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Abstract

One can fairly adopt the ideas of Donald E. Knuth to conclude that process
modeling is both a science and an art. Process modeling does have an aesthetic
sense. Similar to composing an opera or writing a novel, process modeling is
carried out by humans who undergo creative practices when engineering a process
model. Therefore, the very same process can be modeled in a myriad number of
ways. Once modeled, processes can be analyzed by employing scientific methods.

Usually, process models are formalized as directed graphs, with nodes represent-
ing tasks and decisions, and directed arcs describing temporal constraints between
the nodes. Common process definition languages, such as Business Process Model
and Notation (BPMN) and Event-driven Process Chain (EPC) allow process
analysts to define models with arbitrary complex topologies. The absence of
structural constraints supports creativity and productivity, as there is no need to
force ideas into a limited amount of available structural patterns. Nevertheless, it
is often preferable that models follow certain structural rules.

A well-known structural property of process models is (well-)structuredness. A
process model is (well-)structured if and only if every node with multiple outgoing
arcs (a split) has a corresponding node with multiple incoming arcs (a join), and
vice versa, such that the set of nodes between the split and the join induces a single-
entry-single-exit (SESE) region; otherwise the process model is unstructured. The
motivations for well-structured process models are manifold: (i) Well-structured
process models are easier to layout for visual representation as their formalizations
are planar graphs. (ii) Well-structured process models are easier to comprehend
by humans. (iii) Well-structured process models tend to have fewer errors than
unstructured ones and it is less probable to introduce new errors when modifying
a well-structured process model. (iv) Well-structured process models are better
suited for analysis with many existing formal techniques applicable only for well-
structured process models. (v) Well-structured process models are better suited
for efficient execution and optimization, e.g., when discovering independent regions
of a process model that can be executed concurrently.

Consequently, there are process modeling languages that encourage well-struc-
tured modeling, e.g., Business Process Execution Language (BPEL) and ADEPT.
However, the well-structured process modeling implies some limitations: (i) There
exist processes that cannot be formalized as well-structured process models. (ii)
There exist processes that when formalized as well-structured process models
require a considerable duplication of modeling constructs.

Rather than expecting well-structured modeling from start, we advocate for the
absence of structural constraints when modeling. Afterwards, automated methods
can suggest, upon request and whenever possible, alternative formalizations that
are “better” structured, preferably well-structured. In this thesis, we study
the problem of automatically transforming process models into equivalent well-
structured models. The developed transformations are performed under a strong
notion of behavioral equivalence which preserves concurrency. The findings are
implemented in a tool, which is publicly available.






Kurzfassung

Im Sinne der Ideen von Donald E. Knuth ist die Prozessmodellierung sowohl Wissenschaft
als auch Kunst. Prozessmodellierung hat immer auch eine dsthetische Dimension. Wie
das Komponieren einer Oper oder das Schreiben eines Romans, so stellt auch die
Prozessmodellierung einen kreativen Akt eines Individuums dar. Somit kann ein Prozess
auf unterschiedlichste Weise modelliert werden. Prozessmodelle kénnen anschliefend mit
wissenschaftlichen Methoden untersucht werden.

Prozessmodelle liegen im Regelfall als gerichtete Graphen vor. Knoten stellen Aktiv-
itdten und Entscheidungspunkte dar, wahrend gerichtete Kanten die temporalen Ab-
héngigkeiten zwischen den Knoten beschreiben. Géngige Prozessmodellierungssprachen,
zum Beispiel die Business Process Model and Notation (BPMN) und Ereignisgesteuerte
Prozessketten (EPK), ermoglichen die Erstellung von Modellen mit einer beliebig kom-
plexen Topologie. Es gibt keine strukturellen Einschriankungen, welche die Kreativitat
oder Produktivitdt durch eine begrenzte Anzahl von Modellierungsalternativen ein-
schranken wiirden. Nichtsdestotrotz ist es oft wiinschenswert, dass Modelle bestimmte
strukturelle Eigenschaften haben.

Ein bekanntes strukturelles Merkmal fiir Prozessmodelle ist Wohlstrukturiertheit.
Ein Prozessmodell ist wohlstrukturiert genau dann, wenn jeder Knoten mit mehreren
ausgehenden Kanten (ein Split) einen entsprechenden Knoten mit mehreren eingehenden
Kanten (einen Join) hat, und umgekehrt, so dass die Knoten welche zwischen dem
Split und dem Join liegen eine single-entry-single-exit (SESE) Region bilden. Ist dies
nicht der Fall, so ist das Modell unstrukturiert. Wohlstrukturiertheit ist aufgrund einer
Vielzahl von Griinden wiinschenswert: (i) Wohlstrukturierte Modelle sind einfacher
auszurichten, wenn sie visualisiert werden, da sie planaren Graphen entsprechen. (ii)
Wohlstrukturierte Modelle zeichnen sich durch eine héhere Verstiandlichkeit aus. (iii)
Wohlstrukturierte Modelle haben oft weniger Fehler als unstrukturierte Modelle. Auch
ist die Wahrscheinlichkeit fehlerhafter Anderungen gréfier, wenn Modelle unstrukturiert
sind. (iv) Wohlstrukturierte Modelle eignen sich besser fiir die formale Analyse, da viele
Techniken nur fiir wohlstrukturierte Modelle anwendbar sind. (v) Wohlstrukturierte
Modelle sind eher fiir die effiziente Ausfiihrung und Optimierung geeignet, z.B. wenn
unabhéngige Regionen eines Prozesses fir die parallele Ausfithrung identifiziert werden.

Folglich gibt es eine Reihe von Prozessmodellierungssprachen, z.B. die Business Pro-
cess Execution Language (BPEL) und ADEPT, welche den Modellierer anhalten nur
wohlstrukturierte Modelle zu erstellen. Solch wohlstrukturiertes Modellieren impliziert
jedoch gewisse Einschrankungen: (i) Es gibt Prozesse, welche nicht mittels wohlstruk-
turierten Prozessmodellen dargestellt werden konnen. (ii) Es gibt Prozesse, fiir welche
die wohlstrukturierte Modellierung mit einer erheblichen Vervielfiltigung von Model-
lierungskonstrukten einhergeht.

Aus diesem Grund vertritt diese Arbeit den Standpunkt, dass ohne strukturelle Ein-
schrankungen modelliert werden sollte, anstatt Wohlstrukturiertheit von Beginn an
zu verlangen. Anschliefend koénnen, sofern gewiinscht und wo immer es moglich ist,
automatische Methoden Modellierungsalternativen vorschlagen, welche “besser” struk-
turiert sind, im Idealfall sogar wohlstrukturiert. Die vorliegende Arbeit widmet sich dem
Problem der automatischen Transformation von Prozessmodellen in verhaltensaquiva-
lente wohlstrukturierte Prozessmodelle. Die vorgestellten Transformationen erhalten ein
strenges Verhaltensequivalenzkriterium, welches die Parallelitit wahrt. Die Resultate
sind in einem frei verfiigbaren Forschungsprototyp implementiert worden.






... Structuring process ... is no substitute for
good design. The transforms ... maight help to
unravel some knotty problems, but they cannot
produce logical poetry from tangled nonsense.

(G.Oulsnam)
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Modeling Behavior






1. Introduction

In the introductory chapter of this thesis we discuss the notion of a behavioral
model and the principles of behavioral modeling (see in Section 1.1), talk about
structurally constrained behavioral models as well as about their advantages and
disadvantages (see in Section 1.2), formulate the structuring problem (refer to
Section 1.3), hint at the results achieved in this thesis (refer to Section 1.4), and
inform the reader on the outline of this thesis (see in Section 1.5).

Behavioral models describe dynamic aspects of real world or designed systems.
In this thesis, we study the problem of automatically transforming behavioral
models into equivalent and structurally constrained behavioral models, viz. well-
structured behavioral models. The solution to this problem, which will be proposed
in the subsequent chapters of the thesis, allows for preserving the concurrency of
an original behavioral model in the newly constructed well-structured behavioral
model, which is of particular interest for various applications.
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1.1. Behavioral Models

Modeling is at the core of many engineering disciplines. Models are developed to
cope with the complexity of real world phenomena and are abstractions thereof [3].
A model is a reduced, but a sufficient, representation of a phenomenon which
is suitable for a particular purpose, e.g., simulating a system prior to starting
with its implementation. A conceptual model represents entities and relations
between entities from a certain domain [44]. Conceptual models aim at explaining
ambiguous terms from the domain of interest and finding correct relations between
entities. By developing conceptual models, engineers gain common understanding,
and hence define common playground, for iterating solutions within the problem
domain. Conceptual models are widely used for analysis, verification, simulation,
and communication purposes. Useful models contain a sufficient amount of
information for solving the envisioned engineering problem.

In this thesis, we study conceptual models of a particular kind, viz. behavioral
models. A behavioral model describes dynamic aspects of a real world or a designed
system. The main building bricks of behavioral models are entities like events
(phenomena located at single points in time) and tasks (pieces of work performed
within certain periods of time), as well as ordering relations between events and
tasks on the time axis. In other words, we study models that describe behaviors
which can be perceived as partial orders of entities, such that ordered entities
can only occur in sequence, whereas executions of unordered entities may overlap
in time. Computer programs [70, 51], service compositions [35, 72, 102], and
(business) process models [155, 27, 135] are examples of behavioral models.

Different modeling paradigms suggest different styles for formalizing behaviors.
The choice of a modeling paradigm for solving a problem is usually carried
out based on characteristics of the problem at hand; note that a paradigm is
usually most suitable when solving problems of a particular type. Over the last
decades, the imperative paradigm has shown its feasibility when solving a wide
range of engineering problems which are concerned with formalizing behaviors.
Within the imperative paradigm, designers of behavioral models specify how the
system, which is described in the model, should be able to achieve the result by
providing precise instructions in the form of potential execution sequences that
are composed of events and tasks. As for the other modeling styles, such as the
declarative [133, 134, 92, 103] or data-centric [17, 80, 78] design methodology, one
can usually observe that those find their use and are beneficial only for solving
very specific types of problems.

In this thesis, we study behavioral models developed using imperative languages,
i.e., languages which follow the imperative modeling paradigm. There exist many
imperative modeling languages. It is often the case that behavioral models, which
are developed by employing imperative languages, can be encoded as directed
annotated graphs, or executable graphs. In executable graphs, nodes represent tasks
or events and directed edges capture execution ordering constraints between the
nodes, i.e., the target of an edge may be executed once the source is accomplished.

To conclude, in this thesis, we study behavioral models that are specified by
following the imperative modeling paradigm and which can be formalized in the
form of executable graphs.



1.2. Well-structured Modeling

1.2. Well-structured Modeling

On the previous page, we reduced the scope of this thesis to studies of behavioral
models which follow the imperative modeling paradigm. We also stated that
behavioral models that are described by employing imperative languages can be
formalized as directed graphs such that nodes of a graph represent entities from
the problem domain, and directed edges encode causal dependencies between ad-
jacent nodes. This observation provides the opportunity for performing structural
investigations on behavioral models by analyzing the structural characteristics of
the underlying executable graphs.

State-of-the-art languages for describing behavioral models allow models to
have almost any topology, e.g., Business Process Model and Notation (BPMN) [2]
or Event-driven Process Chains (EPC) [64]. However, it is often preferable
that behavioral models follow some structural rules. A well-known property of
behavioral models is that of (well-)structuredness [67]:

A behavioral model is (well-)structured, if and only if every node with
multiple outgoing arcs (a split) has a corresponding node with multiple
incoming arcs (a join), and vice versa, such that the part of the behavioral
model between the split and the join forms a single-entry-single-exit (SESE)
component; otherwise the model is unstructured.

Figure 1.1 shows two behavioral models captured using the BPMN language.
An execution of the behavioral model in Figure 1.1(a) starts at node i, which
marks the creation of a new instance of the model. The thread of control is then
immediately passed to node u where a decision is carried out on how to proceed,
either by executing “Pay by check” task or by executing “Pay by cash” task. Once
the selected task is accomplished, the thread of control is passed either to node v or
to node w, respectively. Splits v and w introduce concurrency to the execution, i.e.,
once the execution reaches either of these nodes the tread of control is replicated
along every outgoing edge of the node. Joins x and y immediately pass on every
incoming thread of control to the only outgoing edge. Therefore, executions of
tasks “Approve” and “Update account” may overlap in time. Once both tasks
are accomplished, the execution is synchronized at join z. The execution of an
instance terminates once the thread of control reaches node o.

X C
'QE
‘ Update
account

Figure 1.1. Behavioral models: (a) unstructured, and (b) well-structured

The behavioral model in Figure 1.1(a) is unstructured. In the model, split u
has corresponding join z; together they define a SESE component with entry «
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and exit z. Yet, splits v and w have no corresponding joins. Similarly, joins = and
y have no corresponding splits. Figure 1.1(b) shows a well-structured behavioral
model, which in fact is equivalent to the behavioral model in Figure 1.1(a), i.e.,
both models describe the same behavior. Every split of the model in Figure 1.1(b)
has a corresponding join, e.g., split w has corresponding join z and split y has
corresponding join z. Fach of these corresponding pairs defines a SESE component,
where split is an entry and join is an exit of the SESE component. Similarly, joins
x and z have their corresponding splits. Note that Figure 1.1(b) uses short-names
for tasks (a,b,c,...), which appear next to each task in Figure 1.1(a).
Structured behavioral models have many advantages over unstructured ones:

o Well-structured models are easier to layout [28, 69, 121]. Well-structured
behavioral models are captured by planar graphs and can hence be drawn
on the plane in such a way that no edges cross each other, which is one of
the most important aesthetics when drawing behavioral models. Among
other aesthetics that can be easily fulfilled when drawing well-structured
behavioral models are minimization of drawing area, minimization of number
of overlapping elements, maximization of edges which are drawn one after
another in the prescribed direction, orthogonal drawing of edges, i.e., as a
sequence of horizontal and vertical line segments, etc.

o It has been empirically shown that well-structured behavioral models are
easier to comprehend by humans and tend to have fewer errors than un-
structured ones. In [76, 86], the findings strongly support the importance of
well-structuredness for the quality of behavioral models.

o By transforming unstructured behavioral models into well-structured ones,
one extends the applicability of analysis techniques which are only applicable
for well-structured models [75], and improves translations between models
captured in different languages [81, 98, 154]. Many analysis techniques
for behavioral models, e.g., aggregate Quality of Service computation for
composite services, can be defined for well-structured models in a straight-
forward manner [26, 59, 60, 15, 94, 16, 57, 58]. Therefore, a technique for
translating models with unstructured parts into well-structured ones allows
for a separation of concerns.

o Well-structured behavioral models are better suited for execution optimiza-
tion [43, 56, 100, 73], i.e., they are better suited for generating executable
code for parallel machines and for partitioning behavioral models on multi-
processor machines; one can achieve better reduction in communication and
synchronization costs.

o Well-structured behavioral models are favored in the context of refactoring
large model repositories [24, 125, 152]. Refactorings within model repositories
can improve the management of model complexity by making models both
easier to understand and to maintain. For instance, the technique for
detecting and refactoring clones [125], i.e., identical parts of behavioral
models in different models of the repository, can discover clones faster if
applied to well-structured models.

o Etc.
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The arguments listed above lead to a provocative question: If well-structured
behavioral models are so good, why do unstructured models exist? One approach
to modeling behavior can be to forbid unstructuredness on the syntactical level and
to thus ensure that all models are good, i.e., well-structured. The languages which
advocate well-structured modeling are, for example, Business Process Execution
Language (BPEL) [1] and ADEPT [117, 118]. However, a modeling methodology
that confines itself to “well-structured” languages faces certain limitations:

o There exist behavioral models with concurrency that have no equivalent
well-structured version [68]. This simply means that certain behaviors cannot
be modeled.

o Well-structured modeling implies design time constraints and thus limits
creativity and lowers productivity of model designers [55, 119]. Designers
should try hard to produce well-structured models, but they must be able
to introduce unstructured parts when those are required.

The discussion of whether to promote well-structured modeling or to allow
unstructuredness can be projected onto the problem of elimination of Go To
statements in computer programs, i.e., Go To statements can be seen as the source
of unstructuredness in programs. Despite decades of debates [25, 55, 159, 93, 119],
Go To statements are still present in state-of-the-art high-level programming
languages (even though it has been formally shown that Go To statements are
unnecessary [13]). If one shifts from sequential reality to the reality where things
can happen in parallel, unstructuredness is in the inherent nature of models [68].
As a general observation, one can conclude that well-structured behavioral models
are less expressive than unstructured ones.

Taking into consideration all of the above, we advocate the absence of structural
limitations when modeling behavior. Methodology which supports unstructured-
ness allows for a large degree of creativity when modeling; note that behavioral
models are primarily developed by humans who undergo creative practices when
solving complex engineering problems. Alternatively, unstructured behavioral
models often result from model synthesis techniques, such as process mining [137].
Given an unstructured behavioral model, scientific methods can propose, upon re-
quest and whenever possible, alternative formalizations that are “better” structured,
preferably well-structured. Therefore, one should be allowed to specify the behav-
ioral model as in Figure 1.1(a) and, if requested, the equivalent well-structured
behavioral model, as in Figure 1.1(b), should be constructed automatically. If one
possesses a technique which allows the construction of a well-structured version of
an unstructured behavioral model, one obtains the most benefits of unstructured
modeling and well-structured analysis.

1.3. The Structuring Problem

This section formulates the structuring problem. More precisely, we define the
family of structuring problems and point out one particular instance of the problem:;
it is this instance for which we shall search for a solution in the thesis at hand.
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Figure 1.2 visualizes the overall setting of the structuring problem. In the figure,
the oval region represents the set of all behavioral models; every dot inside the
region represents a behavioral model (there are infinitely many behavioral models).
For instance, dots pi1, p2, and p3 represent three distinct behavioral models. The
very same behavior can be represented by several different models, which gives a
rise for a behavioral equivalence relation. A behavioral equivalence relation is an
equivalence relation on the set of all behavioral models. A behavioral equivalence
relation partitions the set of all models into equivalence classes such that every
model is in one and only one equivalence class of the partition. Two models
describe the same behavior if and only if they are elements of the same equivalence
class. In the figure, C;, Cy, and C3 are equivalence classes (induced by some
behavioral equivalence relation) which contain models py, ps, and ps, respectively
(there are infinitely many equivalence classes). One can conclude from Figure 1.2
that models py, p2, and p3 describe different behaviors.

Behavioral
models

Figure 1.2. Behavioral equivalence relation on the set of all behavioral models and its
three equivalence classes

Given behavioral model p and a behavioral equivalence relation, the structuring
problem can be formulated in the following question:

Does the equivalence class, the one which contains behavioral model p and
is induced by the behavioral equivalence relation, contain behavioral model
q which is “better” structured than p (preferably well-structured)?

The solution to the structuring problem, i.e., the answer to the question above,
can be implemented either by constructing ¢ from p, or by providing the evidence
that ¢ does not exist. Given a behavioral model as input, the solution to its
structuring problem might result in several outcomes:

o There exists a behavioral model which is well-structured and describes the
same behavior as the given behavioral model p;. In Figure 1.2, we visualize
this situation with dot s; inside equivalence class C7; dot s; represents a
well-structured behavioral model which captures the same behavior as model
p1. Note that s; might be equal to py if p; is well-structured.
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o There exists no behavioral model which is well-structured and describes
the same behavior as the given behavioral model ps, but there exists a
behavioral model which is “better” structured than p, and describes the
same behavior as po. In the figure, we visualize this situation with dot m,
inside equivalence class Cy. Model my is not well-structured, but it exhibits
more structural information than model ps. Moreover, there exists no model
in Cy which is “better” structured than m;. We refer to model m; as the
mazimally-structured version of py. Note that m; might be equal to ps if po
is maximally-structured.

o There exists no behavioral model which is well-structured (or maximally-
structured) and describes the same behavior as the given behavioral model
ps. In the figure, we visualize this situation with equivalence class C3. We
refer to model p3 as inherently unstructured.

The arcs from p; to s; and from ps to mq in Figure 1.2 represent construction
paths (algorithms) which, given a behavioral model, construct its structured
version; note that a construction path might as well be empty.

The structuring problem can be instantiated using different behavioral models
and different behavioral equivalence relations. The expressive power and the
semantics of different languages used to capture behavioral models most probably
require different approaches when solving the structuring problem. The choice of
a concrete behavioral model defines the oval region in Figure 1.2 — the space of
the structuring problem, whereas the choice of a concrete behavioral equivalence
relation — equivalence classes on the set of all behavioral models.

In this thesis, we concretize the structuring problem with the notion of a process
model, which can be seen as a greatest common divisor of common languages
for defining behavioral models with concurrency. Furthermore, we concretize the
structuring problem with a behavioral equivalence relation which requires the
preservation of concurrency in equivalent models, viz. fully concurrent bisimulation.
Such a configuration of the structuring problem is of a particular interest for many
use cases. We shall provide the motivation and discuss related work for this
particular configuration of the structuring problem later in Chapter 5, and provide
the solution for this instance of the problem in Chapter 6.

In this thesis, our focus is on the control flow perspective of the structuring
problem. State-of-the-art languages for describing behavioral models (mainly those
that originate in the domain of business process management [155]) take a broader
view by providing means for specifying data flow perspective, resource perspective,
organizational view, etc., as parts of behavioral models. The primary purpose of
behavioral models is to orchestrate the execution of tasks on the time axis. We
believe that in future works, the solution to the structuring problem — as proposed
in this thesis — can be naturally generalized to incorporate other perspectives of
behavioral modeling.

1.4. Results of this Thesis

This monograph contributes a novel technique for structuring behavioral models.
The original unstructured behavioral model and its newly constructed equivalent
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well-structured version have the same semantics and thus describe the same
behavior, also in respect to potential concurrent executions of tasks. Therefore,
for instance, given the behavioral model in Figure 1.1(a), we are able to construct
its well-structured version shown in Figure 1.1(b).

The solution is engineered by re-using and further specifying several results
from different fields. The solution rests on techniques for graph parsing, results
from the theory of two-structures, results on Petri nets and net unfoldings, etc.
On the way towards a solution to the structuring problem we contribute to the
technique for parsing behavioral models into hierarchies of SESE components,
develop an approach for performing abstractions within behavioral models, specify
a criterion for truncating net unfoldings (which is of particular interest for the
structuring problem), define the notion of an ordering relations graph (a convenient
way for capturing behavior), etc. The lessons we have learned when working on
the solution to the structuring problem allowed us to specify a structural approach
for the verification of behavioral models and to propose a framework for organizing
structural investigations on behavioral models.

For a more elaborate discussion of the main contributions of this thesis please
refer to Section 9.1.

1.5. Structure of this Thesis

In the concluding section of this chapter, we describe the overall structure of the
thesis. The thesis consists of four parts. The order in which content is proposed
to the reader is optimized for the gradual presentation of the main story on
structuring of behavioral models. However, certain chapters of the thesis can
be of interest even when addressed in isolation. In the following, we explain the
dependencies between different chapters of this thesis.

Part I: Modeling Behavior

The first part consists of two chapters: Chapter 1 is devoted to a discussion
of common approaches to modeling behavior. In this chapter, we have already
stressed the role of structural constraints when modeling behavior, see Section 1.2,
and formulated the structuring problem, see Section 1.3. We shall propose a
solution to one particular instance of the structuring problem in Part III of the
thesis. Chapter 2 introduces basic notions which will be used within the thesis
to convey the findings. Importantly, in Chapter 2, we introduce the notion of
a process model — a simplistic, yet sufficient, language for specifying behavioral
models; it is this language that we shall use in the subsequent parts of this thesis
when dealing with the structuring of behavioral models.

Part Il: Parsing and Abstraction

The second part consists of two chapters: Chapter 3 presents a technique for parsing
behavioral models, viz. the Refined Process Structure Tree. Chapter 4 then uses
the parsing technique to define a technique for abstracting behavioral models, viz.

10
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the triconnected abstraction. Both techniques exploit structural characteristics of
behavioral models. The parsing technique allows for decompositions of behavioral
models into hierarchies of SESE components. The components can be treated
as self-contained units of behavior in the models. The triconnected abstraction
technique proposes to employ components obtained during parsing of behavioral
models in order to bring the models to higher abstraction levels by neglecting
insignificant details within the components. Both the parsing and abstraction
technique are employed in Part III to modularize the structuring problem and to
concentrate on the essences of structuring.

Part IlI: Structuring

The third part consists of two chapters: Prior to proceeding with the presentation
of different techniques for structuring process models, Chapter 5 sets the stage
by giving the foundations. In Chapter 5, we formally define the notion of a
well-structured process model based on its parse tree (the parse tree is discussed
in Part II, Chapter 3), elaborate on a behavioral equivalence notion we intend
to preserve when constructing well-structured versions of unstructured models,
and give the still missing preliminaries. Chapter 6 is devoted to the presentation
of structuring techniques, which constitute the main contribution of this thesis.
All the structuring techniques rely on the basic technique for structuring acyclic
process models. Further structuring techniques address the particular cases of
structuring process models with multiple source and/or multiple sink nodes,
maximal-structuring of acyclic process models, and structuring of process models
with arbitrary cyclic paths.

Part IV: Analysis

The fourth and the last part of this thesis also consists of two chapters: Chapter 7
generalizes the principles for parsing behavioral models from Chapter 3 and
proposes a stepwise technique for structural verification of behavioral models. As
behavioral models that we allow for structuring must be correct, one can employ
the verification technique from this chapter to check the correctness of models
prior to structuring them. Chapter 8 reuses the experience gained in the course of
this thesis and proposes a framework for organizing structural investigations on
behavioral models. We believe that the framework will find its use in many use
cases which deal with the structural analysis of behavioral models.

Finally, Chapter 9 concludes the thesis at hand. The chapter summarizes the main
contributions of the thesis, lists open problems, and states research opportunities
for future work.

11
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This chapter presents some well-established notions and formalisms which will
be used later to convey the findings. The corresponding definitions and formal
notations are discussed to the extent necessary. Section 2.1 opens the chapter with
basics on graph theory. Then, Section 2.2 discusses the notion of a two-structure,
which is a generalization of the notion of a directed graph. Afterwards, we present
formalisms for describing dynamic behavior: Section 2.3 looks at Petri nets, a
well-known formalism for modeling distributed systems. Section 2.4 is devoted to
workflow nets, a structural subclass of Petri nets designed to capture workflow
procedures. Finally, Section 2.5 discusses process models, which are simplistic, yet
sufficient, behavioral models for addressing the structuring problem.

13
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2.1. Graphs

Graphs are mathematical structures used to model pairwise relations between
elements of a certain collection. In this section, we present the basics of graphs. We
give a small number of well-known definitions from the graph theory, cf., [14, 46],
which fulfill our needs for the subsequent sections. Section 2.1.1 present undirected,
directed, and multi-graphs, whereas Section 2.1.2 discusses adjacency matrices —
an approach to formalize graphs.

2.1.1. Undirected, Multi-, and Directed Graphs

Let V be a nonempty finite set of elements, and denote by
E (V) ={{vi,v2} [v1,v2 €V, v1 # v2}
the set of all subsets of V' of two distinct elements.

Definition 2.1 (Graph).

An ordered pair G = (V, E), where E c &(V), is called a graph. |
The elements of V are called wertices, and those of E are called edges of the
graph. The vertex set of a graph G is denoted by Vi and its edge set by Fg.
Note that in the following we omit subscripts of vertex sets and edge sets where
the context is clear. Vertices and edges of a graph can also be referred to as
nodes and, respectively, arcs of the graph. A graph G can be visualized as a
plane figure where each vertex is shown as a circle while each edge is drawn
as a line segment (or a curve segment) which connects the vertices of an edge.
Figure 2.1(a) is a drawing of graph G with vertices Vi = {v1,v2,v3,v4} and edges
Eq = {{vlav2}7 {Ula U3}7 {U27U3}7 {1)3,7}4}}.

Figure 2.1. (a) A graph, (b) a multi-graph, and (c) a directed graph

Graphs can be generalized to multi-graphs by allowing self-loops and multiple
edges between vertices; a self-loop is an edge that connects a vertex with itself,
e.g., an edge {v,v}, v e Vi in graph G.

Definition 2.2 (Multi-graph).
An ordered triple M = (V,E,{), where FE = {e1,e3,...,en}, n € Ng, is a set
of edges and £: E — E(V)u{{v,v} | ve V} is a function that maps every edge to
a pair of vertices, is called a multi-graph.

4
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Ny is the set of natural numbers including zero. Figure 2.1(b) is a visualization of
the multi-graph M with vertices Vi = {v1,v2,v3}, edges Epr = {e1,€2,€3,€4,€5},
and function ¢, such that £(e1) = {v1,v2}, £(e2) = {vi,v2}, €(e3) = {v1,v3},
£(eq) = {va,v3}, and £(e5) = {vs,v3}.

We assume that the mapping ¢ is fixed, so that a subgraph can be identified with
a pair (V' E"), where V' ¢V and E’ € E such that each edge in E’ connects only
nodes in V'. Let F ¢ E be a set of edges, Gg = (Vp, F) is the subgraph formed by
F if Vi is the smallest set of nodes such that (Vg, F') is a subgraph. For instance,
({v1,v2},{e1,e2}) is a subgraph of the graph in Figure 2.1(b); this one is formed
by the set of edges {e1,ez}.

So far we have looked at graphs composed of unordered edges, such graphs are
also referred to as undirected graphs. A graph D = (V, E) is directed if the edges
are ordered. Again, let V' be a nonempty finite set of vertices, and denote by

EQ(V) = {(’Ul,’Ug) | V1,V € ‘/, v F ’UQ}
the set of all ordered pairs of V' of two distinct vertices.

Definition 2.3 (Directed graph).
An ordered pair G = (V, E), where E ¢ E5(V), is called a directed graph.

a

Figure 2.1(c) shows the directed graph D with vertices Vp = {v1, va,v3,v4} and
directed edges Ep = {(v1,v2), (va,v3), (vs,v1), (v3,v4)}. Similar to the undirected
case, one can talk about directed multi-graphs if one allows self-loops and multiple
edges between vertices in directed graphs. For a directed edge e = (v1,v2) € E2(V),
its reverse, denoted by e, is the edge (v2,vy).

A node vy € Vg of a graph G is said to be adjacent to another node vy € Vg of
G, if v; and v are connected with an edge in G. We also say that a node v, € Vg
of a graph G is incident with an edge of G, if the edge connects v; with some
vertex of G. Finally, two edges e; and es of a graph G are adjacent if they share
the same vertex.

2.1.2. Adjacency Matrix Representation of Graphs

In the previous section, we showed that graphs can be formalized as sets of
elements or drawings. Additionally, it is a common practice to encode graphs as
adjacency matrices, or adjacency arrays. An adjacency matrix provides means
for defining which vertices of a graph are adjacent to which other vertices. The
adjacency matriz representation of a graph G = (V, E) is a coloring of the set
E> (V') with two colors, e.g., 0 and 1, where 0 indicates the absence and 1 the
presence of the corresponding edge in the graph. Therefore, an adjacency matrix
of a graph G can be given by a characteristic function Zg : &(V) — {0,1}.
Table 2.1(a) encodes the adjacency matrix of the graph in Figure 2.1(a). The
table specifies Zg ({v1,v2}) = Zg({v1,v3}) = Zg({va,v3}) = Za({vs,v4}) = 1 and
Zg({v1,v4}) = I ({v2,v4}) = 0.

Similarly, the adjacency matrix of a directed graph D can be given by an
characteristic function Zp : E5(V) - {0,1}. Table 2.1(b) specifies the adjacency
matrix of the directed graph in Figure 2.1(c); the matrix specifies Zp((v1,v2)) =
Zp((v2,v3)) =Ip((vs,v1)) =Zp((vs,vs)) =1 and 0 for all other edges in E2 (V).

15
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‘ U1 V2 U3 Vg ‘ V1 V2 V3 Vg
V1 1 1 0 V1 1 0 0
v | 1 1 0 vg | O 1 0
V3 1 1 1 (%] 1 0 1
vy | 0 0 1 vy | 0O 0 O

Table 2.1. Adjacency matrix representations of: (a) the graph in Figure 2.1(a) and (b)
the directed graph in Figure 2.1(c)

2.2. Two-Structures

This section presents basic notions from the theory of two-structures [31, 32, 29, 30].
Two-structures, or 2-structures, relate to graphs in two ways. Every graph can
be represented as a two-structure while every two-structure defines a family of
graphs. Section 2.2.1 presents basic definitions, whereas Section 2.2.2 discusses
the class of reversible two-structures.

2.2.1. Definition of a Two-Structure

The notion of a two-structure is a generalization of the notion of a directed
graph [31]. The adjacency matrix representation of a directed graph D = (V| E) is
a coloring of the set Fo(V) with two colors, see Section 2.1.2. A two-structure
allows an arbitrary coloring of the set Fy (V).

Definition 2.4 (Two-structure).
An ordered pair S = (N, R), where N is a nonempty finite set of nodes, or
domain, and R is an equivalence relation on Fy(N), is called a two-structure.

We use dom(S) and rel(S) to denote N and R, respectively. We say that two
edges e1, e € Eo(N) are equivalent iff e; R es. For an edge e € Fo(N), we denote
by eR={e' | e R €'} an equivalence class of R that contains edge e. We also refer
to eR as the edge class of e.

A two-structure can be seen as a complete directed graph with labeled (colored)
edges, where a : E5(N) — C is a coloring function corresponding to the edge
classes, such that e; R eg iff a(e1) = a(ez); C is a set of colors. Observe that a
coloring function « is not unique as the choice of colors can be arbitrary. We say

Figure 2.2. (a),(d) Directed graphs, and (b),(c) two-structures
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that an edge e € Fy(N) is symmetric if and only if a(e) = a(e™!); otherwise e is
asymmetric. A two-structure is symmetric if and only if all its edges are symmetric.
We call it asymmetric if and only if all its edges are asymmetric.

Figure 2.2(a) shows the directed graph D = (V, E) with vertices V = {a,b,¢,d}
and edges E = {(a,c¢),(c,a),(a,b),(c,b),(c,d)}. Figure 2.2(b) presents one of
the possible corresponding two-structures S = (V, R) of D. The domain of the
two-structure is composed of vertices of D, whereas the equivalence relation R
defines two equivalence classes of edges: one class contains edges F (drawn with
solid lines) and the other one contains edges E3(V) \ E (drawn with dotted
lines). Figure 2.2(c) shows the same two-structure using a simplified notation,
i.e., symmetric edges are drawn as two-sided arrows. Please observe that the
correspondence between the graph and the two-structure is rather arbitrary, as one
can also accept the two-structure as corresponding to the graph in Figure 2.2(d)
by exchanging the roles of its equivalence classes. Alternatively, one can define the
correspondence between a graph and a two-structure by using larger sets of colors.

2.2.2. Reversibility of Two-Structures
An important subclass of two-structures is the class of reversible two-structures.

Definition 2.5 (Reversible two-structure).

A two-structure S = (N, R) is reversible iff for every pair of edges e1,es € Eo(N)
holds if e; and ey are equivalent, then edges e7! and e;' are also equivalent, i.e.,
Vep,eaeBy(N)iep Rey = et Reyl. J
The next construction allows one to often consider reversible, rather than arbitrary,
two-structures. Given an arbitrary two-structure, one can always construct its
corresponding reversible version by employing the reversible refinement.

Definition 2.6 (Reversible refinement, Reversible version).
Let S = (N, R) be a two-structure.
o The reversible refinement of R, denoted by R*, is defined by:
for all e1,e9 € E5(N), e; R* egiff e; R ey and e7! R e3'.
o The reversible version of S, denoted S*, is the two-structure (N, R*).

4

Figure 2.3(a) shows the reversible version of the two-structure in Figure 2.2(c).
The reversible two-structure has four equivalence classes, which are visualized by
lines of different types. The two-structure can be formalized by a coloring function
which maps the set of all edges on the set of four colors. Table 2.2 encodes one

‘ a b d
a 2 1 0
b |3 3 0
c| 1 2 2
d|{0 0 3
Figure 2.3. Two drawings of a two-structure Table 2.2. A coloring
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possible coloring function which is a mapping on the set of colors C = {0, 1,2, 3}.
In Figure 2.3(a), the dotted lines encode edges of color 0, solid lines represent
edges of color 1, dashed lines encode edges of color 2, and dash-dotted lines define
edges of color 3.

The drawing of reversible two-structures can be greatly simplified compared to
the drawing of general two-structures by: (i) omitting reverse edges of the edges
from the chosen edge classes, (ii) drawing a line segment or a two-sided arrow
to encode a symmetric edge, and (iii) omitting one symmetric edge class [29].
Therefore, the simplified drawing of the two-structure in Figure 2.3(a) can be
similar to the drawing of the graph in Figure 2.2(a), see Figure 2.3(b). Due to a
design decision, in Figure 2.3(b), we omitted edges of the class 3 and edges of the
symmetric class 0, whereas edges of the class 2 are drawn as solid lines.

2.3. Petri Nets

Petri nets are a well-known formalism for modeling distributed systems. Petri
nets are the means to define the structure of distributed systems. The dynamic
behavior of a Petri net, and hence of the corresponding distributed system, is
captured by the token game which takes place directly in the net. This section is
devoted to Petri nets, their execution semantics and properties.

In Section 2.3.1, we give the definition of a Petri net along with some basic
supporting concepts. Section 2.3.2 presents the semantics of Petri nets, i.e.,
the principles of the dynamic behavior of Petri nets. Afterwards, Section 2.3.3
tells basic properties that characterize dynamic aspects of Petri nets. Finally,
Section 2.3.4 discusses the structural class of Petri nets, in particular free-choice
nets.

2.3.1. Definition of a Petri Net

Petri nets originate from the doctoral thesis of Carl Adam Petri [104], where the
author generalizes automata theory by concurrency. Since then, the research of
Petri nets has led to a large body of formal results and applications. For a review
of the history of Petri nets please refer to [95]. The classical Petri net is a directed
bipartite graph with two types of nodes called places and transitions. The nodes
of a Petri net are connected via directed arcs; arcs never connect two places or
two transitions. In this section we present standard definitions of Petri nets.

Definition 2.7 (Petri net).

A Petri net, or a net, is a tuple N = (P, T, F), with P and T as finite disjoint sets
of places and transitions, and F € (P xT) u (T x P) as the flow relation. ,
We use subscripts Py, Tn, and Fy to denote the relation of the sets to the net
N. Note that we omit subscripts where the context is clear. We identify F' with
its characteristic function on the set (P x T) u (T x P). We refer to the set PuT
as nodes of the net. For a node x ¢ PuT, ex = {y e PuT | F(y,z) = 1} is
a preset and xe = {y € PuT | F(z,y) = 1} is a postset of z. A place p € P
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is a source place if ep = @, and it is a sink place if pe = @. By Min(N) we
denote the set of all source places of N, i.e., Min(N), N = (P,T,F), is the set
{peP| ep=02}. AnodexePuT is an input (output) node of a node ye PuT
iff © coy (xeye). For X c PUT, ¢X = U,cx oz and Xe = U,.x ze. For a
node z € PuT, in(z) = {(n,z) € F | n € oz} is the set of its incoming arcs and
out(x) = {(x,n) € F | n e xe} is the set of its outgoing arcs. We denote by F* the
transitive closure, and by F* the reflexive and transitive closure of F'.

Petri nets can be treated as directed graphs.
Given a net N = (P,T,F), the ordered pair
(PuUT, F) defines a directed graph. The graph
defines the structure of the net. In the graphical
notation, it is widely accepted that places are
represented by circles, transitions by rectangles,
and flow relation by directed edges. Figure 2.4
shows a net composed of eight places p1,...,ps
and eight transitions t1,...,ts. We expect that
all the nets that we shall work with are 7-
restricted, i.e., V t €T : ot + & + te. This often
allows to avoid minor technical difficulties. If Figure 2.4. A net
a net is not T-restricted, we assume its natural
completion, i.e., the net gets modified so that a transition without an input (output)
place gets a single input (output) place. The net in Figure 2.4 is T-restricted.

It is often useful to distinguish between observable and silent transitions of a
net. To cope with this phenomenon, the notion of a net is extended.

Definition 2.8 (Labeled net).
A labeled net is a tuple N = (P,T,F,T,)\), where (P,T,F) is a net, T is a
finite set of labels such that 7 € T, and labeling A : T' — 7T assigns to each transition
a label. If A\(¢) # 7, t € T, then t is observable in N; otherwise ¢ is silent. Labeling
A is distinctive if it is injective on a subset of observable transitions.

Observable transitions are designed to represent actions of
the distributed system that are visible to the outside
world, while silent transitions are the internal transi-
tions of the system. Figure 2.5 shows a labeled Petri net
N =(P,T,F,T,\), where P = {plap2ap3}7 T = {tl’t27t3a
ty}, F ={(p1,t1), (p1,t2), (t1,p2), (t2,p2), (P2, t3), (P2, t4),
(t3,p3), (ts,p3)}, T = {a,b,7}. The function X is such that
A(t1) =a, A(ts) =b, and A(t2) = A\(t3) = 7. In Figure 2.5, Figure 2.5. A labeled net
the silent transitions ¢t and t3 are drawn as empty rect-
angles. Labels are positioned next to the corresponding observable transitions.
In our subsequent discussions we shall refer to parts of nets. Therefore, we
formally define the notions of a subnet and path of a net. Let N = (P, T', F")
and N = (P, T, F) be two nets, such that P ¢ P, T' cT. N'is a subnet of N,
denoted by N'c N, iff F/' = Fn ((P'xT")u (T’ x P")). Subnet N’ is said to be
induced by nodes P’ uT’. N’ is a partial subnet of N, denoted by N’ < N, iff
F'cFn((P'xT"Yu(T'xP")). A path of a net N = (P,T,F) is a non-empty
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sequence 1, ...,z of nodes, z; € PUT, 1<i<kand k > 1, denoted by mx (z1,xk),
which satisfies (z1,22),..., (zk-1,2x) € F. We write z; € mx if x; is on the path
mn. A subpath ) of a path mx is a subsequence of my, which is itself a path.
Sometimes we shall identify (sub)paths with the sets of their nodes.

A Petri net is a static model of a distributed system. In the next section, we
explain how Petri nets capture the dynamic aspects of distributed systems.

2.3.2. Semantics of Nets

The dynamics of a distributed system are determined by its states and the principles
of state transitions. Petri nets have a precise execution semantics which is defined
in terms of a token game. To describe the state of a Petri net, its places may
contain tokens. The distribution of tokens over the places of the net is referred
to as the marking of the net. Therefore, the state of the distributed system is
uniquely determined by the marking of the corresponding Petri net.

Definition 2.9 (Marking).
Let N = (P,T,F) be a net. A marking, or a state, of N is a function M : P - Ny
which assigns to each place a natural number of tokens (including zero).

a

We denote by [p], p € P, the marking M in which place p contains just one token
and all other places contain no tokens, i.e., M(p) =1and V p’ € Px{p}: M(p') = 0.
We identify M with the multi-set containing M (p) copies of p for every p € P.

Definition 2.10 (Net system).
A net system, or a system, is a pair S = (N, M), where N is a net and M is
a marking of N.

4

We denote by My the initial marking of N. We use M to denote the natural
marking of N. The natural marking of a net puts one token at every place without
incoming arcs and no tokens elsewhere. In the following, when we refer to a net as
a system, we assume the net in its natural state.

The marking of a net implies a subset of enabled transitions of the net. Intuitively,
enabled transitions can be interpreted as the actions of the distributed system
that are ready to be executed.

Definition 2.11 (Transition enabling).
Let S = (N,M), N = (P,T,F), be a net system. A transition ¢ € T is en-
abled in S, denoted by (N, M)[t), iff every place from the preset of ¢ contains at
least one token, i.e., V pe€et: M(p) > 1.

a

When a transition of a net is enabled, the net can fire this transition. If the
transition fires, then one token is removed from every input place and one token
is added to every output place of this transition.

Definition 2.12 (Firing rule).
Let S = (N,M), N = (P,T,F), be a net system. If a transition ¢t € T is en-
abled in S then it can fire which leads to a new marking M’. The new marking
M'" is defined by M'(p) = M (p) — F(p,t) + F(t,p), for each place p € P. The firing
is denoted by (N, M)[t)(N,M").

4
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The firing of a transition consumes no time and brings the system from one state
to the other state, which constitutes a state transition. Firing is nondeterministic,
i.e., if multiple transitions are enabled at the same time, then any one of them
may fire. Because multiple tokens may be present in the net, Petri nets are well
suited for modeling the concurrent behavior of distributed systems.

The firing rule determines the set of reachable markings of a system. A marking
M is reachable from the initial marking My of a system (N, Mp), if and only if
there exists a sequence of enabled transitions whose firings lead from My to M.

Definition 2.13 (Reachable marking).
Let S = (N,My), N = (P,T,F), be a net system. A sequence of transitions
0 =1t1,...,tn, n € Ny, is a firing sequence in S iff there exists a sequence of
firings (N, Mo)[t1)(N, My), ..., (N, My_1)[tn)(N, M,,) which leads from marking
My to marking M,, via a (possibly empty) sequence of intermediate markings
My, ..., M,_1. For any two markings M and M’ M’ is reachable from M, denoted
by M’ €[N, M), iff there exists a firing sequence o leading from M to M'.

4

The set [V, My) contains all reachable markings of the system and thus defines
its state space. Next, we exemplify the presented concepts.

The Dining Philosophers Problem — An lllustrative Example

In computer science, the dining philosophers problem is an illustrative example of
a multi-process synchronization problem. It was originally described by Edsger
Dijkstra as a problem where five computers concurrently compete for access to five
shared tape drives. Later, Tony Hoare reformulated the problem into the dining
philosophers problem [52].

The dining philosophers problem is formulated as a number of philosophers
sitting together at a round table and each doing one of two things, either eating
or thinking. There is a fork on the table between each pair of philosophers who
are sitting next to each other. In order to start eating, a philosopher needs to pick
up two forks. The philosopher can only use the fork to his left and the fork to his
right. Once the philosopher is finished with eating, the forks are placed back on
the table. If a philosopher is not eating, (s)he is thinking, and vice versa. All the
philosophers proceed with alternating eating and thinking phases independently
from each other.

In the following, we show how the dining philosophers problem, in fact a slightly
simplified one, can be formalized as a net system. The classical problem is proposed
for n = 5 philosophers. The net in Figure 2.4 defines the static structure of our
solution to the problem for n = 4. In order to define the dynamic aspects of the
problem, we enhance the net with the initial marking; the resulting system is
shown in Figure 2.6(a). Each token of the marking is visualized as a black dot
inside of the corresponding place. Thus, the initial marking of the system in
Figure 2.6(a) is My = {p1,p2,P3, P4}

For each place p1, ps2, p3, and p4, the presence of a token in the place models
the presence of the fork on the table. Thus, in the initial state, four forks are on
the table. In this state there are four enabled transitions: tq, to, t3, and t4; all
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Figure 2.6. The simplified version of the dining philosophers problem (n = 4) formalized
as a net system, given at the initial and the three different reachable markings

marked with grey background in Figure 2.6(a). Each of these transitions may fire;
the firing models the philosopher picking up two forks next to him. Assume that
t; fires nondeterministically. The firing brings the system to the new marking
{p2,p3,p5}, which is shown in Figure 2.6(b). For each place ps, ps, pr, and pg, the
presence of a token in the place models the philosopher in the eating phase, while
the absence represents the philosopher in the thinking phase. In the system in
Figure 2.6(b) transitions t5 and ¢5 are enabled (highlighted with grey background).
The firing of transition t5, similar to the firing of transitions t¢g, t7, and tg, models
the shift from the eating to the thinking phase. However, transition 3 fires, which
results in the system shown in Figure 2.6(c). The resulting system describes
two philosophers in the eating and two in the thinking phase. In the next step,
transition ¢5 fires and brings the system to the marking depicted in Figure 2.6(d).

The proposed solution can proceed infinitely long by following the execution
semantics of Petri nets. In our solution, each philosopher picks up and puts back
two forks simultaneously. Additionally, the phase, either the eating or the thinking,
of each philosopher can be monitored by tracking the availability of a token at a
single place. The classical dining philosophers problem assumes that philosophers
operate with forks independently. Also, one can think of a solution in which
two phases in the life of a philosopher are modeled as a single token alternating
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between two places of a net. The reader is kindly advised to design different
solutions for different settings and numbers of philosophers as an exercise; please
label transitions in your net systems.

2.3.3. Basic Properties of Net Systems

Net systems are the models of real world or designed distributed systems. The
primary use of models is the study of their properties. In this section, we discuss
the basic properties of net systems which characterize their behavior.

The first property we describe is boundedness of a system.

Definition 2.14 (Boundedness).
A net system (N, M) is bounded iff the set of all its reachable markings [N, My)
is finite; otherwise the system is unbounded.

4

Alternatively, a net system is bounded if there exists a number k, such that no
reachable marking puts more than k tokens in any place. In an unbounded net
system, the number of tokens in some places can grow infinitely large.

The safeness property of a net system restricts boundedness by requiring that
there is never more than one token in the same place of the net.

Definition 2.15 (Safeness).
A net system (N, Mp) is safe iff for every reachable marking M € [N, My) and
for every place p € P the amount of tokens in p is not more than one, i.e.,
V Me[N,My) ¥V pe P: M(p)<1; otherwise the system is unsafe.

a

The net system in Figure 2.6 is safe and, thus, bounded. The state space of the
system consists of seven states. Every reachable marking of the system has at
most one token in every place.

Another property of a net system is liveness. A net system is live if every
transition can always fire again.

Definition 2.16 (Liveness).

