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Abstract

We propose a new construction of point processes, which general-
izes the class of infinitely divisible point processes. Examples are the
quantum Boson and Fermion gases as well as the classical Gibbs point
processes, where the interaction is given by a stable and regular pair
potential.

Keywords: Gibbs point processes, permanental-, determinantal point
processes, cluster expansion, Lévy measure, infinitely divisible point pro-
cesses

1 Introduction

Main Results

For a general pair potential φ, which satisfies the conditions of stability and
regularity as defined in section 7 and for a sufficiently small activity z we
construct a point process in a general Polish space X, which will be identified
as a Gibbs point process in theorem 7.5. The Gibbs property will be shown
by the use of an integral equation, due to [15]. Also a tree estimate of the

1



Ursell function as in [16] and a generalization of an integral equation due to
[11] are important elements of the proof.

In [18] Ruelle has shown that for a translation invariant pair potential
which is stable and regular and for a small activity there exist infinite vol-
ume limit correlation functions, which satisfy the Kirkwood-Salzburg equa-
tions. In [19] Ruelle found that if the conditions of regularity, superstability
and lower regularity are imposed on a translation invariant pair potential
then there exists a Gibbs point process for any activity. In [6], [7] Kuna et
al. obtained for a stable and regular pair potential, which additionally has
the finite range property, that for a small activity the corresponding Gibbs
point process exists. They establish the Gibbs property by directly verifying
the equilibrium equations due to Dobrushin-Lanford-Ruelle. Here we take a
more point process theoretical approach.

The idea is to verify for the limiting process the integration by parts for-
mula already mentioned above, which is equivalent to the DLR-equation as
well as to Ruelle’s equilibrium equation in [19]. (A proof of this equivalence
can be found in [15]). The same idea, for a different class of potentials, has
been indicated already in the article of Kutoviy and Rebenko (see [8]) but
without giving the detailed argument.

The Gibbs point processes as well as the Fermion and Boson point pro-
cesses are examples of the existence theorem 3.2, they belong to the class of
point processes with a signed Lévy functional, as introduced in the next sec-
tion. For another approach to the construction of Boson and Fermion point
processes we refer to Shirai, Takahashi [20] and Soshnikov [21]. In the section
4 entitled ”the method of cluster expansion“ we explain how the construc-
tion fits into the work [9] of Malyshev and Minlos and obtain that a weaker
integrability condition is sufficient for the existence of the thermodynamic
limit.

This article is based on the report in the proceedings [13] to the inter-
national mathematical conference: 50 years of IPPI. There it is shown that
also the classes of Polya and immanantal point processes are covered by the
existence theorem 3.2.
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Notation

Let X be a Polish space, B(X) resp. B0(X) denote the Borel resp. bounded
Borel sets. M(X) is the space of locally finite measures on X i.e. Radon
measures on X, which is Polish for the vague topology. M··(X) denotes
the closed and thereby measurable subspace of Radon point measures and
M·(X) denotes the measurable subspace of simple Radon point measures.
Furthermore let M··

f (X) be the set of finite point measures on X. A law P
on M(X) resp. M··(X) resp. M·(X) resp. M··

f (X) is called resp. random
measure, point process, simple point process and finite point process. U is
the set of all bounded non negative measurable functions on X with compact
support and F+ is the set of all non negative measurable functions, where
the underlying space will be clear from the context. 1A denotes the indicator
function of the set A and 1 the function which is identically one. An impor-
tant tool for the analysis of measures K onM(X) is the Campbell measure
CK(h) =

s
h(x, µ)µ(dx)K(dµ) for h ∈ F+(X × M(X)). The marginal

ν1
K(f) = CK(f ⊗ 1) , f ∈ U , is called the first moment measure of K. Re-

mark that for f ∈ U , ζf : µ 7→ µ(f) is a well defined continuous function
on M(X) and let LP (f) = P (e−ζf ), f ∈ U , be the Laplace transform of the
random measure P .

2 Reminder: Infinitely Divisible Point Pro-

cesses and a Generalization

Let us recall the well known (see Mecke [11]) existence result for point pro-
cesses. In the sequel we will denote byW the class of non negative measures
L on M··(X) such that L(1− e−ζf ) <∞, f ∈ U , and L({0}) = 0.

Theorem 2.1 (Mecke). Let L ∈ W. Then there exists a point process P
such that its Laplace transform is given by

LP (f) = exp[−L(1− e−ζf )] for f ∈ U, (2.1)

and P is infinitely divisible. Moreover if ν1
L ∈M(X) then (2.1) is equivalent

to

(ΣL) CP (h) =

∫
M··(X)

∫
M··(X)

∫
X

h(x, η + µ)CL(dx d η)P (dµ)
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for all h ∈ F+(X ×M··(X)). This point process will be denoted ΨL in the
sequel.

As an aside we remark that also the converse holds true: To every in-
finitely divisible point process P there belongs some L ∈ W such that (2.1)
holds. The measure L is called the Lévy measure of the infinitely divisible
point process ΨL. The right hand side of (ΣL) can be seen as a kind of
convolution of CL with P so we will denote it by CL ? P (h). Here ? should
not be confused with the convolution operator ∗ used below. Furthermore
let KL be the functional on U such that − log(KL(f)) = L(1− e−ζf ), the so
called signed modified Laplace functional. Meckes proof in [11] relies on his
following result, a version of Lévy’s continuity theorem for random measures

Theorem 2.2 (Mecke). Let (Pm)m be a sequence of laws onM(X) such that

LPm(f)→ K(f) as m→∞

for f ∈ U and the limiting functional K on U satisfies for any sequence
un ∈ U with un ↓ 0, K(un) → 1 as n → ∞, then there exists a law P on
M(X) such that LP = K.

