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Abstract 

One of the major problems for the imple-
mentation of water resources planning and 
management in arid and semi-arid envi-
ronments is the scarcity of hydrological 
data and, consequently, research studies. In 
this thesis, the hydrology of dryland river 
systems was analyzed and a semi-
distributed hydrological model and a fore-
casting approach were developed for flow 
transmission processes in river-systems 
with a focus on semi-arid conditions. 

Three different sources of hydrological 
data (streamflow series, groundwater level 
series and multi-temporal satellite data) 
were combined in order to analyze the 
channel transmission losses of a large 
reach of the Jaguaribe River in NE Brazil. 
A perceptual model of this reach was de-
rived suggesting that the application of 
models, which were developed for sub-
humid and temperate regions, may be more 
suitable for this reach than classical mod-
els, which were developed for arid and 
semi-arid regions. Summarily, it was 
shown that this river reach is hydraulically 
connected with groundwater and shifts 
from being a losing river at the dry and 
beginning of rainy seasons to become a 
losing/gaining (mostly losing) river at the 
middle and end of rainy seasons. 

A new semi-distributed channel trans-
mission losses model was developed, 
which was based primarily on the capabil-
ity of simulation in very different dryland 
environments and flexible model structures 
for testing hypotheses on the dominant 
hydrological processes of rivers. This 
model was successfully tested in a large 
reach of the Jaguaribe River in NE Brazil 
and a small stream in the Walnut Gulch 
Experimental Watershed in the SW USA. 
Hypotheses on the dominant processes of 
the channel transmission losses (different 
model structures) in the Jaguaribe river 
were evaluated, showing that both lateral 
(stream-)aquifer water fluxes and ground-
water flow in the underlying alluvium par-
allel to the river course are necessary to 
predict streamflow and channel transmis-

sion losses, the former process being more 
relevant than the latter. This procedure not 
only reduced model structure uncertainties, 
but also reported modelling failures reject-
ing model structure hypotheses, namely 
streamflow without river-aquifer interac-
tion and stream-aquifer flow without 
groundwater flow parallel to the river 
course. The application of the model to 
different dryland environments enabled 
learning about the model itself from differ-
ences in channel reach responses. For ex-
ample, the parameters related to the un-
saturated part of the model, which were 
active for the small reach in the USA, pre-
sented a much greater variation in the sen-
sitivity coefficients than those which drove 
the saturated part of the model, which were 
active for the large reach in Brazil. 

Moreover, a nonparametric approach, 
which dealt with both deterministic evolu-
tion and inherent fluctuations in river dis-
charge data, was developed based on a 
qualitative dynamical system-based crite-
rion, which involved a learning process 
about the structure of the time series, in-
stead of a fitting procedure only. This ap-
proach, which was based only on the dis-
charge time series itself, was applied to a 
headwater catchment in Germany, in 
which runoff are induced by either convec-
tive rainfall during the summer or snow 
melt in the spring. The application showed 
the following important features: 
• the differences between runoff meas-

urements were more suitable than the 
actual runoff measurements when us-
ing regression models; 

• the catchment runoff system shifted 
from being a possible dynamical sys-
tem contaminated with noise to a linear 
random process when the interval time 
of the discharge time series increased; 

• and runoff underestimation can be ex-
pected for rising limbs and overestima-
tion for falling limbs. 

This nonparametric approach was com-
pared with a distributed hydrological 
model designed for real-time flood fore-
casting, with both presenting similar re-
sults on average. 
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Finally, a benchmark for hydrological 
research using semi-distributed modelling 
was proposed, based on the aforemen-
tioned analysis, modelling and forecasting 
of flow transmission processes. The aim of 
this benchmark was not to describe a blue-
print for hydrological modelling design, 
but rather to propose a scientific method to 
improve hydrological knowledge using 
semi-distributed hydrological modelling. 
Following the application of the proposed 
benchmark to a case study, the actual state 
of its hydrological knowledge and its pre-
dictive uncertainty can be determined, 
primarily through rejected hypotheses on 
the dominant hydrological processes and 
differences in catchment/variables re-
sponses. 
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Zusammenfassung 

Die Bewirtschaftung von Wasserressour-
cen in ariden und semiariden Landschaf-
ten ist mit einer Reihe besonderer Proble-
me konfrontiert. Eines der größten Prob-
leme für die Maßnahmenplanung und für 
das operationelle Management ist der 
Mangel an hydrologischen Daten und da-
mit zusammenhängend auch die relativ 
kleine Zahl wissenschaftlicher Arbeiten zu 
dieser Thematik. In dieser Arbeit wurden  

1) die grundlegenden hydrologischen Be-
dingungen von Trockenflusssystemen 
analysiert,  

2) ein Modellsystem  für Flüsse unter 
semiariden Bedingungen, und  

3) ein nichtparametrisches Vorhersage-
verfahren für Abflussvorgänge in Flüs-
sen entwickelt. 

Der Wasserverlust in einem großen Ab-
schnitt des Jaguaribe Flusses im nordöstli-
chen Brasilien wurde auf Basis von Daten 
zu Abflussraten, Grundwasserflurabstände 
und mit Hilfe multitemporaler Satellitenda-
ten analysiert. Dafür wurde zuerst ein kon-
zeptionelles hydrologisches Modell über 
die Mechanismen der Transferverluste in 
diesem Abschnitt des Trockenflusses er-
stellt. Dabei ergab sich, dass der Flussab-
schnitt mit dem Grundwasser hydraulisch 
verbunden ist. Der Flussabschnitt weist in 
der Trockenenzeit und am Anfang der Re-
genzeit nur Wasserverlust (Sickerung) zum 
Grundwasser auf. Im Laufe der Regenzeit 
findet auch ein gegenseitiger Austausch 
vom Grundwasser mit dem Flusswasser 
statt. Aufgrund dieser hydraulischen Kopp-
lung zwischen Flusswasser und Grundwas-
ser sind für diesen Flussabschnitt hydrolo-
gische Modellansätze anzuwenden, die 
generell für gekoppelte Fluss-
Grundwassersysteme, v.a. in feuchtgemä-
ßigten Klimaten, entwickelt wurden. 

Es wurde ein neuartiges hydrologisches 
Simulationsmodell für Transferverluste in 
Trockenflüssen entwickelt. Dieses Modell 
ist für unterschiedliche aride und semiaride 
Landschaften anwendbar und hat eine fle-
xible Modellstruktur, wodurch unter-
schiedliche Hypothesen zur Relevanz ein-

zelner hydrologische Prozesse getestet 
werden können. Es wurde für den zuvor 
genannten großen Abschnitt des Jaguaribe 
Flusses im nordöstlichen Brasilien und für 
einen kleinen Flussabschnitt im „Walnut 
Gulch Experimental Watershed“ (WGEW) 
in Arizona, Südwest-USA, angewendet. 
Für die eine prozess-orientierte Simulation 
von Abflussbedingungen und Transferver-
lusten im Einzugsgebiet des Jaguaribe hat 
sich gezeigt, dass die am besten geeignete 
Modellstruktur sowohl den Austausch zwi-
schen Flusswasser und Grundwasser (senk-
recht zur Fließrichtung des Flusses) als 
auch die parallel zum Fluss verlaufende 
Grundwasserströmung enthält. Die Simula-
tionsexperimente mit unterschiedlichen 
Modellstrukturen („Hypothesentest“) redu-
zierte nicht nur die Modellstrukturunsi-
cherheit, sondern quantifizierte auch die 
Qualität der Modellergebnisse bei folgen-
den Varianten der Modellstruktur: a) 
Abflluss im Fluss ohne Interaktion mit 
dem Grundwasser (keine Transferverluste) 
und b) Interaktion zwischen Fluss und 
Grundwasser ohne parallelen Grundwas-
serstrom zum Flussstrom. Durch die An-
wendung auf die beiden unterschiedlichen 
Trockenflusssysteme  wurden neue Er-
kenntnisse über die Sensitivität des Mo-
dells unter verschiedenen Bedingungen 
erworben. Beispielsweise waren die Para-
meter der ungesättigten Zone, die von ho-
her Relevanz für den kleinen Flussab-
schnitt im WGEW waren, viel sensitiver 
als die Parameter der gesättigten Zone, die 
besonders relevant für den Jaguaribe 
Flussabschnitt in Brasilien waren. Die Ur-
sache für diese sehr unterschiedliche Sensi-
tivität liegt darin, dass beim WGEW das 
Flusswasser nur mit der ungesättigten Zone 
in Kontakt steht, da sich  in diesem Gebiet, 
welche im Vergleich zur Jaguaribe-Region 
noch deutlich trockener ist, kein Grund-
wasserleiter bildet. 

Letztlich wurde ein nicht-
parametrisches Verfahren, zur Simulation 
der deterministischen Evolution und sto-
chastischen Fluktuation der Abflussdyna-
mik entwickelt. Im Unterschied zu pro-
zess-basiertem Modellsystemen basiert 
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dieses Verfahren nicht auf Modellkalibrie-
rung sondern auf einem Lernprozess, ba-
sierend auf Zeitreihendaten. Als Anwen-
dungsbeispiel wurde ein mesoskaliges Ein-
zugsgebiet im Erzgebirge, NO-
Deutschland gewählt, in dem starke Ab-
flussereignisse entweder durch konvektive 
Niederschlagsereignisse oder durch 
Schneeschmelze generiert werden. Die 
folgenden wichtigsten Ergebnisse wurden 
erzielt: 
• Regressionsmodellansätze basierend 

auf den zeitlichen Änderungen der Ab-
flüsse  liefern bessere Ergebnisse ge-
genüber Ansätzen basierend auf direk-
ten Abflussdaten; 

• mit zunehmendem Vorhersagehorizont 
wandelt sich das hydrologische System 
von einem mit Zufallsanteilen ver-
rauschten dynamischen System zu ei-
nem linearen probabilistischen Zufalls-
prozess; 

• Bei zunehmendem Abfluss (ansteigen-
den Ganglinie) erfolgt meist eine Ab-
flussunterschätzung, bei abnehmendem 
Abfluss (fallende Ganglinie) erfolgt 
meist eine Abflussüberschätzung. 

Dieses nichtparametrische Verfahren 
ergibt im Vergleich mit einem prozess-
orientierten und flächenverteilten hydrolo-
gischen Hochwasservorhersagemodell bis 
zu einem Vorhersagezeitraum von 3 Stun-
den Ergebnisse von vergleichbar guter 
Qualität. 

Letztendlich wurde ein Vorgehen bzgl. 
künftiger Forschungen zu hydrologischer 
Modellierung vorgeschlagen. Das Ziel da-
bei war ein wissenschaftliches Verfahren 
zur Verbesserung des hydrologischen Wis-
sens über ein Einzugsgebiet. Diese Verfah-
ren basiert auf einem Hypothesentest zu 
den relevanten hydrologischen Prozessen 
und der Untersuchung der Sensitivitäten 
der hydrologischen Variablen bei unter-
schiedlichen Einzugsgebieten. 
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1. Background and Overview 

Phenomenological modelling has the ulti-
mate goal of establishing mathematically 
the actions of the dominant mechanisms, 
which have been previously derived from 
measurements, of an underlying system 
(Kantz and Schreiber, 2004). In this view, 
distributed hydrological models may be 
considered (quasi-)phenomenological ones, 
since observed signatures of hydrological 
processes (e.g. runoff coefficients of hill-
slopes and channel transmission losses) are 
mimicked by (inter-)actions of conceptual 
lump components, but model assumptions, 
which are not based on measurements, are 
almost always inevitable. 

The technological improvements in the 
past 30 years, such as the reduction of 
computation time to run numerical models 
and the availability of large data sets of 
land surface, enabled a big increase of the 
number of developers and users of distrib-
uted models. However, this kind of model-
ling is a task that involved uncertainties, 
which can arise from initial and boundary 
conditions, parameters, model structure 
and/or space-time scales effects (see e.g. 
Beven, 1989; Blöschl and Sivapalan, 1995; 
Bronstert, 1999; Sivapalan et al., 2003b; 
Montanari, 2007). Moreover, the induction 
procedure (the upward or bottom-up ap-
proach), which links much smaller scale 
conceptual hydrological models (e.g. Hor-
ton infiltration model) and is at the heart of 
distributed modelling, produces almost 
inevitably over-parameterization and asso-
ciated identifiability problems (Beven, 
1989; Young, 2003; Littlewood et al., 
2003; Kirchner, 2006). 

In order to lessen the uncertainties of 
distributed models, advances in data sam-
pling/assimilation on/of initial and bound-
ary conditions and parameters have been 
used (e.g. Bauer et al., 2006; Soulsby et al., 
2008; Milzow et al., 2009). Also, in this 
way, model assessment of different simu-
lated variables and for catchments with 
different governing hydrological processes 
(avoiding the one-case-study application) 
have been suggested (Bronstert, 2004; Ebel 

and Loague, 2006; Kirchner, 2006; André-
asssian et al., 2007, 2009, 2010). Further-
more, it has been recognized that hydro-
logical models in general should primarily 
proceed from perceptual hydrological 
models, which describe (develop hypothe-
ses) in a physically meaningful way (on) 
the dominant hydrological mechanisms 
based on experiments/measurements at 
different space-time scales and expert in-
formation/knowledge of related variables 
(e.g. soils, geology and land cover) (e.g. 
Sivapalan et al., 2003a; Chirico et al., 
2003; Dunn et al., 2008; Gallart et al., 
2008; Wenniger et al., 2008; Tetzlaff et al., 
2008; Gupta et al., 2008; Hughes, 2010; 
McMillan et al., 2011). Nevertheless, per-
ceptual hydrological models have rarely 
been combined to build process-based 
models of a comprehensive range of 
catchment processes (McMillan et al., 
2011). 

In order to overcome the over-
parameterization and associated identifi-
ability problems of distributed models, 
some authors have re-visited the downward 
or top-down approach (e.g. Jothiyangkoon 
et al., 2001; Sivapalan et al., 2003a; Lit-
tlewood et al., 2003; Fenicia et al., 
2008a,b) introduced by Klemeš (1983), 
which means that one should start with the 
simplest model configuration at a large 
scale and then gradually increase the com-
plexity of the model with decreasing scales 
(Klemeš, 1983; Jothiyangkoon et al., 
2001). Furthermore, the purely distributed 
modelling has also been modified for hy-
brid or semi-distributed modelling (e.g. 
Jothiyangkoon et al., 2001; Güntner and 
Bronstert, 2004), which combines the up-
ward approach with the downward one. 
Semi-distributed modelling may be con-
sidered as a compromise between down-
ward and upward approaches, trying to 
decrease the over-parameterization and 
associated identifiability problems of up-
ward modelling (Young, 2003; Littlewood 
et al., 2003) and to surmount the lack or 
poor representation of the hydrological 
processes of downward modelling (e.g. 



1 Background and Overview 

 
3 

purely empirical models) (Littlewood et 
al., 2003). 

Another emerging modelling approach 
has been made by assuming hydrological 
modelling as a tool for testing hypotheses 
on the dominant hydrological mechanisms 
(Graeff et al., 2009; Savenije, 2009; 
Andréassian et al., 2010; Buytaert and 
Beven, 2011; McMillian et al., 2011; Clark 
et al., 2011a,b), in which the feedbacks 
between experimentalists and modellers 
are indispensable for model development 
and assessment. In this context, the ex-
perimental challenge is to choose/develop 
a monitoring system or an experimental 
procedure, given natural and financial con-
straints, in order to quantify/qualify the 
(possible) dominant hydrological processes 
(perceptual hydrological model). On the 
other hand, the modelling challenge is to 
develop flexible model structures, in order 
to test hypotheses on the dominant hydro-
logical mechanisms and to convert the fi-
nal model applicable to the time and spa-
tial scales of interest (based on Savenije, 
2009; Andréassian et al., 2010; Buytaert 
and Beven, 2011; McMillian et al., 2011; 
Clark et al., 2011a). 

Taken into account the synthesis pro-
posed by Li et al. (2010) on comparative 
analysis in hydrology, that model strategy 
may be applied to a) just one catchment 
with a view to generating insights into 
catchment functioning through compari-
sons of model performance (inter-
comparison studies), or b) a number of 
catchments in different hydro-climatic re-
gions with a view to learning from differ-
ences in catchment responses (comparative 
diagnostic analysis). Finally, a compromise 
between model complexity, data availabil-
ity and model accuracy/consistency with 
the observations should be achieved to find 
the most suited process-orientated model, 
which is able to simulate the long term 
dynamics of an underlying hydrological 
system. 

However, optimised forecasting of an 
underlying hydrological system does not 
have to be designed for good reproduction 
of long term dynamics but may instead 

focus on short time horizons into the future 
(based on Kantz and Schreiber, 2004). For 
this task, techniques, which are based al-
most entirely on time series data, often 
supersede the phenomenological models 
(Kantz and Schreiber, 2004). The first step 
of the time series approach consists in 
choosing an appropriate model equation 
containing free parameters, which in a sec-
ond step are adapted to the observed series 
by some fitting procedure (Brockwell and 
Davis, 2003; Kantz and Schreiber, 2004). 
The application of such techniques to hy-
drological time series has become feasible 
through the increase in the number of 
monitoring networks and their long term 
functioning in the developed/developing 
word. 

The application of time series models in 
hydrological sciences has been dominated 
by the assumption of a random nature of 
the hydrological data and then the use of 
nonparametric stochastic forecasting ap-
proaches. However, since the beginning of 
the 1990s, runoff series have been assumed 
to be responses of dynamical systems with 
a low-dimensional chaotic attractor result-
ing from the nonlinear coupling of precipi-
tation and catchment state that depends on 
climatic condition and geo-patterns such as 
land cover, soils, river network and geol-
ogy (Liu et al., 1998; Porporato and Ri-
dolfi, 1997; Sivakumar et al., 2001). This 
nonlinear approach can provide accurate 
one-discharge-value-per-time-step fore-
casting, but it does not always offer insight 
into the probabilistic structure of the data 
resulting from the shortness of series and 
the inevitable presence of dynamical noise 
in open physical systems such as catch-
ment hydrology (Porporato and Ridolfi, 
2001; Kantz and Schreiber, 2004). 

In this context, the challenge is to elabo-
rate a model, which enables one to deal 
with both deterministic evolution and in-
herent fluctuations in river discharge data. 
There are a few examples in the literature 
which address this issue: Tamea et al. 
(2005) proposed a) an ensemble-based 
nonlinear prediction with parametric de-
terministic range similar to the GLUE 
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method (Beven and Binley, 1992) and b) a 
probabilistic prediction using global errors 
of a training set to “dress” the deterministic 
forecasts, which was also done by Chen 
and Yu (2007) using support vector ma-
chine background. 

Even though the application of time se-
ries models are restricted by short-range 
dependence of the time series, i.e. its auto-
correlation function has to reach approxi-
mately zero, and effects e.g. of man-made 
actions on landscape and water systems 
cannot be taken into account for forecast-
ing, the time series models do not contain 
the inherent uncertainties of (semi-
)distributed hydrological models arising 
from initial conditions, spatially distributed 
parameters, model structure and space-time 
scale effects. On the other hand, (semi-
)distributed models can predict hydrologi-
cal processes with some degree of cer-
tainty, when time series data are scarce 
(e.g. Lange et al., 1999; Gheith and Sultan, 
2002). However, it would be desirable to 
combine the insight of a (quasi-
)phenomenological approach with the sta-
tistical accuracy of a time series model 
(Kantz and Schreiber, 2004). 

In this thesis, the hydrology of dryland 
river systems is analyzed and a semi-
distributed hydrological model and a fore-
casting approach are developed for flow 
transmission processes in river-systems. A 
focus of this research will be on semi-arid 
environments, where scarcity of data and, 
consequently, of hydrological studies, due 
to financial constrains, low population 
density, remoteness of hydrological sta-
tions and inherent short duration of runoff, 
are one of the major problems for the im-
plementation of water resources planning 
and management (El-Hames and Richards, 
1998; Gaiser et al., 2003; Lange, 2005; 
Costelloe et al., 2006; Wheater et al., 
2008a; Morin et al., 2009). 

2. Objectives 

It is aimed to develop a process-orientated 
and semi-distributed channel transmission 
losses model which is able to cover a large 
variation in climate and hydro-geologic 

controls, which are typically found in dry-
land regions of the Earth. The model is 
designed with a flexible structure in order 
to test hypotheses on the dominant hydro-
logical processes of river reaches. Tradi-
tionally, channel transmission losses mod-
els have been developed for site specific 
conditions and fixed model structure. 

For that task, the intention is also to 
quantify and qualify the channel transmis-
sion losses in a large river reach in NE 
Brazil, including the development of a 
concept of the dominant hydrological 
processes based on stream discharge series, 
groundwater series and multi-temporal 
satellite data. 

Moreover, a new time series model 
based on stochastic dynamics theory (van 
Kampen, 1992; Anishenko et al., 2003; 
Kantz and Schreiber, 2004) is formulated 
to deal with both deterministic evolution 
and inherent fluctuations in river discharge 
data, in order to forecast real-time flood in 
headwater catchments. For this task, our 
formulation is compared with the standard 
nonparametric stochastic approach and a 
distributed hydrological model developed 
for real-time flood forecasting. 

3. Outline of the Thesis 

The observation and the analysis of the 
channel transmission losses in a large river 
reach in NE Brazil will be shown in Chap-
ter II, which also deals with the perceptual 
model of the channel transmission losses 
and its implication for the hydrological 
modelling of that reach, whereas Chapter 
III is related to the development of the 
channel transmission losses model and its 
assessment for different dryland rivers lo-
cated in NE Brazil (see also Chapter II) 
and the SW USA. 

Chapter IV deals with the real-time 
probabilistic flood forecasting in a headwa-
ter catchment in Germany based on a new 
nonparametric approach. Chapter V dis-
cusses and brings together the main results 
of Chapters II to IV, presenting also a 
benchmark for hydrological research using 
semi-distributed hydrological modelling, 
which is a synthesis of those Chapters. 
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Chapter V also provides a general conclu-
sion and implications of this work on real-
world problems and hydrological research. 

Chapters II to IV were written as stand-
alone manuscripts that are either published 
or awaiting for publication in international 
peer-reviewed journals (for full references, 
see front pages of the respective chapters).



 

 

Chapter II 
 
 
Analysis of channel transmission losses in a dryland river 
reach in northeastern Brazil using streamflow series, 
groundwater level series and multi-temporal satellite data 

Abstract 

Scarcity of hydrological data, especially streamflow discharge and groundwater level series, 
restricts the understanding of channel transmission losses (TL) in drylands. Furthermore, the 
lack of information on spatial river dynamics encompasses high uncertainty on TL’ analysis 
in large rivers. The objective of this study was to combine the information from streamflow 
and groundwater level series with multi-temporal satellite data to derive a hydrological con-
cept of TL for a reach of the Middle Jaguaribe River (MJR) in semi-arid northeastern Brazil. 
Based on this analysis, we proposed strategies for its modelling and simulation. TL take place 
in an alluvium, where river and groundwater can be considered to be hydraulically connected. 
Most losses certainly infiltrated only through streambed and levees and not through the flood 
plains, as could be shown by satellite image analysis. TL events, whose input river flows were 
smaller than a threshold, did not reach the outlet of the MJR. TL events, whose input flows 
were higher than this threshold, reached the outlet losing on average 30% of their input. Dur-
ing the dry seasons (DS) and at the beginning of rainy seasons (DS/BRS), no river flow is 
expected for pre-events and events have vertical infiltration into the alluvium. At the middle 
and the end of the rainy seasons (MRS/ERS), river flow sustained by base flow occurs be-
fore/after events and lateral infiltration into the alluvium plays a major role. Thus, the MJR 
shifts from being a losing river at DS/BRS to become a losing/gaining (mostly losing) river at 
MRS/ERS. A model of this system has to include the coupling of river and groundwater flow 
processes linked by a leakage approach. 
 
Keywords: channel transmission losses; multi-temporal RapidEye satellite data; semi-arid hydrology; north-
eastern Brazil; dryland rivers; river-aquifer interaction 
 
Resubmitted to Hydrological Processes as 
Costa, A.C., Foerster, S., de Araújo, J.C., and Bronstert, A.: Analysis of channel transmission losses in 
a different dryland river reach in northeastern Brazil using streamflow series, groundwater level series 
and multi-temporal satellite data, 2012. 
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1. Introduction 

Channel transmission losses are a key 
factor for water and environmental 
planning and management in dryland 
environments, since they reduce not 
only surface flow volume, but also peak 
discharges, support riparian vegetation, 
and are a major source of potential 
groundwater recharge (Sharma and 
Murthy, 1994; Sharma et al., 1994; 
Lange, 2005; Dagès et al., 2008; Whea-
ter, 2008; Morin et al., 2009). Their 
dynamics have shown high nonlinearity 
in relation to streamflow magnitude: 
a) Initial infiltration losses were smaller 
than during the main phase of the flood 
in a flash flood experiment in the south-
ern Negev Desert, Israel (Lange et al., 
1998). 
b) Small to medium floods could travel 
considerable distances without substan-
tial losses, whereas significant transmis-
sion losses occurred during high runoff 
peaks in a 150 km channel reach of the 
Kuiseb River, Namibia Desert. High 
runoff peaks were significantly dimin-
ished after the runoff had exceeded a 
certain threshold level (Lange, 2005). 
c) Small floods did not usually traverse 
the full distance between stream gauges, 
whereas larger flows transmitted to the 
outlet about 20-50% of their discharge 
in a 420 km channel reach of the Coo-
per Creel River in Australia. Then, at a 
certain threshold level of input river 
flow, transmission losses increased 
again and flows transmitted to the outlet 
were about 10-20% of their discharge. 
Only during the largest floods did river 
flow transmission efficiency increase 
sharply (Knighton and Nanson, 1994). 

For large river systems, that nonlin-
earity might be explained mainly by: 
a) Pools, subsidiary channels and/or 
floodplain areas which act as sink areas 
of flows, but once they become fully 
saturated, the most direct floodways 
become fully active and river flow 
transmission efficiency increases 

(Knighton and Nanson, 1994; Lange, 
2005) 
b) A clogging layer within or on the 
alluvial surface, which can act as a seal 
that is disrupted at higher discharge 
(Lange, 2005). Indeed, stratified alluvi-
ums with hydraulic conductivity hetero-
geneity were reported from point infil-
tration experiments (Parissopoulos and 
Wheater, 1992) and local stratigraphies 
in dryland riverbeds (e.g. Lange, 2005). 

