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Chapter 1

Overview

In his book about th€ritique of practical Reasqril] Kant wrote“Two entities prepossess the mind

with always new and increasing admiration and awe. Ever more often and permanently the cogitation
concerns itself with: The starry Sky above me and the morality in mysélér sure, morality is

one of the most important questions in our life. There is a sheer endless number of discussions and
publications about it. At any time and in every society people questioned about the trueness of their
morality. Nevertheless this topic stays outside of the kind of empiric science we want to do.

In this work we are only interested in the fascination about the starry sky. Astronomy may be one
of the oldest sciences in the history of mankind. Starting with first settlements, people observed
the moon phases and used the results of their observations to create first calendars, which helped to
improve the agriculture techniques.

Almost three thousand years later, at the beginning of the fifteenth century, the Mongolian King
Ulugh Begbuilt in present-days Usbekistan, the first observatory and the university for astronomy.
The history of the following centuries is full of dazzling and tragic characters who built the basis
of modern astronomy and astrophysics like Nikolaus Kopernikus, Giordano Bruno, Galileo Galilei,
Tycho Brahe, Johannes Kepler, Isaac Newton and many others.

Initiating with Isaac Newton’s theory of gravity and his laws of motion and Kepler's laws about
planetary motion, astronomers were able to make a huge number of important discoveries and
predictions.

With Albert Einstein’s general theory of gravitation, scientists were able to explain the phenomena
like the deflection of light, the anomalous perihelion advance, or the behaviour of very compact stars.

This Thesis puts its focus on the physics of neutron stars and its description with methods of
numerical relativity. In the first step, a hew numerical framework \tihe sky2D code will be
developed, which solves the relativistic equations of hydrodynamics in axisymmetry. Therefore we
consider an improved formulation of the conserved form of these equations. The second part will
use the new code to investigate the critical behaviour of two colliding neutron stars. Considering
the analogy to phase transitions in statistical physics, we will investigate the evolution of the
entropy of the neutron stars during the whole process. A better understanding of the evolution of
thermodynamical quantities, like the entropy in critical process, should provide deeper understanding
of thermodynamics in relativity.

Numerical simulations assuming and enforcing axisymmetry are particularly useful to study at
higher resolution and smaller computational costs those astrophysical scenarios whose evolution
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is expected to possess and preserve such a symmetry. On #rehatid, the numerical solution

of systems of equations expressed in coordinates adapted to the symmetry has often posed serious
difficulties, because of the coordinate singularity present on the symmetry axis.“caitteon”

method, proposed by Alcubiersd al.[2], allows to exploit the advantages of reduced computational
resource requirements, while adopting Cartesian coordinates, which are non-singular everywhere.

The “cartoon” method proves to be particularly useful in the numerical evolution of smooth
functions, like the metric quantities of the Einstein equations. However, because of the interpolations
necessary to impose the axisymmetric conditions on a Cartesian grittatitt@on” approach could
become enough accurate to describe the shocks which generically develop when matter is present. As
a consequence, general-relativistic codes employingddmtoon” method have adopted cylindrical
coordinates for the evolution of the matter (and magnetic field) variables [3—8]. All the cited works
adopt the same formulation for the hydrodynamical equations in cylindrical coordinates. In this
Thesis, we propose a slightly different formulation, which has proven to reduce the numerical errors,
especially in the vicinity of the symmetry axis.

More specifically, we have written théhi sky2D [9] code, which solves the general-relativistic
hydrodynamics equations in a flux-conservative form and in cylindrical coordinates. This of course
brings in1/r singular terms, where is the radial cylindrical coordinate, which must be dealt with
appropriately. In the above-referenced works, the flux operator is expanded andrtierms,

not containing derivatives, are moved to the right-hand-side of the equation (the source term), so
that the left hand side assumes a form identical to the one of the three-dimensional (3D) Cartesian
formulation. We call this thetandard formulationAnother possibility is not to split the flux operator

and to redefine the conserved variables, via a multiplication. By/e call this thenew formulation

The new equations are solved with the same methods as in the Cartesian case. From a mathematical
point of view, one would not expect differences between the two ways of writing the differential
operator, but, of course, a difference is present at the numerical level. Our tests show that the new
formulation yields results with a global truncation error which is one or more orders of magnitude
smaller than those of alternative and commonly used formulations.

The second part of the Thesis uses the new code for investigations of critical phenomena in general
relativity. In particular, we consider the head-on-collision of two neutron stars in a region of the
parameter space where two final states a new stable neutron star or a black hole, lay close to
each other. In 1993, Choptuik [10] considered one-parameter families of solufoRE, of the
Einstein-Klein-Gordon equations for a massless scalar field in spherical symmetry, such that for
every P > P*, S[P] contains a black hole and for eveRy < P*, S[P] is a solution not containing
singularities. He studied numerically the behavior&#] as P — P* and found that the critical
solution, S[P*], is universal in the sense that it is approached by all nearly-critical solutions
regardless of the particular family of initial data considered. He also found{i#gtexhibit discrete
self-similarity and that, for supercritical solutiof® > P*), the mass of the black hole satisfies
Mgn = ¢|P — P*|7, with v being an universal constarnte. not depending on the particular family

of initial data.

After Choptuik's seminal work, similar transitions were discovered for a wide range of sys-
tems, including massive scalar fields and ultra-relativistic fluids, see [11] for a recent review. All
these phenomena have the common property tha®, agproached*, S[P] approaches a universal
solutionS[P*] and that all the physical quantities 8fP] depend only onP — P*|. In analogy with

critical phase transitions in statistical mechanics, these transitions in gravitational collapse were later
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classified as “type-1” critical phenomena, with static oripéic critical solutions and discontinuous
transitions in the vicinity of the critical point, or “type-Il” critical phenomena, with self-similar
critical solutions and continuous transitions in the vicinity of the critical solution [11].

The study of critical phenomena in neutron star (NS) collapse started with the work by [12]
on radiation fluids and was later extended to more general ultra-relativistic equations of state
(EOS) [13,14] and ideal-gas EOS [15-17]. In all these studies the collapse was triggered using strong
perturbations and a type-lII critical phenomena was found. Type-I critical phenomena in the collapse of
unstable configurations under very small perturbations was instead studied only very recently [18,19].

The first study of critical phenomena concerning the head-on collision of NSs was carried out
by Jin and Suen in 2007 [20]. In particular, they considered a series of families of equal-mass NSs,
modeled with an ideal-gas EOS, boosted towards each other and varied the mass of the stars, their
separation, velocity and the polytropic index in the EOS. In this way they could observe a critical
phenomenon of type | near the threshold of black-hole formation, with the putative solution being
a nonlinearly oscillating star. In a successive work [21], they performed similar simulations but
considering the head-on collision of Gaussian distributions of matter. Also in this case they found
the appearance of type-I critical behaviour, but also performed a perturbative analysis of the initial
distributions of matter and of the merged object. Because of the considerable difference found in
the eigenfrequencies in the two cases, they concluded that the critical solution does not represent
a system near equilibrium and in particular not a perturbed Tolmann-Oppenheimer-Volkoff (TOV)
solution [20].

In this Thesis we study the dynamics of the head-on collision of two equal-mass NSs using a
setup which is as similar as possible to the one considered in [20]. While we confirm that the merged
object exhibits a type-I critical behaviour, we also argue against the conclusion that the critical
solution cannot be described in terms of equilibrium solution. Indeed, we show that, in analogy
with what is found in [19], the critical solution is effectively a perturbed unstable solution of the
TOV equations. Our analysis also considers fine-structure of the scaling relation of type-I critical
phenomena and we show that it exhibits oscillations in a similar way to the one studied in the context
of scalar-field critical collapse [22, 23].

The Thesis in organised as follows. In Chapter 2, among the main formulations of the Ein-
stein equations, we will describe those which represent the state-of-the-art in general-relativistic
numerical simulation and which are used for the code that provides the evolution of the space-time
variables in our simulations. We also repeat the essentials tédimoon” approach for the evolution

of the geometrical variables.

In Chapter 3 we show a brief summary of the physical origin of the equations of hydrodynamics,
followed by a review of the flux-conservative formulation of relativistic hydrodynamics. We write
down the relativistic flux-conservative hydrodynamics equations for axisymmetric formulations and
we illustrate the two possible ways to write the singular term. Chapter 4 presents the state-of-the-art
numerical schemes of the evolution of hydrodynamical quantities, i.e.hitteresolution shock
capturing methods. In Chapter 5, we show several tests that compare the two formulations. We
begin with the conservation of rest mass and angular momentum in the Cowling approximation
-keeping the space-time fixed- and in full space-time evolution. Then the eigenfrequencies of
uniformly rotating neutron star models are compared with the results of a perturbative code. The
last test examines the differences between the two formulations with respect to an analytic solution
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of an extreme shock case, which mimics the reflection of a guddvary fast gas at the symmetry axis.

Chapter 6 gives an overview about the main physical and mathematical topics of critical phe-
nomena. In Chapter 7 we consider the evolution in full general relativity of a family of linearly
unstableisolated spherical neutron stars under the effects of very small, perturbations as induced by
the truncation error. Using a simple ideal-fluid equation of state we find that this system exhibits
a type-| critical behaviour, thus confirming the conclusions reached by Liebling et al. [18] for
rotating magnetized stars. Exploiting the relative simplicity of our system, we are able carry out
a more in-depth study providing solid evidences of the criticality of this phenomenon and also to
give a simple interpretation of the putative critical solution as a spherical solution with the unstable
mode being the fundamental F-mode. Hence for any choice of the polytropic constant, the critical
solution will distinguish the set of subcritical models migrating to the stable branch of the models
of equilibrium from the set of subcritical models collapsing to a black hole. Finally, we study how
the dynamics changes when the numerically perturbation is replaced by a finite-size, resolution
independent velocity perturbation and show that in such cases a nearly-critical solution can be
changed into either a sub or supercritical. The work reported here also lays the basis for the analysis
carried in a companion paper, where the critical behaviour in the head-on collision of two neutron
stars is instead considered [24].

Chapter 8 is devoted the head-on collision of equal-mass neutron stars boosted towards each
other and we study the behavior of such systems near the threshold of black-hole formation. In
particular, we confirm the previous findings by [20] that a type-I critical phenomenon can be observed
by fine-tuning the initial mass of the two neutron stars. At the same time, we argue against the
interpretation that the critical solution is not a perturbed spherical star and show instead that the
metastable star corresponds to a (perturbed) equilibrium solution on the unstable branch of the
equilibrium configurations. As a result, the head-on collision of two neutron stars near the critical
threshold can be seen as a transition in the space of configurations from an initial stable solution over
to a critical metastable one which can either migrate to a stable solution or collapse to a black hole.
The critical exponent for this process shows a fine structure which was already observed in the case
of the critical collapse of scalar fields but never before for perfect fluids.

We have used a space-like signature,+,+,+), with Greek indices running from 0 to 3,
Latin indices from 1 to 3 and the standard convention for the summation over repeated indices.
Unless explicitly stated, all the quantities are expressed in the system of dimensionless units in which
c=G=Mg=1.
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Chapter 2

Einstein equations in vacuum

2.1 Introduction

We start with a discussion about basics of numerical relativity in the absence of matter. The extension
to non-vacuum space-times will be presented in Chapter 3. The Einstein equations describing the
highly non-linear relation between the metric and the energy-matter fields are

1
Guw = Ry — §gWR = 811, (2.2)
whereT),, is thestress-energy tensandd,, is theEinstein tensarContracting th&Riemann Tensor
R, = 0,17, — 0,17, +17 17, -7, 17, (2.2)

leads to theRicci TensorR,,, = R}, A further contraction yields to thRicci scalarR = R”,,. The
Christoffel symbols

0= 59" Our + p0r — Oriy), 23)
are expressed in terms of the metjg.. All these objects are 4-dimensional, in that they are defined
on the 4-dimensional space-time manifold. Despite the covariant nature of the equations, the
ability to perform long-term numerical simulations of self-gravitating systems in general relativity
strongly depends on the formulation adopted for the Einstein equations (2.1) and forces the choice of
appropriate coordinate charts in order to have stable accurate simulations. In the course of time, the
“3+1” formulation of space-time, introduced by Arnowitt, Deser and Miswddi1) [25], became
the standard approach in numerical relativity.
In next section we will give an overview about the most important properties @i formalism.
In Chapter 2.3 we will show an advancement of &M method, which enables longer evolutions
and is the one implemented in the code we have developed.

2.2 The Arnowitt Deser Misner “3+1” formalism

Following the idea of théDM formalism, the space-time manifolét is assumed to be globally hy-
perbolic and this allows for the foliation by 3-dimensional space-like hyper-surlacemrametrised
by the parametet € R : M = R x ¥;. The future pointing 4-vecton is orthogonal to the
hyper-surface:; and proportional to the gradient bfn = —a' V¢, wherea follows the normalisation

9
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n-n = —1. Introducing a coordinate basf{e, )} = {e(),e } of 4-vectors and choosing the
normalisation of the time-like component of the 4-vea¢g)|5 to bee(o) -Vt = 1, with the other three
basis 4-vectors to be space-like componenfs(i.e. tangent to the hyper-surface- e;) = 0 Vi),
the decomposition af into the basige,, } is

n=20,5 (2.4)
(0% [0

Theshiftvectors = Bie(i) is exclusively spatial. It describes how the spatial coordinates shift when
moving from a hyper-surfacg, to anothery:,,. To close the system tHapsefunction « is needed,
which describes the progress of time along the time-like unit-vattwormal to the space-like slice
¥¢. The spatial part of the 4-metrig,, = g, + n,n, is defined, so that is a projector orthogonal
ton (i.e. v -n = 0) and-;; is the 3-metric of the hyper-surface. It follows the line element of the 3+1
splitting

ds* = —(a? — B'B;)dt* + 2B;da’dt + i jda'da?. (2.5)

Eulerian observers, resting in the sli€g i.e. those having the 4-velocity parallel ton, measure the
following 3-velocity of the fluid:
you o ygu‘s B gf;u‘s + ningu’ u ~ ut

= —n' = —+ — 2.6
—n-u au? au? au? " W+a’ (2.6)

vt =

where we have used (2.4) and whera-u = au’ = W is the Lorentz factor. In the upcoming
Chapters we will use the covariant expressions of (2.6)
Yu, (67 4+ nPn;)u, u;

; = — —— 2.7
Y -n-u w w (2.7)

and
uy = utguo = u’go0 + u'gin = u'(—a® + BiBY) + u'B; =

2 i
-w <a — B—) + W <vi — %) Bi = W(W'B — a). (2.8)

(0%
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Figure 2.1:shows the foliation of the 3+1 decomposition. The hyper-surfazese spatial hyperbolic Cauchy
surfaces, which arise of th®DM formalism. X is the hyper-surface @t = 0 and contains all information
about the initial data.

The success of theDM approach is the reformulation of the Einstein equations in a set of first-order-
in-time second-order-in-space quasi-linear system [26] and a set of elliptic equatiaoifgteaint
equationy. The time evolution is applied to the dependent variables of the 3-mgiriand the
extrinsic curvature

Kij = =77V, (2.9)

whereV; denotes the covariant derivative with respect to the 3-mefyidBy construction the extrin-

sic curvature is symmetric and only spatial. The extrinsic curvature describes the embedding of the
3-dimensional space-like hyper-surfacgin the 4-dimensional manifold1. At first we consider the

first order evolution equations given by

Dt')’ij - —QOéKz‘j, (210)
1
DtKij = —Vivja + Oé[Rij + KKU — 2KZmKJm — 87‘(’(52‘]‘ — 5"}/”5) — 47Tp'7ij] (211)

D, = 8, — L, L defines the the Lie derivativiewith respect to the vectat, R;; is the Ricci tensor

of the 3-metric,K = + K;; is the trace of the extrinsic curvature = n,n,T*" is the total energy

density as measured by a normal observer. The projection of the stress-energy tensor on the normal to
the spatial hyper-surfacs;; = v;,v;, 7" andS = 4% S;; the rejuvenation of;; (a detailed discus-

sion can be found in [27]). Equation (2.10) provides an interpretation of the extrinsic curvature, as the
rate of change of the spatial metric. Similarly (2.11) provides an interpretation of the time derivative

of the extrinsic curvature of an acceleration of the metric.

AAAAA

S1, su — Lseeey S1yeeeyTyeensSuy S1,.-,Su r
ﬁTtl AAAAA tw —UVTtl AAAAA zu E Tt1 AAAAA tw V' JFE Tt1 AAAAA Tyt ViU -
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Due to the symmetric character of the Einstein tensor we éxpecpartial differential equations.
Equations (2.10) and (2.11) cover six. The missing four equations are the elliptic or constraint equa-
tions of theADM formalism. Such equations are called constraint equations because they have no
time dependence and they have to be satisfied on each space-like hyper-Surfatarting with the
Hamiltonian constraint equation, which can be seen like an energy conservation equation of the whole
space-time

H=R+K?— KK —16mp = 0, (2.12)

whereR is the Ricci scalar of the 3-metric, distinguish it forRf,. The last three equations are the
momentum constraint equations,

M'=V;K"9 —4"V;K — 875" = 0. (2.13)

whereS® = —*#n”T,,, describes the momentum density, as seen by an observer moving orthogo-
nally to the space-like hyper-surfaces.

The system of equations (2.10)-(2.13) is not closed; there are several degrees of freedom in relation to
the coordinate system. We are free to set a specification for the gauge conditions. These are usually
imposed as equations on the lapse and the shift. The number of possible gauge condition is infinite,
but all of them are gauge invariant and lead to the same physical results. Nevertheless only a few
gauge conditions are able to handle the non-invariant quantities in the right way to enable a stable
numerical evolution. The choice of good gauge conditions is fundamental for numerical relativity.
There are numerous well-tested gauge conditions. Some of them will be discusses in section 2.3.2.
Finally we show the expression of the total mass and the total angular momentum as measured at
infinity in an asymptotically-flat space-time. The integral to calculate the mass can be described as a
surface integral. But it is numerical more correct to use equivalent expression in terms of of a volume
integral.

Mapy = 16% / VIV Y g — Vitm) 43S, (2.14)
r=o00
Mapy = % /A ™V Yot — Virm) 1 dP i, (2.15)
r=o00
_ 1 k j Tom 32
(Japm)i = 5 6 / o Kt d*Sy, (2.16)
T=00

whereS is a closed surface in an asymptotically-flat region eﬁjmb the flat Levi-Civita tensor.

2.3 The conformal transverse traceless formulation

For many years most numerical codes useddb#! formalism to solve Einstein equations. However

many different attempts to improve boundary or gauge condition, to achieve long-term stability, failed
all. The ADM formalism and its numerical application has in fact two fundamental problems. In a
mathematical sense, the type of the set of PDEs oAlD® system isweakly-hyperbolic A direct
consequence of such systems is, that the solution is not necessarily unique. It means any possible solu-
tion can split up in two or more branches, which brings a serious problem for any numerical evolution
scheme. If there are two or more solutions, whose trajectories stay very close together, the numerical
solution could jump between the solutions. The first schemes were based on the unconstrained solu-
tion (i.e. the solution of the time-evolution equations disregarding the constraint equations, except for
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checking the accuracy of the result) of the 3AlM formalism of the field equations, which though,
despite long-term investigations [28—-30] has gradually been shown to lack the stability properties
necessary for long-term numerical solutions.

Including at some point the solution of constraint equations on each hyper-surface [31,32] was one
of the most successful efforts to perform long-term stability, which has been invested in the last recent
years. In 1987 Nakamura, Oohara and Kojima suggested a conformal traceless reformulation of the
ADM system [33]. A number of authors [4, 34-40] gradually showed the robustness of the new
formulations by robust simulations of sophisticated problems like isolated binary systems.

In the next section we discuss the most popular branch of the family of conformal traceless reformu-
lation, theNOK, which formalism was suggested by [34, 35]. In the literature it is usually called
BBSNOKformalism.

2.3.1 Evolution of the field equations in theBSSNCOK formalism

In this section we show the equations of the conformal traceless reformulationAbiieequations.

We outline theBSSNOK formalism, which is a combination MOK equations and the improvements
introduced in [34,35]. The numerical scheme is already implemented in the structureCaiAfe E

code, a detailed description of the code structure can be found in [41]. The gauge conditions for the
lapse and the shift function are discussed in section 2.3.2.