A natural question is whether KL is still a Laplace transform of a point
process if we let L be a finite signed measure onM··(X). In the monograph
[10] the authors asked whether for a finite signed measure K onM··(X) with
K(M··(X)) = 0 does there exists a point process P such that P = exp(K) =∑∞

j=0
K∗j

j!
? Here ∗ is the usual convolution operator. It can be seen that

this question is equivalent to the existence of a finite signed measure L on
M··(X) with L({0}) = 0 such that LP = KL. They obtained that this is the
case if and only if

ΨL+ = ΨL− ∗ P (2.2)

here L+ resp. L− is the positive resp. negative part in the Hahn-Jordan de-
composition of L and this “is quite a complicated question“ as the authors of
[10] on page 79 remarked. The negative part L− of the Lévy measure L can
be interpreted as to contribute to a deletion of points in ΨL+ , since according
to the convolution equation (2.2) to obtain a realization of ΨL+ we have to
take a realization of P and superpose it independently by a realization of
ΨL− . As Matthes et al. [10] formulated, P is the convolution quotient of the
infinitely divisible point processes ΨL+ and ΨL− .
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The main problem studied here: Given any two L+, L− ∈ W , does there
exists a point process P such that (2.2) holds? In the sequel we will denote
L = L+ − L−, the so called signed Lévy functional of a point process P
if either (2.2) or LP = KL on U holds. But note here: L is not even a
signed measure onM··(X) since undefined expressions like∞−∞ can occur
whereas L is well defined on the set of functions, which are |L|-integrable.
Here |L| denotes the measure L+ + L−.

3 Existence of Point Processes with a Signed

Lévy Functional

We will restrict our investigation to measures L+, L− ∈ W which are con-
centrated on M··

f (X). These can be represented as follows

Lε(ϕ) =
∞∑
n=1

1

n

∫
Xn

ϕ(δx1 + . . .+ δxn) Θε
n(dx1 . . . dxn), (3.1)

for all ϕ ∈ F+(M··
f (X)). Here Θε

n is a non negative measure on Xn. Certainly
they can always chosen to be symmetric. Only in section 5 we will start with
a family Θε

n, which has no more symmetry properties than invariance under
cyclic permutations. We also introduce Θn = Θ+

n − Θ−n . We will see that
under the condition |L|(1−e−ζf ) <∞ for f ∈ U , |Θn| = Θ+

n +Θ−n is a Radon
measure on Xn. We shall call {Θn}∞n=1 the family of cumulant measures1.
Let us agree on the following convention. If we say we are considering a
signed Lévy functional of the form

L(ϕ) =
∞∑
n=1

1

n

∫
Xn

ϕ(δx1 + . . .+ δxn)ϑ(x1, . . . , xn)λ(dx1) . . . λ(dxn), (3.2)

where ϑ : t∞n=1X
n 7→ R and λ is some non negative measure on X then it is

always understood that we have made the canonical choice

Θε
n = ϑε(x1, . . . , xn)λ(dx1) . . . λ(dxn),

1Remark that Θn is only a well defined finite signed measure if restricted to the bounded
sets of Xn. Θn evaluated for unbounded sets might lead to undefined expressions like
∞−∞. Such objects will be called signed Radon measures in the sequel.
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where ϑε = max{ε ϑ, 0} are the positive resp. negative part of ϑ. The
following combinatorial result is a direct consequence of Ruelle’s algebraic
approach ([18] chapter 4, eqn. (4.14)). It can also be found in the book [22]
of Stanley corollary 5.1.6, where it is called the exponential formula.

Lemma 3.1. For a sequence hk of real numbers, such that the exponentiated
series on the below left hand side converges absolutely, the series on the below
right hand side converges absolutely and we have

exp

[
∞∑
k=1

hk
k!

]
= 1 +

∞∑
k=1

1

k!

∑
J∈π([k])

∏
J∈J

h|J |.

Here π([k]) denotes the set of all partitions of the set [k] = {1, . . . , k}.

Now we can formulate our existence result.

Theorem 3.2. Let L+, L− ∈ W be of the form (3.1). Then |Θn| has to be a
Radon measure. Furthermore we assume that the following signed measures

%k(⊗kj=1fj) =
∑
σ∈Sk

∏
ω∈σ

Θ`(ω)(⊗i∈ωfi), f1, . . . , fk ∈ U. (3.3)

are actually non negative Radon measures. Here the above product has to
be taken over all cycles ω in the permutation σ and `(ω) denotes the cycle
length. Then there exists a point process ΨL such that ΨL+ = ΨL− ∗ ΨL or
equivalently LΨL = KL on U . We call {%k}∞k=1 the family of Schur measures
of ΨL.

Proof. Let Λ ∈ B0(X) and M··(Λ) = {µ ∈ M··(X)| supp(µ) ⊂ Λ}. The
method of the proof will be to investigate the restriction LΛ(ϕ) = L(1M··(Λ)ϕ),
for ϕ ∈ F+(M··(X)) such that |LΛ|(ϕ) <∞, of L to point measures in Λ. By
a combinatorial argument (lemma 3.1) we will then observe that there exist
finite point processes QΛ in Λ such that LQΛ

= KLΛ
on U . As Λ ↑ X we will

see that KLΛ
→ KL. By using theorem 2.2 we will obtain the assertion.

Let us first observe that LΛ is a finite signed measure.

|LΛ|(1) = 2 |L|(1M··(Λ)
1

2
) ≤ 2 |L|(1− e−ζΛ) <∞.

For the first inequality observe that ζΛ ≥ 1 on M··(Λ), |L|-a.e. and 1
2
≤

1 − e−x for x ≥ 1. In particular |LΛ|(1) < ∞ implies that Θε
n are Radon
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measures. Now set Ξ(Λ) = exp[LΛ(1)]. So we have for f ∈ U

KLΛ
(f) =

1

Ξ(Λ)
exp[LLΛ

(f)]

where

LLΛ
(f) =

∞∑
n=1

Θ+
n ((1Λe

−f )⊗n)−Θ−n ((1Λe
−f )⊗n)

n
.

The above sum converges absolutely due to |LΛ|(1) < ∞. So choose in
lemma 3.1 hn = (n−1)! Θn((1Λe

−f )⊗n), which yields combined with the fact
that |Scyn | = (n− 1)! (here Scyn is the set of permutations of the set [n], which
consists of one cycle)

exp[LLΛ
(f)] = 1 +

∞∑
n=1

1

n!

∑
σ∈Sn

∏
ω∈σ

Θ`(ω)((1Λe
−f )⊗`(ω)).

From which we finally conclude

KLΛ
(f) =

1

Ξ(Λ)

∞∑
n=0

1

n!

∫
Λn
e−f(x1) . . . e−f(xn) %n(dx1 . . . dxn).

So we have identified KLΛ
as the Laplace functional of the finite point process

QΛ(ϕ) =
1

Ξ(Λ)

∞∑
n=0

1

n!