Also, the subsurface water redistribu-
tion in the underlying alluvium may 
influence the infiltration rates from river 
to aquifer. The underlying alluvium 
saturation can be driven by local, inter-
mediate or regional groundwater flow 
systems (Sophocleous, 2002), in which 
potential abstractions are through tran-
spiration by (near-)river channel vegeta-
tion (Goodrich et al., 2004; Blasch et 
al., 2004) and groundwater pumping 
(Shentsis, 2003; Shentsis and Rosenthal, 
2003). 

Channel transmission losses take 
place in a) allogenic rivers, which are 
sourced almost entirely from upstream 
humid areas (e.g. the River Nile in 
Northern Sudan and Egypt)) and com-
monly sustain perennial flow partly 
infiltrating in the alluvial system along 
the allogenic river, and b) endogenic 
rivers, which are sourced almost en-
tirely within dryland environments and 
usually show an ephemeral (non-
baseflow) or intermittent flow (Bull and 
Kirkby, 2002). 

Dryland rivers can be hydraulically 
connected or disconnected to groundwa-
ter systems (Sophocleous, 2002). When 
hydraulically connected, the gradient 
between river and groundwater plays a 
major role in transmission losses, indi-
cating whether they occur or not (see 
e.g. Lima et al., 2007). 

Moreover, a fundamental physical 
principle which explains higher trans-
mission losses at higher stream dis-
charge is the increase in infiltration due 
to higher hydraulic head at the surface. 
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This assumption was taken into account 
for channel transmission losses model-
ling by Abdulrazzak and Morel-Seytoux 
(1983), Freyberg (1983), Illangasekare 
and Morel-Seytoux (1984), El-Hames 
and Richards (1998) and Xie and Yuan 
(2010). 

However, the findings of Dahan et al. 
(2008) in the Kuiseb River, Nambia, 
suggested that the microlayering of the 
sandy alluvial sediments at the top of 
the vadose zone regulates the flux proc-
ess through almost constant infiltration 
rates. This disagrees with the hypothesis 
of a flood-stage-based surface-
groundwater flux process. Therefore, 
large transmission losses during high 
flood stages may be due to long dura-
tion of large floods (Dahan et al., 2008). 

Scarcity of hydrological data, espe-
cially simultaneous streamflow dis-
charge and groundwater level series, in 
dryland environments restricts the un-
derstanding of transmission losses proc-
esses. Furthermore, the lack of informa-
tion on spatial river dynamics between 
stream gauges encompasses high uncer-
tainty on transmission losses’ analysis 
in large rivers. 

In this paper, we address these prob-
lems by investigating channel transmis-
sion losses in a 60 km reach of the Mid-
dle Jaguaribe River in semi-arid north-
eastern Brazil. The river reach is located 
upstream of the 1940 106m3 Orós reser-
voir (Fig. 1), one of the most important 
water resources for the whole Jaguaribe 
basin. 

Figure 1. Location of the Middle Jaguaribe River reach under study in relation to the Orós reservoir. 

The general objective of this study is 
to combine the information from 
streamflow and groundwater level series 
with multi-temporal satellite data to 
derive a hydrological concept of chan-
nel transmission losses for a large 
Jaguaribe River reach. Based on this 
analysis, we propose strategies for its 
hydrological modelling and simulation. 

Using the streamflow series, we in-
tend to a) quantify the event-based 
channel transmission losses and their 
impact on the flow volume and peak, b) 
verify the relationship between trans-
mission losses and input flow magni-

tude, and c) indentify the existence of 
runoff thresholds, which separate hy-
drological behaviours. 

Analyzing the groundwater level se-
ries, we intend to a) determine whether 
the river-groundwater system is hydrau-
lically connected or not, b) verify 
whether the recession limb of the out-
flow hydrograph is driven not only by 
the upstream boundary conditions, but 
also by the return flow originated from 
the previous transmission losses. 

Assessment of channel transmission 
losses are traditionally carried out by 
streamflow water balance and compari-
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son between streamflow and groundwa-
ter levels. Satellite data might contain 
complementary information as they 
have proved to be a valuable source to 
improve understanding of surface hy-
drological processes (van Dijk and 
Renzullo, 2011). They are particularly 
relevant in large remote catchments 
with restricted accessibility and there-
fore sparse hydrological measurements 
(Kite and Pietroniro, 2000). Satellite 
observations have been widely used for 
monitoring the extent of water bodies, 
e.g. in the context of flood monitoring, 
and mapping hydrological state vari-
ables, such as surface temperature, soil 
moisture and snow cover, to estimate 
hydrological fluxes, such as evapotran-
spiration and runoff (van Dijk and 
Renzullo, 2011; Schmugge et al., 2002). 
So far satellite observations have, how-
ever, hardly ever been used in the con-
text of transmission losses. 

For that purpose, particular satellite 
systems with a frequent coverage may 
provide information on seasonal, annual 
and long-term changes of surface water 
present in the riverbed or floodplain and 
of water surface connectivity along the 
river and its tributaries (see e.g. Costel-
loe et al, 2006). Water surface mapping 
and monitoring using optical satellite 
data are based on the spectral character-
istics of water in the near infrared and 
visual region as compared to soils and 
vegetation. 

The main scientific questions related 
to the use of satellite-based remote sens-
ing data in this research are: 
a) Is the river confined within the 
streambed and levees or did it flow over 
the floodplain during flood events? 
b) Can river water volumes deriving 
from satellite data and river cross-
sections indicate correctly whether 
channel transmission losses occur? 
c) Has there been any indication of spa-
tial variability in transmission losses in 
MJR? 

d) Even when the stream gauges register 
non-flow, is surface water observable in 
the river reach? 

2. Study Area 

The Jaguaribe River is 610 km long and 
the largest intermittent river in Brazil. 
Its basin covers an area of 76 thousand 
km2 and is located within the institu-
tional borders of the State of Ceará in 
the semi-arid northeastern Brazil (Fig. 
1). The Orós reservoir, the second larg-
est surface reservoir of the State of 
Ceará, is situated about 11 km down-
stream of the Middle Jaguaribe River 
reach (MJR) under study (Fig. 1). 

The Jaguaribe River basin’s hydrol-
ogy is determined by an annual cycle of 
rainy and dry seasons, which are driven 
mainly by the position of the Intertropi-
cal Convergence Zone and secondarily 
by cold fronts from the South Atlantic 
(Xavier, 2001; Werner and Gersten-
garbe, 2003). The rainy season lasts up 
to six months (December-May) on av-
erage. 

The high water deficit can be derived 
from the difference between annual 
rainfall (400mm to 800mm depending 
on the location in the catchment) and 
the annual potential evaporation (about 
2200mm). Together with the scarce, 
salty and spatially concentrated 
groundwater resources, this has led to 
the construction of many surface reser-
voirs during the last century (there is 
about one on-river reservoir every 6 
km2: Malveira et al. (2011)). Further-
more, the large surface reservoirs have 
transformed large parts of the river net-
work into perennial waterways in the 
Jaguaribe River basin. 

The Middle Jaguaribe River reach 
(MJR), the focus of this research, is 60 
km long and controlled by two upstream 
stream gauges (N1 and N2) and one 
downstream stream gauge (N3) (Fig. 2). 
N1 measures the discharge from the 
upstream Jaguaribe catchment while N2 
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measures the discharge from the only 
large tributary, Cariús River, into MJR. 

These two upstream stream gauges 
control a catchment area of 20 thousand 
km2 of the Jaguaribe basin. The addi-
tional drainage area between the up-

stream gauges and the downstream 
gauge is 1000 km2, which contains 
about 130 small surface reservoirs. Wa-
ter has been released from upstream 
large reservoirs in the Jaguaribe River 
into MJR since the dry season of 2007. 

Figure 2. Middle Jaguaribe River reach (MJR) under study. The description of the hydrogeology was 
adapted from IBGE (2003). 

Water consumption for agricultural 
purposes in the MJR is mainly supplied 
by tubular wells in an alluvium, which 
is characterized by unconfined aquifers, 
contiguous to the Jaguaribe River main 
stream (Fig. 2). This alluvial groundwa-
ter extraction occurs predominantly 
during the dry season and has an order 
of magnitude of 6000 m3/day (based on 
CPRM, 1998), whereas the continuous 
domestic supply for major towns and 
villages, including Iguatu City, is 
mainly provided by surface reservoirs 
or deep groundwater. This alluvium has 
a maximum thickness of 25 m with high 
permeability and overlays fractured 
rocks (IBGE, 2003). Its stratigraphy is 
composed of layers of fine and coarse 
sand, gravel and clay (IBGE, 2003). 
Moreover, the Orós reservoir is located 
over this same large alluvium-system 
(IBGE, 2003). 

3. Hydrological Data 

3.1. Streamflow series 

The Brazilian Geological Service 
(CPRM) has monitored the three stream 
gauges (N1, N2 and N3) in the MJR, 
measuring daily water level by rulers 
installed at the river sections and bi-
monthly discharges. The time series 
data are made available by the Brazilian 
Water Agency (ANA), see 
http://www.hidroweb.ana.gov.br. Water 
levels at all three gauges have been 
measured simultaneously since 2001. 

We used CPRM’s flow discharge 
measurements to construct the rating 
curves. Then, we calculated an event-
based water balance between input 
streamflow (N1 and N2) and output 
streamflow (N3), assuming the wave 
travel time from N1 and N2 to N3 equal 
to two days and one day, respectively. 
These travel times were estimated em-
pirically from the differences between 
the days of peak flows at the stream 
gauges. We defined a runoff event ter-
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minated if another one begins at the end 
of its recession limb or if the stream-
flow ceases completely, i.e., the runoff 
volume of the recession limb is included 
in the calculation of the event-based 
water balance. 

Furthermore, a transmission losses 
rate TL (106m3/106m3) was calculated 
for every event 

Input

InputOutput
TL

−=     (1) 

where Output (106m3) is the flow vol-
ume of the N3 stream gauge and Input 
(106m3) is the sum of flow volumes of 
the N1 and N2 stream gauges. We de-
scribed every event according to TL as 
follows 
a) if TL≈-1, all inflow (sum of the 
inflow from the upstream gauges N1 
and N2) was lost through transmission 
losses. When river floods occur during 
the dry season the inflow from the 
direct drainage between the stream 
gauges can be neglected, because no 
significant rainfall over this area has 
been registered whatsoever; 
b) if -1<TL<0, then transmission losses 
were relevant and reduced the input 
flow from the upstream gauges (N1 and 
N2) and from the drainage area between 
the stream gauges; 
c) if TL≈0, then transmission losses 
were approaching zero or they were 
compensated by inflow from the direct 
drainage area between the stream 
gauges; 
d) if TL>0, then inflow from the direct 
drainage area between the stream 
gauges was greater than possible 
transmission losses. However, situations 
with TL>0 mostly occur in the rainy 
season. 

Rainfall time series of seven rain 
gauges within the MJR region, which 
are monitored daily by the Meteorologi-
cal and Water Resources Foundation of 
the State of Ceará (FUNCEME) (see 
Fig. 2), were also taken into account to 
verify the possible influence on the 
MJR’s water balance of the runoff 

which might be generated within the 
drainage area between the stream 
gauges (items c) and d) mentioned 
above). 

Moreover, we estimated the order of 
magnitude of the groundwater extrac-
tion during the events in the dry season, 
multiplying the daily groundwater 
pumping rate (6000 m3/day) by the du-
ration of the event. 

In order to assess the channel trans-
mission losses relating to the seasonal 
variation, the events have also been 
classified according to their seasonality 
based on the monthly river flow fre-
quency through the years in the MJR. 
The dry season starts in July and lasts 
until January, the beginning of the rainy 
season from February to March, the 
middle of the rainy season from March 
to May and the end of the rainy season 
from May to July. 

3.2. The role of the inflow from the 
drainage area between the stream 
gauges 

The drainage area between the gauges is 
about 20 times smaller than the catch-
ment area which the upper gauges drain. 
Moreover, it contains about 130 small 
surface reservoirs. However, the inflow 
from this direct drainage area (IDA) 
may influence the water balance and 
thus the channel transmission losses in 
the MJR for medium and large events 
during the rainy season. In those cases, 
Eq. (1) may underestimate the channel 
transmission losses and, consequently, 
does not yield reliable values of channel 
transmission losses for -1<TL<0. 

In such cases it is necessary to esti-
mate the inflow from the direct drainage 
area (IDA). Therefore, we tried to esti-
mate the order of magnitude of IDA 
using a simple empirical approach. 

First, we calculated an event-based 
runoff coefficient for the drainage area 
between the stream gauges, based on 1) 
the assumption that IDA for the events 
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with TL>0 is equal to the difference 
between the upstream inflow into and 
the outflow out of MJR, and 2) the av-
erage rainfall obtained from the rain 
gauges within the MJR (Fig. 2). 

This procedure resulted in an event-
based runoff coefficient of 4% on aver-
age. These numbers coincide with re-
sults from Cadier (1996), who found an 
annual runoff coefficient of about 6% 
for a catchment with similar geo-hydro-
climatic controls and reservoirs’ density 
in the Jaguaribe River. Using this aver-
age runoff coefficient and the estimated 
rainfall, we calculated IDA for all 
events within -1<TL<0. 

We found that 3 of the 10 events (4, 
13 and 26 in Table II) had IDA greater 
than 20% of the input flow upstream 
MJR (sum of flow at N1 and N2 stream 
gauges). Therefore we did not include 
these events in our investigation of the 
transmission losses using only Eq. (1). 

On the other hand, the other events had 
on average IDA of 4% of the input flow 
upstream MJR, which permitted the 
assumption that IDA can be neglected 
for these events and, consequently, the 
use of Eq. (1) is applicable for the in-
vestigation of the corresponding chan-
nel transmission losses. 

3.3. Groundwater level series 

We have monitored the groundwater 
level at three observation wells (W1, 
W2 and W3) on a daily basis (see: 
groundwater monitoring site in Fig. 1). 
Fig. 3 details the location of the N3 
stream gauge and the nearby observa-
tion wells. An approximated alluvial 
stratigraphy (Carneiro, 1993) of the site 
where these gauges are located is shown 
in Table I. Groundwater level in these 
wells has been measured since April 
2010. 

 

 

Figure 3. Location of the N3 stream gauge and observation wells W1, W2 and W3 (map basis: Google 
Earth). 
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Table I. Approximated alluvial stratigraphy 
where the N3 stream gauge and the monitoring 
observation wells are located (adapted from 
Carneiro, 1993). 

Depth (m) Texture 

0 - 1 Loam 

1 - 3 Loamy sand 

3 - 9 Fine to coarse sand 

9 - 29 Coarse gravel and very coarse sand 

 
We compared the groundwater level 

series a) to the water level series of the 
N3 stream gauge during the rainy sea-
son of 2010 and b) to the streamflow 
series of the N1 and N2 stream gauges 
during the dry season of 2010, when no 
flow was registered in the N3 stream 
gauge. In addition, the groundwater 
level in MJR (W1, W2 and W3) and the 
water level of the downstream Orós 
reservoir has also been compared to 
assess eventual groundwater discharge 
to this surface reservoir. The water level 
of the Orós reservoir is monitored daily 
by the Water Resources Agency of the 
State of Ceará (COGERH). 

3.4. Multi-temporal satellite data 

Multi-temporal satellite data were used 
to assess the spatial river dynamics be-
tween stream gauges. For this task, we 
chose the RapidEye system, which in-
cludes a constellation of five optical 
satellites and therefore allows a frequent 
coverage that is particularly important 
in areas such as our study area that are 
often covered by clouds. RapidEye col-
lects large-area image data with 5 m 
spatial resolution in five bands (blue, 
green, red, red edge and NIR) on a daily 
basis (Rapideye, 2010). 

Multi-temporal RapidEye data were 
acquired a) in 2009 during the dry sea-
son, i.e. non-flow registration by stream 
gauges, b) on 20 April 2010, exactly 
one day after the peak flow during the 
rainy season of that year, and c) on 18 
May 2010 during the flow recession 
limb. 

The satellite data were atmospheri-
cally corrected using ATCOR3 in 
ERDAS Image 2010 to correct the ef-
fect of different illumination conditions 
due to varying acquisition dates and the 
terrain (see 
http://www.geosystems.de/atcor/). After 
the atmospheric correction, satellite 
image mosaics were generated using 
Mosaic pro in ERDAS Image 2010 to 
get a consistent image data set for each 
sampling period for further analysis. 

We also delineated the streambed 
geometry of MJR based on the satellite 
image mosaic of 2009, which was ac-
quired during non-flow conditions. Fur-
thermore, we mapped the water surface 
extent within MJR based on the ratio 
between red and near infrared bands of 
the satellite image mosaics acquired on 
20 April and on 18 May 2010. 

Finally, the river water volumes 
around the stream gauges N1, N2 and 
N3 (about 500 m radius) were calcu-
lated combining the river cross-sections 
and the water surface extent of the im-
age mosaics acquired on 20 April and 
on 18 May 2010. These water volumes 
(Wetted area × 1000 m of river length) 
were compared to verify whether the 
upstream streamflow volume was re-
duced or not in the MJR’s outlet. Since 
the river velocities may be estimated 
from the river geomorphologic charac-
teristics, the results of the water vol-
umes, which indicate or not transmis-
sion losses, were compared with those 
based on the combination between 
streamflow and groundwater level se-
ries. 

4. Results 

4.1. Streamflow series 

Figures 4 and 5 show the cross-sections 
and the rating curves of the stream 
gauges at MJR, respectively, wherein 
water level is the difference between 
streamflow and streambed levels ac-
cording to the rulers at the river sec-
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tions. The number of discharge meas-
urements varies between the gauges, not 
only because of their dates of installa-
tion, but also because of their conditions 

of accessibility during the rainy season. 
Figure 6 shows, for example, hydro-
graphs of the stream gauges in 2008. 
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Figure 4. Cross-sections of N1, N2 and N3 stream gauges sampled in 2008 (made available by the 
Brazilian Geological Service), wherein A is altitude. 
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Figure 5. Rating curves of N1, N2 and N3 stream gauges, wherein water level is the difference between 
streamflow and streambed levels according to the rulers at the river section; and Q is discharge. 
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Figure 6. Hydrographs of N1, N2 and N3 stream gauges in 2008, wherein Q is discharge. 

Table II shows the results of water 
balance analysis for 40 events moni-
tored at MJR. The driest year was 2001, 
when no flow was registered by the N3 
stream gauge, and the wettest year was 

2004, when the N3 and N2 stream 
gauges were non-functioning due to 
very high floods. There were also minor 
gaps in the streamflow series in 2002 
and 2007. 
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Table II. Results of the water balance analysis for 40 events monitored at MJR, where N1 and N2 are 
the upstream gauges, N3 is the downstream gauge and the transmission losses TL = (O - I)/I, where O 
is output and I is input flow from the upstream stream gauges. The season of the event was classified 
as a) beginning of rainy season (BR), b) middle of rainy season (MR), c) end of rainy season (ER) and 
d) dry season (DS). We also included the order of magnitude of the groundwater extraction (GE), 
which occurs predominantly during the dry season. 

Input (106m3) 
Output 
(106m3) 

Date 
(m/y) 

Event 
PF1 

(N1+N2) 
(m3/s) 

PF (N3) 
(m3/s) 

N1 N2 N1+N2 N3 

O - I 
(106m3) 

TL Season 
GE 

(106m3) 

4-5/01 1 8.7 0.0 3.1 0.0 3.1 0.0 -3.1 -1.0 DS 0.4 

12/01 2 5.9 0.0 0.0 1.8 1.8 0.0 -1.8 -1.0 DS 0.2 

1/02 3 18.0 0.0 0.0 6.9 6.9 0.0 -6.9 -1.0 DS 0.2 

3-6/02† 4 48.1 30.1 24.3 21.6 45.9 32.9 -13.0 -0.3 M-ER na** 

1/03 5 24.8 0.0 0.0 3.6 3.6 0.0 -3.6 -1.0 DS 0.2 

2-3/03 6 77.9 83.2 23.9 21.6 45.5 59.5 13.9 0.3 BR na 

3-4/03 7 444.5 272.7 211.3 83.4 294.7 232.3 -62.4 -0.2 MR na 

4/03 8 23.3 34.0 3.7 7.1 10.8 17.4 6.6 0.6 MR na 

4-5/03 9 22.3 30.8 4.5 1.1 5.6 10.3 4.6 0.8 M-ER na 

5,6-7/03 10 97.8 67.4 21.9 8.4 30.3 30.6 0.2 0.0 ER na 

1-2/05 11 15.0 0.0 2.1 0.0 2.1 0.0 -2.1 -1.0 DS 0.4 

3/05 12 6.3 0.0 0.0 3.5 3.5 0.0 -3.5 -1.0 BR na 

3-4/05 13 41.2 36.0 5.3 28.3 33.6 22.8 -10.9 -0.3 MR na 

5/05 14 3.9 0.0 1.0 6.1 7.1 0.0 -7.1 -1.0 ER na 

2/06 15 18.7 0.0 0.0 3.8 3.8 0.0 -3.8 -1.0 BR na 

2/06 16 46.8 36.0 0.0 20.3 20.3 18.6 -1.8 -0.1 BR na 

3/06 17 6.3 10.1 0.0 3.8 3.8 6.1 2.3 0.6 MR na 

3,4-5/06 18 328.0 63.7 28.4 370.3 398.7 175.5 -223.3 -0.6 M-ER na 

4,5-6/07‡ 19 175.4 50.9 52.2 40.4 92.6 55.4 -37.2 -0.4 M-ER na 

8-12/07* 20 2.0 0.0 0.0 8.2 8.2 0.0 -8.2 -1.0 DS 0.9 

1/08 21 5.9 0.0 0.0 1.5 1.5 0.0 -1.5 -1.0 DS 0.2 

1-2/08 22 24.3 26.0 3.7 6.1 9.8 9.9 0.1 0.0 BR na 

2/08 23 38.1 32.7 0.3 12.6 12.9 14.2 1.3 0.0 BR na 

2-3/08 24 43.7 30.8 5.1 4.2 9.3 9.3 0.1 0.0 MR na 

3-7/08 25 914.6 665.0 798.6 663.6 1462.2 1209.8 -252.4 -0.2 M-ER na 

8/08 26 4.1 2.3 1.4 1.4 2.8 2.1 -0.8 -0.3 ER na 

9-12/08* 27 1.6 0.0 0.7 7.3 8.0 0.0 -8.0 -1.0 DS 0.7 

1/09 28 2.8 0.0 0.0 0.7 0.7 0.0 -0.7 -1.0 DS 0.2 

2/09 29 0.3 2.7 0.0 0.2 0.2 0.9 0.7 4.2 BR na 

2/09 30 4.1 10.1 0.0 2.1 2.1 3.3 1.1 0.5 BR na 

2-3/09 31 120.0 96.7 7.2 19.3 26.5 32.7 6.2 0.2 MR na 

3-4/09 32 11.5 18.3 1.3 3.4 4.7 6.6 1.8 0.4 MR na 

4-8/09 33 788.3 728.3 556.8 542.0 1098.8 925.6 -173.3 -0.2 ER na 

8-12/09* 34 1.7 0.7 0.3 3.9 4.2 0.0 -4.1 -1.0 DS 0.9 

1/10* 35 0.6 0.0 0.0 0.9 0.9 0.0 -0.9 -1.0 DS 0.2 

3-5/10 36 179.5 118.0 96.3 33.0 129.3 88.2 -41.0 -0.3 B-MR na 

5/10 37 7.8 16.2 0.0 1.9 1.9 4.6 2.7 1.4 ER na 

7-8/10* 38 2.6 0.0 0.3 0.8 1.1 0.0 -1.1 -1.0 DS 0.4 

8-9/10* 39 1.1 0.0 0.0 1.7 1.7 0.0 -1.7 -1.0 DS 0.4 

9-10/10* 40 2.1 0.0 0.0 1.8 1.8 0.0 -1.8 -1.0 DS 0.4 
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1Peak flow. 
†Third event in the rainy season of 2002: the second one has not been registered. 
‡Second event in the rainy season of 2007: the first one has not been registered. 
*Event produced by release of water from upstream surface reservoirs during the dry season. 
**Not applicable. 
 

Seven events were produced by re-
lease of water from upstream surface 
reservoirs into MJR during the dry sea-
son. These man-made events plus ten 
natural ones did not reach the N3 stream 
gauge (TL = -1.0). These events had 
maximum input flow (N1 + N2) equal 
to 8.2 106m3 and occurred mostly dur-
ing the dry season. 

However, the man-made events and 
two very small natural events (11 and 
28 in Table II) had high probability to 
be partially abstracted by groundwater 
extraction for agricultural use (between 
5% and 40% of input flow) (see Table 
II). 

Moreover, one event with 2.8 106m3 
input flow reached the N3 stream gauge 
in August 2008 (26 in Table II), at the 
end of the rainy season. This event lost 
about 30% of flow through the MJR 
only. The rainfall spatial distribution of 
the rain gauges inside the MJR’s drain-
age area (Fig. 7) showed a rainfall just 
one day before this event, which might 
generate enough runoff to compensate 
for some of the channel transmission 
losses. Furthermore, this event occurred 
after a large one, whose infiltrated 
streamflow may be discharged during 
this small event. 
 

 

 

Figure 7. Rainfall spatial distribution on 8 August 2008. 

 
Nine events between 20 and 1460 

106m3 input flow at the middle and the 
end of the rainy seasons, including the 
largest ones, had relevant channel 
transmission losses (-1.0 < TL < 0.0) 
and lost at least 815 106m3 of river flow. 
All these events resulted in a reduction 
in their peak flows (37% on average). 
However, 2 of these events (4 and 13 in 
Table II) had high probability of rele-

vant inflow from the direct drainage 
area between the gauges, more than 
20% of the inflow from the upper 
gauges (see explanations in the previous 
paragraphs). On the other hand, inflow 
from this direct drainage area can be 
neglected for the other seven events, 
which had 30% of channel transmission 
losses on average. Therefore, a relation-
ship between input flow and transmis-
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sion losses may be estimated from these seven events (Fig. 8). 
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Figure 8. Input flow vs. channel transmission losses (TL) in MJR from seven events between 20 and 
1460 106m3 input flow at the middle and the end of the rainy seasons. 

On one hand, 27 of the 40 observed 
events lost either completely or partially 
(30% on average) their input river flow 
(N1 + N2 stream gauges). Under these 
events, total channel transmission losses 
reached at least 880 106m3 and peak 
flow was always reduced. On the other 
hand, channel transmission losses 
seemed to be compensated by or smaller 
than the runoff generated from the 
MJR’s direct drainage area for 13 
events between 0.9 and 60 106m3 input 
flow (TL ≈ 0.0 or TL > 0.0, respec-
tively), which could occur at the begin-
ning, middle or end of the rainy sea-
sons. Moreover, the events 8, 9, 10 and 
37 in Table II, which occurred mainly at 

the end of the rainy seasons, may be 
influenced by the contribution of the 
infiltrated streamflow of the previous 
large events at the middle of the rainy 
seasons. 