In order to obtain the conformal traceless reformulation ofABdM equations (2.10)-(2.13) we con-
sider the conformal decomposition of the 3-metric and the trace-free part of the extrinsic curvature.
Taking the work of [42] as basis we get the conformal 3-mefyjc

with the conformal factor chosen to be
e*? = A3 = det(’yij)l/g. (2.18)

In this way the determinant of;; in unity. The trace free part of the extrinsic curvatiifg is defined
as followed

1
Aij = Kz’j — g’}/l'jK, (219)
and its conformal decomposition )
Ajj = e 14, (2.20)

The evolution equations of the conformal 3-metfi¢ and the related conformal factgrare then
written as

Dt:)/ij - —206141‘3‘7 (221)
1
D¢ = —zakK. (2.22)

It follows also the evolution equation of the extrinsic curvatére

g | 1
DK = —YV;Va+ aA; A7 + §K2 + 5(:0 +9)]. (2.23)
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The Ricci scalar is eliminated by the usage of the Hamiltoo@mstraint. Using a trivial manipulation
of equation (2.11) a formulation of the evolution equation of the trace-free extrinsic curvature can be
obtained: '

thzlij = 674¢[V2‘Vj04 + Oé(Rij — Sij)]TF + Oé(K/L’j — 2/LJ/~1§), (2.24)

where [M;;]7F" describes the trace-free part of the 3-dimensional tensor secondamk
i.e., [Mi;)TF = M;; — v;;MF /3. Note that the formulation of (2.24) is not unique. The different
ways to write equation (2.24) are listed in [34, 35], especially there are several ways to write the Ricci
tensor. A conformal decomposition of the Ricci tensor

Rij = Rij+ R, (2.25)
is the most convenient expression to do numerical simulations. The conformal-factoﬁﬁaast
directly calculated by the spatial derivatives¢of

Rj, = —2V;V;¢ — 29;;V'Vi¢ + 4Vi6V ;¢ — 45,;V' V16 (2.26)

and the conformal parR;; is computed from the 3-metrig;; in the usual way. The conformal
connection function of Baumgarte [35]

[ = 50670, = — 9,77 (2.27)

is a convenient way to simplify the notation, whereby this equation retains the unity of the conformal
3-metric#, that is may be not true in numerical simulations. Now the Ricci tensor can be written as

1._ B B ~ ~ 7~ B ~ o~ ~ o~
Rij = _571m(:)l(:)m%j + 'yk(iaj)l“k + Fkr(ij)[( + ’Ylm (QFf(in)km + mel“klj). (2.28)

Also in this case there are different ways to calculate the terms, which are included in the conformal-
connection function. The usual way to calculate the Christoffel symbols, like in the standard
ADM formulation however leads to non elliptic derivatives of the 3-metric. Alcubietral. [42]

could show that a handling df’ in independent variables retains the elliptic character of the Ricci
tensor and gives the system a more hyperbolic character. However, it costs three extra variables. The
numerical advantages will be discussed below.

Using the conformal Christoffel symbol& written in independent variables, the evolution equation

can be derived straightforward by,

- o . . 2 .
O = —0;(2047 —27Y0,,87 + 2570,8' + 5'037). (2.29)
Unfortunately, equation (2.29) leads to instabilities, as shown in [35]. Again there are different ways

to write the evolution equation (frl-j. Alcubierre et al. [42] could eliminate the divergencesiti
by using the momentum constraint equation (2.13)

- o U 2 - iy
" = —2AY90;a + 2a(T7, ATF — SVVOK =57 S; + 647 9;9)
. . . 2 ..
—=0;(8'07"7 — 27"V 0B + 277 0,5'). (2.30)

The evolution equations of the conformal 3-mefi(2.21), the components of the conformal traceless
extrinsic curvatured;; (2.24) and the reformulated evolution equation of the conformal-connection
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function I (2.30) build together with the conformal factgr(2.22) and the tracK of the extrinsic
curvature (2.23) the set ®SSNCOK equations.

The final system to evolve the 17 variabl%& K, %]—,Aij,fi} with a set of first-order-in-time an
second-order-in-space PDEs shows a stability of long-term numerical simulation. In fact, it could
be shown that the equations are at least equivalent to a hyperbolic system, but they are not strongly
hyperbolic in any case [43-45].

To conclude this section we give the expressions of the gravitational mass and the total angular mo-
mentum in variables of conformal flat formulation. The expressions are valued in an asymptotically-
flat region of the space-time. By Gauss law the primarily surface integrals are transformed to volume
integrals, because it was shown by [46], that the numerical calculation of the volume integral formu-
lation of the quantities achieve more precisely results, than the surface integral. With respect to the
context of this work the integrals are written in cylindrical coordinates and axisymmetry:

—e?

1 - .. 1 1 —iipm 1—e? -
M =2 5¢ A AY — —K?) — Tk Rlrdrd 2.31
7T/V[e (p+16 i 1K) 16 jik + g R]rdrdz, (231)
1 -~ ) 1 . 1 ) N
J; = 27761;?‘]./ <§Ai+xjsk+mx”(vk_ Ex]ﬁ/fﬁ”zﬁllm> SCrdrdz . (2.32)
1%

2.3.2 Gauge conditions

Gauge conditions describe the slicing of the space-time of the 3+1 decomposition and the distribution
of spatial coordinates on each hypersurface. Generally there is an infinite number of possibilities to
describe the structure of a spatial manifold and its modification between the time-steps. However,
numerical evolution schemes can not use any arbitrary choice of the lapse and the shift function. The
final form depends on the problem which should be solved. E.g. it is extremely difficult to handle
spatial slices including singularities and therefore a "singularity avoiding slicing ” condition was
designed

An overview about possible families of gauge conditions, which have been tested and used in the
CCATI E code is presented by [42,47]:

e Geodesic slicings the most simple choice of a gauge condition. The lapse function is set to a
constant value, usually = 1 andg = 0. From time step to time step the slices retain their
shape progress in time is constant. Such gauge conditions are used to calculate initial data for
equilibrium star models. [48, 49].

e Hyperbolic slicingdescribes a family of gauge conditions which are "singularity avoiding slic-
ing“. This method avoids that a spatial slice ever touches a singularity. In order to realise this
requirement the shape of the slices changes from time step to time step. Close to the singularity
the progress in time goes to zero. Outside the black hole it follows a constant progress in time
(figure 2.2).

All simulations in this thesis are done with the "hyperbolic K-driver slicing“ method:

O — B0 = — f(a)a” (K — Ko), (2.33)

with f(a) > 0 and Ky = K (t = 0) is the initial value of the trace of the extrinsic curvature.
Normally there are two choices ¢f(«) which are used for simulation runs. The harmonic
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slicing conditionf = 1, which is not used here and the generalized "1+log* sli¢iegndition
[51] f = q/a, whereq is an arbitrary integer. All of the results discussed in this work are
calculated with the "1+log* slicing condition, wheyg«) = 2/« and (2.33) becomes.

Oror — B0 = —2a(K — Ky). (2.34)

Note that the "1+log"“ gauge condition is could also lead to problems, like shock-waves of the
lapse function during formation of a singularity, or fast growing field variables triggered by
non-linear terms of the gauge condition [52,53]. None of these have been encountered in the

simulations performed here.

Horizon
k=
=0
[=)]
[y
5
] t=130
t=100
— —
@ t=50
t=0

Collapsing Star

Figure 2.2: demonstrates the evolution of the slices close to a singularity, if a singularity avoiding gauge
condition is chosen. The slices approach closer and closer from time to time to the singularity, but they slice

will never touch it. Figure taken from [54]

Furthermore the determination of the shift condition is related to astrophysical problems. In many
cases it is almost impossible to keep a fixed structure of the numerical grid, because the rotation of
compact objects or the collapse of stars lead to strong distortions of the grid (e.g. [55]). To put the
shift condition to3* = 0 would be the easiest, but also worst choice, because this gauge condition is

’The origin of the name “1+log” is related to the integrated form of the slicing condition given by h(z") +In(y),
whereh(z*) is a time-dependent function aRds the determinant of the 3-metrig; [50]
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not able to absorb grid deformations. In many cases "Gamirartshift conditions are used, which
are proposed in [47] and [56].

e The Minimal distortion conditionis a geometrically motivated choice of the shift function.
The whole formalism [57] leads to a set of coupled elliptic equations, which are numerically
expensive to solve.

e TheGamma-freezing condition .
oTk =0 (2.35)

is similar to the minimal distortion condition. It leads also in a set of elliptic equations and it is
not able to handle singularities. These two method show a main distinction, while the minimal
distortion condition is covariant, the Gamma-freezing method condition is not.

e The Hyperbolic Gamma-driver-conditiomethod, which is used for all the simulations in this

work.
B — BB = ZaBi, (2.36)
B —19;B" = oI — o, T — B, (2.37)

wheren = 0.75 is a parameter which acts as a damping coefficient [58] to avoid strong
oscillations in the shift.

2.3.3 Boundary conditions

GR is anon-localtheory, whose physical quantities are defined in infinity. However in numerical
simulations, only a finite region of the spatial hyper-surface is covered by the computational domain.
Therefore the computational code must employ boundary conditions (BCs).

One possibility is a compactification done by coordinate transformation, to realise infinity on a finite
numerical grid [59]. This method is not used in this work, but may be interesting for further investi-
gation.

Here, appropriate BCs are applied to the edges of the numerical domain. It is the duty of BCs to con-
tinue the values on the numerical grid over its edge as though the grid would be unbounded. BCs are
applied to the field variables as well as to the hydrodynamics variables, even if the outer boundaries
are usually placed in regions without matter and so their evolution is often trivial. Normally the same
boundary conditions are applied to all variables.

While it is comparatively simpler to handle matter when it crosses the outer boundary condition, it is
much more difficult to develop BCs that would allow the space-time variables (e.g. GWSs) to leave the
grid without reflecting.

Moreover not all of the evolved quantities behave like waves.

At the best, BCs can be constructed, that allows wave-like solution to leave the grid at which no large
reflections at the boundary should be introduces [60]. The boundary conditions actually implemented
in the CCATI E code are the following.

e Static boundary condition (Dirichlet)are the easiest BCs, which can be implemented. The
evolved variables at the boundary are simply not updated and retain their initial values. How-
ever, these conditions are improper to simulate the propagation of waves, because everything is
reflected back.
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e Zero-order extrapolation or “flat” boundary conditions (Neumannpiere the values at the
boundary are replaced after every time-step. The values of the last point of the grid are
simply copied to the next point of the boundary (along the normal direction to the boundary).
Therefore this condition is more dynamical than static BCs and supports the propagation of
waves over the boundary. Nevertheless, it is not free from artificial reflections.

e Radiative boundary conditions (Sommerfeliah) this case we assume that the dynamical vari-
ables behave like a constant plus an outgoing radial wave at the boundaries, that is

flatt) = fo+u(r—t)/n, (2.38)

wherer = /z2 + 42 + 22 and where f; is set to one of the diagonal components of the
metric and zero for everything else. To use radiative BCs it is necessary that the boundaries
are inside the wave zone, where the gravitational wave front has a spherical shape. Experience
with Sommerfeld BCs in application to gravitational wave leaving the grid cleanly are discussed
in [34,35]. In practice, it is easier to implement a differential form of the radiative boundary
condition than to use (2.38) directly. If we consider a boundary, that corresponds to a coordinate
planex; = constant, the condition (2.39) implies

xX; ZT;
—0f +0if + 5(f — fo) = 0. (2:39)
Simulations presented in this work have been performed using the differential Sommerfeld BCs (2.39).

2.3.4 The “Cart oon” method

Here we work out the numerical solutions of the relativistic equations of hydrodynamics in axisym-
metry. TheCCATI E code is designed for calculations on a 3D Cartesian grid. In order to merge,
both coordinate systems we selected a slice on the cylindrical geid=at0. This section coincides

with one slice on the Cartesian grid, which is chosery at 0, (see figure 2.3). However, vari-
ables of space are still evolved in Cartesian coordinates. There are two possible ways to merge the
equations of relativistic hydrodynamics and the equations of space-time evolution. In the first one,
the space-time evolution code could be rewritten in cylindrical coordinates and asymmetry. While
this is possible, it also requires the definition of suitably defined coordinates and the application of
regularisation techniques [61] at the cylindrical axis. Both choices are essential for a stable evolution.
On the other side, a second method, @ae t oon method, can be used to transform variables of the
cylindrical grid to variables of the Cartesian grid (see figure 2.4).
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Figure 2.3:shows the overlap of a cylindrical coordinate system with a Cartesian coordinate system. The
cross-section of both coordinate systems is the slice, wheMfheky 2D works.

The chief advantages of this approach, which is usually referred to aatheoon method [2],

are the absence of the need of regularization conditions and the easiness of implementation, through
a simple dimensional reduction from fully 3D codes in Cartesian coordinates. However, these ad-
vantages are counterbalanced by at least two disadvantages. The first one is that the method still
essentially requires the use of a 3D domain covered with Cartesian coordinates, although one of the
three dimensions, namely thedirection, has a very small extent. The second one is that, in order

to compute the second-order spatial derivatives injth@ection appearing in the Einstein equations,

a number of high-order interpolations onto th@xis are necessary (see discussion below) and these
can amount to a significant portion of the time spent for each evolution to the new time-level. In
practice, the spatial derivatives in thedirection are computed exploiting the fact that all quantities

are constant on cylinders and thus the value of a variéldéa generic positiofiz, y, z) off the (z, z)

plane can be computed from the corresponding v@(& 0, Z) on the(x, z) plane, where

i=@+y)?, i==z. (2.40)

Clearly, since the solution of the evolution equations is computed only ofxthe plane, interpola-

tions (with truncation errors smaller than that of the finite-difference operators) are needed at all the
positions(z,y = 0, 2) (see Fig 2.3).

Overall theCar t oon method represents the choice for many codes and it has been implemented with
success in many applicatioresg., [2—-8, 41, 62] to cite a few.
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Figure 2.4:illustrates the idea of th€ar t oon method. The picture shows a projection of figure 2.3 onto

the x-y plane. The black dots mark the grid points of the Cartesian grid. This point is needed e.g., in order
to calculate a second derivative. To determine the value of a certain point the properties of axisymmetry are
used. Any point on a circle around the z axis has the same numerical value. The radius of a circle, which is the
distance of a dot to the origin, show the corresponding point on the x axis. The value of the point, where the
circle crosses the x axis is calculated by a third-order interpolation.




Chapter 3

Einstein equations non vacuum
space-times

3.1 Relativistic hydrodynamics

While the previous chapter discusses the properties of space-time without riigter=( 0), this
chapter, about relativistic hydrodynamics, explains physics of space-time when matter is included.
Since the phenomena considered in relativistic hydrodynamics are macroscopic, the fluid is regarded
as a continuous media. In this work we only considesal fluids® , neglecting any kind of non ideal
effects such as dissipation or heat fluxes. The properties of fluids in relativistic hydrodynamics are
described by its stress- energy tensor (3.40) and a certain EoS.

3.1.1 A thermodynamical consideration of hydrodynamics

Later we will study several properties of neutron stars, which can be only described by thermodynam-
ics or statistical physics. Because of this we will give a brief introduction in thermodynamic aspects
of hydrodynamics. The introduction follows the first chapter in [63].

Hydrodynamics is as well as GR a continuous field theory and as mentioned before it describes the
dynamics of continuous medig& In order to set up an mathematical description of the state of a
moving fluid we need functions, which give the distribution of the fluid velosity= v(z, vy, z,t)

and of any two thermodynamic quantities pertaining to the fluid, for instance the rest mass density
p = p(z,y,2,t) and the pressure = p(z,vy, z,t) 3.

All these quantities are functions of the coordinatesg, z,t. v = v(z,y, z, t) is the velocity of the

fluid at a given poin{(z, y, z,t), i.e. refers to fixed points in space and time and not to specific parti-
cles of the fluid. The same remarks applytandp.

The next pages show a brief deduction of the equations of Newtonian hydrodynamics. We start with

Fluids in which thermal conductivity and viscosity can be neglected are dalsed

2This means that any small volume element in the fluid is always supposed so large that it still contains a very great
number of molecules. Accordingly, when speaking of infinitely small elements of volume, we shall always mean those
which are “physically” infinitely small, i.e. very small compared with the volume of the body under consideration, but large
compared with distance between molecules. The expressions fluid particle and point in a fluid are to be understood in a
similar sense. If, for example, we speak of the displacement of some fluid particle, we mean not the displacement of an
individual molecule, but that of a volume element containing many molecules, though still regarded as a point.

3All the thermodynamic quantities are determined by the values of any two of them, together with the equation of state;
hence, if we are given five quantities, namely the three components of the valotlity densityp and the pressurg, the
state of the moving fluid is completely determined.

21
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the continuity and the Euler equations followed by cons@wadf entropy for isentropic systems and
the equation for conservation of energy.

a) The equation of continuity expresses the conservation of mass in a closed system. We consider
a certain amount of fluid in a volume.. The mass of the fluid in this volume is expressed by the
integral [ pdV', wherep is the density of the fluid, integrated over the volufiie The mass of fluid
flowing in unit time through a surface elemerftaf V., is pvdf; the vector d is equal to the area of

the surface element and its direction is perpendicular to the surfacidftaken along the outward
normal pvdf is positive if the fluid flowing out of the volume, and negative if the flow is into the
volume. The total flux over the whole closed surface surrounding the voldnig given by the
integral

%pv df. (3.1)
Corresponding to the flux outwards the decrease per unit time in the mass of the f\Widcan be
written 5
- dv 3.2
5 e (3.2)
As long there is no sink or source of fluid the sum of the equation (3.1) and (3.2) is zero
0
— [ pdV + ¢ pvdf = 0. (3.3)
ot
Using Gausslaw to transform the surface integral into a volume integral equation (3.3) becomes
0
/ [ap + V- (pv)] av = 0. (3.4)
The integral equation is true if the integrand vanishes i.e.
9 + V-(pv) =0 (3.5)
This is theequation of continuityThe vector

i=pv (3.6)

is called the massiass flux densityits direction is that of the motion of the fluid, while its magnitude
equals the mass of fluid flowing in unit time through unit area perpendicular to the velocity.

b) Euler's equation which are the equation of motion of a fluid, were first obtained_biuler
in 1755and it is a fundamental equation of fluid dynamics.
Let us consider the total force acting on some voldrmef the fluid which is equal to the integral

F = —j{p df, (3.7)

of the pressure, taken over the surface bounding the volume. 3$ak@'s law to transform it in a

volume integral it becomes
_}[pdf:_/vpdv. (3.8)
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The pressure influences directly the motion of a fluid elemigquating the force-V p to the product
of the mass per unit volume) and the acceleratiosv/dt:

dv

Pat
The derivativedv/dt which appears here denotes not the rate of change of the fluid velocity at a fixed
point in space, but the rate of change of the velocity of a given fluid element as it moves in space. This
derivative has to be expressed in terms of the velocity of the given fluid element during thé& fime
the velocity at a point fixed in space. To do so, we notice that the chéntfee velocity is composed
of two parts, namely the change duridgat a point fixed in space, and the difference between the
velocities (at the same instant) at two poidisapart, wherelr is the distance moved by the given
fluid particle during the timelt. The first part is theriov/ot)dt, where the derivativev/ot is taken
for constantz, y, z, i.e. at the given point in space. In other words

ov ov ov ov ov

= —Vp (3.9)

dv = dt

By dividing both sides byit equation 3.10 becomes
dv _ Ov

— = — SV A1
i 5 + (VvV)v (3.12)
Put equation (3.11) into equation (3.9) gives
0
pa—‘t, +p(vVIV+Vp = 0. (3.12)

c) Conservation of entropy in isentropic systemsA lot of numerical studies about relativistic
fluids considerideal fluids Motions of such fluids are adiabatic and do not show any exchange of heat
between different parts of the fluid. The entropy of any particle in adiabatic motion through space
remains constant. It means that the whole entropy of a closed system does not change in time

ds

dt
wheres is the entropy per mass unit. The total derivative with respect to time denotes the rate of
change of entropy for a given fluid particle as it moves about

=0, (3.13)

Js
E—FVVS—O (3.14)
agp:) + V- (psv) = 0, (3.15)

wherepsv is the specific entropy flux.

d) The energy flux of some volume element, fixed in space, describes the variation of energy.
The energy of a unit volume of fluid is

<p_?12 + pe) , (3.16)
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where the first term is the kinetic energy and the second tegrimternal energy. The variation of the

energy in time is given by
a [ pv?
— (= A7
m( : +pe>, (3.17)

In order to calculate this quantity, the term of the kinetic energy can be reformulated by using equa-
tions (3.5) and (3.12)

a9 (pv? B v?
5 <T> — 7v (pv) —=vVp — pv(vV)v. (3.18)

Now the last termv(vV:)v is substituted by¥V - v2. Using the first law of thermodynamics the
gradient of the pressur€ p can be replaced byVw or pT'V s, wherew is the heat function per unit
mass and’” the temperature, and obtain for (3.18),

0 ( pv? v? v?
- <7> =V (o) oV (5 i w> | oTVVs. (3.19)

Using the thermodynamic relation
d(pe) = edp + pde = wdp + pTds, (3.20)
and the general adiabatic equation (3.14) the new expressi%rpoénds in

d(pe) dp 0s

5 = Y + pTE = —wV - (pv) — pTvVs. (3.22)
Combining the equation of kinetic and internal energy, the change of the energy is to be
a9 ([ pv? v?
e (7 + pe> = -V. {pv <7 + w)} . (3.22)

In order to see the meaning of this equation, it has to be integrated it over some volume and becomes

0 pv? - v?
&/ (7 n p€> qv — —j{pv (7 + w> df. (3.23)

The left term describes the rate of change of the energy of the fluid in a certain volume. The right term
it therefore the amount of energy flowing out of this volume in unit time. Expression

2
pv (% + w> (3.24)

is called the energy flux density vectr The expression (3.24) shows that any unit mass of fluid
carries with it an amount + %vz. The fact that the heat functian appears here, and not the internal
energye, has a simple physical significance. Putting= ¢ + p/p, we can write the flux of energy
through a closed surface in form

—%pv (%2 +w> df = —jépv (”; +e> af — j{pvdf. (3.25)

The first term in the energy (kinetic and internal) transported through the surface in unit time by the
mass of fluid. The second term is the work done by pressure forces on the fluid within the surface.