∫
Λn
ϕ(δx1 + . . .+ δxn) %n(dx1 . . . dxn),

for ϕ ∈ F+(M··
f (X)). Now let us check that the assumptions of Mecke’s

theorem 2.2 are fulfilled. Since |(L− LΛ)(1− e−ζf )| ≤ |L|((1− 1M··(Λ))(1−
e−ζf )) ↓ 0 as Λ ↑ X, by dominated convergence, we obtain LQΛ

→ KL as
Λ ↑ X on U . Similarly one can establish continuity of KL at zero. Let un ∈ U
with un ↓ 0 then |L(1− e−ζun )| ≤ |L|(1− e−ζun ) ↓ 0 as Λ ↑ X again justified
by dominated convergence. So theorem 2.2 gives us the existence of a law
ΨL on M(X) such that LΨL = KL. Now since ΨL is the weak limit of the
QΛ we have ΨL(M··(X)) = 1, because the set of point processes is closed
with respect to weak convergence (see [4], page 32).

Remark that ΨL does only depend on the difference Θn = Θ+
n −Θ−n . If we

have found another family {Θ̃ε
n}∞n=1, such that the assumptions of theorem

3.2 are satisfied and Θn = Θ̃n on bounded sets then ΨL = ΨL̃ is implied by
QΛ = Q̃Λ for Λ ∈ B0(X).
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Remark 3.3. In the proof to theorem (3.2) we have constructed finite point
processes QΛ such that

ΨL+
Λ

= ΨL−Λ
∗QΛ.

Furthermore we have shown ΨLεΛ
⇒ ΨLε weakly as Λ ↑ X, ε = +,−. Now

with ([10] proposition 3.2.9.) we can conclude that there exists a point process
P , the weak limit of the QΛ such that

ΨL+ = ΨL− ∗ P.

So this gives an alternative to theorem 2.2 for establishing the thermodynamic
limit.

In the sequel we will need the Campbell measures of higher order. They
are defined as follows. Let K be a non negative measure on M(X). Then
its n-th order Campbell measure is given by

Cn
K(h) =

∫
M(X)

K(dµ)

∫
Xn

µ(dx1) . . . µ(dxn)h(x1, . . . , xn;µ)

for h ∈ F+(Xn ×M(X)). Let f ∈ F+(Xn), then the marginal Cn
K(f ⊗ 1)

is called the n-th order moment measure νnK(f) of K. If νnK ∈ M(Xn) we
say that the n-th moment of K exists. In the sequel we will also encounter
expressions like Cn

K(h), h ∈ F+(Xn ×M(X)) where K = K+ − K− and
K+, K− are non negative measures. This has to be understood as Cn

K+(h)−
Cn
K−(h) and will only be present in the well defined case Cn

K+(h), Cn
K−(h) <

∞.

Remark 3.4. Since 1− e−x ≤ x we have |L|(1− e−ζf ) ≤ ν1
|L|(f), f ∈ U . So

|L|(1− e−ζf ) <∞ is implied by the existence of the first moment of |L|.

Proposition 3.5. Let L be a signed Lévy functional such that ν1
|L| exists.

Then ν1
ΨL

exists and ΨL is a solution to

(ΣL) CP (h) + CL− ? P (h) = CL+ ? P (h)

for all h ∈ F+(X ×M··(X)).

Proof. By using the representation of the Laplace transform of ΨL and ap-
plying two times 1− e−x ≤ x for x ∈ R, we obtain for f ∈ U and s > 0

ΨL

(
1− e−sζf

s

)
=

1− e−L(1−e−sζf )

s
≤ |L|(ζf ) = ν1

|L|(f).
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So if we use the lemma of Fatou then we get

ν1
ΨL

(f) = ΨL(ζf ) = ΨL

(
lim inf
s↓0

1− e−sζf
s

)
≤ ν1

|L|(f).

Now it is well known (see [11]) that if the first moment of a point process P
exists (this allows to interchange integration and differentiation below) then
for f, g ∈ U we have

CP (f ⊗ e−ζg) = − d

d s
LP (sf + g)|s=0.

So we have to compute

− d

d s
LΨL(sf + g) = LΨL(sf + g)

d

d s
L(1− e−ζsf+g)

= LΨL(sf + g)L(ζfe
−ζg) = CL(f ⊗ e−ζg)LΨL(sf + g).

Again the second equality holds since we are allowed to interchange differ-
entiation and integration with respect to L since ν1

|L| exists. We arrive at

CΨL(f ⊗ e−ζg) = CL ?ΨL(f ⊗ e−ζg), which certainly can be brought into the
form (ΣL). Now the same argument as in [11] chapter 4, proof of theorem 10
yields that the equality (ΣL) can be extended from h = f ⊗ e−ζg to arbitrary
h ∈ F+(X ×M··(X)).

The converse to proposition 3.5 also holds: If P is a point process such
that ν1

P exists and (ΣL) holds then P = ΨL. Remark that (ΣL) certainly
implies CΨL(h) ≤ C|L| ? ΨL(h) for all h ∈ F+(X ×M··(X)). So we have in
particular ν1

ΨL
≤ ν1

|L| on F+(X).

Lemma 3.6. Assume that ν1
|L| exists. Let f, g ∈ F+(X) such that νn|L|(f

⊗n) <

∞, n ≥ 1 then νnΨL(f⊗n) <∞, n ≥ 1 and we have for n ≥ 1

(Σn
L) Cn

ΨL
(f⊗n ⊗ e−ζg) = LΨL(g)

∑
J∈π([n])

∏
J∈J

C
|J |
L (f⊗|J | ⊗ e−ζg).

Proof. Let us give the proof by induction. The case n = 1 has been dealt
with in proposition 3.5. Now let us assume that νkΨL(f⊗k) < ∞ and

(
Σk
L

)
holds for 1 ≤ k ≤ n− 1.

νnΨL(f⊗n) = CΨL(f ⊗ ζn−1
f ) ≤ C|L| ?ΨL(f ⊗ ζn−1

f )

=
∑

B⊂{2,...,n}

ν
|B|+1
|L| (f⊗(|B|+1)) ν

|Bc|
ΨL

(f⊗|B
c|) <∞.
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So that

Cn
ΨL

(f⊗n ⊗ e−ζg) = − d

d s
Cn−1

ΨL
(f⊗(n−1) ⊗ e−ζsf+g)|s=0

Now (Σn
L) follows by just using the product rule of differentiation and the

fact that Ck
L(f⊗k⊗e−ζg) = − d

d s
Ck−1
L (f⊗(k−1)⊗e−ζsf+g)|s=0 for any k ≥ 1.

