter 5 describes the implementation of the new prover, and chapter 6 

evaluates its performance. Chapter 7 outlines methods to re-establish soundness for the prover and 

describes additional optimizations and features nanoCoP-Ω could be extended by. Chapter 8 concludes 

this thesis and summarizes the outcome. In the Appendix I provide some additional lists. There is also 

an electronic appendix. 

2 Mathematical Background 

nanoCoP-Ω proves formulas in first-order logic with arithmetic and equalities. For solving arithmetic 

equalities, it uses an algorithm that employs Presburger arithmetic as a theoretical basis for 

interpreting numbers. This chapter contains the specification of first-order logic and describes 

Presburger arithmetic. Furthermore, it describes the connection calculus, which directly specifies how 

nanoCoP searches for proofs. 

2.1 First-order logic 

First-order logic contains the logical operators ∧ (AND), ∨ (OR), ¬ (negation), ⇒ (implication) and ⇔ (if-

and-only-if). In this thesis we only discuss the classical interpretation of these symbols. First-order logic 

furthermore contains the constant Boolean values ‘true’ and ‘false’, and there are variables, constants, 

and functions. Functions that return true or false are called predicates. Variables can be bound by the 

two quantifiers ∀ (for-all; universal quantification) and ∃ (there-exists; existential quantification). First-

order logic only allows for quantification over variables, not over functions or expressions. This is what 

separates it from higher-order logic and allows it to be described by complete and sound algorithms. 

This is a necessary feature when building a computer program, as it allows us to build proof procedures 
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that are guaranteed to terminate, and always find a proof for a given valid formula. Higher-order logic 

does not have this property and thus building an automated theorem prover for higher-order logic 

that is guaranteed to terminate during proof search is impossible. In the following the if-and-only-if 

operator is replaced by two implications, as this yields an equivalent expression. I also refer to the right 

side of an implication and to a logical formula that we want to prove as a conjecture. First-order logic 

originally does not include equality relations and arithmetic but can be extended by these to increase 

useability manifold. We use Presburger arithmetic in this thesis. 

2.2 Arithmetic 

Arithmetic refers to mathematical expressions with numbers. There have been several attempts at 

formalising arithmetic with varying degrees of success concerning decidability and consistency. Here 

we present Presburger arithmetic [23], which the Omega Test presented in chapter 4.2.3 uses as a 

basis for interpreting numbers. The axioms of Presburger arithmetic, quantified over all natural 

numbers, are as follows: 

[1] 0 ≠ x + 1 

[2] x + 1 = y + 1 →  x = y 

[3] x + 0 = x 

[4] x + (y + 1) = (x + y) + 1 

[5] For all first order formulas P(x) of at least one free variable x: 

P(0) ∧ ∀x. (P(x) ⇒ P(x + 1)) ⇒ ∀x. P(x) 

In Presburger arithmetic it is possible to define addition. Multiplication with constants can also be 

realised, and the relation ‘<’ can be fully defined. Negative numbers can be defined via subtraction. It 

is not possible to define multiplication with variables, division or prime numbers. Due to this reduced 

expressiveness, Presburger arithmetic remains decidable, that is for every formula that can be 

formulated with Presburger arithmetic it is possible to determine with an algorithm whether the 

formula follows from the axioms. 

2.3 Equalities 

Equality relations have the following properties which need to be respected within the prover [1]. The 

equality relation ‘=’ is reflexive, symmetrical, transitive, and possesses the substitution property: if a=b 

then also F(a)=F(b) for any expression F. Inequalities other than ‘≠’ are converse and transitive. The 

substitution property for inequalities only applies to monotonic functions. We cannot reason over 

monotonic functions within first-order logic, so this property cannot be integrated into the prover. 

2.4 Connection Calculus 

The origins of automated theorem provers lie in mathematical calculi that specify sound and complete 

proof search procedures. These were originally developed by mathematicians and allowed them to 
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reason over core aspects of logics, such as completeness. For instance, Vampire, a rather successful 

automated theorem prover, uses the superposition calculus [12]. Another calculus is the connection 

calculus. The prover nanoCoP, which we extend to create nanoCoP-Ω, is based on this calculus. To 

better understand the inner workings of nanoCoP, I will now explain the connection calculus. The 

calculus has not been extended to handle arithmetic and equality, which is something we will discuss 

in chapter 4.  

Proofs for first-order logic are always structured in the same way. If we wish to prove an implication, 

we can assume the truth of the left side and prove the right side in further reasoning. Alternatively, 

we can disprove the left side. If, on the other hand, we assume the truth of the implication we can use 

that truth to assume the truth of the right side in further reasoning, provided we can prove the 

implication’s left side. For conjunctions, the proof structure also has two formats, depending on 

whether we wish to prove the conjunction or if the conjunction can be assumed to be true. To prove 

the conjunction, we need to prove the left side and the right side independently from each other. In 

contrast, if the conjunction is assumed, we can use either side in reasoning.  

Attempts to exploit these systematic similarities between proofs, inherent to the semantics of classical 

logic, have been undertaken for the purpose of creating algorithms capable of finding proofs reliably. 

One of these algorithms is the connection calculus. It has been around for more than 50 years [22], but 

nanoCoP is based on a more recent description by Otten [19]. 

2.4.1 Syntactic Trees 

To apply the connection calculus, it is first necessary to convert the formula we wish to prove, a.k.a. 

the conjecture, into a matrix that represents it [18]. This is possible by exploiting the clearly defined 

way of proving the different logical expressions within first-order logic that we illustrated above. We 

start the conversion by traversing the syntax tree of a formula and assigning each node a polarity (i.e., 

F or T) and a rule type (i.e., α, β, γ, or ∂), as defined in 

Table 1. 

A node is either a logical operator or an atom. Atoms are the leaves of the syntax tree (terminal nodes). 

Atoms do not have a type. The polarity of a node depends on the parent node. The root operator is 

assigned the polarity F.  This is equivalent to assigning F to the entire formula. An atom that has been 

assigned a polarity is called a literal. The type is determined by the node’s polarity and the logical 

operator. Types tells us about the format the proof needs to have to prove the part of the formula 

defined by the operator: α corresponds to regular continuation, β corresponds to case distinction, γ 

corresponds to being allowed to instantiate the variable bound by the quantifier as we wish, and ∂ 

requires us to declare a new variable.  
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Table 1. Connection calculus rules for polarity and type of nodes 

 

One possible interpretation of the polarity is that F stands for ‘to-be-proven’ and T stands for ‘can be 

assumed’. Thus, by assigning the polarity F to the root we mark the entire formula as ‘to-be-proven’, 

see Example 1. Finding the ‘can be assumed’ version of a ‘to-be-proven’ literal means we have proven 

the atom described by this literal. In other words, a pair of identical literals of inverse polarities is a 

proof for the corresponding atom. These pairs are called connections. In Example 1 a dashed line 

highlights a connection for the atom p(a).  

 

The interpretation of pairs of identical literals with inverse polarities is different in nanoCoP. The 

conjecture is again assigned the polarity F. However, this stands for the truth value ‘false’. Thus, literals 

with polarity T are ‘true’ and literals with polarity F are ‘false’. To carry out a proof, we show that the 

assignment of the value ‘false’ to the conjecture is contradictory, thus yielding that the formula is true. 

Such a contradiction manifests itself in connections: if an atom is both true and false within a formula, 

we have a contradiction for this part of the formula.  

We now discuss the different node types introduced above in greater detail. The interpretation of type 

α is that both the left and the right side of the operator can be used in the same proof. For β, on the 

other hand, a case distinction within the proof is necessary: in one case we use the left side and in the 

other case we use the right side. An example for the importance of distinguishing between type α and 

type β can be found when comparing Example 1 and Example 2. In Example 1 we only have α-type 

operators while Example 2 has the operators ∨𝑇and ∧𝐹, which are of type β (see  

Operator + polarity ∧F ∧T ∨F ∨T ⇒F ⇒T ¬F ¬T ∀F ∀T ∃F ∃T 

Type β α α β α β α α δ γ γ δ 

Polarity left side child F T F T T F T F F T F T 

Polarity right side child F T F T F T - - - - - - 

 (p(a) ∧ p(b)) ⇒ (p(a) ∨ p(b))        Theorem 

The formula is translated into the syntax tree 

on the left. A connection between p(a)T and 

p(a)F corresponds to using the left side of 

the conjunctive assumption to prove p(a). 

⇒α
F

∧α
T

p(a)T p(b)T

∨α
F

p(a)F p(b)F

Example 1 
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Table 1). We do have the same connections we had in Example 1, but these are not sufficient in proving 

all cases. 

 

The types for the quantifiers work differently as they are used to define the nature of the variables 

they bind. We have γ-variables in the following situations. If we can assume a constraint for a 

universally quantified variable, we may insert any variable into the constraint and can be certain that 

the constraint will hold. Similarly, we may show that a constraint for an existentially quantified variable 

holds by showing that the constraint holds for any instantiation of this variable. Example 3 shows a 

syntax tree with a γ-operator that proves a theorem. The connection is again represented by a dashed 

line.  

 

 (∀x. p(x)) ⇒ p(a)         Theorem 

The formula is translated into the syntax tree 

on the left. A connection between p(x)T and 

p(a)F is possible because we can instantiate 

x with a. 

⇒α
F

∀xγ
T

p(x)T

p(a)F

Example 3 

 (p(a) ∨ p(b)) ⇒ (p(a) ∧ p(b)) 

   Non-Theorem    

The formula is translated into the syntax tree 

on the left. A connection between p(a)T and 

p(a)F is possible, but the two β-type 

operators force two case distinctions for a 

total of four cases where we can only prove 

one case per distinction. 

⇒α
F

∨β
T

p(a)T p(b)T

∧β
F

p(a)F p(b)F

Example 2 
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Type δ indicates that the variable bound by the quantifier must be regarded as a new constant. In a 

natural proof we would declare the δ-variable as ‘Let X by a new, unknown but invariant variable’. Type 

δ applies to the following two situations. First, when proving an attribute of a universally quantified 

variable we may not instantiate this variable with another variable that already exists but instead must 

create a new one. And second, if we can assume the existence of a variable which satisfies a certain 

constraint, we may not declare this variable to be the same variable as another without a reason. 

Example 4 shows a syntax tree with a ∂-operator. The purpose of γ- vs. δ-typed variables will be 

discussed in greater detail later on. 

 

We have seen now how to build syntax trees with annotated types and polarities and how to use them 

to find proofs: the proofs were found by establishing connections between literals. The rest of the 

syntax tree was only partially relevant to the proof search. All that was required are two things: the 

literals with their polarities, and for any two literals the type of the operator that is their earliest 

common ancestor within the syntax tree. We say that two literals are in α- or β-relation if their earliest 

common ancestor is of the corresponding type. With this much in hand, we can construct a matrix.  

2.4.2 Matrices 

In contrast to a syntax tree, a matrix contains literals but not operators. Literals are positioned as 

follows: two literals are horizontal to each other if they are in α-relation, and vertical to each other if 

they are in β-relation. Syntactically, literals always occur in a clause. Matrices, including the top-level 

matrix describing the formula, consist of clauses. Clauses contain literals and/or further submatrices. 

The elements of the same clause are in β-relation, and thus written vertically. The elements of a matrix, 

in contrast, are in α-relation, and thus written horizontally. Example 5 illustrates this syntax: clauses 

are delimited by vertical lines and matrices by square brackets. 

 (∃x. p(x)) ⇒ p(a)             Non-Theorem 

The formula is translated into the syntax tree 

on the left. A connection between p(x)T and 

p(a)F is not possible because we cannot be 

sure that it is safe to instantiate x with a. 

Instead, x must be declared as a new 

unknown variable. 

⇒α
F

∃x𝛿
T

p(x)T

p(a)F

Example 4 
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 A maximal collection of literals in α-relation to each other is called a path. A path represents a 

particular set of case distinction decisions for all possible case distinctions within the proof. Within the 

matrix, a path traverses the matrix from left to right horizontally through every clause, while never 

selecting two literals that are in β-relation to each other. Thus, the number of paths through the matrix 

grows exponentially with the number of β-type logical operators that are in α-relation to each other. 

Consider Example 5. Here, the paths are as follows: {p(x)F, p(a)T}, {p(x)F, p(b)T}, 

{p(a)F, p(b)F, p(a)T} and {p(a)F, p(b)F, p(a)T}. All connections are marked with dashed lines.  

 

Note that a connection need not be between two complementary syntactically identical literals if one 

or both contain variables. The two literals need only be unifiable. This means that it must be possible 

for them to become the same under the substitution σ, which replaces variables with other variables 

or constants. This substitution is the same during the entire proof. In Example 5 and also in Example 3 

further above, the substitution replaces x with a in order to connect p(x)F and p(a)T. Syntactically this 

is denoted as σ = [a x⁄ ]. For Example 5 we also replace x with b, this is explained further below. 