A net system (N, My) is live iff for every marking M reachable from M, and for
every transition ¢ € T, there exists a marking M’ reachable from M which enables
t,ie, ¥V Me[N,Mo)ViteT I M e[N,M):(N,M)[t); otherwise the system is
not live.

a

The net system in Figure 2.6 is live. It can always reach a marking which enables
any transition from any reachable marking.

2.3.4. Structural Classes of Nets

Petri nets have a great expressive power. They can be used to model a large
variety of distributed systems. However, the generality of the modeling language
often inflicts high complexity on the analysis techniques for checking properties
of designed systems. Hence, often, theoretic investigations are carried out for
structural subclasses of general nets. In this section, we discuss several widely
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used structural classes of nets and their relations. For details on the content that
follows, the reader is kindly forwarded to [12, 10, 22].
We start our discussion with two basic classes of nets: S-nets and T-nets.

Definition 2.17 (S-net, T-net).
Let N = (P,T,F) be a net.
o N is an S-net iff every transition ¢ € T' has exactly one input place and one
output place, i.e., VieT :|et|=1=]te].
o N is a T-net iff every place p € P has exactly one input transition and one
output transition, i.e., V pe P:|ep/=1=|pe]|. ,
A system (N, M) is an S-system (a T-system) if N is an S-net (a T-net). The
fundamental property of an S-system is that all its reachable markings contain the
same number of tokens. Therefore, if the initial marking of an S-system contains
only one token, the system can be interpreted as a state machine. T-systems allow
concurrency and synchronization, but no conflicts. T-systems are also known in
literature as marked graphs.

Free-choice nets are a common generalization of S-nets and T-nets. In a free-
choice net, two places that share an output transition may not have any other
output transitions and two transitions that share an input place may not have
any other input places.

Definition 2.18 (Free-choice net).

A net N =(P,T,F) is free-choice iff Vpe P, |[pe|>1:e(pe) ={p}. ,
Again, a system (N, My) is free-choice if N is free-choice. Apparently, every
S-net and every T-net is free-choice and, thus, the class of free-choice nets is
indeed the generalization of both. The free-choice property guarantees that if
two transitions share an input place then every reachable marking of the system
enables either both of these transitions or none of them. Therefore, the choice of
firing a transition from the set of enabled transitions is not influenced by the rest
of the system. Hence the name — free-choice.

The very same effect on choices of transition firings can be achieved with less
restrictions on the structure of nets. In extended free-choice nets, if there is a flow
from a place p to a transition ¢, then there must be a flow from any input place of
t to any output transition of p.

Definition 2.19 (Extended free-choice net).
Anet N = (P, T, F) is extended free-choice, iff Vt1,t5 € T : ot1nety + & = ot1 = oty.

It is known that every extended free-choice system can be “simulated” by a
free-choice one, see [12, 10]. The simple construction to convert an extended
free-choice net into an “equivalent” free-choice net is shown in Figure 2.7. The
transformation introduces a fresh place and a fresh transition to the resulting net.
Under equivalence we understand that any behavior of the resulting free-choice
system may be interpreted as some behavior of the original extended free-choice
system if fresh elements are ignored.
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Figure 2.7. A transformation which reduces extended free-choice nets to free-choice nets

A common practice in literature is to refer to extended free-choice nets simply
as free-choice, e.g., see [22]. In the following, we obey historical correctness and
only refer to nets as free-choice if they comply with Definition 2.18. Figure 2.8(a)
shows an extended free-choice net. The net in Figure 2.8(b) is the free-choice net
obtained from Figure 2.8(a) by applying the transformation from Figure 2.7.

P2 P4

(a) (b)

Figure 2.8. (a) An extended free-choice net and (b) the equivalent free-choice net

Observe that the net in Figure 2.5 is an S-net and the net in Figure 2.4 is neither
extended free-choice, nor free-choice. In the sequel, we will mostly work with free-
choice nets as per Definition 2.18. Note that all the results that will be discussed
for free-choice nets are directly applicable to net classes that are reducible to
free-choice nets, e.g., extended free-choice nets or behaviorally free-choice nets [10].

2.4. Workflow Nets

Workflow (WF-)nets are the structural subclass of Petri nets specifically designed
to represent workflow procedures [129, 130]. A WF-net is a net with two special
places: one place is used to mark the beginning and the other one is used to
mark the termination of a workflow procedure. In Section 2.4.1, we give the
definition of WF-nets, whereas in Section 2.4.2, we discuss the soundness property
— a behavioral correctness property every proper workflow procedure should satisfy.

2.4.1. Definition of a Workflow Net

A net system starts when the first transition fires and terminates once no transition
is enabled. Workflow systems are the net systems which explicitly model the state
in which no transition has yet fired and the state in which no transition should be
enabled. The described design is achieved by imposing structural restrictions on
the nets of workflow systems.
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Figure 2.9. (a) A WF-net and (b) its short-circuit net

Definition 2.20 (WF-net, Short-circuit net, WF-system).
A net N = (P,T,F) is a workflow net, or a WF-net, iff N has a dedicated
source place i € P, N has a dedicated sink place o € P, and the short-circuit
net N' = (P,Tu{t*},Fu{(o,t*),(t*,i)}), t* ¢ T, of N is strongly connected. A
WE-system is a pair (N, M;), where M; = [i].

4

A workflow system gets initialized once there is a token in the source place
and terminates once there is a token in the sink place. In the following, we
always assume that the source place and the sink place are denoted by i € P and,
respectively, o € P. Similar to M;, we shall denote marking [o] by M,.

The net in Figure 2.5 is a workflow net with source p; and sink ps3, while the net
in Figure 2.8(a) is not a WF-net — it is impossible to identify a single dedicated
sink place. In Figure 2.9(a), we complete the net in Figure 2.8(a) to a WF-net.
Finally, Figure 2.9(b) shows its short-circuit net with a fresh transition ¢*.

2.4.2. Soundness

The requirements stated in Definition 2.20 relate to the structure of nets and can
be checked by employing standard graph techniques. In this section, we discuss the
soundness property, which was introduced in [129], that relates to the dynamics
of WF-systems. A sound WF-system must eventually terminate, and once it
terminates, there must be a single token in its sink place and no token elsewhere.
Additionally, in a sound system it should be possible to fire any transition by
following some firing sequence through the net. Let M and M’ be two markings
of anet (P,T,F); M>M'iff V pe P: M(p) > M'(p). The soundness property is
then formalized as follows.

Definition 2.21 (Soundness).
A workflow system (N, M;), N = (P,T,F), is sound iff :
o For every marking M reachable from M;, there exists a firing sequence
leading from marking M to marking M,, i.e., VM € [N, M;): M, € [N, M).
o Marking M, is the only marking reachable from M; with at least one token
in place o, i.e., VM € [N, M;}, M > M, : M = M,.
o Every transition can be enabled, i.e., V t €T 3 M € [N, M;): (N, M)[t).

1

If a WF-system is not sound, we refer to it as unsound. The soundness property
is summarized in three requirements: (i) It is always possible to reach marking
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M, starting from the initial marking M;. (ii) Once a token appears at the sink
place, all other places of the net must be empty. (iii) Every transition can be
enabled in some marking that is reachable from the initial marking. Considering
the nondeterministic nature of the firing rule, the last requirement implies the fact
that every transition can fire.

The problem of deciding whether a given WF-net is sound corresponds to the
problem of checking standard properties of Petri nets. In [129], Wil van der
Aalst shows that the soundness of a workflow net corresponds to the liveness and
boundedness of its short-circuit net. This result is proposed in the next theorem.

Theorem 2.22 ([129], Theorem 11).
A WF-system (N, M;) is sound, iff (N',M;) is live and bounded, where N' is the
short-circuit net of N. N

Theorem 2.22 allows one to organize soundness verification of a WF-system using
standard techniques for checking properties of net systems. A net system composed
from the net in Figure 2.9(b) and marking M; is live and bounded and, hence, the
WF-net in Figure 2.9(a) is sound.

2.5. Process Models

In the Introduction (Chapter 1), we discussed behavioral models rather informally
and stated that we shall instantiate the structuring problem with one concrete
notion of a behavioral model, which we refer to as a process model. In this section,
we formally define process models. We keep the formalism concise and sufficient
for the later discussions. Section 2.5.1 gives the definition of a process model,
while Section 2.5.2 discusses execution semantics of process models.

2.5.1. Definition of a Process Model

The notion of a process model is the outcome of our attempts to define a greatest
common divisor for common languages that are used to describe behavioral models.
Additionally, the notion of a process model is the minimal yet sufficient concept
for the discussion of the structuring problem, which we shall commence in Part III.
We consider process models as captured in the following definition.

Definition 2.23 (Process model).

A process model is a tuple PM = (A,G,C,type, A, i), with A and G as finite
disjoint sets of tasks and gateways, respectively, and C' € (AUG) x (AU G) as the
control flow relation. type: G — {zor, and} assigns a type to each gateway. A is a
finite set of names, such that 7 € A, and naming p: A - A assigns to each task a
name. If p(a) # 7, a € A, then a is observable in PM; otherwise a is silent. |
We use subscripts, e.g., Apas or Gpays, to denote relation of the sets to the process
model PM and omit subscripts where the context is clear. We refer to the set
AUG as nodes of the process model. A node x € AUG is a source (sink) iff ex = @
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(xe = @), where ex (xe) stands for the set of direct predecessors (direct successors)
of z in the directed graph (Au G, ().

In the following, we assume that process models satisfy certain structural
requirements: We expect that source and sink nodes of a process model are tasks;
otherwise we assume its natural completion, i.e., the process model gets modified
so that a source (sink) gateway gets a fresh direct predecessor (direct successor)
which is a silent task. We expect that every node of PM lies on a path from a
source to a sink. Fach task a € A has at most one incoming and at most one
outgoing arc, i.e., |ea| < 1 Ajae| < 1. Each gateway has at least three incident
control flow arcs.

payment

Figure 2.10. A process model

Figure 2.10 shows a process model which describes a simple “order delivery
and payment” process. We adapt the notation similar to BPMN for visualization
of process models. The process model in Figure 2.10 contains seven tasks, A =
{i,a,b,¢,d,e,0}. Note that i and o are silent tasks, i.e., u(i) = 7 = u(o). We
visualize silent tasks as start, intermediate, or end events in BPMN [2]. Source
silent tasks are drawn as BPMN start events, sink silent tasks are drawn as BPMN
end events, and all other silent tasks are drawn as BPMN intermediate events.
Silent tasks serve a technical purpose, e.g., representation of source and sink tasks
of a process model. An observable task is drawn as a rectangle that has rounded
corners with its name inside. Gateways are visualized as diamonds: Gateways of
type xor, or exclusive gateways, use a marker which is shaped like an “x” inside
the diamond shape. Gateways of type and, or parallel gateways, use a marker
which is shaped like a “+” inside the diamond shape. A gateway g € G is a split
iff |eg| = 1 Alge| > 1. A gateway g € G is a join iff |eg| > 1 A|ge| = 1. The set
{s,t,u,v,w,x,y,z} is the set of gateways of the process model in Figure 2.10.
Gateways u, =, and y are exclusive, while gateways s, t, v, w, and z are parallel.
Gateways s, u, v, and w are splits, while gateways t, x, y, and z are joins. Finally,
control flow arcs are drawn as directed edges between tasks and gateways.

2.5.2. Semantics of Process Models

Process models as per Definition 2.23 are static directed graphs with typed nodes.
In this section, we present the execution semantics of process models. The execution
semantics describes the dynamics of process models.
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A task in a process model is an atomic piece of work. The execution of a task
requires time. Tasks are usually performed by human process participants and/or
automated systems. Gateways are used to control process execution. Unlike tasks,
gateways do not represent work to be done and have zero effect on execution
time. Exclusive gateways are used to create alternative threads of control when
executing process models. An exclusive gateway passes the thread of control to
one of its outgoing control flow arcs every time the execution of the process model
reaches the gateway along one of its incoming control flow arcs. The selection of
an outgoing arc is usually associated with a decision. Parallel gateways are used to
synchronize or to create parallel threads of control. A parallel gateway passes one
thread of control to each of its outgoing control flow arcs every time the execution
of the process model reaches the gateway along all its incoming control flow arcs.
Control flow arcs define the ordering constraints between tasks and gateways of
the process model.

The formal definition of the execution semantics of process models is carried
out by means of a mapping to labeled Petri nets. As an outcome, the execution
semantics of the resulting Petri net (in terms of its token game) defines the
execution semantics of the process model.

Definition 2.24 (Net of a process model).

Let PM = (A,G,C,type, A, 1) be a process model and let G* and G* denote
exclusive and parallel gateways, respectively, i.e., G* = {g € G | type(g) = zor}
and G* = {g € G | type(g) = and}. Let I € A and O € A be sources and sinks of
PM, respectively, i.e., I={x e A| ex =@} and O ={x € A | xe = @}. The labeled
net N = (P,T,F,T,\) that corresponds to PM is defined by:

o P={p, |2eG*}U{psy | (z,y) eCryec AUGT}U{p, | x € IUO}.

o T={ty |[re AUGT}U{ty, | (z,y) eCrazeG*}.

o F'={(ts,py) | (z,y) e Crx e AUG" Ay € G }U{(ts,Puy) | (7,y) € CA,y€

AUGYU{(tryp) | (2,5) € C A2,y € GYU{(Frys i) | (m,y) € CAne
G ny e AUGTU{(artay) | (5,9) € C A € GF O {(pagity) | (21) €
CArye AuGH} U{(ps,ts) |z e T} U{(tz,pz) | x € O}.

o T=Au{r}. Xtz) =p(z),ty €T,z € A; otherwise A(t) =7,t € T. |
Definition 2.24 is similar to Definition 2.18 in [68]. However, Definition 2.24 tends
to generate smaller nets in terms of the number of nodes. The definition states
that a task is mapped to a Petri net transition with a single input and a single
output flow arc. A parallel gateway maps to a transition with multiple incoming
flow arcs and/or multiple outgoing flow arcs. An exclusive gateway maps to a
place with multiple incoming flow arcs and/or multiple outgoing flow arcs. The
places that correspond to zor gateways with multiple outgoing control flow arcs
are immediately followed by silent transitions which represent decisions. Sources
and sinks of the process model are mapped to places. The proposed mapping
formalizes the execution semantics of process models. It is easy to see that the
mapping always results in free-choice nets.

Figure 2.11 shows the net which corresponds to the process model in Figure 2.10.
Note that the resulting net is not minimal in terms of the number of nodes. We
propose the reader an exercise. Please define a mapping that defines the execution
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Figure 2.11. A WF-net that corresponds to the process model in Figure 2.10

semantics of process models (as proposed above) and which results in free-choice
nets smaller than those produced by Definition 2.24. As we require any such
mapping, in the following we shall work with nets generated by Definition 2.24.

We refer to a process model as single-source and single-sink if it has only one
source task and only one sink task. Observe that the net which corresponds to
a single-source and single-sink process model is always a workflow net, e.g., the
net in Figure 2.11. We propose to deduce the properties of process models from
the properties of corresponding nets. For instance, a single-source and single-sink
process model is sound if the corresponding WF-net is sound. Note that a sound
free-choice WF-system is guaranteed to be safe [131]. Hence, a sound single-source
and single-sink process model is also safe.
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Parsing and Abstraction
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Behavioral models are often formalized as directed graphs of a special kind, viz.
workflow graphs. Workflow graphs can be parsed into subgraphs with a single entry
and single exit. The result of the parsing procedure is a parse tree, which is the
compositional containment hierarchy of the subgraphs. Jussi Vanhatalo, Hagen
Volzer, and Jana Koehler [145, 146] proposed a workflow graph parsing technique
called the Refined Process Structure Tree (RPST). In this chapter, we propose
an alternative way to compute the RPST that is simpler than the one developed
originally. Section 3.1 presents the notion of the RPST. Afterwards, Section 3.2
discusses connectivity related notions of graphs. These notions are then used in
Section 3.3 to propose a new technique for the RPST computation. Section 3.4
shows how the RPST computation can be generalized to become applicable to any
workflow graph. Finally, Section 3.5 discusses related work and states a conclusion.

The materials reported in this chapter are published in [111, 113].
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3.1. The Refined Process Structure Tree

As stated in the Introduction (Chapter 1), in this thesis, we study behavioral
models that are formalized as directed graphs; BPMN models, EPCs, activity
diagrams, Petri nets (Section 2.3), process models (Section 2.5), are examples
of languages that suggest to employ directed graphs when describing behaviors.
Often, graphs used to capture behavioral models are expected to comply with
basic structural correctness requirements. In this chapter, we refer to such graphs
as workflow graphs. The Refined Process Structure Tree (RPST) is a technique
for workflow graph parsing, i.e., for discovering the structure of a workflow graph,
with desirable properties and various applications. In Section 3.1.1 we give an
introduction to the parsing problem. Afterwards, Section 3.1.2 and Section 3.1.3
formally define the notions of a workflow graph and the RPST, respectively.

3.1.1. About Workflow Graph Parsing

Companies widely use behavioral models for documenting their operational proce-
dures. Analysts develop behavioral models by decomposing business scenarios into
tasks and defining their logical and temporal dependencies. The models are then
utilized for communicating, analyzing, optimizing, and supporting execution of
individual business cases within or across companies. Various modeling notations
have been proposed. Many of them, for example the Business Process Modeling No-
tation (BPMN), Event-driven Process Chains (EPC), and UML activity diagrams,
are based on workflow graphs, which are directed graphs with nodes representing
activities or control decisions, and edges specifying temporal dependencies.

A workflow graph can be parsed into a hierarchy of subgraphs with a single
entry and single exit. Such a subgraph is a logically independent subworkflow,
or subprocess, of the behavioral model. The result of the parsing procedure is
a parse tree, which is the containment hierarchy of the subgraphs. The parse
tree has various applications, e.g., translation between process languages [146, 45,
109], control-flow and data-flow analysis [41, 42, 63, 62, 147], process comparison
and merging [74], process abstraction [111], process comprehension [148], model
layout [6], pattern application in process modeling [47], etc.

Jussi Vanhatalo, Hagen Volzer, and Jana Koehler [145, 146] proposed a workflow
graph parsing technique, called the Refined Process Structure Tree (RPST), that
has a number of desirable properties: The resulting parse tree is unique and
modular, where modular means that a local change in the workflow graph only
results in a local change of the parse tree. Furthermore, it is finer grained than
any known alternative approach and it can be computed in linear time. The
linear time computation is based on the idea by Robert Endre Tarjan and Jacobo
Valdes [124] to compute a parse tree based on the triconnected components of a
biconnected graph.

The original RPST algorithm [145] contains, besides the computation of the
triconnected components, a post-processing step that is fairly complex. In the
following, we shall show that the computation can be considerably simplified by
introducing a pre-processing step that splits every node of the workflow graph with
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more than one incoming and more than one outgoing edge into two nodes. We prove
that for the resulting graph, the RPST and the triconnected components coincide.
Furthermore, we prove that the RPST of the original graph can then be obtained by
a simple post-processing step. This new approach reduces the implementation effort
considerably, requiring only little more than the computation of the triconnected
components, of which an implementation is publicly available [48].

3.1.2. Workflow Graphs

We have already mentioned BPMN, EPC, and UML activity diagram modeling
languages, and have formally discussed execution semantics of Petri nets (Sec-
tion 2.3) and process models (Section 2.5). In a simplistic setting, models captured
in these languages can be addressed as directed graphs with different types of
nodes. Such simplicity is, however, sufficient for many applications. Usually, node
types, as well as the concrete execution semantics of a model, are irrelevant for
parsing purposes. Also, they are irrelevant for the discussion of the RPST. The
only property of importance when parsing a model is its topology. To simplify the
presentation and to stress the generality of the results, the following discussions
are carried out for directed multi-graphs, which we call workflow graphs. Workflow
graphs are not arbitrary graphs, they are derived from behavioral models and,
thus, are expected to follow certain structural requirements.

Figure 3.1. (a) A process model and (b) its corresponding TTG (simplified)

Similar as in the case of Petri nets and process models, a node v of a directed
(multi-)graph is a source (sink), iff it has no direct predecessors (direct successors).
We distinguish two structural classes of directed graphs, see the next definition.

Definition 3.1 (Multi-terminal graph, Two-terminal graph).
A multi-terminal graph (MTG) is a directed multi-graph G that has at least
one source and at least one sink, such that each node lies on a path from some
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source to some sink; G is a two-terminal graph (TTG) if it has exactly one source
and exactly one sink.

4

We refer to a directed multi-graph as a workflow graph, if it an MTG. Figure 3.1(a)
shows a process model and Figure 3.1(b) presents the corresponding TTG. Note
that the task nodes are skipped in the TTG for the sake of simplicity. Also, in
the following, we assume for simplicity of the presentation that every MTG has at
least two nodes and two edges.

Workflow graphs capture topologies of models and are, therefore, the minimal
and sufficient concepts for the discussion of a parsing technique. Though we shall
work with graphs, parsing can be performed on models which fulfill structural
requirements of workflow graphs in a straightforward manner. Observe, for instance,
that a workflow net or a single-source and single-sink process model is a TTG,
while a process model, in general, is formalized as an MTG.

3.1.3. Definition of the Refined Process Structure Tree

After the introductory discussions, this section is devoted to the formal definition
of the RPST. The RPST is a technique to parse workflow graphs into a collection
of its subgraphs, each with a single entry and single exit. Therefore, we start the
discussion with the formal definition of entries and exits of a subgraph.

Definition 3.2 (Interior, Boundary, Entry, and Exit nodes of a subgraph).
Let G be an MTG and Gr = (Vg,F) be a connected subgraph of G that is
formed by a set F' of edges.
o A node x € Vg is interior with respect to Gp, iff it is connected only to
nodes in Vp; otherwise v is a boundary node of Gp.
o A boundary node u of G is an entry of Gp, iff no incoming edge of u
belongs to F' or if all outgoing edges of u belong to F'.
o A boundary node v of G is an exit of G, iff no outgoing edge of v belongs
to F' or if all incoming edges of v belong to F'.

a

Figure 3.2 shows two subgraphs of the same TTG. Each subgraph is formed by two
edges, which are inside of the corresponding area denoted by the dotted border,
and has two boundary nodes y and z. Subgraph S1 is formed by edges {h,i}; y is
the entry and z is the exit of S1. Subgraph S2 is formed by edges {4, j}; each of
its boundary nodes cannot be classified neither as an entry, nor as an exit.

1: h
g K g k
DMEADAD QAN D
8

(a) (b)
Figure 3.2. Subgraphs

A fragment of an MTG is a subgraph of the MTG with a special configuration of
its boundary nodes.
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3.1. The Refined Process Structure Tree

Definition 3.3 (Fragment).
Let G be an MTG and Gp = (Vp,F') be a connected subgraph of G that is
formed by a set F' of edges. F'is a fragment of G, iff G has exactly two boundary
nodes: one is an entry and the other one is an exit.

a

Subgraph S1 in Figure 3.2(a) is a fragment. The set {y, 2} containing the entry
and the exit node is also called the entry-exit pair of the fragment. A fragment
is trivial if it only contains a single edge. Note that every singleton edge forms
a fragment. By definition, the source of a TTG is an entry to every fragment it
belongs to and the sink of a TTG is an exit from every fragment it belongs to.
Intuitively, control “enters” the TTG through the source and “exits” the TTG
through the sink. Note also that we represent a fragment as a set of edges rather
than as a subgraph (Section 2.1.1).

P1:
a:R1:9:B1:k
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Figure 3.3. (a) A TTG and its canonical fragments, (b) the RPST of (a)

We say that two fragments F, F’ are nested if ' ¢ F' or F' ¢ F. They are
disjoint if F'n F' = @. If they are neither nested nor disjoint, we say that they
overlap. The RPST of a workflow graph is a collection of its special fragments,
viz. canonical fragments.

Definition 3.4 (Canonical Fragment).
Let G be an MTG. A fragment of G is canonical, if it does not overlap with
any other fragment of G.

a

Finally, the RPST of a workflow graph is the set of all its canonical fragments.
It is easy to see that due to the definition of a canonical fragment, the RPST is
unique for a given graph. Moreover, canonical fragments of the RPST define all
the fragments of the workflow graph as non-canonical fragments can be obtained
as subsets of canonical ones, see [144] for more details.

Definition 3.5 (The Refined Process Structure Tree).
Let G be an MTG. The Refined Process Structure Tree (RPST) of G is the
set of all canonical fragments of G.

4

It follows that any two canonical fragments are either nested or disjoint and, hence,
they form a compositional containment hierarchy. This hierarchy can be shown
as a tree, where the parent of a canonical fragment F' is the smallest canonical
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fragment that contains F. The root of the tree is the entire graph, the leaves are
the trivial fragments.

Figure 3.3 exemplifies the RPST. Figure 3.3(a) shows the TTG from Figure 3.1(b)
along with its canonical fragments, where every fragment is formed by edges
enclosed in or intersecting an area denoted by the dotted border. For example, the
canonical fragment R1 is formed by edges {b,¢,d, e, f}, has interior nodes {v,w}
and boundary nodes {u,x}, with u being an entry and x an exit of the fragment.
Figure 3.3(b) visualizes the RPST as a tree.

3.2. Connectivity, Decomposition, and Components

Prior that we start with the presentation of the main results on the simplified
computation of the RPST, this section presents — at the sufficient level — all the
required preliminary notions. Section 3.2.1 discusses the connectivity property of
graphs. Section 3.2.2 shows how the connectivity property can be employed to
perform graph decompositions. Finally, Section 3.2.3 is devoted to the presentation
of the triconnected components of a graph.

3.2.1. Graph Connectivity

Connectivity is one of the basic concepts in graph theory. Given an undirected

(multi-)graph G, two vertices u and v are connected in G, if graph G contains a

path between u and v; otherwise the vertices are considered to be disconnected. A

graph G is connected, if every pair of distinct vertices in G is connected; otherwise

graph G is disconnected. Please note that though connectivity is defined for

undirected (multi-)graphs, it can be used in the context of directed graphs in a
straightforward manner, i.e., by ignoring edge directions.

k-connectivity is the generalization

of the connectivity property. A graph

G is k-connected if there exists no set

e e
1 1 of k—1 elements, each a vertex or an
@ @ €s @ @ €5 edge, whose removal renders the graph
€3 €3

' disconnected, i.e., there is no path be-

@ tween some pair of elements in the

graph. The set is called a separating

(a) (b) (k —1)-set of G. Note that removal of

a vertex implies removal of all its in-
Figure 3.4. (a) A biconnected graph and (b) cident edges. Separating 1- and 2-sets
a complete graph of a graph that are composed solely of

vertices are called separation points (or
cutvertices) and separation pairs, respectively. 1-, 2-; and 3-connected graphs are
referred to as comnected, biconnected, and triconnected, respectively. Finally, the
connectivity of a graph is the largest k£ for which the graph is k-connected. Note
that a graph composed of a single vertex is accepted to be connected, while a
complete graph that is composed of n vertices, n > 2, is (n — 1)-connected.
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Figure 3.4 shows two graphs. The graph in Figure 3.4(a) is clearly connected,
but it is also biconnected. Observe that removal of any element of the graph,
either a vertex or an edge, keeps the graph connected. However, the graph in
Figure 3.4(a) is not triconnected. The removal of a separation pair {vy,v4} renders
the graph composed of two disconnected vertices vy and vs. Hence, the largest
k for which the graph is k-connected is two. The graph in Figure 3.4(a) can be
modified to become “better” connected. The graph in Figure 3.4(b) is obtained
from the graph in Figure 3.4(a) by adding a single edge that connects vertices vq
and v3. The modified graph is a complete graph composed of four vertices and,
thus, it is triconnected. Note that removal of any pair of elements of the graph
in Figure 3.4(b) renders a connected graph.

3.2.2. Connectivity-Based Decomposition of Graphs

A k-connected graph contains no separating (k—1)-sets, but can contain separating
k-sets. After removing a separating set from a graph, the graph gets decomposed
into disconnected subgraphs, or components. Subsequently, obtained subgraphs
of higher connectivity can be decomposed by using larger separating sets. By
gradually increasing the size of separating sets used to decompose a graph, one
performs a stepwise connectivity-based decomposition of the graph. In Figure 3.5(b)
and Figure 3.5(c), we exemplify two steps of the connectivity-based decomposition
of the graph in Figure 3.5(a).

Figure 3.5. (a) An undirected graph, (b) the biconnected decomposition of (a), and (c)
the triconnected decomposition of (b)

Connectivity-based decomposition starts with a connected graph. If a graph is
disconnected, then it must be broken into connected subgraphs and the decom-
position should proceed independently on each of the connected subgraphs. The
graph in Figure 3.5(a) is connected. In a connected graph, there exists a path
between every pair of vertices. However, the existence of a path is not guaranteed
if one element gets removed from the graph (either a vertex or an edge). Vertex
vy is the only cutvertex of the graph in Figure 3.5(a). If vertex vy gets removed,
vertex vs gets disconnected from the rest of the graph. Therefore, the graph in
Figure 3.5(a) is not biconnected. A connected graph can be decomposed into
biconnected subgraphs by means of the biconnected decomposition, which computes
the biconnected subgraphs induced by the removals of cutvertices of the graph.
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For instance, Figure 3.5(b) shows two subgraphs of the graph in Figure 3.5(a)
which are induced by the removal of its only cutvertex vs.

Each of the subgraphs in Figure 3.5(b) has no separating set that is composed of
a single vertex or single edge and, hence, the subgraphs are biconnected. One can
proceed with the decomposition of these subgraphs into triconnected subgraphs.
This can be accomplished by means of the triconnected decomposition, i.e., by
removing separation pairs from the biconnected subgraphs. Because subgraph
({v2,vs},{er,es}) in Figure 3.5(b) is complete, the decomposition should proceed
only on one subgraph. Finally, Figure 3.5(c) shows two subgraphs induced by the
removal of separation pair {vs,v4}. Both subgraphs in Figure 3.5(c) are complete
and, thus, decomposition terminates.

The connectivity-based decomposition, as exemplified above, provides informa-
tion on the compositional structure of a graph, i.e., subgraphs that the graph is
composed of and the principles of the subgraphs composition in the graph. In
the example above, we have first decided to decompose the graph based on its
cutvertices and afterwards decomposed induced subgraphs based on separation
pairs. Note that usually the decision on how to decompose the given (sub)graph
cannot be determined uniquely. For instance, decompositions of the subgraph
in Figure 3.5(b) can also be induced by removals of separation pairs {eg, e} or
{va,e10}. Every sequence of decisions along decomposition of a graph results in a
unique graph decomposition strategy which allows one to observe unique structural
characteristics of the graph.

3.2.3. The Tree of the Triconnected Components

A graph that is not connected can be uniquely partitioned into connected com-
ponents, i.e., maximal connected subgraphs. A connected graph that is not
biconnected can be uniquely decomposed into biconnected components, i.e., max-
imal biconnected subgraphs. The fragments of a TTG are closely related to its
triconnected components, which was pointed out by Robert Endre Tarjan and
Jacobo Valdes [124]. Because of this relationship, we are interested to decompose
biconnected graphs into unique triconnected components. This relationship is
crucial for the RPST computation that will be proposed in Section 3.3.1 and
Section 3.3.2. Therefore, this section is devoted to the detailed discussion of the
triconnected decomposition of biconnected graphs.

Any biconnected graph can be a subject to the triconnected decomposition.
However, as it will become evident later, when discovering fragments in a TTG
it is convenient to work with its completed version. The completed version of a
TTG G, denoted by C(G), is the undirected graph that results from ignoring the
direction of all the edges of G and adding an additional edge between the source
and the sink. The additional edge in the completed version of G is called the
return edge of C(QG).

The TTG in Figure 3.1(b) is connected, but not biconnected; the nodes u, x, y,
and z are all separation points. Figure 3.6 shows the completed version C(G) of
the TTG in Figure 3.1(b), where r is the return edge drawn with a dash-dotted
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Figure 3.6. The completed version of the TTG in Figure 3.1(b)

line. The completed version is biconnected but not triconnected; {u,x} and {z, z}
are two of many separation pairs of C(G).

Fragments of a TTG are strongly related to the separation pairs of its completed
version. Note that the entry-exit pair {u,x} of fragment R1 in Figure 3.3(a) is also
a separation pair of its completed version in Figure 3.6. In fact, each entry-exit
pair of a non-trivial fragment of a TTG G is a separation pair of C(G).

Let G be a biconnected multi-graph and u,v be two nodes of G. A separation
class w.r.t. u,v is a maximal set S of edges such that any two edges in S are
connected by a path that visits neither u nor v except as a start or end point.
If there is a partition of all edges of G into two sets Ey, 7 such that both sets
contain more than one edge and each separation class w.r.t. u,v is contained in
either of these sets, we call {u,v} a split pair. We can then split the graph into
two parts w.r.t. the parameters Fy, E1 and u,v: To this end, we add a fresh edge
e between u and v to the graph, which is called a wvirtual edge. The graphs formed
by the sets Eyu {e} and E; u{e} are the obtained split graphs of the performed
split operation. A virtual edge is visualized by a dashed line.

(a) (b) (c)
Figure 3.7. The triconnected components of the graph in Figure 3.6: (a) a polygon, (b) a
rigid, and (c) a bond component

For an example of a split operation, consider the hexagon in Figure 3.7(a). Note
that it already contains virtual edges, which are the result of previous splits. The
hexagon can be split along the split pair w,z using the sets Fy = {a,r,k}, Es =
{l,g,m}. This results in two tetragons, which are shown in Figure 3.8(a).

It may be possible to split the obtained split graphs further, i.e., into smaller
split graphs, possibly w.r.t. a different split pair. A split graph is called a split
component if it cannot be split further. Special split graphs are polygons and
bonds. A polygon is a graph that has k > 3 nodes and k edges such that all nodes
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and edges are contained in a cycle, see Figure 3.7(a). A bond consists of 2 nodes
and k > 2 edges between them, see Figure 3.7(c). Each split component is either
a triangle, i.e., a polygon with three nodes, a triple bond, i.e., a bond with three
edges, or a simple triconnected graph, where simple means that no pair of nodes is
connected by more than one edge [54]. If a split component is the latter, we also
call it a rigid component. Figure 3.7(b) shows an example of a rigid component,
whereas the split graphs shown in Figure 3.7(a) and Figure 3.7(c) are not split
components as they can be split further.

S 01 GT

CISDT@@, @_@@ @ ‘g

(a) (b)

Figure 3.8. (a) A split of a hexagon from Figure 3.7(a), (b),(c) splits of a tetragon, (d) a
split of a bond

The set of split components that can be derived from a biconnected multi-graph
is not unique. To see that, we consider polygons and bonds. For instance, a
tetragon, see Figure 3.8(a), can be split along a diagonal into two split graphs.
Depending on the choice of the diagonal, two different sets of split components are
obtained. Figure 3.8(b) shows one of the two possibilities for splitting the tetragon
given on the left in Figure 3.8(a). Similarly, a bond with more than three edges,
see Figure 3.7(c), can be split into two bonds in several ways, depending on the
choice of E; and Fs. One possibility to split the bond from Figure 3.7(c) is shown
in Figure 3.8(d). A set of split components for the graph in Figure 3.6 is given by
the graphs in Figures 3.7(b), 3.8(b), 3.8(c), and 3.8(d).

The inverse of a split operation is called a merge operation. Two split graphs
formed by edges Fy and Fj, respectively, that share a virtual edge e between a
pair u,v of nodes can be merged, which results in the graph formed by the set
(Eou E1) N {e} of edges. If we start with a set of split components of G and
then iteratively merge a polygon with a polygon and a bond with a bond until
no more such merging is possible, we obtain the unique triconnected components
of G. Because a merge operation is the inverse of a split operation, we can also
obtain the triconnected components by suitable split operations only.

Let C be a split graph decomposition of G, i.e., a set of split graphs recursively
derived from G. A polygon P € C is maximal w.r.t. C if there is no other polygon
in C that shares a virtual edge with P. A bond B € C is mazimal w.r.t. C if there is
no other bond in C that shares a virtual edge with B. C is a set of the triconnected
components of G if each member of C is either a maximal polygon, a maximal
bond, or a rigid split component. The set of the triconnected components of G
exists and is unique [54].

The graphs in Figure 3.8(c) can be merged along the virtual edge p. The obtained
tetragon can be merged with the triangles in Figure 3.8(b) along the virtual edges
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n and o to obtain the maximal polygon from Figure 3.7(a). Figures 3.7(a), 3.7(b),
and 3.7(c) show all the triconnected components of the graph from Figure 3.6:
Figure 3.7(c) is a maximal bond, which is obtained by merging the bonds in
Figure 3.8(d), and Figure 3.7(b) is a rigid component.

Any split graph decomposition can be arranged in a tree: The tree nodes are
the split graphs. Two split graphs are connected in a tree if they share a virtual
edge. The root of the tree is the split graph that contains the return edge. The
tree of the triconnected components of G is the tree derived in this way from its
triconnected components.

Definition 3.6 (The Tree of the Triconnected Components).
The Tree of the Triconnected Components (TTC) of a biconnected graph G
is the set of all triconnected components of G.

4

Let C' be a triconnected component of graph G. Let F be the set of all edges
of GG that appear in C' or some descendant of C' in the tree of the triconnected
components. The graph formed by F' is called the triconnected component subgraph
derived from C.

P
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Figure 3.9. (a) A TTG and its triconnected component subgraphs, (b) the tree of the
triconnected components of (a)

Figure 3.9 shows the tree of the triconnected components of the TTG in Fig-
ure 3.1(b). In Figure 3.9(a), the triconnected component subgraphs are visualized;
they correspond to the triconnected components from Figure 3.7. Each tricon-
nected component subgraph is formed by edges enclosed in or intersecting a region
with the dotted border, e.g., all the graph edges for P1 are derived from the com-
ponent given in Figure 3.7(a). Figure 3.9(b) arranges the triconnected components
in a tree. The root of the tree, i.e., node P1, corresponds to the triconnected
component that contains the return edge r. Note the difference between the tree
of the triconnected components in Figure 3.9(b) and the RPST in Figure 3.3(b).
The names of the subgraphs hint at the types of the triconnected components, i.e.,
P1 is a polygon, Bl is a bond, and R1 is a rigid.

3.3. Simplified Computation of the RPST

This section proposes an algorithm for the computation of the RPST. The algorithm
is simplified if compared with the original one [145, 146]. First, Section 3.3.1
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discusses the RPST of TTGs in which every node has at most one incoming or at
most one outgoing edge. Such TTGs are common in practice and are referred to
as normalized TTGs. Afterwards, Section 3.3.2 addresses the general case of the
RPST computation of any TTG whose completed version is biconnected.

3.3.1. The RPST of Normalized TTGs

We call a TTG normalized, if every node has at most one incoming or at most
one outgoing edge. In this section, we show that for normalized TTGs, the RPST
computation reduces to computing the tree of the triconnected components. In
other words, each canonical fragment corresponds to a triconnected component
subgraph and each triconnected component subgraph corresponds to a canonical
fragment.

(b)
Figure 3.10. (a) A normalized TTG and (b) its completed version

Let C(G) be the completed version of a TTG. A pair {z,y} of nodes is called
a boundary pair, if there are at least two separation classes w.r.t. {z,y}. A
separation class is proper, if it does not contain the return edge. Figure 3.10 shows
a normalized TTG and its completed version. The TTG is formed by a subset
of edges of the workflow graph from Figure 3.1(b). The boundary pair {u,z}
in Figure 3.10(b) generates two separation classes. The first contains the edges
b,c,d,e, f and is, therefore, proper; whereas the second contains all other edges of
the graph, including the return edge r, and is therefore not proper. Fragments are
strongly related to proper separation classes. To describe that relationship, we
introduce the notion of a separation component.

Definition 3.7 (Separation component).

Let {x,y} be a boundary pair of C(G). A separation component w.r.t. {x,y} is
the union of one or more proper separation classes w.r.t. {z,y}. ,
The bond from Figure 3.7(c) without the virtual edge m is a separation component
w.r.t. {y,z} of the completed version of the TTG from Figure 3.6. It is the union
of the three proper separation classes: {h}, {i}, and {j}.

We know that the entry-exit pair {z,y} of a fragment is a boundary pair of G
and that the fragment is a separation component w.r.t. {z,y} [146]. Furthermore,
it follows from the construction of the triconnected components that each tricon-
nected component subgraph is a separation component. We show now that every
triconnected component subgraph of a normalized TTG is a fragment.
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Lemma 3.8: Let F' be a triconnected component subgraph of a normalized TTG. F
is a fragment. N

Proof. Every triconnected component subgraph of a normalized TTG has two
boundary nodes; they form a boundary pair. We want to show that one of the
boundary nodes is an entry and the other one is an exit of the subgraph. First,
we show that a boundary node of a triconnected component subgraph is either
an entry or an exit. A boundary node of a subgraph is an entry or an exit, if
either all incoming or all outgoing edges of the node are part of the subgraph or
are outside the subgraph (Definition 3.2). For every node of a normalized TTG it
holds that either a set of all incoming edges or a set of all outgoing edges contains
one edge. The configuration of this one edge, i.e., either it belongs to the subgraph
or not, defines the configuration of the whole set. Therefore, any boundary node
of a triconnected component subgraph is either an entry or an exit. Finally, the
fact that only one arrangement of boundary nodes is possible, i.e., one of the
nodes is an entry and the other one is an exit, follows from the definition of a
TTG (Definition 3.1). The arrangement of two entry or two exit boundary nodes
violates the requirement that each node of a TTG lies on a path from the source
to the sink. O

(a) (b) (©) (d)

Figure 3.11. Different configurations of a boundary node with three incident edges

Figure 3.11 exemplifies Lemma 3.8; it shows all possible configurations of a
boundary node with three incident edges. The dotted lines separate edges on
internal and external subgraph edges. Regardless of the configuration, each node
in the figure can be classified as either an entry or an exit. For normalized TTGs,
we can extend the observation of Lemma 3.8 to a full characterization of fragments
in terms of separation components.

Lemma 3.9: Let F' be a set of edges of a normalized TTG. F is a separation
component, if and only if F' is a fragment. X

Proof. We prove each direction of the statement separately.

(=) Let {u,v} be the boundary pair of F' and let e be an edge in F. As the
return edge is not in F, it is in a different separation class w.r.t. {u,v}
than e. Consider a simple directed path from the source to the sink of the
graph that contains e. It follows that the path contains one of the nodes
{u,v} before e and one after e; otherwise the separation class of e would
contain the return edge. Let, without loss of generality, u be the former
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node and v the latter. It follows that u has an incoming edge outside F’
and an outgoing edge inside F', and v has an incoming edge inside F' and
an outgoing edge outside F. Based on the assumption that the TTG is
normalized, it is now straightforward to establish that u is an entry and v is
an exit of F'. Furthermore, there is no other boundary node besides v and v
because that would contradict the definition of a separation class. Hence, F’
is a fragment.

(<) See Theorem 2 in [146]. ]

It turns out that the set of triconnected component subgraphs of a normalized
TTG is exactly the set of all its canonical fragments and, thus, is the RPST of the
TTG. Before we prove the statement, we give two auxiliary lemmas which also by
themselves deliver interesting insights into separation components of a normalized
TTG and their relations.

Lemma 3.10: If F is a separation component and F' a triconnected component
subgraph, then F and F' do mot overlap. N

Proof. If F' contains only a single edge or the entire graph, the claim is trivial.
Otherwise F' can be split off from the main graph into a split graph. We continue
the decomposition until we reach a set of split components. Those can be arranged
in a tree (of split components) as described above. F' corresponds to a subgraph
of this tree, i.e., a subtree represents exactly the edges of F. On the other
hand, F' also corresponds to a subtree of the tree of split components because
the triconnected components are obtained by merging split components, i.e., by
collapsing parts of the tree of split components. Since F' and F’ both correspond
to subtrees of the same tree, they do not overlap. O

It follows from Lemma 3.10 that triconnected component subgraphs do not over-
lap. We show now that for a separation component which is strictly contained
in a triconnected component subgraph, there always exists another separation
component contained in the same triconnected component subgraph that overlaps
with it.

Lemma 3.11: If F is a separation component that is not a triconnected component
subgraph, then there exists a separation component F', such that F' and F' overlap.,

Proof. Consider a split graph decomposition that contains F. If F is not a
triconnected component subgraph, then F and the parent of F' are either bonds
w.r.t. the same boundary pair or polygons. In both cases, it is easy to display a
bond or polygon, respectively, that overlaps with F. O

We are now ready to prove the main proposition of this section.

Theorem 3.12. Let F be a set of edges of a normalized TTG. F is a canonical
fragment, if and only if F is a triconnected component subgraph. N

Proof. We prove each direction of the statement separately.
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(=) Let F be a canonical fragment. We want to show that F' is a triconnected
component subgraph. Because of Lemma 3.9, F is a separation component.
If F is not a triconnected component subgraph, then there exists, because of
Lemma 3.11, a separation component F’ that overlaps with F. Because of
Lemma 3.9, F' is a fragment, which contradicts F' being canonical.

(<) Let F be a triconnected component subgraph. We want to show that F is a
canonical fragment. Because of Lemma 3.9, F' is a fragment. Let F’ be any
fragment. Because of Lemma 3.9, F” is a separation component. Because of
Lemma 3.10, F and F’ do not overlap. Hence, F' is a canonical fragment.O

For normalized TTGs, Theorem 3.12 implies that the tree of the triconnected
components and the RPST coincide, i.e., both deliver the same decomposition on
the set of edges of the TTG.

P1;
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(b)
Figure 3.12. (a) A TTG and its triconnected component subgraphs, (b) the RPST of (a)

Figure 3.12(a) shows the triconnected component subgraphs of the normalized
TTG in Figure 3.10(a). The triconnected component subgraphs are also all the
canonical fragments of the TTG. Therefore, the RPST of the workflow graph from
Figure 3.12(a), which is given in Figure 3.12(b), can be computed by constructing
the tree of the triconnected components of the workflow graph.

3.3.2. The RPST of General TTGs

We now show how to compute the RPST of an arbitrary TTG whose completed
version is biconnected. To do so, we normalize the TTG by splitting nodes that
have more than one incoming and more than one outgoing edge into two nodes.
We then compute the RPST of the resulting normalized TTG as in Section 3.3.1.
Finally, we project the RPST of the normalized TTG onto the original one and
obtain the RPST of the original TTG.

We start the discussion with the presentation of the node-splitting operation.

Definition 3.13 (Node-splitting).

Let G = (V,E,£) be a directed multi-graph and 2 € V' a node of G. A splitting of
x is applicable if © has more than one incoming and more than one outgoing edge.
The application results in a graph G’ = (V'/, E’, £), where V' = (V~{x})u{*z,x*},
E' = Eu{e}, where *z and x* are fresh nodes and e is a fresh edge, and ¢’ is such
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that ¢'(e) = (*x,x*). In addition, f e E,{(f) = (y,2z) and ¢'(f) = (v, z") implies
that ¢y’ = zx if y = z, otherwise ¢y’ = y; and 2’ = *x if z = z, otherwise 2’ = 2. ,
A single node-splitting is sketched in Figure 3.13(a). For instance, if the splitting
is applied to node w of the graph from Figure 3.13(b), it results in the new graph
given in Figure 3.13(c) with three fresh elements: nodes *u and ux, and edge e.
This is the only applicable splitting in the example. Hence, the resulting graph
is normalized and we call it the normalized version of the TTG. The procedure
can be formalized as follows. Splitting is applicable if and only if the graph is not
normalized. It is not difficult to see that the order of different splittings does not
influence the final result and, therefore, we indeed get a normal form by applying
all applicable splittings in any order.

(b) (c)

Figure 3.13. (a) Node-splitting, (b) a TTG, and (c) the normalized version of (b)

After normalization, we proceed by computing the tree of the triconnected
components of the graph. As we know from Section 3.3.1, the tree coincides with
the RPST of the normalized graph. This tree can be projected onto the original
graph by deleting all the edges introduced during node-splittings. We will see later
that this projection preserves the fragments. However,the deletion of the edges
may result in fragments which have a single child fragment. This means that two
different fragments of the normalized graph project onto the same fragment of
the original graph. We thus clean the tree by deleting redundant occurrences of
such fragments. Consequently, the only child fragment of a redundant fragment
becomes a child of the parent of the redundant fragment, or the root of the tree
if the redundant fragment has no parent. The result is the RPST of the original
graph. Algorithm 1 details again the sequence of these steps.

We exemplify Algorithm 1 in Figure 3.14 and Figure 3.15 by computing the
RPST of the TTG from Figure 3.14(a). Figure 3.14(a) shows the triconnected
component subgraphs P1 and B1 of the TTG, whereas Figure 3.14(b) shows the
corresponding tree of the triconnected components. The TTG is not normalized:
Nodes y and z are incident with multiple incoming and multiple outgoing edges;
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Algorithm 1: Simplified computation of the RPST

Input: A TTG G = (V, E,{), such that C(G) is biconnected
Output: The RPST of G

if C(Q) is not biconnected then FAIL

Construct G’ = (V’, E',¢") — the normalized version of G
Compute T — the TTC of G’

Construct T — T” without trivial fragments in E'\E
Construct R — T without redundant fragments

return R // the RPST of G

S A W N -

observe that all the triconnected component subgraphs of the TTG are fragments.
Figure 3.14(c) shows the normalized version of the TTG from Figure 3.14(a); it
is obtained by splitting nodes y and z, in any order (line 2, Algorithm 1). The
normalization introduces edges [ and m to the TTG. The tree of the triconnected
components of the normalized version consists of four triconnected components:
P1, B1, P2, and B2 shown in Figure 3.14(c). It follows from Lemma 3.9 that
they are all fragments.