4Its magnitude is the amount of energy in unit time through unit area perpendicular to the direction of the velocity.
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3.1.2 Digression about quasi-linear hyperbolic partial diferential equations

The homogeneous systemrafpartial differential equations (PDES)

Opu(z,t) + Zafb(x,t)awub(x,t) =0 (3.26)
b=1
or, in matrix notation,
U(z,t) + A(z,t)0,U(z,t) = 0 (3.27)

is said toquasi-linearif the matrix A of the coefficients is a function df only and is said to be
hyperbolicif A is diagonalizable with a set of real eigenvalugs..., \,,, and a corresponding set of
m linearly-independent right eigenvectd®s$?)), ...R(™ such that,

AR® = )\,R¥. (3.28)

Furthermore, if all the eigenvalu@g are distinct, the system is said to &teictly hyperbolic When a
system PDEs is written in the form.

8U + 9,[F(U)] = 0, (3.29)

it is said to be aconservative formIn this case it can also be written in form (3.28) wA{U) =
OF(U) begin the Jacobian of the flux vecB(U). In a conservative system, knowledge of the state
vectorU(x, t) at one point in spacetime allows to determine the flux for each state variable. It will
be shown that this is the case for the hydrodynamics equations. It was shown by Lax and Wendroff
[64] in atheorem that, if shocks are present, converging conservative numerical methadsthods
relying on a conservative form or the equations, converge tavéiak solutior? of the problem, while
non conservative methods generally do not. Furthermore, Hou and LeFloch [65] demonstrated that,
in general, a non-conservative scheme will converge to the wrong weak solution in the presence of a
shock an hence they underlined the importance of flux-conservation formulations.
In order to appreciate the importance of a conservative formulation of the hydrodynamics equation,
consider the prototype of a hyperbolic equation in conservative form, that is the scalar linear advection
equation in one dimension

Ou(x,t) + Noyu(z,t) = 0, (3.30)

with initial conditions att = 0
u(z,0) = wup(x). (3.31)

The solution of (3.30) is easily calculated and is given by
u(z,t) = u(x — A, 0) (3.32)

for t > 0. As time evolves, the initial data simply propagates unchanged with gpéeéalvard the
right or the left according to the sign of which is calledcharacteristic speedThe characteristic
curvesof the equation are the curue — ¢ plane satisfying the ordinary differential equation (ODE)

with initial dataz’(t) = —lambda;z(0) = x¢. The solutionu(x,t)is constant along a characteristic
curve R
% — 0 when = zy— M. (3.33)

SWeak solutions are solutions of the integral form of the conservation system; they are continuous and differentiable of
have at most a finite number of discontinuities.
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The notation can be extended to a systermdiyperbolic PDEs like (3.27). Since, by definition, the
hyperbolic condition guarantees that a complete set of right eigenveRf6t=exists, if we indicate
with K the matrix whose columns are ti®, then

A = K'AK, (3.34)
where
A = diag(Ai, Az, .oy A). (3.35)

That is true for a linear system, whefe is a matrix of constant coefficients. Introducing now the
characteristic variables
W = KU, (3.36)

system (3.27) becomes
W + A0, W = 0. (3.37)

This is calledcanonical formof the system and consists mfdecoupled independent advection equa-
tions, each of which has solution

w(x,t) = w(x — Agt, 0). (3.38)

The solution of the original system is found from the one of the canonical system through inversion
of (3.36), that isU = KW or, in components,

U(z,t) = Y w(z, K = > w2 — A, 00K, (3.39)
a=1 a=1

From the last relation it is clear that the solution can be written as the superpositiowades, each
propagating undistorted with a speed given by the corresponding eigenvalues.

3.1.3 Equations of relativistic hydrodynamics

An important feature of many multidimensional non-vacuum numerical-relativity codes that solve the
coupled Einstein—hydrodynamics equations in Cartesian coordinates is the adoptmmmeséevative
formulation of the hydrodynamics equations [66,67]. In such a formulation, the set of conservation
equations for the stress-energy tensor

T = phutu” + pg"". (3.40)
and for the matter current density
JE = put (3.41)
that is
vV, Jh =0, (3.42)
v, T" =0, (3.43)

is written in a hyperbolic first-order “flux-conservative” form of the type [68]
1

\/_—g{ﬁt[ﬁFO(U)] + Oi[V=gFI(U)]} = s(U), (3.44)
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where F())(U) and s(U) are the flux vectors and source terms, respectively [69]. Note that the
right-hand side (the source terms) depends only on the metric, on its first derivatives and on the stress-
energy tensor. Furthermore, while the system (3.44) is not strictly hyperbolic, strong hyperbolicity
is recovered in a flat spacetime, whef@J) = 0. As shown by [67], in order to write the system
(3.42)—(3.43) in the form of system (3.44), themitive hydrodynamical variables.¢. the rest-mass
densityp, the pressurg measured in the rest-frame of the fluid, the fluid 3-veloeityneasured by

a local zero-angular momentum observer, the specific internal enamyy the Lorentz factdil’) are
mapped to the so callezbnservedrariablesU = (D, S, ) via the relations

D = /W,
St = JphW' (3.45)

T = \/'_y(pth—p)—D,

whereh = 1 + ¢ + p/p is the specific enthalpy arid” = (1 — y;;0%07)~1/2,

The advantage of a flux-conservative formulation is that it allows to use high-resolution shock-
capturing (HRSC) schemes, which are based on Riemann solvers and which are essential for a correct
representation of shocks. This is particularly important in astrophysical simulations, where large
shocks are expected. In this approach, all variableare represented on the numerical grid by cell-
integral averages. The function is theetonstructedwithin each cell, usually through piecewise
polynomials, in a way that preserves the conservation of the vari&bleshis gives two values at

each cell boundary, which are then used as initial data for the (approximate) Riemann problem, whose
solution gives the flux through the cell boundary.

3.1.4 Equation of state

In whatever coordinate system they are written, the system of hydrodynamics equations can be closed
only after specifying an additional equation, the equation of state (EOS), which relates the pressure

to the rest-mass density and to the energy density. The code has been written to use any EOS, but
all the tests and the results promoted in this thesis have been performed using either an (isentropic)
polytropic EOS

p = Kp', (3.46)

e = P+%, (3.47)

or an “ideal-fluid” non-isentropic EOS
p=(IT—1)pe. (3.48)

Here, e is the energy density in the rest frame of the fluid,the polytropic constant (not to be
confused with the trace of the extrinsic curvature defined earlier]'ahd adiabatic exponent. In the

case of the polytropic EOS (3.46),= 1 + 1/N, whereN is the polytropic index and the evolution
equation forr does not need to be solved, because it can be computed form the algebraic relation. In
the case of the ideal-fluid EOS (3.48), on the other hand, non-isentropic changes can take place in
the fluid and the evolution equation ferneeds to be solved. Note that the polytropic EOS (3.46)

is isentropic and thus does not allow for the formation of physical shocks, in which entropy (and
internal energy) can be increased locally (shock heating).
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3.2 Relativistic hydrodynamics in cylindrical
coordinates and axisymmetry

In the following section, the general equations of relativistic hydrodynamics are transformed to cylin-
drical coordinates and reduced to axisymmetry. Coordinates which are adapted to the geometry of the
problem are useful for simulations of objects, which impose a certain symmetry. Duez et al. [70] and
Zink et al. [71] showed that tori, formed by collapsing rotating stars, fragment in non-axisymmetric
clumps possibly becauseof = 4 modes produced intrinsically by the Cartesian grid. As mentioned
before cylindrical grids would reduce this effect and indicate whether this instability is genuine, but
suffers form a singularity axis and singular terms in the equations which require a special treatment.

3.2.1 Flux Conserved andBal ance Lawformulations of hyperbolic differential
equations.

The Newtonian or the special relativistic formulation of the hydrodynamic equations in Cartesian
coordinates are classified by certain type of equations

atQ(x7t) + 8x(f(¢](x7t))) =0, (3.49)

in which f(q(z,t)) is in this case the product of the variakler, t) with a velocityv(x, t). Following

the description about conservation laws of [68], (3.49) is written in a flux-conserved formulation. A
simple coordinate transformation of the hydrodynamic equations or the consideration of cylindrical
coordinates adds geometrical terms which can not be written as fluxes. To retain terms properties of
flux conservation all terms which can not be written as fluxes are written on to the right hand side and
become sources. Equation (3.49) changes to

8tQ(T7 t) + 8r(f(¢](r7t))) = T/J(Q(T‘,t))a (3.50)

wherey(q(z,t)) is the sum of all source terms. Equations like (3.50) are written in a “flux-balanced”
formulation.

3.2.2 A new formulation of the equations of relativistic hydrodynamics in axisymme-
try

As mentioned in the previous Section, following ref. [4], we write the relativistic hydrodynamics
equations (3.42)—(3.43) in a first-order form in space and time using cylindrical coordinates).
However, as an important difference from the approach suggested in ref. [4], we do not introduce
source terms that contain coordinate singularities. Rather, we re-define the conserved quantities in
such a way to remove the singular terms, which are the largest source of truncation error, also when
evaluated far from the axis.

We illustrate our approach by using as a representative example the continuity equation. This is the
simplest of the five hydrodynamical equations but already contains all the basic elements necessary to
illustrate the new formulation. We start by using the definitions for the conserved variables (3.45) to
write eq. (3.42) generically as

H(VAPW) + 0; [/ApW (e’ — BY)] =0, (3.51)

which in cylindrical coordinates takes the form

A(VFW) +0, [VAPW (a0 — 87)| + 0. [\/FoW (av® = )] =0, (3.52)
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where/7 is the determinant of the 3-metric in cylindrical coordinates and where we have enforced
the condition of axisymmetry, = 0. Because ang-constant plane in cylindrical coordinates can

be mapped into thér, =) plane in Cartesian coordinates, we consider equation (3.52) as expressed in
Cartesian coordinates and restricted toghe 0 plane,i.e.,

Oi(xD) + 0y [xD (aw®™ — B)] + 0, [xD (av® — §*)] =0, (3.53)

where we have exploited the fact that for any vector of componéhts: this planed” = A%, A? =

AY/x andy = z2v, with v being the determinant of the 3-metric in Cartesian coordinates. Equa-
tion (3.53) represents the prototype of the formulation proposed here, which we will refer to hereafter
as the"new” formulation to contrast it with the formulation adopted so fag.,in ref. [4], for the
solution of the relativistic hydrodynamics equations in axisymmetry and in Cartesian coordinates.
The only, but important, difference with respect to tetandard” formulation is that in the latter the
derivative in thez-direction is written out explicitly and becomes part of the source i), i.e.,

D (av®™ — B%)
—

0¢(D) + 05 [D (av”™ — %) + 0, [D (aw® — %) = — (3.54)

Even though the right-hand-side of eq. (3.54) is never evaluated=ab (because no grid points are
located atr = 0), both the numerator and the denominator of the right-hand-side of eq. (3.54) are very
small forz ~ 0, so that small round-off errors in the evaluation of the right-hand-side can increase the
overall truncation error. Stated differently, the right-hand-side of eq. (3.54) becomes stififob

and this opens the door to the problems encountered in the numerical solution of hyperbolic equations
with stiff source terms [72].

What was done for the continuity equation (3.53) can be extended to the other hydrodynamics
equations which, for the conservation of momentum in theand z-directions, take the form

e {or@si) + 00l (S 07 - 57) + aympsn] +
0. [n (S av* — 5°) + /i)l =
[TOO <% B8O Vi — aaAa> + T3 Davy + TY04B" + %T““amm} ; (3.55)

with A = x, z. Similarly, the evolution of the conserved angular momenfiyn= x5, is expressed
as

1
ax./y

while the equation of the energy conservation is given by

{at (22Sy) + 0y [22Sy (av” — B*)] + 0, [2%S, (aw® — B7)] } =0, (3.56)

1
ax./y

{(% (x7) + Oy [z (7 (™ — B%) + pv™)] + 0., [z (T (av® — B7) —i—pvz)]} =

7% (ﬁzﬁij — ﬁzal()é) + 7% (—8204 + 2ﬁjKZ]) + Tinij . (3.57)

The changes made to the formulation are rather simple but, as we will show in Section 5, these can
produce significant improvements on the overall accuracy of the simulations with a truncation error



30 3: Einstein equations nhon vacuum space-times

at least one order of magnitude smaller for all of the testsidened. Because of its simplicity, the
changes in the new formulation of the equations can be implemented straightforwardly in codes writ-
ten using the standard formulation. Finally, we note that both eq. (3.54) and eq. (3.53) are written in a
flux-conservative form in the sense that the source term does not contain first-order spatial derivatives
of the conserved variables. More precisely, eq. (3.53) is written in a flux-conservative form, while
eg. (3.54) is written in a “flux-balanced” form, as it is typical for flux-conservative equations written

in curvilinear coordinates [68]. The same is true also for egs. (3.55)—(3.57) and for the corresponding
equations presented in ref. [4], which are incorrectly classified as non flux-conservative.
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Chapter 4

Numerical methods to solve the equations
of relativistic hydrodynamics

4.1 Ideas and methods behind th&hi sky2D code

Already in the introduction we discussed the physical motivations of axisymmetric systems. While
the previous Chapter gave an overview about the mathematical structure of the axisymmetric
relativistic equations, this Chapter deals with the numerical methods to solve the equations and the
construction of th&\hi sky2D code.

The work flow of theWhi sky2D code is shown in figure 4.1. The work flow begins with the
calculation of the initial data. ThE€CATI E codes provides a collection of methods to calculate
different initial configurations of neutron stars and black holes.

The work flow by itself is include two loops. The outer loop is responsible for calculating the
progress in time. The inner loop contains the methods to solve the spatiakpamnt= direction - of

the equations of hydrodynamics.

At the first step, the outer cycle starts with the calculation of the source terms. The source terms are
also part of the spatial calculation of the equations, but unlike the flux terms, they are independent of a
spatial direction. Afterwards the code enters the inner loop in order to calculate the fluxes over the cell
boundaries. It begins with the reconstruction of the primitive values at the cell boundaries (section
4.2.3). Followed by the conversion of the primitive variables to conserved variables. Different values
at bordering cell boundaries causes fluxes between the cells. In the next step the Riemann Solver
module (section 4.2.2) calculates the fluxes between all cell boundaries. Finally all values of the
fluxes and the source terms are added up in the RHS module. The inner loop is repeated two times
once for the z direction and a second one for the x direction. After the inner loop is finished a first
check of the atmosphere (section 4.2.6) will be done. The first atmosphere check is used to exclude
all atmosphere grid points from time-integration in order to accelerate the code.

The outer cycle continues with the time-integration, followed by the setting of the boundary condi-
tions. The next module converses the conserved variables back to primitive variables (section 4.2.5).
After finishing one cycle of the outer-loop, a second atmosphere check will be done.

The work-flow can be extended by a further loop to calculate the progress of space-time vari-
ables. Numerical method to do such calculations are provided by tools GIGAEl E code which

33
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solves the equations of tHBSSNOK formalism. The required values of the stress-energy tensor is
calculated by\i sky2Dat the end of any time-step.

Finally the data of a time-step are written in a separate files. The code finishes if a pretended
number of iteration or run-time is reached. The final step, before a run stops, an analysis tool
determines run time and computing resources of all used computing modules. The informations are
written in data files.
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Figure 4.1:Flow chart of the different steps of thghi sky2D code. The green field show the input sym-
bolises the initial data routines. Thehi sky2D routines are yellow colored. The loop over the different
directions in space are marked with a blue label. Analysis tools to extract additional informations are orange
colored. CCATIE routines, including MoL, Cartoon, spacetime evolution could and much more other methods

are colored red.
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4.2 Numerical methods

4.2.1 Discontinuities and Godunov methods

Any-finite difference method for solving PDEs for initial-value problems will involve the discretiza-
tion of the physically continuous initial data to be evolved with the differential equations; the nu-
merical initial data and solution are thus discontinuous and piecewise constant (see figure 4.2.1). In
addition to this, the non-linear properties of the hydrodynamical equations can generally produce (see
e.g. the Burgers equation [73]) in afinite time non-linear waves with discontinuities even from smooth
initial data [68, 74]. High-Resolution Shock-Capturing methods - based on a simple and brilliant idea
by Godunov [75] not only can treat accurately discontinuities, but indeed they exploit them. In fact,
Godunov methods consist in setting and solving at every cell interface of the numerical grid a local
Riemann problem, for whose solution there exist several accurate and efficient methods, both exact
and approximate. The basic structure of a HRSC scheme [76, 77] consists of the following stages:

t=n

u(x,t): continuous

u;{xj ,0): plecewlse constant

«
- | > |

Ji—1 i j+i j+2

Figure 4.2:Schematic picture of the process of discretization. The continuous furiétient) is approximate
by a piecewise constant functiéff on the numerical grid. As a result, a series of Riemann problems is set up
at each interface between the cells. (Figure courtesy of L. Rezzolla)

e converting the primitive variables to conserved variables;

e finding the values of these variables at cell interfacesat the intermediate locations, |,
between all pairs of grid points, andz,,, except for the grid points near the boundaries,
which are treated separately; there are two sexdended or reconstructed valuaseach cell
interface (one being computed from the left stencil, the other from the right stencil) and they
are used as initial data for a local Riemann problem;

e solving the local Riemann problem at each cell interface; this gives the fluxes used for the time
integration;
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computing the source terms and adding them to the fluxes from the Riemann solver;

integrating one step in time;

applying boundary conditions;

converting back from the evolved conserved variables to obtain the primitive variables at the
updated time.

It is computationally convenient to apply the above procedure as a sequence of three 1-dimensional
operations, i.e. using what is referred to as dimensional splitting and which is constructed using Taylor
series expansions of the 3-dimensional function [68].

4.2.2 Riemann solvers

In what follows, we discuss how Riemann solvers can be used to solve accurately the hydrodynamics
equations. For simplicity we consider equations in one spatial dimension only. The Riemann problem
is said to be solved when the velocity, pressure and density in the new Btatasd U7, have been
computed, as well as the positions of the waves separating the four states. The solution of the 1-
dimensional Riemann problem in relativistic hydrodynamics was discussed in the general case by
Marti and Muller [78] and the reader is referred to their work for further details (see also [79], for the
extension to multi dimensions).