There are several constraints on the substitution that need to be checked by the prover, whether this 

be a person or the computer. For instance, the necessity of distinguishing between γ- and δ-typed 

variables mentioned earlier now becomes apparent: γ-typed variables cannot be instantiated with δ-

typed variables declared ‘after’ them within the formula. For example, the calculus uses this to 

disprove the non-theorem ∃𝑦. ∀𝑥. (𝑝(𝑥) ⇒ 𝑝(𝑦)), where the ∂-variable x is below the γ-variable y 

within the syntax tree. In the tree this illegal situation would be represented by the γ-type quantifier 

node being an ancestor of the δ-type quantifier node. This constraint can automatically be enforced 

Matrix for example formula 5: 

ቈቤ
p(x)F

[ȁp(a)Fȁ ȁp(b)Fȁ]
ቤ ቤ

p(a)T

p(b)Tቤ቉ 

 ൫p(a) ∨ p(b)൯ ⇒      Theorem 

(∃x. p(x) ∧ (p(a) ∨ p(b))) 

The formula is translated into the syntax 

tree on the left. The proof requires four 

connections. The matrix including 

connections is displayed below. 

⇒α
F

∨β
T

p(a)T p(b)T

∧β
F

∃xγ
F

p(x)F

∧𝛼
𝐹

p(a)F p(b)⬚
F

Example 5 
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by transforming δ-typed variables into Skolem form: the ∂-variables are transformed into newly 

declared functions that have the γ-variables they depend on, i.e., that are declared above them in the 

syntax tree, as parameters. Now we perform an occurs-check: we test whether the variable we unify 

with an expression occurs within this expression. This suffices to enforce the constraint.  

There are many algorithms that construct the necessary substitution, such as for example [9], [13], and 

[26],  and this topic is an important part of implementing an automated proof procedure efficiently. 

We skip this part by letting Prolog, the programming language nanoCoP-Ω is written in, handle it and 

merely tell Prolog to do an occurs-checks when unifying. 

Some clauses may be used multiple times by the proof. This commonly occurs when a universally 

quantified expression holds. Another example are axioms such as the substitutive property of equality. 

Example 5 uses the clause on the left multiple times for connecting both p(a)F and p(b)F with p(x)T. 

The substitution thus becomes σ = [a x1⁄ , b x2⁄ ]. These multi-use clauses have a multiplicity higher 

than one. Each clause has a multiplicity that may be arbitrarily high, as long as it is not infinity.  

Next, recall that under the first interpretation given earlier, a connection means that we have found 

the necessary atom for a proof and thus the formula is valid for the particular case distinction at issue, 

i.e., for this particular path. Also recall, that by the interpretation used in nanoCoP [18], a connection 

means that the matrix is contradictory for this particular path. Thus, the formula is true, or the matrix 

is contradictory, if every possible path through the matrix contains a connection. Each path 

corresponds to one collection of case distinctions. We can now fully characterise the constraints 

needed to prove a formula with a matrix. Directly quoted from [18], page 228: 

 

2.4.3 The Calculus 

In the last chapters we saw how to prove a matrix by analysing all the paths it contains. However, 

instead of considering every single path, the non-clausal connection calculus that nanoCoP is based on 

groups paths together whenever possible. Since a given connection is likely to be part of multiple paths 

it makes more sense to search for connections. Whenever we find a connection, we can be certain that 

all paths that are extensions of this connection are complementary and thus proven. Hence, we need 

not consider paths containing only literals in α-relation to the literals of the connection. These paths 

contain the connection. Instead, paths not containing the connection, i.e., paths going through the 

literals in β-relation to the connection’s literals, need to be considered. This observation leads to the 

core idea of the non-clausal connection calculus: we search for connections, starting with a particular 

[Definition 1:] Matrix Characterization: A matrix is classically valid iff there exists a multiplicity μ, 

a term substitution σ and a set of complementary connections S, such that every path through Mμ 

contains a σ-complementary connection {L1, L2} ∈ S. 
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clause, and attempt to find connections for all the clause’s different literals. Once a connection is found 

all extending (a.k.a. α-) paths can be considered proven, while all alternative (a.k.a. β-) paths still need 

to be considered. With this much in hand, the calculus can be defined. The definition is again taken 

from [18], page 223. ε is the empty clause or the empty path. 

A derivation for C, M, Path in this calculus is a proof if all leaves are axioms. The path denotes the to-

be-proven path, thus containing only literals that we have not been able to find connections for yet. 

In the following the rules of the calculus are explained, as they will be extended upon and modified 

during the work done in this thesis. Each rule has a name, a requirement above the line, a conclusion 

below the line, and additional restrictions on the right side. 

The axiom rule defines what a solved proof branch looks like. As the currently to-be-proven objective 

is denoted by the clause C we are done if C is empty. All paths through the empty clause (there are 

none) have a complementary connection. 

1. 𝐴𝑥𝑖𝑜𝑚 (𝐴)          
 

{}, M, Path
 

The start rule initialises a proof by selecting a clause from the matrix. This is the first clause that the 

algorithm using the calculus attempts to solve. The choice of this clause can greatly influence the 

success of the procedure and it is discussed in chapters 4.2.5, 5.3 and 5.2.6. The proof copies C2 as a 

way of introducing and allowing for multiplicity and for the reusability of clauses. 

2. 
𝑆𝑡𝑎𝑟𝑡(𝑆)          

C2, M, {}

ε, M, ε
          and C2 is a copy of C1ϵM 

The extension rule describes the main strategy to find connections. 

3. 
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝐸)         

C3, M[C1\C2], Path ∪ L1       C, M, Path

C ∪ L1, M, Path
 

and C3 ≔ β − clauseL2
(C2), C2 is a copy of C1, C1 is an extension clause of M with regard to 

Path ∪ {L1}, C2 contains L2 with σ(L1) = σ(L2
̅̅ ̅) 

 

The rule selects a complementary literal L2 to the to-be-proven literal L1, where L1 is from the subgoal 

clause C ∪ L1, and L2 is from another clause C1 within the matrix M. C1 being an extension clause of M 

with regard to Path ∪ L1 means that the literals within C1 are all in α-relation to the literals of the Path 

and the parent clause is on the path if it exists, or that C1 is on the Path. We replace C1 in M with C2 to 

[Definition 2:] Non-Clausal Connection Calculus: The axiom and the rules of the non-clausal 

connection calculus are given [below]. The words of the calculus are tuples ‘C, M, Path’, where M 

is a matrix, C is a clause or ε and Path is a set of literals or ε. C is called the subgoal clause. C1, C2 

and C3 are clauses, σ is a term substitution, and {L1, L2} is a σ-complementary connection. The 

substitution σ is rigid, i.e. it is applied to the whole derivation. 
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allow for correct multiplicity again. C3 being the β-clauseL2 to C2 means that it contains only literals in 

β-relation to the complementary connection literal L2, so it contains only literals whose outgoing paths 

still need to be proven. The last line of the rule enforces the use of the global substitution σ. Thus, the 

left side of the rule describes how to solve a particular literal from the subgoal clause. The right side 

merely states that the rest of the subgoal clause also still needs to be proven. The rule is discussed in 

chapters 4.2.1, 4.2.4, 5.2.1 and 5.3. 

The reduction rule ensures that when searching for a complementary literal to the current one we 

consider connections to literals from the current path, i.e., backwards. These might otherwise not be 

found, as the extension clause described above only searches for connections to literals within another 

clause. If a backwards connection can be found we need not prove anything else, as the β-literals to 

the connected literal have already been handled by the extension rule. 

4. 
𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑅)         

C, M, Path ∪ {L2}

C ∪ {L1}, M, Path ∪ {L2}
         with σ(L1) = σ(L2

̅̅ ̅) 

The decomposition rule states that we can prove a matrix by proving one of its α-related clauses. It is 

a rule that deals purely with syntax and will not be discussed further. 

5. 
𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐷)         

C ∪ C1, M, Path

C ∪ {M1}, M, Path
        with C1 ∈ M1 

 

The lemma ‘rule’ is not a real rule, but an optimization commonly used in connection-based provers. 

It states that a literal that has already been proven need not be proven again. To implement it we need 

to collect the literals that we have already proven during the proof search in an additional list, and 

check that the current literal is not contained in the list. 

3 Previous Work on Connection Calculus Provers 

In this chapter I will present previous work that has made the idea of nanoCoP-Ω possible. This includes 

work on the provers nanoCoP and leanCoP-Ω, of which nanoCoP-Ω is a fusion, the Omega Test, which 

is used for arithmetic reasoning, and the TPTP library, which is used to evaluate the final result. 

3.1 nanoCoP and leanCoP 

nanoCoP is a natural non-clausal form automated connection prover. It implements the non-clausal 

connection calculus presented in chapter 2.4 in the programming language Prolog. Prolog stands for 

programming in logic and was chosen by the author of nanoCoP, Jens Otten, for the possibility of 

programming very close to the mathematical specification of the calculus. This choice allowed Otten 

to implement the first version of nanoCoP with only 42 lines of Prolog code [19]. [21] presents version 

2.0 along with versions for intuitionistic and modal logics.  
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The main difference between leanCoP and nanoCoP can already be read out of their names. nanoCoP 

is a shorthand for naturalistic non-clausal connection prover. This means that it uses the non-clausal 

connection calculus described in chapter 2.4. leanCoP, on the other hand, transforms the matrix into 

definitional clausal form, disjunctive normal form, or a mix of the two where the axioms are in 

disjunctive normal form and the conjecture is in definitional normal form. This means that the matrices 

used in leanCoP are simple: each clause contains only literals instead of possible further submatrices. 

leanCoP transforms the matrix by using logic rules such as De Morgan’s laws or by pushing the 

quantifiers to the very top of the formula. This causes the matrices to be very flat, but also very wide. 

Definitional clausal form differs from disjunctive normal form by the way definitional clausal form 

unfolds conjunctions of further logical expressions. 

The normal forms used in leanCoP ensure that each matrix has a simple form the computer can handle 

easily. However, these forms have the downside of increasing the size of the matrix greatly, worst-case 

exponentially, because copying formulas can be necessary for instance when applying the distributivity 

attribute of conjunction. The translation into normal form thus introduces a computational overhead. 

Additionally, extending the connection calculus to intuitional logic becomes impossible when using 

definitional normal form [18]. 

A further concern with the translation into normal form is that the resulting proof becomes unreadable 

for humans. Yet, if an automated proof system is intended to be used in research it is vital that the 

returned proof is readable by a human. Research requires understanding, and the knowledge about 

the validity of a formula is rarely enough to yield understanding, especially since follow-up questions 

regarding the deeper nature of the research topic become harder to formulate. Due to the 

transformations done by leanCoP, the structure of the original formula is not discernible from the 

matrix used in the proof. nanoCoP and, by extension, nanoCoP-Ω, in contrast, support the option of 

returning a human-readable proof, provided the user knows connection calculus: the matrix structure 

is reminiscent of the formula’s structure. The proof within the connection calculus can even be 

translated back into a completely human-readable version.  

A further, syntactic difference between nanoCoP and leanCoP is that the latter handles ∂-variables 

differently than the former. This creates an issue described in chapter 5.2.4, which can easily be fixed.  

leanCoP 2.0 and nanoCoP 2.0 both come with an optional feature called restricted backtracking. 

nanoCoP-Ω also supports restricted backtracking. The feature was presented by Otten in [17] and its 

core idea is to remove non-essential backtracking, which is not necessary for finding proofs in many 

cases and can be detrimental to the runtime of the program. Non-essential backtracking is done 

whenever we have multiple ways of solving a singular literal during the proof procedure, and the first 

method of solving the literal ultimately does not lead to a successful proof because of the other literals 
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contained within its clause. When eliminating non-essential backtracking we do not retry proving a 

literal’s β-neighbours after the proof search for this literal has failed. Instead, the entire clause is 

discarded, as further attempts at proving it would only change the global substitution σ. Additionally, 

if we were to retry proving one of the literal’s β-neighbours we may succeed by, for example, 

establishing a connection to a different clause than before. This hardly affects the proof for the current 

literal: only the substitution (and arithmetic constraints, as explained in chapter 4.2.2) could be 

different. Thus, instead of proving the problematic literal’s clause, the prover takes a large step back 

and draws a connection to a different literal than the problematic one if possible. Using restricted 

backtracking removes completeness from the prover but often results in a large time save and 

potentially allows solving problems that would otherwise have been locked behind a time-out [17]. 

3.2 leanCoP-Ω 

leanCoP-Ω is a version of the compact automated theorem prover leanCoP 2.0 extended with the 

methods of dealing with arithmetic expressions and equalities as discussed in chapter 4. It utilises the 

Omega Library [24]. The integration of the Omega Test into leanCoP was originally developed by Otten, 

Trölenberg and Raths [15], updated by Behrens [5] and rewritten again by Münch [14].  

The Omega Test can determine whether there exists a solution for an arbitrary set of linear equalities 

and inequalities (henceforth LSE). The test was first presented in [25]. It is based on an extension of 

Fourier-Motzkin variable elimination. In theory it has a worst-case exponential complexity, but Pugh 

shows that on average we can expect polynomial time complexity. While the original Omega Test is 

merely an algorithm to test the solvability of a set of linear equations, the Omega Project developed 

by the Omega Project Team [24] is a program collection written mainly2 in C. This project includes the 

Omega Library, which uses Presburger arithmetic for extended reasoning over LSE. The Omega Library 

is capable of more than the Omega Test. The library is a useful tool for leanCoP-Ω and nanoCoP-Ω. 

Crucially, the library is restricted the same way Presburger arithmetic is restricted. For instance, it is 

not possible to define division or prime numbers, and it is not possible to reason over arithmetic 

expressions that include predicates. The Omega Library extends Presburger arithmetic by subtraction 

and realises multiplication with repeated addition while still retaining completeness and decidability, 

two properties which are very important for automated proving. 