For the nine events with TL > 0.0, 
the upstream peak flow always in-
creased compared to the downstream 
one (Table II). This is only possible if 
another source of inflow, e.g. the runoff 
of the direct drainage area between the 
gauges, exists. For the other four events 
with TL ≈ 0.0, relevant rainfall over the 
MJR has always been measured during 
the events (e.g., see Fig. 9 for events in 
2008 with TL ≈ 0.0). 
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Figure 9. Streamflow (Q) and average rainfall (R) time series of events in the rainy season of 2008, 
whose channel transmission losses seemed to be compensated by the runoff generated from the MJR’s 
drainage area (TL ≈ 0.0). 

4.2. Groundwater level series 

The groundwater level monitoring 
started on 20 April 2010 just as the 
largest event in this year took place. 
Only two natural events occurred in 
2010: a) the largest with 129.3 106m3 
input flow and losses of about 30% (TL 
= -0.3) from March to May 2010, and b) 
the second largest with 1.9 106m3 input 
and about 140% of gain (TL = 1.4) in 
May 2010, which was caused by the 
runoff generated from the MJR’s drain-

age area (see previous section). More-
over, three man-made events with losses 
of 100% were observed during the dry 
season of 2010 (see Table II) from June 
to October. 

Figure 10 shows the groundwater 
level and the water level of the N3 
stream gauge in relation to a reference 
level of 25 m depth from the terrain 
surface of W2 well during the rainy 
season of 2010. The water level series 
ends when the non-flow situation has 
been registered at the N3 stream gauge. 
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Figure 10. Groundwater level of three observation wells (W1, W2 and W3) and water level of the N3 
stream gauge (H) in relation to a reference level of 25 m depth from the terrain surface of W2 well 
during the rainy season of 2010 (March-May). The groundwater level monitoring started on 20 April 
2010. The water level series ended when the non-flow situation had been registered at the N3 stream 
gauge. The days of satellite image acquisition in the rainy season are also indicated. 

Figure 10 shows that 
a) Water flow from the river to the 
groundwater, i.e. channel transmission 
losses, was observed in two events (9-
22 April and 15 May, 2010), i.e. water 
level exceeded groundwater stages. 
b) The alluvium has shallow groundwa-
ter and the river-groundwater system 
can be considered to be hydraulically 
connected. 
c) Channel transmission losses stopped 
during the recession limb of the larger 
event from 24 April to 12 May 2010, 
when base flow occurred, i.e. the 
groundwater level was slightly higher 
than the river's water level. 
d) Different from the larger event, 
transmission losses occurred during all 

smaller event, although the water bal-
ance pointed to a 140% gain in flow. 
The inflow from tributaries, which are 
closer to the N3 stream gauge and, 
therefore, have spatially smaller oppor-
tunity for channel transmission losses in 
the larger alluvial system (see Fig. 2), 
might compensate for these channel 
transmission losses. 

Figure 11 shows the groundwater 
level and the summed upstream flow of 
the N1 and N2 stream gauges during the 
dry season of 2010. The water level 
series of the N3 stream gauge was not 
shown in Fig. 11 because no flow was 
registered at this gauge. 
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Figure 11. Groundwater level of three observation wells (W1, W2 and W3) (H) in relation to a 
reference level of 25 m depth from the terrain surface of W2 well and the total upstream flows of N1 
and N2 stream gauges (Q) during the dry season of 2010 (June-October). The water level series of the 
N3 stream gauge was not shown here because no flow was registered at this gauge. 

The man-made events (reservoir re-
lease), which resulted in 100% of chan-
nel transmission losses, had no signifi-
cant influence on the evolution of the 
groundwater level series. Only a short 
peak on 23 October 2010 seemed to 
cause a rise in the groundwater level. 
Nevertheless, investigating the spatial 

distribution of rainfall over MJR (Fig. 
12), we found that a heavy rainfall on 
23-24 October 2010 might be the reason 
for the sharp peak flow on 23 October 
2010 during the man-made events and 
the dominant inflow for the groundwa-
ter recharge in the alluvial system. 
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Figure 12. Rainfall spatial distribution on 23-24 October 2010. 

The channel transmission losses in 
the large alluvial system seem to be 
transferred as groundwater flow to the 
downstream Orós reservoir, since the 
mean difference between groundwater 
level and Orós reservoir’s water level 
was 23 m in 2010. Considering that the 
distance between the groundwater at N3 
stream gauge and the Orós reservoir is 
11 km, groundwater from this gauge 
had a downwards gradient to this reser-
voir of 2.1 m/km in 2010. 

4.3. Multi-temporal satellite data 

It was identified in the satellite images 
and proved by field work: a) that there 

are three overtopping weirs inside MJR 
(Fig. 13) from which water has been 
taken out for agricultural and domestic 
use, and b) that the Jaguaribe River 
character changes abruptly in the river-
scape region displayed in Fig. 14: from 
(i) a moderate gradient and stable cross-
section stream (a riffle-dominated chan-
nel type) (see cross-sections of N1 and 
N2 in Fig. 4) to (ii) a low gradient and 
unstable cross-section one (a meander-
ing channel type) (see cross-section of 
N3 in Fig. 4). 

 

 

Figure 13. Location of the three overtopping weirs inside MJR. 
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Figure 14. The riverscape region, where the characteristics of the MJR changes abruptly from (i) a 
moderate gradient and stable cross-section stream to (ii) a low gradient and unstable cross-section one. 
False colour composite image (Red= NIR, Green= red and Blue= green) collected on 18 May 2010. 
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The existence of overtopping weirs, 
which have stored surface water for do-
mestic and agricultural use during the dry 
seasons, suggested that channel transmis-
sion losses might not be relevant upstream 
of these weirs. Instead, the losses may oc-
cur mainly downstream of them, in the 
large alluvial system characterized by un-
confined aquifers (see Fig. 13). 

Moreover, we observed connected sur-
face water throughout the whole MJR in 
the satellite image mosaic collected in 
2009 during the dry season (not shown 

here), when no flow was registered at the 
stream gauges. Upstream of the overtop-
ping weirs, the surface water was clearly a 
result of water retention by them. Down-
stream of them, the surface water might 
percolate into the shallow groundwater in 
the alluvium system. 

Water surface within the MJR from the 
images collected on 20 April 2010 (exactly 
one day after the peak flow during the 
rainy season) and on 18 May 2010 (during 
the flow recession limb) was restricted to 
the streambed of MJR (Fig. 15). 

 
Figure 15. Details of water surface within the MJR from images collected on 20 April 2010 (exactly one day 
after the peak streamflow during the rainy season) and on 18 May 2010 (during the streamflow recession 
limb). False colour composite image (Red= NIR, Green= red and Blue= green) collected on 18 May 2010. The 
location of this Fig. in MJR was displayed in Fig. 13. 

In this respect, river flows with a maxi-
mum of 118 m3/s at the N3 stream gauge - 
the peak flow during the rainy season of 
2010 - were certainly confined within the 
streambed and levees without inundating 
the floodplains. Hence, channel transmis-
sion losses of 24 out of the 27 events ana-
lysed previously, which lost their input 
river flow either completely or partially, 
infiltrated through streambed and levees 
only. 

Furthermore, a discharge decrease at the 
N3 stream gauge from 99.5 m3/s on 20 
April 2010 to 2.4 m3/s on 18 May 2010 
(97.6 %) was equivalent to an areal reduc-
tion of water surface from 340 ha to 127 ha 
in the MJR between the overtopping weir 
furthest downstream and the N3 stream 
gauge (62.8 %) (see Fig. 13). 

We also estimated the river water vol-
umes by combining the image mosaics 
acquired on 20 April and on 18 May 2010 
and the river cross-sections (Fig. 4). Con-
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sidering a radius of 500 m centred on the 
stream gauges N1, N2 and N3, the water 
volumes (Wetted area × 1000 m of river 
length) on 20 April 2010 were 90 103m3, 
20 103m3 and 59 103m3 for N1, N2 and N3, 
respectively. The water volumes on 18 
May 2010 were 54 103m3, 11 103m3 and 30 
103m3 for N1, N2 and N3, respectively. 

The upstream water volumes (N1 + N2) 
were reduced in the MJR’s outlet (N3) for 
both cases. Since this reach can be consid-
ered a riffle-dominated channel type up-
stream and a meandering channel type 
downstream, we assumed river velocity to 
be greater upstream than downstream. 
Therefore, these decreases in water volume 
were likely to lead to a decrease in river 
discharge, i.e. to channel transmission 
losses. 

This finding agreed with the results pre-
sented previously that during the days 
when the satellite images were acquired, 
channel transmission losses were occurring 
(i.e. river water level was exceeding 
groundwater stages) (Fig. 10). 

5. Discussion and Conclusion 

5.1. Hydrological conceptualisation 

Channel transmission losses in a 60 km 
long reach of the Jaguaribe River (MJR) 
have been analysed by streamflow series, 
groundwater level series and multi-
temporal satellite data. Such losses occur 
through natural runoff events during the 
dry and rainy seasons and by man-made 
runoff events during the dry season, the 
latter caused by a release of water from 
upstream surface reservoirs into MJR. The 
transmission losses take place mainly in a 
large alluvial system with shallow 
groundwater extending about 30 km along 
the MJR. The river-groundwater system in 
this alluvium can be considered to be hy-
draulically connected. 

The “flow paths” of transmission losses 
have been analysed. Most transmission 
losses infiltrated only through streambed 
and levees and not through the flood 
plains, as could be shown by satellite im-
age analysis. Moreover, after upstream 

discharge events, transmission losses may 
return to the channel as base flow when the 
groundwater level is higher than that of the 
water in the river, as also observed by 
Lima et al. (2007). 

Seventeen natural and man-made runoff 
events during the dry seasons, whose input 
flows from the upper stream gauges were 
smaller than a runoff threshold of 8.2 
106m3, did not reach the outlet of MJR due 
mainly to infiltration into groundwater and 
secondly to groundwater abstraction. This 
is a similar finding to that reported by 
Knighton and Nanson (1994), who found a 
runoff threshold in the Cooper Creel River 
in Australia. 

A clogging layer in the streambed, 
which is capable of allowing river flow 
transmission of small floods as hypothe-
sised by Lange (2005), was not observed in 
the MJR. Man-made events (reservoir re-
leases) during the dry season in 2010 had 
no significant influence on the evolution of 
the groundwater, which may be explained 
partially by the extraction of groundwater 
for agricultural use that abstracted roughly 
between 5% to 10% (maximum values 
20% - 40%) of the input flow of these 
events. 

Seven floods between 20 and 1460 
106m3 at the middle and the end of the 
rainy seasons reached the outlet, losing on 
average 30% of their upstream (input) river 
flow. Input flows which achieve the outlet 
in the 420 km channel reach of the Cooper 
Creel River, Australia, lost about 75-80% 
on average (Knighton and Nanson, 1994) 
and 60% in the 150 km channel reach of 
the Kuiseb River, Namibia Desert, (esti-
mated from Table II in Lange, 2005). The 
Jaguaribe River flows also suffered a re-
duction of 37% in their input peak flow. 

Furthermore, we found that the higher 
the input river flow, the higher the channel 
transmission losses (linear behaviour on a 
log-log scale, see Fig. 8), underlining the 
major importance of high floods on chan-
nel transmission losses. This result is also 
supported by Knighton and Nanson (1994), 
Lange et al. (1998) and Lange (2005). 
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The influence of the floodplains and the 
effects of clogging layers on the channel 
transmission losses at the observed high 
discharges were not observed. However, 
we could not distinguish whether the hy-
draulic head at the surface and/or the mi-
cro-layering of the alluvial sediments at the 
streambed control the transmission losses 
during these high floods. 

In total, we analyzed 27 transmission 
losses events in the MJR over 10 years, 
which amounts to at least 880 106m3 of 
water losses. However, since the ground-
water at the lower boundary of the MJR 
area had a slope towards the downstream 
Orós reservoir of 2.1 m/km (measured in 
2010), which is located over the same large 
alluvium-system that MJR crosses, we 
hypothesise that the losses to the shallow 
groundwater system may return to the sur-
face in this downstream reservoir. If this 
hypothesis is true, the groundwater fluxes 
to the Orós reservoir need to be considered 
when estimating its medium-term water 
budget. 

5.2. Advantages of the use of remote sens-
ing 

The use of satellite data allows identifying 
the area of the MJR where channel trans-
mission losses take place, hence reducing 
the spatial uncertainties of the streamflow 
water balance. 

It also reduced the water balance’s un-
certainties related to the river stage, show-
ing that the streamflow mainly infiltrates 
within the streambed and the levees. 

Moreover, the results showed that chan-
nel transmission losses based on the satel-
lite data, combined with the river cross-
sections and geomorphologic characteris-
tics, were similar to those derived by using 
streamflow and groundwater level series. 
Therefore, the former dataset may allow a 
rapid and rough estimation of channel 
transmission losses in ungauged dryland 
rivers. 

5.3. Modelling and simulation strategies 

Channel transmission losses in MJR can be 
conceptually described as sketched in Fig. 
16: 

 

  

  

Figure 16. Conceptual description of channel transmission losses in the MJR. 

During the dry and at the beginning of 
rainy seasons, no river flow is expected 
before a flood event (Fig. 16a) and events 

lead to predominantly vertical infiltration 
into the alluvium (Fig. 16b). At the middle 
and end of the rainy seasons, river flow 
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sustained by base flow occurs before and 
after events (Fig. 16c) and lateral infiltra-
tion into the alluvium plays a major role 
during events (Fig. 16d). Thus, the hydrau-
lically connected Jaguaribe River reach 
shifts from being a losing river at the dry 
and beginning of rainy seasons to become 
a losing/gaining (mostly losing) river at the 
middle and end of rainy seasons. 

Due to this seasonal behaviour, we 
think that an adequate channel transmis-
sion losses model for this system should be 
based on the leakage approach for river-
aquifer interaction (Rushton and 
Tomlinson, 1979), which allows modelling 
of connected losing/gaining rivers (see e.g. 
Xie and Yuan, 2010). The modelling of 
infiltration into unsaturated strata (e.g. a 
Green-Ampt approach, as carried out by 
Abdulrazzak and Morel-Seytoux (1983) 
and Illangasekare and Morel-Seytoux 
(1984)) is of minor relevance, because it 
applies only for hydraulically connected 
losing rivers, which is rather exceptional in 
the MJR. 

In this way, a conceptual hydrological 
model based on the identified mechanisms 
of channel transmission losses in MJR 
needs to couple surface river water with 
groundwater, linked by a leakage ap-
proach, accounting for variable hydraulic 
heads at the surface and subsurface. This 
modelling strategy has been mostly under-
taken in humid and temperate catchments 
(see e.g. Engeler et al., 2011; Krause and 
Bronstert, 2007) and more rarely in arid 
and semi-arid ones. 

The data scarcity relating to the under-
lying alluvium and the groundwater extrac-
tion rates during the dry seasons might 
constrain the applicability of distributed 
groundwater flow models to MJR. There-
fore, if more data for groundwater flow 
modelling are unobtainable, a simplified 
approach is more appropriate. For exam-
ple, Niu et al. (2007) simplified the under-
lying unconfined aquifer as a reservoir, 
wherein the temporal variation of the water 
stored in this reservoir is equal to the water 
balance between recharge and discharge 
flows. 

Partly based on this analysis, Costa et 
al. (2011) have developed a semi-
distributed channel transmission losses 
model for different dryland rivers. They 
applied it to the studied Jaguaribe River 
reach using the conceptual model pre-
sented in this research and simulated 
streamflow volume and peak of selected 
runoff events. 

They also tested different model struc-
tures derived from this conceptual model, 
in order to reduce structural model uncer-
tainties and to guide future field campaigns 
for the more detailed elaboration of the 
dominant processes in the MJR. They 
found that both lateral stream-aquifer water 
fluxes and groundwater flow in the under-
lying alluvium parallel to the river course 
are necessary to predict streamflow and 
channel transmission losses, the former 
process being more relevant than the latter. 

If a process-based model approach is 
not appropriate or feasible, an empirical 
approach, e.g., the relationship shown in 
Fig. 8, may be applied in order to obtain a 
rough estimate of transmission losses for 
the MJR. It may be applied for input river 
rates between 20 and 1460 106m3 for 
event-based channel analysis: 

0131.2300 ⋅⋅= IFTL VV          (2) 
where VTL is transmission losses (106m3) 
and VIF is input river flow (106m3). It is 
clear that only the order of magnitude of 
VTL can be expected from such an empiri-
cal relationship. Dividing the terms of Eq. 
(2) by the river reach extension contiguous 
with the alluvium, about 30 km, one may 
estimate roughly channel transmission 
losses per km for similar ungauged hydro-
geologic areas. 

5.4. Possible further work 

A more detailed assessment of subsurface 
flow conditions requires further groundwa-
ter level monitoring and the collection of 
more information on groundwater extrac-
tion from the alluvium, e.g. through inter-
views with locals and farmers. Another 
critical point is the derivation of parame-
ters from the alluvium for groundwater 
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modelling in MJR, in particular the distri-
bution of hydraulic conductivities in the 
alluvium and in its boundary, and the sub-
surface geometry of the alluvium. 

Based on the depth and the texture in-
formation derived from borehole strati-
graphies, one may apply an indicator geo-
statistical approach, as done by Carle and 
Fogg (1996; 1997) and Carle et al. (1998) 
for alluvial fans and fluvial deposits in 
California, USA. However, a rather costly 
number of new boreholes would have to 
drilled in that area. 

In this paper, we have shown how satel-
lite images can support the understanding 
of channel transmission losses in large 
dryland rivers. The river reach studied has 
been monitored by stream gauges, how-
ever, most of dryland river reaches are 
ungauged. Therefore, further work may 
elaborate how far one can infer channel 
transmission losses in large ungauged dry-
land rivers based on remotely sensed data. 
For example, the combination of optical 
high resolution satellite images, e.g. as 
undertaken in this work, with high resolu-
tion digital elevation models (DEMs) of 
riverscapes may yield surface water area 
and volume maps of river reaches. DEM 
and satellite image based information 
about riverbed and floodplain may enable 
the application of Manning’s equation to 
estimate the average flow velocities for 
different water levels. In that way, the 
combination of remote sensing based esti-
mates on water volumes and velocities 
passing through two subsequent river cross 
sections may allow the estimation of the 
in-between losses. 

Finally the question of how relevant the 
direct drainage area of a river reach is to 
the runoff in that river reach may be ap-
proached by a process-based hydrological 
catchment model, with a special emphasis 
on runoff generation conditions in drylands 
and possible runoff retention in small sur-
face depressions and/or reservoirs, such as 
the WASA model, (Guentner and Bron-
stert, 2004; Guentner et al., 2004). How-
ever, this model does not yet include river 
transmission losses, which is why we plan 

to extend its channel flow routine in this 
respect. 
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Chapter III: 
 
 
A channel transmission losses model for different dryland 
rivers 

Abstract 

Channel transmission losses in drylands take place normally in extensive alluvial channels or 
streambeds underlain by fractured rocks. They can play an important role in streamflow rates, 
groundwater recharge, freshwater supply and channel-associated ecosystems. We aim to de-
velop a process-oriented, semi-distributed channel transmission losses model, using process 
formulations which are suitable for data-scarce dryland environments and applicable to both 
hydraulically disconnected losing streams and hydraulically connected losing(/gaining) 
streams. This approach should be able to cover a large variation in climate and hydro-geologic 
controls, which are typically found in dryland regions of the Earth. Our model was first evalu-
ated for a losing/gaining, hydraulically connected 30 km reach of the Middle Jaguaribe River 
(MJR), Ceará, Brazil, which drains a catchment area of 20 000 km2. Secondly, we applied it 
to a small losing, hydraulically disconnected 1.5 km channel reach in the Walnut Gulch Ex-
perimental Watershed (WGEW), Arizona, USA. The model was able to predict reliably the 
streamflow volume and peak for both case studies without using any parameter calibration 
procedure. We have shown that the evaluation of the hypotheses on the dominant hydrologi-
cal processes was fundamental for reducing structural model uncertainties and improving the 
streamflow prediction. For instance, in the case of the large river reach (MJR), it was shown 
that both lateral stream-aquifer water fluxes and groundwater flow in the underlying alluvium 
parallel to the river course are necessary to predict streamflow volume and channel transmis-
sion losses, the former process being more relevant than the latter. Regarding model uncer-
tainty, it was shown that the approaches, which were applied for the unsaturated zone proc-
esses (highly nonlinear with elaborate numerical solutions), are much more sensitive to pa-
rameter variability than those approaches which were used for the saturated zone (mathemati-
cally simple water budgeting in aquifer columns, including backwater effects). In case of the 
MJR-application, we have seen that structural uncertainties due to the limited knowledge of 
the subsurface saturated system interactions (i.e. groundwater coupling with channel water; 
possible groundwater flow parallel to the river) were more relevant than those related to the 
subsurface parameter variability. In case of the WEGW application we have seen that the non-
linearity involved in the unsaturated flow processes in disconnected dryland river systems 
(controlled by the unsaturated zone) generally contain far more model uncertainties than do 
connected systems controlled by the saturated flow. Therefore, the degree of aridity of a dry-
land river may be an indicator of potential model uncertainty and subsequent attainable pre-
dictability of the system. 
 
 
 
 
Resubmitted to Hydrology and Earth Systems Sciences as 
Costa, A.C., Bronstert, A., and de Araújo, J.C.: A channel transmission losses model for different dry-
land rivers, 2012. 
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1. Introduction 

Dryland rivers can be classified into a) 
allogenic rivers, which are sourced almost 
entirely from upstream humid areas (e.g. 
the River Nile in Northern Sudan and 
Egypt)) and commonly sustain perennial 
flow partly infiltrating in the alluvial sys-
tem along the allogenic river, and b) en-
dogenic rivers, which are sourced almost 
entirely within dryland environments and 
usually show an ephemeral (non-baseflow) 
or intermittent flow (Bull and Kirkby, 
2002). Channel transmission losses in dry-
lands occur in both types of dryland rivers. 
They take place normally in extensive al-
luvial channels (Renard et al., 2008) or 
streambeds underlain by fractured rocks 
(Hughes, 2008). They can play an impor-
tant role in streamflow rates, groundwater 
recharge, freshwater supply and channel-
associated ecosystems (Goodrich et al., 
2004; Blasch et al., 2004; Lange, 2005; 
Dagès et al., 2008; Wheater, 2008). The 
surface hydrological connectivity between 
dryland catchments and/or upstream and 
downstream reaches of dryland rivers oc-
curs if and only if the runoff propagated 
into channels overcomes its transmission 
losses (based on Beven, 2002; Bracken and 
Croke, 2007). Consequently, runoff, sedi-
ment transport and channel morphology 
depend on how influential channel trans-
mission losses are (Shannon et al., 2002). 

When long time series of streamflow 
data are available, conceptual models and 
time series analysis may provide reliable 
prediction of channel transmission losses 
(Lane, 1983; Sharma and Murthy, 1994; 
Sharma et al., 1994; Hameed et al., 1996). 
However, monitoring of surface flow in 
dryland rivers is difficult in many regions, 
due to often low population density, the 
remoteness of hydrological stations and the 
inherent short duration of runoff (El-
Hames and Richards, 1998). Moreover, 
extreme climatic variation from year to 
year, especially variation in annual precipi-
tation, increases the problems of construct-
ing probabilistic models (El-Hames and 
Richards, 1998). In this context, process-

oriented hydrological models parameter-
ized from field measurements and geo-
database maps may be the most suitable or 
indeed the inevitable tool to predict both 
streamflow and channel transmission 
losses (e.g. El-Hames and Richards, 1998; 
Lange et al., 1999; Gheith and Sultan, 
2002; Lange, 2005; Costelloe et al., 2006; 
Morin et al., 2009). 

Channel transmission losses can occur 
in streams which are hydraulically con-
nected or disconnected with a groundwater 
system (Sophocleous, 2002; Ivkovic, 
2009). Streams which only recharge 
groundwater are called losing (or influent) 
streams while those which both recharge 
and discharge groundwater are called los-
ing/gaining (or effluent) streams (Ivkovic, 
2009). Discussion on the hydrological 
processes involved in channel transmission 
losses can be found e.g. in Renard (1970), 
Abdulrazzak and Morel-Seytoux (1983), 
Knighton and Nanson (1994), Lange et al. 
(1998), Dunkerley and Brown (1999), 
Lange (2005), Konrad (2006), Dahan et al. 
(2007, 2008) and Dagés et al. (2008). From 
those studies, channel transmission losses 
may be seen to behave as follows: small 
sub-bank flows must firstly fill pool ab-
stractions and channel filaments in order to 
propagate downstream; then bank-full 
flows infiltrate predominantly into bed and 
levees; and, at high stream discharges, 
overbank flows lose water for pools, sub-
sidiary channels and floodplains, but once 
they become fully saturated, the most di-
rect floodways become fully active and 
channel transmission losses decrease. 
However, this behaviour may vary depend-
ing on the seasonality, the underlying sub-
surface water flow and the (micro-)layered 
structure of alluvial and floodplain sedi-
ments. 

If the groundwater level is too deep, i.e. 
below the level of the river bed, seepage 
flow may be predominantly vertical and 
unsaturated. In contrast, if there is shallow 
groundwater present, seepage may be pri-
marily lateral and saturated, effecting the 
development of a groundwater mound. 
Depending on the interaction between 
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stream and groundwater and the variations 
of the groundwater level, the seepage may 
even shift from being vertical and unsatu-
rated to being lateral and saturated in the 
same dryland stream-groundwater system. 
However, independently of the underlying 
groundwater, not every flood will result in 
deep infiltration and, consequently, 
groundwater recharge, because of lateral 
subsurface flow dispersion through the 
layered structure of alluvial sediments 
(Renard, 1970; Dahan et al., 2007). On the 
other hand, rapid deep infiltration may be 
driven by an active preferential flow 
mechanism that bypasses the porous matrix 
of the vadose zone (Dahan et al., 2007). 
Moreover, stream-aquifer exchanges may 
constitute hyporheic flow as in the case 
where a stream loses flow to a shallow 
aquifer that discharges back to the stream 
in a downstream reach due to decrease in 
aquifer thickness, aquifer narrowing and/or 
decrease in aquifer hydraulic conductivity 
(Konrad, 2006). In this way, the groundwa-
ter table rises due to the upstream ground-
water recharge (Dahan et al., 2007). 