The knowledge on the wave structure is exploited in the procedure to find the exact solution of the
Riemann problem: since pressure and velocity are continuous on the contact discotjrihigy
pressureU; p in the states can be calculated by imposing the continuity of the fluid velocity across

v (p*) = vi(p®). 4.1)

In general, (4.1) is a non-linear algebraic equation in the unknown pressanel requires a numerical
solution even for simple EoSs [74]. Depending on the different wave patterns forming after the decay
of the discontinuity, a different non-linear equation will need to be solved. This initial ambiguity in
the wave pattern produced corresponds to the fact that the interval in pressure bracketing the solution
is not known a priori. In practice this lack of information was compensated by the use of efficient
numerical algorithms which, via a process of trial and error, determine the correct wave pattern and
then proceed to the solution of the corresponding non-linear equation [80]. More recently Rezzolla
and Zanotti [81] have shown that this possible to predict were pattern by studying the realistic relative
velocity between the two states.

a) HLLE Inthe Riemann solver proposed by Harten, Lax, van Leer [116] and later improved by
Einfeldt [90], the central region delimited by the fastest wave moving toward the left and by the fastest
wave moving toward the right [with speed, and A\ i respectively; C.3] is approximated by a single

state ARUp — A\Up + Fr, — F
Uniie — RUR — ALUL + I', — I'R (4.2)
AR — AL
thus disregarding the central contact wave. The resulting numerical flux to be used in the Godunov

scheme is

ArF(UL) = ALF(Ugr) + AL Ar(Ur — U,
Fuip — R (UL) — AL )ERR_))\L tAr(Ur — UL) (4.3)
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The HLLE solver is the simplest Riemann solver implementettin sky2D. It performs well at
rarefaction waves, but, as one should expect, it produces considerable diffusion at contact discontinu-
ities.

b) Roe solver The Roe Riemann solver consists in approximating the non-linear system with a lin-
earised one and then in solving the latter exactly. In this case linearised JacobianAn&fsixUr)
has to satisfy the following conditions:

e hyperbolicity of the systemA must have real eigenvalués (U, Ug) and a complete set of
linearly independent right eigenvectdR$®

e consistency with the exact Jacobian:

A(UL,Ug) = A(U);
e conservation across discontinuities and exact recognition of isolated discontinuities:
A(UL,Up)(Uy — Ug) = F(Uy) — F(Up)

These requirements determine the intermediate &fafg = Ug,. (UL, Ugr) about which to lin-
earize the original Jacobian matri. Although it is possible to find such a state [82], it is more
convenient to simply approximate it as

1
URoe = §(UL3UR)' (44)

The eigenvalues, and eigenvectorR () computed forA(URoe) are then used in the formula (3.39)
for the flux across each cell interface:

lint 1
F%eoem erface _ 3 { (UL +F(Ug) — Z H)\ H ] }, (4.5)
a+1
where herex = 1,...,5 since we now specialize the treatment to the specific case of the hydro-

dynamics equations, which have five variables. We also recallthat = L@ (Upg)-ULg are

the characteristic variables and tHat) are the left eigenvectors of the Jacobian, being the columns
of the matrixK—! (3.34), (3.36). The Roe solver gives a very good approximation to the Riemann
solution, except at rarefaction waves, since linear systems do not admit such waves as solution.

c) The Marquina solver [83,84] can be regarded as an improvement to the Roe solver, since it
gives its same results everywhere, except at sonic points (i.e. where the fluid velocity equals the speed
of sound), where it removes the entropy violation at rarefaction of the Roe solver. We actually use the
modified method of [85] instead of the original method. The procedure consists in computing at each
cell interface the characteristic variable$ , and the numerical fluxe$; , = = L@ . F(Uy p) for

both the left and right states. Then the flux formula is given by

5
BT = Y0 RE 4+ o REY) (4.6)
a=1

where thedq _ are chosen according to the sign of the eigenvalues:
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e &1 = ®% and®? = 0 if both eigenvectors are positive (i.e. both waves move to the right
and so the flux has to be computed from the left state);

o & = &% and® = 0 if both eigenvectors are negative;

e if the eigenvalues have opposite sign

1
¢ = (9L + maz(]A*(UL)l, [A*(Ur)[)w),

6 = (6% + max(X (UL, N (Un) ).
(4.7)

In our experience, the Marquina solver has proven to be the best choice.

4.2.3 Reconstruction methods

The original Godunov method, as presented so far, is only first-order accurate in space. Indeed, it
was shown by Godunov in a theorem [75] that it is not possible to build monoteneh@at do not
produce spurious oscillations in the vicinity of large gradients) linear schemes of second or higher
order of accuracy. As a result, one has to turn higher-order schemes. HRSC methods represent
the combination of Godunov type methods, which take advantage of the conservation form of the
equations, and of numerical techniques aimed at obtaining second-order (or higher-order) accuracy in
the smooth parts of the solution, without producing oscillations.

A way of measuring the amount of oscillations in the solution is to monitotdts variation of the
solution, defined, for a discretised functiprf; — ;)| attime levelt”, as

TV(") = > |up —up . (4.8)
p=—00

The requirement of non-oscillation of a scheme may then be stated as the requirement that

TV (@) < TV (u") (4.9)
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Ux) *

| | | | -
X X X X

=1 i i+1

Figure 4.3: shows a systematic picture of the reconstruction procedure. Consider the the cell interface at

Ui—1/2. The values at the IettijJrl/2 and at the righUﬁH/Q of the interface between celjsand;j + 1 define

the initial left and right state of a Riemann problem whose solution gives the value of the flyxes &.

for all variablesU of the system. A numerical method satisfying this condition is calteél-
variation-diminishing(TVD) method, since the total variation is bounded by its initial value. As
shown by Toro [74], TVD methods cannot generally be extended to accuracies higher than second
order. In order to construct higher-order methods one has to renounce to the strict TVD condition and
allow for an increase of the total variation proportional to some power of the typical size:

TV (") < TV (") + O[(Ax)*]. (4.10)

These methods lead to higher-order accuracy also near large-gradients regions, by allowing oscilla-
tions (that should be small and bounded) near extrema. The resulting methods ar&ssdietially-
Non-Ocillatory(ENO) methods [86].

a) Total-variation-diminishing (TVD) In the original Godunov method, the initial data for the
local Riemann problems at each time step are assumed to be piecewise constant on each cell

u(z) = up, Tp_12 < T <Tprip  Vp. (4.12)

A natural way of increasing the order of accuracy is giving a better approximation of the state at the
cell interface. The simplest reconstruction is a piecewise-linear approximation

w(x) = up + Sp(z —xp), Tpo1j2 < T <Tprip  Vp, (4.12)

wheres, is a slope, expressed as either

; Up4+1 — W ; Up—1 — W
S;)prmd _ p+ P or S}a)loumwznd _ P P (413)

)
Tp+1 — Tp Tp—1 — Tp
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or linear combinations of them. The upper superscripts ughaimd downwind refer to the stencil used

for computing the slope. For grids with uniform spacing, the cell average, computed b

andz, /2, is equal to the value on the mid-grid point for any choice of the slope. All the possible
choices of the slope give second-order accurate schemes, but none of them can avoid introducing
oscillations in large-variation regions. This problem motivates the technigsiemé limiting which
consists in choosing a reconstructing slope which is second order in slowly varying regions of the
solution and only first order (i.e. piecewise constant) in the vicinity of large-variation regions, in
order to avoid numerical oscillations. In practice, the large variation regions are defined as those
wherespPvind andSdownwind have opposite signs (extrema of the function). The numerous proposed
TVD slope limiters differ in the prescription for computing the slope in slowly varying regions. After
definingr = SuPvind Sgow"wmd, the possible slopes can be expressed as a function of

Supwz'nd + Gdownwind
p

S = o(r)=2 5 (4.14)
We implemented some of the most commonly used slope limiters, which we list here.
e Theminmodslope limiter is
4
P =min |1 . 4.15
) = min (1.7 ) @15)

Stated differently, minmod consists in choosing the slope with the minimum modulus, when
r > 0. It is the most diffusive slope limiter.

e The van Leer [87,88] monotonised centered slope limiter is

O(r) = min ( 2 i) (4.16)
1+ 143

It consists in limiting the value of the slope in a cell following three rules:

i) it must not take values beyond the average of the neighbouring slopes;

ii) it is set to zero if the average of the upwind and downwind slopes relative to the cell is an

extremum

iii) it is set to zero if the average slope and the finite-difference slope have opposite sign, that is

if sign(Sp) = sign(Sp+1) # sign(Sp4.1/2), for any computation of (4.13)

e One more implemented example is the Superbee slope limiter [74]):

min(2,r,2/(1 4+r)), ifr>1
o(r) = { 1, if 1/2<r<1 (4.17)
o, if 0<r<1/2.

TVD reconstruction is simple and computationally the least expensive, but we recall it is at most
second-order accurate and drops to first-order at local extrema.

b) The Piecewise Parabolic Method (PPM)The piecewise parabolic method (PPM) of Colella

and Woodward is a composite reconstruction method that ensures third-order accuracy [89]. By de-
fault we use PPM as this seems to be the best balance between accuracy and computational efficiency,
as shown, for example, in [90]. However, there is no standard formulation of this method, so it is
useful to compare results with TVD methods as well [91]. All the presented reconstruction methods
are stable in the presence of shocks.
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4.2.4 Method of lines (MoL)

The reconstruction methods guarantee that a prescribed order of accuracy is retained in space. How-
ever, the need to retain a high-order accuracy also in time can complicate considerably the evolution
from one time-level to the following one. As a way to handle this efficiently, we have chosen to fol-
low a MoL approach [74,76]. The MoL is a procedure to separate the space and time discretization
processes. First, the continuum equations are considered to be discretised in space only, while leaving
the problem continuous in time. This is equivalent to transforming a set of PDEs such into a set of
ODEs. Then, the resulting system of ODEs can be solved numerically with any stable solver. This
method minimizes the coupling between the spacetime and hydrodynamics solvers and allows for a
transparent implementation of different evolution schemes. In practice, this is achieved by integrating
equations

0, U + 0, F(U) = s(U) (4.18)

over space in every computational cell defined by its positiaR,y,, 2,).  Taking, as
an example, integration in the direction, the procedure results in the following ODE

U

ﬂ_m

Yq+1/2 Zr41/2
Jf[saz + [ [ B U 1200.2) — U0 dudz |
Yq—1/2 Zr—1/2
(4.19)

~—

AV

whereAV = AzAyAzandU is, in our specific case, the spatially-integrated vector of conserved
variables,.e.

- 1
_ 4.2
U AV / Udzdydz, (4.20)

andF” is thexz component of the flux five-vectdf. Clearly after the space-integratidf does no
longer have a space dependence and the PDE is now an ODE.

Mol itself does not have a precise truncation error but, rather, it acquires the truncation order of the
time-integration employed, provided that the discrete opeihts of the same order in space and

at least first-order accurate in time. Several integrators are available in our implementation of MoL,
including the second-ordéterative Crank NicholsoflCN) solver andRunge Kutta RK) solvers of
different orders of accuracy. The second and third-order RK solvers are known to be TVD whilst the
fourth-order one is known not to be TVD [92,93]. As the coupling between the spacetime and the
hydrodynamics is only second-order accurate, we typically us the third order RK.

In our implementation of MoL, the right hand side operdm@fj) is simplified by approximating the
integrals (4.19) with the midpoint rule

b a-+b
/ g(z)dz = (b—a)g( ) + O[(b—a)?] (4.21)
to get, for the flux x-direction.
L(U) = spgr + FO(U, 1/0,,) — FY (U, 1/0,00)- (4.22)

To solve equation (4.19), we use the simplification (4.22) and split the calculation into the following
steps:
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e calculation of the source terns¢U(z,, yq, 2-)) at all the grid points;
e reconstruction of the dafd to both sides of a cell boundary;
¢ solution at cell boundaries of the Riemann problem having the vallyes as initial data;

e calculation in each coordinate direction of the inter-cell (U, 12 4.), F*(U, 4 141/2),
that is the flux across the boundary between a edd).the p-th) and its closest neighbowr.g.
the (p+1)-th];

e check on the location of atmosphere and excised regions.

4.2.5 Calculation of the primitive variables from the conserved ones

An mentioned in Section (3.2), the equations of relativistic hydrodynamics are written in a flux con-
served formulation. As a consequence not the usual primitive variabtés p are evolved, but rather

the conserved variabled, S;, 7. In the end the primitive variables are still needed to calculate the
stress-energy tensor, the fluxes and the source terms and to evaluate the results of the simulation.
An algebraic transformation from the conserved variables to the primitive variables is not possible,
except in certain special circumstances. One possible way is to is to solve the following implicit
equation to get the new value of the pressure after a time-step:

p—plp(U,p),e(U,p)] =0 (4.23)

wherep is the value of the pressure to be found afe( U, p),e(U, p)] is the pressure as obtained
through the EoS in terms of the updated conserved varidlaled ofp itself. The expressions gfand
e in terms of the conserved variables and of the pressure are calculated by inverting equations (3.45):

D

_ +p+D
e=D'/r+p+D2Z— T —D], 4.25
( (T+p+D)*—p )L (4.25)
where -
52 = 448,58, (4.26)

In Wi sky2D equation (4.23) is solved numerically by a iterative Newton Raphson root finder
method. This method requires the derivatives of the functionsamide with respect to the dependent

variablep,
Ip(p,e) Op  Ip(p,€) Oe

=V (Up)) = 1 LI RO (@.27)

where 9
9p = D5 (4.28)
9 \/(r+p+D?)?—S%r+p+ D)
¢ _ ps” (4.29)

op  p((r+p+D*?=S*)(r+p+D)

and wheredp/dp anddp/de given by the EoS. Once the value of the pressure is known, the other
values follow by analytic expressions. The polytropic EoS allows for a simpler way of converting
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from the conservative to the primitive variables by solvimpther explicit equation for the rest mass
densityp: )
pW —D =0 (4.30)

where the pressure, the specific internal energy and the enthalpy are computed from the EoS and the
Lorentz factor is computed from the first equation of (3.45) as

_ 52
W= /1+ D (4.31)

The only needed derivative of (4.30) is given by

d, - ~ pS2h/
LW D) =W - : 4.32
i ) D2 (4.32)
where
on 0 o p p o) Tp
W=%=="(4e+h :—[1+7+—]:—[1+7} (4.33)
dp ap( ) dp =1y pl 0p (I'—=1p
SN (V0 . L
dp ('—=1)p p? P pOp

4.2.6 Treatment of the atmosphere

Numerical methods for the solution that the hydrodynamics equations in Lagrangian formulation
assume that the we computational domain is filled by a fluid, i.e. that all grid points refer to values
of p, p andv which are non-zero. In most cases, however, we are interested in isolated objects , e.qg.
stars, disks, tori, so that part of the domain will referred to by vacuum regions. This is made more
serious in general relativity, where one has to accommodate at the same time the need to resolve well
objects that are intrinsically compact and the need to place the outer boundaries at very large distances
from the compact object. As a results, over much of the domain that we evolve, the hydrodynamical
variablesp andp are, at least mathematically, supposed to be zero. However, in the vacuum limit
the hydrodynamics equations break down, the speed of sound tends to the speed of light and HRSC
schemes, that we recall use the characteristic structure of the equations, fail. So this region must be
treated specifically. To avoid this problem we introduce a tenatu®sphergi.e. a low-density and
low-pressure region surrounding the compact objects.

We treat the atmosphere as a perfect fluid having a pre-assigned value of the pressure and the
density and a zero coordinate velocity. This approach is indeed used by all groups working on
GRHD [38,94]. The atmosphere is first specified by the initial data routines. Typically, the atmo-
sphere values are set to be more than seven orders of magnitude smaller than the initial maximum
peent- Before computing the fluxesphi sky 2D checks whether the conserved variabiesor T

are below some minimum value or whether an evolution step might push them below such a value.
If this is the case, the relevant cell is not evolved and the hydrodynamical variables at that point
are set toatmosphere valueise.. The other stage whekhi sky 2D checks about the location of

the atmosphere is in the routine that converts from conserved variables to primitive variables. This
is where the majority of the atmosphere points are usually reset. We call that at this stage in the
work-flow. For points in the fluids an attempt is made to convert.

If the EOS is the polytropical and if the iterative algorithm returns a negative valpettoénp is reset
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to the atmosphere value, the velocities are set to zerpand’ and r are reset to be consistent with

p. If, on the other hand, the EoS is more general (such as an ideal-fluid one), then we check whether
the specific internal energyis less than a specified minimum. If this is the case then we assume we
are in the atmosphere and we apply the procedure that changes from the conserved to the primitive
variables for the polytropic EoS, instead.

Note that the atmosphere values used for the calculation of the initial data and the ones used
during the simulations need not be the same. Indeed, we typically set the initial atmosphere values
to be two orders of magnitude smaller than the evolved ones to minimize initial truncation error
problems leading to spurious low-density-matter waves across the atmosphere. With appropriate
choices of the parameters regulating the atmosphere implementation, the evolution of the compact
objects in our simulations is not affected by the atmosphere .

The treatment of the atmosphere of e sky 2Dis very to the one above and which is used in the
as described for thehi sky code. In addition we use a threshold value such that if the new envolved
value of the density is pinresh.PPCactus, tNENP = poactus- This technique allows to resume small
density numbers that could be guaranteed by the gravitational field of the star.

The simulations in this thesis using a thresholhpf,., = peent % 10~7 and for minimum density
Pmin = Pcent X 10719,
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Chapter 5

Numerical evolution of neutron stars

A number of astrophysical scenarios possess and preserve an overall cylindrical symmetry also when
undergoing a catastrophic and nonlinear evolution. Exploiting such a symmetry, these processes can
be studied through numerical-relativity simulations at smaller computational costs and at considerably
larger spatial resolutions. We here present first applications of the a new flux-conservative formulation
of the relativistic hydrodynamics equations in cylindrical coordinates. By rearranging those terms
in the equations which are the sources of the largest numerical errors, the new formulation yields a
global truncation error which is one or more orders of magnitude smaller than those of alternative
and commonly used formulations. We illustrate this through a series of numerical tests involving the
evolution of oscillating spherical and rotating stars, as well as shock-tube tests.

In order to test the stability properties of the new formulation and compare its accuracy with
the one of the formulation first presented in ref. [4] and then used, among others, in refs. [5, 8, 95, 96],
we have implemented both of them Whi sky2D. In the following Sections we test them against
well-known smooth solutions in curved but static space-times, or in curved and fully dynamical
space-times, and, finally, against discontinuous solutions in flat space-times.

The initial data, in particular, have been produced as solution of the Einstein equations for axisym-
metric and stationary stellar configurations [97], using the EOS (3.46) with 2 and polytropic
constantK’ = 100, in order to produce stellar models that are, at least qualitatively, representative
of what is expected from observations of neutron stars. Our attention has been restricted to two
illustrative models representing a non-rotating star and a rapidly rotating star having equatorial and
polar (coordinate) radii in a ratig, /r. = 0.67. The relevant properties of these stellar models are re-
ported in Table 5. All the numerical results presented hereafter have been obtained with the following
fiducial numerical set-up: the reconstruction of the values at the boundaries of the computational cells
is made using the PPM method [89], while the HLLE algorithm is used as an approximate Riemann
solver [98]. The lapse function is evolved with the 4 log” slicing condition given by eq. (2.34),

while the shift is evolved using a version of the hyperbdlidriver condition (2.36) in which the
advection terms for the variablgt, B andT" are set to zero. The time evolution is made with a
method-of-line approach [74] and a third-order Runge-Kutta integration scheme (our CFL factor is
usually chosen betweén3 and0.5). A third-order Lagrangian interpolation is adopted to implement
the “cartoon” method. For the matter variables we use “Dirichlet’boundary conditiors the
solution at the outer boundary is always kept to be the initial one), while for the field variables we
adopt outgoing Sommerfeld boundary conditions.

We typically present results at four different resolutiorts:= 0.4M, h/2, h/4, 3h/16 and h/8,
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Table 5.1: Equilibrium properties of the initial stellar models. The different columns refer respectively to:
the ratio of the polar to equatorial coordinate ragjjr., the central rest-mass densjy, the gravitational
massM, the rest masd/,, the circumferential equatorial radiug., the angular velocity?, the maximum
angular velocity for a star of the same rest m@ss the ratio.J/M? whereJ is the angular momentum, the
ratio of rotational kinetic energy to gravitational binding enefgyf1V|. All models have been computed with

a polytropic EOS withK' = 100 andI” = 2.

Tp/Te Pe M My R, Q Qg J/M?  T/|W]|
(x10%) (Mo) (M) (x10-2)

A | 1.00 1.28 1.400 1.506 9.586 0.000 3.987 0.000 0.000

B | 0.67 1.28 1.651 1.786 12.042 0.253 3.108 0.594 0.081

which correspond to abo®5, 50, 100, 133 and 200 points across the stellar radius, respectively.
The computational domain extends2@M both in thex andz directions, and a reflection symmetry

is applied across the equatoridle(, = = 0) plane. Finally, we remark that in contrast with the
interesting analysis of [99], we could not find signs of numerical instabilities when using the above
numerical prescriptions for either of the two formulations considered.

5.1 Oscillating Neutron stars: fixed space-time

The first set of tests we discuss has been carried out by simulating relativistic polytropic stars in
equilibrium and in a fixed space-timed in the Cowling approximation). In this case the Einstein
equations are not evolved and the truncation error is in general smaller because itis produced uniquely
from the evolution of the hydrodynamics equations.
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Figure 5.1:Evolution of the central rest-mass density for rapidly rotating stars (model B in Table 5) evolved
within the Cowling approximation. The left panel refers to the use of the standard formulation, while the right
one to the new formulation. Note the different scales in the two panels and note that in both cases the amplitude
of the oscillations decreases with increasing resolution, while keeping the same phase.