3.3 TFA and TPTP Benchmarks 

The TPTP (Thousands of Problems for Theorem Provers) benchmark [30] is a benchmark specifically 

designed for automated theorem proving. It contains thousands of problems that are used to evaluate 

an automated theorem prover such as nanoCoP-Ω. As a benchmark it intends to provide an 

unambiguous reference and good indicator of the quality of new automated theorem provers. It 

 
2 https://github.com/davewathaverford/the-omega-project/ 
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provides additional utilities in the form of background materials, guidelines, and format converters for 

different existing automated theorem provers. Note, however, that nanoCoP-Ω does not need a 

converter because it can read the TPTP2 format, which is the format the problems are stored in.  

The problems in the TPTP benchmark stem from multiple domains from logic, mathematics, computer 

science, science and engineering, social sciences, arts and humanities, and others. The problems are 

formulated in first-order logic, conjunctive normal form, typed first-order logic or typed higher-order 

logic. The typed first- and higher-order logic are also subdivided into monomorphic and polymorphic 

logics. nanoCoP-Ω only supports typed first-order logic and first-order logic, although its reasoning 

over types other than integers is limited to testing if the types match during unification. 

In addition to the TPTP benchmark v8.0.0 I used the TFA benchmark in this thesis, which is an extract 

of the ARI domain of the TPTP benchmark v5.0.0 used by Kai Münch in his bachelor thesis on leanCoP-

Ω [14]. I used this benchmark for initial testing of nanoCoP-Ω and for discerning the quality of the 

different optimization settings discussed in chapter 5.3. Whenever I use the name of a problem from 

the TFA benchmark in this thesis, its unique TPTP identifier is written behind the name in brackets. 

4 Extending the Connection Calculus by Arithmetic and Equalities 

As already mentioned, arithmetic equalities are not part of the original connection calculus. Thus, it 

might not be completely clear how these can be integrated into a connection-based theorem prover. 

The procedure is explained in this chapter.  

When reading the target formula, nanoCoP-Ω regards equalities as regular atoms and they thus end 

up being literals within the matrix. In the following, I refer to literals containing any type of equality 

relation and their negated forms as e-literals or as constraints. This also includes inequality and the 

less-than relation. Some examples are f(3)=f(x)T, 27+x<6*yF or y≠4F. E-literals are treated like 

regular literals by all parts of the proof procedure until we reach the step of trying to prove an e-literal. 

I will present the different methods nanoCoP-Ω uses to prove an e-literal in chapter 4.2.1 to 4.2.5, 

which each describe one new method, or the modification of an existing method. Before we can 

understand these methods, however, it is necessary to describe the unification procedure we use 

whenever literals contain arithmetic expressions. This is what we discuss first, in chapter 4.1. 

4.1 Unification in a Context with Arithmetic Expressions 

The existence of arithmetic poses a challenge for unifiability tests. Prolog’s in-built predicate 

unify_with_occurs_check/2 implements regular unification while avoiding the creation of 

cyclic terms3, i.e., expressions that have infinite length. The fact that this degree of unification can 

already be handled by Prolog and does not need to be addressed in the automated theorem prover at 

 
3 https://www.swi-prolog.org/pldoc/doc_for?object=unify_with_occurs_check/2 
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all is one of the main benefits of writing this kind of program in Prolog. However, since Prolog’s 

unification does not handle arithmetic expressions, we need to add support for this ourselves.  

It is possible to unify two arithmetic expressions by the following rules. If we have addition or 

multiplication of constants, we calculate their result. If we have a variable as one of the expressions 

that we wish to unify and an arithmetic expression as the other, we can unify the two expressions by 

assigning the arithmetic expression to the variable. Whenever there are two complex arithmetic 

expressions we need to unify, we instead store an equation that we remember for the entire proof 

procedure. We calculate the equation to be stored by subtracting one of the arithmetic expressions 

from the other so that one side of the equation is 0. Since equations within the Omega Test are stored 

in this format, we save some computation time by doing this. Whenever there is a non-arithmetic 

operator within either of the two to-be-unified expressions, such as an equality relation or a regular 

function, we must continue our unification procedure for the parameters of the operator and store all 

necessary equations. The operator must be present at the same location on both sides. This may seem 

counterintuitive as it reduces the power of the unification algorithm when we are multiplying two 

things other than constants. However, we are forced to do this because it is not possible to calculate 

the product of two variables (or of two expressions containing variables): Presburger arithmetic only 

supports multiplication with constants. The method of continuing the unification procedure for both 

parameters allows us to at least unify A*B and C*3 for the rare situation that B=3. Overall, we see 

that nanoCoP-Ω is very limited in the arithmetic expressions it can unify as soon as the expressions 

contain multiplication of variables.  

4.2 New and Modified Methods 

4.2.1 Connections 

Using connections is the first of the four methods that nanoCoP-Ω uses to prove an e-literal. It is valid 

to interpret equalities as literals that can be connected to complementary literals. This is because any 

type of connection is always a valid proof. In theory we could prove a formula by establishing enough 

connections between composite parts of the formula. This is not done in the connection calculus 

though, as pattern matching across large composite formulas becomes computationally inefficient 

very quickly. Since a re-interpretation of connections especially for e-literals is not necessary, the 

regular extension rule can be used to reason for e-literals. The same goes for the lemma and reduction 

rules. 

4.2.2 Interpretation as a Constraint 

Finding a connection is not the only method of proving an e-literal, because e-literals are not 

statements about the truth value of atoms, unlike normal literals. E-literals are restrictions on the 

values of integer variables. Therefore, it is sufficient to ensure that the constraint represented by an 
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e-literal holds everywhere where it needs to. Specifically, the e-literal/constraint affects the global 

substitution developed in the proof. For example, if a constraint specifies that A<B then the variables 

A and B are not unifiable anymore anywhere in the proof, unless we can prove the constraint 

differently, because a unification of A and B requires the equality A=B. To ensure the satisfaction of 

all constraints, the automated prover stores all equations necessary for unification, as described in 

chapter 4.1, as well as all e-literals on the path, and then passes the entire set of equations to the 

Omega Test. If the Omega Test confirms that the set of equations is solvable, we know that this 

constraint is satisfied at this stage of the proof search. The exact details of what the set of equations 

passed to the Omega Test needs to look like is described in chapter 5.2.3. 

4.2.3 Self-satisfying Equalities 

Certain e-literals are inherently valid due to arithmetic. The literal 1<2 does not need a connection to 

be proven. We can use rudimentary arithmetic reasoning over constants to prove these simple e-

literals. As soon as variables are involved, an evaluation with the Omega Test is necessary, as we need 

to respect the global substitution σ and the constraints specified by other e-literals. Additionally, as 

equations with variables are rarely self-satisfying it makes more sense to pass equalities with variables 

to the Omega Test as usual to give additional information about the variables. 

4.2.4 Deep Omega Extension 

Within leanCoP-Ω there is a special extension rule that is not part of the original extension calculus and 

for which I was not able to find any documentation. The special extension rule has been integrated 

into nanoCoP-Ω successfully, although its usage is only required for one singular problem of the TFA 

benchmark. Within leanCoP, the rule is usually locked behind the setting eq(2). It is activated if no 

other method of proof was successful for the to-be-proven e-literal. The rule tells the prover to extend 

the proof to another e-literal anywhere within the matrix. Recall that the regular extension rule would 

only allow the prover to draw a connection to a complementary literal. When the rule is used, the 

originally to-be-proven e-literal is added to the path, and the e-literal we have extended to is marked 

as still to be proven. In the regular extension rule, the literal we have extended to would not need to 

be proven anymore. I will refer to this new variant of the extension rule as the deep omega extension 

rule. 

While the deep omega extension rule is not part of the original calculus, it is easy to ascertain its 

correctness. Recall that proving an e-literal can be done by one of three methods other than the deep 

omega extension rule. Proof by connection is completely disjoint from deep omega extension: either 

one or the other happens. The test for self-satisfaction of the e-literal is run before attempting to use 

the deep omega extension rule. Self-satisfying literals do not impact other e-literals of the matrix and 

thus the self-satisfaction test is also disjoint from the deep omega extension rule. This leaves the 
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interpretation of the e-literal as a constraint as the last method that needs to be considered to evaluate 

the correctness of the deep omega extension rule. In fact, the deep omega rule relies on the 

interpretation method for proving the current e-literal: that literal is written to the path by the deep 

omega extension rule. When called, the Omega Test considers all e-literals from the current path and 

thus also the to-be-proven literal (see chapter 5.2.3). So, the to-be-proven e-literal is evaluated and 

hopefully proven later on in the proof procedure. In other words, the deep omega rule postpones the 

proof of the current e-literal. 

Let us illustrate the deep omega extension rule with an example. As already mentioned, the rule was 

only necessary for solving a single problem from the TFA benchmark: Problem TFA198=1 (ARI198=1). 

The problem is displayed below:  

The goal is to show that if a number Z is smaller than another number’s (X) successor, Z is smaller or 

equal to X. This is translated into two clauses with one literal each by nanoCoP-Ω: 

At this point it is only important to consider that the resulting matrix contains two negative literals in 

α-relation to each other. Thus, the matrix’s evaluation does not lead to a valid proof with the regular 

connection calculus rules. The two equalities themselves are not self-satisfying, or at least the prover 

is not capable of resolving the addition in the predicate that tests for self-satisfying literals. Thus, we 

see that a deep omega extension from one literal to the other is necessary for the proof of this 

theorem. Once both literals are on the path, the prover passes them connected by an OR-operator to 

the Omega Test. This constitutes an LSE that the Omega Test marks as satisfiable, thus proving the 

theorem.  Problems ARI082=1 and ARI195=1 can also be solved using this rule, but its use is not 

mandatory, and a proof can also be found using other methods. 

4.2.5 A New Start Rule 

The task of a start rule is to select a clause from which to begin the proof. In the classical connection 

calculus, a valid optimization is to restrict the choice of a start clause to only positive clauses. This rule 

is not universally applicable when solving arithmetic problems. 

tff(less_successor,conjecture,( 

    ! [X: $int,Z: $int] :  

      ( $less(Z,$sum(X,1)) 

     => $lesseq(Z,X) ) )). 

(4^_12222)^[]:[ 

-((2^[])^t($int)<((1^[])^t($int)+1^t($int))^t($int))], 

(6^_12222)^[]:[-((1^[])^t($int)<(2^[])^t($int))] 
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If a matrix lacks positive clauses, i.e., clauses with only positive literals, it is not valid. The absence of a 

positive clause means that there is a path through the matrix that contains only negative literals. This 

path cannot contain any complementary connections, thus rendering the matrix invalid. For this 

reason, it is usually a valid optimization to restrict the choice of the start clause to positive clauses. 

This was done in nanoCoP 2.0 and led to false negatives in the first iterations of nanoCoP-Ω. The reason 

was that negative e-literals are interpreted as negative literals due to the notation to be explained in 

chapter 5.1.3: they are marked with a ‘-’ sign, just like negative literals. Selected formulas from the 

TFA benchmark thus did not contain any positive clauses. This was incorrect because the negative 

literals were just e-literals, which can be proven by methods other than complementary connections.  

In leanCoP-Ω this problem was handled by interpreting all e-literals as positive when checking for 

positive clauses. In nanoCoP-Ω this is not done when beginning the proof search. This has the 

advantage that regular positive clauses are chosen as start clauses over clauses that are only positive 

if we disregard e-literals: regular positive clauses are expected by me to be more likely to lead to a 

successful proof, because conjectures more often contain to-be-proven predicates with constraints on 

variables than being purely arithmetic. This is a heuristic decision. In any case, I believe this decision 

not to be detrimental, because the test for pure positivity of a potential start clause is fast. To still be 

able to solve the aforementioned formulas from the TFA benchmark, the prover restarts the proof 

after the first failed attempt by calling a new start rule: the new rule is the same as the original start 

rule except that it interprets e-literals as positive. 

5 Implementation 

This chapter describes the implementation of nanoCoP-Ω. The chapter strongly refers to the new 

methods of proving e-literals described in the last chapter. It also discusses differences in 

implementation to leanCoP-Ω and the issues that arose from these differences. 

nanoCoP-Ω is based on nanoCoP 2.0 with extensions taken from leanCoP-Ω, which were adjusted to 

the slightly different syntax. Due to substantial similarities between the two systems the initial transfer 

of arithmetic reasoning into nanoCoP 2.0 was possible without major changes. The file reading 

procedure, in contrast, required an extensive rewrite, as nanoCoP 2.0 could not read typed formulas 

and equalities. I have also attempted to integrate into the file reading process some soft constraints 

on problems in the TPTP syntax which were only introduced in newer versions of the TPTP library.  

nanoCoP-Ω can read problems in TPTP syntax or in its internal syntax. I recommend looking at this 

website4 for an extensive BNF documentation. Note that the polarity of literals as discussed in chapter 

2.4 is marked by nanoCoP-Ω as follows: F (false/to-be-proven) is not marked, while T (true/can-be-

 
4 https://tptp.org/TPTP/SyntaxBNF.html 
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assumed) is marked with a ‘-’. This choice is arbitrary, as only the search for complementary 

connections is relevant. 

The prover works as follows. It reads the target file, converts it into an internal format as specified by 

the file nanocop20Omega_tptp2.pl and then calculates the matrix representation with the 

predicate bmatrix/3. Then it begins the proof search by calling the predicate prove/4, which 

contains the start rules. The file nanocop20Omega_proof.pl specifies how the prover will print 

the proof to the output stream. The entire process can be started by calling the predicate 

nanocop_main(File, Settings, Result) from the file nanoCoP20Omega_main.pl, 

but I recommend having a look at the shell script instead. 

nanoCoP-Ω currently only supports SWI-Prolog5.  