In the following we will see that besides QΛ ⇒ ΨL weakly as Λ ↑ X, we
also have convergence of the Campbell measures for a sufficiently large class
of test functions.

Lemma 3.7. Let f, g ∈ U and assume that ν1
|L| exists. Then we have for

h = f ⊗ e−ζg
CQΛ

(h)→ CΨL(h) as Λ ↑ X.

Proof. We have CQΛ
(h) = CLΛ

(h)LQΛ
(g), since QΛ is a solution to (ΣLΛ

).
Similarly we have CΨL(h) = CL(h)LΨL(g). Since LQΛ

(g)→ LΨL(g) is already
established, CLΛ

(h)→ CL(h) remains to be seen. But

|(CL−CLΛ
)(h)| = |(L−LΛ)(ζfe

−ζg)| ≤ |L|((1−1M··(Λ))ζfe
−ζg) ↓ 0 as Λ ↑ X,

by dominated convergence.

In the end let us give a sufficient condition for the simplicity of ΨL.

Proposition 3.8. Assume that for some ϑ : t∞n=1X
n 7→ R and λ ∈ M◦(X)

a diffuse Radon measure

L(ϕ) =
∞∑
n=1

1

n

∫
Xn

ϕ(δx1 + . . .+ δxn)ϑ(x1, . . . , xn)λ(dx1) . . . λ(dxn),

is a signed Lévy functional such that ν1
L+ exists (the choice of L+, L− has to

be taken as explained above). Then ΨL is a simple point process.

Proof. The result is an immediate consequence from [10] proposition 2.2.9.
which says that an infinitely divisible point process ΨH is simple if and
only if H(M··(X) \ M·(X)) = 0 and H({ζ{x} > 0}) = 0 for all x ∈ X.
Now it is well known that for a diffuse λ the product λn is concentrated on
X̀n = {(x1, . . . , xn) ∈ Xn|xi 6= xj for i 6= j} (see [5] theorem 3), which yields
L+(M··(X) \M·(X)) = 0. Moreover for f ∈ U

ν1
L+(f) =

∫
X

f(x)
∞∑
n=1

∫
Xn−1

ϑ+(x, x2, . . . , xn)λ(dx2) . . . λ(dxn)λ(dx).
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So ν1
L+ is a diffuse Radon measure and we obtain L+({ζ{x} > 0}) ≤ L+(ζ{x}) =

0. Since ΨL+ is simple the equation ΨL+ = ΨL− ∗ΨL forces ΨL− and ΨL to
be simple.

4 The Method of Cluster Expansion

For the historical development of this method we refer to [9] and [16]. Instead
we give the concept of the method of cluster expansion in the generalized form
presented here.

Cluster Representations

In theorem 3.2 we started with a family of signed Radon measures {Θn}∞n=1,
the cumulant measures and obtained the family of Schur measures {%k}∞k=1

by means of (3.3). We then say that the family of Schur measures admits a
cluster representation in terms of the cumulant measures2. Certainly (3.3)
gives us a duality between the Schur and cumulant measures. If we prescribe
a family of non negative symmetric Radon measures {%k}∞k=1 then we obtain
the cumulant measures by a Möbius inversion as in [17]

Θn(⊗nj=1fj) =
1

(n− 1)!

∑
J∈π([n])

(−1)|J |−1 (|J | − 1)!
∏
J∈J

%|J |(⊗j∈Jfj), (4.1)

where f1, ..., fn ∈ U . For the existence of the point process ΨL according
to theorem 3.2 it remains to check that the signed Lévy functional L, built
on the cumulant measures defined in (4.1) and for some choice of Θ+

n , Θ−n ,
satisfies |L|(1 − e−ζf ) < ∞, f ∈ U . We say that (4.1) is the dual cluster
representation of the cumulant measures in terms of the Schur measures. In
the upcoming examples it will always be the case that the Schur measures
are of the form %k = ψ(x1, . . . , xn)λ(dx1) . . . λ(dxk) for some symmetric
ψ : t∞n=0X

n 7→ [0,∞). So with the help of the dual cluster representation
we obtain that the corresponding signed Lévy functional has the form (3.2)
with

ϑ =
1

(n− 1)!

∑
J∈π([n])

(−1)|J |−1 (|J | − 1)!
∏
J∈J

ψ((xj)j∈J). (4.2)

2We propose for the {%k}∞k=1 the name Schur measures because the cluster representa-
tion is in direct analogy to the concept of Schur functions.
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To summarize: The method of cluster expansion consists in defining first
the signed Lévy functional L by means of the given data {Θn}∞n=1 respec-
tively {%k}∞k=1; and next, to construct with their help the local processes
{QΛ}Λ∈B0(X). (This construction reflects the cluster structure.) The limiting
process is obtained under the condition that |L|(1 − e−ζf ) < ∞, f ∈ U . If
furthermore ν1

|L| exists it is the unique solution to the integral equation (ΣL),
see proposition 3.5.

Comparison to the Approach of Malyshev and Minlos

Here we give some relations to the work [9] of Malyshev and Minlos. They
are in the following setting: Let λ ∈ M◦(X) a diffuse Radon measure and
ϑ :M··

f (X) 7→ R a measurable function. Moreover let the cumulant measures

be given by Θn = 1
(n−1)!

ϑ(x1, ..., xn)λ(dx1)...λ(dxn). If we introduce the

following measure Π on M··
f (X)

Π(ϕ) =
∞∑
n=0

1

n!