Although the stars are in equilibrium, oscillations are triggered by the first-order truncation error at
the center and the surface of the star (our hydrodynamical evolution schemes are only first order
at local extrema). Both the amplitude of the oscillations and the rate of the secular change in their
amplitude converge to zero at nearly second order with increasing grid resolution [38,90]. The genuine
dynamics produced by the truncation error can then be studied either when the space-time is held fixed
(i.e., in the Cowling approximation) or when the space-time is evolved through the solution of the
Einstein equations. This is shown in figure 5.1, which reports the evolution of the central rest-mass
density for rapidly rotating stars (model B in Table 5) evolved within the Cowling approximation.
The left panel refers to the standard formulation, while the right one to the new formulation. Note
that in both cases the amplitude of the oscillations decreases at roughly second order with increasing
resolution, while keeping the same phase. This is a clear signature that the oscillations corresponds to
proper eigenmodes of the simulated star. However, the difference of the secular evolution between the
standard formulation and the new one is rather remarkable. The latter, in fact, is much more accurate
and the well-known secular increase in the central density is essentially absent in the new formulation.
Quantities that are particularly useful to assess the accuracy of the two formulations are the rest mass
and the angular momentum which we compute as [46]

My = 271/ VypWzdrdz, (5.2)
V*

1 -, ) 1 . 1 . .
J, = 2wk — A 4298+ — K, — — I3 A 60 da d 5.2
- “Zj/v<87r BTk g R T e Bk A | €L AT A2, (5.2)

whereV, is the coordinate volume occupied by the star &ni$ coordinate volume of the computa-
tional domain.
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Figure 5.2:Time derivative of the average of the rest magg, normalized to the initial valuéZ,(t = 0),

for evolutions in a fixed space-time (Cowling approximation). The avedad&, /My (¢t = 0))/dt is computed
between the initial value and a time= 25 ms, corresponding to abogdbt oscillations. The left panel refers to

a non-rotating star (model A in Table 5), while the right panel to a rapidly rotating star (model B in Table 5).
Indicated with squares are the numerical values obtained with the standard formulation of the hydrodynamics
equations, while triangles are used for the new one. Also indicated with a dot-dashed line is the slope for a
second-order convergence rate.
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0))/dt (cf,, figure 5.2) for a rapidly rotating star (model B of Table 5). Indicated with squares are the numerical
values obtained with the standard formulation of the hydrodynamics equations, while triangles are used for the
new one; a dot-dashed line is the slope for a second-order convergence rate.

Figure 5.2 shows the dependence on the inverse of the resolution of the error in the conservation of
the rest mass for a non-rotating model as computed in the Cowling approximation (left panel) or in a
fully dynamical simulation (right panel). Since the evolution of the rest mass shows, in addition to a
secular evolution, small oscillationsd., of ~ 3 x 10~ for the highest resolution and ef 3 x 10~°

for the lowest resolution) the calculation of the rest mass at a given time can be somewhat ambiguous.
To tackle this problem and to avoid the measurement to be spoiled by the oscillations, we perform a
linear fit of the evolution of\/y, normalized to the initial valu@/,(t = 0), between the initial value

and a timet = 25 ms (corresponding to abou0 oscillations) and we take as the time derivative of

the mass the coefficient of the linear fit{,/My(t = 0))/dt. Figure 5.2, in particular, reports in

a logarithmic scalel(My/My(t = 0))/dt as a function of the inverse of the resolutibnIndicated

with squares are the numerical values obtained with the standard formulation of the hydrodynamics
equations, while triangles are used for the new one. Also indicated with a long-short-dashed line is
the slope for a second-order convergence rate.

Note that although we use a third-order method for the reconstruction (hamely, PPM), we do not
expect third-order convergence. This is also due to the fact that the reconstruction schemes are only
first-order accurate at local extrenia(at the centre and at the surface of the star), thus increasing the
overall truncation error. Similar estimates were obtained also usingftheky code in 3D Cartesian
coordinates [91, 100].

Clearly both the new and the standard methods provide a convergence rate which is close to two.
However, and this is the most important result of this work, the new method yields a truncation error
which is several orders of magnitude smaller than the old one. More specifically, in the case of the
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rest mass, the conservation is more accurate of about foaroof magnitude. We believe that this is
essentially due to the rewriting of the source terms in the flux-conservative formulation which in the
new formulation does not have any coordinate-singular teenc 1/x).

Note also that, because the new formulation is intrinsically more accurate, it also suffers more easily
from the contamination of errors which are not directly related to the finite-difference operators. [The
one made in the calculation of the integral (5.2) is a relevant example but it is not the only one]. This
may be the reason why, in general, at lower resolutions the new formulation has convergence rate
which is not exactly two and appears over-convergent (see right panel of figure 5.2). However, as the
resolution is increased and the finite-difference errors become the dominant ones, a clearer trend in
the convergence rate is recovered.

Another way of measuring the accuracy of the two formulations is via the comparison of the evolution
of the angular momentum. While this quantity is conserved to machine precision in the case of a non-
rotating star, this does not happen for rotating stars and the error can be of a few percent in the case
of very low resolution and of a very rapidly rotating star. This is shown in figure 5.3 for the stellar
model B of Table 5 and it reports in a logarithmic scale the time derivative of the average of the
angular momentuny normalized to the initial valug (¢t = 0). In analogy with figure 5.2, in order

to remove the small-scale oscillations we first perform a linear fit of the evolutiohlmtween the

initial value and a timg = 25ms and take the coefficient of the fit as the time derivative of the
angular momentumd(J/J(t = 0))/dt. Indicated with squares are the numerical values obtained
with the standard formulation of the hydrodynamics equations, while triangles are used for the new
one; a dot-dashed line shows the slope for a second-order convergence rate.

It is simple to recognize from figure 5.3 that also for the angular momentum conservation the new
formulation yields a truncation error which is two or more orders of magnitude smaller, with a clear
second-order convergence being recovered at sufficiently high resolution.
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Figure 5.4:The same as in figure 5.1 but for a full-space-time evolution. The left panel refers to the standard
formulation, while the right one to the new formulation. Note the different scale between the two panels.
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5.2 Oscillating Neutron stars: dynamical space-time

Also the second set of tests we discuss is based on the evolution of relativistic polytropic stars in
equilibrium, but now the evolution is performed in a dynamical space-time, thus with the coupling
of Einstein and hydrodynamics equations. The truncation error in this case is given by the truncation
error coming from the solution of both the field equations and the hydrodynamics equations. The
results of our calculations are summarised in figures 5.4-5.6, which represent the equivalents of fig-
ures 5.1-5.3 for full-space-time evolutions. Because the results are self-explanatory and qualitatively
similar to the ones discussed for the evolutions with fixed space-times, we will comment on them only
briefly.
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Figure 5.5:The same as in figure 5.2, but for full-space-time evolutions. The left panel refers to a non-rotating
star (model A in Table 5), while the right panel to a rapidly rotating star (model B in Table 5).
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Figure 5.6:The same as figure 5.3 but for a rapidly rotating star evolved in a dynamical space-time.

In particular, figures 5.5-5.6 highlight that while the overall truncation error in dynamical space-times
is essentially unchanged for the standard formulation, it has increased in the case of the new formu-
lation. This is particularly evident at very low resolutions, where the new formulation seems to be
hyper-convergent. However, despite a truncation error which is larger than the one for fixed space-
times, the figures also indicate that the new formulation does represent a considerable improvement
over the standard one and that its truncation error is at least two orders of magnitude smaller. Mostim-
portantly, the conservation properties of the numerical scheme have greatly improved and the secular
increase in the rest mass, is also considerably suppressed. This is clearly shown in figures 5.4, where
the secular increase is suppressed almost quadratically with resolution. More precisely, for both ap-
proaches the growth rate of the central rest-mass density for the coarse resoldtibhtimnes larger

than the corresponding one for the high resolution. However, at the highest resolution, the growth rate
for the standard formulation is 10 times larger than the one of the new formulation.

5.3 Calculation of the eigenfrequencies

As mentioned in the previous Section, although in equilibrium, the simulated stars undergo oscilla-
tions which are triggered by the nonzero truncation error. It is possible to consider these oscillations
not as a numerical nuisance, on the contrary it is possible to exploit them to perform a check on the
consistency of a full nonlinear evolution with a small perturbation (the truncation error) with the pre-
dictions of perturbation theory [38, 90]. Furthermore, when used in conjunction with highly accurate
codes, these oscillations can provide important information on the stellar oscillations within regimes,
such as those of very rapid or differential rotation, which are not yet accessible via perturbative cal-
culations [101].
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Figure 5.7:Power spectral density (in arbitrary units) of the maximum rest-mass density evolution in the new
and standard formulation (solid and dashed lines, respectively). The simulations are relative to a non-rotating
star (model A in Table 5) with left left panel referring to an evolution with a fixed space-time and the right one
to an evolution with a dynamical space-time. The spectra are calculated from the simulations at the highest
resolution and covel5 ms of evolution. For both panels the insets show a magnification of the spectra near the
F-mode and the comparison with the perturbative estimate as calculated with the numerical code described in
ref. [102].

In this Section we use such oscillations, and in particular the fundameéntal0 quasi-radial F'-

mode, to compare the accuracy of the two formulations against the perturbative predictions. This is
summarised in figure 5.7 which reports the power spectral density (in arbitrary units) of the maximum
rest-mass density evolutioof(, figures 5.1 and 5.3) in the new and standard formulation (solid and
dashed lines, respectively). The simulations are relative to a non-rotating star (model A in Table 5)
with the left panel referring to an evolution with a fixed space-time, while the right one to an evolution
with a dynamical space-time. The specific spectra shown are calculated from the simulations at the
highest resolution and cover an interval25fms. It is quite apparent that the two formulations yield
spectra which are extremely similar, with a prominéhimode at abou?.7 kHz and1.4 kHz for the

fixed and dynamical space-time evolutions, respectively. The spectra also show the expected quasi-
radial overtones at roughly multiple integers of fianode, the first of which has a comparable power

in the case of Cowling evolution, while it is reduced of abd0if; in the full space-time evolution.
Indeed, the spectra in the two formulations are so similar that it is necessary to concentrate on the
features of the-mode to appreciate the small differences. These are shown in the insets of the two
panels which report, besides a magnification of the spectra nedr-thede, also the perturbative
estimatel},,(, as calculated with the perturbative code described in ref. [102].
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Figure 5.8:Relative difference between the numerical and perturbative eigenfrequenciesiofitivele for

the two formulations (solid lines for the new one and dashed lines for the standard one). The differences are
computed for different resolutions and refer to the non-rotating model A of Table 5 when evolved in a fixed
space-time (left panel) and in a dynamical one (right panel). Indicated with a dot-dashed line is the slope for a
second-order convergence rate.

To provide a more quantitative assessment of the accuracy with which the two formulations reproduce
the perturbative result we have computed the eigenfrequency dftmede, which we indicate as

FLum, by performing a Lorentzian fit to the power spectrum with a window.pfkHz. We remark

that it is essential to make use of a Lorentzian function for the fit as this reflects the expected functional
behaviour and increases the accuracy of the fit significantly. Shown in figure 5.8 is the absolute value
of the relative difference between the numerical and perturbative eigenfrequenciesfoftbde,

|1— Frum/ Fpert | fOr the two formulations (solid lines for the new one and dashed lines for the standard
one). The differences are computed for different resolutions vith0.4M, h/2 andh /4 and refer to

the non-rotating mode A of Table 5 when evolved in a fixed space-time (left panel) and in a dynamical
one (right panel). Indicated with a dot-dashed line is the slope for a second-order convergence rate.
This helps to see that both formulations yield an almost second-order convergent measure of the
eigenfrequencies of thE-mode, with the new formulation having a truncation error which is always
smaller than the one coming from the standard formulation. Given the importance of an accurate
measurement of the eigenfrequencies to study the mode properties of compact stars, we believe that
figures 5.7 and 5.8 provide an additional evidence of the advantages of the new formulation.

Finally, we note that a behaviour similar to the one shown in figures 5.7— 5.8 has been found also for
rotating stars although in this case the comparison is possible only for evolutions within the Cowling
approximation since we lack a precise perturbative estimate of the eigenfrequency for model B of
Table 5 for a dynamical space-time.
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5.4 Cylindrical Shock Reflection

One of the most important properties of HRSC schemes is their capability of handling the formation
of discontinuities, such as shocks, which are often present and play an important role in many astro-
physical scenarios. Tests involving shocks formation are usually quite demanding and codes that are
not flux-conservative can also show numerical instabilities or difficulties in converging to the exact
solution of the problem. Since both the new and the standard formulation solve the relativistic hy-
drodynamics equations as written in a flux-conservative form, they are both expected to be able to
correctly resolve the formation of shocks, although each with its own truncation error. In the follow-
ing test we consider one of such discontinuous flows and show that the new formulation provides a
higher accuracy with respect to the standard one, stressing once again the importance of the definition
of the conserved variables.
More specifically, we consider a one-dimensional test, first proposed by [103], describing the reflec-
tion of a shock wave in cylindrical coordinates. The initial data consist of a pressureless gas with
uniform densitypy = 1.0, radial velocityvj = —0.999898, corresponding to an initial Lorentz factor
Wy = 70.0 and an internal energy which is taken to be small and proportional to the initial Lorentz
factor,i.e, e = 107°(Wj). During the evolution an ideal-fluid EOS (3.48) is used with a fixed adi-
abatic index” = 4/3. The symmetry condition at = 0 produces a compression and generates an
outgoing shock in the radial direction. The analytic solution for the values of pressure, density, gas
and shock velocities are given in [103]. From them one can determine the pasitoiithe shock
front at any timef

o, = L= DWoleg]

Wo+1

This can then be used to compare the accuracy of the two formulations.
In the left panel of figures 5.9 we show the value of the radial component of the velgcéy a
function of » at a timet = 0.002262 ms and for a resolution of /M, = 6.25 x 10~°. The solid line
represent the analytic solution, the short-dashed line the numerical solution computed with the new
formulation and the long-dashed line the one obtained with the standard formulation. As it is evident
from the inset, the position of the shock is very well captured by both formulations, but the new one
is closer to the exact one at this time.

(5.3)
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Figure 5.9: Left panel: Comparison of the velocity profiles for the two formulations in the solution of the
axisymmetric shock-tube test with a resolutiorhof 6.25 x 10~° M, The solid line shows the exact position

after a timet = 0.002262 ms, while the short-dashed and the long-dashed lines represent the solutions with
the new and the standard formulations, respectiRight panel:Comparison of the error in the determination

of the position of the shock in the two formulations. Note the first-order convergence rate as expected for
discontinuous flows.

To compare with the exact prediction given by expression (5.3), we compute the numerical position
of the shock as the middle of the region where the value of the velocity moves from the pre-shock
valuev;" to the post-shock one, (in practice, we fit a straight line between the last point of the
constant post-shock state and the first point of the constant pre-shock state and evaluate the position
at which this function has value;” + v, )/2.). The right panel of figure 5.9, shows the relative error

1 — (24 )num/ (s )anal IN the position of the shock at time = 0.002622 ms and for five different
resolutions:h = 0.01 Mg, h/8, h/40, h/80 and h/160. Indicated with a dashed line is the error
computed when using the standard formulation, while indicated with a solid line is the error coming
from the new formulation. Note that both formulations show a first-order convergence, as expected
for HRSC schemes in the presence of a discontinuous flow, but, as for the other tests, also in this
case the new formulation has a smaller truncation error. A similar behaviour is shown also by other
quantities in this test but these are not reported here.

It is useful to note that the difference between the two formulations in this test is smaller than
in the previous ones, being of a factor of a few only and not of orders of magnitude. We believe this
is due in great part to the fact that, in contrast with what happens for stars, the solution in the most
troublesome part of the numerical domaiie.(nearx ~ 0, z ~ 0) is not characterized by particularly

large values of the fields or of the fluid variables. In support of this conjecture is the evidence that at
earlier times, when the shock is closer to the axis, both the absolute errors and the difference between
the two formulations are larger.
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Chapter 6

Critical phenomena and gravitational
collapse

6.1 Critical phenomena in gravitational collapse

In what follows we give a brief overview of critical phenomena in gravitational collapse and which
will be useful to cast our results in the more general context of critical phenomena in general relativity.
We refer the interested reader to [11] for a more systematic presentation.

6.1.1 Self-similarity

Before dwelling on critical phenomena and because self-similarity plays a central role in this context,
it is useful to recall briefly the definitions of “continuous” self-similarity and “discrete” self-similarity.

We refer the interested reader to [104] for a more detailed discussion. We recall that a spacetime is
said to be continuously self-similar if there exist a vector figlsuch thatv,&,) = g,.,. Vector

fields satisfying this condition are said to be “homothetic” as we can easily construct a one-parameter
group of transformationsys: z# — y#(s), wherey*(s) is the integral curve associated with

passing through:#. It is then easy to see that is an homothetic transformation as the associated
push-forward, acts as a rescaling on the metric

Qb:g,uu = GQSQW/ . (6.1)

For this reason in a system of coordinates adapted to the self-similarity
) 1
[
e =(5) 62)

guu(77 xz) = eizTguu(wi% (6.3)

and the new metrig,,, appears explicitly self-similar,e.independent of the.

Similarly, a spacetime is said to be “discretely self-similar” (DSS) if a discrete version of (6.1) holds.
In particular, in ref. [22] Gundlach defines a spacetime to be DSS if there exist a diffeomorphism
and a real constark such that for any positive integer

((b*)ngw/ = QQnAguu . (64)

the metric coefficients read
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In coordinates adapted to the self-similarity a pdihtvith coordinates 7, #%) is mapped byp into
(tr — A, 2%) and the metric can be written as

.g,ul/(Ta 552) = 6_27—.?7“1/(7—’ xz) > (65)
where ' '
Gu(T+ A 2") = g (7, 2°). (6.6)

Thus, if V#7 is time-like and induces a Cauchy foliation of the spacetime, we can give a physical
interpretation of the dynamics of DSS solutions as a combined effect of a rescaling and a periodic
“echoing” of the geometry.

B
black hole

P>

Figure 6.1: Phase space picture of type-II critical phena@nerhe surfac€ represents the critical
manifold, separating the basins of attractiomiadnd B. The liney represents a generic one-parameter
family of initial data intersecting the critical manifold i8*. Generic initial data starting & (0) will
evolve towardsA or B following the arrowsZ(7), data near the threshold will be marginally attracted
towards the critical solutio*. Points exactly on the critical manifold will be attracted to the critical
solution.

6.1.2 The basic concepts

Let us consider a group of one-parameter families of solutiShB], of the Einstein equations such

that for everyP > P*, S[P] contains a black hole and for evey < P*, S[P] is a solution not
containing singularities. We say that these families exhibit a critical phenomenon if they have the
common property that, aB approaches”*, S[P] approaches a universal soluti¢tiP*], i.e. not
depending on the particular family of initial data, and that all the physical quantiti§§Fifdepend

only on|P — P*|. In analogy with critical phase transitions in statistical mechanics, these phenomena
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are then classified as type-Il or type-I critical phenomerid. [In what follows we briefly recall the
differences between the two classes.

a) Type-ll critical phenomena. Type-ll critical phenomena involve the existence of a CSS or DSS
solutions sitting at the threshold of black-hole formation. They are characterized by the mass-scaling
relation:

MBH = C’P - P*”y y (67)

where~ is independent upon the particular choice of the initial data. The nomenclature “type-II”
comes from the analogous type-Il phase transitions in statistical mechanics, which are characterized
by scale invariance of the thermodynamical quantities [11].

These phenomena are usually interpreted in terms of attractors in an infinite-dimensional phase space,
but we will here present a qualitative picture which can be useful to fix the ideas (see also the review
in [11]). A more rigorous study employing the renormalization group formalism can be found instead
in [13].

Let us consider general relativity as an infinite dimensional dynamical system in an abstract phase
space in which extra gauge freedoms have been eliminated so that eact¥poant,be thought as an

initial data-set for the Einstein equations and the associated time development as a line in this space:
t — Z(t). We suppose to have chosen a slicing adapted to the self-similarity of the critical solution
so that it appears as a fixed poigt;, in the CSS case or a closed orbit for the DSS case (see [11] for

a more in-depth discussion of the consequences of these assumptions).

In the case of CSS solutions, the main features of this phase space are the presence of two attractive
sets: A and B representing regular solutions without singularities and black-hole solutions. Their
basins of attractions are separated by a manifé|aalledcritical manifold on which there is an at-

tractor of Co-dimension one: the critical solutigfyy; this is shown schematically in figure 6.1. Any
generic one-parameter family of initial data can then be thought as a 1-dimensional line intersecting
the critical manifold in one point. Initial data witR < P*, will develop as regular solutions not con-
taining singularities and will therefore fall in the basin of attraction containing the so calksatitical
solutions(cf.setA in figure 6.1). Conversely, solutions with > P* will undergo gravitational col-

lapse with the formation of a black hole, thus falling in the basin of attraction containing the so called
supercritical solutiongcf.setB in figure 6.1).

The key point here is that the critical solution is attractive on the critical manifold. Stated differently,
nearly-critical solutions will experience “funneling” effects as all but one mode converge towards

If P ~ P*, then the unstable modig. the mode “perpendicular” t6, will be small until later in the
evolution, thus allowing for the observation of nearly-critical solutions. In this case, all but one mode
of the solution are “washed out” by the interaction with the critical solution, thus explaining both the
universality of the solution and the mass-scaling relation.

b) Type-l critical phenomena. Type-I critical phenomena are the ones in which the black hole
formation turns on at finite mass and the critical solution presents a non-self-similar stationary or
periodic solution configuration. The scaling quantity here is the lifetime of the metastable solution

1
ty = -3 In|P — P*| + const, (6.8)

where A\ does not depend on the initial data. This scaling can be justified using simple arguments
similar to the ones presented in [11] for the mass scaling in the type-Il case.
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6.2 Thermodynamics of the critical solution

As mentioned in the introduction of this chapter, there is a relation between the nature of the critical
phenomena in GR and the phase-transitions in statistical physic. This paragraph will come up with a
qualitative relation between both phenomena.