5.1 Basic Implementation Properties 

5.1.1 Axioms, Conjectures and Types 

Within the TPTP benchmark used here every formula is marked as an axiom, a type specification or a 

conjecture. nanoCoP-Ω needs to respect these roles. It collects the conjecture separate from the 

axioms. The final formula it proves after having read the input file is of the shape axioms => 

conjecture, where the axioms are connected conjunctively. If there are no axioms and if the 

problem contains any equalities nanoCoP-Ω uses the equality axioms as the axioms. Otherwise it 

proves the conjecture as is. The TPTP syntax specifies additional roles, which, however, are not used 

within the benchmark used to evaluate nanoCoP-Ω. Therefore, the prover only differentiates between 

the roles conjecture, type and others. 

Type specifications are collected while reading the input file. The types supported by nanoCoP-Ω are 

integer, Boolean, individual, and new, formula-specified types. Once the first pass is done, nanoCoP-Ω 

does a second pass across the whole formula to write down each expression’s type. This includes 

marking predicates as Booleans, and constants and variables as individuals. At this stage, the prover 

has collected the type for each variable. It also writes down the result types for all pre-defined 

operators, for instance all addition results are marked as integer types. nanoCoP-Ω does not do 

anything with types other than test that they match whenever unifying two expressions. 

5.1.2 Equality Properties 

The equality properties reflexivity, symmetry, transitivity, and substitution are added as axioms to the 

formula as soon as the formula has been transformed into the internal syntax. For the substitution 

property it is necessary for Prolog to discern all predicates and functions contained within the formula 

and then add the substitution rule for each. This also ensures that the property is added for the < 

 
5 https://www.swi-prolog.org/pldoc/doc_for?object=manual 



24 
 

relation. The restricted substitution properties for inequalities are not added, as nanoCoP-Ω cannot 

reason about monotonic functions due to first-order logic. 

5.1.3 Presentation of Equalities 

Equalities are represented very similarly to regular literals in nanoCoP-Ω. Equalities can be presented 

the exact same way as literals but with an equal or smaller-than sign inside the e-literal. nanoCoP-Ω 

does not use the not-equal, greater, greater-or-equal, or less-or-equal signs. Instead, we represent 

these variants via transformation, that is by switching the left and right side of the equation literals 

and/or negating the literal with the ‘-’ sign used for regular negative literals accordingly. The use of 

this sign is responsible for the misinterpretation of inequalities as negative literals as described in 

chapter 4.2.5. The representation using the equal, smaller-than and ‘-’ signs allows the usual 

unification procedure for literals with their negated counterparts to also work for e-literals without 

any further adjustments being necessary. Thus, additional lemma, reduction or extension rules are not 

necessary. Furthermore, Prolog only needs to test for one of the following shapes to recognize an e-

literal: (_=_), -(_=_), (_<_) or -(_<_). The conversions to one of these four patterns for 

example from a greater-than relation happens within the predicate op_tptp2/4 used in the 

predicate nanocop_tptp2. 

5.1.4 Unification 

Unification of expressions for the purpose of creating complementary connections and satisfying other 

proof rules is realised by the predicate unify_with_arith(A,B,Equalities,Set). This 

predicate implements the ideas discussed in chapter 4.1. It unifies with occurs-check where possible, 

evaluates constant arithmetic expressions, translates necessary equations into linear arithmetic 

equalities, respects types, and returns all necessary equations to be stored by the proof procedure. It 

is also capable of handling functions and predicates, as long as they are the same for both unification 

partners. It interprets equality and less-than as functions to handle them correctly. The stored 

equalities are later passed to the omega/1 predicate. An example for a necessary equality is the 

following: To unify − ((3 ∗ 𝐴) + (5 ∗ 𝐵) = (3 ∗ 𝐴) + (5 ∗ 𝐵)) and − ((3 ∗ 𝐴)  + (5 ∗ 𝐵)  = 23) the 

equality −23 + (3 ∗ 𝐴) + (5 ∗ 𝐵)  = 0 is required. The second equality is the negated form of the 

currently to-be-proven e-literal during an actual proof step for a TPTP problem, in which we use the 

extension rule.  

5.2 Implementation of New and Modified Methods 

This chapter discusses the implementation of the ideas discussed in chapter 4.2. 

5.2.1 The prove Predicate 

The actual proving procedure of the nanoCoP-Ω prover takes place within the predicate 

prove([Lit|Cla],MI,Path,PI,PathLim,Lem,Set,Proof,EqIn,EqOut). In this 
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chapter I will explain the meaning of the different parameters and in the following chapters I describe 

how this predicate implements the various rules of the connection calculus. 

The first parameter contains the to-be-proven clause, which in turn contains the to-be-proven literal. 

MI is the matrix in which we have replaced the clauses already connected to by new copies, thus 

ensuring that it is possible to use the same clause multiple times. This clause duplication happens 

within the predicate prove_ec, which constructs the clause that still needs to be proven within the 

regular and deep omega extension rules.  

Path is the current path to be proven. It is used to ensure that the prover does not extend to a literal 

already on the path and it is used by the Omega Test as described in chapter 5.2.3. PI is a version of 

the path that stores only the identification numbers of the path’s literals. It is used to store these 

identifiers, as well as to grasp the depth of the current path. PathLim is used for iterative deepening. 

Iterative deepening ensures completeness of the automated prover despite Prolog’s depth-first search 

approach. It works as follows: The nanoCoP-Ω theorem prover lets the current prove call fail 

whenever an extension to a literal with free variables would cause the path’s depth to exceed the 

current PathLim. A clause within the start rule restarts the proof search with a PathLim increased 

by one if and only if the proof search failed due to exceeding the limit set by the previous PathLim. 

This ensures that Prolog does not get lost in deadlock loops because it is forced to try the different 

connections once it reaches the depth specified by PathLim. If the proof search failed for a different 

reason than reaching PathLim, it is safe to assume that the problem is a non-theorem. This version 

of iterative deepening was introduced in leanCoP 2.0 [16]. 

Lem, short for lemmata, contains all literals that have already been proven. nanoCoP-Ω tests if the to-

be-proven literal is contained in this list as a way of ensuring that it does not prove the same literal 

twice. Set contains the current settings used by the prover. Proof is the returned proof, which is 

later converted to the form specified by the user. The user can ask for a compact, readable, leantptp 

or connection proof to be printed by the prover by asserting proof(Form)6 in Prolog for one of 

these. EqIn and EqOut are used to receive and pass on equalities from and to the arithmetic 

unification procedure and the Omega Test. They are used to continuously update the constraints for 

the unification and for the Omega Test. 

The prove predicate contains the different methods for proving a literal, which are discussed in the 

next chapters. The priorities between the methods are defined by the order they appear in Prolog 

code. They are connected by disjunctions, which ensures that each literal is proven by only one of the 

existing methods. Additionally, this ensures that nanoCoP-Ω only tries a different rule if the previous 

 
6 In Prolog: ?- assert(proof(FORM)).  
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rule fails for all possible variable assignments. The lemma rule has the highest priority. Next is the 

reduction rule, then the extension rule and finally the rules for handling equation literals. If the to-be-

proven literal is an e-literal, the prover first attempts to apply the leanari predicate (see chapter 

5.2.2). If that fails, it continues with an Omega Test for constraint satisfaction (see chapter 5.2.3) and 

then a deep omega extension (see chapter 5.2.5). If one of the methods succeeds, we call the 

prove/10 predicate on the rest of the current clause. 

5.2.2 Leanari 

As discussed in chapter 4.2.3 some basic arithmetic reasoning not using the Omega Test might be 

worth integrating into the prover. As the Omega Test is called with a potentially very large LSE it is 

worth attempting to solve simple self-fulfilling e-literals with Prolog first. The predicate leanari/1 

does this and can solve only e-literals by directly comparing two integer numbers with no additional 

operators involved. It is used by eight different problems within the TFA benchmark (see chapter 6.3). 

5.2.3 The Omega Test 

The Omega Test is implemented by the predicate omega/1 within the prove predicate, which calls 

the predicate omega_check/1 defined within the file nanocop20Omega_omega_swi.pl. The 

predicate is passed the LSE and transforms it into a form readable by the Omega Library. The 

omega_check/1 function was implemented by Kai Münch, for details see [14]. The constraints 

passed to the Omega Test are collected during the proof search. As mentioned in chapter 5.1.4, the 

most regular calls to the Omega Test occur when a unification occurs within the lemma, reduction or 

extension rules: the Omega Test checks whether the equations collected by unify_with_arith 

and the equations within EqIn are satisfiable. If the Omega Test is successful and deems this LSE 

satisfiable, the equalities collected by unify_with_arith are passed on within the Eq line of 

parameters. The Eq parameters store equalities for later use. If the Omega Test is not successful, we 

need to try a different proof method. In chapter 7.1 we will discuss why the current equality handling 

is not correct and allows for false positives when testing whether a problem is a theorem. 
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Let us now explain how the LSE passed to the Omega Test needs to be constructed. This will clarify 

how equalities interpreted as constraints are tested for satisfiability. Recall that required equalities are 

stored both within the Path when doing an extension (deep omega or regular) and within the Eq line 

of parameters. 

Consider at first the equalities stored within the Path: these equalities need to all be satisfiable at the 

same time, because they are all in α-relation to each other. Thus, these equalities construct a LSE made 

up of only conjunctions. Passing the Path to the Omega Test with conjunctions between the e-literals 

would be wrong, because nanoCoP-Ω does a search for contradictions (a.k.a. connections) when 

proving a formula, while the Omega Test does a satisfiability test. A satisfiability test for a formula is 

true if and only if the negation of said formula is contradictory. Thus, we need to turn the conjunction 

into its inverse operation by De Morgan, which is the disjunction. Thus, the conjunctive LSE of 

equalities along the path must instead be a disjunctive LSE when passed to the Omega Test. 

Additionally, the literals must be complementary to their counterparts within the original formula as 

by De Morgan. This is already taken care of due to the way nanoCoP-Ω stores its polarities: minus for 

T and nothing for F. Here an example with the problem ARI082=1 from the TPTP benchmark:  

nanoCoP-Ω can only prove this formula by connecting all the e-literals via deep omega extensions. This 

is possible: they are all in α-relation to each other. The $sum type equalities end up having polarity T 

and thus have a minus before them within nanoCoP-Ω: The equality for Z3 is denoted as follows:              

-((3^t($int)+6^t($int))^t($int)=(31^[])^t($int)). The final equality is as 

follows: (30^[])^t($int)=(32^[])^t($int). The LSE is passed to the Omega Test as follows: 

tff(associative_sum,conjecture, 

    ! [Z1: $int,Z2: $int,Z3: $int,Z4: $int] : 

      ( ( ( $sum(2,3) = Z1 ) 

        & ( $sum(Z1,6) = Z2 ) 

        & ( $sum(3,6) = Z3 ) 

        & ( $sum(2,Z3) = Z4 ) ) 

     => ( Z2 = Z4 ) ) ). 



28 
 

Note that the semicolon is the disjunction and a number with an ^[] is actually a ∂-variable. The 

reader may easily ascertain that this is a correct representation of the above formula for a satisfiability 

test. 

Another way to derive the construction of the LSE is by doing an exemplary representation with a 

logical formula. The following equivalence obviously holds: 

A ∧ B ⟺ ¬¬(A ∧ B) ⟺ ¬(¬A ∨ ¬B) 

We now interpret the formula on the left side (A ∧ B) as a to-be-proven LSE, which is proven within a 

system that proves by contradiction, such as nanoCoP-Ω. Then the right side’s outer negation 

represents the equivalence of (i) a satisfiability proof for a formula, and (ii) a proof by contradiction for 

the negated formula, in this case (¬A ∨ ¬B). The negation of the contained atoms (A and B) is handled 

by the fact that nanoCoP-Ω represents the polarities T by adding a ‘-’ and F without adding ‘-’. The 

construction of the disjunctive form (¬A ∨ ¬B) from the path is done by the predicate path_eq/3. 

It takes the path and the current literal, which is also part of the path but has not been written to Path 

yet, and returns a disjunction of only the e-literals without the non-e-literals that may have been on 

the path. This predicate is discussed again in chapter 7.4.1 when I discuss some possible optimizations 

for future work. 

It is now clear how to handle equalities from the path. There are additional equalities required by the 

proof that are not part of the original formula and that are stored within the various Eq variables, 

including EqIn. These equalities are collected in two different situations. The first situation is the 

unification of two, possibly arithmetic, expressions, which occurs within the lemma, reduction, and 

extension rules. The unification is done by the predicate unify_with_arith/4 as discussed in 

chapter 5.1.4. The predicate returns necessary arithmetic equations as its third parameter. These are 

passed to subsequent proof steps within the EqPreOut and EqOut parameters. The second situation 

in which additional equations are recognized as necessary is after omega/1 calls. When we prove an 

e-literal with the Omega Test we must from now on assert an additional constraint: The entire LSE 

must hold for the remainder of the proof. Thus, the entire LSE is stored in the Eq line of parameters.  