∫
Xn

ϕ(δx1 + ...+ δxn)λ(dx1)...λ(dxn),

for all ϕ ∈ F+(M··
f (X)). The signed Lévy functional can be written as

L(ϕ) = Π(1M··f (X)\{0}ϑϕ). They impose the following condition on ϑ. For
any Λ ∈ B0 there holds∫

M··(Λ)\{0}
Π(dµ)

∫
M··f (X)

Π(d η) |ϑ(µ+ η)| <∞. (4.3)

Then they can show that there exists a weak limit of the QΛ, the local Gibbs
modifications, as Λ ↑ X (see [9], chapter 3, theorem 2). The condition (4.3)
can also be formulated in terms of the so called factorial moment measures
of |L|. Let H be a non negative measure on M··(X) then for f ∈ F+(Xn)

ν̌nH(f) =

∫
H(dµ)

∫
µ(dx1)(µ−δx1)(dx2) . . . (µ−

n−1∑
j=1

δxj)(dxn) f(x1, . . . , xn)

is called the n-th factorial moment measure of H. As computed in [14] we
have for Λ ∈ B0(X)

ν̌n|L|(Λ
n) =

∫
Λn
λ(d y1) . . . λ(d yn)

∫
Π(dµ) |ϑ(µ+ δy1 + . . .+ δyn)|

12



So in terms of |L| (4.3) can be formulated as

∞∑
n=1

ν̌n|L|(Λ
n)

n!
<∞ for Λ ∈ B0(X).

We required that ν1
|L|(Λ) = ν̌1

|L|(Λ) <∞, which is a bit weaker. Let us remark
that it is immediate from the proof of theorem 3.2 that the partition function
Ξ(Λ) can be either expressed as log(Ξ(Λ)) =

∫
Π(dµ) 1M··(Λ)\{0}(µ)ϑ(µ) or

Ξ(Λ) =

∫
M··(Λ)

Π(dµ)
∑

J∈π([|µ|])

∏
j∈J

ϑ((xj)j∈J),

here we have given each µ = δx1 + ... + δx|µ| some arbitrary numbering.
Malyshev and Minlos call the above identity a cluster representation of the
partition function. We remark that, due to proposition 3.8, all point pro-
cesses constructed in this section are simple.

We now give two classes of point processes which can be constructed via
theorem 3.2. These are the quantum gases Boson and Fermion (or perma-
nental and determinantal) point processes as well as the point processes from
classical statistical mechanics the so called Gibbs point processes.

5 Permanental and Determinantal Processes

Let λ ∈ M(X) and k : X ×X 7→ R be a positive definite kernel, that is for
every x1, ..., xn ∈ X and z1, ..., zn ∈ R we have

n∑
i,j=1

zik(xi, xj)zj ≥ 0.

Consider the following two families of cumulant measures, ε = +1,−1

Θn(ε) = εn−1 k(x1, x2)k(x2, x3) . . . k(xn−1, xn)k(xn, x1)λ(dx1) . . . λ(dxn).
(5.1)

Let us denote by L(ε) the signed Lévy functional corresponding to the family
{Θn(ε)}∞n=1 of cumulant measures by formula (5.1). Furthermore let us de-
note by k(n)(x, y) =

∫
k(x, z)k(n−1)(z, y)λ(d z), k(1) = k, n ∈ N the iterated

kernels of k, in case the integral is well defined.
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Theorem 5.1. If k is a positive definite kernel such that ‖k‖∞ := sup
x,y∈X

|k(x, y)| <

∞ and

α := sup
x∈X

∫
|k(x, y)|λ(d y) < 1, (5.2)

then there exist point processes Ψε
λ,k such that L(ε), ε = +1,−1 is their signed

Lévy functional. Moreover Ψ+
λ,k is a permanental point process to the kernel

h+ =
∑

m≥1 k
(m) and Ψ−λ,k is a determinantal point process to the kernel

h− =
∑

m≥1(−1)m−1k(m).

Proof. A straightforward computation shows that

ν1
|L(ε)|(f) =

∑
n≥1

∫
f(x)|k|(n)(x, x)λ(dx) for f ∈ U.

Furthermore we have the following estimate ‖|k|(n)‖∞ ≤ ‖k‖∞αn−1, which
yields ν1

|L(ε)|(f) <∞. The corresponding Schur measures have densities with
respect to the products of λ and are given by

d %+
n

dλn
= per(K) and d %−n

dλn
= det(K),

whereK is the matrix {k(xi, xj)}1≤i,j≤n and per(K) =
∑

σ∈Sn
∏n

j=1 K(j, σ(j))
is the so called permanent of K. Since K is a positive definite matrix it is well
known (see [2]) that per(K) ≥ det(K) ≥ 0, which implies non negativity of
the Schur measures. So theorem 3.2 gives us the existence of point processes
Ψε
λ,k. In [14] it is shown that if we start with a signed Lévy functional of the

present form the correlation functions ρε of Ψε
λ,k are given by

ρ+ = per(H+) and ρ− = det(H−),

where Hε = {hε(xi, xj)}1≤i,j≤n and hε =
∑

m≥1 ε
m−1k(m). So we have identi-

fied Ψ+
λ,k as a permanental and Ψ−λ,k as a determinantal point process.

For another approach to the construction of permanental and determi-
nantal point processes we refer to [20] and [21], who use the Kolmogorov ex-
tension theorem for the existence of the thermodynamic limit. If λ ∈M◦(X)
then proposition 3.8 shows that Ψε

λ,k is simple.
If we consider kernels k(x, y) = ψ(x − y) for some positive definite function
ψ then condition (5.2) takes the form ‖ψ‖1 := λ(|ψ|) < 1. Characteristic
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functions ψ are positive definite and bounded. So we still need to verify
‖ψ‖1 < 1. In the case X = R Móricz [12] has given sufficient conditions
for the Lebesgue integrability of ψ. Let us give two typical examples: Let
X = Rd and

gz(x) =
z

(2πβ)d/2
exp

(
−‖x‖

2

2β

)
, x ∈ Rd,

be a scaled gaussian density where z ∈ (0, 1) and β > 0 are some parameters.
It is well known that gz is positive definite and if we let λ the Lebesgue
measure on X then ‖gz‖1 = z < 1. The point process Ψ+

λ,gz
is called the ideal

Bose gas of Fichtner and was studied in [3] and Ψ−λ,gz is the corresponding
ideal Fermi gas as we call it here.
Another example is the following: Let X = R and λ the Lebesgue measure

ψ(x) = γ exp(−|x|
α

), x ∈ R,

where α, γ > 0 are chosen such that ‖ψ‖1 = 2αγ < 1. It is well known that
ψ is positive definite.