6.2.1 Entropy of the critical solution

A convenient way to study the properties of the critical solution is to characterize its thermodynamical
properties and in particular its entropy. The basic idea is that the metastable (critical) solution is simply
an equilibrium solution on the unstable branch of TOV configurations and thus that by measuring its
entropy it is possible to relate it to the corresponding equilibrium polytropic model. Following [105],
we express the second law of thermodynamics as

S =Sy + Cy In(T) — R In(p), (6.9)
whereS; is an integration constant that we set to zero and where

Cy = <5—;> (6.10)

is the specific heat capacity at constant pressure Fathé gas constant. In the case of an ideal Bas
is related to the specific heat capacities through the relation

dh d
R=C,—Cy = <ﬁ> - <£> , (6.11)
P v

whereh = 1+ €+ p/p is the specific enthalpy. Recalling that= CyT' andI’ = C,/Cy, the second
law of thermodynamics (6.9) for a polytropic EOS is simply given by

K
or equivalently
K = R exp <i> . (6.13)
Cv

Stated differently, the polytropic constant reflects all of the changes in the entropy of the system, so
that expression (6.13) allows a simple connection between the entropy of the critical solution, which
we measure as proportional 6 = p/p", and the properties of a corresponding equilibrium TOV
model.

In practice the polytropic constant can change enormously across the star especially after the collision
and since we are interested only in global quantities we use a volume-averaged polytropic constant

_ pr/deV

Q

and perform the volume integration not across the whole star but over a vbluvhere the rest-mass
density is larger tham0% of the initial central one. This choice removes the difficulties with possible
divergences near the stellar surface and we have verified that is robust against different values of the
threshold density.



Chapter 7

Critical phenomena in neutron stars:
Linearly unstable non-rotating models

7.1 Numerical setup

In what follows we briefly describe the numerical setup used in the simulations and the procedure
followed in the construction of the initial data. In essence, we us&\thesky 2D code described in
detail in [9] and based on the 3-dimensional co#e sky [100, 106, 107], to solve numerically and

in 2 spatial dimensions the full set of Einstein equations

Gy = 87T, (7.1)

whereG,,, is the Einstein tensor arifl,, is the stress-energy tensor. More specifically, we evolve a
conformal-traceless3‘+ 1” formulation of the Einstein equations as presented in [41], in which the
spacetime is decomposed into 3D space-like slices, described by afgtite embedding in the full
spacetime, specified by the extrinsic curvatéig, and the gauge functions (lapse) and3’ (shift),

which specify a coordinate frame. Axisymmetry is imposed using the “cartoon” technique [108] and
the equation are solved using finite differencing of order three. The chosen slicing condition is the
popular “1 + log” while the chosen spatial-gauge is the Gamma-freezing one. The field equations for
the three-metricy;; and the second fundamental fod); are coupled with the equations of motion

of general relativistic hydrodynamics

Vu(put) =0, Vv, T" =0, (7.2)

wherep is the (rest) baryonic mass density: is the four-velocity of the fluid and*" is the stress-
energy tensor of a perfect fluid
TF, = pHu!u, + pd*, . (7.3)

Here,H = 1 + ¢ + p/p is the specific enthalpy, is the pressurel’, is the Kronecker delta andis

the specific internal energy so that= p(1 + ¢) is the energy density in the rest-frame of the fluid.
These equations are closed using an ideal-gas equation of stat€ — 1) pe, with adiabatic exponent

I' = 2. The solution of relativistic hydrodynamics equations is obtained via a conservative formulation
of (7.2) as discussed in [9] and the use of high-resolution shock-capturing (HRSC) schemes with a
piecewise parabolic method (PPM) for the reconstruction of the primitive variables. The time-stepping
is done with a third-order total-variation diminishing Runge-Kutta algorithm. Finally, the spatial
discretization is done on a uniform grid having resolution of eithet 0.1 (medium resolution) or

67
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Table 7.1: Properties of some of the representative modelsaered and shown either in figure 7.1 or

in figures 7.5 and 7.6. More specificallyj; andS; are the extremes of the range of central densities
considered,P; is a largely subcritical model which expands to modBls-P, as the resolution is
increased, whil&), and R, represent the closest super and subcritical approximation of the critical
solution, respectively.

Point | p. K Mapm M, subcritical  supercritical
Ny 0.00395000 71.77 1.3879 1.5194
Py 0.00459316 71.39 1.3832 1.5194
Py 0.00341517 72.23 1.3754 1.5077
Py 0.00378525 71.58 1.3788 1.5134
Py 0.00387685 71.61 1.3809 1.5161
Q1 0.00459322 71.39 1.3832 1.5194
Ry 0.00459322 71.39 1.3832 1.5194
S1 0.00508840 71.95 1.3842 1.5194

I NN
|

h = 0.08 (high resolution). The outer boundary of the computational domain is det=at15 and

we have verified that the proximity of the outer boundary does not influence significantly the critical
solution.

The equilibrium configuration curves in the, Mapy) plane and the perturbative oscillations fre-
quencies quoted in the text have been computed using two codes kindly provided to us by S'i.
Yoshida [102] and C. Chirenti [109].

7.1.1 Initial Data
The initial data consists of a family of spherical stars having fixed baryonic mass
M, = 1.5194 = M, (7.4)

constructed using a polytropic equation of state K p', with I' = 2. Each model is computed by

fixing its central rest-mass densipy, while the value ofk” is fixed after imposing the condition (7.4).

The reason for this choice is that we want to guarantee that all the models considered have, at least
initially, the same baryonic mass to the precision in expression (7.4). Solutions with different baryonic
mass, in fact, are effectively in different phase spaces and thus not useful when looking at a critical
behaviour. Of course different models will also be slightly different because the perturbations will
slightly alter their mass-energy or because altholijhis conserved to high precision by employing

a conservative formulation of the equations, it is nevertheless not conserved to machine precision. All
of these latter errors, however, are entirely resolution dependent and can, therefore, be singled out by
considering simulations at different resolutions.

These initial models have been evolved under the sole effects of the perturbations induced by the
truncation error. Besides depending on resolution (and converging away), the amplitude of these
perturbations is difficult to measure as it depends on a number of different sources of error, such as
the interpolation error of the one-dimensional initial data on the three-dimensional Cartesian grid,
or the treatment of low density “atmosphere” regions, which are not measurable directly. However,
an indirect measure can be obtained by looking at a short evolution of a stable spherical star which,
in absence of any numerical error, would not exhibit any dynamics but which, in practice, oscillates
under the effects of these perturbations [6, 9, 18, 38, 100, 106, 110]. The amplitude of the observed
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Figure 7.1: Position of some of the most important modelsén(th, Mapn ) plane, where the solid
(black) line refers to a sequence with = 71.39, while the dashed (blue) line refers to a sequence

of models having baryonic.masd;, = 1.5194 = M,. The pointsN; and S; are the extremes of

the range of central densities considereitef. (7.5)],P; is a largely subcritical model, whil@, and

Ry represent the closest super and subcritical approximation of the critical solution, respectively. The
inset shows a magnification of the region near the critical solution; the properties of the model are
reported in table 7.1.

oscillations can be then interpreted as an indirect measure of the numerical perturbation. In particular,
we can consider the value of the average velocity in the radial direction during the first iterations
as an estimate of the amplitude of an equivalent velocity perturbation. In this case, for a spherical
star withp, = 0.00128 and K’ = 100 evolved for100 time-steps on @& = 0.1 grid, we measure an
average velocity,” ~ 1.1 x 10~°. Further insight can also be gained by the average of the momentum
constraint violation in the radial direction and the Hamiltonian constraint violation, which we measure
to be~ 2.3 x 1077 and~ 6.1 x 1075, respectively.

The determination of the critical value of the central dengjtys obtained rather straightforwardly

via a bisection-like strategy within the initial interval

0.00395 < p, < 0.0050884, (7.5)

where the extrema correspond to a stable oscillating star or to one collapsing promptly to a black hole,
respectively.

The main properties of the initial data are collected in table 7.1 and summarized in figure 7.1, which
reports the position of some of the most important models discussed in this papef gp, the pyr )

plane. More specificallyN; and .S; are the extremes of the range of central densities considered
[cfeq. (7.5)],P; is a largely subcritical model which expands to modejsP, as the resolution is
increaseddffigure 7.5), while(); and R, represent the closest super and subcritical approximation

of the critical solution, respectively. Note th&; and Q; differ only by the4.6 x 1078 % in the

central density and thus they appear identical in the figure. Note als@thét; and R; are all on

the unstable branch of the models of equilibrium and are therefore linearly unstable.
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As a final remark we note that although the use of an axisymongtgtem of equations is not strictly
necessary for the spherically-symmetric initial data considered here, their numerical solutions in 2
spatial dimensions via théhi sky2D code has been useful in view of the connections between the
critical behaviour discussed here and the one presented in the companion paper [24], where the head-
on collision of equal-mass neutron stars is considered. The possibility of using the same numerical
infrastructure and comparable truncation errors has been in fact very important in determining the
connections between the two critical behaviours.

7.2 Results

In what follows we discuss the nonlinear dynamics of the spherical stars as these evolve away from
their initial state on the unstable branch and exhibit a critical behaviour.

7.2.1 Critical solution

We first consider the evolution of models in the window (7.5) under the sole effect of the numerically-
induced perturbations. Some of these models, namely the supercritical ones, collapse to black hole,
while others, namely the subcritical ones, undergo a sudden expansion followed by a relaxation to-
wards the corresponding model on the stable branch of the spherical star solutions. This is clearly
shown in figure 7.2, which reports the evolution of the central rest-mass density and where different
lines refer to different initial data in the interval

0.0045931640625 < p. < 0.00459371875 . (7.6)

By looking at left panel figure 7.2 it is quite apparent how the survival time of the metastable so-
lution increases as the initial models approach the critical threshold and both the subcritical and the
supercritical solutions overlap for a long part of the evolution, before departing exponentially. It is
also worth remarking that the linear stability analyses of theses models indicates that they are linearly
unstable with a characteristic collapse time.the inverse of the imaginary part of the complex eigen-
frequency of the fundamental mode)~ 440. Yet, as shown in figure 7.2, the metastable models
survive for much longer times and for almaest- 850 for the models closest to the critical threshold.
A similar behaviour in the evolution of the central rest-mass density has been observed also in the
simulations reported in [18], although those refer to magnetized and rotating stellar models and thus,
being them result of three-dimensional simulations, are restricted to a much smaller interval of signifi-
cant figures. In addition, and as mentioned in the Introduction, evidence for a type-I critical behaviour
for the evolution of the central rest-mass density has been shown also in the head-on collision of two
equal-mass spherical stars [20] and will be further discussed in the companion paper [24].
As the secular evolution in the central density is a well-known “feature” of the numerical solution of
relativistic multidimensional stellar models and has been observed in codes implementing very differ-
ent numerical methods and formulations of the Einstein equations [6,9, 18, 38,100,106,110], we have
isolated this secular behaviour by computing a least-square fit of the common part of the evolution in
order to isolate the true dynamics from the low-frequencies numerical components. More specifically,
we have modeled the evolution of the central rest-mass density of the metastable equilibrium via the
Ansatz

o(t) = po + pit + p2 cos(2mhit + ¢1) + p3 cos(2mhat + v2) , (7.7)

wherep, — po are just coefficients in the interpolation and do not have a particular physical meaning.
On the other hand, the frequencies and ko are chosen as the two smallest frequencies appearing
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Figure 7.2: Left panel: evolution of the central rest-masssdg near the critical threshold with
different lines referring to different initial models. Right panel: the same as in the left panel but
corrected for the secular evolution given by eq. (7.7).

in the Fourier spectrum of the central density during the metastable ptfdiggife 7.3 and see also
discussion below on the spectral power density of the putative critical solution). The residuals after
the fit are shown in the right panel of figure 7.2 and help considerably in appreciating the dynamics of
the unstable models near the critical value.

Using a large set of simulations with resolution/of= 0.1 and a straightforward bisection strategy

we have located the critical threshold to black-hole formation at a central density

pr = 0.004593224802 + 2.1 x 10712, (7.8)

Clearly, we expect this value to depend on the initial perturbation and thus on the resolution used, as
well as on the numerical method employed. On the other hand, we also expect that the associated
solution and the critical exponent to be “universal”, in the sense that they should not depend depend
sensitively on the perturbation or on the particular family of initial data as far as this family is charac-
terized by a single parameter and thus intersects the critical madifald single point which is near
enough to this solution. In this case, in fact, the associated critical solution is supposed to be at least
locally attractive on a sub-manifold of the phase space of co-dimension one.

To validate that the behaviour discussed so far and shown in figure 7.2 does represent a type-I critical
behaviour we compute the survival time of the metastable solatipa. the“escape time’, and study

how this varies as the critical solution is approached. We recall that we expect that the escape time
near the critical for a type-I critical phenomena should behave as

1
T:—Xln\pc—p’c‘\—kconst, (7.9)

and such expected solution is indeed shown as a dashed line in figure 7.4. Also shown with squares and
triangles are the computed escape times for different initial data and different resolutions (blue squares
for h = 0.1 and red triangles folk = 0.08). The latter are calculated in terms of the timeat which

the relative difference between the observed central baryonic density and the best approximation of
the critical solutiong(¢) (7.7) becomes larger than We find that, for a large enough such that

1> e > e* > 0, these times depend only weakly eand thus give a good measure of the departure
time from the critical solution. A value af = 0.5% provides a sufficiently accurate measure and this

is the one employed for the data points shown in figure 7.4. We finally estimate the critical exponent
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Figure 7.3: Power spectral density of the evolution of thereénest-mass density for the model clos-

est to the putative critical solutiong. with p. = 0.0045932248034) when the secular drift part (7.7)

has been removed from the data. The eigenfrequencies associated with the corresponding spherical
star model are also shown as vertical lines.

A by making a linear least-square regression of the data points of sub- and supercritical solutions and
then by taking the average of the two values. Using the medium-resolutierd.1 simulations we
therefore obtain for the critical exponent

A = 0.02149665 , (7.10)

with a coefficient of determinatioR? relative to the linear regression (7.9) and computed on the full
dataset containing both sub and supercritical solution8,90517. The critical exponent (7.10) is

found also in the case of the= 0.08 simulations, although in this case the scattering is somewhat
larger and the data agrees withi#. We note that these high-resolution simulations are computation-
ally very expensive and this is why we have restricted them to a smaller set of initial data. Clearly, the
match between the computed escape times and the one expected from the critical behaviour is very
good over the 6 orders of magnitude|jn — p%| spanned by our data-set and thus provide convincing
evidence that indeed critical behaviour can be found in the dynamics of linearly unstable spherical
stars.

As a final remark we note that while the evidence for a critical behaviour is clear, much less clear is the
physics of the critical solution which is, after all, a perturbed spherical star. Recent studies of nonlinear
perturbations of relativistic spherical stars have shown that linearly unstable stars can be stabilized via
nonlinear couplings among higher-order modes [111]. It is possible that such a nonlinear coupling
is present also here and we conjecture therefore that the stability of the metastable solution is due to
mode coupling of the first overtones of the fundamental mode. Support to this conjecture comes from
the power spectral density in figure 7.3, which shows that, apart fromAt#m®de which is obviously
missing as it has only imaginary eigenfrequency, the spectrum of the metastable solution is essentially
identical to the one of an excited spherical star With K) = (p*, K*) and M, = M,. Interestingly,

most of the energy is in the first overtorié 1, even though the numerical perturbation can be thought
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Figure 7.4: Escape time as a function ofln |p — p*| for subcritical (left panel) and supercritical
solutions (right panel), respectively. The blue squares corresponds to the results obtained with the
h = 0.1 resolution, while the red triangles to the results obtained witththe 0.08 resolution. The
dashed lines represent the fit obtained using (7.9) with\tbletained from thé, = 0.1 solutions.

as “white noise” exciting all the modes of the star with almost equal energy. The behaviour discussed
above persists also when considering models with higher spatial resolutions.

7.2.2 Subcritical solutions

While the final fate of supercritical solutions is clearly that of leading to a collapse and to the formation
of a black hole, the one of subcritical solutions deserves a more detailed explanation. As one would
expect, given that the initial data represent linearly unstable stars, the subcritical solutions show a
first expansion as the star migrates to the stable branch of the equilibrium configurations, which is
then followed by a slow relaxation where the central rest-mass density exhibits strong oscillations
around smaller and smaller values, that would eventually reach in the continuum limit, the value
corresponding to the model on the stable branch having the same gravitational mass of the initial
one. In practice, however, the migration to the stable branch is accompanied small losses both in
the gravitational mass and in the rest-mass which, although smallerthafi%, need to be taken
properly into account.

More specifically, we have analyzed in detail the evolution of the largely subcritical nipdelf.table

7.1), which is an unstable spherical star with an F-mode whose imaginary part of the eigenfrequency
isv; = 0.461 kHz. We evolve therefore evolved such a model it with three different spatial resolutions
of h = 0.1, h = 0.09 andh = 0.08, and studied its migration to the stable branch. The asymptotic
state of the solution and in particular to the final central rest-mass dendiyestimated by modeling

the time evolution of the oscillating star on the stable branch with a sidpdaitzof the typep(t) =

ps + p1/t and by performing a nonlinear least square fit on an appropriate window including the final
part of the dynamics. For any given resolution we have then computed the total baryonic-mass losses
due to the numerical dissipatiahM;, = M, — M, y, and determined the polytropic coefficiekit;

yielding a spherical stellar model with central rest-mass depsitgnd baryon mass/,, ;. Clearly,

for such a model itis then also possible to compute the gravitational mass and thus track the migration
ona(p.,M,.,,) plane.
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Figure 7.5: Dynamics of the migration on(a., M,,,,) plane. The linearly unstable and largely
subcritical modelP; migrates to a new solution on the stable branch of equilibrium configurations.
Indicated withP, — P, are the new asymptotic states for resolutiéns- 0.1 — 0.08, respectively.
Indicated with a thick solid line is the sequence of initial models having the same polytropic index of
P, while indicated with dotted and dashed lines are sequences of models having the same rest-mass
as the asymptotic modeld, — P,. Finally, shown as”; is the asymptotic state @ in the continuum

limit; note that even for the coarse-resolution case the changes in baryonic and rest-mass are only of
~ 0.7%.

The overall results of these migrations are shown in figure 7.5, where we report the stellar configura-
tions onM,, = const. curves. The minimum of each curve corresponds to the maximum in the usual
(p, Mapm), K = const., plots and separates the stable and unstable branches of solutions. When a
resolution ofh = 0.1 is used the moddP; migrates to the new asymptotic model, while it will mi-

grate to model$’ and P4 as higher resolutions @&f = 0.09 andh = 0.08 are used, respectively. Note

that already with the coarsest resolutioniof= 0.1 the losses in gravitational masses ard).65%

and that these decrease~td).16% when a resolution of = 0.08 is used. Finally, indicated wit,

is the expected asymptotic model when the numerical losses are extrapolated to the contindym limit
clearly, in the limith — 0, the migration of modelP; takes place to a new state having the same
gravitational and baryonic mass as the initial one.