We now have collected all constraints that must hold for the proof. The constraints collected in the 

various Eq variables already follow the idea of being satisfiability constraints. They are not constraints 

[(-((2^t($int)+(31^[])^t($int))^t($int)=(32^[])^t($int)); 

-((3^t($int)+6^t($int))^t($int)=(31^[])^t($int)); 

-(((29^[])^t($int)+6^t($int))^t($int)=(30^[])^t($int)); 

-((29^[])^t($int)=(2^t($int)+3^t($int))^t($int)); 

-((2^t($int)+3^t($int))^t($int)=(29^[])^t($int)); 

(30^[])^t($int)=(32^[])^t($int))] 
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formulated for a proof by contradiction. Hence, they are passed to the Omega Test connected by 

conjunctions, rather than by disjunctions. This has been referenced at the beginning of this chapter. 

To construct the entire LSE that we need to pass to the Omega Test, we combine the equalities from 

the path and the equalities from the various Eq variables. Recall that the equalities from the path are 

connected by disjunctions, and the equalities from the various Eq variables are connected by 

conjunctions. We now pass a conjunction of both collections to the Omega Test. The disjunction 

consisting of path e-literals must be enclosed within brackets. This constructed LSE is written to the 

Eq variables as mentioned directly above. Thus, the constructed LSE may hold further LSE from former 

Omega calls, which may in turn also hold older LSE. 

5.2.4 Omega Call Crashes 

The underlying Omega Library crashes for some problems. A list of problems affected by this crash in 

leanCoP-Ω can be found in chapter 6.1.4, although I am not certain whether this is a full list. The crash 

is caused by calling the Omega Test for equations that contain predicates. This type of equation cannot 

be expressed in Presburger arithmetic and cannot be handled by the Omega Test. 

A crash that is unique to nanoCoP-Ω occurs when a ∂-variable that is dependent on multiple γ-variables 

is passed to the Omega Test. It occurs for example for the problem TFA212=1 (NUM859=1). A variable 

of this type looks as follows: (32^[_123,_456])^t($int). Calling the Omega Test with this kind 

of variable results in an error. This error does not occur within leanCoP-Ω as it uses a different 

representation for ∂-variables. 

To take care of both errors I have added a test for both types of equations to the omega/1 predicate: 

removeReplacementBrackets/2. This predicate’s purpose is to remove ^[…] expressions and 

replace them with ^[], which the Omega Test can handle. Since leanCoP-Ω does not pass information 

about the ∂-variable’s dependencies (see Skolem form) to the Omega Test, the Omega Test cannot use 

this information. We can thus cut the ^[…] expressions, which store exactly these dependencies in 

nanoCoP-Ω. Additionally, the new predicate checks for predicates within the equalities. If it finds one 

it prevents nanoCoP-Ω from calling the Omega Test, as it would only crash anyway, and instead informs 

the user of this occurrence. This warning can be hidden by asserting hide_warnings within Prolog. 

5.2.5 Deep Omega Extension 

The deep omega extension rule was implemented in nanoCoP-Ω successfully. It is the last rule the 

prover invokes for solving an e-literal and it cannot be used for regular literals. Its code is almost the 

same as in leanCoP-Ω, except for an adjustment to the way nanoCoP finds the literals that still need to 

be proven, see the extension rule. This was done by invoking the prove_ec predicate. The extension 

part of the deep omega extension rule is implemented by calling prove/10. The use of the deep 

omega extension rule is locked behind the setting deep_omega. 
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5.2.6 The New Start Rule 

nanoCoP-Ω contains an alternative start rule solving the problem described in chapter 4.2.5. This rule 

is an exact copy of the original start rule placed beneath the original start rule within the code. This 

placement means that the new rule is called only if the original rule fails. In the original start rule it is 

asserted that the chosen start clause is positive by calling the predicate positiveC(Cla,Cla1). 

This predicate fails if the passed clause is not positive, and it returns the original clause if it is positive. 

The alternative start clause uses an alternative predicate called positiveOrEqC(Cla,Cla1), 

which succeeds if the clause is positive when interpreting all e-literals as positive. The alternative start 

clause can be deactivated by passing the setting eq_nev_pos. This leads to incomplete behaviour, 

namely the false declaration of problems as non-theorems for 10 out of 43 problems from the TFA 

benchmark that were solvable within the time-limit. Using the setting eq_nev_pos does not lead to 

faster computation of results. Another setting provided by nanoCoP-Ω called eq_is_pos activates 

the use of the alternative start clause for the first pass. This does not seem to improve the runtime of 

the prover either, as seen in chapter 6.3. In the next chapter I discuss further settings nanoCoP-Ω 

provides. 

5.3 Optimization settings 

nanoCoP-Ω supports several settings that are used to hopefully speed up computation. Some settings 

eliminate completeness. Most of these settings were taken from the original nanoCoP 2.0 and the 

others were inspired by their usage in leanCoP-Ω, albeit under different names. Settings are passed to 

the initial proof call nanocop_main(File, Set, ReturnedProof) in the list parameter Set. 

File is the location of the to-be-proven problem’s file.  

A setting that is very successful for small arithmetic problems is conj. It only works for problems 

written in TPTP syntax, that is problems containing the role ‘conjecture’. It forces the prover to select 

the clause that is marked as the conjecture as the start clause, and to fail if proving the conjecture is 

not successful. This setting is obviously not complete, but its usage is often optimal, because a problem 

that is solved without a connection to a literal of the conjecture is most likely stated wrongly anyway. 

As mentioned in chapter 3.1 nanoCoP-Ω supports restricted backtracking. The two modes of restricted 

backtracking are within the start rule and within the prove/10 predicate introduced in chapter 5.2.1. 

The setting scut activates restricted backtracking within the start rule. Under this setting the prover 

will not attempt to solve alternative start clauses once the first eligible one has been selected. This is 

done with the Prolog functor !, which discards alternative choices within the current node proof 

construction7. The setting cut restricts backtracking within the prove/10 predicate. If it is activated, 

 
7 https://www.swi-prolog.org/pldoc/doc_for?object=!/0 
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the ! functor is added behind the Prolog code describing the different proof methods for the current 

literal, but before the call of prove/10 for the β-neighbours of that literal, that is before attempting 

to prove the rest of the current clause. This leads to the desired behaviour: once a valid method of 

proving the current literal has been found Prolog advances to the next expression we still need to 

prove. This is the cut (!). Hence the choice points, which are the other possible methods of proving 

the current literal, are discarded. If the now following call of prove for the β-neighbours fails, the 

entire predicate fails, as the remaining options for proving this literal have been discarded by the cut. 

As a consequence, the prover backtracks instead of attempting to prove the current clause again. 

The setting deep_omega activates the use of the deep omega extension rule. Recall that it is the last 

rule used to attempt to solve a literal. This is because it takes the longest to potentially lead to a 

successful proof: another entire clause needs to be proven, and in contrast to the regular extension 

rule, the literal we have connected to still needs to be proven. Use of the lemma rule or the reduction 

rule is obviously more desirable, and so is the use of basic arithmetic or the satisfiability test, as these 

all require no further path extension. 

nanoCoP-Ω supports the setting no_eq_arith. This setting deactivates the use of the 

unify_with_arith predicate described in chapter 5.1.4 and forces the prover to use only 

unify_with_occurs_check, the in-built Prolog predicate to unify two terms while performing 

an occurs-check. I have not tested the potential performance boost gained by the use of this setting 

because it should be safe to assume that this setting comes with no major advantages. 

unify_with_arith increases the functionality of the prover with almost no drawback as it relies 

entirely on relatively simple Prolog pattern matching, which should be very fast. Using the setting 

no_eq_arith only means that the prover cannot unify several otherwise unifiable arithmetic 

expressions. This is clearly detrimental when otherwise the lemma, reduction, or extension rules would 

have been applicable. 

The setting reo(I) increases randomness of the proof search. Often a proof is found within 

automated theorem provers by starting with the conjecture and building a path with complementary 

connections through the entire matrix. Often the proof-relevant decision points between two possible 

connections are few and finding the correct one after having chosen the wrong one may require large 

amounts of backtracking. Instead of committing to backtracking, it can be a good idea to restart the 

proof, starting from the conjecture again, but with reordered clauses. This results in an additional level 

of randomness which can allow the prover to select the correct clause at the critical choice points. This 

heuristic motivates the structure of the shell script provided with the nanoCoP-Ω release from this 

thesis. The user can force the reordering of clauses by specifying the setting reo(I), where I is a 
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positive integer. If this setting is specified nanoCoP-Ω will reshuffle the matrix representing the formula 

I times. This setting was already available in the original nanoCoP 2.0. 

The setting comp(I) ensures completeness of the proof search. Multiple non-complete settings for 

the automated theorem prover have been presented in the last paragraphs. These settings often 

increase the speed of the proof search, which makes their use desirable. If the user wishes to use these 

faster settings while still preserving completeness for the proof search, they can use the setting 

comp(I), where I is a positive integer. This setting activates the following behaviour. In the prover’s 

first attempt at proving the conjecture it uses the other settings passed alongside comp(I), and the 

prover is not allowed to exceed path depth I. If it fails in finding a proof within this depth limit, it 

restarts the search with no settings activated, thus ensuring completeness. The setting comp_eq(I) 

has the same behaviour, but the prover is instead restarted with the settings [deep_omega] to 

maximise the number of problems relying on arithmetic expressions that the prover can solve. 

The setting noeq deactivates the behaviour described in chapter 5.1.2 so that the prover does not add 

the equality axioms to the formula. The possible benefits of this setting have not yet been evaluated, 

but one could reason that its completeness-harming properties outweigh the potential benefits. In 

theory, the equality axioms could slow down the proof search by serving as new targets for the 

extension rule, even though the literals of the original formula would be much better targets. This does 

not happen if no reordering is done, because the equality axioms are always at the end of the matrix. 

Consequently, we can assume that extensions to the equality axioms only happen if no other literals 

are available as partners for the extension rule. If the cut setting (see above) is active and there are 

other partners for the extension rule, the equality axioms will not even be connected to in 

backtracking, as the cut setting deactivates this feature. Thus, the equality axioms hardly ever slow 

down the proof procedure and their removal seems unnecessary. 

For a description of the settings eq_is_pos and eq_nev_pos see chapter 5.2.6 on the alternative 

start rule. 

6 Evaluation 

In this chapter I present the results gathered by using the TPTP benchmark discussed in chapter 3.3 to 

compare leanCoP-Ω and nanoCoP-Ω. Comparing nanoCoP-Ω to other existing automated theorem 

provers is not within the scope of this thesis. Due to the similarity of nanoCoP-Ω and leanCoP-Ω (both 

are written in Prolog and implement the same arithmetic handling methods) this comparison is a direct 

comparison between the non-clausal connection calculus  and the clausal connection calculus. 

Not all problems from the TPTP library can be used for the evaluation of nanoCoP-Ω. I filtered all 

problems from the benchmark that are in typed first-order logic and that are theorems by using the 
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script ‘tptp2T’ provided with the distribution of the benchmark. Polymorphic logic problems were 

discarded using grep TF0 (vs. otherwise TF1). I selected only theorems because determining the 

non-theorem status of a formula within the non-clausal connection calculus requires the proof 

algorithm to make a full search through the search space described by the matrix. Thus, the calculation 

of the non-theorem status would always be slow, which I considered detrimental for testing because 

nanoCoP-Ω would almost exclusively time out. Furthermore, the typical use case of a prover is the 

search for a proof for a problem that is actually suspected to be valid.  

The evaluation was done on a laptop at home. The specifications are as follows: x64 MS Windows 10 

Home, 4 core (8 logical) 11th generation Intel Core i7-1165G7 with 2.8 GHz (and an activated 

overclocking feature), an SSD hard drive and 16 GB memory. The benchmark script used by Kai Münch 

in his bachelor thesis [14] was used almost unchanged, merely a recompilation on the test system to 

adjust the name of the started shell script was necessary. The script called the prover for each problem 

within the target directory one hundred times if the first execution took less than one second in user 

and system time, nine times if it took longer but was successful, and twice if the execution resulted in 

a time-out (which might not have been the behaviour intended by Münch). The script treated an 

unknown or invalid result (see chapters 6.1.2 and 6.1.3) like a valid result in terms of execution count. 

Each problem was in theory given 60 seconds of execution time, although the results reveal that they 

have slightly longer real time execution times. 

In this chapter I discuss the different invalid or missing return values of nanoCoP-Ω and discuss their 

meaningfulness. I also evaluate the performance in comparison to leanCoP-Ω, and finally give a short 

evaluation of the different settings of nanoCoP-Ω.  

6.1 Errors 

The filters applied to the benchmark problems were insufficient. Bugs within the Omega Library and 

the benchmark script resulted in unexpected behaviour. This chapter discusses the different problems 

and how they were dealt with. 

6.1.1 Non-Domain Problems 

The TPTP library contains a multitude of problems. As mentioned above nanoCoP-Ω and leanCoP-Ω 

can only solve integer arithmetic and equality problems in typed first-order logic, which is why filtering 

for typed first-order theorems was the first step in collecting the problems for this benchmark. Of these 

1404 problems 145 use real numbers, 94 use rational numbers and 157 use division. These problems 

cannot be solved correctly by leanCoP-Ω or nanoCoP-Ω. I collected these problems by running a script 

over the contents of the 1404 problem files and searching for ‘$real’ or ‘$rat’ within the problem 

formula, and ‘/’ within the problem’s name, respectively. The 312 problems were cut from the 

benchmark results. 
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6.1.2 Result Unknown 

The benchmark executable created by Kai Münch in his bachelor thesis [14] writes the result ‘unknown’ 

to the benchmark execution result table if it cannot find an indicator within the output of 

nanoCoP/leanCoP-Ω to tell it whether the proof was successful. Ideally this case would never occur, 

but it does for 43 problems with nanoCoP-Ω and for 14 problems with leanCoP-Ω. All problems that 

fall into this category in either of the provers are ignored when comparing runtimes, because the 

measured execution times become unreliable. However, the problems are counted when counting the 

number of time-outs and the number of ‘Theorem’ return values. nanoCoP-Ω and leanCoP-Ω do not 

have unknown return values for the same problems. In fact, the only problems both benchmark 

executions return ‘unknown’ for are 'SCT171_1.p', 'ARI711=1.p' and 'COM003_1.p'.  