Hydrological modelling of channel 
transmission losses for hydraulically 
(dis)connected losing/gaining streams has 
been based on the concept of leakage coef-
ficient (Rushton and Tomlinson, 1979), 
which has been used to model the water 
fluxes between stream and (shallow) 
groundwater flows (see e.g. applications in 
Krause and Bronstert, 2007; Xie and Yuan, 
2010; Engeler et al., 2011). This approach 
has been successfully applied to catch-
ments and river reaches, especially in tem-
perate and humid regions, linking distrib-
uted river and groundwater flow models. 
However, the leakage coefficient concept 
fails to model disconnected losing streams, 
because it neglects unsaturated flow 
through the alluvium (Brunner et al., 
2010). 

Hydraulically connected losing streams 
can also be modelled using the Green-and-
Ampt infiltration approach (Abdulrazzak 
and Morel-Seytoux, 1983). However, the 
Green-and-Ampt infiltration approach 
turns on an equation without analytical 

solution for disconnected streams, because 
in-channel ponding depth and gravitational 
terms are time-dependent (Freyberg et al., 
1980). To overcome this difficulty, Frey-
berg (1983) proposed a numerical solution 
(trapezoidal quadrature) of the Green-and-
Ampt equation for a uniform alluvium. His 
algorithm was initiated by the analytic so-
lution to a non-gravity approximation due 
to the singularity in infiltration rate at time 
equal to zero and the inadequacy of the 
trapezoidal quadrature for rapid rate of 
change in infiltration rate at small time 
steps (Freyberg, 1983). Therefore, unsatu-
rated flow through the alluvium, together 
with in-channel variable ponding depth, 
hampers a transmission losses model for 
disconnected losing streams. An extra dif-
ficulty might be the existence of an under-
lying stratified alluvium, which can often 
be found in dryland riverscapes (Paris-
sopoulos and Wheater, 1992; El-Hames 
and Richards, 1998). 

Another approach for disconnected los-
ing streams is the Smith-Parlange infiltra-
tion equation used in KINEROS2 model, 
which is based on an approximate solution 
of the basic equation of unsaturated flow 
(Smith et al., 1995; Semmens et al., 2008). 
The model requires basically three parame-
ters (the integral capillary drive, the field 
effective saturated hydraulic conductivity 
and soil water content) to describe the in-
filtration behaviour, but the underlying soil 
profile can only be represented by two-
layers with each layer allowed to have dif-
ferent infiltration parameters (Smith et al., 
1995; Semmens et al., 2008). 

Pressure-head-based Richards’ equation 
enables us to model unsaturated flow 
through the alluvium considering both in-
channel variable ponding depth and strati-
fied alluvium as done by El-hames and 
Richards (1998). This might be the most 
physically comprehensive approach to 
model channel transmission losses for dis-
connected losing streams. However, its 
application can require a long processing 
time to simulate large- and meso-scale 
catchments (El-hames and Richards, 1998) 
and large sets of alluvium data, which are 
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usually not available, especially in dryland 
environments. Alternatively, some authors 
have used constant infiltration rates in the 
channels (Lange et al., 1999; Morin et al., 
2009) neglecting both in-channel variable 
ponding depth and unsaturated flow. 

In this paper, we present a process ori-
ented and semi-distributed channel trans-
mission losses model using process formu-
lations which are suitable for data-scarce 
dryland environments, applicable for both 
hydraulically disconnected losing streams 
and hydraulically connected los-
ing(/gaining) streams in dryland environ-
ments, considering a possible transition 
between the two states. Hence, this ap-
proach should be able to cover a large 
variation in climate and hydro-geologic 
controls, which are typically found in dry-
land regions of the Earth. We expect this 
new model to be able to predict the order 
of magnitude of the hydrograph volume 
and peak, both variables being relevant for 
water planning and management in arid 
and semi-arid environments. However, 
note that we do not focus specifically on 
the prediction of the timing of the hydro-
graph peak, i.e. this model is not aiming at 
flood forecasting in dryland regions. 

Our channel transmission losses model 
is first evaluated for an intermittent 30 km 
reach of the Middle Jaguaribe River 
(MJR), Ceará, Brazil, which drains a 
catchment area of 20 000 km2. Secondly, 
we apply it to an ephemeral small 1.5 km 
channel reach in the Walnut Gulch Ex-
perimental Watershed (WGEW), Arizona, 
USA, which is well-known for its long-
term database of semi-arid hydrology and 
studies on channel transmission losses (e.g. 
Renard, 1970; Renard et al., 2008; Stone et 
al., 2008). The MJR is a losing/gaining 
(mostly losing) river and hydraulically 
connected to the groundwater system; the 
small reach in the WGEW on the other 
hand is a losing stream and hydraulically 
disconnected to the groundwater system. 

The application of the model to these 
channel reaches will be undertaken in or-
der to evaluate the model capabilities in 
two rather different dryland environments. 

Also, we will test hypotheses on the domi-
nant hydrological processes with a view to 
generating insights into process function-
ing through comparisons of model per-
formance (Savenije, 2009; Graeff et al. 
2009, Buytaert and Beven, 2011; 
McMillan et al., 2011; Clark et al., 2011; 
Li et al., 2010). 

Although increasing efforts have been 
made in the acquisition of remote sensing 
data, which have been used to derive e.g. 
precipitation data, soil moisture data, digi-
tal elevation models (DEMs), land-cover 
maps and river networks (see e.g. 
Milewski et al., 2009), the applicability of 
process-oriented, distributed hydrological 
models to arid and semi-arid catchments is 
still only feasible in exceptional cases due 
to generally sparse data, and high spatial 
variability, of surface and subsurface sys-
tems (see e.g. Al-Qurashi et al., 2008). 
Therefore, we want to analyse the applica-
bility and predictive capability of our 
model by both individual parameter sensi-
tivity analysis and an overall model pa-
rameter uncertainty analysis. 

2. Modelling of Channel Transmission 
Losses 

Conceptually, we consider the following 
processes, which have been shown ex-
perimentally to be the most influential for 
channel transmission losses (see discussion 
in introduction): 
a) streamflow in natural rivers; 
b) unsaturated seepage under in-
channel variable ponding depth through a 
stratified alluvium; 
c) vertical unsaturated subsurface 
water redistribution beneath the stream; 
d) lateral (stream-)aquifer interaction, 
which includes the development of a 
groundwater mound and; 
e) groundwater flow, parallel to the 
river course, in unconfined aquifers. 

We establish possible in/outflow 
through the different boundaries of the 
modelled system, such as surface and sub-
surface inflow from the landscape adjacent 
to the river corridor, evapotranspiration 
from the streambed and groundwater ex-
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traction by root water uptake. These fluxes 
might be external hydrological process 
models or prescribed as scenarios. The 
model structure is composed of five spatial 
components, which we consider to repre-
sent an appropriate spatial model scale for 

the governing processes and which enables 
a spatial coupling of the sub-models of the 
processes, see Fig. 1 for a schematic over-
view. 

 

 
Component Spatial evolution/ Process Sub-model 
 

1 Basin system: 

 
 

Distribution of streamflow generated from 
sub-basins into the main river 

In-basin streamflow 
distribution 

 

 

 

2 River system: 

 
 

Streamflow in natural rivers 

Flood wave routing 

 

 

 

3 Aquifer system: 

 
 

Groundwater flow, parallel to the river 
course, in unconfined aquifers, which takes 
place beyond the basins’ limits 

Groundwater flow model 

 

 

 

4 Aquifer unit: 

 
 

Lateral (stream-)aquifer interaction, includ-
ing the development of a groundwater 
mound 

Lateral (stream-)aquifer 
dynamics model 

 

 

 

5 Stream-aquifer column: 

 
 

Unsaturated seepage under in-channel vari-
able ponding depth through a stratified 
alluvium and vertical subsurface water 
redistribution beneath the stream 

Unsaturated stream infil-
tration and vertical soil 
water redistribution 
models 

Figure 1. Spatial components of the model structure, which link the sub-models of the governing processes 
involved in channel transmission losses. 

Soil layer 
Unsaturated 
zone 

Saturated 
zone 

Aquifer 
column 

Stream-Aquifer 
column 

Aquifer 
unit 

Reach 

Section 

Basin connection 

Main basin 

Main river 

Sub-basin 
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The whole channel transmission losses 
model includes six interacting sub-models 
for the aforementioned governing proc-
esses, which are presented in detail in sec-
tions 2.1 to 2.5. and schematicised in Fig. 
2. 

The calculation begins with the flood 
wave routing without stream-aquifer inter-
action, i.e. we predict firstly streamflow 
and stream water stage excluding stream-
aquifer interaction fluxes. Then, we use 
these predicted “intermediate” values of 
streamflow and water stage to run the other 
sub-models (2, 3, 4 and 5), which estimate 
a) the stream-aquifer interaction flux and 
b) the moisture in the underlying aquifer. 
Afterwards, we apply the streamflow rout-
ing again, but now with the estimated 
stream-aquifer interaction flux, to predict 
finally the streamflow and water stage at 
the end of the time step. This kind of solu-
tion of streamflow and water stage is a 
two-step procedure, which was discussed 

e.g. by Mudd (2006) and Bronstert et al. 
(2005). 

As long as the stream-aquifer column is 
not saturated, the stream and groundwater 
flows are hydraulically disconnected, while 
channel transmission losses are dominated 
by the unsaturated zone beneath the 
stream. Once the stream-aquifer column 
has been saturated, the stream and 
groundwater turn into a hydraulically con-
nected system, wherein channel transmis-
sion losses are driven by the saturated 
zone, which either can discharge to or re-
charge from the stream. 

The following sub-sections 2.1 to 2.5 
describe the physical assumptions and the 
main mathematical formulations for the 
sub-models of our channel transmission 
losses model. We detail the stream-aquifer 
interaction calculation in the Sect. 2.6. Fi-
nally, we summarize the information re-
quired to run the model (both input data 
and model parameters) in Sect. 2.7. 

 

 
Figure 2. Interplay and temporal sequence of model approaches, where t is time. 

1.) Flood wave routing without 
stream-aquifer interaction 

Is stream-
aquifer 
column 

saturated? 

Yes No 

2.) Unsaturated stream 
infiltration model 

Is stream-
aquifer 
column 

saturated? 

3.) Vertical soil water redis-
tribution model 

No 

4.) Lateral (stream-)aquifer 
dynamics model 

5.) Groundwater flow 
model 

6.) Flood wave routing with 
stream-aquifer interaction 

7.) In-basin streamflow 
distribution 

t + �t 

Yes 
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2.1. Flood wave routing 

Normally the full Saint-Venant equations 
and its simplified diffusion analogy form 
are applied to simulate streamflow in a 
natural drainage network, when the up- and 
downstream boundary conditions are 
available. However, most dryland streams 
have no “fixed” downstream boundary 
conditions because many hydrographs end 
somewhere between initial streamflow and 
an assumed outlet, which is normally un-
gauged. Moreover, sparse monitoring can 
mean that entire drainage network from the 
initial streamflow is completely ungauged. 
Furthermore, simple routing approaches 
such as the Muskingum-method and the 
Manning-formula may yield poor ap-
proximation of the river dynamics when 
both inertial and pressure forces are impor-
tant, such as in mild-sloped rivers, and 
backwater effects from downstream distur-
bances are not negligible (see Chow et al., 
1988). Therefore, we propose here an al-
ternative flood wave routing. 

First, we use a form of conservation of 
mass equation: 
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where t is the time (T), x is the length 
along the channel axis (L), Q is the stream 
discharge (L3.T-1), A is the wetted cross-
sectional area (L2), s is the sinuosity coef-
ficient (dimensionless), q is the lateral in-
flow per unit of length of channel (L3.T-

1.L-1) and IRA is the stream-aquifer interac-
tion term per unit of length of channel 
(L3.T-1.L-1), which can be stream infiltra-
tion (negative) or groundwater discharge 
(positive). 

Applying the four-implicit numerical 
scheme (see Fread, 1993) to (1), yields 
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where j and i are indexes of time and 
stream section, respectively, and θ is a 
weighting factor for the spatial derivative. 

Equation (2) has two unknown variables: 
the stream discharge and the wetted cross-
sectional area (related to the stream water 
stage) at the future time and at the next 
stream section: Q(j+1,i+1) and 
A(j+1,i+1), respectively. 

Since, in natural streams, the channel 
morphology is a function of both the short 
and the long term stream hydrology, the 
channel cross-section is a function of the 
past and upstream flood events. It means 
that all the information (e.g. change in the 
velocity, in the water depth and in the bed 
slope) for the future and further stream 
discharge Q(j+1,i+1) is already “imprinted 
on” the wetted cross-sectional area 
A(j+1,i+1). Taking this hypothesis into 
account, we get all the states for 
A(j+1,i+1) and substitute into (2) to find 
possible states for Q(j+1,i+1) according to 
the conservation of mass equation. Then, 
we average over the possible states of 
Q(j+1,i+1) and A(j+1,i+1), which obey 
the following simple physical rules 
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Equation (3) can be seen as a physical 
filter of the states for Q(j+1,i+1) and 
A(j+1,i+1). It can be applied for both 
stream stretches in sub-basins and for the 
main river stretch, see Fig. 1. If the next 
stream section is the last section in a sub-
basin, the calculated stream discharge at 
this section, i.e. the catchment runoff from 
the sub-basin, is added as lateral inflow 
into the reach of the main river stretch. 

The Courant-Friedrichs-Lewy (CFL) 
condition may be used as a condition for 
numerical stability 

max

min

v

x
tsim

∆≤∆           (4) 

where νmax is the maximum expected 
stream velocity (L.T-1), �xmin is the mini-
mum stream reach and �tsim is the time 
step (T) for simulation. 
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This simplified formulation for flood-
wave dynamics in dryland rivers is, how-
ever, able to mimic loop rating curves and 
backwater effects, which have been ob-
served during the unsteady, non-uniform 
flow propagation along natural streams. 
We expect that hydrograph uncertainties 
(e.g. timing of the hydrograph) will inevi-
tably arise because of the very high de-
pendence of flow velocity on the actual 
channel cross-sections and roughnesses, 
whose data may be highly variable with 
time (affected by the seasonality of river-
ine vegetation or by previous flood events) 
and such data may be rarely available and 
whose seasonal and long-term changes 
between different simulation periods might 
not be measured. 

2.2. Unsaturated stream infiltration 
model 

We adapt here the modified Green-and-
Ampt model proposed by Chu and Mariño 
(2005), because we consider it a suitable 
compromise between computation time, 
data requirement and simplifying assump-
tions (e.g. constant infiltration rates). The 
alluvium beneath the stream (Fig. 1) con-
sists of N layers with hydraulic conductivi-
ties KN (L.T-1), wetting-front suctions ψN 
(L), porosities ηN (L3.L-3), initial soil mois-
ture θN (L3.L-3) and depths of cumulative 
infiltration zN (L). When the wetting front 
is in a layer y at location z (Zy-1 < z < Zy), 
the governing equations are 
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where ƒ is the infiltration rate (L.T-1), F is 
the cumulative infiltration (L), t is the time 
for the wetting front to arrive at location z 
and H0 is the hydraulic head at surface (L), 

which was admittedly negligible in Chu 
and Mariño’s formulation because their 
focus was on hillslope hydrology. Substi-
tuting Eq. (5) into (7) yields 
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Separating (8), since the hydraulic head 
at the surface is constant at a certain time 
step, we have 
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Solving (9): 
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which is similar to the equation of the 
travel time of the wetting front from Chu 
and Mariño (2005), but with the hydraulic 
head at surface H0. We use (5) and (10) to 
estimate the actual infiltration and the loca-
tion of the wetting front z. 

Before applying the above procedure to 
the next time step, when we have a new 
hydraulic head at the surface, the initial 
soil moisture has to be updated according 
to the location z (Zy-1 < z < Zy) of the wet-
ting front using 
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In this model, the hydraulic head at the 
surface (the upper boundary condition) is 
the average “intermediate” predicted val-
ues of stream water stage obtained from 
the solution of the flood wave routing 
(Sect. 2.1). The lower boundary condition 
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is a layer, which can either represent frac-
tured bedrocks (time independent) or be 
the soil layer immediately above the 
groundwater level (time dependent). 

Once the wetting-front achieves the 
lowest layer, a hydraulically connected 
stream-lowest layer should now be consid-
ered and a groundwater mound is to be 
developed (Sect. 2.4). In contrast, the wet-
ting-front flows vertically downward to the 
lowest layer (Sect. 2.3). For the first case, 
the infiltration rate tends to be constant and 
the capillary head zero as in Chu and 
Mariño (2005). Equation (5) can be rewrit-
ten as 
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where ZN is the depth of the considered 
alluvium profile above the groundwater 
level and 

Nzf  is the infiltration rate for a 

hydraulically connected surface-boundary 
condition system. The infiltration rate from 
unsaturated to saturated regime can be 
formulated as 
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where �t is the time step. Note that the 
second element of the right term of Eq. 
(13) represents the first recharge to 
groundwater, if it exists, before the devel-
opment of a groundwater mound. 

2.3. Vertical soil water redistribution 
model 

In most unsaturated zone studies, the fluid 
motion is assumed to obey the classical 
Richards’ equation (Hillel, 1980) and its 1-
D soil moisture-based form is shown in the 
first two terms of Eq. (14), which is appli-
cable in homogeneous media only and re-
quires soil head-conductivity-moisture 
curves. We use here a simplification of the 
classical equation, which allows applica-
tion in unsaturated heterogeneous media 
and needs less fitting parameters than the 
original form. First, we neglect the pres-
sure head term ψ(θ) in (14), but we assume 
that percolation from one soil layer to the 

next layer below occurs if and only if the 
actual soil moisture exceeds soil moisture 
at field capacity θfc. This assumption was 
also used in other hydrological models 
(e.g. Arnold and Williams, 1995; Güntner 
and Bronstert, 2004), leading to 
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We include in (14) the actual soil 
evaporation Eva for the upper soil layers 
and the actual evapotranspiration Eta for 
the soil layers in the root zone, in the case 
of existence of in-channel associated or 
riparian vegetation, which may be impor-
tant for eco-hydrological studies and may 
allow insights into the relationship between 
channel transmission losses, in-alluvium 
temporal water storage and ecological wa-
ter demand. Furthermore we apply an ex-
plicit finite difference scheme to it: 
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where k and j are indexes of depth and 
time, respectively. The percolation terms 
of (15) are solved as follows 
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where K(θ) is the unsaturated hydraulic 
conductivity, which is approached by the 
Brooks-and-Corey equation (see Rawls et 
al., 1993): 
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where Ksat is the saturated hydraulic con-
ductivity (L.T-1), θr is the residual water 
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content (L3.L-3) and λ is the pore size dis-
tribution index (-). 

Note that if the lower layer (k+1) is 
groundwater, there is a recharge to 
groundwater before the development of a 
groundwater mound because of the vertical 
movement of the soil water. 

A separate hydrological catchment 
model can provide the potential soil evapo-
ration and the potential evapotranspiration. 
Then, we assumed that evapotranspiration 
and soil evaporation occur if and only if 
the actual soil moisture exceeds soil mois-
ture at permanent wilting point θpwp and at 
hygroscopic water θha, respectively. The 
computation begins with percolation, fol-
lowed by an updating of j

kθ  and then the 
transpiration calculation. 

2.4. Lateral (stream-)aquifer dynamics 
model 

We consider that each aquifer unit is 
formed by M columns, which may consist 
of saturated and unsaturated zones (Fig. 1). 
All these columns can be stratified such as 
that below the stream (Sects. 2.2 and 2.3). 
The lateral flow between the columns is 
considered saturated; consequently, we do 
not account for lateral unsaturated flow. 
Our aim is to predict in-column groundwa-
ter level (stream and groundwater levels 
for stream-aquifer columns), comparing 
the hydraulic heads between two column 
neighbours. During a time step, the calcu-
lation begins from the centre of the stream-
aquifer column to the right (or the left) 
lateral boundary conditions (Fig. 1). 

First, we calculate the hydraulic head of 
two column neighbours at the equilibrium 
(he), i.e. 
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where A is the column index (-), h is the in-
column hydraulic head (L) and Cw is the 
column width (L). Then, assuming a sub-
surface water flow velocity similar to the 
order of magnitude of the lateral saturated 
hydraulic conductivity, we estimate the 
necessary time (dte) to reach that equilib-
rium head using 
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where 1+AK  is an average lateral saturated 
hydraulic conductivity from the actual 
head to the equilibrium ones (L.T-1). If dte 
is equal to or smaller than the simulation 
time step �tsim, then the heads of the col-
umn neighbours reach the equilibrium 
head, otherwise 
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where *
1+Ah  is the new hydraulic head of 

column A+1 due to the exchanges with the 
column A. Afterwards, the column A+1 
with the new hydraulic head *

1+Ah  will in-
teract with its next neighbour A+2. 

2.5. Groundwater flow parallel to the 
river 

We use a simple water balance-based ap-
proach (similar to Niu et al., 2007) in order 
to simulate groundwater flow between aq-
uifer units parallel to the river course (see 
Fig. 1) 
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where S is the groundwater storage in the 
aquifer unit (L3), QUp,GW and QLa,GW are the 
upstream and the lateral groundwater flow 
from other aquifer units (L3.T-1), respec-
tively, which are known from a previous 
time, QV,Inf is the vertical channel transmis-
sion losses (L3.T-1), which come from un-
saturated seepage (Sect. 2.2) or unsaturated 
soil water redistribution (Sect. 2.3), QDo,GW 
is the downstream groundwater flow (L3.T-

1), QS is a sink term (L3.T-1), which can be 
groundwater pumping and/or transpiration, 
and QV,DP is the vertical deep percolation 
(L3.T-1), which is considered a constant 
(in)outflow. The downstream groundwater 
flow between aquifer units is estimated as 
follows 
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where u is an index of aquifer unit, h  is 
the average groundwater head of the aqui-
fer unit (L), W is the aquifer unit width (L), 
dxu is the aquifer unit length (L), K  is the 
average aquifer unit saturated hydraulic 
conductivity (L.T-1). Note that the down-
stream groundwater flow is compensated 
by a time factor, which is adopted similarly 
as was done in the previous section. The 
upstream boundary conditions are a con-
stant flux. The user can define the down-
stream boundary conditions a) as no-flow 
or b) assuming that the gradient of the 
most downstream aquifer unit is equal to 
its closest upstream one. 

After the estimation of aquifer water 
balance components, the difference be-
tween aquifer inflow and outflow is dis-
tributed for each column of the aquifer unit 
as follows 
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where Qin(out),A is the in-column inflow or 
outflow from the aquifer water balance 
(L3.T-1). If Qin(out),A is inflow, than the up-
dating of in-column groundwater level due 
to the aquifer water balance is modelled by 
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where Z is depth (L), η is the porosity 
(L3.L-3) and θ is the soil moisture (L3.L-3), 
c is the actual groundwater level and b is 
the new groundwater level. On the other 
hand, if Qin(out),A is outflow, than 
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where θfc is the soil moisture at field capac-
ity (L3.L-3). 

Moreover, we assume that if the soil in 
the floodplains adjacent to the river 
reaches will be completely saturated, i.e. 

“groundwater head” in the floodplains will 
rise above the terrain surface, the excess 
water does not flow into the river course, 
because it will be temporarily stored on the 
floodplain surface and then evaporate. We 
consider this assumption being appropriate 
because the floodplains are usually very 
wide and the depth of possible surface ex-
cess water is very shallow (a few centime-
tres at most). Therefore, we do not model 
in detail flow processes on the floodplain, 
instead assume that this excess water will 
evaporate soon. 

2.6. Stream-aquifer interaction calcula-
tion 

The stream-aquifer interaction term per 
unit of length of channel IRA (L3.T-1.L-1) 
(Sect. 2.1) can be estimated by 
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where sh  and sP  are the average stream 
water stage and wetted perimeter, respec-
tively, and f* is the potential infiltration 
determined in Sect. 2.2 as long as the 
stream-aquifer column is not saturated. 
Once the stream-aquifer layer is saturated, 
then f* is calculated as follows 
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where �h* is the increase or decrease dif-
ference of the hydraulic head in the stream-
aquifer column determined using Eq. (21) 
in Sect. 2.4. 

If all the available stream water is to be 
infiltrated, then we apply no flood wave 
routing and set the predicted stream dis-
charge and wetted cross-sectional area (re-
lated to stream water stage) equal to zero, 
in order to avoid numerical fluctuations 
when we use the stream-aquifer interaction 
term in the flood wave routing. 

2.7. Required input data, boundary condi-
tions and model parameters 

In this section, we summarize the initial 
conditions, the boundary conditions and 
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the model parameters of the approach pre-
sented in the previous sub-sections. The 
initial conditions for the flood wave rout-
ing of the river system are the initial 
stream discharge, wetted area, wetted pe-
rimeter and water level. The soil moisture 
in the unsaturated zone and the groundwa-
ter level in the aquifer columns (see Fig. 1) 
are also required initially to run the model. 

The streamflow series of the uppermost 
river sections (see Fig. 1, river system) are 
the external boundary conditions for the 
flood wave routing in the river system 
(Sect. 2.1), while the lowest boundary con-
ditions are not necessary to run it (Sect. 
2.1). The groundwater flow model of the 
aquifer system (Fig. 1) can have the 
groundwater (in)outflows as the uppermost 
boundary condition (Sect. 2.5). In contrast, 
its downmost boundary condition is de-
fined as no-flow or assuming that the gra-
dient of the downmost aquifer unit is equal 
to its closest upstream one (see Sect. 2.5). 
The internal boundary conditions of the 

groundwater flow model are the groundwa-
ter pumping and the transpiration in the 
aquifer units (Sect. 2.5). 

In the case of simulation at the basin-
scale, one can include the surface flow 
from the small tributaries or from the hill-
slopes between the river cross-sections for 
the flood wave routing (Sect. 2.1) and the 
in-channel potential soil evaporation and 
evapotranspiration for the vertical soil wa-
ter redistribution model (Sect. 2.3) as in-
ternal boundary conditions. 

The parameters required to run the 
channel transmission losses model using 
all its model components are shown in Ta-
ble I. The simulation domain, where the 
model parameters are distributed, are pro-
vided after a spatial discretization of the 
case study (basin or river reach) into the 
model components (see Fig. 1), e.g. main 
river with reaches and cross-sections, aqui-
fer units with (stream-)aquifer columns and 
soil layers per aquifer column. 
 

 

Table I. Required parameters for the channel transmission losses model (when using all sub-models). 