Figure 3.14. (a) A TTG and its triconnected component subgraphs, (b) the tree of the
triconnected components of (a), and (c) the normalized version of (a) and its triconnected
component subgraphs

Figure 3.15(a) shows the tree of the triconnected components of the normalized
version from Figure 3.14(c) (line 3, Algorithm 1). Because of Theorem 3.12, the
tree is the RPST of the normalized version. In Figure 3.15(b), one can see the
RPST without trivial fragments, which correspond to the edges [ and m (line 4).
Note that P2 now specifies the same set of edges of the TTG as B2. Therefore,
we omit P2, which is redundant, to obtain the tree given in Figure 3.15(c) (line 5).
This tree is the RPST of the original TTG from Figure 3.14(a). Figure 3.15(d)
visualizes the TTG again together with its canonical fragments. Please note
that Algorithm 1, in comparison with the triconnected decomposition shown in
Figure 3.14(a) and Figure 3.14(b), additionally discovered canonical fragment B2.
P1, B1, and B2 are all the canonical fragments of the TTG.

To show that we indeed obtain the RPST of the original graph, we have to
show that (i) each canonical fragment of the normalized version projects onto a
canonical fragment of the original graph or onto the empty set, and (ii) for each
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Figure 3.15. (a) The tree of the triconnected components of the TTG from Figure 3.14(c),
(b) the tree from (a) without the fresh edges ! and m, (c) the RPST of the TTG from
Figure 3.14(a), and (d) the TTG from Figure 3.14(a) and its canonical fragments

canonical fragment of the original graph, there is a canonical fragment of the
normalized version that is projected onto it. We establish these properties for a
single node-splitting step. The claim then follows by induction.
Consider a single node-splitting step transforming a graph G into G’, let = be
the node that is split into nodes *x and x*, and let e be the edge that is added
between *x and x*. We define the following mappings for the next lemma:
1. A mapping ¢ maps a set F of edges of G’ to a set ¢(F') of edges of G by
W(F) =F~{e}.

2. A mapping ¢ maps a set of edges H of G to a set ¢(H) of edges of G’ by
¢(H) = Hu{e} if H has an incoming edge to z as well as an outgoing edge
from x, and otherwise ¢(H) = H.

Now, we claim:

Lemma 3.14: Let ¢,% and e be defined as above. We have:
1. If F # {e} is a fragment of G', then ¢(F) is a fragment of G.
2. If H is a fragment of G, then ¢(H) is a fragment of G'.
3. If F = {e} is a canonical fragment of G', then ¥(F) is a canonical fragment

of G.
4. If H is a canonical fragment of G, then there exists a canonical fragment F
of G' such that ¢(F) = H. .

The proof of Lemma 3.14 is in Appendix A.1. Lemma 3.14 and the fact that each
step in Algorithm 1 can be computed in linear time allow us to conclude:

Theorem 3.15. Algorithm 1 computes the RPST of a TTG whose completed version
is biconnected in linear time. N

3.4. Generalization of the Refined Process Structure Tree

So far, the RPST decomposition is restricted to TTGs whose completed version
is biconnected. In practice this is often not sufficient, as behavioral models may
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violate biconnectedness assumption, consider Figure 3.16(a), may have multiple
sources and/or sinks, see Figure 3.16(b), or even be disconnected. Note that mod-
eling languages such as BPMN and EPC do not impose any structural limitations
in these respects. In Figure 3.16(a), node u is a separation point of the completed
version of the graph; its deletion separates the node labeled A from the rest of
the graph. Hence, the completed version is not biconnected. In fact, a test of the
SAP reference model [19], a collection of industrial process models given as EPCs,
showed that more than 80 percent of the models violate one of the restrictions.

Figure 3.16. A process model (a) whose completed version is not biconnected, (b) has
multiple sinks

In this section, we discuss a way to decompose any MTG. The results of this
section were originally proposed in the thesis of Jussi Vanhatalo [144]. In the
following, we summarize these results and show how they relate to the simplified
technique for the RPST computation, which was described in the previous section.
We start by decomposing arbitrary TTGs.

3.4.1. The Refined Process Structure Tree of TTGs

Figure 3.17(a) shows the TTG that corresponds to the process model in Fig-
ure 3.16(a). As we explained above, its completed version is not biconnected
because node u is a separation point. Note that v has multiple incoming as well
as multiple outgoing edges. Every separation point has this property:

Lemma 3.16: Let G be a TTG. Fvery separation point of C(G) has more than one
incoming and more than one outgoing edge in G. N

Proof. A source s and a sink ¢t of G are in the same biconnected component
of C(G) as they are connected in G and, therefore, biconnected in C(G) after
introducing the return edge. Moreover, it is easy to see that C(G) is connected
without s or ¢ and, hence, s and ¢ are not separation points of C(G). Let z,
without loss of generality, be some separation point of C(G) that results in a set B
of biconnected components. Let b € B, without loss of generality, be a biconnected
component induced by x that does not contain s and ¢. Assume y is a node which
belongs to b. As every node of G is on a path from s to ¢, then z is on every path
from s to y and from y to t. A path from s to y implies that = has an incoming
edge that does not belong to b and an outgoing edge that belongs to b. A path
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(a) (b) (c)

Figure 3.17. (a) A TTG whose completed version is not biconnected, (b) the RPST of
(a), (c) the normalization of (a), and (d) the RPST of (c)

from y to t implies that x has an incoming edge that belongs to b and an outgoing
edge that does not belong to b. Hence, the claim holds.

If b consists of a single edge, it is an incoming and an outgoing edge of x. Every
path from s to ¢ through z also contains two edges incident with z, an incoming
and an outgoing, which do not belong to b. Hence, the claim holds. o

It follows that the completed version of the normalization of G is biconnected.
Therefore, we can apply Algorithm 1 from Section 3.3.2 to decompose an arbitrary
TTG. We call the resulting decomposition of G the RPST of G. This is a
generalization of the previous definition because if C(G) is already biconnected,
we get the RPST as defined previously. Note that we obtain the same result by
splitting only the separation points of G, computing the RPST of the resulting
graph G’ (in any way), and then projecting the RPST of G’ onto G. As the
normalized version and its RPST are unique, it then follows from the construction
that the RPST of an arbitrary TTG is unique.

Figure 3.17 shows the RPST of the example, as well as the way in which it
is obtained. Again, the RPST of the original graph is obtained by deleting the
edge h, which was generated in the node-splitting, and afterwards removing the
redundant fragment B2.

Figure 3.18. (a)—(c) The RPST of a TTG, and (d) Valdes’s parse tree of the TTG in (c)
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Figures 3.18(a), 3.18(b), and 3.18(c) show more examples of decompositions of
TTGs whose completed versions are not biconnected. Every subgraph obtained
has either exactly two boundary nodes, one entry and one exit, or exactly one
boundary node, which is bidirectional. Let G be a TTG and F be a connected
subgraph of G. A boundary node u of F is bidirectional if there exist an incoming
and an outgoing edge of u inside F', and there exist an incoming and an outgoing
edge of u outside F'. Note that control flow can both enter and exit F' through u.

Jacobo Valdes [127] has proposed an alternative way to decompose an arbitrary
TTG G. He proposed to first compute the biconnected components of C(G)
and then further decompose each biconnected component into its triconnected
components. If we adapt this idea and compute the RPST of each biconnected
component of C'(G), we obtain a root component that contains all biconnected
components as children, which in turn have their RPSTs as subtrees. The result for
the graph from Figure 3.18(c) is shown in Figure 3.18(d), which is different from
the decomposition we propose. Note that the result has a component that has more
than two boundary nodes, e.g., B, and another one having two boundary nodes
that are both bidirectional, e.g., C'. Unlike our decomposition, the decomposition
in Figure 3.18(d) does not reflect the fact that the component containing node w
depends on the component that is entered through node w.

3.4.2. The Refined Process Structure Tree of MTGs

To decompose an arbitrary MTG, we “normalize” an MTG into a TTG by
constructing a unique source and a unique sink as follows.

Definition 3.17 (Normalized MTG).
Let G be an MTG. We construct a graph G’ from G as follows.

1. If G has more than one source, a new source s is added and for each source

node u of G, an edge from s to u is added.

2. If G has more than one sink, a new sink ¢ is added and for each sink node v

of G, an edge from v to ¢ is added.

G’ is a TTG, which we call the TTG version of G. The normalized version G* of
G is the normalized version of G'. |
By normalizing an MTG, we again obtain a TTG whose completed version is
biconnected. The normalized version can be decomposed with the RPST, and the
decomposition can be projected onto the original MTG through Algorithm 1. The
result that is obtained from applying Algorithm 1 to the normalized version of an
MTG G is called the RPST of G. The RPST of an MTG is unique.

Figure 3.19 shows (a) an MTG G, (b) the RPST of G, (¢) the TTG version G’
of G, and (d) the RPST of G'. The RPST of G is derived from the RPST of G’
with Algorithm 1.

Note that for an MTG, the subgraphs formed by the decomposition may have
more than two boundary nodes. For example, subgraph B1 in Figure 3.19(a) has
two sources v and v as entries, and an exit w. Subgraph B2 has an entry w, and
three sinks as exits. Subgraph P1 two sources as entries, and three sinks as exits.
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Figure 3.19. (a) An MTG G, (b) the RPST of G, (c) the TTG version G’ of G, and (d)
the RPST of G

An RPST-formed subgraph is not necessarily a connected subgraph of an MTG.
If an MTG is disconnected, the root fragment of its RPST is a union of the
connected components of the MTG. For example, Figure 3.20 shows an example
of (a) a disconnected MTG G, (b) the RPST of G, (c) the TTG (and normalized)
version G* of G, and (d) the RPST of G*. Note that every connected component
of the MTG always becomes a separate component of the RPST decomposition.
In the example, the connected components of the MTG are fragments P1 and P2,
see in Figure 3.20(a); P1 and P2 are parts of root fragment B1.
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Figure 3.20. (a) A disconnected MTG G, (b) the RPST of G, (c) the TTG version G* of
G, and (d) the RPST of G*
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3.5. Bibliographical Notes and Conclusion

Bibliographical Notes and Conclusion

In this section, we mention important works which fueled research on parsing of
(work)flow graphs, position the results of this chapter within related works, and
draw conclusions. We start with bibliographical notes on related works:

o

The connectivity properties are the basic properties of graphs and are useful
when testing whether a graph is planar or when determining if two graphs
are isomorphic. John Hopcroft and Robert Endre Tarjan (1973) developed
an optimal (to within a constant factor) algorithm for dividing a graph into
triconnected components [54]. The algorithm is based on the depth-first
search of graphs and requires O(V + E) time and space to examine a graph
with V vertices and E edges.

Robert Endre Tarjan and Jacobo Valdes (1980) used triconnected components
for structural analysis of biconnected flow graphs [124]. The triconnected
components of the undirected version of a flow graph are shown to be
useful for discovering structural information of directed flow graphs. The
triconnected components can be discovered efficiently and form a hierarchy
of SESE fragments of a flow graph.

Giuseppe Di Battista and Roberto Tamassia (1990) introduced SPQR-
trees [5] — a data structure which represents decomposition of a biconnected
graph with respect to its triconnected components. Essentially, SPQR-trees
are the parse trees of [124]. The authors showed the usefulness of SPQR-trees
for various on-line graph algorithms', e.g., transitive closure, planarity test-
ing, and minimum spanning tree [5]. In particular, the authors proposed an
efficient solution to the problem of on-line maintenance of the triconnected
components of a graph [6].

Richard Johnson et al. (1994) proposed a program structure tree (PST), a
hierarchical representation of program structure based on single edge entry
and single edge exit regions [63, 62]. The PST can be computed in O(E)
time for an arbitrary flow graph, where E is the number of edges in the
graph. The disadvantage of the PST is that it exploits the notion of a SESE
fragment based on edge entries and exits only. Thus, the PST does not
capture those SESE fragments which are based on vertex entries and exits.
Chun Ouyang et al. (2006) used parsing to translate BPMN diagrams into
BPEL processes [98, 99]. The employed notion of a fragment is similar to
the notion of a region in [63]. However, the developed parsing algorithm is
nondeterministic, i.e., the parse tree is not unique for a given diagram.
Carsten Gutwenger and Petra Mutzel (2001) shared their practical experience
on linear time computation of the triconnected components of biconnected
graphs [48]. They have identified and corrected the faulty parts of the

LAn on-line graph problem deals with dynamic graphs, i.e., it is allowed to query and update
a graph, such that each operation is completed before the next one can be applied, and
future operations are not known in advance. Given a solution to a problem for some graph
configuration the challenge is to update the solution, rather than to compute it from scratch,
for the modified graph.
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algorithm in [54] and applied the resulting algorithm to the computation of
SPQR-trees. The implementation is publically available.

o Jussi Vanhatalo et al. (2008) introduced the Refined Process Structure
Tree [145, 146, 144]. Given a workflow graph, the RPST is unique, modular,
and is finer grained than any other known parse tree, i.e., it discovers more
SESE fragments than any other technique. In fact, the RPST captures
all canonical fragments of a workflow graph which, in turn, represent all
SESE fragments of the graph. The RPST can be computed for an arbitrary
MTG [144].

This chapter discussed the RPST. The main contribution of this chapter, as
compared to the original technique proposed in [145, 146], is the new simplified
algorithm for computation of the RPST of a TTG whose completed version is
biconnected. This simplified algorithm can be employed in a straightforward
way as a subroutine for computation of the RPST of an arbitrary MTG. Both
algorithms, the original and the simplified one, allow for an efficient computation of
the RPST. However, they provide different structural characterizations of canonical
fragments. The original technique characterizes some fragments of a workflow
graph as compositions of special bond types [144], whereas the new approach
shows a tight relation of these fragments with the triconnected components of the
normalized version of the graph. Both characterizations contribute to a better
understanding of the essential nature of canonical fragments of a workflow graph.
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Companies use behavioral models to represent their working procedures in
order to deploy services to markets, to analyze them, and to improve upon
them. Competitive markets necessitate complex procedures, which lead to large
behavioral models with sophisticated structures. Real world behavioral models
can often incorporate hundreds of modeling constructs. While a large degree of
detail complicates the comprehension of the model, it is essential for many analysis
tasks. This chapter presents a technique to abstract, i.e., to simplify behavioral
models. Given a detailed model, we introduce abstraction rules which generalize
model fragments in order to bring the model to a higher abstraction level. The
approach is suited for the abstraction of large behavioral models in order to aid
model comprehension, as well as decomposing problems of model analysis. The
work is based on the notion of the parse tree, which was discussed in Chapter 3.

The materials reported in this chapter are published in [110, 111, 105, 112].
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4.1. About Abstraction of Behavioral Models

Behavioral models are developed for different purposes: to communicate a message,
to share knowledge or a vision, as a starting point for re-designing or optimization,
as precise instructions for execution, etc. The goal of a behavioral model is to
capture working procedures at a level of detail appropriate to fulfill its envisioned
purpose. Often, achievement of such a goal results in complex, “wallpaper-like”
models that tend to capture every minor detail and exceptional case that might
occur; the core process logic becomes hidden in numerous modeling constructs.

The desired level of model granularity also depends on a stakeholder working
with a model and a current task. If we talk about business process models [155],
top level company management appreciates coarse grained process descriptions
that allow fast and correct business decisions. At the same time, employees who
directly execute processes value the granular specifications of their daily job. There
is a dilemma: On the one hand, too much detail hampers the understanding of the
model. On the other hand, this level of detail might be required for the purpose
of the model. Thus, it might be often the case that a company ends up with
maintaining several models of one business process.

There are two approaches to address the problem: (i) Either different models
serving different purposes are developed independently. (ii) Alternatively, different
models, catering to different needs, are generated from a detailed original model. If
the former approach is followed, consistency of the models is a severe problem [153].
Changes on one level need to be reflected on other levels as well, which is often
done manually. Experience shows that due to model evolution on different levels
of detail, the models become inconsistent quite soon. Therefore, we opt for the
latter approach: We generate different models from a given detailed model by
applying transformation rules. These rules abstract from the details of a model
and provide abstract models which are tailored to particular needs. At the same
time, any evolutionary changes are taken into account, since effectively there is
only one model, and the others are generated from it on demand.

Abstraction is generalization that reduces undesired details in order to retain
only essential information about an entity or a phenomenon. Essential information
is the information required by a certain stakeholder to fulfill his/her tasks. The
task of abstraction is to tell significant model elements from insignificant ones and
to reduce the latter.

We propose an abstraction methodology for behavioral models that can be
summarized as follows. As input we assume to possess a detailed behavioral model.
Afterwards, a number of abstractions, viz. abstraction steps, are performed on
the initial model. Conceptually, each abstraction step is a function that takes a
behavioral model as input and produces a behavioral model as output. In the
resulting model, the initial fragment of the model gets replaced with its generalized
version. Thus, each individual abstraction step hides details and brings the model
to a higher abstraction level. If applied separately, abstraction steps do not
provide much value to an end user. Rather, it is of interest to study how individual
abstraction steps can be combined together and afterwards controlled in order to
deliver the desired abstraction level.
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Fundamentally, a technique for abstraction of behavioral models deals with
finding answers to two questions of what and how:

o What parts of a behavioral model are of low significance?

o How to transform a behavioral model so that insignificant parts get reduced?

Answers to both questions should address the current abstraction use case, i.e.,
the resulting abstract model must serve its purpose.

In this chapter, we propose one concrete instantiation of the above described
principles for the abstraction of behavioral models. We found this configuration of
a particular use when modularizing the structuring problem, the solution to which
will be proposed in Part III. In the next section, we define a set of abstraction
rules; the rules reuse the results of Chapter 3 on parsing of behavioral models and
aim at answering the how question of the abstraction methodology. Afterwards, in
Section 4.3, we propose an abstraction slider —a mechanism providing a user control
over the abstraction. The slider answers the what question of the abstraction
methodology. Section 4.4 proposes a technique for extracting abstract parts from
behavioral models. We shall employ this technique in Part III in order to extract
unstructured parts and to abstract from already structured parts of behavioral
models. Finally, Section 4.5 draws conclusion.

4.2. The Triconnected Abstraction

This section answers the how question of the abstraction methodology for behavioral
models. The answer is implemented by means of the triconnected abstraction
technique. Given a behavioral model, the main idea of the triconnected abstraction
technique is to interchange single-entry-single-exit fragments of the model with
fresh abstract tasks of higher abstraction levels (coarse grained tasks). Every
such exchange operation constitutes an abstraction step. An abstraction step is
triggered by a task node — a node with at most one direct predecessor and at
most one direct successor, which is insignificant for the purpose of the model and,
hence, can be abstracted. In order to allow for a gradual abstraction experience,
the triconnected abstraction technique substitutes the smallest SESE fragment
that contains the insignificant task with a fresh abstract task that semantically
corresponds to the behavior encoded in the SESE fragment. Note that the fresh
task might again be considered insignificant and trigger the next abstraction step.
The approach assumes the existence of an abstraction control mechanism which
delivers a set of tasks (nodes) to be abstracted in the behavioral model.

The triconnected abstraction technique is based on the parsing technique from
Chapter 3. First, we define individual abstraction rules, see Section 4.2.1. After-
wards, we combine the rules into the abstraction algorithm, see Section 4.2.2.

In the following, we assume that behavioral models are formalized as normalized
TTGs, refer to Section 3.3.1. Note that subsequently proposed results can be
trivially generalized to become applicable for all MTGs by following the RPST
generalization principles from Section 3.3.2 and Section 3.4.
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4.2.1. Abstraction Rules

In this section, we propose a set of abstraction rules. Each abstraction rule gets a
task node of a behavioral model as input and defines: (i) a SESE fragment which
must be abstracted and (ii) transformations to be applied in the behavioral model
in order to implement the abstraction step. The starting point for rule definitions is
the set of canonical fragments of the behavioral model, i.e., its RPST. Please note
that in the following we shall exemplify abstraction rules using transformations of
triconnected components. Recall that triconnected components of a normalized
TTG define its RPST, see Theorem 3.12.

Given a task node, it can be used to identify all the trivial fragments which
contain the task and their positions within the RPST. Subsequently, this informa-
tion can be employed to identify the smallest SESE fragment which contains the
input task. To ensure that we indeed consider all the possibilities when identifying
the smallest SESE fragment, we perform a systematic search which is based on
the classification of the RPST edges, i.e., parent-child relations between canonical
fragments of the RPST. The classification stems from the classes of individual
fragments. Theorem 3.12 and the fact that triconnected component subgraphs
are derived from triconnected components allow inheriting classes of canonical
fragments from triconnected components. Hence, a canonical fragment is of a
certain class if it corresponds to a triconnected component subgraph which is
derived from a triconnected component of the very same class. Therefore, (i)
a canonical fragment is ¢rivial (T) if it is composed of a single edge, and (ii) a
canonical fragment is polygon (P), bond (B), or rigid (R) if it corresponds to a
triconnected component subgraph derived from a maximal polygon, a maximal
bond, or a rigid split component, respectively.

A single trivial fragment in isolation is of limited interest when identifying an
abstraction candidate — the smallest SESE fragment which contains the task. A
trivial fragment either connects less than two tasks, in which case the abstraction
step that substitutes the trivial fragment with a fresh task cannot do any general-
ization on tasks in the model, or it connects two tasks, in which case the trivial
fragment can be analyzed in the context of its parent polygon canonical fragment.

The RPST of a normalized TTG can have the RPST edges of seven classes; if
one ignores relations that include trivial canonical fragments. These are (P, B),
(P,R), (B,P), (B,R), (R,P), (R,B), and (R, R) classes; where, for instance,
(P, R) edge represents the relation between a parent polygon canonical fragment
and its child rigid canonical fragment, see relation between fragments P1 and R1
in Figure 3.12. Note that (P, P) and (B, B) edges cannot occur in the RPST of a
normalized TTG; these relations are always recognized as canonical fragments of
either polygon or bond class within triconnected component subgraphs derived
from maximal polygon or maximal bond split component, respectively.

Out of seven RPST edge classes, four describe relations of polygon canonical
fragments: (P,B), (P,R), (B,P), and (R,P). These RPST edges are of a
particular interest for the triconnected abstraction technique, as only maximal
polygon triconnected components of normalized TTGs can be composed from task
nodes, which are proposed to be used to trigger abstraction steps; every task node
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is a non-boundary node of some maximal polygon triconnected component. Note
that maximal bond and rigid triconnected components of a normalized TTG are
composed of nodes that have at least three incident edges in the TTG; we refer to
such nodes as gateway nodes. We assume that gateway nodes are used to define the
routing logic of the model and, thus, do not encode any observable action which
can be classified either as significant or insignificant in the model. Furthermore,
note that boundary nodes of triconnected components are always gateway nodes.
Next, we propose individual abstraction rules which exploit all possible structural
relations of polygon canonical fragments in RPSTs of normalized TTGs.

Trivial Abstraction

A task in a behavioral model can be directly preceded and/or directly succeeded
by another task. We implement abstraction of such a task by aggregating it with
one of its neighbors. Any maximal sequence of tasks in a behavioral model forms
a single maximal polygon triconnected component which is recognized within the
RPST as a polygon fragment. Therefore, a trivial abstraction is performed locally,
i.e., by aggregating a single trivial fragment inside its parent polygon fragment.

Figure 4.1 exemplifies trivial abstrac-
tion. The original maximal polygon
triconnected component is given on
the left of the figure. The pentagon
is a maximal sequence of three task
nodes: a, b, and ¢. Nodes y and =z
are the boundary gateway nodes. Ob-
serve that, in the figure, we visualize
triconnected components with directed
arcs; these are the arcs of the behav-
ioral model, whereas dashed lines repre-
sent virtual edges. Task b is suggested Figure 4.1. Trivial abstraction
as insignificant, highlighted with grey
background and written with bold typeface on the left of the figure. If we were
to abstract from task a or ¢, the selection of the neighbor task to aggregate with
would be obvious — it would be task b. In the case of task b triggering abstraction,
the selection of a neighbor to aggregate with is delegated to the abstraction control
mechanism; in the simplest case this choice can be nondeterministic. In the
example, task a is selected to be aggregated with task b; the abstraction candidate
is enclosed in the region with a dotted borderline and constitutes a single trivial
fragment T'1 (please refer to the figure).

The maximal polygon triconnected component on the right of Figure 4.1 is the
result of the trivial abstraction step. In the resulting triconnected component,
tasks a and b get aggregated into one task T'1, which semantically corresponds to
the task of first performing task a and then accomplishing task b. The triconnected
component keeps its structural class — the maximal polygon class. Trivial abstrac-
tion is always localized either within the (B, P), or within the (R, P) RPST edge,
or is performed within the root polygon canonical fragment.
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Polygon Abstraction

A maximal sequence of tasks in a behavioral model can consist of one task. This
task can be structured in a sequence with canonical fragments of bond and rigid
classes; the relations are reflected by (P, B) and (P, R) RPST edges. If such a task
is considered insignificant for the purpose of the model and must be abstracted,
one can perform a polygon abstraction so that the task gets aggregated with a
canonical fragment which directly precedes or directly succeeds the task.

Figure 4.2 exemplifies polygon ab-
straction. The original maximal poly-
gon triconnected component is given
on the left of the figure. The pentagon
is composed of task a and four gate-
ways: w, x, y, and z. Task a is sug-
gested as insignificant, highlighted with
grey background and written with bold
typeface on the left of the figure. In
the example, task a has no neighbor
task; however, it directly precedes max-
imal bond triconnected component B1.
Nodes = and y are the boundary nodes
of B1l. The relation between the maximal polygon and maximal bond B1 is
captured by virtual edge e. Task a is selected to be aggregated with bond B1 as
it is the only neighbor of task a; again, similar as in the case of trivial abstraction,
the selection is delegated to the abstraction control mechanism. The abstraction
candidate is enclosed in the region with a dotted borderline and corresponds to a
non-maximal polygon split graph P1.

The maximal polygon triconnected component on the right of Figure 4.2 is the
result of the polygon abstraction step. In the resulting triconnected component,
task a and maximal bond B1 get aggregated into one task P1, which semantically
corresponds to the task of first performing task a and then accomplishing the
whole fragment B1. The triconnected component keeps its structural class — the
maximal polygon class. Though we have exemplified polygon abstraction with the
help of a task and a maximal bond, it can as well be applied in a straightforward
manner for the case of a task and a neighbor rigid split component.

Figure 4.2. Polygon abstraction

Bond Abstraction

Trivial and polygon abstractions tend to aggregate maximal polygon triconnected
components into triangle components. A triangle triconnected component is a
triangle split component of a behavioral model composed of a single task and two
boundary gateway nodes, see the result of the polygon abstraction above with
w and z boundary nodes and task P1. If the only task of a triangle component
is considered insignificant for the purpose of the model, it can be aggregated
with (a part of) its parent triconnected component (canonical fragment). If the
parent triconnected component is of class bond, we speak about a bond abstraction.
The task gets aggregated with some child triconnected component of the parent
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Figure 4.3. Bond abstraction

triconnected component. The selection of a child component to aggregate with is
delegated to an abstraction control mechanism.

Figure 4.3 exemplifies bond abstraction. On the left of the figure one can see
three triconnected components: a maximal bond and two maximal polygons. Note
that both maximal polygons are triangle components. Task a is suggested as
insignificant, highlighted with grey background and written with bold typeface on
the left of the figure. The task is part of a triangle component whose parent is
the maximal bond triconnected component (both share virtual edge f). In the
example, task a is selected to be aggregated with the child triconnected component
of the maximal bond that contains virtual edge e; the abstraction candidate is
enclosed in the region with a dotted borderline and corresponds to a non-maximal
bond split graph B1.

On the right of Figure 4.3, one can see the result of the bond abstraction. Two
triangle components on the left of the figure get aggregated into one triangle
component with task B1 on the right of the figure. Task B1 semantically corre-
sponds to the task of iteratively performing tasks a and b. The resulting triangle
component is a child of the maximal bond; this relation is described by virtual
edge g. Note that a maximal bond triconnected component may eventually evolve
into a triangle component by performing a series of bond abstractions, e.g., if one
decides to abstract task B1 on the right of Figure 4.3, then the only option is to
aggregate B1 with trivial fragment (y, z) of the parent bond component.

Rigid Abstraction

In the situation when the parent component of a triangle component is of the
rigid class, and the only task of the triangle component is considered insignificant
for the purpose of the model, we speak about a rigid abstraction. During a rigid
abstraction, the insignificant task gets aggregated with the whole parent rigid
component and, hence, the abstraction is performed within an (R, P) RPST edge.

Figure 4.4 exemplifies rigid abstraction. On the left of the figure one can see a
rigid component and its child triangle component; the relation is captured with
the help of virtual edge e. The boundary nodes w and z of the rigid component
are highlighted with a thick borderline. Task a is suggested as insignificant in the
model, highlighted with grey background and written with bold typeface on the
left of the figure. In the example, task a is suggested for aggregation with the
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parent rigid component; the abstraction candidate is enclosed in the region with a
dotted borderline and corresponds to the whole rigid component R1.

The triangle component on the right
of Figure 4.4 is the result of the rigid
abstraction step. In the resulting tri-
angle component, task a and rigid R1
get aggregated into one fresh task R1,
which semantically corresponds to the
task of performing the whole rigid com-
ponent. The directed arcs in the result-
ing triangle component hint at the fact

Figure 4.4. Rigid abstraction that w is the entry and z is the exit

of the rigid component on the left of

Figure 4.4, i.e., in the abstract model we enter execution of the fresh task from
the entry of the canonical fragment which induced the fresh task.

4.2.2. Abstraction Algorithm

Section 4.2.1 proposed four abstraction rules. The rules cover all possible structural
relations of a task in a behavioral model. In this section, we organize individual
abstraction rules into a procedure which handles a single abstraction step of a
task in a behavioral model. As input, the algorithm obtains a TTG (a behavioral
model) and one of its task nodes to abstract, i.e., a node with at most one direct
predecessor and at most one direct successor. As the result of applying the
algorithm, the task node gets abstracted in the TTG; the smallest SESE fragment
which contains the task gets substituted with a fresh abstract task of a higher
abstraction level. Given all of the above, Algorithm 2 formalizes the principles of
the triconnected abstraction.

Algorithm 2: The triconnected abstraction step

Input: A normalized TTG G = (V, E, ()
Input: A taskveV of G

1 if G is composed of a single node v and no edges then return

2 Compute T — the TTC (Definition 3.6) of G // T defines the RPST
of G
3 Get peT — the maximal polygon component in 7" that contains v
4 if p is triangle then
5 Get c €T — the parent component of p in T'
6 if ¢ is bond then Perform bond abstraction of v
7 if ¢ is rigid then Perform rigid abstraction of v
8 else
9 if v has the neighbor task in p then
10 | Perform trivial abstraction of v
11 else
12 ‘ Perform polygon abstraction of v
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Algorithm 2 orchestrates individual abstraction rules and attempts to aggregate
a minimal number of tasks in a single abstraction step. The algorithm starts
by performing a simple check: If the input TTG is composed of a single vertex,
there is nothing to abstract and the algorithm terminates (line 1). Otherwise, the
algorithm proceeds by computing the TTC of the given graph (line 2). Note that
the tree of the triconnected components of a normalized TTG defines its RPST, see
Section 3.3.1. At line 3, the algorithm discovers the maximal polygon component
p in the TTC that contains the task which triggered abstraction. There is always
exactly one such maximal polygon component. The maximal polygon is then used
to identify which abstraction rule must be applied. If the maximal polygon is
triangle, the choice of abstraction rule to apply is carried out based on the parent
component of p. The parent component is identified at line 5 of the algorithm.
If the parent component is of class bond, then the bond abstraction is applied
(line 6). If the parent component is of class rigid, then the rigid abstraction is
applied (line 7). If p is not triangle, the algorithm suggests to apply either the
trivial (line 10), or the polygon abstraction (line 12). The choice of the rule is
based on the neighbors of the task which triggered the abstraction.

Figure 4.5. The triconnected abstraction

Algorithm 2 provides the formal relation between an original model and its
abstract version. Figure 4.5 exemplifies a sequence of the triconnected abstraction
steps. Figure 4.5(a) shows the original TTG (it can be used to define the structure
of a behavioral model). In the TTG, task b is considered insignificant, which
triggers the trivial abstraction of T'1 (line 10, Algorithm 2). The result of the trivial
abstraction is proposed in Figure 4.5(b). Next, task d is considered insignificant,
which triggers the polygon abstraction of P1 (line 12); the result is proposed in
Figure 4.5(c). Afterwards, task e triggers the bond abstraction of B1 (line 6),
which results in the TTG shown in Figure 4.5(d). Finally, task j triggers the rigid
abstraction of R1 (line 7), which results in the TTG in Figure 4.5(e).
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Different orders of tasks that are considered insignificant in a TTG and trigger
abstraction steps lead to different abstract behavioral models. At the end of
the triconnected abstraction, the changes in the TTG must be propagated to
the corresponding behavioral model. The triconnected abstraction of a task in a
TTG can be accomplished in the time linear to the size of the TTG; Algorithm 2
computes the tree of the triconnected components of the input graph and performs
local transformations of this tree.

4.3. The Slider-driven Abstraction

This section answers the what question of the methodology for abstraction of
behavioral models. In the following, we propose a slider metaphor [110] — a
tool for enabling gradual control over the abstraction level of behavioral models.
We explain how the slider can be employed for distinguishing significant model
elements from insignificant ones.

In order to implement abstraction control mechanisms, we propose to distinguish
between significant and insignificant model elements based on the annotated
properties of these elements. The idea is that annotated properties can be used to
enable elements comparison and hence can be used when identifying information
relevant for the purpose of the model. We refer to properties that can enable
quantitative comparisons of model elements as abstraction criteria. For instance,
examples of abstraction criteria are [110, 112]: (i) (average) time required to
accomplish a task, (ii) (average) cost required to accomplish a task, (iii) average
number of occurrences of a task in a single execution of the behavioral model, etc.

Abstraction criteria have quantitative measurement and, thus, criterion values
are in a partial order relation. Correspondingly, a partial order relation on criterion
values can be transferred to model elements by arranging them according to values
of the criterion. For example, if a criterion is the average time required to accomplish
a task, then a two-minute-task precedes a four-minute-task. The partial order
relation enables element classification. It is possible to split model elements into
two classes: those with criterion values smaller than and those with criterion values
greater than some designed separation point. Elements which are members of the
first class are assumed to be insignificant and have to be omitted in the abstract
model. Members of the other class are significant and should be preserved in the
abstract model. We refer to the separation point according to which the element
classes are constructed as the abstraction threshold. Assuming an abstraction
threshold of three minutes in the example discussed above, the two-minute-task is
insignificant and has to be reduced. On the other hand, the four-minute-task is
significant and should be preserved in the abstract model.

An abstraction slider is an object that operates on a slider interval [Spin, Smaz |-
The interval is constrained by the minimum (Sp,;,) and maximum (Sy,q.) values
of the abstraction criterion. The slider specifies the criterion value as a slider state
$ € [Smin, Smaz | and allows the operation of a state change within this interval.

An abstraction slider regulates the amount of elements preserved in an abstract
model; the slider state can be used to specify an abstraction threshold value. In the
simplest case a user specifies an arbitrary value used as a threshold, which means
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Figure 4.6. Abstraction slider

that the slider interval is [-o00,+00]. The challenge for a user in this approach is
to inspect a model in order to choose a meaningful threshold value. A threshold
value which is too low leads to all model elements being treated as significant, i.e.,
no nodes or edges are reduced. On the other hand, a threshold which is too high
may result in all elements being treated as insignificant. To avoid such confusing
situations, the user should be supported by suggesting an interval in which all
the “useful” values of abstraction criterion lie. The support is specific for each
abstraction criterion. For instance, if the abstraction criterion is the average time
required to accomplish a task, then it is reasonable to configure a slider so that
Smin =0 and Si,.. is set to the average time required to execute the model. Of
course, such an approach must be supported by techniques capable of computing
average time required to execute the model (part of the model), e.g., [26]. If the
above described approach is taken, then the minimum threshold value suggests
no elements as insignificant, the maximum suggests all as insignificant, and every
other threshold value suggests a share of all elements as insignificant.

Once the threshold value is specified, insignificant elements must be reduced,
e.g., by applying the technique from Section 4.2. The elements must be reduced
one by one, starting from the one for which the criterion value is the lowest. Once
all insignificant elements are reduced, one obtains the resulting abstract model.
For instance, coming back to our example with average time, the purpose of the
abstraction can be to compute a model which contains no tasks that require less
than a few seconds to complete and to group them into abstract tasks.

Figure 4.6 shows two TTGs from Figure 4.5. The TTG in Figure 4.6(a) cor-
responds to a detailed behavioral model, i.e., no task nodes are reduced. This
situation corresponds to the slider state set to its minimum value, see the figure.
If a user wants to compute an abstract model, (s)he must change the state of the
slider, see in Figure 4.6(b). The new slider state suggests that the user does not
want to see task nodes below the threshold. The state change operation triggers a
sequence of abstraction steps, e.g., the ones shown in Figures 4.5(a), 4.5(b), and
4.5(c), and leads to the abstract model in Figure 4.6(b).

4.4. Fragment Extracts

In this section, we propose a technique which, given a behavioral model and
one of its canonical fragments, computes the extract of the fragment from the
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behavioral model. The idea of the technique is the following: Given a TTG, which
defines a behavioral model, we extract the given canonical fragment from the
context of the TTG and abstract from all its child canonical fragments except
trivial fragments and triangle fragments, where a triangle fragment is a fragment
of the TTG derived from its triangle triconnected component. The extract is
then another TTG (behavioral model) which captures the high-level behavior of
one specific canonical fragment. We envision that the technique can find its use
when modularizing problems which deal with the analysis of behavioral models.
Specifically, we shall employ this technique in Part III to modularize the structuring
problem.

(b)
Figure 4.7. (a) A TTG and its canonical fragments, (b) the (simplified) RPST of (a)

Figure 4.7(a) shows the TTG from Figure 4.5(a) and some of its canonical
fragments. Note that trivial and triangle fragments are not visualized in the
figure. Figure 4.7(b) shows the simplified RPST of the TTG; again, trivial and
triangle fragments are omitted. Since the extraction technique is straightforward
to understand, we omit its formal definition and specify by means of an example.

Figure 4.8. Extract of fragment R1 from the TTG in Figure 4.7(a)

Figure 4.8 shows the extract of fragment R1 (highlighted with grey background
in Figure 4.7(b)) from the TTG in Figure 4.7(a). As shown in Figure 4.7, R1
has two non-trivial and non-triangle child fragments: P2 and B2. In the extract,
these fragments get abstracted into tasks P2 and B2, respectively (highlighted
with grey background in Figure 4.8). Nodes h, j, u, z, y, and z are the nodes of
the original TTG. Note that nevertheless nodes i and o are present in both TTGs,
see in Figure 4.7(a) and in Figure 4.8, those in Figure 4.8 are the fresh ones; they
are designed to explicitly mark the entry and the exit of the extracted fragment
(also highlighted with grey background in the figure). The explicit source and/or
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explicit sink node may be omitted in the extract if one can uniquely identify the
source and/or sink node of the extract without introducing fresh node(s). Observe
that this is the case in Figure 4.8; when without ¢ and o, nodes u and z can still
be recognized as the source and the sink node of the extract, respectively.

The extract of a canonical fragment captures its high-level behavior by abstract-
ing from low-level details of its child fragments and taking the fragment out of the
context of the whole behavioral model. Due to the fact that canonical fragments
can be discovered in the time linear to the size of the TTG, refer to Section 3.3
and Section 3.4, the extract of a canonical fragment can also be computed in the
time linear to the size of the TTG.

4.5. Conclusion

In this chapter, we proposed an abstraction methodology for behavioral models
— an approach to derive behavioral models of high abstraction levels from the
detailed ones. We argued that the abstraction task can be decomposed into two
independent subtasks: learning process model elements which are insignificant
(abstraction what) and abstracting from those elements (abstraction how).

Furthermore, in this chapter, we proposed one concrete instantiation of the
abstraction methodology. The how question of the methodology is answered by
means of the triconnected abstraction technique. The triconnected abstraction
technique defines structural model transformations and can be generalized to
any process modeling notation which uses directed graphs as the underlying
formalism. The technique can be trivially generalized to become applicable
without any structural limitations, i.e., for an arbitrary MTG. The generalization
step is similar to the step of generalizing the technique for RPST computation
of normalized TTGs, to the technique for the RPST computation of general
TTGs and MTGs, see Section 3.3.2 and Section 3.4. The what question of the
methodology is answered by means of the abstraction slider — an abstraction control
mechanism. An abstraction slider can aid when telling significant model elements
from insignificant ones. The slider state specifies the abstraction threshold and,
thus, all the insignificant elements of the behavioral model, i.e., elements for which
the value for the abstraction criterion is below the threshold. Next, insignificant
elements get reduced with the help of the triconnected abstraction technique.

Finally, in this chapter, we proposed a technique for extracting the core behavior
captured in a SESE fragment from the overall context of the behavioral model.
This technique can be useful when modularizing problems that deal with the
analysis of behavioral models. In particular, in the next part of this thesis, we
shall employ this technique for the modularization of the structuring problem.

In future works, we envision other instantiations of the abstraction methodology
for behavioral models, i.e., those which employ abstraction rules other than ones
proposed by the triconnected abstraction technique and which use abstraction
control mechanisms other than the slider-driven one. For more results on the
abstraction methodology for behavioral models please refer to our originative
works on business process model abstraction (BPMA) in the context of business
process management [110, 111, 112].
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This chapter serves two purposes: (i) it formally defines all the previously
intuitively introduced notions on structuring, and (ii) it provides the still missing
(structuring related) preliminaries. Section 5.1 uses the notion of process com-
ponents to define the well-structured property of process models. Section 5.2 is
devoted to the motivation and the formal discussion of fully concurrent bisimula-
tion — a behavioral equivalence notion adopted by all the subsequently proposed
structuring techniques. Section 5.3 discusses existing structuring techniques which
can deliver fully concurrent bisimilar structured process models. Section 5.4 pro-
poses a convenient way for deciding the fully concurrent bisimulation of two net
systems of a special kind. Finally, Section 5.5 presents the preliminary notions on
the technique of the net system unfolding.
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5.1. Well-structuredness and Process Components

This section formally defines the well-structured property of process models, see
Section 5.1.1. The definition is based on the notion of a process component, which
can be seen as a special type of a single-entry-single-exit component. Section 5.1.2
proposes a taxonomy of process components.

5.1.1. Well-structured Process Models

In Section 1.2, we have intuitively defined the well-structured property of behavioral
models. In this section, we give a formal form to that intuition using process
models as a concrete example of behavioral models. We propose to structurally
classify a process model based on the properties of its parse tree, in particular the
RPST (Chapter 3). This proposal is due to the fact that the notion of the RPST
fragment coincides with the notion of the SESE component used in the intuitive
definition. Hence, the RPST is a natural candidate for the characterization of
structuredness of behavioral models.

A SESE component of a process model is defined by a fragment (Definition 3.3)
of the graph that is employed in formalizing the process model.

Definition 5.1 (Process component).
Let PM = (A,G,C,type, A, 1) be a process model. A canonical fragment F' < C
of the MTG (AuG,C,{), where /£ is the identity function on C, is called a process
component, or a component, of PM.

a

Process components are defined by canonical fragments. Note that we speak of
interior, boundary, entry, and exit nodes of a process component based on their
classification in the subgraph formed by the canonical fragment that defines the
process component (Definition 3.2). Furthermore, we inherit the classification of
process components from the classification of the triconnected components which
are used to derive canonical fragments.

Definition 5.2 (Trivial, Polygon, Bond, Rigid component).
Let F be a process component of a process model PM.
o Fis a trivial component, iff F' is singleton.
o F is a polygon component, iff there exists a sequence (rg,...,m,), n € N
where N is the set of natural numbers excluding zero, of components of PM,
s.t. F= Uﬁjg ri, the entry of F' is the entry of rq, the exit of F' is the exit of
Ty, and the exit of r; is the entry of rj,1, 0 < j <n.
o Fis a bond component, iff there exists a set R of components of PM, s.t.
F = U,er T and every component in R has the same boundary nodes as F'.
o F'is a rigid component, iff F' is neither a trivial, nor a polygon, nor a bond
component.

4

The class of a process component can be trivially determined based on the class of
the triconnected component which is used to derive the process component. Fig-
ure 5.1 exemplifies process components of two process models from Figure 1.1. Ev-
ery box with a dotted border defines a component which is composed of the control
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flow arcs that are inside or intersect the box. Observe that Figure 5.1 does not show
all process components. In the following, we shall often ignore the visualization of
simple components, where a simple component is either a trivial component, or a
polygon component composed of two trivial components. Therefore, we do not ex-
plicitly show polygon process components ({(u,a)},{(a,v)}), ({(u,b)},{(b,w)}),
({(z,0)},{(c,2)}), and ({(y,d)},{(d,2)}) in Figure 5.1(a), and polygon pro-

cess components ({(w,a)},{(a,2)}), ({(w,0)},{(b,2)}), ({(y,0)},{(¢,2)}), and
({(y,d)},{(d,2)}) in Figure 5.1(b). Note that again, the names of components

hint at their class, i.e., P1 is a polygon, B1 is a bond, and R1 is a rigid component.

X c:
0 :
‘ l Update B

account

Figure 5.1. Process models: (a) unstructured, and (b) well-structured

The set of all process components of a process model defines the set of all its
SESE components. A process component is a SESE component. Moreover, recall
from Chapter 3 that canonical fragments of a graph define all its fragments (also the
non-canonical ones), where non-canonical fragments correspond to subsequences of
maximal polygons and subsets of maximal bonds. Therefore, the set of all process
components of a process model determines its structuredness.

Definition 5.3 (Well-structured process model).
A process model PM is (well-)structured, iff PM contains no rigid process compo-
nent; otherwise the process model is unstructured. |

By definition, we postulate that a process model is well-

structured if and only if its RPST is composed only of P 1YE
trivial, polygon, and bond components. In a process L 7\
model that satisfies this condition, every split has a ‘R1: ‘B1! B2:
corresponding join, and vice versa, such that the part
of the model between the split and the join is a SESE (2) (b)

component (by virtue of the definition of a bond). If one  Figyre 5.2. The (simplified)
would be able to discover a pair of a corresponding split RPSTs of the process mod-
and a join inside a rigid process component, then this els in Figure 5.1

pair would be the boundary pair of a bond component.

Well-structuredness of a process model can be determined by computing its
RPST and checking whether any of its canonical fragments are derived from a
rigid triconnected component. Figure 5.2 shows the RPSTs of the process models
in Figure 5.1 as tree-like structures. Again, we ignore simple components. The
process model in Figure 5.1(a) contains rigid component R1 and is, therefore,
unstructured. In contrast, the process model in Figure 5.1(b) contains no rigid
components and is well-structured.
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5.1.2. Taxonomy of Process Components

A process model is unstructured if it contains a rigid component. Therefore, if

one could transform every rigid component into an equivalent well-structured

component (or a set of well-structured components), the entire process model

could be structured by traversing its RPST bottom-up and replacing encountered
rigid components by equivalent well-structured components.

The existing methods for structuring

Process component rigid components differ depending on the

o%o types of gateways present in a rigid compo-

Trivial Polygon Bond Rigid ne'nt and whether the rigid com'ponent con-
tains cycles or not. More precisely, above
o/o\o we talk about gateways of process compo-

Homogeneous Heterogeneous nent extracts, refer to Section 4.4, i.e., child

o/o\o o/o\) components of a rigid process component

XOR AND  Acyclic Cyclic must be abstracted to achieve the modular-
o/o\o ization of the structuring problem. Accord-
Acyclic Cyclic ingly, we found it useful to further classify

(extracts of) rigid components as follows:
A homogeneous rigid contains either only
zor or only and gateways. We call these
rigids (homogeneous) xor rigids and (homogeneous) and rigids, respectively. A
heterogeneous rigid contains a mixture of and/xzor gateways. Heterogeneous and
homogeneous zor rigids are further classified into cyclic, if they contain at least one
cyclic path, or acyclic. Importantly, we do not classify homogeneous and rigids as
cyclic or acyclic, as process models with cyclic and rigids are unsound [147]. Based
on this background, a taxonomy of process components is provided in Figure 5.3.

Figure 5.3. Taxonomy of components

5.2. Behavioral Equivalence of Process Models

An unstructured process model and its well-structured version are structurally
different, but behaviorally equivalent. This immediately raises the question of
what notion of behavioral equivalence is the most applicable in the context of
the process model structuring problem. There exist various notions of behavioral
equivalence for concurrent systems [139]. This section motivates the fully con-
current bisimulation [11] as the equivalence notion appropriate for structuring
process models, as it sufficiently preserves the level of concurrency of observable
operations in equivalent systems.

A common notion of behavioral equivalence for concurrent systems is that
of bisimulation. Bisimulation has been introduced in [101] as a concept that is
equivalent to observational equivalence [88]. Since then, the notion of bisimulation
has gained considerable attention in the literature. Related equivalence notions are
those of weak bisimulation and branching bisimulation. These notions have been
advocated as being suitable for comparing process models [68]. Weak bisimulation
abstracts from silent transitions, i.e., silent transitions may be executed but their
execution is not visible for an external observer, cf., [89]. As pointed out in [140],
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weak bisimulation does not preserve branching time for silent transitions. This
observation led to the introduction of the notion of branching bisimulation.

Figure 5.4. (a) A WF-net that corresponds to the process model in Figure 5.1(a), (b)
sequential simulation of (a), and (c) the process model that net in (b) corresponds to

Usually, bisimulation is defined in terms of execution sequences. For instance, all
of the above mentioned notions of bisimulations adopt an interleaving semantics,
i.e., no two tasks are executed exactly at the same time. Thus, a concurrent system
and its sequential simulation are considered equivalent. For example, Figure 5.4(b)
shows the sequential simulation of the WF-net in Figure 5.4(a), which is the
net that corresponds to the unstructured process model in Figure 5.1(a). The
nets in Figure 5.4(a) and Figure 5.4(b) are weakly bisimilar. Accordingly, we
speak of a weak bisimulation of the process models that these nets correspond
to, see Figure 5.1(a) and Figure 5.4(c). The process model in Figure 5.4(c) is
also well-structured; note that its RPST contains no rigids. However, the process
model contains no parallel branch and, thus, does not capture the fact that tasks
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c and d can be enabled and executed concurrently. Instead, the concurrency is
modeled by means of interleaving the occurrences of the corresponding tasks.