Returning ‘unknown’ is usually erroneous, for example the problem ARI685=1.p is solved by nanoCoP-

Ω and is returned as ‘Theorem’, but when solved via the benchmark executable the benchmark table 

holds ‘unknown’ for this problem. This error of the benchmark most likely occurs due to the output 

proof or matrix being too large and C#, the programming language the benchmark script is written in, 

not being able to read the file properly. I was able to read the actual returned results from a collection 

of files created during benchmark execution that store the provers’ outputs. I thus discovered that 

nanoCoP-Ω actually returned ‘Theorem’ correctly for 18 of the 43 ‘unknown’ results and timed out in 

19 other cases. leanCoP-Ω never returned ‘Theorem’ correctly. It timed out in one of the 14 cases. All 

remaining cases were marked as ‘None’ by the script I used. This means that the provers had not 

written anything indicative to the result files. Upon manual re-execution of the problems that had 

delivered ‘None’ I discovered that 5 of the 6 problems for nanoCoP-Ω were theorems and the last 

problem timed out. leanCoP-Ω returned ‘theorem’ for all 13 ‘None’ problems. 

6.1.3 Result Invalid 

If nanoCoP-Ω tells us that a problem is a non-theorem this is marked as ‘invalid’ within the benchmark 

table. This occurs for 43 problems within the TPTP benchmark constructed for this thesis. The table did 

not contain ‘invalid’ for leanCoP-Ω. These ‘invalid’ problems use division and had not been cut by the 

procedure for the removal of non-domain problems described in chapter 6.1.1, or they include 

predicates within arithmetic expressions. Since nanoCoP-Ω was not built to handle these problems, 

returning ‘invalid’ is expected behaviour. leanCoP-Ω never returns ‘invalid’ and instead enters a time-

out. However, for some problems leanCoP-Ω returns a false proof. These are the problems ARI203=1.p, 

ARI209=1.p, ARI230=1.p and ARI236=1.p. They all are problems concerned with fractions. Since 

leanCoP-Ω is not supposed to handle fractions, this fact could be disregarded, but the fact that the 

prover manages to find a “proof” is concerning. This is an issue for future research. 
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A further set of problems that are solved by leanCoP-Ω, but marked as non-theorems by nanoCoP-Ω 

are ARI582=1.p, ARI583=1.p, ARI584=1.p, ARI586=1.p and ARI587=1.p. This discrepancy in output is 

worrying at first sight, because the problems are within the domain of both provers: the problems only 

contain regular addition and e-literals for integers. Upon further research it turned out that the false 

behaviour of nanoCoP-Ω is due to the prover not using the setting deep_omega for most of its 

execution time. leanCoP-Ω manages to solve the problem using the deep omega extension rule, 

activated by its setting eq(2). Both provers are restarted multiple times during the proof search, each 

time with a different set of strategies. Thus, each setting is given a different amount of time. In theory 

nanoCoP-Ω could solve the above problems using the setting deep_omega, but we give nanoCoP-Ω 

too little time on the setting deep_omega. In contrast, leanCoP-Ω has enough time on the setting 

eq(2) to find a proof. To ensure completeness the script has been adjusted to use [deep_omega] 

as the final strategy in the new version. 

6.1.4 leanCoP-Ω Crashes 

For certain problems leanCoP-Ω encounters obscure segmentation fault crashes within its Omega 

Library. These crashes most likely occur because predicates within arithmetic expressions are passed 

to the Omega Test, although this is not certain. nanoCoP-Ω avoids this issue by refusing to pass 

arithmetic expressions containing predicates to the Omega Test (see chapter 5.2.4). leanCoP-Ω crashes 

for the problems ARI253=1.p, ARI254=1.p, ARI255=1.p, ARI264=1.p, ARI266=1.p, ARI283=1.p, 

ARI293=1.p, ARI294=1.p, ARI304=1.p, ARI306=1.p, ARI307=1.p, ARI337=1.p, ITP004_1.p, ITP005_1.p, 

ITP011_1.p, ITP015_1.p, ITP367_1.p, ITP377_1.p, NUM901=1.p, NUM923_1.p, SWW472_2.p, 

SWW592=2.p, SWW627=2.p and SYO522=1.p. 

6.1.5 Invalid Execution Times 

Five problems are marked as having an execution time of 0ms when executed by nanoCoP-Ω by the 

benchmark. For leanCoP-Ω, 26 problems are marked this way. All of these problems are marked with 

time-outs, but they may actually be solvable by the provers. I cut these 31 problems from the 

benchmark. 

6.2 Performance 

To evaluate the performance of the two provers reliably we needed to take care of the issues described 

in the previous chapters. Non-Domain problems and problems returning invalid execution times were 

removed from the benchmark entirely. Furthermore, we could not use the execution time of problems 

for which the benchmark table stores ‘unknown’ or ‘invalid’. The latter problems could be used when 

comparing the number of time-outs though. 

We are now able to evaluate the success rates of both provers, i.e., the number of problems they were 

able to solve vs. the number of problems their execution timed out for. Then we can compare the 
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runtimes of the two programs for the problems both succeeded in proving. While doing this we pay 

attention to the domains these problems stem from. 

6.2.1 Success Rate  

Table 2 shows the results for the evaluation of the 1061 domain problems. We see that nanoCoP-Ω 

has a lower success rate than leanCoP-Ω by approx. 6%. This is a considerable downgrade in solvable 

problems in comparison to leanCoP-Ω. While it may seem that nanoCoP-Ω is better than leanCoP-Ω 

concerning time-outs, this is not actually the case, as the ‘invalid’ cases will most likely result in time-

outs once the fix discussed in chapter 6.1.3 has been applied. Hence, nanoCoP-Ω is more likely to take 

an unreasonable amount of time to solve a problem.  

Table 2. Success rates of the two provers for the 1061 problems in the final benchmark. 

Prover # time-out # valid # invalid success rate 

leanCoP-Ω 714 347 0 32.7% 

nanoCoP-Ω 705 282 74 26.6% 

 

We now discuss the time-outs in greater detail. The distribution of time-outs, and of ‘invalid’ and ‘valid’ 

return values across these same return values of the other prover are all displayed in Table 3. We see 

that the two provers share a large number of time-outs, which suggests that these problems are very 

hard. We also see some differences in the specific problems the two provers solve. leanCoP-Ω solves 

75 problems that nanoCoP-Ω does not solve. nanoCoP-Ω, on the other hand, solves 32 problems that 

leanCoP-Ω does not solve. This is an interesting finding, as it shows that the two calculi the provers are 

based on are differently well suited for proving different formulas. We also discover that the issue 

described in chapter 6.1.3 is perhaps more severe than expected: nanoCoP-Ω returns ‘invalid’ due to 

the settings with which it is called for 7 problems that leanCoP-Ω succeeds in proving. Had I fixed this 

issue earlier nanoCoP-Ω would have perhaps performed better during evaluation. 

Table 3. Shared results of both provers, ‘unknown’ problems excluded. 

 nanoCoP-Ω  

le
an

C
o

P
-Ω

 

 valid invalid time-out total 

valid 225 7 75 307 

time-out 32 67 601 700 

total 257 74 676 1007 
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The time-outs and the ‘invalids’ unique to nanoCoP-Ω are mainly within the domain SWW (Software 

Verification). A few additional problems come from the domains ITP (Interactive Theorem Proving), 

ARI (Arithmetic), NUM (Number Theory) and a singular problem comes from the DAT (Data Structures) 

domain. Time-outs unique to leanCoP-Ω occur mostly for problems from the SWW domain and for 

some problems from the domain ARI, as well as a singular problem from each of the domains NUM, 

DAT times out, and two from the domain SEV (Set Theory). Both full lists can be found in the Appendix. 

From these observations we can gather only that leanCoP-Ω is slightly better suited for handling 

problems from the ITP domain. This is perhaps the most important domain, as it is close to a possible 

use case for nanoCoP-Ω or leanCoP-Ω: to use the automated provers as assistants to fill in the gaps 

within interactive theorem provers’ proofs. The user can activate the automated provers when they 

wish for the computer to fill in a gap. The ITP problems within the TPTP library were generated 

automatically from an intermediate proof situation and goal within an interactive theorem prover (see 

ITP223_1.p). But even leanCoP-Ω has a very low success rate for these problems: Table 4 reveals that 

it has a success rate of approx. 5% in this domain. 

We now analyse the success rates for the two provers by the domain the problem stems from. The 

data is listed in Table 4. First, consider another potentially important use case for automated theorem 

provers: hardware verification. For the corresponding TPTP domain HWV both provers have a success 

rate of 0%. As this domain is not a time-sensitive application the success rate is perhaps not as 

detrimental as for ITP problems, but this is only the case if leanCoP-Ω and nanoCoP-Ω are correct and 

complete. Further comparison with other automated provers is necessary to rate the importance of 

this outcome. Another domain where neither prover performs well is the domain Data Structures 

(DAT).  

For problems of the domain SWW (Software Verification) leanCoP-Ω performs notably better than 

nanoCoP-Ω with a success rate of approx. 34% vs. 13%. The domain SWW is usually an important and 

interesting use case for automated theorem provers. However, this is not the case for nanoCoP-Ω, 

because this domain only requires a true/false answer, not a human-readable proof. Thus, if a normal 

form prover has more success in this domain this is entirely acceptable. Both provers perform well for 

the domains ARI (arithmetic) with success rates of approx. 55% for both provers, and NUM (Numeric) 

with a success rate of approx. 45% for nanoCoP-Ω and approx. 52% for leanCoP-Ω. This is a success, as 

it shows that nanoCoP-Ω deals well with arithmetic and equalities, the main features it has been 

expanded by. The other domains do not contain enough problems to give indicative data. 
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Table 4. Domain-specific time-outs. Ratios rounded to two decimals. 

Domain Result Ratio Nano Count Nano Ratio Lean Count Lean 

ARI 
 

invalid 0.20 71 0.00 0 

time-out 0.25 86 0.45 156 

valid 0.55 191 0.55 192 

COM valid 1.00 3 1.00 3 

DAT invalid 0.01 1 0.00 0 

time-out 0.91 63 0.94 65 

valid 0.07 5 0.06 4 

GEG time-out 1.00 5 1.00 5 

GEO time-out 1.00 1 1.00 1 

HWV time-out 1.00 136 1.00 136 

ITP time-out 0.99 174 0.95 167 

valid 0.01 2 0.05 9 

KRS valid 1.00 1 1.00 1 

MSC valid 1.00 1 1.00 1 

NUM invalid 0.02 1 0.00 0 

time-out 0.52 21 0.48 19 

valid 0.45 18 0.52 21 

PUZ time-out 0.62 5 0.50 4 

valid 0.38 3 0.50 4 

SCT time-out 1.00 6 1.00 6 

SEV time-out 0.25 1 0.75 3 

valid 0.75 3 0.25 1 

SWV valid 1.00 2 1.00 2 

SWW 
 

time-out 0.87 175 0.66 134 

valid 0.13 27 0.34 68 

SYN valid 1.00 1 1.00 1 

SYO invalid 0.25 1 0.00 0 

time-out 0.75 3 1.00 4 
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6.2.2 Speedup 

We now analyse the speedup reached by nanoCoP-Ω in comparison to leanCoP-Ω. Here we can only 

regard problems that both provers succeeded in proving. The speedup ratio is calculated by dividing 

leanCoP-Ω’s execution time by that of nanoCoP-Ω. The speedup value in ms is calculated by subtracting 

nanoCoP-Ω’s execution time from leanCoP-Ω’s. Thus, a speedup ratio bigger than one means that 

nanoCoP-Ω is faster, and a value bigger than zero means that leanCoP is exactly that much slower. 

In total we get a real-time average speedup ratio of approx. 2.30., indicating that nanoCoP-Ω is on 

average slightly more than two times faster at finding its proof than leanCoP-Ω. We get an average 

speedup ratio of 13.70 for time spent in user mode, and of 6.83 for time spent in system mode. These 

last two numbers are disregarded in the following. The distribution of the real-time speedup ratio is 

displayed in Figure 1. The Figure shows the number of problems with a specific real-time speedup ratio 

for nanoCoP-Ω. nanoCoP-Ω is slower than leanCoP-Ω for only 13 of the 255 problems solved by both 

provers. These are mainly problems from the domains SWW and SWV, as well as single problems from 

the domains ARI, PUZ (Puzzles: here ‘The Mislabelled Boxes’), SEV (Set Theory) and ITP. A full list can 

be found in the Appendix. nanoCoP-Ω has an average real-time speedup of approx. 0.24 for these 13 

problems, i.e., it takes 4.2 times as long as leanCoP-Ω.  