Component Parameter 

Area (L2), Perimeter (L), and Elevation (L) of Cross Sections 

Channel Length (L) River system 

Sinuosity Coefficient (-) 

Number of Aquifer Columns (-) 

Location of Stream-Aquifer Column (-) 

Aquifer Column Width (L) 
Aquifer Unit 

Number of Soil Layers per Aquifer Column (-) 

Vertical/ Lateral/ Parallel Saturated Hydraulic Condutivity (L.T-1) 

Wetting Front Suction (L) 

Porosity (L3.L-3) 

Field Capacity (L3.L-3) 

Permanent Wilting Point (L3.L-3) 

Residual Water Content (L3.L-3) 

Soil Layer 

Poro-size-distribution Index (-) 

 
Considering the variability of processes 

covered by this model we think that the 
model has a relatively small, but necessary, 
number of parameters. The parameters of 
the river systems may be derived from 

digital elevation models and topographical 
surveys, and those of the aquifer units and 
soil layers from hydrogeological and soil 
maps, stratigraphic data and by using pedo-
transfer functions and literature data. Con-
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sequently, we expect to be able to apply 
our model for data-scarce areas in drylands 
(see next section). 

3. Case Studies of the Channel Trans-
mission Losses Model 

We evaluated our channel transmission 
losses model for two stream reaches with 
different scales and dominant processes: a 
large reach of the Middle Jaguaribe River 
(MJR), Ceará, Brazil and a much smaller 
one in the Walnut Gulch Experimental 
Watershed (WGEW), Arizona, USA. The 
data description of these sites and their 
parametrization are provided in the follow-
ing sub-sections. The reason why we chose 
these two particular river case studies was 
to demonstrate the general applicability of 
the model for water planning and man-
agement in different types of data-scarce 
dryland rivers, i.e. to predict the stream-
flow volume and peak in the MJR (flow 
events in the rainy season) and in the 
WGEW (in case of convective storm rain-
fall / flash flood events). This prediction 
was based on the specific perceptual hy-
drological models of the study sites, with-
out performing any parameter calibration 
procedure. Therefore, we emphasise that it 
is not intended to reach a ‘best fit’ with 
measured hydrographs, rather to achieve a 
profound hydrological system understand-
ing, to enable the simulation of the overall 
system’s response without calibration. This 
means that the model is not suited for, for 
example, flood forecasting, where the tim-
ing of the flood peak is highly relevant. 

3.1. Middle Jaguaribe River, Ceará, Bra-
zil 

3.1.1. Data and parametrization 
We simulated a losing/gaining, hydrauli-
cally connected 30 km reach of the Middle 
Jaguaribe River, Ceará, NE-Brazil, which 
drains a catchment area of 20 000 km2. The 
Jaguaribe river basin’s (total area 74 000 
km²) hydrology is determined by an annual 

cycle of rainy and dry seasons, which are 
driven mainly by the position of the Inter-
tropical Convergence Zone and secondar-
ily by cold fronts from the South Atlantic 
(Xavier, 2001; Werner and Gerstengarbe, 
2003). The basin upstream the MJR re-
ceives annual precipitation between 400 
mm (in the SW) to 800 mm (in the NE), 
most of which falls in the months between 
December and May (van Oel et al, 2008). 
The areal potential evaporation (class A 
pan) amounts to 2200 mm yr-1. Temporal 
rainfall variability is highly significant on a 
suite of scales: inter-annual variability, 
seasonal variability and variability at the 
time scale of a week. 

The simulated reach is dominated by 
unconfined aquifers (Fig. 3) belonging to 
an alluvium with a 20 m average depth and 
composed of layers of fine and coarse 
sand, gravel and clay (IBGE, 2003). Ac-
cording to Costa et al. (2012), on the one 
hand, during the dry and at the beginning 
of the rainy seasons, no pre-event river 
flow is expected and streamflow events 
will create predominantly vertical infiltra-
tion into the alluvium. On the other hand, 
at the middle and end of the rainy seasons, 
river flow sustained by base flow occurs 
before and after streamflow events and 
lateral infiltration into the alluvium plays a 
major role during events. Moreover, most 
channel transmission losses are certainly 
infiltrated only through the cross section of 
the main channel and not through the 
floodplains (Costa et al., 2012). 

We assumed that the inflow from the 
drainage area between the stream gauges 
can be neglected for medium and large 
floods in the Jaguaribe river reach, because 
a) the drainage area between the gauges is 
about 20 times less than the upstream 
catchment area and b) it has about 130 
surface reservoirs in its drainage network 
(based on Costa et al., 2012), which retains 
almost all of generated runoff.  
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Figure 3. Jaguaribe river reach studied by Costa et al. (2012). The hydrogeological map was adapted from 
IBGE (2003). 

Measurements on the initial moisture of 
the aquifer-system were not available. 
However, since at the middle of the rainy 
seasons river flow is expected to be sus-
tained by base flow, we may assume the 
riverine groundwater level to be close to 
the river bed at the middle of the rainy sea-
sons, for which we applied the model. We 
assumed from Costa et al. (2012) that the 
actual inflow into the simulated reach is a 
sum of the actual streamflow measured at 
the N2 stream gauge, close to the conflu-
ence of the Cariús river into the Jaguaribe 
river, and the one-day-before streamflow 
measured at the N1 stream gauge in the 
Jaguaribe river (see Fig. 3). The simulated 
output streamflow was compared to the 
streamflow measured at the N3 stream 
gauge in the Jaguaribe river. 

We used alluvial stratigraphy data, 15 
boreholes and one electrical resistivity sur-
vey (Carneiro, 1993), and alluvium exten-
sion information from a hydrogeological 
map (Fig. 3) to derive the aquifer units (see 
Fig. 1). We used remote sensing-based 
data available from Costa et al. (2012) to 
delineate the channel length and the maxi-
mum channel width, whereas field obser-

vation provided the maximum channel 
depth. Then, we derived stream cross-
sectional areas by assuming a triangular 
channel cross-sectional area. We did not 
account for infiltration into floodplains; 
since for our example it is not considered 
relevant for channel transmission losses, as 
discussed above in this section. 

The simulated MJR was spatially mod-
elled (see Fig. 1) as one basin system, 
which has one river with 4 reaches and 5 
sections. Its aquifer system was formed by 
4 units containing respectively 7, 17, 13 
and 21 (stream-)aquifer columns from up- 
to downstream. The typical up-to-down 
stratigraphy of an aquifer column was: 
sandy loam (topsoil), fine to coarse sand 
(1st alluvial layer), coarse gravel and very 
coarse sand (2nd alluvial layer) and silty 
clay (boundary condition), being the last 
three for the stream-aquifer columns. 
Moreover, the soil layer interval was set at 
0.2 m for all (stream-)aquifer columns. The 
texture of the aquifer was used to derive its 
soil physical properties, such as saturated 
hydraulic conductivity and porosity, ob-
tained from experimental tables published 
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in Rawls et al. (1993) and Dingman 
(2002). 

The time step of the calculation, which 
gave the best numerical stability of flood 
wave routing and, consequently, used for 
this simulation, was 12 hours. Since the 
original input time series were not sampled 
every 12 hours, but only daily, we had to 
disaggregate them. 

3.1.2. Model application 
We selected three rainy seasons from 2005 
until 2010, namely 2005, 2009 and 2010, 
which met the conditions described in the 
previous sub-section. Figure 4a-c shows 
the input and observed output streamflow 
series of those rainy seasons. 
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Figure 4a. Input and observed output streamflow series of the studied reach of the Jaguaribe River reach in 
2005. 
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Figure 4b. Input and observed output streamflow series of the studied reach of the JaguaribeRiver reach in 
2009. 
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Figure 4c. Input and observed output streamflow series of the studied reach of the Jaguaribe River reach in 
2010. 

Using those rainy seasons, we evaluated 
which model structure would provide the 
best simulation, i.e. the minimum of both 
root mean square error (RMSE) and mean 
absolute error (MAE) of peak and event 
volume time series. Using the same pa-
rameter set and the spatial discretization, 
which were derived without calibration as 
shown in the previous sub-section, we de-
fined three possible model structures: a) 
flood wave routing only, i.e. no aquifer 

system, and no transmission losses, respec-
tively (FW); b) flood wave routing with 
lateral (stream-)aquifer dynamics, but 
without groundwater flow parallel to the 
river course, (FW+LD); and c) the same as 
(b) but now including parallel groundwater 
flow (FW+LD+GW). Figure 5a-c shows 
the simulated and observed output stream-
flow series. 
 

2005

0
10
20
30
40
50

04.03.2005 19.03.2005 03.04.2005 18.04.2005

Date (daily)

Discharge
(c.m/s)

Observed Output FW FW+LD FW+LD+GW 
 

Figure 5a. Simulated and observed output streamflow series of the studied reach of the Jaguaribe River reach 
in 2005. The three model structures tested were: 1) only flood wave routing, i.e. no aquifer system, (FW); 2) 
flood wave routing with lateral (stream-)aquifer dynamics, but without groundwater flow parallel to the river 
course, (FW+LD); and 3) equal to the last one, but now with parallel groundwater flow (FW+LD+GW). 
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Figure 5b. Simulated and observed output streamflow series of the studied reach of the Jaguaribe River reach 
in 2009. The three model structures tested were: 1) only flood wave routing, i.e. no aquifer system, (FW); 2) 
flood wave routing with lateral (stream-)aquifer dynamics, but without groundwater flow parallel to the river 
course, (FW+LD); and 3) equal to the last one, but now with parallel groundwater flow (FW+LD+GW). 
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Figure 5c. Simulated and observed output streamflow series of the studied reach of the Jaguaribe River reach 
in 2010. The three model structures tested were: 1) only flood wave routing, i.e. no aquifer system, (FW); 2) 
flood wave routing with lateral (stream-)aquifer dynamics, but without groundwater flow parallel to the river 
course, (FW+LD); and 3) equal to the last one, but now with parallel groundwater flow (FW+LD+GW). 

The FW-based model overestimated 
both the streamflow peak and the volume. 
The (FW+LD)- and (FW+LD+GW)-based 
models predicted similar peaks, but the 
(FW+LD)-based simulated hydrograph 

decreased more sharply during the reces-
sion flow than the (FW+LD+GW)-based 
one. The models’ performance is shown in 
Table II. 

Table II. Mean absolute error (MAE) and root mean square error (RMSE) of the three model structures 
tested: 1) only flood wave routing, i.e. no aquifer system, (FW); 2) flood wave routing with lateral (stream-
)aquifer dynamics, but without groundwater flow parallel to the river course, (FW+LD); and 3) equal to the 
last one, but now with parallel groundwater flow (FW+LD+GW). 

Volume Peak 
Model Structure MAE 

(%) 
RMSE 

(106 m3) 
MAE 
(%) 

RMSE 
(m3s-1) 

FW 41 96 20 74 

FW+LD 10 31 12 36 

FW+LD+GW 4 41 13 67 
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The (FW+LD)- and (FW+LD+GW)-
based models had comparable performance 
and both were better than the FW-based. 
Because the (FW+LD+GW)-based model 
had the most similar behaviour to the ob-
served hydrographs than the (FW+LD)-
based one, we consider the 
(FW+LD+GW)-based model structure as 
the best suited for this study site. 

3.2. Walnut Gulch Experimental Water-
shed, Arizona, USA 

3.2.1. Data and parametrization 
We simulated here a losing, hydraulically 
disconnected 1.5 km channel reach in the 
Walnut Gulch Experimental Watershed 
(WGEW), Arizona, USA, from the flume 

FL008 (input flow) to the FL006 (output 
flow) (Fig. 6). Based on previous publica-
tions (e.g. Renard, 1970; Goodrich et al., 
2004; Renard et al., 2008; Stone et al., 
2008; Emmerich, 2008; Osterkamp, 2008), 
we assumed that streamflow infiltrates into 
an sandy alluvium with enough depth such 
that it never becomes completely saturated 
during a streamflow event, because depth 
to groundwater within the WGEW ranges 
from ~50 m at the lower end to ~145 m in 
the central portion of the watershed (Good-
rich et al., 2004; also see Spangler, 1969). 
Hydrological data and geo-information 
were made available at 
http://www.tucson.ars.ag.gov/dap/. 
 

 

Figure 6. Walnut Gulch Research Watershed (PCS: NAD83 and GCS: North American 1983) based on data 
made available at http://www.tucson.ars.ag.gov/dap/. 

We selected hydrographs from stream-
flow events in which: 
(i) the input flow was only registered 
by the selected upstream flume (FL008); 
(ii) the event volume, duration and 
peak flow at the selected upstream flume 
(FL008) were greater than at the 
downstream flume (FL006); 
(iii) the soil moisture content of the 
underlying alluvium could be assumed 
close to the residual moisture content, i.e. 
at the beginning of the rainy season or after 
a long time between runoff events during 
the rainy season, since no soil moisture 
data of the underlying alluvium were made 
available. 

Maximum channel cross-sectional area 
and channel width were derived by stream 
channel morphology relationships provided 
by Miller et al. (2003). The stream cross-
sectional areas were then derived assuming 
a triangular channel cross-sectional area. 
We did not account for floodplains, be-
cause no data about them were available 
and also because we considered them to be 
of minor importance for transmission 
losses in that stream reach. Consequently, 
the floods had to be assumed as sub-bank 
flows. 

The simulated reach in the WGEW was 
spatially modelled (see Fig. 1) as one basin 
system, which has one stream with 3 
reaches and 4 sections. Its aquifer system 
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was formed by 3 units, each containing 
only one stream-aquifer column. The aqui-
fer system was assumed to be uniformly 
sandy. Moreover, its soil layer interval was 
set 0.1 m for all stream-aquifer columns. 
The texture of the aquifer was used to de-
rive its soil physical properties, such as 
saturated hydraulic conductivity and poros-
ity, obtained from experimental tables pub-
lished in Rawls et al. (1993) and Dingman 
(2002). 

The time step of calculation, which 
gave the best numerical stability of flood 
wave routing and which was consequently 
used for this simulation, was 2 minutes. 
Since the original input time series were 

not sampled for every 2 minutes, we had to 
resample them. 

3.2.2. Model application 
We selected 6 streamflow events which 
met the conditions described in the previ-
ous sub-section, in order to simulate the 
channel transmission losses from flume 
FL008 to flume FL006 (Fig. 6) using the 
parameters set and the spatial discretization 
derived without calibration, as already ex-
plained in the previous sub-section. Table 
III compares the observed and simulated 
flow volume and peak of those events and 
shows the differences between the ob-
served and simulated peak times. 
 

Table III. Comparison between the observed and simulated volume and peak flow and the differences between 
observed and simulated peak times of the selected events from the studied 1.5 km reach in the Walnut Gulch 
Experimental Watershed, Flume FL006. 

Volume (103 m3) Peak (m3s-1) 
Event 

Observed Simulated Observed Simulated 

Peak time error 
(min.km-1) 

2 Aug 1968 2.0 1.0 1.3 0.7 -6.7 

28 Aug 1969 0.0 0.1 0.0 0.1 na* 

24 Jul 1970 1.2 0.7 0.8 0.5 -2.7 

28 Jul 1972 0.5 0.2 0.3 0.3 -3.3 

29 Aug 1972 1.2 0.6 0.8 0.8 6.0 

7 Aug 1983 0.0 0.0 0.0 0.1 na 

 *not applicable. 

 

The volume of the events was clearly 
always underestimated, its MAE being 
equal to 0.4 103m3 and its RMSE equal to 
0.5 103m3. The peak flow of the events was 
better predicted than its volume, where its 
error did not show a clear trend, its MAE 
being equal to 0.2 m3s-1 and its RMSE 
equal to 0.3 m3s-1. We show the best and 
the worst predicted output hydrographs, 
which occurred on 29 August 1972 (Fig. 7) 
and on 2 August 1968 (Fig. 8), respec-
tively. 

The simulation results made clear some 
distinct problems with the hydrograph 
shape (see e.g. Fig. 7, but also Fig 5c for 
the MJR) and some pronounced errors be-

tween the observed and predicted peak 
time of the events simulated in the WGEW 
(Table III). This is explained because the 
flow velocity in our simplified flood wave 
routing (Sect. 2.1) is controlled by the 
channel cross-sections, which were ap-
proximated through simple relationships. 
This only vague approximation of the 
channel cross-sections can be considered 
as a typical problem of dryland regions. 
Therefore, the inherent data scarcity of the 
channel morphology will inevitably lead to 
uncertainties in the timing of the hydro-
graph. 
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Figure 7. The best predicted output hydrograph for the studied reach in the Walnut Gulch Research 
Watershed (at Flume FL006). 
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Figure 8. The worst predicted output hydrograph for the studied reach in the Walnut Gulch Research 
Watershed (at Flume FL006).

4. Model Reliability 

Important model uncertainties in hydro-
logical modelling may be classified in 
three fields: numerical or mathematical 
uncertainty (dealing with numerical stabil-
ity and accuracy of the adopted solvers for 

the process equations), parameter uncer-
tainty (including individual and combined 
sensitivity of model parameters, multiple-
valid parameter sets, sub-scale parameter 
variability) and structural uncertainty 
(comprising the selection of model proc-
esses and their interactions, effects of un-
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certain initial and boundary conditions 
and/or the model-representation of the 
simulation domain). 

The model structure uncertainty was 
analyzed previously for the Jaguaribe river 
reach and was negligible for the WGEW’s 
stream. 

In this section, we evaluate the numeri-
cal and the model parameter uncertainty by 
a) analysis of numerical stability and accu-
racy of the subsurface simulations, and b) 
individual sensitivity analysis of the model 
parameters; and an overall (combined) 
model parameter uncertainty analysis. The 
structural uncertainty has been approached 
to a limited extend in the previous section, 
where we discussed the influence of differ-
ent process representations of the subsur-
face (i.e. with / without considering inter-
actions of the groundwater with channel 
water and with / without considering paral-
lel groundwater flow and by prescribing 
initial and boundary conditions according 
to the available field data and the percep-
tual hydrological models of the river 
reaches). We think that a more comprehen-
sive elaboration of the structural uncer-
tainty (e.g. by choosing a variety of differ-
ent possible interpretations of hydro-
geological structures or by applying differ-
ent hydrological process formulations) 
would clearly go beyond the scope of this 
paper. 

4.1. Numerical issues 

Here we present simulation results, which 
enable us to evaluate whether the spatial 
and temporal discretization (Sect. 3.1.1 and 
3.2.1) and the numerical approximations 
(Sect. 2) are such that the model is numeri-
cally stable and accurately represents the 
governing equations. Therefore, we se-
lected some simulations of the subsurface 
systems, i.e. the unsaturated zone in the 
WGEW and the saturated zone in the MJR, 
to be presented here. We do not show all 
results of the subsurface systems because 
this would not add more information. 

4.1.1. Unsaturated zone in the Walnut 
Gulch Experimental Watershed 

We present here the soil moisture simula-
tion of the unsaturated zone of the upper-
most stream reach (see Sect. 3.2.1 for the 
discretization) during the streamflow event 
on 28 July 1972 in the WGEW. We used a 
time step of 2 minutes, which gave the best 
numerical stability for flood wave routing. 
Then, we assumed the soil layer intervals 
0.1 m, which was adopted for the previous 
application, 0.2 m, 0.4 m and 0.8 m, re-
spectively. Figures 9a-d show the first 8 
minutes of the soil moisture simulation, i.e. 
the propagation of the downward soil wet-
ting. 
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Figure 9a. The soil moisture simulation of the unsaturated zone of the first reach during the event on 28 July 
1972 in the Walnut Gulch Research Watershed (time step equal to 2 min and soil layer interval 0.1 m). 
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Figure 9b. The soil moisture simulation of the unsaturated zone of the first reach during the event on 28 July 
1972 in the Walnut Gulch Research Watershed (time step equal to 2 min and soil layer interval 0.2 m). 
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Figure 9c. The soil moisture simulation of the unsaturated zone of the first reach during the event on 28 July 
1972 in the Walnut Gulch Research Watershed (time step equal to 2 min and soil layer interval 0.4 m). 
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Figure 9d. The soil moisture simulation of the unsaturated zone of the first reach during the event on 28 July 
1972 in the Walnut Gulch Research Watershed (time step equal to 2 min and soil layer interval 0.8 m) 

The soil moisture simulation is gov-
erned by both the unsaturated stream infil-
tration model (Sect. 2.2) and the vertical 

soil water redistribution model (Sect. 2.3). 
While the stream water infiltrated through 
the soil column, the uppermost soil layer 
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was never completely saturated and the 
lowest wetted soil layer had always the 
greatest moisture (peak). The former can 
be explained by the hydraulic conductivity 
term Kj

k-(1/2), which approaches zero in Eq. 
(16) for the uppermost soil layer. The latter 
seems to be inevitable if the moisture or 
the hydraulic conductivity between two 
soil layers is rather different. These nu-
merical “artefacts” were smoother when 
the interval of the soil layer increased but, 
consequently, the infiltrated water into the 
soil column also reached a higher depth. 

Instead of using the harmonic mean be-
tween the hydraulic conductivity of the soil 
layers (see Eq. (16)), one can adopt the 

arithmetic mean (see e.g. van Dam and 
Feddes, 2000). Considering now the arith-
metic mean and a soil layer interval equal 
to 0.2 m, we found that those numerical 
artefacts were even smoother (Fig. 10). 
Moreover, there were no significant 
changes in the simulated streamflow vol-
ume and peak (smaller than 5%) between 
0.1 and 0.2 m soil layer interval and using 
harmonic or arithmetic mean. However, we 
found +30% and +16% difference in simu-
lated volume and peak, respectively, be-
tween 0.1 and 0.4 m intervals and +42% 
and +26% between 0.1 and 0.8 m. 
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Figure 10. The soil moisture simulation of the unsaturated zone of the first reach during the event on 28 July 
1972 in the Walnut Gulch Research Watershed (time step equal to 2 min and soil layer interval 0.2 m), but 
using the arithmetic mean in Eq. 16, instead of the harmonic mean. 

4.1.2. Saturated zone in the Middle 
Jaguaribe River 

We present the groundwater and stream 
levels’ simulation of the farthest down-
stream stream reach of the MJR (see Sect. 
3.1.1 for the temporal and spatial discreti-
zation) during the rainy season in 2010 in 
the Jaguaribe River. The width of the aqui-
fer columns was defined as half the width 

of the stream-aquifer columns for all the 
stream reaches. 

Fig. 11a shows the groundwater and 
stream levels’ simulation using the best 
model structure found previously for the 
streamflow series, i.e. the combination of 
the flood wave routing, the lateral river-
aquifer dynamics and the groundwater 
flow parallel to the river course (Sect. 
3.1.2). These simulation results showed the 
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flow from the river (stream-aquifer column 
11 in Fig. 11a) into the surrounding 
groundwater in the times equal to 15, 25, 
30 and 34 days and the flow from the 
groundwater into the river during the rest 
of the times, as we expected. However, 
during the infiltration from the river into 
the groundwater, the groundwater levels in 
the most distant aquifer columns (seen 
from the stream-aquifer column) decreased 
approximately from 16 m to 14 m (see Fig. 
11a), which is probably too much for a 
period of 20 days in this environment. A 
large groundwater outflow from the aquifer 
unit in the lowest reach can explain this 

decrease in groundwater level. In order to 
check this hypothesis, we plotted the simu-
lation of the model structure without con-
sidering the groundwater flow parallel to 
the river course (Fig. 11b). The groundwa-
ter level of all the aquifer columns then 
works as expected. Thus, assuming the 
gradient of the unit of the aquifer furthest 
downstream to be equal to the unit closest 
to it upstream (see Sect. 2.5), we may 
overestimate its outflow. Nevertheless, the 
groundwater flow model needs to be taken 
into account to achieve the best fit for the 
streamflow series (Sect. 3.1.5). 
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Figure 11a. The simulation of groundwater and river levels in the farthest downstream stream reach during 
the rainy season in 2010 in the Jaguaribe River. The streambed level is 16 m and the surface level 30 m. The 
stream-aquifer column is volume No 11 in the x-axis. The model structure was that which provided the best fit 
for the streamflow series (Sect. 3.1.2), i.e. including the simulation of flood wave routing, lateral river-aquifer 
dynamics and groundwater flow parallel to the river course. 
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Figure 11b. The simulation of groundwater and river levels in the farthest downstream stream reach during 
the rainy season in 2010 in the Jaguaribe River. The streambed level is 16 m and the surface level 30 m. The 
stream-aquifer column is volume No 11 in the x-axis. The model structure did not consider the groundwater 
flow parallel to the river course. 

4.2. Individual parameter sensitivity ana-
lysis 

We carried out a classical parameter sensi-
tivity analysis in order to guide the efforts 
on data acquisition and parameter calibra-
tion in future applications. We used for the 
parameter sensitivity analysis the follow-
ing standard formulation 

( )
reference

referencei
i y

yPy −
=ϕ        (28) 

where φ is the sensitivity coefficient, y is 
here a simulated variable, streamflow peak 
or event volume, and P is a model parame-
ter. To carry out the sensitivity analysis, 
we selected the driest and the wettest 
streamflow events, whose upstream flow 
reached the lowest stream section. 

4.2.1. Middle Jaguaribe River 
Once the (FW+LD+GW)-based model 
structure had presented the best simulation 
performance for streamflow volume and 
maximum peak, we chose the following set 

of parameters for sensitivity analysis: a) 
porosity η and b) soil moisture at field ca-
pacity θfc, which are related to groundwater 
level computation (Eq. 25); c) lateral satu-
rated hydraulic conductivity KA of column 
A, which is related to lateral (stream-
)aquifer dynamics (Eq. 20); and d) “paral-
lel” saturated hydraulic conductivity Ku of 
aquifer unit u, which is related to ground-
water flow parallel to the river course (Eq. 
23). 

Streamflow volume and maximum peak 
simulated by the (FW+LD+GW)-based 
model for the years 2005 and 2009 were 
used as reference variables (see Eq. 28) 
because those years were the driest and the 
wettest. Then, we multiplied a variable 
factor with the original values of the pa-
rameters a), b), c) and d) and ran the 
(FW+LD+GW)-based model again, in or-
der to estimate the sensitivity coefficients 
(Eq. 28) for streamflow volumes and 
maximum peaks. 

The sensitivity was very small, i.e. the 
results did not vary with changes of poros-
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ity (range between θfc and 1.5 × η) neither 
with changes of soil moisture at field ca-
pacity (range between 0.5 × θfc and η). In 
contrast, the sensitivity was high due to 
changes on lateral and parallel saturated 

hydraulic conductivities. Figures 12a-b 
show the results of sensitivity analysis of 
those conductivity parameters for 2005 and 
Figs. 13a-b for 2009. 
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Figure. 12a. Sensitivity analysis of lateral saturated hydraulic conductivity, where φ is the sensitivity 
coefficient (Eq. 28) and x-axis is the factor which was multiplied with the original values of the parameter 
(MLR, March to April 2005). 
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Figure 12b. Sensitivity analysis of parallel saturated hydraulic conductivity, where φ is the sensitivity 
coefficient (Eq. 28) and x-axis is the factor which was multiplied with the original values of the parameter 
(MLR, March to April 2005). 
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Figure 13a. Sensitivity analysis of lateral saturated hydraulic conductivity, where φ is the sensitivity 
coefficient (Eq. 28) and x-axis is the factor which was multiplied with the original values of the parameter 
(MLR, April to June 2009). 
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Figure 13b. Sensitivity analysis of parallel saturated hydraulic conductivity, where φ is the sensitivity 
coefficient (Eq. 28) and x-axis is the factor which was multiplied with the original values of the parameter 
(MLR, April to June 2009). 