One can trivially construct a well-structured process model, like the one in
Figure 5.4(c), by computing all sequential runs of a given unstructured process
model and afterwards performing sequential merging of individual runs by means
of zor gateways. The amount of task duplicates in this case greatly depends on
the quality of the merging of individual runs. Figure 5.4(c) shows the result of
applying one possible merging strategy. Yet, one can envision a merging strategy
where activities a and b are duplicated, or a strategy where activities ¢ and d are
duplicated only once. The proposed structuring method is complete, but if we
start with an unstructured process model containing and gateways, we always
obtain a (much larger) structured process model without any parallel branches;
these are the general tendencies of the described approach, which can be already
recognized in Figure 5.4(c).

Accordingly, we adopt a notion of bisimulation that preserves the level of
concurrency of observable operations, viz. fully concurrent bisimulation (FC-
bisimulation) [11]. FC-bisimulation is a Petri net analog of the behavioral structure
bisimulation [116] or the history preserving bisimulation on event structures [141].
FC-bisimulation is defined in terms of concurrent runs of a system, a.k.a. processes
in the literature (but not to be confused with “business processes” or workflows).
Every process of a system can be expressed as another net with a particular
structure — a causal net.

Definition 5.4 (Causal net).

A net N =(B,E,G) is a causal net, iff :
o for each be B holds |eb[ <1 and [be|<1, and
o N is acyclic, i.e., G* is irreflexive.

a

Elements of E are called events and elements of B are called conditions. We also
introduce ordering relations [96], which will be used in the subsequent sections as
an instrument for reasoning about the behavior of nets.

Definition 5.5 (Ordering relations).
Let N = (P,T,F) be a net and let x,y € PuT be its nodes.
o x and y are in causal relation, written x ~y y, iff (z,y) € F*. y and x are
in inverse causal relation, written y «n x, iff z ~ x5 y.
o z and y are in conflict, x #n vy, iff there exist distinct transitions t1,t5 € T,
s.t. etynets =@, and (t1,x), (t2,y) € F*. If x #x x, then x is in self-conflict.
o x and y are concurrent, x ||y vy, iff neither z ~x y, nor y ~x x, nor x #y y.
The set Ry = {~nN, N, #N,||n} forms the ordering relations of N.

a

The observable ordering relations of a net are formed by its ordering relations
where every relation is restricted to the set of observable transitions of the net.

Definition 5.6 (Observable ordering relations).
Let N = (P,T,F,T,\) be a labeled net and let 7" € T be its observable transitions.
The set of ordering relations of N where each relation is restricted to the set T’
forms the observable ordering relations, or A-ordering relations, Ry of N, i.e.,
Ra={~nn (T'xT),esn 0 (T' xT"),#nn (T'xT"),[|n0 (T"xT")}.

4
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It is easy to see that any two nodes in a causal net are either in (inverse) causal
relation or concurrent. In the following we omit the subscripts of ordering relations
where the context is clear. In order to define a process, we lack the notion of a
cut. A co-set is a set of pairwise concurrent places. A maximal co-set with respect
to inclusion is a cut. Then, a process is defined as follows.

Definition 5.7 (Process).
A process m = (N, p) of a system S = (N,My), N = (P,T,F), consists of a
causal net N, = (B, E,G) and a function p: BUE - PuUT:

o p(B)c P, p(E)cT,

o Min(N,) is a cut, which corresponds to the initial marking M, that is

Y peP:My(p) =|p~(p) n Min(N,)|, and

o VeeR Y pePi(F(p,p(e)) = | (p) noel) A (F(p(e),p) = |~ (p) e ).

A process w of S is initial, iff F=g@.

a

A process 7’ is an extension of a process 7 if it is possible to observe 7 before
one observes w’. Consequently, process 7 is a prefiz of w'.

Definition 5.8 (Prefix, Process extension).
Let m = (Ng,p), Nr = (B,E,G), be a process of a net system. Let ¢ be a
cut of N, and let ¢* be the set {re BUE | 3yec:(x,y) e G*}. A process 7. is
a prefiz of m up to (and including) ¢, iff 7. = (Bnc', Enc', Fn(c' xc')), plo).
A process 7' is an extension of process m, if 7 is a prefix of 7.

4

In order to define fully concurrent bisimulation, we need two auxiliary definitions: \-
abstraction of a process, which is a process footprint that ignores silent transitions,
and the order-isomorphism of A-abstractions.

Definition 5.9 (Abstraction of a process of a labeled system).
Let S = (N,My), N = (P,T,F,T,\), be a labeled system and let 7 = (N, p),
N, =(B,E,G), be a process of S. The A-abstraction of 7, denoted by a)(7) =
(Ex,<,Ar), is defined by the set of observable events E, € F of N, the observable
causal relation < of N , and A, : E; — T, such that A(e) = A(p(e)), e € E.

4

Two A-abstractions are order-isomorphic, if there exists a one-to-one correspon-
dence between events of both abstractions which also preserves the ordering
relations of the corresponding events in the abstractions.

Definition 5.10 (Order-isomorphism of abstractions).

Let ay, = (F1,<1,A1) and «ay, = (F2,<2,A2) be two A-abstractions, both with
labels in 7. Then ay, and «y, are order-isomorphic, denoted by ay, = ay,,
iff there is a bijection 8 : E; - FEs, such that V e € E1 : A1(e) = X\2(8(e)) and
V e1,es € By ey <1 e < B(er) <2 B(e2). y

Given all of the above, fully concurrent bisimulation is defined as follows.

Definition 5.11 (Fully concurrent bisimulation).

Let Sl = (Nl,Ml) and SQ = (NQ,MQ) be labeled systems, N1 = (P1,T1,F1,71,)\1)
and Ny = (Pa, T, F, T2, A2). S1 and Sy are fully concurrent bisimilar, or FCB-
equivalent, denoted by Sy » Sy, iff there is a set B ¢ {(m, 72, 3)}, such that:
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(i) m is a process of Sy, o is a process of Sy, and § is a relation between the
non-7 events of m; and ms.
(ii) If m§ and w3 are the initial processes of S; and Ss, respectively, then
(n§, 72, 2) € B.
(iii) If (71,72, 3) € B, then S is an order-isomorphism between the Aj-abstraction
of m; and the \y-abstraction of ms.
(iv) V(m1,m9,B8) € B:
(a) If 7] is an extension of 7, then 3(7], 75, 8’) € B where 7}, is an extension
of mo and B c f'.
(b) Vice versa.

a

Fully concurrent bisimulation defines an equivalence relation on labeled systems
that is stricter than weak bisimulation and related notions. The nets in Figure 5.4(a)
and Figure 5.4(b) are not fully concurrent bisimilar. Meanwhile, the two nets in
Figure 5.4(a) and Figure 5.5 are FCB-equivalent. The net in Figure 5.5 corresponds
to the process model in Figure 5.1(b) and, thus, the model in Figure 5.1(b) is
the FCB-equivalent well-structured version of the process models in Figure 5.1(a)
(with the understanding that two process models are FCB-equivalent, iff the
corresponding Petri nets are FCB-equivalent).

Figure 5.5. A WF-net that corresponds to the process model in Figure 5.1(b)

5.3. Related Work

So far, we have instantiated the structuring problem (refer to Section 1.3) with the
notions of the process model (as a behavioral model, see Section 2.5) and the fully
concurrent bisimulation (as a behavioral equivalence relation, see Section 5.2). In
this section, we look at this particular instance of the structuring problem from
the perspective of related works which deal with structuring of behavioral models.

Our setting of the structuring problem is close to the problem of structuring
sequential programs, which has been extensively studied for years. In one of his
letters, Edsger W. Dijkstra started a discussion with the provocative title “Go To
Statement Considered Harmful” [25]. In the absence of Go To statements, programs
are composed of structured flow constructs only, a situation that corresponds to our
notion of well-structured process models without concurrency constructs. The main
idea communicated in the letter is that in the context of sequential programs, Go To
statements should be abolished from all “high-level” programming languages. Since
that time, many replies to the letter supported or rejected the statement of Dijkstra,
for instance [55, 159, 119, 93], with no side being able to provide sound arguments
to disarm one another. The partial resolution of the conflict became possible
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due to many works on formal techniques for translating unstructured programs
with Go To statements into equivalent structured programs [156, 97, 162]. The
main outcome of these endeavors is that any sequential program can be structured
with only one control flow pattern, viz. forward jump from a loop, requiring the
introduction of fresh control variables in structured programs [97]; other flow
patterns can be structured by employing code duplications and structured control
flow constructs like if-then-else or while-do.

The results on structuring sequential pro-
grams do not hold for process models which
comprise concurrency. One of the earliest
studies on the problem of structuring pro-
cess models is that of Bartek Kiepuszewski
et al. [67]. The authors showed that not all
acyclic process models can be structured by
putting forward a counter-example, which
essentially boils down to the one in Fig-
ure 5.6 (also known as Z-structure, due to
the configuration of causal relations between the tasks). The authors showed that
there is no well-structured process model that is equivalent to this one under the
fully concurrent bisimulation equivalence notion. They do explore some causes of
unstructuredness, but neither give a full characterization of the class of models
that can be structured, nor do they define any automated transformation.

Some work has been devoted to the characterization of sources of unstructured-
ness in process models. In [77], the authors present a taxonomy of unstructuredness,
that covers acyclic and (partly) cyclic process models. The taxonomy is based
on the notion of improper nesting and mismatched pairs. The taxonomy allows
analyzing unstructured process models, determine whether they are well-behaved,
and whether they can be transformed into equivalent structured models. However,
the taxonomy is incomplete, as it does not cover all possible cases of process
models that can be structured. Besides, the authors do not define an automated
algorithm for structuring unstructured process models.

Figure 5.6. Process model (Z-structure)

Other methods simply reuse techniques for structuring sequential programs in
order to partly structure process models. [50] proposes a method for structuring
sequential parts of a process model based on Go To program transformations, and
extends this method to process graphs where concurrent parts are already struc-
tured. This method cannot deal with process models which comprise unstructured
concurrent threads of control. A similar remark applies to [71], where authors
concentrate on structuring of unstructured cyclic flows. In [79], a translation from
(unstructured) Petri nets to (structured) BPEL processes is proposed. While the
proposed method can handle unstructured concurrent threads of control, it does
so by directly expressing them in terms of BPEL’s flow activity and links. Put
differently, the method identifies the already structured parts of the process model,
but provides no means for structuring the unstructured parts.

In [49], the authors outline a classification of process components (parts of
process models) using region trees. The authors mention that region trees can
be used to structure unstructured process models, however they do not provide
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a structuring method, even for acyclic models. In [109], the authors study the
influence of “hidden” unstructuredness in process models on their correctness.

Figure 5.7 uses the taxonomy of process

Process component components from Figure 5.3 to visualize

././o\o the coverage of the structuring problem

@ > by the existing techniques. Black circles

Trivial Polygon Bond Rigid h?nt at the con;gplete solution. Trivial, poly-

o/o\o gon, and bond components are structured

process components, whereas homogeneous

o/o\o o/o\) zor rigids (both acyclic and cyclic) can be

XOR AND  Acyclic Cyclic structured by employing techniques on pro-

./.\. gram translation, e.g., [97]. Circles with

Acyclic Cyclic grey background indicate the existence of

partial solutions, which were developed for

acyclic models with concurrency. We are

not aware of any existing solution which

systematically addresses the problem of structuring cyclic process models, even

for subclasses of cyclic models, indicated by the empty circle in the figure.

To sum up, to the best of our knowledge, existing techniques approach structuring
of process models with concurrency rather superficially. Existing techniques either
drop the requirement of preserving concurrency described in the unstructured
process model, or the “problematic” parts of the process model are not structured
at all and, hence, unstructuredness remains in the resulting process model.

Homogeneous Heterogeneous

Figure 5.7. Taxonomy of components

5.4. Behavioral Equivalence and Ordering Relations

The definition of fully concurrent bisimulation from Section 5.2 is abstract and
hardly of any use when synthesizing structured nets from unstructured ones.
Accordingly, we employ a more convenient way of reasoning about equivalence
based on the ordering relations of the special class of nets, viz. occurrence nets.

Nets can have forward or backward conflicts, i.e., places with multiple output
or input transitions, respectively. This means that a subnet which may cause
a transition firing is not unique. An occurrence net is a net of a special kind.
Occurrence nets forbid backward conflicts and, thus, ensure the unique cause of a
transition firing. Essentially, occurrence nets generalize causal nets by allowing
forward conflicts. Note that every causal net is also an occurrence net.

Definition 5.12 (Occurrence net).
A net N = (B, E,G) is an occurrence net, iff :
o for each be B holds |eb| < 1,
o N is acyclic, i.e., G* is irreflexive,
o for each x e BUE the set {ye BUFE | (y,x) € G*} is finite, and
o no e € F is in self-conflict, i.e., #y is irreflexive.

4

Again, elements of E are called events and elements of B are called conditions.
Note that every two nodes of an occurrence net are either in causal, inverse causal,
conflict, or concurrent relation [96].
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We say that A-ordering relations (Definition 5.6) of two labeled occurrence nets
are isomorphic, if there exists a mapping between the sets of observable events
such that every corresponding pair of events is in the same ordering relation.

Definition 5.13 (Isomorphism of ordering relations).
Let Ny = (B1,F1,G1,T1,\) and Ny = (Bg, E2,Ga, T2, A2) be two labeled oc-
currence nets. Let E{ ¢ E; and E} € E; be observable events of N; and N,
respectively. Two A-ordering relations Ry, of N and R, of Ny are isomorphic,
denoted by Ry, = Ry,, iff there is a bijection 7 : E] — Ej, such that:

o VeekE]: ) (e)=MX(y(e)), and

oV oen,ex e Byt (e1 ~n, eany(er) ~n, Y(e2)) v (e1 wn, e2 Ay(er) «n,

v(e2)) v (e1 #n, ea Ay(er) #n, v(€2)) v (er [[n, e2nvy(er) |In, v(e2)).

Finally, we show that two occurrence nets with isomorphic ordering relations are
FCB-equivalent, and vice versa.

Theorem 5.14. Let Sl = (Nl,Ml), N1 = (Bl,El,Gl,ﬂ7)\1), and SQ = (NQ,MQ),
Ny = (B, E3,G2,T3,A2), be two labeled occurrence systems with natural markings
and distinctive labelings. Let E] € Ey and E} € Ey be observable events of N1 and
Ny, respectively, such that there exists a bijection v : E] — E} for which holds
A1(e) = A2((e)), for all e e EY. Let Ry, and Ry, be the A-ordering relations of
Ny and Ns, respectively. Then, it holds:

S1 NSQ =4 R/\1 = 'R,)\z.

The proof of Theorem 5.14 is in Appendix A.2.

5.5. Unfoldings

An unfolding of a net system is another net that explicitly represents all concurrent
runs of the net system in a possibly infinite, tree-like structure [34, 36]. In [84],
Kenneth L. McMillan proposed an algorithm for constructing a finite initial part
of the unfolding, which contains full information about the reachable markings of
the net system, viz. a complete prefix unfolding. In the following, we present main
notions of the theory of unfoldings: Section 5.5.1 presents branching processes — a
convenient mechanism for capturing concurrent runs of a net system. Section 5.5.2
presents an unfolding algorithm — the algorithm for constructing maximal branching
processes. Finally, Section 5.5.3 presents an algorithm for the construction of the
finite initial part of an unfolding which contains information about all reachable
markings of the net system. Both algorithms were originally proposed in [37, 38].

5.5.1. Branching Processes

This section discusses branching processes — a partial-order semantics of Petri
nets. Every net system can be “unfolded” into an occurrence net. The unfolding
procedure allows one to preserve correspondences between nodes of the resulting
occurrence net and nodes of the net system. The occurrence net together with a
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mapping of its nodes to the nodes of the net system is called a branching process
of the net system. The net system is referred to as the originative system of the
branching process. Note that the unfolding procedure of a net system can be
stopped at different times yielding different branching processes.

The relation between a net system and its branching processes technically builds
on a homomorphism between two nets that preserves the nature of nodes and
the environment of transitions. Let Ny = (P, Ty, F1) and Ny = (Py, T, F5) be two
nets. A homomorphism from Ny to N3 is a mapping h: Py uT; - P, uTy, such
that: h(Py) € P2 and h(T7) € T» (the nature of nodes is preserved), and for all
t € T1, the restriction of h to et is a bijection between ot in N; and eh(t) in No;
correspondingly for te and h(t)e (the environment of transitions is preserved).

Definition 5.15 (Branching process).

A branching process of a net system S = (N, Mpy) is a pair 8 = (N',v), where

N’ =(B,E,Q) is an occurrence net and v is a homomorphism from N’ to N, s.t.:
o the restriction of v to Min(N") is a bijection between Min(N") and My, and
o for all ey, e5 € E holds, if ee; = ee5 and v(e1) = v(ez) then e = es. J

Two branching processes of the same net system are in a prefix relation. The

prefix relation reflects that one branching process “unfolds” originative system less

than another branching process. This is captured in the next definition.

Definition 5.16 (Prefix relation).
Let f1 = (N1,v1) and B2 = (Na2,12) be two branching processes of a net sys-
tem S = (N, My). B1 is a prefix of B2 if Ny is a subnet of Na, such that:
o Min(N2) belongs to Ny,
o if a condition belongs to N7, then its input event in N5 also belongs to N;
(if such an event exists),
o if an event belongs to N7, then its input and output conditions in N, also
belong to Ny, and
o 17 is the restriction of v5 to nodes of Nj.

a

A branching process 8’ is an extension of a branching process 3 if § is a prefix
of 5’. When we talk about the reachable markings of a branching process, we
refer to the markings reachable from the natural initial marking of the underlying
occurrence net. In the context of occurrence nets, the natural initial marking is
the marking that puts one token in each minimal condition (a condition with the
empty preset) and no tokens elsewhere. Please note that every reachable marking
of a branching process represents a reachable marking of its originative system.
Figure 5.8 shows four branching processes of the net system in Figure 2.6(a).
Figure 5.8 shows the initial branching process — a branching process composed of
conditions that correspond to the places in the initial marking of the originative
system and no events. Indices of conditions and events in the figures reflect
the mapping of the respective nodes to places and transitions of the originative
system, e.g., ¢; and ¢] in Figure 5.8(d) are conditions that correspond to place
p1 in Figure 2.6(a). Observe that as the originative system allows infinite firing
sequences, it has an infinite number of branching processes. Finally, note that

84



5.5. Unfoldings

(a) (b) (©)

Figure 5.8. (a)—(d) Branching processes of the net system in Figure 2.6(a), where (a) is
the initial branching process

branching processes in Figure 5.8 are in the prefix relation from left to right, i.e.,
for every pair of branching processes in the figure it holds that the branching
process on the left is a prefix of the branching process on the right.

Next, we discuss notions which provide a convenient mechanism for explaining
reachable markings of the originative system in terms of its branching processes.

Definition 5.17 (Configuration).
Let 8= (N,v), N =(B,E,G), be a branching process of a net system.
A configuration C of B is a set of events, C' € E, such that:
o (' is causally closed, i.e., e € C' implies that for all ¢’ € E, ¢’ ~ e, holds €’ € C,
and
o C is conflict-free, i.e., for all ey, eq € C holds —(e1 # e3).

4

A configuration is a set of events in a branching process which represents a footprint
of a firing sequence (or several firing sequences) of the originative system. In other
words, for a given configuration there exists a firing sequence (or several firing
sequences) of the originative system composed of the transitions that correspond
to the events in the configuration. For instance, the set {ej,es,e5} of events
from Figure 5.8(d) is a configuration. This configuration represents several firing
sequences of the originative system, e.g., t1,t3, t5 (which is depicted in Figure 2.6) or
t3,t1,ts5, etc. In contrast, {ej,es} and {e5} are not configurations of the branching
process in Figure 5.8(d): {ey,es} is not conflict-free, {es} is not causally closed.

Branching processes capture reachable markings of the originative system. A
reachable marking M of a net system S = (N, My), N = (P, T, F), is captured in a
branching process 8 = (N',v) of S if § contains a cut such that for every place
p € P, the cut contains exactly M (p) conditions that correspond to p. Recall from
Section 5.2 that a cut is a maximal set of pairwise concurrent places of the net (or
conditions in the context of occurrence nets). For instance, the marking {ps,p7},
see Figure 2.6(c), is captured in the branching process in Figure 5.8(d), as the
branching process contains the cut {cs,cr}.

Every finite configuration of a branching process induces a cut.
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Definition 5.18 (Cut induced by a finite configuration).
Let C be a finite configuration of a branching process § = (N,v). Then, the
co-set (Min(N)uCe) \ oC, denoted by Cut(C), is a cut of N induced by C.

4

Cut(C) is a set of conditions which are marked when all the events from configu-
ration C fire (in any possible order starting from the natural initial marking of
the underlying occurrence net). Given a finite configuration C of a branching
process = (N, v) of an originative system S, the multi-set of places v( Cut(C'))
is a reachable marking of S, which we denote by Mark(C).

5.5.2. Unfoldings — Maximal Branching Processes

As already mentioned, the unfolding procedure can be stopped at different times
yielding different branching processes. However, there is a unique (possibly infinite)
branching process created by unfolding “as much as possible” [38]. The maximal
branching process of a net system with respect to the prefix relation is called the
unfolding of the net system. In [34], it is shown that every net system has a unique
(up to isomorphism) unfolding. This section presents the unfolding algorithm
from [38, Section 4.1]. Given a net system, the algorithm constructs its unfolding.

Javier Esparza, Stefan Romer, and Walter Vogler suggest implementing a
branching process of a net system S as a set of nodes {ny,...,ng}, each either a
condition or an event. The authors propose encoding every condition as a record
containing two fields: a place of S and a reference to the unique input event of
the condition. If the condition has an empty preset, the reference is set to NULL
(denoted by @). Thus, we denote a condition as a pair (p,e) or (p,@), where p
is a place of S and e is an event of unfolding. An event can also be captured
as a record composed of two fields: a transition of S and a set of references to
the input conditions of the event. In the following, an event is denoted as a pair
(t,X), where ¢ is a transition of S and X is the set of input conditions of the
event. Please observe that the set of events and conditions (each captured as a
record described above) also defines the flow relation of the unfolding and the
mapping of its nodes to the nodes of the originative system.

The main idea of the unfolding algorithm is to start with the initial branching
process, and then to iteratively add new nodes to the branching process. Observe
that the initial marking is a multi-set and, thus, unfolding can contain several
minimal conditions that correspond to the same place of the originative system.
New events are added to the unfolding one at a time together with their output
conditions. This iterative procedure requires a notion of a possible extension —
an event that can be added to a branching process. Let ¢t be a transition of the
originative system with output places {p1,...,pn}. Anevent e = (¢, X) is a possible
extension of a branching process {n1,...,ng}, if {n1,...,nk, e, (p1,€),...,(Pn,€)}
is also a branching process. The set of all possible extensions of a branching
process (3 is denoted by Possible Extensions(f3).

In [38], the authors give the following characterization of a possible extension.

Proposition 5.1: Let 8 be a branching process of a net system S and let v be a
mapping of nodes of B to nodes of S. The possible extensions of 5 are the pairs
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(t,X), where t is a transition of S and X is a co-set of conditions of 8, such that
v(X) = et and (t,X) does not already belong to (. N

Considering all of the above, Algorithm 3 summarizes a technique for the con-
struction of the unfolding of a given net system.

Algorithm 3: The unfolding algorithm [38]

Input: A net system S = (N, My), where My = {p1,...,pn}
Output: The unfolding Unf of S

Unf = {(p1a®)7 SRR (pnag)}

pe = PossibleExtensions( Unf)

while pe # @ do
Add to Unf an event e = (t,X) € pe and a condition (p,e) for every
output place p of ¢
pe = PossibleExtensions( Unf)

return Unf

B W N =

[<2 e

Observe that the algorithm terminates if and only if the originative net system
S does not contain any infinite firing sequence. Note that unfoldings of the net
systems in Figure 2.6 are infinite.

5.5.3. Finite Complete Prefix Unfoldings

Every marking captured in a branching process is a reachable marking of its
originative system, and every reachable marking of a net system is captured in its
unfolding [38]. A complete branching process of a net system is usually smaller
than its unfolding (it is a finite prefix of the unfolding), but captures all the
information about reachable markings of the net system.

Definition 5.19 (Complete branching process).
Let 8 = (N',v), N' = (B,E,G), be a branching process of a net system S =
(N,My), N =(P,T,F). B is complete if for every reachable marking M of S there
exists a configuration C' of 3, such that:
o M is captured in S, i.e., Mark(C) = M, and
o for every transition ¢t € T enabled at M in N, there exists a configuration
Cu{e}, ec E, of B such that e ¢ C and v(e) =t.

The algorithm from [38] for construction of a complete prefix unfolding (a complete
branching process) of a net system is founded on the three notions of local
configuration, adequate order, and cutoff event. Next, we discuss these notions.
Kenneth L. McMillan [84] proposed to associate every event of a branching
process with a reachable marking of the originative system. The association is
implemented with the help of the intermediate notion, viz. local configuration.

a

Definition 5.20 (Local configuration).

Let 8= (N,v), N =(B,E,G), be a branching process of a net system.
The local configuration [e] of an event e € E of § is the set of events e’ € E such
that e’ =eor ¢’ ~ e, ie., [e]={e}u{e' e E|e ~e}.

a
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Algorithm 4: The complete prefix unfolding algorithm [38]
Input: A bounded net system S = (N, M), where My = {p1,...,pn}
Output: A complete finite prefix Fin of S

1 Fin = {(plag)a cee (pTL?g)}
2 pe = PossibleExtensions(Fin)

3 cutoff =&

4 while pe + @ do

5 Choose an event e = (¢, X) € pe, s.t. [e] is minimal with respect to <

6 if [e] N cutoff = @ then

7 Add to Fin the event e and a condition (p,e) for every output
place p of t

pe = PossibleExtensions(Fin)

if e is a cutoff event of Fin then cutoff = cutoff u{e}
10 else pe = pe \ {e}

11 return Fin

Every event e of a branching process can be associated with the marking Mark([e]).
Let us assume that during the construction of the unfolding an event e is added
after event €, such that Mark([e]|) = Mark([e']). If this is the case, it is reasonable
to “cut-off” the construction of the unfolding either at event e or e’ (recall that
the unfolding of a net system is unique and, thus, branching processes induced
by Mark([e]) and Mark([€']) are isomorphic). The choice between e and e’ is
carried out based on a partial order, viz. adequate order.

Definition 5.21 (Adequate order).
A partial order < on the finite configurations of a branching process § is an
adequate order, if (let C, and Cs be two finite configurations of 3):
o « is well-founded,
o C; c Cy implies C7 < Cy, and
o if Cy « Cy and Mark(Cy) = Mark(C3), then < is preserved for all finite
extensions of C1, cf., [38] for details.

4

The usage of an adequate order when deciding at which event to stop the construc-
tion of the unfolding guarantees the resulting branching process to be complete.

Definition 5.22 (Cutoff event).
Let 8 = (N,v), N = (B, E,G), be a branching process and let < be an ade-
quate order on the finite configurations of . An event e € E is a cutoff event of 3,
induced by «, iff there exists a corresponding event, denoted by corr(e) € E, such
that Mark([e]) = Mark([corr(e)]) and [corr(e)] < [e].

4

Finally, a complete prefiz unfolding of a net system S is a special branching process
of S which is obtained by truncating its unfolding at cutoff events.

Definition 5.23 (Complete prefix unfolding).
Let 5 be the unfolding of a net system S and let <« be an adequate order on
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the finite configurations of 5. The complete prefix unfolding of S, induced by <, is
the maximal prefix of § with respect to the prefix relation that contains no event
after a cutoff event of 5 induced by «.

4

Algorithm 4 summarizes a technique for the construction of complete prefix
unfoldings of net systems. The algorithm defines a family of algorithms — it can be
instantiated using different adequate orders. Characteristics of the adequate order
used in the algorithm determine the characteristics of the resulting complete prefix
unfoldings. The adequate order is employed to select new events to be added to the
complete prefix unfolding and to identify cutoff events. The algorithm terminates
when there are no events to add. In the following, we discuss and compare two
adequate orders: the adequate order for bounded systems proposed by Kenneth L.
McMillan [84] and the adequate total order for safe systems proposed by Javier
Esparza et al. [37, 38].

McMillan’s Adequate Order

In his seminal work [84], Kenneth L. McMillan showed that a simple order on local
configurations, when one local configuration is smaller than the other if and only if
it contains less events, leads to a construction of a finite complete prefix unfolding
for an arbitrary bounded net system. This is captured in the next definition.

Definition 5.24 (Adequate order for bounded systems).
Let 8 = (N,v), N = (B,E,G), be a branching process of a net system. Let
e1, ez € E be two events of 5. Then, [e1] <as [e2] holds, if |[e1]] < |[ez2]]-

a1

It is easy to see that order <j; is an adequate order.

Adequate Total Order for Safe Systems

It is highly preferable that an adequate order is also total. If one instantiates
Algorithm 4 with an adequate total order «, then whenever a new event e is
generated after event e’ such that Mark([e]) = Mark([e']), it holds that [e] < [e’]
and, thus, e is identified as a cutoff event. Note that not every adequate order is a
total order. For instance, McMillan’s adequate order is not total. The existence of
an adequate total order for arbitrary net systems is an open problem. However,
it is known that there exists an adequate total order for the subclass of safe net
systems (proposed by Javier Esparza et al. in [37, 38]).

Adequate total order for safe systems technically builds on the notions of quasi
Parikh vectors over sets of events and Foata normal forms of configurations. These
are discussed next.

Definition 5.25 (Quasi Parikh vector of events).
Let 8 = (N',v), N' = (B,E,G), be a branching process of a net system S =
(N,My), N =(P,T,F). Let «< be an arbitrary total order on T. A quasi Parikh
vector over a set of events H € F with respect to «, denoted by x<(H), is a
sequence of transitions which is ordered according to <, and contains transition
t € T as many times as there are events in H that correspond to t, i.e., transition
t appears in the sequence |{h € H | v(h) = t}| times.

4
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Consider a set of events H = {e1, e3,€5,e3} such that e; corresponds to transition
t1, eo and e correspond to to, and ez corresponds to t3. Let us fix an arbitrary
total order <« on transitions, e.g., t3 < t; < to. Then, the quasi Parikh vector
over H is the sequence t3,t1,t2,1s.

Definition 5.26 (Order on quasi Parikh vectors).
Let 8 = (N',v), N' = (B,E,G), be a branching process of a net system S =
(N,Myp), N =(P,T,F). Let < be a total order on T and let F; ¢ F and F; ¢ E
be two sets of events. Then, x<(E;) « x<(E2) holds, if x<(E) is lexicographi-
cally smaller than x<(FE2) with respect to the order «.

4

Given a finite configuration of a branching process, Algorithm 5 constructs its
Foata normal form, which is a sequence of sets of events of the configuration
obtained by iteratively tearing off its minimal events.

Algorithm 5: Foata normal form of a configuration [38]

Input: A configuration C of a branching process
Output: The Foata normal form FC of C
FC=g
while C' # @ do

Append Min(C) to FC

C=C~ Min(C)
return FC

(S B I

Please note that Algorithm 5 allows for the overload of notation and uses Min(C')
to denote the set of minimal events of configuration C with respect to the causal
relation implied by the branching process.

Definition 5.27 (Order on Foata normal forms).
Let 8 be a branching process of a net system S = (N, My), N = (P,T,F). Let <«
be a total order on T and let C; and Cs be two configurations of § with Foata
normal forms FC; = Cq1,...,C1n, and FCy = Coy,...,Coy,, respectively.
Then, FC, < FC5 holds, if there exists 1 <4 < nj such that:

o X¥(Cj) = x*(Cy;), for every 1< j <i, and

o x*(C1i) « x*(C2i). :

Now, we can define an adequate total order.

Definition 5.28 (Adequate total order for safe systems).
Let 8 be a branching process of a net system S = (N, My), N = (P,T,F). Let <«
be a total order on T" and let C; and Cs be two configurations of S.
Then, Cy <g Cs holds, if:

o |Cl‘ < |Cg|, or

o |C1]=1]Cs] and x<(C1) « x<(C%), or

o x<(C1) =x<(Cs) and FC; « FCs5.

a

Please refer to [38] for the proof that <g is indeed an adequate total order for the
class of safe net systems.
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5.5. Unfoldings

(a) (b)

Figure 5.9. (a) A family of net systems, (b) two complete prefix unfoldings of the net
system from the family (a) with respect to < and <g adequate orders (n = 4)

Figure 5.9 exemplifies application of Algorithm 4. Figure 5.9(b) shows the
complete prefix unfolding of the net system (n = 4) from the family of net systems
in Figure 5.9(a) with respect to <5 adequate total order (see the subnet induced
by nodes that are above or intersect the dashed line) superposed on the complete
prefix unfolding of the same system with respect to <j; adequate order (see the
whole net). Note that the complete prefix unfolding with respect to <, is equal
to the unfolding of the system. Events with the grey background are the cutoff
events induced by <g. In the figure, dotted arrows show the relation between
cutoff events and corresponding events, e.g., ej; is the corresponding event of
cutoff event ey, etc. Note that events ey, €22, and e3o cannot be identified as
cutoff events with respect to <,;. Consider the pair of events e1; and ejo. It holds,
Mark(Je11]) = {p2} = Mark([ei12]). However, it also holds that |[e11]] =|[e12]]-

In [38], the authors also propose an ade-
quate order for arbitrary net systems. Simi- Cs Cs o C4
lar as <g, this adequate order tends to deliver
more compact complete prefix unfoldings as
compared to <; (also in the case of unsafe
net systems). In fact, this adequate order can
deliver the same complete prefix unfolding
(up to isomorphism) as the one provided by
< in the example from Figure 5.9. However,
this adequate order is not total — neither for
arbitrary net systems, nor for the safe ones.
Please refer to [38] for further details.

Figure 5.10 exemplifies the complete prefix Figure 5.10. The complete prefix unfold-
unfolding of the net system in Figure 2.6(a). ing of the net system in Figure 2.6(a)
Please note that the complete prefix unfold-
ing is obtained by using a slightly modified version of Algorithm 4 and the adequate
total order for safe systems. In every iteration of the main loop of the algorithm

c'y C'3 ¢'ic" ¢3¢y c"ic"y
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(lines 4-10), we performed additional checks on every newly added event e (line 7).
When performing the checks, we waited for the first two events for which holds
that Mark([e]) is equal to the initial marking of the originative system. Once
identified, these first two events were immediately recorded as a cutoff event and
its corresponding event. Otherwise, Algorithm 4 constructs a larger complete
prefix unfolding than the one proposed in Figure 5.10. This larger complete
prefix unfolding contains an event which is associated with the initial marking of
the originative system and that is then used as a corresponding event of cutoff
events that are also associated with the initial marking of the originative system
(verify this by constructing the complete prefix unfolding of the net system in
Figure 2.6(a) using Algorithm 4 and the adequate total order for safe systems).
The above described instructions can be trivially injected into Algorithm 4 after
line 9. Observe that the above suggested extension of the algorithm is of no
use when unfolding WF-systems, as the initial marking of a WF-system is only
reachable from its initial marking via the empty firing sequence.
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Proper complete prefix unfolding

Unstructured process model

Acyclic
structuring @

Ordering relations graph

Well-structured process model

This chapter proposes several techniques for structuring process models: Sec-
tion 6.1 presents a method for structuring acyclic models with single source and
single sink nodes. Section 6.2 extends the technique from Section 6.1 to allow
maximal structuring. The extension addresses the cases in which process models
have no well-structured versions but can still be partially structured. Section 6.3
discusses particularities of structuring acyclic process models with multiple source
and/or multiple sink nodes. Afterwards, Section 6.4 discusses ideas towards a tech-
nique for structuring cyclic process models. Finally, Section 6.5 draws conclusion
and discusses future steps in the research on structuring process models.

The materials reported in this chapter are partially published in [106, 107, 108].
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6. Structuring Techniques

6.1. Acyclic Structuring

This section proposes an approach for structuring acyclic process models. Figure 6.1
summarizes the approach by showing the chain of phases that collectively compose
the structuring technique. In the following, we assume that every process model
has a single source node and a single sink node and that every gateway node can
be classified as either a split or a join.

Proper Orderin Well-
Process complete °ring structured
WEF-systems relations
models prefix raphs process
unfoldings grap 2 i models

Figure 6.1. Acyclic structuring chain

First, a process model gets decomposed into the hierarchy of its process com-
ponents. Each component is a process model by itself and either well-structured
or unstructured. An unstructured process component can in some cases be trans-
formed into a well-structured one. For this purpose, the component is translated
into a WF-system for which the ordering relations of its tasks are derived from
its proper complete prefix unfolding. If the ordering relations have certain prop-
erties, the unstructured component can be replaced by a hierarchy of smaller
well-structured components that define the same ordering relations. Note that the
equivalence of the resulting process model with the original unstructured model is
guaranteed due to the results presented in [143].

credit card
payment

bank
transfer

0 confirm.

by post

Figure 6.2. Unstructured acyclic process model

In the following, we discuss each phase of the acyclic structuring technique in
detail. We employ the process model in Figure 6.2 to exemplify all structuring
phases. Figure 6.2(a) shows the process model, while Figure 6.2(b) shows its
RPST as a tree-like structure where the only rigid component R1 is highlighted
with grey background. Later, in Section 6.2, we shall extend the technique to
allow maximal structuring.

6.1.1. From Process Models to Unfoldings

A process model is well-structured if and only if its RPST contains no rigid
component (Definition 5.3). Therefore, an unstructured process model can be
structured by traversing its RPST bottom-up and replacing each rigid component
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with its equivalent well-structured component. The difficult step is to find this
equivalent well-structured component.

The key idea of structuring is to refine a rigid component R, i.e., a node of
the RPST, with a subtree of well-structured RPST nodes which define the same
behavioral (ordering) relations between the child RPST nodes of R. The first step
for refining R is to compute the ordering relations of R’s child nodes. We obtain
these by constructing a complete prefix unfolding of R’s corresponding WF-system.
The complete prefix unfolding captures information about all reachable markings
of the originative system, but has a simpler structure as it is an occurrence net
(Definition 5.12). To capture all well-structuredness contained in R, the complete
prefix unfolding must have a specific shape, called proper.

Definition 6.1 (Proper complete prefix unfolding).
Let 8= (N,v), N = (B, E,G), be a branching process of a net system S and let «
be an adequate order on the finite configurations of 3.
o A cutoff event e € F of 8 induced by < is healthy, iff
Cut([e]) ~ ee = Cut([corr(e)]) ~ corr(e)e.
o [ is the proper complete prefix unfolding, or the proper prefix, of S induced
by «, iff 8 is the maximal prefix of the unfolding of S that contains no event
after a healthy cutoff event induced by <.

4

A proper prefix contains all information about well-structuredness, i.e., all paired
gateways of splits and joins, in a rigid in the following way: A proper prefix
[ represents each xor split as a condition with multiple post-events; each zor
join is identified by the post-conditions of a cutoff event e and its corresponding
event. The notion of a cutoff event guarantees that 8 contains every zor split
and join. An important observation here is that corresponding pairs of zor splits
and joins are always contained in the same branch of 8. An and split manifests
as an event with multiple post-conditions, whereas an and join is an event with
multiple pre-conditions. The healthiness requirement on cutoff events ensures
that concurrency after an and split is kept encapsulated: when several concurrent
branches are introduced in the unfolding they are not truncated until the point of
their synchronization, i.e., the and join is reached. Such an intuition supports our
goal of deriving a well-structured process model, because bonds of a well-structured
process model that define concurrency must be synchronized in the same branch
of the process model where they forked.

Figure 6.3 shows (a) a WF-net that corresponds to rigid component Rl in
Figure 6.2, (b) a complete prefix unfolding, and (c) a proper prefix of the WF-net
in (a). Both the complete prefix unfolding and the proper prefix are induced
by the < adequate order, see Section 5.5.3. In the complete prefix unfolding,
event e, is a cutoff event, whereas event e, is its corresponding event. The local
configurations of events e. and e, induce the marking {p,,p,} represented by the
cuts {cz, ¢y} and {c;, ¢ }, respectively. The complete prefix unfolding is not proper.
Cutoff event e, is not healthy, as Cut([e.]) \ e.o = {c/}, while Cut([e,]) ~ e,® = @.
Observe that the only cutoff event e’ in Figure 6.3(c) is healthy, this results in the
proper prefix where all the concurrency introduced by event e,, is synchronized
in the same branch of the prefix by event e.. Note that in this example the
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Figure 6.3. (a) A WF-net that corresponds to the rigid component R1 in Figure 6.2, (b)
a complete prefix unfolding of (a), and (c) a proper prefix of (a)

proper prefix happens to be the unfolding of the system. This is not the general
case. Figure 6.4 shows a proper prefix of the WF-net that corresponds to rigid
component R1 in Figure 5.1(a), which is proper and smaller than the unfolding.
A proper complete prefix unfolding of an acyclic system is clearly finite. For
structuring purposes, when computing proper prefixes we shall always use the <g
adequate order — the adequate total order for safe systems [37, 38]. For the class
of safe systems, this adequate order results in minimal complete prefix unfoldings,
if one only considers information about reachable markings induced by local
configurations, which is exactly the case for healthy cutoff events. Recall that we
only operate with sound and safe process models. Hence, when structuring acyclic
process models, the <g adequate order always yields minimal proper prefixes.
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Figure 6.4. A proper prefix of the WF-net that corresponds to rigid component R1 in
Figure 5.1(a) (subnet of the WF-net in Figure 5.4(a))

6.1.2. From Unfoldings to Graphs

Observable ordering relations of the proper prefix specify a unique behavioral
footprint of its originative system. This section discusses an alternative represen-
tation of observable ordering relations. The relations get encoded in a directed
graph — an ordering relations graph. In addition to being a convenient visualization
mechanism, such a representation allows for the application of simpler algorithms
for the analysis of ordering relations.

In order to overcome the effects of the proper prefix truncation at healthy cutoff
events, we define the notion of proper ordering relations.

Definition 6.2 (Proper ordering relations).
Let 8 = (N,v), N = (B,E,G), be a proper prefix of an acyclic system and
let ,y € BUE be its nodes. Let Ry = {~n,«nN,#n,||n} be the ordering
relations of N.

o x and y are in proper causal relation, written x =y y, iff (z,y) € G* or
there exists a sequence (ey,...,e,) of healthy cutoff events of 3, e; € E,
1<i<n, neN, such that (x,e1) € G*, (corr(e;), eir1) € G* for 1 <i < n, and
(corr(en),y) € G*. y and x are in inverse proper causal relation, written
y <y, iff x>y y.

o The proper conflict relation of N is By = #n \ (=N U <n).

The set Ry = {~n, <n,Bn,||n} forms the proper ordering relations of N.

4

We omit subscripts of proper ordering relations where the context is clear. Similar
to Definition 5.6, we refer to proper ordering relations R as observable, iff the
relations in R only contain pairs of events that correspond to observable transitions.
The (observable) (proper) ordering relations R define a two-structure S = (N, R)
(Section 2.2.1), where N is a set of events and R is an equivalence relation on
E5(N), such that e; R ea, e1,e9 € Eo(N), iff e1,e0 € ®, ® € R. Figure 6.5(a)
visualizes a two-structure defined by the observable proper ordering relations of
the proper prefix shown in Figure 6.4. In the figure, we have arbitrarily chosen to
encode proper conflict relation with solid edges, concurrent relation with dotted
edges, proper causal relation with dashed edges, and inverse proper causal relation
with dash-dotted edges.

97



6. Structuring Techniques

(a) (b) (c) (d)

Figure 6.5. (a) Ordering relations two-structure, (b),(c) orgraphs, and (d) the MDT of (c)

The nature of ordering relations, i.e., conflict and concurrent relations are
symmetric whereas the other two relations are the inverses of each other, results in
the corresponding two-structure always being reversible (Section 2.2.2). Recall that
the drawing of a reversible two-structure can be greatly simplified. Figure 6.5(b)
shows one possible simplified drawing of the two-structure in Figure 6.5(a). To
accomplish the drawing we have taken several design decisions: (i) Omit drawing
inverse proper causal relation. (ii) Draw a solid two-sided arrow to encode proper
conflict relation. (iii) Omit drawing concurrent relation. (iv) Draw a solid one-sided
arrow to encode proper causal relation. The drawing in Figure 6.5(b) is a directed
graph with vertices representing events of the proper prefix that correspond to
observable transitions in the originative system. Figure 6.5(c) shows an alternative
view to the drawing in which vertices represent transition labels.

We formally capture the design of the above described drawing approach in the
notion of the ordering relations graph.

Definition 6.3 (Ordering relations graph).
Let 8 = (N',v), N' = (B,E,G), be a proper prefix of a labeled acyclic sys-
tem S = (N, My), N = (P, T,F,T,)\). Let {~,«,8,||} be the observable proper
ordering relations of N'. An ordering relations graph, or orgraph, G = (V, A, B, o)
of B has vertices V ¢ E defined by events of 8 that correspond to observable
transitions of N, i.e., V ={ee E | A(v(e)) # 7}, arcs A = » U B, and a labeling
function o : V - B, B=T ~ {7} with o(v) = AM(v(v)), veV.

a

The ordering relations graph of a proper prefix
gives a structural characterization to the behav-
ioral footprint of its originative system. Vertices
of an orgraph represent events of occurrences
of transitions from the originative system. The
ordering relation between every pair of events
can be uniquely determined based on edges that
connect the events. Let x,y € V be two events
of the orgraph G = (V, A,B,0). It then holds
Figure 6.6. Ordering relations graph that: x and y are in proper causal relation if
of the proper prefix in Figure 6.3(c) (x,y) € AA (y,z) ¢ A. = and y are in inverse

proper causal relation if (z,y) ¢ AA (y,x) € A.
x and y are in proper conflict relation if (z,y) € AA (y,x) € A. Finally,  and y
are in concurrent relation if (z,y) ¢ AA (y,x) ¢ A.
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Figure 6.6 visualizes the ordering relations graph of the proper complete prefix
unfolding from Figure 6.3(c). Note that several events of a proper prefix can
map to the same transition of its originative system, e.g., events eq and e, in
Figure 6.3(c) both map to transition ¢4 in the originative system. The same applies
to orgraphs. The orgraph in Figure 6.6 contains two such pairs of events.

6.1.3. Parsing Two-Structures

In this section, we take a step back from the discussion of the technique for
structuring acyclic process models and give the background on the technique for
parsing two-structures [29, 31]. After the initial introduction to the theory of
two-structures (see Section 2.2), this section shows how every two-structure can
be constructed from (decomposed into) a hierarchy of two-structures of four basic
classes. In the next section, we shall parse two-structures that encode ordering
relations in order to finalize our structuring technique.

One of the central notions of the theory of two-structures is the notion of a clan.

Definition 6.4 (Clan).
A clan of a two-structure S = (N, R) is a set X € N, such that for all z,y € X and
for all z€ N\ X holds (z,z2) R (z,y) and (z,2) R (y, 2).

4

Observe that for a reversible two-structure, it is sufficient that a weaker condition
is satisfied in order to classify a subset of nodes of a two-structure as a clan [31].

Lemma 6.5: Let S = (N, R) be a reversible two-structure and let X € N.
The following statements are equivalent:
o X is a clan of S,
o for all x,y € X and for all z€ N~ X holds (z,z) R (z,y), and
o for all z,y € X and for all ze€ N~ X holds (z,2z) R (y,2). N

Let S = (N, R) be a two-structure. It immediately follows that @, dom(S), and
the singletons {n}, n € N, are clans of S. These clans are the trivial clans of S. In
the subsequent sections, we shall make extensive use of the important structural
classes of two-structures, which are defined next.

Definition 6.6 (Linear, Complete, Primitive).
Let S = (N, R) be a two-structure.

o S is linear, iff (i) S is asymmetric, (ii) for all distinct z,y,z € N holds
either (x,y) R* (z,2) or (y,z) R* (y,z) or (z,z) R* (z,y), (iii) for all
€1, € E3(N) holds either e; R es or e; R e3'.

o S is complete, iff all its edges are of the same color.

o S is primitive, iff it contains at least three nodes and all clans in S are
trivial.

4

Let S = (N,R) with |N| > 1 and P be a partition of F5(N) induced by R. One
can then alternatively define a complete and linear two-structure as follows: S
is complete, iff |P| = 1. S is linear, iff |P| = 2 and there exists a linear order
(n1,...,nn)) of elements of N such that the edges {(n:,n;) | i < j} form an
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Figure 6.7. (a) A linear, (b) a complete, and (c) a primitive two-structure

equivalence class of R and the edges {(n;,n;) | i <j} form an equivalence class of
R, 1<, <|N]|.

Figure 6.7 exemplifies different classes of two-structures: Figure 6.7(a) presents
a linear two-structure that is defined by a linear order (a,b,c,d). Figure 6.7(b)
demonstrates a complete two-structure where all edges of the two-structure form
one equivalence class. Figure 6.7(c) shows a primitive two-structure where each
proper subset of nodes consisting of more than one element is not a clan.

We denote by C(S) the set of all clans of S. The following result from [31] shows
that restricting any investigations to reversible two-structures does not imply a loss
of generality as far as the clans are concerned. We denote by Sx a substructure
(or a factor) of a two-structure S = (NN, R) induced by a nonempty set X € N.