6 Reminder: Papangelou Processes

Before proceeding to the Gibbs point processes we introduce a general form
of Gibbsianess the concept of Papangelou point processes. We recall some
facts on these processes from Zessin [23]. Let π(µ, dx) be a kernel from
M··(X) to M(X). We say that a point process P is a Papangelou process
with Papangelou kernel π if

(Σ′π) CP (h) =

∫
M··(X)

∫
X

h(x, µ+ δx) π(µ, dx)P (dµ)

for all h ∈ F+(X ×M··(X)). For a detailed discussion of the (Σ′π) condition
the interested reader is refered to [4]. Define for η ∈M··(X), m ≥ 1

π(m)(η; dx1 . . . dxm) = π(η, dx1)π(η+δx1 , dx2) . . . π(η+δx1+. . .+δxm−1 , dxm)

the iterated kernel π(m) from M··(X) to M(Xm). If for any η ∈ M··(X)
π(2)(η; dx d y) is a symmetric measure then we say that π satisfies the cocycle
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condition. Let now π be a kernel fromM··
f (X) toMf (X) such that for some

η ∈M··
f (X)

0 < Ξ(η) =
∞∑
m=0

1

m!
π(m)(η;Xm) <∞

then we say that π is η-integrable. Under the condition of η-integrability of
π the following finite point process

P η
π (ϕ) =

1

Ξ(η)

∞∑
m=0

1

m!

∫
Xm

ϕ(δx1 + . . .+ δxm) π(m)(η; dx1 . . . dxm)

for ϕ ∈ F+(M··
f (X)) is well defined. The following result from [23] will later

serve as a main lemma for us.

Lemma 6.1. Assume that π is η-integrable for some η ∈ M··
f (X) and sat-

isfies the cocycle condition. Then P η
π is a Papangelou process with boundary

condition η. That is P η
π is a solution to

CP (h) =

∫
M··f (X)

∫
X

h(x, µ+ δx) π(η + µ, dx)P (dµ)

for all h ∈ F+(X ×M··
f (X)).

So in particular we have that P 0
π is a Papangelou process with Papangelou

kernel π. Here 0 denotes the zero measure on X.

7 Gibbs Processes

Let φ : X ×X 7→ R ∪ {∞} be a symmetric measurable function, a so called
pair potential and λ ∈ M(X). The energy at x ∈ X given µ ∈ M··

f (X) is
defined as

E(µ, x) =

∫
φ(x, y)µ(d y).

Later it will be important to consider E(µ, x) also for infinite µ. The energy
E(µ) of µ ∈M··

f (X) is recursevly given by E(0) = 0 and

E(µ+ δx) = E(µ) + E(µ, x). (7.1)
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Remark that we have for any x1, . . . , xn ∈ X,

E(δx1 + . . .+ δxn) =
∑

1≤i<j≤n

φ(xi, xj).

Furthermore let us denote by

ξ(µ, dx) = e−βE(µ,x) zλ(dx)

for µ ∈ M··
f (X) the Boltzmann kernel, where β, z > 0 are some parameters.

β is called the inverse temperatur and z the activity. Remark that due to
(7.1) the iterated kernels of ξ evaluated for the zero boundary configuration
are given by

ξ(k)(0; dx1 . . . dxk) = e−βE(δx1+...+δxk ) zλ(dx1) . . . zλ(dxk). (7.2)

Definition 7.1. A pair potential φ is called stable, if there exists B > 0 such
that E(µ) ≥ −B µ(X) for any µ ∈M··

f (X).

Remark that stable pair potentials are bounded from below E(δx + δy) =
φ(x, y) ≥ −2B.

Definition 7.2. Furthermore we assume φ to be regular. That means for
some β > 0 we have

C(β) = sup
x∈X

∫
λ(d y) |1− e−βφ(x,y)| <∞.

In [18] remark to definition 4.1.2. Ruelle gave the important hint that
regularity of a pair potential implies the existence of a set with finite Lebesgue
measure such that the potential is absolutely integrable on its complement.
Ruelle is in the setting of translation invariant potentials. So the remark
below is a straightforward generalization to arbitrary pair potentials. In the
sequel let us denote φx : y 7→ φ(x, y).

Remark 7.3. Let ε > 0. Since |1− e−t| ≥ c(ε) for |t| > ε for some c(ε) > 0
we have

C(β) ≥ sup
x∈X

∫
{β|φx|>ε}

λ(d y) |1− e−βφx(y)| ≥ c(ε) sup
x∈X

λ({β|φx| > ε}).

Furthermore since |1− e−t| ≥ c̃(ε)|t| for |t| ≤ ε for some c̃(ε) > 0 we have

C(β) ≥ sup
x∈X

∫
{β|φx|≤ε}

λ(d y) |1− e−βφx(y)| ≥ c̃(ε)β sup
x∈X

∫
{β|φx|≤ε}

λ(d y) |φx(y)|.
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Now we prescribe a family of Schur measures

%k = e−βE(δx1+...+δxk ) zλ(dx1) . . . zλ(dxk),

which coincide with the ξ(k)(0; ·) (see eqn. (7.2)). The cumulant measures
corresponding to this family of Schur measures are given by (4.1). They
certainly have a density with respect to the products of λ given by (4.2),
which is known as the Ursell function u (this representation of u was used
for instance by Basuev in [1]). So we have

Θn =
zn

(n− 1)!
u(x1, . . . , xn)λ(dx1) . . . λ(dxn).

Let us denote the corresponding signed Lévy functional by <. Recall from
the introduction that < is just an abbreviation for <+−<− and expressions
like <(ϕ) do only occur in case of |<|(|ϕ|) <∞.

There also exists a more graph theoretical representation for the Ursell
function. If we denote by Cn the set of all connected graphs with n vertices
and ζ(x, y) = e−βφ(x,y) − 1 then it is well known (see [18] chapter 4) that

u(x1, ..., xn) =
∑
G∈Cn

∏
{i,j}∈G

ζ(xi, xj),

where the product has to be taken over all edges in G. The following tree
estimate of the Ursell function due to [16] will be fundamental in the sequel.

Theorem 7.4 (Poghosyan, Ueltshi). Let φ be a stable pair potential then

|u(x1, ..., xn)| ≤
(
e2βB

)n ∑
G∈Tn

∏
{i,j}∈G

|ζ(xi, xj)|.

Here Tn denotes the set of trees with n vertices.

As already remarked in [9] the number |Tn| is dominated by cnn! for some
constant c, which can be taken to be c = e, we obtain that, uniformly in
x ∈ X,∫

λ(dx2)...λ(dxn) |u(x, x2, ..., xn)| ≤
(
e2βB

)n
enn!C(β)n−1. (7.3)
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In order to establish existence of a point process with the above prescribed
Schur measures we still have to show, according to theorem 3.2, that ν1

|<|
exists. But for f ∈ U

ν1
|<|(f) =

∞∑
n=1

zn

(n− 1)!