In general, high values of both saturated 
hydraulic conductivities showed little sen-
sitivity to the reference simulation, because 
large fluxes between model units are re-
stricted by their hydraulic gradient (see Eq. 

20 and 23) and the reference simulation 
was already driven by the hydraulic gradi-
ent between the model units. 

The sensitivity coefficients of lateral 
and parallel saturated hydraulic conductivi-
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ties can still be considered negligible for 
both streamflow volume and peak for pa-
rameter values greater than 50% of their 
original values. On the other hand, less 
than 50% of the original values of lateral 
and parallel saturated hydraulic conductivi-
ties, their sensitivity coefficients could no 
longer be considered negligible. However, 
from 50% to 10% of the original values, 
their sensitivity coefficient was between 
the range [-0.20; 0.20]. 

Even when parallel saturated hydraulic 
conductivity decreased to values less than 
10% of its original values (Figs. 12b and 
13b), its sensitivity coefficients converged 
to a value between the aforementioned 
range. On the other hand, after lateral satu-
rated hydraulic conductivity reached 1% of 
its original values (Figs. 12a and 13a), its 
sensitivity coefficient decayed rapidly to 
its lowest value of -1.00. This agreed with 
the results of the case studies presented 
previously that the lateral (stream-)aquifer 
dynamics model is more relevant than the 
model of the groundwater flow parallel to 
the river course for simulating streamflow 
in the Jaguaribe river. 

Therefore, the sensitivity showed the 
largest values with changes in lateral satu-
rated hydraulic conductivity followed by 
parallel saturated hydraulic conductivity. 

4.2.2. Walnut Gulch Experimental 
Watershed 

We selected the following set of parame-
ters to carry out the sensitivity analysis: 
soil moisture at field capacity θfc, pore size 
distribution index λ, porosity η, wetting 
front suction ψ and saturated hydraulic 
conductivity Ksat. Streamflow volume and 
maximum peak simulated for the events on 
28 July 1972 and 2 August 1968 were used 
as reference variables (see Eq. 28), because 
those were the driest and the wettest 
events. Then, we multiplied a variable fac-
tor with the original values of those pa-
rameters and ran the channel transmission 
losses model again, in order to estimate the 
sensitivity coefficients (Eq. 28) for stream-
flow volumes and maximum peaks. 

The sensitivity did not vary with 
changes in soil moisture at field capacity 
and pore size distribution index. In con-
trast, the sensitivity varied significantly 
with changes in porosity, wetting front 
suction and saturated hydraulic conductiv-
ity. Figures 14a-c show the results of sensi-
tivity analysis of those parameters for 28 
July 1972 and Figs. 15a-c for 2 August 
1968. 
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Figure 14a. Sensitivity analysis of porosity, where φ is the sensitivity coefficient (Eq. 28) and x-axis is the 
factor which was multiplied with the original values of the parameter (WGEW, 28 July 1972). 
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Figure 14b. Sensitivity analysis of wetting front suction, where φ is the sensitivity coefficient (Eq. 28) and x-
axis is the factor which was multiplied with the original values of the parameter (WGEW, 28 July 1972). 
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Figure 14c. Sensitivity analysis of saturated hydraulic conductivity, where φ is the sensitivity coefficient (Eq. 
28) and x-axis is the factor which was multiplied with the original values of the parameter (WGEW, 28 July 
1972). 
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Figure 15a. Sensitivity analysis of porosity, where φ is the sensitivity coefficient (Eq. 28) and x-axis is the 
factor which was multiplied with the original values of the parameter (WGEW, 2 August 1968). 
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Figure 15b. Sensitivity analysis of wetting front suction, where φ is the sensitivity coefficient (Eq. 28) and x-
axis is the factor which was multiplied with the original values of the parameter (WGEW, 2 August 1968). 
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Figure 15c. Sensitivity analysis of saturated hydraulic conductivity, where φ is the sensitivity coefficient (Eq. 
28) and x-axis is the factor which was multiplied with the original values of the parameter (WGEW, 2 August 
1968). 
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The sensitivity showed the largest val-
ues with changes in saturated hydraulic 
conductivity followed by wetting front 
suction and porosity. The higher those pa-
rameters are, the smaller is their sensitiv-
ity, i.e. the higher the infiltration from the 
stream into the alluvium. However, fluc-
tuations in that behaviour could be found 
for peak flow in relation to wetting front 
suction, which might be related to numeri-
cal instabilities. 

The sensitivity coefficient reached its 
lowest value of -1.00 with a change of 
+50% in the saturated hydraulic conductiv-
ity for both the streamflow volume and 
peak (Figs. 14c and 15c), whereas the sen-
sitivity coefficient of the porosity remained 
between the range [-0.30; 0.20] for the 
same change (Figs. 14a and 15a). The sen-
sitivity coefficient of the wetting front suc-
tion remained mostly between the afore-
mentioned range (Figs. 14b and 15b). 

Small values of the saturated hydraulic 
conductivity increased significantly the 
sensitivity coefficients of the streamflow 
volume and peak (Figs. 14c and 15c), 
whereas small values of the wetting front 
suction and the porosity did not imply an 
increase in the sensitivity coefficient 
greater than 0.40 for the streamflow vol-
ume and peak, excluding a sensitivity coef-

ficient value of the wetting front suction 
for the streamflow peak (Fig. 14b). 

The sensitivity coefficient of the 
streamflow volume varied more than that 
of the streamflow peak for the saturated 
hydraulic conductivity and porosity. 

4.3. Overall parameter sensitivity analysis 

We selected the best simulated rainy sea-
son for the Middle Jaguaribe River (2005) 
and streamflow event for the Walnut Gulch 
Experimental Watershed (29 August 1972) 
and chose the most sensible parameters 
found previously (Sect. 4.2) for both case 
studies, in order to carry out a combined 
(“overall”) parameter uncertainty analysis 
based on the Monte Carlo approach. In this 
way, we ran the model 1000 times for the 
Jaguaribe river varying randomly the lat-
eral and parallel saturated hydraulic con-
ductivities from 1% to 199%, and for the 
WGEW the saturated hydraulic conductiv-
ity and the wetting front suction from 1% 
to 199% and the porosity from 70% to 
130%. Then, we calculated the relative 
errors of the simulated streamflow volume 
and peak for the MJR and the WGEW. The 
relative errors are presented as box-plots in 
Figs. 16a-b: 
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Figure 16a. Relative errors of the simulated streamflow volume and peak in 2005 for the Jaguaribe river after 
1000 simulations varying randomly the lateral and parallel saturated hydraulic conductivity from 1% to 
199%. 
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Figure 16b. Relative errors of the simulated streamflow volume and peak on 29 August 1972 for the Walnut 
Gulch Experimental Watershed after 1000 simulations varying randomly the saturated hydraulic conductivity 
and the wetting front suction from 1% to 199% and the porosity from 70% to 130%. 
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The relative errors of the simulations 
carried out for the WGEW (Fig. 16b) were 
much more variable than those for the MJR 
(Fig. 16a). The relative errors for the MJR 
were mostly in a very narrow range, where 
their inner quartile range (IQR) was practi-
cally zero, for both volume and peak. This 
rather stable behaviour (little overall pa-
rameter uncertainty) can be explained by 
the compensating effects of fluxes be-
tween/beneath the river and adjacent aqui-
fer and the associated levelling of hydrau-
lic gradients. The fluxes are represented in 
the model by mathematically simple water 
budgeting in aquifer columns and the lev-
elling effects are considered by the coupled 
processes, including backwater effects, see 
Sects. 2.4 and 2.5. Therefore, for the MJR 
rainy season 2005, the relative error of the 
streamflow volume and peak was low, ap-
proximately 2% and 20%, respectively, 
with 90% of certainty related to the model 
parameters. 

The relative errors for the WGEW fell 
within much larger ranges, where their 
IQR was approximately 54% for the vol-
ume and 59% for the peak. This was a re-
sult of the non-linearity involved in the 
unsaturated flow processes that prevail in 
disconnected dryland river systems. Such a 
non-linear behaviour is represented, e.g., 
by the Green-and-Ampt equation (Sects. 
2.2 and 2.3). In addition, a damping 
through feedback effects such as for the 
saturated fluxes does not exist. Thus, for 
such conditions, the uncertainty is high, as 
demonstrated for the event on 29 August 
1972, with a relative error (%) of the 
streamflow volume and peak between [-91; 
26] and [-75; 46], respectively, with 80% 
of certainty related to the model parame-
ters. 

5. Discussion 

The channel transmission losses model 
presented here has been developed for ap-
plications to different climate and hydro-
geologic controls and scales of dryland 
rivers, covering a variety of hydrological 
processes relevant for in-channel transmis-
sion losses. In two case studies, it has pre-

dicted well the streamflow volume and 
peak for both a large losing/gaining, hy-
draulically connected river and a small 
losing, hydraulically disconnected stream. 
The model structure was chosen according 
to the hydrological perceptual models of 
the case studies, but no further parameter 
calibration procedure has been applied. 
That is why we consider the model to be 
well suited to the typical data scarce condi-
tions in dryland areas. However, large un-
certainties occur with reference to the tim-
ing of hydrographs, which is due to the 
simplified flood wave routing imple-
mented, which is based only on the con-
servation of mass and the channel mor-
phology. Therefore, the model can be used 
for water resources topics with a relatively 
long time scale, such as water resources 
planning and management purposes. How-
ever, it should not be applied to issues with 
short time scales, such as forecasting of 
flood wave timing as is necessary for flood 
warning. 

The evaluation of the different model 
structures, which was conducted for the 
MJR case study, has shown that this pro-
cedure is promising for reducing structural 
model uncertainties and thus improving the 
capability for streamflow prediction in 
ungauged areas. This evaluation showed 
that adequate process representation im-
proves the model reliability, e.g. in our 
case that both lateral (stream-)aquifer wa-
ter fluxes and groundwater flow in the un-
derlying alluvium parallel to the river 
course are necessary for physically-based 
prediction of streamflow and channel 
transmission losses, the former process 
being more relevant than the latter. The 
combination of the hydrological perceptual 
model of the MJR, which has been derived 
from field observations and data with the 
modelling-based hypothesis-testing on the 
dominant processes complement each 
other and may provide a guide for further 
field campaigns and model expansions. 

The analysis of the subsurface system 
simulations has shown that the reliable 
predictions of the surface flow volume and 
peak discharge are not necessarily suffi-
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cient to ensure a stable numerical solution 
of the subsurface processes in the unsatu-
rated and saturated zones. Even if the in-
fluence of simulation time step and spatial 
discretization (e.g. the soil layer interval on 
the unsaturated flow) or of the boundary 
conditions (e.g. the groundwater flow of 
the downmost aquifer unit) is analysed, a 
comprehensive evaluation of the model 
performance, comprising all processes of 
the model, is severely constrained by the 
particular data scarcity in dryland envi-
ronments. 

The sensitivity analysis showed that the 
model results were relatively little sensitive 
to the parameters related to the saturated 
fluxes (lateral stream-aquifer dynamics and 
groundwater flow parallel to the river 
course). This rather stable behaviour can 
be explained by the compensating effects 
of fluxes between the river and adjacent 
groundwater and the associated levelling of 
hydraulic gradients. In other words, even if 
highly saturated hydraulic conductivities 
could “potentially” produce large fluxes 
between saturated model units, large fluxes 
did not happen because they were re-
stricted by the actual hydraulic gradient 
between the model units, which are gener-
ally low, or may level out rather quickly. 

These parameters, which are related to 
the saturated part of the model, produced 
much smaller variation in the sensitivity 
coefficient than those which drive the un-
saturated part of the channel transmission 
losses model (unsaturated stream infiltra-
tion and vertical soil water redistribution). 
This is explained by the aforementioned 
restriction of the subsurface hydraulic gra-
dient, and on the other hand by a rather 
strong non-linear behaviour of the equa-
tions, which govern the unsaturated flow. 

The overall parameter analysis (1000 
simulation runs with different combina-
tions of lateral and parallel saturated hy-
draulic conductivities) of the conditions in 
the Middle Jaguaribe River reach, where 
the saturated processes are dominant, 
yielded at most rather small relative errors 
(2% for streamflow volume and 20% for 
peak). In contrast, the mean absolute error 

of the streamflow volume of the selected 
events was 41%, 10% and 4% for different 
model structure settings (Table II). There-
fore, at least for this case study, the uncer-
tainties related to the model structure are 
considered to be larger than those related 
to the model parameters. 

Rather large ranges for the simulated 
streamflow volume and peak based on 
1000 simulations with different combina-
tions of saturated hydraulic conductivity, 
wetting soil suction and soil porosity were 
found for the WGEW’s stream, where un-
saturated processes are dominant for runoff 
generation. Thus, applications of this 
model to real-world problems in data-
scarce streams dominated by unsaturated 
processes may compromise inevitably high 
parameter uncertainties. Nevertheless, one 
has to acknowledge that this uncertainty is 
not a purely model uncertainty (or model 
artefact), rather that it is typical behaviour 
resulting from unstructured (or random) 
process dynamics for this kind of discon-
nected dryland rivers. 

6. Conclusions and Outlook 

We developed a new process-oriented 
channel transmission losses model, which 
was designed to account for the surface-
subsurface water fluxes in data-scarce dry-
land environments. Channel transmission 
losses modelling is indispensable for simu-
lation of arid and semi-arid watershed hy-
drology, as long as the underlying aquifer 
system has not been fully saturated, as is 
expected to occur in ephemeral streams 
and in intermittent rivers in the dry seasons 
and at the beginning and in the middle of 
the rainy seasons (Renard, 1970; Costa et 
al., 2012). Moreover, in (sub-)humid rivers 
vertical and lateral groundwater recharge 
can occur from winter to spring, when the 
surface water stages are higher than the 
groundwater table (see e.g. Krause and 
Bronstert, 2007). This recharge after 
drought periods or during extensive 
groundwater pumping may be intensified 
and resemble channel transmission losses 
of dryland rivers. 
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The main findings of our work can be 
described as follows: 

1. A mathematically flexible and 
hydrologically complex modelling of the 
channel transmission losses can represent 
well the most relevant hydrological 
processes for streamflow prediction in 
dryland rivers throughout different scales 
and controls. 

2. A test of different model structures 
enables the comparative application of the 
channel transmission losses model to a 
poorly gauged river and yields information 
on the relevance of different sub-systems 
and processes. 

3. High nonlinear approaches, which 
were used for the unsaturated zone 
processes, are much more sensible to 
parameter variability than those of 
mathematically simple, but hydrologically 
two-way-coupled, approaches, which were 
used for the saturated zone. 

4. Uncertainties arising from the 
model structure were more relevant than 
those related to the parameter variability of 
the saturated part of the model in the 
Middle Jaguaribe River application. 

5. The scarcity of data in dryland 
environments and the process complexity 
involved in the unsaturated flow lead to the 
view that disconnected systems (e.g. the 
WEGW’s) controlled by the unsaturated 
zone generally compromise model 
uncertainties much more than do connected 
systems (e.g. the MJR) that are driven by 
the saturated flow. Therefore, the degree of 
aridity of a dryland river may be an 
indicator of its model uncertainty/ 
predictability. 

The model might be further tested and 
possibly improved – particularly its subsur-
face part – based on comparison with addi-
tional groundwater observational data. This 
may improve the reliability of its internal 
processes representation (e.g. unsaturated 
flow and groundwater flow) and subse-
quently its applicability for ungauged 
situations (based on Andréassian et al., 

2007, 2009, 2010; Bronstert, 2004). In this 
respect, we have been monitoring ground-
water level close to the outlet of the stud-
ied reach of the Middle Jaguaribe River, 
whose first results were presented in Costa 
et al. (2012). Moreover, an obvious aim is 
the integration of this model with a dryland 
hydrological catchment model for semi-
arid hydrology (see, e.g. Güntner and 
Bronstert, 2004; Güntner et al., 2004). 

The increase in data availability, in par-
ticular from the subsurface structures, may 
allow a finer spatial discretization of model 
units, i.e. moving from the actual semi-
distributed to a distributed hydrological 
concept and/or introducing additional 
processes. Such a strategy, for example, 
was followed over the past decades for the 
hydrological modelling of the Okavango 
Delta System in Botswana, where surface-
subsurface fluxes were simulated initially 
by conceptual models and then later on by 
fully-distributed ones (e.g. Bauer et al., 
2006; Milzow et al., 2009). 
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Chapter IV: 
 
 
Probabilistic flood forecasting for a mountainous headwa-
ter catchment using a nonparametric stochastic dynamic 
approach 

Abstract 

Hydrological models are commonly used to perform real-time runoff forecasting for flood 
warning. Their application requires catchment characteristics and precipitation series that are 
not always available. An alternative approach is nonparametric modelling based only on run-
off series. However, the following questions arise: Can nonparametric models show reliable 
forecasting? Can they perform as reliably as hydrological models? We performed probabilis-
tic forecasting one-, two- and three-hours ahead for a runoff series, with the aim of ascribing a 
probability density function to predicted discharge using time series analysis based on sto-
chastic dynamics theory. The derived dynamic terms were compared to a hydrological model, 
LARSIM. Our procedure was able to forecast with 95% confidence interval one-, two- and 
three-hour ahead discharge probability functions with about 1.40 m3/s of range and relative 
errors (%) in the range [–30; 30]. The LARSIM model and the best nonparametric approaches 
gave similar results, but the range of relative errors was larger for the nonparametric ap-
proaches. 
 
Keywords: streamflow probabilistic forecasting; time series analysis; stochastic dynamical systems; parametric 
and nonparametric comparison 
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catchment using a nonparametric stochastic dynamic approach, Hydrological Sciences Journal, 57(1), 
10-25, 2012. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 

 
67 

1. Introduction 

Hydrologists commonly use distributed 
hydrological models to perform real-time 
streamflow forecasting for flood warning 
purposes. These models require large data 
sets of catchment physical characteristics 
and precipitation series that are not always 
available. Furthermore, the results from 
these models can be rather uncertain due to 
large errors in precipitation input, initial 
catchment moisture conditions and/or 
modelling parameters/processes. An alter-
native approach is to use nonparametric 
models based on streamflow series only, to 
overcome the requirement for data on 
catchment physical characteristics and pre-
cipitation series. However, it is not known 
whether nonparametric models for meso-
scale catchments can show reliable stream-
flow forecasting for flood warning, or 
whether they can perform as reliably as, or 
even outperform, distributed hydrological 
models. 

Since the beginning of the 1990s, runoff 
series have been assumed as responses of 
dynamical systems with a low-dimensional 
chaotic attractor resulting from the nonlin-
ear coupling of precipitation and catch-
ment state that depends on climatic condi-
tion and geo-patterns, such as land cover, 
soils, river network and geology (Liu et al., 
1998; Porporato and Ridolfi, 1997; Siva-
kumar et al., 2001). A fundamental charac-
teristic of a dynamical system is that it 
returns or recurs to former states (recur-
rence) (see discussion in Marwan et al., 
2007). 

This assumption means that the “catch-
ment-runoff-system” should obey a deter-
ministic operator, a set of coupling ordi-
nary differential equations of the involved 
variables (e.g. runoff, precipitation and soil 
moisture). This operator projects a trajec-
tory in the state space (or phase space), 
which establishes all states of the involved 
variables. The catchment runoff system 
states return or recur to former states dur-
ing their trajectory in the state space. How-
ever, recently, the hypothesis that hydro-
logical processes are governed by dynam-

ics with low-dimensional attractors has 
been disputed e.g. in Koutsoyiannis 
(2006). 

In this context, chaotic systems theory 
has been applied to hourly, daily and 
monthly runoff series employing nonpara-
metric models by the phase space recon-
struction technique (Jayawardena and Lai, 
1994; Liu et al., 1998; Jayawardena and 
Gurung, 2000; Sivakumar et al., 2001; 
Porporato and Ridolfi, 1997, 2001; Siva-
kumar et al., 2002; Laio et al., 2003). 
Moreover, even without low-dimensional 
chaotic attractor, this nonlinear dynamics 
approach can also give good predictions 
(Koutsoyiannis et al., 2008). 

This nonlinear approach can provide 
accurate one-discharge-value-per-time-
step forecasting, but it does not always 
offer insight into the probabilistic structure 
of the data resulting from the shortness of 
series, and the inevitable presence of dy-
namical noise in open physical systems, 
such as catchment runoff (Porporato and 
Ridolfi, 2001; Kantz and Schreiber, 2004). 
Moreover, the ability of the nonlinear ap-
proach to give information on uncertainties 
associated with forecasts is limited (Ko-
morník et al., 2006), and this is central to 
the implementation of effective flood 
warning or flood protection measures (see 
Todini, 2004). To address the last issue, 
Tamea et al. (2005) proposed: (a) an en-
semble-based nonlinear prediction with 
parametric deterministic range similar to 
the GLUE method (Beven and Binley, 
1992; Beven, 1993); and (b) a probabilistic 
prediction using global errors of a training 
set to “dress” the deterministic forecasts, 
which was also done by Chen and Yu 
(2007) using support vector machine back-
ground. 

In this paper, we deal with real-time 
probabilistic forecasting of river discharge. 
For this task, we apply stochastic dynamics 
theory related to time series analysis in 
hydrology to deal with both deterministic 
evolution and inherent fluctuations in river 
discharge data. In this way, we consider a 
dynamical system (autonomous set of de-
terministic equations), such as the Lorenz 
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equations, contaminated by external noise 
(van Kampen, 1992; Anishenko et al., 
2003; Kantz and Schreiber, 2004), as the 
driving physical assumption for catchment 
runoff. 

A stochastic dynamical system can be 
expressed mathematically by time series 
models, where the dynamic or determinis-
tic part is approached by a regression 
model and the stochastic part by noise, 
which does not depend on the states of the 
dynamic part. 

The objectives of this work are to per-
form one-, two- and three-hour ahead 
probabilistic forecasting for runoff series, 
i.e. to ascribe a probability density function 
(pdf) to predicted discharge, in a moun-
tainous headwater catchment (49 km2) 
using time series models. Furthermore, the 
deterministic evolution of the time series 
models will be compared to a comprehen-
sive hydrological model called LARSIM, 
which has been used for operational fore-
casts of floods, low flow and water tem-
perature in Germany (Ludwig and Bre-
micker, 2006). 

In this way, we intend to identify an un-
derlying dynamical system for a noisy run-
off series and approach it by a proposed 
nonparametric stochastic dynamic model. 

Identifying a dynamical system for 
catchment runoff means that a similar 
flood magnitude will be expected for an 
actual set of catchment runoff states simi-
lar to a previous one (determinism). This 
deterministic paradigm is quite different, if 
we assume a random nature of the data and 
then apply time series models, which has 
been done using nonparametric stochastic 
forecasting approaches only. 

2. Nonparametric Modelling 

2.1. Dynamical systems 

A dynamical system may be thought as a 
set of variables x (x1, x2,…, xn), whose 
states are observed in time t as simply a 
result of the action of a deterministic evo-
lution operator that does not depend on t, 
in some state space Rn. Once a state is 

known, the states of all surroundings are 
determined as well by: 

( ) RtF ttt ∈=∆+ ,xx          (1) 
The value of a variable specifies a point 

in state space, and vice versa. Hence, one 
can approach the deterministic evolution 
operator by the dynamics of values of a 
unique variable, which is called phase 
space or delay reconstruction (see An-
ishchenko et al., 2003; Kantz and Schrei-
ber, 2004). 

Considering xt in Rn, the delay recon-
struction of xt can be written based on 
Takens (1980) as: 

( ))1(,...,, −⋅∆−∆−= ntttttt xxxx        (2) 

As an example we consider the Lorenz 
equations (Lorenz, 1963) 
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We integrated equation (3) using a 
Runge-Kutta routine with small step size. 
Then, we plotted their 2D-evolution (xt vs 
yt variables in Fig. 1a and their recon-
structed 2D-evolution (xt vs xt-8 variables in 
Fig. 1b). 
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Figure 1. (a) 2D-evolution (xt vs yt variables); and 
(b) reconstructed 2D-evolution (xt vs xt-8 
variables) of Lorenz equations. 

Thus, the evolution of a dynamical sys-
tem is “printed” on the past observations of 
a unique variable of it. Now, suppose a 
time series of a variable of the dynamical 
system xt; it is validated from equations (1) 
and (2) that: 

( ))1(,..., −⋅∆−∆+ ≈ nttttt xxFx                   (4) 

If one aims to predict xt using the map 
(4), it can be modelled by a regression 
model, where a forecast state is estimated 
by the values of the variable at n past steps. 
This needs a short-range dependence of the 
time series, that is, its autocorrelation func-
tion (acf) cj.�t in relation to a step �t has to 
reach approximately zero at a short shift K 
(based on Koutsoyiannis et al., 2008): 

( )( )
02 →

−−
= ∆⋅−

∆⋅ σ
ηη xxxx

c
tj

tj , when 

lKj <<→           (5) 
where l is the total number of events, j and 
K are non-zero natural numbers. However, 
as pointed out by Fisher (1928), the vari-
ance s2

c,l of the empirical coefficient of 
correlation cK.�t follows: 

3
12

, −
=

l
s lc           (6) 

Then, for a finite sample, the Fisher’s 
interval [–sc,l;sc,l] limits the region around 
the acf’s zero, where the uncorrelated be-
haviour of its acf cannot be rejected. 

Furthermore, the n past steps can be ap-
proximated by the (K – 1) neighbours with 
coefficient of correlation greater than sc,l 
(see also Fig. 2) as: 

( ))1(,...,ˆ −∆⋅−∆⋅−= tKtj xxFx ηηη        (7) 

2.2. Probabilistic approach 

Our main point in this paper is that the 
determinism is broken up due to the pres-
ence of fluctuations in open physical sys-
tems like catchment runoff. Therefore, we 
add a global stochastic term on the map 
(7), modifying it to: 

( ) ξτητηη += −∆⋅−∆⋅− )1(,...,ˆ Kj xxFx        (8) 
where ξ could be white or coloured noise. 
Adopting an a priori regression model to 
F, we can afterwards estimate the distribu-
tion of ξ from a training set, diminishing 
the training set measurement Xts and pre-
diction of the dynamic term F. Then, we 
can define different confidence intervals, 
e.g. 90 and 95%, for the distribution of ξ as 
a histogram with zero mean. Note that xi 
has to be normalized to a pdf with zero 
mean and standard deviation equal to one. 