Theorem 6.7. For each S = (N, R) there exists a reversible two-structure S’ =
(N, R"), such that for all X € N holds C(Sx) =C(S%), i.e., C(S) =C(5"). .

Therefore, the sets of clans of S and S* are equal, and as S* is more restrictive,
see Definition 2.5, and the conditions to be satisfied by a subset of nodes of S* to
be a clan are weaker, see Lemma 6.5, one can treat S* as a normal form of S.

Every two-structure can be constructed from (decomposed into) a hierarchy of
linear, complete, and primitive two-structures. Let S = (N, R) be a (reversible)
two-structure. Two subsets X and Y of the dom(S) overlap, if XnY # @, X\Y = &,
and Y\ X # @. The next results from [29] are essential for understanding the
properties of such a hierarchy.

Lemma 6.8: Let S = (N, R) be a two-structure and let X,Y € C(S). We have:
o XnYeC.
o if X andY owverlap, then X nY, XuY, X\Y eC.
o if XnY =@, then (x1,y1)R = (x2,y2)R for all z1,22 € X and y1,y2 €Y. .

Construction principles of a two-structure are defined by its decomposition into
factors and a quotient that gives the relations between the factors.

Definition 6.9 (Factorization, Quotient, Decomposition).
Let S = (N, R) be a two-structure.
o A partition x = {X1,..., X}, k€N, of N into nonempty clans is
a factorization of S.
o The quotient of S by a factorization x is a two-structure S/x = (x, Ry),
where (X1,Y1) Ry (X2,Y2) iff (21,y1) R (x2,y2) for some z; € X;, y; € Y5,
Xi? le €X-
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o A decomposition (Sx,,...,Sx,;S/x) of S consists of the factors Sx, with
respect to a factorization x = {Xy,..., Xx} and the quotient S/x.

4

Because of Lemma 6.8, the quotient S/x is well-defined, i.e., it is independent of
the choice of a representative of each clan from a partition. A nonempty clan X
of S is prime, iff for every clan Y of S holds that X and Y do not overlap. We
denote by P(.5) the set of all prime clans of S. A prime clan is mazimal, if it is
maximal with respect to inclusion among proper prime clans of S, where a clan is
proper if it is a proper subset of dom(S). We denote by P,,q.(S) the set of all
maximal prime clans of S; if |[N| =1, then Ppq.(S) = {N}.

Theorem 6.10. The mazimal prime clans Ppmaz(S) of a two-structure S form a
partition of N and, therefore, the quotient S[Ppae(S) is well-defined. N

Theorem 6.10 from [29] states that the domain of each two-structure can be
partitioned by the domains of its maximal prime clans, whereas the following
result states that the quotient of such a partition is a two-structure of one of three
classes.

Theorem 6.11 (Clan Decomposition Theorem). For each two-structure S, the quotient
S Pmaz(S) is either linear, or complete, or primitive. N

By iteratively discovering maximal prime clans and deriving the quotient for each
factor that corresponds to an element of the decomposition, one builds a hierarchy
of quotients. Such a hierarchy is unique for a given two-structure and can be seen
as its structural characterization.

RN

Q @ Q @ ............ «@ ;'_:C1/ l\u
°1 @)"—1 'c1 @u LQ: é}e

Figure 6.8. (a) A two-structure, and (b)—(d) decomposition of (a)

Figure 6.8 exemplifies the decomposition of a two-structure. Figure 6.8(a) shows
a two-structure which is composed of five nodes and has four equivalence classes on
its edges. Partition x = {{a}, {b,c},{d, e}} is the factorization of this two-structure.
Two-structures induced by subsets of nodes {a}, {b, c}, and {d, e} are, respectively,
a trivial, complete, and linear clan of the original two-structure. Clan P1, see
Figure 6.8(Db), is the quotient of the two-structure by factorization y; recall that
clan names hint at their class, i.e., P1 is primitive, C'1 is complete, and L1 is
linear. Finally, Figure 6.8(c) organizes clans in a hierarchy in which each clan
is enclosed in a dotted box with rounded corners, whereas containment of boxes
represents the parent-child relation; Figure 6.8(d) gives an alternative tree-like
representation of the hierarchy.
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6.1.4. From Graphs to Process Models

The RPST of a well-structured process model is composed of trivial, polygon, and
bond (either and or xor) components. In contrast to a rigid component, each
component in a well-structured model has a well-defined and regular structure
within the corresponding orgraph, which allows for a precise characterization. The
ordering relations graph of a xor bond is a complete graph, or a clique, whereas
the orgraph of an and bond is an edgeless graph. These topologies are consistent
with the intuition behind them, i.e., all tasks in a xor bond are in conflict, i.e.,
only one is executed, and all tasks in an and bond are concurrently executed.
Figure 6.9(a) shows a xor bond with three branches, whereas Figure 6.9(b) shows
the corresponding complete orgraph. Similarly, Figure 6.9(c) and Figure 6.9(d)
show an and bond and the corresponding orgraph, respectively. For trivial and
polygon components, the orgraph is a direct acyclic graph representing the transi-
tive closure, or the total order, of the proper causal relation. Figure 6.9(e) shows a
polygon composed of three tasks, whereas Figure 6.9(f) presents the corresponding
transitive closure over the proper causal relation.

(c)
00"
(e) (f)

Figure 6.9. (a) A zor bond component, (b) a complete orgraph, (c) an and bond component,
(d) an edgeless orgraph, (e) a polygon component, and (f) a total order orgraph

The main idea of our structuring technique is to parse a given orgraph into
subgraphs. If one can decompose an orgraph into subgraphs such that every
subgraph is either complete, edgeless, or total order, then one can construct
a corresponding well-structured process component for each of the discovered
subgraphs and, in this way, synthesize a well-structured process model.

To perform the decomposition, we rely on the parsing technique for two-
structures which was discussed in Section 6.1.3. Orgraphs are special repre-
sentations of two-structures which encode ordering relations, refer to Section 6.1.2.
Due to the design of orgraphs, the parsing principles can be simplified. The clan
decomposition of two-structures is closely related to the modular decomposition of
(directed) graphs. Effectively, the parsing of an orgraph can be implemented by
performing its modular decomposition. The technique of modular decomposition
has been discovered independently by researchers in graph theory, network theory,
and game theory. In our setting, modular decomposition is the clan decomposition

102



6.1. Acyclic Structuring

technique applicable to the restricted class of two-structures — orgraphs. A number
of algorithms for performing modular decomposition exist; [20] gives a summary
on the history of algorithms of the modular decomposition, whereas [90, 91]
summarize works from different fields that employ modular decomposition.

Modular decomposition is a technique for parsing directed graphs into modules.
Let G = (V,A,B,0) be an ordering relations graph. A module M €V of G is a
non-empty subset of vertices of G that are in uniform relation with vertices V' \ M,
ie., if v € V N~ M, then v has directed arcs to all members of M or to none of
them, and all members of M have directed arcs to v or none of them do. However,
v1,V9 € VN M, vy # v9, can have different relations to members of M. Moreover,
the members of M and V' \ M can have arbitrary relations to each other [82]. For
example, {a,b} is a module in Figure 6.5(c), as both a and b are in proper causal
relation with ¢ and d. The above definition of a module supports our intent of
synthesizing a process component from the ordering relations captured in a module;
all tasks inside a SESE process component are in the same ordering relation with
a given task outside the component.

Two modules M7 and My of G overlap, iff they intersect and neither is a subset
of the other, i.e., M1\ My, MinMs , and My \ M; are all non-empty. M is strong,
iff there exists no module M of G, such that M; and M, overlap. The modular
decomposition substitutes each strong module of a graph with a new vertex and
proceeds recursively (this recursive principle is discussed in detail for the case of
two-structures in Section 6.1.3). The result is a unique rooted tree, called the
modular decomposition tree, which can be computed in linear time [82].

Definition 6.12 (Modular Decomposition Tree).
Let G be an ordering relations graph. The Modular Decomposition Tree (MDT) of
G is the set of all strong modules of G.

a

According to [82], each module in the MDT belongs to one out of four classes.

Definition 6.13 (Trivial, Linear, Complete, Primitive).
Let M be a module of an ordering relations graph G.
o M is a trivial module, iff M is singleton, i.e., M contains a single vertex.
o M is a linear module, iff there exists a linear order (z1,...,x|5s) of elements
of M, such that there is a directed arc from x; to z; in G, iff 7 < 5.
o M is a complete module, iff the subgraph of G induced by vertices in M is
either complete or edgeless.
o M is a primitive module, iff M is neither a trivial, nor a linear, nor a
complete module.

4

Please observe that module classes are just the “projections” of two-structure
classes (see Section 6.1.3) on directed graphs. For our purposes, we classify modules
further: If a complete module induces a complete subgraph, the module is referred
to as a wor complete. If a complete module induces an edgeless subgraph, the
module is referred to as an and complete. Finally, if a module induces a subgraph
with a pair of distinct vertices which are not connected by an arc, the module is
said to be concurrent.

Figure 6.10(a) shows the MDT of the ordering relations graph in Figure 6.6.
Besides the trivial modules, the MDT contains linear modules L1, L2, and L3,
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(a) (b)

Figure 6.10. The MDT of the ordering relations graph in Figure 6.6

zor complete module C'1, and and complete modules C2 and C3. Module C1
is the root module, whereas trivial modules are leafs of the MDT. In the figure,
each area enclosed by a dotted line defines a module composed of the modules
inside the area. Edges between modules represent relations between every pair of
vertices composed of one vertex from each of the adjacent modules. Module names
hint at their class, e.g., C1 is complete and L1 is linear. Figure 6.10(b) shows an
alternative visualization of the MDT given as a tree-like structure, where nodes
represent non-trivial modules and edges encode containment relation. Observe
that we simplified the drawing by omitting trivial modules.

A rigid process component R of an RPST can be structured by refining R in
the RPST to a subtree Tr. The root of T is a child of R’s parent, each child of
R is attached to a leaf of Tk, the nodes of Tk are defined by the modules of the
MDT of R’s ordering relations graph. The class of a node of T is determined by
the characteristics of its defining MDT module.

We are now ready to present the main result of this section.

Theorem 6.14. Let G be an ordering relations graph. The MDT of G contains no
primitive module, iff there exists a well-structured process model PM such that G
is the ordering relations graph of PM. N

The proof of Theorem 6.14 can be found in Appendix A.3. The proof of Theo-
rem 6.14 implicitly specifies a procedure which, given a process model, synthesizes
an FCB-equivalent well-structured model. This procedure is made explicit in Al-
gorithm 6. Note that the algorithm expects a process model (process component)
as input in which no pair of distinct tasks have the same label.

Without loss of generality, Algorithm 6 assumes that the RPST of the process
model (or process component), taken as input, consists of a single rigid process
component. The algorithm can be trivially extended to the case where the RPST
of the process model given as input consists of a rigid component with polygons,
bonds, or rigids as descendants. In this latter case, child components of the rigid
component need to be abstracted into atomic task nodes by computing the extract
of the rigid component, see Section 4.4. Once the extract is structured, its tasks
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Algorithm 6: Structuring acyclic process model

Input: A sound acyclic process model PM
Output: An equivalent well-structured process model

Construct WF-net N that corresponds to PM

Construct proper complete prefix unfolding 5 of N

Construct ordering relations graph G of g

Compute M — the MDT of G

// Construct process model PM' by traversing M in postorder

W N =

5 foreach module m of M do

6 switch class of m do

7 case m is trivial

8 ‘ Construct a task

9 case m is and complete

10 ‘ Construct an and bond

11 case m is xor complete

12 ‘ Construct a xor bond

13 case m is linear

14 ‘ Construct a trivial or polygon

15 case m s non-concurrent primitive

16 Construct a well-structured process component using compiler
techniques, e.g., [97]

17 otherwise

18 ‘ FAIL

19 return PM’

must be refined back with the prior abstracted process components. Also, if we
were given a process model whose RPST contains several rigid components, we
would start by structuring the rigid components at lower levels of the RPST and
collapsing them into atomic task nodes before attempting to structure rigids at
upper levels. The complexity of the algorithm is determined by the complexity of
the unfolding step. The computation of an orgraph has polynomial complexity.
All other steps can be accomplished in linear time. As explained before, in the
case of an and rigid, the unfolding step is not required, as nets which correspond
to and rigids and their proper prefixes coincide. Note that the behavior captured
in non-concurrent primitives can be structured by employing compiler techniques
for Go To program transformations. To accomplish structuring, one first needs
to synthesize a program (process component) from a non-concurrent primitive
module. The synthesis can be trivially accomplished by adopting the technique
in [33]. An acyclic process model has an equivalent well-structured model if its
ordering relations graph contains no concurrent primitive module. The behavior
captured by other module classes can be expressed by well-structured process
components. Algorithm 6 traverses the MDT and constructs a process component
for each encountered module from components that correspond to its child modules.
A trivial module corresponds to a task. A linear module corresponds either to a
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trivial component (if the module is the order on two elements) or to a polygon
component (if the module is the order on more than two elements). An and (zor)
complete module corresponds to a bond with and (zor) gateways as entry and exit
nodes. Finally, a primitive module without concurrency can be structured using
standard compiler techniques [97]. A well-structured process model constructed in
such a way is fully concurrent bisimilar with the original unstructured model.

(b)

Figure 6.11. Well-structured acyclic process model

In our example, the RPST of the process model in Figure 6.2(a) contains one
rigid R1. R1 in Figure 6.2(b) can be refined with a subtree of RPST nodes that
correspond to modules of the MDT in Figure 6.10(b), resulting in the RPST
shown in Figure 6.11(b). First, modules C2 and L3 should be used to construct
components B2 and P4, respectively. Next, modules L1 and C3 must be employed
to construct components P2 and B3. Afterwards, module L2 should result in
component P3. Finally, module C'1 results in component B1. The process model
in Figure 6.11(a) is well-structured and FCB-equivalent to the process model in
Figure 6.2(a). As another example, Figure 6.5(d) shows the MDT of the orgraph
in Figure 6.5(c). Therefore, the well-structured version of the unstructured process
model in Figure 5.1(a) shown in Figure 5.1(b) can be synthesized from the MDT
in Figure 6.5(d). Modules C1, C2, and L1 in the MDT correspond to components
B1, B2, and P1, respectively, in Figure 5.2(b).

Handle
confidential
shipment

Request
security
clearance

Y e v P

Book freight
shipment

Handle
regular
shipment

Send
invoice to delivery
customer notice

Figure 6.12. Inherently unstructured acyclic process model
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Algorithm 6 fails if the input process model (process component) is inherently
unstructured, such as component R1 in Figure 6.12. In this particular case, the
ordering relations graph of R1 forms a single concurrent primitive module, refer
to Figure 6.13(a). Please note that the unfolding step duplicates the transition
which corresponds to task f. The duplication of tasks also takes place in the well-
structured process model in Figure 6.11(a). As structuring relies on minimal proper
prefixes (see the discussion in Section 6.1.1), the proposed structuring technique
always operates with the minimum duplication of tasks which is required to allow
structuring. For instance, the structuring of the process model in Figure 5.1(a)
does not introduce any duplication of tasks, see Figure 5.1(b). Figure 6.13(b)
shows the MDT of the orgraph of process component R1 in Figure 5.6. The MDT
contains primitive module P1 which supports the idea that the process model is
inherently unstructured.

(b)

Figure 6.13. The MDTs of the orgraphs of process components R1 from the process
models: (a) in Figure 6.12, and (b) in Figure 5.6

In light of the above, we conclude that given an acyclic process model with an
arbitrary topology, one can construct an FCB-equivalent well-structured process
model, if and only if the proper complete prefix unfolding of the system that
corresponds to the given process model is such that the modular decomposition of
its orgraph contains no concurrent primitive module.

6.2. Maximal Acyclic Structuring

According to Section 6.1, the process model in Figure 6.14 has no equivalent well-
structured version — the evidence for this claim will be provided in Section 6.2.1.
However, this does not answer the question of whether there exists an equivalent
process model that is “better” structured than the model in Figure 6.14. In this
section, we formalize the notion of a “better” structured version of a process model
and propose a technique which given a process model constructs its maximally-
structured version — an equivalent process model that has no “better” structured
versions. We shall employ the model in Figure 6.14 as our running example.

We postpone a detailed introduction of the maximal acyclic structuring tech-
nique until Section 6.2.2. Meanwhile, we proceed with a formal definition of the
maximally-structured property of process models.
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bank
transfer

Handle
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Figure 6.14. Unstructured acyclic process model

6.2.1. Maximally-structured Process Models

In this section, we give a formal definition of the maximally-structured property of
process models. Unlike well-structuredness, maximal structuredness is founded on
a relation between the RPST and the MDT of the process model. We gain insights
into this relation by applying the structuring technique from Section 6.1 on the
process model in Figure 6.14. To simplify language, in the following, we often
skip several phases of the structuring technique when referring to the concepts of
interest. For example, the “MDT of a process model” is the MDT obtained by
mapping the model to a WF-net, constructing the proper prefix, then its ordering
relations graph and, finally, computing the MDT of the graph.

Figure 6.15 visualizes transformation steps 3—18 of Algorithm 6 applied to the
process model in Figure 6.14. The proper prefix of the model (shown at the top
of the figure) is the result of line 2 of the algorithm. Next (follow the arrow
directions), the algorithm constructs the ordering relations graph and its MDT
(lines 3-4). Finally, the algorithm attempts to construct a process model from
the MDT (lines 5-18). As the MDT contains primitive module P2, the algorithm
fails at line 18. However, the MDT exhibits some information on structuredness of
the ordering relations: it contains linear module L1 and xor complete module C1.
These modules can be used to construct structured components P4 and B1, shown
at the bottom of Figure 6.15. If one is able to synthesize a process component
which demonstrates the ordering relations captured in primitive module P2, then
one can construct a model which exhibits more structuredness than the original
one. Note that in general a primitive module defines a subgraph of the ordering
relations graph and, hence, the topology of the corresponding process component
in the RPST cannot be deduced from the original model.

In a maximally-structured process model every module of its MDT must have a
corresponding process component in its RPST.

Definition 6.15 (Maximally-structured process model).
A process model is mazimally-structured, iff there exists isomorphism between the
RPST and the MDT of the process model, where simple components of the RPST
and trivial modules of the MDT are ignored, which assigns a linear module to
every polygon component, a complete to every bond, a primitive to every rigid,
and all primitives in the MDT are concurrent.

4
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Construct ordering
relations graph
(line 3)

(line 4)

Construct structured
@ process model
(lines 5-18)

Figure 6.15. Structuring the process model in Figure 6.14

Recall that a simple component is either a trivial, or a polygon composed of two
trivials (Section 5.1). Due to the properness of the complete prefix unfolding, the
orgraph of a given process model and hence its MDT are unique. Consequently,
whether a process model is maximally-structured is uniquely determined.
Figures 6.16(a) and 6.16(c) show the RPST of the model in Figure 6.14 and the
subtree of the RPST of the model at the bottom of Figure 6.15, respectively. In
Figure 6.16(b), one can see the MDT from the structuring scenario in Figure 6.15.
This MDT is isomorphic to the RPST in Figure 6.16(c): Linear L1 can be mapped
to polygon P4. Complete C'1 can be mapped to bond B1l. Primitive P2 can be
mapped to rigid R2. In the final RPST of the maximally-structured version of
Figure 6.14, polygon P4 must be merged with polygon P3 (as P4 is a subsequence
of P3 and, thus, not canonical), see [113] for details. Note that Definition 6.15
is based on the implicit assumption that the isomorphism between both trees
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canonically extends to an isomorphism that maps process components with tasks
onto modules of events with the same multi-sets of names/labels.

P1; L1 Pa;
‘R1: :C1: P2 :B1; iR2;

(a) (b) (©)

Figure 6.16. (a) The RPST of the process model in Figure 6.14, (b) the MDT and (c) the
subtree of the RPST from the structuring scenario in Figure 6.15, all simplified

In the next section, we explain a technique for the maximal structuring of
process models, which essentially boils down to the technique for synthesizing a
process component from a given ordering relations graph.

6.2.2. Introduction to Maximal Acyclic Structuring

The open problem from Section 6.1 is to structure a given rigid process component
into an equivalent maximally-structured process component R. In the light of
Section 6.2.1, R has this property, iff (i) all primitive modules in the MDT of R’s
ordering relations graph are concurrent, and (ii) there exists a bijection between
non-singleton modules of the MDT and non-simple components of the RPST
which assigns to each primitive module a rigid component, to each complete a
bond, and to each linear a polygon. The maximal structuredness of R follows
from the maximality of the modular decomposition: the ordering relations graph
of R inherits all information about well-structuredness from the proper prefix
of R, and the MDT maximizes modules with a well-structured representation
because of the decomposition into strong modules. If a concurrent primitive
module M has well-structured child modules, then these modules are maximal
again within M. Only the relations within M have no structured representation
as a process model, where M is minimized by maximizing structuredness around
and inside M. This yields a technique for maximal structuring: one must be able
to synthesize a process component that exhibits the ordering relations described in
M. Such a technique would allow defining unstructured process model topologies
when mapping hierarchies of modules onto hierarchies of process components in
Algorithm 6, e.g., the primitive module in Figure 6.15 onto a rigid component.
The resulting process model would be maximally-structured.

Proper Orderin Prime Maximally-
Process complete °ring algebraic Event Occurrence structured
WF-systems 3 relations Nets
models prefix coherent structures nets process
. graphs
unfoldings posets models

Figure 6.17. An extension of the structuring chain of Figure 6.1

In this section, we propose a solution to the synthesis problem, i.e., given an
ordering relations graph (a module of an MDT) we synthesize a process model (a

110



6.2. Maximal Acyclic Structuring

component of the RPST) that realizes the relations described in the graph. The
central idea is to first construct from the ordering relations graph an occurrence
net that is interpreted as the unfolding of the process model and that exhibits the
same ordering relations. Refolding this unfolding then yields the process model
we wish to synthesize. The entire procedure requires several phases that employ
results of domain- and net theory [96], and on folding prefixes of systems [40].
The procedure amounts to an extension of the structuring approach proposed
in Figure 6.1 and is shown in Figure 6.17. The reconstruction of the occurrence
net is explained in detail in Sections 6.2.3-6.2.5, and the refolding to a process
model in Sections 6.2.6-6.2.8.

6.2.3. From Graphs to Partial Orders

This section describes a translation from an ordering relations graph into a partial
order of information. The partial order is an alternative formalization of the
behavior captured in the graph. The elements of the partial order essentially
correspond to the configurations of a branching process (Definition 5.17).

Figure 6.18. Ordering relations graph

The ordering relations graph in Figure 6.18 is a module from the running example
of Section 6.2.1. The graph is a primitive module with all types of relations; f
and f’ represent events with the same label.

First, we give some definitions from the theory of partially ordered sets (posets)
[96]. Let (D,E) be a poset. For a subset X of D, an element y € D is an upper
(lower) bound of X, iff z €y (z 2 y), for each element z € X. An element y € D is a
greatest (least) element, iff for each element z € D holds z €y (z 2y). An element
y € D is a maximal (minimal) element, iff there exists no element x € D, such that
ycx (xcy); Dimar and Dy, denote the sets of maximal and minimal elements
of D. Two elements x and y in D are consistent, written x 1 y, iff they have a joint
upper bound, i.e., x 1 y<> 3 z€ D:xC zAyC z; otherwise they are inconsistent.
A subset X of D is pairwise consistent, written X", iff every two elements in X
are consistent in D, i.e., X1 < Vz,y € X : 2 1 y. The poset (D,£) is coherent, iff
each pairwise consistent subset X of D has a least upper bound (lub) uX. An
element x € D is a complete prime, iff for each subset X of D, which has a lub
uX, holds that rcuX = 3 ye X :xcy. Let P=(D,c) be a poset. We write
P p for the set of complete primes of P. The poset P = (D,E) is prime algebraic,
iff B p is denumerable and every element in D is the lub of the complete primes it
dominates, i.e., VzeD:x=u{y |ye PpArycx}. A set S is denumerable, iff it
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is empty or there exists an enumeration of S that is a surjective mapping from
the set of positive integers onto S. Figure 6.19 shows two prime-algebraic posets;
their elements are sets (of events) ordered by set inclusion. The complete primes
are written in bold typeface.

{i,c,d,f,g,0}
{c,d,f,g} {icdfg {i,c,ef,o}
| AR
{cdg} {c,d,f} {c.,ef} {|,c,‘F,g} {|,c‘,rd,f} {l,c‘,re,f}
{d,g} {cd} {ce} {id, g} f{icd} {ice}
{:E}/V{I}/v{i} {i,d} {iI:} {iTe}
g/v V\{i}/v

(a) (b)

Figure 6.19. (a) Poset, and (b) augmented poset obtained from the graph in Figure 6.18

The behavior captured in an ordering relations graph can be given as a partial
order of information points. Similar to [96], the information points are chosen to
be left-closed and conflict-free subsets of vertices of the graph. In our case the
graph’s vertices represent events and each such set captures the history of events
of some run of a system. Let G = (V, A,B,0) be a graph and let W be a subset of
V. W is conflict-free, iff ¥V vi,v9 € W : (v1,v9) ¢ AV (vg,v1) ¢ A. W is left-closed,
iff Vo eWVoeVi:(vg,v1) € AA(v1,v2) ¢ A= vy e W. We define L[G] as
the partial order of left-closed and conflict-free subsets of V', ordered by inclusion.
Figure 6.19(a) shows the poset £ of the graph in Figure 6.18. Theorem 6.16,
inspired by Theorem 8 in [96], characterizes the posets L[G].

Theorem 6.16. Let G = (V, A,B,0) be an ordering relations graph, let B = {a €
Alat¢ A}, Then, L[G] = (H,<) is a prime algebraic coherent partial order. Its
complete primes are those elements of the form [v] ={v' eV | (v',v) e B*}. .

Proof. Let X ¢ H be pairwise consistent. Then, uX is conflict-free. UX = uUX and,
hence, L£[G] is coherent. Each [v], v € V, is clearly left-closed and conflict-free.
Let X ¢ H have lub uX. X is pairwise consistent and uX = uX. Each [v] is a
complete prime. If [v] € UX, then v € uX and for some x € X holds v € z and,
thus, [v] € z. Tt holds for each X € H that X = u{[v] | v € uX}. Thus, each
element of £[G] is a lub of the complete primes below it. ]

Given an ordering relations graph, one can construct £L[G] = (H,<) iteratively.
Let hy and hy be subsets of V', such that hy N hy = {v}. Then hy,hy € H, iff
hi =@ or 3aechy:(v,a) ¢ A and V b e hy : (bv) ¢ Av (v,b) ¢ A, and
VeceVNhy(cev)eA (v,e)¢ AT dehs:(cd),(dc)e A
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Finally, we augment L[G] = (H,<) with two fresh events i,0 ¢ V to ensure
the existence of a single source i and a single sink o in the synthesis result. An
augmented partial order of G is L*[G] = (H*, <), where H* = {@}u{hu{i} | he
Hyu{hu{i,o} | he Hpay}. Figure 6.19(b) shows L* of the graph in Figure 6.18.
Adding new minimal and maximal elements i and o leaves the topology of the
posets unchanged, so £L*[G] is a prime algebraic coherent poset.

6.2.4. From Partial Orders to Event Structures

The step from an ordering relations graph G to its augmented poset £*[G] basically
describes configurations of an unfolding that has the same ordering relations as
G. The complete primes of £*[G] play a special role: they identify single events.
Synthesizing the unfolding itself requires to define these events and their conflict
relation explicitly. We do so with the help of the well-studied concept of an event
structure [96].

Definition 6.17 (Labeled event structure).
An event structure is a triple £ = (E,<,®), where E is a set of events, < is
a partial order over E called the causality relation, and @ is a symmetric and
irreflexive relation in F, called the conflict relation that satisfies the principle of
conflict heredity, i.e., Vej,ea,e3€ E:e1 @ e Aeg <e3 = e1 desg. A labeled event
structure £ = (E, <, ®,C, k) additionally has a set C of labels, 7 €C, and k: E - C
assigns to each event a label.

4

An ordering relations graph G differs from an event structure £ in that G allows
violations of conflict heredity. These violations, however, are not harmful; they
express equivalent runs of a system. These equivalent runs are visible in the
posets of Sect. 6.2.3 and become explicit in event structures. Each prime algebraic
coherent poset L*[G] = (H, <) of an ordering relations graph G induces an event
structure E[L*[G]]: each complete prime becomes an event, the ordering relation
¢ induces the partial order < over events, conflicts arise between events that have
no joint least upper bound in £*[G]. The resulting event structure can intuitively
be understood as an unfolding of the ordering relations graph that adheres to
conflict heredity. The formal definition is an extension of Definition 18 in [96]; it
incorporates propagation of labels of an originative ordering relations graph to
the corresponding event structure.

Definition 6.18 (Event structure of partial order).
Let G = (V,A,B,0) be an ordering relations graph and let P = (H,S) be an
(augmented) prime algebraic coherent partial order of G. Then, £[P] is defined as
the labeled event structure (E,<,®,C, k), where E = Pp, < is C restricted to Pp,
for all e1,es € Pp : €1 ® es, iff e; and ey are inconsistent in P, and C = Bu {r}.
Let e € E, and define é as é € e \ Uyce aepr a. Then, k(e) = 0(é), if é € V; otherwise
k(e)=7,forallee E.

4

Figure 6.20(a) visualizes E[L*[G]] for the graph G of Figure 6.18. Events are
complete primes of £*[G] (shown in boldface in Figure 6.19 and next to vertices
in Figure 6.20). Directed edges encode causality (transitive dependencies are not
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{i.a}

{i,a,c} e {i,a,d} {i,b,c} @ {i,b,d}
ofo
3

{i,a,c,d,0} {i,b,c,d,o}

{icdfgol  ficefo}
(a) (b)

Figure 6.20. Event structures obtained from (a) Figure 6.19(b), and (b) the augmented
poset of the orgraph in Figure 6.5(c)

shown), dotted edges represent implicit concurrency, whereas an absence of an
edge hints at a conflict relation. The particular example of the event structure
in Figure 6.20(a) is structurally similar to the graph in Figure 6.18; they differ
only in relations with fresh 4,0 events. In general, event structures tend to have a
different structure compared to the originative graphs. For instance, Figure 6.20(b)
shows the event structure derived from the augmented poset of the orgraph in
Figure 6.5(c).

6.2.5. From Event Structures to Occurrence Nets

The event structure £ = E[L*[G]] explicitly describes events of an unfolding that
has the same ordering relations as the originative ordering relations graph G.
We obtain the unfolding by enriching £ with conditions, that is, we translate
€ to an occurrence net. Nielsen et al. in [96] show a tight connection between
event structures and occurrence nets. Let N = (B, E,G) be an occurrence net.
Then, {[N] = (E,G* n E%,#x n E?) is a corresponding event structure. The next
theorem, borrowed from [96], defines the converse: how to construct an occurrence
net from a given event structure.

Theorem 6.19. Let £ = (E,<,®), E + @, be an event structure. Then, there exists
an occurrence net n[€], such that € = E[n[€]]. x

Proof. Define the set CE = {z C E | Vej,es € x : €] #+ ea = €1 # ea}. The events
of n[€] are exactly those in E. The set of conditions is defined by B = {{e,z) | e €
E,xeCE, andVe' ex:e<e'}u{{(0,z) | x € CE, and x + @}. The flow relation
is defined by G = {({e,z),€’) | {e,z) € B,e’ e z} u{({0,z),€e') | {(0,z) € B,e’ €
z}u{(e,{e,z)) | (e,x) € B}. It follows, that n[€] = (B, E,G) is an occurrence net
for which # = @, and hence £[n[£]] = €. ]

In the following we consider labeled event structures and correspondingly labeled
occurrence nets to describe system behavior where a transition may occur in
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several contexts, e.g., after a join. A labeled occurrence net generalizes the notion
of a branching process of a (labeled) net system (Definition 5.15) as it describes
system behavior when the system is not known — which is the case here, as we
want to synthesize one.

A labeled occurrence net N = (B, E,G,T,)\) is an occurrence net (B, E, Q)
(Definition 5.12) where A : BUFE — T, 7 € T, assigns each node x € BUF a
label A(x). Every branching process § = (N,v), N = (B, E,G) of a labeled net
system S = (Ng,My), Ns = (P,T,F,T,)) induces the labeled occurrence net
(B,E,G,T,vo)) that describes the ordering of occurrences of labels T instead
of occurrences of transitions of S.

Theorem 6.19 canonically lifts to labeled event structures and labeled occurrence
nets: each labeled event structure € = (E, <, ®,C, k) induces the labeled occurrence
net n[€] = (B,E,G,Cu{r},k") which preserves the labels of events and assigns
each condition label 7, i.e., for all e € E,k'(e) = k(e), and for all be B, x'(b) = 7.

Figure 6.21. Occurrence net obtained from Figure 6.20(a) by Theorem 6.19 (without
redundant conditions)

Figure 6.21 shows the labeled occurrence net which is constructed from the
event structure shown in Figure 6.20(a) using the principles of Theorem 6.19.
Theorem 6.19 defines a “maximal” construction, cf., [96], i.e., the resulting nets
tend to contain much redundancy. With Definition 6.20 we aim at preserving only
essential behavioral dependencies.

Definition 6.20 (Conditions). Let N = (B, E,G,T,)\) be a labeled occurrence net.
o A condition b € B is redundant, iff be = g A3 b € B,b+ b : b € (eb)e or
=AY B bzl :(be=b'e)A (b =3).
o A condition b € B is subsumed by condition b’ € B, b # V', iff eb = e’ Abe C b'e.
o A condition b € B denotes a transitive conflict between events e, eq € F, iff
A(e1) # A(e2) and there exists condition b’ € B, b # V', and events fi, fo € b'e,
(fi~nve)A(fa~nezV fa=e2).
o Any other condition is required.

a

A redundant condition has no pre-event (post-event), and is not a pre-condition
(post-condition) of the initial (a final) event. A subsumed condition b always has
a sibling b’ expressing the same constraints for larger set of events. A condition b
denotes a transitive conflict between two events, if an “earlier” condition b’ already
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denotes this conflict. Subsumed conditions are shaded light-grey in Figure 6.21
and transitive conflicts dark-grey. All these conditions can be removed from the
occurrence net without loosing information about ordering of events.

An exception to transitive conflicts is a condition b shared by two post-events
e1,es with the same label. Here, b not only expresses conflict, but also the only
direct causal dependency of e; and e; on the pre-event of b; such a condition is
required (Definition 6.20).

For synthesizing a Petri net from the occurrence net obtained from an ordering
relations graph, we first emove from the occurrence net all redundant conditions,
then all subsumed conditions, and finally all transitive conflicts. Removing these
conditions from the net in Figure 6.21 yields the net in Figure 6.24. Note that
all conditions are labeled 7. Condition by highlights the exception to transitive
conflicts: it is the only condition expressing that f depends on ¢ and, hence, must
be part of the occurrence net. Also the resulting net still contains a number of
implicit conditions, i.e., conditions which could be removed from the net without
changing the ordering relations such as b1 denoting es ~ eg, which is also expressed
by the path es, bs, eg, b15, 5. We shall see that these remaining implicit conditions
are vital for synthesizing a Petri net from a given occurrence net.

6.2.6. From Occurrence Nets to Nets — The Basic Idea

After removing redundant, subsumed, and transitive conflict conditions (Defini-
tion 6.20), the occurrence net obtained by Theorem 6.19 is already a process model
— although one with duplicate structures and multiple sinks. We obtain a more
compact model with a single sink by folding the occurrence net.

€7 by

Figure 6.22. Occurrence net without implicit conditions

We first illustrate the idea on a simple, special case and then present the general
approach. Consider the occurrence net N in Figure 6.22, which contains no implicit
conditions. Intuitively, we obtain a process model from N by folding any two nodes
of N which have isomorphic successors into one node. This operation preserves
all ordering relations and all behavior represented in N. The corresponding
formal notion is an equivalence on the nodes of the occurrence net, called future
equivalence, which is characterized co-inductively:
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Two nodes of an occurrence net are future equivalent only if they have the
same label and their postsets are future equivalent.

The equivalence classes of the future equivalence define the nodes of the folded
net: for each equivalence class, fold all its nodes into one node, preserving the
arcs. The branching process of the folded net is exactly the original occurrence
net, see [40, Theorem 8.7].

For the occurrence net N in Figure 6.22, consider the future equivalence ~
with the classes {b17, b18}7 {68, 69}, {b15, blﬁ}, {b13, b14}, {66, 67}, {bg, blo}, and all
other nodes remaining singleton. Folding N under ~; yields the net in Figure 6.23
which has N as its branching process.

Figure 6.23. Folded net obtained from Figure 6.22

Each occurrence net has several future equivalences differing in how pre-
conditions of events are folded. The algorithm for constructing a future equivalence
is described next.

6.2.7. From Occurrence Nets to Nets — The General Case

The general case of folding an occurrence net into a process model has one
additional twist: the process model to be synthesized from the original ordering
relations graph may require unobservable control flows between gateways without a
task, e.g., the flow from z to y in Figure 6.14 is unobservable. Such flows can only
be synthesized when the occurrence net to fold contains implicit conditions. The
occurrence net obtained from Theorem 6.19 and reduced to its required conditions
contains all implicit conditions having exactly one pre- and one post-event. These
implicit conditions are an overapproximation of the unobservable control flows
in the process model. During folding, our folding procedure identifies all implicit
conditions that explain required unobservable control flow and discards all others.
Technically, we fold an occurrence net by first identifying a folding equivalence and
then folding all nodes of an equivalence class into the same node of the process
model. The folding equivalence has two properties: (i) it is a future equivalence, so
that equivalent events of an occurrence net have equivalent successor events, and
(ii) pre-conditions and post-conditions of equivalent events have to be mutually
equivalent. We first formalize these notions, and then describe the procedure that
finds such a folding equivalence for a given occurrence net.
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Definition 6.21 (Future equivalence).
Let N = (B,E,G,T,\) be a labeled occurrence net. An event e € E is a di-
rect successor of an event e’ € F, written e € dSucc(e’), iff ¢’ ~y e and for no
e’ ¢ E holds e ~n €’ ~pn e.
An equivalence relation ~ ¢ (B x B) U (E x E) is a future equivalence on N, iff
the following properties hold:
o For all z,y € BUE holds, z ~ y implies A(z) = A(y) and —(z ||y v)-
o For all e, f € E with e ~ f holds: for each e’ € dSucc(e) with A(e) = a exists
1" e dSucc(f) with A\(f) =a and €’ ~ f', and vice versa.

a

The future equivalence captures the essence of our behavioral equivalence criterion
for structuring, fully concurrent bisimulation (Definition 5.11), in a stronger form
that suits folding. Every future equivalence on an occurrence net NN yields a fully
concurrent bisimulation relation on the partially ordered runs described by N.!
The converse does not hold as a future equivalence also considers invisible events
of N. Merging future equivalent events of N into the same transition preserves
the ordering relations encoded in N, see [40, Theorem 8.7] for the formal proof.

Folding an occurrence net N also requires to correctly fold pre- and post-
conditions of events while treating implicit conditions in the right way. Thereby,
the event with the largest number of non-implicit pre-conditions in an equivalence
class determines the number of predecessors for the entire class; all other events
in the class “fill up” their preset with implicit conditions, correspondingly for
postsets. To formalize this, we need to introduce some notions.

For an occurrence net N = (B,E,G,T,\), let implicity € B be the set of
implicit conditions of N, i.e., b € implicit, iff {e1} = ob,{es} = be and there is a
path from e; to es in IV without b.

Let ~c (B x B) U (E x E) be an equivalence relation. For an equivalence class
(z) of ~, let mazpre({(z)) be the largest number of non-implicit predecessors of
all members of (x), i.e., mazpre({z)) = | e 2’|, 2" € (z) s.t. for all 2" € (x) holds
| @ ' N implicit | > | @ ' ~ implicity|; correspondingly let mazpost({x)) be the
largest number of non-implicit successors of all members of (z). For sets X,Y ¢ B
we write X ~Y iff X ={xy,...,21},Y ={y1,...,yx} and z; ~y;, for all 1 <i < k.

Definition 6.22 (Folding equivalence).

Let N = (B,E,G,T,)\) be a labeled occurrence net, ¥V b e B : A(b) = 7. An
equivalence relation ~ € (B x B) U (E x E) preserves the environment of events iff
for each equivalence class (e) of ~, e € F, and for all ey, es € (e) holds

o IB; S eey,By C eyt By ~ Ba AVi € {1,2} :|B;| = mazpre({e)) nee; ~ B; €
implicit,, and
o 3B1 Ceje,By Cege: By ~ By AVie{1,2}:|B;| = mazpost({e)) ne; e ~B; C

implicit .
An equivalence ~y € (Bx B) U (E x E) is a folding equivalence on N iff ~; is a
future equivalence and preserves the environment of events.

IEvery prefix 7 of a labeled occurrence net N that contains no conflicting events is a partially
ordered run [34].
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Considering the occurrence net N in Figure 6.24, the equivalence ~; with the
classes {b17,b18}, {68,69}, {b11,614}, {b15,b16}, {66,67}, {bs,blo}, and all other
nodes remaining singleton, is a folding equivalence on N. In particular, in the
equivalence class {eg, eg} the preset of event eg defines that all events have to have
2 pre-conditions that are mutually equivalent. Hence, {b15,b16} and {b11,b14} are
equivalence classes where the second class contains the implicit condition b14. The
remaining pre-conditions of {eg,e9} need not be equivalent.

Figure 6.24. Simplified occurrence net obtained from Figure 6.21

Without implicit conditions, folding would not succeed, as it can be seen from
the occurrence net in Figure 6.24, where implicit conditions are highlighted grey.
The two equivalent events eg and eg differ in the number of non-implicit pre-
conditions. To consistently fold eg and eg w.r.t. their pre- and postsets, the preset
of eg has to be extended with one implicit condition during folding.

We fold an occurrence net to a Petri net by merging all nodes of a folding
equivalence class into the same node — except for equivalence classes consisting of
implicit conditions only, these are discarded.

Definition 6.23 (Folded net).

Let N = (B,E,G,T,\) be a labeled occurrence net such that V be B: A(b) = 7.
Let ~; be a folding equivalence on N; write (z); = {y |y ~f =} for the equivalence
class of z. Then, the folded net of N under ~y is the net Ny = (By, E¢,Gyf, T, Ay)

where

o By ={(b)s|be B, (b)y ¢ implicity },

o Ef={(e)sleeE},

o Gy= {(<x)fv(y>f) | (z,y) € G,<93)f7(y>f € By LJEf}7 and

@ Ar({e)y) = A(e). J

Folding N under ~; described above yields the net Ny shown in Figure 6.25.
Folding N into Ny preserves the behavior of N, see [40, Theorem 8.7].
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A simple algorithm for computing a folding equivalence traverses the given
finite occurrence net backwards in a breadth-first manner. The conditions of the
occurrence net without any post-event have equivalent futures. Correspondingly,
their pre-events with the same label have equivalent futures. Building the folding
equivalence backwards in this way ensures that only future equivalent events
are put into the same equivalence class. Branching and backtracking are used
whenever for a condition b there are two or more pairwise concurrent conditions
that could be folded with b. Each option is explored and the most-compact folding
is chosen. For instance, in Figure 6.22 after folding bi7 ~f big and eg ~y eg, for
b15 the folding options b4 and byg can be explored; backtracking yields b1g as the
better match for b15 because of their f-labeled pre-events.

Figure 6.25. Folded net obtained from Figure 6.24

When extending the folding equivalence to pre-conditions of equivalent events
E’, for instance for E’ = {es,eg}, implicit conditions are taken into account as
follows:

o Pick the event e € E’ with the largest set B’ of non-implicit pre-conditions,
e.g., {b14,b16} C ecg.

o For each b € B’, extend the folding equivalence with a non-implicit or
implicit condition b’ € e¢’, for all other events €’ € E’, preferring non-implicit
conditions over implicit ones, e.g., big ~¢ bis, bia ~¢ b11.

o Finally, remove all non-implicit conditions not required in this step, e.g.,
bs, bg, b13.

The second step ensures that pre-sets of equivalent events are preserved. The
third step ensures that post-sets of equivalent events (that are identified in subse-
quent steps) are preserved. Various heuristics improve exploration and backtracking
when matching pre-conditions of events with each other. When the future equiva-
lence cannot be extended further, the net can be folded according to Definition 6.23.
Applying this procedure on our example yields the folded net shown in Figure 6.25
without the dashed conditions and arcs.
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6.2.8. From Nets to Process Models

The folding was the second to last step in synthesizing a process model from a given
ordering relations graph. We obtained a Petri net Ny which we now transform into
a process model P using the principles of Folded net 2.24 in the reverse direction.

Figure 6.26. Process model obtained from Figure 6.25

The initial transition ¢ (final transition o) is mapped to the source (sink) node
of P. Every other transition of Ny becomes a task of P. Gateways of P follow
from non-singleton pre- and postsets of nodes of N¢. A transition ¢ with two or
more pre-places is preceded by an and join; two or more post-places of ¢ define an
and split; the pre- and postsets of places define zor splits and joins, respectively;
and gateways are always positioned closer to the task. In our example, e e defines
and split s in Figure 6.26, boe defines zor split u, eze defines and split v, o(eg, e7)
defines and join ¢, and e{bg, bg) defines xor join x positioned between ¢ and v (and
gateways closer to tasks); correspondingly for all other gateways. The arc from eq
to (b11,b14) which was obtained from a transitive conflict (Definition 6.20) results
in an important control-flow arc from w to y without any task.

This concludes our technique for maximal structuring. Returning to our running
example, we complete the maximal structuring of the process model in Figure 6.14
by placing the synthesized process component R1 in Figure 6.26 at the corre-
sponding spot in the RPST in Figure 6.15(bottom). Recall that this RPST was
obtained from the unstructured process model using Algorithm 6. Placing R1 at
its designated spot yields the maximally-structured model shown in Figure 6.27.

Figure 6.27. Maximally-structured version of the process model in Figure 6.14
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6.2.9. Evaluation

The overall approach has been implemented in a tool named bpstruct, which
is publicly available?. Using bpstruct we conducted an evaluation to assess
the performance of our techniques and to analyze the amount of duplication
introduced during the structuring. All tests were performed on a laptop with a
dual core Intel processor, 2.53 GHz, 4 GB of memory, running Microsoft Vista
and SUN Java Virtual Machine version 1.6 (with 512 MB of allocated memory).
To eliminate load time from the measures, each test was executed five times, and
we recorded the average execution time of the second to fifth run. In the following,
we provide details about the dataset used for the study and discuss the results of
the experiments.

Dataset

The study was conducted on a collection of process models extracted from industrial
practice that has been publicly released for research purposes [42]. More precisely,
we used the set of WF-nets provided in the Woflan [151, 150] file format®. In
contrast to the original collection, where a large number of process models has
multiple start nodes and/or multiple end nodes, the WF-nets have been completed
such that each WF-net has a single source and a single sink place while preserving
the original behavior. The reader is referred to [42] for a detailed description of
the dataset and the underlying completion process.

Structurable Maximally structurable
Number of models 110 5
Avg number of nodes/arcs 21/31 (14/16) 32/51 (40/47)
Max number of nodes/arcs  119/195 (1178/1346) 124/173 (545/631)

Table 6.1. Structural information on structurable process models in the dataset

In a first stage we removed all unsound WF-nets from the collection. Every
sound WF-net was parsed using the RPST decomposition as described in Chapter 3
and Chapter 7. Every bond and polygon in the RPST was abstracted into a single
transition. For each rigid component identified in the RPST, a process model
was synthesized using the approach described in Section 6.2.8. Two nodes were
added to mark the entry and exit points, respectively. After this step, we ended
with a total of 170 sound unstructured process models. Among them, 115 are
heterogeneous acyclic rigids (acyclic rigids with xor and and gateways), 39 are and
rigids (acyclic rigids with and gateways only), 14 are cyclic rigids, and 2 are xor
rigids (rigids with zor gateways only). For the purpose of this study, we only kept
models with heterogeneous acylic rigids and and rigids (154 process models). To
ease the analysis, we further classified the heterogeneous rigids into “structurable”
and “maximally structurable”, accordingly. Table 6.1 and Table 6.2 summarize
the size of the models used for the study. In Table 6.2, and rigids are referred to

2http://code.google.com/p/bpstruct
Shttp://www.informatik.uni-rostock.de/~nl/wiki/soundness
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as inherently unstructured. The size of the models after structuring is shown in
parenthesis. There were two exceptionally large process models in the dataset,
one “structurable” and the other one “maximally structurable”. Both models have
been excluded when calculating the average sizes. However, their sizes correspond
to maximum values for their structural classes in Table 6.1.

Inherently unstructured

Number of models 39
Avg number of nodes/arcs 12/14
Max number of nodes/arcs 26/32

Table 6.2. Structural information on inherently unstructured process models in the dataset

Results

Our study reveals that out of the 154 process models, 110 models (71.43%) can be
structured into well-structured models. More importantly, there exist models, in
our case 5 (3.25%), which require the extension proposed in Section 6.2 to achieve
maximal-structuring, while 39 models (25.32%) are inherently unstructured.

AStruct Binh unstr ®Max str
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(a) Average structuring time

AStruct Binh unstr ®Max str
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Original number of nodes

(b) Ratio of duplication

Figure 6.28. Experimental results
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Concerning performance, Figure 6.28(a) presents the execution times relative
to the number of events in the proper complete prefix unfolding, including a
trend line for each structural class. It can be easily noted that the execution time
is highly correlated to the size of the proper prefix. We observed a significant
difference in the processing time for “maximally structurable” models compared to
“well-structurable” models. Nevertheless, the average time for structuring was in
the order of milliseconds, with a few exceptions. We found two exceptionally large
cases: one model (“structurable”) with 119 nodes (the proper prefix had 2429
events) and the other one (“maximally-structurable”) with 124 nodes (the proper
prefix had 913 events), requiring 9 and 1 seconds for structuring, respectively.