Figure 1. Real-Time Speedup Ratio. For each speedup ratio, the number of problems solved that much 
faster is drawn on the y-axis. Note that the figure does not include the problem ‘ARI081=1.p’ with a 
real-time speedup of approx. 8, which does not fit the scale. 
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The speedup distribution by domain is provided in Table 5. From it we gather that nanoCoP-Ω is faster 

for the domains ARI and NUM, but slower for the domain Software Verification (SWW and SWV). The 

entries for the other domains are not informative, because not more than 3 problems could be solved 

by both provers in these domains. 

Table 5. Speedup by Domain. All entries have been rounded to two decimals. 

Domain  Real-Time 

Speedup 

Ratio 

User 

Speedup 

Ratio 

System 

Speedup 

Ratio 

Real-Time 

Speedup 

Value in ms 

User 

Speedup 

Value in ms 

System 

Speedup 

Value in ms 

Problem 

Count 

ARI 2.41 13.09 7.96 1740.79 787.8 436.32 183 

COM 1.15 0.38 1.20 161.64 -63.09 13.65 3 

DAT 1.91 6.52 2.05 996.07 771.52 64.27 3 

ITP 0.69 0.24 0.94 -1962.82 -2150.73 -45.43 2 

KRS 1.14 0.29 1.29 157.25 -77.78 18.65 1 

MSC 3.43 45.81 3.65 2673.48 2465.86 171.52 1 

NUM 3.14 36.40 3.35 2887.21 2496.12 186.80 17 

PUZ 0.89 0.37 0.90 -552.96 -450.99 -17.31 3 

SEV 0.13 0.01 0.19 -8341.59 -9165.80 -348.03 1 

SWV 0.16 0.01 0.25 -10116.65 -10321.18 -616.76 2 

SWW 0.31 0.07 0.31 -16150.75 -15551.08 -1617.52 8 

SYN 1.15 0.56 1.49 165.87 -25.88 25.62 1 

 

To summarize, we have ascertained that leanCoP-Ω can solve slightly more problems within the time 

limit. This particularly applies to problems of the domains SWW and ITP. The provers share time-outs 

for 601 problems, but each also proves problems that the other does not prove. nanoCoP-Ω is 

considerably faster than leanCoP-Ω at proving ARI and NUM problems. These problems partially have 

a very shallow depth, so the computational overhead of transforming a matrix into normal form, which 

only leanCoP-Ω needs to do, might have a considerable impact, as the total computation time is still 

very low. leanCoP-Ω solves the larger problems from the SWW/SWV domain faster than nanoCoP-Ω. 

This indicates that the clausal connection calculus is better for dealing with large problems. 

6.3 Comparison of Settings 

To evaluate the different settings supported by nanoCoP-Ω a custom benchmark was run on the TFA 

benchmark (see chapter 3.3) prior to the execution of the TPTP benchmark. Recall that the TFA 

benchmark consists of 75 select problems from the TPTP library version 5.0.0. The evaluation was 

carried out by running nanoCoP-Ω for every combination of the settings conj, cut, deep_omega, 
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eq_is_pos, eq_nev_pos and scut. The different setting combinations are called strategies. 

In the evaluation they were ranked by their average runtime across all problems and by their success 

rate. The success rate of a strategy is the ratio of problems that can be solved in relation to the total 

number of problems.  

The success rate is a factor we need to discuss because the settings can influence completeness. The 

setting eq_nev_pos caused the prover to falsely mark a problem as a non-theorem for 9 different 

problems. The problem TFA198=1 was only solved when using the setting deep_omega. 

The best settings in both success rate and average execution time were used to create the shell script 

nanocop20Omega.sh, which is used to start the nanoCoP-Ω prover. The shell script restarts the 

proof search with nanoCoP-Ω multiple times, each time with a different strategy and a different 

number of reorderings of the matrix (see setting reo(I) from chapter 5.3). The first set of strategies 

consists of non-complete strategies and each strategy is given very little time. This maximises the 

benefit we can gain from randomness. These non-complete strategies were all selected based on 

success rate and average execution time measured on the TFA benchmark. The final proof strategy 

(formerly [] and now [deep_omega]) is given the bulk of execution time in case the others fail. 

For the execution of the TFA benchmark additional logging was added to the prover. The log informs 

us when the prover uses one of the new arithmetic handling proof methods, that is when the prover: 

− uses the leanari predicate successfully to prove a self-satisfying literal (see chapter 4.2.3).  

− proves a literal by treating it as a constraint passed to the Omega Test (see chapter 4.2.2).  

− does a deep omega extension (see chapter 4.2.4) and succeeds in proving the proof branch 

emanating from that extension. 

− uses the alternative start rule presented in chapter 4.2.5 successfully.  

The logging can be activated by asserting the predicate omega_statistics in Prolog. 

Evaluating the log revealed that the deep omega extension is only ever successful in 3 of the 43 

solvable problems within the TFA benchmark. In two cases the method greatly decreases the runtime, 

showing that the deep omega extension can be worth activating even if it is not necessary. leanari 

is necessary for a few more problems. The new alternative start rule is used sometimes, but not 

consistently for individual problems, meaning it is not necessary. Since I do not know how such results 

could come to pass, I will not speculate about the importance of this rule for the prover. Solving a 

literal by treating it as a constraint is done more regularly (approx. 25% of problems) and a problem 

either requires the use of this method, or it does not. The major purpose of introducing this logging is 

to make future research into possible optimizations for the different arithmetic proof methods more 

accessible. 
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The TFA benchmark was also used to compare the runtimes of the different settings. I wanted to derive 

the improvement in runtime every setting grants but was not successful in finding conclusive results. I 

will briefly describe the attempt. To calculate the improvement in runtime for a setting I subtracted 

the mean runtime for strategies containing the setting from the runtime for the exact same strategy 

minus the setting. So, for example the mean runtime of the strategy [cut,deep_omega,scut] is 

compared with the runtime of the strategy [cut,scut] to calculate the improvement granted by 

deep_omega. Once all possible strategy pairs had been compared I calculated the mean 

improvement for every setting. However, it turned out that the sample was too small. When 

investigating two problems which were solved considerably faster when using the setting 

deep_omega (TFA082=1 (ARI082=1) and TFA195=1 (ARI195=1)), I found that the removal of the two 

problems from the database caused extreme shifts of the values in the entire table. Hence, I 

abandoned this experiment. 

7 Future Work 

This section will discuss a major issue discovered while working on nanoCoP-Ω that needs to be 

addressed in future work. A potential future research project is described, possible extensions of the 

domain of nanoCoP-Ω are outlined, and two optimizations of the code that could be made are 

presented. 

7.1 Soundness 

In chapter 5.1.4 I presented the predicate unify_with_arith. It passes necessary equations it 

discovers to the Omega Test. However, it does not pass enough equalities to the Omega Test, as 

discovered with the following formula: 

The first statement in the formula describes the type of the predicate p. p takes an integer and returns 

a Boolean. The conjecture is a non-theorem: there is no A such that A is smaller than 5 and p(A) 

follows from p(6). The 5=5 literal in the conjecture may seem redundant, but curiously its presence 

allows nanoCoP-Ω to find a ‘proof’ and mark the conjecture as a theorem, which it is not. The process 

nanoCoP-Ω goes through to reach this wrong conclusion is presented in this chapter.  

First nanoCoP-Ω transforms the formula into the following matrix: 

[|
A < 5F

[ȁ5 = 5Tȁ ȁp(6)Tȁ ȁp(A)Fȁ]
|] 

tff(b,type,( p: $int > $o )). 

tff(a,conjecture,( 

    ? [A: $int] : ( $less(A,5) & ( (5=5 &  p(6) )  => p(A) ) ) 

)). 
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It then attempts to prove the matrix by starting with the A < 5𝐹 literal. This can be done easily with 

the Omega Test, as the e-literal is satisfiable. It then writes this e-literal to the correct Eq variable. We 

now need to prove the β-clause to this literal: the lower sub-matrix. The literals contained within this 

clause are all in α-relation, thus a connection between p(6)T and p(A)F is made. Now, if nanoCoP-Ω 

worked correctly, it would disallow unifying these two literals, because of the constraint A < 5. 

However, nanoCoP-Ω fails at enforcing the constraint. Here is the corresponding call of 

unify_with_arith within a regular Prolog console: 

We see that Prolog recognizes that A and 6 need to be unified. The predicate does not return this 

within Eq though. As a consequence, the then following call of omega/1 does not catch the mistake: 

The only equality passed to the Omega Test is [_2900^t($int)<5^t($int)], where A, which 

Prolog stores as the variable _2900, has not been replaced with 6, which would perhaps be the 

behaviour intended by the developers of leanCoP-Ω. Consequently, the Omega Test marks the LSE as 

satisfiable because A could for instance be 4. 

This erroneous behaviour does not occur if the order of $less(A,5) and the implication are 

switched in the original conjecture. Curiously, if we remove the literal 5=5 from the conjecture 

nanoCoP-Ω times out when searching for a proof. This makes no sense for two reasons. First, the literal 

is not used in the false proof anyway. Second, the conjecture’s matrix is very small, so a time-out is 

surprising. 

We have found a counterexample for nanoCoP-Ω’s soundness. We cannot rely on the returned result 

‘theorem’ to be certain that the conjecture is in fact a theorem. I will discuss some possible solutions 

to the problem in chapter 7.4.2. It is not clear if the problem can occur in leanCoP-Ω. I have not been 

able to reproduce this behaviour in leanCoP-Ω. 

To see if this erroneous behaviour is caught by the typed first-order logic non-theorems from the TPTP 

benchmark I have run nanoCoP-Ω on these as well. nanoCoP-Ω did not return false proofs for these 

problems and instead timed out for all but one problem. For the non-domain problem ARI533=1 it 

returned a false proof, but since ARI533=1 contains real numbers this is not worrying. Interestingly, 

nanoCoP-Ω seems to round the real numbers, which is behaviour that needs to be eliminated in future 

?- unify_with_arith(p(A),p(6),Eq,[]). 

A = 6, 

Eq = []. 

…,unify_with_arith(NegL,NegLit,EqArith,Set), 

append(EqIn,EqArith,Eq1), omega(Eq1),… 
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work. This shows us that the non-theorems provided in the TPTP library are insufficient for an extensive 

soundness check. 

7.2 Combination of nanoCoP-Ω and leanCoP-Ω 

As discovered in chapter 6.2.1, nanoCoP-Ω and leanCoP-Ω have a different coverage of problems they 

can solve. Thus, a combination of the two systems would achieve a larger coverage of solvable 

problems. Building such a combined system that first attempts to solve the problem with nanoCoP-Ω 

and after a certain time limit with leanCoP-Ω could yield a powerful automated prover.  

Since nanoCoP-Ω is considerably faster than leanCoP-Ω (at least for purely arithmetic and numeric 

problems), starting with it could lead to the combined system often finding human-readable proofs 

quickly. If a proof with nanoCoP-Ω takes too long, switching to leanCoP-Ω may increase the chance of 

success, because the clausal connection prover seems to be better suited for large problems. Recall 

that within a 60 second time limit leanCoP-Ω has an approx. 5% success rate for ITP domain problems 

within the TPTP benchmark, while nanoCoP-Ω only solves approx. 2% of them. 

Something that needs to be considered when building a combined system is that nanoCoP-Ω seems to 

perform best with restricted backtracking enabled via the settings cut and conj. This was discovered 

when comparing the settings as described in chapter 6.3. So, it is perhaps not the best strategy to start 

the nanoCoP-Ω prover with the settings [] (or [deep_omega] to increase chance of success for 

arithmetic problems) when encountering a large problem, as was done for the benchmark within this 

thesis. This thesis has not succeeded in evaluating the success rate of restricted backtracking settings 

when these settings are given large amounts of time to execute. Most of the execution time (40 of the 

60 assigned seconds) was given to the setting []. 

A more ambitious project would be to create a new CoP system capable of solving a problem within 

Prolog with both nano- and lean-style calculi in parallel. If it is possible to create such a system entirely 

within Prolog, the system gains very much control over its search strategy. It would be able to calculate 

the matrix in its different representations and then begin running different strategies in parallel. This 

would remove the overhead of starting Prolog for different possible strategies. Programming such a 

system would require extensive knowledge of Prolog to introduce parallelism without leaking data 

between executions. 

Either version of the proposed system would be well-suited for integration into an interactive theorem 

prover. Sledgehammer [32] is a tool for integrating automated theorem provers into Isabelle, an 

interactive theorem prover. With a button click the user starts the automated theorem prover of their 

choice, and Isabelle passes the current proof situation to the prover whilst the user may continue 

working in parallel to the computer. The human-readable proofs returned by nanoCoP-Ω contribute 
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to the user’s research. Meanwhile leanCoP-Ω provides a fallback for tougher problems that nanoCoP-

Ω may not handle well. 

7.3 Additional Number Domains and Arithmetic Procedures 

The Omega Test is based on Presburger arithmetic and as such cannot reason over predicates within 

arithmetic expressions. However, use cases for predicates within arithmetic expressions are plentiful: 

although I do not have exact numbers it is safe to assume that a large portion of the problems that 

nanoCoP-Ω timed out for within the TPTP benchmark include first-order predicates within arithmetic 

expressions. Expanding the Omega Test or nanoCoP-Ω to be able to handle these expressions would 

greatly increase the domain it can be used in. 