7.2.3 Perturbation of nearly-critical solutions

As discussed in Sect. 7.2.1, the central rest-mass density of the linearly unstable models can be used
as a critical parameter for the gravitational collapse of a linearly unstable spherical star, in contrast to
what has been observed for example by Novak in [15] or by Noble in [17]. We believe this is due to the
very different set of initial data selected here and in [15, 17]. Indeed, the reason why this behaviour
has not been observed in many previous studies is that we consider initial stellar models that are

!Note that we do not mark this point with a symbol as it does not correspond to a numerically computed value, as it
instead forP,, P; and Py
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already linearlyunstable in contrast with what done in [15, 17], where the initial models are instead
linearly stableand then subject to a perturbation (either by introducing a radial velocity [15,17], or by
considering employing the interaction with a scalar field [16]). For our set of initial data, therefore,
the critical solution is essentially a spherical star with an unstable F-mode, and any finite perturbation
exciting this mode will change the solution in a dramatic way (A discussion of this change within a
phase-space description will be made later on when presenting figufe 7.7)

To confirm this hypothesis, we follow [15] and [17], and construct a new family of spherical initial
data obtained by perturbing the slightly supercritical mog@el(cftable 7.1) via the addition of a
radial velocity perturbation in the form of the 3-velocity component

v (z) = %(&c—x?’), x RL*’
whereU is the amplitude of the perturbation at the surface of the ftarand can be either posi-
tive (outgoing radial velocity) or negative (ingoing radial velocity). Because the perturbation (7.11)
matches the eigenfunction of an idealized F-mode perturbation, it should excite the only unstable
mode of the critical solution.
Performing simulations for different values &f and a resolutiorh = 0.1 we find, not surprisingly,
that for negative values df’ the perturbed models @), collapse to a black hole. Furthermore,
because in this case the radial velocity accelerates the development of the unstable mode, the larger
the values ot/ the shorter the time to collapses. ™ ~ —c; log(U) + c2, wherec; andcy are positive
constant coefficients. On the other hand, for positive valués, dfie perturbed models 6, which
we recall is supercritical fol/ = 0, becomes subcritical and shows the same qualitative behaviour as
that of modelR;. Hence, a suitably perturbed supercritical model can behave as a subcritical one.
The dynamics of these perturbed, nearly-critical models is shown in figure 7.6, where the solid (black)
line represents the supercritical solutighy, while the dotted (blue) line represents the subcritical
solution R;y. The dashed lines show again the evolutiortlaf but when subject to a positive (red
short-dashed line) or negative (green long-dashed line) velocity perturbation. The dynamics shown
in figure 7.6 underlines an important characteristic of critical phenomena: the precise value of the
critical parameter at the intersection between the one-parameter family of solutions and the critical
manifold depends on the family itself. In particular this means that if we fix a value of the perturbation
amplitude,U # 0, we have to expect to find the critical solution at a valugi/) different from
the one quoted in (7.8) which is attained in the cése- 0. For this reason the application of a non
infinitesimal perturbation to a nearly-critical solution results in a dramatic change in the dynamics of
the system.
The phase-space representation of this concept is summarized in figure 7.7, where we show two one-
parameter families of perturbed TOV initial data, whose critical parametes the central rest-mass
density. The perturbation is given by the composition of truncation errors and of a radial velocity
perturbationU in the form (7.11), wheré/ = 0 or U = Uy > 0. As these families represent dif-
ferent initial configurations, they will intersect the critical manifaldat two different points, with
correspondingly different values of the critical paramgi@rp}:(0)} and{Uy, p:(Uy)} (these points
are marked as filled circlel)In particular, wherU runs betweei andUy, the set of critical config-
urations{U, p;(U)} will represent a curve on the critical manifaltland this is shown with a violet

(7.11)

2With “perturbation” we are here referring to a globally coherent, resolution independent perturbation such as the one
given in eq. (7.11). This has to be contrasted with the random, truncation-error induced and resolution-dependent perturba-
tions we have considered in Sect. 7.2.1

3In our notation, the poinfUo, p:(Uo)} is the critical solution with initial velocity perturbation given by (7.11) with
U = Uy. Similarly, a configuratiof Uy, p(0) } will be a member of the family with initial velocity perturbatidrn,, but
with a central density which is the critical one for a model viith= 0
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Figure 7.6: Perturbation of nearly-critical solutions. Buodid (black) line represents the supercritical
solution @1, while the dotted (blue) line represents the subcritical solufign The dashed lines
show again the evolution ap,, but when subject to a negative (red short-dashed line) or positive
(green long-dashed line) velocity perturbation. Clearly, in the latter case the supercritical s@lution
becomes subcritical and shows the same behaviour as the sakjtion

solid line in figure 7.7. Considering now a configuration nfarp’ (0)} and applying to it a velocity
perturbation in the form (7.11) witlh = Uy, will produce a new configuratiofiUy, p:(0)} which is

not necessarily on the critical manifold (this is marked with a filled square). Indeed, the whole family
{U, p:(0)}, that is the set of configurations with a nonzero initial velocity perturbation but central
density which is the critical one for the zero-velocity case, are in general expected to be outside the
critical domain. The family{U, p’(0)} is shown with a black dot-dashed line in figure 7.7.

As a final remark we note that another important difference between the work presented here and that
in [15,17] is that the we find evidence of a type-I critical behaviour with a periodic solution, in contrast

to what found in [15, 17], which is instead of type-Il and with DSS solutions. We believe the origin of
this important difference and of the presence of a periodic solution is in our use of an ideal-fluid EOS
and hence in the presence of an overall scale in the problem. Conversely, the spherical stars considered
in the above mentioned works were evolved using either an ultra-relativistic EOS [13] (which, as
commented in the Introduction, are intrinsically scale-free) or with very strong perturbations [15,17],
thus in a regime of the EOS which is approximatively ultra-relativistic [11].
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Figure 7.7: Phase-space diagram representation of ne#ibaksolutions. In particular, we show
with red solid curves two one-parameter families of initial data, perturbed by the addition of a radial
velocity profile in the form (7.11) witilU = 0 or U = Uy > 0. The locus of the critical points,

{U, p(U)}, is shown with a violet solid line, while the family of initial-dafd/, p’(0)} is shown with

a black dot-dashed line and the po{ify, p(0)} is marked with a filled square. The latter represents
therefore the family of initial data obtained by adding a velocity perturbation with amplifuibethe
model with central density would whdihi = 0. Also highlighted with filled circles are the critical
points for the families witil/ = 0 andU = Uy, i.e. {0, p:(0)} and{Uy, p:(Uy)}.






Chapter 8

Critical phenomena in neutron stars:
Head-on collisions

8.1 Numerical Setup

All the simulations presented here have been performed using an ideal-gas EQB-1)pe, where

p is the baryonic density andhe specific internal energy in the rest frame of the fluid. The discretiza-
tion of the spacetime evolution equations is done using fourth-order finite-differencing schemes, while
we HRSC methods with PPM reconstruction for the hydrodynamics equations. The time-stepping is
done with a third-order TVD Runge-Kutta scheme and despite the use of higher-order methods, the
convergence order drops to about 1 after the two NSs have merged and large shocks develop (see [112]
for a discussion on the convergence order in relativistic-hydrodynamics simulations).

The spatial discretization is done via a grid with uniform resolution, which we have taken to be either

h =0.1 Mg orh = 0.08 M. Furthermore, as long as non-spinning NSs are considered, the head-on
collision also possesses a symmetry across the plane midway between the two stars and orthogonal
to the colliding direction. As a result, the problem needs to be solved only for one star and suitable
boundary conditions be applied across the symmetry plane. The outer boundary of the computational
domain is set a0 M, and thus rather close to the two stars. However, this is adequate since we are
not interested here in extracting gravitational waveforms and since we have verified that the violation
of the constraints at the outer boundaries are not larger than elsewhere in the computational domain.
As a final remark we note that we use the same gauges as those employed in [113] and thus the
slicing is sufficiently “singularity-avoiding” that it is not necessary to perform an excision of the field
variables when following the evolution of a supercritical solution. However, because of the very
high-resolution used, the rapid growth of the rest-mass density is not compensated by the intrinsic
numerical dissipation as instead happens in [113] or in [107]. As result we excise the solution of
the hydrodynamical quantities only as discussed in [106, 114] in order to obtain a stable, long-term
solution.

8.2 Initial data

Our initial data consists of two equal-mass non-rotating NSs having initial coordinate separation,
computed as the coordinate distance between the two stellar centegs)Hf. Following [20], we
construct these stars using a polytropic E@S; K p'', with adiabatic exponerit = 2 and polytropic
constantk = 80, which is equivalent tdX = 0.00298 ¢2/p,, and wherep, = 2.3 x 104 g/cm?®

79
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is approximately the nuclear density. The stars at the aftipoint have a radius ok = 14.7 km,

a baryon/gravitational (ADM) mass 0f760/0.732 M. The main properties of the critical solution

are reported in table 8.1, where they are indicated as model “A’.

Note that the maximum baryon/gravitational mass for the chosen value of the polytropic constant is
1.609/1.464 M, and thus the object produced by the collision will have a baryon/gravitational mass
which is above such maximum mass. However, as we will discuss below and in contrast with the
claim made in [20], this can still lead to equilibrium solution for a TOV star.

Table 8.1: Equilibrium models used for the collision (model A) or that are discussed in figure 8.5
(models B and C). Listed are: the value of the gravitational (ADM) mass, the total rest-mass, the
radius of the star, the central rest-mass density and the polytropic coAst&ar each model we also
report the maximum allowed ADM and rest-masses for a TOV having the same polytropic constant.

Model MADM Mb R (km) Pec K MADM,maX Mb,max
A 0.732 0.760 14.761 0.00058 80 1.464 1.609
B 1.505 1.514 9.135 0.00963 145 1.972 2.166
C 1.460 1.547 19.003 0.00055 155 2.038 2.240

The stars constructed in this way are then boosted towartisotlaer along the-axis with a velocity

vp = 0.15, which is similar to the free-fall velocity as computed from the Newtonian expression for a
point-particle. With these choices the only remaining free parameter needed to characterize the initial
data is the central rest-mass density of the two NSswhich we use as our critical parameter (We
note that the value chosen for the initial velocity does influence qualitatively the results obtained and
indeed it can act as a critical parameter in a sequence at cops{20j).

8.3 Results

We next discuss the dynamics of the collision and the properties of the critical solution as they appear
from our numerical simulations.

8.3.1 Dynamics of the collision

The basic dynamics of the process is rather simple to describe. As the two NSs are accelerated towards
each other by the initial boost and the mutual gravitational attraction, they collide, leading to a merged
object which is wildly oscillating and with a mass which is above the maximum mass of the initial
configuration. Depending on whether the initial central density is larger or smaller than the critical
one, the metastable solution either collapses to a black hole (supercritical solutions) or it expands to a
new stable stellar solution (subcritical solutions).

Before entering the details of the discussion it may be useful to remark that the simulation of the head-
on collision of two NSs in the neighborhood of the critical solution is a very demanding calculation,
even for modern general-relativistic hydrodynamical codes. This is because adaptive mesh refine-
ments do not provide any significant speed up and, at the same time, rather high level of resolutions
are needed to capture the dynamics faithfully. In spite of these computational difficulties mentioned
above, using th&hi sky2Dcode we are able to identify the critical value fprwith an accuracy of

11 significant digits, a level of precision never achieved before in the study of NS head-on collisions.
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More specifically, we have measured the critical central itens
pr = (5.790998966725 + 0.00000000003) x 1074, (8.1)

as the midpoint between the largest central rest-mass density among the subcritical models and the
smallest central rest-mass density among the supercritical ones. In other words, binarieswith

have been simulated to collapse to a black hole, while binariespyith p; have been computed to
expand to a stable star.

As pointed out by [20], this value will ultimately depend on the numerical resolution used and the
other discretization parameters. Nevertheless, given a set of initial data and numerical setup, (8.1)
gives a precise measure of how close we are able to get to the critical solution.
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Figure 8.1: Evolution of the maximum rest-mass density ofrtiost massive subcritical model with

initial value p. = 0.000579099896670 (black solid line) the least massive supercritical model with
initial value p. = 0.000579099896675 (red dashed line). Also highlighted are the four different
phases of the dynamics. The first one corresponds to the initial configuration of the system (labeled
as “A"). After the collision, a new metastable solution is created during which the central density
exhibits violent oscillations (labeled as “B”); the subcritical and supercritical solutions are essentially
indistinguishable during this stage. Finally the subcritical and supercritical solutions separate, with
the first one relaxing to a stable expanded configuration (labeled as “C”), while the second collapses
to a black hole (labeled as “D”).

Compressed in figure 8.1 is a considerable amount of information about the criticality of the head-on
collision. More specifically, we show the time evolution of the central rest-mass density of the heav-
iest subcritical model (black solid line) and lightest supercritical model (red dashed line) computed.
Overall, we can distinguish three different phases of the dynamics. In the first one (marked with “A”
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in the figure) the central density increases from its initellre to a maximum one reached, which is
attained when the stellar cores merge.
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Figure 8.2: Iso-density contours in tlie, z) plane of the least massive supercritical solutipn €
0.000579099896675). The corresponding times are shown at of each panel, while the color-code
for the rest-mass density is indicated to the right. The isolines are shown for the valpes- of
10'26,10'27, 10132 10137, 1042 and 10'*7 g/cm3. The second framel (= 0.394 ms) is taken
during the merge process. The next five frames illustrate the star during the metastable equilibrium.
Finally the last frame#(= 2.759 ms) shows the solution after the formation of a black hole, whose
apparent horizon is shown with a thick black dashed line.
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Figure 8.3: The same as figure 8.2, but for the most massiveriscdic model (. =
0.000579099896670). The first five frames are similar (although not identical) to the correspond-
ing ones in figure 8.2 since they refer to the metastable evolution when the two solution are essentially
indistinguishable. The last frame & 2.759 ms) shows a new NS produced from the migration of

the metastable object to the stable branch of the equilibrium solutions.
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The second phase (marked with “B”) starts from 0.4 ms and is characterized by strong oscillations
around the metastable equilibrium. During these first two phases the subcritical solution and the
supercritical one are essentially indistinguishable, but at the end of the secondighaseé,~ 1.2

ms, the different nature of the two solutions emerges and the evolutions of the rest-mass density differ.
More specifically, during the third phase (marked with “C” and “D”), the supercritical solution shows

an exponential increase of the central rest-mass density as a result of the collapse to a black hole. The
subcritical solution, on the other hand, shows a violent expansion and the central density settles to a
value which is about one tenth of the maximum one attained during the second phase. Clearly, the
most interesting part is obviously the one corresponding to the second phase, during which the merged
object is a metastable solution in which the central density has strong, non-harmonic oscillations (see
inset of figure 8.1).

In order to better describe the dynamics of the system, we show in figures 8.2 and 8.3 the evolu-
tion of color-coded contours of the rest-mass density of the supercritical and subcritical solutions,
respectively, when shown at representative times in(ihe) plane. The first row of panels in fig-

ure 8.2 shows the initial configuration of the system at time 0 and a subsequent stage, at time

t = 0.394 ms, corresponding to when the first maximum in the rest-mass density is reathiaglife

8.1). This time also represents the one at which the two stellar cores enter in contact and thus marks
the beginning of the metastable equilibrium. During this stage, two strong shock waves propagate
along thez-direction, ejecting part of the matter as shown in the third panel at #ime).788 ms.

Most of this matter is still gravitationally bound and falls back onto the central object creating a new
shock wavedf. fourth panel at = 1.182 ms). This process is then repeated multiple times and results

in a sequence of bounces until the object finally collapses to a black hole, as shown in the last panel
at timet = 2.759 ms and which marks the fate of the supercritical solution.

Similarly, figure 8.3, reports representative stages of the evolution of the subcritical solution. A rapid
inspection of the first five panels of figure 8.2 indicates they are very similar to the corresponding ones
in figure 8.2. Indeed, the supercritical and subcritical solutions are the same to the precision at which
we measure the critical solutiowef[ (8.1)] and we have reported the panels here exactly to remark
the similarity during the first two stages of the evolution. However, being it a subcritical solution, the
metastable evolution does not end with a black hole formation but, rather, with a new stable stellar
solution. This is shown in the sixth panel of figure 8.3 and refers to atime2.759 ms, after the
metastable star has expanded violently and when it has reached a new quasi-spherical configuration.
With the exception that we are able to get closer to the critical solution, much of what reported here
confirms what found by Jin and Suen in [20]. In the following section, however, we discuss how and
why our conclusions about the properties of the critical solutions differ from those discussed in [20]
and subsequently in [21].

8.3.2 Nearly-critical solutions

The scope of this section is to show that, contrary to what suggested in [20, 21], the metastable
object can be interpreted rather simply as the perturbation of a new equilibrium configurations of
linearly unstable spherical stars. To provide evidence that this is the case, we have computed the
evolution of the average entropy of the system for a subcritical solution as computed via the volume-
averaged polytropic constant (6.14). This is shown in figure 8.4, where we reportdtand the

central density,. during the metastable equilibrium or stage “B” (left panel) and when the metastable
solution has expanded to recover a stable solution or stage “3” (right panel).

Clearly, the two panels show that two quantities are correlated and indeed in phase opposition —
entropy increases when the density decreases and viceversa — as one would expect from the first law
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of thermodynamics
TdS = pdV +dQ = pdV ,

(8.2)
where the second equality comes from assuming adiabatic transformations.
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Figure 8.4: Left panel: Evolution of the central rest-mass density and of the effective polytropic
constant(K’) for the most massive subcritical model during the metastable equilibrium phase of the
dynamics.Right panel:The same as in the left panel but during the relaxation to a stable configuration.

of the central density,e. (K'), p., and thus equilibrium polytropic models with such polytropic con-

stant and central density. These equilibrium models can be constructed either relative to the metastable
stage or relative to the final stable stage of the subcritical solutions.

Using the results shown in figure 8.4, it is then possible to compute a time-averaged vgiljesofd
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Figure 8.5: Equilibrium sequences of TOV stars with fixed polgic constant in a standard

(pe, Mapm) plane. The black solid line refers to a sequence wiith= 80 and the black triangle
marks the initial critical solutioni. model “A” in table 8.1). The red long-dashed line to a sequence
with @ = 145 and the red square shows the equilibrium model having as central density the time-
averaged central density of the metastable soluti@n rhodel “B” in table 8.1). Finally, the blue
dashed line refers to a sequence i) = 155 and the blue pentagon shows the equilibrium model
having as central density the time-averaged central density of the stable soligionodel “C” in

table 8.1). All models “A, B, C” have the same rest-mass to a precisioniof and the arrows show

how the collision corresponds to a number of transition in the space of configurations.

The results of this procedure are summarized in figure 8.5, which reports the equilibrium sequences
of TOV stars with fixed polytropic constant in a stand@pd, Mapyr) plane. In particular, the black

solid line refers to a sequence withh = 80 and the black triangle therefore makes the initial crit-

ical solution {.e. model “A” in table 8.1). Similarly, the red long-dashed line refers to a sequence
with a polytropic constanﬁ = 145, which therefore coincides with the time averaged value of

K during the metastable state and as deduced from figure 8.4. The red square shows therefore the
equilibrium model having as central density the time-averaged central density of the metastable solu-
tion (i.e. model “B” in table 8.1). Finally, the blue dashed line refers to a sequence with a polytropic
constant{K) = 155, which therefore coincides with the time averaged valu& aduring the stable

stage of the subcritical solutionscffigure 8.4). The blue pentagon shows therefore the equilibrium
model having as central density the time-averaged central density of the stable salatiorodel

“C” in table 8.1). It is important to remark that because models “A, B, C” are determined after fixing
the polytropic constant and the central rest-mass density, they are not guaranteed to have the same
total baryon mass. In practice, however, they do have the same rest-mass with a predisiéh of

(of course2M;, 4 ~ My, g ~ M, ). This is not a coincidence but a clear evidence of the common
link among the three models. What is eloquently shown in figure 8.5 can also be stated summarized
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Table 8.2: Eigenfrequencies of the modes of the criticaltmiuduring the metastable phase of the
dynamics as computed from the evolution of the the central rest-mass density. Also indicated are
the first overtones of the fundamental mode for a TOV star constructedAveid p. equal to the
time-averages of K') and(p.) during the metastable phase. Despite the large uncertainty due to the
very short integration time, the match between the two set of eigenfrequencies is very good.

Mode Observed freq. (kHz) TOV freq. (kHz)

H1 4.8+1.2 3.95
H2 72+£1.2 6.86
H3 9.6 1.2 9.42
H4 12.0 £1.2 11.85

as follows. The head-on collision of two NSs near the crittbaéshold can be seen as series of tran-
sitions in the space of configurations from an initial stable model “A’ over to a metastable model “B”
which has the same rest-mass but larger gravitational mass as a result of the conversion of the kinetic
energy into internal energy via large shocks. Because model “B” is on the linearly unstable branch of
the equilibrium configurations, it can exhibit a critical behaviour (this was shown in great detail in pa-
per 1) and thus subcritical solutions will expand and move the stable branch of equilibrium solutions
(model “C"), while supercritical solutions will collapse to a black hole (solution “D”). In the light

of this interpretation, the conclusion drawn by Jin and Suen [20] that the merged object is far from
being a TOV because it promptly collapses even though its total rest-mass is smaller than the corre-
sponding maximum mass, does not appear to be the correct one. Indeed, the transition highlighted in
figure 8.5 clearly shows that even a sub-massive TOV can be brought over the stability threshold to
collapse to black hole by simply increasing its gravitational mass, namely by increasing its internal
energy. Additional evidence that the merged object is indeed a perturbed TOV comes from analyzing
the oscillation frequencies measured over the metastable stage. Despite the latter is rather short and
the eigenfrequencies are consequently not very accurate, they agree well with the ones obtained from
the linear perturbation theory for the corresponding TOV model. This is reported in table 8.2, which
collects the oscillation frequencies as computed from a Fourier analysis of the central rest-mass den-
sity of the largest subcritical solution. Because these frequencies with their error-bars are within the
expected ones, we cannot confirm the claim made in [21] that the frequencies of the critical solution
are 1 or 2 orders of magnitude smaller than the corresponding equilibrium ones. Rather, we conclude
that the metastable critical solution is indeed only a perturbed TOV star.
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Figure 8.6: Left panel: Survival time of the metastable solution plotted against the logarithm of
the difference between the initial central density of the stars and the critical one. The red triangles
represent the data points obtained with a grid resolutidh-6f0.1 and the blue squares represent the
ones obtained with = 0.08. The black dashed line represents the expected power-law sdalgig.

panel: Harmonic fluctuations in the critical exponentas obtained after subtracting the power-law
scaling from the data points computed with= 0.1 (red triangles). Indicated with a blue dashed line

is the fitting sine function.