Figure 6.28(b) presents the variation in the size of models, i.e., number of nodes,
after structuring. On average, the model’s size decreased by about 15%, with a
standard deviation of 0.817. This can be easily confirmed in the figure, as most
of the points are located under the diagonal (which corresponds to a ratio 1:1),
particularly in the case of “structurable” models. Recall that models were, in most
of the cases, augmented with some additional elements (i.e., and gateways and
transitive flow relations) to transform them into single exit models. Therefore, the
reduction in size can be explained by the removal of gateways and transitive flow
during the structuring performed by bpstruct. Conversely, the sizes of and rigids
remained the same for this dataset. In additional internal experiments, we found
that for certain and rigids it is also possible to observe a reduction on the size of
the (maximally) structured version when redundant elements are eliminated, e.g.,
spurious flow relations/gateways. The dataset used in our experiments is publicly
available at the bpstruct web site?, including the graphical version of the process
models in PDF file format.

6.3. Multi-Source and/or Multi-Sink Acyclic Structuring

In Section 6.1 and Section 6.2, we assumed that process models have single
source and single sink nodes. However, contemporary notations for business
process modeling, including BPMN and EPC, support the definition of models
with multiple source and/or multiple sink nodes, hereafter called multi-source
and multi-sink models. In this section, we extend the notion of structuredness
for multi-source and multi-sink models and we extend the structuring method
accordingly.

6.3.1. Notion of Structuredness

In the context of single-source and single-sink process models, we have defined
a well-structured process model as one whose RPST does not contain any rigid
components, see Section 5.1.1. This notion needs to be extended for the case of
multi-source and multi-sink models. To this end, a process model with multiple
source nodes is augmented with an additional (start) node and an arc from this
fresh node to each of the source nodes. This additional node is labeled s by

4http://code.google.com/p/bpstruct /wiki/MaxStruct Evaluation
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convention. Conversely, a model with multiple sink nodes is augmented with an
additional (end) node and an arc from each of the sink nodes of the original model
to this fresh node (labeled e by convention). This augmentation is captured by
the following definition.

Definition 6.24 (Augmented process model).
Let PM be a multi-source and multi-sink process model. The augmented version
of PM is constructed from PM as follows:
o If PM has more than one source, a new source start is added and for each
source node s of PM, an arc from start to s is added.
o If PM has more than one sink, a new sink end is added and for each sink
node s of PM, an arc from s to end is added.

a

A multi-source and multi-sink model is said to be (well-)structured, iff the RPST
of its augmented version contains no rigid process component. Please note that
the augmentation of a model aligns well with the principles of the generalized
RPST computation, see Section 3.4.2 for details.

Given an unstructured multi-source and multi-sink process model PM, our goal
is to compute an FCB-equivalent structured process model PM’. By definition,
this means that the labels of the nodes in PM’ must coincide with those in PM.
Hence, the special nodes s and e, which are added for the sake of constructing
the RPST, need to be removed at the end of the structuring procedure, thereby
yielding a structured multi-source and multi-sink process model as output.

6.3.2. Instantiation Semantics

Given a multi-source and multi-sink process model, we can compute the RPST of
the augmented model in order to separate rigid components from non-rigid ones.
Non-rigid components are already structured and thus can be replaced with a
single “black box”, so that their parent node in the RPST can be structured. For
example, Figure 6.29(a) shows a multi-source and multi-sink model, captured in
EPC notation. Figure 6.29(b) shows its augmented version, whose RPST contains
rigid component R1, under which we can find two bond components Bl and B2.
Each of these bond components in turn contains two polygons, but the polygons are
not shown in the figure for the sake of simplicity. After replacing components Bl
and B2 with black-boxes, we obtain the abstract model depicted in Figure 6.29(c)
consisting of a single rigid component. The problem of structuring the original
EPC is then reduced to that of structuring this rigid component.

Rigid components can be classified into those that contain one of the special
nodes s or e and those that do not. The latter type of rigid can be structured
using the method outlined in the previous sections. Therefore, we can focus our
attention on the case where a rigid contains s or e. Without loss of generality,
we assume below that we are given a rigid component that contains both the s
node and the e node introduced during the augmentation. The case where a rigid
contains either the s node or the e node (but not both) is just a special case.

The first step in structuring a rigid component is to compute its corresponding
net. Definition 2.24 can be directly applied to multi-sink process models (and thus
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(c)

Figure 6.29. (a) A multi-source and multi-sink EPC, (b) its augmented version, and (c)
its abstract version

to multi-sink rigid components). The resulting net will have multiple sink places,
but this feature does not pose any particular problem. Indeed, the unfolding is
defined for multi-sink nets in the same way as it is for single-sink nets. On the
other hand, the mapping of multi-source process models to Petri nets requires
special care for two reasons:

1. In order to compute an unfolding, we need to define an “initial marking”. In
the case of a single-source net, the initial marking is the one that contains
a single token in the source place and no other tokens, but in the case of
multi-source nets, several initial markings are possible.

2. Different process modeling notations adopt different semantics for multi-
source models [21].

Hence, we need to consider each process modeling notation separately in order
to determine how to map a multi-source process model (or a process component)
in that notation into a Petri net, and how to determine the initial marking from
which the unfolding will be computed. Below we address these questions in the
context of two concrete process modeling notations, namely BPMN and EPC.

Multi-source BPMN Models

The notion of a process model (as per Definition 2.23) allows us to generically
represent models in several graph-oriented process modeling notations, including
BPMN and EPC. Below, we consider the case where a process model represents
a BPMN model. In this context, a node in a process model represents either a
BPMN activity, a BPMN event, or a BPMN gateway. Such process models may
contain multiple source nodes, each one corresponding either to a “start event” or
to an “event-based gateway”. As per the BPMN standard specification [2], the
instantiation semantics of such multi-source models is as follows:
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o If a BPMN model starts with multiple events, a new process instance is
created whenever one of these “start events” fires. The mapping of this case
to a Petri net with a single start place is depicted in Figure 6.30(a).

o If a BPMN model starts with multiple event-based gateways that participate
in a common conversation, each of these gateways must receive one token.
The corresponding Petri net mapping is shown in Figure 6.30(b).

o If a BPMN model starts with a so-called “parallel event-based gateway”,
then each one of the events connected to this parallel event-driven gateway
must occur before the process is instantiated. The corresponding Petri net
mapping is shown in Figure 6.30(c).

el

Pstart
Q

Figure 6.30. Mapping multi-source BPMN models to nets

In all three cases, we see that a multi-source BPMN model — and consequently
a rigid component in a BPMN model containing the s node — can be mapped to
a Petri net with a single source place such that the initial marking consists of
exactly one token in this source place. Since this mapping is trivial, as shown in
Figure 6.30, we omit its formal definition. The rest of the section focuses on the
EPC semantics, which requires a more extensive treatment.

Multi-source EPC Models

There is no “official” precise instantiation semantics for EPCs with multiple start
events. However, some authors have adopted the following semantics [21]:
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o An instance of the process requires at least one of the start events to be
triggered.

o Additional start events may be triggered during the execution of a process
instance.

An EPC can be represented as a process model (as per Definition 2.23) where
each node of the process model represents either a function, an event, or a
connector. In order to capture the instantiation semantics of an EPC process
model with multiple source tasks, the nets obtained by applying Definition 2.24
can be augmented to a single source.

Definition 6.25 (Augmented Petri net).
Let N = (P,T,F) be a net and let S be the set of all source places of N. The
augmented version of N is constructed from N as follows:
o A fresh place pstart is added in the net.
o For every non-empty subset of source places s € P(S) \ @, a fresh start
transition ts and a fresh flow arc (pstart,ts) is added in the net.
o For every source place s € S and for every non-empty subset of source places
s € P(S) \ @ containing s, i.e., s € s, a fresh flow arc (¢, s) is added in the
net.

For example, Figure 6.31 shows the augmented version of the net which corresponds
to the abstract EPC model in Figure 6.29(c) (note the abuse of notation for

simplicity reasons). Fresh nodes are highlighted with grey background. Place
Pstart is the only source place of the resulting net.

Pstart
. t{B1,BZ}
.l ez

tz2 ~ Pstart B2 Pz

Figure 6.31. The augmented version of the net that corresponds to the abstract model in
Figure 6.29(c)

If we set the initial marking to be the one that contains a single token in
the source place (and no tokens elsewhere), the augmented net captures all
possible instantiations of the process model. The Petri net of a multi-source and
multi-sink process model (or component of a model) starts with one transition
per possible instantiation. For instance, the net in Figure 6.31 starts with three
transitions: transition ¢; g1y corresponds to the instantiation where only component
B1 is executed, transition t;psy corresponds to the instantiation where only
component B2 is executed, and transition ¢;p; gy corresponds to the case where
both components are executed.
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6.3.3. Soundness

An instantiation of a process model does not always lead to a successful completion
of the process. Some instantiations may lead to deadlocks or lack of synchronization.
Here, a deadlock is defined as a situation where no transition can fire, but one of
the branches is still active. In other words, a deadlock occurs when there is a token
in a non-sink place in the net, and no transition in the net is enabled. Lack of
synchronization refers to a situation in which a transition can fire twice (without
any other transition firing in-between these two firings). This corresponds to the
situation where the net reaches a marking where there is more than one token in
a place. Deadlock freeness and proper synchronization, i.e., absence of any state
exhibiting a lack of synchronization, correspond to the notions of soundness and
safeness introduced earlier in this article [147].

In light of the above, Gero Decker and Jan Mendling [21] suggest — but do not
formally define — a notion of “correct instantiation” of an EPC based on the idea
that a start event will be triggered, if and only if it is required, meaning that:

o If the execution of a process instance runs into a deadlock because one of
its join gateways is waiting for one of its branches to complete, and the
completion of this branch requires one of the start events to be triggered,
this start event will eventually be triggered so that the execution of the
process instance can complete.

o A start event will not be triggered if this may eventually cause a lack of
synchronization.

Figure 6.32. Markings of EPCs with (a) “event must occur” situation, and (b) lack of
synchronization

In order to illustrate the notions of deadlock and lack of synchronization, let
us go back to the EPC in Figure 6.29(a). The execution of the process may start
with an occurrence of event el. Eventually, the left-hand side branch of gateway
w completes, i.e., a token reaches the left-hand side incoming arc of the gateway.
This is the state depicted in Figure 6.32(a). In order to proceed, a token is required
in the second incoming branch. Otherwise, the execution would remain deadlocked
in gateway w. Thus, event e2 must eventually occur. On the other hand, we note
that neither event e3 nor event e4 may occur at this stage, since that would lead
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to a lack of synchronization, depicted in Figure 6.32(b), which shows a state where
event e6 may occur twice.

Coming back to the abstract model in Figure 6.29(c), we observe that the
instantiation where either B1 or B2 are executed is correct. On the other hand,
the instantiation where both B1 and B2 are executed leads to the lack of syn-
chronization depicted in Figure 6.32(b). In other words, start transition t{z; poy
in Figure 6.31 corresponds to an incorrect instantiation of the original model.
We note in passing that in the abstract EPC, the deadlock situation depicted in
Figure 6.32(a) does not manifest itself because the underlying events have been
abstracted away inside B1.

In order to capture the notion of “correct instantiation” introduced in [21], we
proceed as follows: We start with the augmented version of a net that corresponds
to a multi-source process model, as per Definition 6.25. Based on this net, we
compute an unfolding starting from the initial marking that puts one token in the
source place and no tokens elsewhere. This unfolding captures both the correct and
incorrect instantiations. Accordingly, we “prune” the unfolding in order to remove
those branches that represent incorrect instantiations. To this end, we formally
capture — at the level of the unfolding — the notion of incorrect instantiation, i.e.,
lack of synchronization and deadlock. The following definition — based on similar
definitions by Dirk Fahland [40] — captures these notions. Here, the term “locally
unsafe condition” is used in lieu of “lack of synchronization”.

Definition 6.26 (Local safeness, Local deadlock).
Let 8= (N,v), N = (B, E,G), be the unfolding of an acyclic system S = (N', My).
o A condition b € B is locally safe in 3, iff there exists no condition c € B, b + ¢,
such that b is concurrent to ¢ and both correspond to the same place in N',
ie., AceBb#c:(bl|ln ) A (v(b) =v(c)); otherwise b is locally unsafe.
o A condition b € B is a local deadlock in (3, iff one of the following holds:
- be =g and v(b)e + @.
— There exist event e € be, condition c € ee, and condition d € B, such
that: de =@, d #x b, and d ||y c. |
A locally unsafe condition in a branching process of a net system clearly signals
that the system is unsafe, see Proposition 6.3 in [38]. Every local deadlock hints
at the existence of a deadlock in the system. Definition 6.26 specifies the deadlock
condition in the special case of acyclic systems. In case of the general class of
systems, one can deduce deadlock conditions by following the principles described
in [83, 85]. Accordingly, the sound unfolding of a system is a prefix of its unfolding
that excludes incorrect instantiations.

Definition 6.27 (Sound unfolding).
Let 8 = (N,v), N = (B,E,G), be the unfolding of an acyclic system S. The
sound unfolding of S is the maximal prefix of 5 that contains no event that is in
causal relation either with a locally unsafe condition or a local deadlock in 3.

4

Figure 6.33 exemplifies the sound unfolding of the net in Figure 6.31. The subnet
of the unfolding below the dashed line must be pruned out because it contains
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‘ o 3 43 ~ us s s i i i
a lack of synchronization. Indeed, conditions c7, ¢ .5, Ceg, €, s Cy e6, and ceg

(highlighted with grey background) are locally unsafe. Accordingly, event e;py g2}
(highlighted with black background) is the event that is causal with all locally
unsafe conditions of the unfolding.

Cy,eS CeS
Cary & O O
O

'
C start,B2

Figure 6.33. The sound unfolding of the net in Figure 6.31

In certain cases, some transitions of a system might be not represented in its
sound unfolding. This happens when a transition does not occur in any execution
that starts with a correct instantiation. Such systems are unsound and are excluded
from further consideration.

Definition 6.28 (Soundness of acyclic nets).
Let 8 = (N,v), N = (B, E,G), be the sound unfolding of the augmented ver-
sion N’ = (P,T,F) of an acyclic net N”. Let S ¢ T be the set of all start
transitions of N’. N is said to be sound, iff for every t € T \ S there exists e € E,
such that v(e) =t.

4

Specifically, we say that a multi-source and multi-sink process model is sound
if every non-start transition of the augmented version of the corresponding net
appears in at least one execution that starts with a correct instantiation. The sound
unfolding in Figure 6.33 represents all the non-start transitions of its originative
net in Figure 6.31 and, hence, the model in Figure 6.29 is sound.

6.3.4. Structuring

Given a sound multi-source and multi-sink process model, one can construct an
equivalent structured model using Algorithm 6 with the following changes:

o The corresponding net must be augmented according to Definition 6.25
(line 1).

o One must construct a proper prefix based on the sound unfolding, i.e., as a
prefix of the sound unfolding (line 2).
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Note that the sound unfolding of the net in Figure 6.31 and its proper prefix
coincide, see above the dashed line in Figure 6.33.

Figure 6.34. Structuring of the EPC in Figure 6.29(a): (a) the orgraph and its MDT,
(b)—(c) structured versions of the EPC

Figure 6.34(a) shows the orgraph of the proper prefix in Figure 6.33, along with
its MDT. The MDT contains no concurrent primitive and, therefore, the well-
structured process model exhibiting given ordering relations exists. The resulting
structured model has a single source and single sink, and starts and ends with
gateways that encode instantiations and completions of the model, as shown in
Figure 6.34(b), which is the well-structured version of the EPC in Figure 6.29(a).
The figure also visualizes the process components: Bl and B2 are the components
from Figure 6.29(b). Polygons P1 and P2 are synthesized from modules L1 and
L2, respectively, see the MDT. Finally, bonds B3 and B4 correspond to modules
C1 and C2, respectively. The gateways at the start and at the end can be trivially
removed through a post-processing step, thereby yielding a structured multi-source
and multi-sink EPC model, see Figure 6.34(c).

6.3.5. Evaluation

The proposed structuring method has been implemented in a tool named bpstruct,
publicly available®. Using this implementation, we conducted an empirical evalua-
tion of the proposed method with the aim of addressing the following questions in
the context of a repository of process models taken from commercial practice:

Q1. What proportion of unstructured process models are inherently unstructured
and what proportion of models are structurable?

Shttps://code.google.com/p/bpstruct/
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Q2. Ts the exponential worst-case complexity of the structuring method (particu-
larly the unfolding method) problematic in practice?

Q3. In theory, the structuring method may lead to node duplication. To what
extent does this duplication lead to larger process models?

Q4. The method for structuring multi-source models may lead to disconnected
models. How often does this phenomenon occur?

In the following, we present the dataset which we used for the evaluation, and
discuss answers to the questions proposed above, which we derived from the
evaluation.

Dataset

For the evaluation, we used the SAP
Reference Model [65] — a collection con-
sisting of 604 EPCs capturing business
processes supported by the SAP R/3 en-
terprise system. In the first stage, we
discarded models that are already struc-
tured and models that contain cycles.
We also discarded models that contained
or joins in a rigid, since these models
cannot be processed by the proposed
method. Note that or joins at the bound-
aries of bonds do not pose any problem
to bpstruct, since bonds are separated
from rigids during the computation of
the RPST, and bpstruct only needs to
deal with rigids; a description of the ex-
ecution semantics of or gateways can be  Figure 6.35. Structuring of a homogeneous
found in [136]. After this pre-processing, and rigid

we were left with 78 models, 40 of which

are sound. As many models in the SAP Reference Model are multi-source and
multi-sink, we checked soundness using the technique proposed in Section 6.3.3.
Coincidently, each of the 40 sound models contained exactly one rigid component.
Thus, the number of rigids that needed to be structured was also 40.

Among these 40 rigids, 6 are homogeneous xor rigids, 19 are homogeneous
and rigids, and 15 are heterogeneous rigids. All homogeneous zor rigids can be
structured, since the only source of inherent unstructuredness in acyclic process
models stems from concurrency. On the other hand, all but one of the 19 ho-
mogeneous and rigids are inherently unstructured. The only and rigid that is
structurable is a case of a rigid that contained redundant transitive arcs; the core
structure of the rigid is summarized in Figure 6.35(a). The arc going from the
and split after event e2 to the and join after event e4 is redundant and, thus,
can be removed; in doing so, the split and the join become redundant and can
also be removed. The structured version of the EPC in Figure 6.35(a) is proposed
in Figure 6.35(b). All other 18 homogeneous and rigids contain the structure
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depicted in Figure 5.6. Finally, among the 15 heterogeneous rigids, only 3 are
inherently unstructured. The complete characterization of the dataset employed
for the evaluation is depicted in Figure 6.36. From the total of 604 models, we
did not address 31 EPCs with cycles and 96 EPCs with or gateways; these are
depicted by empty circles in the figure. These cases are left for future work.

Homogeneous XOR

(6)
Structured
All models (406) Cyclic Stucturable Homoge?f)ous AND
(604) Unstructured S With ORs (19)
(198) Acyclic (96) Unsound Heter(()1gze)neous
(167) Wi/o ORs (38)

(78) Sound Homogeneous AND

(40) Inherently (18)

unstructured
(1) Heterogeneous
(3)

Figure 6.36. Structural characterization of models in the SAP Reference Model

Results

Regarding question Q1 above, the evaluation suggests that unstructured ho-
mogeneous and rigids are highly prone to being inherently unstructured, while
heterogeneous rigids are prone to be structurable. Regarding question Q2 above,
Figure 6.37(a) plots the execution time relative to the size of the input model.
The figure also plots two trendlines of the linear regression analysis: one for the
heterogeneous and one for the homogeneous case. The plot shows that, although
in theory the complexity of the structuring algorithm is exponential to the size
of the input (due to the unfolding step), this worst-case exponential complexity
does not manifest itself in the dataset at hand. The observed execution times are
rather linear relative to the size of the input models. In the given dataset, we
found one rigid component that contained 2 xzor gateways intermingled with 8 and
gateways. The structuring algorithm took 1.5 seconds to execute for this model
and concluded that the model is inherently unstructured. These 1.5 seconds were
spent mainly on the unfolding and the pruning steps. Putting this case aside, the
average execution time for the remaining models is 12 ms (standard deviation:
7ms). These execution times exclude the time to compute the RPST, but this
step has a linear complexity.

Regarding question Q3, Figure 6.37(b) plots the size of the structured process
models relative to the size of the original models (only for models that were
originally unstructured but not inherently unstructured). The figure shows that —
except for the model with a homogeneous and rigid (located slightly below the
diagonal), the size of the structured model is at least equal and in most cases
larger than that of the input model. Specifically, we observed that the size of the
output model (measured in terms of number of nodes) was up to 1.625 times that
of the input models. On average, the size of the models produced by bpstruct
was 1.22 times the size of the input model (standard deviation: 0.2). These
results emphasize the fact that structuring a process model involves a tradeoff
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Figure 6.37. Experimental results

between modularity and size. Please note that duplication results were obtained
for flat models, i.e., models without subprocesses. Structured models may also
contain duplicates of whole process components, which leaves opportunities for
modularization, e.g., by employing techniques like [125].

Finally, regarding question Q4, we found that 15 of the 19 structurable models
led to disconnected structured models. Two of the rigids whose structured versions
were connected originally had a single source, while two of them were multi-source.
As expected, all rigids whose structured versions are disconnected were originally
multi-source models. This result suggests that when structuring multi-source
models, one is likely to obtain disconnected models. This phenomenon is specific
to EPCs. It does not occur in the case of multi-source BPMN models, since
in BPMN, the multiple disconnected fragments would be re-connected with a
common event-driven or parallel event-driven gateway.

6.4. Towards Cyclic Structuring

A process model is cyclic if it contains at least one cyclic path, i.e., a path
composed of more than one node that starts and ends at the same node, e.g.,
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the path v,b,x,d,y, z,v in the process model in Figure 6.38. Every cyclic path
of a process model has at least one entry node which can be either a xor join
(node v, refer to Figure 6.38) or an and join (node z), and at least one exit
node, that can be either a zor split (node y) or an and split (node z). Cycles
without an entry cannot “start” and cycles without an exit cannot “terminate”. A
well-structured cyclic process model contains no rigid process components and,
hence, every cyclic path is contained within some bond process component of the
model. In a sound well-structured cyclic process model, it clearly holds that if a
cyclic path contains the entry and the exit of bond process component B1, then
the entry of B1 is a xor join and the exit of B1 is a xor split; we call B1 a SESE
loop process component. Therefore, the task of transforming process models with
arbitrary loops into process models where all cyclic paths are described by SESE
loop components has to deal with transformations of cyclic paths embedded into
rigid process components, e.g., the path v,b,x,d,y, z,v in rigid R1 in Figure 6.38,
into paths that can be formalized with the help of bond process components.

P1i

Collect
product
info

Collect
market
info

Figure 6.38. Unstructured cyclic process model

This section proposes a technique for structuring process models with cyclic
paths. Similar to the previous sections, the technique is based on the notion of
the proper complete prefix unfolding and rests on (i) the conjecture that proper
prefixes are finite and (ii) sketches to the proofs along the individual steps of the
technique; hence, the title of this section. In the following, we shall employ the
process model in Figure 6.38 to exemplify some of the structuring steps.

6.4.1. Unfolding Cyclic Process Models

The main idea of our cyclic structuring technique is to unfold all cyclic paths of a
process model to the point where structuring can be organized as a combination
of the compiler techniques for structuring sequential programs and the approach
for structuring acyclic process models proposed in Sections 6.1 and 6.2. The
idea can be implemented if one possesses a technique for transforming an initial
unstructured process model into an equivalent model in which all cyclic paths are
captured either in SESE loop or non-concurrent rigid process components. To this
end, we employ the notion of the proper complete prefix unfolding.
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Importantly, in the case of process models with cyclic paths it must be shown
that the algorithm for the construction of proper prefixes always terminates. The
discussion proceeds based on the conjecture that the statement below holds.

Conjecture 6.1. A proper complete prefiz unfolding of a sound free-choice WF-
system induced by an adequate total order for safe systems is finite. N

A proper complete prefix unfolding $; is an extension of the complete prefix
unfolding Bs of the WF-system. [ is finite. Every event in $; and not in g
is associated with a marking which is already associated with some event in Ss;
note that B is complete. The fact that one will eventually be able to construct
an extension of fBy truncated at healthy cutoff events can be deduced from the
soundness of the WF-system (every concurrent run of a sound WF-system must
be eventually synchronized).

Figure 6.39(a) shows the WF-net that corresponds to rigid component R1 in
the process model in Figure 6.38, whereas Figure 6.39(c) shows its finite proper
complete prefix unfolding. Unlike in the complete prefix unfolding, shown in
Figure 6.39(b), in the proper prefix all the concurrency is kept encapsulated, refer
to the discussion in Section 6.1.1. The complete prefix unfolding in Figure 6.39(b)
provides just as much information which can be employed for structuring as its
originative WF-net. In this particular example, the complete prefix unfolding can
be seen as a kind of a spanning tree of the originative WF-net. If one rewires
the complete prefix unfolding by merging conditions from Cut([e.]) with the
conditions from Cut([e,]) based on the criterion that two conditions get merged
if they refer to the same place of the originative net, one obtains the originative
WF-net, e.g., in Figure 6.39(b) condition ¢ must be merged with condition ¢,,
whereas condition ¢/, must be merged with condition ¢,. However, the main
problem of complete prefix unfoldings lies not even in the fact that sometimes
prefixes do not exhibit additional structural information as compared to their
originative systems; the main deficiency, as will be explained later, stems from the
fact that they do not encapsulate concurrency within cyclic paths.

In the following, we refer to the net obtained by rewiring all the cutoff events of
a complete prefix unfolding as the rewired prefiz. It is easy to see that the order
of different rewirings does not influence the final result.

The rewiring procedure, according to the principles discussed above for the
complete prefix unfolding in Figure 6.39(b) (when one merges cuts of local config-
urations of cutoff events and corresponding events) can sometimes result in nets
which are in a strong behavioral relation with their originative systems. More
specifically, the rewired prefix and its originative system can be occurrence net
equivalent [96, 157, 142], i.e., they can have isomorphic unfoldings, which simply
means that both systems describe exactly the same behavior (even if these systems
are structurally different). Trivially, the unfolding of the WF-net in Figure 6.39(a)
and the unfolding of the net obtained by merging conditions {c}, ¢!, } and {¢,, ¢y}
in the complete prefix unfolding in Figure 6.39(b), which is exactly the same as
its originative net, are isomorphic. However, the WF-net in Figure 6.3(a) and

/ /

the net obtained by merging conditions {c;,c; } and {c;,¢,} in its complete prefix

unfolding in Figure 6.3(b) do not have isomorphic unfoldings.
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Figure 6.39. (a) WF-net that corresponds to rigid R1 of the process model in Figure 6.38,
(b) the complete prefix unfolding of (a), and (c) the proper prefix of (a), both induced by
an adequate total order for safe systems

Interestingly, if one rewires a proper complete prefix unfolding of a net system,
the rewired prefix and the originative system are always occurrence net equivalent.
In complete prefix unfoldings, a part of an unfolding which can be constructed
after the cut induced by a local configuration of a cutoff event e is isomorphic
with the part of the unfolding which follows after the cut induced by a local
configuration of corr(e) [38]. If e is healthy, the cuts of local configurations of e
and corr(e) differ only in post-conditions. Thus, the rewiring of a proper complete
prefix unfolding can be accomplished by merging post-conditions of healthy cutoff
events; this ensures that the unfolding of the resulting rewired net is isomorphic
with the unfolding of the originative net.

Figure 6.40 shows the rewired prefix obtained from the proper complete prefix
unfolding in Figure 6.39(c). Observe that the nets in Figure 6.39(a) and Figure 6.40
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are structurally different, but have isomorphic unfoldings; please validate this
claim by constructing unfoldings of both nets.

Figure 6.40. The rewired (proper) prefix constructed from the proper complete prefix
unfolding in Figure 6.39(c)

For cyclic structuring purposes, we shall employ the rewiring of proper complete
prefix unfoldings which gets a little bit more involved. In particular, we shall rely
on the notion of the rewired proper prefix.

Definition 6.29 (Rewired proper prefix).
Let 8 = (N,v), N = (B,E,G), be a proper complete prefix unfolding of a net
system S that corresponds to a process model and let e € E be a healthy cutoff

event of 8. The rewiring of e in 3 results in the proper complete prefix unfolding
B =(N"v'),N = (B, E'G"), of S with rewired cutoff event e, where:

o If |de o,| = 1|, then B'= Bxee, E' = E, G' = (G~ ({e} xee))u({e} x corr(e)e),
o If|eO|_> 1],3EIE16'H B'=B~{ecuee} E'=FE~{e}, G'=(G~ (({e} xee)u
(eex {e})u(e(ee) x ee))) U (e(oe) x ecorr(e)), and v’ = v|pyp.

B with all its healthy cutoff events rewired is called the rewired proper prefiz of S.,

In rewired proper prefixes, the postsets of healthy cutoff events get merged with
the postsets of corresponding events as follows: If a healthy cutoff event e has one
post-condition, it gets merged with the only post-condition of corr(e). However,
if a healthy cutoff event e has more than one post-condition, we merge the only
condition in ee with the only condition in ecorr(e); event e and conditions in
ee get removed. If compared with the initially introduced rewiring principles, in
rewired proper prefixes healthy cutoff events with multiple post-conditions get
special handling. Note that a healthy cutoff event e with multiple post-conditions
corresponds to an and split in the process model and, hence, has a single pre-
condition c¢. Furthermore, note that condition c¢ is guaranteed to have at most
one pre-event (unfoldings are captured by occurrence nets, see Definition 5.12)
and one post-event (due to the mapping of wor splits to nets, see Definition 2.24).
Therefore, given a proper complete prefix unfolding, one can always construct its
rewired proper prefix.
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It is easy to see that the rewired proper prefix of a WF-net is again a WF-net
and that the originative WF-net and the rewired proper prefix are occurrence net
equivalent. Observe that the WF-net in Figure 6.40 is the rewired proper prefix of
the WF-net in Figure 6.39(a).

Cyclic paths in rewired proper prefixes have a nice property, i.e., the concurrency
within these paths is kept encapsulated. If a cyclic path contains an event e with
multiple post-conditions, then this cyclic path also contains an event e’ with
multiple pre-conditions such that every path that originates at e eventually reaches
e’ and every path that originates at a source place and visits e’ also visits e. The
property claimed above is supported by the following rationale: A proper complete
prefix unfolding is acyclic — it is defined by an occurrence net, see Definition 5.12.
Hence, cyclic paths can only be introduced when rewiring healthy cutoff events.
Next, we take a closer look at all possible ordering relations of a healthy cutoff
event e and its corresponding event:

o corr(e) # e. If e and corr(e) are in conflict, then there exists condition ¢
which has two distinct events e’ and €’ in its postset, such that (i) either
e’ =eore ~ e and (il either ¢’ = corr(e) or e’ ~ corr(e). Moreover,
there exists no path from e’ to corr(e) and there exists no path from e”
to e; otherwise there exists a self-conflict in the proper prefix. Finally, if
there exists event d with multiple post-conditions on a path from ¢ to e,
then every path that originates at d eventually reaches e, and if there exists
event f with multiple pre-conditions on a path from c to e, then every path
that originates at a condition without pre-events and visits f also visits c;
otherwise one can easily show that e is not healthy. The same rationale
applies to all the events with mutiple pre-/post-events on paths from ¢ to
corr(e), i.e., concurrency is kept encapsulated between ¢ and corr(e).

o corr(e) ~ e. The ideas discussed for the situation when e and corr(e) are in
conflict applies with minor adjustments to the case when corr(e) and e are
in causal relation, i.e., the regions of concurrency on the paths from corr(e)
to e are kept encapsulated; otherwise e is not healthy.

o corr(e) || e. If e and corr(e) are concurrent, then there exist at least two
distinct conditions in the postsets of e and corr(e) which are concurrent and
refer to the same place in the originative system. This contradicts with the
assumption that the originative system is safe, see Proposition 6.3 in [38].
Therefore, the situation when corr(e) || e is not possible.

By stepwise applying individual rewirings of healthy cutoff events in proper
prefixes we keep concurrency encapsulated which allows for later modularization
of the structuring problem, which will be exploited in the next section. It must
be noted that the construction principles for the rewired proper prefixes are
specifically designed to support later modularization of the structuring problem.
Intuitively, we introduce special handling when rewiring healthy cutoff events
with multiple pre-conditions in order to minimize the amount of events which can
introduce concurrency on cyclic paths in the resulting nets.
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6.4.2. Cyclic Structuring Algorithm

The rewired proper prefix in Figure 6.40 already corresponds to the well-structured
process model in Figure 6.41(a); the process model can be trivially constructed by
following the principles proposed in Section 6.2.8.

Figure 6.41. (a) The well-structured version of the process model in Figure 6.38, and (b)
the (simplified) RPST of (a)

However, in general, the rewired proper prefix by itself is not sufficient to
accomplish structuring of a cyclic process model. It is more precisely to say
that the rewired proper prefix delivers opportunities for modularization of the
structuring problem. The modularization can be organized by using the RPST of
the rewired proper prefix and abstraction of cyclic paths. Algorithm 7 summarizes
the technique for structuring sound cyclic process models. Next, we exemplify and
discuss every step of the algorithm in details. To support the discussion, we shall
use the process model in Figure 6.42 as our running example.

Figure 6.42. Unstructured cyclic process model

Algorithm 7 starts by constructing the rewired proper prefix of a given sound
cyclic process model (lines 1-3); the constructions can be accomplished by em-
ploying Definition 2.24, Definition 6.1, and Definition 6.29. Figure 6.43 shows
the rewired proper prefix of the WF-net that corresponds to rigid R1 from the
process model in Figure 6.42. Note that WF-net N (constructed at line 1 of the
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Algorithm 7: Structuring cyclic process model

Input: A sound cyclic process model PM
Output: An equivalent well-structured process model

1 Construct WF-net NV that corresponds to PM

Construct proper complete prefix unfolding 8 of N induced by an adequate
total order for safe systems

Construct v — the rewired proper prefix of N — from

Compute SCC — the set of all strongly connected components of ~y
Compute SEMFE — the set of SEME-cyclic subnets from components in SCC
Construct 7’ by abstracting subnets from SEME in ~

Construct well-structured process model PM’ from ~' by using Algorithm 6
Structure maximal acyclic subnets in SEMFE using Algorithm 6

Construct PM" by refining PM' with well-structured subnets from SEME
10 Structure zor rigids in PM" by using compiler techniques, e.g., [97]

11 return PM"

(M)

© 0w N o AW

algorithm) and rewired proper prefix v (constructed at line 3) define the same
behavior, i.e., unfoldings of both nets are isomorphic.

The algorithm proceeds at line 4 by computing the set of all strongly connected
components of . The strongly connected components of a directed graph are its
maximal strongly connected subgraphs. A directed (sub)graph is called strongly
connected if there is a directed path from every vertex in the graph to every other
vertex. The net in Figure 6.43 contains one strongly connected component. This
component is defined by a subnet induced by the nodes highlighted with grey
background in Figure 6.43.

Every strongly connected component of the rewired proper prefix captures a
subset of its cyclic paths; recall from the previous section that concurrency within
these paths is kept encapsulated. Therefore, every strongly connected component
can be seen as an area of sequential execution within the rewired proper prefix,

Figure 6.43. The rewired proper prefix of the WF-net that corresponds to rigid process
component R1 from the process model in Figure 6.42
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which gives an opportunity for its abstraction. Indeed, the number of tokens that
can simultaneously reside at the core places of a strongly connected component,
i.e., places cg, ¢, and ¢, of the only strongly connected component of the net
in Figure 6.43, is never larger than one; otherwise the net is unsafe. The core
places of a strongly connected component are the places shared by the strongly
connected component and the triconnected component of the rewired proper prefix
that is used to derive the smallest (in the number of arcs) canonical fragment
which contains the strongly connected component; see Section 3.3 for details on
correspondences of the triconnected components and canonical fragments of a TTG.
In Figure 6.43, the smallest canonical fragment which contains the only strongly
connected component is fragment R1, which corresponds to the triconnected
component of the net composed of nodes cg, ¢, ¢, and 0. Note that core places
of a strongly connected component are not necessarily the boundary places of the
strongly connected component.

Algorithm 7 proceeds by abstracting strongly connected components. Every
strongly connected component gets abstracted within its single-entry-multi-exit-
cyclic (SEME-cyclic) subnet. The only strongly connected component in the net in
Figure 6.43 has one entry (place ¢y) and two exits (places ¢; and ¢, ); the nodes can
be classified using Definition 3.2. Hence, the strongly connected component defines
a SEME-cyclic subnet of the rewired proper prefix. However, in general, a strongly
connected component of the rewired proper prefix can have multiple entries and/or
multiple exits. If a strongly connected component has multiple entries, we extend
the component to a single entry subnet prior to proceeding with its abstraction.
A strongly connected component can be extended to a SEME-cyclic subnet by
including nodes and arcs up to the common dominator of all its entry nodes.
Technically, this can be accomplished by employing techniques from the compiler
theory, e.g., [126].

Figure 6.44. The rewired proper prefix from Figure 6.43 with abstracted SEME-cyclic
subnets

Once all the SEME-cyclic subnets that correspond to the strongly connected
components of the rewired proper prefix are identified at line 5 of Algorithm 7,
they get abstracted within the rewired proper prefix at line 6. The abstraction
proceeds as follows: A SEME-cyclic subnet gets contracted into a single place.

143



6. Structuring Techniques

Fresh observable decision transitions are inserted in the net following each of the
outgoing arcs of the contracted place. Figure 6.44 shows the rewired proper prefix
from Figure 6.43 with its only SEME-cyclic subnet abstracted. In the figure, the
SEME-cyclic subnet from Figure 6.43 is contracted into place ¢s. The token at
the contracted place hints at the fact that the SEME-cyclic subnet is executing.
Transitions e, ;, and es ., are the fresh decision transitions. They are introduced
in order to keep references to the exits of the abstracted SEME-cyclic subnet.

A WF-net obtained by abstracting all the SEME-cyclic subnets in a rewired
proper prefix is acyclic and, hence, its structuring can be accomplished by the
techniques proposed in Section 6.1 and Section 6.2. This is done at line 7 of
Algorithm 7. Note that one should provide a WF-net, rather than a process model,
as input to the structuring algorithm. During structuring, decision transitions
must be treated as observable transitions. Figure 6.45 shows the process model
constructed from the WF-net in Figure 6.44 by providing the net as input to
Algorithm 6 (starting from line 2).

Figure 6.45. Well-structured process model constructed from the WF-net in Figure 6.44

The process model in Figure 6.45 is well-structured. However, it contains no
cyclic paths of the original unstructured process model (see in Figure 6.42). The
next steps of Algorithm 7 deal with refining the well-structured acyclic process
model obtained at line 7 of Algorithm 7 with cyclic paths of the input process
model. Well-structured process models constructed by our structuring techniques
from Section 6.1 and Section 6.2 do not keep references to the conditions of
proper prefixes that they are constructed from. For instance, the process model in
Figure 6.45 keeps no reference to the contracted place c¢s in Figure 6.44. However,
the process model in Figure 6.45 keeps references to the decision transitions of
the net in Figure 6.44, see tasks stv and suw. These tasks allow for the unique
identification of points in the process model which must be refined with the priorly
abstracted SEME-cyclic subnets. Before proceeding with refinements, every SEME-
cyclic subnet must be structured. Structuring of a SEME-cyclic subnet can be
organized by structuring canonical fragments of the rewired proper prefix which are
contained in the subnet. Note that the structure of the SEME-cyclic subnet given
by its core places stays intact. For instance, structuring of the only SEME-cyclic
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subnet in Figure 6.43 can be accomplished by structuring canonical fragments
P1, P2, and P3, which collectively compose the subnet. SEME-cyclic subnets
are structured at line 8 of Algorithm 7. Figure 6.46 shows the result of line 9 of
Algorithm 7; the process model is obtained by refining the model in Figure 6.45
with the well-structured version of the only SEME-cyclic subnet from Figure 6.43.

Figure 6.46. Process model constructed from the process model in Figure 6.42 by applying
Algorithm 7 up to and including line 9

For the process models constructed at line 9 of Algorithm 7, it holds that
all cyclic paths are captured within xor rigids. zor rigids can be structured by
employing standard compiler techniques, e.g., [97]. For example, the process model
in Figure 6.46 contains one xor rigid R1 which still must be transformed in order
to finalize the structuring of the input process model. Structuring of xor rigids
is accomplished at line 10 of Algorithm 7. Finally, the resulting well-structured
process model is returned at line 11 of the algorithm.

In this section, we described the algorithm for structuring cyclic process models.
The algorithm uses the RPST of the rewired proper prefix and abstraction of cyclic
paths in order to modularize the problem of structuring cyclic process models
into many smaller problems of structuring acyclic process models and sequential
programs. In the example which we used to explain the algorithm, the WF-net
constructed at line 6 of the algorithm, shown in Figure 6.44, and the WF-nets
which are subjects for structuring at line 8 (see fragments P1, P2, and P3, in
Figure 6.43), are rather trivial. However, in general, WF-nets processed within
Algorithm 7 can be arbitrarily complex; which means they can as well be inherently
unstructured. If one encounters such a WF-net, one can either decide to apply the
technique for maximal-structuring from Section 6.2 or to report that the input
model is inherently unstructured.

6.5. Conclusion
In this chapter, we have proposed several techniques for structuring process

models. Each technique is designed to address structuring of a specific class of
unstructured process models. Yet, all the techniques are founded on the basic
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technique for acyclic structuring, see Section 6.1. We conclude that a sound
acyclic process model is inherently unstructured if and only if its RPST contains
a rigid process component for which the modular decomposition of its orgraph
contains a concurrent primitive. In all other cases, Algorithm 6 applied to every
rigid process component of a process model constructs its FCB-equivalent well-
structured process model. We have thus provided a characterization of the class
of well-structured acyclic process models under fully concurrent bisimulation, and
a complete structuring method.

The method of acyclic structuring stops when the input model contains an
inherently unstructured process component. Section 6.2 complements the tech-
nique of acyclic structuring by providing a method to synthesize the components
corresponding to inherently unstructured parts of the input process model. This
allows one to accomplish the partial structuring of an acyclic process model or to
construct its FCB-equivalent maximally-structured process model.

In Section 6.3, we removed the restriction on the number of source and/or
sink nodes in a process model by proposing a method for structuring acyclic
multi-source and multi-sink models. This required us to generalize the notions of
structuredness and soundness, as well as to define a precise instantiation semantics,
for process models with multiple source nodes.

All the techniques mentioned above can also be used to structure process models
with SESE cycles, even if these cycles contain unstructured components. In this
case, the unstructured components and the SESE cycles are handled separately
within the RPST of the input process model. However, these techniques cannot
deal with models that comprise arbitrary cycles. In Section 6.4, we discussed
the technique for structuring process models with cyclic paths. The technique
summarizes our best practice for structuring cyclic process models. We believe that
future developments of this technique can lead to a solid approach for structuring
process models with arbitrary cycles.

The notion of behavioral equivalence that we employ for structuring, i.e., fully
concurrent bisimulation, cares only about the opportunity to extend equivalent
runs of process models (corresponding systems) with the same task (observable
transition) possibly by skipping several gateways (places and/or silent transitions),
see Definition 5.11. Technically, this implies that our structuring techniques might
suppress implicit decision points (a xor split followed by another gateway) of an
unstructured process model in its FCB-equivalent well-structured version. To
avoid aggregation of several implicit decisions into a single decision, one should
materialize them, i.e., introduce observable decision tasks, each following every
outgoing arc of a xor split. Decision tasks are designed to represent decisions
explicitly and should be treated as all other observable tasks during structuring.
Afterwards, decision tasks can be converted back into the (implicit) decision points
in the resulting structured process model.

One of the motivating reasons for structuring process models is to be able to
apply existing analysis techniques which only work for structured process models.
For example, existing techniques for calculating Quality of Service (QoS) properties
of business processes [75] are only applicable for structured process models. In a
separate work [26], we have shown how these techniques can be extended to models
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with arbitrary topology by applying structuring in conjunction with additional
post-processing steps to deal with inherently unstructured rigid components.

Another potential benefit of structuring a process model is that the resulting
structured model may be easier to comprehend and less error-prone to maintain
thanks to its higher degree of modularity [76]. However, the empirical evaluation
reported in this article has put into evidence that the structured process models
are often larger than the original ones (by an average of 22% in the case of the
SAP Reference Model). Larger models are generally more difficult to comprehend
and maintain than smaller models. An interesting direction for future work is to
conduct empirical evaluations with end-users in order to determine whether the
complexity reduction due to the modularity of the structured model outweighs
the increase in complexity due to the larger size of the structured model.

All the structuring techniques proposed in this thesis are implemented in the
bpstruct tool, which is publicly available. The running time of the structuring
techniques is mostly dominated by the time required to compute proper prefixes,
which for safe systems has an upper bound of O(|T|- R®), where T is the set of
transitions, R is the number of reachable markings, and £ is the maximal size
of the presets or postsets of the transitions in the originative system [38]. All
other steps can be accomplished in low polynomial or linear time. Concerning the
extension for maximal structuring, the theoretic discussion in this thesis implies
exponential time and space complexities when constructing posets (this is due to
our intent to stay close to the existing theory). However, in practice, given an
ordering relations graph one can construct a poset which only contains information
from the orgraph, without introducing duplicate events, and thus stay linear to
the size of the orgraph. At the theoretical level this requires the introduction of
a concept of a cutoff for posets followed by an adjustment of the theories along
subsequent transformation steps, see Section 6.2. The folding step is a reverse of
the unfolding and, thus, in the best case can be performed in the same time.

The fact that the running time of structuring depends on the size of the result
allows the introduction of a heuristic to terminate computation if the result
gets large, e.g., the event duplication factor in a proper prefix gets larger than
two. Moreover, we envision a technique which can decide on-line, i.e., during the
construction of the proper prefix, that from now on the prefix defines an ordering
relations graph which contains a primitive module and, thus, the model cannot
be structured. However, in practice we have never observed such a need with
our implementation in most cases delivering results in milliseconds. Note that
the amount of task duplication in the structured models is controlled by proper
prefixes. As proper prefixes are always minimal, see the discussion in Section 6.1.1,
the structuring introduces the minimal duplication whenever required.

Close to our maximal structuring setting, the problem of synthesizing nets
from behavioral specifications has been a line of active research for about two
decades [7, 18]. This area has given rise to a rich body of knowledge and to a
number of tools, in particular viptool [7] and petrify [18]. Yet, these solutions
fail in our setting: petrify aims at maximizing concurrency while our synthesis
preserves given concurrency, viptool synthesizes nets with arc weights, which do
not map to process models.
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7. Stepwise
Connectivity-Based
Verification of

WF-nets

In this chapter, we study the relation between the connectivity property of
short-circuit nets and the correctness, i.e., soundness, of WF-nets. Section 7.1
introduces principles of structural verification employed in the chapter. WF-
nets are in tight relation with the class of strongly connected Petri nets. We
emphasize this relation in Section 7.2. Afterwards, Section 7.3 presents basic
connectivity-related properties of nets. Then, in Sections 7.4 to 7.6, we investigate
how the connectivity of a short-circuit net can be used for reasoning about the
soundness of the corresponding WF-net. We perform the stepwise connectivity-
based decomposition of a short-circuit net and derive conclusions about the
soundness of the WF-net. At the same time, we discuss the computational
complexity of algorithms that support the conclusions. For each decomposition
step we discuss techniques for performing decompositions, methods for performing
soundness, and feedback that can be provided to process analysts in cases of
unsoundness. Section 7.7 reports on the practical experience gained from the
application of the theoretical results. Finally, Section 7.8 discusses related work
and draws conclusion.

The materials reported in this chapter are published in [114, 115].
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7.1. About Structural Verification

Behavioral models capture operational principles of real-world or designed systems.
Formally, each behavioral model defines the state space of a system, i.e., its states
and the principles of state transitions. Such a model is the basis for analysis of
the system’s properties. In practice, state spaces of systems are immense, which
results in huge computational complexity for their analysis. Behavioral models
are typically described as executable graphs, whose execution semantics encodes
a state space. The structure theory of behavioral models studies the relations
between the structure of a model and the properties of its state space.

In this chapter, we use the connectivity property of graphs to achieve an efficient
and extensive discovery of the compositional structure of behavioral models;
behavioral models get stepwise decomposed into components with clear structural
characteristics and inter-component relations. At each decomposition step, the
discovered compositional structure of a model is used for reasoning on properties
of the whole state space of the system. The approach is exemplified by means
of a concrete behavioral model and verification criterion. That is, we analyze
workflow nets (Definition 2.20), a well-established tool for modeling behavior of
distributed systems, with respect to the soundness property (Definition 2.21), a
basic correctness property of workflow nets.

Soundness verification is a well-studied problem. A basic technique for soundness
verification is state space exploration. However, state space exploration suffers
from the state space explosion problem, as the number of reachable states can
be exponential in the size of the model. In the following, we perform structural
analysis of workflow nets to investigate soundness, providing insight into an
alternative — and in many cases, preferable — way to check soundness. A workflow
net gets decomposed into components based on its separating sets, i.e., sets of
nodes of the net that when removed yield the net disconnected. We proceed
stepwise, i.e., by gradually increasing the size of investigated separating sets.
Based thereon, we point out how the soundness verification can be organized from
the derived components of a workflow net. Where applicable, we draw conclusions
on soundness for the general class of workflow nets; otherwise, the results are
restricted to safe or free-choice nets. At each step of the decomposition, we argue
about the algorithmic complexity of reaching the step and suggest diagnostic
information that can be presented to process analysts as feedback on flaws in the
behavior of a model.