Using the relationship (8), the expected 
value of x̂ η is predicted by F (dynamic 
term) and its uncertainty by the distribution 
of ξ (stochastic term) with a confidence 
interval, ascribing in this manner a pdf for 
x̂ η. 

When measurements in a validation set 
occur outside the limits of the confidence 
intervals of the pdf given by equation (8), 
[F + ξ-; F + ξ+], we achieve the validation 
set error ε, defined as: 
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where xv is measurement in a validation 
set. Note that the distribution of ξ includes 
the uncertainty not only from the inherent 
fluctuations of the runoff data, but also 
from the fitting of the underlying dynamic 
term by an assumed regression model. 

(b) 

(a) 
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The probabilistic approach presented in 
this section is quite similar to the probabil-
istic forecast method found in Tamea et al. 
(2005). However, our approach simplifies 
the Tamea et al. (2005) method, which 
needs many realizations of the forecast 
error and calibration of a correction term 
for the distribution of the residuals. 

2.3. Regression models 

Several authors (Jayawardena and Lai, 
1994; Liu et al., 1998; Jayawardena and 
Gurung, 2000; Sivakumar et al., 2001; 
Porporato and Ridolfi, 1997, 2001; Siva-
kumar et al., 2002; Laio et al., 2003) have 
presented cases in which local approaches, 
i.e. locally fitted models, have outper-
formed nonlinear and linear global ones, 
although Koutsoyiannis et al. (2008) pre-
sented a case in which a global stochastic 
model outperformed a locally fitted and a 
global nonlinear approaches. 

In this method, we adopt regression 
models that are: (a) locally averaged, 
whose only unknown parameter is the 
number of neighbourhoods (n past steps), 
and (b) locally constant, in that the pre-
dicted value is assumed to be equal to the 
last measurement. 

We also use the autoregressive model 
(AR), whose unknown parameters are the 
number of neighbourhoods and its coeffi-
cients from an acf, for the dynamic term F 
as reference to test the hypothesis of linear 
random data. Note that we do not apply an 
ARMA, because the noise inputs of the 
moving average model (MA) are not 
known before the application of equation 
(8) and must be averaged over. This was 
also done by Kantz and Schreiber (2004) 
applying nonlinear methods only. 

2.4. Identifying dynamical systems from 
noisy time series 

Before the application of equation (8), we 
must identify experimentally whether a 
dynamical system can be assumed from a 
given noisy runoff series. 

The identification of dynamical systems 
by nonlinear methods (e.g. correlation or 

entropy dimensions) requires a large 
amount of noise-free data (Kantz and 
Schreiber, 2004). Therefore, we use auto-
correlation functions (acfs) to identify 
qualitatively dynamical systems from very 
noisy time series. In this section, we com-
pare the acfs of: (a) uniformly-distributed 
noise, (b) a sine function (periodic mo-
tion), and (c) the x variable of the Lorenz 
equations. The acfs of these three systems 
are plotted in Fig. 2. 
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Figure 2. Autocorrelation functions (acfs) of: (a) 
uniformly-distributed noise, (b) a sine function 
(periodic motion), and (c) the x variable of the 
Lorenz equations. 

Figure 2 shows that the acf of a dy-
namical system decays exponentially to 
zero and then oscillates quasi-periodically 
around zero, whereas that of uniformly-
distributed noise has small fluctuations 
around zero. The acf of the periodic mo-
tion only reflects its “periodicity”. 

Now, if we include external uniformly-
distributed noise into the time series of the 
x variable of the Lorenz equations (Fig. 3), 
the acf of the new noisy system decays 
rapidly at the initial time lags and then 
exponentially to zero. After the time lag 
equal to 50, it oscillates quasi-periodically 
around zero with lower correlation com-
pared to the noise-free acf. 
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Figure 3. Autocorrelation functions of the x 
variable of the Lorenz equations with and without 
uniformly-distributed noise. 

3. Parametric Modelling 

In this study, we compare the presented 
nonparametric modelling to a comprehen-
sive hydrological model called LARSIM, 
which has been used for operational fore-
casts of floods, low flow and water tem-
perature in Germany (Ludwig and Bre-
micker, 2006). LARSIM is a distributed 
hydrological model, which distinguishes 
most relevant hydrological processes such 
as interception, evapotranspiration, snow 
accumulation, snow compaction and 
snowmelt, soil water storage and water 
flow and storage in streams and lakes 
(Ludwig and Bremicker, 2006). It can ap-
ply a raster-based spatial discretization for 
easy usage of routinely available physical 
catchment data (e.g. slope, land use and 
field capacity) and hydro-meteorological 
time series (Ludwig and Bremicker, 2006). 

4. An Example for Probabilistic Flood 
Prediction 

4.1. Data overview 

The time series analysis was carried out for 
Ammelsdorf stream gauge, which limits a 
catchment of about 49 km2 located in the 
eastern Ore Mountains, Germany, close to 
the Czech–German border (Fig. 4). About 
2 km downstream of this gauge is the arti-
ficial reservoir Lehnmühle, which damp-
ens or adjusts the river discharge, particu-
larly during flood events. According to 
Reusser et al. (2009) and Bronstert et al. 

(2011), the catchment has an elevation of 
530 to about 900 m a.s.l and slopes are 
gentle, with an average of 7°. The climate 
is moderate with mean temperatures of 
11°C and 1°C for the periods April–
September and October–March, respec-
tively, and annual precipitation is about 
1100 mm/year. High flows can be induced 
by either convective rainfall during the 
summer or snowmelt in the spring. Land 
use is characterized by forests (58.3%), 
natural grassland (20.1%), agriculture 
(9.6%), pasture (6.1%), peat bog (3.7%) 
and urban areas (2.2%). 

Discharge data were obtained from the 
Saxony state office for environment and 
geology. Discharge data for the Ammels-
dorf stream gauge was made available 
hourly and the series runs from January 
2000 to October 2009. The average dis-
charge was 1.01 m3/s and the coefficient of 
variation was 1.5, with 0.04 and 35.44 m3/s 
being the minimum and maximum meas-
ured discharge, respectively. The discharge 
series for 2007–2009 is shown as an ex-
ample in Fig. 5. 
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Figure 4. Location of the Weisseritz headwater 
catchment, upstream of the Ammelsdorf stream 
gauge. 
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Figure 5. Hourly discharge series for the 
Ammelsdorf stream gauge for 2007–2009. 

4.2. Runoff nonparametric modelling 

4.2.1. Indentyfing an underlying dy-
namical system 

Previous works on nonparametric dis-
charge forecasting (Jayawardena and Lai, 
1994; Liu et al., 1998; Jayawardena and 
Gurung, 2000; Sivakumar et al., 2001; 
Porporato and Ridolfi, 1997, 2001; Siva-
kumar et al., 2002; Laio et al., 2003; 
Tamea et al., 2005) have used the dis-

charge time series as the independent vari-
able, but if its autocorrelation function 
does not reach the uncorrelated behaviour 
(short-range dependence), even if the time 
series are driven by a dynamical system, 
we should not fit a regression model to the 
dynamic term F in equation (8). 

We calculated here the autocorrelation 
function (acf) for the discharge time series 
(Q) and also for its first (Q′) and second 
(Q″) time derivatives (Fig. 6) to find out 
whether a dynamical system can be as-
sumed in a qualitative way from our origi-
nal time series. 
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Figure 6. Autocorrelation function of the hourly 
discharge series (Q) and of its first (Q′′′′) and 
second (Q″″″″) time derivatives for the Ammelsdorf 
stream gauge (2000–2009 with gaps), Fisher’s 
interval limits indicating the region, where the 
uncorrelated behaviour that cannot be rejected. 

Figure 6 shows that the discharge time 
series did not exhibit a short-range de-
pendence, rather it exhibited a long-range 
dependence (i.e. power-type decay of 
autocorrelation also known as the Hurst 
phenomenon (e.g. Koutsoyiannis, 2002)), 
and, consequently, we should not use these 
time series for regression model-based 
approaches. The second derivative of dis-
charge series for a time lag equal to four 
hours reached the uncorrelated behaviour, 
but its acf is similar to that of noise sys-
tems, showing its very low predictability. 
However, the first derivative of discharge 
series exhibited a short-range dependence 
and its acf presented a structure similar to 
that of dynamical systems contaminated 
with noise, i.e. a rapid decay in the initial 
time lags and then exponential decay to 
zero. After a time lag of about seven hours, 
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it oscillates quasi-periodically around zero. 
Consequently, we used the first derivative 
of discharge time series to forecast the 
original discharge time series. 

4.2.2. One-, two- and three-hour ahead 
probabilistic prediction 

The hourly first time derivative of dis-
charge time series was re-sampled to also 
create two- and three-hour series by apply-
ing: 

t

QQ
Q ttt

ti ∆
−= ∆+

∆
'
,       (10) 

where Qt is the original discharge time 
series and i is t + �t/2. The time interval �t 
was set as one-, two- and three-hours. 

We then multiplied the first time deriva-
tive of runoff, equation (10), by its time 
interval for all the one-, two- and three-
hour time series, defining in this way the 
difference between two runoff measure-
ments—the runoff difference—as the in-
dependent variable in this study. 

Applying equation (8), probabilistic 

predictions of runoff differences tiQ ∆∆ ,
ˆ  in 

m3/s for one time interval �t ahead were 
carried out for one-, two- and three-hour 
time series using: 

( )
mti

QQFQ tmtittiti

⋅∆>+

∆∆=∆ ∆⋅∆−∆∆−∆

;

,...,ˆ
,,,

ξ     (11)
 

We considered three approaches for the 
dynamic term F: (a) an autoregressive 
model, (b) a locally averaged model, and 
(c) a locally constant model. The term ξ 
was defined previously. Afterwards, the 
prediction of runoff differences for one-, 
two- and three-hour time series was used 
in equation (12) below to achieve the prob-
abilistic prediction of stream discharges for 
one-, two- and three-hour ahead: 
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QQQ
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∆∆+
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∆∆+

;

,...,

ˆˆ

,,

,

ξ

     (12) 

where Qt is the measured stream discharge 

and ttQ ∆+
ˆ  is the predicted probability func-

tion of stream discharge. Note that stream 
discharge assimilation is taken into ac-
count by equation (12). 

4.2.3. Runoff event filter 
The procedure described in the last section 
was only applied for what we called runoff 
events of the time series. Given a series of 
runoff differences 
{ }tkititi QQQ ∆+∆+∆ ∆∆∆ ,,1, ,...,, , we defined a 

runoff event within it when continuous 
measurements obey: (a) 0, ≠∆ ∆tiQ  or (b) 

0, =∆ ∆tiQ , if 0,1 ≠∆ ∆− tiQ  and 0,1 ≠∆ ∆+ tiQ . 

In addition, only the runoff events with 
duration greater than 6 h were taken into 
account to avoid trends in fitting of the 
autoregressive model and the locally aver-
aged model due to a large quantity of small 
runoff events in the time series. 

4.2.4. Performance criterion 
As an error measure we used relative error, 
RE (in %; equation (13)), to assess the 
differences between runoff measurements 
(m3/s) and the confidence interval limits of 
the predicted pdfs of equation (11): 
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where ε was defined as in equation (9). To 
ease the derivation of equation (13), the 
range-based formulation of ε was not taken 
into account here. As this work is intended 
to forecast probabilistic streamflow for 
flood warning purposes, the best approach 
for a given confidence interval of the prob-
ability distribution of ξ in equation (12) 
minimizes the range of (a) ξ and (b) rela-
tive error (RE). 

4.3. Results 

4.3.1. Nonparametric forecasting 
Adopting the first 75% of the runoff series 
as a training set, we calculated the pdfs 
(Fig. 7) and the partial autocorrelation 
functions (acfs) (Fig. 8) for one-, two- and 
three-hour time series. 
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Figure 7. Probability density function of the 
hourly differences between two runoff 
measurements, runoff differences, using the first 
75% of the runoff differences as the training set. 
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Figure 8. Partial autocorrelation function of the 
hourly differences between two runoff 
measurements, runoff differences, using the first 
75% of the runoff differences as the training set, 
Fisher’s interval limits indicating the region 
where the uncorrelated behaviour cannot be 
rejected. 

Because of the runoff events filter, the 
following statistics and the coefficients of 
partial acfs changed for one-, two- and 
three-hour time series (Fig. 8). The pdfs of 
in-training set runoff differences for one-, 
two- and three-hour time series were ap-
proximately similar to a Gaussian distribu-
tion. The most runoff differences were in 
narrow ranges. Runoff differences larger 
than 2.1 m3/s showed 0.2, 0.4 and 0.8% 
probability for one-, two- and three-hour 
time series, respectively. The mean and the 
standard deviation are 0.04 and 0.33, 0.03 
and 0.48, 0.03 and 0.58 m3/s for one-, two- 
and three-hour time series, respectively. 

Comparing the mean and standard de-
viation of training and validation sets for 
one-, two- and three hour time series, we 
found that the means of both sets were 
practically the same, but the standard de-
viation of the validation set is about 33% 
smaller than that of the training set. This 
means that the data variability of the vali-
dation set is not a source of uncertainty for 
forecasting results. 

The runoff differences whose coeffi-
cient of correlations of the partial acfs 
were greater than Fisher’s superior limit 
were adopted as neighbourhoods in time 
for both autoregressive and locally aver-
aged model-based approaches, and their 
coefficients of correlation for autoregres-
sive models. After a normalization of 
stream discharge data, we applied autore-
gressive, locally averaged and locally con-
stant model-based approaches to the train-
ing set. We had the following dimen-
sionless time series models for one-, two- 
and three-hour time series (Table I). Note 
that we had to diminish the mean ‹ξ› of the 
distribution ξ to achieve a histogram with 
zero-mean as stochastic term. 
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Table I. Dynamic and stochastic terms of time series models (dimensionless), adopting autoregressive (AR), 
locally averaged and locally constant models as approaches for the dynamic term F. 
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It can be seen from Table I that the dis-
tributions of (ξ – ‹ξ›) (the stochastic part of 
equation (8)) were in narrow ranges, ap-
proximately similar to a Gaussian distribu-
tion, for one-, two- and three-hour time 
series, excluding only the AR(7)-based 
distribution. The sharpest distribution for 
one- and two-hour time series was the lo-
cally averaged model-based one; in con-
trast, the sharpest distribution for three-
hour time series was the autoregressive 
model-based one. 

After the derivation of these ap-
proaches, we applied them and computed 
the range of relative errors considering 
97.5, 95 and 90% confidence intervals of 
the distribution of (ξ – ‹ξ›) for one-, two- 
and three-hour time series. For this calcu-
lation, we used not only the last 25% of the 
runoff differences, but also the training set 
as well, because it presented high runoff 
differences with low probability (see above 
in this section), which can generate, for 
instance, high relative errors. 

We adopted absolute relative errors (see 
equation (13)) about smaller than 30% 
with 90% confidence interval as the crite-
rion of reliability for stream discharge 
forecasting. In this manner, we found from 
previous investigation that reliable fore-
casting was produced only when measured 
stream discharges, Qt were: (a) higher than 
5.5 m3/s for one-hour time series, and (b) 
higher than 8.8 m3/s for two- and three-
hour time series. Note that reliability is 
subjective and these discharge thresholds 
can vary between applications. 

The above discharge thresholds can be 
explained by equation (13), whereby the 
higher the measured stream discharges, the 
smaller the relative errors. Nevertheless, 
although one could argue that from a cer-
tain discharge threshold the errors could be 
smaller, no statistical evidence of this trend 
was found in the time series (e.g. Fig. 9 
shows measured stream discharges vs er-
rors from the application of the autoregres-
sive approach to two-hour time series with 
95% confidence interval). 

We carried out further performance 
analysis of the nonparametric models, con-

sidering discharge threshold levels for one-
, two- and three-hour time series (see Table 
II). Hence, the number of predicted stream 
discharges for one-, two- and three-hour 
time series, respectively, was 516, 300 and 
347. 

As the best approach minimizes the 
range of: (a) (ξ – ‹ξ›) and (b) relative error, 
RE, we tried to find an optimum among 
these criteria to choose the best approach 
for each confidence interval in each time 
series. In this way we found from Table II 
that the locally averaged model-based ap-
proach was the best for one- and two-hour 
time series and the autoregressive ap-
proach for three-hour time series. 

Now, taking a look at the largest runoff 
events, we chose the largest runoff events 
in both validation and training sets. The 
analysis of the training set event was car-
ried out because it was the largest event in 
the discharge time series, showing 35.44 
m3/s of peak runoff and high runoff differ-
ences with low probability. We used the 
best chosen approaches with 95% confi-
dence interval for 1-, 2- and 3-h ahead 
probabilistic runoff forecasting of these 
events. Figures 10a–c show the results of 
validation set prediction and Fig. 11a–c 
that for the training set. 
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Figure 9. Measured stream discharges versus 
errors from the application of autoregressive 
approach to two-hour time series with 95% 
confidence interval, where c is the coefficient of 
correlation. 
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Table II. Performance of autoregressive (AR), locally averaged and locally constant model-based approaches 
for 97.5, 95 and 90% confidence intervals of the distributions of (ξ – ‹ξ›) (m3/s) in one-, two- and three-hour 
time series, where relative error, RE (in %) is related to the differences between runoff measurements (m3/s) 
and confidence interval limits of the predicted probability density functions (equation (13)). These results are 
only valid for certain discharge threshold levels (5.5 m3/s for one-hour time series, and 8.8 m3/s for two- and 
three-hour time series). 

1 h, p = 7 2 h, p = 3 3 h, p = 2 
Approach Stochastic terms 

97.5% 95% 90% 97.5% 95% 90% 97.5% 95% 90% 

Range length of 
(ξ - ‹ξ›) 

2.94 2.14 1.60 2.52 1.84 1.21 2.20 1.50 0.98 
AR [p] 

Range interval of 
RE 

[-11; 
38] 

[-12; 
46] 

[-13; 
50] 

[-16; 
20] 

[-18; 
21] 

[-19; 
23] 

[-31; 
30] 

[-32; 
31] 

[-33; 
33] 

Range length of 
(ξ - ‹ξ›) 

1.74 1.20 0.74 1.89 1.45 0.92 2.66 1.85 1.16 Locally 
averaged 
[p] Range interval of 

RE 
[-10; 
27] 

[-12; 
30] 

[-13; 
32] 

[-20; 
19] 

[-21; 
20] 

[-22; 
22] 

[-28; 
32] 

[-30; 
36] 

[-31; 
40] 

Range length of 
(ξ - ‹ξ›) 

1.00 0.74 0.53 2.04 1.36 0.92 2.83 1.85 1.16 
Locally 
constant 

Range interval of 
RE 

[-8; 
34] 

[-8; 
35] 

[-9; 
36] 

[-21; 
24] 

[-23; 
25] 

[-24; 
25] 

[-28; 
35] 

[-30; 
40] 

[-32; 
43] 
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Figure 10. Probabilistic runoff forecasting of the largest runoff event in the validation set for: (a) 1 h ahead, 
(b) 2 h ahead and (c) 3 h ahead, with 95% confidence interval, corresponding to differences (between upper 
and lower predicted runoff) of 1.20, 1.45 and 1.50 m3/s, respectively. 
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Figure 11. Probabilistic runoff forecasting of the largest runoff event in the training set for: (a) 1 h ahead, 
(b) 2 h ahead, and (c) 3 h ahead, with 95% confidence interval, corresponding to differences (between upper 
and lower predicted runoff) of 1.20, 1.45 and 1.50 m3/s, respectively. 
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Figures 10 and 11 show that the meas-
ured rising limb and falling limb of the 
largest runoff events in the validation and 
training sets were almost within the pre-
dicted runoff ranges for the three time se-
ries. However, overestimation of peak flow 
was not negligible for two- and three-hour 
events (Figs 10b–c and 11b–c), and one 
high runoff underestimation (about –30%) 
in the rising limb was observed in the 
three-hour ahead, largest event of the train-
ing set (Fig. 11c). 

It is also important to evaluate whether 
measurements of runoff differences ∆Qi,∆t 
and validation set residuals 

( ) titmtitti QQQF ∆∆⋅∆−∆∆− ∆−+∆∆ ,,, ...,, ξ  

were systematic, because, if they were, it 
means that part of the determinism was not 
identified by modelling (Kantz and Schrei-
ber, 2004). Considering the best ap-
proaches for one-, two- and three-hour 
time series, we plotted validation set re-
siduals vs measurements of runoff differ-
ences in Figs. 12a–c and computed their 
coefficients of correlation and Fisher’s 
limits. 
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Figure 12. Measurements of runoff differences vs 
validation set residuals, considering the best 
approaches for: (a) hourly time series, (b) two-
hour time series, and (c) three-hour time series, 
where c is the coefficient of correlation. 

Since the coefficients of correlation 
were greater than its Fisher’s superior lim-
its, a negative linear relation could not be 
rejected between validation set residuals 
and measurements of runoff differences for 
the time series. Also insights into location 
of measured discharges on predicted prob-
ability density functions are possible, but at 
this moment this analysis is outside the 
scope of this work and will be investigated 
later. 

4.3.2. Comparison with the forecast by 
a comprehensive hydrological 
model 

In this section we compare the results of 
used nonparametric models with the ones 
obtained by a comprehensive hydrological 
model LARSIM (see Section Parametric 
Modelling). The description of parameteri-
zation and input variables of LARSIM 
model to a meso-scale catchment can be 
found in Heistermann and Kneis (2011). 
LARSIM was applied to Ammelsdorf 
streamgauge’s catchment independently. 

An hourly forecasting using LARSIM 
for Ammelsdorf streamgauge with stream 
discharge assimilation, i.e. in “prediction 
mode”, consumes too much computer time 
and is hardly feasible. 

Therefore, the following alternative was 
formulated: 1.) to apply hourly LARSIM 
without stream discharge assimilation and 
any kind of corrections to model states and 
parameters at intermediate times, i.e. in 

(a) 
(a) 

(b) 
(a) 

(c) 
(a) 
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“simulation mode”, 2.) then to use the rela-
tion 

( )LARSIM
t

LARSIM
ttt

tittt

QQQ

QQQ

−+

=∆+=

∆+

∆∆+ ,
ˆˆ

                (14) 

where LARSIM
tQ  and LARSIM

ttQ ∆+  are stream 

discharge simulated by LARSIM without 
stream discharge assimilation or any kind 
of correction to the model states and pa-
rameters at intermediate times; Qt is the 

measured stream discharge; and ttQ ∆+
ˆ  is 

the predicted stream discharge. 
The simulation mode is worse than the 

prediction mode for operational stream 
discharge forecasting, but equation (14) 
has the advantage of not compromising 
any model uncertainties on stream dis-
charge assimilation. 

Furthermore, in a previous investigation 
on hourly hydrographs and areal hyeto-
graphs, it was found that an average 
catchment reaction time was between 3 
and 5 hours. Thus only the observed pre-

cipitation was adopted as LARSIM input 
to forecast one-, two- and three-hour ahead 
stream discharge. 

The application of LARSIM to the 
Ammelsdorf gauge was carried out from a 
deterministic point of view only, i.e. one-
discharge-value-per-time-step forecasting, 
and, consequently, we were only able to 
compare the dynamic terms of the non-
parametric approaches with LARSIM’s 
results. We used the common calibration 
set results of both applications (parametric 
and nonparametric) from May 2004–
January 2008 as the compared set, because 
it was quite a bit larger than the common 
validation set results. The mean absolute 
error, MAE (in %) and the range of relative 
errors, RE (in %) (see equation (13)) were 
considered as criteria of goodness of fit. 
Table III shows the comparison for one-, 
two- and three-hour time series according 
to the size of the measured discharge 
(m3/s). 

 

Table III. Comparison of LARSIM application and the dynamic terms of the nonparametric models—
autoregressive (AR), locally averaged and locally constant model-based approaches—for one-, two- and 
three-hour time series. The number of compared samples, mean absolute error, MAE (in %), and the range of 
relative errors, RE (in %), are given according to the amount of measured discharge (m3/s). 

LARSIM's 
Application 

AR 
Locally 
Average 

Locally 
Constant 

Measured 
discharge 

(m3/s) 
higher 
than 

Number 
of com-
pared 

samples MAE 
Range 
of RE 

MAE 
Range 
of RE 

MAE 
Range 
of RE 

MAE 
Range 
of RE 

1 hour 
0.0 892 4.3 [-38; 55] 10.2 [-85; 79] 6.5 [-47; 52] 5.3 [-51; 96] 
1.1 762 3.5 [-38; 26] 9.5 [-85; 61] 5.5 [-47; 52] 3.8 [-40; 39] 
2.2 596 2.8 [-38; 26] 7.8 [-58; 61] 4.5 [-42; 52] 3.0 [-33; 39] 
4.4 391 2.2 [-38; 26] 6.2 [-21; 61] 3.0 [-38; 38] 2.3 [-26; 39] 
6.6 218 1.8 [-38; 26] 5.8 [-21; 61] 2.2 [-38; 38] 1.9 [-26; 39] 

2 hour 
0.0 2004 7.4 [-67; 376] 11.3 [-101; 177] 10.5 [-96; 159] 10.0 [-100; 203] 
1.1 1471 5.4 [-67; 76] 9.4 [-101; 177] 8.6 [-96; 159] 7.6 [-100; 203] 
2.2 1045 4.3 [-67; 76] 7.8 [-98; 177] 7.3 [-96; 159] 6.2 [-100; 203] 
4.4 639 3.2 [-48.7; 76] 5.5 [-55; 177] 4.8 [-56; 141] 4.4 [-62; 203] 
6.6 300 2.9 [-48.7; 25] 4.5 [-55; 67] 3.8 [-56; 45] 3.2 [-62; 99] 

3 hour 
0.0 2945 8.9 [-63; 407] 12.6 [-97; 259] 13.7 [-140; 258] 13.6 [-161; 370] 
1.1 2111 6.2 [-63; 118] 9.7 [-97; 259] 10.9 [-140; 258] 10.4 [-161; 370] 
2.2 1523 5.0 [-63; 118] 8.2 [-97; 259] 9.2 [-97; 258] 8.6 [-161; 370] 
4.4 753 3.9 [-51; 75] 6.1 [-70; 144] 6.6 [-69; 144] 6.3 [-86; 207] 
6.6 349 3.8 [-51; 14] 5.2 [-69; 32] 5.7 [-62; 35] 5.0 [-86; 39] 
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It was observed in general that the 
higher the measured discharge, the smaller 
the MAE and the range of RE of all ap-
proaches. The MAE of the LARSIM appli-
cation was slightly smaller than the best 
results of the nonparametric approaches; 
however, the nonparametric approaches 
always showed larger ranges of RE for 
measured discharges higher than 1.1 m3/s, 
independently of the lead time of forecast. 