∫
Xn

f(x)|u(x, x2, . . . , xn)|λ(dx)λ(dx2) . . . λ(dxn)

is finite due to (7.3) if we let z ∈ (0, e
−2βB−1

C(β)
).The next task is to identify the

above constructed point process, which we call Gz,φ, as a Gibbs point process
where the interaction is given by the pair potential φ. Remark that Gz,φ is
simple due to proposition 3.8 if λ ∈M◦(X).

Theorem 7.5. Let φ be a stable and regular pair potential. Then for z ∈
(0, e

−4βB−1

C(β)
) Gz,φ exists, the Boltzmann kernel ξ is Gz,φ-a.s. well defined and

Gz,φ is a solution to
(
Σ′ξ
)
.

Proof. Since existence of Gz,φ was already established it remains to be seen
that it satisfies the integration by parts formula

(
Σ′ξ
)
. Since the Schur mea-

sures %k coincide with ξ(k)(0; ·) the finite point process QΛ coincides with the
Papangelou point process P 0

ξΛ
for Λ ∈ B0(X), where ξΛ denotes the Boltz-

mann kernel restricted to Λ. It is straightforward to see that ξ satisfies the
cocycle condition. So with Zessin’s lemma 6.1 we conclude that QΛ is a
solution to

(
Σ′ξΛ

)
. That is

CQΛ
(h) =

∫
M··(Λ)

∫
Λ

h(x, µ+ δx) ξ(µ, dx)QΛ(dµ), (7.4)

for h ∈ F+(Λ ×M··(Λ)). In the sequel let h be of the form f ⊗ e−ζg for
f, g ∈ U and Λ such that supp(f), supp(g) ⊂ Λ. In lemma 3.7 convergence
of CQΛ

(h)→ CGz,φ(h) as Λ ↑ X was proved. Remark that E(µ, x) = ζφx(µ),
so the right hand side of (7.4) can be written as∫

X

f(x)e−g(x)LQΛ
(g + βφx) zλ(dx). (7.5)

Certainly in order to prove the theorem we would like to have

LQΛ
(g + βφx)→ LGz,φ(g + βφx) as Λ ↑ X.
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We already now that LQΛ
(f) → LGz,φ(f) for f ∈ U . But since g + βφx

can be unbounded, negative and does not need to have bounded support
it is not clear whether convergence of the Laplace transforms on U imply
convergence for g + βφx. This difficulty will be overcome by the use of the
signed modified Laplace functionals K<Λ

resp. K< of QΛ resp. Gz,φ. We will
first establish K<Λ

(g+ βφx)→ K<(g+ βφx) and then show that we actually
have LQΛ

(g+ βφx) = K<Λ
(g+ βφx) and LGz,φ(g+ βφx) = K<(g+ βφx). The

main technical result will be the following

Lemma 7.6. Choose ε > 0 such that z < e−4βB−1−ε

C(β)
and let Υ be the function

on M··
f (X)

Υ(µ) =

{
2
(
e2βB

)µ(X)
, for supp(µ) ∩Ox 6= ∅

βeεµ(X) µ(|φx|), for µ ∈M··
f (O

c
x),

where Ox = supp(g) ∪ {β|φx| > ε}. Then we have |1 − e−ζg+βφx | ≤ Υ on
M··

f (X) and there exists some α ∈ R+, independent of x ∈ X, such that
|<|(Υ) ≤ α.

Proof. Since φx(y) ≥ −2B for all y ∈ X we certainly have |1− e−µ(g+βφx)| ≤
1 +

(
e2βB

)µ(X) ≤ 2
(
e2βB

)µ(X)
for all µ ∈ M··

f (X). Let now µ ∈ M··
f (O

c
x)

since Oc
x = supp(g)c ∩ {β|φx| ≤ ε} we have µ(g) = 0 and β|µ(φx)| ≤ εµ(X).

So due to |1 − et| ≤ |t|e|t| we have |1 − e−µ(g+βφx)| ≤ Υ(µ). Let us name
γ = e2βB+1C(β) in the sequel.

|<|(1M··f (Ocx) Υ)

=
∞∑
n=1

zn

n!
βeεn

∫
(Ocx)n

n∑
i=1

|φx(xi)||u(x1, ..., xn)|λ(dx1)...λ(dxn)

≤ β

∞∑
n=1

zneεn

(n− 1)!

∫
Ocx

λ(d y) |φx(y)|
∫

Xn−1

λ(dx1)...λ(dxn−1) |u(y, x1, ..., xn−1)|

≤ β

C(β)

∞∑
n=1

n(zeεγ)n
∫
Ocx

λ(d y) |φx(y)|

≤ β

C(β)

1

(1− zeεγ)2
λ
(
|φx|1{β|φx|≤ε}

)
≤ 1

(1− zeεγ)2

1

c̃(ε)
=: α1.
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For the second inequality we have used the estimate (7.3) and the last in-
equality is due to remark 7.3.
Since Xn \ (Oc

x)
n = (Ox ×Xn−1) ∪ (X ×Ox ×Xn−2) ∪ ... ∪ (Xn−1 ×Ox) we

have

|<|(1{µ∈M··f (X)|supp(µ)∩Ox 6=∅}Υ)

≤
∞∑
n=1

zn

n!
n2
(
e2βB

)n ∫
Ox

λ(d y)

∫
Xn−1

λ(dx1)...λ(dxn−1) |u(y, x1, ..., xn−1)|

≤ 2

C(β)

∞∑
n=1

n(ze2βBγ)n λ(Ox)

≤ 2

C(β)

1

(1− ze2βBγ)2
(λ(supp(g)) + λ({β|φx| > ε}))

≤ 2

C(β)

1

(1− ze2βBγ)2
(λ(supp(g)) +

C(β)

c(ε)
) =: α2.

For the second inequality we have used the estimate (7.3). The last inequality
follows by remark 7.3. And so we can choose α = α1 + α2.

Corollary 7.7. We have K<Λ
(g + βφx)→ K<(g + βφx) as Λ ↑ X and there

exists a constant α̃, independent of Λ and x, such that K<Λ
(g + βφx) ≤ α̃.