Stepwise verification allows the detection of violations of the soundness property
by inspecting small portions of a model, thereby considerably reducing the amount
of work to be done to perform soundness checks. Though recent works show
impressive results in efficiency of the soundness verification of industrial mod-
els, cf., [41, 42], the results were achieved under the assumption of free-choiceness
of models. Efficient soundness verification in the case of general nets will, however,
allow one to verify models which contain advanced workflow patterns. Despite
the variety of existing soundness verification techniques, the efficiency and the
structural diagnostic information for the general class of workflow nets are unique
characteristics of our approach, coming at the expense of verification completeness.
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We see a great potential in combining our approach with existing techniques on
soundness verification to achieve more mature and complete verification.

7.2. Strong Connectivity of WF-nets

The structure of a Petri net (P, T, F) is defined by the graph (PuT, F'). There is
an interesting observation that relates the behavioral characteristics of a net with
the connectivity of the underlying graph. The strong connectedness theorem [22]
states that a net N for which there exists a marking M), such that (N, My) is
live and bounded, is strongly connected. In other words, strong connectedness of
a short-circuit net is a mandatory condition for soundness of the corresponding
WPF-net, as the latter is traced back to liveness and boundedness of the respective
short-circuit net. A net is strongly connected, if there exist a directed path from
each node in the net to each other node. Though implied by soundness, the
requirement of strong connectedness of short-circuit nets is explicitly stated in
the definition of WF-nets. Note that strong connectedness of a net can be tested
in the time linear to the size of the net, viz. O(|P uT| + |F|), by using Tarjan’s
algorithm for discovery of strongly connected components of a graph, cf., [123].
Next, we examine connectivity-related properties of short-circuit nets, those not
required by Definition 2.20, which can be used to explain soundness of WF-nets.

7.3. Connectivity of WF-nets

In this section, we briefly recall connectivity-related
properties of graphs, see Section 3.2.1. We narrow down
the discussion to those properties which we shall check
later on short-circuit nets to derive conclusions about
the soundness of the WF-nets. Detailed discussions and
extensive examples will be provided as we proceed with
the presentation of main results.

Two nodes = and y of a net are connected, if there
is a path between x and y. Note that here we refer to
a path that ignores directions of flow arcs. A net is
connected, if every pair of distinct nodes of the net is
connected. k-connectivity is the generalization of the
connectivity property of a net. A net is k-connected if
there exists no set of k—1 nodes, whose removal renders
the net disconnected, i.e., there is no path between
some pair of nodes in the net. The set of nodes whose
removal disconnects the net is called a separating (k—1)-
set of the net. Separating 1- and 2-sets are called Figure 7.1. Decomposition
cutvertices and separation pairs, while 1-, 2-, and 3- of a short-circuit net
connected nets are referred to as connected, biconnected,
and triconnected, respectively. The connectivity of a net is the largest k for which
the net is k-connected.
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Figure 7.1 shows a short-circuit net (in the middle). Short-circuit nets are
strongly connected and, thus, are connected. However, a short-circuit net must
not be k-connected, where k is larger than one. For instance, the net in Figure 7.1
contains cutvertex p; (highlighted with grey background). Thus, the net is not
biconnected. Separation sets of a net can be used to decompose the net into subnets,
or components, of a higher connectivity. The removal of the only cutvertex in the
net in Figure 7.1 causes two subnets, one induced by nodes {p;, 2} and the other
induced by nodes {i,t1,p1,t3,0,t*} (at the top and at the bottom of the figure,
respectively). Both subnets contain no cutvertices and, hence, are biconnected.
In the subsequent sections, we study how separating sets and subnets caused by
these sets can be used to decide on soundness of WF-nets.

7.4. The Biconnected Step

As already explained in the previous section, short-circuit nets are connected, but
not necessarily biconnected. This section shows how the soundness verification
of a WF-net can be broken down into checks of biconnected components of its
short-circuit net.

7.4.1. Biconnected Decomposition of a WF-net

The classic sequential algorithm for computing biconnected components in a
connected graph (Section 3.2.2), proposed in [53], runs in linear time. Let (V, E)
be a connected graph, then the algorithm requires time and space proportional
to max(|V|,|E|). Biconnected components can be arranged in a tree structure
— the tree of the biconnected components. The tree has two types of nodes that
refer either to cutvertices or to biconnected components. Edges of the tree
connect cutvertices with associated biconnected components, i.e., there is an edge
between a cutvertex and a biconnected component, if and only if the biconnected
component contains the cutvertex. The number of nodes in the tree is O(]V]) and,
hence, the space required to store the tree and all the biconnected components is
O(mazx(|V|,|E|)), i-e., linear to the size of the original graph. Such a tree is also
known as BC-tree, cf., [5].

The results obtained for graphs can be transferred to WF-nets. A biconnected
subnet of a WF-net is a biconnected component of its short-circuit net. The
tree of the biconnected subnets, or the 2-WF-tree, of a WF-net is the tree of the
biconnected components of its short-circuit net.

Definition 7.1 (The tree of the biconnected subnets).
Let N = (P,T,F) be a WF-net and let N’ be its short-circuit net with the
extra transition t*. The tree of the biconnected subnets, or the 2-WF-tree, of N is
a tuple T2 = (B,C, p,n, &), where:

o B is the set of all biconnected subnets of N’,

o C is the set of all cutvertices of N’,
o p=(P,,T,,F,) €Bis the root of T3, iff t* € T,
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on: B - P(B) assigns to each biconnected subnet its child biconnected
subnets; for subnet by € B, by is a parent of by € B and by is a child of by, iff
by € n(br), and
o ACBxCxB, (b1,c,by) e A iff ¢is shared by by and by, and by € n(by).
Observe that Definition 7.1 captures the result of applying some algorithm for
computing biconnected components on a short-circuit net. Note also that we
deliberately choose biconnected subnet that contains the extra transition ¢* as
the root of the 2-WF-tree; there is always one such subnet. Function n must be
defined iteratively starting from the root subnet, i.e., subnet p has no parent, each
child subnet of the root subnet shares a cutvertex with it, each child subnet of the
root subnet is the parent of subnets that it shares a cutvertex with (except its
parent), etc.

Figure 7.2. (a) A short-circuit net, (b) biconnected subnets, and (c) the 2-WF-tree

Figure 7.2 exemplifies the biconnected decomposition of a WF-net: Figure 7.2(a)
shows a short-circuit net. The net has two place cutvertices: pl and p4; both
are highlighted with grey background. The cutvertices induce four biconnected
subnets A1-A4, see Figure 7.2(b). Finally, Figure 7.2(c) organizes the subnets in
the 2-WF-tree with the root node that corresponds to the biconnected subnet Al.

FEach biconnected subnet of a WF-net can be seen as a self-contained part of the
whole net which itself can be formalized as a WF-net, referred to as a biconnected
sub-WF-net of the original WF-net.

Definition 7.2 (Biconnected sub-WF-net).

Let N = (P, T,F) be a WF-net, T2 = (B,C,p,n,2) its 2-WF-tree, and b =
(Py, Ty, Fy) € B its biconnected subnet. A biconnected sub-WF-net of N, denoted
by b*, b* = (Py+, Ty, F» ), is a net, such that:
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o Ifb:p, then Py :ljb7 Ty :TbﬁT, and Fye = FynF.
o If b+ p and a € B, ceC are such that there exists (a,c,b) € A, then
— if ce P, then Py = (P, ~ {c}) U {i,0}, Tpr = Tp, and Fps = {(x1,22) €
Folxz1 # cnazg £ cu{(i,x) € {i}xTp | (¢,x) € Fp} u{(z,0) ¢
Ty, x {0} | (z,¢) € Fp}.
—ifce T, then Pb* = Pb U {i,o}, Tb* = (Tb N {C}) U {ti,to}, and
Fy = {(z1,22) € Fp | 21 # crxg # ¢} U{(i,t;),(to,0)} U {(t;,z) €
{ti} x By |(c,z) € Fp} u{(z,t,) € Py x {to} | (z,c) € Fy}. ,

A WF-net that corresponds to a subtree of b, denoted by b*, can be obtained by
merging (at shared cutvertices) sub-WF-net b* with all biconnected subnets that
are descendants of b in the 2-WF-tree. Biconnected sub-WF-nets are also referred
to as biconnected WF-nets.

i p1 P4 o)
A1) Ot pO-{tO-{t: O

i P3 o

a3 O O O
i o
(Ad)

Figure 7.3. Biconnected sub-WF-nets

Figure 7.3 presents biconnected sub-WF-nets of the short-circuit net that is
given in Figure 7.2(a). The sub-WF-nets correspond to the biconnected subnets
in Figure 7.2(b). Sub-WF-net Al is obtained from the corresponding biconnected
subnet by ignoring transition ¢t* and arcs that are incident to t*. In the case
when a biconnected subnet is not the root of the 2-WF-tree, see Figure 7.2(c),
the corresponding sub-WF-net can be obtained as follows: The cutvertex that
corresponds to the parent node of the biconnected subnet in the 2-WF-tree is
removed from the subnet and two fresh places are added; these are source place
1 and sink place o. If the removed cutvertex was a place, then all its outgoing
arcs get rerouted to originate from i, whereas all its incoming arcs are rerouted
to terminate at o. If the removed cutvertex was a transition, then two additional
fresh transitions are added; these are transitions ¢; and t,. Afterwards, the flow
relation is extended, such that t; is put in the postset of ¢, while ¢, is put in
the preset of 0. Finally, outgoing arcs of the removed cutvertex get rerouted to
originate from t;, while all the incoming arcs of the removed cutvertex are rerouted
to terminate at ¢,.

Construction of a WF-net that corresponds to a subtree in the 2-WF-tree is
supported by two types of transformations, viz. refinements, of nets.
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Definition 7.3 (Self-loop place refinement, Transition refinement).
o Let Ny = (P1,T1,F1) be a net, pe Py a place. A self-loop place refinement of
p yields a net Ny = (Py,Th u{tp}, F1 u{(p,tp), (tp,p)}), denoted by Ni[p].
o Let Ny = (Py,T1, F1) be a net, Ng = (P2, T3, F3) a WF-net with source 7 and
sink o, Th nTo =@, PLn P, =@, and t € T1. A transition refinement of t by
N, yields a net N3 = (P3,T3, F3), denoted by Nj[t/Na], such that:
- P3 = Pl @] (PQ AN {i,O}), T3 = (Tl AN {t}) UTQ, and
- F35 = {(1’1,1’2) € F1|£L'1 FtAxo # t} U {(.Tl,.TQ) € FQl{iL’l,ZL'Q} N {Z,O}} U
{(1’17.’E2) € P1 X T2 | (xht) € F1 A (7;7£C2) € FQ}
(@] {(3?1,:172) € T2 X P1 | (t,mg) € F1 A (3?1,0) € Fg}.

a

A self-loop place refinement has been introduced in [95], while the concept of
transition refinement is borrowed from [128, 131]. Figure 7.4(a) shows the result
of the self-loop place refinement of place p; in WF-net Al in Figure 7.3, whereas
Figure 7.4(b) depicts the result of the transition refinement of ¢,, in the WF-net
in Figure 7.4(a) by WF-net A2 in Figure 7.3.

t
Ot POt POt O
P1 P4

(a) (b)

Figure 7.4. (a) A self-loop place refinement of place p1 in WF-net Al from Figure 7.3,
i.e., Al[p1], and (b) a transition ¢, refinement in (a) by WF-net A2 from Figure 7.3,
ie., (Allp1])[tp,/A2]

7.4.2. Soundness Verification Based on Biconnected Decomposition

The biconnected decomposition of a WF-net can be related to the soundness
verification in two ways: First, the type of the cutvertices can be exploited to
detect unsoundness. Second, we show that the biconnected decomposition can
be used to modularize the soundness verification problem. The following lemma
shows that a WF-net can be sound only if all the cutvertices of the corresponding
short-circuit net are places.

Lemma 7.4: Let (N,M;), N = (P,T,F), be a WF-system and N’ be the short-
circuit net of N. Ift €T is a cutvertex of N', then (N, M;) is unsound. N

Proof. Because t is a cutvertex of N’, there exists p’ € of, p’ # 4, such that ¢ is on

every path 7wy (4,p"). We show now by induction that ¢ is never enabled, i.e., for

every marking M € [N, M;) holds —(N, M)[¢t).

base: —(N, M;)[t) as M;(p’) =0, i.e., t is not enabled by the initial marking.

step: Let M’ be a marking reachable from M; by a firing sequence o that does
not contain ¢, i.e., t was never enabled. Let ¢’ € T be such that (N, M’)[t').
Assume that ¢’ = ¢, then M'(p’) > 1. If M'(p') > 1, then o contains all the
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transitions of some path 7y (i,p’) and, hence, contains ¢t. We have reached
the contradiction and, therefore, ¢’ # t.
As t is never enabled, (N', M;) is not live. Thus, (N, M;) is unsound. ]

According to Lemma 7.4, a transition cutvertex hints at unsoundness of the net.
In case all cutvertices of a short-circuit net are places, the verification procedure
can be broken down into checks of biconnected subnets of the short-circuit net. It
is known that the self-loop place refinement preserves liveness, boundedness, and
safeness of the net, cf., [95]. Therefore, soundness verification can be organized
using the biconnected sub-WF-nets of a WF-net and the net transformations from
Definition 7.3. That is, in the class of safe systems, the soundness of a system is
closely related to the soundness of its biconnected sub-WF-nets.

Theorem 7.5. Each biconnected sub-WF-net of a WF-net is safe and sound, iff the
WF-net is safe and sound. N

Proof. Let N be a WF-net and let 72 = (B,C,p,n, &) be the 2-WF-tree of N.

(=) By structural induction on the tree of the biconnected subnets.

base: If T2 contains only one biconnected subnet, i.e., |B] = 1, then N is a
biconnected WF-net. Obviously, the claim holds.

step: Let be B be a biconnected subnet. Suppose that the claim holds for all a®
such that a € n(b). We show by induction that the claim is also true for b*.
b* is a biconnected sub-WF-net of N and, hence, is safe and sound. Let
a € n(b) and ¢ € C be such that (b,c,a) € A. A WF-net b' = b*[c] with a
self-loop transition t. is safe and sound. A WF-net b'[t./a”] is safe and
sound, see statement 4 of Theorem 3 in [131]. Thus, after refining b* with all
the biconnected WF-nets that correspond to subnets from 7(b), one obtains
a safe and sound WF-net that is equal to b*.
As p® is equal to N, the claim holds.

(<=) The claim trivially holds by following (=) in the reverse direction. O

Therefore, it suffices to show that at least one biconnected sub-WZF-net is not
safe and sound in order to conclude that the WF-net is not safe and sound. As
biconnected sub-WF-nets can be computed in time linear to the size of a net,
the biconnected decomposition step does not add to the overall complexity of
soundness verification.

7.4.3. Feedback on Unsoundness

We illustrate the feedback given by our verification approach by the exemplary
model that is depicted in Figure 7.5, along with its biconnected decomposition
and the biconnected sub-WZF-nets. Following on the results presented in the
previous section, the first check to verify soundness refers to the type of the
cutvertices. A transition cutvertex hints at unsoundness of the net and, therefore,
constitutes valuable diagnostic information. For our example, we see that there is
one transition cutvertex, viz. transition ¢;. This transition is returned to a process
analyst as a cause of unsoundness of the WF-net. Apparently, this transition is
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never enabled, as the marking of one of the places in its preset depends on the
firing of the very same transition. Hence, resolution of unsoundness has to consider
the condition for enabling of transition ¢;.

AT

(c)

i P1 o
A1) Ot pPO-{PO
i P4 Ps 0
A2) Ot POt POt PO
P2

Figure 7.5. (a) A short-circuit net of an unsound WF-net, (b) biconnected subnets, (c)
the 2-WF-tree, (d) the biconnected sub-WF-nets

Second, we have shown that the soundness verification procedure can be broken
down into checks of biconnected subnets of the short-circuit net. Once an unsound
biconnected sub-WF-net is identified, it is presented to the process analyst. Again,
this constitutes valuable diagnostic information. The cause of unsoundness is
localized in a certain subnet and, thus, separated from the correct remaining parts
of the WF-net. Referring to our example in Figure 7.5, we see that the biconnected
subnet A3 induced by the cutvertex p; is not sound. This subnet introduces an
additional cause for unsoundness. The resolution of unsoundness also has to focus
on this particular subnet.

7.5. The Triconnected Step

This section discusses connectivity specific aspects of the soundness verification of
biconnected WF-nets. The biconnected WF-nets contain no cutvertices; they may,
however, contain separation pairs that induce triconnected subnets.
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7.5.1. Triconnected Decomposition of a Biconnected WF-net

The sequential algorithm for computing triconnected components in a biconnected
graph proposed in [54] runs in linear time. In [48], the authors discuss imple-
mentation aspects of the algorithm. Let (V, E) be a biconnected graph, then the
algorithm requires time and space proportional to maz(|V],|E|). The triconnected
components are used in [124] for analyzing the structure of directed graphs; the
triconnected components form a hierarchy of SESE subgraphs of a directed graph.
In [145, 146], the authors propose a technique, viz. the Refined Process Structure
Tree (RPST), that computes a hierarchy of SESE subgraphs in the general case
when the graph contains vertices with multiple incoming and multiple outgoing
edges. The subgraphs of the RPST are canonical, i.e., the RPST describes all the
subgraphs that do not pairwise overlap on the sets of edges. In Section 3.3, we
explained the relation between the triconnected components of the normalized
version of a graph, where each vertex with multiple incoming and multiple outgoing
edges is split into two, and the RPST of the graph. That is, the triconnected
components of a normalized graph define its RPST.

In the following, we investigate the triconnected components of the normalized
biconnected WF-nets. Every net can be normalized.

Definition 7.6 (Normalized net).
Let N = (P,T,F) be a net.

o A splitting of p € P is applicable, iff |ep| > 1A|pe| > 1. The application results
in the net N' = (P',T',F"), where P' = (P ~p)u {s*p,p*}, T" =T u {tp},
and F' = (F {(21,72) € F | 21 = pv s = p}) U (1, #p) € T x {+p} | (t.p) ¢
FYo (1) € (p#} < T | (0,1) € 0 {(5prby), (1 p#) ).

o A splitting of t € T is applicable, iff |ot| > 1 |t e| > 1. The application results
in the net N’ = (P, T',F"), where P’ = Pu{p:}, T' = ((T ~ t) U {*t,t*},
and F' = (F~{(z1,22) € F | zy =t vy =t}) U{(p,*t) € Px {*t} | (p,t) €
F} U {(t*vp) € {t*} x P | (tvp) € F} u {(*t7pt)7 (ptvt*)})'

o N is normalized, iff N has no applicable splitting.

a

Application of a splitting preserves liveness, safeness, and boundedness of a
net, cf., [95]. The order of splittings has no effect on the final result. Figure 7.6(a)
shows the short-circuit net of a biconnected WF-net. The net has an applicable
splitting of place p;. Thus, it is not normalized. Figure 7.6(b) shows the result of
splitting p;. As there are no further splittings applicable, the net in Figure 7.6(b)
is normalized, or is the normalized version of the net in Figure 7.6(a).

Every separation pair of the triconnected component of the normalized short-
circuit net induces a canonical triconnected subnet of the corresponding WF-net,
see Section 3.3.1. In the following, we adapt Definitions 3.2, 3.3, and 3.4 to nets.

Definition 7.7 (Boundary, Entry, Exit, Triconnected subnet).
Let N = (P, T, F) be a biconnected WF-net with source place ¢ and sink place o.
Let w=(P,,T,,F,) be a subnet of N, and let x € P, uT,, be a node of w.

o x is a boundary node of w, iff 3 f ein(z) Vout(x): f ¢ F,,.

o x is an entry of w, iff in(x) N F,, = @ or out(z) € F,.

o x is an exit of w, iff out(xz) N F,, =@ or in(z) € F,,.
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(a) (b)

Figure 7.6. (a) A short-circuit net, and (b) its normalized version

o w is a triconnected subnet of N, iff w has exactly two boundary nodes, one is
an entry and the other one is an exit, denoted by wq and wy,, respectively.
o wis a canonical triconnected subnet in a set of all triconnected subnets ¥ of IV,
iffweXandVy=(Py, Ty, Fy) e X\w: (F,nF, =@)V(F, c F,)V(F, cF,).,

Note that we speak of PP-,TT- PT-,TP-bordered triconnected subnets, depending
on the type (place or transition) of the entry and exit of the respective subnet.

Figure 7.7. Triconnected subnets

Figure 7.7 shows two of many canonical triconnected subnets of the net in
Figure 7.6(b). Subnet B2 is caused by the separation pair {p4,ps}, whereas subnet
R1 is caused by {*p1,p3}. p4 is the entry and ps is the exit of B2. Similarly, *p;
and ps are the entry and exit of R1. Both subnets are PP-bordered.

Recall from Section 3.3 that there exist four structural classes of triconnected
components and, thus, of triconnected subnets: Each flow defines a subnet of a
trivial class, e.g., {(ps,t)} in B2. A subnet is a polygon if it decomposes into
a sequence of subnets where the exit of a subnet is the entry of the next subnet
in the sequence, e.g., two trivial subnets {(p4,ts)} and {(¢s,p5)} form a polygon
inside of B2. A subnet is a bond if it decomposes into a set of subnets that share
boundary nodes, e.g., two polygons {(p4,ts), (ts,p5)} and {(ps,t7), (t7,p4)} share
boundary nodes {p4,ps} and form bond B2. If a subnet cannot be classified as
trivial, polygon, or bond, it is said to be rigid, e.g., subnet R1. Note that names
of subnets hint at their structural class.
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Definition 7.8 (The tree of the triconnected subnets).
Let N = (P,T, F) be a normalized biconnected WF-net and let N’ be its short-
circuit net with the extra transition ¢t*. The tree of the triconnected subnets, or
the 3-WF-tree, of N is a tuple Ty = (2,4, x,T), where:
o ) is the set of all canonical triconnected subnets of N’,
o 9 =(Py, Ty, Fy) €Q is the root of Ty, iff A w=(P,,T,,F,)eQ: FycF,,
o x : Q - P() assigns to each triconnected subnet its child triconnected
subnets; for subnet w; € 2, wy is a parent of ws € Q and wy is a child of wq,
iff wo € x(w1),
o 7 :Q - {trivial, polygon,bond, rigid} assigns to each triconnected subnet
its class. j

The tree of the triconnected subnets of a biconnected WF-net is defined by the
RPST of its normalized short-circuit net. Trivial subnets are leaves in 3-WF-
trees. Any polygon containing other polygons or bond containing other bonds
are recognized as a single polygon or bond, respectively. For our purposes, we
further classify polygon and bond subnets: A subnet w € Q is a simple polygon,
iff 7(w) = polygon and V « € x(w) : 7(a) = trivial. A subnet w € Q is a sequence,
iff the subnet is a simple polygon or trivial. Let h : 2 — Ny assign heights to
triconnected subnets, i.e., the length of the longest downward path from the
corresponding node in the 3-WF-tree to a node that corresponds to a trivial
subnet. A subnet w € Q is a simple bond, iff 7(w) = bond and h(w) < 2. Finally, a
bond w €  is a loop, iff there exists v € x(w) such that vy, = wy.

..o
#i
‘.....l...__(fnfm)

:B1:
(tuto) ... /Nt to)
(P2 iP3:
(*Pnps)..-.l..' (‘74”_’.5.)./'\.(’.’5”35)

R1; iB2} B3:

(b)

Figure 7.8. (a) A normalized net and its triconnected subnets, and (b) the 3-WF-tree

Figure 7.8 exemplifies the 3-WF-tree: Figure 7.8(a) shows the net in Figure 7.6(b)
along with its canonical triconnected subnets. Each triconnected subnet is defined
by the flow that is inside or intersects the corresponding box with the dotted
line. Figure 7.8(b) gives an alternative representation of the 3-WF-tree, i.e., a
tree specified by the containment hierarchy of subnets. Each node in the tree is
annotated with the pair of nodes of the net, where the first node is the entry and
the second node is the exit of the corresponding subnet.
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The 3-WF-tree specifies a compositional structure of the net. The net in
Figure 7.8(a) is composed of the top level polygon P1 with entry ¢ and exit o.
Polygon P1 contains bond B1 with entry ¢; and exit t19. Observe that P1 also
contains two trivial subnets: {(i,¢1)} and {(t10,0)}. Note that for simplicity
reasons, we do not explicitly visualize sequence subnets. Bond B1 contains two
polygons that share boundary nodes t; (an entry) and t1 (an exit) with the bond,
where P2 corresponds to the upper branch and P3 corresponds to the lower branch.
Bonds B2 and B3 are simple bonds, both composed of two sequences. Moreover,
bond B2 is also a loop. The net contains one rigid subnet — R1.

A triconnected subnet contains all the triconnected subnets, as well as the
behavior that they specify, downwards in the hierarchy of the 3-WF-tree. However,
the behavior induced by a triconnected subnet can be made explicit by abstracting
the behavior of all its descendant subnets.

Definition 7.9 (Abstraction).
Let N = (P, T, F) be a normalized biconnected WF-net. Let T3 = (2,9, x,7) be
its 3-WF-tree, w = (P, T, F.,) € Q, and v = (Py,T5, F,) € x(w). An abstraction
of v in w by transition ¢, results in a subnet w], such that:
o If yg € PAyp € P, then w) = (Po N (Py~{va, v 1), (Tu NTy) u {7}, (Fu N
F"/) U{(’Yﬂat'y)v(tv”yb)})'
o Ifyq € PAyp €T, then w = ((Po N (P~ {7y 1)) u{p" } (T~ (T~ {7y 1)) U
{7}, (Fo ~ ) u{(7a,t7), (87, 07), (p7,75)})-
o Ifyq € Taqp € P, then w = (P~ (P~ {7 1)) u{p™} (T~ (T~ {ra 1)) v
{t7}7 (Fw N F’y) U {('Y<1 7pry)7 (p’y7t7)u (t’y>'7b)})'
o Ifyq e T'Ayp €T, then w = ((Po N Py) u{p™, p7* }, (T~ (Ty N {va, 76 1)) U
{7} (Fo N ) u{(va, ™), (077, 87), (87, 077), (P71 ) })- ,

An abstraction of a child subnet results in a net where the child subnet is replaced
by a fresh transition. A triconnected (sub-) WF-net of N, denoted by w’, can be
obtained from w by abstracting all its non-trivial child subnets, introducing a
path from a fresh source place ¢ leading to wy, possibly through a transition, and
introducing a path from wp to a fresh sink place o, possibly through a transition.
*P1

p2 Ps3

Figure 7.9. Triconnected sub-WF-nets: (a) B1, and (b) R1

Figure 7.9 shows two triconnected sub-WF-nets that correspond to subnets B1
and R1 of the net in Figure 7.8(a). Note that the time to compute and space to
store all the triconnected sub-WF-nets of a biconnected WF-net is linear to the
size of the net.

163



7. Stepwise Connectivity-Based Verification of WF-nets

7.5.2. Soundness Verification Based on Triconnected Decomposition

In the following, we discuss how the triconnected sub(-WF-)nets can be used to
judge if a net behaves correctly. Similar to Section 7.4.2, we start by characterizing
separating sets of a net. However, in this case the sets are separation pairs. First,
we identify simple bonds that hint at a WF-net being unsound.

Lemma 7.10: [Pruning] Let (N, M;), N = (P,T,F), be a biconnected WF-system.
Let T = (2,9, x,7) be its 3-WF-tree, with a simple bond w € Q. If w is neither
PP-, nor non-loop TT-, nor non-loop TP-bordered, then (N, M;) is unsound.

Proof. Because w is a simple bond, it holds that all child subnets of w are sequences.
There exist eight classes of simple bonds that are based on two criteria: is the
bond a loop (ii) or not (i), and is the bond (a) PP-, (b) PT-, (c) TP-, or (d)
TT-bordered. Figure 7.10 visualizes all eight classes of simple bonds. In the figure,
each directed arc stands for n € N sequence subnets with entries and exits that
correspond to the source and target of the arc. Note that we always assume the left
node of a bond to be its entry node. Then, it trivially holds: If w is of class (i.b),
(ii.c), or (ii.d), then there is a dead transition in the WF-system. If w is of class
(ii.b), then there is a live-lock in the WF-system. In both cases, the WF-system is
not sound. Moreover, if at least one child subnet of w is trivial, then w cannot be
of class (i.a), (i.d), (ii.a), and (ii.d), due to the bipartite property of Petri nets.O

>Q‘"‘:o @ Q, O
Q :D o QO

o [0
D :|:| (@) |:LD

Figure 7.10. Simple bond classes

A biconnected WF-system is said to be pruned, if it is not identified by Lemma 7.10
as unsound. Pruning is applicable for general biconnected WF-systems, but
considers solely simple bonds. For the class of biconnected free-choice WF-nets,
we can even provide a complete characterization of bonds. This is due to the fact
that the free-choice property implies a tight coupling of the syntax and semantics
for sound WF-systems, cf., [131, 68]. In order to present the results, we recall
some definitions from [39].

Definition 7.11 (Circuit, Handle, Bridge).
Let N = (P,T,F) be a net.
o A path mn(x1,2) of N is a circuit, iff (xx,21) € F and no node occurs more
than once in the path.
o For a partial subnet N’ = (P",T',F") of N, a path 7y (z1,2x) (where all x;
are distinct) of N is a handle of N’ iff iy n (P’ uT’) = {x1, 2% }.
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o For two partial subnets N’ = (P, T', F"), N" = (P",T",F") of N, a path
wn(x1,xE) (where all z; are distinct) of N is a bridge from N’ to N” | iff
any N(P'uT")={z1} and iy n (P"uT") ={zx}. |

Note that we speak of PP-,TT-,PT-,TP- handles and bridges, depending on the

type (place or transition) of the start and the end node of the corresponding

path. Finally, the following two lemmas show that a bond of a sound biconnected
free-choice WF-system is either place or transition bordered, and that each loop is
place bordered.

Lemma 7.12: Let (N, M;), N =(P,T,F), be a biconnected free-choice WF-system.
Let Ty = (Q,%,x,7) be its 3-WF-tree, with a bond w € Q. If w is TP-bordered or
PT-bordered, then (N, M;) is unsound. X

Proof. Let N’ be the short-circuit net of N. Assume w is a bond with {p,t¢}
boundary nodes, p € P and t € T. There exists a circuit I" in N’ that contains
{p,t}. Let T, be a subpath of T inside w. There exists a child subnet ~y of w that
contains I',. A bond has at least two child subnets. Let ¥ be a child of w, 9 # ~.
We distinguish two cases:
o Let H be a path from p to t contained in 9. H is a PT-handle of I'. In a live
and bounded free-choice system, H is bridged to I'y, through a TP-bridge
K, see Proposition 4.2 in [39]. This implies that ¢ = v; otherwise bond w
contains path K that is not inside of its single child subnet.
o Let H be a path from t to p contained in 9. H is a TP-handle of T'.
In a live and bounded free-choice system, no circuit has TP-handles, see
Proposition 4.1 in [39]. Thus, (N, M;) is not a sound free-choice WF-system.
Therefore, w either has a single child subnet, in which case w is not a bond, or
(N, M;) is not a sound free-choice WF-system. o

Lemma 7.13: Let (N, M;), N =(P,T,F), be a biconnected free-choice WF-system.
Let T = (0,1, x,7) be its 3-WEF-tree, with a loop w € Q. If w is TP-bordered,
TT-bordered, or PT-bordered, then (N, M;) is unsound. "

Proof. Because of Lemma 7.12, w is either place or transition bordered. Assume
w is transition bordered. There exists a place p such that p € ewyq N P,,, M;(p) = 0.
Transition wy is enabled if there exists a marking M € [(N, M;)) with M (p) > 0.
Since w is a connected subnet, for all ¢t € T, \ {wq,ws} all edges are in w, i.e.,
(in(t) vout(t)) c F,,. Thus, every path from 4 to p visits wq. Thus, M(p) >0
if wyg has fired, was enabled before. We reached a contradiction. Transition wq
is never enabled and N is not live, and hence, not sound. Since any loop is not
transition bordered, it is place bordered. |

Finally, similar as in Section 7.4.2, we propose to organize the soundness verifica-
tion of biconnected WF-systems from individual checks of its sub-WF-nets, viz.
triconnected sub-WF-nets.

Theorem 7.14. Each triconnected sub-WF-net of a biconnected WF-net is safe and
sound, iff the WF-net is safe and sound. N
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Proof. By structural induction on the tree of the triconnected subnets; analogous
to the proof of Theorem 7.5. o

It suffices to show that at least one of the triconnected sub-WF-nets of a biconnected
WPF-net is not safe and sound in order to conclude that the net is not safe and
sound. The analysis discussed in this section can be performed in the time linear to
the size of a net and, hence, does not influence the overall complexity of soundness
verification.

7.5.3. Feedback on Unsoundness

.'_”_{i,o)
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v
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(a) (b)
Figure 7.11. (a) A short-circuit net of an unsound biconnected WF-net, (b) the 3-WF-tree

We illustrate the feedback given by our approach for the exemplary workflow net
depicted together with its 3-WF-tree in Figure 7.11. The workflow net is clearly
not sound. A first cause of unsoundness can already be identified in the pruning
step. Bond B2 caused by the separation pair {p4,ts} is a simple bond; all its
child subnets are sequences. Furthermore, this simple bond is PT-bordered. This,
in turn, contradicts with Lemma 7.10. Hence, the respective separating nodes,
i.e., place ps and transition tg, are returned to a process analyst as diagnostic
information. Figure 7.12(a) shows the triconnected sub-WF-net B2.

Figure 7.12. Triconnected sub-WF-nets: (a) B2, and (b) R1

Further on, the example given in Figure 7.11 also illustrates the kind of feedback
given once an unsound triconnected subnet is identified. Here, the triconnected sub-
WF-net R1 induced by the separation pair {*p1, p3} is not sound, see Figure 7.12(b),
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which according to Theorem 7.14 makes the whole net unsound. Observe that the
net in Figure 7.11(a) is free-choice. Therefore, the triconnected sub-WF-net R1 is
an additional cause for unsoundness and has to be corrected in order to ensure
soundness.

7.6. The 4-Connected Step

This section is devoted to soundness verification of rigid (triconnected sub-)WEF-
nets. The short-circuit net of a rigid WF-net contains no separation pairs. Still,
the net might contain separating sets composed of three nodes, which induce
4-connected components. Those might be leveraged for soundness verification.

7.6.1. 4-Connected Decomposition of a Triconnected WF-net

This section explains an approach for the discovery of the 4-connected subnets
in a triconnected WF-net. The authors are not aware of any existing dedicated
algorithm that can be directly applied. However, the discovery can be organized
by employing the technique from the triconnected step, see Section 7.5.1. The
4-connected subnets of a triconnected WF-net are detected as follows: First, a
node is removed from the net. This step is referred to as one-step connectivity
reduction. Afterwards, separation pairs of the modified net are discovered by
constructing its 3-WF-tree. The removed node and each separation pair captured
in the tree form a separating set composed of three nodes. The procedure should
be repeated for each node in the net.

Definition 7.15 (One-step connectivity reduction).
Let N = (P,T,F) be a rigid triconnected WF-net with source 7 and sink o.
o A node € PUT is a separation node, iff |e x| + |z o] > 2.
o Given a separation node x € PuT, a node y € PuUT is in the set of reduced
nodes T, iff y = x or there is a path 7y (z,y) or a path 7y (y,2) that does
not contain a separation node of N other than .
o Given a separation node x € P UT, the one-step connectivity reduction of
N by x yields a subnet N, = (P, T, F;) induced by nodes P, = P \ & and
T,=T~\12.
o A subnet N, derived via one-step connectivity reduction of N by =z is
well-reduced, iff its short-circuit net N, is strongly connected. j
The one-step connectivity reduction is illustrated in Figure 7.13. Figure 7.13(a)
depicts the short-circuit net of a rigid WF-net, while Figure 7.13(b) shows the
short-circuit of a subnet derived via one-step connectivity reduction by separation
node py. As the resulting net is well-reduced, its 3-WF-tree is computed, see
Figure 7.13(c).
The well-reduced subnets derived via one-step connectivity reduction can be
related to the structure of the original net.
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Figure 7.13. (a) A short-circuit net of a rigid triconnected WF-net, (b) an exemplary
one-step connectivity reduction of (a), and (c) the 3-WF-tree of (b)

Proposition 7.1: Let N be a rigid WF-net, N' its short-circuit net, and N, a well-
reduced subnet of N’ derived via one-step connectivity reduction. Each bond subnet
of N, contains a handle for a circuit in N'. N

Proof. Let w = (P,,T,, F,) be a bond subnet of N,. As N, is well-reduced, its
short-circuit net V., is strongly connected. Hence, N, has a circuit that contains
wq and wy. As w is of type bond, it has at least two node-disjoint paths between
wq and wp, where node-disjoint paths are paths with only end nodes in common.
One of these paths is a subpath for the circuit in N/, whereas the second one is
its handle. It trivially holds that the circuit is also the circuit in N'. O

7.6.2. Soundness Verification Based on 4-Connected Decomposition

For the class of free-choice nets, the 4-connected decomposition can be used to check
mandatory conditions for the soundness of a rigid triconnected WF-net. Soundness
of a free-choice WF-net can be decided using the Rank Theorem [22], which relates
the well-formedness property (there exists a live and bounded marking for the
net) to the incidence matrix of the net. According to [66], well-formedness and,
thus, soundness of a free-choice net can be decided in O(|P|?-|T|) time. Still, the
4-connected decomposition allows for more efficient checks of mandatory conditions
for soundness. Consequently, these checks might be applied before soundness is
assessed based on the Rank Theorem. The following lemma provides such a check
by partial structural characterizations of sound nets.
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Lemma 7.16: Let (N, M;) be a rigid free-choice WF-system and N, a well-reduced
subnet of N derived via one-step connectivity reduction. If N, contains a bond
that is non-loop TP-bordered or loop PT-bordered, then (N, M;) is unsound. .

Proof. Let w = (P,,T,, F,) be a bond subnet of N,. According to Proposition 7.1,
w induces a handle for a circuit in N. We distinguish two cases:
o w is non-loop TP-bordered. Then, the handle induced by w is a TP-handle.
o w is loop PT-bordered. For wq we know that either in(wq)n F, = @ or
out(wg) € F,,. The former is not possible as w is a loop. From the latter,
it follows that there is only one path 7y (wq,wp) in w. Thus, the handle
induced by w for a circuit in N (Proposition 7.1) is a path 7y (wpy,wq ), i.e.,
a path from the exit to the entry of w. As w is PT-bordered, this path is a
TP-handle.
In both cases, w induces a TP-handle for a circuit in N. According to Proposi-
tion 4.1 in [39], no circuit of a live and bounded free-choice net has TP-handles.O

In the same vein, an acyclic rigid subnet has to meet a structural requirement
in order to be sound. The following lemma applies to all free-choice biconnected
WF-nets and not only to those derived via one-step connectivity reduction from a
triconnected WF-net.

Lemma 7.17: Let (N, M;) be a biconnected free-choice WF-system. If N contains
an acyclic rigid subnet that is TP-bordered, then (N, M;) is not sound. N

Proof. Let w = (P, T, F,,) be a rigid subnet of N that is TP-bordered. Then,
there is a circuit in the short-circuit net N’ that contains both boundary nodes,
wq €T and wys € P. According to Menger’s theorem, cf., [87, 122], there are two
node-disjoint undirected paths from wq to w. As w is acyclic, all edges on these
paths are directed equally, yielding two paths 7} (wq,wp) and 73 (wq,wp ). Thus,
one of these paths is a TP-handle of the subnet containing the circuit. According
to Proposition 4.1 in [39], no circuit of a live and bounded free-choice net has
TP-handles. O

The application of the 4-connected decomposition allows for checking the manda-
tory conditions for soundness of a rigid free-choice WF-net in O(|P uT|?) time.
For each separation node in a rigid free-choice WF-net, we apply a one-step connec-
tivity reduction and derive the respective 4-connected components in linear time.
For these components, Lemmas 7.16 and 7.17 can be checked in linear time as well.
Consequently, this technique can be seen as a preliminary step that is applied
before the more costly assessment of soundness based on the Rank Theorem.

7.6.3. Feedback on Unsoundness

We illustrate the feedback given in case unsoundness is detected by 4-connected
decomposition with an example. Figure 7.14 depicts the short-circuit net of a rigid
triconnected WF-net similar to the one introduced above in Figure 7.13. However,
the net depicted in Figure 7.14(a) is not sound. The cause for unsoundness is
detected as follows: Applying the one-step connectivity reduction by separation
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node ps leads to the well-reduced WF-net depicted in Figure 7.14(b). For this
subnet, in turn, the triconnected decomposition is applied, which results in the
3-WF-tree illustrated in 7.14(c). The 3-WF-tree reveals that bond B2 is non-
loop TP-bordered. According to Lemma 7.16, such a bond violates a mandatory
condition for soundness of the WF-net. As diagnostic information, the respective
handle induced by this bond is presented to the process analyst. That is, the two
paths, one directly between ¢5 and p; nodes and one via the nodes pg, tg, ps, and
t7, identify the cause of the unsoundness.

(a) .'_”_(i,o) (b)

iP1:
. .l._ (P1.ps)
B1:
(prp) e\ ... (PsPY)
iP2: iP3:
_..|.._(t5:P7)

B2,

(c)

Figure 7.14. (a) An unsound short-circuit net of a rigid triconnected WF-net, (b) an
exemplary one-step connectivity reduction of (a), and (c) the 3-WF-tree of (b)

Feedback on unsoundness detected based on Lemma 7.17 can be provided in a
similar way. The entry and exit of an acyclic TP-bordered rigid subnet are cause
of unsoundness which must be corrected in order to ensure soundness. In fact, the
WF-net in Figure 7.14(a) contains a single TP-bordered rigid subnet with entry ¢;
and exit ps. However, the subnet is cyclic and, thus, in this particular case does
not hint at unsoundness of the WF-net.

7.7. Application

This section shows how the results presented above can be applied for the purpose
of soundness verification. Algorithm 8 formalizes the verification procedure that is
obtained by integrating the individual results proposed in Sections 7.4 to 7.6. The
algorithm specifies a predicate which takes a WF-net as input and returns true, if
the net is sound, and false, if the net is unsound. Note that Algorithm 8 does not
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formalize the way feedback is given in case of unsoundness; this was suppressed in
order to keep the formalization concise. As discussed above, feedback can directly
be given in terms of the elements that violate one of the necessary conditions for
soundness.

Algorithm 8: Connectivity-based soundness verification of a WF-net
Input: N — a WF-net
Output: true if N is sound; false otherwise

1 N'=(P',T',F") := Get short-circuit net of N
2 T2 = (B,C,p,n, &) := Get the tree of the biconnected subnets of N’
3 foreach c€C do if c €T’ then return false
4 areFC := areSound := true
5 foreach b e BB do
6 b* := Get normalized biconnected sub-WF-net of b
7 1sFC := true if b* is free-choice; false otherwise
8 areFC = areFC nisFC
9 T2 = (Q,1,x,7) := Get the tree of the triconnected subnets of b*
10 foreach w € () do
11 if (w is simple bond) A (w is PT-, loop TP-, or loop TT-bordered)
then return false
12 if areFC A (w is bond) A (w is PT-, TP-, or loop TP-bordered)
then return false
13 if areF'C A (w is rigid) then
14 if (w is acyclic) A (w is TP-bordered) then return false
15 foreach w’ gained from w by one-step connectivity reduction do
16 if W’ has bond that is non-loop TP-, or loop PT-bordered
then return false
17 w! := Get triconnected sub-WF-net of w
18 isSound := true if w* is sound (Rank Theorem); false otherwise
19 areSound := areSound A isSound
20 if areF'C A areSound then
21 ‘ return true

22 else Perform reachability graph analysis

First and foremost, Algorithm 8 comprises the biconnected decomposition of the
given WF-net along with the verification of the types of the respective cutvertices.
Afterwards, each biconnected sub-WF-net is decomposed into its triconnected
subnets. For those, the algorithm checks the necessary conditions for soundness in
the general case (types of boundary nodes of simple bonds). If these conditions are
met, further necessary conditions are checked if the respective net is free-choice.
This comprises checks for free-choice bonds, acyclic rigid subnets, and bonds
derived from rigid subnets via one-step connectivity reduction. Note that if all
these conditions are met but there are sub-WF-nets which cannot be handled by
the proposed theory, we cannot conclude on soundness directly. As our structural
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Figure 7.15. A WF-net

approach is not exhaustive, we have to incorporate
additional techniques which are capable of delivering
results in the general case. For the class of free-choice
nets we rely on the soundness verification based on
the Rank Theorem, see Section 7.6.2, whereas in the
general case we can get as exhaustive as performing
reachability analysis of a net, see Algorithm 8 (line
22). However, we see that for certain classes of nets,
i.e., nets that are free-choice and free of triconnected
rigid subnets, our checks are even sufficient.

For validation purposes, we have implemented the
verification approach that is proposed in Algorithm 8
and tested it against a collection of industry pro-
cess models; we have used a model collection that
was first used for the soundness verification in [41].
The model collection comprises 732 WF-nets, 375 of
which are sound and 357 are unsound. The authors
of [41] proposed soundness checking based on heuris-
tics and state space exploration for the triconnected
decomposition of (free-choice) process graphs and
also report on findings regarding the application of
other verification techniques, such as model checking
and coverability analysis. While the authors of [41]
show impressive results in terms of efficiency, the
results have been achieved under optimizations for
free-choice models. Here, our focus is different, as
we aim at the verification of a general class of pro-
cess models at the expense of completeness of the
verification.

When testing the aforementioned collection of WF-
nets for soundness, we observed the following results:
732 WF-nets contain 82 108 trivial, 26 818 polygon,
9 216 bond, and 553 rigid subnets. 256 WF-nets are
classified as sound. 138 bond subnets are the cause
of unsoundness (see Lemmas 7.10, 7.12, and 7.13).
56 rigid subnets are identified as the cause of un-
soundness via one-step connectivity reduction (see
Lemma 7.16), whereas 15 rigid subnets are classified
as acyclic TP-bordered (see Lemma 7.17). Moreover,
we have implemented heuristics for the soundness ver-
ification that are discussed in [147]. This allowed us
to additionally classify 29 rigid subnets as the cause
of unsoundness and 78 rigid subnets as ones that can
be present in sound WF-nets. These results show
that a large share of models can be indeed verified
by employing structural analysis only, among others
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the analysis proposed in this article, avoiding costly state space explorations. All
the checks are performed within few milliseconds, which is comparable with the
results reported in [41].

To illustrate the application of Algorithm 8, we refer to a fragment of a WF-net
from the model collection; the fragment is shown in Figure 7.15. The algorithm
classifies the net as unsound. According to the theory of this chapter, there are
several causes of unsoundness that can be discovered in the fragment. We highlight
them in the figure. The net contains two TP-bordered bonds Bl and B2 (see
Lemma 7.12), which are highlighted with black and, respectively, grey background
at the top of the figure. Moreover, the net contains TP-bordered acyclic rigid
R1 (see Lemma 7.17), see highlighted with black background in the middle of
Figure 7.15. Finally, rigid R2 is also the cause of unsoundness of the net, see
highlighted with grey background in the lower part of the fragment. The one-step
connectivity reduction of R2 reveals a TP-bordered bond (see Lemma 7.16); the
entry and exit nodes of the bond are depicted with a thick borderline in the
lower part of Figure 7.15. Subnets, entries and exits of subnets, bonds derived
via one-step connectivity reduction, these are examples of structural information
which can be reported to a process analysts as a feedback on unsoundness of the
WF-net.

7.8. Related Work and Conclusion

The verification approach proposed in this chapter relates to other works on the
verification of behavioral models.

o In [147], the authors propose to organize the verification of workflow graphs
from fragments that have a single-entry edge and a single-exit edge, i.e.,
(0,2)-connected subgraphs in our classification. Albeit related, this work
is based on the property of edge-connectivity, whereas our work leverages
node-connectivity, yielding a more fine granular decomposition. Soundness
checking based on heuristics and state space exploration for a triconnected
decomposition, or (2,0)-connected subgraphs, of a (free-choice) process
graph has been proposed in [41]. Our approach goes beyond this work by
embedding the idea of the triconnected soundness checking into a decomposi-
tion approach that allows for stepwise verification. In addition, we base our
findings on Petri nets as a generic behavioral model. Thus, our approach
is able to cope with the whole spectrum of constructs of common modeling
languages that can be mapped to Petri nets (e.g., exception handling in
BPEL processes), whereas the existing approaches rely on the specific notion
of a process graph. Note that [41] also reports findings on the application
of other verification approaches, such as LoLA and Woflan. LoLA is a tool
that is capable of checking various properties of a net by inspecting its state
space [158]. To increase efficiency, LoLA incorporates several techniques for
state space reduction. For the investigations in [41], the authors employed
CTL model checking and partial order reduction of LoLA. Woflan is a tool for
verifying the soundness of workflow nets [150]. Woflan combines structural
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Petri net reductions, S-coverability analysis, and state space exploration
based on coverability trees into the unique verification approach. Our ap-
proach can be used in combination with these, or any other verification
techniques, to deliver the divide and conquer strategy for verification of
behavioral models.