5. Discussion and Conclusions 

We have developed in this paper a non-
parametric, stochastic dynamic procedure, 
which used a qualitative dynamical sys-
tem-based decision criterion for discharge 
time series forecasting and dealt with the 
probabilistic nature of the river discharge 
data. This approach was based only on the 
discharge time series itself and needed 
little computation time. 

We assessed our procedure for a meso-
scale catchment (about 49 km2), in which 
runoff events are induced by either convec-
tive rainfall during the summer or snow-
melt in the spring, and ascribed probability 
density functions to 1-, 2- and 3-h ahead 
predicted discharge. 

Instead of the actual runoff measure-
ments (Jayawardena and Lai, 1994; Liu et 
al., 1998; Jayawardena and Gurung, 2000; 
Sivakumar et al., 2001; Porporato and Ri-
dolfi, 1997, 2001; Sivakumar et al., 2002; 
Laio et al., 2003; Tamea et al., 2005), the 
differences between the runoff measure-
ments were used for application of the re-
gression models, because the last series 
exhibited short-range dependence and pre-
sented similar structure to that of dynami-
cal systems contaminated with noise. 

The best approaches for one-, two- and 
three-hour ahead discharge time series 
were those, which have the sharpest prob-
ability density functions for the stochastic 
term. The locally averaged model-based 
approaches were the best ones for one- and 
two-hour time series and the autoregressive 
model was the best one for the three-hour 
time series. 

This means that the system shifted from 
a possible dynamical system contaminated 

with noise to a linear random process, 
when the interval time of time series in-
creased. This is expected even for noise-
free dynamical systems (see Kantz and 
Schreiber, 2004). Therefore, we did not 
find in this work a best unique formulation 
among the three assumed approaches 
(autoregressive model, locally averaged 
and locally constant models) for the dy-
namic term, although previous studies 
(Jayawardena and Lai, 1994; Liu et al., 
1998; Jayawardena and Gurung, 2000; 
Sivakumar et al., 2001; Porporato and Ri-
dolfi, 1997; Sivakumar et al., 2002; Laio et 
al., 2003) presented cases in which local 
approaches outperformed global ones. 

Moreover, the validation set residuals 
and the measurements of runoff differences 
presented a negative linear correlation, 
meaning that runoff underestimation can 
be expected for rising limbs and overesti-
mation for falling limbs, and thus some of 
the dynamics are probably not identified 
by the nonparametric approaches that we 
used. This trend is inevitable for our sim-
ple models based on the past observations 
only. 

The results of the dynamic terms of 
nonparametric approaches were compared 
with an application of the distributed hy-
drological model LARSIM, in which the 
above mentioned trend is not necessarily 
presented. On average, the deterministic 
evolution of both parametric and best non-
parametric approaches gave similar results, 
but the ranges of relative errors were larger 
for the nonparametric approaches. The 
main reason for that is probably that our 
approaches did not consider any informa-
tion of precipitation series. 

The procedure presented was able to 
forecast, for previously measured dis-
charges higher than 5.5 m3/s for one-hour 
time series, and 8.8 m3/s for two- and 
three-hour time series (discharge threshold 
levels), with 95% confidence interval: 

 
• 1-h ahead discharge probability 
functions with 1.20 m3/s of range and 
relative errors (%) in the range [–12; 30]; 
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• 2-h ahead discharge probability 
functions with 1.45 m3/s of range and 
relative errors (%) in the range [–21; 20]; 
and 
• 3-h ahead discharge probability 
functions with 1.50 m3/s of range and 
relative errors (%) in the range [–32; 31] 
 
which can be combined to perform hourly 
forecasting for 1, 2 and 3 hours ahead. Dif-
ferent confidence intervals could also be 
used, depending on the demands of users. 

Thus the method can be used as an al-
ternative approach for poorly-gauged 
catchments, in which physical characteris-
tics and reliable precipitation series are not 
available. Furthermore, a hydrological 
model should at least outperform the pre-
sented univariate nonparametric ap-
proaches, if it is to be adopted for flood 
warning purposes. 

6. Further Work 

When other reliable time series, such as 
precipitation, soil moisture and discharge 
series, are available, they should be taken 
into account too, because they might im-
prove the results based on our univariate 
analysis and even allow reliable discharge 
forecasting of more than 3 hours ahead. 
Porporato and Ridolfi (2001), for example, 
predicted runoff by a multivariate phase–
space reconstruction technique using dis-
charge, rainfall and temperature time se-
ries. 

A multivariate analysis might overcome 
the runoff underestimation for rising limbs 
and overestimation for falling limbs and 
allow lower discharge threshold levels for 
reliable forecasting. 

Further applications of uni- or multi-
variate nonparametric approaches should 
be: (a) focused on large data sets of stream 
gauges to evaluate the performance of this 
method under different hydrological and 
monitoring conditions, and (b) based on 
multiple approaches for the dynamic term 
adding possible other approaches such as 
locally polynomial, since a best unique 
formulation was not found. 

Investigation will be carried out to ex-
tend our formulation for hydrological 
models to enable comparison between pre-
dicted probability density functions of 
stream discharges. 
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1. Perceptual Model of Channel Trans-
mission Losses 

Chapter II shows how a combination type 
of three different sources of hydrological 
data (streamflow series, groundwater level 
series and multi-temporal satellite data-
based river water extension) related to 
“soft” data, e.g. a hydro-geologic map, 
enabled the analysis of the hydrology of a 
large poorly gauged river reach of the 
Jaguariber River in NE Brazil. The poten-
tials of different sources of data in hydro-
logical analysis have been already shown 
by e.g. Wenninger et al. (2008), Tetzlaff et 
al. (2008), Graeff et al. (2009) and 
McMillan et al. (2011). 

The inter-comparison of channel trans-
mission losses responses of the Jaguaribe 
River, the Cooper Creel River in Australia 
(Knighton and Nanson, 1994) and the 
Kuiseb River in Namibia (Lange, 2005) 
improved the understanding of the channel 
transmission losses functioning in the 
Jaguaribe River. This comparison is an 
example of the comparative hydrology 
analysis (Falkenmark and Chapman, 1989; 
de Araújo and Piedra, 2009). Moreover, 
the experimental analysis points out possi-
ble direct impacts of the channel transmis-
sion losses on the water availability of a 
large surface reservoir which is an impor-
tant component of the regional water re-
sources management in NE Brazil. 

The synthesis of the experimental stud-
ies led to a perceptual hydrological model 
of the channel transmission losses of that 
river reach. In summary, it shows that the 
river reach is hydraulically connected with 
aquifer groundwater, which shifts from 
being a losing river at the dry and begin-
ning of rainy seasons to become a los-
ing/gaining (mostly losing) river at the 
middle and end of rainy seasons. This sea-
sonal and hydraulic behaviour favours the 
application of models developed for sub-
humid and temperate conditions, e.g. cou-
pling of distributed river and groundwater 
flow models (see Engeler et al., 2011; 
Krause and Bronstert, 2007), instead of the 
classical models for arid and semi-arid 

conditions (e.g. Abdulrazzak and Morel-
Seytoux, 1983; Illangasekare and Morel-
Seytoux, 1984), because these models for 
arid and semi-arid conditions do not con-
sider the groundwater flow into the river 
reach. However, spatial data scarcity dis-
courages the application of distributed 
river-groundwater flow models. 

Therefore, the perceptual model was a 
useful guide to adjust and apply a simula-
tion model in that river reach, rejecting 
standard approaches of river-groundwater 
interaction due to its hydrological behav-
iour (based on Beven, 2002a; Dunn et al., 
2008). Initial and boundary conditions of 
the river-aquifer system can also be in-
ferred from the perceptual model (see next 
section). Moreover, the perceptual model is 
also a guideline for future data collection 
there and may be the most suitable hydro-
logical behaviour concept for ungauged 
river reaches which have similar climate 
and hydro-geologic controls with the river 
studied (based on Sivapalan et al, 2003b). 

2. Modelling of Channel Transmission 
Losses 

A new process-orientated and semi-
distributed channel transmission losses 
model was developed, which was based 
primarily on the capability of simulation in 
very different dryland environments (based 
on Bronstert, 2004; Kirchner, 2006; 
Andréasssian et al., 2007, 2009, 2010) and 
flexible model structures for testing vari-
ous hypotheses on the dominant hydrologi-
cal processes of river reaches (Graeff et al., 
2009; Savenije, 2009; Andréassian et al., 
2010; Buytaert and Beven, 2011; McMil-
lian et al., 2011; Clark et al., 2011a) (see 
Chapter III), what is called multi-
hypotheses modelling. 

First, a multi-hypotheses modelling of 
channel transmission losses was applied to 
a reach of the Jaguaribe River in NE Brazil 
(see also Chapter II). The initial conditions 
of the underlying aquifer wetness and 
some boundary conditions of the river sys-
tem, e.g. negligible lateral flow originated 
from the direct drainage area between the 
stream gauges, (see Chapter III) were de-
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rived from the perceptual model of that 
reach (see the previous section for its 
summary). This perceptual model also ori-
entated the build of the hypotheses on the 
dominant hydrological processes, i.e. the 
possible model structures. 

The multi-hypotheses modelling re-
duced structural model uncertainties as 
undertaken similarly by Buytaert and 
Beven (2011) and Clark et al. (2011a). 
Moreover, it provided insights into the 
functioning of the channel transmission 
losses, which were not reported in the pre-
vious perceptual model of the reach, hy-
pothesizing that both lateral (stream-
)aquifer water fluxes and groundwater flow 
in the underlying alluvium parallel to the 
river course are necessary to predict 
streamflow and channel transmission 
losses, the former process being more rele-
vant than the latter. This modelling-based 
hypothesis may subsequently inform field 
campaigns targeted to validate it (Dunn et 
al., 2008). 

The channel transmission losses model 
application to different dryland environ-
ments enabled learning about the model 
itself from differences in channel reach 
responses (comparative diagnostic analy-
sis, see Li et al., 2010). The parameters 
related to the unsaturated part of the 
model, which were active for the small-
scale stream reach in the Walnut Gulch 
Experimental Watershed, presented much 
higher variation in the sensitivity coeffi-
cients than those which drove the saturated 
part of the channel transmission losses 
model, which were active for the Jaguaribe 
River. Moreover, avoiding the one-case-
study may be the most appropriate way in 
hydrological sciences to undertake the re-
peating experiment procedure (Andréas-
sian et al., 2009, 2010). 

It seems that the multi-hypotheses mod-
elling not only improves hydrological 
knowledge as aforementioned, but also is a 
way to report modelling failures rejecting 
model structure hypotheses, namely 
streamflow without river-aquifer interac-
tion and stream-aquifer flow without 
groundwater flow parallel to the river 

course. These modelling failures may be as 
important as or even more important than 
modelling successes for advancing hydro-
logical knowledge of large dryland rivers 
as advocated by Andréassian et al. (2010) 
and Refsgaard and Hansen (2010). 

3. Optimized Forecasting of Stream-
flow 

Quite separate from the previous two sec-
tions, in which the hydrological knowledge 
shown to be fundamental for learning 
about, inferring from and model-
ling/predicting flow transmission processes 
in river-systems, this section discusses the 
results of the time series analysis, which 
disregards any hydrological process 
knowledge, carried out to forecast stream-
flow in a headwater catchment in Germany 
(Chapter IV). 

Traditionally, time series analysis fo-
cuses on optimized forecasting of stream-
flow only, but the nonparametric stochastic 
dynamic approach developed in this work 
was based on a qualitative dynamical sys-
tem-based criterion, which involved a 
learning process about the structure of the 
river discharge data, instead of a fitting 
procedure (Brockwell and Davis, 2003; 
Kantz and Schreiber, 2004) only. Then, a 
testing set provided the residual time series 
used to derive the stochastic term, coloured 
noise, which ascribes a probability density 
function (predictive uncertainty) to the 
predicted river discharge. 

This learning-process-based method to 
derive the nonparametric approaches dem-
onstrated, for example, that the differences 
between runoff measurements were more 
suitable than the actual runoff measure-
ments for the application of the regression 
models. This result would not be able to 
come from a fitting procedure only. More-
over, the analysis of the residuals time se-
ries showed that: a) the catchment runoff 
system shifted from being a possible dy-
namical system contaminated with noise to 
a linear random process, when the interval 
time of time series increased, and b) runoff 
underestimation can be expected for rising 
limbs and overestimation for falling limbs. 
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The deterministic evolution of a cali-
brated distributed hydrological model, 
LARSIM (Ludwig and Bremicker, 2006), 
was compared with that of the best non-
parametric approaches. The parametric and 
nonparametric approaches presented simi-
lar results on average. However, uncer-
tainty analysis was not carried out for the 
LARSIM model as undertaken for the 
nonparametric approach developed here. 
This clearly limited the comparison be-
tween the both approaches. 

The most popular methods of uncer-
tainty analysis for hydrological models are 
the GLUE method (Beven and Binley, 
1992; Beven, 2002b) and the Bayesian 
frameworks (e.g. Todini, 2007; Kuczera et 
al., 2010), although uncertainty analysis 
for hydrological modelling is under inten-
sive discussion and seems to be far away 
from a convergent point in the hydrologic 
community (see e.g. Savenije, 2001; Lo-
ague and VanderKwaak, 2004; Beven, 
2006; Ebel and Loague, 2006; Mantovan 
and Todini, 2006; Montanari, 2007; Hall et 
al., 2007; Andréassian et al., 2007; Todini, 
2007; Beven, 2008; Sivapalan, 2009; 
Hughes, 2010; Beven, 2010). 

Recently, the residual time series analy-
sis of hydrological models arose seemingly 
as an alternative to the GLUE method and 
the Bayesian frameworks. This was intro-
duced by Abebe and Price (2003) and has 
rarely been applied. The main rationale of 
this procedure is the assumption that the 
residual time series is the best reflection of 
the difference between the model and the 
physical process it represents (Abebe and 
Price, 2003). This assumption is also at the 
heart of the nonparametric approach devel-
oped here and of other nonparametric sto-
chastic approaches (Tamea et al., 2005; 
Chen and Yu, 2007). Furthermore, Abebe 
and Price (2003) used the structure pre-
sented in the residual time series to derive 
regression models and coupled them with a 
conceptual hydrological model in order to 
improve streamflow forecasts. 

The residual time series analysis has the 
following advantages over the aforemen-
tioned popular methods for uncertainty 

analysis: a) it may be used to assess model 
failures and to learn from them straight-
forwardly as undertaken e.g. for the non-
parametric approach developed in this 
work and b) it may be a link between time 
series and hydrological models, comple-
mentary modelling (Abebe and Price, 
2003), which may improve flow forecasts 
without missing the insights of the hydro-
logical model. Further work will be carried 
out to apply residual time series analysis to 
(semi-)distributed hydrological models, in 
order to improve flow forecasting as done 
by Abebe and Price (2003) and their com-
parison with nonparametric approaches. 

4. A Benchmark for Hydrological Re-
search using Semi-Distributed Mod-
elling 

In this section, a new benchmark for hy-
drological research is proposed using semi-
distributed modelling as based on the pre-
vious sections, the works of Buytaert and 
Beven (2011), McMillan et al. (2011) and 
Clark et al. (2011a) and suggestions of 
Savenije (2009), Andréassian et al. (2009, 
2010), Li et al. (2010) and Clark et al. 
(2011b). The aim here is not to describe a 
blueprint for hydrological modelling de-
sign as done e.g. by Freeze and Harlan 
(1969) and Beven (2002b), but rather to 
propose a scientific method to improve 
hydrological knowledge using semi-
distributed hydrological modelling. 

The elements of this approach are: 
a) A semi-distributed hydrological 

model with a flexible structure as used in 
this work, which may be a compromise 
between downward and upward ap-
proaches. 

b) Perceptual models of the underly-
ing hydrological systems (conceptualiza-
tion of the main hydrological processes), 
which can orientate the application of nu-
merical models (see previous sections and 
e.g. Tetzlaff et al. (2008) and McMillan et 
al. (2011)). 

c) A testing of the hypotheses on the 
dominant hydrological processes, i.e. 
building different model structures (see 
Chapter III, Buytaert and Beven (2011) 
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and Clark et al. (2011a)), which can gener-
ate insights into catchment functioning 
through comparisons of model perform-
ance (Li et al., 2010) and may be a way to 
report modelling failures (Andréassian et 
al., 2010; Refsgaard and Hansen, 2010) as 
demonstrated in Section 2. 

d) A model application for different 
case studies, which can provide insights 
into catchment functioning (or the model 
itself (see Chapter III)) from differences in 
catchment responses (Li et al., 2010) and 
may be the unique way to undertake the 
repeating experiment procedure (Andréas-
sian et al., 2009, 2010). 

e) A validation of different simulated 
variables, which can provide insights into 
catchment functioning from differences in 
variable responses (based on Bronstert, 
2004; Ebel and Loague, 2006; Kirchner, 
2006). 

f) A residual time series analysis, 
which can provide insights into model 
functioning and assumptions and ascribe a 

probability density function to the predic-
tand (predicative uncertainty) based on the 
distribution of the residuals as suggested in 
the previous section. 

For this multi-hypotheses, -case-studies 
and -validation investigation considering a 
residual time series-based uncertainty 
analysis, the parameter calibration should 
be abandoned, because it limits insights 
into model error, making it difficult to dis-
criminate among alternative hypotheses, 
understand sources of uncertainty, and 
develop strategies for reducing them (Clark 
et al., 2011a). For example, Clark et al. 
(2011a) reported that all five model struc-
tures tested, when calibrated, achieved the 
same performance, but they failed to ade-
quately represent the diagnostic hydrologi-
cal signatures based on measurements. 

The benchmark for hydrological re-
search using semi-distributed modelling 
based on those elements is illustrated in 
Fig. 1 below: 
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Figure 1. Benchmark for hydrological research using semi-distributed modelling based on a multi-
hypotheses, -case-studies and -validation investigation considering a residual time series-based uncertainty 
analysis. 

The conceptualization of the main hy-
drological processes (perceptual models) 
arises as the most important element of this 
benchmark, which has implications on 
model structures (hypotheses on dominant 
processes), initial and boundary conditions, 
parameter set and model scale. This con-
ceptualization is strengthened by a combi-
nation of different sources of hydrological 
data (e.g. Wenninger et al., 2008; Tetzlaff 
et al., 2008; McMillan et al., 2011) and a 
comparative hydrology analysis (Falken-
mark and Chapman, 1989; de Araújo and 
Piedra, 2009) as shown in the section 1. 

In the context of this benchmark, the 
semi-distributed numerical model is the 
simplest and the most flexible mathemati-
cal description of the perceptual model of a 
hydrological system, which enables the 
testing of the hypotheses on the dominant 
hydrological processes of this system. 
Therefore, the degree of modelling simpli-
fication/complexity and flexibility should, 

on the one hand, be constrained by the per-
ceptual model of the hydrological system, 
but on the other hand, it should also be 
able to approach the hypotheses on the 
functioning of this system. 

Moreover, the semi-distributed model-
ling developed is based on hydrological 
laws, such as Horton and Dunne overland 
flows, (bottom-up-based point of view) 
and empirical laws, which arise directly 
from the data constraints and the hydro-
logical conceptualization (top-down-based 
point of view). 

The residual time series analysis is 
based on the differences between predicted 
and observed variables. In this work, this 
kind of analysis pointed out model failures 
and model behaviour throughout temporal 
scales in a nonparametric approach, as well 
as ascribing a probability density function 
to the predictand (predicative uncertainty). 
Furthermore, it can be useful for better 
predictions (complementary modelling) 
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(Abebe and Price, 2003) without missing 
the insights of the semi-distributed hydro-
logical model. 

The benchmark can work as follows: 
a) If the number of model structures 

(hypotheses on the dominant hydrological 
processes) is greater than one and there is 
one case study, then the objectives are 
generating new insights into the function-
ing of a case study (e.g. Clark et al., 2011a; 
Li et al., 2010) and report structural model-
ling failures (Andréassian et al., 2010; 
Refsgaard and Hansen, 2010) (multi-
hypotheses). 

b) If there is more than one case stud-
y, then the objectives are learning from 
differences in case-study responses (e.g. Li 
et al., 2010) and undertaking the repeating 
experiment procedure (Andréassian et al., 
2009, 2010) (multi-case-studies). 

c) If the number of predicted and ob-
served variables is greater than one, then a 
multi-variable validation can be carried out 
to improve model confidence (based on 
Bronstert, 2004; Ebel and Loague, 2006; 
Kirchner, 2006) and maybe rejecting hy-
potheses (multi-validation). 

All procedures aforementioned can lead 
to a complete rejection of the hypotheses 
on the dominant hydrological processes, 
indicating that new experiments and/or 
monitoring should be implemented in order 
to investigate further the main hydrological 
processes. Hypotheses evaluated positively 
not only ascertain the most possible model 
structure given the previous hydrological 
knowledge derived from a perceptual 
model, but also can add a new element 
over this knowledge as shown in this work 
(section 2). This new modelling-based 
element should naturally be targeted for 
validation in future field campaigns 
(Dunne et al, 2008). 

The multi-case-studies and multi-
validation application strengthen model 
development and assessment (based on 
Bronstert, 2004; Ebel and Loague, 2006; 
Kirchner, 2006; Andréassian et al., 2009, 
2010), learning and/or rejecting hypotheses 
from differences in case-study responses 
and in multi-variable validation. 

This work (Chapters II and III) can be 
considered an example of multi-hypotheses 
and multi-case-studies investigation, be-
cause hypotheses on the dominant hydro-
logical processes of a large reach of the 
Jaguaribe River, Ceará, Brazil, were stud-
ied and a channel transmission losses 
model was applied to that river reach and 
to a small reach in the Walnut Gulch Wa-
tershed, Arizona, USA. The multi-
hypotheses study improved the hydrologi-
cal knowledge about the channel transmis-
sion losses in the Jaguaribe River and the 
multi-case-studies application generated 
insights into the sensitivity of two different 
parameter sets. Examples of both multi-
hypotheses and multi-case-studies reports, 
which begin with the perceptual model of 
the experimental areas and do not apply 
calibration procedures, have been rare and 
apparently only McMillan et al. (2011) and 
Clark et al. (2011a) undertook similar 
work. 

5. Conclusion 
This research dealt with analyzing and 
modelling flow transmission processes in 
river-systems with a focus on semi-arid 
conditions. A perceptual hydrological 
model was evolved for a large reach of the 
Jaguaribe River in NE Brazil, which im-
proved the knowledge about channel 
transmission losses, since reports on chan-
nel transmission losses in large dryland 
rivers are rare in hydrological literature 
(see e.g. Cooper Creel River in Australia 
(Knighton and Nanson, 1994) and the 
Kuiseb River in Namibia (Lange, 2005)), 
and also became a guideline for data sam-
pling and modelling studies in hydrologi-
cally similar rivers. 

A process-orientated and semi-
distributed channel transmission losses 
model for different dryland environments 
was developed and successfully tested in a 
multi-hypotheses study on the Jaguaribe 
River in NE Brazil and in a multi-cases-
studies application to both it and a small 
stream reach in the Walnut Gulch experi-
mental Watershed, Arizona, USA. This 
flexible and simplified model was adapted 
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to match the perceptual models of the case 
studies and hypotheses on the dominant 
hydrological processes. Moreover, a non-
parametric approach, which deals with 
both deterministic evolution and inherent 
fluctuations in river discharge data, was 
developed and applied to flood forecasting 
in a headwater catchment in Germany. 
This approach presented similar results to 
those produced by a calibrated distributed 
hydrological model, but not containing the 
inherent uncertainties of (semi-)distributed 
hydrological models arising from initial 
conditions, spatially distributed parame-
ters, model structure and space-time scale 
effects. 

The observation and analysis of channel 
transmission losses in a large poorly 
gauged dryland river, the development of a 
flexible simplified channel transmission 
losses model and of a nonparametric ap-
proach based only on discharge time series 
may be useful hydrological knowledge and 
mathematical tools in order to predict and 
forecast flow transmission processes in 
poorly gauged and ungauged watersheds in 
arid and semi-arid regions. The approaches 
developed in this research should neverthe-
less still be targets for post-evaluation in 
real-world applications for water planning 
and management (based on Andréassian et 
al., 2010; Refsgaard and Hansen, 2010). 

As a synthesis of Chapters II to IV, a 
benchmark for hydrological research using 
semi-distributed hydrological modelling 
was proposed. It is a multi-hypotheses, -
case-studies and -validation investigation 
considering a residual time series-based 
uncertainty analysis. After the application 
of this proposed investigation to a case 
study, it is hoped that the actual state of its 
hydrological knowledge and its predicative 
uncertainty can be determined, based pri-
marily on rejected hypotheses on the 
dominant hydrological processes and dif-
ferences in catchment/variable responses. 
Furthermore, this hydrological knowledge 
may be a guide to further hydrological re-
search requirements in terms of both data 
sampling/analysis and model develop-
ment/assessment in the case study. Also, 

this knowledge may be transferable to un-
gauged catchments, which have similar 
climate and hydro-geologic controls to 
those which are studied, in order to under-
take field campaigns and/or modelling 
studies. Further work will be needed to 
implement and to assess this benchmark. 

Finally, the main results of this research 
are listed as follow: 

1. It is expected for regular rainy sea-
sons that the studied Jaguariber River 
reach recharges and discharges groundwa-
ter, but losing on average 30% of the up-
stream inflow event along 30 km of the 
reach. 

2. Channel transmission losses in the 
Jaguaribe River reach infiltrate mainly 
through the streambed and the levees and 
not through the floodplains; therefore, 
streamflows might lose water for flood-
plains only during extreme flood events. 

3. A mathematically flexible, but hy-
drologically complex, modelling of the 
channel transmission losses can match the 
most important hydrological processes for 
streamflow prediction in dryland rivers 
throughout different scales and controls. 

4. A perceptual hydrological model and 
a test of different model structures enable 
the application of the channel transmission 
losses model to a poorly gauged river, 
without using parameter calibration. 

5. Data-driven models, which are based 
on streamflow series only, present reliable 
one-, two- and three-hours ahead stream-
flow forecasting for flood warning in a 
meso-scale catchment. 

6. Data-driven and distributed hydro-
logical models can have comparable 
streamflow forecasting for meso-scale 
catchments. 
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