8.3.3 On the critical exponent and its fluctuations

The theory of critical phenomena predicts a precise scaling relation between the survival time of the
nearly-critical solutions, namely the time over which a metastable equilibrium exists, and the distance
from the critical solution. At lowest order this scaling relation is a simple power-law of the type

Teq = —Y1In |p. — p| + const , (8.3)

which is derived from equation 6.8. Following [20], we measure the survival time by considering
the function{(t) = (o« — o*)/a*, wherea is the lapse function at the coordinate origin of a given
simulation andh* is the lapse of the best numerical approximation of the critical solution. Weset

to be the first (coordinate) time at whiclir.,) > 0.05; as discussed in [20], the determination of the
critical exponent does not depend sensitively on this cut-off time. Finally, we conmymeeorming

a linear least-square fit of (8.3) on the data points. The results of this process are shown in the left
panel of figure 8.6, where we report with red triangles the valuegohs computed from aboG0
simulations having different initial central density. As we will discuss below, such a large number of
data points is necessary not only to measure accurately the expgtentalso to determine whether
nonlinear corrections to expression (8.3) should be considered. In this way we have computed the
critical exponent to be = 10.004, which agrees withi®.4%, with the value computed by [20]. As

a further validation, we have computed the critical exponent also for a (smaller) set of simulations
carried out at a higher resolutiong; h = 0.08 vs h = 0.1) and these are shown as blue squares.
These higher-resolution simulations predict a critical exponer0df03, thus with a difference of

2.9% from the lower-resolution ones. A more careful analysis of the data for the survival time reveals
that relation (8.3) is well reproduced by the data, but also that the latter show additional, fine-structure
features which are are not accounted for in (8.3). In particular, it is apparent already at a visual
inspection that the critical exponent also shows a periodic change as the solution approaches the
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critical one. This is highlighted in the right panel of figur& 8where we show the deviations of the
data from the relation (8.3), and where it is apparent that these deviations are essentially harmonic in
the range in which data is available (to have a single fitting function the panel does not contain the
higher-resolution data). As a result, we can correct the scaling relation (8.3) with a simple expression
of the type

Teq = —yIn|pe — pi| + crsin (c2In |pe — pj| + ¢3) + const . (8.4)

wherec; ~ 2.0, ¢ ~ 1.2 andes ~ 0.8. Interestingly, this fine structure of the time-scaling relation

has been observed also in in the critical collapse of scalar fields [22, 23], but has never been reported
before for perfect fluids, although it may be present also in the data of¢2€h¢ir figure 4). Because

the scaling relation (8.3) is derived after performing a linear analysis near the critical solution [13],
the additional oscillation captured in expression (8.4) is a purely nonlinear effect which has not been
yet fully explained.

8.4 Metastable solutions and the hoop conjecture
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Figure 8.7: Spacetime diagram showing the world-lines ofpifeper stellar radius for either a sub-
critical solution Rypqrit. (black solid line) or for a supercritical solutiaR, pererit. (red dashed line).
Both quantities are expressed in units of twice the ADM mass, so that the vertical dotted line at
represents the threshold below which the hoop conjecture would be violated (the time coordinate is
the proper time of an observer comoving/t Also indicated with a blue long-dashed line is the
world-line of the apparent horizon which is relevant in the case of the supercritical solution. Note that
the metastable solution is always outside its “hoop”.

As discussed in the main text, near the critical solution and during the metastable stage, the evo-
lution of all the hydrodynamical and field variables is essentially the same (to a precision which is
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proportional to the distance from the critical solution) mth subcritical and supercritical solutions.

It is therefore natural to ask whether the metastable solution, which can either produce a black hole
or an expanded star, is ever compact enough to violate the hoop conjecture. We recall that the con-
jecture states that a black hole is formed if and only if a “mag&bf matter is confined in a hoop

of radius which is in every direction is smaller or equal to the corresponding Schwarzschild radius.
Stated differently, a black hole is expected to form if the matter is enclosed in a hoop of proper cir-
cumferencel < 4w M. The hoop conjecture, as it was originally formulated, is not meant to be a
precise mathematical statement [115], even though it can be made precise under particular circum-
stances [116-118]. Most importantly, it is meant mostly as a qualitative description of the gravitational
collapse due to the compression of matter. In particular the conjecture leaves much freedom in the
definition of bothC and M. In view of this freedom, we have takéhto be the proper circumference

of a coordinate circle enclosingp % of the mass of the system (in order to exclude the extended
low-density regions) and used the ADM mass witliias a local measure of the mass (This use of

the ADM mass is strictly speaking incorrect as such a mass is well defined only at spatial infinity;
however it provides an approximation which is adequate for the quality of the arguments made here).
In figure 8.7 we show in a spacetime diagram the world-lines of the proper stellar radius for either
a subcritical solutionR,pcit. (black solid line) or for a supercritical solutiaRspercrit. (red dashed

line). Both quantities are expressed in units of twice the ADM mass, so that the vertical dotted line
at 1 represents the threshold below which the hoop conjecture would be violated (the time coordinate
is the proper time of an observer comoving/t Also indicated with a blue long-dashed line is the
world-line of the apparent horizon which is relevant in the case of the supercritical solution. Quite
clearly the metastable solution is always outside its “hoop” (indeed about twice as large) and when
the supercritical solution crosses it is to produce a black hole as the conjecture predicts. It remains
unclear how these world-lines would evolve if we had considered stars with larger boosts or that are
are far from the critical solution. These questions will be addressed in our future work on the subject.
As a final remark we note that if we had used the interpretation of the head-on collision as a transition
between a stable and a metastable TOV solufientfie one summarized in figure 8.5), then it would

have been rather obvious that the hoop conjecture cannot be violated: a TOV star has a surface which
is always outside of its Schwarzschild radius.






Chapter 9

Conclusion

A number of astrophysical scenarios can be very conveniently studied numerically by assuming they
possess and preserve a rotation symmetry around an axis. Such an assumption reduces the number of
spatial dimensions to be considered and thus the computational costs. This, in turn, allows for a more
sophisticated treatment of the physical and astrophysical processes taking place and, as a result, for
more realistic simulations.

During this thesis work we have develop@fii sky2D, a new numerical code developed to solve

in Cartesian coordinates the full set of general relativistic hydrodynamics equations in a dynamical
space-time and in axisymmetihi sky2Dhas been built with the intent of of adding it to théhisky
Astrophysical laboratoryto investigate a number of astrophysical objects, which possess and pre-
serve an overall cylindrical symmetry. More specifically, the new code solves the Einstein equations
by using the‘cartoon” method, while HRSC schemes are used to solve the hydrodynamic equations
written in a conservative form. An important feature of the code is the use of a novel formulation of
the equations of relativistic hydrodynamics in cylindrical coordinates. More specifically, by exploiting

a suitable definition of the conserved variables, we removed from the source of the flux-conservative
equations those terms that presented coordinate singularities at the axis and that are usually retained in
the standard formulation of the equations. Despite their simplicity, the changes made to the standard
formulation can produce significant improvements on the overall accuracy of the simulations with a
truncation error which is often several orders of magnitude smaller. In order to assess the validity of
the new formulation and compare its accuracy with that of the formulation which is most commonly
used in Cartesian coordinates, we have performed several tests involving the evolution of oscillating
spherical and rotating stars, as well as shock-tube tests. In all cases considered we have shown
that the codes implementing the two formulations yield the expected convergence rate but also that
the new formulation is always more accurate, often considerably more accurate, than the standard one.

This additional degree of accuracy has allowed us to study a number of aspects of critical phenomena.
We recall that critical phenomena are ubiquitous in many different branches of physics and are of
great interest in general relativity where they are associated with phase transition of families of
solutions. Particularly interesting are critical phenomena in gravitational collapse and in the more
specific context of the dynamics of NSs, type-I critical phenomena have seen a renewed interested
when it was shown that a critical behaviour of this type is produced in the in head-on collision of
NSs [20] or in the dynamics of rotating magnetized stars [18]. With the goal of studying in more
detail the occurrence of type-I critical collapse in NSs, we have therefore employ®#itisky 2D

93
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code to study a large set of spherical stellar models havingnatant baryon mass. Differently

from what done before by other authoesg. [15, 17], we have considered stellar models that are

on the “right” branch of the models of equilibrium and thus lineaulystable Using a simple
ideal-fluid EOS and very small perturbations which are entirely induced by the truncation error, we
have found that our family of initial data exhibits a clear type-I critical behaviour at at a threshold
central rests-mass density pf = 0.004593224802 + 2.1 x 10~'2 and with a critical exponent

A = 0.02149665. These results thus confirm the conclusions reached by Liebling et al. [18] but also
provide a more quantitative determination of the threshold and of the nature of the critical scaling.
Exploiting in fact the relative simplicity of our system, we were able carry out a more in-depth study
providing solid evidences of the criticality of this phenomenon and also to give a simple interpretation
of the putative critical solution as a spherical solution with the unstable mode being the fundamental
F-mode. As a result, we have shown that for any choice of the polytropic constant, the critical
solution distinguishes the set of subcritical models migrating to the stable branch of the models of
equilibrium from the set of supercritical models collapsing to a black hole. Furthermore, we have
studied how the dynamics changes when the numerically perturbation is replaced by a finite-size,
resolution-independent velocity perturbation and show that in such cases a nearly-critical solution
can be changed into either a sub or supercritical. Finally, the work presented here here is of direct
help in understanding why the critical behaviour shown in the head-on collision of two neutron stars
is indeed of type-l and why it can be explained simply in terms of the creation of a metastable stellar
model on the unstable branch of equilibrium solutions [24].

As an additional scenario in which to use W&i sky2D code to study critical phenomena we have
considered the head-on collision of equal mass, non-rotating NSs boosted towards each other. After
fixing the initial velocity of the stars, we evolved numerically a great number of configurations with
different initial central rest-mass density. Overall, the basic dynamics of the process is rather simple:
As the two NSs are accelerate towards each other, they collide leading to a merged object which
is wildly oscillating and with a gravitational mass which is above the maximum mass of the initial
configuration. Depending on whether the initial central rest-mass density is larger or smaller than
the critical one, the metastable solution either collapses to a black hole (supercritical solutions) or
expands to a new stable stellar solution (subcritical solutions). Exploiting the accuracy of the code
and the large set of initial configurations considered, we were able we are able to identify the critical
value for the central density with an accuracy of 11 significant digits, a level of precision never
achieved before in this type of study. Much of the results found coincide and confirm those found by
Jin and Suen in [20, 21]. However, we do differ and significantly when it comes to the interpretation
of the critical solutions. More specifically we have shown that the head-on collision of two NSs near
the critical threshold can be seen as series of transitions in the space of configurations from an initial
stable model over to a metastable one with the same rest-mass but larger gravitational mass as a result
of the conversion of the kinetic energy into internal energy via large shocks. The metastable solution
is on the linearly unstable branch of the equilibrium configurations and thus it can exhibit a critical
behaviour (see [19]) and either move the stable branch of equilibria (subcritical solutions), or will
collapse to a black hole (supercritical solutions). Hence, the critical solution is indeed a (perturbed)
TOV solution, in contrast with the conclusions drawn in [20, 21]. With the calculatiof¥of at

any time step (see figure 8.4) have shown a way to follow a an important thermodynamical quantity,
which is related to the entropy (6.13). The continuous growing/of coincides with second law

of thermodynamics. Finally, we have also computed the critical exponent of the scaling relation
of type-I critical phenomena and found it to agree well with the one computed by [20]. However,
we have also found that, superimposed with the standard power-law, the scaling law shows a fine
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structure in terms of a periodic fluctuation. These wigglethancritical exponent have already been
observed in the case of type-Il critical collapse of massless scalar fields [22, 23], but were never
reported before in the case of perfect fluids.

The work on the topics of this thesis gave many new insights in questions of numerical meth-
ods, as well as in a number of physical problems. We learned a little bit more about the rays of the
light, which project the shadows of puppets of the puppeteer on the wall of our cave [119]. The
universes still contains an endless number of unexplored miracles and we should never stop to watch
in the eyes of the big magicidn[120], to ask for an answer.

It is like watching a magic trick. We cannot understand how it is done. So we ask: how can the magician change a
couple of white silk scarves into a live rabbit?
A lot of people experience the world with the same incredulity as a when a magician suddenly pulls a rabbit out of a hat
which ha just been shown to them empty. In the case of the rabbit, we know the magician hat tricked us. What we would
like to know is just how he did it. But when it comes to the world it is somewhat different. We know that the world is not all
sleight of hand and deception because here we are in it, we are in it, we are part of it. Actually, we are the white rabbit being
pulled out of the hat. The only difference between us and the white rabbit is that the rabbit does not realise it is taking part
in a magic trick. Unlike us. We feel we are part of something mysterious and we would like to know how it all works. As far
as the white rabbit is concerned, it might be better to compare it with the whole universe. We who live here are microscopic
insect existing deep down in the rabbit’s fur. But philosopher are always trying to climb up the fine hairs of the fur in order
to stare right into the magician’s eyes.
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Appendix A

Units and unit conversion

Table A.1:Fundamental physical constants

Constant

Symbol Value

Speed of light

Gravitational constant G
Planck constant h

c 2.99792458 - 108 cm  s!
6.67428 - 1071 m3 kg=! s72
1.054571628 - 10734 kg m? 57!

Table A.2:Table shows the basic Planck units

Name Dimension Term Value

Planck mass | M my = \/hc/G | 2.17644 - 10~® kg

Planck length| L l, = VhG/c3 1.61625 - 1073 m
Planck time | T ty = lp/c 5.39124 - 1074 s

Planck area | A a, = 2 2.61227 - 10770 m?

Table A.3:Physical constants in units in cgs, geometric amdG = M = 1 units

Dimension/ Quantity | cgs Geometric c=G=My=1
Time 1s 3.335640951980 ' cm | 2.029610°

Length 1cm 1cm 6.770610~¢

Mass 1g 7.426110~2° cm 5.0279103
Density l1gcni? 7.426110~% cm2 1.619910~ 18
Energy lerg=1gcms? 8.262710~°° cm 5.595310%°
Specific internal energy 1 erg g! 1.1126500560302 1.1126500560302!
Solar mass 1.989110% g 1.477210° cm 1.0

Speed of light 2.997924580'° cms! 1.0 1.0

Pressure 1 dyn cnt? 6.674210°8 1.806310~%
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Appendix B

About the "Cartoon” method

In what follows we recall the essential features of tbartoon” method for the solution of the field
equations in Cartesian coordinates. Consider therefore the computational domain to have extents
, 2 < dmae aNd—Ay < y < Ay, whered,,... refers to the location of the outer boundary. Reflection
symmetry with respect to the = 0-plane can additionally be assumed. The Einstein equations are
then solved only on thg = 0-plane with the derivatives in thg-direction being computed with
second-order centred stencils using the pointsay, 0, Ay.

Taking into account axisymmetry, the rotation in they) plane is defined as

A cos(¢) —sin(¢) 0
R($)i = | sin(@) cos(@) O |, (8.1)
0 0 1

whereR(¢)~! = R(—¢) and the rotation angle is defined@s= tan—! (£Ay/\/22 + (Ay)?).

As commented in the main text, the values of all the quantities od:-thg planes are computed via
rotations of the corresponding values on the- 0-plane. More specifically, the components of an
arbitrary vector fieldl; on thex+ Ay planes are computed viagarotation as

T, = T cos(¢) — T(0 sin(¢) , (B.2)
T, = T sin(¢) + T(O 0s(¢) (B.3)
T, =T, (B.4)

WhereTi(O) denote the corresponding componenté\at:2 + (Ay)2, 0, z), which are computed via a
Lagrangian interpolation from the neighboring points on:tkexis. Similarly, the components of an
arbitrary tensor field;; tensor will be computed as

Tpw = T cos?(¢) — T(0 sin(2¢) + sm2(¢), (B.5)
Ty = %Tm@) sin(2¢) — T.Y) cos(2¢) + —T(0> sin(2¢) (B.6)
Tyy = =79 sin?(¢) — T(0 sin(2¢) —|—T(O cos? (@), (B.7)
Toe = T{ cos(9) — Ty sin(9) (B.8)

T,. = T\ sin(¢) + T{Y cos(¢), (B.9)

T..=TY. (B.10)
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Appendix C

Eigenstructure of the relativistic
hydrodynamic equations

The knowledge about the eigenstructure is required by the approximate Riemann solvers (HLLE and
Marquina) implemented idhi sky2D. The Eigenvalues are calculated by theb Jacobian Matrices
of the system hydrodynamic equations

A6 (A F')  OF

= = C.1
I(/FY) OF0 (€.1)

The eigenvalues of the Jacobian are, for example along th direction,
A = av® — §° (triple eigenvalue), (C.2)

o= s (- @) 2o T- ([ - @) — e (1 - @) - (€I

and a complete set of its right eigenvectors is

1314 W,
Uy h(Yay + 2W 20,0)
ROV — vy , R — h(vyy + ZWQvay) ,
Vs h(Yay + 2W2030y)
1- X W, (2hW — 1)
Wo, 1
h(Ver + 2W20,0,) hW (vy — VE)
R = | h(y,. +2W20,0,) |, R®) = hW, (C.4)
h(Yzz + 2W20,0,) hWu,
Wo,(2hW — 1) MW A% — 1

wherec; is the local sound speed (which can be obtained ftem= s + xp/p? with 3 = dp/dp
andk = 9p/0e¢), K = i /(k — ¢2),k = k/p and

B v:c_A::vt B ,.Y:m:_vxvm ) _)\:I:"’_ﬁz
Vi= AL = Ny = (C.5)
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Similarly, the eigenvalues o (*) are the same as in expression (C.2) witim place ofz and the cor-
responding right eigenvectors ant the same as in (C.4) with the second row exchanged with the fourth
and with the interchange <> y or z <> z respectively. Since the left eigenvectors are effectively
used in the code in the Marquina solver in order to compute the characteristic variables, we give the
explicit expression for them too [121]:

h—W —Vzz¥y T VyzVz
Wo* (7 Uy = VyzVz)
W 22Uy yzUz
L = e W L0 = L1 ) 4 e |
Wo? 'sz(l — Ug0") + Yoz Uyv”
-W —VzzVUy + VyzVz

—YyyVz + VYyzVy
V (Vyy Yz — 'szvy)
L(03) = Ihg —r}/yz(l - U:BUJ:) +7:vyvzvx s
Yyy(1 = v2v®) + Yayvyv”
—YyyVz + VYyzVy

hWVEE + 1)
p2ye | Taa(l = KAZ) + + (2K = 1)VE (W2eo€ — Tyt
L = £ |1, (1 - KAL) + (26 — DVE(W20E — T,p0?) | (C6)
To(1— KAL) + (2K — 1) i(W2 26— Tyv®)

(K = 1)[=yv” + VE(W?E — Typ)] = KWVEE

wherel,; = Yyy7ez — Vyzr & = Daw — 750" @andA = BPW (I — 1)E(AY — AY).



Appendix D

Shock test

Already in chapter (5) we discussed a shock problem. The shock was result of a fast inward going
matter, which is reflected at the symmetry axis. To complete the list of important shock tests, we
show the results of the standard test of shock tube evolution (see table D.1).

We calculate the evolution of the shock initial data with PPM reconstruction and the Marquina
Riemann Solver.
Figures (D.1) and (D.1) show a comparison of the shock problem after 0.13 ms to the exact solution
[78,79,122].
In detail figure (D.1) shows the evolution of shock front in thelirection of the cylindrical grid.
Because of the properties of this cylindrical coordinates the shock behaves like in a Cartesian grid.
The shock front in figure (D.1) shows indeed a difference form the exact solution. This is due
to the geometrical properties of the cylindrical grid in r-direction. In a Cartesian coordinates
grid lines are parallel. In cylindrical coordinates two grid lines along r-direction are not par-
allel, the distance between them grows. The area which is covered by a shock front grows with
the distance from the origin, if the shock runs along the r-direction and the shape of the shock changes.

Table D.1: Initial properties of shock tube evolution. The different columns refer to the direction h of the
evolution of the shock, the size of the grid, the maximum and minimum initial density, the maximum and
minimum initial pressure and the initial velocity. All models have been computed with a ideal fluid EOS with
I = 20.

direction

h Pmaz  Pmin  Pmax Pmin  Vinit

(Mo)
z 0.00125 10 1 133 1@ 00
‘ 0.00125 10 1 13.3 1@ 0.0
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Figure D.1: The left picture shows the evolution of a shock-tube after 0.13 ms. The dotted line shows the
evolution of the density profile. The long-short dashed line shows the evolution of the pressure and the dotted-
dashed line the velocity. The shock evolves along the z-direction of cylindrical grid. The right picture shows
the evolution of a shock-tube after 0.13 ms. The dotted line shows the evolution of the density profile. The
long-short dashed line shows the evolution of the pressure and the dotted-dashed line the velocity. The shock
evolves along the r-direction of cylindrical grid.
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