Verification of Petri nets can benefit from structural reductions. Reduction
rules are designed to transform a net into a smaller net while preserving
essential properties of the net. Reduction rules can be applied before ver-
ification to decrease effects of state space explosion. Berthelot proposed
a set of rules which reduce live and bounded marked graphs to a single
transition [8, 9]. Desel and Esparza, in [22], proposed a complete kit of
reduction rules for free-choice Petri nets. In [95], Murata presented reduction
rules which preserve the liveness, safeness, and boundedness properties of
ordinary nets. Reduction rules constitute a line of active research not only
for Petri nets, but also for models of concurrency which extend Petri nets.
The extensions aim at support of features included in process definition
languages such as BPMN, EPC, and UML activity diagrams. In [161], Wynn
et al. proposed soundness-preserving reduction rules for reset WF-nets.
Reset nets extend Petri nets with the concept of a reset flow. The seman-
tics of a reset arc that connects a place and a transition is to remove all
tokens from the place when the transition fires. Reset flow can be used to
model cancellation. The proposed reduction rules are based on the rules
for general nets and include additional restrictions with respect to reset
arcs. By employing formal mappings of YAWL nets to reset nets, the same
authors presented soundness-preserving reduction rules for YAWL workflow
nets with cancellation regions and OR-joins [160]. Based on these rules,
the authors devised an approach to check structural properties of YAWL
nets, such as the weak soundness property, the soundness property, reducible
cancellation regions, and convertible OR-joins. Finally, in [149], the authors
defined a set of reduction rules which preserve the liveness and boundedness
of reset/inhibitor nets. Reset/inhibitor nets are reset nets with the concept
of an inhibitor flow. An inhibitor arc from a place to a transition can prevent
the transition from being enabled if the place contains a token. Inhibitor
arcs are useful when modeling blocking.

Further related work comprises inheritance preserving transformation rules
for WF-systems defined by Wil van der Aalst and Twan Basten [132]. The
rules are designed to avoid problems when migrating old workflow systems
to new ones. When employed, the rules restrict changes in such a way
that new workflow systems inherit certain properties of the old workflow
systems. The rules can be applied in two directions, i.e., to reduce or to
specify a workflow system. The transformations guarantee the preservation
of the soundness property. Albeit similar, these transformation rules are
different from the approach proposed in this chapter. As our focus is solely
on the verification of workflow systems, our structural implications on the
soundness property are more general. For instance, our approach is not
restricted by the class of safe workflow systems but is applicable for general
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workflow nets. Moreover, we additionally describe generic structural patterns
which hint at unsoundness of workflow systems, e.g., a transition cutvertex,
see Lemma 7.4. These patterns allow us to formulate feedbacks in cases
of unsoundness. Finally, the particular feature of our approach is that it
includes instructions for identification of all needful (vertex connectivity-
based) structural patterns within a workflow system, i.e., patterns which
can confirm or reject soundness.

o In [131], Wil van der Aalst exploited the hierarchical concept of transi-
tion refinement for checking soundness of workflow systems. Similarly, the
approach reported in this chapter deals with the modular analysis of the
soundness property. In particular, we have investigated an efficient way for
modularization of workflow nets for the purpose of their further verification.
During our investigations we reused some of the results on compositionality
of workflow nets which were reported in [131].

In this chapter, we have investigated the relation between the connectivity
property of a workflow net and its behavioral correctness in terms of the soundness
property. We showed that the soundness verification can be conducted following
on a stepwise decomposition of a workflow net. For all the decomposition steps,
we presented the necessary structural conditions for detecting unsoundness. We
showed how our results are applied as a part of a verification procedure and tested
these results against a collection of industry process models. During our tests,
we observed the application of all formal results on the detection of unsoundness
introduced in this chapter.

Despite the large body of related work on the formal verification of process
models, we are not aware of any work that employs the connectivity property
as an angle to their structural analysis in a systematic way. As shown in this
chapter, stepwise decomposition based on connectivity is an effective and efficient
way to address verification. Even though recent work showed impressive results in
terms of soundness checking efficiency [41], the results have been achieved under
optimizations for free-choice models. Our approach of stepwise decomposition,
in turn, provides the foundations to tackle general classes of behavioral models.
By employing the decomposition, we realize a divide and conquer verification
strategy that can be combined with existing verification techniques to achieve
a higher level of maturity in solutions to the problem of behavioral verification.
For instance, our decomposition strategy can be combined with the works on
reduction and inheritance rules to guide the application of these rules. While the
decomposition is created using low-complexity algorithms, diagnostic information
in case of unsoundness is provided as well.

A convenient property of a set of reduction rules is that of completeness. Com-
pleteness guarantees that a net can always be reduced with the help of the reduction
rules to another smaller net which hints at certain interesting property of the
net, e.g., liveness, boundedness, or soundness. The completeness of a set of re-
duction rules is a well-known problem, e.g., all of the above mentioned sets of
rules are incomplete when applied to nets of an arbitrary structure. Moreover,
given a set of rules, it is a challenge to decide in which order these rules must be
applied to obtain the smallest reduced net, i.e., a net in which effects of the state

175



7. Stepwise Connectivity-Based Verification of WF-nets

space explosion problem, when checking a property of interest, are decreased the
most. We advocate the usage of a conceptually different approach. Instead of
contributing to the interminable search for a complete set of specific reduction rules,
we operate with a set of generic rules which are defined using the connectivity
property of graphs. We always operate with complete sets of rules which have
common structural characteristics (regardless of the net topology). Additionally,
the connectivity property allows us to learn compositional structure of a net which
suggests potential orders in which rules can be applied. Therefore, instead of
searching for structural transformations which preserve an interesting property of
a net, we check if this property can be deduced from a set of all subnets of the
net; the subnets have common connectivity characteristics and collectively build
up the net.

The results reported in this chapter have shown the usefulness of the connec-
tivity property when checking soundness of WF-nets; the results range from the
observation on cutvertices for the general class of nets to unique feedback on
unsoundness for free-choice nets. We foresee the generalization of these results
and introduction of new results for k-connected subnets as future steps.
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In this brief chapter, we reuse all the experience which we gained in the course
of this thesis when working with the connectivity property of graphs and intro-
duce the connectivity-based decomposition framework — a systematic approach
for learning the compositional structure of behavioral models. This framework
is developed as the generalization of the principles for the connectivity-based
decomposition of behavioral models which we employed in Chapter 3 and Chap-
ter 7. The connectivity-based decomposition framework defines a research agenda
for developing new and improving existing methods which are founded on the
structural decompositions of behavioral models.

The ideas presented in this chapter are published in [105, 115].
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8.1. About this Chapter

Behavioral models, as addressed in this thesis, are annotated directed graphs with
precise execution semantics. Graphs are mathematical objects with structural
characteristics. Process analysts employ structural properties of graphs to formalize
temporal orders of tasks in behavioral models. An interesting research aspect is
the relation between the temporal relations of tasks in a behavioral model and the
structural characteristics of the underlying graph.

In this thesis, we used the connectivity property of graphs when developing
methods for parsing and analyzing behavioral models: In Chapter 3, we used
the tree of the triconnected components of a behavioral model to discover all
its canonical fragments. In Chapter 7, we used biconnected, triconnected, and
4-connected decompositions of WF-nets to derive conclusions about correctness,
i.e., soundness, of the nets. The results for parsing behavioral models are employed
when abstracting and structuring process models in Chapter 4 and Part 11T of this
thesis. Furthermore, the results for the soundness verification of WF-nets can be
reused when checking correctness of process models prior to their structuring.

The lesson learned from the above investigations is that connectivity-based
decompositions can be employed to discover the compositional structure of be-
havioral models. Decompositions deliver information on separating elements of
a model, its disconnected subgraphs, and structural relations between these sub-
graphs. This information can be used to define divide and conquer algorithms on
behavioral models, as e.g., in Chapter 7. Moreover, individual decompositions can
be composed into strategies (sequences of decomposition techniques), such that
every discovered subgraph, due to some decomposition, gets decomposed again by
the next technique from the sequence.

Different connectivity-based decomposition techniques stem from different con-
figurations of elements, e.g., two vertices for the triconnected decomposition, that
get removed in order to disconnect a (sub)graph. Every unique configuration
results in a unique decomposition technique which can be employed to unveil
unique structural characteristics of a graph. In this chapter, we utilize the lessons
of previous chapters and propose a connectivity-based decomposition framework
for behavioral models — a set of recommendations for composing decomposition
strategies for behavioral models. The main idea of the framework is to decompose
behavioral models in a way which allows the gradual discovery of subgraphs of
higher connectivity. Please note that the framework does not provide precise
instructions but rather gives suggestions on organizing decomposition strategies.

The next two sections revisit the connectivity property and the principles of
the connectivity-based decomposition of graphs. The framework is described in
Section 8.4. The chapter is wrapped up with the conclusion in Section 8.5.

8.2. Graph Connectivity Revisited

The classical concept of graph connectivity is based on the notion of graph elements,
both vertices and edges. Recall from Section 3.2:
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An (undirected) (multi) graph is k-connected if there exists no set of k —1
elements, each a vertex or an edge, whose removal renders the graph
disconnected. The connectivity of a graph is the largest k for which the
graph is k-connected.

A 1-connected graph is often called connected. A graph is disconnected if there
exists no path between some pair of elements of the graph. The notion of a path
must ignore edge directions and can be seen as a sequence of alternating vertices
and edges visited along a walk through the graph, where every two subsequent
elements in the sequence are incident. Please also recall from Section 3.2 the
following: Removal of a vertex from the graph implies removal of all the edges that
are incident with the vertex. A graph composed of a single vertex is connected. A
complete graph that is composed of n vertices, n > 2, is said to be (n—1)-connected.

So far in this thesis we employed the vertex connectivity — the connectivity
property based on vertex removals only, see Chapter 3 and Chapter 7. One can
certainly speak of “pure” vertex (or edge) connectivity.

The vertez (edge) connectivity of a graph is the largest k for which there
exist no set of k-1 vertices (edges) whose removal renders the graph
disconnected.

An important result in graph theory is that for an arbitrary graph, it always
holds that its vertex connectivity is less than or equal to its edge connectivity [23].
Intuitively, the above holds true, as the removal of an edge, when testing the edge
connectivity, can be substituted by the removal of an incident vertex.

In order to pursuit for a more fine grained control of the connectivity property
of graphs, we suggest to consider both vertices and edges, but insist on a clear
distinction between vertex and edge removals. In the general case, one can speak
about (v, e)-connectedness of a graph.

An (undirected) (multi) graph is (v,e)-connected if there exists no set of
v vertices and e edges whose removal renders the graph disconnected.

We exemplify all the above described concepts with
the graph in Figure 8.1. The graph is 1-connected,
not 2-connected and, hence, the connectivity of the
graph is 1. The graph is connected if no elements are
removed from the graph and becomes disconnected
if vertex v gets removed. The vertex connectivity
of the graph, as explained above, is 1. At the same
time, the edge connectivity of the graph is 2. The Figure8.1. An undirected graph
graph cannot be disconnected by the removal of a
single edge, but requires the removal of at least two edges, e.g., {e1,ea} or {e4,e5}.
Finally, the graph in Figure 8.1 is clearly (0,0)-connected (it is connected if no
elements are removed), but also (0, 1)-connected.

In the next section, we shall employ the (v,e)-connectedness to revisit the
connectivity-based decomposition principles of graphs.
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8.3. Connectivity-Based Decomposition Revisited

The idea of the intended framework is to guide the decomposition of a behavioral
model by stepwise varying the size of the set of elements that is used to disconnect
the model (underlying graph). Prior to the introduction of the framework, in
this section, we revisit the principles of the connectivity-based decomposition of
graphs.

Trivially, one can perceive that a (v,e)-connected graph is not necessarily
(v+1,e)- or (v,e+ 1)-connected. For instance, the (0,1)-connected graph in
Figure 8.1 is neither (0,2)-connected, nor (1,1)-connected; the elements that
make the graph disconnected are, for instance, {e1,es} or {e1,v3}, respectively.
Clearly, if the graph stays connected after the removal of any v + e elements, it
might get disconnected after the removal of some v + e + 1 elements. However, the
graph in Figure 8.1 is also not (1,0)-connected; vertex vz alone — when removed —
disconnects the graph. Due to the fact that the vertex connectivity is always less
than or equal to the edge connectivity of a graph [23] (see the discussion in the
previous section), it holds that a (v, e)-connected graph is not necessarily (v+1, f)-
connected, where f < e, or (v,e+1)-connected. Note that this rationale only makes
sense under the assumption that — when iteratively testing the connectedness of
a graph — one increases the number of either vertices or edges by exactly one
element, which supports our intention to organize the stepwise decomposition of
graphs.

(0,0) (0,0)

o

(1,0) 0,1
o
(2,0) 1.1 (0,2)
o o
(1.2)
(3,0 (2,1) (0,3)
o

(a) (b)

Figure 8.2. Guidelines for defining strategies when testing connectedness of graphs

A naive approach for testing the (v, e)-connectedness of a graph can proceed
by iteratively removing v vertices and e edges from the graph, for each such
combination, and checking if the resulting graph is connected. Once it is known
that a graph is (v,e)-connected, it can be challenged for being even “better”
connected. A sequence of graph connectedness checks forms a strategy.

Figure 8.2 visualizes the principles for composing strategies for iteratively testing
graph connectedness. In Figure 8.2(a) and Figure 8.2(b), every point represents a
connectedness property. For instance, point (0,0) represents the (0,0)-connected
property of a graph. Every arc encodes the next property to be checked. For
example, assume that we examine a graph which we know is (0,0)-connected; this
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corresponds to the topmost point (0,0) in Figure 8.2(a). Knowing this, as the next
step, we suggest to test the graph for being (1,0)- or (0,1)-connected (follow the
arcs in Figure 8.2(a)). Therefore, Figure 8.2(a) can be interpreted as a guideline for
defining strategies where (v, ¢)-connected graphs are suggested to be evaluated for
being (v + 1,e)- or (v, e+ 1)-connected. In addition to Figure 8.2(a), Figure 8.2(b)
shows that a graph of a certain connectedness, in particular a (0,2)-connected
graph, can be tested not only for being (1,2)- or (0,3)-connected, as already
visualized in Figure 8.2(a), but also for being (1,0)- or (1,1)-connected, see the
dashed arrows in the figure.

A not (v,e)-connected graph can be disconnected by removing v vertices and
e edges, which gives a rise for a decomposition of the graph. The disconnected
subgraphs of a graph — either with, or without the removed elements — are the
products of a decomposition. A (v, e)-decomposition of a graph is a collection of
graph subgraphs obtained by disconnecting the graph when removing v vertices
and e edges; the subgraphs must be collected over all possible removals of v
vertices and e edges. The notion of a strategy that we proposed for iterative
tests of connectedness can as well be used to guide graph decompositions. A
(v, e)-connected graph (represented by point (v,e) in Figure 8.2) can be (z,y)-
decomposed, where (z,y) is the point in the figure that can be reached from point
(v,€e) by following on only one directed arc. Several decomposition steps form a
decomposition strategy.

(0,0) (0,0)
(0,1) (1,0) (0.1)

(1.1
(0,2) (2,0) (0,2)

(1.2) (0,3) (3,0) 2,1 (1,2) (0,3)
[ ) o o ([ J

(a) (b)

Figure 8.3. (a) Decomposition strategy for soundness verification from Chapter 7, and (b)
the (0,0),(1,0),(1,1) decomposition strategy

In Chapter 7, we employed the (0,0),(1,0),(2,0),(3,0) strategy to organize the
soundness verification of WF-nets; the strategy is visualized in Figure 8.3(a). Point
(0,0) is a starting point (all WF-nets are connected). Points (1,0), (2,0), and
(3,0) correspond to decompositions employed at the biconnected, the triconnected,
and the 4-connected steps, respectively, see Sections 7.4-7.6.

Figure 8.3(b) shows the decomposition strategy which proposes to start de-
composing graphs by first removing a single vertex and afterwards to decompose
derived subgraphs by removing one vertex and one edge. The strategy is exem-
plified in Figure 8.4 where we decompose the graph in Figure 8.1. Figure 8.4(a)
shows the result of (1,0)-decomposition. The graph gets decomposed into two
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subgraphs by removing vertex vs. Figure 8.4(b), Figure 8.4(c), and Figure 8.4(d)
show disconnected subgraphs obtained by removing one vertex and one edge from
the subgraphs in Figure 8.4(a); the removed elements are {v1,e3}, {vs, €2}, and
{vs,e1}, respectively. Please observe that in Figure 8.4(a) we preserved vertex
v, whereas in other figures we completely removed the separating elements. A
sequence of decisions along a decomposition strategy, on either to preserve or to
remove the separating elements, can be seen as a property of the strategy.

(v) (v) O ©

@ 95 @ @ ®
)

(a) (b) (c (d)

Figure 8.4. Decomposition strategy exemplified

The graph in Figure 8.1 can be decomposed by following different decompo-
sition strategies. For example, after the (0,0) starting point, one can start by
verifying that the graph is (0, 1)-connected and, afterwards, continue with either
(1,1)- or (0,2)-decomposition. Every decomposition strategy results in different
decomposition products, i.e., artifacts that unveil unique structural characteristics
of the initial graph. We encourage the reader to try out different decomposition
strategies as an exercise.

8.4. Decomposition Framework

After revisiting the notion of graph connectivity in Section 8.2 and the principles
of the connectivity-based decomposition of graphs in Section 8.3, in this section we
propose a framework to guide the connectivity-based decompositions of behavioral
models. We believe that our framework can serve as a basis for the systematic
structural analysis of behavioral models and can be of great help when developing
new or rethinking existing methods which are founded on structural decompositions
of behavioral models. Essentially, the framework accumulates the experience on
the techniques for decomposing behavioral models that was gained in the course
of this thesis, and is designed to promote certain decomposition strategies while
suppressing the others.

Figure 8.5(a) shows the complete guidelines for testing connectedness/defining
decomposition strategies of graphs, which follow the principles discussed in the
previous section. The connectivity-based decomposition framework defines different
priorities among all possible decomposition strategies, which are encoded by all
possible paths in Figure 8.5(a). The framework is depicted in Figure 8.5(b). Just
as before, points represent the connectedness property of graphs and arcs suggest
which decompositions can be performed on graphs of a certain connectedness.
For all decomposition strategies, we propose to give preference to those which
are composed using vertex-based decompositions (refer to the left-most path in
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(0,0) (0,0)

(a) (b)

Figure 8.5. (a) Guidelines for defining decomposition strategies following on the principles
described in Section 8.3, and (b) connectivity-based decomposition framework

Figure 8.5(b)). Such strategies stimulate the subgraphs to be discovered “faster”,
i.e., by performing less decomposition steps, and “finer”, i.e., by discovering more
subgraphs. This claim is supported by the experience gained when working
on the algorithm for construction of RPST, where we used the vertex-based
decomposition to discover all canonical fragments. However, in the situations when
it is absolutely important to achieve granularity on the level of edges, we suggest
deviating from the main strategy only once by switching from the vertex-based to
the edge-based decomposition strategy. At the next level of priority we place those
decompositions that are captured by the arcs shown in Figure 8.5(a), but not
drawn in Figure 8.5(b). Finally, the lowest priority is assigned to decompositions
that violate the principles of Section 8.3, e.g., a (0,2)-connected graph can be a
subject for the (2,0)-decomposition.

So far, in this chapter, we assumed that all decompositions are carried out for
undirected graphs. Behavioral models, like BPMN models, EPCs, WF-nets, or
process models, are formalized as directed graphs. Edge directions are irrelevant
for the purpose of the connectivity-based decompositions. However, edge directions
become useful when classifying boundary nodes, i.e., nodes that reconnect discon-
nected subgraphs with the rest of the graph, as entries or exits. The classification
can be accomplished using Definition 3.2.

Much of research was carried out by the compiler theory community to gain
value from (2,0)- and (0, 2)- decompositions of directed process graphs [124, 62]
(for an elaborate discussion of these works please refer to Section 3.5). The
subgraphs derived during (2,0)- and (0,2)- decompositions of directed graphs
form hierarchies of SESE fragments. In our work, the (2,0)-decomposition plays
a vital role in the algorithm for the construction of RPSTs, see the tree of the
triconnected components in Section 3.2.3 and its role in Chapter 3.

A (v, e)-decomposition, where v+e > 3, allows one to decompose highly connected
graphs into multi-entry-multi-exit (MEME) subgraphs, with up to v + e entries
and exits. For reasonable (v,e) combinations, i.e., when v + e is sufficiently small,
it is possible to perform decompositions in low polynomial-time complexity. For
example, as explained in Section 7.6, the (3,0)-decomposition of a (2,0)-connected
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graph can be accomplished by removing a vertex from the graph and afterwards
running the (2,0)-decomposition, for which the linear time complexity algorithm
exists [48]. Each discovered separation pair of vertices, together with the earlier
removed vertex, form a separating triple of the initial graph. The procedure
should be repeated for each vertex in the graph. Hence, a square-time complexity
decomposition procedure can be obtained. Following the described rationale,
one can accomplish (v, 0)-decomposition of a graph in O(n*~!) time, where n is
proportional to the size of the graph.

8.5. Conclusion

In this chapter, we proposed a connectivity-based decomposition framework for
behavioral models. As already mentioned in the preamble to this chapter, we
understand the connectivity-based decomposition framework as the research agenda
for methods which are founded on structural decompositions of behavioral models.
The framework is composed of a set of recommendations on how to organize
stepwise decompositions of behavioral models. It should be treated as guidelines
for performing decompositions when improving existing or creating new methods
that relate to the structure theory of behavioral models. The framework suggests
giving the priority to the vertex-based decompositions over the edge-based ones.
In those situations where one absolutely requires the granularity of the edge-based
decompositions, the framework recommends composing strategies in a way that
one never switches from the edge-based decompositions back to the vertex-based
ones. The framework hints at the fact that decomposition strategies can also be
composed of arbitrary decompositions which are arbitrarily ordered; however, such
strategies are assigned the lowest priority by the framework.

The connectivity-based decomposition framework provides a convenient mecha-
nism for categorizing techniques which are based on the structural decompositions
of behavioral models. For example, the RPST algorithm in Chapter 3 is based on
the (1,0), (2,0) strategy, whereas the verification technique in Chapter 7 benefits
from the (0,0),(1,0),(2,0),(3,0) strategy. Furthermore, the framework suggests
that, for instance, the verification technique in Chapter 7 can be extended by
first looking at (4,0)- or (3,1)- decompositions of (3,0) connected subgraphs,
or one can decide to try with generalizing verification results for the family of
(v,0)-decompositions. Finally, in order to achieve completeness when document-
ing decomposition strategies, individual decompositions can be annotated with
additional properties, e.g., in the case of the soundness verification technique in
Chapter 7 these properties are the descriptions on how subnets of a WF-net get
transformed into sub-WF-nets prior to feeding them in for the next decomposition.
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This chapter concludes the thesis: Section 9.1 summarizes the main contributions of
the thesis; mainly, these are the techniques for structuring process models, but also
those for parsing, abstraction, and verification of behavioral models. Afterwards,
Section 9.2 lists open problems and research opportunities for proceeding with
the research started in this thesis. Finally, Section 9.3 provides with references to
implementations of the core results of the thesis.
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9.1. Contributions of this Thesis

In this section, we once again name and give a brief summary of each of the main
contributions of the thesis at hand.

Structuring Process Models

The core contribution of this thesis is a collection of techniques for structuring
process models. Every single technique addresses the structuring of a specific
class of process models (process components), and collectively these techniques
cover the complete spectrum of the structuring problem. Individual structuring
techniques address: structuring of acyclic process models, maximal-structuring of
inherently unstructured acyclic process models, structuring of multi-source and/or
multi-sink acyclic process models, and structuring of process models with cyclic
paths.

Similar to other related works, this thesis confirms that not every process
model can be structured and provides a characterization of the class of inherently
unstructured process models. Therefore, given an unstructured process model as
input and by using the results of this thesis, one is able to answer the question if
the process model has an equivalent well-structured version, and, if the answer to
this question is “yes” — one can construct the well-structured version of the input
process model.

Proper Prefixes and Ordering Relations Graphs

The ideas presented in this thesis build upon and reuse techniques from several
fields. The theories that we make the most use of are the graph theory, the theory
of two-structures, the compiler theory, and the theory of distributed systems. One
perspective on our results on structuring can be that they stem from a unique
combination of standard techniques from different domains. Fundamentally, we
showed how the semantics of distributed systems can be described in terms of
graphs, or two-structures, and how one can benefit from this new representation.
Along the path to this observation we defined the notion of the proper complete
prefix unfolding. Proper complete prefix unfoldings are constructed by applying
the new (restricted) criterion for truncating complete prefix unfoldings. This
criterion is introduced in order to gain smooth round-tripping between the Petri
net semantics and the partial order semantics of distributed systems. We also
showed how the partial order semantics of a distributed system can be captured
in a two-structure and consequently a graph. With this understanding in place,
we were able to apply standard techniques to implement structuring of process
models.

The notions of the proper complete prefix unfolding and the ordering relations
graph are at the core of the proposed techniques for structuring process models.
We believe that they can find their use in many other applications.
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Parsing, Abstraction, and Verification of Behavioral Models

Along our research path towards the proposed structuring techniques, we worked on
algorithms for parsing, abstraction, and verification of behavioral models. Parsing
is a technique for discovering the compositional structure of behavioral models.
This structural information can be of great use in various applications, but mainly
to define divide and conquer algorithms aimed at the analysis of behavioral models.
We used parsing to propose abstractions of process logic in behavioral models;
parts of a behavioral model with clear interfaces get captured in subprocesses,
which brings the original model to a higher abstraction level. Finally, we reused
the experience on structural analysis of behavioral models gained when working
on parsing and abstraction to propose the stepwise technique for verification of
WF-nets. WF-nets get gradually decomposed by removing their nodes. Artifacts
obtained along a decomposition of a WF-net are then used to judge the soundness
of the net. All the above mentioned results are reported in the thesis.

We used parsing and abstraction of process models for modularization of the
structuring problem; many secondary details can be abstracted away in process
models so that one can concentrate on the essentials of structuring. The results of
verification can be applied prior to structuring; indeed, process models that are
provided for structuring must be sound. Despite how much we enjoy structuring,
it is abundanly clear that the results on parsing, abstraction, and verification of
behavioral models can be reused in many other contexts as well.

Connectivity-Based Decomposition Framework

In this thesis, we proposed the connectivity-based decomposition framework. The
framework must be understood as a collection of high-level recommendations for
proceeding with structural decompositions of behavioral models. The recommen-
dations were accumulated in the course of the work on this thesis as lessons learned
from employing structural decompositions for various applications in various con-
texts. The framework suggests which decompositions can be applied to a given
behavioral model in order to observe more structural information about the model
with the lowest computational effort. It is then left to a researcher to decide which
decomposition strategy to choose for a model within the framework and how to
benefit from obtained information; such decisions must be carried out based on the
concrete problem at hand. The framework provides a convenient mechanism for
documenting and thus comparing scientific results which are founded on structural
decompositions of behavioral models.

9.2. Open Problems and Research Opportunities

In this work, not all aspects of the structuring problem were discussed at a sufficient
level of detail. This section lists open problems and research opportunities which
aim at improvements of the results proposed in this thesis, as well as states
those opportunities that are inspired by this thesis. The target of the ideas
is the generalization of applicability of structuring techniques, as well as their
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optimization. We believe that advancements in the following areas can contribute
considerably to the overall knowledge of the management of distributed systems.

Complex Gateway Types

Process models orchestrate tasks by means of xor and/or and gateways. One possi-
bility for generalization of our structuring techniques comes from the introduction
of complex gateway types (other than zor and and) in process models.

For instance, the proposed structuring techniques do not apply to process models
with or gateways, except in the case where or gateways appear at the boundaries
of a bond. We assume the semantics of or gateways from [136, 120], i.e., or splits
correspond to Multi-Choice and or joins correspond to General Synchronizing
Merge control flow patterns. According to [120], an or split describes a point in
the process where a branch diverges into two or more branches such that when the
incoming branch is enabled, the thread of control is immediately passed to one
or more of the outgoing branches based on a mechanism that selects one or more
outgoing branches, whereas an or join represents the convergence point of two
or more branches which diverged earlier in the process into a single subsequent
branch so that the thread of control is passed to the subsequent branch when
either (i) each active incoming branch has been enabled or (ii) it is not possible
that any branch that has not yet been enabled will be enabled at any future time.

When or gateways are present inside a rigid component, we believe that the
structuring problem becomes conceptually similar to the problem of transforming
a process model with or gateways into an FCB-equivalent process model with xzor
and and gateways only, so that the unfolding techniques can be applied.

For the comprehensive list of complex gateway types which can be used to
generalize our notion of a process model please refer to [136, 120].

Canonical Process Models

A process can be seen as a partial order of tasks (transitions of a corresponding
net). Process models describe processes as compositions of tasks by means of
gateways and control flow arcs. An interesting theoretical problem to investigate
is discovering the minimal set of tasks that can be composed in a process model
which describes the same process as a given model. A process model with the
minimal set of tasks can be seen as the canonical version of the given model. Tasks
in canonical process models can be treated as having unique names (even if two
tasks share the same name, e.g., two tasks with name a can be treated as being
named a; and az, where a; and as are semantically the same as a).

We envision that the canonical version of a given process model can be con-
structed by first unfolding and afterwards refolding the input process model, by
following the principles similar to those described in Section 6.1 and Section 6.2.
The unfolding step can be implemented as the computation of the complete prefix
unfolding, which is finite for bounded systems (even for systems with cyclic paths).
The folding step can be implemented similar as in Section 6.2.6 and Section 6.2.7;
the modifications of the technique may stem from the necessity to preserve certain
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properties in the folded nets. The properties to be preserved are the subject for
future investigations.

It is worth pointing out that spurious control flow relations in unstructured
process models may forbid their structuring. However, these relations can be
suppressed in the canonical version of an unstructured process model prior to
structuring. We envision that the canonical version of an unstructured process
model can sometimes be well-structured.

Unfolding Free-Choice Systems

All the techniques for structuring process models proposed in this thesis, see
Chapter 6, subsume the technique for the construction of proper prefixes for net
systems. The running time to compute the complete prefix unfolding of a safe
system, and hence to compute its proper prefix, has an upper bound of O(|T|- R),
where T is the set of transitions, R is the number of reachable markings, and &
is the maximal size of the presets or postsets of the transitions in the originative
system [38]. Note that the number of reachable markings of a net system is in the
worst case exponential to the number of nodes and flow edges in the net. As all
other structuring steps can be accomplished in polynomial or linear time to the
size of the net, the construction of proper prefixes is the computational bottleneck
of our structuring techniques.

Please recall that the semantics of process models is defined by means of a
mapping to free-choice nets, see Section 2.5.2. For structuring, we require process
models to be correct, i.e., sound and, hence, safe. Consequently, when structuring,
we always operate with safe free-choice systems. The class of safe free-choice
systems is the subclass of safe systems. Therefore, one can reasonably expect that
the upper bound for computing proper prefixes of safe free-choice systems can be
lower than O(|T|- R®). Proving this claim holds true would imply the discovery of
a new and faster algorithm for computing proper prefixes and, thus, speeding up
all our process model structuring techniques.

Cyclic Structuring

In Section 6.4, we sketched a technique for structuring process models with
arbitrary cyclic paths. The technique relies on a conjecture that the proper prefix
of a sound free-choice WF-system is finite, and a sketch to the proof for the fact
that in the rewired proper prefixes concurrency is kept encapsulated.

Proper prefixes of acyclic net systems are clearly finite. However, in the case
of cyclic net systems it must be shown that every run of a system terminates,
either at conditions that correspond to sink places of the net or at a healthy cutoff
event. Moreover, further work is required to gain a better understanding of formal
properties of rewired proper prefixes. In our future work, we plan to conduct a
formal investigation in support of our intuitive description of the technique for
structuring cyclic process models.

We believe that the theory of net system unfoldings, and in particular the proper
complete prefix unfoldings, can be of great use in many methods dealing with
the management of distributed systems. In our opinion, the role of unfoldings is
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still greatly underestimated by research communities that specialize on studies of
distributed systems.

Soundness of Multi-Source and/or Multi-Sink Nets

In Section 6.3, we proposed a technique for structuring multi-source and multi-sink
process models. As a prerequisite to structuring, we require process models to be
correct, i.e., free from deadlocks and lack of synchronizations. In Section 6.3.3,
we proposed to organize correctness checks of acyclic multi-source process models
based on unfoldings of the augmented versions of the corresponding nets. An
acyclic net with multiple source places and/or multiple sink places gets augmented
to a net with a single source place so that the fresh nodes and arcs of the net
encode all possible instantiations of the original net. One can then use the finite
unfolding of the augmented net to conclude on the correctness of the originative
process model.

An engineering challenge is to lift the results on process model correctness checks
discussed above from unfoldings to (proper) complete prefix unfoldings. In order to
accomplish this task, one must account for unfolding truncations at (healthy) cutoff
events when adjusting the checks that were initially proposed for unfoldings. The
solution to this challenge can result in improvements to our structuring techniques:
(i) The correctness checks of multi-source and multi-sink process models and the
construction of the proper complete prefix unfolding (required for structuring) can
be performed simultaneously. (ii) One can perform soundness checks of cyclic nets
based on finite (proper) complete prefix unfoldings and, thus, organize structuring
of cyclic multi-source and multi-sink process models by combining ideas from
Section 6.3 and Section 6.4.

On-Line Structuring Optimization

In the conclusion to Chapter 6, we briefly mentioned two heuristics for optimizing
the structuring of process models. Both optimization techniques must be applied
during the construction of the proper prefixes. In the following, we elaborate more
on each of these techniques:

o The decision between continuing to work with an unstructured process
model or to switch to its well-structured version is sometimes made based
on the amount of task duplication in the structured process model. If the
task duplication ratio is high, then it can be preferable to stay with the
initial unstructured process model. The task duplication ratio is dictated
by the amount of events in the proper prefix — those that correspond to
observable transitions in the originative system. During construction, events
are appended to the proper prefix iteratively. This construction principle
leaves opportunity for optimization; the whole structuring algorithm can
be halted if the duplication ratio of events that correspond to observable
transitions gets larger than the predefined threshold.

o A rigid process component is inherently unstructured if and only if the
modular decomposition of its orgraph contains a concurrent primitive, see
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Section 6.1. As an optimization we foresee that the condition above can
be verified on-line, i.e., during the construction of the proper prefix. More
precisely, we believe that the fact that the orgraph contains a concurrent
primitive can be verified based on the structure of the proper prefix each
time a new event is appended to the branching process. We think that
the existence of a concurrent primitive in the MDT of the orgraph can be
checked by exploring the asymmetric choice property [61] of the branching
processes along the construction path towards the proper prefix. The detailed
investigation of this claim is left for future work. With such a technique in
place, one can decide that a process model is inherently unstructured before
the proper prefix is constructed and, thus, substantially decrease the overall
structuring time.

Connectivity-Based Verification of Workflow Nets

In Chapter 7, we provided the foundations for the stepwise connectivity-based
verification of WF-nets. We foresee many opportunities for generalizing the
results proposed in Chapter 7. For instance, as a possibility for generalization
of Theorem 7.5, we envision that the problem of soundness verification of a WF-
net can be decomposed into several smaller problems: one to check the classical
soundness of the root biconnected sub-WF-net, and one to check up-to-k-soundness
of a sub-WF-net for every non-root biconnected sub-WF-net of the WF-net, where
up-to-k-soundness should be defined similar to the way suggested in [4, 138]. The
value of k must be determined individually for each sub-WF-net. Intuitively, the
value of k for a sub-WF-net must be deduced from the k-boundedness of the
cutvertex place of the WF-net that induces the sub-WF-net, where k-boundedness
of a place is the maximal number of tokens that can reside at the place at all
reachable markings of the WF-net. The progress along the ideas stated above can
allow to relax the safeness requirement in Theorem 7.5.

In Chapter 7, we conducted soundness investigations based on k-connected
subnets of WF-nets, where k < 4. The next research steps for connectivity-based
verification of WF-nets will have to deal with obtaining results for highly connected
subnets, i.e., k > 4, as well as searching for results that apply in the general case
of k-connectivity.

Connectivity Theory of Behavioral Models

The connectivity-based decomposition framework, proposed in Chapter 8, can
serve as a basis for the initiative on cataloging scientific results from various
research fields which are founded on structural decompositions of behavioral
models. Existing scientific results can be classified within the framework and
re-thought for improvement or generalization along the recommendations suggested
by the framework. Moreover, one can use the framework for deriving ideas when
coming up with new techniques. To conclude, we foresee that the framework can
become a central communication point for sharing knowledge on techniques for
the structural analysis of behavioral models. We also envision that subsequent
works on analysis techniques that follow the recommendations of the framework
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can help with refining the framework, which in the end can produce a synergy
effect.

Ordering Relations Graphs

As already mentioned in Section 9.1, in this thesis we benefited from the unique
understanding of the semantics of distributed systems. This understanding rests
on two notions: the notion of the proper complete prefix unfolding and the notion
of the ordering relations graph. Orgraphs are compact representations of the
behavioral information captured in proper prefixes, which allowed us to reuse
standard techniques from graph theory to implement the structuring of process
models. We envision that similar to our application of modular decomposition
on orgraphs when structuring process models, one can try to look for value when
applying other standard graph techniques on orgraphs; note that one can see
orgraphs as two-structures and, hence, also apply techniques from the theory of
two-structures when analyzing orgraphs. We believe that orgraphs are interesting
artifacts by themselves and that future works on analysis of orgraphs can provide
us with interesting insights into the management of distributed systems.

9.3. Implementation

The techniques proposed in this thesis are implemented in open source projects:

o jbpt (Business Process Technologies 4 Java). This project contains code
developed for research purposes in the domain of business process manage-
ment. The project is founded on a graph library specifically developed for a
convenient reuse of algorithms. The project includes algorithms for parsing,
abstraction, verification of behavioral models, and much more.

jbpt is published under the GNU General Public License at:
http://code.google.com/p/jbpt.

o bpstruct — A tool for structuring concurrent systems. bpstruct is a tool for
transforming unstructured processes/programs/service compositions (models
of concurrency) into well-structured ones. The transformations preserve
concurrency in resulting well-structured models.
bpstruct is published under the GNU General Public License at:
http://code.google.com/p/bpstruct.

All the evaluations reported in this thesis were carried out by using the code
published in the projects listed above.
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Appendix — Proofs

A.1. Lemma 3.14: Relation between fragments of a TTG
whose completed version is biconnected and fragments
of its normalized version

Consider a single node-splitting step transforming a graph G into G’, let x be
the node that is split into nodes *x and z*, and let e be the edge that is added
between *x and x*. We define the following mappings for the next lemma:
1. A mapping ¢ maps a set F' of edges of G’ to a set ¢(F) of edges of G by
Y(F) =F~{e}.
2. A mapping ¢ maps a set of edges H of G to a set ¢(H) of edges of G' by
¢(H)=Hu{e} if H has an incoming edge to x as well as an outgoing edge
from z, and otherwise ¢p(H) = H.
Now, we claim':

Lemma 3.14 Let ¢ and v be as defined above. We have:
1. If F # {e} is a fragment of G', then ¥(F) is a fragment of G.
2. If H is a fragment of G, then ¢(H) is a fragment of G'.
3. If F # {e} is a canonical fragment of G', then ¥ (F) is a canonical fragment
of G.
4. If H is a canonical fragment of G, then there exists a canonical fragment F

of G’ such that Y(F)=H.
Proof. We prove each part separately.

1.,2. The proofs of these parts are derived by straightforward applications of the
definitions.

3. Suppose ¥(F) are not canonical. Then there exist a fragment H of G that
overlaps with ¢ (F). We know from part 2 of this lemma that ¢(H) is a
fragment, and from ¢ (F) ¢ F and H ¢ ¢(H) it follows that F' and ¢(H)
overlap, which contradicts our assumption that F' is canonical.

4. Let S7 and S5 be two fragments of G such that the exit v of S; is the entry
of Sy. If S =51 U8, is a fragment, we say that S is a sequence and S; and
Sy are called segments of S. We also say that S; and Sy are in sequence.
It follows from the biconnectedness of C'(G) that the entry of S; and the

IThe author wants to thank Hagen Volzer for his assistance with formalizing the proof of
Lemma 3.14
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exit of Sy are then distinct. Furthermore, S is a fragment if and only if all
nodes that are incident to v belong to S. A sequence S is maximal if S is
not a segment of another sequence. We know that a sequence is a canonical
fragment if and only if it is maximal [146].

We define the fragment F as follows. If H is a sequence — hence maximal —
and z is a boundary node of H such that all outgoing edges or all incoming
edges of x are inside H, then we set F' = Hu{e}. Otherwise, we set F' = ¢(H ).
To show that F' is a canonical fragment, we consider both cases separately.

Let H be a maximal sequence and let x, without loss of generality, be an
entry of H such that all outgoing edges of z are inside H. (The exit case is
analogous.) We distinguish two cases.

1. An incoming edge of x is in H. Call this edge e¢g. Then the sequence H
can be divided into two segments S, S such that eg € S;. Then ¢(.57)
and ¢(S2) are both fragments. Moreover they are in sequence, that
is, F' = ¢(S1) U #(S2) is a sequence. F must be a maximal sequence
because otherwise H would not be a maximal sequence. Therefore, F
is a canonical fragment.

2. No incoming edge of = is in H. As all outgoing edges of = are in H,
H is in sequence with the trivial fragment {e} in G'. Because H is a
maximal sequence of G, F = H u{e} is a maximal sequence of G'.

Now we consider the “otherwise” case, i.e., F' = ¢(H). We know from part
2 of this lemma that F'is a fragment. Suppose that F' were not canonical.
Then, there is some fragment F’ of G’ such that F' and F' overlap. Therefore,
none of three sets F N\ F', Fn F’ and F' \ F are empty. Lets call an edge
f original if f # e. If all three sets F \ F', Fn F’' and F’ \ F contain an
original edge, then H = ¢(F) and ¢ (F") also overlap, which contradicts H
being canonical. Therefore, we have to prove that none of the three sets
FNF', FnF"and F'\ F equals {e}. To derive a contradiction we suppose
that this is the case. It follows immediately that = must then be a boundary
node of H. We assume without loss of generality that x is an entry of H.

We know from previous results [146], that there are only two ways in which
two fragments F, F’ can overlap:

1. F and I’ are two non-maximal sequences that share a common segment.

2. F and F' are separation components w.r.t. the same boundary pair
{u,v} that share a common separation class w.r.t. {u,v}. (F and F’
are then special bond fragments in the terminology of [146].)

We consider these two cases now separately.

2. Consider the case F'n F’ ={e}. The boundary pair of {e} is {*x,z*},
which is therefore also the common boundary pair of F' and F”. It follows
that x is a separation point of C(G), contradicting our assumption
that C'(G) is biconnected. The other two cases use exactly the same
argument.
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1. Let F and F' be two non-maximal sequences that share a common
segment.

a) If the shared segment is {e}, then e € F' and because of the definition
of ¢, H contains an outgoing edge from x. Because {e} and F'~{e}
are two fragments in sequence, all the incident edges to x* are in
F’, which contradicts that H contains an outgoing edge from z.

b) Let '\ F' = {e}, then e € F' and because of the definition of ¢, H
contains an incoming edge to x. That edge must be inside F' n F,
the overlapping segment of the two sequences. It follows that =z is
a boundary node of this segment in G’. As x* is a boundary of that
segment, this contradicts the assumption that C'(G) is biconnected.

c) Let F/ N\ F ={e}. As F does not contain e, we have F = H. As
F = H is a sequence by assumption, some outgoing edge of z is
outside F' (otherwise we would not be in the top-level “otherwise”
case). Call this edge ep. By assumption z* is an interior node
of F'. Then ey must be in F’ \ F, which contradicts the initial
assumption of this subcase. o

A.2. Theorem 5.14: Relation between fully concurrent
bisimulation of two labeled occurrence systems and their
A-ordering relations

Theorem 5.14 Let S; = (Ny,My), Ny = (B1,E1,G1,T1,M1), and Se = (Na, M>),
Ny = (Bg, Es,G2,T2,A\2), be two labeled occurrence systems with natural markings
and distinctive labelings. Let E{ € F1 and E} € E5 be observable events of Ny and
Ns, respectively, such that there exists a bijection v : E] — Eb for which holds
Ai(e) =X (¥(e)), for allee Ey. Let Ry, and Ry, be the A-ordering relations of
N7y and Na, respectively. Then, it holds:

S1885, < R)\l = ’R,)\z.

Proof. We prove each direction of the equality separately.
(=) Let S; and S5 be FCB-equivalent. We want to show that Ry, @ R.,.
Let us assume that S7 ~ S5 holds, but Ry, = Ry, does not hold. Furthermore,

let us consider events e}, e} € F1 that are in one-to-one correspondence with
2 2 1o 1y _ .2 1y _ .2 ;

events e7,e; € Ej, i.e., ¥(e;) = ef and 9(e;) = e;. All scenarios can be

reduced to the following two cases:

3 It e} |In, ej or e ~n, €], then

there exists process m; of S; that contains e! and ejl-. If e #n, e?, then

%

Case 1: (e ||, €j or e} ~n, e}, and eF #n, e

there exists no process my of Sy that contains ef and e?.

3) Let m; be a process of S; that

contains e; and ejl», and let T2 be a process of S that contains e? and e?.

(ol 1 2 2 2
Case 2: (e; ~n, €, and €] ~n, e; or €7 ||n, e
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Then, there exists no ¢ ¢ v, such that ¢ is an order-isomorphism between
A-abstractions of m; and .

In both cases we reach a contradiction, i.e., systems S1 and S2 cannot be
FCB-equivalent if the A-ordering relations are not isomorphic.
(<) Let Ry, 2 Ry,. We want to show that S; and Sy are FCB-equivalent.

Let us assume that Ry, = R, holds, but S; ~ S5 does not hold. Then, for
instance, there exists process 7} of S7, which has no corresponding order-
isomorphic process of Sy. Suppose that 7] has the minimal size among all
such processes, i.e., any prefix of 7] has a corresponding order-isomorphic
process of Sy. Let 7] be an extension of process m of S by exactly one

observable event e} € F{. Let my be a process of Sy that is order-isomorphic

with m1. Let e? € FY be in one-to-one correspondence with e;, ie., 1/)(6;) = e?.

All scenarios can be reduced to the following three cases:

Case 1: There exists process 75 of So that contains e? and is an extension of oy
L ¢ Ef in 7y, such that

by one observable event. Moreover, there exists e;
ej ~n, ;. However, it holds €7 ||y, €7, for €] € Ej, such that ¢(ej) = e;
otherwise there exists an order-isomorphism ¢ ¢ ¢ between 7] and 75,.

Case 2: There exists no process 75 of Sy that contains e? and is an extension of
m9. Moreover, there exists ezl € 1 in 71, such that e} ~ N,y ejl. However, it
holds €7 #n, €7, for e € Ej, such that ¢(e]) = e7.

Case 3: There exists process 5 of So that contains e? and is an extension of

T2, but not by only one observable event. Then, there exists e} € Ej, such

that e} ~n, e? but m does not contain ei. However, e; € Ef, such that

1
-

In all three cases we reach a contradiction, i.e., the A-ordering relations
cannot be isomorphic if systems S; and Sy are not FCB-equivalent. o

Y(e}) = €2, is not in 7] and, hence, e}, >y, e

A.3. Theorem 6.14: Relation between the MDT of an
orgraph and the RPST of a well-structured process
model

Before we proceed with the proof of the theorem, we present an auxiliary propo-
sition. The proposition summarizes relations between components of a process
model and modules of an orgraph.

Proposition A.1: Let Cy be a process component and let M; be the corresponding
ordering relations graph. Let My be an ordering relations graph and let Cs be its
corresponding process component.

1. If C is trivial or polygon, then M; is linear.

2. If Ms is linear, then there exists Cy that is trivial or polygon.

3. If Cy is and (zor) bond, then M is and (zor) complete.

4. If My is and (xor) complete, then there exists Cy that is and (zor) bond.,
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we are ready to continue with the theorem.

Theorem 6.14 Let G be an ordering relations graph. The MDT of G contains
no primitive module, iff there exists a well-structured process model PM such that
G is the ordering relations graph of PM.

Proof. Let G = (V, A, B,0) be an ordering relations graph.

(=)

Let G be such that the MDT of G contains no primitive module. We show now
by structural induction on the MDT of G that there exists a well-structured
process model PM such that G is the ordering relations graph of PM. The
MDT of G can contain trivial, linear, or complete modules.

Base: If the MDT of G consists of a single module M, then M is a trivial module

and PM is a process model composed of a single task.

Step: Let M be a module of the MDT of G such that every child module of

(<)

M has a corresponding well-structured process component. If M is linear,
then PM can be a trivial or polygon component composed from children of
M, see (2) in Proposition A.1. If M is complete, then PM can be a bond
process component, either and or xzor, composed from process components
that correspond to child modules of M, see (4) in Proposition A.1. In both
cases, M has a corresponding well-structured process model (component).

Therefore, there exists a well-structured process model PM that is composed
of process components which correspond to child modules of module V', such
that G is the ordering relations graph of PM.

Let PM be a well-structured process model such that G is the ordering
relations graph of PM. We show now by structural induction on the RPST
of PM that the MDT of G has no primitive module. Because PM is well-
structured, the RPST of PM has no rigid component.

Base: If PM is composed of a single task, then the corresponding ordering

relations graph contains one trivial module.

Step: Let C' be a process component of the RPST of PM such that every child

process component of C' has a corresponding ordering relations graph without
a primitive module. If C is trivial or polygon, then G is either trivial or
linear, see (1) in Proposition A.1. If C' is bond, then G is complete, see (3)
in Proposition A.1. In both cases, C' has a corresponding ordering relations
graph without a primitive module.

Therefore, the MDT of the ordering relations graph that corresponds to PM
has no primitive module. o
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