Proof. By the preceding lemma we have |(<−<Λ)(1− e−ζg+βφx )| ≤ |<|((1−
1M··(Λ))Υ) ↓ 0 as Λ ↑ X by dominated convergence. Furthermore we certainly
have |<Λ(1− e−ζg+βφx )| ≤ |<|(Υ) ≤ α, so we can choose α̃ = eα.

To shorten notation let us denote φ̃ = g + βφx in the sequel.

Lemma 7.8. We have

LGz,φ(φ̃) = K<(φ̃) and LQΛ
(φ̃) = K<Λ

(φ̃).

Proof. Let us start by establishing LGz,φ(φ̃+) = K<(φ̃+). Let (fn)n≥1 be an

increasing sequence of functions in U such that3 fn ↑ φ̃+ as n→∞. Remark
that due to monotone convergence there holds limn→∞ ζfn = ζφ̃+

onM··(X).

Thus with 1−e−ζfn ≤ 1−e−ζφ̃+ ≤ Υ we conclude by dominated convergence

3Let fn = min{φ̃+, n}1Λn
with Λn ∈ B0(X) and Λn ↑ X.
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<(1 − e−ζfn ) → <(1 − e−ζφ̃+ ) as n → ∞, which implies the last equality in
the following expression.

LGz,φ(φ̃+) = lim
n→∞

LGz,φ(fn) = lim
n→∞

K<(fn) = K<(φ̃+).

The first equality above can also be justified by dominated convergence and
the second is due to fn ∈ U . Now let us treat the general case.

<(1− e−ζφ̃) =

∫ (
1− e−µ(φ̃+)

∞∑
j=0

µ(φ̃−)j

j!

)
<(dµ)

=

∫ (
1− e−µ(φ̃+)

)
<(dµ)−

∫ ∞∑
j=1

e−µ(φ̃+)µ(φ̃−)j

j!
<(dµ)

The second equality above is due to the following. Since e
ζφ̃− − 1 ≤ Υ we

have∫ ∞∑
j=1

e−µ(φ̃+)µ(φ̃−)j

j!
|<|(dµ) ≤

∫ (
eµ(φ̃−) − 1

)
|<|(dµ) <∞. (7.6)

According to the monotone convergence theorem we are allowed to exchange
in the below equation the sum with the integrals.∫ ∞∑

j=1

e−µ(φ̃+)µ(φ̃−)j

j!
<(dµ) =

∞∑
j=1

1

j!
Cj
<(φ̃⊗j− ⊗ e

−ζφ̃+ ).

The estimate (7.6) also shows absolute convergence of the above right hand
side. So we have by lemma 3.1

exp

[
∞∑
j=1

Cj
<(φ̃⊗j− ⊗ e

−ζφ̃+ )

j!

]
= 1 +

∞∑
j=1

1

j!

∑
J∈π([j])

∏
J∈J

C
|J |
< (φ̃

⊗|J |
− ⊗ e−ζφ̃+ ).
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Collecting everything together we obtain

K<(φ̃) = K<(φ̃+) exp

[
∞∑
j=1

Cj
<(φ̃⊗j− ⊗ e

−ζφ̃+ )

j!

]

= LGz,φ(φ̃+)

1 +
∞∑
j=1

1

j!

∑
J∈π([j])

∏
J∈J

C
|J |
< (φ̃

⊗|J |
− ⊗ e−ζφ̃+ )


= LGz,φ(φ̃+) +

∞∑
j=1

Cj
Gz,φ

(φ̃⊗j− ⊗ e
−ζφ̃+ )

j!

=

∫
e−µ(φ̃+)

∞∑
j=0

µ(φ̃−)j

j!
Gz,φ(dµ) = LGz,φ(φ̃).

The third equation is due to lemma 3.6 since (7.6) implies νn|<|(φ̃
⊗n
− ) <∞ for

n ≥ 1 and therefore the assumptions of that lemma are satisfied. In partic-
ular lemma 3.6 gives ν1

Gz,φ
(φ̃−) < ∞ which implies ζφ̃− < ∞, Gz,φ − a.s. so

the conditional energy E(µ, x) is Gz,φ − a.s. well defined.

Certainly all arguments are valid if we replace < by <Λ therefore we also
obtain the second assertion.

We can now finish the proof of the theorem:

With corollary 7.7 we obtain LQΛ
(g + βφx)→ LGz,φ(g + βφx) as Λ ↑ X and

LQΛ
(g+βφx) ≤ α̃. So we can take the limit Λ ↑ X inside the integral of equa-

tion (7.5) and thus obtain thatGz,φ solves
(
Σ′ξ
)

for test functions h = f⊗e−ζg ,
f, g ∈ U . But again this can be extended to all h ∈ F+(X ×M··(X)) by the
argument in [11] chapter 4, proof of theorem 10.

In [15] Nguyen and Zessin have shown that
(
Σ′ξ
)

is equivalent to the
equilibrium equations in the sense of Dobrushin-Lanford-Ruelle. So we have
identified Gz,φ as a Gibbs point process. Since X can be a general Polish
space lattice as well as continuous systems are covered by theorem 7.5.

A small drawback is that we could construct Gz,φ for z ∈ (0, e
−2βB−1

C(β)
) but

the Gibbs property could only be shown for z ∈ (0, e
−4βB−1

C(β)
). If there exists

a sharper estimate than the one given by lemma 7.6 this difficulty might be
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overcome.

We have shown that (Σ<) implies
(
Σ′ξ
)
. A natural question is if also

(
Σ′ξ
)
⇒

(Σ<) holds. If this is the case then no phase transition can occur since (Σ<)
has a unique solution. In [19] theorem 5.7. Ruelle remarked that for small
z there exists a unique solution to the equilibrium equations for his class of
superstable pair potentials. So it is suggestive to ask whether this remains
true in our setting.

Remark 7.9. The proof to theorem 7.5 gives a general scheme for showing
that a point process with a signed Lévy functional L, such that ν1

|L| exists, is a
Papangelou point process. Assume you have a candidate π for the Papangelou
kernel of ΨL and π satisfies the cocycle condition as well as %k = π(k)(0; ·).
Then if for f, g ∈ U

lim
Λ↑X

∫
M··(Λ)

π(µ, f)e−µ(g) QΛ(dµ) =

∫
M··(X)

π(µ, f)e−µ(g) ΨL(dµ)

we can indentify π as the Papangelou kernel of ΨL.
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