The Omega Test is not the only arithmetic decision algorithm. Others include Arith [7] , Sup-Inf [28] or 

Cooper [8]. These algorithms, while all being LSE satisfiability tests, may solve different problems 

within different time limits. A system that uses multiple of these algorithms in parallel may perform 

considerably better. The Arith procedure has already been implemented in Prolog by Troelenberg in 

[31], and as such would be easy to add to nanoCoP-Ω once support for parallelism has been introduced. 

The aforementioned algorithms and the Omega Test are only capable of handling integer LSE. Within 

the TPTP benchmark excerpt used to evaluate nanoCoP-Ω at least 145 problems use real numbers, 94 

use rational numbers and 157 use division. An extension to these domains would be useful. This would 

require different algorithms. Some algorithms that can solve real number LSE include Hodes [11], Loop 

[27] and automaton-based algorithms [6].  Division is problematic, as all of the LSE testing problems I 

know of are based on Presburger arithmetic, which cannot formalise division [23]. An algorithm based 

on another axiomatization of (ideally) real numbers that can handle division would be. The Omega Test 

provides methods for calculating intermediate solutions, so perhaps a combination of two algorithms 

in which the first algorithm (e.g., the Omega Test) handles all but the equations with division and then 

passes the intermediate solution the second algorithm, which is in turn based on a theory capable of 

handling division, would maximize expressiveness. However, we cannot achieve completeness for all 

of arithmetic, as the arithmetic described by the Peano Axioms, which are strong enough to formalise 

both division and addition, is undecidable [3].  

7.4 Optimizations 

7.4.1 path_eq Optimization 

The predicate omega_check/1 transforms the input equalities into the shape necessary for the 

Omega Test. This is the shape a*X+b*Y+…+c*Z+d=0 (potentially ‘<’ instead of ‘=’). The 

unify_with_arith predicate applies the same transformation when constructing the equalities it 

stores for the proof procedure. Because of the latter, all equalities stored in the Eq line of parameters 
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are already of the correct shape. This allows us to make the following observation: the only equalities 

passed to the omega_check predicate not in the correct shape are the ones from the current path.  

This allows us to derive a possible optimization. If we were to add the transformation to the path_eq 

predicate, we could remove the transformation from the omega_check predicate. To save more 

execution time we could even store all transformed e-literals from the path in a separate variable, thus 

enforcing that each e-literal is transformed only once. This would only allow for a 𝑂(𝑛) optimization 

in problem size but should be easy to implement. 

7.4.2 Redundant Omega Test Calls 

When analysing the calls to the omega predicate that occur during the proof search it becomes 

obvious that the Omega Test is consistently called redundantly. The test is often called with the exact 

same parameters two to four times in a row. This is not necessarily an error. I first make two 

observations that allow me to propose a new optimization. I then discuss whether these observations 

could be superficial and explain their connection to the problem that allowed us to notice the non-

soundness of nanoCoP-Ω. This leads to speculation over how to restore soundness. 

These redundant calls to the Omega Test most likely occur when the prover considers multiple 

candidates for the reduction or extension rules: The negated version of the to-be-proven literal is 

unified with said candidate. If this unification is successful, the prover calls the Omega Test. This is 

where multiple redundant calls can be observed: the passed LSE are the same multiple times in a row. 

It appears that unify_with_arith has returned an empty set of necessary equalities for each 

potential extension and reduction partner. This is the first observation: unify_with_arith can 

collect no further equations and this leads to the LSE not changing in this proof step. 

The second observation is concerned with the construction of EqIn, which stores the equations that 

are necessary for the proof. The Eq line of parameters only ever gains new equalities after the prover 

has tested the current LSE for satisfiability and this test was successful. This means that all equalities 

within the Eq line of parameters have already been tested by the omega predicate.  

These two observations lead to the possible optimisation: We could completely forgo doing an Omega 

Test if unify_with_arith returns an empty set of equations. This optimisation may be incorrect. 

It is possible that it only appears like the unify_with_arith does not affect the LSE of the proof 

whenever it does not return addition equalities. Here is an example of a call to unify_with_arith 
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that does not return any equations but might change the LSE subtly. The example is taken from chapter 

7.1. 

unify_with_arith unifies A with 6. It does not store this unification (which is an equation) in Eq 

and instead Prolog stores this internally. In theory, Prolog could now adjust the LSE by replacing all 

occurrences of A with 6. We have seen that this does not actually happen in chapter 7.1. 

From the past observations we can derive two separate adjustments to nanoCoP-Ω that each restore 

soundness, or that at least prevent nanoCoP-Ω from finding the ‘proof’ presented in chapter 7.1. The 

first adjustment would affect the predicate unify_with_arith. As seen in the above example 

unify_with_arith does not return Prolog unifications as equalities (A=6). If we were to change 

this, i.e., unify_with_arith would also return the equality A=6 in the above example, we may 

have re-established soundness. This is because the additional equalities store the equalities that go 

missing in the current implementation of nanoCoP-Ω. I do not know how this method could be 

implemented. If we were to implement this adjustment the optimization discussed during this chapter 

could be applied, as the returned Eq would not be empty in the potentially problematic cases. 

The second possible adjustment is to adjust nanoCoP-Ω to replace occurrences of unified expressions 

with their constant versions when passing the LSE to the Omega Test. This would lead to the ‘proof’ 

from chapter 7.1 becoming impossible, because the LSE is adjusted to contain 6 where the variable A 

was located before. It is unclear how nanoCoP-Ω would determine if a variable needs to be replaced 

and how it would determine what to replace the variable by. It is possible that leanCoP-Ω already 

‘implements’ this adjustment because of the different way ∂-variables are stored. Perhaps this 

adjustment already is the default behaviour for Prolog, but the new version of ∂-variables in nanoCoP-

Ω deactivated this feature somehow. If we were to implement this adjustment the optimization 

discussed during this chapter could not be applied, as Eq may be empty when the LSE has been 

changed. 

7.5 The TPTP Benchmark 

nanoCoP-Ω has been compared with leanCoP-Ω via an excerpt of the TPTP benchmark containing only 

typed first-order theorems. A comparison via first-order theorems from the TPTP library is something 

that was not done due to these problems not containing arithmetic expressions. Thus, a comparison 

would yield similar results to the comparison between leanCoP and nanoCoP in [19]. A comparison to 

other automated provers would be more interesting. 

?- unify_with_arith(p(A),p(6),Eq,[]). 

A = 6, 

Eq = []. 
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8 Conclusion 

The work of this thesis has ended in a partial success. The integration of arithmetic and equality 

handling procedures was successful. The implementation of new arithmetic handling methods has 

provided us with a capable prover, although completeness of nanoCoP-Ω for arithmetic problems can 

never be achieved due to undecidability. We have learnt of the importance of the deep omega 

extension rule and of the alternative start rule during testing, as certain theorems require these rules 

to be proven at all. The result: nanoCoP-Ω can solve approx. 55% of purely arithmetic problems and 

approx. 45% of numeric problems from the TPTP benchmark, a very comparable score to leanCoP-Ω. 

As hoped, nanoCoP-Ω solves these problems considerably faster due to its non-clausal approach. The 

non-clausal approach does not seem to be strictly better than the clausal approach though: We have 

learned that leanCoP-Ω seems to be better suited for the larger problems from the Interactive 

Theorem Prover and Software Verification domains. This is worrying, as the main benefit of nanoCoP-

Ω over clausal form provers is the more human-readable returned proof, which would be particularly 

useful in ITP for tools like Sledgehammer [32]. Because leanCoP-Ω and nanoCoP-Ω both solve problems 

from the TPTP benchmark the other prover does not solve, I have proposed the combination of these 

two systems into a singular CoP system, hopefully maximizing success rates. We have also learnt that 

in its current form nanoCoP-Ω is not suitable for use in any way, as it is not sound. I was able to exploit 

the way the predicate unify_with_arith returns necessary equations to the Omega Test to make 

nanoCoP-Ω prove a non-theorem. This problem may or may not affect leanCoP-Ω, as the procedure 

for proving equalities and the corresponding predicates used are the same, but variables are stored 

slightly differently. I have also outlined further optimizations to nanoCoP-Ω that could be done in 

future work.  
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II. Appendix 

The Domain Structure of the TPTP. Available under https://tptp.org/TPTP/TR/TPTPTR.shtml . 

Logic  Combinatory logic  
 

COL  
 Logic calculi   LCL  
 Henkin models   HEN  

Mathematics  Set theory  
 

SET, SEU, and SEV  
 Graph theory   GRA  
 Algebra  Relation algebra  REL  
  MV Algebras  MVA  
  Boolean algebra  BOO  
  Robbins algebra  ROB  
  Left distributive  LDA  
  Lattices  LAT  
  Quantales  QUA  
  Kleene algebra  KLE  
  Groups  GRP  
  Rings  RNG  
  Fields  FLD  
  Homological algebra  HAL  
  Real Algebra  RAL  
  General algebra  ALG  
 Number theory   NUM and NUN  
 Topology   TOP  
 Analysis   ANA  
 Geometry   GEO  
 Category theory   CAT  

Computer science  Computing theory  
 

COM  
 Knowledge representation   KRS  
 Natural Language Processing   NLP  
 Planning   PLA  
 Agents   AGT  
 Commonsense Reasoning   CSR  
 Semantic Web   SWB  
 Interactive Theorem Proving   ITP  
 Data Structures   DAT  
 Software creation   SWC  
 Software verification   SWV and SWW  

Science and Engineering  Biology   BIO  
 Hardware creation   HWC  
 Hardware verification   HWV  
 Medicine   MED  
 Processes   PRO  
 Products   PRD  

https://tptp.org/TPTP/TR/TPTPTR.shtml
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Social sciences  Social Choice Theory   SCT  
 Management   MGT  
 Geography   GEG  

Arts and Humanities  Philosophy   PHI  

Other  Arithmetic   ARI  
 Syntactic   SYN and SYO  
 Puzzles   PUZ  
 Miscellaneous   MSC  

 

The following lists are the result of the benchmark testing conducted within this thesis. 

List of Problems that nanoCoP Omega times out for (not including ‘invalid’ problems), while leanCoP 

Omega solves them: 

['SWW012=1.p', 'SWW046=1.p', 'SWW058=1.p', 'PUZ018_1.p', 

'SWW026=1.p', 'SWW087=1.p', 'SWW051=1.p', 'SWW018=1.p', 

'SWW047=1.p', 'ITP227_1.p', 'SWW035=1.p', 'SWW004=1.p', 

'SWW473_3.p', 'SWW084=1.p', 'SWW629=2.p', 'NUM925_1.p', 

'SWW008=1.p', 'SWW042=1.p', 'SWW032=1.p', 'ITP322_1.p', 

'SWW049=1.p', 'SWW021=1.p', 'SWW043=1.p', 'SWW071=1.p', 

'DAT058=1.p', 'ARI615=1.p', 'SWW094=1.p', 'SWW088=1.p', 

'SWW054=1.p', 'SWW060=1.p', 'SWW023=1.p', 'ITP302_1.p', 

'ARI592=1.p', 'SWW473_1.p', 'ITP006_1.p', 'SWW057=1.p', 

'SWW061=1.p', 'NUM891=1.p', 'SWW052=1.p', 'SWW011=1.p', 

'SWW010=1.p', 'SWW015=1.p', 'SWW039=1.p', 'SWW090=1.p', 

'SWW040=1.p', 'SWW031=1.p', 'SWW025=1.p', 'SWW022=1.p', 

'SWW029=1.p', 'ITP222_1.p', 'SWW020=1.p', 'NUM892=1.p', 

'SWW002=1.p', 'NUM925_3.p', 'SWW055=1.p', 'SWW072=1.p', 

'SWW050=1.p', 'SWW013=1.p', 'SWW024=1.p', 'SWW037=1.p', 

'SWW082=1.p', 'SWW017=1.p', 'SWW478_3.p', 'SWW030=1.p', 

'SWW038=1.p', 'SWW070=1.p', 'ITP327_1.p', 'SWW033=1.p', 

'SWW000=1.p', 'SWW064=1.p', 'SWW014=1.p', 'SWW048=1.p', 

'SWW473_2.p', 'ITP239_1.p', 'SWW089=1.p'] 

 

List of Problems that leanCoP Omega times out for, while nanoCoP Omega solves them: 

['SWW590=2.p', 'SWW601=2.p', 'SWW607=2.p', 'SWW655=2.p', 

'ARI588=1.p', 'ARI684=1.p', 'ARI399=1.p', 'SWW632=2.p', 

'ARI186=1.p', 'SWW635=2.p', 'SWW620=2.p', 'ARI585=1.p', 

'SWW633=2.p', 'SWW581=2.p', 'ARI602=1.p', 'SWW653=2.p', 

'NUM919=1.p', 'SEV422=1.p', 'ARI701=1.p', 'SWW652=2.p', 

'SEV425=1.p', 'SWW621=2.p', 'SWW634=2.p', 'DAT101=1.p', 

'SWW679=1.p', 'SWW656=2.p', 'SWW672=2.p', 'DAT103=1.p', 

'SWW654=2.p', 'SWW597=2.p', 'SWW658=2.p', 'ARI691=1.p'] 

 

List of Problems that leanCoP Omega solved faster than nanoCoP Omega: 

['ARI734=1.p', 'PUZ012_1.p', 'SEV421=1.p', 'SWV997=1.p', 

'SWV998=1.p', 'SWW003=1.p', 'SWW006=1.p', 'SWW478_1.p', 

'SWW478_2.p', 'SWW600=2.p', 'SWW613=2.p', 'SWW619=2.p', 

'ITP010_2.p'] 
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